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Indeed, in the creation of the heavens and the earth and the alternation of the night 

and the day are signs for those of understanding (Al Imran: 190), 

Who remember Allah while standing or sitting or [lying] on their sides and give 

thought to the creation of the heavens and the earth, [saying], "Our Lord, You did 

not create this aimlessly; exalted are You [above such a thing]; then protect us 

from the punishment of the Fire (Al Imran: 191). 
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Summary 

Agar is a marine heteropolysaccharide with repeating units consisting of 3,6-α-

anhydro-L-galactopyranose and D-galactopyranose linked by α-(1,3) and β-(1,4) 

linkages. It has been promoted as a prospective replacement for petroleum-based 

feedstocks and other applications. Enzymatic biotransformation of agar generates 

high specific products: It is also more environmentally friendly than chemical 

hydrolysis. In particular, agarolytic bacteria and their agarases are preferred for the 

processing of agar into sugar derivatives. 

Agar-producing macroalgae are one of Indonesia's national commodities. However, 

agar-based products and technology are rarely developed in Indonesia. This 

research is aimed to explore the potential of an Indonesian marine bacterium and 

its agarases as bioagents for agar bioprocessing. The research objectives are to 

identify the novelty of the isolate among known agarolytic bacteria using 

microbiology and molecular biology approaches, to elucidate the agarolytic system 

of the bacterium using in silico genome analysis, to express and characterize the 

recombinant agarases, and to elucidate their potential for producing agar-derived 

saccharides from Indonesian natural agar. 

Microbulbifer elongatus PORT2 is a gram-negative marine bacterium that had been 

isolated from Batu Karas seawater, Pangandaran, West Java Indonesia. PORT2 

shows potential as biocatalysts for agar saccharides conversion by showing 

remarkable agar liquefaction. The annotation of the draft genome identifies six 

putative β-agarases consist of three GH50, two GH86, and one GH16 in M. 

elongatus PORT2. Those agarases are clustered at two different contigs. Besides 

agarases, other genes for D-galactose and 3,6 anhydro-L galactose metabolism, 

sugar transports and regulatory system are found in the vicinity of the agarases 

clusters. Despite the ability to utilize agar as a sole carbon sole, PORT2 lacks any 

putative α-agarase GH117 or GH96. Both are responsible for the cleavage of α-

glycosidic bonds in agar. Indeed, several hypothetical proteins are in the 

neighborhood of the agarase gene clusters in M. elongatus PORT2. They probably 

could have a function as the alternative machinery or pathway for agar 

monomerization that needs clarification in future research work. 
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Four recombinant β-agarases from PORT2; AgaA50, AgaB50, AgaC50, and 

AgaF16A have been successfully overexpressed in E.coli and characterized. The 

AgaA50 and AgaC50 exhibit metal-dependent activity. They perform exo-

agarolytic modes and generates neoagarobiose (NA2). The AgaB50 can act as 

endo-and exo-β-agarase without any additional activator and produces 

neoagarohexaose (NA6), neoagarotetraose (NA4), and NA2. AgaF16 produces 

NA6 and NA4. The enzyme shows pure endo-catalytic action which thiol agents 

positively affect its activity. The synergetic reaction of AgaF16A and AgaA50 

converts Indonesian Gelidium agar into NA2 and Gracilaria agar into modified 

NA2. The modified NA2 from Gracilaria agar could promise new potential 

bioactivity that is different from agarose-derived NA2 due to the presence of 

additional side chains on the saccharide backbone. The NA6, NA4, and NA2 

products from agarose have shown potential pharmaceutical applications such as 

immunomodulator, anti-tumor, antioxidant, anti-diabetic, and moisturizer. 

Despite being isolated from a mesophilic marine bacterium, the recombinant 

agarases from M. elongatus PORT2 are active at 50 °C  and pH between 6.5 to 8. 

They maintain more than 75% of their activities even after 1 h preincubation at 50 

°C, except for AgaC50. Their thermostability gives advantages for the effective 

biocatalytic conversion of agar because the substrate is more accessible at mild pH 

and the temperature above the sol-gel condition (> 40 °C). 
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1. Introduction  

1.1. Motivation and Scientific Goals 

Global climate change and sustainable living concepts have triggered the effort to 

identify renewable resources as a replacement for petroleum-based feedstock. 

Biomass provides carbon materials similar to fossilized resources. Therefore, it has 

been considered a prominent candidate for renewable fuel and chemical staples. 

Transition into alternative feedstock requires not only adequate raw materials 

supply but also chemical pathways and processing technologies into novel final 

products. The derived processes and products should be profitable, sustainable, and 

environmentally harmless. Among potential biomass resources, macro algae offer 

the aforementioned features.   

Out of 221 commercial macro algae species, a few have been intensively cultivated 

such as brown algae Sargassum sp., kelp red alga Porphyra red algae Eucheuma 

sp., Kapphaphycus sp., and Gracilaria sp. Their cultivation is simple without any 

additional fertilizer, growth factors, or hormones. Macro algae farming does not 

compete with food or land-usage issues. It also enhances CO2 absorption beneficial 

for reducing greenhouse effects. Notably, red algae farming in developing countries 

has assisted the improvement of coastal community livelihood by generating 

employment activity. Other fisheries cultivation such as shrimp, abalone, and sea 

cucumber often combine with red alga Gracilaria sp. due to its ability to ameliorate 

water quality and for additional economic value as agar producer (Ferdouse et al. 

2018). Agar-derived saccharides have been considered not only as a potential 

prospective replacement for petroleum-based feedstock but also as bioactive 

compounds such as antioxidants, anti-inflammatory, anti-tumor, immuno-

modulator, and whitening agent (Park et al. 2020).  

Agar-derived saccharides production can use a chemical and/or enzymatic process. 

The latter is preferable due to homogenous highly-specific products and more 

environmentally friendly. Biotechnology has been used as an effective tool for 

generating high added-value products. It offers a sustainable approach for 

enzymatic agar conversion while optimizing viable domestic bio resources. 
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One crucial part of biotechnology research and development is the establishment of 

bio agents for alga polysaccharides transformation, the organisms and/or the 

enzymes (Renn 1997; Pulz and Gross 2004; van Hal et al. 2013). Exploration of 

local microorganisms where the red algae originate could be a feasible way to 

obtain the appropriate bio agents needed.  

Indonesia is the second-largest cultivated Gracilaria producer in the world after 

China and shares around 38% of the market. Around 60-70% of Indonesian agar 

production was exported as dried red alga to Chile, China, the Philippines, and some 

other countries. However, at the same time, Indonesia imports macro algae colloids 

for food and pharmaceutical industry applications due to inadequate macro algae-

based research technology and development (Mazarrasa et al. 2014; Ferdouse et al. 

2018). As a result, potential production and utilization of agar-derived saccharides 

also reduce. Substantial research development is needed to support the scale-down 

process technologies that efficiently extract agar-derived saccharides and 

economically improve agar-value chain competitiveness. 

An agarolytic bacterium had been isolated from Batu Karas seawater, Pangandaran, 

West Java Indonesia. It forms a pit and liquefies the agar plate indicating agar 

utilization. The bacterium should have an agarase system and therefore is a potential 

candidate for converting agar to smaller saccharides. This research aims to elucidate 

the bacterium capability for agar-derived saccharides conversion by: 

1. Identifying the bacterium isolate to determine its uniqueness compared to 

the known agarolytic bacteria (Chapter 3). 

2. Examining the isolate genome to explain its agarolytic system in silico in 

comparison to the known agarolytic bacteria (Chapter 4). 

3. Mining the agarase genes and engineering recombinant agarases to elucidate 

the functionality of the enzymes (Chapter 5). 

4. Determining the agarolytic performance and potential added value-product 

that can be derived from Indonesian agar using recombinant agarases 

(Chapter 5). 

The studies in this dissertation have revealed several findings for supporting macro 

algae biotechnology development in Indonesia. The first is the discovery and 

characterization of a mesophilic marine bacterium from the Indonesian coastal 
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seawater. The bacterium produces thermostable agarases and designates as 

Microbulbifer elongatus PORT2. Second, the first part of the agar degradation 

pathway in PORT2 that represents M.elongatus has been elucidated through 

genome profiling and characterization of recombinant β-agarases. The finding 

implies the possibility of discovering neoagarobiose hydrolase-like enzyme for the 

completion of the agar degradation pathway in Microbulbifer spp. The third is the 

potential application of the thermostable recombinant agarases for the conversion 

of Indonesian agar into agar-derived saccharides  

1.2. Literature Review  

1.2.1. Agar and Agar Derived Saccharides 

Agar is a heteropolysaccharide with a repeating backbone consisting of 3,6- α-

anhydro-L-galactopyranose and D-galactopyranose linked by alternating α-(1,3) 

and β-(1,4) linkages (Figure 1.1). This structure is typical neutral agar or agarose. 

The 3,6- α-anhydro-L-galactopyranose gives unique gelling property to the agar. 

Physico-chemical properties of agar depend on producing-species, harvesting 

period, method of extraction, and environmental factors such as nutrient availability 

and hydrodynamic condition (Usov 2011; Lahaye and Rochas 1991; Rebello et al. 

1997; Sousa et al. 2013).  

Agar backbone can be masked by various side-chain groups such as methyl, sulfate, 

or pyruvate. The side-chain modifies not only the structure but also the agar's 

physical properties. Natural methyl at C6 of the galactose increases the gelling 

temperature and agar solubility in hot ethanol (Guiseley 1970). Pyruvate and sulfate 

augment agar polarity and reduce the gelling property (Morrice et al. 1983; Lahaye 

and Rochas 1991). An example is porphyran, sulfate masking of 6-sulfate-L-

galactopyranoses significantly diminish the gelling property and increased cold 

water solubility. Indeed, 6-sulfate-L-galactopyranose is purposed as the precursor 

of anhydro-L-galactose during the biosynthesis of agar (Usov 2011). 

Agar has covalent alpha (α) and/or beta (β) glycosidic linkages reflecting the 

stereochemistry of the hydroxyl group at the anomeric carbon (Sinnot 2007). By 

convention, the reducing-end residue within the structure is drawn furthest to the 

right and the non-reducing end positioned at the furthest left (Baker et al. 1997). 

The glycosidic cleavage can generate two distinct agar oligomers. The cleavage of 
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β-linkage generates neoagarooligosaccharide with D-galactose at the reducing end 

(e.g neoagarobiose) while the α-cleavage produces agarooligosaccharide (e.g. 

agarobiose) with 3,6- α-anhydro-L-galactose as the reducing end (Figure 1.1) 

(Ekborg 2005).  

 

Figure 1.1. Neutral agar (agarose) repeating units. The smallest repeating 

disaccharide is designated as a neoagarobiose if D-galactose is at a reducing end 

position or agarobiose if 3,6- α-anhydro-L-galactose as the reducing end. 

Agar has been widely used as a food additive, solidifying reagent, and supporting 

materials for electrophoresis and chromatography techniques. Recently, it has been 

applied in various industries as carrier materials for drug delivery (Kazimierczak et 

al. 2019), encapsulation (Guerrero et al.2017), immobilization (Elkahlout et al. 

2017), and prospective biodegradable polymers for replacing petroleum-based 

feedstock (Liu et al. 2018).  

Agar-derived saccharides show numerous biological activities. A mixture of 

neoagarohexaose (NA6) and neoagarotetraose (NA4) show anti-obesity and 

antidiabetic effects (Hong et al. 2017). NA4 demonstrates various activities such as 

immunomodulatory activity (Kang et al. 2017), anti-inflammatory effect (Wang et 

al. 2017), anti-fatigue agent (Zhang et al. 2017), and antitumor activity (Lee et al. 

2017) while neoagarobiose (NA2) exhibits antioxidant activity, skin-whitening, and 

moisturizing activity (Kobayashi et al. 1997; Lee et al. 2008; Yun et al. 2013). 

1.2.2. Glycoside Hydrolases (GHs) 

Glycoside hydrolases or glycosidases are enzymes that catalyze the hydrolysis of 

glycosidic linkages. Their classifications imply the structural complexity of the 

substrate (Vocadlo and Davies 2008). The EC number classifies glycoside 

hydrolase based on the chemical reaction catalyzed by the enzyme thus inferring 

substrate specificity. An example is the O-Glycoside hydrolases which are 

classified into EC 3.2.1.X. The first three digits 3.2.1. instantiates the type of 
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glycosidic bond cleavage and the last digit indicates the substrate structure. The EC 

number classification was proposed by the International Union of Biochemistry and 

Molecular Biology (IUMB) to avoid trivial name ambiguity but unable to describe 

the enzyme structure and mechanism (Zhang et al. 2010).  

A sequence-based classification of glycoside hydrolase is well documented in the 

carbohydrate-active enzymes database (Lombard et al. 2014). The classification 

was proposed in 1995 by Davies and Henrissat based on the hypothesis that most 

functional domain/region responsible for the mechanism is conserved and sequence 

defines protein fold. Thus, preliminary structure and mechanism can be predicted 

from sequence similarity. The availability of experimental 3D protein structure with 

minimum sequence length around 150 residues and 50% of homology could 

facilitate in silico mechanism prediction of an unknown protein (Krieger et al. 

2003). The database classifies enzymes into family, subfamily, and clan. Sequence 

and folding similarity, conserved catalytic apparatus, and mechanism delineate a 

GH family and clan (Cantarel et al. 2009; Davies and Williams 2016).  

Mechanism 

In 1953, Koshland postulated that glycoside hydrolase performs bio catalysis either 

via a retaining or inverting mechanism. Both mechanisms need a nucleophile and a 

proton donor residues to perform the cleavage. Catalysis by a retaining GH involves 

two transition steps due to the proximity of two catalytic residues. In-between, a 

glycosyl-enzyme intermediate complex is formed to facilitate hydrolysis reaction 

before product release (Figure 1.2.a). In contrast, an inverting GH has a wider 

distance between catalytic residues that can accommodate a one-step hydrolysis 

reaction and is illustrated in Figure 1.2.b. Recently, a new glycoside hydrolase 

mechanism involving a NAD-cofactor dependent has been discovered. The reaction 

proceeds via an anionic transition state with elimination and redox steps (Yip et al. 

2004; Rajan et al. 2004). 

https://www.cazypedia.org/index.php/Transition_state
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Figure 1.2. Catalytic mechanisms of glycoside hydrolase (modified from 

https://www.cazypedia.org/index.php/Glycoside_hydrolases). a) A retaining 

glycosidase performs the glycosidic bond cleavage using two steps displacement. 

In the first step, a residue acts as a nucleophile attacking the anomeric center. At 

the same time, other residue acts as an acid/base and protonates the cleaving 

glycosidic oxygen. A covalent glycosyl-enzyme is formed. In the second step, the 

base residue deprotonates water for hydrolyzing the glycosyl-enzyme intermediate. 

b) an inverting glycosidase cleaves the glycosidic bonds using a single displacement 

mechanism. One residue plays a role as a general base deprotonates water that 

attacks the anomeric carbon. At the same time, the other residue plays a role as a 

general acid protonates the glycosidic oxygen as the bond cleaves. An 

oxocarbenium ion-like transition state is formed and hydrolyzed by the water.  

The action of glycoside hydrolase on catalyzing the hydrolysis of glycosidic bonds 

can be differentiated into endo- and exo-mode. The exo-glycosidase acts on the 

https://www.cazypedia.org/index.php/Glycoside_hydrolases
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glycosidic bonds from the end part of sugar while endo-glycosidase cuts inner 

glycosidic bonds randomly (Figure 1.3.). Glycoside hydrolase also has different 

modes of enzyme-substrate interaction, either processive or dissociative (Vocadlo 

and Davies 2008). A processive glycosidase interacts continuously with the 

substrate during hydrolysis until it reaches the final reaction capacity. Meanwhile, 

the dissociative glycosidase cleaves the glycosidic linkages once or a few times 

randomly releasing different sizes of products with accessible termini (Taylor et 

al.2013).   

 

Figure 1.3.  Mode of glycosidase actions: endo and exo-activity (e.g. β-agarase). 
Endo-glycosidase (red packman) cleaves inner glycosidic bonds randomly 

releasing products of different sizes. An exo-glycosidase (yellow packman) 

performs the cleavage from the end of saccharides resulting in a single product size. 

Substrate Binding Site  

A substrate-binding site is a region within an enzyme where the catalysis reaction 

proceeds. Specific amino acid residues interact with the substrate through non-polar 

and non-covalent hydrogen-bonding networks to form a transition state with lower 

activation energy before releasing the product (Wilson 2010). In glycoside 

hydrolase, arginine, aspartate, glutamate, and aromatic amino acids have a strong 

propensity to be the substrate-binding residues. Specifically, two glutamates or 

aspartic acid play a role as the catalytic residues, either proton donor or nucleophile 

(Davies and Henrissat 1995; Tsai 2012).  
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The substrate-binding site in glycoside hydrolase has a specific nomenclature which 

indicates the position of catalytic subsite relative to the point of cleavage and 

indirectly illustrates the mode of action. The number of binding subsites can be 

increased or reduced when different sugar-units of the substrate are introduced into 

the enzyme but the pre-existing nomenclature sequence may not change (Davies et 

al 1997). The nomenclature applies several rules as below: 

1). The - n to + n is the label of the subsites at the non-reducing end to the reducing 

end, respectively. 

2). The cleavage occurs between -1 and +1 sites. 

3). The –n to + 2 is used for exo-glycosidase that cleaves from the reducing end 

(Figure 1.4.a). 

4). The -2 to + n is used for exo-glycosidase that cleaves from the non-reducing end 

(Figure 1.4.b.). 

5). The -1 to n is used for a glycosidase that cleaves a monosaccharide from the 

non-reducing end (Figure 1.4.c). 

Figure 1.4. Sugar-binding sub sites nomenclature for different actions of 

glycoside hydrolases: a) exo-glycosidase that cleaves from reducing end b) exo-

glycosidase that cleaves from non-reducing end c) a glycosidase that cleaves a 

monosaccharide from the non-reducing end. 

Active Site Topology  

Up to date, only three types of active site topologies are known. Exo-glycoside 

hydrolase such as β-galactosidase or cellohydrobiolase generally adopts a pocket-

like active site suitable for a small substrate (Vonossowski et al. 2003) (Figure 

1.5.a). Endo-acting GHs such as agarases from the GH16 family, chitinases, and 

endocellulases adopt an open structure-active site such as a cleft or groove (Viborg 

et al. 2019) (Figure 1.5.b).  A processive GH mostly adopts tunnel topology such 

as cellobiohydrolase II from Trichoderma reesei (Vonossowski et al. 2003) (Figure 

1.5.c). 
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Figure 1.5. Active site topology in glycoside hydrolase: a). Pocket/crater of 

Cel7A Aspergillus fumigatus (PDB id 4V20)  b). Cleft/Groove from GH6‐amylase 

alkalophilic Bacillus sp.707 (PDB id 2D3N) c). Tunnel of cellobiohydrolase II 

Trichoderma reesei (PDB id 1CB2); amino acid residues at substrate binding site 

(red). 

1.2.3. Agarases 

Agarases are glycoside hydrolases that catalyze glycosidic bonds cleavage of agar 

by adding water.  They are differentiated into two groups. The α- agarase has 

activity on (1→3)-α-L-galactoside linkages while β-agarase on (1→4)-β-D-

galactoside linkages. The CAZY system classifies β-agarase into GH16, GH50, 

GH86, and GH118 with E.C number 3.2.1.81 and α-agarase into GH96 and GH117 

with E.C number 3.2.1.158 (Hehemann et al. 2012c; Michel and Czjzek 2013). 

Currently, more β-agarases have been characterized and structurally elucidated than 

α- agarase. 

Glycoside hydrolase 16 (GH16) is a polyspecific β-glycanase family clan B in 

which β-agarase is a member of subfamily 16 (GH16-16). This family is composed 

of endo-retaining enzymes. Some of them also show transglycosylation activity. 

GH16 has a β-jelly roll sandwich structure forming a cleft-shaped active site with 

motif either β-bulge or β-strand and two catalytic glutamates or aspartic acid in the 

middle of the cleft. The β-bulge motif has a consensus active-site sequence of 

EXDXXE and presents more frequently than the β-strand (EXDXE) (Viborg et al. 

2019; www.cazypedia.org). Members of GH16 can be equipped with additional 

non-catalytic carbohydrate-binding modules (CBMs) which specifically recognize 

the non-reducing end of the substrate and enhance the catalytic efficiency (Henshaw 

et al. 2006). 

GH50 is a retaining-β-agarases family within the (α/β)8 barrel-clan A. Most of them 

are exo-retaining agarases. The exo-action was resolved from the protein structure 

of Aga50D (Saccharophagus degradans 2-40). Aga50D has a CBM-like domain at 

the N terminus fuses to an (α/β)8 barrel at the C terminus via α-helix coils. The 

http://www.cazypedia.org/
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enzyme has two catalytic glutamates locate in a pocket tunnel-shaped active site 

(Pluvinage et al. 2013).  

GH86 is also a member of clan A with an (α/β)8 barrel and two β-sandwich domains 

at the C terminus.  Members of GH86 are β-agarase and β porphyranase with endo- 

or exo-hydrolytic retaining mechanism. An agarase from Bacteroidetes plebeius, 

BpGH86A, showed two catalytic glutamates in the middle of a long deep cleft-

shaped active site (Hehemann, et al. 2012c).   

GH96 is an α-agarase and GH118 is a β-agarase. Both enzymes have an inverting 

mechanism and are rarely found. Only their biochemical characteristics are 

available within the CAZY database without any structural information. Nine 

GH118s have been reported but only three have been characterized, AgaXa from 

Catenovulum sp. X3, AgaB from Pseudoalteromonas sp. CY24 and AgaC from 

Vibrio sp. PO-303 (Xie et al. 2012; Ma et al. 2006; Dong et al. 2006). 

GH117 or α-neoagarobiose hydrolase (NABH) is the substantial enzyme for the 

conversion of agar disaccharides into the monomers through an inverting exo-α-

hydrolytic action. Generally, an agarolytic bacterium has at least one GH117 

(Hehemann et al. 2012a). This enzyme can be secreted extracellularly by Zobellia 

galactanivorans and Bacillus sp. MK03 (Rebuffet et al. 2011; Suzuki et al. 2002).  

It can also be produced in the periplasm by Pseudomonas atlantica (Day and Yaphe 

1975). Marine bacteria Cytophaga flevensis, Vibrio sp. strain JT0107, and S 

degradans 2-40 produce a cytosolic NABH (Meulen and Harder 1976, Sugano et 

al. 1994; Ha et al. 2011). GH117 forms a homodimer structure, each consists of a 

fivefold-β-propeller catalytic domain with catalytic residues aspartate (base) and 

histidine (acid) (Ha et al. 2011; Hehemann et al. 2012a).  

1.2.4. Agarolytic Pathway 

The first agarolytic bacterium designated as Bacillus gelaticus was observed by 

Gran in 1902. New agar-degrading bacteria and fungi are continuously reported 

afterward dominated by marine Bacteroidetes and Gammaproteobacteria such as 

Zobellia, Microbulbifer, Cellvibrio, Saccharophagus, Pseudoalteromonas, etc 

(Michel et al 2006). Some others have been isolated from soil, freshwater, and 

human gut indicating a horizontal gene transfer from marine microorganisms 

(Hehemann et al. 2010; Song et al. 2016).   
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The agar degradation in bacteria had been proposed as an inducible pathway (Van 

der Meulen and Harder 1976; Furusawa et al. 2017). An agarolytic bacterium 

produces a basal amount of extracellular agarase consecutively as substrate-sensing 

machinery. When an appropriate substrate such as agar is available, the 

extracellular β-agarase hydrolyzes it and releases agar oligosaccharides such as 

neoagarooctaose (NA8), neoagarosehexaose (NA6), and neoagaraotetraose (NA4).  

Those molecules trigger the expression of cognate agarases to start the agarolytic 

pathway.   

In general, the pathway involves the action of endo-agarases either β-or α-agarases 

to hydrolyze the agar polymer into neoagarooligosaccharides (NAOS) or 

agaroligosaccharides (AOS). The NAOS or AOS are converted further into the 

smallest repeating unit neoagarobiose or agarobiose (NA2) by exoagarases or β-

galactosidases. The last step is the cleavage of α-1,3 linkages in NA2 by an α-

agarase GH96 or neoagarobiose hydrolase (NABH) GH117 to release the 

monomers, D-galactose and 3,6 anhydro-L-galactose (Chi et al. 2012; Park et al. 

2020). 

Three agarolytic bacteria models have been studied extensively. They are a 

Flavobacteriia Zobellia galactanivorans,  a Gammaproteobacteria Saccharophagus 

degradans 2-40, and an Actinobacteria Streptomyces coelicolor A3(2).  Those 

models feature a combination of β- and α-agarases pathways. Z.galactanivorans 

performs agar degradation through serial actions of extracellular GH16, 

porphyranase, and NABH, while S. degdradans 2-40 and S.coelicolor A3(2) release 

extracellular GH16, GH50, and GH86 for agar degradation into NA2 and cytosolic 

GH117 for NA2 monomerization (Chi et al. 2012).  

 

 

 

 

 

 



Chapter 2.  

 

12 
 

2. Materials and Methods 

2.1. Materials  

Chemicals and Reagents 

Common chemicals, buffers, reagents, and microbiological media were obtained 

from Roth, Sigma Aldrich, or VWR except specifically mentioned. Neogarobiose, 

neoagarotetraose, neoagarohexaose, and neoagarooctaose were purchased from 

Qingdao BZ Oligo Biotech (China). Porphyran was purchased from Carbosynth 

(UK). Laminarin, -carrageenan, high molecular weight chitosan, and low 

molecular weight chitosan were products from Sigma Aldrich. Gelidium sp., 

Gracilaria sp., and Ulva sp. were harvested from Sayang Heulang Beach, 

Pamengpeuk, Garut, West Java, Indonesia in January 2018. The primers were listed 

in Table 2.1. (16S rRNA) and Table 2.2. (gene isolation). 

Table. 2.1. 16S rRNA primers 

Name Sequence (5’ – 3’) Position (E. coli) 

TPU1 (27f) AGAGTTTGATCMTGGCTCAG 8 – 27 

TPU2 (forward) CCARACTCCTACGGGAGGCA 334 - 353 

RTU5 (reverse) CCGTCAATTCMTTTRAGTTT  907–926 

1492r TACGGYTACCTTGTTACGACTT 1492 – 1513 

 

Table 2.2. Primers for agarase genes isolation  
Gene Size  

(bp) 

Restriction  

Enzyme 

Primer Pairs Plasmid & 

Size (bp) 

agaA50 2313 BamHI/ 

EcoRI 

F: 5'-ttttttggatccgagcagaaaggtggcgagactg-3' 

R: 5'-aaaaaagaattctcactcggcaggcttcacatcg-3' 

pME1-8002 

agaB50 2229 XhoI/ 

NsiI 

F: 5'-ttttttctcgagctgctgtctgcctgtggtcagt-3' 

R: 5' aaaaaaatgcattcaatcatttttttgcccatagcgg-3' 

pME2-7930 

agaC50 2280 XhoI/ 

NsiI 

F: 5'-ttttttctcgagaatgatgtccggtccacgattaca-3' 

R: 5'-aaaaaaatgcatttactctggcgccactgccaatt-3' 

pME3-7981 

agaD86T 1423 XhoI/ 

NsiI 

F: 5'-ttttttctcgagccaaccgaagcccgtatttctgg-3' 

R: 5'-aaaaaaatgcatttattcacgggcgccgcgcac-3' 

pME46-7123 

agaE86 2103 XhoI/ 

NsiI 

F: 5'-ttttttctcgagtccgcttcgcaagtaggcaacag-3' 

R: 5'- aaaaaaatgcatttagttgcgtacaggtacggtact-3' 

pME6-7804 

agaF16A 837 BamHI/ 

EcoRI 

F: 5'-ttttttggatccgcggactgggatggcatcccg-3' 

R: 5'-aaaaaagaattcttaggagccgccaccggtcgcc-3' 

pME9-6529 
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Bacterial Strain and Growth Condition 

M. elongatus strain PORT2 was isolated from the surface seawater of coastal area 

Batu Karas Pangandaran, West Java Indonesia (7°45'0"S, 108°30'0"E).  Seawater 

sample was taken using a sterile bottle, transported in a cold box, and processed for 

isolation using serial dilution on sterile KNO3 agar media (yeast extract 1 g, KNO3 

0.2 g, agar 15 g, seawater 1 L, pH 8 ± 0.2). The colonies that formed a pit on the 

surface of the media were further purified using the streak plate method on sterile 

KNO3 agar media. Incubation was performed for 24 to 48 h at 28 to 30 °C. Other 

media for maintenance of isolate or experiments were marine broth (Roth, 

Germany, Germany), Vattuone media (1975) (peptone 0.25 g; agar 0.2 g; K2HPO4 

0.2 g; NaCl 3 g, H2O 100 mL) or yeast extract agar (Hadm) (Roth, Germany) 

(tryptone 6 g, yeast extract 3 g, agar 15 g in 1 L modified artificial seawater; NaSO4 

3.24 g; Na2HPO4 0.008 g; FeSO4.7H2O 0.2 g; CaCl2.2H2O 2.38 g; MgCl2.2H2O 

12.58 g; NH4NO3 0.016 g; NaHCO3  0.16 g; KCl 0.55 g; NaCl 25 g; 1 L H2O) 

(modified from Difco, USA).  

Escherichia coli DH5α and BL21 (DE3) were from New England Biolabs (NEB, 

Germany).  E. coli Artic Express was from (Agilent Technology, Germany). They 

were maintained using Luria-Bertani (LB) media (tryptone 10 g; yeast extract 5 g; 

NaCl 10 g; H2O 1 L; pH 7 ± 0.2) (Roth, Germany). All bacteria were also prepared 

as glycerol stock for -80 °C storage.  

2.2. Methods 

Isolate Characterization. The isolate was grown on a marine agar plate at 28 °C; 

24 to 48 h. The growth was examined at temperatures of 4, 28, 30, 37, and 45 °C. 

Gram staining was performed according to the ASM protocol (Smith and Hussey 

2005). Briefly, a small drop of sterile distilled water was put onto a glass slide. A 

single colony was spread onto a water drop, air-dried, and heat-fixed. The sample 

was then flooded with crystal violet reagent for one min, washed gently with 

distilled water, and air-dried for one min.  A mordant reagent (gram’s iodine) was 

spread onto the sample for one min and then washed gently with distilled water and 

air-dried. A decolorizing agent was spread on the sample until the running flow was 

clear, then air-dried. A counterstaining was spread onto the sample for one min, 

washed gently with distilled water, and air-dried for microscopic observation using 

https://tools.wmflabs.org/geohack/geohack.php?params=-7.75_N_108.5_E_globe:earth&language=en
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phase-contrast microscopy Axio Imager M1 (Zeiss, Germany) equipped with an 

HBO 100 light source. The observation parameters were Gram type and cell 

morphology. Cell motility and morphology were also observed using living cells.  

Sodium tolerance was measured at 30 °C using Vattuone medium (1975) without 

NaCl and marine broth (Roth, Germany) with the addition of NaCl into the final 

concentration of 8 and 10% w/v. 

Assimilation tests were examined using the API NE20 test system (Biomerieux, 

USA) with modification. The API AUX media from the kit was diluted into the 

final concentration of 70% w/v sterile artificial seawater. The other procedure was 

performed according to manual instruction. The SIM media (sulfide, indole, and 

motility) was prepared using artificial seawater. A colony was stabbed into two-

third of the medium and then incubated at 30 °C until the growth was visible. The 

H2S production was indicated by a blackening along the stab line. The indole 

production was indicated by color change after Kovac’s and negative motility by 

growth along the stab line. A catalase test was performed by putting a colony on a 

drop of 3% v/v hydrogen peroxide.  Production of catalase was indicated by bubble 

formation. Oxidase test was performed by spreading the colony onto the oxidase 

strip (Microbiology Bactident oxidase, Merck). Production of cytochrome oxidase 

was indicated by purple color formation. 

Single carbon utilization was examined using Vattuone media (1975) by replacing 

the organic protein with NH4SO4 and agar with other polysaccharides such as 

sodium alginate, -carrageenan, high molecular weight chitosan, low molecular 

weight chitosan, D-galactose, and D-glucose monohydrate. The agarolytic activity 

was assayed qualitatively by dispersing Lugol onto agar plate colonies. A clear zone 

formation indicated agarase activity. 

Agar Extraction. Naturally grown macro algae were harvested from Sayang 

Heulang Beach. The algae were cleaned from sands and marine biota, air-dried for 

2 days, washed trice with fresh water, and then sun-dried.  For each sample, 5 g of 

dried-alga was washed with distilled water and then cut into smaller sizes using 

scissors. A 700 mL distilled water was added to the sample and incubated in a water 

bath at 95 °C for 6-8 h, then autoclaved at 121 °C for 15 min. The agar solution was 

filtered using Whatman paper grade 1. Two volumes of technical ethanol 99, 5% 

v/v were added into 350 mL of filtrates for agar precipitation in the cold room for 
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2 h. The filter was centrifuged at 8000 rpm for 30 min at 4 °C and concentrated 

using a rotary evaporator (Heidolph, Germany) at 40 °C for collecting the 

precipitate. The extract was freeze-dried, stored at -20 °C, and designated as an 

alcohol insoluble residue (AIR). 

Analysis of 16s Ribosomal DNA. The isolate was grown on the marine agar plate 

for 24 h.  A toothpick-single colony was dispersed in 10 µL sterile ultrapure water, 

heated at 95 °C for 10 min, and short-spined. Directly,1 µL of supernatant (10-50 

ng genomic DNA) was mixed with 1x DreamTag green buffer (Thermo Fischer 

Scientific, USA), 10 mM of dNTPs, 25 µM of each universal primers for 16S rRNA 

(TPU1f and 1492r), 5U Dream Taq polymerase in a total volume of 50 µL. The 30 

cycles-PCR condition for 16S rRNA was 95 °C, 5 min for initial denaturation; 95 

°C, 2 min for denaturation; 50 °C, 1 min for annealing; 72 °C, 1 min for elongation;  

and 72 °C, 10 min for terminal elongation. The PCR amplicon was observed on 1% 

w/v agarose gel and sent for sequencing (GATC Biotech Eurofins Genomics, 

Germany).  

The 16S rRNA sequence consensus was assembled and examined manually to 

resolve nucleotide conflicts on CLC Workbench 8.0. The sequence was compared 

with 16S rRNA databases such as EZbiocloud (https://www.ezbiocloud.net/), 

Ribosomal Database Project (RDP) (https://rdp.cme.msu.edu/), and NCBI 

databases (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Mega X package was used for 

phylogeny analysis. Multiple sequence alignments were created using the Muscle 

algorithm. Phylogeny tree was constructed by using the maximum likelihood 

heuristic method with best-fit nucleotide substitution model Kimura 2 plus gamma 

distribution (G) and invariant sites (I) (K2+G+I); initial tree: neighbor-joining; 

1000 bootstraps.  

Genome extraction. PORT2 was cultured aerobically overnight in 10 mL of 

marine broth (Roth, Germany) at 30 °C, 180 rpm. The gDNA was extracted using 

the Wizard Genomic DNA Purification Kit (Promega USA) according to the 

manufacturer’s protocol. The integrity of gDNA extract was assessed by using 0.8% 

w/v agarose gel electrophoresis and quantified using NanoDrop 1000 

Spectrophotometer (Thermo Scientific, USA).  

https://www.ezbiocloud.net/
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Genome Sequencing. PORT2 genomic sequencing library was constructed from 1 

ng of gDNA with the Nextera XT DNA Sample Preparation Kit (Illumina, UK) 

according to the manufacturer's protocol. The library quality was controlled by 

analysis on an Agilent 2000 Bioanalyzer with Agilent High Sensitivity DNA Kit 

(Agilent Technologies, Germany) for fragment sizes of around 300-700 bp. 

Sequencing on a MiSeq sequencer (Illumina; 2x250 bp paired-end sequencing, v3 

chemistry) was performed in the Genomics Service Unit (LMU Biocenter, 

Martinsried, Germany), resulting in 2.9 Mio raw reads. Raw reads were trimmed 

for quality (>Q20) and adapter sequences. De-novo assembly was performed using 

CLC Genomics Server 8.0 (Qiagen) with the following parameters: bubble size = 

194, minimum contig length = 1000, word size = 21, perform scaffolding = Yes, 

auto-detect paired distances = Yes, mismatch cost = 2, insertion cost = 3, deletion 

cost = 3, length fraction = 0.5, similarity fraction = 0.8.   

In silico agarase genes analysis. The genome sequencing resulted in a draft 

genome with a size of 4,156,734 bp in 59 contigs or scaffolds and GC content of 

57.6% without any extrachromosomal element. The N50 value of the contigs was 

197,941 bp. The draft genome was submitted to the Microscope platform together 

with other Microbulbifer genomes from EZBiocloud and NCBI databases for 

comparative genome analysis and functional annotation. Genome quality was 

assessed using an integrated tool CHECKM analysis within the Microscope 

platform (Vallenet et al. 2017). The translated coding sequences output for agarases 

genes and proteins were further analyzed using several online platforms such as 

BLASTp against PDB and non-redundant protein database (nr) for pairwise 

comparison (https://blast.ncbi.nlm.nih.gov/Blast.cgi), Protparam analysis for 

calculation of protein physical and chemical properties 

(https://web.expasy.org/protparam/), and SignalP 5.0 for signal peptide prediction 

(http://www.cbs.dtu.dk/services/SignalP/).  The abundance of carbohydrate-active 

enzymes within the genome was assessed using dbCAN meta server analysis 

(http://bcb.unl.edu/dbCAN2). 

Agarases Genes Amplification and Transformation. Specific primers were 

designed to amplify the catalytic domain of agarase genes from the PORT2 gDNA 

together with the restriction site (Table 2.2.). The signal peptides were excluded to 

enhance intracellular heterologous-protein expression. The PCRs were performed 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://web.expasy.org/protparam/
http://www.cbs.dtu.dk/services/SignalP/
http://bcb.unl.edu/dbCAN2
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in 50 µL of PCR mixture mix composed of Q5 Taq polymerase (NEB, Germany) 

(3 U/µL), primer pair (10 µM of each), dNTPs (25 mM), and genomic DNA as a 

template (50-100 ng) (Appendix 1., Table 1.1). The PCR products were purified 

using the Qiaquick PCR Purification Kit (Qiagen) and cloned into pFO4 (a courtesy 

from Glycobiology Groups of Station Biology of Roscoff) using a standard ligation 

strategy with different combinations of XhoI-NsiI-BamHI-EcoRI (NEB, Germany).  

Each plasmid encoding an N-terminal His6 tag fused to agarase was transformed 

into Escherichia coli NEB5α cells (NEB, Germany). The cells were grown in LB 

media at 37 °C, 220 rpm. The positive clones were validated using HincII (NEB, 

Germany) mapping to verify the fidelity of the plasmid constructs. (Appendix 1., 

Table 1.2.). The plasmids were designated as pMEn (n: 1-9) (Appendix 3). After 

validation, they were transformed into E. coli BL21 (DE3) cells or Artic Express 

(Agilent Technology) for overexpression according to the manufacture’s manual. 

Protein Overexpression and Purification. Briefly, E. coli BL21(DE3) cells 

harboring the plasmid were cultured in 250 mL auto-induction media ZYP 5052 

(Studier  2005) supplemented with ampicillin (100 µg/mL) for 48 h at 20 °C, 220 

rpm.  

For Artic Express expression, the E.coli was grown using LB media supplemented 

with ampicillin (final concentration 100 µg/mL) and gentamycin (final 

concentration 20 µg/mL) at 30 °C, 220 rpm until OD600nm reached 0.7-0.8 and 

equilibrated at 10 °C for 10 min before the addition of 1 mM IPTG (final 

concentration). The cells then were incubated at 10 °C, 220 rpm for 24 h.  

Unless specified, protein purification was always performed at 4 °C. The cells were 

harvested by centrifugation at 8000 g for 15 min and resuspended in cold lysis 

buffer (20 mM Tris HCl pH 8.0; 500 mM NaCl; 1 mM EDTA, 0.1% v/v Triton X-

100, 5 mM MgCl2) with fresh addition of  DNAseI 10 mg/µL. The cell suspension 

was disrupted by sonication (LabSonic M Sartorius) (100% amplitude, 1 to 1 

min/cycle) and then centrifuged at 12.000 g for 1 h. The soluble fraction was 

collected and loaded onto the HisTrap FF crude 5 mL column (GE, Germany) 

according to the manufacture’s manual. The column was washed using buffer A 

(HEPES 50 mM pH 8, imidazole 10 mM, and 500 mM NaCl).  The binding protein 
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was eluted using buffer B (HEPES 50 mM pH 8, imidazole 250 mM, 500 mM 

NaCl).   

The quality of protein expression was checked on the SDS-PAGE 10% (w/v) using 

Coomassie brilliant blue R-250 gel staining (Laemmli 1970). Protein concentration 

was determined using the Rotinanoquant-Bradford method (Roth, Germany) with 

bovine serum albumin as a standard according to the manufacturer’ manual and 

verified using nanodrop ((Thermo Scientific, USA) (equilibration buffer: HEPES 

50 mM pH 7.5-8, imidazole < 0.05 mM, NaCl < 3 mM).    

Enzyme Characterization. The enzymatic reaction of AgaB50 (final 

concentration was 2,5 µg/mL) and 375 µL of 0.2% (w/v) of agarose in KPi 50 mM 

pH 7 or AgaF16A (final concentration 1 µg/mL) and 390 µL of 0,2% w/v agarose 

in HEPES 50 mM pH 8 were performed at 50 °C for 20 min in a 400 µL system. 

The initial rate of each reaction was defined.  

The reaction was stopped by adding dinitro salicylic acid (DNS) reagent (1% 3,5 

dinitro salicylic acid; 0.2% phenol; 1% NaOH; 20% potassium sodium tartrate 

tetrahydrate, 100 mL dH2O) (w/v) (Miller, 1959). The ratio of the DNS reagent to 

the sample was 1:1. The mixtures were incubated in 96 wells thermal cycler 

(Advanced Primus 96, Germany) at 98 °C for 10 min and 4 °C for at least 15 min 

and measured at 540 nm absorbance using 96 multiwells microplate reader (Tecan 

Infinite 200, Switzerland). The amount of reducing sugar in the sample was 

calculated using the D-galactose standard curve. The enzyme activity was measured 

from the increase of D-galactose concentration and reported from the slope value 

of the initial rate of reaction (µM/min) at a defined condition. One unit of enzyme 

activity was defined as the amount of enzyme that produced 1 μmol of D-galactose 

per minute at a defined condition. Appropriate enzyme and substrate controls were 

used during the experiment. All measurements were performed in triplicate. 

The pH range was determined at buffer concentration 50 mM using sodium acetate 

(pH 4); KPi (pH 6-7.5); HEPES (pH 6-8): Tris (pH 9) and CAPS (pH 10). 

Temperature range and stability were measured at 20 to 80 °C. Preincubation 1 h at 

a certain temperature followed with incubation on ice for 5 min was used for 

measuring temperature stability. The enzymatic reaction was performed with the 

presence of a certain chemical to determine its influence on the enzyme activity.  
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The tested chemicals were β-mercaptoethanol (BME), dithiothreitol (DTT) (each 

final concentration 1 mM); MgCl2 (1; 5; 10) mM, ethylenediaminetetraacetic acid 

(EDTA) (1 and 2.5) mM, NaCl (1; 5; 10; 150) mM; CaCl2 (0.5 and 10) mM, KCl (1 

and 10) mM; sodium dodecyl sulfate (SDS) (1 mM and 2.5% v/v) and glycerol 

(2.5% v/v.). 

Characterization of AgaA50, AgaC50, and AgaD86T was performed using an 

artificial substrate para nitrophenyl β-D-galactopyranoside (β-pnpg). The 

concentration of p-nitrophenol in the sample was monitored at 405 nm and 

calculated using the p-nitrophenol standard curve. The absorption coefficient () of 

p-nitrophenol was defined specifically in each assay condition (Lieshout 2007).  

The enzyme activity was measured from the increase of p-nitrophenol 

concentration and corrected from the non-enzymatic hydrolysis of β-pnpg. It was 

reported from the slope value of the initial rate of reaction (µM/min) at a defined 

condition. Appropriate enzyme and substrate controls were used during the 

experiments. All measurements were performed continuously in triplicate using 

Cary 60 UV-Vis system (Agilent Technology). 

Briefly, a 50 µL of a diluted enzyme (final concentration: 6 µg/mL for AgaA50; 

18.4 µg/mL for AgaC50 and 74 µg/mL for AgD86T) was used for conversion β-

pnpg into p-nitrophenol and D-galactose in 1 mL system. Substrate concentration 

was adjusted accordingly, 1mM β-pnpg for AgaA50, AgaD86T, and 0.1 mM for 

AgaC50. The sample minus enzyme was preincubated for 2 min at each reaction 

condition.  

For each enzyme, the pH range was determined at buffer concentration 50 mM 

using sodium acetate (pH 5.1); HEPES (pH 6-8.6): Tris (pH 9.1) and CAPS (pH 

10). Temperature range and stability were measured at 30 to 80 °C.  Temperature 

stability was determined by measuring the activity after 1-h enzyme preincubation 

at a certain temperature followed by incubation on ice for 5 min. The effect of a 

certain chemical presence on the enzyme activity was tested using NaCl, CaCl2 and 

MgCl2, (each final concentration: 1 mM and 10mM); NiSO4.6H2O; FeCl3.6H2O, 

DTT (each final concentration 5 mm); EDTA 2.5 mM; SDS 0.5% v/v); and glycerol 

0.25% (v/v). Kinetics parameters were defined for AgaA50 and AgaC50 using β-
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pnpg concentrations of (0; 1; 2.5; 5; 7.5; 10; 12.5; 15; 20) mM at pH 7; 60 °C and  

(0; 0.1; 0.25; 0.5; 1; 2; 5; 10) mM at pH 7.5, 50 °C, respectively. 

Products and Substrate Specificity Analysis. Substrate specificity was examined 

in ultrapure water (milli-Q, Merck) at a concentration of 0.2% w/v for 

polysaccharides and 0.5 mg/mL for neoagaroligosaccharides. Agarose, agar kobeI, 

amylose, kappa-carrageenan, alcohol insoluble residue (AIR) of Gracilaria sp. 

(AIRG), Gelidium sp. (AIRS), and Ulva sp. (AIRU) were heated at 95 °C and kept 

at 50 °C for maintaining their water solubility before enzymatic reaction. Other 

substrates such as laminarin, porphyran, β-lactose monohydrate, sucrose, maltose, 

neoagarooctaose (NA8), neoagarohexaose (NA6), neoagarotetraose (NA4), 

neoagarobiose (NA2) were soluble in cold water. The NA8, NA6, NA4, NA2, D-

glucose, and D-galactose were used as standards.  

The products were analyzed using double ascending thin layer chromatography on 

precoated TLC sheet alugram 0.2 mm silica gel 60 (Macherey Nagel, Germany) 

with a solvent system: water:acetic acid:n-butanol (1:1:2) (v/v). Visualization of the 

spot was performed by short dipping in H2SO4 10% v/v in ethanol absolute and then 

dried with hot air at 150 °C for 5-10 min. The product was also analyzed using a 

high-performance liquid chromatography-refractive index detector (HPLC-RID) 

(Knauer, Germany) with the REZEX-RSO column (Phenomenex, Germany). This 

column can resolve oligosaccharides with a degree of polymerization of 1-20 (DP1-

DP20). The mobile phase was isocratic ultrapure water (milli-Q, Merck) with a flow 

rate of 0.3 mL/min at 75°C, and the sample volume injection 20 µL. The EZChrom 

Elite software (Knauer, Germany) was used for data acquisition and processing. 

Fourier Transform Infrared Spectroscopy (FTIR). FTIR spectra were recorded 

on an FTIR spectrometer Tensor II (Bruker, Germany) with an ATR unit. 

Background and sample spectra were recorded at resolution 4 cm-1, scan time 32 

times, and wavenumber range from 400 to 4000 cm-1. Baseline correction and 

normalization of the spectra was performed using OPUS 7.5 software. 

Protein Homology Modelling.  The modeling was performed using an online 

platform SWISS model server (https://swissmodel.expasy.org/). The tool used 

BLAST and HHblits for template-target sequence identification and alignment 

analysis. It integrated ProMod-II and Modeller for a model built up. Model quality 

https://swissmodel.expasy.org/
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parameters GMQE and QMEAN and their values were observed and recorded. The 

GMQE scored from 0 to 1 indicating the increase of the tertiary structure accuracy. 

Meanwhile, the QMEAN Z-score value represented global and local quality 

estimation based on statistical potentials of mean force. The score value between 0 

to -4 indicated a good agreement between the model and template (Benkert et al. 

2011; Bertoni et al. 2017). A PDB file of the best-recommended template and model 

of each enzyme was downloaded. Protein structure visualization, analysis, and 

comparison were performed using UCSF Chimera (Pettersen et al 2004). 

Nucleotide Sequence Accession Number. All the gene sequences and draft 

genome were deposited in NCBI. The Draft genome of PORT had bioproject, 

biosample, and accession numbers PRJNA642745, SAMN15398149, and 

JACASI000000000, respectively. Meanwhile, the accession numbers for 16S 

rRNA, agaB50, agaF16, agaA50 and AgaC50 sequences were MH622756, 

MH996638, MH996639, MT682142 and MT682143 respectively. 
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3. Agarolytic Bacterium Microbulbifer elongatus PORT2 

3.1. Results 

Phenotypic Characterization of Isolate PORT2 

PORT2 was identified as a non-sporulating gram-negative bacterium. Its ability to 

liquefy yeast extract agar (YEAas) was observed after 4 days of incubation at 30 °C 

(Figure 3-1.a). The bacterium was immotile (Figure 3.1.b). The cell morphology 

was rods with 2-13 µm length, 0.8-1 µm width, and afterward became thin long-

rods and coccoid (Figure 3.1.c). The cells formed aggregates in liquid minimal 

media culture (Figure 3.1.d). Colonies on a marine agar plate were circular with 1-

2 mm in diameter, crater form, entire edge, and smooth. After 48 h, the colony color 

was opaque on marine agar and mucoid-brownish on yeast extract agar-artificial 

seawater (YEAas) (Figure 3.1.e) 

 

Figure 3.1. Growth characteristics of isolate PORT2: a) Yeast extract agar-

artificial seawater (YEAas) plate liquefaction after 4 days incubation at 30 °C   b) 

motility test in soft agar media; 30 °C (d0: day 0 & d3: day 3) c) cell morphology 

variation in marine broth at 30 °C, 48 h (coccoid cell black arrow)  d) cell 

aggregates in glucose minimal media at 30 °C, 96 h (e) Morphologies of 48 h 

cultures (marine agar and YEAas). Microscopic magnification: oil immersion 

10x100). 



Chapter 3. Agarolytic Bacterium Microbulbifer elongatus PORT2  

 

23 
 

Growth occurred at a temperature between 28 to 37 °C and optimum at 30 °C. The 

growth existed at pH 6 to 8 and optimal at pH 8. PORT2 showed no growth on yeast 

extract agar media without NaCl or artificial seawater. It tolerated NaCl range from 

2% to 10% (w/v).  Besides Na+, the bacterium also required, K+, Ca2+, and Mg2+ for 

growth.  

Nutrient assimilation and other biochemical properties of PORT2 were examined. 

The bacterium reduced nitrate to nitrite (denitrification) and gave positive catalase 

and oxidase reactions. PORT2 did not utilize L-arginine, urea, and gelatin. It 

produced neither indole nor H2S when it was grown on SIM media (Sulfide, Indole, 

and Motility). The bacterium utilized esculin, ferric citrate, agar, alginate, chitosan, 

and -carrageenan. Rapid growth on agar and carrageenan was observed (Figure 

3.2). 

 

Figure 3.2. Growth of PORT2 on different sole carbon source media indicates 

on the legend. Growth condition: 30 oC; 220 rpm; Each medium was composed of: 

0.2 g carbon source; 0.25 g NH4SO4, 0.2 g K2HPO4, 3 g NaCl, 100 mL dH2O.  

PORT2 demonstrated agar liquefaction during screening and maintenance indicated 

agarolytic activity. The colonies created craters on minimum agar media without 

any additional growth factor. PORT2 exhibited diauxic growth patterns and agarase 

production either in HAdm 0.3% w/v (yeast extract, agar 0.3% w/v in artificial 

seawater) or in soft agar media Vattuone (1975). Both media contained proteinous 
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substrates. Vattuone media facilitated more cell growth but not agarase production. 

The agarase production was detected after 10 h of incubation. It started with a low 

activity which continuously increased especially after the first stationary phase 

(Figure 3.3.).   

 

Figure 3.3. Cell growth and agarase activity in different media. a) Soft agar 

Vattuone b) YEAas 0.3%. Culture  condition: 30 oC, 72 h incubation, 150 rpm. 

Molecular Identification and Determination  

The 16S rRNA sequence assembly resulted in 1444 bp nucleotides length. The 

assembly also included corrections of two ambiguous nucleotides M366A and 

R943G according to the peak of electropherogram (M represented A or C; R 

represented A or G). Homologous searches revealed more than 96% pairwise 

similarity cut-off between PORT2 and Microbulbifer type strains especially M. 

elongatus (Table 3.1).  

 Table 3.1.  The 16S rRNA pairwise similarity between PORT2 and 

Microbulbifer type strains 
Rank Name Strain (Type) Accession Pairwise 

Similarity 

(%) 

Authors  

1 M. elongatus DSM 6810 AF500006 99,5 Yoon et al. 2003  

2 M. salipaludis SM-1 AF479688 98,0 Yoon et al. 2003  

3 M. agarilyticus JAMB A3 AB158515 97,8 Miyazaki et al. 

2008 

 

4 M. hydrolyticus DSM 11525 AJ608704 97,8 González et al. 

1997 

 

5 M. aestuariivivens GHTF-23 KX982847 97,3 Park et al. 2017  

6 M. mangrovi DD-13 LZDE01000120 97,1 Vashist et al. 2013  

7 M. celer ISL-39 EF486352 96,2 Yoon et al. 2007  

8 M. yueqingensis CGMCC 1.10658 jgi.1076136 96,2 Zhang et al. 2012  

The maximum likelihood tree showed a bootstrap value of 100 % indicated a strong 

monophyletic relationship between PORT2 and M. elongatus spp. (Figure 3.4). 
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Other analysis methods such as neighbor-joining and maximum parsimony also 

produced almost similar tree topology.  

 
Figure 3.4. Maximum likelihood phylogeny tree of PORT2 based on partial 

16S rRNA gene sequence. Numbers at branch points indicate the bootstrap value 

(%) of 1000 replications. Saccharophagus degradans 2-40 (Accession number 

NR074359) was used as an outgroup. The branch length indicates the expected 

number of nucleotide substitutions per 100 nucleotides. 

Genome sequencing of PORT2 obtained 2.9 Mio raw reads with fragment sizes 

300-304 bp. The assembly resulted in a draft genome sequence with a size of 

4,156,734 bp in 59 contigs or scaffolds and GC content of 57.6 % without any 

extrachromosomal element. The N50 value was 197,941 bp. The genome 

completeness was 99% with 0.9% contamination assessed by CheckM analysis 

(Parks et al. 2015). It consisted of 3598 coding sequences (CDSs), a single set of 

gene operon 16S-23S-5S rRNA, 44 tRNAs for all standard amino acids, and 11 

additional RNAs. These values were still feasible for genome annotation using the 

Microscope platform (Microscope team, personal communication).  

PORT2 draft genome was also used to delineate the speciation more precisely. 

ANIblast+ analysis showed that PORT2 had 96.43% similarity to M. elongatus 
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DSM6810T (not yet published); 85.66% to M. HZ11 and less than 80% to other 

Microbulbifer and agarolytic bacteria. In silico DNA-DNA hybridization (isDDH) 

also showed a higher similarity between PORT2 and M. elongatus DSM6810T (68.9 

to 93.2%) with a G+C% difference of 0.07 (Table 3.2).  

Table 3.2. In silico DNA-DNA hybridization between PORT2 and other 

agarolytic bacteria (Meier-Kolthoff et al. 2014) 
Microorganism DDH Estimation (%) 

of PORT2 

G+C %  

Difference 

Reference Formula 1 Formula 2* Formula 3  

Microbulbifer donghaensis 

CGMCC_1.7063 T 12.5-18.9 19.7-24.4 13-18.4 2.13 

Microbulbifer thermotolerans 

DSM19189 T 11.5-17.7 18.4-23.1 12.1-17.3 1.05 

Microbulbifer variabilis 70037T 10.8-16.9 19.1-23.8 11.5-16.7 8.73 

Microbulbifer yueqingensis 

CGMCC_1.10658 T 12.3-18.7 19.4-24.1 12.9-18.2 4.45 

Microbulbifer mangrovi DD131 T 20.9-27.9 20.6-25.3 20.1-26 0.42 

Microbulbifer marinus 

CGMCC_1.10657 T 12.7-19.1 19.6-24.3 13.2-18.7 2.18 

Microbulbifer agarilyticus S89 22.7-29.7 20.3-25 21.4-27.3 0.75 

Microbulbifer HZ11 74.9-82.3 28.1-33 61.3-67.9 0.87 

Microbulbifer elongatus 

DSM6810T 87.6-93.2 68.9-74.7 87.5-92.4 0.07 

Microbulbifer salipaludis Q7 24.7-31.7 21.1-25.8 23.1-29.1 0.79 

Saccharophagus degradans 2-40 9.9-15.8 32.9-37.8 10.6-15.7 11.74 

Zobellia galactanivorans DsiJ 9.8-15.8 16-20.5 10.6-15.6 14.79 

Catenovulum agarivorans YM01 9.8-15.8 29.4-34.3 10.6-15.7 17.53 

* Formula 1: length of all HSPs divided by total genome length 

   Formula 2: the sum of all identities found in HSPs divided by overall HSP length     

   (Recommended for incomplete or draft genome) 

   Formula3: the sum of all identities found in HSPs divided by total genome length 

A functional assignment of putative CDS was obtained from COG analysis 

(Tatusov et al. 2000). From 3598 CDS within the PORT2 genome, at least 2083 

genes were classified into one Cluster of Orthologous Groups (COG) class. The 

CDSs overrepresented certain COG classes such as group E (Amino acid transport 

and metabolism), K (Transcription), C (Energy production and conversion), G 

(Carbohydrate transport and metabolism), M (Cell wall/membrane/envelope 

biogenesis), and P (Inorganic ion transport and metabolism). Seven percent of the 

CDSs on PORT2 were classified within group S for unknown function (Figure 3.5).  

The AgaE86, AgaF16 was positioned within clusters U and G, respectively. On the 

other hand, the other agarases AgaA50, AgaB50, AgaC50, and AgaD86 were not 

clustered into any COG categories of the COG database.  
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Figure 3.5. Distribution of PORT2 coding sequences (CDS) in each Cluster of 

Orthologous Groups (COG) to delineate genes function. COG categories: A 

(RNA processing and modification), B (Chromatin structure and dynamic), C 

(Energy production and conversion), D (Cell cycle control, division, chromosome 

partitioning), E (Amino acid transport and metabolism), F (Nucleotide transport and 

metabolism), G (Carbohydrate transport and metabolism), H (Coenzyme transport 

and metabolism), I (Lipid transport and metabolism), J (Translation, ribosomal 

structure, and metabolism), K (Transcription), L (Replication, recombination, and 

repair), M (Cell wall/membrane/envelope biogenesis), N (Cell motility), O 

(Posttranslational modification, protein turn over, chaperones), P (Inorganic Ion 

transport and metabolism), Q (Secondary metabolites biosynthesis, transport, and 

catabolism), R (General function only), S (Function unknown), T (signal 

transduction mechanisms), U (Intracellular trafficking, secretion, and vesicular 

transport), V (Defense mechanisms), W (Extracellular structures). 

Genome annotation delineated central carbohydrate metabolism pathways in 

PORT2. The pathways consisted of the tricarboxylic acid cycle (TCA), pentose 

phosphate, glyoxylate, De-Ley Doudoroff, and Embden-Meyerhof-Parnas 

pathways. The Entner-Doudoroff (ED) pathway was assigned as a galactose 

metabolism pathway in PORT2. Concomitantly, carbohydrate transportation 

systems such as the phosphotransferase system, ATP-dependent ABC-type sugar 

transport system, the permease system, and H+ symport mechanisms were also 

recognized. Type II and Type V secretion systems for protein transport from the 

cytoplasm to other compartments or environment or cells were also depicted.  The 

bacterium also encoded genes for aerobic respiration and anti-oxidative stress, such 
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as glutathione reductase (GoR), superoxide dismutase (SOD), catalase (CAT), and 

peroxidase (POD). 

Moreover, candidate genes for nutrient acquisition in the marine environment were 

also found.  Sulfur assimilation was indicated by sulfatases and sulfate reduction I 

pathway. An acid phosphatase pathway regulation was depicted for phosphate 

acquirement during oxidative stress and/or from the phosphate-salvage 

environment. Osmolyte production was indicated by the ectoine biosynthesis 

pathway. The annotation also displayed PORT2 capability to degrade marine 

polysaccharides such as chitin, carrageenan, porphyran, and agarose.  

3.2. Discussion 

The coastal area provides various niches for a wide range of heterotrophic bacteria, 

from marine to freshwater species. Most agarolytic activities have been derived 

from marine bacteria or their symbionts but soil and gut bacteria also can acquire 

the capability through horizontal gene transfer (Hehemann et al. 2010; Temuujin et 

al. 2012). Native marine bacteria can be distinguished from others due to their 

specific nutrient requirements and adaptation. 

PORT2 genome annotation reveals the presence of several genes that regulate 

specific adaptation capability to the marine environment. Metabolic pathways such 

as osmolyte biosynthesis, cell protection against the UV radiation and complete 

pathway for adaptation to sulfate, low iron, and phosphate availability are depicted 

(Zhao et al.. 2019; Perez et al. 2017; de Villegas 2007; Yoseph et al. 2010; Hide 

and Kong 2010; Tostevin et al. 2014). Basic metabolism and physiological 

functions of PORT2 as marine bacterium are also indicated by COG clusters. The 

high percentage of putative functional genes belong to the amino acid transport and 

metabolism (E), carbohydrate transport and metabolism (G) and inorganic ions 

transport and metabolism (P) classes may suggest the innate competition and 

survival capacities of PORT2 in the marine environment (Lauro et al .2009; Cobo-

Simón and Tamames 2017).  

However, most agarase families such as GH50 and GH86 families have not been 

classified into any COG categories within the COG database, except for GH16 that 

is classified to G category for carbohydrate transport and metabolism. The 

classification of AgaE86 into category U (Intracellular trafficking, secretion, and 



Chapter 3. Agarolytic Bacterium Microbulbifer elongatus PORT2  

 

29 
 

vesicular transport). The categorization of a gene or protein into a COG is derived 

from pairwise sequence similarity of at least three different lineages that show a 

consistent pattern of best hit (BeT) (Tatusov et al. 1997). Indeed, carbohydrate-

active enzymes include agarases have huge diversities and most of them have not 

been accommodated or included in the COG database. 

Moreover, PORT2 demonstrates growth in minimal media made from seawater and 

has clear sodium and potassium dependency. The requirements confirm the identity 

of PORT2 as a native marine bacterium. In agreement with these results, Mac Leod 

et al. (1954) have found that marine bacteria are distinguishable from other bacteria 

due to their capacity to survive and grow in seawater. Sodium and potassium are 

required by marine bacteria to maintain cell wall structure and nutrient transport 

while Ca2+ and Mg2+ can be optional. Sodium-membrane transporter allows marine 

organisms to grow faster within ecological pressures (Hobbie 1988).   

PORT2 shows phenotype and biochemical characteristics typical of marine gram-

negative bacteria. Considering the absence of chemotaxonomy data, the 

classification of PORT2 based on morphological taxonomy is quite challenging. 

Meanwhile, species conception in bacteria delineates < 97% of 16S rRNA 

homology similarity and DNA reassociation value < 70%  (Stackebrandt and 

Goebel 1994). Therefore, the 16S rRNA of PORT2 was sequenced as the initial 

step to infer the taxonomy identity of PORT2. The 16S rRNA cladogram 

demonstrates a monophyletic relationship between PORT2 and Microbulbifer 

elongatus, which indicated a common ancestry. Moreover, PORT2 draft genome 

size and GC content also fall within the range of Microbulbiferaceae (Genome size 

4.1 - 4.8 Mb; GC content 57.1±0.8%) (Sun et al. 2014; Imran et al. 2017). The 

results become more evident when comparing the PORT2 genome to the available 

Microbulbifer genomes. In silico ANI and DDH reveal the same species 

relationship between PORT2 and Microbulbifer elongatus DSM6810. However, 

subtle differences for PORT2 are recognized such as immotility, higher salt 

tolerance, and the inability to use gelatin or produce H2S. Biochemical 

characteristics of isolate PORT2 in comparison with other Microbulbifer type 

strains are summarized in Appendix 2. Hence, all results suggest PORT as new 

sub-species of M.elongatus with detailed classification: Domain: Eubacteria; 

Phylum: Proteobacteria; Class: Gammaproteobacteria; Ordo: Cellvibrionales; 
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Family: Microbulbiferaceae; Genus: Microbulbifer; Species: Microbulbifer 

elongatus strain PORT2. 

Previously, three strains of M. elongatus had been reported; JAMB-A7; CMC-5, 

and HZ11. They are isolated from various niches such as deep-sea, seaweed 

decomposition, seawater, and capable to degrade marine polysaccharides (Ohta et 

al.. 2004b; Jonnadula 2011; Sun et al.. 2014). Formerly, Microbulbifer elongatus 

was designated as Pseudomonas elongate by having typical Pseudomonad 

phenotypes: gram-negative, motile with polar flagella, aerobic, rod-shaped and 

classified as a member of Pseudomonads subgroup V. An extensive study involving 

several approaches: polyphasic, chemotaxonomy, DNA-DNA hybridization, 16S 

rRNA analysis reclassified P.elongata into a new species namely Microbulbifer 

elongatus with type strain species ATCC 10144T /DSM6810T /LMG2182T (Anzai 

et al. 2000; Yoon et al. 2003).  

Microbulbifer is copiotroph marine Gammaproteobacteria that occupy nutrient-rich 

niches such as marine snows. Copiotroph bacteria are polymer degraders with feast 

and famine lifestyles (Spring et al.. 2005; Arnosti 2010; Wakabayashi et al.. 2012; 

Arnosti 2014). In correlation with the lifestyle strategy, most of the characterized 

Microbulbifer including PORT2 display cell cycle pleomorphism by adjusting cell 

shape/size ratio. Pleomorphism has been considered as a particular bacterial 

adaptational strategy during nutritional or environmental change or stress (Huang 

et al.. 2008; Nishijima et al.. 2009; Wakabayashi et al.. 2012). Even though 

Microbulbifer genus is known as polymer degraders, their carbohydrate-active 

enzyme capabilities differ. M. donghaiensis, M. yueqingensis, M. aggregans, M. 

marinus, and M. variabilis are non-agarolytic and unable to degrade agar (Nijishima 

et al.. 2009; Zhang et 2012;  Moh et al.. 2017). On the contrary, M. elongatus,  M. 

salipaludis, M. mangrovi, M agarilyticus, M. pacificus LD25, and PORT2 can 

degrade and utilize agar as a carbon source (Yoon et al.. 2003; Imran et al.. 2017; 

Oh et al.. 2011; Chen at al 2015).  

The PORT2 substantial capability in agar degradation marks with liquefaction 

activity. PORT2 can utilize not only agar but also a wide range of complex marine 

polysaccharides as a sole carbon source. Experimentally, PORT2 shows a 

preference for rich-nutrient media for higher agarase production. The agarolytic 

activity was considerably high in the second phase of biphasic growth indicates that 
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agar probably is not the main carbon source for the bacterium at the rich-nutrient 

condition and the agarase system is inducible. A similar result also has been 

observed by Furusawa et al. (2017). They have found that Persicobacter sp. CCB‐

QB2 also exhibits diauxic growth in the presence of tryptone and agar. The 

bacterium also displays high agarolytic activity at the second growth phase. 

Different from Persicobacter sp. CCB‐QB2, PORT2 prefers yeast extract than 

tryptone for triggering higher agarase synthesis or activity. 

The inducibility of the agarase system is proposed by Van der Meulen and Harder 

(1976).  They observe that the casamino acids trigger higher agarase synthesis in 

Cytophaga flevensis. In particular, agar oligosaccharides induce consecutive 

agarase production while galactose and glucose repress it. Their experiment also 

reveals that C. flevensis produces a perpetual extracellular agarase at basal 

metabolism.  

Overall, it can be concluded that PORT2 is a new strain of M. elongatus. It is the 

first agarolytic marine bacterium from the Indonesian coastal area that has been 

isolated and characterized further. The in silico exegesis of the PORT2 agarolytic 

system will be explained further in the next chapter.  
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4. Genome Profiling  for In Silico Elucidation of the Agarolytic System 

4.1. Results 

Agarases Annotation and In Silico Characterization 

In recent years, computational approaches have been used extensively for in silico 

identification of key genes and gene clusters involved in certain metabolism 

pathways. The generated data establish a starting point for investigating gene 

functionality experimentally. 

The annotation of the draft genome of PORT2 indicated the presence of six agarase 

genes located at two different contigs in PORT2. BLASTp analysis against protein 

structure database (PDB) and non-redundant protein database (nr) at NCBI 

informed gene similarity and the possible identity of each gene (Table 4.1). The 

annotation also depicted other putative genes encoded hypothetical proteins, sugar 

transporter and regulatory system, D-galactose, and 3,6 α-anhydro-L-galactose 

utilization in the vicinity of agarase genes (Figure 4.1).  

The analysis specified the agarase genes into three different glycoside hydrolase 

(GH) families; GH16, GH50, and GH86. Two agarase genes encoded GH50 

agarases at contig 34 were designated as 341 or agaA50 and 342 or agaB50. The 

agaA50 was separated from agaB50 by 443 bp of nucleotides. The other four 

agarase gene were located at contig 45. One agarase gene was designated as 451 or 

agaC50 also encoded GH50. Two other genes encoded GH86 agarases were 

designated as 452 or agaD86 and 453 or agaE86. The last gene was designated as 

454 or agaF16 encoded GH16 agarase.   

 

Figure 4-1. Schematic agarase genes and the intervening genes within the M. 

elongatus PORT2 genome. Agarase (red); cell transport system (beige); galactose 

and 3,6-α-L-anhydrogalactose metabolism (pale pink); hypothetical protein (gold); 

miscellaneous functions (blue). 
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SignalP and Protparam analysis predicted the physical and chemical properties of 

PORT2 agarases (Table 4.1). The enzymes showed theoretical pI between 4.37-

4.99; GC content of 53 to 59%; aliphatic index (AI) between 63.07 to 74.08 and 

instability index (II) between 24.40 to 39.39. AgaF16 showed the lowest II value 

24.40 and AgaE86 had the highest II value 39.39.  

 Table 4.1. Theoretical properties of  PORT2 agarases  
Protein 

(aa/bp) 

Signal Peptide CAZY 

Family 

Protparam analysis Similarity 

(NCBI-PDB) 

I II    

AgaA50 

(802) 

-  
(aa29-30) 

GH50 Theoretical size: 89.9 

kDa 

pI: 4.8 

GC (%): 55 

Start Codon: ATG 

Stop Codon: TGA 

Aliphatic index: 71.66 

Instability index: 31.31 

(stable)  

Aga50D 

Saccharophagus 

degradans 2-40 

(E-val=0.0; 

Query cover: 

92%; % identity: 

55%) 

      

AgaB50 

(769) 

-  
(aa31-32) 

GH50 Theoretical size: 82.5 

kDa 

pI: 4.84 

GC (%): 57.4 

Start Codon: GTG 

Stop Codon: TGA 

Aliphatic index: 71.86 

Instability index: 33.59 

(stable) 

Aga50D 

Saccharophagus 

degradans 2-40 

(E-val=0.0; 

Query cover: 

91%; % identity: 

45%) 

      

AgaC50 

(781) 

-  
(aa20-21) 

GH50 Theoretical size: 87.7 

kDa 

pI: 4.99 

GC (%): 53 

Start Codon: ATG 

Stop Codon: TAA 

Aliphatic index: 74.08 

Instability index: 33.69 

(stable) 

Aga50D 

Saccharophagus 

degradans 2-40 

(E-val=0.0; 

Query cover: 

93%; % identity: 

52%) 

      

AgaD86 

(809) 

-  
(aa21-22) 

GH86 Theoretical size: 87.7 

kDa 

pI: 4.99 

GC (%): 54.9 

Start Codon: ATG 

Stop Codon: TAA 

Aliphatic index: 74.08 

Instability index: 33.69 

(stable) 

GH86 Bacterides 

uniformis (E-

val=0.0; Query 

cover: 93%; % 

identity: 52%) 
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Table 4.1. Theoretical properties of  PORT2 agarases (continued) 
Protein 

(aa/bp) 

Signal Peptide CAZY 

Family 

Protparam analysis Similarity 

(NCBI-PDB) 

I II    

      

 

AgaE86 

(1369) 

 
(a29-30) 

 GH86 Theoretical size: 

147.4 kDa 

pI: 4.37 

GC (%): 56.4 

Start Codon: ATG 

Stop Codon: TAA 

Aliphatic index: 

63.07 

Instability index: 

39.39 (stable) 

GH86 β 

porphyranase 

Bacterides 

plebeieus (E-

val=1e-35; Query 

cover: 49%; % 

identity: 23.6%) 

      

AgaF16 

(597) 
 

(aa19-20)  

- GH16 Theoretical size: 63.9 

kDa 

pI: 4.52 

GC (%): 59 

Start Codon: ATG 

Stop Codon: TGA 

Aliphatic index: 

66.35 

Instability index: 

24.40 (stable) 

Chain A- agarase 

Microbulbifer 

thermotolerans 

JAMB-A94 (E-

val=0.0; Query 

cover: 46%; % 

identity: 86.8%) 

 

The putative agarases exhibited varied gene modularity from simple to complex 

(Figure 4.2). The GH50 agarases depicted simple gene structures consisted of a 

lipoprotein signal peptide II (SPII) and an agarase domain. The SPII was located at 

the beginning of the N terminus with glycine at position +2 before amino acid 

terminal cysteine at the cleavage site. In contrast, agaE86 and agaF16 presented 

modular complexities by having a signal peptide I (SPI), agarase domain, and more 

than one carbohydrate-binding modules (CBMs) interconnected by a glycine-serine 

linker with different length. The SPIs were also located at the beginning of the N 

terminus and showed a conserved motif of (A-X-A) at position -3 and -1 from the 

cleavage site. While agaD86 complexity laid in between by having an SP II and an 

agarase domain fused with an unknown domain.  
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Figure 4.2. Agarase genes modularity in M. elongatus PORT2. Agarase domain 

(dark gray); carbohydrate-binding module (CBM) (light blue); signal peptide I or 

II (SPI or SPII) (medium gray). The numbers below represent nucleotides. 

The agaA50 and agaF16 had a unique motif upstream of the genes. Three-adenine 

preceded the putative Shine-Dalgarno motif (ACGAG) of the agaA50 gene. This 

motif had been proposed to stipulate stronger ribosomal protein S1 binding on the 

ribosomal binding site (RBS). The agaF16 had an adenine cytosine-rich region 

preceding the Shine–Dalgarno motif (AGGAG). Both motifs indicated a high 

protein translation event (Boni et al 1991; Laursen et al 2005). 

Among PORT2 agarases, only agaB50 had more than one possible functional 

agarase ORFs. CLC software 7.3 identified several possible start codons and RBS. 

Some start codons were canonical (AUG, GUG, UUG) and one was not (AUU). A 

contiguous putative signal peptide II-agarase domain modularity was determined 

using the longest ORF (Figure 4.3.).  
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Figure 4.3. Open reading frame (ORF) analysis of agaB50. Annotated agaB50 

on CLC Main Workbench 7 (yellow bar); RAST genome annotation (Blue bar); 

ribosomal binding site (RBS) (green arrow). 

Carbohydrate Active Enzymes (Cazymes) Abundance  

The dbCan analysis suggested the presence of other putative carbohydrate-active 

enzymes within the genome of PORT2. Besides agarases families, the bacterium 

also encoded 66 carbohydrate-binding modules (CBMs) and other 151 

carbohydrate-active enzymes (cazymes) families consisted of 56 glycoside 

hydrolases (GHs), 26 glycoside transferases (GTs), 24 polysaccharide lyases (PLs), 

28 carbohydrate esterases (CEs), and 17 redox enzymes with auxiliary activities 

(AAs). The analysis also indicated that PORT2 and other agarolytic Microbulbifers 

encoded more glycoside hydrolases and polysaccharide lyase than non-agarolytic 

Microbulbifer. In comparison to other agarolytic Gammaproteobacteria such as 

Catenovulum agarivorans YM01 and Saccharophagus degradans 2-40, genus 

Microbulbifer spp. showed fewer cazymes abundance (Figure 4.4.). 



Chapter 4. Genome Profiling  for In Silico Elucidation of the Agarolytic System 

 

37 
 

 
Figure 4.4. Cazymes abundance within M. elongatus PORT2 and other marine 

agarolytic bacteria. Non-agarolytic Microbulbifer (red dot). (abbreviations: 

CBM=carbohydrate binding module; AA=auxiliaries activity: CE=carbohydrate 

esterase; PL=polysaccharide lyase; GT=glycoside transferase; GH=glycoside 

hydrolase; C. represents Catenovulum; Z for Zobellia; S for Saccharophagus; and 

M for Microbulbifer.  

Some glycoside hydrolase (GH) indicated prevalent occurrence in every 

Microbulbifer species such as GH6, GH13, GH16, GH19, GH23, GH28, GH31, 

and GH103 (Table 4.2). On the other hand, some GH indicated species-specificity 

regardless of the agarolytic capability (Table 4.3). In particular, two β-agarases 

families, GH50 and GH86, existed only in agarolytic Microbulbifer. Commonly, 

agarolytic bacteria also encode GH96 or GH117 for the cleavage of α-glycosidic 

bonds in agar. However, gene synteny comparison did not reveal the presence of 

any GH96 or GH117, neither in PORT2 nor in other Microbulbifer spp. (Figure 

4.5).   
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Figure 4.5. Gene synteny comparison for localization of neoagarobiose 

hydrolase (NABH-GH117) in M. elongatus PORT2. Reference genomes (red 

ellipse): Zobellia galactanivorans (Zg); Saccharophagus degradans (Sd); 

Streptomyces coelicolors (Sco); PORT2 and other Microbulbifer species (dark blue 

ellipse). 
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Table 4.2. Prevalent glycoside hydrolases in genus Microbulbifer spp. and other agarolytic bacteria 
No 

Species Source of isolate 
Common GH Reference 

 GH6 GH13 GH16 GH19 GH23 GH28 GH31 GH103 

1. M.pacificus LD25 Hot saltspring 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

            Chen et al (2015) 

2. M. salipaludis Q7 Sea cucumber             Yang et al (2018) 

3. M. agarilyticus S89 Deep-sea             Oh et al (2011) 

4. M. mangrovi DD3 Mangrove sediment             Imran et al (2017) 

5. M. thermotolerans 

DSM19189 Deep sea     

  

      
Miyazaki et al (2008) 

6. M. PORT2 Seawater             This study 

7. M. marinus 

CGMCC1.10657 Sediment bay         
    Zhang et al (2012) 

8. M. yueqingensis  

CCGMC 1.10658 Sediment bay             

Zhang et al (2012) 

9. M. aggregans CCBM1 Estuarine sediment             Moh et al (2017) 

10. M. variabilis 70037 Surface of algae             Imamura et al (2019) 

11. S.degradans 2-40 Surface of salt marsh         Ekborg et al (2005) 

12. C. agarivorans YM01 Seawater         Yan et al (2011) 

13. Z.galactanivorans Dsij Surface of algae         Barbeyron et al (2001) 

M. = Microbulbifer 

S. degradans = Saccharophagus degradans 

C. agarivorans = Catenovulum agarivorans 

Z. galactanivorans = Zobellia galactanivorans 
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Table 4.3. Specialized glycoside hydrolases (GH) in genus Microbulbifer spp. and other agarolytic bacteria 
No Species Source of Isolate GH family 

4 16** 26 30 32 46 50* 64 81 86* 95 109 115 130 145 146 

1. M.pacificus LD25 Hot saltspring                 

2. M. salipaludis Q7 Sea cucumber                 

3. M. agarilyticus S89 Deep sea                 

4. M. mangrovi DD3 Mangrove sediment                 

5. M. thermotolerans DSM19189 Deep sea                 

6. M. PORT2 Seawater                 

7. M. aggregans CCBM1 Estuarine sediment                 

8. M. variabilis 70037 Surface of algae                 

9. M. marinus CGMCC1.10657 Sediment bay                 

10 M. yueqingensis  

CCGMC 1.10658 

Sediment bay                 

11. S.degradans 2-40 Surface of salt marsh                   

12. C. agarivorans YM01 Seawater                  

13. Z.galactanivorans Dsij Surface of algae                  

   * Glycoside hydrolase family for ß-agarase from Gammaproteobacteria (red) 

   ** Glycoside hydrolase family in which ß-agarase is one of the members (GH16-16) (dark gray) 

   Specialized GH present only in: one sample species (brown); two samples species (blue) 

M. = Microbulbifer 

S. degradans = Saccharophagus degradans 

C. agarivorans = Catenovulum agarivorans 

Z. galactanivorans = Zobellia galactanivorans 
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4.2. Discussion 

This chapter describes in silico identification and characterization of M.elongatus 

PORT2 agarolytic pathways. PORT2 genome profiling reveals the presence of a ß-

agarolytic system consisted of six ß-agarases genes from three agarases families: 

GH16, GH50, and  GH86. The agarases are proposed to be stable in a test tube 

indicating by the instability index (II) values that are less than 40 and the high 

aliphatic indexes (AIs) (Guruprasad et al. 1990; Ikai 1980). The II and AI values 

also can indicate the possibility of soluble overproduction for the recombinant 

agarases. Idicula-Thomas and Balaji (2005) have reported that soluble recombinant 

proteins overexpressed in E.coli demonstrate high AI and low II values.  

Protein synthesis is known to occur in the cytoplasm. A signal peptide will destine 

a protein to enter the secretory pathway and translocate into the periplasm or the 

extracellular space. Commonly, the SPII will direct the protein to a cytoplasmic or 

outer membrane localization. A sorting signal, the amino acid residue at the +2 

position from terminal cysteine at the cleavage site will define the exact location. If 

it is aspartic acid, the protein will anchor to the inner membrane plasma and orient 

toward the outer membrane (Roosmalen et al. 2004). PORT2 agarases were 

identified to carry a signal peptide either I or II.  In this study, it is proposed that 

the GH50s and AgaD86 in PORT2 are membrane-bound agarases as they carry 

signal peptide II (SP II) at their N terminus.  

On the other hand, AgaF16 and AgaE86 are considered to be extracellular agarases. 

Those agarases have a signal peptide I (SPI) at their N terminus. Generally, SPI 

signalizes extracellular transport of an unfolded protein that will immediately fold-

up after release outside the cell (Gennity and Inouye 1991; Matsuyama et al.1995). 

Moreover, the agarase domain in AgaF16 and AgaE86 were associated with 

carbohydrate-binding modules (CBMs). It is known that the CBM increases the 

substrate affinity of endo-glycoside hydrolases and enhances the catalytic 

efficiency (Abbott et al. 2014).  Thus, the CBM is supporting their presence as 

extracellular agarases. The CBM was connected to the agarase domain or signal 

peptide by a glycine-serine linker. 

The glycine-serine linker had different locations and lengths in AgaD86, AgaE86, 

and AgaF16. The differences indicate structural flexibility and conceivably affect 
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enzyme activity or substrate specificity. Studies on cellulases have revealed that the 

presence of glycine-serine linkers allows proper orientation between domains and 

stabilizes protein conformations. They have observed that the linker length is vital 

not only for enzyme functionality and processivity but also for the adaptation to the 

different substrates (Black et al. 1996; Sammond et al. 2012; Ruiz et al. 2016). 

Moreover, the length of the linker influences solvent accessibility suggesting that a 

longer linker makes the protein more hydrophilic and accessible by the solvent 

(George and Heringa 2002).  

In this work, in silico abundance of cazymes in PORT2 was also investigated and 

compared to other agarolytic bacteria. The exploration shows that among the 

analyzed genomes, glycoside hydrolases are the most abundant cazymes followed 

by CBMs. Additionally, it is important to highlight that some polyspecific GHs 

such as GH16, GH13, GH19, GH23, GH31, and GH 103 most possibly, serve as 

core glycoside hydrolases. Conversely, some GHs indicate species-specificity. 

Moreover, among 10 Microbulbifer genomes that have been published publicly, the 

presence of GH16 does not always indicate agarolytic capability. Only the 

occurrence of GH50 and GH86 families confirm the ability in Microbulbifer. 

Together, these findings emphasize that glycoside hydrolases (GHs) are distributed 

among species that have a close phylogeny correlation. Relevant to the results, 

Davies et al. (2005), Berlemont and Martiny (2016) have reported that GHs 

substantially diverge mostly in a small cluster of relatives at the genus or species 

level with an average gene abundance of at least 2.4%. 

This study used agarolytic S.degradans 2-40 and Zobellia galactanivorans Dsij as 

models. Both models indicate two-stage agarolytic pathways. The first stage is the 

hydrolysis of agar polymer into oligomers such as neoagarohexaose (NA6) and 

neoagarotetraose (NA4) by endo-β-agarase(s). Occasionally, this step also 

generates the smallest repeating unit, neoagarobiose (NA2). Otherwise, exo-β-

agarases continue the oligomer degradation into NA2. The second stage is 

monomerization of agar disaccharide. The GH117 or α-neoagarobiose hydrolase 

(NABH) cleaves NA2 further into D-galactose and 3,6 α-anhydro-L-galactose. The 

differences between those models are the agarase machinery and the workplace. S. 

degradans 2-40 agarases system involves extracellular endo-β-agarase GH16, 

membrane-bound exo-β-agarases GH50 and GH86, and intracellular GH117. In 
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contrast, Z.galactanivorans employs only extracellular endo-β-agarases GH16 and 

several GH117s.  

The first-stage agarolytic pathway in PORT2 shows similarity to S. degradans 2-

40. Genome annotation and comparative analysis show the presence of putative 

extracellular GH16, GH86, and membrane-bound GH50 and GH86 in M. elongatus 

PORT2. Furthermore, it also informs the evident absence of GH117 or α-agarase 

GH96 not only in PORT2 but also in other agarolytic Microbulbifer. The non-

occurrence of the enzymes thus suggesting an incomplete agarolytic system that is 

contradictory to the availability of D-galactose and 3,6 α-anhydro-L-galactose 

degradation pathways and the ability of the bacterium to utilize agar as a sole carbon 

source.   

Genome profiling successfully elucidates the presence of the ß-agarolytic system in 

M. elongatus PORT2. Multiple β-agarases genes from the same family either GH50 

or GH86 could reflect substrate and product specificities. Interestingly, even though 

PORT2 is a mesophilic bacterium, in silico gene characterization points out 

possible thermostable characteristics of its agarases. Thermostability particularly is 

looked for in agarase industrial applications due to the gelling properties of the 

substrate. Up to date, characterized thermostable agarases have been isolated from 

unique environments such as a deep-sea, saltwater hot spring, and soils.  Most of 

them are GH16 family, three are GH50, and none is GH86 (Park et al. 2020). 

Indeed, the in silico characterization has provided a starting point for designing an 

experimental elucidation of the PORT2 agarases functionality in the next chapter. 
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5. Recombinant Agarases from Microbulbifer elongatus PORT2 

5.1. Results 

In silico characterization detected the presence of six β-agarases genes within 

genome PORT2. The genes were mined from the genomic DNA (gDNA) by PCR 

amplification and cloned into E. coli DH5α by using the restriction enzyme ligation 

method. The native signal peptides were omitted in gene cloning for intracellular 

heterologous expression in E.coli. The recombinant plasmids and the encoded 

agarases were designated as pME1 (AgaA50), pME2 (AgaB50), pME3 (AgaC50), 

pME46 (AgaD86T), pME6 (AgaE86) and pME9 (AgaF16A). The plasmids 

contained the gene inserts ranging from 0.86 to 2.9 kb (Appendix 3). Notably, 

pME46, pME6, and pME9 carried only the catalytic domain of each agarase 

because carbohydrate-binding module-containing plasmids were either can not be 

cloned or expressed.  

The plasmids were transformed into E.coli BL21 (DE3) for overexpression. 

AgaA50, AgaB50 AgaC50, and AgaF16A were overproduced as soluble proteins 

except for AgaD86T and AgaE86 (the GH86s). The GH86s insolubility could be 

caused by incorrect protein folding during the overexpression. Lowering the 

expression temperature can enhance proper protein folding and increase solubility 

(Schein 1989). Therefore, the E.coli Artic Express was used to overcome the 

expression problem in AgaD86 and AgaE86. The system is designated for 

heterologous expression of the targeted protein that is assisted by Cpn60 to enhance 

proper protein folding at low temperatures (<15 °C). AgaD86T was probably 

expressed as a soluble protein. The ambiguity was derived from molecular weight 

closeness between AgaD86T (53 kDa) and Cpn60 (58 kDa). On the other hand, 

AgaE86 was inexpressible in Artic Express. The expression problem of AgaE86 

could be caused by poor codon utilization in E.coli. The Codon adaptation index 

(CAI) of AgaE86 was 0.75 to 0.78 which is lower than the ideal index (0.8-1), 

indicating potential poor heterologous expression (Selleck and Tan 2008). 
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All recombinant agarases were partially purified using a nickel–nitrilotriacetic acid-

immobilized metal affinity chromatography (Ni-NTA IMAC) system. The obtained 

proteins were desalted and concentrated using centrifugal ultrafiltration before 

characterized further. The expression and purification results were observed using 

SDS PAGE (Figure 5.1). 

 
Figure 5.1. SDS PAGE of recombinant agarases PORT2 expression in E .coli 

(black arrows). Total protein (TS); soluble protein fraction (S); flow-through (FT); 

elution fraction from Ni-NTA IMAC (Ni-NTA); color prestained protein marker 

NEB (M).    

The agarases activities were qualitatively screened using agarose and artificial 

substrates (β-p nitrophenyl galactopyranoside (β-pnpg) and α-p nitrophenyl 

galactopyranoside (α-pnpg)). All recombinant agarases were active on β-pnpg but 

not on α-pnpg indicating β-glycosidase activity. Only AgaB50 and AgaF16A 

showed distinct agarase activities by forming a clear zone on the agarose plate 

(Figure 5.2).  Therefore, these two agarases were characterized by firstly.  

 
Figure 5.2.  Qualitative test of 1 µL recombinant agarases on 1% w/v agarose 

plate: AgaB50 (pME2) and AgaF16A (pMe9). The agarolytic activity is indicated 

by clear zones formation (red arrows). 

Endo-β-agarases AgaB50 and AgaF16A 

Biochemical Properties of AgaB50 

The agaB50 had a size of 2232 bp nucleotides encoding 743 amino acid residues 

with a calculated molecular mass of 82.5 kDa and pI of 4.84. The gene had GTG 
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and TGA as start and stops codons, respectively. The AgaB50 showed a molecular 

weight of around 82 kDa on SDS PAGE gel (Figure 5.1.b). The protein resembled 

45% sequence identity to Aga50D, an exo-β agarase from Saccharophagus 

degradans 2-40, and β-agarase from Agarivorans gilvus. 

The activity of AgaB50 on agarose was measured over the pH range of 4 to 10 at 

50 °C. The enzyme exhibited agarase activity at a wide pH profile from pH 6 to 9. 

It displayed maximum activity at pH 7 and maintained more than 60% of its activity 

at pH 6 to 7.5 (Figure 5.3.a). AgaB50 was also active at a wide-temperature range 

between 6.5 to 70 °C. It displayed a maximum activity at 50 °C at pH 8 (Figure 

5.3.b). A 1 h heat treatment between 20-40 °C did not affect the activity. The 

enzyme lost 20% of its activity after 1 h preincubation at 50 °C. The activity 

diminished at a higher incubation temperature (Figure 5.3.c). The specific activity 

of AgaB50 on agarose with assay condition of pH 7; 50 °C was 242 U/mg. 

AgaB50 was sensitive to all tested chemicals. It lost 50% of its activity in the 

presence of 1 mM thiol reagents such as β-mercaptoethanol (BME), dithiothreitol 

(DTT), and inorganic salts ions such as Na+ and Ca2+ (10 and 0.5 mM). Other 

chemicals, Mg2+ (5 and 10 mM), and EDTA (1 mM) also reduced almost 60% of 

the enzyme activity. Glycerol (2.5% v/v) and SDS (1 mM) were detrimental to 

AgaB50 activity (Figure 5.3.d).   

Biochemical Properties of AgaF16A 

The size of the agaF16A was 837 bp nucleotides encoding 279 amino acid residues 

with a calculated molecular mass of 31.4 kDa and pI of 4.85. The AgaF16A was 

predicted as the catalytic domain of AgaF16. Neither AgaF16 nor AgaF16A 

contained cysteine residue. AgaF16A shared identities of 86.7% with β-agarase 

Microbulbifer thermotolerans JAMB A94 and 53.7% with β-agarase B from 

Zobellia galactanivorans DsiJ. The expressed protein had a size of around 31 kDa 

on SDS PAGE gel (Figure 5.1.e).  

AgaF16A activity on agarose was examined over a wide pH range from 4 to 10 at 

50 °C. The enzyme was active at a pH range from 6 to 9 with maximum activity at 

pH 7 (Figure 5.3.a). The enzyme also showed activity at a wide temperature 

between 6.5 to 70 °C at pH 8 and reached a maximum of 50 °C (Figure 5.3.b). 

Indeed, AgaF16A retained more than 90% of its activity even after preincubation 
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for 1 h at 50°C.  However, preincubation at a higher temperature diminished the 

activity (Figure 5.3.c). The presence of SDS (1 mM) and salts ion Na+ (150 mM) 

did not affect the activity of AgaF16A to any practical extent, except for Ca2+ (5 

mM), which decreased almost 40% of the activity. The addition of some chemicals 

at a concentration of 1 to 10 mM such as Mg2+, EDTA, BME, DTT, and 10% (v/v) 

glycerol even enhanced the activity of AgaF16A at least one fold (Figure 5.3.d). 

The specific activity of AgaF16A on agarose at pH 8, 50 °C was 772 U/mg.  

 

Figure 5.3. Biochemical characteristics of AgaB50 and AgaF16A on agarose 

0.2% w/v: a) the effect of pH on enzyme activity at 50 °C, b) the effect of 

temperature on enzyme activity at pH 8, c) enzyme stability measurement at 50 °C 

at pH 7 (AgaB50) and pH 8 (AgaF16A) after 1 h preincubation at a certain 

temperature, d) the effect of various ions and reagents on enzyme activity at 50 °C, 

pH 7 (AgaB50) and pH 8 (AgaF16A). All data are measured in three replicates and 

presented as the mean value of triplicates. Abbreviation: β-mercaptoethanol 

(BME), dithiothreitol (DTT), sodium dodecyl sulfate (SDS), 

ethylenediaminetetraacetic acid (EDTA). 

Endo β-Agarase Action 

The qualitative assay on artificial substrates indicated the agarase activities of 

AgAB50 and AgaF16A. A time series-agarose-degradation of each enzyme was 

evaluated to determine the action mode.   
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AgaB50 displayed a gradual product formation on time-series agarose hydrolysis. 

TLC analysis showed product patterns with retention times similar to 

neoagarooligosaccharides (NAOS) markers (Figure 5.4.a.). Product specificity 

was also verified using HPLC-RID. The HPLC analysis displayed more clearly the 

gradual degradation pattern and continuously released of NAOS with different 

lengths. The result showed that AgaB50 converted agarose into neoagarotetraose 

(NA4) (20.9 min) as a major product and a lesser extent of neoagarohexaose (NA6) 

(16.9 min) and neoagarobiose (NA2) (28 min). Interestingly, the HPLC depicted a 

depletion of the released products; NA6, NA4, and NA2 at 4 h reaction (Figure 

5.4.b.). 

The ability of AgaB50 to utilize NAOS as substrate was examined individually by 

using endpoint enzymatic reaction with an excess amount of enzyme. The result 

showed that AgaB50 degraded substrate larger than NA2. Notably, AgaB50 only 

generated a prominent amount of NA2 from NAOS (Figure 5.4.c.).  

Similar to AgaB50, AgaF16A also produced multi-size products from agarose. The 

product retention times showed similarity to NA4 (20.9 min) and NA6 (16.9 min) 

on TLC and HPLC-RID analysis. However, the time-course reaction showed more 

rapid final-size product formation than AgaB50 with NA4 as the major product 

followed by NA6 (Figure 5.5.a and 5.5.b). 

Different from AgaB50 which took NA4 as the smallest substrate and always 

produced a single product size when hydrolyzed NAOS, AgaF16A was unable to 

use NA4. The enzyme also can utilize neoagarooligosaccharides with NA6 as the 

smallest substrate and hydrolyzed it into NA4 and NA2. Indeed, AgaF16A showed 

a clear endo-β-catalytic pattern different from AgaB50. 
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Figure 5.4.  Product specificity of AgaB50. Time series reaction on 0.2% w/v 

agarose in ultrapure water monitored by a) TLC, b) HPLC-RID, c) the smallest 

substrate specificity test monitored by HPLC-RID (each substrate: 0.5 mg/mL in 

ultrapure water; endpoint enzymatic reaction at 50 °C; 800 rpm). Abbreviations: 

neoagarooctaose (NA8); neoagarohexaose (NA6); neoagarotetraose (NA4); 

neagarobiose (NA2); and D-galactose (D-gal). The retention times (Rt) of 

neoagarooligosaccharide standards are: 14.6 min (NA8); 16.9 min (NA6); 20.9 min 

(NA4); 28 min (NA2) and 33.7 min (D-galactose). 
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Figure 5.5. Product specificity of AgaF16A. Time series reaction on 0.2% w/v 

agarose in ultrapure water monitored by a) TLC, b) HPLC-RID, c) smallest 

substrate specificity test monitored by HPLC-RID (each substrate: 0.5 mg/mL in 

ultrapure water; endpoint enzymatic reaction at 50 °C; 800 rpm). Abbreviations: 

neoagarooctaose (NA8); neoagarohexaose (NA6); neoagarotetraose (NA4); 

neagarobiose (NA2); and D-galactose (D-gal). The retention times of 

neoagaroligosaccharide standards are: 14.6 min (NA8); 16.9 min (NA6); 20.9 min 

(NA4); 28 min (NA2) and 33.7 min (D-galactose). 

Biochemical characterization of AgaA50, AgaC50, and AgaD86T was performed 

using β-pnpg, a common artificial substrate for a hydrolytic enzyme. This 

chromogen can be used in either discontinuous or continuous assay at an elevated 

temperature (Lieshout 2007). Indeed, the activity on an artificial substrate only 

approximates the hydrolytic efficiency of natural substrates.  
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Exo-β-agarases GH50 

PORT2 encoded three GH50 agarases, AgaA50, AgaB50, and AgaC50. All of them 

showed more than 40% of sequence similarity to Aga50D, an exo-agarase GH50 

from S. degradans 2-40 indicating similar protein folding and function. Notably, 

the AgaB50 showed the lowest similarity and distinct endo-exo-β-agarase activity. 

On the other hand, AgaA50 and AgaC50 did not show any clear activity on agar or 

agarose during the qualitative assay. The product formation was below the detection 

limit of the DNS reagent. 

The agarolytic of AgaA50 and AgaC50 was detected using HPLC analysis. 

AgaA50 showed clear agarolytic activity on NAOS. AgaA50 hydrolyzed NA4, 

NA6, or NA8 and released a prominent amount of NA2 (Figure 5.6.a). In contrast, 

AgaC50 depicted a subtle or very specific agarase activity by taking only NA4 as a 

substrate and hydrolyzed it into NA2 (Figure 5.6.b). Similar to SdAga50D, both 

enzymes released a single-size product indicating an exo-β-agarase action that 

hydrolyzes the glycosidic bond from the end chain of the substrate.   

 

Figure 5.6. Exo-agarolytic activity on neoagarooligosaccharides monitored by 

HPLC-RID a) AgaA50,  b) AgaC50. Endpoint enzymatic reaction at 50 °C, 800 

rpm, substrate concentration: 0.5 mg/mL in ultrapure water. Abbreviations: 

Neoagarooctaose (NA8); neoagarohexaose (NA6); neoagarotetraose (NA4) and 

neagarobiose (NA2). The retention times of standards are: 14.6 min (NA8); 16.9 

min (NA6); 20.9 min (NA4); 28 min (NA2). 
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Biochemical Properties of AgaA50 

The agaA50 consisted of 2313 bp nucleotides encoding 770 amino acids with 

calculated pI 4.74 and a molecular weight of 86.6 kDa. AgaA50 showed 55% 

sequence identity to Aga50D, an exo-β agarase from S. degradans 2-40. The 

purified Ni-NTA protein showed a size of around 80 kDa on the SDS-PAGE gel 

(Figure 5.1.a).  

AgaA50 activity on β-pnpg was measured over a pH range of 5.6 to 9.1 at 40 °C. 

The enzyme displayed activity at a pH range from 6 to 9 and reached a maximum 

at pH 6.5 (Figure 5.7.a). The activity was also tested at wide range temperatures 

between 30 to 80 °C at pH 7. AgaA50 demonstrated more activity at a temperature 

higher than 50 °C and achieved maximum at 60 °C (Figure 5.7.b). The enzyme still 

maintained more than 70% of its activity after 1 h preincubation at 50 °C but was 

inactivated by higher preincubation temperature (Figure 5.7.c). Monovalent ions 

Na+ and K+ (1 and 10 mM), glycerol (2.5% v/v), and DTT, Ni2+ and Fe3+ (each 5 

mM) slightly decreased the AgaA50 activity. SDS (0.5% v/v) and EDTA (2.5 mM) 

affected the AgaA50 activity negatively. In contrast, divalent ion Ca2+ (10 mM) or 

Mg2+ (1 mM) enhanced the activity of AgaA50 (Figure 5.7.d). AgaA50 showed 

Michelis-Menten behavior on β-pnpg with Km value 1.26 mM and Vmax 0.028 

mM/min. 

Biochemical Properties of AgaC50  

AgaC50 was the third  GH50 agarase carried by PORT2. The gene consisted of 

2346 bp nucleotides encoding 781 amino acid residues. AgaC50 had a calculated 

molecular weight of 87.7 kDa and pI 4.99 with 52% sequence identity to Aga50D, 

an exo-β agarase from S. degradans 2-40. Recombinant AgaC50 showed a smaller 

size (around 86 kDa) on the SDS PAGE gel due to the signal peptide exclusion for 

heterologous expression in E.coli (Figure 5.1.c.).  

The activity of AgaC50 on β-pnpg was measured over a pH range of 5.6 to 9.1 at 

50 °C. The enzyme showed a wide range of activity from pH 5.6 to 9.1 with a sharp 

maximum at pH 7.5 (Figure 5.7.a). AgaC50 also displayed activity at a temperature 

range from 30 to 80 °C and a maximum at 60°C at pH 7.5 (Figure 5.7.b). It retained 

more than 70% of its activity after 1 h preincubation at 40°C but less than 40% after 

preincubation at a higher temperature (Figure 5.7.c.). Divalent and monovalent 
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ions such as Na+and K+ (1 and 10 mM) did not affect the activity negatively except 

Ca2+.  Other chemicals such as EDTA (2.5 mM), SDS (0.5% v/v), Glycerol (2.5% 

v/v), Fe3+ and DTT (5 mM) significantly reduced the enzyme activity. Monovalent 

ion Mg2+ (1 mM) enhanced the activity (Figure 5.7.d). AgaC50 also showed 

Michelis Menten's behavior on β-pnpg but the kinetic parameters were lower than 

AgaA50 by having Km and Vmax values 0.62 mM and 0.00096 mM/min, 

respectively.   

Hence, four recombinant agarases had been successfully characterized. Despite 

action similarity as endo-β agarases, AgaB50 and AgaF16A displayed distinct 

biochemical characteristics such as temperature stability and resistance to some 

inorganic ions, chemicals, or reagents. The most pronounced differences were 

indicated by their substrate-products specificity.  

On the other hand, AgaA50 and AgaC50 displayed an exo-agarase action. Indeed, 

biochemical characterization also depicted AgaA50 and AgaC50 differences. 

AgaA50 was more thermostable and efficient than AgaC50. Both enzymes 

indicated a metal-dependent characteristic which depicted the function of  Ca2+ and 

Mg2+ as the enzyme activator, respectively. The characteristics of PORT2 

recombinant agarases were summarized in Table 5.1. 

Table 5.1. Biochemical chemical properties of PORT2 recombinant agarases 

Enzyme Size* 

(kDa) 

Biochemical Properties** Product 

pH T 

(°C) 

Feature 

AgaA50 86.6 6.5 60 Ca2+ NA2 

AgaB50 82.5 7 50 - NA6, NA4, 

NA2 

AgaC50 87.7 7.5 60 Mg2+ NA2 

AgaF16A 31.2 7 50 Mg2+, EDTA, DTT/BME NA6, NA4 

* calculated molecular weight 

** for maximum activity 
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Figure 5.7. Biochemical characteristics of AgaA50 and AgaC50 on β-pnpg: a) 

effect of pH on enzyme activity at 40 °C (AgaA50) and 50 °C (AgaC50), b) effect 

of temperature on enzyme activity at pH 7 for AgaA50 and pH 7.5 for AgaC50, c) 

enzyme stability measurement at 60 °C, pH 7 for AgaA50 and pH 7.5 for AgaC50 

after 1 h preincubation at a certain temperature, d) effect of ions & chemicals on 

the enzyme activity at temperature 60 °C, pH 7 for AgaA50 and pH 7.5 for AgaC50, 

e) Lineweaver Burk plot of AgaA50, f) Lineweaver Burk plot of AgaC50. All data 

are measured in three replicates and presented as the mean value of triplicates. Error 

bars represent the deviation of triplicates. 

Due to biochemical properties and mode of action differences, structural 

information of PORT2 recombinant agarases was inferred by using the protein 

modeling approach. The analysis requires a minimum sequence length of 150 

amino acids with 40% identity. The accuracy of modeling improves if the template 

for generating a model belongs to the same protein family (Wilson et al. 2000; 

Jabeen et al. 2018).  
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PORT2 GH50s showed more than 40% sequence identity to Aga50D from S. 

degradans 2-40. The structure of Aga50D had been experimentally elucidated, thus 

increasing the possibility of getting accurate models for  PORT2 GH50s.  

Protein models of PORT2 GH50s were automatically built up by SWISS model 

from a monomeric state of exo-β agarase Aga50D chain A from S.degradans 2-40 

(PDB id: 4BQ4.A) (SdAga50D) (Waterhouse et al. 2018). Therefore, the generated 

models also showed a monomeric state. Indeed, SdAga50D itself has tetrameric 

structures (Pluvinage et al. 2013). Hence, the protein models did not indicate the 

original quaternary structures of PORT2 GH50s. 

Structure comparison between the models and template resulted in root mean square 

deviation (RMSD) values < 1 Å indicated that SdAga50D was a sufficient template 

for homology modeling (Fiser 2010; Jabeen et al. 2018). The modeling parameters 

indicated a reliable model prediction (Table 5.2). Multiple sequence alignments 

between the template and models indicated sequence modifications in PORT2 

GH50s (Figure 5.8.) and (Table 5.2).  

SdAga50D showed a homotetrameric structure, each consisted of C-terminus (/β)8 

barrel fused to N-terminus a β-sandwich CBM-like domain by a coil- helix-coil 

linker (Figure 5.9.a). The protein had an end-blocked tunnel substrate-binding site 

typical for an exo-glycoside hydrolase with a retaining mechanism (Figure 5.9.b 

and c). A partial part of the CBM-like domain formed a roof covering the substrate-

binding tunnel and contributed some substrate-binding residues (Figure 5.9.d). 

SdAga50D (E534Q) mutant in complex with NA8 displayed the binding sub sites 

of -2, +1, +3  for 3,6-anhydro-L-galactose and D-galactose at -1 and +2 (Figure 

5.9.d) (Pluvinage et al. 2013).  
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Figure 5.8. Multiple alignments of PORT2 GH50s with the template PDB id: 

4BQ4.A (SdAga50D), black dots are substrate-binding residues; red dots are the 

catalytic residues; the black dashed line is a part of the CBM-like domain, the blue-

dashed line is the end-loop of active site tunnel. 

Table 5.2. Comparison of PORT2 GH50s to SdAga50D (PDB id: 4BQ4.A) 
Parameter  SdAga50D AgaA50 AgaB50 AgaC50 

Model Quality (Benkert et al. 2011): 

GMQE Template 0.80 0.76 0.79 

QMEAN Z score  -0.65 -1.12 
 

-0.75 
 

Template similarity (%) 100 55.89 46.13 53.65 

Substrate-binding site modifications (Pluvinage et al. 2013): 

CBM-like W199;  

T142; 

T134; 

D132 

W174; 

T116; 

A108; 

T106 

W163; 

T117; 

Y110; 

T108; 

G160; 

S114; 

A106; 

R104 

     

(/β)8 barrel  D362 D337 deletion D323 

 L710 I683 deletions deletions 

 W479 D454 W417 W440 

Tunnel shape modifications (Pluvinage et al. 2013): 

Tunnel roof E165-N176 E140-N151 deletions deletions 

     

End Tunnel A351- 

M367 

P326- 

N342 

deletions P312-

M328 
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Figure 5.9. Features of Aga50D from S. degradans 2-40. a) ribbon representation 

comprising N-terminus CBM-like domain (blue); coil- helix-coil linker (yellow) 

and C-terminus (/β)8 barrel (white), b) surface display; substrate-binding site 

(purple); blocked-end tunnel (black-dashed ellipse), CBM-like domain roof 

(yellow-dashed ellipse), c) surface of the substrate-binding site;  the end tunnel 

contributes Asp362 for substrate binding (black-dashed ellipse), d) amino acid 

residues of substrate-binding sub sites (-2 to +3) form direct hydrogen bonds 

complex with NA8 (magenta sticks) or via water molecules (red dot), subsite 

residues from (/β)8 barrel (green sticks) and CBM-like domain (blue sticks). 

Among the generated models, the AgaA50 model resembled the template closely 

(Figure 5.10.a). AgaA50 model displayed similar substrate-binding site topology, 

a blocked-end tunnel with the CBM-like domain formed a roof covering the tunnel 

(Figure 5.10.b and c). The alignment between the model and template postulated 

a substrate-binding site in AgaA50 with E509 and E668 as the catalytic residues 

located 5.4 Å apart (Figure 5.10.a).  
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Figure 5.10. AgaA50 model: a) The cartoon of secondary structure; N-terminus 

CBM-like domain (blue), coil- helix-coil linker (red) and C-terminus (/β)8 barrel 

domain (brown); and catalytic residues E509 and E668 (green), b) surface of 

AgaA50, c) views of substrate binding site topology (light gray) is visualized with 

an NA4 as the substrate (blue-red stick); end-block tunnel (yellow dashed ellipse); 

CBM-like roof (red dashed ellipse); substrate binding residue that also blocks the 

end tunnel (D337, yellow cycle); and substrate binding residue that forms roof 

covering the tunnel (I683, red cycle) d) front view of substrate binding tunnel e) 

closed-end of substrate binding tunnel (blue dashed circle). 

The AgaB50 model also displayed an N-terminus CBM-like domain fused by a 

coil--helix-coil linker to C-terminus (/β)8 barrel domain (Figure 5.11.a). 

However, the superposition of the template and model showed deletions at the end-

blocked tunnel (Val351- Ala367, according to SdAga50D amino acid position) and 

the CBM-like domain roof visualizing an open-end short tunnel substrate-binding 

site (Glu165-Asn176, according to SdAga50D amino acid position) (Figure 5.11. 

b to e). Two putative catalytic residues of AgaB50 were E472 and E643 located 

around 5 Å apart. (Figure 5.11.a).  
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Figure 5.11. AgaB50 model: a) Secondary structure cartoon; N-terminus CBM-

like domain (blue), coil- helix-coil linker (red); C-terminus (/β)8 barrel domain 

(brown) and catalytic residues E472 and E643 (green) b) the AgaB50 (surface) 

displays a short tunnel substrate-binding site (green); c) the deletions at the end-

blocked tunnel loop (yellow dashed ellipse) and the CBM-like domain roof (red 

dashed ellipse); substrate-binding residues that are mutated, F431Y and  T110Y, 

(red ellipse); an NA4 in the substrate-binding site (blue-red sticks). d) Front view 

of substrate binding tunnel e) opened-end of substrate binding tunnel (blue dashed 

ellipse). 

The AgaC50 model also displayed structure similarity to SdAga50D. Two putative 

catalytic residues glutamic acids, E495 and E654 located 5.4 Å apart within the 

substrate-binding tunnel (Figure 5.12.a). Template-model superposition concealed 

deletion at the CBM-like domain of AgaC50 (Asp165-Asn176, according to 

SdAga50D amino acid position) (Figure 5.12.b and c). Furthermore, substrate-

binding residues within the CBM-like domain of AgaC50 also showed mutation 

events in comparison to the template, chain A of SdAga50D (PDB id 4BQ4.A) 

(Table 5.2). Significantly, the aromatic tryptophan 160 was substituted by small 

residue glycine (W160G), nucleophilic threonine was replaced by small alanine 

(T106A), and acidic aspartic acid was mutated into basic arginine (D104R) (Figure 

5.12.d).   
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Figure 5.12. AgaC50 model: a) Cartoon AgaC50; N-terminus CBM-like domain 

(blue), coil- helix-coil linker (red), C-terminus (/β)8 barrel domain (brown), 

catalytic residues E654 and E495 (light green), b) the AgaC50 (surface) shows 

substrate binding sites (gray), c) the end-blocked tunnel loop (yellow dashed 

ellipse), D323, the substrate-binding residue at the end of the closed tunnel (yellow 

ellipse), the deletion of residues which are responsible for closing the tunnel roof 

from CBM-like domain (red dashed ellipse); mutated substrate-binding residues 

(red ellipse); an NA4 in the substrate-binding tunnel (blue-red sticks), d) front view 

of substrate binding tunnel, e) closed-end of substrate binding tunnel (blue dashed 

ellipse). 

Homology modeling was also performed for AgaA16A to visualize the substrate-

binding site and mode of action. The best template was generated from a catalytic 

domain of thermostable endo β-agarase AgaA Microbulbifer thermotolerans JAMB 

A94 (PDB id: 3WZ1.1.A) (MtAgaA). AgaF16A showed 87% identity to the 

template with GMQE score: 0.98 and QMEAN Z-score: -0.09 indicating a reliable 

model. Different from AgaB50, the AgaF16A model displayed two antiparallel β-

sheet jelly rolls formed a concave cleft active-site typical for the GH16 family 

(Figure 5.13.a). The AgaF16A was also superposed to the crystal structure of 

mutant AgaAE131S (PDB id: 1URX.A) from Zobellia galactanivorans DsiJ 

(ZgAgaAE131S), to visualize the substrate-binding site (Figure 5.13b). All those 

templates are monomeric endo β-agarases from the GH16 family with retaining 

mechanism (Takagi, et al. 2015; Allouch et al. 2003) 
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Figure 5.13. AgaF16A model. a) cartoon of secondary structure and predicted 

substrate-binding cleft, the jelly roll-β-sheets (blue); α-helix (red); loops (gray) b) 

Structures superposition among ZgAgaA (sky blue), MtAgaA (light purple) and 

model AgaF16A (dark blue); neoagarotetraose (NA4) (white sticks). 

The multiple sequence alignments displayed catalytic residues conservation among 

AgaF16A and the templates. Substrate-binding residues in AgaF16A were more 

similar to MtAgaA than to ZgAgaA with a conserved β-bulge motif, EXDXXE. 

The sequence motif in AgaF16A was E127[I]D[V][I]E132 with E127 and E132 as 

putative catalytic residues. (Figure 5.14). AgaF16A had neither a loop bridge nor 

a second substrate-binding site that was present in AgaB, a GH16 agarase from Z. 

galactanivorans DsiJ (ZgAgaB). 

 

Figure 5.14.  Multiple sequence alignments of AgaF16A with templates from 

β-agarase GH16.  MtAgA (PDB id: 3WZ1) (brown), ZgAgaB E189D (PDB id: 

4ATF.chain C) (light blue), ZgAgaA E131S (PDB id: 1URX.chain A) (purple), and 

AgaF16A (light green): catalytic residues (red dots); substrate-binding sites (black 

dots); loop bridge of dimer ZgAgaB (black-dashed). 

The SdAga50D and ZgAgaB proteins showed multisubunit quaternary structures. 

Therefore, quaternary structures of PORT2 GH50 and AgaF16A were also 
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evaluated using blue native polyacrylamide gel electrophoresis (BN-PAGE) 

(Figure 5.15). AgaF16A showed migration of protein with molecular weight twice 

of the calculated size indicating a dimeric state. Meanwhile, AgaA50 and AgaB50 

migrated to the position with smaller sizes than the calculated size indicating a 

compact globular structure. Some bands with higher molecular weight along the 

lines could indicate a multimeric state but probably also some impurities which 

were indicated by SDS PAGE (Figure 5.1).  

 

Figure 5.15. Blue native polyacrylamide gel electrophoresis (BN-PAGE) of 

PORT2 recombinant agarases. Lane M is a protein standard for blue native gel 

(SERVA, Germany), Lane 1. AgaA50  Lane 2. AgaB50 and Lane 3. AgaF16A. 

AgaD86T   

AgaD86T was predicted as a C-terminus agarase domain of AgaD86 and 

overproduced in E.coli Artic Express. The AgaD86T had 1416 bp nucleotide 

encoding 472 amino acid residues with calculated pI 4.49 and molecular weight 

53.2 kDa. A qualitative activity assay on agarose and neoagarooctaose (NA8) was 

performed to ensure that the protein was not the Cpn60 from E.coli Artic Express. 

AgaD86T displayed a subtle activity on NA8 by releasing a small amount of 

neoagarohexaose (NA6), and neoagarobiose (NA2) (Figure 5.16.a) but did not 

show clear agarolytic activity on agarose or other agar polymers (Figure 5.16. b). 

The enzyme was also active on β-pnpg. 
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Figure 5.16. AgaD86T activity monitored by HPLC-RID. a) on 

neoagarooctaose 0.5 mg/mL in ultrapure water b) on agar polymers.  Endpoint 

enzymatic reactions at 40 °C, 24 h, 800 rpm, excess enzyme amount.  

Considering the presence of subtle agarase activity in AgaD86T, the influence of 

pH and temperature was also characterized using artificial substrate β-pnpg to infer 

some basic information that probably could reflect the biochemical properties of 

AgaD86. The enzyme displayed an activity at wide pH from 5 to 9 and a maximum 

at pH 6 at 40 °C (Figure 5.17.a). It also showed a wide range of temperature activity 

between 30 to 80 °C and maximum at 60 °C; pH 6 (Figure 5.17.b). Interestingly, 

the activity was increased significantly after 1 h preincubation at a temperature 

between 30 to 50 °C. However, a 1 h preincubation at 60 °C reduced 50% of the 

activity (Figure 5.17.c). The enzyme showed a distinct measurement deviation 

which could indicate that β-pnpg probably was not the proper substrate. 

 
Figure 5.17. Biochemical characteristics of AgaD86T on β-pnpg.: a) effect of 

pH on enzyme activity at temperature 40 °C, b) effect of temperature on enzyme 

activity at pH 6 c) measurement of enzyme stability at pH 6, 50 °C after 1 h 

preincubation at a certain temperature. All data are mean values from triplicates. 

Error bars represent the standard deviation of triplicates. 
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AgaD86T had 35% sequence identity to a β-porphyranase GH86 from Bacteroides 

plebeius and 44.6% identity to β-agarases GH86 from Bacteroides uniformis. The 

crystal structures from both proteins had been elucidated (Hehemann et al. 2012c; 

Pluvinage et al. 2018). A protein model was generated to evaluate the poor 

performance of AgaD86T and to visualize the substrate-binding site. The model of 

AgaD86 was generated from the template BuGH86E322Q (PDB id: 5TAO chain 

A). The model had a GMQE  value of 0.75 and QMEAN Z-score -3 indicating a 

reliable model structure (Figure 5.18. a). The template BuGH86E322Q is an endo-

β-agarase GH86 mutant (E322Q)  from Bacteroides uniformis in complex with five 

sugars of the neoagarooctaose (NA8). It has a structure consisted of a (/β)8 barrel 

core with two Ig-like domains. The enzyme had a crater substrate-binding site 

topology (Figure 5.18. b ) that accommodated D-galactose residue at -3 and -1 sub 

sites and a neoagarobiose at  +1 and +2 sub sites (Figure 5.18. d)  (Pluvinage et al. 

2018).   

Structure comparison to the template showed that the AgaD86T model resembled 

an incomplete /β barrel core with two Ig-like domains. Some β-barrels chain 

surrounds the substrate-binding site were missing (Figure 5.18. c). Thus, only some 

important residues within the substrate-binding site were still available such as 

nucleophile E64, which was equivalent to the catalytic residue of BuGH86E322Q 

(Figure 5.18.d). Thus, the model clearly explained the subtlety activity of 

AgaD86T on NA8 or agar polymers (Figure 5.16). 

Combining in silico and experimental characterization, this study demonstrated that 

mesophilic M. elongatus PORT2 encoded a thermostable β-agarolytic system for 

agar conversion into NA2. Regrettably, the function of GH86s was unable to verify 

properly. 

The in silico characterization did not inform the presence of any GH117 or GH96 

in PORT2. Both enzymes are responsible for hydrolyzing α-glycosidic bonds in 

agar or agar oligosaccharides. Nevertheless, D-galactose, and 3,6-α-anhydro L-

galactose catabolic machinery, some sugar transporters, and regulatory system were 

clustered in the vicinity of β-agarases genes (Figure 4.1).  
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Figure 5.18. AgaD86T model. Rainbow Cartoons of a) model AgaD86T  b) 

template BuGH86E322Q: N-terminus (blue), C-terminus (red),  c) surface of 

AgaD86T (cyan) superposes with BuGH86E322Q (grey) in complex with 

neoagarooligosaccharides (magenta), d) superposition of substrate binding residues 

(-3 to +2) in AgaD86T (skyblue) to BuGH86E322Q (blue), neoagaroocta/-pentaose 

(magenta), missing residues in AgaD86T (red ellipse). 

M.elongatus PORT2 displayed a diauxic growth in a medium containing proteinous 

substrate and agar.  Therefore, PORT2 was proposed to deploy a consecutive basal 

amount of extracellular endo-β-agarase(s) (such as AgaF16) to sense the presence 

of agar and hydrolyze it into a variety of NAOS such as NA6 and NA4. The cells 

recognized the presence of NAOS as inducers for the cognate exo-β-agarases 

(AgaA50, AgaB50, AgaC50). The enzymes then hydrolyzed the available NAOS 

into NA2 (Figure 5.19.). Hence, the second agarolytic pathway for NA2 

assimilation and monomerization in PORT2 was constructed hypothetically. 

Presumably, the NA2 was then taken up by the cell using the available TonB-

dependent or other sugar transporters. Inside the cytosol, NA2 was converted into 
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D-galactose and 3,6-α-anhydro L-galactose by an unknown neoagarobiose 

hydrolase (NABH)-like enzyme for cell energy feedstock (Figure 5.19.). 

 

Figure 5.19. Reconstruction of thermostable agarolytic pathways in 

Microbulbifer elongatus PORT2. The first-stage of agarolytic pathway employs 

consecutive expression of endo-agarase such as AgaF16 (red packman) to sense the 

presence of agar polymer. When the substrate is available, AgaF16 produces 

mixtures of agar oligosaccharides (neoagarohexaose (NA6); neoagarotetraose 

(NA4)) to induce the production of cognate exo-and/or exo-endo-agarases (yellow 

packman) such as AgaA50, AgaB50, and AgaC50. Those agarases convert longer 

agar oligosaccharides to neoagarobiose (NA2). Hypothetically, the cell starts the 

second-stage pathway by transporting NA2 into the cytosol through available sugar 

transporter. An unknown α-neoagarobiose hydrolase (NABH)-like enzyme 

(magenta packman) is produced to degrade NA2 further into 3,6-α-anhydro L-

galactose (AHG) and D-galactose (D-Gal). The monomers then enter each of its 

catabolic pathways to be converted into energy for cell maintenance and growth. 

The role of AgaD86 and AgaE86 are still unknown but their in silico properties 

indicate endo-agarase capability. 

Conversion of Indonesian Agars into Neoagarooligosaccharides 

The ability of the recombinant agarases to use various agar types was tested on 

different macro algae polysaccharides include agars from Indonesia. Those 

polysaccharides had different cold-water solubility and gelling properties which 
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could affect the agarase activity and product (Table 5.3). The absence of NAOS in 

the substrate before the enzymatic reaction was verified using HPLC-RID (Figure 

15.20). Notably, a small content of glucose was detected in AIR Gelidium sp.  

Table 5.3. Agar polysaccharides for substrate specificity test 
Agar 

Polysaccharide 

Macro alga 

Producer 

Source  Cold 

Water 

Solubility 

Gelling 

Property* 

(T< 40 °C)  

Agarose Unknown-red alga VWR Insoluble Gel-Agar 

Agar kobeI Unknown-red alga Roth Insoluble Gel-Agar 

κ-carrageenan Kappaphycus sp. Sigma Insoluble Gel-Non agar 

Sodium alginate Unknown-brown alga Sigma Insoluble Gel-Non agar  

AIR Gelidium sp. Gelidium sp. Indonesia Insoluble Gel-Agar 

AIR Gracilaria sp. Gracilaria sp. Indonesia Insoluble Weak Gel 

AIR Ulva sp. Ulva sp. Indonesia Soluble Non-Agar 

Porphyran Porphyra sp. Carbosynth Soluble Non-Agar 

Laminarin Laminaria sp. Sigma Soluble Non-Agar 

AIR: Alcohol Insoluble Residues 

*Gelling property was defined by dissolving the insoluble substrate in hot water 

followed by cooling down at room temperature, 

 

Figure 5.20. Analysis of different agar polymers substrates (0.2% w/v in 

ultrapure water) monitored by HPLC-RID. Each substrate is incubated without 

any enzyme addition at 50 C °C; 800 rpm for 24 h. Peaks at migration time < 14 

min could indicate mixtures of soluble polymers and probably also high molecular 

weight of neo-or agarosaccharides (>NA10).  A small peak appearance after 30 min 

in AIR Gelidium sp. indicates glucose. 
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The endo-β-agarase AgaB50 preferred gelling-agar substrates such as agarose and 

AIR Gelidium sp. than AIR Gracilaria sp. or porphyran (Figure 5.21.a). The 

enzyme showed no activity on non-agar substrates. It released products from AIR 

Gelidium sp. and agarose with similar retention time to NA4 and NA2 standards. 

Larger NAOS was also released from AIR Gelidium sp and AIR Gracilaria sp. The 

products of AIR Gracilaria sp. or porphyran showed slightly different retention 

times from NA4 and NA2 indicating the presence of an additional side-chain group 

within the sugar backbone (Figure 5.21.a).  

AgaF16A released products with higher intensities than AgaB50 indicating a more 

efficient degradation process (Figure 5.21.b). The enzymatic products of agarose 

and AIR Gelidium sp. had similar retention times to NA6 and NA4. The enzyme 

also produced NAOS from porphyran and AIR Gracilaria sp. which also showed 

slightly different retention times to NA4 and NA2.   

 

Figure 5.21. Instrumental analysis of the PORT2 endo-β-agarases activities on 

different agar polymers 0.2% w/v in ultrapure water, monitored by HPLC-

RID: a) AgaB50 produces neagarotetraose (NA4) and neoagarobiose (NA2) from 

agarose and AIR Gelidium sp.; modified NA4 and NA2 from porphyran and AIR 

Gracilaria sp., b) AgaF16A releases neoagarohexaose (NA6) and NA4 from 

agarose and AIR Gelidium sp.; modified NA4 and NA2 from porphyran and AIR 

Gracilaria sp. Enzymatic reaction: 24 h, 50 °C, 800 rpm, endpoint measurement. 

The retention times of neoagaroligosaccharide standards are: 14.6 min (NA8); 16.9 

min (NA6); 20.9 min (NA4); 28 min (NA2) and 33.7 min (D-galactose). 
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AgaA50 also preferred gelling-agar substrates, AIR Gelidium sp. and agarose. The 

enzyme produced a single product with a retention time similar to NA2. It showed 

no activity on AIR Gracilaria sp. and porphyran  (Figure 5.22.a). However, 

AgaC50 was unique compared to two other GH50s. It showed no activity on any 

macroalga polysaccharides that were tested. (Figure 5.22.b). 

 

Figure 5.22. Instrumental analysis of the PORT2 exo-agarases on different 

agar polymers 0.2% w/v in ultrapure water, monitored by HPLC-RID; a) 

AgaA50 releases neoagarobiose (NA2) from agarose and AIR Gelidium sp., b) the 

absence of AgaC50 activity. Enzymatic reaction 24 h, 50 °C, 800 rpm, endpoint 

measurement. The retention times of neoagaroligosaccharide standards are: 14.6 

min (NA8); 16.9 min (NA6); 20.9 min (NA4); 28 min (NA2) and 33.7 min (D-

galactose). 

Cascade reaction for Indonesian Agar Conversion  

The experiments indicated the potential application of PORT2 recombinant 

agarases for NAOS production from Indonesian agar. It was substantiated by the 

preparation of NA2 using a cascade reaction of AgaF16A and AgaA50. In general, 

the reaction achieved higher NA2 conversion than a single enzymatic action of 

AgaA50. However, AIR Gracilaria sp was less converted than AIR Gelidium sp. 

Nevertheless, AIR Gracilaria sp conversion released shouldered NA2 different 

from NA2 of AIR Gelidium sp. that could indicate chemical structure variation 

(Figure 5.23.). 
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Figure 5.23. Instrumental analysis of cascade reaction products of AgaAF16A 

and AgaA50 with substrate concentration of 0.2% in ultrapure water at 40 °C, 

24 h monitored by HPLC-RID. The cascade reaction releases neoagarobiose from 

AIR Gelidium sp. and modified neoagarobiose from AIR Gracilaria sp. The 

retention times of standards are: 14.6 min (NA8); 16.9 min (NA6); 20.9 min (NA4); 

28 min (NA2). 

The substrates and products from the cascade reaction were analyzed further to infer 

the occurrence of chemical structure modification using Fourier transform infrared 

spectroscopy (FTIR). FTIR qualitatively detected the presence of typical functional 

groups of agar backbone and the presence of additional side chains. FTIR spectra 

of substrates agarose and Kobe I (representing AIR Gelidium sp.) showed pattern 

similarity that was subtly different from AIR Gracilaria sp. (Figure 5.24.a). A 

shouldered peak absorbance attributed to L-galactose-6-sulfate, a repeating unit of 

porphyrobiose in porphyran at 820 cm-1 was absent in all samples (Lahaye 1986). 

All samples showed absorption bands around 930 and 850 cm-1 indicated the 

presence of 3,6-anhydro-linkage and axial sulfate ester at C4 of D-galactose, 

respectively (Lahaye 1986). The spectra between 2940-2890 cm-1 with a maximum 

peak of 2920 cm-1 attributed to the vibration of CH and CH2 groups from total sugar 

content. The absorption bands at 1370 and 1410 cm-1  indicated sulfate ester 

(Lahaye 1986). Indeed, the cascade reaction products showed spectra with higher 

absorption intensity than their substrates. The AIR Gracilaria sp and its enzymatic 

product displayed a shouldered band around 1465 cm-1 indicating the presence of 

CH2 and CH3 groups (Figure 5. 24.b).  
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Figure 5.24. FTIR spectra a) substrates, b) products of cascade reaction AgaF16A 

and AgaA50. Enzymatic products of agarose, Kobe I and AIR Gelidium sp showed 

profiles similarities that are dfferent from AIR Gracilaria sp, especially at 

wavenumber between 500-1500 cm-1. The absorption band indicated the presence : 

3,6-anhydro-linkage (930 cm-1); axial sulfate ester at C4 of D-galactose (850 cm-1 

); the vibration of CH and CH2 groups from total sugar content (2940-2890 with a 

maximum peak of 2920) cm-1; sulfate ester (1370 and 1410) cm-1; CH2 and CH3 

groups (shouldered band at 1465 cm-1). 

5.2. Discussion  

The previous chapter describes in silico characterization of six putative β-agarases 

in PORT2. Five of them have been successfully overexpressed in the E. coli system 

and characterized. This chapter reports the characterization and potential 

application of those recombinant agarases.  

Two recombinant agarases, AgaB50 and AgaF16A qualitatively displayed activity 

on an agarose gel. During the characterization, both enzymes demonstrate an endo-

β-1,4-agarolytic activity by performing internal cleavage that is indicated by the 

formation of mixed-size products. However, AgaB50 and AgaF16A show distinct 

product patterns indicating not only a different endo-action but also probably their 

cellular role (Arnal et al. 2019).  

Even though AgaF16A has slightly fewer hydrophobic tryptophan residues than 

AgaB50 within the substrate-binding site, it shows a rapid final-size product 

formation since the beginning of the reaction indicating an endo-processive action 

in which the enzyme maintains substrate attachment during the subsequent reaction 

to increasing conversion efficiency. This assumption is contradicting to Matsuzawa 

et al. (2014) and Arnal et al. (2019) that have found the increasing number of 
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hydrophobic residues tryptophan positively correlates with endo-processivity of 

xyloglucanase GH74 from Geotrichum sp. and Paenibacillus KM21. A substrate 

topology that is adapted to a longer substrate may contribute to better processivity 

of AgaF16A.  

The presence of SPI and 2 CBMs in AgaF16 (AgaF16A) suggests extracellular 

localization and indicates cell wall-targeting function. Therefore, AgaF16 

(AgaF16A) is proposed as substrate-sensing machinery to upregulate the 

interrelated agarases system in PORT2. Besides, the processivity of AgaF16A 

enables the initial rapid release of highly diffusible NA6 or NA4 from agar. Those 

oligosaccharides act as signal inducers to up-regulate the cognate agarases and 

switch on the agarolytic concert (Van der Meulen and Harder 1976; Arnal et al. 

2019).  

The possible cognate agarases are AgaA50, AgaC50, and AgaB50. The N-terminus 

lipoprotein signal peptide (SPII) indicates their presence as membrane-bound 

proteins. The negative effect of anionic detergent on their activities also possibly 

signalize their membrane-bound characteristics (Gennity and Inouye 1991; Walker 

2009; Finnegan and Percival 2015). They share similar actions as an exo-β agarase. 

This mode of action performs a glycosidic cleavage from the end chain of the 

substrate which releases a single product size. In particular, AgaB50 depicts a 

conditional exo-endo-β-agarase action. The enzyme probably also has a 

transglycosylation activity depends on the substrate size.   

Homology modeling has been used to visualize theoretical structures of PORT2 

recombinant agarases for the identification of key amino acid residues involved in 

different agarolytic action. Even though this technique is not as accurate as 

experimental X-Ray crystallography, it has been highlighted as a viable method for 

predicting the structural and molecular function of an unknown protein. In general, 

PORT2 GH50s structures resembled the template SdAga50D, especially AgaA50. 

AgaA50 and AgaC50 displayed an end-blocked substrate-binding tunnel and 

needed a divalent metal ion as a cofactor. Yet, AgaA50 and AgaC50 show higher 

temperature activity and stability at 50 °C than the template (Kim et al. 2010).  

Studies on conserved amino acid mutations within enzymes have suggested that 

alteration of those residues does not always decimate the enzyme activity but 



Chapter 5. Recombinant Agarases from Microbulbifer elongatus PORT2 

73 
 

probably only modifies the wild-type mechanisms. The type of enzyme and amino 

acid substitution define the effect of the mutation (Peracchi 2001; Betts and Russel 

2003). The AgaC50 displays substantial amino acid mutations within the substrate-

binding site. The mutated residues showed different properties and chemical 

reactivity that can affect their interaction with water and substrate. The effect of 

mutation is exemplified by tryptophan mutation into glycine. The tryptophan is 

responsible for hydrophobic interaction with the 3,6 anhydro-α-L-galactose at the 

+3 subsite (Pluvinage et al. 2013). The AgaC50 also displays amino acid deletions 

at the tunnel roof formed by the CBM-like domain. Thus, the tunnel becomes more 

opened and shorter. Together, those modifications probably disrupt enzyme-

substrate interactions and contribute to feeble activity and extreme substrate 

specificity of AgaC50. 

Indeed, AgaC50 is not the only weak glycosidase in the GH50 family, BpGH50 (β-

agarase from Bacteroides plebeius) also displays deficient agarase or porphyranase 

activity even though the catalytic site remains conserved. Notably, BpGH50 is 

lacking the CBM-like domain, therefore some substrate-binding residues within 

this part are not available. Nevertheless, they have proposed that the enzyme might 

need a hybrid structure of substrates such as porphyrobiose-agarobiose which has 

not been produced yet by any porphyranase or agarase (Giles et al. 2017). Indeed, 

AgaC50 and BpGH50 instantiate the important role of the CBM-like domain to 

support the catalytic activity. 

Different from AgaC50, the AgaB50 model specifies structure modification 

vindicates the exo-endo-action capability. Some amino acids at the end-blocked of 

the substrate-binding tunnel and the CBM domain-like forming the tunnel-roof 

have been deleted. Notably, the aspartic acid that is located at the tunnel end and 

responsible for hydrophobic interaction with 3,6 anhydro-α-L-galactose at -2 

subsite (Pluvinage et al. 2013). These modifications may create an open-end short 

tunnel topology that possibly augments binding affinity for the longer substrate. As 

a consequence, the activity mode of AgaB50 is modified drastically from a pure 

exo- into exo-endo-agarase. In this context, it is indispensable to highlight that 

probably not only a mode of action that is altered but also the 

hydrolysis/transglycosylation equilibrium indicated by the increase/decrease of 
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product formation (NA4 and NA2) at a certain time reaction frame (between 4 to 5 

hours reaction).  

Another recombinant agarase, AgaD86T represents the partial part of AgaD86. The 

model-template superposition indicated that AgaD86T probably typifies an endo-

β-agarase with a concave active site topology. This assumption is attributed to the 

presence of similar substrate-binding residues in AgaD86T except for two missing 

residues homologous to T82 and Q138 from BuGH86E322Q. 

Homology modeling also indicates the oligomerization possibility of the quaternary 

structures of PORT2 agarases. The BN-PAGE has been developed for the 

characterization of protein oligomerization properties while retains protein 

functionality. Protein migration on BN-PAGE reflects not only the size but also its 

conformation. The BN-PAGE displays significantly smaller sizes of AgaA50 and 

AgaB50. Those proteins probably have an oligomeric state with compact 

monomeric conformation that allows higher mobility than on denaturing SDS 

PAGE (Niepmann 2007). Therefore, their sizes are smaller than the calculated 

sizes. In contrast, AgaF16A mobility only indicates a dimeric state at the size of 

around 62 kDa.  

Enzymatic saccharification needs to consider the physicochemical properties of 

agar. Solid agar particles are dispersed continuously in the water phase at sol state 

temperature (>43 °C). When the temperature cools down, the agars enter the gel 

state by forming continuous polymer networks that entrap water in each cavity. 

Generally, the sol state provides more access for agarases to hydrolyze the polymer 

(Kim et al. 2017). Therefore, agarases with high-temperature activity or with high 

thermostability are preferred for industrial applications (Chi et al. 2019; Park et al. 

2020).  

Up to date, only three thermostable agarases are from the GH50 family, none is 

from Aga86 and the rest are members of GH16 such as Raga7 from deep-sea 

Microbulbifer JAMB A7 or AgaA from Microbulbifer thermotolerans JAMBA94. 

The Raga7 and AgaA work optimum at  55 °C. They produce NA4 as the main 

product. Thiol reagents, SDS 2%, EDTA 100 mM, or metal ions that commonly 

present in seawater do not affect their activity (Ohta et al. 2004). (Park et al. 2020).  
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Moreover, most of them have been isolated from organisms that adapt to unique 

niches such as AgaA from a deep-sea Microbulbifer thermotolerans JAMBA94 

(Ohta et al. 2004) and AgaL4 from saltwater hot spring Microbulbifer pacificus 

LD25 (Chen et al. 2019). Thermostable agarase originates from a mesophilic 

organism is an exception, such as AgaW from Cohnella sp LGH and AgaB-4 from 

Paenibacillus agarexedens. Indeed, both of them are mesophilic soil bacteria 

representing a unique niche for agarases (Li et al. 2015; Chen et al. 2018).  

Notably, deriving from a mesophilic marine bacterium, PORT2 recombinant 

agarases demonstrate thermostable characteristics. They are active at a high 

temperature between 50-60°C and maintain more than 75% of activity after 1 h 

incubation at 50 °C except for AgaC50. AgaF16A characteristics are comparable 

to Raga7 from deep-sea Microbulbifer JAMB A7 or AgaA from Microbulbifer 

thermotolerans JAMBA94. However, the AgaL4 from M. pacificus LD25 is still 

superb among known thermostable GH50 agarases includes PORT2 GH50s. 

The effects of different metal ions and additives on PORT2 recombinant agarases 

were also tested to elucidate their potential for industrial applications. The AgaA50 

and AgaC50 demonstrate activity enhancement by divalent ion Ca2+  and Mg2+, 

respectively, while EDTA negatively affects the activities, thus corroborating their 

metal-dependent-protein characteristics (Klebe 2013; Pereira et al. 2017). 

Meanwhile, AgaF16A shows tolerance to SDS and metal ions normally present in 

seawater. Specifically, DTT or β-mercaptoethanol increases the enzymatic activity 

of AgaF16A two-folds. Different from AgaF16A, in other cases, the increase is due 

to the protection of thiol groups within the enzyme structure by the reducing agents. 

Exemplary are β-agarase RAgaA7 from Microbulbifer sp. JAMB A7 and rHZ2 

from Agarivorans sp. HZ105 (Ohta et 2004; Lin et al. 2012). Hence, how the thiol 

reagent could positively affect AgaF16A activity in the absence of thiol or cysteine 

is still unclear. In contrast, AgaB50 is sensitive to all tested metal ions and 

chemicals. Specifically, Ni3+ inhibits the activities of AgaA50 and AgaC50. Despite 

having different nickel ion states, Ni-NTA purification probably could affect the 

enzymes negatively. Therefore, other purification methods should be considered for 

further work.  

Agar-derived-oligosaccharides have been seen as potential feedstock for seaweed-

based biofuels (Park et al. 2020). Moreover, many potential bioactivities of agar-
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derived saccharides also have been elucidated and confirmed to be non-toxic and 

generally recognized as safe (GRAS) (Hong et al.2017).  A mixture of NA4 and 

NA6 remarkably shows anti-obesity and anti-diabetic effects (T2DM) (Hong et al. 

2017). NAOS mixture is also proven as a potential immunomodulator (Park et al. 

2014; Kang et al. 2017; Lee et al. 2017; Wang et al. 2017). Individually, NA4 and 

NA6 indicate convincing anti-inflammatory and anti-tumor activities in the mouse 

model (Wang et al. 2017; Park et al. 2014 Lee et al. 2017). NA4 also exhibits a 

potent hydroxyl radical scavenging activity and a higher moisturizing power than 

glycerol and hyaluronic acid (Kobayashi et al. 1997). A potential application of 

NA4 as a prebiotic or hepatic-recovery agent is also reported (Zhang et al. 2017). 

NA2 shows potential anti melanogenesis activity for a skin-whitening agent 

(Kobayashi et al. 1997; Lee et al. 2008; Yun et al. 2013). The influence of sulfate 

content on the biological activities of marine macro algae polysaccharides also has 

been reported (Pomin et al. 2008; Patel 2012). Indeed, nutrient availability, 

hydrodynamic condition, producing-species, harvesting period, and method of 

extraction affect the characteristics of agar and its derived saccharides (Usov 2011; 

Sousa et al. 2013).  

The performance of PORT2 recombinant agarases for Indonesian agar conversion 

into agar derived sugars is substantiated using AIR Gelidium sp. and Gracilaria sp. 

Qualitatively, AIR Gelidium sp shows more gel strengths characteristics than AIR 

Gracilaria sp. In general, the PORT2 agarases prefer less side-chain masking 

substrate indicated by stronger gelling properties. Indeed, the FTIR analysis 

indicates more pronounced sulfate and methyl masking in AIR Gracilaria sp. and 

its enzymatic products than in AIR Gelidium sp. The agarases hydrolyze AIR 

Gelidium sp into NA6; NA4; and NA2, and AIR Gracilaria sp hydrolysis results in 

modified NA6 and NA4. Among recombinant agarases PORT2, AgaF16A 

characteristic and mode of action show compatibility to AgaA50. A cascade 

reaction of AgaF16A and AgaA50 converts AIR Gelidium sp into NA2 and AIR 

Gracilaria sp into modified NA2. The NAOS from Indonesian agars indicates 

enrichment of sulfate and methyl, promising the possibility of new potential 

biological activity. Notably, the kinetic parameters of those enzymes need to be 

redefined for the appropriate application. 
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The complex structure of agar requires concerted agarases for efficient 

depolymerization. Thus, several agarases are commonly found within an agarolytic 

organism. The presence of GH50 and GH86 in PORT2 shows gene duplication. 

Maintaining the duplication is a costly event since it may cause higher energy 

consumption and reduce the organism's fitness significantly (Wagner 2005; Qian 

and Zhang 2008). Indeed, the characterization of the PORT2 GH50s depicted 

structural and functionality divergence. Hence, apart from the potential application 

perspective, each agarase enzyme indicates a different role for the ecological fitness 

of PORT2.  

In general, agarolytic bacteria use two-steps agar degradation pathways. The first 

pathway is responsible for cleaving agar polymer into the smallest repeating unit, 

neoagarobiose or agarobiose. The second pathway converts the agar disaccharides 

into D-galactose and 3,6-α-anhydro L-galactose for cell growth and maintenance. 

In particular, the 3,6-α-anhydro L-galactose is an unfavorable carbon source for 

general microorganisms. Only agarolytic organisms can utilize this unique sugar. 

This study has elucidated the first-step agar degradation pathway in PORT2. The 

pathway employs a concert of extracellular thermostable β-agarases. However, 

genome profiling is unable to unveil the presence of canonical enzyme machinery 

responsible for the second pathway, such as α-neoagarobiose hydrolase (NABH) or 

α agarase. On the other hand, the genome profile depicts the presence of putative 

3,6-α-anhydro L-galactose degradation pathway. Moreover, some hypothetical 

proteins with unknown functions present in the vicinity of agarase genes and 

putative genes for 3,6-α-anhydro L-galactose degradation, suggesting possible 

availability of unknown NABH-like enzyme(s). Indeed, the ability of PORT2 to use 

agar as a sole carbon source signalizes the existence of a complete agar degradation 

system.  



Chapter 6.   

 

78 
 

6. Conclusions and Outlooks 

Agar is a marine heteropolysaccharide with repeating units consists of 3,6-α-

anhydro-L-galactopyranose and D-galactopyranose linked by α-(1,3) and β-(1,4) 

linkages. Agar-derived saccharides have been promoted as a prospective 

replacement for petroleum-based feedstock. Some studies have revealed their 

biological activity emphasizing their potential not only as biofuels feedstock but 

also for other applications.  

Agar-producing macro algae are one of Indonesia's national commodities. 

However, high added-value products from the agars are rarely developed in 

Indonesia. Enzymatic biotransformation of agar offers high specific product 

generation and more environmentally friendly than chemical hydrolysis. The 

development of industrial biotechnology for producing added-value products from 

the agars demands infrastructure and research efforts. One crucial part of the 

research needs to establish is bio agents, the organism, and/or the enzyme.  

Agarases are glycoside hydrolases for catalyzing the cleavage of agar into sugar 

derivatives via an inverting or retaining mechanism. The enzymes differentiate into 

β- and α-agarase with endo-or exo-catalytic action. They are classified into several 

families. Up to date, more β-agarases has been characterized and structurally 

elucidated than α-agarase. The GH16-16, GH50, and GH86 are families for 

retaining β-agarase. The only inverting β-agarase family is GH118. Known α-

agarases have an inverting mechanism. GH96 is the endo-α-agarase and GH117 is 

an exo-α-agarase family. 

A mesophilic gram-negative marine bacterium had been isolated from Batu Karas 

seawater, Pangandaran, West Java, Indonesia. Biochemical and molecular 

identification classify this bacterium as a new strain of Microbulbifer elongatus. 

Notably, this species is known as agarolytic bacteria and plays a role as marine 

polymers degrader. The bacterium is designated as Microbulbifer elongatus 

PORT2. PORT2 encodes a β-agarolytic pathway. It consists of AgaF16 from GH16; 

AgaA50, AgaB50, and AgaC50 from GH50; AgaD86 and AgaE86 from GH86. 
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Two agarases, AgaF16 and AgaE86 signalize their presence as extracellular 

agarases showing complex modularity by having signal peptide, agarase domain, 

and more than one carbohydrate-binding domain (CBMs).  On the other hand, the 

GH50 and AgaD86 structure consist of an agarase domain and a signal peptide 

which indicates membrane-bound characteristics.  

The AgaF16A, GH50s, and AgaD86T have been successfully expressed in E.coli 

and further characterized. AgaF16A shows endo-β-agarase activity releasing NA4 

and NA6 from agarose and NAOS larger than NA6. Without any cysteine residues, 

AgF16A shows distinct stability upon reducing agents. Remarkably, the GH50 

agarases display profound in silico structure modification explaining the mode of 

action divergent and substrate-product specificity. AgaB50 displays endo-exo-β 

agarase action. It releases NA6, NA4, and NA2 from agarose but only NA2 from 

NAOS larger than NA2. In contrast, AgaA50 and AgaC50 show pure exo-β-agarase 

actions and release NA2 as a product. Regrettably, the functionality of GH86 in 

PORT2 could not be elucidated in this study. 

Despite originating from a mesophilic bacterium, PORT2 recombinant agarases 

display comparable characteristics to the known 50 °C thermostable agarases. 

Except for AgaB50, the activity of all the characterized recombinant agarases from 

PORT2 is enhanced by an appropriate concentration of Ca2+ or Mg2+. The agarases 

releases not only typical agar-derived saccharides neagarohexaose (NA6), 

neoagarotetraose (NA4), neoagraobiose (NA2) but also the modified ones from 

Indonesian natural agar which promising potential novel bioactivity. In particular, 

the cascade reaction of AgaF16A and AgaA50 resulted in a higher conversion of 

Indonesian agar into NA2 or modified NA2. 

Generally, a β-agarolytic organism encodes two-stage agar degradation pathways. 

The first pathway hydrolyzes agar polymer into the smallest repeating unit 

neoagarobiose (NA2). The second pathway breaks down of α-glycosidic bonds of 

the NA2 to release agar monomers, D-galactose, and 3,6 α-anhydro-L-

galactopyranose. The first agarolytic pathway of PORT2 is a β-agarase system 

similar to other agarolytic Gammaproteobacteria such as Saccharophagus 

degradans 2-40 and Catenovulum agarivorans YM01. Comparative genome 

analysis indicates GH50 and GH86 as protein markers for agarolytic 

Gammaproteobacteria.   
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However, PORT2 and other agarolytic Microbulbifer species lack any α-agarase, 

either GH117 or GH96. PORT2 probably could have an alternative pathway or 

machinery to substitute the second agarolytic pathway or the canonical role of 

GH117. This hypothesis is based on the experimental evidence of agar utilization 

as a sole carbon source while either GH96 or GH117 is absent and also the presence 

of hypothetical proteins in the vicinity of agarases genes clusters of the bacterium.  

This research contributes mainly to establish a basic knowledge of the agar 

degradation system in PORT2 that can represent other agarolytic Microbulbifer. It 

becomes preliminary results for agar biotechnology development in Indonesia and 

also generates a bait for the discovery of new neoagarobiose hydrolase-like 

enzymes.  

Future experiments need to be oriented in some directions to support the 

valorization of agar-based research in Indonesia. Functional elucidation of GH86s 

and characterization of modified NAOS bioactivity will enlarge the potential 

application of PORT2 agarases and its agar-derived saccharides. The absence of 

GH117 provides the opportunity for discovering new enzyme substitute(s). The 

development of enzyme immobilization technology will improve the efficiency of 

conversion cycles and ease the downstream process handling. Finally, bioprocess 

engineering will provide great assistance in assessing the feasibility of an industrial 

application for agar-derived saccharides production. 

 

  

 

 

 

 

 

 

 

 

 



 

 

81 
 

References 

Abbott, D.W., and van Bueren, A.L. (2014). Using structure to inform carbohydrate 

binding module function. Curr. Opin. Struct. Biol. 28, 32–40. 

Alderkamp A.C., Rijssel M.V., Bolhuis H. (2007). Characterization of marine 

bacteria and the activity of their enzyme systems involved in degradation of the 

algal storage glucan laminarin. FEMS Microbiol. Ecol. 59 108–117. Doi: 

10.1111/j.1574-6941.2006.00219.x. 

Allouch, J., Jam., M., Helbert, W., Barbeyron, T., Kloareg., B., Henrissat, B., 

Czjzek, M. (2003). The three-dimensional structures of two β-agarases. J. Biol. 

Chem. 278, 47171–47180. 

Allouch, J., Helbert, W., Henrissat, B., Czjzek, M. (2004). Parallel substrate 

binding sites in a β-agarase suggest a novel mode of action on double-helical 

agarose. Structure 12, 623–632. 

Anzai Y., Kim H., Park J.Y., Wakabayashi H., Oyaizu H.(2000). Phylogenetic 

affiliation of the Pseudomonads based on 16S rRNA sequence. Int J Syst Evol 

Microbiol.;50: 1563–1589. 10.1099/00207713-50-4-1563. 

Armisén, R. (1991). Agar and agarose biotechnological 

applications. Hydrobiologia 221, 157–166. doi:10.1007/BF00028372. 

Arnal, G., Stogios, P. J., Asohan, J., Attia, M.A., Skarina, T., Viborg, A.H., 

Henrissat, B., Savchenko, A., Brumer, H. (2019). Substrate specificity, 

regiospecificity, and processivity in glycoside hydrolase family 74. The Journal of 

Biological Chemistry, 294(36), 13233–13247. doi:10.1074/jbc.RA119.009861. 

Arnosti C. (2010). Microbial extracellular enzymes and the marine carbon 

cycle. Ann. Rev. Mar Sci. 3 401–425. doi:10.1146/annurev-marine-120709-

142731. 

Arnosti C. (2014). Patterns of microbially driven carbon cycling in the ocean: links 

between extracellular enzymes and microbial communities. Adv. 

Oceanogr. 2014 1–12. doi:10.1155/2014/706082. 

Attia, M. A., Nelson, C. E., Offen, W. A., Jain, N., Davies, G. J., Gardner, J. G.,  

Brumer, H. (2018). In vitro and in vivo characterization of three Cellvibrio 

japonicus glycoside hydrolase family 5 members reveals potent xyloglucan 

backbone-cleaving functions. Biotechnol. Biofuels 11, 45. 

Baker D.C., Defaye J., Horton D., Hounsell E.F., Kamerling J.P., Serianni A.S. 

(1997). Nomenclature of Carbohydrates. Carbohydrate Research. 297 (1): 

1. doi:10.1016/S0008-6215(97)83449-0. 

Barbeyron T., L'Haridon S., Corre E., Kloareg B., Potin P. (2001). Zobellia 

galactanivorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated 

from a red alga, and classification of Cytophaga uliginosa (ZoBell and Upham 

1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol 

Microbiol. 51 (Pt 3): 985–97. doi:10.1099/00207713-51-3-985 

Barcelos M.C.S., Lupki F.B., Campolina G.A., Nelson D.L., Molina G. (2018). 

The colors of biotechnology: general overview and developments of white, green, 

and blue areas. FEMS Microbiol Lett. 365(21):230–39.

https://doi.org/10.1074/jbc.RA119.009861
https://en.wikipedia.org/wiki/Carbohydrate_Research
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2FS0008-6215%2897%2983449-0
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1099%2F00207713-51-3-985


References 

 

82 
 

Benkert, P., Biasini, M., Schwede, T. (2011). Toward the estimation of the absolute 

quality of individual protein structure models. Bioinformatics 27, 343-350. 

Berlemont, R., Martiny, A.C. (2015). Genomic potential for polysaccharide 

deconstruction in bacteria. Applied and environmental microbiology, 81(4), 1513–

1519. doi:10.1128/AEM.03718-14. 

Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T. (2017). Modeling 

protein quaternary structure of homo- and hetero-oligomers beyond binary 

interactions by homology. Scientific Reports 7. 

Betts, M.J., Russell, R. B. (2003). Amino acid properties and consequences of 

substitutions. In M. R. Barnes, & I. C. Gray (Eds.), Bioinformatics for geneticists. 

pp. 289-316. 

Bharathi P.A.L., Nair S., Chandramohan D. (2001). Marine microbiology-a glimpse 

of the strides in the Indian and the global arena (Chapt. 14) in The Indian Ocean: a 

Perspective. Vol 2; p: 495-538. ISBN 90 5809 224 0.  

Black G.W., Rixon J.E., Clarke J.H., Hazlewood G.P., Theodorou M.K., Morris P., 

Gilbert H.J. (1996). Evidence that linker sequences and cellulose-binding domains 

enhance the activity of hemicellulases against complex substrates. Biochem J. 

319:515–520. 

Biasini, M., Bienert, S., Waterhouse, A., Arnold K., Studer G., Schmidt T., Kiefer 

F., Cassarino T.G., Bertoni M., Bordoli L., Schwede T. (2014). SWISS-MODEL: 

Modelling protein tertiary and quaternary structure using evolutionary information. 

Nucleic Acids Research. 42. W252–W259. 

Boni, I.V., Isaeva, D.M., Musychenko, M.L., Tzareva, N.V. (1991). Ribosome-

messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic acids 

research, 19(1), 155 -162. doi:10.1093/nar/19.1.155. 

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., Thomas, T. (2011). Bacterial 

community assembly based on functional genes rather than species. Proc Natl Acad 

Sci USA. 108(34), 14288–14293. doi:10.1073/pnas.1101591108. 

Camacho C.L., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., 

Madden T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics. 

10:421. 

Chen Z.W., Lin H.J., Huang W.C., Hsuan S.L., Lin J.H., Wang J.P. (2018). 

Molecular cloning, expression, and functional characterization of the β-agarase 

AgaB-4 from Paenibacillus agarexedens. AMB Express 8(1):49. 

Chen Y.P., Wu H.T., Wang G.H., Wu D.Y., Hwang I.E., Chien M.C., Pang H.Y., 

Kuo J.T., Liaw L.L. (2019). Inspecting the genome sequence and agarases of 

Microbulbifer pacificus LD25 from a saltwater hot spring. J Biosci Bioeng 

127(4):403–410. 

Chi, W.J., Chang, Y.K., Hong, S.K. (2012). Agar degradation by microorganisms 

and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94, 917 – 930. 

Cobo-Simón, M., & Tamames, J. (2017). Relating genomic characteristics to 

environmental preferences and ubiquity in different microbial taxa. BMC genomics, 

18(1), 499. doi:/10.1186/s12864-017-3888-y. 

http://www.biomedcentral.com/1471-2105/10/421
http://www.biomedcentral.com/1471-2105/10/421
https://doi.org/10.1186/s12864-017-3888-y


References 

 

83 
 

Correc G., Hehemann J.H., Czjzek M., Helbert W. (2011). Structural analysis of 

the degradation products of porphyran digested by Zobellia galactanivorans β-

porphyranase A. Carbohydr. Polym.;83:277–283. doi: 

10.1016/j.carbpol.2010.07.060. 

Cottrell M.T., Kirchman D.L. (2016). Transcriptional control in marine 

copiotrophic and oligotrophic bacteria with streamlined genomes. Appl 

EnvironMicrobiol 82:6010–6018. doi:10.1128/AEM.01299-16. 

Czech, L., Hermann, L., Stöveken, N., Richter, A. A., Höppner, A., Smits, S., … 

Bremer, E. (2018). Role of the Extremolytes Ectoine and Hydroxyectoine as Stress 

Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural 

Analysis. Genes, 9(4), 177. doi:10.3390/genes9040177. 

David, B., Irague, R., Jouanneau, D., Daligault, F., Czjzek, M., Sanejouand, 

Y..H., Tellier, C. (2017). Internal water dynamics control the 

transglycosylation/hydrolysis balance in the agarase (AgaD) of Zobellia 

galactanivorans. ACS Catal. 7: 3357– 3367. doi: 10.1021/acscatal.7b00348. 

Davidson A.L., Chen J. (2005). Structural biology. Flipping lipids: is the third 

time the charm?. Science .308 (5724); 963-5.  

Davies G., Henrissat, B. (1995). Structures and mechanisms of glycosyl 

hydrolases. Structure 3, 853–859. 

Davies G. J., Wilson, K. S., Henrissat, B. (1997). Nomenclature for sugar-binding 

subsites in glycosyl hydrolases. The Biochemical journal. 321 (Pt2) (Pt2). 557–

559. doi:10.1042/bj3210557. 

Davies G.J., Gloster T.M., Henrissat B. (2005). Recent structural insights into the 

expanding world of carbohydrate-active enzymes. Curr. Opin. Struc. Biol. 15: 

637–645. doi: 10.1016/j.sbi.2005.10.008. 

Davies G.J., Williams S.J. (2016). Carbohydrate-active enzymes: sequences, 

shapes, contortions, and cells. Biochem. Soc. Trans. 44: 79–87.  

Day D.F., Yaphe W. (1975). Enzymatic hydrolysis of agar: purification and 

characterization of neoagarobiose hydrolase and p-nitrophenyl alpha- galactoside 

hydrolase, Can. J. Microbiol. 21 1512–1518. 

Delattre, C., Michaud, P., Courtois, B., Courtois, J. (2005). Oligosaccharides 

engineering from plants and algae applications in biotechnology and therapeutics. 

Minerva Biotec. 17: 107-117. 

De Long E.F., Karl D.M. (2005). Genomic perspectives in microbial 

oceanography. Nature 437(7057):336–342. 

De Villegas M.E.D. (2007) Biotechnological Production of Siderophores. In: 

Varma A., Chincholkar S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. 

Springer, Berlin, Heidelberg. 

Dong Q., Ruan L., Shi H. (2016). A β-agarase with high pH stability from 

Flammeovirga sp. SJP92. Carbohydr Res.;432:1–8. doi: 

10.1016/j.carres.2016.05.002. 

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy 

and high throughput. Nucleic Acids Research. 32(5), 1792-97. 

http://www.ncbi.nlm.nih.gov/pubmed/15890866
http://www.ncbi.nlm.nih.gov/pubmed/15890866


References 

 

84 
 

Ekborg, N.A. (2005).  The agarase system of Saccharophagus degradans 2-40: 

Analysis of the Agarase System and Protein Location. Dissertation. University of 

Maryland. 

Enke T.N., Datta M.S., Schwartzman J., Cermak N., Schmitz D., Barrere J., 

Pascual-García A., Cordero O.X. (2019). Modular assembly of polysaccharide-

degrading marine microbial communities. Curr Biol. 29:1528–1535. 

doi:10.1016/j.cub.2019.03.047. 

Ekborg N.A., Gonzalez J.M., Howard M.B., Taylor L.E., Hutcheson S.W., Weiner 

R.M. (2005). Saccharophagus degradans gen. nov., sp. nov., a versatile marine 

degrader of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 55 1545–1549. 

10.1099/ijs.0.63627-0. 

Elkahlout K., Alipour S., Eroglu I., Gunduz U., Yucel M. (2017) Long-term 

biological hydrogen production by agar immobilized Rhodobacter capsulatus in a 

sequential batch photobioreactor. Bioprocess Biosyst Eng 40(4):589–599. 

Fiala, G. J., Schamel, W. W., & Blumenthal, B. (2011). Blue native polyacrylamide 

gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from 

cellular lysates. Journal of visualized experiments: JoVE, (48), 2164. 

doi:10.3791/2164. 

Ferdouse F., Holdt S.L., Smith R., Murúa P., Yang Z. (2018). The global status of 

seaweed production, trade, and utilization – FAO.Volume 124. 

Finnegan, S., Percival, S. L. (2015). EDTA: An Antimicrobial and Antibiofilm 

Agent for Use in Wound Care.  Advances in wound care. 4(7). 415–421. 

doi:10.1089/wound.2014.0577. 

Fiser, A. (2010). Template-based protein structure modeling. Methods in 

Molecular Biology. 673, 73–94. 

Furusawa, G., Lau, N. S., Suganthi, A. and Amirul, A.A.A. (2017) Agarolytic 

bacterium Persicobacter sp. CCB-QB2 exhibited a diauxic growth involving 

galactose utilization pathway. MicrobiologyOpen 6. 

Gennity, J. M. and Inouye, M. (1991) The protein sequence responsible for 

lipoprotein membrane localization in Escherichia coli exhibits remarkable 

specificity. 266, 16458–16464. 

The Authors and Curators of CAZypedia.  Glycoside Hydrolase Family 16. (2019, 

September 25). CAZypedia, © 2007-2019 Retrieved 17:02, January 4, 2020 

from http://www.cazypedia.org/index.php?title=Glycoside_Hydrolase_Family_16

&oldid=14289. 

Genicot-Joncour, S., Poinas, A., Richard, O., Potin, P., Rudolph, B., Kloareg, B., 

Helbert, W. (2009). The cyclization of the 3,6-anhydro-galactose ring of iota-

carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga 

Chondrus crispus. Plant physiology, 151(3), 1609–1616. 

doi:10.1104/pp.109.144329. 

George, R. A., Heringa, J. (2002). An analysis of protein domain linkers: their 

classification and role in protein folding. Protein Engineering, Design and 

Selection, 15(11), 871–879. doi:10.1093/protein/15.11.871. 

http://www.cazypedia.org/index.php?title=Glycoside_Hydrolase_Family_16&oldid=14289
http://www.cazypedia.org/index.php?title=Glycoside_Hydrolase_Family_16&oldid=14289


References 

 

85 
 

Giles, K. , Pluvinage B., Boraston A.B. (2017). Structure of a glycoside hydrolase 

family 50 enzyme from a subfamily that is enriched in human gut microbiome 

Bacteroidetes. Proteins. 85: 182–187. 

Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje 

J.M.(2007). DNA-DNA hybridization values and their relationship to whole-

genome sequence similarities. Int J Syst Evol Microbiol.57.(Pt 1):81-91. 

Guerrero C., Vera C., Serna N., Illanes A. (2017) Immobilization of Aspergillus 

oryzae β-galactosidase in an agarose matrix functionalized by four different 

methods and application to the synthesis of lactulose. Bioresour Technol. 232:53–

63 

Guiseley K.B. (1970). The relationship between methoxyl content and gelling 

temperature of agarose. Carbohydr. Res. 13: 247–256. 

Guruprasad, K., Reddy, B.V.B. and Pandit, M.W. (1990) Correlation between 

stability of a protein and its dipeptide composition: a novel approach for predicting 

in vivo stability of a protein from its primary sequence. Protein Eng. 4,155-161. 

Gurvan, M.,  Czjzek,  M.  (2013).  Polysaccharide-degrading  enzymes  from marine   

bacteria,   in Marine Enzymes for Biocatalysis,   ed.   A.   Trincone (Cambridge: 

Woodhead Publishing). doi: 10.1533/9781908818355.3.429. 

Ha S.C., Lee S., Lee J., Kim H.T., Ko H.J., Kim K.H., Choi I.G. (2011). Crystal 

structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase 

from Saccharophagus degradans 2-40. Biochem. Biophys. Res. 

Commun. 412:238–244. 

Hehemann J.H., Correc G., Barbeyron T., Helbert W., Czjzek M., and Michel G. 

(2010). Transfer of carbohydrate-active enzymes from marine bacteria to 

Japanese gut microbiota. Nature. 464, 908–912 10.1038/nature08937. 

Hehemann, J.H., Smyth, L., Yadav, A., Vocadlo, D.J., & Boraston, A.B. (2012a). 

Analysis of keystone enzymes in agar hydrolysis provides insight into the 

degradation of a polysaccharide from red seaweeds. The Journal of biological 

chemistry. 287(17), 13985–13995. doi:10.1074/jbc.M112.345645. 

Hehemann, J.H., Correc, G., Thomas, F., Bernard, T., Barbeyron, T., Jam, M., 

Helbert, W., Michel, G., and Czjzek, M. (2012b). Biochemical and structural 

characterization of the  complex agarolytic enzyme system from the marine 

bacterium Zobellia galactanivorans. J. Biol. Chem. 287, 30571–30584. 

Hehemann, J.H., Kelly, A.G., Pudlo, N.A., Martens, E.C., & Boraston, A.B. 

(2012c). Bacteria of the human gut microbiome catabolize red seaweed glycans 

with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl 

Acad Sci USA. 109(48), 19786–19791. doi:10.1073/pnas.1211002109 

Henshaw J., Horne-Bitschy A., van Bueren A.L., Money V.A., Bolam D.N., 

Czjzek M., Ekborg N.A., Weiner R.M., Hutcheson S.W., Davies G.J., Boraston 

A.B., Gilbert H.J. (2006). Family 6 carbohydrate binding modules in beta-

agarases display exquisite selectivity for the nonreducing termini of agarose 

chains. J. Biol. Chem. 281:17099–17107. 

Hobbie, J.E. (1988).  A comparison of the ecology of planktonic bacteria in fresh 

and saltwater. Limnol.Oceanogr, 33(4, part2), 750-764. 

http://ijs.sgmjournals.org/content/57/1/81.long


References 

 

86 
 

Hong S.J., Lee J.H., Kim E.J., Yang H.J., Park J.S., Hong S.K. (2017). Antiobesity 

and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced 

obesity in mice. Mar Drugs 15(4):90. 

Idicula-Thomas, S., Balaji, P.V. (2005). Understanding the relationship between 

the primary structure of proteins and its propensity to be soluble on overexpression 

in Escherichia coli. Protein science : a publication of the Protein Society, 14(3), 

582–592. doi:/10.1110/ps.041009005. 

Ikai, A.J. (1980).Thermostability and aliphatic index of globular proteins. J. 

Biochem. 88, 1895-1898. 

Imran, M., Pant, P., Shanbhag, Y.P., Sawant, S.V., Ghadi, S.C. (2017). Genome 

Sequence of Microbulbifer mangrovi DD-13T Reveals Its Versatility to Degrade 

Multiple Polysaccharides. Marine Biotechnol,(19):116-124. 

Jabeen, A., Mohamedali, A., Ranganathan, S. (2018). Protocol for protein 

structure modelling. In M. Cannataro, B. Gaeta, & M. Asif Khan 

(Eds.), Encyclopedia of bioinformatics and computational biology (Vol. 3, pp. 

252-272). Amsterdam; Oxford; Cambridge: Elsevier. doi:10.1016/B978-0-12-

809633-8.20477-9. 

Jam, M., Flament, D., Allouch, J., Potin, P., Thion, L., Kloareg, B., Czjezk M., 

Helbert W., Michel G., Barbeyron, T. (2005). The endo-beta-agarases AgaA and 

AgaB from the marine bacterium Zobellia galactanivorans: two paralogue 

enzymes with different molecular organizations and catalytic behaviours. The 

Biochemical journal, 385(Pt 3), 703–713. doi:10.1042/BJ20041044. 

Joint, I., Mühling, M., & Querellou, J. (2010). Culturing marine bacteria-an 

essential prerequisite for biodiscovery. Microbial biotechnology, 3(5), 564–575. 

doi:10.1111/j.1751-7915.2010.00188.x. 

Jonnadula, R.., Ghadi, S.C. (2011). Purification and characterization of β-agarase 

from seaweed decomposing bacterium Microbulbifer sp. Strain CMC-5. 

Biotechnol Bioproc E 16, 513–519. doi.org/10.1007/s12257-010-0399-y. 

Jutur P.P., Nesamma A.A., Shaikh K.M. (2016). Algae-Derived Marine 

Oligosaccharides and Their Biological Applications. Front. Mar. Sci. 3:83. doi: 

10.3389/fmars.2016.00083. 

Kanai R., Haga K., Akiba T., Yamane K., Harata K. (2004). Biochemical and 

crystallographic analyses of maltohexaose-producing amylase from 

alkalophilic Bacillus sp 707. Biochemistry (Mosc), 43, 14047–14056. 

Kang D.R., Yoon G.Y., Cho J., Lee S.J., Lee S.J., Park H.J., Kang T.H., Han H.D., 

Park W.S., Yoon Y.K., Park Y.M., Jung I.D. ( 2 0 1 7 .) Neoagarooligosaccharides 

prevent septic shock by modulating A20-and cyclooxygenase-2-mediated 

interleukin-10 secretion in a septic-shock mouse model. Biochem Biophys Res 

Commun. 486(4): 998–1004. 

Kazimierczak P., Palka K., Przekora A. (2019) Development and optimization of 

the novel fabrication method of highly macroporous chitosan/ 

agarose/nanohydroxyapatite bone scaffold for potential regenerative medicine 

applications. Biomolecules. 9(9):434. 

Kim H.T., Lee S., Lee D., Kim H. S., Bang W. G., Kim K. H., Choi I. G.(2010). 

Overexpression and molecular characterization of Aga50D from Saccharophagus 



References 

 

87 
 

degradans 2-40. An exo-type β-agarase producing neoagarobiose. Appl. Microbiol. 

Biotechnol. 86, 227–234. 

Kim J.H., Yun E.J., Seo N., Yu S., Kim D.H., Cho K.M., An H.J., Kim J.H., Choi 

I.G., Kim K.H. (2017). Enzymatic liquefaction of agarose above the sol-gel 

transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl. 

Microbiol. Biotechnol. 101:1111–1120. doi: 10.1007/s00253-016-7831-y. 

Klappenbach, J. A., Dunbar, J. M., Schmidt, T. M. (2000). rRNA operon copy 

number reflects ecological strategies of bacteria. Applied and environmental 

microbiology, 66(4), 1328–1333. doi:10.1128/aem.66.4.1328-1333.2000. 

Klebe G. (2013) Inhibitors of hydrolyzing metalloenzymes. In: Klebe G. (eds) 

Drug Design. Springer, Berlin, Heidelberg. doi:/10.1007/978-3-642-17907-5_25. 

Knudsen N.R., Ale M.T., Meyer A.S. (2015). Seaweed hydrocolloid production: 

an update on enzyme assisted extraction and modification technologies. Mar 

Drugs. 13:3340–3359. doi:10.3390/md13063340. 

Kobayashi R., Takisada M., Suzuki T., Kirimura K., Usami S. (1997). 

Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol 

Biochem 61(1):162–163. 

Konstantinidis K., Tiedje J.M. (2005) Genomic insights that advance the species 

definition for prokaryotes. Proc Natl Acad Sci USA. 102, 2567-2592. 

Koivula A., Ruohonen L., Wohlfahrt G., Reinikainen T., Teeri T.T., Piens K., 

Claeyssens M., Weber M., Vasella A., Becker D., Sinnott M.L., Zou J.Y., Kleywegt 

G.J., Szardenings M., Ståhlberg J. and Jones T.A. (2002). The active site of 

cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 

and D175. J. Am. Chem. Soc. 124, 10 015–10 024.  

Koshland D.E. (1953). Stereochemistry and the mechanism of enzymatic reactions. 

Biol. Rev. Camb. Philos. Soc, 28, pp. 416-436. 

Kraan S. (2012) Algal polysaccharides, novel applications and outlook. In: Chang 

CF (ed) Carbohydrates-comprehensive studies on glycobiology and 

glycotechnology. InTech, Rijeka, pp 489–532. 

Kredich, N.M. (1996). Biosynthesis of cysteine. in Escherichia coli and 

Salmonella typhimurium. Cellular and Molecular Biology (Ed by Neidhard FC) 

pp. 514-527, American Society for Microbiology, Washington D.C. 

Krieger, E., Nabuurs, S.B., Vriend, G. (2003). Homology modeling. Methods 

Biochem. Anal. 44, 509–523. doi: 10.1002/0471721204.ch25. 

Lahaye, M. (1986). Agar from Gracilaria spp.  Dissertation. Faculty of Graduate 

Studies and Research.  Department of Microbiology and Immunology McGill 

University, Canada. ISBN 0-315-34443-1. 

Lahaye, M. (2001), Development on gelling algal galactans, their structure, and 

physic chemistry. J. Appl. Phycol. 13, 173-184. 

Lahaye, M., Robic, A. (2007) Structure and functional properties of ulvan, a 

polysaccharide from green seaweeds . Biomacromol. 8 , 1765 – 1774 . 

Lahaye, M., Rochas C. (1991). Chemical structure and physicochemical 

properties of agar. Int. Workshop on Gelidium, Hydrobiologia. 221: 137–148. 

http://www.pnas.org/cgi/content/long/102/7/2567
https://metacyc.org/META/reference.html?type=CITATION-FRAME&object=KREDICH96
https://metacyc.org/META/reference.html?type=CITATION-FRAME&object=KREDICH96
https://metacyc.org/META/reference.html?type=CITATION-FRAME&object=KREDICH96


References 

 

88 
 

Laskowski, R.A., Luscombe, N.M., Swindells, M.B., & Thornton, J.M. (1996). 

Protein clefts in molecular recognition and function. Protein science: a 

publication of the Protein Society, 5(12), 2438–2452. 

doi:10.1002/pro.5560051206. 

Lauro, F.M., McDougald, D., Thomas, T., Williams, T.J., Egan, S., Rice, S., 

Cavicchioli, R. (2009). The genomic basis of trophic strategy in marine 

bacteria. Proc Natl Acad Sci USA, 106(37), 15527–15533. 

doi:10.1073/pnas.0903507106. 

Laursen, B.S., Sørensen, H.P., Mortensen, K.K., Sperling-Petersen, H.U. (2005). 

Initiation of protein synthesis in bacteria. Microbiology and molecular biology 

reviews: MMBR, 69(1), 101–123. doi:10.1128/MMBR.69.1.101-123.2005. 

Lee D.G., Jang M.K., Lee O.H., Kim N.Y., Ju S.A., Lee S.H. (2008). 

Overproduction of a glycoside hydrolase family 50 β-agarase from Agarivorans sp. 

JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol Lett 

30(5):911–918. 

Lee, S., Lee, J.Y., Ha, S.C., Jung, J., Shin, D.H., Kim, K.H., Choi, I.G. (2009). 

Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from 

Saccharophagus degradans 2-40. Acta crystallographica. Section F, Structural 

biology and crystallization communications, 65(Pt 12), 1299–1301. 

doi:10.1107/S174430910904603X. 

Lee M.H., Jang J.H., Yoon G.Y., Lee S.J., Lee M.G., Kang T.H., Han H.D., Kim 

H.S., Choi W.S., Park W.S., Park Y.M., Jung I.D. (2017). Neoagarohexaose-

mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation 

of natural killer cells and enhancement of antitumor immunity. BMB Rep 

50(5):263–268 

Lemoine M., Nyvall Collén P., Helbert W. (2009). Physical state of kappa-

carrageenan modulates the mode of action of kappa-carrageenase from 

Pseudoalteromonas carrageenovora. Biochem J 419:545–53. doi: 

10.1042/BJ20080619. 

Lieshout J.F.T. 2007. Characterization and Engineering of Thermostable 

Glycoside Hydrolase. Dissertation. Wagenigen University. 152 p. ISBN 90-8504-

586-x. 

Li G., Sun M., Wu J., Ye M., Ge X., Wei W., Li H., Hu F. (2015). Identification 

and biochemical characterization of a novel endotype β-agarase AgaW from 

Cohnella sp. strain LGH. Appl Microbiol Biotechnol 99(23):10019–10029. 

Lindemann, S.R. (2019). Microbial Ecology: Functional “Modules” Drive 

Assembly of Polysaccharide-Degrading Marine Microbial Communities. Current 

Biology, 29(9), R330–R332. doi:10.1016/j.cub.2019.03.056. 

Lin B, Lu G, Zheng Y, Xie W, Li S, Hu Z. (2012). Gene cloning, expression and 

characterization of a neoagarotetraose-producing β-agarase from the marine 

bacterium Agarivorans sp. HZ105. World J Microbiol Biotechnol.28(4):1691–

1697. doi: 10.1007/s11274-011-0977-y. 

Lippert K., Galinski E.A. (1992). Enzyme stabilization be ectoine-type compatible 

solutes: protection against heating, freezing and drying. Appl Microbiol 

Biotechnol. 37:61–5. 



References 

 

89 
 

Liu N., Mao X., Yang M., Mu B.,Wei D. (2014). Gene cloning, expression, and 

characterisation of a new β-agarase, AgWH50C, producing neoagarobiose from 

Agarivorans gilvus WH0801. World J Microbiol Biotechnol 30(6):1691–1698. 

doi:/10.1007/s11274-013-1591-y. 

Liu J, Xue Z, ZhangW, Yan M, Xia Y (2018) Preparation and properties of wet-

spun agar fibers. Carbohydr Polym 181:760–767. 

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. (2014). 

The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 

42:D490–D495.  

Ma C., Lu X., Shi C., Li J., Gu Y., Ma Y., Chu Y., Han F., Gong Q., Yu W. (2007). 

Molecular cloning and characterization of a novel β-agarase, AgaB, from marine 

Pseudoalteromonas sp. CY24. J. Biol. Chem.;282:3747–3754. doi: 

10.1074/jbc.M607888200. 

Macleod R.A. (1965). The question of the existence of specific marine 

bacteria. Bacteriological reviews, 29(1), 9–24. 

Maderankova, D., Jugas, R., Sedlar, K., Vitek, M., & Skutkova, H. (2019). Rapid 

bacterial species delineation based on parameters derived from genome numerical 

representations. Computational and structural biotechnology journal, 17, 118–

126. doi: 10.1016/j.csbj.2018.12.006. 

Matsuyama, S., Tajima, T., Tokuda, H. (1995). A novel periplasmic carrier protein 

involved in the sorting and transport of Escherichia coli lipoproteins destined for 

the outer membrane. The EMBO journal, 14(14), 3365–3372. 

Matsuzawa, T., Saito, Y., Yaoi, K. (2014). Key amino acid residues for the endo-

processive activity of GH74 xyloglucanase. FEBS Lett. 588, 1731–1738. 

Mazarrasa, I., Olsen, Y.S., Mayol, E., Marbà, N., & Duarte, C.M. (2014). Global 

unbalance in seaweed production, research effort, and biotechnology markets. 

Biotechnology Advances, 32(5), 1028–

1036. doi:10.1016/j.biotechadv.2014.05.002. 

Meier-Kolthoff, J.P., Hahnke, R.L., Petersen, J., Scheuner, C., Michael, V., 

Fiebig, A., Rohde, C., Rohde, M., Fartmann, B., Goodwin, L.A., Chertkov, O., 

Reddy, T., Pati, A., Ivanova, N.N., Markowitz, V., Kyrpides, N.C., Woyke, T., 

Göker, M., Klenk, H-P. (2014). Complete genome sequence of DSM 30083T, the 

type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies 

in microbial taxonomy. Standards in Genomic Sciences 10:2. 

Michel, G.; Czjzek, M. (2013). Polysaccharide-degrading enzymes from marine 

bacteria. In Marine Enzymes for Biocatalysis-Sources, Biocatalytic Characteristics 

and Bioprocesses of Marine Enzymes; Trincone, A., Ed.; Woodhead Publishing: 

Cambridge, UK: pp. 429–464. 

Michel G., Nyval-Collen P., Barbeyron T., Czjzek M., Helbert W. (2006). 

Bioconversion of red seaweed galactans: a focus on bacterial agarases and 

carrageenases. Appl. Microbiol. Biotechnol. ;71:23–33. doi: 10.1007/s00253-006-

0377-7. 

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of 

reducing sugar. Analytical chemistry 31, 426–428. 

http://dx.doi.org/10.1186/1944-3277-9-2
http://dx.doi.org/10.1186/1944-3277-9-2
http://dx.doi.org/10.1186/1944-3277-9-2


References 

 

90 
 

Moh, T.H., Lau, N., Furusawa, G., Amirul A.A.A. (2017). Complete genome 

sequence of Microbulbifer sp. CCB-MM1, a halophile isolated from Matang 

Mangrove Forest, Malaysia. Stand in Genomic Sci 12, 36. doi: 10.1186/s40793-

017-0248-0. 

Morrice, L.M., McLean, M.W., Long, W.F., Williamson, F.B. (1983). Porphyran 

primary structure: An investigation using beta-agarase-I from Pseudomonas 

atlantica and C-13-NMR spectroscopy. European Journal of Biochemistry. 133.673–

684. 

Naretto, A., Fanuel, M., Ropartz, D., Rogniaux, H., Larocque, R., Czjzek, M., 

Tellier, C., Michel, G. (2019). The agar-specific hydrolase ZgAgaC from the 

marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily. 

J. Biol. Chem. 294, 6923–6939. 

Niepmann, M. (2007). Discontinuous native protein gel electrophoresis: pros and 

cons. Expert Review of Proteomics. 4:3, 355-361, doi: 10.1586/14789450.4.3.355.  

Nishijima, M., Takadera, T., Imamura, N., Kasai, H., An, K.D., Adachi, K., Nagao, 

T., Sano, H., and Yamasato, K. (2009). Microbulbifer variabilis sp. nov. and 

Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-

coccus cell cycle in association with the growth phase. Int. J. Syst. Evol. Microbiol. 

59:1696-1707.  

Oh, C., De Zoysa, M., Kwon, Y.K., Heo, S.J., Affan, A., Jung, W.K., Park, H.S., 

Lee., Son, S.K., Yoon, K.T., Kang, D.H. (2011). Complete genome sequence of the 

agarase-producing marine bacterium strain S89, representing a novel species of the 

genus Alteromonas. J.Bacteriol. 193, 5538. 

Ohta Y., Nogi Y., Miyazaki M., Li Z., Hatada Y., Ito S., Horikoshi K. (2004a). 

Enzymatic properties and nucleotide and amino acid sequences of a thermostable 

beta-agarase from the novel marine isolate, JAMB-A94. Biosci Biotechnol 

Biochem. 68(5): 1073-1081. doi: 10.1271/bbb.68.1073. 

Ohta Y., Hatada Y., Nogi Y., Miyazaki M., Li Z., Akita M., Hidaka Y., Goda S., 

Ito S., Horikoshi, K. (2004b)  Enzymatic properties and nucleotide and amino acid 

sequences of a thermostable beta-agarase from a novel species of deep-sea 

Microbulbifer. Appl Microbiol Biotechnol. 64(4): 505-514. doi: 10.1007/s00253-

004-1573-y. 

Park, S.H., Lee, C., Hong, S. (2020). Implications of agar and agarase in industrial 

applications of sustainable marine biomass. Appl Microbiol Biotechnol 104, 2815–

2832. doi:10.1007/s00253-020-10412-6. 

Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W. (2015). 

CheckM: assessing the quality of microbial genomes recovered from isolates, single 

cells, and metagenomes. Genome research, 25(7), 1043–1055. 

doi:10.1101/gr.186072.114. 

Patel, S.(2012). Therapeutic importance of sulfated polysaccharides from 

seaweeds: updating the recent findings. 3 Biotech 2, 171–185.doi:/10.1007/s13205-

012-0061-9. 

Peracchi A. (2001). Enzyme catalysis: removing chemically ‘essential’ residues by 

site-directed mutagenesis. Trends Biochem. Sci.;26:497–503. doi: 10.1016/S0968-

0004(01)01911-9. 

https://doi.org/10.1586/14789450.4.3.355


References 

 

91 
 

Pereira J.d.C, Giese E.C., de Souza M.M.M., dos Santos G.A.C., Perrone O.M., 

Boscolo M., da Silva R., Gomes E., Martins D.A.B. (2017). Effect of metal ions, 

chemical agents and organic compounds on lignocellulolytic enzymes activities, 

enzyme inhibitors, and activators, Murat Senturk, IntechOpen, DOI: 

10.5772/65934. 

Pérez, V., Hengst, M., Kurte, L., Dorador, C., Jeffrey, W. H., Wattiez, R., Moline 

V., Matallana-Surget, S. (2017). Bacterial survival under extreme UV radiation: a 

comparative proteomics study of Rhodobacter sp., isolated from high altitude 

wetlands in Chile. Frontiers in microbiology, 8, 1173. 

doi:10.3389/fmicb.2017.01173. 

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng 

E.C., Ferrin T.E. (2004). UCSF Chimera--a visualization system for exploratory 

research and analysis. J Comput Chem. Oct;25(13):1605-12. 

Pluvinage, B., Grondin, J.M., Amundsen, C., Klassen L., Moote, P.E., Xiao, Y., 

Thomas D., Pudlo, N.A., Anele, A., Martens, E.C., Inglis, G.D., Uweira, R.U., 

Boraston, A.B., Abbot, D.W. (2018). Molecular basis of an agarose metabolic 

pathway acquired by a human intestinal symbiont. Nat Commun 9, 1043 

doi:10.1038/s41467-018-03366-x. 

Pluvinage B., Hehemann J.H., Boraston A.B. (2013.) Substrate recognition and 

hydrolysis by a family 50 exo-beta-agarase, Aga50D, from the marine bacterium 

Saccharophagus degradans. J Biol Chem 288(39): 28078–28088. 

doi:10.1074/jbc.M113.491068. 

Poletto M., Pistor V., Zattera A.J. (2013). Structural Characteristics and Thermal 

Properties of Native Cellulose, Cellulose - Fundamental Aspects, Theo van de Ven 

and Louis Godbout, IntechOpen. doi:10.5772/50452.  

Pomin, V.H.., Mourao, P.A. (2008). Structure, biology, evolution, and medical 

importance of sulfated fucans and galactans. Glycobiol. 18 , 1016 – 1027. 

Pulz, O., Gross, W. (2004). Valuable products from biotechnology of 

microalgae. Appl Microbiol Biotechnol. 65, 635–648. Doi:10.1007/s00253-004-

1647-x. 

Qian, W.  Zhang, J. (2008). Gene dosage and gene duplicability. Genetics, 179, 

2319–2324.  

Rajan, S.S., Yang ,X., Collart, F., Yip, V.L., Withers, S.G., Varrot, A., Thompson, 

J., Davies, G.J., and Anderson, W.F. (2004). Novel catalytic mechanism of 

glycoside hydrolysis based on the structure of an NAD+/Mn2+-dependent 

phospho-alpha-glucosidase from Bacillus subtilis. Structure. 12, 1619-29.   

Rebello, J., Ohno, M., Ukeda, H., Sawamura, M. (1997). Agar quality of 

commercial agarophytes from different geographical origins. 1. Physical and 

rheological properties. J. Appl. Phycol. 8: 517– 521. 

Rebuffet, E., Groisillier, A., Thompson, A., Jeudy, A., Barbeyron, T., Czjzek, M., 

and Michel, G. (2011). Discovery and structural characterization of a novel 

glycosidase family of marine origin. Environ. Microbiol. 13, 1253-1270. 

Renn D. (1997). Biotechnology and the red seaweed polysaccharide industry: 

status, needs, and prospects. Trends Biotechnol., 15.pp. 9-14. doi:10.1016/S0167-

7799(96)10069-X. 

https://doi.org/10.1074/jbc.M113.491068
http://dx.doi.org/10.1016/j.str.2004.06.020
http://dx.doi.org/10.1016/j.str.2004.06.020
http://dx.doi.org/10.1016/j.str.2004.06.020
http://dx.doi.org/10.1016/j.str.2004.06.020
https://doi.org/10.1016/S0167-7799(96)10069-X
https://doi.org/10.1016/S0167-7799(96)10069-X


References 

 

92 
 

Richter, M., Rosselló-Móra, R., Glöckner, F.O., and Peplies. J. (2015). 

JSpeciesWS: a web server for prokaryotic species circumscription based on 

pairwise genome comparison. Bioinformatics. 16. pii: btv681.  

RoosmalenM.L. van, N. Geukens., J.D.H., Jongbloed, H., Tjalsma, J.Y.F., Dubois

, S., Bron, J.M, van Dijl, J., Anné. (2004). Type I signal peptidases of Gram-

positive bacteria. Biochim. Biophys. Acta Mol. Cell Res., 1694 , pp. 279-

297, 10.1016/J.BBAMCR.2004.05.006 

Rosselló-Móra R.(2006). DNA-DNA reassociation methods applied to microbial 

taxonomy and their critical evaluation. in Molecular Identification, Systematics, 

and Population Structure of Prokaryotes, ed Stackebrandt E. Springer-Verlag, 

Berlin. pp 23-50. 

Ruiz, D., Turowski, V,. Murakami, M. (2016). Effects of the linker region on the 

structure and function of modular GH5 cellulases. Sci Rep 6, 28504. 

doi.org:10.1038/srep28504. 

Rye, C.S., Withers, S.G. (2000). Glycosidase mechanisms. Curr. Opin. Chem. Biol. 

4, 573–580. 

Sammond, D.W., Payne, C. M.,   Brunecky, R.,  Himmel, M. E.,  Crowley, M.F., 

Beckham G. T. (2012). Cellulase linkers are optimized based on domain type and 

function: insights from sequence analysis, biophysical measurements, and 

molecular simulation. PloS ONE 7, e48615, doi: 10.1371/journal.pone.0048615. 

Schein, C. (1989). Production of soluble recombinant proteins in bacteria. Nat 

Biotechnol 7, 1141–1149. Doi:10.1038/nbt1189-1141. 

Selleck, W., Tan, S. (2008). Recombinant protein complex expression in E. coli. 

Current protocols in protein science, Chapter 5, Unit–5.21. 

doi:10.1002/0471140864.ps0521s52. 

Sinnott M.L. (2007). Carbohydrate chemistry and biochemistry: structure and 

mechanism.  The Royal Society of Chemistry. ISBN:978-0-85404-256-2. 731 

pages. 

Smith, A. C. Hussey, M.A. (2005). Gram stain protocols. American Society for 

Microbiology. 

Song, T., Xu H., Wei, C., Jiang, T., Qin, S., Zhang, W., Cao, Y., Hu C., Zhang, F., 

Qiao, D., Cao, Y. (2016). Horizontal transfer of a novel soil agarase gene from 

marine bacteria to soil bacteria via human microbiota. Scientific reports, 6, 34103. 

doi:10.1038/srep34103. 

Sousa, A.M., Borges, J., Silva, A.F., Goncalves, M.P. (2013). Influence of the 

extraction process on the rheological and structural properties of agars. Carbohydr 

Polym 96:163–171. 

Souza, C.P., Almeida, B.C., Colwell, R.R., Rivera, I.N.G. (2011). The importance 

of chitin in the marine environment. Mar. Biotechnol. 13:823–30. doi: 

10.1007/s10126-011-9388-1. 

Sun C., Chen Y.J., Zhang X.Q., Pan J., Cheng H., Wu, M. (2014). Draft genome 

sequence of Microbulbifer elongatus strain HZ11, a brown seaweed degrading 

bacterium with potential ability to produce bioethanol from alginate. Mar Genomics 

18:83–85. 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv681
https://doi.org/10.1016/J.BBAMCR.2004.05.006
https://www.ncbi.nlm.nih.gov/pubmed/?term=Payne%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=23139804
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brunecky%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23139804
https://www.ncbi.nlm.nih.gov/pubmed/?term=Himmel%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=23139804
https://www.ncbi.nlm.nih.gov/pubmed/?term=Crowley%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=23139804
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beckham%20GT%5BAuthor%5D&cauthor=true&cauthor_uid=23139804


References 

 

93 
 

Stackebrandt E., Goebel B. (1994). Taxonomic note: A place for DNA-DNA 

reassociation and 16S rRNA sequence analysis in the present species definition in 

bacteriology. Int J Syst Evol Microbiol 44, 846-849.  doi:10.1099/00207713-44-4-

846. 

Stein L. (2001). Genome annotation: from sequence to biology. Nat. Rev. Genet. 2, 

493–503. doi:10.1038/35080529. 

Sterner, R., Liebl., W. (2001). Thermophilic adaptation of proteins Crit. Rev. 

Biochem. Molec. Biol. 36 39–106. 

Suzuki H., Sawai Y., Suzuki T., Kawai K. (2002). Purification and characterization 

of an extracellular α-neoagarooligosaccharide hydrolase from Bacillus sp. mk03. J. 

Biosci. Bioeng. 93, 456–463. 10.1016/S1389-1723(02)80092-5. 

Sugano Y., Kodama H., Terada I., Yamazak Y.I., Noma M. (1994). Purification 

and characterization of a novel enzyme, alpha-neoagarooligosaccharide hydrolase 

(alpha-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107, J. 

Bacteriol. 176 6812–6818. 

Su Q., Jin T., Yu Y., Yang M., Mou H., Li L. (2017). Extracellular expression of a 

novel beta-agarase from Microbulbifer sp. Q7, isolated from the gut of sea 

cucumber. AMB Express 7(1): p. 220 doi.org/10.1186/s13568-017-0525-8. 

Takagi E., Hatada Y., Akita M., Ohta Y., Yokoi G., Miyazaki T., Nishikawa A., 

Tonozuka T. (2015). Crystal structure of the catalytic domain of a GH16 β-agarase 

from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-

A94. Bioscicence, Biotechnology, and Biochemistry. 2015;79:629–632. doi: 

10.1080/09168451.2014.988680. 

Tatusov R.L., Koonin, E.V., Lipman, D.J. (1997). A genomic perspective on 

protein families. Science, 278, 631–637. doi: 10.1126/science.278.5338.631. 

Tatusov, R.L., Galperin, M.Y., Natale, D.A., Koonin, E.V. (2000). The COG 

database: a tool for genome-scale analysis of protein functions and 

evolution. Nucleic acids research, 28(1), 33–36. doi:10.1093/nar/28.1.33. 

Tawara M., Sakatoku A., Tiodjio RE., Tanaka D., Nakamura S. (2015). Cloning 

and characterization of a novel agarase from a newly isolated bacterium Simiduia 

sp. strain TM-2 able to degrade various seaweeds. Appl Biochem Biotechnol. 

177(3): 610-23. 

Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK (2011) Overexpression and 

biochemical characterization of DagA from Streptomyces coelicolor A3(2): an 

endo-type beta-agarase producing neoagarotetraose and neoagarohexaose. Appl 

Microbiol Biotechnol 92(4): p. 749-59. 

Tindall B.J., Rosselló-Móra R., Busse H.J., Ludwig W., Kämpfer P. (2010). Notes 

on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol 

Microbiol 60:249–266. doi:10.1099/ijs.0.016949-0. 

Taylor, C.B., Payne, C.M., Himmel, M.E., Crowley, M.F., McCabe, C., & 

Beckham, G.T. (2013). Binding site dynamics and aromatic-carbohydrate 

interactions in processive and non-processive family 7 glycoside hydrolases. The 

journal of physical chemistry. B, 117 17, 4924-33. 

Tostevin R., Turchyn A.V., Farquhar J., Johnston D.T., Eldridge D.L., Bishop 

J.K.B., McIlvin, M. (2014).  Multiple sulfur isotope constraints on the modern 

https://www.scopus.com/record/display.uri?eid=2-s2.0-84913529276&origin=reflist&sort=plf-f&cite=2-s2.0-84913529276&src=s&nlo=&nlr=&nls=&imp=t&sid=1bba31b99a6f773c437ed0506db1de8e&sot=cite&sdt=a&sl=0&recordRank=


References 

 

94 
 

sulfur cycle. (Open Access). Earth and Planetary Science Letters, 396, pp. 14-21.   

doi: 10.1016/j.epsl.2014.03.057. 

Trincone A. (2018). Update on marine carbohydrate hydrolyzing enzymes: 

biotechnological applications. Molecules (Basel, Switzerland), 23(4), 901. 

doi:10.3390/molecules23040901 

Tsai K.C., Jian J.W., Yang E.W., Hsu P.C., Peng H.P., Chen C.T., Chen J.B., Chang 

J.Y., Hsu W.L., Yang A.S. (2012). Prediction of carbohydrate binding sites on 

protein surfaces with 3-dimensional probability density distributions of interacting 

atoms. PLoS ONE 7(7): e40846. doi:10.1371/journal.pone.0040846. 

Usov, A. I. (2011). Polysaccharides of the red algae. Adv. Carbohydr. Chem. 

Biochem. 65, 115-217. 

Vallenet D., Calteau A., Cruveiller S., Gachet M., Lajus A., Josso A., Mercier J., 

Renaux A., Rollin J., Rouy Z., Roche D., Scarpelli C., Médigue C. (2017). 

MicroScope in 2017: an expanding and evolving integrated resource for community 

expertise of microbial genomes. Nucleic acids research, 45(D1), D517–D528. 

doi:10.1093/nar/gkw1101. 

Van der Meulen, H.J., Harder, W. (1976). The regulation of agarase production by 

resting cells of Cytophaga jeevensis. Antonie van Leeuwenhoek. 42,277-286. 

Van Hal, J.W., Huijgen, W.J.J., López-Contreras, A.M. (2014). Opportunities and 

challenges for seaweed in the biobased economy. Trends Biotechnol. 32, 231–233. 

Vattuone M.A., De Flores E.A., Sampietro AR. (1975). Isolation of neoagarobiose 

and neoagarotetraose from agarose digested by Pseudomonas elongata. 

Carbohydrate Research 39:164-167. 

Veerakumar, S., Manian, R.P. (2018). Recombinant β-agarases: insights into 

molecular, biochemical, and physiochemical characteristics. 3 Biotech, 8(10), 445. 

doi:10.1007/s13205-018-1470-1. 

Viborg, A.H., Terrapon, N., Lombard, V., Michel, G., Czjzek, M., Henrissat, B., 

Brumer, H. (2019). A subfamily roadmap of the evolutionarily diverse glycoside 

hydrolase family 16 (GH16). The Journal of biological chemistry, 294(44), 15973–

15986. doi:10.1074/jbc.RA119.010619. 

Vocadlo, D.J.,  Davies, G.J. (2008). Mechanistic insights into glycosidase 

chemistry. Curr. Opin. Chem. Biol. 12, 539–555. DOI 10.1016/j.cbpa.2008.05.010. 

Vonossowski, I., Ståhlberg, J., Koivula, A., Piens, K., Becker, D., Boer, H., Harle,

 R., Harris, M., Divne, C., Mahdi, S., Zhao, Y., Driguez, H., Claeyssens, M., Sinn

ott, M. L., Teeri, T. T. (2003). Engineering the exo-loop of Trichoderma 

reesei cellobiohydrolase, Cel7A: a comparison with Phanerochaete 

chrysosporium Cel7D. J. Mol. Biol. 333, 817–829. 

Wagner, A. (2005). Energy constraints on the evolution of gene expression. Mol. 

Boil. Evol. 22, 1365–1374. 

Wakabayashi, M., Sakatoku, A., Noda, F. Noda M., Tanaka D., Nakamura 

S. (2012). Isolation and characterization of Microbulbifer species 6532: a 

degrading seaweed thalli to single cell detritus particles. Biodegradation 23, 93–

105. doi:/10.1007/s10532-011-9489-6. 

https://www.scopus.com/record/display.uri?eid=2-s2.0-84913529276&origin=reflist&sort=plf-f&cite=2-s2.0-84913529276&src=s&nlo=&nlr=&nls=&imp=t&sid=1bba31b99a6f773c437ed0506db1de8e&sot=cite&sdt=a&sl=0&recordRank=


References 

 

95 
 

Walker J.M. (2009). The Protein Protocols Handbook. Third Edition. New York 

(NY): Springer-Verlag New York, LLC 

Walsh R. (2018). Comparing enzyme activity modifier equations through the 

development of global data fitting templates in Excel. PeerJ, 6, e6082. 

doi:10.7717/peerj.6082. 

Wang W., Liu P., Hao C., Wu L., Wan W., Mao X. (2017). 

Neoagarooligosaccharide monomers inhibit inflammation in LPS-stimulated 

macrophages through suppression of MAPK and NF-κB pathways. Sci Rep 

7:44252. 

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer 

F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. (2018). 

SWISS-MODEL: homology modelling of protein structures and 

complexes. Nucleic Acids Res. Jul 2;46(W1): W296-W303. doi: 

10.1093/nar/gky427. 

Wei, N., Quarterman, J., Jin, Y.S. (2013). Marine macroalgae: an untapped resource 

for producing fuels and chemicals. Trends Biotechnol. 31, 70–77. 

Wolfe A.J. (2015). Glycolysis for microbiome generation. Microbiology 

spectrum, 3(3), doi:10.1128/microbiolspec.MBP-0014-2014. 

Wilson C.A., Kreychman J., Gerstein M. (2000). Assessing annotation transfer for 

genomics: quantifying the relations between protein sequence, structure, and 

function through traditional and probabilistic scores. J Mol Biol 297: 233–249. 

Wilson K. (2010). Principles and techniques of biochemistry and molecular 

biology. Cambridge University Press. pp. 581–

624. doi:10.1017/cbo9780511841477.016. 

Xie W., Lin B., Zhou Z., Lu G., Lun J., Xia C., Li S., Hu Z. (2013). Characterization 

of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Appl 

Microbiol Biotechnol.;97 (11):4907–4915. doi: 10.1007/s00253-012-4385-5. 

Xu X.Q., Su B.M, Xie J.S., Li R.K, Yang J., Lin J., Ye X.Y. (2018): Preparation of 

bioactive neagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis 

agar: a comparative study. Food Chemistry, 240, pp. 330-337. 

Yan S., Yu M., Wang Y., Shen C., Zhang X.H. (2011). Catenovulum agarivorans 

gen. nov., sp. nov., a peritrichously flagellated, chain-forming, agar-hydrolysing 

gammaproteobacterium from seawater. Int J Syst Evol Microbiol.61:2866–73. doi: 

10.1099/ijs.0.027565-0. 

Yang, M., Yu, Y., Jin, T., Mou, H., Li, L. (2018). Genomic analysis of 

Microbulbifer sp. Q7 exhibiting degradation activity toward seaweed 

polysaccharides. Marine Genomics, 39, 7–10. doi:10.1016/j.margen.2017.07.003. 

Yip V.L., Varrot A., Davies G.J., Rajan S.S., Yang X., Thompson J., Anderson 

W.F., Withers S.G. (2004) An unusual mechanism of glycoside hydrolysis 

involving redox and elimination steps by a family 4 beta-glycosidase from 

Thermotoga maritima. J Am Chem Soc. 126, 8354-5.  

Yoon J.H., Kim H., Kang K.H., Oh T.K., Park Y.H. (2003) Transfer of 

Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer 

elongatus comb. nov. Int J Syst Evol Microbiol. 53: 1357-1361. doi 

10.1099/ijs.0.02464-0 

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1017%2Fcbo9780511841477.016
http://dx.doi.org/10.1021/ja047632w
http://dx.doi.org/10.1021/ja047632w
http://dx.doi.org/10.1021/ja047632w
http://dx.doi.org/10.1021/ja047632w


References 

 

96 
 

Yoon J.H., Kim I.G., Shin D.Y., Kang K.H., Park Y.H. (2003) Microbulbifer 

salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J 

Syst Evol Microbiol 53:53–57. doi: 10.1099/ijs.0.02342-0. 

Yoon, S.H., Ha, S.M., Lim, J.M., Kwon, S.J., Chun, J. (2017). A large-scale 

evaluation of algorithms to calculate average nucleotide identity. Antonie van 

Leeuwenhoek. 110:1281–1286.  

Yooseph, S., Nealson, K., Rusch, D., McCrow J.P., Dupont C.L., Kim M., Johnson 

J., Montgomery R., Ferriera S., Beeson K., Williasmson S.J., Tovchigrechko A., 

Allen A.E., Zeigler L.A., Sutton G., Eisenstadt E., Rogers Y.H., Friedman R., 

Frazier M., Venter C.J. (2010). Genomic and functional adaptation in surface ocean 

planktonic prokaryotes. Nature 468, 60–66. doi.org/10.1038/nature09530. 

Young K.D. (2007). Bacterial morphology: why have different shapes? Curr Opin 

Microbiol,. 10(6): p. 596-600. 

Yun E.J., Lee S., Kim J.H., Kim B.B., Kim H.T., Lee S.H., Pelton J.G., Kang N.J., 

Choi I.G., Kim K.H. (2013) Enzymatic production of 3,6-anhydro-Lgalactose from 

agarose and its purification and in vitro skin whitening and anti-inflammatory 

activities. Appl Microbiol Biotechnol 97(7):2961–2970. 

Yun E.J., Yu S, Kim K.H. (2017). Current knowledge on agarolytic enzymes and 

the industrial potential of agar derived sugars. App. Microbio. and Biotech. 101(14): 

5581-5589. 

Zhang D.S., Huo Y.Y., Xu X.W., Wu Y.H., Wang C.S., Xu E.F., Wu M. (2012). 

Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated 

from marine sediment. Int J Syst Evol Microbiol;62:505–510. 

Zhang N., Mao X., Li R.W., Hou E., Wang Y., Xue C., Tang Q. (2017). 

Neoagarotetraose protects mice against intense exercise-induced fatigue damage by 

modulating gut microbial composition and function. Mol Nutr Food Res 

61(8):1600585. 

Zhao, Q., Li, S., Lv, P. Sun S., Ma C., Xu P., Su H., Yang C. (2019). High ectoine 

production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity 

medium. Microb Cell Fact. 18, 184. doiI10.1186/s12934-019-1230-x. 

Zinder S.H., Dworkin M. (2013). Morphological and physiological diversity. In: 

Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The 

Prokaryotes. Springer, Berlin, Heidelberg. 

 

 

 

 

 

 

https://doi.org/10.1099/ijs.0.02342-0


 
 
 
 
 

97 
 

Appendices 

Appendix 1. 

Table 1.1 . Amplification of gene insert for cloning 

Gene insert Note 

 

 

 

Sample : agarase 

genes insert 

digestion;1% w/v 

agarose, 100 V, 

20 min, @5 µL 

 

1=agaA50(BamHI-HF&EcoRI-HF); 2=agaB50(XhoI&NsiI-HF); 3=agaC50; 4=agaD86-1b(XhoI&NsiI-HF); 5=agaD86-2by(XhoI&NsiI-HF); 6=agaE86-

1y(XhoI&NsiI-HF); 7=agaE86-2wy(XhoI&NsiI-HF); 8=agaE86-3bwy(EcoRI-HF); 9=agaF16-1y(BamHI-HF&EcoRI-HF); pFJ1=pFO4 modified(5,7 

kb+690 bp) (BamHI-HF&EcoRI-HF); SM=smart ladder 1700-10 
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Appendix 1. continued 

Table 1.2. Plasmid Validation Using HincII Map 

Cut Plasmid  Note 

 

Sample : agarase plasmids (pME) digestion HincII; 

1,2% w/v agarose, 100 V, 40 min, @ 7 µL  

  

1=agaA50; 2=agaB50; 3=agaC50; 4-5&4-6=AgaA86T  

(agaD86-1b); 5-1; 5-2; 5-6=agaD86-2by; 6=agaE86-1y; 

8=agaE86-3bwy; 9=agaF16-1y; SM=smart ladder 1700-10 
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Appendix 2.  

Table 1. Characteristics of Microbulbifer elongatus PORT2 among other Microbulbifer species 

Characteristics M. elongatus PORT2 M. elongatus DSM 6810T M. elongatus CMC5 M. hydrolyticus 

DSM11525T 

M.salipaludis SM-1T 

Cell shape Rods, coccoid Rods or cocci,  short rods Rods Rods 

Gram Staining negative negative negative negative negative 

Motility Non-motile,  

non-spore forming 

Motile, non-spore forming, 

encapsulated 

Non-motile,  

non-spore forming 

Non-motile,  

non-spore forming 

Non-motile,  

non-spore forming 

catalase activity + + + NA + 

oxidase activity + NA + NA + 

use of nitrate as a sole nitrogen source NA + NA NA NA 

Na+ requirement 2-10 % (w/v) 2-3% (w/v) 2-8% (w/v) 0.1 to 1 M 2–3 % (w/v) 

agar hydrolysis + + + NA weakly 

amylase activity + ´+  + + 

Gelatine hydrolysis - + + + - 

utilization of : 

lactose,  

sucrose,  

glucose,  

sodium citrate 

 

- 

- 

+ 

NA 

 

+ 

+ 

+ 

+ 

 

+ 

- 

+ 

NA 

 

NA 

NA 

+ 

NA 

 

+ 

+ 

+ 

NA 

H2S production - + - NA NA 

Indole production - - NA NA NA 

Fermentation of glucose - - NA + + 
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Table 1. Continued 

Characteristics M. elongatus PORT2 M. elongatus DSM 6810T M. elongatus CMC5 M. hydrolyticus 

DSM11525T 

M.salipaludis SM-1T 

Antibiotic Resistance 

-Ampicillin (100 µg/mL) 

-Gentamycin (20 µg/mL) 

Kanamycin  

Streptomycin 

 

+ 

- 

- 

+ 

NA NA NA NA 

Colony color on Marine Agar (MA) Opaque-yellowish 

brown 

Yellowish-brown  cream Greyish-yellow Yellowish-brown 

pH range 6-8 NA NA 6.5-8.5 5–8 

Temparature range (0C) 28-37 25-30 30-37 10 to 41 10 to 45 

GC content 57.6 58 65.6  58 59 

NA= Not Available 
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Appendix 3. Clone Constructs 

>pME1 Ligation of N341_nt-SP PCR* into pFO4* 

 

 

Details:      HIS-341-SP,   5317 to 7665,  CDS,  Draw as Gene 

              Translation product   782 aas 

              Mol Wt  87942.1, Isoelectric Pt (pI) 4.67 

 

Translation:  

MGSSHHHHHHGSEQKGGETAANVTATSDSNLLAQDLLLEGFDQGGIPASV         

QVNNGTANLVDDGAGGKALQVKLKLADNNNAGLVIQPAEAWDWSEFSDFN              

LAFDVANHGVESVQIDVTMADKNGDFYTRGLVVPADGTARTYYAKLHGHD              

QEDPKAAAQNEFNFASGLRSNPPTWQSDDIMLHSFWGKKLLDLSGITQIS              

FGSDGSLSDRQYTIDNLRLRANPPMDENFLTGLLDKYGQNAKVDYEGKIH              

SDEELKKVVEEELASLSGKPNVDRSKFSGWKSGPQLEATGYFRTEKVNGK 

WAIVDPEGYLYFSTGIDIIRLSNSSTITGYDYDQELIPKRSADEVIAEDD              

QPLNRVDEKAWATRELISETRAKMFNWLPGYDDELGNHYGYRRETQSGPL              

KHGETFSFYSANLERRYGETYPESYLDTWQKVTVDRMLDWGFTSLGNWAA              

EPFYQQERIPFVAFADIIGEFGTLSSGFDFWHPVPDPYDPRFYQRSVVAA              

KSVSEQIENSPWCMGVFFDNEQSFGRLESDELHYGIVINTLTRDAADTPA              

KGVFTKVLREKYGTIEALNKAWNKEVKSWEAFEKGMDSSLTTDAQREDYA              

TLLFEYGNQYFGTIRKAMKSVMPNHLYLGSRLPSWGMPPEIVKAAGKNVD 

IISYNLYEEGLVPSKWEFLAEIDKPSLIGEFSFGSDDQGHFHPGIVISAD              

QKDRGRMFKNYMHSFIDNPWFVGVHMFQYMDSPITGRAYDGENYANGFVS 

VADVPYVELVKAAKEVHEDLYERRFGDVKPAE 

  

pME1

8002 bps
2000

4000

6000

8000

AatII
ZraI

SspI

PstI
BsaI

AhdI

PciI

Bst1107I
Tth111I

FspAI

NruI

BssHII
ApaI

PspOMI
MluI

EcoNI

SgrAI
XbaI

BamHI
BmgBI
SexAI

Acc65I
KpnI

AgeI

StuI
PspXI
XhoI

SmaI
XmaI

NdeI
EcoRI

BlpI
BmtI
NheI

bla

lacI

HIS-341-SP
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>pME2 Ligation of 342_nt PCR* into pFO4* 

 

 

Details:      HIS-342,   5317 to 7587,  CDS,  Draw as Gene 

              Translation product   756 aas 

              Mol Wt  84020.1, Isoelectric Pt (pI) 4.79 

 

Translation:  

MGSSHHHHHHGSLELLSACGQSGEEGAVAAGPGNDREYQQPLLTGGRGIP           

AGVEGHGVSLSRVPVDTGIAPLHAVFSKNTYEPRLDLAPESGWDWSGVGE              

NIGLSLKVTNPGEHSAQLFVTVYDHETYGTRSFNVPAGGIGTYYFDLNGP              

ALALDTGMRDAPALYDNAATAMTWMWGSKSLDLSNIRRIELNMKSILSDR              

PLVFEDIALAPNGEFKPQKLQKIFDQYGQYAPQDYPEKIHSDDELRASAQ              

REAEAFSESSIFPDRSRFGGWAEGPRYKSTGYFRTQKIDGQWALIDPEGY              

LFFATGVDNMRMDNTVTMTGVDFADPDTGLGETIVSELRRDLFQWLPEKG              

DPLAAHYFYRPVVHMGPVEKGQGYSFYRANLQRKYGPDYLQRWREVTVDR              

QLNWGFTTLGNWADPSLYDNGKVAYVANGWIRGEHKRVSSGNDYWGPLHD              

PFDPEFVNSVKRTVAQVAAEVQGDPWCMGVYIENELSWGNTKTDAGHFGL              

IIHTLTRDAAESPAKAAFVEILKRKYPSVESLSRAWFSSMPSRSIPSWEA              

FAAGFSLSQAAGGEPQIEGQLREDFSLLLESLSARFFSVVQRELADVMPD              

HLFLGARFADWGMTPEVVRGAAAYVDVVSYNLYTEGLAADNWEFLAEIDK              

PSIIGEFHMGATDSGSFHAGLVSAESQQERGEMFRDYMHTIIDNPWFVGA              

QWFQYIDSPASGRAWDGENYNVGFVTVADEPYGPLVAAAQALNRELYPRR 

YGQKND 

 

pME2

7930 bps

1000

2000

3000

4000

5000

6000

7000

AatII
ZraI

SspI
ScaI

PvuI

BsaI
AhdI

PciI

SapI

Bst1107I
BsaAI
Tth111I

PshAI

HpaI
BssHII

EcoNI
SphI

SgrAI
BglII

XbaI
PspXI
XhoI
SrfI

DraIII
BsiWI

Acc65I
KpnI

Bsu36I

SalI

PasI

BseRI

NsiI
BlpI

BmtI
NheI

bla

lacI

HIS-342
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>pME3 Ligation of 451_nt-SP PCR* into pFO4* 

 

Details:      HIS-451,   5317 to 7638,  CDS,  Draw as Gene 

              Translation product   773 aas 

              Mol Wt  86981.5, Isoelectric Pt (pI) 4.89 

 

Translation:  

MGSSHHHHHHGSLENDVRSTITEATTGNTEVAAENSNTLWTFDQGEMPSA              

IQVENADARVIDGESGKALEVQLRTKSHYSANITFAAEQPWDWSGLGNFA              

FALDITNPKQSSVHLYVRAADKHGKVQSRSFAVPENSTGTYYMELKGPDL              

MVDTGIRSNPPSWDSEFQDMIYRGGVKQIDVSAVKSIALSVIGVLEDKAL              

VIDNVRLIQPKSLDESYLKDLVDEFGQNNKLDFASKVDSLEELRAISEEE              

QSQLRKTPMDGRSRFGGWAEGPKLEATGYFRTEKVDGKWALVDPEGHLFF              

STGIANVRLANTSTITGYDFDKARVPQRTPGDLTPEDSLGLNRVPDAAIP              

TRHISSPLRADMFTWLPEYDEPLGQNFGYRREVHTGVIEHGETFSFYRAN              

LQRKYDIADEERLMAKWRETTIDRMLSWGFTSFGNWIDPAYYQMNRIPYF              

ANGWIIGNFKTVSSGNDYWSPLPDPFDPLFKERAYITAEQIAKEVANNPW              

CVGVFVDNEKSWGQEGSTASQYGIVINTLGRAAGESPTKAQFVQLMQDKY              

GEIGRLNTAWNIQLADWDAFANGVALTEFSDAMIEDFSTMLEHYTGQYFK              

IVREAIKHFMPNHMYLGARFADWGMTPEVRRAAAKYADVVSYNYYKEGVS              

NKFWSFLEEIDRPSIIGEFHNGSLDSGLLSPGLIHASSQADRGKKFAEYM              

NSVIDNPYFVGAHWFQYIDSPLTGRAYDGENYNVGFVSVTDTPYQPLVVA 

VKEVNENLYQRRFGEAKLAVAPE 

  

pME3

7981 bps

1000

2000

3000

4000

5000

6000

7000

AatII
ZraI

PstI

BsaI

AlwNI

PciI

Bst1107I
Tth111I

FspAI
BsmI

BspMI
NruI

PshAI
HpaI

BstEII

EcoNI

XbaI
XhoI

AgeI
Acc65I

KpnI

BseRI

SexAI

BsrGI

NdeI

Eco53kI
SacI

NsiI

bla

lacI

HIS-451
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>pME4 Ligation of 452_nt-1b PCR* into pFO4* 

 

 

Details:      HIS-452-1b,   5317 to 6780,  CDS,  Draw as Gene 

              Translation product   487 aas 

              Mol Wt  54809.2, Isoelectric Pt (pI) 4.43 

Translation:  

MGSSHHHHHHGSLEQPKPVFLEVMNEPLYDLVDYPKDKDAGTTPEDVFKFHNA

VANEVRAYRDQWGLASHDNLLIGGYTVAFPDFEKDNFNRWEERDKLFIDIAGA

NMDFLSVHFYDFPAFQGTRQLRRGSNVEATFDMLEQYSLMATGERKPFVVSEIG

ATVHSMMNDPWSPERDGYKLRALNGLTMNMLERPDQILKSIPFVTIKAEWGRTE

VPYTNRLMRQKFEAAGETGDAWVYTEFVKFYQLWSDVKGTRVDSWASDLDIQ

VNAYVDDKTAYLVLNNLEQEDTDLNLAALGADGNSLQSVTIKELYYDADGKPV

LDISDSTELPQMYTLKSEATTILQLTYTNPIAIDGDGTETKYYADKYKQPITADAK

LQFAINDVVVGNAGEAVLRLGIGREHGKSLTPSVTVNSNAVTVPEDYQGYDQYY

GGKGRAQFFGVLEIPVDLEYLNEDNTVEIVFEDEGGFVSTATLQVFNTSSALVRG

ARE 

 

  

pME4

7123 bps

1000

2000

30004000

5000

6000

7000

AatII
ZraI

SspI

PvuI
PstI

BsaI

AlwNI

PciI

SapI

Bst1107I
BsaAI
Tth111I

FspAI

BspMI
EagI

PshAI
HpaI

ApaI
PspOMI
BclI

MluI

SphI

BglII
XbaI

BamHI
PspXI
XhoI

SacII

AleI

SmaI
XmaI
Eco53kI

SacI
BsrGI
MunI

BseRI
BbvCI

NsiI
EcoRI

BlpI
BmtI
NheI
ClaI

bla

lacI

HIS-452-1b
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>pME5 Ligation of 452_nt-2by PCR* into pFO4* 

 

Details:      HIS-452-2by,   5317 to 7284,  CDS,  Draw as Gene 

              Translation product   655 aas 

              Mol Wt  73462.9, Isoelectric Pt (pI) 4.38 

 

Translation:  

MGSSHHHHHHGSLEESEFDRRKFITVHASNTENDWFGSNSQSAGAPNDDP              

DLMTSFLEGYDVYFGRDTGGMKWQLSQLPEDGTRPGFIDEGAASTNGGNA              

RWNYTEGTTANAALARKHEHRATDMIVGGQQHPYWPNGDDVGMGWSFSQT              

DTEEEPLGTAVGHYMANYLYEYFNRGSNDTYGQPKPVFLEVMNEPLYDLV              

DYPKDKDAGTTPEDVFKFHNAVANEVRAYRDQWGLASHDNLLIGGYTVAF              

PDFEKDNFNRWEERDKLFIDIAGANMDFLSVHFYDFPAFQGTRQLRRGSN              

VEATFDMLEQYSLMATGERKPFVVSEIGATVHSMMNDPWSPERDGYKLRA              

LNGLTMNMLERPDQILKSIPFVTIKAEWGRTEVPYTNRLMRQKFEAAGET              

GDAWVYTEFVKFYQLWSDVKGTRVDSWASDLDIQVNAYVDDKTAYLVLNN              

LEQEDTDLNLAALGADGNSLQSVTIKELYYDADGKPVLDISDSTELPQMY              

TLKSEATTILQLTYTNPIAIDGDGTETKYYADKYKQPITADAKLQFAIND              

VVVGNAGEAVLRLGIGREHGKSLTPSVTVNSNAVTVPEDYQGYDQYYGGK              

GRAQFFGVLEIPVDLEYLNEDNTVEIVFEDEGGFVSTATLQVFNTSSALV 

RGARE 

 

pME5

7627 bps

1000

2000

3000

4000

5000

6000

7000

AatII
ZraI

SspI

PvuI
PstI

BsaI

AlwNI

PciI

SapI

Bst1107I
BsaAI
Tth111I

FspAI

BspMI
EagI

PshAI
HpaI

ApaI
PspOMI

BclI
MluI

BglII
XbaI

BamHI
AbsI

PspXI
XhoI

DraIII

BmgBI

SacII

AleI

SmaI
XmaI
Eco53kI

SacI
BsrGI
MunI

BbvCI
NsiI

EcoRI
BlpI

BmtI
NheI
ClaI

bla

lacI

HIS-452-2by
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>pME6 Ligation of 453_nt-1y PCR* into pFO4* 

 

Details:      HIS-453-1y,   5317 to 7461,  CDS,  Draw as Gene 

              Translation product   714 aas 

              Mol Wt  80902.6, Isoelectric Pt (pI) 4.86 

 

Translation:  

MGSSHHHHHHGSLESASQVGNSNSATVTVNANIKHSVNGVSDFGRNRHIT              

AHTTIYEKDWDGHADKLNYLVNTLDVTLGRDNGTASWKFRDTKEDPNKPS              

WPDMDYMVDRGQELRELYEGNPFYKRFDAESTELIAGTNPHPTYPTLSWY              

ENGKTWHNWQPMTIETSAAWMGQYMKHYYANSSNGYLGDPMPKYWEVINE           

PDMEMKTGKFMVTNQEALWEYHNLVAQEIRSKLGNEAPMIGGMTWGQHDF              

YRRDGISRYGDNAYDQWITAEDPAEEAAAEEFFRNAMATTVDDTRAQDWY              

QWDVMWKGFMDAAGHNMDFYAVHVYDWPGVSDDSTSRLRRNGHLPAMLDM             

MEWYDVYKNGQSNRKPIVLSEYGSVQGGWDTLAHHPRFESEVLKSFNAML              

MQILDRPDYVIKSMPFTPAKPLWGYYPGGCGYEEPRTCSAAYHYSLLIEP              

VLNQGNWQWSDYIKFFELWADVDGTRVDSVSSDADVQVQSYVDGNELFVI              

VNNLETVDTTVNLDVAGLGGAQLQNVEMRNMRFDSGSDTHVDRQHMKQMP              

SNLTLAANATVVLRYTLGNNIAVNQSMNEKKYFGNSVSGGSEPHRISVAG              

GAKTLQVNNVTVPAGYAEAQLRLTVALYPGEDDSPDSMLQIDSLTINGQT              

VETPLDWRGRKQNSTERYFNTLEIPVPADVLQANNTISVDFRHNGELTVANLVVK

DFSTVPVRN 

 

 

 

pME6

7804 bps

1000

2000

3000

4000

5000

6000

7000

AatII
ZraI

SspI

BsaI
AhdI

PciI

SapI

Bst1107I
BsaAI

Bpu10I

FspAI
BsmI

EagI
PshAIApaI

PspOMI
MluI

EcoNI

BglII
XbaI

PspXI
XhoI

DraIII

BsiWI

BmgBI

BsrGI

NdeI

SbfI

SalI
SexAI

NsiI
EcoRI

BlpI
BmtI
NheI
ClaI

bla

lacI

HIS-453-1y
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>pME7 Ligation of 453_nt-2wy PCR* into pFO4* 

 

Details:      HIS-453-2wy,   5317 to 7842,  CDS,  Draw as Gene 

              Translation product   841 aas 

              Mol Wt  93447.2, Isoelectric Pt (pI) 4.34 

 

Translation:  

MGSSHHHHHHGSLEDGDGDGTPDVSDQCPSTDPAETANSVGCAPSQLDTD              

EDGITDNLDQCPTTAAGEFVNAVGCASPGGDDDDFDGVMNSADQCANTPF              

GQNVDPSGCSGFADSDNDGIANSVDNCPATPAGEFANESGCSASQVGNSN              

SATVTVNANIKHSVNGVSDFGRNRHITAHTTIYEKDWDGHADKLNYLVNT              

LDVTLGRDNGTASWKFRDTKEDPNKPSWPDMDYMVDRGQELRELYEGNPF              

YKRFDAESTELIAGTNPHPTYPTLSWYENGKTWHNWQPMTIETSAAWMGQ              

YMKHYYANSSNGYLGDPMPKYWEVINEPDMEMKTGKFMVTNQEALWEYHN              

LVAQEIRSKLGNEAPMIGGMTWGQHDFYRRDGISRYGDNAYDQWITAEDP              

AEEAAAEEFFRNAMATTVDDTRAQDWYQWDVMWKGFMDAAGHNMDFYAVH              

VYDWPGVSDDSTSRLRRNGHLPAMLDMMEWYDVYKNGQSNRKPIVLSEYG              

SVQGGWDTLAHHPRFESEVLKSFNAMLMQILDRPDYVIKSMPFTPAKPLW              

GYYPGGCGYEEPRTCSAAYHYSLLIEPVLNQGNWQWSDYIKFFELWADVD              

GTRVDSVSSDADVQVQSYVDGNELFVIVNNLETVDTTVNLDVAGLGGAQL              

QNVEMRNMRFDSGSDTHVDRQHMKQMPSNLTLAANATVVLRYTLGNNIAV              

NQSMNEKKYFGNSVSGGSEPHRISVAGGAKTLQVNNVTVPAGYAEAQLRL              

TVALYPGEDDSPDSMLQIDSLTINGQTVETPLDWRGRKQNSTERYFNTLE 

 IPVPADVLQANNTISVDFRHNGELTVANLVVKDFSTVPVRN 

  

pME7

8185 bps
2000

4000

6000

8000

AatII
ZraI

SspI

BsaI
AhdI

PciI

SapI

Bst1107I
BsaAI

Bpu10I

FspAI
BsmI

PshAI

ApaI
PspOMI

MluI

EcoNI
BglII

XbaI
AbsI

PspXI
XhoI

SmaI
XmaI

AarI
DraIII

BsiWI

BmgBI
BsrGI

NdeI

SbfI
SalI

SexAI
NsiI

EcoRI
BlpI

BmtI
NheI
ClaI

bla

lacI

HIS-453-2wy
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>pME8 Ligation of 453_nt-3bwy PCR* into pFO4* 

 

Details:      HIS-453-3bwy,   5317 to 8259,  CDS,  Draw as Gene 

              Translation product   980 aas 

              Mol Wt  108365.1, Isoelectric Pt (pI) 4.26 

 

Translation:  

MGSSHHHHHHGSSGTFTLQAEAAHAVGGEIDTYAINGGTAVNYFNSGDYL              

EYNLTLDQSGLYRPKYFVGTANTSGTAVGLMATDHEGELVVKNTTDVQSQ              

GDWDTFYLLNASSEVNLFAGDLTIRIYGAGSQDFQFNIDYATFERVGDAD              

LALDGDGDGTPDVSDQCPSTDPAETANSVGCAPSQLDTDEDGITDNLDQC              

PTTAAGEFVNAVGCASPGGDDDDFDGVMNSADQCANTPFGQNVDPSGCSG              

FADSDNDGIANSVDNCPATPAGEFANESGCSASQVGNSNSATVTVNANIK              

HSVNGVSDFGRNRHITAHTTIYEKDWDGHADKLNYLVNTLDVTLGRDNGT              

ASWKFRDTKEDPNKPSWPDMDYMVDRGQELRELYEGNPFYKRFDAESTEL              

IAGTNPHPTYPTLSWYENGKTWHNWQPMTIETSAAWMGQYMKHYYANSSN              

GYLGDPMPKYWEVINEPDMEMKTGKFMVTNQEALWEYHNLVAQEIRSKLG              

NEAPMIGGMTWGQHDFYRRDGISRYGDNAYDQWITAEDPAEEAAAEEFFR              

NAMATTVDDTRAQDWYQWDVMWKGFMDAAGHNMDFYAVHVYDWPGVSDDS              

TSRLRRNGHLPAMLDMMEWYDVYKNGQSNRKPIVLSEYGSVQGGWDTLAH              

HPRFESEVLKSFNAMLMQILDRPDYVIKSMPFTPAKPLWGYYPGGCGYEE              

PRTCSAAYHYSLLIEPVLNQGNWQWSDYIKFFELWADVDGTRVDSVSSDA              

DVQVQSYVDGNELFVIVNNLETVDTTVNLDVAGLGGAQLQNVEMRNMRFD              

SGSDTHVDRQHMKQMPSNLTLAANATVVLRYTLGNNIAVNQSMNEKKYFG              

NSVSGGSEPHRISVAGGAKTLQVNNVTVPAGYAEAQLRLTVALYPGEDDS              

PDSMLQIDSLTINGQTVETPLDWRGRKQNSTERYFNTLEIPVPADVLQAN 

NTISVDFRHNGELTVANLVVKDFSTVPVRN 

 

pME8

8596 bps

2000

4000

6000

8000

SspI

BsaI
AhdI

PciI
SapI
Bst1107I
BsaAI

Bpu10I

FspAI
BsmI

PshAI

ApaI
PspOMI

MluI

EcoNI

BglII
XbaI

XhoI

SmaI
XmaI

AarI
DraIII

BamHI

BsiWI

BmgBI
BsrGI

NdeI

SbfI
SalI

SexAI
EcoRI

BlpI
BmtI
NheI
ClaI

bla

lacI

HIS-453-3bwy
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>pME9 Ligation of 454_nt-1y PCR* into pFO4* 

 

 

Details:      HIS-454-1y,   5317 to 6192,  CDS,  Draw as Gene 

              Translation product   291 aas 

              Mol Wt  32752.5, Isoelectric Pt (pI) 5.16 

 

Translation:  

MGSSHHHHHHGSADWDGIPVPADPGAGKVWELHPLSDDFNYEAPAAGKSA              

AFYERWKEGFINPWTGPGLTEWHPEYSLVSNGRLQIKSGRKPGTNQVYLG              

SITSKTTLTYPLYMEARAKLSNMVLASDFWLLSADSTEEIDVIEAYGSDR              

PGQEWFAERLHLSHHVFIREPFQDYQPTDPGTWYADGNGTRWADSYHRVG              

VYWRDPWHLEYYVDGQLVRTASGPDIIDPNGFTNGTGLSKPMHAIINMED 

QSWRSDNGITPTDAELADPNRNTYNVDWVRFYKPVATGGGS 

 

 

 

 

 

 

pME9

6529 bps

1000

2000

3000

4000

5000

6000

AatII
ZraI

SspI

ScaI
PvuI

BsaI
AhdI

AlwNI

PciI

SapI

AccI
Bst1107I
Tth111I

FspAI
MscI

BsmIBspMI
NruI

PshAI

HpaI
BssHII

ApaI
PspOMI

BstEII

BclI
MluI

EcoNI

SgrAI
BglII
XbaI

BamHI
SacII

RsrII

BmgBI
StuI
DraIII
PmlI
SexAI

NsiI
AgeI

EcoRI
BlpI

BmtI
NheI
ClaI

bla

lacI

HIS-454-1y
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