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Human peripheral CD2-/lo T cells: an extrathymic population of early differentiated, 

developing T cells. 

Authors: 

    Loza MJ 

    Luppi P 

    Kiefer K 

    Martin ES 

    Szczytkowski JL 

    Perussia B 

Source: 

    International immunology [Int Immunol] 2005 Sep; Vol. 17 (9), pp. 1213-25. 

We previously reported that a subset of human peripheral blood CD3+ T cells expresses low-to-

null CD2 levels (CD2-/lo), produces type 2 cytokines and is inducible to differentiate to 

functionally mature IFN-gamma+ cells. Multiple-color immunofluorescence analysis indicated 

that this population, representing <0.1% of the T cells in fresh lymphocytes, contains subsets that 

are phenotypically immature, including CD4-CD8- and CD3+TCR- cells. Ex vivo, the CD2-/lo 

cells can proliferate (carboxyfluorescein diacetate succinimidyl ester analysis) independently 

from exogenous stimulation, respond to CD3-mediated stimulation with significantly greater 

proliferation than the autologous mature cells and their subsets are inducible to undergo in vitro a 

developmental sequence similar to that reported for the phenotypically similar thymic 

populations. This is especially evident for the CD4+CD8+ subset. CD2-/lo T-cell populations 

exhibit a TCR repertoire (Vbeta chain distribution) that is complete but different 

(complementarity determining region R3 analysis) from that of the autologous CD2+ T cells. 

These characteristics distinguish peripheral CD2-/lo T cells as possible early differentiated T 

cells that may undergo extrathymic maturation, and potentially contribute to maintain the 

peripheral naive T-cell pool. These findings define the existence of phenotypically immature T 



cells in the periphery. Also, given the high numbers of CD2-/lo T cells generated, upon ex vivo 

culture, from peripheral lymphocytes of all adult and neonatal individuals tested, they have 

relevance to clinical applications for immune reconstitution of T cells, as well as myeloid cells, 

via myeloid colony-stimulating factors and type 2 cytokines. 

Introduction 

 

Several lines of evidence support the possible existence of self-peptide-reactive T cells in the 

periphery that may variably participate in autoimmune reactions (1), including responses to self-

antigens on tumor cells (2), or in homeostatic proliferation, especially in lymphopenic conditions 

(3, 4). Whether these cells are mature, ‘tolerized’ cells, or also include T cells that possibly 

escaped the thymus, or bypassed it, at an early differentiation stage is a matter of debate. 

 

Phenotypically or functionally immature cells of most hematopoietic lineages, including CD34+ 

immature progenitor cells, are present in small proportions in human peripheral blood. Among 

lymphocytes, most B cells exiting the bone marrow undergo terminal differentiation of their B 

cell receptor in the periphery (5). We also reported that functionally immature NK cells, 

expressing only CD161, are present in small proportions in the peripheral blood of all individuals 

tested (6, 7). These cells have high proliferative potential and are solely capable of type 2 

cytokine production, but are inducible to undergo terminal phenotypic and functional 

differentiation (8). Unlike mature NK cells producing also or exclusively type 1 cytokines, they 

do not express other known markers of mature NK cells, including CD2, a differentiation antigen 

shared with the majority of mature peripheral T cells. 

 



CD2 is absent on CD3− thymocytes at their earliest developmental stages, but becomes 

expressed early in T-cell development, approximately simultaneously with CD3, the signaling 

moiety of the TCR. We have reported that low proportions of CD3+ T cells in human peripheral 

blood express low-to-null CD2 levels (CD2−/lo). Like the immature peripheral NK cells, they 

produce type 2 cytokines but no IFN-γ, and can be induced to undergo functional maturation to 

IFN-γ-producing cells ex vivo (9). Like immature cells of most lineages, and the peripheral 

CD2−/lo NK cells, these T cells, which are mostly CD3+ and thus distinct from T-cell 

precursors, have high proliferative potential (8, 10). Based on these considerations, and the 

importance of identifying relatively immature peripheral T cells for their potential use for 

immune reconstitution in clinical settings, we tested the hypothesis that the peripheral 

CD3+CD2−/lo cells contain cells that share functional and phenotypic characteristics with 

immature T lymphocytes. 

Methods 

CD2−/lo and CD2+ lymphocytes and clones 

 

Lymphocytes were separated from healthy adult and neonatal (umbilical cord) peripheral blood 

(approved for procurement and use according to institutional guidelines) (11). Rosetting with 

sheep erythrocytes treated with 2-aminoethylisothiouronium bromide (EAET; Sigma Chemical 

Co., St Louis, MO, USA) was used to deplete most mature CD2+ T and NK cells (12). Most 

leukocytes expressing receptors for the Fc portion of IgG (FcγR) (residual mature NK, B and 

myeloid cells) were depleted from the cells in the 

E−AET 



cell fraction after adherence to immune complexes [rabbit IgG-sensitized erythrocyte monolayers 

(EA)] (12). Based on the percentage of cells depleted, the proportion of CD2−/lo CD3+ T cells 

in the leukocyte population remaining after this procedure represents a >50-fold enrichment 

compared with that (<0.1%) in the original population, and an ∼500-fold enrichment within the 

CD3+ T-cell population. These cells were used in the analyses described for freshly isolated 

E−AET 

lymphocytes. Although this population may contain other immature cell types [e.g. immature 

myeloid and NK cell progenitors (6) and IFN-α-producing cells (13)], CD2−/lo T cells were 

unambiguously distinguished from them by gating based on CD3 and CD2 staining. CD3+ 

lymphocytes in the E+AET 

cell fraction (>99.9% CD2+ on reanalysis) are referred to as CD2+ T cells. Similar results were 

obtained with E−AET 

lymphocytes regardless of the lymphocyte source (adult or neonatal). 

 

Freshly separated 

E−AETEA− 

and E+AETEA− 

cells were cloned (one cell per well), in the initial presence of PHA-P (0.5 μg ml−1; Sigma 

Chemical Co.), recombinant IL (rIL)-2 (50 U ml−1), anti-IL-12 mAb and 50-Gy-irradiated 

PBMCs, in medium containing 5% autologous plasma, and maintained after the first week in 

medium containing rIL-2 only. 

 

Cultured CD2−/lo T cells 



 

Homogeneous CD2−/lo T-cell populations were obtained from the 

E−AETEA− 

cell fractions following depletion of residual myeloid, B, and mature NK and CD2+ T cells by 

indirect anti-Ig rosetting (14) or sorting (flow cytometry) with mAb to CD2 (B67.1 + OKT11), 

CD56 (B159.5), NKp46 (9E2, provided by M. Colonna) and HLA-DR (B33.1). The extremely 

low numbers of cells recovered do not allow reanalysis of the purified cells. Even if reanalysis 

were possible, undetectable CD2 may reflect levels of expression below the limit of sensitivity of 

the detection system. Thus, the CD3+ cells obtained after either procedure are referred to as 

CD2−/lo T cells. These cells were cultured in RPMI-1640 medium supplemented with 5% 

autologous plasma, human rIL-2- (50 U ml−1), rIL-4- (10 ng ml−1), IL-12-neutralizing mAb 

C8.6 (5 μg ml−1, cells provided by G. Trinchieri), plate-bound CD3 (OKT3, 5 μg ml−1) and 

soluble CD28 mAb (9.3, 2 μg ml−1). The cells were transferred to a new plate after 3 days, and 

subcultured as needed with IL-2 only, without CD3-mediated stimuli. Cells from the 

E−AETEA− 

fractions, rather than the more rigorously purified CD2−/lo T cells, were used in cultures 

performed in the absence of CD3-mediated stimulation. When indicated, PHA-P, 0.5 μg ml−1, 

was used in combination with CD28 mAb for CD3-mediated stimulation in secondary cultures of 

T cell populations sorted after culture (see below). Similar results were obtained with cultured 

CD2−/lo T cells regardless of the lymphocyte source (adult or neonatal). 

 

Immunofluorescence and cell sorting 

 



The mAbs used for surface phenotyping and cell sorting from cultured cells 

(immunofluorescence, flow cytometry) were CD2 (B67.1, biotin), CD3 [4.1, PE and PE-Texas 

Red (PETR)], CD4 (S3.5, PETR), CD5 (B36.1, biotin and FITC), CD8 (B116.1, biotin and 

FITC), CD45RA (EM56, TriColor) CD45RO (UCHL1, FITC), TCRαβ (BMA031, FITC) and 

TCRγδ (B1, FITC). mAbs produced in our laboratory were directly labeled in-house, the others 

were from Caltag Laboratories (Burlingame, CA, USA) or PharMingen (San Diego, CA, USA). 

Biotin-labeled mAbs were detected with CyChrome– or PE–streptavidin. Thresholds for 

positivity were set in each population based on isotype-matched Ig as control (ref. 8, 9, 15, data 

not shown). Samples were analyzed on an XL-MCL automated analytical flow cytometer and 

sorted on an EPICS Elite flow cytometer (Beckman Coulter, Miami, FL, USA). Listmode data 

were analyzed with the WinMDI Flow Cytometry Application (J. Trotter, The Scripps Research 

Institute, La Jolla, CA, USA). When sorting antigen (Ag)−/lo and Ag+ populations, ∼10% of the 

cells with, respectively, the highest and the lowest fluorescence intensities were excluded. 

Stringency of purification was confirmed on restaining and analysis of cell aliquots immediately 

after sorting (data not shown). Percentages of positive cells are reported after background 

subtraction. 

 

For carboxyfluorescein diacetate succinimidyl ester (CFSE) analysis of proliferation by flow 

cytometry, freshly obtained 

E+AET 

and E−AET 

or cultured CD2−/lo and CD2+ T cells, as indicated, were labeled with CFSE (0.25–0.75 μM, 

107 cells ml−1, 8 min, 37°C; Molecular Probes, Eugene, OR, USA). Identical cell numbers were 



then cultured in a 3-day culture. This time was specifically chosen based on: (i) the question 

asked (i.e. do the freshly obtained cells proliferate under minimal stimulation?) and (ii) the need 

to limit the culture time, since CD2 becomes expressed on cells originally CD2−/lo early during 

culture (9), thus limiting identification of cells corresponding to the original peripheral CD2−/lo 

cells. Cells from identical cultures of CFSE-labeled cells with mimosine (300 μM, Sigma 

Chemical Co.), to inhibit G1–S transition, and of non-labeled cells were used to establish the 0-

division and the maximal limit of resolution of division peaks, respectively (8, 10). The numbers 

of divisions the cells have undergone during culture were defined based on distinct peaks with 

sequentially halving CFSE fluorescence intensity, starting with that of mimosine-treated cells as 

the 0-division peak (8). The reported results have been obtained analyzing identical numbers of 

the cells of interest (i.e. ∼2 × 104 CD3+CD2−/lo or CD3+CD2+ cells, as indicated). 

 

Reverse transcriptase–PCR analysis for pre-TCRα and RAG-2 

 

RNA was extracted from freshly isolated 

E−AETEA− 

and E+AET, 

or the indicated CD2−/lo and CD2+ cultured cell populations from adult and neonatal 

lymphocytes using TRIzol (GIBCO BRL, Gaithersburg, MD, USA); control total human thymus 

RNA was from Santa Cruz Biotechnologies (Santa Cruz, CA, USA). mRNA was reverse 

transcribed using 0.5 μg oligo(dT) and the SuperScript First-Strand Synthesis System (Invitrogen 

Corp., Carlsbad, CA, USA), each according to the manufacturer's instructions. PCRs for pre-

TCRα detection were performed in 25-μl reaction volumes using 1 μl cDNA, 10 pmol of each 



primer and AmpliTaq Gold PCR Master Mix (Applied Biosystems, Foster City, CA, USA). 

Reaction conditions were a 10-min denaturing step, 95°C, followed by 40 cycles of 1 min, 94°C; 

1 min, 65°C, and 2 min, 72°C (pre-TCRα); or 30 cycles of 30 s, 94°C; 30 s, 55°C, and 30 s, 72°C 

(recombination-activating gene 2 [RAG-2] and β-actin control). PCR products were resolved in 

2% agarose gels, stained with ethidium bromide and visualized using the Quantity One gel 

documentation system (Bio-Rad Laboratories, Hercules, CA, USA). The primers used were pTα 

forward 5′-GTCCAGCCCTACCCACAGGTGT-3′, pTα reverse 5′-

CTGGGGGCAGGTCCTGGCTGTAGAAGCCTCTC-3′ [adapted from (16)]; RAG-2 forward 

5′-GAAGCCAGATATGGTCATTCCA-3′, RAG-2 reverse 5′-

AGTCAGGATTGCACTGGAGACA-3′; β-actin forward 5′-

ACACTGTGCCCATCTACGAGGG-3′, β-actin reverse 5′-

ATCATGGAGTTGAAGGTAGTTTCG-3′. 

 

TCR Vβ repertoire 

 

Each of the 26 individual TCR Vβ cDNA families and subfamilies were amplified, from cDNA 

prepared from freshly isolated and cultured CD2−/lo and CD2+ cells from adult and neonatal 

lymphocytes as above, using a panel of 5′-Vβ primers (17) together with a 6-carboxyfluorescein 

(Applied Biosystems) and 3′-Cβ oligonucleotide (18, 19). Internal positive controls for each Vβ 

family segment were a pair of constant region oligonucleotides 5′-Cα and 3′-Cα, tagged with 

4,7,2′,7′-tetrachloro-6-carboxyfluorescein (Applied Biosystems), 0.2 μmol (18, 19). The Vβ and 

Cβ oligonucleotide primers were used each at a 0.5-μmol final concentration in a 50-μl reaction 

mixture. PCR conditions [28 cycles, in order to remain in the linear portion of the reaction (20)] 



were denaturation, 94°C, 30 s; annealing, 60°C, 30 s; extension, 70°C, 45 s. The PCR products 

were resolved in 5% polyacrylamide non-denaturing gels (ABI 377 DNA Sequencer, Applied 

Biosystems). Analysis used GeneScan software (Applied Biosystems) to quantify fluorescent 

peak heights and areas corresponding to each band. The relative abundance of each Vβ chain 

transcript was estimated based on the ratio between the Vβ (experimental) and Cα (internal 

positive control) fluorescent areas for each Vβ gene family. Percent expression of each Vβ gene 

family was calculated relative to the sum (100%) of the ratios of all 26 Vβ RNA (percent 

corrected ratios) as described (21). The average values of two independent PCR performed on 

each cDNA sample for each Vβ gene family were calculated and are reported as mean percent 

corrected ratios. 

Complementarity diversity region 3 length analysis 

 

TCR Vβ cDNAs were amplified as above, with the exception that 40 PCR cycles were 

performed, to maximize the likelihood of detecting all Vβ present in the populations. After 

amplification, each PCR fluorescent product was purified using QIAquick PCR purification Kit 

(Qiagen Inc., Valencia, CA, USA). Each purified sample (2 μl) was mixed with size standard 

(1μl) in 24 μl formamide buffer, heated (95°C, 5 min) and resolved on an ABI Prism 3100 

Genetic Analyzer (PE Biosystem, Wellesley, MA, USA) for 45 min. The Vβ-specific 

amplification resulted in a number of discrete bands (8–10 for each Vβ family, spaced by three 

nucleotides), each corresponding to the abundance of T cells expressing TCR with the defined 

complementarity diversity region (CDR) 3 length. Data analysis used GeneScan 3.7 software (PE 

Biosystem). The proportion of CDR3 of individual lengths within each TCR Vβ family or 



subfamily was calculated as the ratio between the area of each fluorescent peak and the sum of 

the areas of all peaks. 

Cell-mediated cytotoxicity 

 

Cytotoxicity was tested in 4-h 51Cr release assays, using autologous and allogeneic PHA-blasts 

or EBV-transformed B cell lines as target cells. 

Results 

Phenotype of freshly isolated peripheral CD2−/lo T cells 

 

CD3+CD2−/lo T cells have been identified in all adult and neonatal blood samples tested (9). 

They represent <0.1% of the CD3+ T cells but were enriched ∼50-fold in freshly isolated 

peripheral blood lymphocytes (PBLs) partially depleted of 

E+AET 

cells (9). Although CD3− pre-T cells may also be contained within the CD2−/lo cell population, 

no attempt was made to define their existence in the periphery, and the CD3+ cells discussed in 

this report (defined as CD2−/lo or early differentiated T cells) do not correspond to them. 

However, brief consideration was given to CD3+TCR− cells, presumably CD3+ pre-T cells. 

Phenotypic analysis indicated that this CD3+ cell population contained mostly CD4−/loCD8− 

[double negative (DN)] and CD4+hiCD8− [CD4 single positive (SP)] cells, with few 

CD8+hiCD4− (CD8 SP) and CD4+CD8+ [double positive, (DP)] cells (Fig. 1A). The CD2−/lo 

DN T cells contained on an average ∼50% TCRαβ+ cells, with most remaining cells expressing 

TCRγδ (Fig. 1B), except for a small proportion of CD3+TCR− cells which could be reproducibly 



detected only using the two TCR mAbs in combination (Fig. 1A and C). Instead, the CD2+ 

(E+AET) 

T cells contained CD4 SP and CD8 SP cells at the expected 2 : 1 ratio characteristic of peripheral 

T cells, and minimal proportions of DN, DP and TCRγδ+ cells. 

Phenotype of freshly isolated peripheral CD2−/lo T cells. Surface phenotype was analyzed 

(immunofluorescence, flow cytometry) in the 

E−AET 

EA− (E−AET) 

and E+AET 

cells from freshly isolated lymphocytes. (A) CD4 (PETR), CD8 (FITC), CD5 (FITC) and TCR 

(αβ and γδ, FITC) expression within gated CD3+ (PE) CD2− or CD2+ (biotin, detected with SA-

CyChrome) populations (y-axis). Here, and in all pertinent Figures, isotype-matched Ig were 

used as control to set threshold of positivity (data not shown). Proportion of cells (mean ± SD, 

background subtracted) with the phenotype indicated on the x-axis within E−AETCD2− 

(open square) or E+AETCD2+ 

(filled square) T-cell populations. DN (CD4−CD8−), DP (CD4+CD8+), CD4 SP (CD4+CD8−), 

CD8 SP (CD4−CD8+), n = 5 for each; CD5−, n = 4, and TCR−, n = 3; *P < 0.05. (B) TCR and 

CD2 expression in gated CD3+ or CD3+ DN E−AET 

lymphocytes. Representative of two experiments (one neonatal, one adult lymphocyte samples). 

(C) Expression of the indicated differentiation antigen in total (top) and gated CD3+ (middle and 

bottom), CD2−/lo (left, E−AET 

) or CD2+ (right, E+AET 



) lymphocytes (gated populations highlighted in the top panels). Representative of three 

experiments (two neonatal, one adult lymphocyte samples). (D) Pre-TCRα, mRNA expression 

(RT–PCR) in E−AET 

and E+AET 

adult lymphocytes; total thymus as positive control. 
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The CD3+CD2−/lo lymphocytes population contained a CD5−/lo population, mostly DN 

(Fig.1A, right, and C), that was rare, as expected, among the CD2+ T cells. They also contained 

a significant proportion of cells lacking mature TCR (Fig. 1A right). The possibility was tested 

that in the peripheral CD2−/lo T cells, CD3 may also be found associated with a pre-TCR 

complex not recognized by the available anti-TCR mAb and composed of TCRβ and pre-TCRα 

subunits (or the equivalents for γδ T cells). In thymic T cells (22), CD3 is first expressed 

associated with a pre-TCR complex composed of the pre-TCRα and the antigen-binding TCRβ 

chains (23), whereas expression of high CD5 levels, and of the CD4 and CD8 co-receptors, 

occurs only upon successful TCRα chain DNA rearrangement (24). Reverse transcriptase (RT)–

PCR analysis indicated expression of pre-TCRα mRNA in CD2−/lo but not CD2+ lymphocytes 

(Fig. 1D). Further molecular characterization indicated that, unlike pre-Tα and in agreement 

with, and possibly predicted by, previous reports (25, 26), RAG-2 expression was not distinctive 

of the CD2−/lo or CD2+ populations (data not shown). Since IFN-α-producing cells, which may 

express pT-α mRNA (27), may be present as contaminants in the 

E−AET 



(EA−) fraction, we can not formally exclude the possibility that also these cells, and not only, 

possibly, pre-T cells, contribute, in part, to the pTα mRNA detected by RT–PCR in this 

population. 

 

CD45 isoforms expressed in freshly isolated CD2−/lo T cells 

 

The proportions of both CD45RA+CD45RO− and CD45RA+CD45RO+ cells in CD2−/lo T cells 

from freshly purified 

E−AET 

CD3+ T-cell fractions were similar in adult and neonatal PBLs (Fig. 2A). E−AET 

DN T cells, which are predominantly CD2−/lo, were mostly CD45RA+CD45RO− (Fig. 2B). 

Instead, the DP and SP populations contained both CD45RA+CD45RO−lo and 

CD45RA−loCD45RO+ cells (data not shown). As expected, the neonatal E+AET 

CD2+ T cells exhibited naive CD45RA+CD45RO− phenotype (Fig. 2A), while the same 

population in adults included both CD45RA+CD45RO− (naive) and CD45RA−loCD45RO+ 

(effector–memory or antigen experienced) cells (Fig. 2B), but no CD45RA+CD45RO+ cells. 

This phenotype, which, in the thymus, is found almost exclusively in medullary thymocytes (28–

30), was exclusively detectable in the SP peripheral CD2−/lo population. Cells with similar 

phenotype (CD45RA+loCD45RO+/lo) have also been reported early after bone marrow 

reconstitution (31). Altogether, the results establish that freshly isolated peripheral CD2−/lo T 

cells contain subsets with phenotypes reminiscent of those found in developing thymic T cells. 

The CD4 SP cells, especially those expressing CD4 at low density, may represent immature 

cells, or classical CD4 SP mature cells recently developed, in vivo, from the DP cells. 



 

Fig. 2. 
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CD45 isoforms expressed in freshly isolated CD2−/lo T-cells. (A) Expression of CD45RA and 

CD45RO (bottom panel) in gated CD3+CD2−/lo (left, 



E−AET 

) or CD3+CD2+ (right, E+AET 
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(A and B) are representative, respectively, of four and two experiments, each with both neonatal 

and adult lymphocyte samples. 

 

Proliferative potential of freshly isolated CD2−/lo T cells 

 

We tested the possibility that, consistent with the proliferative capability of immature cells, and 

of the type 2 cytokine+ T cells in peripheral blood (10), freshly obtained CD2−/lo T cells might 

have a greater proliferative potential than the corresponding mature CD2+ T cells, being possibly 

capable of proliferation in the absence of overt stimulation. Up to ∼5% of the freshly isolated 

CD2−/lo T cells, but no detectable CD2+ T cells, proliferated in a 3-day culture in the absence of 

exogenously added cytokines, even when mAbs neutralizing IL-2 and IL-15 were added (Fig. 3). 

Moreover, the CD2−/lo T cells proliferated significantly in response to IL-2. Unpublished data 

evaluating proliferation after a 6-day culture in the presence of IL-2 alone indicated that the 

CD2−/lo T cells derived from the originally CD2−/lo T cell population had undergone an 

average number of divisions smaller than those undergone by the T cells in the CD2+ T cell 

cultures. However, the proportion of CD2−/lo T cells that had undergone divisions on days 3 and 

6 of culture with IL-2 alone remained constant, whereas that of the CD2+ T cells was lower on 

day 6 than on day 3. These data indicate that some of the CD2+ T cells that had proliferated died 

(both in culture with IL-2 and more so in the presence of TCR-mediated stimulation), whereas 

the CD2−/lo T cells did not appear to have a net loss of proliferating cells (32). Indeed, in 

cultures with IL-2 alone, their cell numbers increased ∼103-fold over a 2-week period. As 

previously reported (ref. 9, data not shown), these cells maintained phenotypic and functional 

characteristics identical to those of the cells freshly isolated from peripheral blood (e.g. type 2 



cytokine production) with the exception that CD2 became detectable on a proportion of them 

(ref. 9, data not shown). 
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histograms) are reported. Dotted lines: mimosine-treated (right peak) or non-labeled (left peak) 
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population and for CD3+CD2+ cells in the E+AET 

population. Representative of three experiments (one neonatal, two adult lymphocyte samples). 
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Phenotype of cultured CD2−/lo T cells 

 

In culture with IL-2 for up to 1 month after an initial 3-day ‘priming’ in the presence of IL-4, and 

CD3- and CD28-mediated stimulation, the CD3+ cells in the CD2−/lo population maintained 

their original, functionally immature (ref. 9, data not shown) phenotype. Under the same 

conditions during a 2-week culture of 104 freshly purified CD2−/lo T cells, their numbers 

increased ∼104-fold and, consistent with the absolute number of cells capable of proliferating 

under these conditions, we could obtain routinely ∼108 cells. Consistent with our previous 

findings (9), 60 ± 40% of these cells (n = 10) up-regulated CD2 expression during culture. 



However, they remained predominantly DN or CD4 SP (Fig. 4A). Like in freshly isolated T 

cells, CD8 SP cells were found almost exclusively in the CD2+ fraction from these cultures (Fig. 

4A). CD2 is expressed on thymocytes before positive and negative selection, thus before the DP 

stage. Similarly, the DP T cells detected after culture were CD2+. CD3+CD5−/lo (Fig. 4A and 

B) and CD3+TCR− cells (Fig. 4A and C), predominantly CD2− and DN, were also detected in 

proportions similar to those in freshly isolated CD2−/lo T cells. These populations contained 

both αβ and γδ TCR+ cells, with high inter-donor variability (50 ± 40% of TCR+ cells for both, 

n = 5). 

Fig. 4. 

Phenotype of cultured CD2−/lo T-cells. (A) Analyses were performed as in Fig.1(A) on gated 

CD2− (open square) or CD2+ (filled square) CD3+ cells from cultures of homogeneous CD2−/lo 

T-cell populations with rIL-2, rIL-4, IL-12-neutralizing and CD28+CD3 mAb. CD4 versus CD8, 

n = 6; CD5−, n = 10; TCR−, n = 5; *P < 0.05. (B and C) Density plots of the indicated antigens 

within total (B, top); gated CD3+ (B, middle and bottom), CD2− (B, left) or CD2+ (B, right) 

cells; gated CD3+CD4− (C, left) or CD3+CD4+ cells (C, right) in cultured CD2−/lo 

lymphocytes. Representative of three experiments each (two neonatal, one adult lymphocyte 

samples). 
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CD3+ T cells from cultures of CD2−/lo cells from several individuals were predominantly 

CD45RA−loCD45RO+ (data not shown). Like thymocytes with this phenotype, these cells did 

not survive TCR-mediated stimulation, whereas the few CD45RA+CD45RO+ cells present 

survived re-stimulation with low doses CD3 mAb or PHA, which resulted in decreased CD45RO 

expression (data not shown). Altogether, these data support the contention that the phenotype 

and functions of fresh and cultured peripheral blood CD2−/lo T cells are identical. 

Developmental capacity of CD2−/lo peripheral T cell subsets 

 

Given the limited numbers of CD2−/lo T cells obtainable from freshly separated PBL, the ability 

of peripheral CD2−/lo, TCR−, CD5−/lo and DN and DP (Fig. 5A–D, respectively) T cells to 



develop into phenotypically mature T cells was analyzed using subsets purified to homogeneity 

after sorting from the cultured CD2−/lo cells (Fig. 5). In agreement with previous results (9), 

CD2 was detectable in a proportion (20–25%) of the originally CD2−/lo T cells regardless of 

exogenous CD3-mediated stimulation. Consistent with recently induced and submaximal 

expression, the surface CD2 levels were lower than those on the autologous CD2+ T cells 

concomitantly sorted and cultured under identical conditions. After culture, most DP T cells 

became SP (CD4 or CD8), while CD4 SP and CD8 SP T cells maintained their original 

phenotypes. Identical results were obtained regardless of CD3-mediated stimulation in the initial 

culture of the CD2−/lo T cells (data not shown). Also, within the CD3+ population, >48% of the 

TCR− cells became TCR+ regardless of exogenous CD3-mediated stimulation. Only ∼25% of 

the T cells from these cultures expressed CD2 at low levels, whereas ∼40% of the CD3+TCR+ 

cells sorted and cultured in parallel expressed it, mostly at high levels. In other experiments, 

∼40% of the CD3+ TCR− population remained CD5−/lo after a 3-day culture, whereas only 

∼10% of the cells from the TCR+ population exhibited this phenotype (data not shown). A small 

proportion of the CD5−/lo T cells became CD5+ after culture. After a 3-day culture including 

CD3-mediated stimulation, a proportion of the DN T cells became CD4 SP, with minor 

proportions of DP and CD8 SP cells also reproducibly detected (Fig. 5D, bottom). Lower 

proportions of CD4 SP and DP, but higher proportions of CD8 SP cells, were also detected in the 

absence of exogenous CD3-mediated stimulation (Fig. 5D, top). 

Fig. 5. 

Phenotype of developing CD2−/lo T cells. CD2−/lo and CD2+ (A), TCR (αβ and γδ)− and 

TCR+ (B), CD5−/lo (C) and DN, DP, CD4 SP and CD8 SP populations (D, original populations 

highlighted in the top panel) were purified to homogeneity (sorting) from cultured CD2−/lo T 



cells. After a 3-day culture of identical cell numbers with rIL-2 alone (IL-2, A and B, as 

indicated; and D, middle panel) or with rIL-2, PHA-P and CD28 mAb (IL-2 + PHA, A and B, as 

indicated; and in: C; D, bottom panel), surface phenotype was analyzed in gated CD3+ (A; B, 

bottom panel; C, right panel; D) and total lymphocytes (B, top panel; C, left panel). 

Representative of three experiments each (two neonatal, one adult lymphocyte samples). The 

relatively high proportion of CD8 SP T cells, restricted to this blood sample, allows a convincing 

phenotypic definition of these cells, when present. 
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Proliferative potential of CD2−/lo T cell subsets 

 

The above data indicate that the early differentiated peripheral T cells at the distinct 

developmental stages can undergo in vitro a developmental progression similar to that of 

phenotypically similar thymocytes. This is more evident for the DP population. CFSE (Fig. 6) 

and [3H]thymidine incorporation analyses (data not shown) indicated that the difference in the 

average number of divisions in culture with CD3-mediated stimulation versus that in cultures 

without it (IL-2 included in both only to allow cell survival) was greater for the SP than the DP 

and DN cells. SP cells were also more sensitive than DP and DN cells to CD3-mediated cell 

death, as indicated by their lower cell number in cultures despite the higher degree of 

proliferation [see (32) for a thorough explanation]. Cell survival was minimal for any subset in 

culture with CD3-mediated stimulation in the absence of added cytokines. Culture with IL-15 

gave identical results (data not shown). As indicated by increased cell numbers in the absence of 

increased proliferation compared with the no-cytokine condition, IL-7 allowed survival of the 

immature T cells in the absence of IL-2, rather than directly inducing their proliferation, without 

preventing CD3-mediated activation-induced cell death in any subset. The behavior of the 



peripheral SP compared with DN and DP cells appears similar to that of the phenotypically 

homologous lymphocyte subsets in the thymus (i.e. greater proliferative responsiveness to CD3-

mediated stimulation and greater susceptibility to negative selection of the SP thymocytes). 

Fig. 6. 

Proliferative potential of CD2−/lo T cell subsets. Identical cell numbers of CFSE-labeled 

cultured CD2−/lo T cells were cultured for 3 additional days without or with PHA-P and CD28 

mAb, without (diamond) or with added rIL-2 (square) or rIL-7 (triangle). CFSE analysis was 

performed on the gated CD3+ T cell subsets indicated at the left (identical cell numbers 

analyzed). Reported is the proportion of cells (y-axis) that had undergone the respective number 

of divisions (x-axis); in parentheses are the numbers of cells (×104) in each subset after culture 

under each condition. The original cell numbers (×104) were 12.7 (DN), 0.45 (DP), 15.7 (CD4 

SP) and 40.5 (CD8 SP). Representative of three experiments (two neonatal, one adult 

lymphocyte samples). 
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TCR Vβ repertoire of CD2−/lo T cells 

 

All TCR Vβ families (analyzed by semi-quantitative RT–PCR) were represented (complete 

repertoire) in the 

E−AET 

and the E+AET 

populations in freshly isolated adult and neonatal lymphocytes, though in different proportions 

for ∼25% of Vβ families (Fig. 7A). Differences in frequency of Vβ families could potentially be 

muted by contaminating CD2+ T cells, which are ∼25–75% of the E−AET 

population. These differences in a minority of the Vβ families were maintained in the cells from 

cultures of each T cell population purified to homogeneity (CD2−/lo or CD2+) from the same 



donor and cultured under identical conditions that allow proliferation without phenotypic 

changes (Fig. 7B). Based on the very minor fraction of Vβ11+ cells in this analysis, the 

CD3+CD2−/lo cell population mostly contained ‘classical’ T cells, rather than being 

predominantly represented by NKT cells. Because the amount of T cell RNA that can be isolated 

from fresh, purified CD2−/lo T cells is insufficient for CDR3 length analysis, only cultured 

CD2−/lo cells were compared with CD2+ T cells for CDR3 length analysis. Freshly isolated and 

cultured CD2+ T cells had nearly identical distributions of CDR3 lengths in all Vβ families, 

verifying that expansion stimulated with CD3+CD28 mAb minimally affects the distribution of 

CDR3 lengths in Vβ families. CDR3 length analysis of TCR Vβ families in CD2+ and CD2−/lo 

T cells from the same individuals (Fig. 7C) indicated that the differences in TCR Vβ usage 

identified above corresponded to complete, but qualitatively distinct, repertoires in the two cell 

populations. In both neonatal (data not shown) and adult cultured CD2−/lo cells (Fig. 7C), the 

distribution of the relative proportions of TCR with different CDR3 lengths within most Vβ 

families was distinct from that in the autologous CD2+ T cells, with many non-Gaussian. In the 

CD2+ T cells, both cultured and freshly separated, the distribution was instead predominantly 

Gaussian, with a few exceptions in adults. 

 

Fig. 7. 

TCR Vβ repertoire and CDR3 length analysis. (A) TCR Vβ RNA transcript expression was 

analyzed in freshly isolated EAET (white) and autologous \batchmode 
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\(\mathrm{E}_{\mathrm{AET}}^{{+}}\) \end{document} (black) adult (top) and neonate 



(bottom) lymphocytes, or (B) adult CD2−/lo T cells (white) and autologous CD2+ T cells (black) 

after cultures under identical conditions. For each TCR Vβ gene family (x-axis), the average 

value from two independent PCRs was calculated and expressed as corrected ratio (y-axis). (C) 

CDR3 length of all the TCR Vβ families and subfamilies was analyzed in cultured CD2−/lo, 

cultured \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} 
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\(\mathrm{E}_{\mathrm{AET}}^{{+}}\) \end{document} lymphocytes (as indicated) from two 

individual adults. The proportions (y-axis) of CDR3 of individual lengths (x-axis, relative 

nucleotide number) are reported for eight randomly chosen TCR Vβ gene families. 

Open in new tabDownload slide 

 

TCR Vβ repertoire and CDR3 length analysis. (A) TCR Vβ RNA transcript expression was 

analyzed in freshly isolated EAET (white) and autologous 

E+AET 

(black) adult (top) and neonate (bottom) lymphocytes, or (B) adult CD2−/lo T cells (white) and 

autologous CD2+ T cells (black) after cultures under identical conditions. For each TCR Vβ 

gene family (x-axis), the average value from two independent PCRs was calculated and 

expressed as corrected ratio (y-axis). (C) CDR3 length of all the TCR Vβ families and 

subfamilies was analyzed in cultured CD2−/lo, cultured E+AET 

and freshly separated E+AET 



lymphocytes (as indicated) from two individual adults. The proportions (y-axis) of CDR3 of 

individual lengths (x-axis, relative nucleotide number) are reported for eight randomly chosen 

TCR Vβ gene families. 

 

TCR Vβ repertoire and CDR3 length analysis. (A) TCR Vβ RNA transcript expression was 

analyzed in freshly isolated EAET (white) and autologous \batchmode 

\documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} 

\usepackage{amsmath} \pagestyle{empty} \begin{document} 

\(\mathrm{E}_{\mathrm{AET}}^{{+}}\) \end{document} (black) adult (top) and neonate 

(bottom) lymphocytes, or (B) adult CD2−/lo T cells (white) and autologous CD2+ T cells (black) 

after cultures under identical conditions. For each TCR Vβ gene family (x-axis), the average 

value from two independent PCRs was calculated and expressed as corrected ratio (y-axis). (C) 

CDR3 length of all the TCR Vβ families and subfamilies was analyzed in cultured CD2−/lo, 

cultured \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} 

\usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} 

\(\mathrm{E}_{\mathrm{AET}}^{{+}}\) \end{document} and freshly separated \batchmode 

\documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} 

\usepackage{amsmath} \pagestyle{empty} \begin{document} 

\(\mathrm{E}_{\mathrm{AET}}^{{+}}\) \end{document} lymphocytes (as indicated) from two 

individual adults. The proportions (y-axis) of CDR3 of individual lengths (x-axis, relative 

nucleotide number) are reported for eight randomly chosen TCR Vβ gene families. 

 



In spite of the skewed repertoire, overt reactivity of the CD2−/lo T cells to hematopoietic self-

antigen was excluded at the population level based on the lack of cytotoxicity of bulk 

populations of these cells against mitogen-activated or EBV-transformed autologous 

lymphoblasts even after CD3-mediated priming (data not shown). However, preliminary 

evidence indicates the presence of clones with anti-self-reactivity in the CD2−/lo but not the 

CD2+ T-cell population (Table 1). Further analysis is needed to exclude potential autoreactivity 

at a clonal level to other non-hematopoietic tissue antigens. 

Table 1. 

Autoreactivity of clonal CD2−/lo versus CD2+ T cell populations 

CD3+ clones generated from the CD2−/lo and the CD2+ T cell populations from two individual 

adult donors were tested for cytotoxicity against autologous and allogeneic EBV-transformed B 

cells lines (donor 1) or PHA-blasts (donor 2). Reported are the numbers of cytotoxic clones over 

the total number of clones tested. By microscopic examination, all clones were similar in size. 

Specific lysis was <10% for all clones considered negative for cytotoxicity. For all clones 

considered positive, specific lysis was >30%. CD3-redirected cytotoxicity by the total CD2−/lo 

and CD2+ T cell populations (both after culture under conditions maintaining their original 

composition and functions) was similar (∼40% cytotoxicity at the 25:1 effector:target ratio 

tested). 



 

Donor 

 

Population 

 

Target cells 

 

 

  

Autologous 

 

Allogeneic 

 

 

1  CD2−/lo  9/72  3/72   

  CD2+  0/16  0/16   

2  CD2−/lo  4/101  3/101   

 

  

CD2+ 

 

  

0/101 

 

  

6/101 

 

  

 

 

Discussion 

 

We show that human peripheral CD2−/lo T cells, representing <0.1% of the CD3+ T cells in 

PBLs from all adult and neonatal individuals tested, contain subsets phenotypically and 

functionally similar to those found in developing early differentiated thymocytes, including 

CD3+TCR−, presumably pre-TCRα+, cells. However, formal evidence for pre-Tα expression by 

the CD3+TCR− cells is required to exclude the scenario that all of the pre-Tα mRNA detected 

may have derived from minor contaminant IFN-α-producing cells. The CD2−/lo T cells can 

proliferate ex vivo independently from exogenous stimulation, and respond to CD3-mediated 

stimulation with significantly greater proliferation than the autologous mature CD2+ cells. This 

is, to our knowledge, the first report identifying extrathymic T-cell populations that, 



phenotypically reminiscent of early lymphocytes developing in the thymus, can be induced to 

differentiate to mature T cells (CD4 or CD8 SP cells) in vitro in the absence of a thymus-

equivalent environment. Other leukocytes with defined biological role are present in peripheral 

blood in undetectable proportions [e.g. CD34+ cells, undetectable, <0.1% (33); IFN-α-producing 

cells, ∼0.01% (34)]. The fact that the CD2−/lo T cells also represent <0.1% of the peripheral T 

cells can not be taken to exclude a possible in vivo role for these cells in physiologic or 

pathologic conditions. In this respect, it is noteworthy that, together with CD34+ progenitors 

(35), T cells expressing very early developmental markers (e.g. TdT) are characteristically 

detectable in atopic dermatitis skin infiltrates (36). Also, the present data confirm and extend our 

previous reports indicating that at least a proportion of the T cells capable solely of type 2 

cytokine production are early differentiated highly proliferative T lymphocytes (9, 10), and 

support a possible manipulation of this human peripheral T-cell population for therapeutic 

interventions. 

 

The phenotypic and developmental similarities between peripheral CD2−/lo T cells and 

thymocytes make them possible progenitors to T cells undergoing extrathymic maturation, and 

potential contributors to maintain the peripheral naive T cell pool. It is possible that their 

contribution predominates later in life, when the thymic output is mostly lost. Earlier in life, the 

thymus may serve as a central site to efficiently organize the rapid generation of new T cells, 

providing a self-contained, macrophage-rich environment to accommodate the massive cell death 

occurring during thymic development. The origin (thymus dependent or independent) of the 

peripheral CD2−/lo T cells, and their relationship to other ‘extrathymic’ subsets [e.g. the gut-

associated TCRγδ+ (37) and CD8αα+ T cells (38), or the T cells with immature phenotype in 



atopic skin infiltrates (36)] need to be established. The possibility that at least part of the 

CD2−/lo T cells may migrate to peripheral lymph nodes is suggested by preliminary evidence 

indicating that a variable fraction of these cells are CD62L+ (our unpublished results). 

 

The TCR repertoires of the early differentiated and the mature TCRαβ+ peripheral T cells are 

different. Although the limited numbers of freshly separated CD2−/lo T cells prevented 

repertoire (CDR3) analysis immediately after separation, it seems probable that major changes 

did not occur under the culture conditions used, because the repertoire of the CD2+ T cells was 

very similar to that of the freshly separated cells cultured under identical conditions. The 

distribution of CDR3 with different lengths in the neonatal CD2−/lo T cells, mostly naive and 

foreign antigen inexperienced, was skewed compared with that in the CD2+ T cells. In the latter 

it was for most part Gaussian, as expected of a mature, naive T cell population. This may reflect 

differences in ‘education’ of the two T-cell pools, depending on positive and negative selection. 

Most mature neonatal blood CD2+ T cells have likely undergone thymic education. Instead, the 

source(s) of the CD2−/lo T cells remains unknown, leaving it unclear whether they have 

undergone selection (positive or negative) in the thymus, or in alternative location(s) (e.g. bone 

marrow or blood itself). However, their presence in relatively higher proportions among the T 

cells in granulocyte colony-stimulating factor-mobilized peripheral blood (M.J.L. and B.P., 

unpublished results) suggests that at least a proportion of them may derive directly from the bone 

marrow. ‘Education’ of the peripheral early differentiated cells, if it occurs at some point, may 

differ from that occurring in the thymus. For example, the former may have undergone some 

degree of positive but not negative selection, or the efficiency of selection and self-antigen 



expression may differ between the thymic and the possible extrathymic environments 

responsible for education. 

 

Our observations have implications to future avenues of research, like definition of whether the 

observed differences in the TCR Vβ repertoire correspond, in part, to expression of ‘unique’ 

TCR specificities, and the role that differences in selection may play to shape the repertoire of 

the early differentiated versus the mature peripheral T cells. Potential autoreactivity of the early 

differentiated cells to specific tissue antigen, for which preliminary evidence has been presented, 

may be expected if negative selection is less efficient in the periphery than in the thymus, and 

may provide insight into the origin of T cell contributions to autoimmune disorders. Study of the 

same cells may help define how positive and negative selections occur outside the human thymic 

microenvironment. It may also help understanding the origin of acute T-cell leukemias with 

phenotype similar to that of developing thymocytes, or of the peripheral CD4+CD8+ DP T cells 

described in rare pathological conditions [reviewed in (39)]. 

 

The peripheral blood CD2−/lo T cells are low in numbers, but can rapidly undergo extensive 

proliferation ex vivo in response to CD3-mediated stimulation, routinely resulting in large 

numbers of these cells after ex vivo cultures started from ∼100 ml of blood. Like the freshly 

separated cells, those derived from their cultures produce predominantly type 2 cytokines (ref. 9, 

data not shown), and can be readily induced to mature, losing the ability to produce these 

cytokines as they gain that to produce IFN-γ and finally IL-10 (9). Both proliferation and 

functional maturation can occur, in the absence of exogenous CD3-mediated stimulation, in 

response to IL-2 (or IL-15) or monokines (IL-12+IL-15+IL-18+IFN-α), respectively (9). Thus, 



the CD2−/lo T cells appear to constitute a useful cell population for novel immune therapeutic 

approaches independently from their likely but yet-to-be-defined physiological role. Their 

collection and culture before myeloablation for stem cell or bone marrow engraftment for 

treatment of tumors or genetic diseases would allow returning them (genetically manipulated or 

not) to patients, providing them with an autologous T-cell population that can readily expand and 

mature, thus possibly shortening the time for immune reconstitution. Given their predominant 

type 2 cytokine profile (9), they may facilitate the development of other immune cell 

components or increase efficiency of hematopoiesis. Accordingly, IL-4, IL-5 and IL-13, 

granulocyte monocyte colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α, 

all produced by these cells, contribute to the generation, mobilization and survival of various 

hematopoietic cell types, including granulocytes and monocytes, and thus aid reconstituting 

hematopoiesis and host defenses. Early differentiated T cells may also contribute to protect 

against pathogens directly, via cells expressing TCR either ‘unique’ to this population or over-

represented compared with the mature cells. Depending on differences in the selection process, 

they may contain cells with anti-tumor reactivity absent in the mature population. This is a likely 

possibility when tumor-associated antigens corresponding to differentially expressed self-

antigens probably have induced deletion of the tumor-reactive mature T cells. 

 

T cells with ‘unique’ specificities may also be harmful. T cells potentially reacting to self-

antigens may accumulate and, once adoptively transferred to autologous donors after ex vivo 

culture, their increased numbers might contribute to autoimmunity, especially if they do not 

receive further peripheral ‘education’ leading to their deletion. Likewise, dysregulation of the 

peripheral early differentiated cells may contribute to the onset of autoimmunity. This would not 



be the expected case in healthy individuals because, given the extremely low numbers of 

peripheral CD2−/lo T cells, the potentially self-reactive cells may be present at too low 

frequency to be effective, or may be deleted by yet-to-be characterized peripheral negative 

selection processes before being able to elicit clinically apparent anti-self-responses. However, if 

self-reactive T cells are detected among the CD2−/lo T-cell population, these can be manipulated 

to delete them or replaced, likely with similar therapeutic efficacy, with immature 

CD161+CD56− NK cells, which also produce IL-5, IL-13, GM-CSF and TNF-α (8). Thus, in the 

same endeavor, ex vivo expanded autologous immature NK cells may also be beneficial, and 

especially indicated in cases of T cell leukemias, where reconstitution with autologous early 

differentiated normal T cells is likely impossible, unless they can be distinguished from the 

leukemic ones. 
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