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V.P. Burichenko and A.A. Makhnev have found intersection arrays of distance-regular graphs with A = 2,
w > 1, having at most 1000 vertices. FEarlier, intersection arrays of antipodal distance-regular graphs
of diameter 3 with A\ < 2 and u = 1 were obtained by the second author. In this paper, the possible
intersection arrays of distance-regular graphs with A = 2 and the number of vertices not greater than
4096 are obtained.
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Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph
I, we denote by I';(a) the subgraph induced by I' on the set of all vertices, that are at a distance
i from a. The subgraph [a] = T'1(a) is called the neighborhood of the vertez a.

We denote by k, the degree of a vertez a, i. e. the number of vertices in [a]. A graph T is
said to be regular with degree k, if k, = k for every vertex a of I'. A graph I is called a strongly
regular graph with parameters (v, k, A\, ), if T is regular with degree k on v vertices, in which
every edge is placed in precisely A triangles, and for any two non-adjacent triangles and any
non-adjacent vertices a,b one has |[a] N [b]| = p. A graph with a diameter d is called antipodal,
if the relation on the set of its vertices — to coincide or to be at a distance d — is an equivalence
relation. Classes of this relation are called the antipodal classes.

If vertices u,w are at a distance ¢ in T', then we denote by b;(u, w) (by ¢;(u,w)) the number
of vertices in the intersection of T';11(u) (of T';—1(u)) with [w]. A graph I' of diameter d is said
to be distance-reqular with the intersection array {bo,b1,...,ba—1;¢1,...,ca}, if the values of
bi(u, w), ¢;(u, w) do not depend on the choice of vertices v and w separated by a distance 4 in T,
and are equal to b;, ¢; for i =0, ...,d. Let a; = k — b; — ¢;. Note that a distance-regular graph is
amply regular with k = by, A =k — b; — 1 and u = ¢, by definition ¢; = 1. Further, we denote
by pi;(x,y) the number of vertices in the subgraph I';(x) N T;(y) for vertices z,y that are at a
distance [ in the graph I". In a distance-regular graph, the numbers plij (z,y) are independent of
the choice of the vertices z,y; they are denoted by pﬁj and are called the intersection numbers
of the graph I'.

V.P.Burichenko and A.A.Makhnev found [1] the intersection arrays for distance-regular
graphs with A = 2, g > 1, such that the number of vertices is not greater than 1000.
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Note here that the arrays {9,6,3;1,2,3} of Hemming’s graph H(3,4) with v = 64,
and {19,16,15,9;1,2,3,4} of Hemming’s graph H(4,4) with v = 256, and the array
{45,42,1;1,14,45} were omitted from the consideration of [1]. However, there is an additional
array {13,10,7;1,2,7} (according to [2], a graph with such an intersection array should not ex-
ist). In [3], there were found intersection arrays for antipodal distance-regular graphs of diameter
3 with A < 2 and p = 1. In the present paper, the possible intersection arrays of distance-regular
graphs with A = 2 and 4096 vertices at most are obtained.

Theorem. Let I" be a distance-reqular graph with A = 2, u = 1, having 4096 vertices at most.
Then T' has one of the following intersection arrays:

(1) {21,18;1,1} (v = 400);

(2) {6,3,3,3;1,1,1,2} (T is a generalized octagon of order (3,1), v =160), {6,3,3;1,1,2} (T is
a generalized hexagon of order (3,1), v =>52), {12,9,9;1,1,4} (T is a generalized hexagon
of order (3,3), v=364), {6,3,3,3,3,3;1,1,1,1,1,2} (T is a generalized dodecagon of order
(3,1), v = 1456);

(3) {18,15,9;1,1,10} (v =14 184+ 270 + 243 = 532, T'3 is a strongly regular graph);
{21,18,12,4;1,1,6,21} (v = 1+ 21 + 378 + 756 + 144 = 1300, g, = 0).

Corollary. Let I' be a distance-regular graph of diameter greater than 2, with A = 2, and having
at most 4096 vertices. Then one of the following assertions holds:

(1) T is a primitive graph with the intersection array
{6,3,3;1,1,2}, {9,6,3;1,2,3}, {12,9,9;1,1,4}, {15,12,6;1,2,10}, {18,15,9;1, 1,10},
{19,16,8;1,2,8}, {24,21,3;1,3,18}, {33,30,15;1,2,15}, {35,32,8;1,2,28},
{42,39,1;1,1,42}, {51,48,8;1,4,36};

(2) T is an antipodal graph with u = 2 and the intersection array
{2r+1,2r —2,1;1,2,2r + 1}, r € {3,4, ..., 44} — {10, 16, 28, 34,38} and v = 2r(r + 1);

(3) T is an antipodal graph with p > 3 and the intersection array
{15,12,1;1,4, 15}, {18,15,1;1,5,18}, {27,24,1;1,8,27}, {35,32,1;1,4, 35},
{45,42,1;1,6,45}, {42,39,1;1, 3,42}, {63,60,1;1,4,63}, {75,72,1;1,12,75},
{99,96,1;1,4,99}, {108,105,1;1, 5,108}, {143,140,1;1,20, 143}, {147,144, 1;1, 16,147},
{171,168,1;1,12,171};

(4) T is a primitive graph with the intersection array
{6,3,3,3;1,1,1,2}, {19,16,15,9;1,2,3,4}, {21,18,12,4;1,1,6, 21},
{15,12,9,6,3;1,2,3,4,5}, {6,3,3,3,3,3;1,1,1,1,1,2}, {18,15,12,9,6,3;1,2,3,4,5,6}.

We note that only arrays of some generalized polygons, Hemming’s graphs H(n,4), two
graphs with p = 1, the array {33,30,15;1,2,15}, and arrays of antipodal graphs of diameter 3
have been added to the list of Burichenko and Makhnev.

Now we prove the Theorem. Let I' be a distance-regular graph of diameter d with A = 2,
p =1, having 4096 vertices at most. Let a be a vertex in the graph I" and k; = |I';(a)|. Then [a]
is the union of ¢ + 1 isolated 3-cliques, k = 3(¢ + 1) and ¢ < 20. Otherwise, v > 1 + 66 + 66 - 63,
a contradiction.

Lemma 1. The following assertions hold:
(1) if the diameter of T is 2, then I possesses the parameters (400,21,2,1);

(2) if T is a generalized 2n-gon, then T has the intersection array from the Corollary.
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Proof. If the diameter of ' is equal to 2, then, according to [5], ' has the parameters
(400,21,2,1). Assume that the diameter of I' is greater than 2.

Let T" be a regular almost n-gon. Then s = 3, and in accordance with [4, Theorem 6.4.1] we
have b, = k — 3¢; for i = 0,1,...,d — 1, k > 3¢y, here n = 2d if k = 3¢g4, and n = 2d + 1 if not.
If A is a pointwise graph of a generalized polygon of order (s,t), then k; = s't*~1(t +1)/c;. In
the case of n = 6, the number of its vertices is (s+1)(s*t?+ st +1). Therefore v = 4(9¢* + 3t +1)
and t < 10. If ¢ > 1, then, in view of [4, Theorem 6.5.1], the number st is a square, hence ¢t = 3.
If n = 8 and t > 1, then, according to [4, Theorem 6.5.1], the number 2st is a square, and so
t > 6 and v > 4096, a contradiction. If n =12, thent=1andv=1+6+ 18+ --- =1456. O

Lemma 2. Let I’ be not a generalized 2n-gon. Then the following assertions hold:
(1) if the diameter of T is 3, then T has the intersection array {18,15,9;1,1,10};
(2) if the diameter of T' is greater than 4, then k < 45.

Proof. Let the diameter of I' be equal to 3.

If k = 63, then I has the intersection array {63,60, bo; 1,1, c3}, ba < 4 and c3 divides 33140b,.
In any case, there is no valid intersection array. In a similar way one considers the cases 57 <
k < 30.

If k = 27, then T has the intersection array {27,24,bs;1,1,c3}, c3 divides 3*8by. Here arise
interesting intersection arrays {27,24,8;1,1,16}, v = 1000 with integer eigenvalues 7, 2, —5, but
2 and —5 have fractional multiplicity, and {27,24,4;1,1,24}, v = 784 with integer eigenvalues
6, —1, —5, where 6 and —5 have fractional multiplicity. In all cases, there is no admissible
intersection array.

If k = 24, then I' has intersection array {24,21,b9;1,1,c3}, c3 divides 3256b,. Interesting
intersection array {24,21,11;1,1,18}, v = 837 with integer eigenvalues 6, —3, —7 arise, but 6
and —7 have fractional multiplicity, and there is also {24,21,7;1,1,18}, v = 725 with integer
eigenvalues 6, —1, —5, but 6 and —5 have fractional multiplicity. In any case, there is no
admissible intersection array.

If k = 21, then T has the intersection array {21, 18,b2;1,1,c3}, c3 divides 3314by. There arises
an interesting intersection array {21,18,10;1,1,12}, v = 715 with integer eigenvalues 6, —1, —5,
but —1 and —5 have fractional multiplicity. In any case, there is no admissible intersection array.

If k = 18, then T has the intersection array {18,15,b2;1,1, c3}, c3 divides 3310b,. There arise
interesting intersection arrays {18,15,13;1,1,6}, v = 874 with integer eigenvalues 6, —1, —5,
having fractional multiplicity, {18,15,5;1,1,18}, v = 364 with integer eigenvalues 5, —3, —6,
but 5 and —6 have fractional multiplicity, and the array {18,15,9;1,1,10} with the spectrum
18, (1++1/105)/2171, —1189 (1 —/105)/2'7. There are no other admissible intersection arrays.

If k = 15, then T has the intersection array {15,12,b2;1,1,c3}, c3 divides 3220b,. There arise
interesting intersection arrays {15,12,8;1,1,10}, v = 340 with integer eigenvalues 5, —2, —5,
but where 5 and —2 have fractional multiplicity, and {15,12,6;1,1,10}, v = 304 with integer
eigenvalues 5, —1, —4, but 5 and —4 have fractional multiplicity. In any case, there are no
admissible intersection arrays.

If k = 12, then T has the intersection array {12,9,b2;1,1,c3}, c3 divides 334by. There arise
interesting intersection arrays {12,9,3;1,1,6}, v = 175 with integer eigenvalues 5, 2, —3, but 5
and —3 are with fractional multiplicity, and {12,9,1;1,1,12}, v = 130 with integer eigenvalues
4, —1, =3, but 4 and —3 have fractional multiplicity. In any case, there are no admissible
intersection arrays.

If k = 9, then T has the intersection array {9,6,b2;1,1,c3}, c3 divides 32b,. There arises an
interesting intersection array {9,6,4;1,1,6}, v = 100 with integer eigenvalues 4, —1, —3, but 4
and —3 have fractional multiplicity. In any case, there are no admissible intersection arrays.
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If k = 6, then T has the intersection array {6,3,bs;1,1,c3}, c3 divides 322b,. An interesting
intersection array {6,3,1;1,1,6}, v = 28 with integer eigenvalues 3, —1, —2 arises here, but 3
and —2 have fractional multiplicity. In any case, there are no admissible intersection arrays.

Assertion (1) is proved.

Let now the diameter of I' be greater than 4. Then b; > ¢5_; and k3 > ko. It follows that
4096 > v > 2(1 + k + k(k — 3)), and taking into account the divisibility of k& by 3, we see that
k < 45. The Lemma is proved. O

Let the diameter of I be greater than 3, and I" be not a generalized 2n-gon. Considering ad-
missible intersection arrays with A = 2 from [4], we obtain only the array {21,18,12,4;1,1,6,21}.
The Theorem is thus proved. o

Let us prove the Corollary. If I' is not an antipodal graph of diameter 3, then considering
admissible intersection arrays with A = 2 from [4], we obtain only the arrays from the Corollary.

Lemma 3. If " is an antipodal graph of diameter 3 with A = p = 2, then I' has the intersection
array {2r +1,2r — 2,1;1,2,2r + 1}, r € {3,4, ..., 44} — {10, 16, 28, 34, 38}.

Proof. By the assumption, I" has the intersection array {2r + 1,2r — 2,1;1,2,2r + 1} and
v = r(2r + 2) vertices. If r > 45, then v > 445 - 23, a contradiction with v < 4096. In view
of [4, Proposition 1.10.5], if r is even, then k = 2r + 1 is the sum of squares of two integers,
therefore r € {3,4,...,44} — {10, 16, 28, 34, 38}. The Lemma is proved. |

In Lemmata 4-9 it is supposed that I is an antipodal graph of diameter 3 with A = 2 < p.
Therefore, I" has the spectrum k', n/, —1%, —m?, where n, —m are integers, that are the roots of
the equation 22 — (A —p)r—k =0, f =m(r—1)(k+1)/(m+n), g =n(r—1)(k+1)/(m+n) and
r=(k+p—3)/u. If r =2, then I is Taylor’s graph and p = k — 3. In this case, k =6, n = 2,
m = 3, a contradiction with the fact that f = 3.7/5. Consequently, r > 2, and the condition
qg’g > 0 gives m < n2.

Lemma 4. If 4 < 5, then I' has one of the following intersection arrays:
(1) {42,39,1;1,3,42};
(2) {4u? —1,4u? —4,1;1,4,4u® — 1}, u € {2,3,4,5};
(3) {18,15,1;1,5,18} or {108,105,1;1,5,108}.

Proof. Let p=3. Then 4k +1 = (2n+1)?, and so, k =n(n+1), m=n+1 and r = k/3. If
n = 3s, then f = (35 +1)(3s% +5—1)(9s> +3s+1)/(6s + 1). In this case, (6s+ 1,952 +3s+1)
divides 3 and (6s + 1,3s% + s — 1) = (6s + 1, s — 2) divides 13, therefore, s = 2 and I" has the
intersection array {42,39,1;1,3,42}.

If n = 3s—1, then f = 35(3s> —s—1)(9s2—3s+1)/(6s—1). In this case, (6s—1,9s% —3s+1)
divides 3 and (6s—1,3s>—s—1) = (6s—1,s+2) divides 13, consequently, s = 11, a contradiction
with the fact that 5 does not divide 33 - 351 - 1057.

Let p=4. Thenr = (k+1)/4, k+1=4u? and so, k = 4u®> -1, n =2u—1 and m = 2u+ 1.
Further, f = (2u + 1)4u?(u?® — 1)/(4u), g = (2u — )u(u® — 1) and v = 4u* < 4096, therefore, I'
has the intersection array {4u? — 1,4u? —4,1;1,4,4u? — 1}, u € {2,...,5}.

Let 4 =>5. Then r = (k+2)/5, 4k +9 = (2u+ 1)?, and hence, k = u®> +u—2,n = u—1 and
m = u+ 2. Further, f = (u+2)((u® +u)/5 —1)(u? + u—1)/(2u+ 1), (2u + 1,u + 2) divides 3
and (u? +u—1,2u+1) = (u — 2,2u + 1) divides 5.

If u = 5s, then (10s+ 1,552 4+ s —1) = (10s+ 1, s —2) divides 21. In this case, 10s + 1 divides
63, therefore, s = 2 and T" has the intersection array {108,105, 1;1,5,108}.

If w = 5s — 1, then (10s — 1,552 — s — 1) = (10s — 1, s + 2) divides 21. In this case 10s — 1
divides 63, hence s = 1, and T has the intersection array {18,15,1;1,5,18}. m]

Lemma 5. If 6 < u < 8, then I' has one of the following intersection arrays:
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(1) {45,42,1;1,6,45};
(2) {27,24,1:1,8,27}.

Proof. Let p = 6. Then r = (k+3)/6, k +4 = (2u + 1)?, and so, k = 4u? + 4u — 3,
n =2u—1and m = 2u + 3. Further, f = (2u + 3)(2u? + 2u — 1)((4u® + 4u)/6 — 1)/(2u + 1),
(2u + 1,4u? + 4u — 2) = (2u + 1, 2u — 2) divides 3.

If u = 3s, then f = (65 +3)(185% + 125 —2)(6s% +2s —1)/(6s+1). In this case, (6s+ 1,652 +
25 —1) = (6s+ 1,5 — 1) divides 7, therefore 6s + 1 divides 21, s = 1 and I" has the intersection
array {45,42,1;1,6,45}.

If u=3s—1, then f = (6s + 1)(18s% — 65 — 1)(65%2 — 25 — 1)/(6s — 1). In this case
(6s — 1,652 —2s —1) = (6s — 1,s + 1) divides 7 and 6s — 1 divides 21, a contradiction.

Let p = 7. Then r = (k+4)/7, 4k + 25 = (2u + 1), hence k = u?> + u — 6, n = u — 2 and
m = u+3. Further, f = (u+3)((u® +u—2)/7—1)(v* +u—5)/(2u+1), (2u+1,u + 3) divides
5and (2u+ 1,u? +u —5) = (2u+ 1,u — 5) divides 11.

If u="7s+1, then (145 +3,7s? +3s — 1) = (14s + 3, 3s — 2) divides 37. In this case, 14s + 3
divides 5 - 11 - 37, a contradiction.

If u = 7s + 5, then (14s + 11,752 + 11s + 3) = (14s + 11,11s + 6) divides 37. In this case
14s 4 11 divides 5 - 11 - 37, a contradiction.

Let u = 8. Then r = (k+5)/8, k+9 = 4u?, therefore k = 4u®> -9, n = 2u—3 and m = 2u+3.
Further, f = (2u + 3)((u? — 1)/2 — 1)(u? — 2)/u, (u,2u + 3) divides 3 and (u? — 2,u) divides 2.
Consequently, u = 25+ 1, (25 + 1,252 + 25 — 1) divides 3 and 25+ 1 divides 9, and so, s = 1 and
" has the intersection array {27,24,1;1,8,27}. m]

Lemma 6. If9 < p < 11, then there is no admissible intersection array.

Proof. Let u = 9. Then r = (k + 6)/9, 4k + 49 = (2u + 1)2, therefore k = u? + u — 12,
n=u—3and m = u+4. Further, f = (u+4)(v? + u — 11)((v* + u —6)/9 — 1)/(2u + 1),
(2u + 1,u +4) divides 7, and (2u + 1,u* +u — 11) = (2u + 1,u — 22) divides 45.

If u=9s+2, then (185 + 5,952 +5s — 1) = (185 + 5,55 — 2) divides 61. In this case, 185+ 5
divides 35 - 61, a contradiction.

If u=9s — 3, then (185 — 5,952 — 55 — 1) = (185 — 5,55 + 2) divides 61. In this case, 185 — 5
divides 35 - 61, a contradiction.

Let = 10. Then r = (k+7)/10, k+ 16 = (2u+ 1), therefore k = 4u? +4u — 15, n = 2u—3
and m = 2u+5. Further, f = (2u+5)(2u?+2u—7)((2u?+2u—4)/5—1)/(2u+1), (2u+1,2u+5)
divides 4, and (2u + 1, 2u? + 2u — 7) divides 15.

If u =55+ 1, then (10s+3,10s? + 65 — 1) = (10s + 3,3s — 1) divides 19. In this case, 10s + 3
divides 57, a contradiction.

If u = 55+ 3, then (10s+7,10s% + 145 +3) = (10s+ 7, 7s +3) divides 19. In this case, 10s+7
divides 57, s = 5, u = 28, a contradiction with v < 4096.

Let = 11. Then r = (k + 8)/11, 4k + 81 = (2u + 1)?, therefore k = u? + u — 20, n = u — 4
and m = u+ 5. Further, f = (u+5)((v? +u —12)/11 = 1)(u® +u—19)/(2u+1), (2u+ 1,u+5)
divides 9 and (u? +u — 19,2u + 1) = (u — 38,2u + 1) divides 77.

If u =115+ 3, then (225 +7,11s2 +7s — 1) = (22547, 7s — 2) divides 93, and 22s + 7 divides
27 -7 - 31, a contradiction with the fact that v < 4096.

If u = 11s — 4, then (225 — 7,11s% — 7s — 1) = (22s — 7,7s + 2) divides 93, and so, 22s — 7
divides 27 - 7 - 31, that contradicts with v < 4096. a

Lemma 7. If 12 < p < 14, then T has either the intersection array {75,72,1;1,12,75} or the
intersection array {171,168,1;1,12,171}.

Proof. Let u = 12. Then r = (k +9)/12, k + 25 = 4u?, therefore k = 4u? — 25, n = 2u — 5
and m = 2u + 5. Further, f = (2u + 5)((u? — 4)/3 — 1)(u? — 6)/u, (2u + 5,u) divides 5, and
(u? — 6,u) divides 6.
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If u=3s+1, then (3s + 1,352 + 25 — 2) = (35 + 1,5 — 2) divides 7 and 3s + 1 divides 70,
hence s = 2 and T has the intersection array {171,168,1;1,12,171}.

If u=3s—1, then (35 — 1,352 — 25 — 2) = (35 — 1, s + 2) divides 7 and 3s — 1 divides 70, and
so, s = 2 and I has the intersection array {75,72,1;1,12,75}.

Let u = 13. Then r = (k+10)/13, 4k + 121 = (2u+1)?, therefore k = v> +u— 30, n =u—5
and m = u+ 6. Further, f = (u+6)((u? +u —20)/13 — 1)(u® +u —29)/(2u+1), (2u+ 1,u + 6)
divides 11, and (2u + 1,u? +u — 29) = (2u + 1,u — 58) divides 117.

If u = 135 +4, then (265 +9,13s2+9s—1) = (265 +9,9s — 2) divides 133 and 26s + 9 divides
99 - 133, a contradiction with that v < 4096.

If u =135 — 5, then (265 — 9,13s% — 9s — 1) = (265 — 9, 5 + 2) divides 61, and 26s — 9 divides
99 - 61, a contradiction with v < 4096.

Let 4 = 14. Then r = (k + 11)/14, k + 36 = (2u + 1)?, therefore k = 4u? + 4u — 35,
n=2u—>5and m = 2u+7. Further, f = (2u+7)((2u?+2u—12)/7—1)(2u? +2u—17)/(2u+1),
(2u +1,2u + 7) divides 6 and (2u? 4+ 2u — 17,2u + 1) = (u — 17, 2u + 1) divides 35.

If u="T7s+2, then (14s+5,14s? + 10s — 1) = (14s + 5, 5s — 1) divides 39 and 14s + 5 divides
15 - 39, a contradiction with the condition v < 4096.

If u="7s—3, then (14s —5,14s? —4s—1) = (14s — 5,5 — 1) divides 9, and so, 14s — 5 divides
135, s =1, n = 3, m = 15, a contradiction with m < n?. O

Lemma 8. If 15 < p < 17, then T' has the intersection array {147,144,1;1,16,147}.

Proof. Let u = 15. Then r = (k + 12)/15, 4k + 169 = (2u + 1)?, therefore k = u? + u — 42,
n=u—6and m = u+ 7. Further, f = (u+ 7)((u? + v — 30)/15 — 1)(u® + u — 41)/(2u + 1),
(2u + 1,u + 7) divides 13 and (u? +u —41,2u + 1) = (u — 82,2u + 1) divides 165.

If u = 15s, then (30s + 1,15s% + s — 3) = (30s + 1, s — 6) divides 181 and 30s + 1 divides
11 -13 - 181, a contradiction with the condition v < 4096.

If u = 155 — 1, then (30s — 1,155% — s — 3) = (30s — 1, s + 6) divides 181 and 30s — 1 divides
11-13 - 181, a contradiction with v < 4096.

If u = 155+ 5, then (30s + 11,15s% 4+ 115 — 1) = (30s + 11, 11s — 2) divides 181 and 30s + 11
divides 11 - 13 - 181, a contradiction with the condition v < 4096.

If u = 155 — 6, then (30s — 11,15s% — 11s — 1) = (30s — 11, 115 + 2) divides 181 and 30s — 11
divides 11 - 13 - 181, a contradiction with v < 4096.

Let u = 16. Then r = (k + 13)/16, k + 49 = 4u?, therefore k = 4u? — 49, n = 2u — 7 and
m = 2u+7. Further, f = (2u+7)((u?—9)/4—1)(u?—12)/u, (2u+7,u) divides 7 and (u, u* —12)
divides 12. Consequently, u = 2s+1, (25 + 1,52 + s —3) = (25 + 1,5 — 6) divides 13 and 2s + 1
divides 21 - 13, hence, s = 3 and T has the intersection array {147,144, 1;1, 16,147}.

Let 4 = 17. Then r = (k + 14)/17, 4k + 225 = (2u + 1)?, therefore k¥ = u? + u — 56,
n=wu—"7and m = u+ 8. Further, f = (u+ 8)((u? +u —42)/7 — 1)(u? +u — 55)/(2u + 1),
(2u + 1,u + 8) divides 15 and (u? + u — 55,2u + 1) = (u — 110,2u + 1) divides 221. Hence,
u="Ts—1, (14s— 1,78 —s—7) = (14s — 1,5+ 14) divides 197 and 14s — 1 divides 15221 - 197,
a contradiction with the condition v < 4096. O

Lemma 9. If 18 < u < 20, then T has the intersection array {143,140,1;1,20,143}.

Proof. Let p = 18. Then r = (k + 15)/18, k + 256 = (2u + 1)2, hence k = 4u? + 4u — 255,
n = 2u—6 and m = 2u+8. Further, f = (u+4)((2u?+2u—120)/9—1)(4u® +4u—255)/(2u+1),
(2u + 1,u +4) divides 7 and (4u? + 4u — 255,2u + 1) = (2u — 255, 2u + 1) divides 256.

If u = 9s + 2, then (18s + 5,185 + 10s — 13) = (18s + 5,5s — 13) divides 259 and 18s + 5
divides 7 - 259, a contradiction with v < 4096.

If u = 9s — 3, then (18s — 5,18s% — 10s — 13) = (18s — 5,55 + 13) divides 259 and 18s — 5
divides 72 - 37, a contradiction with v < 4096.
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Let = 19. Then r = (k+16)/19, 4k + 289 = (2u+ 1), therefore k = u®> +u— 72, n = u—8
and m = u+9. Further, f = (u+9)((v? +u —56)/19 — 1)(u® +u—71)/(2u+1), 2u+1,u+9)
divides 17 and (2u + 1,u? +u — 71) divides 285.

If u =195+ 7, then (38s + 15,19s? + 155 — 1) = (38s + 15, 15s — 2) divides 301 and 38s + 15
divides 15 - 17 - 301, a contradiction with v < 4096.

If u = 19s — 8, then (385 — 15,19s% — 155 — 1) = (38s — 15, 155 + 2) divides 301 and 38s — 15
divides 15 - 17 - 301, a contradiction with v < 4096.

Let 4 = 20. Then r = (k + 17)/20, k + 81 = 4u?, hence k = 4u? + 4u — 81, n = 2u — 9 and
m = 2u+9. Further, f = 2u+9)((v? +u—16)/5—1)(u? +u —20)/u, (2u+9,u) divides 9 and
(u?+u—20,u) divides 20. Consequently, u = 55+2, (55+2, 552 +55—3) = (55+2, 3s—3) divides 21
and 5s+2 divides 21- 36, therefore s = 1 and T" has the intersection array {143,140, 1;1, 20, 143}.
The Lemma is proven. O

Computer calculations show that there is no admissible intersection array in the case p > 21.
The Theorem, and also the corresponding Corollary with it, are thus proven.
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O aucTaHNMMOHHO—PEryYJAdapPHBIX rpadax ¢ A = 2

Anekcanap A.Maxues
Mapuna C. HupoBa

B.I1. Bypuuenrxo u A.A. Marnes nawau maccusvs nepeceuenuli QUCTNAHUUOHHO PERYAAPHLIT 2pados ¢
A=2, u > 1 u vwucaom sepwun ne boavwum 1000. Panee emopvim a8mopom Hatioens, Maccusb, nepe-
cenenutl aHmunodanbHolr OUCMaHUUORHKO-pe2yaaphoix 2pagos duamempa 8 ¢ A < 2 u p = 1. B dannot
cmamove Hatioerv, 803MOACHBLE MACCUBHL NepeceteHutll QUCTNAHUUOHHO-DELYAAPHBT 2pados ¢ X = 2 u He
boaee 4096 sepwuHamu.

Kaouesvie cr06a: QucmaHyuonHO-peELYAAPHIL 2Pad, NOYMU N-Y20AbHUK.

- 210 —



