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V.P.Burichenko and A.A.Makhnev have found intersection arrays of distance-regular graphs with λ = 2,

µ > 1, having at most 1000 vertices. Earlier, intersection arrays of antipodal distance-regular graphs

of diameter 3 with λ 6 2 and µ = 1 were obtained by the second author. In this paper, the possible

intersection arrays of distance-regular graphs with λ = 2 and the number of vertices not greater than

4096 are obtained.
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Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph
Γ, we denote by Γi(a) the subgraph induced by Γ on the set of all vertices, that are at a distance
i from a. The subgraph [a] = Γ1(a) is called the neighborhood of the vertex a.

We denote by ka the degree of a vertex a, i. e. the number of vertices in [a]. A graph Γ is
said to be regular with degree k, if ka = k for every vertex a of Γ. A graph Γ is called a strongly
regular graph with parameters (v, k, λ, µ), if Γ is regular with degree k on v vertices, in which
every edge is placed in precisely λ triangles, and for any two non-adjacent triangles and any
non-adjacent vertices a, b one has |[a] ∩ [b]| = µ. A graph with a diameter d is called antipodal ,
if the relation on the set of its vertices – to coincide or to be at a distance d – is an equivalence
relation. Classes of this relation are called the antipodal classes.

If vertices u,w are at a distance i in Γ, then we denote by bi(u,w) (by ci(u,w)) the number
of vertices in the intersection of Γi+1(u) (of Γi−1(u)) with [w]. A graph Γ of diameter d is said
to be distance-regular with the intersection array {b0, b1, . . . , bd−1; c1, . . . , cd}, if the values of
bi(u,w), ci(u,w) do not depend on the choice of vertices u and w separated by a distance i in Γ,
and are equal to bi, ci for i = 0, ..., d. Let ai = k − bi − ci. Note that a distance-regular graph is
amply regular with k = b0, λ = k − b1 − 1 and µ = c2, by definition c1 = 1. Further, we denote
by pl

ij(x, y) the number of vertices in the subgraph Γi(x) ∩ Γj(y) for vertices x, y that are at a

distance l in the graph Γ. In a distance-regular graph, the numbers pl
ij(x, y) are independent of

the choice of the vertices x, y; they are denoted by pl
ij and are called the intersection numbers

of the graph Γ.
V. P.Burichenko and A.A.Makhnev found [1] the intersection arrays for distance-regular

graphs with λ = 2, µ > 1, such that the number of vertices is not greater than 1000.
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Note here that the arrays {9, 6, 3; 1, 2, 3} of Hemming’s graph H(3, 4) with v = 64,
and {19, 16, 15, 9; 1, 2, 3, 4} of Hemming’s graph H(4, 4) with v = 256, and the array
{45, 42, 1; 1, 14, 45} were omitted from the consideration of [1]. However, there is an additional
array {13, 10, 7; 1, 2, 7} (according to [2], a graph with such an intersection array should not ex-
ist). In [3], there were found intersection arrays for antipodal distance-regular graphs of diameter
3 with λ 6 2 and µ = 1. In the present paper, the possible intersection arrays of distance-regular
graphs with λ = 2 and 4096 vertices at most are obtained.

Theorem. Let Γ be a distance-regular graph with λ = 2, µ = 1, having 4096 vertices at most.
Then Γ has one of the following intersection arrays:

(1) {21, 18; 1, 1} (v = 400);

(2) {6, 3, 3, 3; 1, 1, 1, 2} (Γ is a generalized octagon of order (3, 1), v = 160), {6, 3, 3; 1, 1, 2} (Γ is
a generalized hexagon of order (3, 1), v = 52), {12, 9, 9; 1, 1, 4} (Γ is a generalized hexagon
of order (3, 3), v = 364), {6, 3, 3, 3, 3, 3; 1, 1, 1, 1, 1, 2} (Γ is a generalized dodecagon of order
(3, 1), v = 1456);

(3) {18, 15, 9; 1, 1, 10} (v = 1 + 18 + 270 + 243 = 532, Γ3 is a strongly regular graph);
{21, 18, 12, 4; 1, 1, 6, 21} (v = 1 + 21 + 378 + 756 + 144 = 1300, q4

3,4 = 0).

Corollary. Let Γ be a distance-regular graph of diameter greater than 2, with λ = 2, and having
at most 4096 vertices. Then one of the following assertions holds:

(1) Γ is a primitive graph with the intersection array
{6, 3, 3; 1, 1, 2}, {9, 6, 3; 1, 2, 3}, {12, 9, 9; 1, 1, 4}, {15, 12, 6; 1, 2, 10}, {18, 15, 9; 1, 1, 10},
{19, 16, 8; 1, 2, 8}, {24, 21, 3; 1, 3, 18}, {33, 30, 15; 1, 2, 15}, {35, 32, 8; 1, 2, 28},
{42, 39, 1; 1, 1, 42}, {51, 48, 8; 1, 4, 36};

(2) Γ is an antipodal graph with µ = 2 and the intersection array
{2r + 1, 2r − 2, 1; 1, 2, 2r + 1}, r ∈ {3, 4, ..., 44} − {10, 16, 28, 34, 38} and v = 2r(r + 1);

(3) Γ is an antipodal graph with µ > 3 and the intersection array
{15, 12, 1; 1, 4, 15}, {18, 15, 1; 1, 5, 18}, {27, 24, 1; 1, 8, 27}, {35, 32, 1; 1, 4, 35},
{45, 42, 1; 1, 6, 45}, {42, 39, 1; 1, 3, 42}, {63, 60, 1; 1, 4, 63}, {75, 72, 1; 1, 12, 75},
{99, 96, 1; 1, 4, 99}, {108, 105, 1; 1, 5, 108}, {143, 140, 1; 1, 20, 143}, {147, 144, 1; 1, 16, 147},
{171, 168, 1; 1, 12, 171};

(4) Γ is a primitive graph with the intersection array
{6, 3, 3, 3; 1, 1, 1, 2}, {19, 16, 15, 9; 1, 2, 3, 4}, {21, 18, 12, 4; 1, 1, 6, 21},
{15, 12, 9, 6, 3; 1, 2, 3, 4, 5}, {6, 3, 3, 3, 3, 3; 1, 1, 1, 1, 1, 2}, {18, 15, 12, 9, 6, 3; 1, 2, 3, 4, 5, 6}.

We note that only arrays of some generalized polygons, Hemming’s graphs H(n, 4), two
graphs with µ = 1, the array {33, 30, 15; 1, 2, 15}, and arrays of antipodal graphs of diameter 3
have been added to the list of Burichenko and Makhnev.

Now we prove the Theorem. Let Γ be a distance-regular graph of diameter d with λ = 2,
µ = 1, having 4096 vertices at most. Let a be a vertex in the graph Γ and ki = |Γi(a)|. Then [a]
is the union of t + 1 isolated 3-cliques, k = 3(t + 1) and t 6 20. Otherwise, v > 1 + 66 + 66 · 63,
a contradiction.

Lemma 1. The following assertions hold:

(1) if the diameter of Γ is 2, then Γ possesses the parameters (400, 21, 2, 1);

(2) if Γ is a generalized 2n-gon, then Γ has the intersection array from the Corollary.

– 205 –



Alexander A.Makhnev, Marina S.Nirova On Distance-Regular Graphs with λ = 2

Proof. If the diameter of Γ is equal to 2, then, according to [5], Γ has the parameters
(400, 21, 2, 1). Assume that the diameter of Γ is greater than 2.

Let Γ be a regular almost n-gon. Then s = 3, and in accordance with [4, Theorem 6.4.1] we
have bi = k − 3ci for i = 0, 1, ..., d − 1, k > 3cd, here n = 2d if k = 3cd, and n = 2d + 1 if not.
If ∆ is a pointwise graph of a generalized polygon of order (s, t), then ki = siti−1(t + 1)/ci. In
the case of n = 6, the number of its vertices is (s+1)(s2t2 +st+1). Therefore v = 4(9t2 +3t+1)
and t 6 10. If t > 1, then, in view of [4, Theorem 6.5.1], the number st is a square, hence t = 3.
If n = 8 and t > 1, then, according to [4, Theorem 6.5.1], the number 2st is a square, and so
t > 6 and v > 4096, a contradiction. If n = 12, then t = 1 and v = 1 + 6 + 18 + · · · = 1456. 2

Lemma 2. Let Γ be not a generalized 2n-gon. Then the following assertions hold:

(1) if the diameter of Γ is 3, then Γ has the intersection array {18, 15, 9; 1, 1, 10};

(2) if the diameter of Γ is greater than 4, then k ≤ 45.

Proof. Let the diameter of Γ be equal to 3.

If k = 63, then Γ has the intersection array {63, 60, b2; 1, 1, c3}, b2 6 4 and c3 divides 33140b2.
In any case, there is no valid intersection array. In a similar way one considers the cases 57 6

k 6 30.

If k = 27, then Γ has the intersection array {27, 24, b2; 1, 1, c3}, c3 divides 348b2. Here arise
interesting intersection arrays {27, 24, 8; 1, 1, 16}, v = 1000 with integer eigenvalues 7, 2, −5, but
2 and −5 have fractional multiplicity, and {27, 24, 4; 1, 1, 24}, v = 784 with integer eigenvalues
6, −1, −5, where 6 and −5 have fractional multiplicity. In all cases, there is no admissible
intersection array.

If k = 24, then Γ has intersection array {24, 21, b2; 1, 1, c3}, c3 divides 3256b2. Interesting
intersection array {24, 21, 11; 1, 1, 18}, v = 837 with integer eigenvalues 6, −3, −7 arise, but 6
and −7 have fractional multiplicity, and there is also {24, 21, 7; 1, 1, 18}, v = 725 with integer
eigenvalues 6, −1, −5, but 6 and −5 have fractional multiplicity. In any case, there is no
admissible intersection array.

If k = 21, then Γ has the intersection array {21, 18, b2; 1, 1, c3}, c3 divides 3314b2. There arises
an interesting intersection array {21, 18, 10; 1, 1, 12}, v = 715 with integer eigenvalues 6, −1, −5,
but −1 and −5 have fractional multiplicity. In any case, there is no admissible intersection array.

If k = 18, then Γ has the intersection array {18, 15, b2; 1, 1, c3}, c3 divides 3310b2. There arise
interesting intersection arrays {18, 15, 13; 1, 1, 6}, v = 874 with integer eigenvalues 6, −1, −5,
having fractional multiplicity, {18, 15, 5; 1, 1, 18}, v = 364 with integer eigenvalues 5, −3, −6,
but 5 and −6 have fractional multiplicity, and the array {18, 15, 9; 1, 1, 10} with the spectrum
181, (1+

√
105)/2171, −1189, (1−

√
105)/2171. There are no other admissible intersection arrays.

If k = 15, then Γ has the intersection array {15, 12, b2; 1, 1, c3}, c3 divides 3220b2. There arise
interesting intersection arrays {15, 12, 8; 1, 1, 10}, v = 340 with integer eigenvalues 5, −2, −5,
but where 5 and −2 have fractional multiplicity, and {15, 12, 6; 1, 1, 10}, v = 304 with integer
eigenvalues 5, −1, −4, but 5 and −4 have fractional multiplicity. In any case, there are no
admissible intersection arrays.

If k = 12, then Γ has the intersection array {12, 9, b2; 1, 1, c3}, c3 divides 334b2. There arise
interesting intersection arrays {12, 9, 3; 1, 1, 6}, v = 175 with integer eigenvalues 5, 2, −3, but 5
and −3 are with fractional multiplicity, and {12, 9, 1; 1, 1, 12}, v = 130 with integer eigenvalues
4, −1, −3, but 4 and −3 have fractional multiplicity. In any case, there are no admissible
intersection arrays.

If k = 9, then Γ has the intersection array {9, 6, b2; 1, 1, c3}, c3 divides 332b2. There arises an
interesting intersection array {9, 6, 4; 1, 1, 6}, v = 100 with integer eigenvalues 4, −1, −3, but 4
and −3 have fractional multiplicity. In any case, there are no admissible intersection arrays.
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If k = 6, then Γ has the intersection array {6, 3, b2; 1, 1, c3}, c3 divides 322b2. An interesting
intersection array {6, 3, 1; 1, 1, 6}, v = 28 with integer eigenvalues 3, −1, −2 arises here, but 3
and −2 have fractional multiplicity. In any case, there are no admissible intersection arrays.

Assertion (1) is proved.
Let now the diameter of Γ be greater than 4. Then bi > c5−i and k3 > k2. It follows that

4096 > v > 2(1 + k + k(k − 3)), and taking into account the divisibility of k by 3, we see that
k 6 45. The Lemma is proved. 2

Let the diameter of Γ be greater than 3, and Γ be not a generalized 2n-gon. Considering ad-
missible intersection arrays with λ = 2 from [4], we obtain only the array {21, 18, 12, 4; 1, 1, 6, 21}.
The Theorem is thus proved. 2

Let us prove the Corollary. If Γ is not an antipodal graph of diameter 3, then considering
admissible intersection arrays with λ = 2 from [4], we obtain only the arrays from the Corollary.

Lemma 3. If Γ is an antipodal graph of diameter 3 with λ = µ = 2, then Γ has the intersection
array {2r + 1, 2r − 2, 1; 1, 2, 2r + 1}, r ∈ {3, 4, ..., 44} − {10, 16, 28, 34, 38}.

Proof. By the assumption, Γ has the intersection array {2r + 1, 2r − 2, 1; 1, 2, 2r + 1} and
v = r(2r + 2) vertices. If r > 45, then v > 4 · 45 · 23, a contradiction with v 6 4096. In view
of [4, Proposition 1.10.5], if r is even, then k = 2r + 1 is the sum of squares of two integers,
therefore r ∈ {3, 4, ..., 44} − {10, 16, 28, 34, 38}. The Lemma is proved. 2

In Lemmata 4–9 it is supposed that Γ is an antipodal graph of diameter 3 with λ = 2 < µ.
Therefore, Γ has the spectrum k1, nf ,−1k,−mg, where n,−m are integers, that are the roots of
the equation x2− (λ−µ)x−k = 0, f = m(r−1)(k+1)/(m+n), g = n(r−1)(k+1)/(m+n) and
r = (k + µ − 3)/µ. If r = 2, then Γ is Taylor’s graph and µ = k − 3. In this case, k = 6, n = 2,
m = 3, a contradiction with the fact that f = 3 · 7/5. Consequently, r > 2, and the condition
q3
33 > 0 gives m 6 n2.

Lemma 4. If µ 6 5, then Γ has one of the following intersection arrays:

(1) {42, 39, 1; 1, 3, 42};
(2) {4u2 − 1, 4u2 − 4, 1; 1, 4, 4u2 − 1}, u ∈ {2, 3, 4, 5};
(3) {18, 15, 1; 1, 5, 18} or {108, 105, 1; 1, 5, 108}.

Proof. Let µ = 3. Then 4k + 1 = (2n + 1)2, and so, k = n(n + 1), m = n + 1 and r = k/3. If
n = 3s, then f = (3s + 1)(3s2 + s− 1)(9s2 + 3s + 1)/(6s + 1). In this case, (6s + 1, 9s2 + 3s + 1)
divides 3 and (6s + 1, 3s2 + s − 1) = (6s + 1, s − 2) divides 13, therefore, s = 2 and Γ has the
intersection array {42, 39, 1; 1, 3, 42}.

If n = 3s−1, then f = 3s(3s2−s−1)(9s2−3s+1)/(6s−1). In this case, (6s−1, 9s2−3s+1)
divides 3 and (6s−1, 3s2−s−1) = (6s−1, s+2) divides 13, consequently, s = 11, a contradiction
with the fact that 5 does not divide 33 · 351 · 1057.

Let µ = 4. Then r = (k +1)/4, k +1 = 4u2, and so, k = 4u2 − 1, n = 2u− 1 and m = 2u+1.
Further, f = (2u + 1)4u2(u2 − 1)/(4u), g = (2u − 1)u(u2 − 1) and v = 4u4 6 4096, therefore, Γ
has the intersection array {4u2 − 1, 4u2 − 4, 1; 1, 4, 4u2 − 1}, u ∈ {2, ..., 5}.

Let µ = 5. Then r = (k + 2)/5, 4k + 9 = (2u + 1)2, and hence, k = u2 + u− 2, n = u− 1 and
m = u + 2. Further, f = (u + 2)((u2 + u)/5 − 1)(u2 + u − 1)/(2u + 1), (2u + 1, u + 2) divides 3
and (u2 + u − 1, 2u + 1) = (u − 2, 2u + 1) divides 5.

If u = 5s, then (10s+1, 5s2 + s−1) = (10s+1, s−2) divides 21. In this case, 10s+1 divides
63, therefore, s = 2 and Γ has the intersection array {108, 105, 1; 1, 5, 108}.

If u = 5s − 1, then (10s − 1, 5s2 − s − 1) = (10s − 1, s + 2) divides 21. In this case 10s − 1
divides 63, hence s = 1, and Γ has the intersection array {18, 15, 1; 1, 5, 18}. 2

Lemma 5. If 6 6 µ 6 8, then Γ has one of the following intersection arrays:
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(1) {45, 42, 1; 1, 6, 45};

(2) {27, 24, 1; 1, 8, 27}.

Proof. Let µ = 6. Then r = (k + 3)/6, k + 4 = (2u + 1)2, and so, k = 4u2 + 4u − 3,
n = 2u − 1 and m = 2u + 3. Further, f = (2u + 3)(2u2 + 2u − 1)((4u2 + 4u)/6 − 1)/(2u + 1),
(2u + 1, 4u2 + 4u − 2) = (2u + 1, 2u − 2) divides 3.

If u = 3s, then f = (6s+3)(18s2 +12s− 2)(6s2 +2s− 1)/(6s+1). In this case, (6s+1, 6s2 +
2s − 1) = (6s + 1, s − 1) divides 7, therefore 6s + 1 divides 21, s = 1 and Γ has the intersection
array {45, 42, 1; 1, 6, 45}.

If u = 3s − 1, then f = (6s + 1)(18s2 − 6s − 1)(6s2 − 2s − 1)/(6s − 1). In this case
(6s − 1, 6s2 − 2s − 1) = (6s − 1, s + 1) divides 7 and 6s − 1 divides 21, a contradiction.

Let µ = 7. Then r = (k + 4)/7, 4k + 25 = (2u + 1)2, hence k = u2 + u − 6, n = u − 2 and
m = u + 3. Further, f = (u + 3)((u2 + u− 2)/7− 1)(u2 + u− 5)/(2u + 1), (2u + 1, u + 3) divides
5 and (2u + 1, u2 + u − 5) = (2u + 1, u − 5) divides 11.

If u = 7s + 1, then (14s + 3, 7s2 + 3s− 1) = (14s + 3, 3s− 2) divides 37. In this case, 14s + 3
divides 5 · 11 · 37, a contradiction.

If u = 7s + 5, then (14s + 11, 7s2 + 11s + 3) = (14s + 11, 11s + 6) divides 37. In this case
14s + 11 divides 5 · 11 · 37, a contradiction.

Let µ = 8. Then r = (k+5)/8, k+9 = 4u2, therefore k = 4u2−9, n = 2u−3 and m = 2u+3.
Further, f = (2u + 3)((u2 − 1)/2 − 1)(u2 − 2)/u, (u, 2u + 3) divides 3 and (u2 − 2, u) divides 2.
Consequently, u = 2s + 1, (2s + 1, 2s2 + 2s− 1) divides 3 and 2s + 1 divides 9, and so, s = 1 and
Γ has the intersection array {27, 24, 1; 1, 8, 27}. 2

Lemma 6. If 9 6 µ 6 11, then there is no admissible intersection array.

Proof. Let µ = 9. Then r = (k + 6)/9, 4k + 49 = (2u + 1)2, therefore k = u2 + u − 12,
n = u − 3 and m = u + 4. Further, f = (u + 4)(u2 + u − 11)((u2 + u − 6)/9 − 1)/(2u + 1),
(2u + 1, u + 4) divides 7, and (2u + 1, u2 + u − 11) = (2u + 1, u − 22) divides 45.

If u = 9s + 2, then (18s + 5, 9s2 + 5s− 1) = (18s + 5, 5s− 2) divides 61. In this case, 18s + 5
divides 35 · 61, a contradiction.

If u = 9s− 3, then (18s− 5, 9s2 − 5s− 1) = (18s− 5, 5s + 2) divides 61. In this case, 18s− 5
divides 35 · 61, a contradiction.

Let µ = 10. Then r = (k +7)/10, k +16 = (2u+1)2, therefore k = 4u2 +4u− 15, n = 2u− 3
and m = 2u+5. Further, f = (2u+5)(2u2+2u−7)((2u2+2u−4)/5−1)/(2u+1), (2u+1, 2u+5)
divides 4, and (2u + 1, 2u2 + 2u − 7) divides 15.

If u = 5s+1, then (10s+3, 10s2 +6s− 1) = (10s+3, 3s− 1) divides 19. In this case, 10s+3
divides 57, a contradiction.

If u = 5s+3, then (10s+7, 10s2 +14s+3) = (10s+7, 7s+3) divides 19. In this case, 10s+7
divides 57, s = 5, u = 28, a contradiction with v 6 4096.

Let µ = 11. Then r = (k + 8)/11, 4k + 81 = (2u + 1)2, therefore k = u2 + u − 20, n = u − 4
and m = u + 5. Further, f = (u + 5)((u2 + u− 12)/11− 1)(u2 + u− 19)/(2u + 1), (2u + 1, u + 5)
divides 9 and (u2 + u − 19, 2u + 1) = (u − 38, 2u + 1) divides 77.

If u = 11s+3, then (22s+7, 11s2 +7s− 1) = (22s+7, 7s− 2) divides 93, and 22s+7 divides
27 · 7 · 31, a contradiction with the fact that v ≤ 4096.

If u = 11s − 4, then (22s − 7, 11s2 − 7s − 1) = (22s − 7, 7s + 2) divides 93, and so, 22s − 7
divides 27 · 7 · 31, that contradicts with v 6 4096. 2

Lemma 7. If 12 6 µ 6 14, then Γ has either the intersection array {75, 72, 1; 1, 12, 75} or the
intersection array {171, 168, 1; 1, 12, 171}.

Proof. Let µ = 12. Then r = (k + 9)/12, k + 25 = 4u2, therefore k = 4u2 − 25, n = 2u − 5
and m = 2u + 5. Further, f = (2u + 5)((u2 − 4)/3 − 1)(u2 − 6)/u, (2u + 5, u) divides 5, and
(u2 − 6, u) divides 6.
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If u = 3s + 1, then (3s + 1, 3s2 + 2s − 2) = (3s + 1, s − 2) divides 7 and 3s + 1 divides 70,
hence s = 2 and Γ has the intersection array {171, 168, 1; 1, 12, 171}.

If u = 3s− 1, then (3s− 1, 3s2 − 2s− 2) = (3s− 1, s + 2) divides 7 and 3s− 1 divides 70, and
so, s = 2 and Γ has the intersection array {75, 72, 1; 1, 12, 75}.

Let µ = 13. Then r = (k +10)/13, 4k +121 = (2u+1)2, therefore k = u2 +u− 30, n = u− 5
and m = u + 6. Further, f = (u + 6)((u2 + u− 20)/13− 1)(u2 + u− 29)/(2u + 1), (2u + 1, u + 6)
divides 11, and (2u + 1, u2 + u − 29) = (2u + 1, u − 58) divides 117.

If u = 13s+4, then (26s+9, 13s2 +9s−1) = (26s+9, 9s−2) divides 133 and 26s+9 divides
99 · 133, a contradiction with that v ≤ 4096.

If u = 13s− 5, then (26s− 9, 13s2 − 9s− 1) = (26s− 9, s + 2) divides 61, and 26s− 9 divides
99 · 61, a contradiction with v 6 4096.

Let µ = 14. Then r = (k + 11)/14, k + 36 = (2u + 1)2, therefore k = 4u2 + 4u − 35,
n = 2u−5 and m = 2u+7. Further, f = (2u+7)((2u2 +2u−12)/7−1)(2u2 +2u−17)/(2u+1),
(2u + 1, 2u + 7) divides 6 and (2u2 + 2u − 17, 2u + 1) = (u − 17, 2u + 1) divides 35.

If u = 7s + 2, then (14s + 5, 14s2 + 10s− 1) = (14s + 5, 5s− 1) divides 39 and 14s + 5 divides
15 · 39, a contradiction with the condition v ≤ 4096.

If u = 7s− 3, then (14s− 5, 14s2 − 4s− 1) = (14s− 5, s− 1) divides 9, and so, 14s− 5 divides
135, s = 1, n = 3, m = 15, a contradiction with m ≤ n2. 2

Lemma 8. If 15 6 µ 6 17, then Γ has the intersection array {147, 144, 1; 1, 16, 147}.

Proof. Let µ = 15. Then r = (k + 12)/15, 4k + 169 = (2u + 1)2, therefore k = u2 + u − 42,
n = u − 6 and m = u + 7. Further, f = (u + 7)((u2 + u − 30)/15 − 1)(u2 + u − 41)/(2u + 1),
(2u + 1, u + 7) divides 13 and (u2 + u − 41, 2u + 1) = (u − 82, 2u + 1) divides 165.

If u = 15s, then (30s + 1, 15s2 + s − 3) = (30s + 1, s − 6) divides 181 and 30s + 1 divides
11 · 13 · 181, a contradiction with the condition v 6 4096.

If u = 15s− 1, then (30s− 1, 15s2 − s− 3) = (30s− 1, s + 6) divides 181 and 30s− 1 divides
11 · 13 · 181, a contradiction with v 6 4096.

If u = 15s + 5, then (30s + 11, 15s2 + 11s− 1) = (30s + 11, 11s− 2) divides 181 and 30s + 11
divides 11 · 13 · 181, a contradiction with the condition v 6 4096.

If u = 15s− 6, then (30s− 11, 15s2 − 11s− 1) = (30s− 11, 11s + 2) divides 181 and 30s− 11
divides 11 · 13 · 181, a contradiction with v 6 4096.

Let µ = 16. Then r = (k + 13)/16, k + 49 = 4u2, therefore k = 4u2 − 49, n = 2u − 7 and
m = 2u+7. Further, f = (2u+7)((u2−9)/4−1)(u2−12)/u, (2u+7, u) divides 7 and (u, u2−12)
divides 12. Consequently, u = 2s + 1, (2s + 1, s2 + s − 3) = (2s + 1, s − 6) divides 13 and 2s + 1
divides 21 · 13, hence, s = 3 and Γ has the intersection array {147, 144, 1; 1, 16, 147}.

Let µ = 17. Then r = (k + 14)/17, 4k + 225 = (2u + 1)2, therefore k = u2 + u − 56,
n = u − 7 and m = u + 8. Further, f = (u + 8)((u2 + u − 42)/7 − 1)(u2 + u − 55)/(2u + 1),
(2u + 1, u + 8) divides 15 and (u2 + u − 55, 2u + 1) = (u − 110, 2u + 1) divides 221. Hence,
u = 7s− 1, (14s− 1, 7s2 − s− 7) = (14s− 1, s + 14) divides 197 and 14s− 1 divides 15 · 221 · 197,
a contradiction with the condition v 6 4096. 2

Lemma 9. If 18 6 µ 6 20, then Γ has the intersection array {143, 140, 1; 1, 20, 143}.

Proof. Let µ = 18. Then r = (k + 15)/18, k + 256 = (2u + 1)2, hence k = 4u2 + 4u − 255,
n = 2u−6 and m = 2u+8. Further, f = (u+4)((2u2 +2u−120)/9−1)(4u2 +4u−255)/(2u+1),
(2u + 1, u + 4) divides 7 and (4u2 + 4u − 255, 2u + 1) = (2u − 255, 2u + 1) divides 256.

If u = 9s + 2, then (18s + 5, 18s2 + 10s − 13) = (18s + 5, 5s − 13) divides 259 and 18s + 5
divides 7 · 259, a contradiction with v 6 4096.

If u = 9s − 3, then (18s − 5, 18s2 − 10s − 13) = (18s − 5, 5s + 13) divides 259 and 18s − 5
divides 72 · 37, a contradiction with v 6 4096.
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Let µ = 19. Then r = (k +16)/19, 4k +289 = (2u+1)2, therefore k = u2 +u− 72, n = u− 8
and m = u + 9. Further, f = (u + 9)((u2 + u− 56)/19− 1)(u2 + u− 71)/(2u + 1), (2u + 1, u + 9)
divides 17 and (2u + 1, u2 + u − 71) divides 285.

If u = 19s + 7, then (38s + 15, 19s2 + 15s− 1) = (38s + 15, 15s− 2) divides 301 and 38s + 15
divides 15 · 17 · 301, a contradiction with v 6 4096.

If u = 19s− 8, then (38s− 15, 19s2 − 15s− 1) = (38s− 15, 15s + 2) divides 301 and 38s− 15
divides 15 · 17 · 301, a contradiction with v 6 4096.

Let µ = 20. Then r = (k + 17)/20, k + 81 = 4u2, hence k = 4u2 + 4u − 81, n = 2u − 9 and
m = 2u + 9. Further, f = (2u + 9)((u2 + u− 16)/5− 1)(u2 + u− 20)/u, (2u + 9, u) divides 9 and
(u2+u−20, u) divides 20. Consequently, u = 5s+2, (5s+2, 5s2+5s−3) = (5s+2, 3s−3) divides 21
and 5s+2 divides 21 ·36, therefore s = 1 and Γ has the intersection array {143, 140, 1; 1, 20, 143}.
The Lemma is proven. 2

Computer calculations show that there is no admissible intersection array in the case µ > 21.
The Theorem, and also the corresponding Corollary with it, are thus proven.
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О дистанционно–регулярных графах с λ = 2

Александр А. Махнев

Марина С. Нирова

В.П.Буриченко и А.А.Махнев нашли массивы пересечений дистанционно регулярных графов с

λ = 2, µ > 1 и числом вершин не большим 1000. Ранее вторым автором найдены массивы пере-

сечений антиподальных дистанционно-регулярных графов диаметра 3 с λ 6 2 и µ = 1. В данной

статье найдены возможные массивы пересечений дистанционно-регулярных графов с λ = 2 и не

более 4096 вершинами.

Ключевые слова: дистанционно-регулярный граф, почти n-угольник.
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