On Distance-Regular Graphs with $\lambda=2$

Alexander A. Makhnev*
Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Kovalevskaja, 16, Ekaterinburg, 620990,
Russia
Marina S. Nirova
Kabardino-Balkarian State University, Chernyshevskogo, 28, Nalchik, 360000,
Russia

Received 24.12.2013, received in revised form 25.01.2014, accepted 26.02.2014
V.P. Burichenko and A.A. Makhnev have found intersection arrays of distance-regular graphs with $\lambda=2$, $\mu>1$, having at most 1000 vertices. Earlier, intersection arrays of antipodal distance-regular graphs of diameter 3 with $\lambda \leqslant 2$ and $\mu=1$ were obtained by the second author. In this paper, the possible intersection arrays of distance-regular graphs with $\lambda=2$ and the number of vertices not greater than 4096 are obtained.

Keywords: distance-regular graph, nearly n-gon.

Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph Γ, we denote by $\Gamma_{i}(a)$ the subgraph induced by Γ on the set of all vertices, that are at a distance i from a. The subgraph $[a]=\Gamma_{1}(a)$ is called the neighborhood of the vertex a.

We denote by k_{a} the degree of a vertex a, i. e. the number of vertices in $[a]$. A graph Γ is said to be regular with degree k, if $k_{a}=k$ for every vertex a of Γ. A graph Γ is called a strongly regular graph with parameters (v, k, λ, μ), if Γ is regular with degree k on v vertices, in which every edge is placed in precisely λ triangles, and for any two non-adjacent triangles and any non-adjacent vertices a, b one has $|[a] \cap[b]|=\mu$. A graph with a diameter d is called antipodal, if the relation on the set of its vertices - to coincide or to be at a distance d - is an equivalence relation. Classes of this relation are called the antipodal classes.

If vertices u, w are at a distance i in Γ, then we denote by $b_{i}(u, w)$ (by $c_{i}(u, w)$) the number of vertices in the intersection of $\Gamma_{i+1}(u)$ (of $\Gamma_{i-1}(u)$) with $[w]$. A graph Γ of diameter d is said to be distance-regular with the intersection array $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$, if the values of $b_{i}(u, w), c_{i}(u, w)$ do not depend on the choice of vertices u and w separated by a distance i in Γ, and are equal to b_{i}, c_{i} for $i=0, \ldots, d$. Let $a_{i}=k-b_{i}-c_{i}$. Note that a distance-regular graph is amply regular with $k=b_{0}, \lambda=k-b_{1}-1$ and $\mu=c_{2}$, by definition $c_{1}=1$. Further, we denote by $p_{i j}^{l}(x, y)$ the number of vertices in the subgraph $\Gamma_{i}(x) \cap \Gamma_{j}(y)$ for vertices x, y that are at a distance l in the graph Γ. In a distance-regular graph, the numbers $p_{i j}^{l}(x, y)$ are independent of the choice of the vertices x, y; they are denoted by $p_{i j}^{l}$ and are called the intersection numbers of the graph Γ.
V.P.Burichenko and A.A. Makhnev found [1] the intersection arrays for distance-regular graphs with $\lambda=2, \mu>1$, such that the number of vertices is not greater than 1000 .

[^0]Note here that the arrays $\{9,6,3 ; 1,2,3\}$ of Hemming's graph $H(3,4)$ with $v=64$, and $\{19,16,15,9 ; 1,2,3,4\}$ of Hemming's graph $H(4,4)$ with $v=256$, and the array $\{45,42,1 ; 1,14,45\}$ were omitted from the consideration of [1]. However, there is an additional array $\{13,10,7 ; 1,2,7\}$ (according to [2], a graph with such an intersection array should not exist). In [3], there were found intersection arrays for antipodal distance-regular graphs of diameter 3 with $\lambda \leqslant 2$ and $\mu=1$. In the present paper, the possible intersection arrays of distance-regular graphs with $\lambda=2$ and 4096 vertices at most are obtained.
Theorem. Let Γ be a distance-regular graph with $\lambda=2, \mu=1$, having 4096 vertices at most. Then Γ has one of the following intersection arrays:
(1) $\{21,18 ; 1,1\}(v=400)$;
(2) $\{6,3,3,3 ; 1,1,1,2\}$ (Γ is a generalized octagon of order $(3,1), v=160$), $\{6,3,3 ; 1,1,2\}$ (Γ is a generalized hexagon of order $(3,1), v=52$), $\{12,9,9 ; 1,1,4\}$ (Γ is a generalized hexagon of order $(3,3)$, $v=364$), $\{6,3,3,3,3,3 ; 1,1,1,1,1,2\}$ (Γ is a generalized dodecagon of order $(3,1), v=1456)$;
(3) $\{18,15,9 ; 1,1,10\}\left(v=1+18+270+243=532, \Gamma_{3}\right.$ is a strongly regular graph); $\{21,18,12,4 ; 1,1,6,21\} \quad\left(v=1+21+378+756+144=1300, q_{3,4}^{4}=0\right)$.

Corollary. Let Γ be a distance-regular graph of diameter greater than 2 , with $\lambda=2$, and having at most 4096 vertices. Then one of the following assertions holds:
(1) Γ is a primitive graph with the intersection array
$\{6,3,3 ; 1,1,2\},\{9,6,3 ; 1,2,3\},\{12,9,9 ; 1,1,4\},\{15,12,6 ; 1,2,10\},\{18,15,9 ; 1,1,10\}$,
$\{19,16,8 ; 1,2,8\},\{24,21,3 ; 1,3,18\},\{33,30,15 ; 1,2,15\},\{35,32,8 ; 1,2,28\}$, $\{42,39,1 ; 1,1,42\},\{51,48,8 ; 1,4,36\}$;
(2) Γ is an antipodal graph with $\mu=2$ and the intersection array $\{2 r+1,2 r-2,1 ; 1,2,2 r+1\}, r \in\{3,4, \ldots, 44\}-\{10,16,28,34,38\}$ and $v=2 r(r+1) ;$
(3) Γ is an antipodal graph with $\mu \geqslant 3$ and the intersection array
$\{15,12,1 ; 1,4,15\},\{18,15,1 ; 1,5,18\},\{27,24,1 ; 1,8,27\},\{35,32,1 ; 1,4,35\}$,
$\{45,42,1 ; 1,6,45\},\{42,39,1 ; 1,3,42\},\{63,60,1 ; 1,4,63\},\{75,72,1 ; 1,12,75\}$,
$\{99,96,1 ; 1,4,99\},\{108,105,1 ; 1,5,108\},\{143,140,1 ; 1,20,143\},\{147,144,1 ; 1,16,147\}$, $\{171,168,1 ; 1,12,171\}$;
(4) Γ is a primitive graph with the intersection array
$\{6,3,3,3 ; 1,1,1,2\},\{19,16,15,9 ; 1,2,3,4\},\{21,18,12,4 ; 1,1,6,21\}$,
$\{15,12,9,6,3 ; 1,2,3,4,5\},\{6,3,3,3,3,3 ; 1,1,1,1,1,2\},\{18,15,12,9,6,3 ; 1,2,3,4,5,6\}$.
We note that only arrays of some generalized polygons, Hemming's graphs $H(n, 4)$, two graphs with $\mu=1$, the array $\{33,30,15 ; 1,2,15\}$, and arrays of antipodal graphs of diameter 3 have been added to the list of Burichenko and Makhnev.

Now we prove the Theorem. Let Γ be a distance-regular graph of diameter d with $\lambda=2$, $\mu=1$, having 4096 vertices at most. Let a be a vertex in the graph Γ and $k_{i}=\left|\Gamma_{i}(a)\right|$. Then $[a]$ is the union of $t+1$ isolated 3-cliques, $k=3(t+1)$ and $t \leqslant 20$. Otherwise, $v>1+66+66 \cdot 63$, a contradiction.

Lemma 1. The following assertions hold:
(1) if the diameter of Γ is 2, then Γ possesses the parameters (400, 21, 2, 1);
(2) if Γ is a generalized $2 n$-gon, then Γ has the intersection array from the Corollary.

Proof. If the diameter of Γ is equal to 2 , then, according to [5], Γ has the parameters (400, 21, 2, 1). Assume that the diameter of Γ is greater than 2.

Let Γ be a regular almost n-gon. Then $s=3$, and in accordance with [4, Theorem 6.4.1] we have $b_{i}=k-3 c_{i}$ for $i=0,1, \ldots, d-1, k \geqslant 3 c_{d}$, here $n=2 d$ if $k=3 c_{d}$, and $n=2 d+1$ if not. If Δ is a pointwise graph of a generalized polygon of order (s, t), then $k_{i}=s^{i} t^{i-1}(t+1) / c_{i}$. In the case of $n=6$, the number of its vertices is $(s+1)\left(s^{2} t^{2}+s t+1\right)$. Therefore $v=4\left(9 t^{2}+3 t+1\right)$ and $t \leqslant 10$. If $t>1$, then, in view of [4, Theorem 6.5.1], the number st is a square, hence $t=3$. If $n=8$ and $t>1$, then, according to [4, Theorem 6.5.1], the number $2 s t$ is a square, and so $t \geqslant 6$ and $v>4096$, a contradiction. If $n=12$, then $t=1$ and $v=1+6+18+\cdots=1456$.

Lemma 2. Let Γ be not a generalized $2 n$-gon. Then the following assertions hold:
(1) if the diameter of Γ is 3 , then Γ has the intersection array $\{18,15,9 ; 1,1,10\}$;
(2) if the diameter of Γ is greater than 4 , then $k \leq 45$.

Proof. Let the diameter of Γ be equal to 3 .
If $k=63$, then Γ has the intersection array $\left\{63,60, b_{2} ; 1,1, c_{3}\right\}, b_{2} \leqslant 4$ and c_{3} divides $3^{3} 140 b_{2}$. In any case, there is no valid intersection array. In a similar way one considers the cases $57 \leqslant$ $k \leqslant 30$.

If $k=27$, then Γ has the intersection array $\left\{27,24, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{4} 8 b_{2}$. Here arise interesting intersection arrays $\{27,24,8 ; 1,1,16\}, v=1000$ with integer eigenvalues $7,2,-5$, but 2 and -5 have fractional multiplicity, and $\{27,24,4 ; 1,1,24\}, v=784$ with integer eigenvalues $6,-1,-5$, where 6 and -5 have fractional multiplicity. In all cases, there is no admissible intersection array.

If $k=24$, then Γ has intersection array $\left\{24,21, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{2} 56 b_{2}$. Interesting intersection array $\{24,21,11 ; 1,1,18\}, v=837$ with integer eigenvalues $6,-3,-7$ arise, but 6 and -7 have fractional multiplicity, and there is also $\{24,21,7 ; 1,1,18\}, v=725$ with integer eigenvalues $6,-1,-5$, but 6 and -5 have fractional multiplicity. In any case, there is no admissible intersection array.

If $k=21$, then Γ has the intersection array $\left\{21,18, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{3} 14 b_{2}$. There arises an interesting intersection array $\{21,18,10 ; 1,1,12\}, v=715$ with integer eigenvalues $6,-1,-5$, but -1 and -5 have fractional multiplicity. In any case, there is no admissible intersection array.

If $k=18$, then Γ has the intersection array $\left\{18,15, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{3} 10 b_{2}$. There arise interesting intersection arrays $\{18,15,13 ; 1,1,6\}, v=874$ with integer eigenvalues $6,-1,-5$, having fractional multiplicity, $\{18,15,5 ; 1,1,18\}, v=364$ with integer eigenvalues $5,-3,-6$, but 5 and -6 have fractional multiplicity, and the array $\{18,15,9 ; 1,1,10\}$ with the spectrum $18^{1},(1+\sqrt{105}) / 2^{171},-1^{189},(1-\sqrt{105}) / 2^{171}$. There are no other admissible intersection arrays.

If $k=15$, then Γ has the intersection array $\left\{15,12, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{2} 20 b_{2}$. There arise interesting intersection arrays $\{15,12,8 ; 1,1,10\}, v=340$ with integer eigenvalues $5,-2,-5$, but where 5 and -2 have fractional multiplicity, and $\{15,12,6 ; 1,1,10\}, v=304$ with integer eigenvalues $5,-1,-4$, but 5 and -4 have fractional multiplicity. In any case, there are no admissible intersection arrays.

If $k=12$, then Γ has the intersection array $\left\{12,9, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{3} 4 b_{2}$. There arise interesting intersection arrays $\{12,9,3 ; 1,1,6\}, v=175$ with integer eigenvalues 5,2 , -3 , but 5 and -3 are with fractional multiplicity, and $\{12,9,1 ; 1,1,12\}, v=130$ with integer eigenvalues $4,-1,-3$, but 4 and -3 have fractional multiplicity. In any case, there are no admissible intersection arrays.

If $k=9$, then Γ has the intersection array $\left\{9,6, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{3} 2 b_{2}$. There arises an interesting intersection array $\{9,6,4 ; 1,1,6\}, v=100$ with integer eigenvalues $4,-1,-3$, but 4 and -3 have fractional multiplicity. In any case, there are no admissible intersection arrays.

If $k=6$, then Γ has the intersection array $\left\{6,3, b_{2} ; 1,1, c_{3}\right\}, c_{3}$ divides $3^{2} 2 b_{2}$. An interesting intersection array $\{6,3,1 ; 1,1,6\}, v=28$ with integer eigenvalues $3,-1,-2$ arises here, but 3 and -2 have fractional multiplicity. In any case, there are no admissible intersection arrays.

Assertion (1) is proved.
Let now the diameter of Γ be greater than 4 . Then $b_{i} \geqslant c_{5-i}$ and $k_{3} \geqslant k_{2}$. It follows that $4096 \geqslant v \geqslant 2(1+k+k(k-3))$, and taking into account the divisibility of k by 3 , we see that $k \leqslant 45$. The Lemma is proved.

Let the diameter of Γ be greater than 3 , and Γ be not a generalized $2 n$-gon. Considering admissible intersection arrays with $\lambda=2$ from [4], we obtain only the array $\{21,18,12,4 ; 1,1,6,21\}$. The Theorem is thus proved.

Let us prove the Corollary. If Γ is not an antipodal graph of diameter 3, then considering admissible intersection arrays with $\lambda=2$ from [4], we obtain only the arrays from the Corollary.
Lemma 3. If Γ is an antipodal graph of diameter 3 with $\lambda=\mu=2$, then Γ has the intersection array $\{2 r+1,2 r-2,1 ; 1,2,2 r+1\}, r \in\{3,4, \ldots, 44\}-\{10,16,28,34,38\}$.

Proof. By the assumption, Γ has the intersection array $\{2 r+1,2 r-2,1 ; 1,2,2 r+1\}$ and $v=r(2 r+2)$ vertices. If $r \geqslant 45$, then $v \geqslant 4 \cdot 45 \cdot 23$, a contradiction with $v \leqslant 4096$. In view of [4, Proposition 1.10.5], if r is even, then $k=2 r+1$ is the sum of squares of two integers, therefore $r \in\{3,4, \ldots, 44\}-\{10,16,28,34,38\}$. The Lemma is proved.

In Lemmata 4-9 it is supposed that Γ is an antipodal graph of diameter 3 with $\lambda=2<\mu$. Therefore, Γ has the spectrum $k^{1}, n^{f},-1^{k},-m^{g}$, where $n,-m$ are integers, that are the roots of the equation $x^{2}-(\lambda-\mu) x-k=0, f=m(r-1)(k+1) /(m+n), g=n(r-1)(k+1) /(m+n)$ and $r=(k+\mu-3) / \mu$. If $r=2$, then Γ is Taylor's graph and $\mu=k-3$. In this case, $k=6, n=2$, $m=3$, a contradiction with the fact that $f=3 \cdot 7 / 5$. Consequently, $r>2$, and the condition $q_{33}^{3} \geqslant 0$ gives $m \leqslant n^{2}$.
Lemma 4. If $\mu \leqslant 5$, then Γ has one of the following intersection arrays:
(1) $\{42,39,1 ; 1,3,42\}$;
(2) $\left\{4 u^{2}-1,4 u^{2}-4,1 ; 1,4,4 u^{2}-1\right\}, u \in\{2,3,4,5\}$;
(3) $\{18,15,1 ; 1,5,18\}$ or $\{108,105,1 ; 1,5,108\}$.

Proof. Let $\mu=3$. Then $4 k+1=(2 n+1)^{2}$, and so, $k=n(n+1), m=n+1$ and $r=k / 3$. If $n=3 s$, then $f=(3 s+1)\left(3 s^{2}+s-1\right)\left(9 s^{2}+3 s+1\right) /(6 s+1)$. In this case, $\left(6 s+1,9 s^{2}+3 s+1\right)$ divides 3 and $\left(6 s+1,3 s^{2}+s-1\right)=(6 s+1, s-2)$ divides 13 , therefore, $s=2$ and Γ has the intersection array $\{42,39,1 ; 1,3,42\}$.

If $n=3 s-1$, then $f=3 s\left(3 s^{2}-s-1\right)\left(9 s^{2}-3 s+1\right) /(6 s-1)$. In this case, $\left(6 s-1,9 s^{2}-3 s+1\right)$ divides 3 and $\left(6 s-1,3 s^{2}-s-1\right)=(6 s-1, s+2)$ divides 13 , consequently, $s=11$, a contradiction with the fact that 5 does not divide $33 \cdot 351 \cdot 1057$.

Let $\mu=4$. Then $r=(k+1) / 4, k+1=4 u^{2}$, and so, $k=4 u^{2}-1, n=2 u-1$ and $m=2 u+1$. Further, $f=(2 u+1) 4 u^{2}\left(u^{2}-1\right) /(4 u), g=(2 u-1) u\left(u^{2}-1\right)$ and $v=4 u^{4} \leqslant 4096$, therefore, Γ has the intersection array $\left\{4 u^{2}-1,4 u^{2}-4,1 ; 1,4,4 u^{2}-1\right\}, u \in\{2, \ldots, 5\}$.

Let $\mu=5$. Then $r=(k+2) / 5,4 k+9=(2 u+1)^{2}$, and hence, $k=u^{2}+u-2, n=u-1$ and $m=u+2$. Further, $f=(u+2)\left(\left(u^{2}+u\right) / 5-1\right)\left(u^{2}+u-1\right) /(2 u+1),(2 u+1, u+2)$ divides 3 and $\left(u^{2}+u-1,2 u+1\right)=(u-2,2 u+1)$ divides 5 .

If $u=5 s$, then $\left(10 s+1,5 s^{2}+s-1\right)=(10 s+1, s-2)$ divides 21 . In this case, $10 s+1$ divides 63 , therefore, $s=2$ and Γ has the intersection array $\{108,105,1 ; 1,5,108\}$.

If $u=5 s-1$, then $\left(10 s-1,5 s^{2}-s-1\right)=(10 s-1, s+2)$ divides 21 . In this case $10 s-1$ divides 63 , hence $s=1$, and Γ has the intersection array $\{18,15,1 ; 1,5,18\}$.
Lemma 5. If $6 \leqslant \mu \leqslant 8$, then Γ has one of the following intersection arrays:
(1) $\{45,42,1 ; 1,6,45\}$;
(2) $\{27,24,1 ; 1,8,27\}$.

Proof. Let $\mu=6$. Then $r=(k+3) / 6, k+4=(2 u+1)^{2}$, and so, $k=4 u^{2}+4 u-3$, $n=2 u-1$ and $m=2 u+3$. Further, $f=(2 u+3)\left(2 u^{2}+2 u-1\right)\left(\left(4 u^{2}+4 u\right) / 6-1\right) /(2 u+1)$, $\left(2 u+1,4 u^{2}+4 u-2\right)=(2 u+1,2 u-2)$ divides 3 .

If $u=3 s$, then $f=(6 s+3)\left(18 s^{2}+12 s-2\right)\left(6 s^{2}+2 s-1\right) /(6 s+1)$. In this case, $\left(6 s+1,6 s^{2}+\right.$ $2 s-1)=(6 s+1, s-1)$ divides 7 , therefore $6 s+1$ divides $21, s=1$ and Γ has the intersection array $\{45,42,1 ; 1,6,45\}$.

If $u=3 s-1$, then $f=(6 s+1)\left(18 s^{2}-6 s-1\right)\left(6 s^{2}-2 s-1\right) /(6 s-1)$. In this case $\left(6 s-1,6 s^{2}-2 s-1\right)=(6 s-1, s+1)$ divides 7 and $6 s-1$ divides 21 , a contradiction.

Let $\mu=7$. Then $r=(k+4) / 7,4 k+25=(2 u+1)^{2}$, hence $k=u^{2}+u-6, n=u-2$ and $m=u+3$. Further, $f=(u+3)\left(\left(u^{2}+u-2\right) / 7-1\right)\left(u^{2}+u-5\right) /(2 u+1),(2 u+1, u+3)$ divides 5 and $\left(2 u+1, u^{2}+u-5\right)=(2 u+1, u-5)$ divides 11 .

If $u=7 s+1$, then $\left(14 s+3,7 s^{2}+3 s-1\right)=(14 s+3,3 s-2)$ divides 37 . In this case, $14 s+3$ divides $5 \cdot 11 \cdot 37$, a contradiction.

If $u=7 s+5$, then $\left(14 s+11,7 s^{2}+11 s+3\right)=(14 s+11,11 s+6)$ divides 37 . In this case $14 s+11$ divides $5 \cdot 11 \cdot 37$, a contradiction.

Let $\mu=8$. Then $r=(k+5) / 8, k+9=4 u^{2}$, therefore $k=4 u^{2}-9, n=2 u-3$ and $m=2 u+3$. Further, $f=(2 u+3)\left(\left(u^{2}-1\right) / 2-1\right)\left(u^{2}-2\right) / u,(u, 2 u+3)$ divides 3 and $\left(u^{2}-2, u\right)$ divides 2 . Consequently, $u=2 s+1,\left(2 s+1,2 s^{2}+2 s-1\right)$ divides 3 and $2 s+1$ divides 9 , and so, $s=1$ and Γ has the intersection array $\{27,24,1 ; 1,8,27\}$.

Lemma 6. If $9 \leqslant \mu \leqslant 11$, then there is no admissible intersection array.
Proof. Let $\mu=9$. Then $r=(k+6) / 9,4 k+49=(2 u+1)^{2}$, therefore $k=u^{2}+u-12$, $n=u-3$ and $m=u+4$. Further, $f=(u+4)\left(u^{2}+u-11\right)\left(\left(u^{2}+u-6\right) / 9-1\right) /(2 u+1)$, $(2 u+1, u+4)$ divides 7 , and $\left(2 u+1, u^{2}+u-11\right)=(2 u+1, u-22)$ divides 45 .

If $u=9 s+2$, then $\left(18 s+5,9 s^{2}+5 s-1\right)=(18 s+5,5 s-2)$ divides 61 . In this case, $18 s+5$ divides $35 \cdot 61$, a contradiction.

If $u=9 s-3$, then $\left(18 s-5,9 s^{2}-5 s-1\right)=(18 s-5,5 s+2)$ divides 61 . In this case, $18 s-5$ divides $35 \cdot 61$, a contradiction.

Let $\mu=10$. Then $r=(k+7) / 10, k+16=(2 u+1)^{2}$, therefore $k=4 u^{2}+4 u-15, n=2 u-3$ and $m=2 u+5$. Further, $f=(2 u+5)\left(2 u^{2}+2 u-7\right)\left(\left(2 u^{2}+2 u-4\right) / 5-1\right) /(2 u+1),(2 u+1,2 u+5)$ divides 4 , and $\left(2 u+1,2 u^{2}+2 u-7\right)$ divides 15 .

If $u=5 s+1$, then $\left(10 s+3,10 s^{2}+6 s-1\right)=(10 s+3,3 s-1)$ divides 19 . In this case, $10 s+3$ divides 57 , a contradiction.

If $u=5 s+3$, then $\left(10 s+7,10 s^{2}+14 s+3\right)=(10 s+7,7 s+3)$ divides 19. In this case, $10 s+7$ divides $57, s=5, u=28$, a contradiction with $v \leqslant 4096$.

Let $\mu=11$. Then $r=(k+8) / 11,4 k+81=(2 u+1)^{2}$, therefore $k=u^{2}+u-20, n=u-4$ and $m=u+5$. Further, $f=(u+5)\left(\left(u^{2}+u-12\right) / 11-1\right)\left(u^{2}+u-19\right) /(2 u+1),(2 u+1, u+5)$ divides 9 and $\left(u^{2}+u-19,2 u+1\right)=(u-38,2 u+1)$ divides 77 .

If $u=11 s+3$, then $\left(22 s+7,11 s^{2}+7 s-1\right)=(22 s+7,7 s-2)$ divides 93 , and $22 s+7$ divides $27 \cdot 7 \cdot 31$, a contradiction with the fact that $v \leq 4096$.

If $u=11 s-4$, then $\left(22 s-7,11 s^{2}-7 s-1\right)=(22 s-7,7 s+2)$ divides 93 , and so, $22 s-7$ divides $27 \cdot 7 \cdot 31$, that contradicts with $v \leqslant 4096$.
Lemma 7. If $12 \leqslant \mu \leqslant 14$, then Γ has either the intersection array $\{75,72,1 ; 1,12,75\}$ or the intersection array $\{171,168,1 ; 1,12,171\}$.

Proof. Let $\mu=12$. Then $r=(k+9) / 12, k+25=4 u^{2}$, therefore $k=4 u^{2}-25, n=2 u-5$ and $m=2 u+5$. Further, $f=(2 u+5)\left(\left(u^{2}-4\right) / 3-1\right)\left(u^{2}-6\right) / u,(2 u+5, u)$ divides 5 , and $\left(u^{2}-6, u\right)$ divides 6 .

If $u=3 s+1$, then $\left(3 s+1,3 s^{2}+2 s-2\right)=(3 s+1, s-2)$ divides 7 and $3 s+1$ divides 70, hence $s=2$ and Γ has the intersection array $\{171,168,1 ; 1,12,171\}$.

If $u=3 s-1$, then $\left(3 s-1,3 s^{2}-2 s-2\right)=(3 s-1, s+2)$ divides 7 and $3 s-1$ divides 70 , and so, $s=2$ and Γ has the intersection array $\{75,72,1 ; 1,12,75\}$.

Let $\mu=13$. Then $r=(k+10) / 13,4 k+121=(2 u+1)^{2}$, therefore $k=u^{2}+u-30, n=u-5$ and $m=u+6$. Further, $f=(u+6)\left(\left(u^{2}+u-20\right) / 13-1\right)\left(u^{2}+u-29\right) /(2 u+1),(2 u+1, u+6)$ divides 11, and $\left(2 u+1, u^{2}+u-29\right)=(2 u+1, u-58)$ divides 117 .

If $u=13 s+4$, then $\left(26 s+9,13 s^{2}+9 s-1\right)=(26 s+9,9 s-2)$ divides 133 and $26 s+9$ divides $99 \cdot 133$, a contradiction with that $v \leq 4096$.

If $u=13 s-5$, then $\left(26 s-9,13 s^{2}-9 s-1\right)=(26 s-9, s+2)$ divides 61 , and $26 s-9$ divides $99 \cdot 61$, a contradiction with $v \leqslant 4096$.

Let $\mu=14$. Then $r=(k+11) / 14, k+36=(2 u+1)^{2}$, therefore $k=4 u^{2}+4 u-35$, $n=2 u-5$ and $m=2 u+7$. Further, $f=(2 u+7)\left(\left(2 u^{2}+2 u-12\right) / 7-1\right)\left(2 u^{2}+2 u-17\right) /(2 u+1)$, $(2 u+1,2 u+7)$ divides 6 and $\left(2 u^{2}+2 u-17,2 u+1\right)=(u-17,2 u+1)$ divides 35 .

If $u=7 s+2$, then $\left(14 s+5,14 s^{2}+10 s-1\right)=(14 s+5,5 s-1)$ divides 39 and $14 s+5$ divides $15 \cdot 39$, a contradiction with the condition $v \leq 4096$.

If $u=7 s-3$, then $\left(14 s-5,14 s^{2}-4 s-1\right)=(14 s-5, s-1)$ divides 9 , and so, $14 s-5$ divides $135, s=1, n=3, m=15$, a contradiction with $m \leq n^{2}$.

Lemma 8. If $15 \leqslant \mu \leqslant 17$, then Γ has the intersection array $\{147,144,1 ; 1,16,147\}$.
Proof. Let $\mu=15$. Then $r=(k+12) / 15,4 k+169=(2 u+1)^{2}$, therefore $k=u^{2}+u-42$, $n=u-6$ and $m=u+7$. Further, $f=(u+7)\left(\left(u^{2}+u-30\right) / 15-1\right)\left(u^{2}+u-41\right) /(2 u+1)$, $(2 u+1, u+7)$ divides 13 and $\left(u^{2}+u-41,2 u+1\right)=(u-82,2 u+1)$ divides 165.

If $u=15 s$, then $\left(30 s+1,15 s^{2}+s-3\right)=(30 s+1, s-6)$ divides 181 and $30 s+1$ divides $11 \cdot 13 \cdot 181$, a contradiction with the condition $v \leqslant 4096$.

If $u=15 s-1$, then $\left(30 s-1,15 s^{2}-s-3\right)=(30 s-1, s+6)$ divides 181 and $30 s-1$ divides $11 \cdot 13 \cdot 181$, a contradiction with $v \leqslant 4096$.

If $u=15 s+5$, then $\left(30 s+11,15 s^{2}+11 s-1\right)=(30 s+11,11 s-2)$ divides 181 and $30 s+11$ divides $11 \cdot 13 \cdot 181$, a contradiction with the condition $v \leqslant 4096$.

If $u=15 s-6$, then $\left(30 s-11,15 s^{2}-11 s-1\right)=(30 s-11,11 s+2)$ divides 181 and $30 s-11$ divides $11 \cdot 13 \cdot 181$, a contradiction with $v \leqslant 4096$.

Let $\mu=16$. Then $r=(k+13) / 16, k+49=4 u^{2}$, therefore $k=4 u^{2}-49, n=2 u-7$ and $m=2 u+7$. Further, $f=(2 u+7)\left(\left(u^{2}-9\right) / 4-1\right)\left(u^{2}-12\right) / u,(2 u+7, u)$ divides 7 and $\left(u, u^{2}-12\right)$ divides 12. Consequently, $u=2 s+1,\left(2 s+1, s^{2}+s-3\right)=(2 s+1, s-6)$ divides 13 and $2 s+1$ divides $21 \cdot 13$, hence, $s=3$ and Γ has the intersection array $\{147,144,1 ; 1,16,147\}$.

Let $\mu=17$. Then $r=(k+14) / 17,4 k+225=(2 u+1)^{2}$, therefore $k=u^{2}+u-56$, $n=u-7$ and $m=u+8$. Further, $f=(u+8)\left(\left(u^{2}+u-42\right) / 7-1\right)\left(u^{2}+u-55\right) /(2 u+1)$, $(2 u+1, u+8)$ divides 15 and $\left(u^{2}+u-55,2 u+1\right)=(u-110,2 u+1)$ divides 221. Hence, $u=7 s-1,\left(14 s-1,7 s^{2}-s-7\right)=(14 s-1, s+14)$ divides 197 and $14 s-1$ divides $15 \cdot 221 \cdot 197$, a contradiction with the condition $v \leqslant 4096$.

Lemma 9. If $18 \leqslant \mu \leqslant 20$, then Γ has the intersection array $\{143,140,1 ; 1,20,143\}$.
Proof. Let $\mu=18$. Then $r=(k+15) / 18, k+256=(2 u+1)^{2}$, hence $k=4 u^{2}+4 u-255$, $n=2 u-6$ and $m=2 u+8$. Further, $f=(u+4)\left(\left(2 u^{2}+2 u-120\right) / 9-1\right)\left(4 u^{2}+4 u-255\right) /(2 u+1)$, $(2 u+1, u+4)$ divides 7 and $\left(4 u^{2}+4 u-255,2 u+1\right)=(2 u-255,2 u+1)$ divides 256 .

If $u=9 s+2$, then $\left(18 s+5,18 s^{2}+10 s-13\right)=(18 s+5,5 s-13)$ divides 259 and $18 s+5$ divides $7 \cdot 259$, a contradiction with $v \leqslant 4096$.

If $u=9 s-3$, then $\left(18 s-5,18 s^{2}-10 s-13\right)=(18 s-5,5 s+13)$ divides 259 and $18 s-5$ divides $7^{2} \cdot 37$, a contradiction with $v \leqslant 4096$.

Let $\mu=19$. Then $r=(k+16) / 19,4 k+289=(2 u+1)^{2}$, therefore $k=u^{2}+u-72, n=u-8$ and $m=u+9$. Further, $f=(u+9)\left(\left(u^{2}+u-56\right) / 19-1\right)\left(u^{2}+u-71\right) /(2 u+1),(2 u+1, u+9)$ divides 17 and $\left(2 u+1, u^{2}+u-71\right)$ divides 285 .

If $u=19 s+7$, then $\left(38 s+15,19 s^{2}+15 s-1\right)=(38 s+15,15 s-2)$ divides 301 and $38 s+15$ divides $15 \cdot 17 \cdot 301$, a contradiction with $v \leqslant 4096$.

If $u=19 s-8$, then $\left(38 s-15,19 s^{2}-15 s-1\right)=(38 s-15,15 s+2)$ divides 301 and $38 s-15$ divides $15 \cdot 17 \cdot 301$, a contradiction with $v \leqslant 4096$.

Let $\mu=20$. Then $r=(k+17) / 20, k+81=4 u^{2}$, hence $k=4 u^{2}+4 u-81, n=2 u-9$ and $m=2 u+9$. Further, $f=(2 u+9)\left(\left(u^{2}+u-16\right) / 5-1\right)\left(u^{2}+u-20\right) / u,(2 u+9, u)$ divides 9 and $\left(u^{2}+u-20, u\right)$ divides 20. Consequently, $u=5 s+2,\left(5 s+2,5 s^{2}+5 s-3\right)=(5 s+2,3 s-3)$ divides 21 and $5 s+2$ divides $21 \cdot 36$, therefore $s=1$ and Γ has the intersection array $\{143,140,1 ; 1,20,143\}$. The Lemma is proven.

Computer calculations show that there is no admissible intersection array in the case $\mu \geqslant 21$. The Theorem, and also the corresponding Corollary with it, are thus proven.

This work is partially supported by the Russian Foundation for Basic Research (project No. 12-01-00012), by the joint RFBR-GFEN (China) grant \# 12-01-91155, by Programs of the Branch of Mathematics of the Russian Academy of Sciences (project No. 12-T-1-1003), by the Joint Research Programs of the Ural Branch and the Siberian Branch of the Russian Academy of Sciences (project No. 12-C-1-1018), and by a joint grant with the National Academy of Sciences of Belarus (project No. 12-C-1-1009).

References

[1] V.P.Burichenko, A.A.Makhnev, On amply regular locally cyclic graphs, Modern problems of mathematics, Abstracts of the 42nd All-Russian Youth Conference, IMM UB RAS, Yekaterinburg, 2011, 11-14.
[2] K.Coolsaeet, Local structure of graphs with $\lambda=\mu=2, a_{2}=4$, Combinatorica, 15(1971), no. 4, 481-487.
[3] M.S.Nirova, On antipodal distance-regular graphs of diameter 3 with $\mu=1$, Doklady Rossiiskoi Akademii Nauk, 448(2013), no. 4, 392-395 (in Russian).
[4] A.E.Brouwer, A.M.Cohen, A.Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
[5] R.C.Bous, T.A.Dowling, A generalization of Moore graphs of diameter 2, J. Comb. Theory (B), 11(1971), 213-226.

О дистанционно-регулярных графах с $\lambda=2$

Александр А. Махнев
Марина С. Нирова

[^1]Ключевые слова: дистаниионно-регуллрный граф, почти n-угольник.

[^0]: *makhnev@imm.uran.ru
 © Siberian Federal University. All rights reserved

[^1]: В.П. Буриченко и А.А.Махнев нашли массивъ пересечений дистаниионно регулярных графов c $\lambda=2, \mu>1$ и числом вершин не большим 1000. Ранее вторым автором найдены массивы пересечений антиподальных дистаниионно-регулярньх графов диаметра 3 с $\lambda \leqslant 2 u \mu=1$. В данной статъе найдены возможные массивы пересечений дистаниионно-регуллрных графов с $\lambda=2$ ни более 4096 вершинами.

