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The paper considers a mathematical model for natural vibrations of a periodic layered medium. The
medium consists of a viscoelastic Kelvin-Voigt material and a viscous incompressible fluid. For the given
model, two homogenized models are derived. They correspond to the cases of transverse and longitudinal
vibrations of the layered medium. It is shown that the spectrum of each homogenized model is the union

of roots of the corresponding quadratic equations.
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Introduction

In this paper the study initiated in [1] and [2] is continued. The paper is concerned with
spectral properties of homogenized models of strongly inhomogeneous layered media. The moti-
vation to study spectral properties of such models is one interesting experimental fact obtained
in [3]. It was found that even a small amount of viscous fluid in pores of an elastic solid leads to
a qualitative different spectral properties of a continuous elastic solid and an elastic solid satu-
rated with fluid (see [3] for details). Therefore, it would appear natural that media consisting of
viscoelastic and fluid components also have some interesting mechanical properties.

In the present paper we consider a mathematical model for natural vibrations of a periodic
medium consisting of alternating layers of an isotropic viscoelastic Kelvin-Voigt material and
a viscous incompressible fluid. For this medium two homogenized models are derived. They
correspond to the cases of transverse and longitudinal vibrations of the layered medium. These
homogenized models describe one-dimensional natural vibrations of some viscoelastic Kelvin-
Voigt materials. We also show that the spectrum of each homogenized model is the union
of roots of the corresponding quadratic equations. In order to compare results obtained for
incompressible and compressible fluid layers, we briefly review the homogenized problems and
their spectra given in [1], where fluid was supposed to be compressible.

The paper is organized as follows. In Section 1 we formulate an original mathematical model
and derive the corresponding homogenized model. In Sections 2 and 3 we construct homogenized
models corresponding to the cases of transverse and longitudinal vibrations, respectively. Then
we study the spectral properties of these models.
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1. Mathematical models
Let Q = (0,1) and d is a constant such that 0 < d < 1. Let us denote
I"=0,1-d)/2)u((1+d)/2,1), I*=((1-d)/2,(1+d)/2).
Then for a sufficiently small € > 0 we define
1M = (0,0) N (Ugez(el™ + k), 12 = (0,1) N (Ugez(el® +¢ck)),

Qb =11 % (0,1) x (0,1), Q=1 % (0,1) x (0,1).

g g

Obviously, Q = Q" U Q2 U S, with S. = 90" N 9N, We assume that the set QF is occupied
by a viscous incompressible fluid whereas the set Q" is occupied by an isotropic viscoelastic
Kelvin-Voigt material. In the sequel, the sets Q" and Qf are called the viscoelastic and the fluid
parts (or layers) of , respectively. Note that all viscoelastic and fluid layers of Q are parallel
to the zox3-plane. Denoting Y = (0,1)3 we see that the cube €Y is the cell of periodicity of the
combined medium (2. In fact, the set Y = I" x (0,1) x (0,1) is the viscoelastic part of Y, and
the set Y* = I® x (0,1) x (0,1) is the fluid part of Y.

We now turn to the formulation of mathematical model for the cooperative motion of vis-
coelastic and fluid layers of . Let us assume that positive constants p and p® are the densities
of the viscoelastic material and the fluid, respectively. Assume also that f(z,t) is the force vector
and u?(z,t) is the displacement vector. The equations of motion in the viscoelastic part Q" are

as follows Put B¢
R O7U; Tij h
= iz, 1), e QY t>0. 1
e L CUNET (1)

Here o7; are the components of the stress tensor,

5 e ou® h
0y = aijkhekh(u )+ bijrknern at ) x €,

and egp(u®) are the components of the strain tensor,

1 [0u;, = Ouf
exn(u’) = (uk—i- uh>.

2\ 0z, | O

Since the viscoelastic material is isotropic the coeflicients a;jx, and b;jxp are defined by
Qijkh = Ne0ijOknh + te(0ik0jn + 0indin), bijkn = M0ijOkn + o (0ikdjn + dindjk),

1<i,j,kh <3,

where A, and p. are the elastic Lamé constants, A\, and p, are their viscoelastic counterparts
and ¢;; is the Kronecker symbol.
In the fluid part QY the equations of motion are the Stokes equations
JO%us  0Oo;

j . _ S
GE = g TH@0, dvei=0, zeq: t>0, (2)

with

€ 3 u* s
055 = _5ijp + 2ﬂ5ik5jhekh E , T €E Qs'

- 350 —



Vladlena V. Shumilova Spectrum of One-dimensional Vibrations of a Layered Medium Consisting ...

Here p®(z,t) is the fluid pressure and p is the fluid viscosity.
Besides, at the interface S; between viscoelastic and fluid parts of Q the conditions of conti-
nuity of displacement and normal stress are imposed:

[w]s. =0, [ofi]s. =0, 3)

where [-]s. denotes the jump across the boundary S..
Finally, the problem is supplemented by homogeneous initial and Dirichlet boundary condi-
tions: Ous
u®(x,0) =0, E(%,O) =0, z€Q, (4)

ut(z,t) =0, z€0, t>0. (5)

Remark 1.1. In general, the continuity of the normal stress takes the form [afjnj]ga = 0, where
nj, j =1,2,3 are the components of the unit normal to S.. Since every layer of ) is parallel to
the xoxs-plane, the unit normal to Se is ether n = (1,0,0) or n = (—1,0,0). This explains the
form of the second boundary condition in (3).

To formulate the homogenized problem that corresponds to the original problem (1)—(5)
we define the pairs {Z*"(y), B¥"(y)}, {D*'(y), A*"(y)}, and {W*"(y,t), 5% (y,)}. They are
solutions of the following auxiliary problems:

(1)
dai” o okh s.
—— =0, yeY; divZ"" = -0k, yeY?®
3%‘ (6)

/ ZMdy = 0; [Z2"]s =0; [0)s = 0;
Y

9o?
Yo —0,yeY; divD* =0, yeV?®
Jy; (7)
/ DMy = 0; (D5 =0; [0}]s = 0;
Y
do®
L= Oa th(yao) = th(y)a AS Y; ley th = Oa Yy € YS;
Jy; (8)

/ Whhdy =0, [ =0; [oP]s = 0.
Y

Here Z*"(y), D¥"(y) and W*"(y,t) are Y-periodic vector functions, B*"(y), A¥"(y) and
Skh(y,t) are Y-periodic scalar functions, S = 0Y" N JY* and
Uz(;) = bijimeim(Z*") + bijen, y €Y
o) = 2peii (ZM) + p(Gikdin + dindji) — 0, BM, y € V¥
z(?) = bijim€im (D) + aijimeim (Z) + aijpn, y € Y
Uﬁ) = 2pe; (D) — 6, AF, y e Y5
05]3,) = @ijtmCim (W) + bijimeim (812;’”) , yevh

8wkh
0'1(33) = 2ueij <8t> — (SijSkh, BS Ys.

ag

Then under some additional assumptions on f(z,t) (see [5]) the homogenized problem cor-
responding to (1)—(5) takes the form
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82u¢ Baij
PG = oz, + fi(z,t), z€Q, t>0; (9)
u(z,t) =0, €I, t>0; u(x,0)= %(m,O) =0, x€Q (10)

where pg = p"|[Y"| + p*[Y?, t
ou
0ij = Qijkhern (W) + Bijkhern (({%> + Gijrn(t) * exn(u), g1(t) * g2(t) = / g1(t — 5)g2(s)ds,
0

s

Qjjkh = /Yh (aijk:h + aijlmelm(Zkh) + bijhnelm(th)) dy + /Y (2,&61‘]' (th) — 51']'Akh)dy, (11)

Bijkn = 1(0ikdjn + dindjn) Y| + / (bijin + bijimern (ZF)) dy+
v (12)
+ / (2pei;(ZF") — 6,;B™) dy,

6th
Gikn(t) = /yi (aijlmelm(th) + bijim€im (815)> w

kh
+/ <2,ueij (812/;5) - &jSkh) dy.

Remark 1.2. To obtain the homogenized problem (9) and (10) we modify the results given in [4].
Namely, the auxiliary problems (6) and (8) have the same form as in [4], but we change auxiliary
problems which define the initial conditions for W¥'(y,t). Nevertheless, setting P*"(y,t) =
Bt ()0 (t) + AR (y) 5 (t) + S (y, t) in formula (5.3) from [4], we can easily derive problems (7).

(13)

In what follows we suppose that f(z,t) = 0. Then the homogenized problem (9), (10)
describes natural vibrations of the homogeneous viscoelastic medium. In order to define the
spectrum of the homogenized problem we apply the Laplace transform to equations (9), (10).
We have o Dy,
M potl; = o, ((aijkh + ABijkn + gijkh(A))axh) , €, (14)

a(x,\) =0, x €099, (15)

where @(x, A) and §;jkn () are the Laplace transforms of u(x,t) and g,k (t), respectively. Taking
A for a spectral parameter, the spectrum of the homogenized problem (9), (10) is the set S =
{Ae C:a(z,\) # 0}, where u(x,\) is a solution of (14), (15).

It should be noted that if the set Qf is occupied by a viscous compressible fluid, then the
condition divu® = 0 in (2) is replaced by the condition p* = —~divu®, where v = ¢?p* (here
¢ is the speed of sound in the fluid). However, in this case the corresponding homogenized
model is also described by system (9), (10) (see [1]) while the periodic auxiliary problems differ
from (6)—(8). It is clear that incompressible fluid models can be considered as a limiting case of
compressible fluid models when the acoustic speed ¢ goes to infinity.

2. The case of transverse vibrations

In this section we consider the displacement vectors u®(x,t) and u(zx,t) such that u®(x,t) =
ui(x1,t),0,0) and u(z,t) = (u1(x1,1),0,0). Then it is easy to see that the homogenized system
§ t),0,0 d t t),0,0). Then it i t that the h ized t
(9) contains only one integro-differential equation:

0%u oul
pOW; =auf + ﬁla—tl +g1(t) xuf.
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Hereinafter, the following notation is used: o; = i, Bi = Biiiis 9i(t) = guii(t), i = 1,2.
To determine the constants oy, 51 and the kernel of convolution ¢ (t) we solve the auxiliary
problems (6)—(8) for k = h =1 and find

le(y) = (Z(yl),0,0), Dll(y) = (07050)7 WH(yat) = (070’0)7 yeyY;

by aj
All - _ 11 — Yy
L Al () = - STy =0, yev?,

where a1 = a1111 = Ae + 2pe, b1 = b1111 = Ay + 24, and

B'(y) = -

d
N for g e (0,(1—d)/2),
1-d
1 )
Z(yl): _y1+§7 fOI‘ yle‘léa
—1)d
%, for y1 € [(1+d)/2,1).

Using formulas (11)—(13) we obtain

a b
L Bi=——, a)=0.

M=y 1-d

Finally, we find that the homogenized problem takes the form

0?uy ouy
POz :ozlu'{—&—ﬁlﬁ7 x1 € (0,1), t>0; (16)
ur(0,8) = ur(l,t) =0, t>0; wp(a1,0) = %(m,o) =0, 1€ (0,0). (17)

It follows from (16), (17) that in the case of transverse vibrations the homogenized problem
does not contain long-term memory and describes one-dimensional vibrations of the viscoelastic
Kelvin-Voigt material.

By definition, the spectrum of problem (16), (17) is the union of all A € C so that the
corresponding spectral problem

po)\z’fbl = (oq + ﬂl)\)ﬁ/{a z1 € (0,1), (18)

(0, A) = 6y (1,A) =0 (19)

has a non-trivial solution ;(z1,A). In order to define the values of A we seek a solution of
problem (18) and (19) in the form

" = . 7k
U1 (z1,\) = Z O (A) sin RS (20)
k=1
Substituting (20) into (18) gives

()\2 + 1Ok A + ale) f}ko\) sin Terxl =0

M8

=~
Il

1

with Cy = 72k2/(pol?). The spectrum of problem (16), (17) is the union of roots of the quadratic
equations

A2 + 1Cx A+ a1Cr =0 (21)
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for all kK € N. It is clear that for every fixed value of k € N the roots of equation (21) lie in the
left half-plane {\ : ReA < 0}. Let us denote

21
ki = max{k : keNU {O}, k< ﬁ\/pooq} .
TP1
Since defining the spectrum of problem (16), (17) is reduced to finding the roots of the
quadratic equations (21), the following statement is valid.

Theorem 2.1. The spectrum Sy of problem (16), (17) has the form
St = { Ak dity U { At

1
where Aok = (fﬂlck + /BT - 4a1Ck), k=1,2,....

In particular, Mg, Aop ¢ R for k = 1,....,k1, and Mg, Aok, € R for all k > k1. Moreover, the
following asymptotic relations are valid:

Alk—>_2+0(kl2>7 Aok — 2?—5101@—1—0(132) as k — oo.
Therefore, in the case of transverse vibrations the spectrum of the homogenized model con-

tains kq pairs of complex conjugate eigenvalues and infinite number of real eigenvalues. In

particular, if I < 7b1/(24/(1 — d)poa;) then the spectrum S; contains only real eigenvalues.

Note that if we change a7 and (3 in Theorem 2.1 for a; and by, respectively, then this theorem
gives the spectral properties of the problem that describes one-dimensional vibrations (along the
x1-axes) of the original Kelvin-Voigt material. Moreover, the equality o1/ = a1/b; means
that eigenvalues A1y of the latter problem and of problem (16), (17) have identical asymptotic
behavior as k — oo.

To conclude this section we suppose that the original fluid is compressible with the large
enough value of . Our aim now is to study the behavior of the spectrum of the corresponding
homogenized problem as v — oo. It is known (see [1]) that this homogenized problem has the
form

8211, 8u”
po s = Avf + Bi Sk + Git) v, @1 € (0,0), t>0; (22)
ul(O,t) = ul(l,t) = 0, t> O; ul(wl,()) = %(ICMO) = 0, xr1 € (O,Z), (23)

where
A1 = p%(él/fal(l — d) + ’yb?d), Bl = 2,ub1p1, Gl(t) = —Qle_gt,
1

= 3 1— —2 2 - = 5. /1 _ N1
Qi =pd(1=d)(obr = 2ue )’ E=pipey 1= 9 r— T

p2 =7(1 —d)+ aid.

We see that problem (22), (23) describes one-dimensional vibrations of the viscoelastic mate-
rial with long-term memory. Furthermore, it was shown in [1] that the spectrum Sy of problem
(22), (23) takes the form

Sz = { A}y U {2}y U {Ase iy,
where A\, ¢ = 1,2, 3 are the roots of the cubic equation

N (E+ BiC)N + (B1€+ ADCRA + (A1€ — Q1)Cy = 0. (24)
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Now we divide the left-hand side of (24) by v and consider the limit as v — oco. Since

%(f + B1Ck) — (1 = d)px, %(315 + A1) — bip1, %(Alf —q1) — aip1,

two roots of (24) approach the roots of the quadratic equation (21) as 7 — oo. Furthermore,
as it follows from Vieta’s theorem the last root of (24) approaches —oo because other two roots
of (24) are bounded as 7 — oco. Therefore, we observe the following interesting fact: there is
a qualitative difference in the form of problems (16), (17) and (22), (23) and we cannot obtain
the first problem as a limiting case of the second problem as v — oco. However, if we study
eigenvalues of these two problems then eigenvalues of problem (16), (17) are the finite limits of
eigenvalues of problem (22), (23) as v — oo.

3. The case of longitudinal vibrations

In this section we assume that u®(x,t) = (0,u5(z2,t),0) and u(z,t) = (0,uz(x2,1),0). In
order to obtain the corresponding homogenized problem, we need to determine the constants as
and (32, and the kernel of convolution gs(t). To do this, we solve the auxiliary problems (6)—(8)
for k = h =2 and find

Z22(y) = (2(y1),0,0), D22(y) = (0,0,0), W22(y7t) =(0,0,0), yeY;
bid ard
1—d’ 1—d’
where a13 = a1122 = Ae, b12 = b1122 = A,. Using (11)—(13) we obtain

B*(y) = —2p — by — AP (y) = —a12 — S5*(y,t) =0, yeY”,

a1d2 b1d2
Qo = al(l — d) + 2a12d+ id, ﬂg = bl(l - d) + 4[Ld+ 2b12d+ m, gg(t) =0.

Therefore, the homogenized problem takes the form

0uy ouy
pOW :agug+ﬁ2ﬁ7 o € (O7Z), t>07 (25)
up(0,8) = up(l,6) =0, ¢>0; up(z2,0) = %(@,0) =0, z€(0,0). (26)

We see that problem (25), (26) has the same form as problem (16), (17). Hence, to describe
the spectral properties of problem (25), (26) one needs to use Theorem 2.1 and change a; and 34
for ay and fs, respectively. However, since aggos = a1, bagas = by and o /B2 # a1 /by, eigenvalues
A1 of problem (25), (26) and eigenvalues of the problem describing one-dimensional vibrations
(along the zo-axes) of the original Kelvin-Voigt material have different asymptotic behavior as
k — oo.

It should be noted that if original fluid is assumed to be compressible with large enough
value of v then the corresponding homogenized problem, as in the case of transverse vibrations,
describes one-dimensional vibrations of the viscoelastic material with long-term memory (see
[1]). Moreover, the spectrum of this problem is the union of roots of the cubic equations (24)
with the subscript 1 changed for 2 and constants in the equations are

A2 = a1(1 — d) + d(’y + (au — ’}/)Cg —+ b1204), BQ = bl(l — d) —+ d(?/l, —+ b1203),

Q2 = p1d(1 — d)(y — a1z + brapip2)?,
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where ¢3 = —biap1(1 — d), ¢4 = p1(1 — d)(y — a12 + bia2p1p2). Finally, assuming v — oo and
repeating the above-mentioned arguments we can easily obtain results that are similar to the
results obtained in the previous section.

This work was supported by the Russian Foundation for Basic Research, grant 13-01-003584
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CriekTp O THOMEPHBIX KOJiIeDaHUii CJIONCTOI Cpe/bl,
cocrosrieii u3 marepuaJja KeabBuna-®Poiirra
1 BA3KOI HECXKMMAEMOil >KMIKOCTHI

Baannena B. IllymuioBa

Paccmompena mamemamuieckas mMoodeab, ONUCHLEAI0ULAA COOCMEEHHBLE KOACOAHUA NEPUOOUNECKOT, CAOU-
cmot cpedul, cocmasaenholl u3 8a3koynpyzo2o mamepuana Keaveuna-Dotiema u 843K0U HecHcumaemos
otcudxocmu. Jlas dannoli modeau nocmpoers, dée ycpedHeHHve MOOJeAU, COOMBEMCMEYIOULUE TLONEPEY -
HOLM U NPOAONOHBIM KOACOAHUAM CAOUCTOT cpedol. Tlokasaro, wmo cnexmp Kastcdol yepeonenHoti Modeay
ecmb obsedunenue KopHet cOOmeemcmeyowur K6aopamHvlL YpasHeHul.

Karoueswie caosa: cnexkmp, caoucmas cpeda, Yycpeonennan modeas, 8A3K0YNPY20CMb, 8A3KAA HCUIKOCND.
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