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The paper considers a mathematical model for natural vibrations of a periodic layered medium. The

medium consists of a viscoelastic Kelvin-Voigt material and a viscous incompressible fluid. For the given

model, two homogenized models are derived. They correspond to the cases of transverse and longitudinal

vibrations of the layered medium. It is shown that the spectrum of each homogenized model is the union

of roots of the corresponding quadratic equations.
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Introduction

In this paper the study initiated in [1] and [2] is continued. The paper is concerned with

spectral properties of homogenized models of strongly inhomogeneous layered media. The moti-

vation to study spectral properties of such models is one interesting experimental fact obtained

in [3]. It was found that even a small amount of viscous fluid in pores of an elastic solid leads to

a qualitative different spectral properties of a continuous elastic solid and an elastic solid satu-

rated with fluid (see [3] for details). Therefore, it would appear natural that media consisting of

viscoelastic and fluid components also have some interesting mechanical properties.

In the present paper we consider a mathematical model for natural vibrations of a periodic

medium consisting of alternating layers of an isotropic viscoelastic Kelvin-Voigt material and

a viscous incompressible fluid. For this medium two homogenized models are derived. They

correspond to the cases of transverse and longitudinal vibrations of the layered medium. These

homogenized models describe one-dimensional natural vibrations of some viscoelastic Kelvin-

Voigt materials. We also show that the spectrum of each homogenized model is the union

of roots of the corresponding quadratic equations. In order to compare results obtained for

incompressible and compressible fluid layers, we briefly review the homogenized problems and

their spectra given in [1], where fluid was supposed to be compressible.

The paper is organized as follows. In Section 1 we formulate an original mathematical model

and derive the corresponding homogenized model. In Sections 2 and 3 we construct homogenized

models corresponding to the cases of transverse and longitudinal vibrations, respectively. Then

we study the spectral properties of these models.
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1. Mathematical models

Let Ω = (0, l)3 and d is a constant such that 0 < d < 1. Let us denote

Ih = (0, (1 − d)/2) ∪ ((1 + d)/2, 1), Is = ((1 − d)/2, (1 + d)/2).

Then for a sufficiently small ε > 0 we define

Ih
ε = (0, l) ∩

(

∪k∈Z(εIh + εk)
)

, Is
ε = (0, l) ∩ (∪k∈Z(εIs + εk)) ,

Ωh
ε = Ih

ε × (0, l) × (0, l), Ωs
ε = Is

ε × (0, l) × (0, l).

Obviously, Ω = Ωh
ε ∪ Ωs

ε ∪ Sε with Sε = ∂Ωh
ε ∩ ∂Ωs

ε. We assume that the set Ωs
ε is occupied

by a viscous incompressible fluid whereas the set Ωh
ε is occupied by an isotropic viscoelastic

Kelvin-Voigt material. In the sequel, the sets Ωh
ε and Ωs

ε are called the viscoelastic and the fluid

parts (or layers) of Ω, respectively. Note that all viscoelastic and fluid layers of Ω are parallel

to the x2x3-plane. Denoting Y = (0, 1)3 we see that the cube εY is the cell of periodicity of the

combined medium Ω. In fact, the set Y h = Ih × (0, 1) × (0, 1) is the viscoelastic part of Y , and

the set Y s = Is × (0, 1) × (0, 1) is the fluid part of Y .

We now turn to the formulation of mathematical model for the cooperative motion of vis-

coelastic and fluid layers of Ω. Let us assume that positive constants ρh and ρs are the densities

of the viscoelastic material and the fluid, respectively. Assume also that f(x, t) is the force vector

and uε(x, t) is the displacement vector. The equations of motion in the viscoelastic part Ωh
ε are

as follows

ρh ∂2uε
i

∂t2
=

∂σε
ij

∂xj

+ fi(x, t), x ∈ Ωh
ε , t > 0. (1)

Here σε
ij are the components of the stress tensor,

σε
ij = aijkhekh(uε) + bijkhekh

(

∂uε

∂t

)

, x ∈ Ωh
ε ,

and ekh(uε) are the components of the strain tensor,

ekh(uε) =
1

2

(

∂uε
k

∂xh

+
∂uε

h

∂xk

)

.

Since the viscoelastic material is isotropic the coefficients aijkh and bijkh are defined by

aijkh = λeδijδkh + µe(δikδjh + δihδjk), bijkh = λvδijδkh + µv(δikδjh + δihδjk),

1 6 i, j, k, h 6 3,

where λe and µe are the elastic Lamé constants, λv and µv are their viscoelastic counterparts

and δij is the Kronecker symbol.

In the fluid part Ωs
ε the equations of motion are the Stokes equations

ρs ∂2uε
i

∂t2
=

∂σε
ij

∂xj

+ fi(x, t), div uε = 0, x ∈ Ωs
ε, t > 0, (2)

with

σε
ij = −δijp

ε + 2µδikδjhekh

(

∂uε

∂t

)

, x ∈ Ωs
ε.
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Here pε(x, t) is the fluid pressure and µ is the fluid viscosity.

Besides, at the interface Sε between viscoelastic and fluid parts of Ω the conditions of conti-

nuity of displacement and normal stress are imposed:

[uε]Sε
= 0, [σε

i1]Sε
= 0, (3)

where [·]Sε
denotes the jump across the boundary Sε.

Finally, the problem is supplemented by homogeneous initial and Dirichlet boundary condi-

tions:
uε(x, 0) = 0,

∂uε

∂t
(x, 0) = 0, x ∈ Ω, (4)

uε(x, t) = 0, x ∈ ∂Ω, t > 0. (5)

Remark 1.1. In general, the continuity of the normal stress takes the form [σε
ijnj ]Sε

= 0, where
nj, j = 1, 2, 3 are the components of the unit normal to Sε. Since every layer of Ω is parallel to
the x2x3-plane, the unit normal to Sε is ether n = (1, 0, 0) or n = (−1, 0, 0). This explains the
form of the second boundary condition in (3).

To formulate the homogenized problem that corresponds to the original problem (1)–(5)

we define the pairs {Zkh(y), Bkh(y)}, {Dkh(y), Akh(y)}, and {W kh(y, t), Skh(y, t)}. They are

solutions of the following auxiliary problems:


















∂σ
(1)
ij

∂yj

= 0, y ∈ Y ; div Zkh = −δkh, y ∈ Y s;

∫

Y

Zkhdy = 0; [Zkh]S = 0; [σ
(1)
i1 ]S = 0;

(6)



















∂σ
(2)
ij

∂yj

= 0, y ∈ Y ; div Dkh = 0, y ∈ Y s;

∫

Y

Dkhdy = 0; [Dkh]S = 0; [σ
(2)
i1 ]S = 0;

(7)



















∂σ
(3)
ij

∂yj

= 0, W kh(y, 0) = Dkh(y), y ∈ Y ; divy W kh = 0, y ∈ Y s;

∫

Y

W khdy = 0, [W kh]S = 0; [σ
(3)
i1 ]S = 0.

(8)

Here Zkh(y), Dkh(y) and W kh(y, t) are Y -periodic vector functions, Bkh(y), Akh(y) and

Skh(y, t) are Y -periodic scalar functions, S = ∂Y h ∩ ∂Y s and

σ
(1)
ij = bijlmelm(Zkh) + bijkh, y ∈ Y h;

σ
(1)
ij = 2µeij(Z

kh) + µ(δikδjh + δihδjk) − δijB
kh, y ∈ Y s;

σ
(2)
ij = bijlmelm(Dkh) + aijlmelm(Zkh) + aijkh, y ∈ Y h;

σ
(2)
ij = 2µeij(D

kh) − δijA
kh, y ∈ Y s;

σ
(3)
ij = aijlmelm(W kh) + bijlmelm

(

∂W kh

∂t

)

, y ∈ Y h;

σ
(3)
ij = 2µeij

(

∂W kh

∂t

)

− δijS
kh, y ∈ Y s.

Then under some additional assumptions on f(x, t) (see [5]) the homogenized problem cor-

responding to (1)–(5) takes the form
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ρ0
∂2ui

∂t2
=

∂σij

∂xj

+ fi(x, t), x ∈ Ω, t > 0; (9)

u(x, t) = 0, x ∈ ∂Ω, t > 0; u(x, 0) =
∂u

∂t
(x, 0) = 0, x ∈ Ω; (10)

where ρ0 = ρh|Y h| + ρs|Y s|,

σij = αijkhekh(u) + βijkhekh

(

∂u

∂t

)

+ gijkh(t) ∗ ekh(u), g1(t) ∗ g2(t) =

∫ t

0

g1(t − s)g2(s)ds,

αijkh =

∫

Y h

(

aijkh + aijlmelm(Zkh) + bijlmelm(Dkh)
)

dy +

∫

Y s

(2µeij(D
kh) − δijA

kh)dy, (11)

βijkh = µ(δikδjh + δihδjk)|Y s| +
∫

Y h

(

bijkh + bijlmelm(Zkh)
)

dy+

+

∫

Y s

(

2µeij(Z
kh) − δijB

kh
)

dy,

(12)

gijkh(t) =

∫

Y h

(

aijlmelm(W kh) + bijlmelm

(

∂W kh

∂t

))

dy+

+

∫

Y s

(

2µeij

(

∂W kh

∂t

)

− δijS
kh

)

dy.

(13)

Remark 1.2. To obtain the homogenized problem (9) and (10) we modify the results given in [4].
Namely, the auxiliary problems (6) and (8) have the same form as in [4], but we change auxiliary
problems which define the initial conditions for W kh(y, t). Nevertheless, setting P kh(y, t) =
Bkh(y)δ′(t)+Akh(y)δ(t)+Skh(y, t) in formula (5.3) from [4], we can easily derive problems (7).

In what follows we suppose that f(x, t) ≡ 0. Then the homogenized problem (9), (10)

describes natural vibrations of the homogeneous viscoelastic medium. In order to define the

spectrum of the homogenized problem we apply the Laplace transform to equations (9), (10).

We have
λ2ρ0ûi =

∂

∂xj

(

(αijkh + λβijkh + ĝijkh(λ))
∂ûk

∂xh

)

, x ∈ Ω, (14)

û(x, λ) = 0, x ∈ ∂Ω, (15)

where û(x, λ) and ĝijkh(λ) are the Laplace transforms of u(x, t) and gijkh(t), respectively. Taking

λ for a spectral parameter, the spectrum of the homogenized problem (9), (10) is the set S =

{λ ∈ C : û(x, λ) 6≡ 0}, where û(x, λ) is a solution of (14), (15).

It should be noted that if the set Ωs
ε is occupied by a viscous compressible fluid, then the

condition div uε = 0 in (2) is replaced by the condition pε = −γ div uε, where γ = c2ρs (here

c is the speed of sound in the fluid). However, in this case the corresponding homogenized

model is also described by system (9), (10) (see [1]) while the periodic auxiliary problems differ

from (6)–(8). It is clear that incompressible fluid models can be considered as a limiting case of

compressible fluid models when the acoustic speed c goes to infinity.

2. The case of transverse vibrations

In this section we consider the displacement vectors uε(x, t) and u(x, t) such that uε(x, t) =

(uε
1(x1, t), 0, 0) and u(x, t) = (u1(x1, t), 0, 0). Then it is easy to see that the homogenized system

(9) contains only one integro-differential equation:

ρ0
∂2u1

∂t2
= α1u

′′

1 + β1
∂u′′

1

∂t
+ g1(t) ∗ u′′

1 .
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Hereinafter, the following notation is used: αi = αiiii, βi = βiiii, gi(t) = giiii(t), i = 1, 2.

To determine the constants α1, β1 and the kernel of convolution g1(t) we solve the auxiliary

problems (6)–(8) for k = h = 1 and find

Z11(y) = (z(y1), 0, 0), D11(y) = (0, 0, 0), W 11(y, t) = (0, 0, 0), y ∈ Y ;

B11(y) = − b1

1 − d
, A11(y) = − a1

1 − d
, S11(y, t) = 0, y ∈ Y s,

where a1 = a1111 = λe + 2µe, b1 = b1111 = λv + 2µv, and

z(y1) =































y1d

1 − d
, for y1 ∈ (0, (1 − d)/2],

− y1 +
1

2
, for y1 ∈ Is,

(y1 − 1)d

1 − d
, for y1 ∈ [(1 + d)/2, 1).

Using formulas (11)–(13) we obtain

α1 =
a1

1 − d
, β1 =

b1

1 − d
, g1(t) = 0.

Finally, we find that the homogenized problem takes the form

ρ0
∂2u1

∂t2
= α1u

′′

1 + β1
∂u′′

1

∂t
, x1 ∈ (0, l), t > 0; (16)

u1(0, t) = u1(l, t) = 0, t > 0; u1(x1, 0) =
∂u1

∂t
(x1, 0) = 0, x1 ∈ (0, l). (17)

It follows from (16), (17) that in the case of transverse vibrations the homogenized problem

does not contain long-term memory and describes one-dimensional vibrations of the viscoelastic

Kelvin-Voigt material.

By definition, the spectrum of problem (16), (17) is the union of all λ ∈ C so that the

corresponding spectral problem

ρ0λ
2û1 = (α1 + β1λ)û′′

1 , x1 ∈ (0, l), (18)

û1(0, λ) = û1(l, λ) = 0 (19)

has a non-trivial solution û1(x1, λ). In order to define the values of λ we seek a solution of

problem (18) and (19) in the form

û1(x1, λ) =
∞
∑

k=1

v̂k(λ) sin
πk

l
x1. (20)

Substituting (20) into (18) gives
∞
∑

k=1

(

λ2 + β1Ckλ + α1Ck

)

v̂k(λ) sin
πk

l
x1 = 0

with Ck = π2k2/(ρ0l
2). The spectrum of problem (16), (17) is the union of roots of the quadratic

equations

λ2 + β1Ckλ + α1Ck = 0 (21)
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for all k ∈ N. It is clear that for every fixed value of k ∈ N the roots of equation (21) lie in the

left half-plane {λ : Reλ < 0}. Let us denote

k1 = max

{

k : k ∈ N ∪ {0}, k <
2l

πβ1

√
ρ0α1

}

.

Since defining the spectrum of problem (16), (17) is reduced to finding the roots of the

quadratic equations (21), the following statement is valid.

Theorem 2.1. The spectrum S1 of problem (16), (17) has the form

S1 = {λ1k}∞k=1 ∪ {λ2k}∞k=1,

where λ1k,2k =
1

2

(

−β1Ck ±
√

β2
1C2

k − 4α1Ck

)

, k=1,2,... .

In particular, λ1k, λ2k /∈ R for k = 1, ..., k1, and λ1k, λ2k ∈ R for all k > k1. Moreover, the
following asymptotic relations are valid:

λ1k → −α1

β1
+ O

(

1

k2

)

, λ2k → α1

β1
− β1Ck + O

(

1

k2

)

as k → ∞.

Therefore, in the case of transverse vibrations the spectrum of the homogenized model con-

tains k1 pairs of complex conjugate eigenvalues and infinite number of real eigenvalues. In

particular, if l 6 πb1/(2
√

(1 − d)ρ0a1) then the spectrum S1 contains only real eigenvalues.

Note that if we change α1 and β1 in Theorem 2.1 for a1 and b1, respectively, then this theorem

gives the spectral properties of the problem that describes one-dimensional vibrations (along the

x1-axes) of the original Kelvin-Voigt material. Moreover, the equality α1/β1 = a1/b1 means

that eigenvalues λ1k of the latter problem and of problem (16), (17) have identical asymptotic

behavior as k → ∞.

To conclude this section we suppose that the original fluid is compressible with the large

enough value of γ. Our aim now is to study the behavior of the spectrum of the corresponding

homogenized problem as γ → ∞. It is known (see [1]) that this homogenized problem has the

form

ρ0
∂2u1

∂t2
= A1u

′′

1 + B1
∂u′′

1

∂t
+ G1(t) ∗ u′′

1 , x1 ∈ (0, l), t > 0; (22)

u1(0, t) = u1(l, t) = 0, t > 0; u1(x1, 0) =
∂u1

∂t
(x1, 0) = 0, x1 ∈ (0, l), (23)

where

A1 = p2
1(4µ

2a1(1 − d) + γb2
1d), B1 = 2µb1p1, G1(t) = −Q1e

−ξt,

Q1 = p3
1d(1 − d)(γb1 − 2µa1)

2, ξ = p1p2, p1 =
1

2µ(1 − d) + b1d
, p2 = γ(1 − d) + a1d.

We see that problem (22), (23) describes one-dimensional vibrations of the viscoelastic mate-

rial with long-term memory. Furthermore, it was shown in [1] that the spectrum S2 of problem

(22), (23) takes the form

S2 = {λ1k}∞k=1 ∪ {λ2k}∞k=1 ∪ {λ3k}∞k=1,

where λik, i = 1, 2, 3 are the roots of the cubic equation

λ3 + (ξ + B1Ck)λ2 + (B1ξ + A1)Ckλ + (A1ξ − Q1)Ck = 0. (24)
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Now we divide the left-hand side of (24) by γ and consider the limit as γ → ∞. Since

1

γ
(ξ + B1Ck) → (1 − d)p1,

1

γ
(B1ξ + A1) → b1p1,

1

γ
(A1ξ − q1) → a1p1,

two roots of (24) approach the roots of the quadratic equation (21) as γ → ∞. Furthermore,

as it follows from Vieta’s theorem the last root of (24) approaches −∞ because other two roots

of (24) are bounded as γ → ∞. Therefore, we observe the following interesting fact: there is

a qualitative difference in the form of problems (16), (17) and (22), (23) and we cannot obtain

the first problem as a limiting case of the second problem as γ → ∞. However, if we study

eigenvalues of these two problems then eigenvalues of problem (16), (17) are the finite limits of

eigenvalues of problem (22), (23) as γ → ∞.

3. The case of longitudinal vibrations

In this section we assume that uε(x, t) = (0, uε
2(x2, t), 0) and u(x, t) = (0, u2(x2, t), 0). In

order to obtain the corresponding homogenized problem, we need to determine the constants α2

and β2, and the kernel of convolution g2(t). To do this, we solve the auxiliary problems (6)–(8)

for k = h = 2 and find

Z22(y) = (z(y1), 0, 0), D22(y) = (0, 0, 0), W 22(y, t) = (0, 0, 0), y ∈ Y ;

B22(y) = −2µ − b12 −
b1d

1 − d
, A22(y) = −a12 −

a1d

1 − d
, S22(y, t) = 0, y ∈ Y s,

where a12 = a1122 = λe, b12 = b1122 = λv. Using (11)–(13) we obtain

α2 = a1(1 − d) + 2a12d +
a1d

2

1 − d
, β2 = b1(1 − d) + 4µd + 2b12d +

b1d
2

1 − d
, g2(t) = 0.

Therefore, the homogenized problem takes the form

ρ0
∂2u2

∂t2
= α2u

′′

2 + β2
∂u′′

2

∂t
, x2 ∈ (0, l), t > 0; (25)

u2(0, t) = u2(l, t) = 0, t > 0; u2(x2, 0) =
∂u2

∂t
(x2, 0) = 0, x2 ∈ (0, l). (26)

We see that problem (25), (26) has the same form as problem (16), (17). Hence, to describe

the spectral properties of problem (25), (26) one needs to use Theorem 2.1 and change α1 and β1

for α2 and β2, respectively. However, since a2222 = a1, b2222 = b1 and α2/β2 6= a1/b1, eigenvalues

λ1k of problem (25), (26) and eigenvalues of the problem describing one-dimensional vibrations

(along the x2-axes) of the original Kelvin-Voigt material have different asymptotic behavior as

k → ∞.

It should be noted that if original fluid is assumed to be compressible with large enough

value of γ then the corresponding homogenized problem, as in the case of transverse vibrations,

describes one-dimensional vibrations of the viscoelastic material with long-term memory (see

[1]). Moreover, the spectrum of this problem is the union of roots of the cubic equations (24)

with the subscript 1 changed for 2 and constants in the equations are

A2 = a1(1 − d) + d(γ + (a12 − γ)c3 + b12c4), B2 = b1(1 − d) + d(2µ + b12c3),

Q2 = p1d(1 − d)(γ − a12 + b12p1p2)
2,
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where c3 = −b12p1(1 − d), c4 = p1(1 − d)(γ − a12 + b12p1p2). Finally, assuming γ → ∞ and

repeating the above-mentioned arguments we can easily obtain results that are similar to the

results obtained in the previous section.
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Cпектр одномерных колебаний слоистой среды,
состоящей из материала Кельвина-Фойгта
и вязкой несжимаемой жидкости

Владлена В. Шумилова

Рассмотрена математическая модель, описывающая собственные колебания периодической слои-

стой среды, составленной из вязкоупругого материала Кельвина-Фойгта и вязкой несжимаемой

жидкости. Для данной модели построены две усредненные модели, соответствующие попереч-

ным и продольным колебаниям слоистой среды. Показано, что спектр каждой усредненной модели

есть объединение корней соответствующих квадратных уравнений.

Ключевые слова: спектр, слоистая среда, усредненная модель, вязкоупругость, вязкая жидкость.
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