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The article is devoted to research of  mathematical models of  wind speed and  development a  way 
to improve the efficiency of wind power plants based on  fuzzy logic using  fuzzy model of the wind 
speed. Simulation of the wind speed is a fairly difficult task, since this source of energy is constantly 
changing in time and space. Four basic models of wind speed were identified at the end of research 
work: determinate, probability, spectral  and fuzzy. Every one finds their own field of application. 
Thus, from the energy point of view, the model probabilistic distribution of Weibull is most applicable 
at the level  of technical and economic development. Deterministic  model allows to  determine 
the  power generated by  wind turbines at a given average  wind speed. The spectral  model should 
apply in those studies where necessary to account for gusts of wind and sudden changes. Fuzzy model 
of the wind is the most convenient and relevant for modeling of wind turbine control, it is allows to 
form a flexible control system.

Keywords: distribution function, fuzzy sets, membership function, wind speed, probability, spectral 
density.

Introduction
The revival of interest in the use of wind power is now connected with the opportunity to determine 

the feasibility of converting it into electricity. Economically, this occurs when the feasibility of wind 
speeds exceeding 5 m/s. And this imposes a significant limitation on the development of wind energy. An 
area which has a rich wind, as a rule, do not need in electricity because of remote location of industrial 
facilities and residential areas.

Most wind turbines are used to generate electricity in power grid, as well as offline. When the 
wind speed u0, air density ρ and swept area A, wind turbine has an output power [1]:
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1. INTRODUCTION 

The revival of interest in the use of wind power is now connected with the opportunity 

to determine the feasibility of converting it into electricity. Economically, this occurs when 

the feasibility of wind speeds exceeding 5 m/s. And this imposes a significant limitation on the 

development of wind energy. An area which has a rich wind, as a rule, do not need in electricity 

because of remote location of industrial facilities and residential areas. 

Most wind turbines are used to generate electricity in power grid, as well 

as offline. When the wind speed u0, air density ρ and swept area A, wind turbine has an 

output power [1]: 

2

3
0ρuApCP= ,         (1)  

where Ср is the fraction of the upstream wind power, which is captured by the rotor blades 

andcalled the power coefficient of the rotor or rotor efficiency.  
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where Ср is the fraction of the upstream wind power, which is captured by the rotor blades andcalled 
the power coefficient of the rotor or rotor efficiency. 

From (1) can be seen that the power P is proportional to the swept area A and the cube of the 
velocity  u0.  Power coefficient  Ср depends  on the design of  rotor  and wind speed.  Since  the wind 

	 © Siberian Federal University. All rights reserved
*	 Corresponding author E-mail address: zubna85@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/38640416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– 151 –

Sergey N. Udalov, Natalya V. Zubova. Simulation of Wind Speed in the Problems of Wind Power

velocity is not constant, and the power is highly dependent on it, the choice of the optimal rotor design 
is largely determined by the requirements of the consumer of energy. Usually, average power per unit 
area, which turbine extracts from wind is proportional to Cp, air density and the cube of the mean 
velocity i.e. Р ∼ Срρ(u)3.

From the expression (1) we can see that the wind speed is the most critical data needed to appraise 
the power potential of a candidate site. The wind is never steady in any state. It is influenced by weather 
conditions, topography, and relative height above the surface. The wind speed varies by the minute, 
hour, day, season or year. Therefore,  the annual mean speed needs to be averaged over 10 or more 
years. Such a long term average raises the confidence in assessing the energy-capture potential of a 
site. However, long-term measurements are expensive, and most projects cannot wait that long. In this 
situation, the short term, say one year, data is compared with a nearby site having a long term data to 
predict the long term annual wind speed at the site under consideration.

Mathematical model of wind speed
Probabilistic model of the wind speed

The variation in wind speed are best described by the Weibull probability distribution function ‘h’ 
with  two parameters,  the shape parameter  ‘k’ and  the scale parameter  ‘c’. The probability of wind 
speed being ‘u’ during time interval is given by the following expression [2]:
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2. MATHEMATICAL MODEL OF WIND SPEED 

Probabilistic model of the wind speed 

The variation in wind speed are best described by the Weibull probability distribution 

function ‘h’ with two parameters, the shape parameter ‘k’ and the scale parameter ‘c’. The 
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Figure 1 is the plot of h versus u for three different values of k. The curve on the left with 

k=1 has a heavy bias to the left, where most days are windless (u=0). The curve on the right with 

k=3 looks more like a normal bell shape distribution, where some days have high wind and equal 

number of days have low wind. The curve in the middle with k=2 is a typical wind distribution 

found at most sites. In this distribution, more days have lower than the mean speed, while few days 

have high wind. The value of k determines the shape of the curve, hence is called the “shape 

parameter”.  

The Weibull distribution with k=1 is called the exponential distribution which is generally 

used in the reliability studies. For k=3, it approaches the normal distribution, often called the 

Gaussian or the bell-shape distribution. 
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Fig. 1.Weibull probability distribution function with scale parameter c=10 and shape parameter 

k=1,2 and 3 (plots 1-3 respectively) 

Figure 2 shows the distribution curves corresponding to k=2 with different values of c 

ranging from 8 to 16 mph (1 mph = 0,446 m/s). For greater values of c the curves shift right to the 

higher wind speeds. That is, the higher the c, the more number of days have high winds.  Since this 

shifts the distribution of hours at a higher speed scale, the c is called the scale parameter. At most 

sites the wind speed has the Weibull distribution with k=2, which is specifically known as the 

Rayleigh distribution.  

 
Fig. 2. Weibull probability distribution with shape parameter k=2 and the 

scale parameters ranging from 8 to 16 miles per hour (mph)  

The actual measurements data taken at most sites compare well with the Rayleigh 

distribution, as seen in figure 3. The Rayleigh distribution is then a simple and accurate enough 

representation of the wind speed with just one parameter, the scale parameter ‘c’. 

Summarizing the characteristics of the Weibull probability distribution function: 

k = 1 – makes it the exponential distribution, ueh λλ −= , где 1−= cλ ; 

k = 2 – makes it the Rayleigh distribution 
2)(22 uueh λλ −=  ;     (2) 

k = 3 – makes it approach a normal bell-shape distribution.. 

Fig. 1.Weibull probability distribution function with scale parameter c=10 and shape parameter k=1,2 and 3 (plots 
1-3 respectively)
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The Weibull distribution with k=1 is called the exponential distribution which is generally used 
in the reliability studies. For k=3, it approaches the normal distribution, often called the Gaussian or 
the bell-shape distribution.

Fig. 2 shows the distribution curves corresponding to k=2 with different values of c ranging from 
8 to 16 mph (1 mph = 0,446 m/s). For greater values of c the curves shift right to the higher wind speeds. 
That is, the higher the c, the more number of days have high winds.  Since this shifts the distribution of 
hours at a higher speed scale, the c is called the scale parameter. At most sites the wind speed has the 
Weibull distribution with k=2, which is specifically known as the Rayleigh distribution. 

The actual measurements data taken at most sites compare well with the Rayleigh distribution, as 
seen in figure 3. The Rayleigh distribution is then a simple and accurate enough representation of the 
wind speed with just one parameter, the scale parameter ‘c’.

Summarizing the characteristics of the Weibull probability distribution function:

k = 1 – makes it the exponential distribution, h = λe–λu, где λ = c–1;
k = 2 – makes it the Rayleigh distribution h = 2λ2ue–(λu)2

;	 (2)
k = 3 – makes it approach a normal bell-shape distribution..

Since most wind speed sites would have the scale parameter ranging from 10 to 20 miles per hour 
(about 5 to 10 m/s), and the shape parameter ranging from 1.5 to 2.5 (rarely 3), our discussion in the 
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Fig. 3. Rayleigh distribution of hours/year compared with measured wind-speed distribution 

Since most wind speed sites would have the scale parameter ranging from 10 to 20 miles per 

hour (about 5 to 10 m/s), and the shape parameter ranging from 1.5 to 2.5 (rarely 3), our discussion in 

the following will center around those ranges of c and k. Figure 4  displays the number of hours on 

the vertical axis versus the wind speed on the horizontal axis with distributions of different scale 

parameters c=10, and 20 mph and shape parameters k=1.5, 2 and 3.  

 

Fig. 4. Weibull distributions: а) 10 mph, б) 20 mph. 

The resulting distribution law for any area can be used to determine the potential of wind 

power and annual power generation in the execution phase of technical – economic calculations. 

Deterministic model of the wind speed 

Mode speed is defined as the speed corresponding to the hump in the distribution function. 

This is the speed the wind blows most of the time.  

Mean speed over the period is defined as the total area under the h-u curve integrated from 

u=0 to ∞, divided by the total number of hours in the period ( 8760  if the period is one year): 

∫
∞

=
08760

1 huduU mean . 

In general, for the Weibull function can be obtained: 

Fig. 3. Rayleigh distribution of hours/year compared with measured wind-speed distribution
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following will center around those ranges of c and k. Fig. 4  displays the number of hours on the vertical 
axis versus the wind speed on the horizontal axis with distributions of different scale parameters c=10, 
and 20 mph and shape parameters k=1.5, 2 and 3. 

The resulting distribution law for any area can be used to determine the potential of wind power and 
annual power generation in the execution phase of technical – economic calculations.

Deterministic model of the wind speed

Mode speed is defined as the speed corresponding to the hump in the distribution function. This 
is the speed the wind blows most of the time. 

Mean speed over the period is defined as the total area under the h-u curve integrated from u=0 to 
∞, divided by the total number of hours in the period ( 8760  if the period is one year):
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from which we can to derive an expression for wind energy. 

The parameters c and k are defined on the phase approximation of the Weibull distribution 

of meteorological observations. For example, if meanU  and 3
meanU  are known, the parameters c and k 

are defined by the equations (3) and (5).  meanU  and 3
meanU  can simply define by modern methods of 

primary processing of meteorological information  without referring to the results of 

numerous individual measurements. The Weibull distribution parameter k is dimensionless.  

Dimensionless parameters, allowing to operate with distribution functions, regardless of 

the actual values of wind speed, convenient in many cases, for example, when the average wind 

speed is known only. At the approximated Weibull distribution parameter k, as a rule, is in the 

range 1.6 ...3.0. The value mean2 /c U≈ π  is not more than 1% different from the corresponding 

value in the Rayleigh distribution, when k = 2 = const, and therefore it is possible to show that:  
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A number of studies verified the hypothesis that the value of k depends only on 

topography of this region and the general characteristics of the wind. Then if you know only 

the mean wind speed and the results of long-term meteorological observations, you can evaluate the 

frequency and duration of periods of calm. 

For the Rayleigh distribution with k=2, the Gamma function can be further approximated to 

the following:  

cU mean 9,0= . 

This is a very simple relation between the scale parameter c and Umean, which can be used 

with reasonable accurancy. For example, most sites are reported in terms of their mean wind speeds. 

The c parameter in the corresponding Rayleigh distribution is then  c = Umean/0,9, and k = 2. Thus. 

We have the Rayleigh distribution of the site using the generally reported mean speed as follows:  

	 (3)
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Dimensionless parameters,  allowing  to operate  with distribution functions, regardless of 
the actual values of wind speed, convenient in many cases, for example, when the average wind speed 
is known only. At the approximated Weibull distribution parameter k, as a rule,  is in the range 1.6 
...3.0. The value 
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from which we can to derive an expression for wind energy. 

The parameters c and k are defined on the phase approximation of the Weibull distribution 

of meteorological observations. For example, if meanU  and 3
meanU  are known, the parameters c and k 

are defined by the equations (3) and (5).  meanU  and 3
meanU  can simply define by modern methods of 

primary processing of meteorological information  without referring to the results of 

numerous individual measurements. The Weibull distribution parameter k is dimensionless.  

Dimensionless parameters, allowing to operate with distribution functions, regardless of 

the actual values of wind speed, convenient in many cases, for example, when the average wind 

speed is known only. At the approximated Weibull distribution parameter k, as a rule, is in the 

range 1.6 ...3.0. The value mean2 /c U≈ π  is not more than 1% different from the corresponding 

value in the Rayleigh distribution, when k = 2 = const, and therefore it is possible to show that:  
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A number of studies verified the hypothesis that the value of k depends only on 

topography of this region and the general characteristics of the wind. Then if you know only 

the mean wind speed and the results of long-term meteorological observations, you can evaluate the 

frequency and duration of periods of calm. 

For the Rayleigh distribution with k=2, the Gamma function can be further approximated to 

the following:  

cU mean 9,0= . 

This is a very simple relation between the scale parameter c and Umean, which can be used 

with reasonable accurancy. For example, most sites are reported in terms of their mean wind speeds. 

The c parameter in the corresponding Rayleigh distribution is then  c = Umean/0,9, and k = 2. Thus. 

We have the Rayleigh distribution of the site using the generally reported mean speed as follows:  
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Thus, the deterministic model to calculate the approximate value of power generated 

by wind turbines, at a certain average wind speed. 

Spectral model of the wind speed 

From a system point of view, the wind speed represents the main exogenous signal applied 

to the wind turbine and determines its behavior. Its erratic variation, highly dependent on the given 

site and on the atmospheric conditions, makes the wind speed quite difficult to model. Usually the 

thermic equilibrium of the atmosphere nearby Earth is assumed [3]. Therefore, turbulence results 

mainly from the friction between air and ground, due to the ground roughness. When designing 

wind turbine, the history of the wind speed extreme values (gusts) is considered for the mechanical 

structure design and also for control purposes. 

Wind near the Earth’s surface is generally modeled by a spatial (3D) speed distribution. 

Assuming that the turbine is equipped with a vane (or yawing equipment) and that changes in wind 

direction are sufficiently slow, then the turbine rotor is maintained normal to the wind and wind 

turbine analysis requires only the longitudinal wind speed being synthesized/modeled. Thus, in the 

present book only scalar (1D) wind speed models will be used. As the interest here is focused on 

wind turbine behavior in normal operating regimes, the developed models will not include extreme 

operating conditions like wind gusts.  

Wind dynamics result from combining meteorological conditions with particular features of 

a given site. Thus, wind speed is modeled in the literature as a non-stationary random process, 

yielded by superposing two components [3 – 5]: 

)()()( tututu ts += ,                  (6) 

where )(tus  – is the low-frequency component (describing long term, low-frequency variations);  

)(tut  – is the turbulence component (corresponding to fast, high-frequency variations). 

These components can be identified in Van der Hoven’s large band (six decades) model 

(Figure 5). The spectral gap of around 0.5 MHz suggests that the turbulence component can be 

modeled as a zero average random process (there is little energy in the spectral range between 2 h 

and 10 min).  (t)  is considered constant (equal to the average wind speed) when viewed at the 

turbulence time scale. Averaging is usually performed on a 10-min time window [3]. 

Thus, the deterministic model  to calculate the approximate value of power generated by wind 
turbines, at a certain average wind speed.

Spectral model of the wind speed

From a system point of view, the wind speed represents the main exogenous signal applied to the 
wind turbine and determines its behavior. Its erratic variation, highly dependent on the given site and 
on the atmospheric conditions, makes the wind speed quite difficult to model. Usually the thermic 
equilibrium of the atmosphere nearby Earth is assumed [3]. Therefore, turbulence results mainly from 
the friction between air and ground, due to the ground roughness. When designing wind turbine, the 
history of the wind speed extreme values (gusts) is considered for the mechanical structure design and 
also for control purposes.

Wind near the Earth’s surface is generally modeled by a spatial (3D) speed distribution. Assuming 
that the turbine is equipped with a vane (or yawing equipment) and that changes in wind direction are 
sufficiently slow, then the turbine rotor is maintained normal to the wind and wind turbine analysis 
requires only the longitudinal wind speed being synthesized/modeled. Thus, in the present book only 
scalar (1D) wind speed models will be used. As the interest here is focused on wind turbine behavior 
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Fig. 5. Van der Hoven’s spectral model of the wind speed
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where us(t) – is the low-frequency component (describing long term, low-frequency variations); ut(t) – is 
the turbulence component (corresponding to fast, high-frequency variations).

These components can be identified in Van der Hoven’s large band (six decades) model (Fig. 5). 
The spectral gap of around 0.5 MHz suggests that the turbulence component can be modeled as a 
zero average random process (there is little energy in the spectral range between 2 h and 10 min). us(t)   
is considered constant (equal to the average wind speed) when viewed at the turbulence time scale. 
Averaging is usually performed on a 10-min time window [3].

The low-frequency component corresponds to the very slow wind speed variations and 
characterizes the site from the energy viewpoint. It can be modeled as a Weibull’s distribution or a 
Rayleigh’s distribution see expression (2).

Fast wind speed variations (typically occurring within 10 min) are modeled by the turbulence 
component. This is mathematically described as a zero average normal distribution, whose 
standard deviation, σ, depends on the current value of the hourly average, us. The turbulence 
intensity is a measure of the global level of turbulence, depends on the ground surface roughness 
and is defined as:
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The mathematical description of the turbulence’s dynamical properties, )(tut , can be 

obtained by using two kinds of spectra: von Karman’s and Kaimal’s respectively. According to [3], 

Kaimal’s spectrum reflects better the correspondence to experimental data, when turbulence is 

present. But von Karman’s spectrum is more consistently theoretically founded (an analytical 

connection with the correlation function is provided) and allows a realistic representation of 

turbulence data in wind tunnels. The von Karman’s model for the longitudinal component of the 

turbulence is: 
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where )( fSuu is the power spectral density, tL is the length of turbulence, specific to the site 

(ground roughness), and f is the frequency in Hz. 

Kaimal’s spectral model has the form:  
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The mathematical description of the turbulence’s dynamical properties, ut(t), can be obtained 
by using two kinds of spectra: von Karman’s and Kaimal’s respectively. According to [3], Kaimal’s 
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spectrum reflects better the correspondence to experimental data, when turbulence is present. But 
von Karman’s spectrum is more consistently theoretically founded (an analytical connection with 
the correlation function is provided) and allows a realistic representation of turbulence data in wind 
tunnels. The von Karman’s model for the longitudinal component of the turbulence is:
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where )( fSuu is the power spectral density, tL is the length of turbulence, specific to the site 

(ground roughness), and f is the frequency in Hz. 

Kaimal’s spectral model has the form:  
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where Suu( f ) is the power spectral density, Lt is the length of turbulence, specific to the site (ground 
roughness), and f is the frequency in Hz.

Kaimal’s spectral model has the form: 8 
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One can note that in both models the power spectral density is influenced by the turbulence 

intensity, It, which determines the turbulence “level” (i.e., its variance,  2σ  ) and the turbulence 

length, Lt , which impresses the turbulence dynamic properties (the spectral function bandwidth). 

Both these parameters are adopted according to various standards. For example, in the Danish 

standard (DS 742 2007), the following relations are used to compute these parameters: 
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where z is the height from ground where the wind speed is computed and 0z  is the roughness 

length. 

Figure 6 comparatively presents the spectral functions at Equations 8 and 9 for the same 

values of parameters z, 0z  and su  . For an easier analysis of von Karman’s and Kaimal’s spectra, in 

Figure 7a one can see the corresponding power spectral densities, )( fSuu , whereas Figure 7b shows 

the Bode diagrams of the non-integer-order shaping filter outputting the turbulence component 

when fed with a white noise [6]. 

 
Figure 6. Comparison between the von Karman’s (Equation 8 – solid line) and Kaimal’s (Equation 

9 – dashed line) normalized spectra (z=30 m, z0=0.01 m, =10 m/s , Danish standard DS472) 
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where z is the height from ground where the wind speed is computed and z0 is the roughness length.
Fig. 6 comparatively presents the spectral functions at Equations 8 and 9 for the same values of 

parameters z, z0 and us. For an easier analysis of von Karman’s and Kaimal’s spectra, in Fig. 7a one 
can see the corresponding power spectral densities, Suu( f ), whereas Fig. 7b shows the Bode diagrams 
of the non-integer-order shaping filter outputting the turbulence component when fed with a white 
noise [6].

Fuzzy model of the wind speed

Handling  fuzzy information  in the problems of  wind energy  is achieved by using linguistic 
variables. As part of the linguistic approach the values of variables are allowed not only the number but 
also the words and sentences of natural language, as well as a mathematical tool used to formalize the 
theory of fuzzy sets.
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One of the  main steps  is to build membership functions  that describe the  semantics of 
the  basic  values  of the variables  used in the model when you create a  fuzzy  model  of decision-
making. These functions are characterize the uncertainty such as “approximately equal”, “average”, 
“is in the range”, “like an object”, etc and used to specify sets of properties.

The process of fuzzy modeling is based on a quantitative representation of the system variables in 
the form of fuzzy membership functions.

It is known that wind speed in the interval setting can be represented by the Beaufort scale (Table 1) 
[7].  At the same  characteristics of  the wind speed  is given  as both a linguistic  evaluations:  weak, 
strong, variable, etc. [8].

When information about wind speed given like an interval, for example, the wind is strong, its 
speed is  u = [11, 14] m / s  and the resulting  solution of  the expected power generation  interval 
estimates  are obtained, which entails a  significant drawback – it is impossible  to determine which 
value of the variable is more or less reliably.
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Fig. 7. Von Karman’s (solid line) vs. Kaimal’s (dashed line) spectral models (z=30 m, z0=0.01 m, us =10 m/s , Dan-
ish standard DS472): a) power spectral densities; b) shaping filter gains 
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making. These functions are characterize the uncertainty such as "approximately equal", "average", 

"is in the range", "like an object", etc and used to specify sets of properties. 

The process of fuzzy modeling is based on a quantitative representation of the system 

variables in the form of fuzzy membership functions. 

It is known that wind speed in the interval setting can be represented by the Beaufort 

scale (Table 1) [7]. At the same characteristics of the wind speed is given as both a 

linguistic evaluations: weak, strong, variable, etc. [8]. 

When information about wind speed given like an interval, for example, the 

wind is strong, its speed is u = [11, 14] m / s and the resulting solution of the expected power 

generation interval estimates are obtained, which entails a significant drawback – it is impossible to 

determine which value of the variable is more or less reliably. 

We use the possibility of representation of wind speed by fuzzy variables. The 

Beaufort scale imagines corresponding characteristic membership functions of linguistic 

variables of wind speed. Moreover, membership functions are chosen from the following 

considerations: for the border interval of values of wind speed, the famous Beaufort scale, each 

linguistic variable is assigned a value of belonging μ = 0.5, at these points the values of wind 

speed will have equal weight in relation to the neighboring variable. With a value of μ = 1 the 

velocity in each band is equal to (umax – umin)/2 [9]. 
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Table 1. Strength of the wind on the Beaufort scale and its impact on wind turbines
po

in
ts

 
B

ea
uf

or
t

W
in

d 
sp

ee
d,

 
m

/s Characteristics 
of  wind power Observed effects The impact of wind 

on wind turbines

The 
conditions for wind 
turbines production, 

with an average  wind 
speed

2 1,8 – 3,6 Light breeze Wind felt on face, leaves
 rustle, vanes begin to 
move

not Bad for all wind 
turbine

3 3,6 – 5,8 Gentle breeze Leaves, small twigs in 
constant motion; light flags 
extended 

Begin to turn low-
speed turbine

Satisfactory 
to the pumps and 
some aerogenerators

4 5,8 – 8,5 Moderate 
breeze

Dust, leaves and loose 
paper raised up; small 
branches move

Begin to rotate the 
wheel aerogenerators

Good for 
aerogenerators

5 8,5 – 11 Fresh breeze Small trees begin to sway Capacity of wind 
turbines up to 30% of 
the project

Very good

6 11 – 14 Strong breeze Large branches of trees in 
motion; whistling heard in 
wires

Maximal power Valid

7 14 – 17 Moderate gale Whole trees in motion;
Resistance felt in walking 
against the wind

Maximal power Valid

8 17 – 21 Fresh gale Twigs and small branches 
broken off trees

Some wind turbine 
off

The maximum 
permissible

9 21 – 25 Strong gale Slight structural damage 
occurs; slate blown from 
roofs

All wind turbine off Invalid

We use the  possibility of representation  of wind speed  by fuzzy  variables.  The 
Beaufort scale imagines corresponding characteristic membership functions of linguistic variables of 
wind speed. Moreover, membership functions are chosen from the following considerations: for the 
border interval of values of wind speed, the famous Beaufort scale, each linguistic variable is assigned 
a value of belonging µ = 0.5,  at these points  the values of wind speed will have equal weight  in 
relation to the neighboring  variable.  With  a  value of  µ =  1 the velocity in  each band  is equal 
to (umax – umin)/2 [9].

Thus, for each linguistic variable, we define the value of belonging to the whole interval (Table 2). 
Fuzzy numbers and intervals, which are most often used to represent fuzzy sets can be described in the 
form of analytical approximation using the so-called (L – R) -functions [10].

Graphically,  these characteristics  may be represented by  a family of  fuzzy  triangular 
function (Fig. 8). From here you can see that in the section µ = 0.5, this characteristics described by 
the interval values, as indicated on the Beaufort scale.

Considering the membership function of wind speed (Fig. 8), it is necessary to consider membership in 
the interval from 0 to 1. So, finish the construction of each value of fuzzy variable, which will have 
a base value of µ = 0.



Table 2. Fuzzy variables as a characteristic of wind power

Wind speed u, m/s Affiliations Characteristics of wind power

1,8 0,5

Light breeze2,7 1

3,6 0,5

3,6 0,5
Gentle breeze4,7 1

5,8 0,5

5,8 0,5
Moderate breeze7,15 1

8,5 0,5

8,5 0,5
Fresh breeze9,75 1

11 0,5

11 0,5
Strong breeze12,5 1

14 0,5

14 0,5
Moderate gale15,5 1

17 0,5

17 0,5
Fresh gale19 1

21 0,5

Fig. 8. Fuzzy values of wind
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In general, each of these functions can be described analytically by the following expression.12 
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where ia , ib  и ic  – numerical parameters (L – R) – function that take real values. 

The parameters ia  and ic  characterize the base of the triangle, and the parameter ib - its top 

(Fig. 9). As you can see, this membership function generates unimodal normal convex fuzzy 

set with the carrier – the interval ( ia , ic ), boundaries ( ia , ic )\{ ib }, { ib }  and  mode ib . 
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Table 3 shows the values of numerical parameters (L – R) – functions that characterize 

the linguistic variables of wind speed. 

Corresponding analytical expressions can be fined for linguistic variables of wind 

speed knowing the general expression (L – R) – function (12) and numerical parameters. 

Often, in real problems it is necessary to split the membership function of fuzzy set on the 

so-called α – levels, so that if a fuzzy set A is defined on the underlying set X and α ∈ [ 0, 1 ], then 

the classical set Aα, defined by the expression (13), called the set of α – the level of A. 
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Figure 10 shows an illustration α – levels, 1α , 2α , … , nα  fuzzy set with a 

symmetric triangular membership function. 
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Table 3. Numerical parameters of (L – R) – functions fuzzy Beaufort scale

Characteristics of wind power ai bi ci

Light breeze 0,9 2,7 4,5

Gentle breeze 2,5 4,7 6,9

Moderate breeze 4,45 7,15 9,85

Fresh breeze 7,25 9,75 12,25

Strong breeze 9,5 12,5 15,5

Moderate gale 12,5 15,5 18,5

Fresh gale 15 19 23

13 
 

Table 3. Numerical parameters of (L – R) – functions fuzzy Beaufort scale 

Characteristics 
of wind power 

ia  ib  ic  

Light breeze 0,9 2,7 4,5 

Gentle breeze 2,5 4,7 6,9 

Moderate breeze 4,45 7,15 9,85 

Fresh breeze 7,25 9,75 12,25 

Strong breeze 9,5 12,5 15,5 

Moderate gale 12,5 15,5 18,5 

Fresh gale 15 19 23 

 

 

 

 

 

 

 

 

Fig. 10. α – levels fuzzy set  

It is should be noted that, each fuzzy set can be represented by a set of α-levels. This 
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10) will characterize the level of membership αj. 

Knowing a given level of membership and the corresponding wind speed, we can calculate 

the typical power produced by wind turbines with respect to a given speed, which will take place at 

the same α – level.  

It is should be noted that when the wind speed is less than the minimum operating 

wind (<4m / s), blades stationary and power generated by wind turbines is zero. Thus, the values 

of power output of wind turbines can be determined depending on wind speed and the speed of 
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Fig. 10. α – levels fuzzy set 

In further studies, the entire area of belonging from 0 to 1 should be split into multiple levels, 
so for clarity, will cross a few (four) points of  the values of µ = (0…1);; each section (Fig. 10) will 
characterize the level of membership αj.

Knowing  a given  level of membership  and the corresponding  wind speed,  we can calculate 
the typical power produced by wind turbines with respect to a given speed, which will take place at 
the same α – level. 

It is should be  noted that when  the wind speed  is less than  the minimum operating 
wind  (<4m / s),  blades  stationary  and power  generated by  wind turbines  is zero. Thus, the values 
of  power output  of wind turbines  can be determined  depending on wind speed and  the speed  of 
the membership of each of the respective linguistic variable.

In general, the domain of the membership µ = (0 ... 1), we have a set of fuzzy sets Xl, where l – the 
number of linguistic variables of wind speed (very light, light, ... very strong).

Xl ={<v1, µXl(v1)>, < v2, µXl(v2)> , ... , < vn, µXl(vn) >},	 (14)

where n – number of levels of membership αj. 
In accordance  with (14)  can be noted  that the power of  wind turbines  is a function of wind 

speed:
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Yk = f(Xl) = f {<v1, µYl(v1)>, < v2, µYl(v2)> , ... , < vn, µYl(vn) >}.	 (15)

where k – a number of linguistic variable of the wind turbine power (very small, small and etc.). 

Controller for improvement efficiency of wind turbine  
on the basis of the wind speed fuzzy model 

Fuzzy modeling  is a new  modern technology  that is used in  various fields of science and 
technology. First of all, this technology is relevant in cases when you want to improve the adequacy 
of the model systems to take into account many different factors that influence the decision-making 
processes. In addition, mathematical models and formal management systems and processes increasingly 
complex  and sometime system  of fuzzy  relations  can  to implement them  without too much 
trouble [12].

In the wind power system fuzzy logic  is used quite actively – fuzzy controllers used for wind 
turbine yaw control [13]  changing  the angle of attack  and angle of  the blade  jammed, the rotor 
speed [14]. In this paper we propose a controller for wind turbines, which changes the blade length 
[15. Fuzzy model is used for realization of  the wind speed, because  it is most  relevant in  terms of 
impermanence energy source.

The proposed fuzzy controller is based on the idea of variable length blades, which arose as 
a result of the desire to increase power output of wind turbines in area 2 (area from start to rated 
speed of the wind turbine) [16]. The calculations showed that using of these blades can increase 
the production capacity up to 30%. The implementation of a fuzzy controller gives below in more 
detail. 

The results of the development

Fuzzy controller designed for wind turbine Nordex N80/2500 kW  with a radius of wheel 40 m. 
The study assumed that blades can be increased up to 48 m.

The length of the blade, the wind speed given by Beaufort scale and power of wind turbines are 
input variables for fuzzy controller.   Mamdani algorithm  is used for fuzzy output. The average of 
the maximum is used for defuzzification, which is defined as the arithmetic mean of left and right 
modal  values.  We get  a specific value  on which the length of blades changes to maximize  power 
generation.

Rules were established for the proposed model – the control action (Table 4).  For the linguistic 
variable power, P, used the following term-sets: BN – more than nominal value, SN – less than the 
nominal value, N-nominal  value; membership functions  shown in Fig.  11.   For  the linguistic 
variable wind speed, Vw, used the term-sets of the Beaufort scale; the membership functions shown 
in Fig. 11. For the linguistic correction of variable length, ΔL, use the following term-sets: Z – do not 
change, D – to decrease, I – to increase; the membership functions shown in Fig. 12.

Fuzzy controller is implemented in the program Matlab, using a special expansion pack Fuzzy Logic 
Toolbox. As part of this package, you can perform all actions necessary for the development and use 
of fuzzy models. With the help of fuzzy inference system editor FIS can set and edit the properties of 
high-level fuzzy inference system, such as the number of input and output variables, the type of fuzzy 
inference, defuzzification method, etc. We obtained a kind of summary table that can be used to assess 
the adequacy of the controller (see Fig. 13).
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and right modal values. We get a specific value on which the length of blades changes to 

maximize power generation. 

Rules were established for the proposed model – the control action (Table 4).  For the 

linguistic variable power, P, used the following term-sets: BN – more than nominal value, SN – less 

than the nominal value, N-nominal value; membership functions shown in Fig. 11.  For the 

linguistic variable wind speed, Vw, used the term-sets of the Beaufort scale; the membership 

functions shown in Fig. 11. For the linguistic correction of variable length, ΔL, use the following 

term-sets: Z – do not change, D – to decrease, I – to increase; the membership functions shown in 

Fig. 12. 
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Table 4. Rules for the fuzzy controller

№ rule Power, Р Wind speed, Vв Correction of the blade 
length, ΔL

1 BN
Gentle breeze 
3,6 – 5,8 м/с

D

2 N Z

3 SN I

4 BN
Moderate breeze 

5,8 – 8,5 м/с

D

5 N Z

6 SN I

7 BN
Fresh breeze 
8,5 – 11 м/с

D

8 N Z

9 SN I

10 BN
Strong breeze 

11 – 15 м/с

D

11 N Z

12 SN I
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Features  of this software  can  also evaluate  the effects of input variables on the  value of the 
output variable.

Conclusion

In the paper reviewed the basic mathematical models of wind speed. Their area of use is defined.
Controller for improvement efficiency of wind turbine on the basis of the fuzzy logic and using 

wind speed fuzzy model are designed. This model tested on adequacy in Simulink/Matlab.  The idea 
of this controller can find a place in industrial area along with existing ones. Coordination of multiple 
controllers, if necessary, you can also implement a fuzzy controller.
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Моделирование скорости ветра  
в задачах ветроэнергетики

С.Н. Удалов, Н.В. Зубова 
Новосибирский государственный  

технический университет 
Россия 630092, Новосибирск, пр. К. Маркса, 20

Статья посвящена исследованию математических моделей скорости ветра и разработке 
способа повышения эффективности выработки ветроэнергетической установки на основе 
нечеткой логики с использованием нечеткой модели скорости ветра. Моделирование скорости 
ветра представляет собой достаточно сложную задачу, так как данный источник энергии 
постоянно изменяется во времени и пространстве. В результате исследований было выделено 
четыре основных модели скорости ветра: детерминированная, вероятностная, спектральная 
и нечеткая. Каждая из них находит свою область применения. Так, с энергетической точки 
зрения, на уровне технико-экономических разработок наиболее применима вероятностная 
модель или распределение Вэйбулла. Детерминированная модель позволяет определить 
мощность, вырабатываемую ветроустановкой при заданной средней скорости ветра. В тех 
исследованиях, где необходим учет порывов и резких изменений ветра, следует обратиться 
к спектральной модели. Нечеткая же модель ветра удобна и наиболее актуальна при 
моделировании процессов управления ВЭУ, так как позволяет сформировать достаточно 
гибкую систему управления. 

Ключевые слова: функция распределения, нечеткие множества, функция принадлежности, 
скорость ветра, вероятность, спектральная плотность.


