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We consider a non-coercive Sturm—Liouville boundary value problem in a bounded domain D of the
complex space C" for the perturbed Laplace operator. More precisely, the boundary conditions are of
Robin type on 0D while the first order term of the boundary operator is the complex normal derivative.
We prove that the problem is Fredholm one in proper spaces for which an Embedding Theorem is obtained;
the theorem gives a correlation with the Sobolev-Slobodetskii spaces. Then, applying the method of weak
perturbations of compact self-adjoint operators, we show the completeness of the root functions related to
the boundary value problem in the Lebesgue space. For the ball, we present the corresponding eigenvectors

as the product of the Bessel functions and the spherical harmonics.

Keywords: Sturm-Liouville problem, non-coercive problems, the multidimensional Cauchy-Riemann op-
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Introduction

Non-coercive boundary value problems for elliptic differential operators attract attention of
mathematicians since the middle of XX-th century (see, for instance, [1,2]). One of the typical
problems of this type is the famous d-Neumann problem for the Dolbeault complex (see [3]). The
investigation of the problem resulted in the discovery of the subellipticity phenomenon which
greatly influenced to the development of the Theory of Partial Differential Equations (cf. [4]).

As it is known (under reasonable assumptions) the Spectral Theory gives both the solvability
conditions and the formulae for the exact and the approximate solutions to boundary value
problems via expansions over (generalized) eigenfunctions related to the corresponding linear
operators (see, for instance, [5] and elsewhere). This is well understood for the coercive boundary
value problems in smooth domains for both self-adjoint and non-selfadjoint cases (see [6-8]). For
the Spectral Theory related to the elliptic problems in Lipschitz domains we refer to the survey [9]
and its bibliography (see also [10,11] for the domains with the conic and edge singularities).
Recently Agranovich [12] noted that the use of the negative Sobolev spaces gives an additional
advantage proving the completeness of the root functions related to the coercive boundary value
problems in non-smooth domains.
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The aim of the present paper is to extend the results to the non-coercive boundary value
problem for the weakly perturbed Laplace operator in the complex space C" (=2 R?"). First,
using the standard methods of the Functional Analysis (see [13,14] and elsewhere) we prove that
the problem is a Fredholm one in the proper Sobolev type spaces. Then, applying the method of
weak perturbations of compact self-adjoint operators (see [6]), we prove the completeness of the
generalized eigenvectors related to the boundary value problem in the Lebesgue space. Examples
of the eigenfunctions related to the problem in the ball are constructed.

1. The mixed problem

Let D be a bounded domain in the complex space C* = R?" with a Lipschitz boundary,
i.e., the surface 0D is locally the graph of a Lipschitz function. In particular, the boundary 0D
possesses a tangent hyperplane almost everywhere.

Let the complex structure in C™ be given by z; = z;4++v/— 12,4 with j = 1,...,n and 0 stand
for the Cauchy-Riemann operator corresponding to this structure, i.e., the column of n complex

d 1,0
catives 0~ L( 9
derivatives 9z 2 ( Dz + Faxnﬂ'

). The formal adjoint 0* of & with respect to the usual
0 1 0 )

1
Hermitian structure in the space L?(C") is the line of n operators —— (— — V=
2 8xj 6xn+j

—5 Then an easy computation shows that 9*0 just amounts to the —1/4 multiple of the
Zj

2n 2
0
Laplace operator Ag,, = E (8) in R?".
Lj

j=1

We consider complex-valued functions defined in the domain D and its closure D. We write
L1(D) for the Lebesgue space, i.e. the set of all measurable functions u in D, such that the
integral of |u|? over D is finite. We also write H*(D), s € N, for the corresponding Sobolev space
of functions with all the weak derivatives up to order s belonging to L?(D). For non-negative
non-integer s we denote by H*®(D) the Sobolev-Slobodetskii space, see, for instance, [14].

Consider the second order linear partial differential operator A in the domain D associated
with the Cauchy-Riemann operator:

Zj

- 0
Au = —Ay, + Z aj(z)a—u' + ap(2)u,
j=1

the coefficients a; and ag being of class L>°(D). Consider also a first order boundary operator

B = bl(Z)ay -+ bo(Z)

n

_ 0
where 0, = E (vj(2) = V=140 (2)) T is the complex normal derivative and v(z) =

2

=1 /

(11(2), ... van(%)) is the unit normal vector to 9D at the point z (cf. with the usual normal

2n
derivative 9 = Zuj(z) i) The coefficients by(z) and b;(z) are assumed to be bounded
ov — Ox;

measurable functions on 9D satisfying |bg|? + |b1]? # 0. We allow the function b1 (2) to vanish
on an open connected subset S of 0D with piecewise smooth boundary 0.S.
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Consider the following boundary value problem with the Robin-type condition on the surface
0D. Given a distribution f in D, find a distribution u in D which satisfies in a proper sense

{Au:finD,

Bu = 0 on 9D. (1)

Note that in general the Shapiro-Lopatinskii condition is violated on the smooth part of 9D \ S
for the pair (A, B) because if S = @, a; = 0 for all j = 0,...,n and by = 0 problem (1) is a
version of the famous d-Neumann problem (cf. [3]).

Denote by H'(D, S) the subspace of H*(D) consisting of those functions whose restriction to
the boundary vanishes on \S. This space is Hilbert under the induced norm. It is easily seen that
smooth functions on D vanishing in a neighborhood of S are dense in H*(D, S); then the space
HY(D,dD) is usually denoted H}(D). Since on S the boundary operator reduces to B = by and
bo(z) # 0 for z € S, the functions of H!(D) satisfying Bu = 0 on dD belong to H'(D, S).

As we want to study perturbations of self-adjoint operators we split both ag and by into two
parts ag = ag,0 + dag, bo = bo,0 + dbg, where ag o is a non-negative bounded function in D and
bo,0 a bounded function on 9D satisfying bg /b1 > 0. Consider now the Hermitian form

"/ ou Ov _
(u,v)4 =4 (azja az]) ) + (ao,o’u, 'U)L2(D) + 4(b070b1 1u, U)L2(8D\S)-
j=1 2

on the space H*(D, S). It follows from the Uniqueness Theorem for holomorphic functions that
the form defines a scalar product on H'(D, S) if one of the following conditions holds true:

1) the open set S C 9D is not empty;

2) ap,0 = ¢o in U with some constant ¢y > 0 on an open non-empty set U C D;

3) bo,o = ¢1 in V with some constant ¢y > 1 on an open non-empty set V. C 9D\ S.

Then we denote by HT(D) the completion of H'(D,S) with respect to the norm | - ||+
coherent with the scalar product (-, )4 .

From now on we assume that the space H™ (D) is continuously embedded into the Lebesgue
space L?(D), i.e.,

ull 22(py < ¢||ull+ for all w € H (D), (2)

where c is a constant independent of w. It is true under rather weak assumptions (see Theorem 1
below). Now we need the continuous inclusion

t: HY(D) — L*(D), (3)

to specify the dual space of HT (D) via the pairing in L?(D). More precisely, let H~ (D) be the
completion of H'(D, S) with respect to the negative norm (cf. [15])

(v, ) L2 (D)
[ul - = sup ——rr—
veHY(D,S) [v]l+

v#£0

Lemma 1. The space L?(D) is continuously embedded into H~ (D). If inclusion (3) is compact
then the space L?(D) is compactly embedded into H~ (D).

Proof. By definition and estimate (2) we get

lull— < HU||L2(D)||U||L2(D)

< C||UHL2(D)
veHY(D,S) v+
v#0
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for all u € L*(D), i.e., the space L?(D) is continuously embedded into H~ (D) indeed.
Suppose (3) is compact. Then the Hilbert space adjoint ¢* : L?(D) < H* (D) is compact,

too. As H'(D, S) is dense in H* (D) and the norm | - ||+ majorizes | - ||2(p) we conclude that
|(4(v), u)r2(p)| (v, (W) s
lull- = sup FoS R P = [ () (4)
veHY(D,S) v+ veHT (D) vl +
v#0 v#£0
for all w € L?(D). Therefore, any weakly convergent sequence in L?(D) converges in H~ (D),
which shows the second part of the lemma. O
Since C,,(D) is dense in L?(D) and the norm || - [|12(p) majorizes the norm || - ||, we
conclude that Cgs,,, (D) is dense in H~ (D), too.
Lemma 2. The Banach space H™ (D) is topologically isomorphic to the dual space HY (D) and
the isomorphism is defined by the sesquilinear pairing
(v,u) = Vh_{rgo(vauu)LQ(D) (5)
foruw e H-(D) and v € HT (D) where {u,} is any sequence in H*(D,S) converging to u.
Proof. See, for instance, [16, Theorem 1.4.28]. O

Note that HT (D) is reflexive, since it is a Hilbert space. Hence it follows that (H~ (D))’ =
HT(D), i.e., the spaces H*(D) and H~ (D) are dual to each other with respect to (5).

From now on the Sobolev space H~*(D), s > 0, stands for the dual to H*(D) via the pairing
induced by the scalar product (-,-)z2(py as in Lemma 2 above. Similarly, let ﬁ_S(D), s >0,
stands for the dual to HE(D). Obviously H—*(D) C H~*(D). We also denote by h*(D) the
space of all the harmonic functions in the domain D belonging to the Sobolev space H*(D).

Theorem 1. Let D be a Lipschitz surface. Then
1) the space H' (D, S) is continuously embedded into H* (D) if by ob; ' € L>®°(dD \ S);
2) the elements of H* (D) belong to HL (DU S, S); in particular, if S = 0D then the space

loc

H*(D) is continuously embedded into H(D);
3) the space H (D) is continuously embedded into L*(D) if

ao,0 = co in D with some constant co > 0; (6)
4) the space HT (D) is continuously embedded into h'/?>~¢(D) @ H}(D) with any € > 0 if
bo,obl_l > c; in D\ S with some constant ¢; > 0. (7)

Moreover, if 0D € C? then, under (7), the space H (D) is continuously embedded into the space
h'/2(D) @ H}(D). In particular, estimate (7) implies that v is compact.

Proof. If bo)obf1 € L>*(9D \ S) then, according to the Trace Theorem for the Sobolev spaces,
we obtain

lull? < lIvaooll (o) luliz oy + 1v/Bo.ob1 Iz @prs)llull 2oy + lullf o) < € llullfn o)
for all u € H*(D, S) with some positive constant ¢ independent on . This proves 1).

The statement 2) follows from the fact that the Dirichlet problem for the Helmholtz operator
(ap,0 — Aay) is coercive.
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Now using the definition of the norm || - ||+ we see that

lull+ = lvaooullz2m) = Veo lullfzp)

i.e. estimate (2) holds true and the embedding ¢ is continuous under estimate (6).
Further, let (7) holds. Then the norm || - ||+ is not weaker than the norm || - ||, on H(D, S)

defined by
" u ||? 1/2
b = (430 |52 ralulaoms) " we HD.5)
=1 19%i iz ()
Fix a number £ > 0. Let us show that the norm || - [|5 is not weaker than the norm |[| - [| y1/2-<(p)

on HY(D,S). Indeed, let ¢3, denote the two-sided fundamental solution of the convolution type
for the Laplace operator As,, in R?>". Then the volume potential

Du(z) = /D bom(z — y)o(y)dz, v € LA(D), (8)

induces the bounded linear operator ® : L?(D) — H?(X) for any bounded domain X containing
D. 1t is clear that any element u € H—*(D) extends up to an element U € H—*(R?") via

(U,v)gen = (u,v)p for all v € H*(R*");

here (-, -)p is the pairing on H x H' for a space H of distributions over D. It is natural to denote
it by xpu. Thus, the defined in this way linear operator xp : H *(D) — H*(R?"), s € Ry,
is obviously bounded. The distribution x pu is supported in D, so we actually may reduce our
consideration to a smooth closed manifold. This allows us to conclude that the volume potential
(8) induces the bounded linear operator

doyp: H VD) — H/2(X), 0<e<1/2,

for any bounded domain X containing D (see, [17]). Hence, the operators

ag odoyxp: Hafl/Q(D) — H5+1/2(X) and 9, o ® o xp : H€71/2(D) — H®(0D)
Zj
are bounded, too, if 0 < & < 1/2 (the last one is bounded because of the Trace Theorem for the
Sobolev spaces). For € = 0 the arguments fail because the elements of the space H'/2(X) may
have no traces on 9D C X.

Now the integration by parts with u € H'(D,S) and v € L*(D) yields

n

oPv Ou
(v,u)r2(p) = (A2, ®v,u)2(py = 42 (
=1

= A= + 4(5u@UaU)L2 AD\S)- (9)
8Zj 8Zj>L2(D) ( )

Take a sequence {v;} C C*°(D) converging to v in the space H°~1/2(D), 0 < ¢ < 1/2. As the

space H*®(D) is reflexive for each s, using (9) and the continuity of the operators 75 ° Goxp,
Zj

9, 0 G o xp above, we obtain for u € H'(D, S):

_ [(v,u)| limg— 400 [(Vk, w) 2Dy
||u||H1/2*6(D) = sup g = sup =
veH*"Y2(D) ”U”HE—UQ(D) veH"1/2(D) ”U”HE—UZ(D)
v#0 v#0

_4 sup \Z?:ﬂa%j odoxpu, %)LQ(D) + (@ 0<DOXDU,U)L2(3D\S)|
veH"Y/2(D) ”UHHf—l/?(D)
v#0

<
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n

<CZ

j=1

8 —
T%O(I)OXD Lz(D)+||3v°‘I>°XD|| [ull 2o\ s)

ou
0z
with a constant ¢ > 0 being independent on u. Thus, there are constant C; > 0, Co > 0 such

that
||u||H1/2*E(D) < Cl Hu||h < CQ ||UH+ for all u € Hl(D, S)

This proves the continuous embedding H+ (D) «— H'/?7¢(D) with any € > 0.

Further, let G and P stand for the Green function and the Poisson integral of the Dirichlet
Problem for the Laplace operator A, in D respectively. Then they induce the bounded operators
(cf. [13,15])

G, : H YD) — HY{D), P,:HY*(D)— h'(D).

As the operator Ay, extends to the continuous linear operator Ay, : HY(D) — H~1(D) via
(Agnu,v) = 4(Ju, Ov) 12(py,u € H'(D),v € Hy(D),

we see that u = Piu + G1Ag,u for each uw € H'(D). Hence, for u,v € H'(D, S), we obtain:

(u,v)p = (Pu, Pv)r2ap\s) + (0GAs,u, @GA%U)LQ(D). (10)
In particular,

Hu“%r > [lulli = ||P1U||%2(8D\S) + ||5G1A2nu\|%2(D) for all w € H'(D, S).
On the other hand, the Géarding inequality yields
[0l g1y < 1|0l z2(py for all u € Hy(D). (11)

Therefore, using (10) and (11) we conclude that any sequence {uy} C H*(D,S) converging to
u € HT(D) in the space H (D) can be presented as

uy = Prug + G1Asnuy

where the sequence {G1As,uy} converges in H} (D) € H'(D,S) to an element w;. Now the
already proved part of the theorem yields that { Piuy} converges to an element wy in H'/27¢(D).
According to the Stiltjes—Vitali Theorem the element wsy is harmonic in D. Hence

U= wy + wa, Agnu = Agn’w7 u = Pu + GlAQnU; (12)

here Pu is the Poisson integral of the trace ujgp € L*(0D) related to u € H (D). This proves
the continuous embedding H* (D) — h'/?2~¢(D) @& H}(D).

Finally, if 9D € C? then we may use the regularity of the solutions to the Dirichlet Problem
for the Laplace operator in D. More precisely, in this case we have the bounded linear operators

Gy : L*(D) — H*(D), 8,0Gy: L*(D)— HY?(D), P,:H?*@D)— H*(D);

for a Lipschitz boundary these may be not true in general.

To finish the proof we will show that the Poisson integral P induces the bounded linear
operator P, : L*(0D) — HY/?(D). With this aim, for ug € H~'/2(0D) take a sequence
{up, } € H'?(OD) converging to ug in H~'/2(dD). Then, integrating by parts we obtain:

||P1U0 HL2(D) = sup —KU’PWOIC)B(D)‘ = sup |(A2nGQv’P1UOk)L2(D)|
* vEL?(D) [vllz2(p) vEL?(D) [vllz2(p)
v#0 v#£0
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||5VG2UHH1/2(8D) [[wo, ”H*l/?(aD)
<

9,Gav, 1
< sw [(0, G ok)L2(aD)\<

veL?(D) [vllz2(p) veL?(D) [vllz2(p)
v#£0 v#0

< 100 Galllluo, [l zr-1720)-

Hence the sequence { Pyug, } converges in L?(D) and the Poisson integral P induces the bounded
linear operator Py : H~'/2(9D) — L?(D). Now we may use the interpolations arguments
(see [14], [18]). Indeed, by the interpolation, the Poisson integral P induces the bounded linear
operators

Py : [H~Y2(0D), H?(8D))y — [L*(D),H (D)]s, 0<6 <1,

where [Hy, H1]y means the interpolation between the pair Hy and H; of Hilbert spaces. But
[LZ(D)v Hl(D)]Q = HO(D)v [Hil/Q(aD)v H1/2(8D)}9 = H1/270(8D)7

see, for instance, [14, Ch. I, Theorems 9.6 and 12.5]. Therefore, choosing § = 1/2 we conclude
that the Poisson integral P induces the bounded linear operator P, : L?(0D) — H/?(D).

Hence (12) implies the continuous embedding H* (D) — h'/?(D) @ H}(D) if dD € C2. O

We emphasize that the space H' (D) is not continuously embedded into H'(D) unless S =
0D, because the Shapiro-Lopatinskii condition is violated on the smooth part of 9D\ S. Actually
the embeddings described in Theorem 1 are sharp at least for the ball (see Examples 1 and 2
below).

Further, on integrating by parts we see that

n n
Oou Ov ou
(AU,’U)L2 D =4 <,> +4 b_1b0U7’U 2 + ( a5 ~— +a0u,’l])
(D) Jz:; aZj 8zj L2(D) ( ! )L (OD\S) JZ:; J sz L2(D)
for all u € H*(D) and v € H*(D) satisfying the boundary condition of (1). Suppose that
|0bo| < é1] bo,o| on D\ S with a positive constant é;. (13)

Then, if
|6ao| < é2| ago| on D with a positive constant és. (14)

or (1) is fulﬁlled, we have
‘ (bflé*b U ’U) + ( En a-fu +(SCL u ’U) ‘ < CHu||+H’U||+ (15)
1 0% L2(8D\S) = Ja*zj 0%, [2(D) =

for all u,v € HY(D,S), where c is a positive constant independent of v and v. Therefore, in
these cases for each fixed u € HT (D), the sesquilinear form

ou Ov 1 - Ou
W =4 (G555 ) 407D + (L +000)

determines a continuous linear functional f on H*(D) by f(v) := Q(u,v) for v € HT(D). By
Lemma 2, there is a unique element in H~ (D), which we denote by Lu, such that

f(v) = (v, Lu)
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for all v € HT(D). We have thus defined a linear operator L : H* (D) — H~ (D). From (15) it
follows that L is bounded. The bounded linear operator Ly : H* (D) — H~ (D) defined in the
same way via the sesquilinear form (-,-), i.e.,

(v, u)1 = (v, Low) (16)

for all u,v € H (D), corresponds to the case a; =0 forall j =1,...,n, ag = ag,0, and by = by o.
We are thus lead to a weak formulation of problem (1). Given f € H~ (D), find u € H (D),
such that

Q(u,v) = (v, f) for all v € HT(D). (17)

Now one can handle problem (17) by standard techniques of functional analysis, see for
instance [13, Ch. 3, §§ 4-6]) for the coercive case. As the properties of the Dirichlet problem are
well known, we will be concentrated on the study of the mixed problem under condition (6) or
condition (7) of Theorem 1 in the case S # 9D.

Lemma 3. Assume that a; = 0 for all j = 1,...,n, dag = 0, and 6by = 0. If (6) or (7)
hold then for each f € H~(D) there is a unique solution u € HT (D) to problem (17), i.e., the
operator Lo : HY (D) — H~ (D) is continuously invertible. Moreover, the norms of both Ly and
1ts inverse Lgl are equal to 1.

Proof. Under the hypotheses of the lemma, (17) is just a weak formulation of problem (1) with
A and B replaced by Ag = —As, + ap0, By = b0, + bo,0, respectively. The corresponding
bounded operator in Hilbert spaces just amounts to Lg : H(D) — H~ (D) defined by (16). Its
norm equals 1, for, by Lemma 2, we get

v, Lou U, U

Ioul- = sup (Lol gy Ml (18)
veHT (D) l[vll+ veHT(D) [vll+
v#0 v#0

whenever u € HT (D).

The existence and uniqueness of solutions to problem (17) follows immediately from the Riesz
theorem on the general form of continuous linear functionals on Hilbert spaces. From (18) we
conclude that Lg is actually an isometry of H~ (D) onto H™ (D), as desired. O

Corollary 1. Let estimates (7), (13) be fulfilled and the constant ¢ in (13) satisfy 0 < é; < 1.
Then problem (17) is Fredholm.

Proof. If a; = 0forall1 < j < nanddag = 0 then, under the hypothesis of the corollary, estimate
(15) holds with 0 < ¢ < 1. In this case the operator Ly : H*(D) — H~ (D) corresponding to
problem (17) is easily seen to differ from Ly by a bounded operator 6L, : H*(D) — H~(D)
whose norm does not exceed 0 < ¢ < 1. As Ly is invertible according to Lemma 3 and the inverse
operator Ly ! has norm 1, a familiar argument shows that L, is invertible, too.

ul 0
On the other hand, as dag and a;, 1 < j < n belong to L*°(D), the term dag + > a; (z)a—?
Jj=1 Zj
induces the bounded linear operator 5Ly : H*(D) — L?(D). Then Theorem 1 and Lemma 1
imply that the operator §Ls : HT (D) — H~ (D) is compact. This means that the operator
Ly : HY(D) — H~ (D) corresponding to problem (17) differs from the invertible operator L; by

the compact operator §Ls : HT(D) — H~ (D), i.e. Ly is a Fredholm operator. O
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2. Spectral properties of the problem

As estimate (6) does not provide the compactness of the embedding ¢, we are to study the
spectral properties of problem (17) under condition (7) of Theorem 1 in the case S # dD. With
this aim we consider the sesquilinear form on H~ (D) given by

(u,v) - (py = (L "u,v) for u,v € H™ (D).
Since
(Lo u,v) = (Lytu, LoLy *v) = (Lg *u, Ly 'v) 4 for all u,v € H (D), (19)

the last equality being due to (16), this form is Hermitian. Combining (18) and (19) yields
(u,u)— = ||lu||- for all w € H~ (D).

From now on we endow the space H~ (D) with the scalar product (-,-)_.

We recall that a compact self-adjoint operator C' is said to be of finite order if there is
0 < p < o0, such that the series > |\, [P converges where {\,} is the system of eigenvalues of
the operator C (its existence is provided by Hilbert-Schmidt Theorem, see, for instance, [5] and
elsewhere).

Lemma 4. Suppose that (6) or (7) is fulfilled. Then the inverse Ly* of the operator given by
(16) induces positive self-adjoint operators

VoLgt:H (D) — H- (D), Lyt : L*(D) — L*(D), Ly*/v: HY(D) — HT(D)

which have the same systems of eigenvalues and eigenvectors; besides, the eigenvalues are posi-
tive. Moreover, if (7) holds true then they are compact operators of finite orders and there are
orthonormal bases in HT (D), L?(D) and H~ (D) consisting of the eigenvectors.

Proof. According to Theorem 1 the embedding ¢ is continuous. As ¢/, L ! are bounded, all the
operators ('t Ly'), (Lt Lyt '), (Ly* /1) are bounded, too. Then, by (19),

(Ve Lyt u,v)- = (v,0e Ly u)- = (Lg v, /e Ly tu) = (eLg ', oLy ') p2(py, (20)

(u, 't Ly o)~ = (Vo Ly v, u) - = (LLg M, LLo_lv)Lz(D)

for all uw,v € H~ (D), i.e., the operator ('t Lgl) is self-adjoint.
Using (16) we get

(e Lo ' 'u,0) 12y = ((Lg ' (4'0)), ) 2 (o) = (Lo ' (('u),'v) = (Lo (Y'u), Lg ' ()4,

(u,0 Lyt Vv)2py = (¢ Lyt v, u)p2(p) = (Lot (Yu), Lyt (Vv)) +

for all u,v € L?(D), i.e., the operator (v Lal ¢') is self-adjoint.
On applying (16) once again we obtain

(Lo, v) g = (L' (Vew),v)4 = (Veu,v) = (wu, 00) p2(py, (21)

(u, Lyt )y = (v,u)4 = (tu, 0) 12(py

for all u,v € H*(D), which establishes the self-adjointness of (Ly* 't).
Finally, as the operator L;* is injective, so are the operators (vt Ly '), (1 Lyt ¢/) and (Ly* t/t).
Hence, all their eigenvectors {u, } (if exist !) belong to the space H* (D), for Ly 'u,, lies in H* (D)
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and all the eigenvalues are positive. From the injectivity of + and +/ we also conclude that the
systems of eigenvalues and eigenvectors of (¢t Lyt), (¢t Ly +/) and (Ly*¢'t) coincide.

If (7) holds true then Theorem 1 implies that the embedding ¢ is compact. Then all the
operators ('t Ly'), (¢ Lyt /), (Ly " ¢/t) are compact, too. Now we refer to [7] (see also Proposition
5.4.1 in [17]) that if there is § > 0 such that a compact operator C' maps H*®(D) continuously
to H**9(D), then it has a finite order (actually, one may choose p = n/§ + 7 for each 7 > 0).
But, under estimate (7), Theorem 1 implies that the operator (1 Ly '4') actually maps L?(D) to
H'/?7¢(D) with any ¢ > 0. Hence it has a finite order. As the operators (+/t Ly") and (Ly*¢'t)
have the same eigenvalues, their orders are finite, too.

The last part of the lemma follows from Hilbert—Schmidt Theorem. O

Our next goal is to apply Keldysh’s Theorem (see [6] or [5, Ch. 5, § 8]) for studying the
completeness of root functions of weak perturbations of the finite order compact self-adjoint
operators.

Theorem 2. Let estimate (7) be fulfilled and by = 0. Then, for any invertible operator L :
HT (D) — H (D) related to problem (17) the system of root functions of the compact operator
(/tL7Y): H=(D) — H= (D) is complete in the spaces H= (D), L>(D) and H* (D).

Proof. By assumption there is a bounded inverse L= : H= (D) — HT(D). Since I — LoL™! =
(L — Lo) L1, we conclude that

(VeLg")y = (VoL = (JoeLgt) (L= Lo) L7Y). (22)

As 8bg = 0, the operator (L — Lg) : HY(D) — H~ (D) is induced by the term dag+ >_ aj(z)g—g.
=1

Then, as we have seen in the proof of Corollary 1, this operator is compact. Since L~! is bounded,

it follows that the operator (L — Lo) L™ : H=(D) — H~(D) is compact, too.

Hence, (/tL~1) is an injective weak perturbation of the compact self-adjoint operator
('t Lyt of finite order (see Lemma 4). Then Keldysh’s Theorem [6] or [5, Ch. 5, § 8]) implies
that the countable system {u, } of root functions related to the operator («'¢ L™!) is complete in
the Hilbert space H (D).

Pick a root function u, of the operator (¢t L=1) corresponding to an eigenvalue \,. Note
that A\, # 0, for the operator L' is injective. By definition there is a natural number m, such
that ((//t L=) — X\, I)™u,, = 0. Using the binomial formula yields

m

Uy = Z (T))\;j(L’LL_l)jul,.

j=1

Hence, u,, € H*(D) because the range of the operator L™ lies in the space HT (D).

We have thus proved that {u,} C H*(D). Our next concern will be to show that the linear
span L({u,}) of the system {u,} is dense in H*(D) (cf. Proposition 6.1 of [9] and [12, p. 12]).
For this purpose, pick v € Ht(D). As L maps H"(D) continuously onto H~ (D), we get
Lu € H~ (D). Hence, there is a sequence {fi} C L({u,}) converging to Lu in H~ (D). On the
other hand, the inverse L=! maps H~ (D) continuously to H* (D), and so the sequence

L =LY fy

converges to u in HT (D).
If now u,, € L({uy}) corresponds to an eigenvalue \g of multiplicity mg then the vector
vy, = (Ut L7, satisfies

(Ve LY = XoD)™w,, = (Ve LY = XoD)™ My, + Xo((Ve L) = NoI)™u,,, = 0.
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Thus, the operator (¢/¢ L~') maps £({u,}) to £L({u,}) itself. Therefore, the sequence {+'t L= f;}
still belongs to £({u, }) and we can think of {L~!f} as sequence of linear combinations of root
functions of +/t L' converging to u. These arguments show that the subsystem L= £({u,}) C
L({uy,}) is dense in H1 (D).

Finally, since the space C§°(D) of the functions with compact supports is included into
H*(D) and C§°(D) is dense in the Lebesgue space L?(D), the space H (D) is dense in L?(D)
as well. This proves the completeness of the system of root functions in L?(D). O

If 0by # 0 then the corresponding perturbation may be non-compact (see Example 2 below).
In this case one may use another methods to study the root functions (see, for instance, [9,11]).
However these methods are beyond the scope of this paper.

3. Examples for the unit ball

Let S=@ and a; =0 for all 1 < j <n, by =1 and ag, by be constants. Then we obtain the
mixed problem for the Helmholtz equation. In the generalized setting the corresponding spectral
problem reads as

" [ Ou Ov
4; (azj, aZj)y(D) + 4bo (u, v) 2(9p) + (a0 — A)(u,v) 2(py = 0 for all v € H (D). (23)

In particular, applying the last identity with u = v we conclude that A > ag o if dag = dby = 0.
We are going to study the Sturm-Liouville problem on the unit ball D = B in C™. Actually,
the matter is quite similar to the coercive mixed problem for the Laplace operator in the ball
(see [19, Suppl. II, P. 1, §2]).
To this end, we pass to spherical coordinates x = r S(p) where ¢ are coordinates on the unit
sphere 9D =S in C™. The Laplace operator A in the spherical coordinates takes the form

Ay = L ((r%)Q +(2n-2) (r%) - AS), (24)

r2

where Ag is the Laplace-Beltrami operator on the unit sphere.
On the other hand, in the unit ball we have

0 0 = - 0 1 9]
_— = r— v = 5 — = — _— B
v o 9 ;Zﬂ 9z, 2 (r or " S)
where the operator Bg depends on the coordinates on the sphere S only. If, for instance, n = 1

= 1
then, in polar coordinates, 0, = = | r g +v—-1 2 .
2 or dp

To solve the homogeneous equation (—Ag, + a)u = 0 we make use of the Fourier method of
separation of variables. Writing u(r, ») = g(r)h(p) we get two separate equations for g and h,

namely
0\?2 0
(— (’/‘E> +(2 - 2n)(ra) + a7‘2>g = cg
Agh = Ch,
¢ being an arbitrary constant.
The second equation has non-zero solutions if and only if ¢ is an eigenvalue of Ag. These are

well known to be ¢ = k(2n + k — 2), for k = 0,1,... (see for instance [19]). The corresponding
eigenfunctions of Ag are spherical harmonics hx (@) of degree k, i.e.,
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Ashk = k(2n + k- 2) hk. (25)

The number of the linearly independent spherical harmonics of the degree k is finite and equals
(2n + 2k —2)(2n+ k — 3)!

to J(k

o J(k) = kl(2n — 2)!

hy in accordance with the complex structure. Namely, it possible to find an orthonormal basis

{H,(,fg} in L2(S) of consisting on the polynomials of the form

Hzgjg(z zZ) = Z (J)ﬁz i
la|=p,|Bl=q

. In the complex space C™ we may choose the harmonics

with complex coefficients cg)ﬁ (see, [20]). Let J(p,q) stands for the number of the polynomials

of the bi-degree (p, q) in the basis; of course J(p,q) < J(p + ¢). Clearly,

O, Hyy = aHgy,  BsHyly = (a—p)Hy, (26)

p,q°

Consider now the following Sturm-Liouville Problem for ordinary differential equation with
respect to the variable 0 < r < 1 (see [19, Suppl. II, P. 1, §2])

(_ l( ;)2 n (2_2n)<1£) N (p+q)(2n;p+q—2) +a0>g(r) ~ ), (27)
%(1) + (2()0 +(¢— p))g(l) = 0 and g(r) is bounded at the point r = 0. (28)

Actually, if ag, A € R then (27) is a version of the Bessel equation, and its (real-valued) solution
g(r) is a Bessel function defined on (0, +00) while the space of all the solutions is two-dimensional.
For example, if A = ag then g(r) = arP™? + Br2=P=9=" with arbitrary constants o and (3 is a
general solution to (27). In the general case the space of solutions to (27) contains a one-
dimensional subspace of functions bounded at the point r = 0, cf. [19].

For a triple (p,q,j), fix a non-trivial solution g(j’ )( ) to (27), (28) corresponding to an

eigenvalue )\1(7]7;;'). Then the function ugql) = g,(,fql)(r)ng g(cp) satisfies

(—A2n+(a0—>\;{;)) i) =0en T, @)

(bo + 8, )ul%) =0 on 9D. (30)

Indeed, by (24), (25), (27) and the dlscussmn above we conclude that this equality holds in
C™\ {0}. We now use the fact that u( " is bounded at the origin to see that (29) holds. On the
other hand, (30) follows from (26) 1mmediately.

Theorem 3. Let dag = dbg = 0 and aao + b2, # 0. The system {u(]’ ,ieN, pqeZy,
1 <5< J(p,q), coincides with system of all the ezgem}ectors of the Sturm-Liowville problem (17)
in the ball B. In particular, it is an orthogonal basis in HT(B), L*>(B) and H~ (B).

Proof. As af 4+ b3 o # 0, Theorem 1 implies that H*(B) is continuously embedded to L*(B).

(2 )} consists of eigenvectors of the Sturm-Liouville problem

Now we note that the system {uy
(17) in the ball B. Moreover, according to [21, Lemma 7.1], the system {u(]’ )} is orthogonal
with respect to the Hermitian forms (-,-)r2(s) (+,-)r2(e) and (9-,0-)12my-- In particular, it is
orthogonal in H*(B). The orthogonality of the system in H~(B) is fulfilled because (20) and

Lemma 4 imply
( (5,%) u(jf)), _ (/\é{;li))— (L WLy 14,9 u(j-l)), _ )‘1(3{;;)( (4,%) u(j)) L2(B)-

P,Q’ p,q p,q 7 7P,q p,q’ p.q

— 258 —



Alexander N. Polkovnikov, Alexander A.Shlapunov On the Spectral Properties of a Non-coercive Mixed ...

By the very construction, the system {H,(,Jg} p,q €74, 1< j< J(p,q), is an orthonormal
basis in L%(S). As it is known, if dag = 0 then )\,(, q) > ag,o and the countable system {g(] )( ) bien
of eigenfunctions is an orthogonal basis in the weighted space L%([0, 1], 7) of real valued functions
with the scalar product (v/7, \/7+) £2(j0,1)) (see [19, Suppl. II, P. 1, §2]) for each fixed triple (p, ¢, 5)
with p,qg € Z4, 1 < 5 < J(p,q). Easily, it is also is an orthogonal basis in the weighted space
L3([0,1],7) (consisting of complex-valued functions). Hence, by the familiar arguments, the
system {u(] D = gg()],ql)( )H[()Jq( )}, p,q € Z4, is an orthogonal basis in L?(B) = L(S x [0,1]),
see, for instance, [23, Ch. VH §3.5, Theorem 1].

Now, as the system {u } is an orthogonal basis in L?(B) there are no other eigenvalues of the

problem (17) besides the already mentioned )\g,,q) Hence there are no eigenvectors corresponding

to a value \g besides the linear combinations of the already constructed eigenfunctions related
to this value.
As we already mentioned, the space L2(B) is dense in H~(B). Hence the system {u;’}

is complete in H~(B), too. Finally, let a function w € H*(D) is orthogonal to each vector

ul(,ﬁ]) with respect to (-,-)4+. Then, using Lemma 4 and (21) we conclude that (u, u,(,j,q))g(]g) =

(u, Lyl = A9 (u,uf?)y = 0 ie. w is orthogonal to each vector uSy) in L2(B).
Therefore u = 0 in L?(B) and, consequently in the space H* (D). This exactly means that the
system {up q)} is complete in H1(B). O

We note that, as opposed to the coercive case, in this way we can not provide that the
multiplicities of the eigenvalues of problem (17) are finite (cf. Example 1 below).

Example 1. Let ag = ag,0 = 1, bg = bp,0 = 0. Then the space H™ (D) is continuously embedded
to L?(D) (see Theorem 1 above). It follows from (23) that the eigenvalues (if exists) are equal
or more than 1; moreover the eigenvalue A = 1 corresponds to the space O%(D) of holomorphic
functions from the Lebesgue space L?(D). The dimension of the eigenspace O?(D) (i.e. the
multiplicity of the eigenvalue A = 1) is not finite and hence the embedding ¢ is not compact.
However, Theorem 3 allows us to construct an orthogonal basis in H*(B), L?(B) and H~ (B)
consisting of the eigenvectors of problem (17).

Let us see that the corresponding embedding illcl Theorem 1 is sharp for the ball B. Indeed, if

D:Bandn:1thentheseriesus( )= Z D)

According to [22, Lemma 1.4],

T e € 0, converges in H*(D) and ||u.||% =

Ue

2 k25
el =7 5 gy ™Yo gy 0 <

s <1, ie. for each s € (0,1) there is € > 0 such that u. ¢ H*(B). Therefore H*(B) can not be
continuously embedded to H*(B) for any s > 0. ]

Actually, the embedding corresponding to (7) in Theorem 1 is sharp for the ball B, too.

Example 2. Let first apo = 0 and byg = by = 1. Then H™(B) is continuously embedded to
H'/2(B) and the corresponding operator Ly is of finite order (see Theorems 1 and Lemma 3). If
dag € C then, according to Theorem 2, the system of the root functions related to problem (17)
is complete in H+(B), L?(B) and H~ (B). On the other hand, problem (27), (28) may be treated
in a similar way as (17) with Ho = L2([0,1],7), i.e. the term dag induces a weak perturbation
of the self-adjoint problem (27), (28) with ag = ag,0 > 0. Hence, by Keldysh’s Theorem the

corresponding system {g(J ’l)} of its (complex-valued) root functions is complete in the weighted

space L2([0,1],7). Thus we conclude that the system {u%;’} of the root functions related to
problem (17) is complete in the Lebesgue space L?(B) (and then in H~ (B)) for every ag € C.
oo k

If n =1 then the series u.(z) = Z (k+ )

[ ClE e > 0, converges in HT(B) and ||u.|]3 =
k=0
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2 k25—1

(oo}
Ue Ty e, 0 < s < 1, ie. for each s € (1/2,1)
k=0

& 1
) k+1)1+s7

el =27 2 Gyee: [ sy 2
there is ¢ > 0 such that u. ¢ H*(B). Therefore H*(B) can not be continuously embedded to
H?*(B) for any s > 1/2.

Let now 0 # |dbg| < bgo = 1. Then problem (17) is still a Fredholm one (see Corollary 1).
Take n = 1 and the sequence {27}. It is bounded in HT(B) because [|2?||+ = ||2?||r2@s) = V2.
As ||z? — 2F||2 = 47 for every k,p € Z. we conclude that the sequence contains no fundamental
subsequences. On the other hand, for the corresponding bounded operator § Ly we have

9
I6Lo(zP — 2%)|- =4 sup O > 416bo| (|27 — 2*||12(s) = 8|6bolv/7,
veHY(D) |+
v#0
i.e. the sequence {dLyzP} contains no fundamental subsequences, too. Hence the operator dLg
can not be compact. O

The work was supported by RFBR, grant 11-01-91330-NNIO _ a.
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O crieKTpaJIbHBIX CBOCTBaX OJHOI HEKO3PIIMTUBHOM
CMEINIaHHOU 33241, aCCOIMUPOBAHHON J-OmepaTopoM

Anekcanap H. IlonkoBHUKOB
Anekcanap A.IllnanyHoB

Mwi pacemampusaem nexoapyumuehyto 3adawy LImypma-JIuysuirsa 6 nexomopot oeparusennot obaa-
cmu D xomnaexcrozo npocmpancmea C" das eosmywennozo onepamopa Jlanaaca. Boaee mowrno, movl
cmasum Ha 2paruye ycaosua Poburnosckozo muna, 6 KOmMopwxr “waen nepeozo nopadka nponopuuoHa-
NEH KOMNAEKCHOT HOPMAALHOT nMpoudsodnoti. Jlokasvieaemcea gpedzosbmosocmsd 3adaywu 6 no0TOOAUUL
NPOCMPAHCNBAT, OASL KOMOPHIT NOAYHEHA MEOPEMAL BAONHCERUS, 0AI0ULAA COOMHOWEHUSA CO UWKAAOT NPO-
cmparncme Coboaesa-Caobodeykozo. Bamem, ucnosvb3ys memood caabozo 803MYULLHUS KOMNAKIMHOL Ca-
MOCONPAICEHHDLT ONEPAMOPOB, Mbi JOKA3BLEAEM NOAHOMY KOPHEGHT PYHKUUL, ACCOUUUPOBAHHBIT € KPaA-
esoli 3adauet 6 npocmpancmee Jlebeza. [as wapa coomeemcmeyrowue cobecmeertbie 8eKMOPv, npeo-
cmasaenss Kk npoussedenue Pynrkyul Beccean u chepuneckur 2apmoHuxk.

Knaroueswie caosa: 3adava Imypma-JIuysunsis, HEKOIPUUMUEBHDIE 3a004U, MHOZOMEPHBIT ONEPATNOD
Kowwu-Pumanra, xopresvie GyHKyuu.
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