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The study of hypersurfaces in a torus leads to the beautiful zoo of amoebas and their contours, whose

possible configurations are seen from combinatorical data. There is a deep connection to the logarithmic

Gauss map and its critical points. The theory has a lot of applications in many directions.

In this report we recall basic notions and results from the theory of amoebas, show some connection

to algebraic singularity theory and consider some consequences from the well known classification of

singularities to this subject. Moreover, we have tried to compute some examples using the computer

algebra system Singular and discuss different possibilities and their effectivity to compute the critical

points. Here we meet an essential obstacle: Relevant examples need real or even rational solutions, which

are found only by chance. We have tried to unify different views to that subject.
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1. Toric Hypersurface and Logarithmic Gauss Map

Let V ∗(f) be an algebraic hypersurface in the algebraic torus T
n, T := C

∗, i.e.

V ∗(f) = {z ∈ T
n | f(z) = 0},

where f(z) =
∑

A⊂Zn

aαzα is the Laurent polynomial.

Recall that the Newton polyhedron Nf ⊂ R
n of f is the convex hull in R

n of Af := supp(f).
Let XΣ be the smooth toric variety associated to the fan Σ, which is a refinement of the fan
dual to the Newton polyhedron Nf . We denote by V (f) ⊂ XΣ the closure of V ∗(f) in XΣ. The
polynomial f is called non-singular for its Newton polyhedron if V ∗(f) is smooth and for any
face ∆ ⊂ Nf one has

(z1∂f (∆)/∂z1, . . . , zn∂f (∆)/∂zn) 6= 0

for all z ∈ V (f)∩XΣ′ , where f (∆) is the truncation of f to the face ∆, and XΣ′ is the toric variety
associated to ∆. In accordance with singularity resolution theorem, cf. [6, page 291], a generic
polynomial f is non-singular for its Newton polyhedron, and, therefore, V (f) is non-singular.
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Next we introduce the so-called logarithmic Gauss map γf : V ∗(f) → P
n−1. Let t

n denote
the Lie algebra of T

n which is identified with the tangent space of T
n at the unit point e. For

any point z ∈ V ∗ shift the tangent space Tz(V
∗) by the torus multiplication (with z−1) to a

hyperplane hz ⊂ t
n, inducing a point in the projective space of the dual t

n∗, which we define to
be γf (z) := h∗

z ∈ P
n−1 := P(tn∗). In coordinates of T

n the map γf is given by

γf (z) = (z1fz1
: . . . : znfzn

) ∈ P
n−1.

Described in more geometric terms we have: Let U ⊂ T
n be a neighbourhood of a regular point

z on V ∗(f). Choose a branch of the logarithmic map (restricted to U) log : U → C
n then the

direction of the normal line at log(z) to transformed hypersurface log(V ∗(f)∩U) has components
(z1fz1

, . . . , znfzn
). This construction does not depend on the choice of the branch of log.

In [11, Section 3.2] one can find the idea of a construction how to extend γf in the non-singular
case to a finite map

γf : V (f) → P
n−1.

Having a finite map γ to a smooth variety, one can associate the ramification locus or the
discriminant as image of the critical locus: D := γ(Cγ), which is usually a hypersurface. An
analytic structure which is compatible with base change was introduced by Teissier, cf. [14]: The
structure sheaf OD is defined to be the quotient by the 0-th fitting ideal of γ∗(OC). In local
coordinates the defining equation is obtained as the (classical) discriminat of the polynomial,
that generates the finite extension of the structure sheafs over an open affine subsets.

From the well-known theorem of Kouchnirenko, cf. [7, Th. 3], Mikhalkin obtains:

Proposition 1 ( [11]). If the polynomial f is non-singular for its Newton polyhedron, then the
degree of γf is obtained as

deg(γf ) = n! · Vol(Nf ).

For later calculation we give a description of the logarithmic Gauss map γf in local coordi-
nates. Since V ∗(f) is smooth, we assume w.l.o.g. that locally fzn

:= ∂f/∂zn 6= 0. Then there
exists a function g(z′), z′ := (z1, . . . , zn−1) such that f(z′, g(z′)) ≡ 0

Since gzi
= −fzi

(z′, g)/fzn
(z′, g) and (log(g(z′))zi

= gzi
/g hold, one obtains the formula

γf (z′) =

(

−z1
∂ log g(z′)

∂z1
: . . . : −zn−1

∂ log g(z′)

∂zn−1
: 1

)

. (1)

Then the fiber γ−1
f (y), y = (y1 : . . . : yn) ∈ P

n−1 is given by the zeros of the local complete
intersection ideal generate by f and the 2-minors of

(

z1fz1
. . . znfzn

y1 . . . yn

)

,

i.e. (in case of yn 6= 0) γ−1(y) is defined by the complete intersection ideal

Iy := (f, h1, . . . hn−1), (2)

where hi = ynzifzi
−yiznfzn

. There are at most n! ·Vol(Nf ) zeros in the torus by Proposition 1.

2. Amoeba and its Contour versus Laurent Series

Consider a rational function F (z) = h(z)/f(z) of n complex variables and different Laurent
expansions

∑

α∈Zn

cαzα (3)
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of F centered at z = 0. The most natural way to describe these expansions uses the amoeba of
polar hypersurface V ∗ = V ∗(f).

Recall that the amoeba AV ∗ of a toric hypersurface V ∗ = V ∗(f) is the image of V ∗ by the
logarithmic map Log : T

n → R
n,

Log : (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).
The complement R

n − AV ∗ to the amoeba consists of a finite number of connected compo-
nents Ei, which are open and convex, cf. [4, Section 6.1]. These components are characterized
in the following Theorem, which is a summary of Propositions 2.5, 2.6 in [3], Theorem 10 and
Corollary 6 in [13, Section I.5].

Theorem 1. There exists an open subset UN in the set of polynomials with fixed Newton poly-
hedron N that satisfies the following property:

If f ∈ UN , then there is a bijection from the set of lattice points of N ∩ Z
n to the set of

connected components of R
n −AV ∗(f) : ν 7→ Eν such that the normal cone C∨(ν) to Nf at the

point ν is the recession cone of the component Eν .

A recession cone is the maximal cone which can be put inside Eν by a translation. If f 6∈ UN ,
the expected component Eν may not exist for some non-vertice lattice points ν ∈ N because the
associated Laurent series below does not converge.

Given a component Eν one obtains a Laurent series of F centered at z = 0 using the term
aνzν of f as denominator in a corresponding geometric progression

1

f
=

∞
∑

k=0

(aνzν − f)
k

(aνzν)k+1
. (4)

The set {Log−1(Eν)} contains the domain of convergence for this Laurent series. The support
of expansion (4) is the minimal cone Kν that after a translation by ν contains the face ∆ ⊂ Nf ,
which has ν as an interior point.

A non-zero vector q ∈ Z
n ∩ Kν defines a so-called diagonal subsequence {ck·q}k∈N of the set

of coefficients of expansion (3). We will discuss its asymptotics in the next section.
The set of critical values of the map Log restricted to V ∗ is called the contour CV ∗ of the

amoeba AV ∗ (see [12]). The contour is closely related to the logarithmic Gauss map γf . Recall
Lemma 3 from [11].

Lemma 1. The preimage of the real points under the logarithmic Gauss map is mapped by Log
to the contour:

CV ∗ = Log
(

γ−1
f (Pn−1

R
)
)

.

Proof. Let z be a regular point on V ∗ and U its neighbourhood. Since the map Log|V ∗ is a
composition of log : z 7→ (log(z1), . . . , log(zn)) and the projection Re : C

n → R
n, the point z

is critical for Log|V ∗ if the projection d Re : Tz log (V ∗ ∩ U) → R
n is not surjective at z. A

fiber Tz log (V ∗ ∩ U) of the tangent bundle of the image by log of the hypersurface V ∗ is the
hyperplane

{t ∈ C
n : 〈γf (z), t〉 = 0}.

For real γf (z) the projection d Re is not surjective. If γf (z) is not real one can consider 〈γf (z), t〉 =
0 as a system of linear equations with fixed real part Re t, and solve it with respect to Im t. Hence,
z is not critical for Log|V ∗ .

Therefore, the contour CV ∗ can be computed as the Log-image of the zeros of the ideal

(f, qnz1fz1
− q1znfzn

, . . . , qnzn−1fzn−1
− qn−1znfzn

), (5)

where q runs through all real points (q1 : . . . : qn) ∈ P
n−1
R

, (here w.l.o.g qn 6= 0).
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3. Singularities of Phase Function

Consider the function

Φ : P
n−1 × V ∗ −→ C, Φ(y, z) = 〈y, log z〉 .

Introduce the phase function ϕq := Φ(q,−), later we show that it is indeed a phase function of
some oscilllating integral. Denote by Crit(ϕq) ⊂ V ∗ the set of critical (or stationary) points of
function ϕq. It coincides with the preimage of the logarithmic Gauss map γf :

Proposition 2. The relative critical locus of Φ coincides with the graph of γf :

CritPn−1(Φ) = Γγf
.

Proof. Assume fzn
6= 0 then we use local coordinates z′ on V ∗ and consider the function g(z′)

such that f(z′, g(z′)) ≡ 0. We obtain

∂Φ(z, y)/∂zi =
yi

zi

+
yn

g(z′)
∂g(z′)/∂zi, i = 1, . . . , n − 1.

Up to a non-zero constant multiple the components of the gradient ∂Φ(z, y)/∂z together with the
defining polymonial f(z) of V ∗ give us the defining ideal (5) of the fiber of y by the logarithmetic
Gauss map γ.

The last statement shows us that the Log-image of Crit(ϕq) is contained in the contour CV ∗

of the amoeba AV ∗ , and the tangent hyperplane to CV ∗ at a point Log(z0), z0 ∈ Crit ϕq, has
normal vector q ∈ Z

n − {0}.
Another consequence of the above formula concerns the connection between the singularities

in the fibers of the phase function and the fibers of the logarithmic Gauss map:

Proposition 3. Let (z0, y0) ∈ Γγf
be a point of the graph of γf . Then the Jacobian matrix of

γf at z0 coincides with the Hesse matrix of ϕy0
at z0 up to multiplication with a regular constant

diagonal matrix D:
Hess(ϕy0

)(z0) = D · Jac(γf )(z0).

Proof. As before we assume fzn
(z0) 6= 0 and use local coordinates z′. From (1) we obtain the

entries of the Jacobian matrix Jac(γf ) of the map γf

Jac(γf )(i,j) = −
(

zi

∂2 log(g(z′))

∂zi∂zj

+ δij

∂ log(g(z′))

∂zj

)

, i, j = 1, . . . , n − 1,

where δij is the Kronecker symbol. Moreover,

∂2ϕy

∂zi∂zj

= yn

∂2 log(g(z′))

∂zi∂zj

− δij

yi

z2
i

holds for the second derivatives of ϕy. Since
y0,i

z0,i

= −y0,n

∂ log(g(z′0))

∂zi

at a critical point z0 of

ϕy0
, we obtain the statement by putting the i-th entry of D to be di = −y0,n

zi

.

We obtain as corollary of the last proposition that for directions y = q outside the ramification
locus of the logarithmic Gauss map γf the phase function ϕq has only Morse critical points.

Corollary 1. The logaritimic Gauss map γf is unramified at q ∈ Z
n−{0} iff the phase function

ϕq has only Morse critical points, e.g. non-degenerated singularities.
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Proof. The map γf is not ramified over y iff its Jacobian has full rank at all points of the fiber
γ−1(y). From Proposition 2 we get

det

(

∂2ϕq

∂zi∂zj

(z0)

)

=
qn−1
n

z0,1 · · · z0,n−1
det(Jac(γf )(z0)).

Hence, the Jacobian determinant does not vanish iff the Hessian is not zero at corresponding
points.

Next we want to discuss degenerated critical points of the phase function. By Mather-Yao
type theorem the R-class (right-equivalence) of an analytic function h(z) ∈ C{z} =: On at
an isolated critical point z0 = 0 is equivalent to the isomorphy type of the Milnor algebra
Qh := On/(∂h/∂z), but as C[t]-algebra, the action of t on Qh induced by multiplication with h,
cf. [10]. The isomorphy type of the associated singularity (V (h), z0), i.e. the K-class (contact-
equivalence) of h(z), is equivalent to the isomorphy class of the Tjurina algebra Th = Qh/(h)
itself, cf. [9]. Obviously, these equivalence classes coincide for quasi-homogeneous functions
(because µ(h) = τ(h), Th = Qh, hQ = 0). The Milnor algebra of the phase function at z0

coincides with the local algebra of the fiber γ−1
f (γf (z0)) at z0.

Corollary 2. If (z0, y0) ∈ Γγf
, denote by Qϕ the Milnor algebra of the function (ϕy0

(z) − y0)
at z0, then we have

Qϕ = Oγ−1

f
(y0),z0

and Qϕ/Ann(mQ) = OSing(γ−1

f
(y0)),z0

.

Proof. By Proposition 2 the germs coincide: (Crit(ϕy0
), z0) = (γ−1

f (y0), z0). The algebra of the
critical locus is the Milnor algebra of (ϕy0

(z) − y0). By Proposition 3 the Jacobi determinant
of γf at z0 equals up to a constant multiple to the Hessian of ϕy0

at z0, which generates the
annulator of the maximal ideal in the local complete intersection algebra Qϕ.

A function h ∈ On with isolated critical point is called almost quasihomogeneous, if µ = τ +1.
This is equivalent to hQh = Ann(mQ). Assume that the singularities in a fiber of a phase function
are quasihomogeneous or almost quasihomogeneous, then in spite of Mather-Yao type theorems
these singularities are determined by the fiber germs of the logarithmic Gauss map because
Qϕ = Tϕ or Qϕ/(Ann(m)) = Tϕ, respectively. Note, that all simple or unimodal critical points
belong to these singularities. The singularities of a phase function on their part determine the
asymptotic of corresponding oscillating intergrals.

All degenerated critical points are lying over the singularities of the discriminant D ⊂ P
n−1

of γf . Many results could be found concerning the connection between singularites of discrimant
and singularities in the fiber. We try to discuss some consequnces with respect to our setting.

The finite map γf can be considered as family over P
n−1 of complete intersections (of relative

dimension zero). Let (X0, 0) be a germ of an isolated complete intersection singularity, let X → S
its versal family with discriminant D ⊂ S, the singularity of the discriminat (D, 0) determines
the special fiber (X0, 0) up to isomorphy by a result of Wirthmuller, c.f [17]. If dim(X0) = 0
the multiplicity of the discriminant fulfills mult(D, 0) = dimC(OX0

)− 1 = dimC(OSing(X0)), as a
consequnce of [8], for instance. This is globalized straight forward.

Proposition 4. Let γ : X → S be a finite morphism with discriminant D ⊂ S and each Xs is
a complete intersection, then holds:

mults(D) >
∑

zi∈Xs

mult(Sing(Xs), zi) =
∑

zi∈Xs

(mult(Xs, zi) − 1).

Moreover, equality holds at s ∈ S, if γ induces a versal deformation of Xs.
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Proof. The local branches of D at s are corresponding to the discriminants Di of the germs
(X, zi) → (D, s), hence the multiplicities of Di add up to the multiplicity of D. Any family is
locally induced from a versal one, hence the discriminant is induced by base chance from the
discriminant of the versal family and its multiplicity cannot become smaller.

Note, versality is an open property and corresponds to some kind of stability in the sence of
Mather. It is not clear for us, whether (or under which additional assumtions) the logarithmic
Gauss map γf for a generic function f(z) with fixed Newton polyhedron N has this stability
property. It holds in all computed examples. But, an answer needs further investigation.

Inspecting the classification of hypersurface singularities we get the types of possible critical
points for small multiplicities of the discriminant, which are listed in the following Corollary.

Corollary 3. Given a Laurent polynomial f(z), non-singular with respect to its Newton polyhe-
dron, and let γ be the corresponding logarithmic Gauss map with discriminant D ⊂ P

n−1. Let
m = m(q) := mult(D, q), then the following configurations are met for the fiber Fq := γ−1

f (q),
respectively for the collection of critical points of the phase function ϕq(z):

• m = 1: Fq has exactly one point z∗ of multiplicity 2, ϕq has non-degenerated critical point
and one A2-singularity at z∗.

• m = 2: Fq either one point of multiplicity 3 or at most two points of multiplicity 2, ϕq has
at most one A3 or two A2-points.

• m = 3: Besides A1 can occur the following collections of critical points of ϕq: one D4 or
one A4 or a combination k2A2 + k3A3 with k2 + 2k3 6 3.

• m 6 6: Type of critical set of ϕq: Only (simple) ADE-critical points can occur

∑

i>1

kiAi +
∑

i>4

liDi +

8
∑

i=6

niEi,

such that
∑

i(ki + li + ni) 6 n! vol(N )

and
∑

(i − 1)(ki + li + ni) 6 m.

• m 6 6: all critical points are quasihomogeneous (and simple or unimodal).

• m 6 14: all critical points are almost quasihomogeneous (and simple or unimodal).

The first critical point, which is not almost quasihomogeneous are the bimodal exceptional
singularities with smallest Milnor number µ = 16 of type Q16 or U16, cf. [1]. They can occur
only at multiplicity m > 15.

4. Representation of Diagonal Coefficient by Oscillating
Integrals and its Phase Function

In this section we return to Laurent series (3) converging in Log−1(Eν). We explane the
residue asymptotics formula for its diagonal coefficient in the direction q ∈ Z

n ∩ Kν .
Recall that the Laurent series coefficient can be represented in the form

cν
α =

1

(2πı)n

∫

Γν

ω

zα+1
,
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where ω := F (z)dz and the cycle Γν is n-dimensional real torus Log−1(xν), xν ∈ Eν . The
direction q induces series of diagonal coefficients

cν
q·k =

1

(2πı)n

∫

Γν

ω

zq·k+1
. (6)

We may assume that the point xν generates a line L := Rxν ⊂ R
n which is transversal to the

boundary ∂Eν and intersects it at a point p, and the normal vector at p to ∂Eν coincides with the
vector q. In other words, p is the Log-image of points w(1)(q), . . . , w(N)(q) from the fiber γ−1(q)
of the logarithmic Gauss mapping. The torus Log−1(p) ⊂ Log−1(L) intersects the hypersurface
V ∗ at most in N 6 n! · Vol(Nf ) points.

Consider a heighbourhood Ui in C
n of the point w(i)(q), then Log−1(L) intersects the hyper-

surface V ∗ in Ui along an (n − 1)-dimensional chain hi ⊂ V ∗. It can be shown, cf. [15] for the
case n = 2, that integral (6) is asymptotically equivalent for k → +∞ to the sum

cν
q·k =

1

(2πı)n−1

N
∑

i=1

∫

hi

res
(ω

z

)

· e−〈q,log z〉·k, (7)

where log z = (log z1, . . . , log zn) and res (ω/z) is the residue form. In local coordinates

z′ = (z1, . . . , zn−1) of V ∗ (assuming fzn
6= 0) we have res (

ω

z
) =

gdz′

z′ fzn
|V ∗

. Therefore, the

diagonal coefficient can be represented as the sum of oscillating integrals with the phase function
ϕq(z

′) = 〈q, log z〉|V ∗ . The critical points of this phase function give the main contribution to
the asymptotic of such integrals. From Proposition 2 follows that the support of hi contains only
one critical point of ϕq. It is a point w(i)(q) ∈ γ−1(q).

The asymptotics of an oscillating integral is the most simple for Morse critical points. In
this case it is given by stationary phase method (also called saddle-point method, see [18]). The
Corollary 1 of Proposition 3 states that for directions y = q outside the ramification locus of the
logarithmic Gauss map γ the phase function ϕq has only Morse critical points.

The situation of a degenerated critical point is much more complicated. First of all we
are looking only for rational critical points! By a result of Varchenko some information about
asymptotics of oscillating integral can be read from the distance of the Newton diagramm of the
phase function at the corresponding point in case of a Newton non-degenerated phase function
(and then it depends only of the K-equivanence class of the hypersurface singularity). Otherwise,
the distance is only a lower bound. So called adapted coordinates exist always in dimension 2
such that the phase function is Newton non-degenerated. Adapted coordinates can be computed
algorithmically, for more details cf. [5] and [16].

5. Discussion of examples

Example 1. Consider the smooth hypersurface V ∗(f) defined as a zero set of the polynomial

f = z2
1z2 + z1z

2
2 − z1z2 + a, a ∈ R, a 6= 0,

1

27
,

which is non-degenerated for its Newton polyhedron. The cubic V ∗(f) is a two-dimensional real
torus with three removed points.

The solutions z(y) = (z1(y), z2(y)) of

{

z2
1z2 + z1z

2
2 − z1z2 + a = 0,

h := (2y2 − y1)z
2
1z2 + (y2 − 2y1)z1z

2
2 + (y1 − y2)z1z2 = 0

(8)
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for fixed parameter (y1 : y2) ∈ P
1 are zeroes of ideal (5), and for real parameter y, they are

projected to the contour CV ∗ by Log-map. We are interested in the real ramification locus of γf .
We compute the resultant of f, h with respect to the variable z2

Res(f, h) := (−y2
1 + y1y2 + 2y2

2)z3
1 + (2y2

1 − 2y1y2 − y2
2)z2

1

+(−y2
1 + y1y2)z1 + 4ay2

1 − 4ay1y2 + ay2
2 .

The multiplicity of an isolated zero z(y) of system (8) coincides with the multiplicity of the
zero z1(y) in Res(f, h). The discriminant of the polynomial Res(f, h) with respect to z1 is the
homogeneous polynomial

D(y1, y2) = (1 − 27a)(−2y1 + y2)
2(4ay6

1 − 12ay5
1y2 + (−3a + 1)y4

1y2
2−

−2(1 − 13a)y3
1y3

2 + (−3a + 1)y2
1y4

2 − 12ay1y
5
2 + 4ay6

2)

in variables y1, y2.
Interested in roots of (8) in T

2 we can omit the factor (−2y1 + y2)
2 in the last expression.

Substituting in D(y) an affine parameter λ = y1/y2, we get the polynomial

D(λ) = 4aλ6 − 12aλ5 + (−3a + 1)λ4 − 2(1 − 13a)λ3 + (−3a + 1)λ2 − 12aλ + 4a,

whose real zeroes λi give the points (λi : 1) ∈ P
1
R

of the real ramification locus of γf .
We have three real intervals of the parameter line Ra: for a < 0 the polynomial D(λ) has six

real roots, for 0 < a <
1

27
and

1

27
< a the polynomial D(λ) has no real roots.

Choosing values of a from the different intervals of Ra, we obtain different configurations of
the contour CV ∗ and the amoeba AV ∗ . Because the volume 2!·Vol(Nf ) = 3 does not depend on a,
all these configurations have a following common property: The number of preimages Log−1(p)
of a point p ∈ CV ∗ with normal vector (y1, y2) ∈ R

2 is equal to three. We count such preimages,
which are solutions to (8) for corresponding (y1 : y2) ∈ P

1
R
, with their multiplicity in (8). Hence,

one can find for every λ ∈ R three points on CV ∗ with the normal vector (λ, 1). Moreover, each
one lies on its own colored or black part of the contour (see Fig. 1).

Fig. 1. The contour and the amoeba (shaded) for the polynomial f = z2
1z2 + z1z

2
2 − z1z2 + a: on

the left a < 0, in the middle 0 < a < 1/27,on the right a > 1/27

On the left Fig. 1 six black points on CV ∗ are images of pleat singularities of the mapping
Log|V ∗ ; they correspond to values λi that belong to the real ramification locus of γf .

Although for a > 0 the real ramification locus of γf is empty, we can distinguish two situations.
If 0 < a < 1/27 the hypersurface V ∗(f) is a complexification of the so-called Harnack curve and
the complement of its amoeba has the maximal number of components. In this case Log|V ∗ has
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only fold singularities, which coincide with V ∗(f) ∩ R
2. For a > 1/27 the complement of the

amoeba AV ∗ has no bounded, component and the mapping Log|V ∗ has three pleat singularities;
other singularities are folds.

Therefore, for a > 0 γf -fiber of any rational λ contains only the Morse critical points of the
phase function. For example, set the parameter a = 3/100 then the γf -fiber of λ = 1/3 consists
of the Morse points (3/10, 1/2), (7/40+

√
57/40, 9/8−

√
57/8) and (7/40−

√
57/40, 9/8+

√
57/8).

For a < 0 we can get degenerated rational points in a real ramification locus, e.g. there are six
rational points −2,−1/2, 2/3, 3/2, 1/3, 3 in the real ramification locus of γf , a = −9/10. The
γf -fiber of such points has a simple point and an A2-point of the phase function.

Example 2. We consider the polynomial f in n = 3 variables, which is non-degenerated for its
Newton polyhedron;

f = 1 + z1 + z2 + z3 + 3z1z2 + 3z1z3 + 3z2z3 + 11z1z2z3.

As in Example 1 the real ramification locus of γf is determined by the following system























1 + z1 + z2 + z3 + 3z1z2 + 3z1z3 + 3z2z3 + 11z1z2z3 = 0,
y3z1 − y1z3 + 3y3z1z2 + (3y3 − 3y1)z1z3 − 3y1z2z3

+(11y3 − 11y1)z1z2z3 = 0,
y3z2 − y2z3 + 3y3z1z2 − 3y2z1z3 + (−3y2 + 3y3)z2z3

+(11y3 − 11y2)z1z2z3 = 0.

(9)

With similar computations we obtain the discriminant D(y) of the logarithmic Gauss map:

D(y) := y4
1 · (y2 − y3)

2 · (4y1 + 5y2 + 5y3)
2 · d(y), (10)

where d(y) is a homogeneous polynomial of degree 12, it consists of 91 terms. Its Newton’s
polyhedron is a triangle with vertices (12, 0, 0), (0, 12, 0) and (0, 0, 12).

We do not consider zeroes of the first three factors in (10) because they do not give us
multiple roots of (9) in the torus. The ramification locus of γf is given by zero set of d(y). Let
λ1 = y1/y3, λ2 = y2/y3 be coordinates in affine part of P

2
R
, where y3 6= 1. Fig. 2 depicts the zero

set of d(λ1, λ2, 1) = d(y)/y12
3 , which coincides with the affine part of the real ramification locus

of γf .

Fig. 2. The real ramification locus of γf

The red points (1/9, 1/9), (1/3, 1/3), (1, 3), (3, 1), (1, 9), (9, 1) on Fig. 2 are degenerated
rational critical points of the discriminant with Milnor number µ = 2. This example of the
polynomial f is a special one because the existence of rational degenerated points in a real
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ramification locus is not a generic property. We are interested in such points because they lead
to degenerated critical points of a phase function. In this example the γf -fiber of any A2-point
contains excatly one A3-critical point of the phase function (see Appendix for details).

Appendix. Computation with Singular (Some Experiences)
The computer algebra system Singular, cf. [2], was used for the computation of examples.
We tried several strategies for computing the discriminant of the Log-Gauss map with different
success, i.e. to get a result for non-trivial examples without overflow and in reasonable time.
Here we give a small introduction how proceed in Singular, demonstrated with the equation of
Example 2.

Start with a base ring that contains the ideal I of the graph of the log Gauss map γf of a
polynomial f = f(z) and compute I, (here n = 3):

ring R=0,(y1,y2,y3,z1,z2,z3),dp;

poly f=1+z1+z2+z3+3*z1*z2 +3*z1*z3+3*z2*z3+11*z1*z2*z3;

matrix A[2][3] = z1*diff(f,z1),z2*diff(f,z2),z3*diff(f,z3),y1,y2,y3;

ideal I = f,minor(A,2);

Next we project the graph restricted to some affine chart U3 := {y3 6= 0} into A
3 := U3 ×A

1

(A1
1 — a coordinate axes of A

3
z). The image is a hypersurface defined by the next polynomial

h(y1, y2, z1), which we could closure in P
2
y by homogenizing in the y′s. Using the elimination of

variable, the multiplicities of multiple factors may be lost, but it does not effect the result.

I = subst(I,y3,1); ideal J = eliminate(I,z2*z3);

poly h1 = J[1];

The choice of the projection direction was good, if degz1(h1) = n! · Vol(N ) = 6. The
discriminant variety of γf is contained in the discriminant hypersurface of the projection V (h1) ⊂
U3 × A

1
1 −→ U3, computed in the next step.

poly d1 = resultant(h1,diff(h1,z1),z1);

d1 = homog(d1,y3);

list Ld = factorize(d1);

The plane curve V (d1) ⊂ P
2 has several components, it may have components with certain

multiplicities, some of them induced from the closure V ∗(f) or not belonging to the discriminant.
If our polynomial is generic, then we expect the discriminant of γf (i.e. restricted to the torus)
being irreducible. We should test which factor is correct. Some components of V (d1) have
empty fiber with respect to γf or no multiple points in its γf -fibers. We can reduce sometimes
the number of factor as follows: Compute for any coordinate zi (as above for i = 1) polynomials
hi and di and factorize only d := gcd(d1, . . . , dn).

Having found the equation of the discriminant polynomial d0(y), we can compute its (discrete)
singular locus.

poly d0 = Ld[1][2]; (choose the right factor in this example)
d0 = subst(d0,y3,1);

ring S = 0,(y1,y2,y3),dp;

poly d0 = imap(R,d0);

ideal sl = slocus(d0);

list Lsl = primdecGTZ(sl);
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Here, the singular locus has six rational double points Q1 = (1, 3), Q2 = (1
9 , 1

9 ), Q3 = (1, 9),
Q4 = (1

3 , 1
3 ), Q5 = (9, 1), Q6 = (3, 1) and more irrational singular points. We choose Q1 and

check, that it is an A2-singularity of D.

show(Lsl[2]); (choose one of the singular points of D)
ring S’ = 0,(y1,y2),ds;

poly d0 = imap(R,d0);

d0 = subst(d0,y1,y1+1); (translate that singularity to zero)
d0 = subst(d0,y2,y2+3);

"mu =",milnor(d0); (Milnor number of the singularity)

Compute the γf -fiber of Q1. It has 3 simple points and exactly one point P∗ = (−1,− 1
3 ,−1)

of multiplicity 3, being an A3-point of the phase function.

setring R;

I = subst(I,y1,1); I = subst(I,y2,3);

ring R0 = 0,(z1,z2,z3),dp;

ideal I = imap(R,I);

list Lfib = primdecGTZ(i); (list contains the points of the fiber).
option(redSB);

show(std(Lfib[1][2]));

"mult =",vdim(std(Lfib[1][1]));

Similar computations lead to similar results at the other 5 rational singularities of the discrimi-
nant.

Authors are supported by the research school ’Hybrid Systems’ of BTU Cottbus.
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Дискриминант и особенности логарифмического
отображения Гаусса, примеры и приложение

Бернд Мартин

Дмитрий Ю. Почекутов

Изучение гиперповерхностей, заданных в торе, приводит к прекрасному зоопарку амеб и их кон-

туров, возможные конфигурации которых читаются из комбинаторных данных. Существует

глубокая связь между теорией амеб и логарифмическим отображением Гаусса, а также его кри-

тическими точками, изучение которых находит приложения в различных областях.

В статье мы напоминаем основные понятия и результаты из теории амеб, раскрываем неко-

торые ее связи с алгебраической теорией сингулярностей. Более того, мы приводим вычисле-

ния критических точек логарифмического отображения Гаусса в системе компьютерной алгебры

SINGULAR, а также обсуждаем различные варианты и их эффективность. Здесь мы приходим

к существенному наблюдению: содержательные примеры требуют наличия вещественных или

даже рациональных решений соответствующей системы алгебраических уравнений.

Ключевые слова: логарифмическое отображение Гаусса, особенности, дискриминант, амеба ги-

перповерхности, асимптотика.
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