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A B S T R A C T 

This study aimed to perform a screening for economic interrelationships among market participants 
from the stock market, global stock indices, and commodities from fossil energy, agricultural, and the 

metals sector. Particular focus was put on the comovements of the light crude oil benchmarks West 
Texas Intermediate (WTI) and Brent crude oil. In finance research and the crude oil markets, 

identifying novel groupings and interactions is a fundamental requirement due to the extended impact 
of crude oil price fluctuations on economic growth and inflation. Thus, it is of high interest for investors 

to identify market players and interactions that appear sensitive to crude oil price volatility triggers. 
The price development of 14 stocks, 25 leading global indices, and 13 commodity prices, including 

WTI and Brent, were analyzed via data mining applying the hierarchical correlation cluster mapping 
technique. All price data comprised the period from January 2012 – December 2018 and were based 

on daily returns. The technique identifies and visualizes existing hierarchical clusters and correlation 
patterns emphasizing comovements that indicate positively correlated processes. The method 

successfully identified clustering patterns and a series of relevant and partly unexpected novel 
comovements in all investigated economic sectors. Although additional research is required to reveal 

the causative factors, the study offers an insight into in-depth market interrelationships.  

© 2020 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/).    

 

 

Introduction 

The generation and availability of reliable prediction models highly depend on finding relevant key players that impact crude oil 

prices. The search for correlation patterns in various economic fields is a first step and prepares the ground to investigate the 

underlying factors for these correlations. Methods for clustering and visualization analysis are supposed to be an important tool to 

shed light on the relationships between different market factors. It is assumed that market participants being highly correlated with 

crude oil price movements may also be vulnerable to high crude oil price fluctuations and volatility peaks. The crude oil comovers 

would then participate in these fluctuations during highly volatile oil price episodes. Special focus was put on the correlation partners 

of the light crude oil benchmarks WTI and Brent. Both hold a particular position in the global market since they show a signaling 

effect on investors and traders.  

The study searches for crude oil price return comovements in the global markets and aims to reveal hidden groupings and correlations. 

It needs to be emphasized that comovements only indicate positively correlated price movements (Barberis et al., 2005). The 

comovers are important guideposts in the search for novel economic interactions. The research was conducted among 14 stocks of 

oil companies, 25 leading global indices, and 13 commodities from the energy, agricultural, and metals sector, applying the 

hierarchical correlation cluster mapping technique.  

The agglomerative clustering method uses a variation of Ward's algorithm to identify the clusters and correlation patterns. All price 

data comprised the period from January 2012 – December 2018 and were based on daily returns. The technique can be applied as a 

first step screening tool for correlation partners placed within an expandable data mining approach that aims to predict price 

developments as the final target. Clustering techniques are well established and explored in data science and can be used for various 

applications in all research fields, including finance. Different approaches emerged to extract the naturally existing groups of related 

data objects. The variety of clustering algorithms follow the two basic approaches of agglomerative and divisive clustering. 

Agglomerative clustering represents the bottom-up approach, which is realized in Ward's method used for this project. Each data 
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point starts with its own single cluster, which is then merged with similar data points on the next iterative level. By contrast, divisive 

clustering represents the top-down approach, which is used from the k-means algorithm dividing one cluster into two different 

clusters, and so on (Kilitcioglu, 2018; Pierson, 2015). Depending on the objective of a project, different algorithms can be beneficial. 

Techniques and tools to reveal natural groupings and clusters between data points are required in many fields. In finance research 

and the crude oil markets, identifying novel groupings and interactions is a fundamental requirement. Knowing the interaction points 

facilitates decision-making processes and supports the prediction of market behavior and price development. The method successfully 

identified clustering patterns and a series of relevant and partly unexpected novel comovements in all investigated economic sectors. 

Although additional research is required to investigate the causative factors, the study offers an insight into in-depth market 

interrelationships. 

This research is structured as follows: the introduction in the first section presents an overview of the method and outlines the study's 

objective. The literature review provides related work referring to the crude oil market and the application of hierarchical correlation 

clustering to characterize current developments in both fields. It is followed by the research and methodology, characterizing the 

implemented method and algorithm and providing information about the data preprocessing steps. The publication is completed by 

the results and discussion section, presenting the visualized cluster mapping results. The project's outcome is summarized in the 

concluding section, reflecting current and possible future implementations of the screening. Areas for future investigations are 

mentioned. All tables are provided in the appendix to facilitate the reading flow. Acronyms and abbreviations are indicated in the 

appendix. 

Literature Review 

High levels of oil price fluctuations and spontaneous price movements are inseparably associated with increasing inflation and 

unstable economic growth, which can cause adverse effects on oil-importing and oil-exporting countries (Zhang et al., 2007; Kilian 

& Vega, 2011). The relationships between the crude oil market and a wide range of other market participants correlating with oil 

price development are of great interest for investors for whom most recent events and information generally the most relevant are 

(Baumohl, 2013). Crude oil price development takes place in economic surroundings influenced by various key players, among 

which other commodities, oil companies, or leading global indices are supposed to show comovements with crude oil. Volatility is a 

basic characteristic of dynamic financial markets and is used for risk assessment in asset pricing (Xiao & Aydemir, 2007). However, 

high levels of volatility were described to increase inflation [Libo et al., 2011] and to inhibit economic growth (Ebrahim et al., 2014). 

A wide range of factors was reported to show an impact on crude oil prices (E.I.A., 2019), among which spontaneous global events 

and geopolitical developments are listed (Kilian, 2010). Scheduled macroeconomic news announcements were found to correlate 

with crude oil price volatility (Faseli & Zamani, 2016; Faseli, 2019; 2020).  

It was also demonstrated that high oil price fluctuations enhance uncertainty in commodity markets (Bakas & Triantafyllou, 2018; 

2019), and the effects of uncertainty shocks were analyzed by (Su et al., 2018). Authors have intensively studied clustering 

methodologies over the decades since the second half of the last century. Ward (1963) laid the foundation for hierarchical 

agglomerative clustering. A variation of the original algorithm implemented in the programming language Python was applied in this 

project. Sun et al. (1996) emphasize the complexity of economic forecasting methods and analyzed Chinese stock price data using 

competitive learning neural networks (CLNNs). CLNNs adopt supervised learning and provide a two-stage cascaded clustering 

procedure capable of revealing hierarchical clusters in the data samples. The clustering method was found to be easily controlled and 

communicated and thus useful for stock market analysts. A different approach to clustering scenarios was performed by Ye et al. 

(2011), who proposed a combined hybrid methodology of k-means clustering algorithm in a self-organizing map network for a novel 

stock trading rule. They used 5min intraday data of Hushen 300 Index over January 5, 2009, to April 15, 2010, 70% of data were 

used as a training sample and 30% as a test sample. The performance of the trading rule based on hybrid clustering was compared 

with classical trading techniques. They revealed intraday patterns that can be used to support investment decisions. Noise variables 

and outliers in data samples affect data analysis processes, especially for real-world data (Filzmoser et al., 2008).  Group structures 

can be masked by noise variables (Gordon, 1999; Becker & Gather, 1999), which should be removed. The selection of appropriate 

clustering parameters also plays an important role. Brodinová et al. (2019) proposed a k-means based clustering algorithm capable 

of grouping outlier and noise-containing data sets. The algorithm contains an automatic weighting function for each data point. Since 

k-means requires the pre-determination of cluster numbers, a framework for the pre-selection of cluster numbers was introduced. 

Research and Methodology 

This study's clustering method combines the benefits of hierarchical clustering, including branched dendrograms and visualized 

correlation patterns plotted as colored heat-maps. The data covered the observation period from January 2012 to December 2018, 

using daily returns. Clustering was performed using scipy.cluster.hierarchy.ward algorithm from programming language Python's 

SciKit library. Ward's method applies the Ward variance minimization algorithm, which is a variation of the original approach of 

Ward (1963). A range of variations was created of Ward's agglomerative clustering method using criteria for minimization and 

alternatively for maximization. Researchers modified the original method several times. (Murtagh & Legendre, 2014). 

Ward's algorithm (Python) - New entry d(u,v): 
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𝑑(𝑢, 𝑣) = √
|𝑣| + |𝑠|

𝑇
𝑑(𝑣, 𝑠)2 +

|𝑣| + |𝑡|

𝑇
𝑑(𝑣, 𝑡)2 −

|𝑣|

𝑇
𝑑(𝑠, 𝑡)2 

Let d(u,v) be the new entry, were the newly joined cluster u consists of the clusters s and t, v represents an unused cluster in the forest, 

T=|v|+|s|+|t|, |*| denotes the cardinality of its argument. It is also described as the incremental algorithm (SciPyCommunity, 2020).   

The clustering procedure commences with n clusters consisting of all single data points in the sample. These individual n clusters are 

merged by conducting iterative computational steps. Thus, the clusters are combined, whereby the output dendrogram height 

represents the distances between the clusters. The procedure finally combines all data points to a single cluster consisting of a varying 

number of sub-clusters. Each newly added cluster minimizes variance. At each step, the selection of a new cluster requires all possible 

combinations of clusters to be considered (Glen, 2018). Using seaborn.clustermap the matrix data set is plotted as a hierarchically 

clustered correlation heat-map. The cluster map visualizes the degree of correlation by using different colors and facilitates the 

intuitive understanding and interpretation of the results. Highly correlated areas are colored in light cream and orange, purple indicates 

low or close to zero correlation, and black fields denote minimal to no correlation. The correlation coefficients are indicated between 

-1 (negatively correlated items) and +1 (positively correlated items). Zero indicates no correlation. 

Result and Discussion  

Hierarchical correlation cluster mapping delivers results in the form of dendrograms indicating hierarchical clusters and cluster heat-

maps visualizing the outcome of correlation cluster analysis. Additionally, the correlation coefficient values are provided. The 

dendrograms' top or root represents the entire data set, which is then subdivided into several branches or levels that are usually 

unequally sized. Visualization of the correlation patterns using color gradations in a correlation heat-map provides easily 

understandable results.  

Energy Sector Stocks and Commodities (Figure 1): 

The energy sector correlation cluster map in Figure 1 comprises daily price returns of 14 oil company stocks and fossil energy futures 

returns (WTI, Brent, heating oil, and natural gas, see Figure 1). The dendrogram indicates one dominant cluster comprising two 

subclusters and natural gas as a separated position that is not assignable to the available subclusters. The highest correlation pattern 

within the heat-map is indicated between the fossil energy futures WTI, Brent, and heating oil. Interestingly, natural gas futures were 

not grouped with the other applied fossil energy futures.  

 

Figure 1: Correlation cluster map of daily energy, soft and hard commodity futures returns, observation period 2012-2018. 

Gas futures occupy a separated position outside the clusterings pattern showing a low correlation with the United States (US) oil 

company stocks RRC and SWN. Other relationships were identified among the daily stock futures returns of APC, EQNR (Norway), 

SLB (Netherlands), and XOM (US), as well as among the Russian oil company stocks Lukoil, Gazprom, and Rosneft. The closely 

related price development of ENI (Italy), TOTF (France), REP (Spain), and OMVV (Austria) is denoted on the right side of the heat-

map's bottom in decreasing order. 
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Energy, Soft and Hard Commodities (Figure 2) 

In Figure 2, daily futures price returns were applied. The commodities were chosen from the fossil energy sector (WTI, Brent, heating 

oil, and natural gas), soft commodity or agricultural sector (sugar, coffee, corn, wheat), and from the metals sector (copper, platinum, 

gold, and silver). The observation period covered January 2012 - December 2018. Two major correlation clusters were identified, 

comprising several subclusters: Again WTI, Brent, and heating oil share a subcluster and appear highly correlated. However, they 

show no relevant relationship with the price development of natural gas futures. These results appear consistent with Figure 1. 

Furthermore, the crude and heating oil group shows a higher correlation with metals than with natural gas. The daily futures returns 

for sugar, coffee, cotton, corn, and wheat fell into the second cluster on the left, indicating the most vital relationship between corn 

and wheat and between sugar and coffee futures. Generally, agricultural commodities' price development does not appear to be 

closely related to commodities from the metals and fossil energy sector - except for natural gas. 

 

Figure 2: Correlation cluster map of daily energy, soft and hard commodity futures returns, observation period 2012-2018. 

 

Figure 3: Correlation cluster map of global commodity futures from the fossil energy, agricultural and metals sector; daily returns 

over the period 2012-2018 were applied. 
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Global Indices and Fossil Energy Futures (Figure 3): 

Figure 3 shows the correlation cluster map for a selection of 25 leading global indices and the fossil energy futures WTI, Brent, and 

heating oil. The daily futures returns comprised the observation period 2012-2018. The indices and abbreviations are listed in the 

appendix. According to the dendrogram, four relevant subclusters appear: Firstly, the South-East Asian index group including India 

and Australia, secondly the North-American subcluster comprising the United States and Canada, thirdly the European and Eurozone 

cluster including the South African Index and a final fifth cluster comprising the fossil energy futures WTI, Brent and heating oil. 

Again the Natural Gas Futures stand separately and are not assignable to any subcluster. Interestingly, the stock indices of Turkey 

(BIST100), Israel (TA35), and Austria (ATX) were grouped in one subcluster, whereby ATX shows a moderate correlation with 

European and Eurozone stocks. 

Conclusion 

In this study, the hierarchical correlation cluster mapping technique was applied to search for interrelationships and comovements 

among commodities (fossil energy, agricultural, and metals sectors), stocks from the fossil energy sector, and a wide range of global 

indices. Daily futures returns were applied over the period 2012 to 2018. The method identified clusters and correlations among the 

market players. The clustering outcome was visualized in the form of dendrograms and a colored correlation heat-map. Both the 

hierarchically branched dendrogram and the color gradients of the heat-map allow an intuitive understanding of the results and 

facilitate the recognition of existing correlation patterns. Additionally, the Pearson correlation coefficients were indicated on the 

cluster map. The results widely appear to be logically grouped; however, they revealed some novel information. Stock indices of 

South Korea share a subcluster with Australian stocks. Both are grouped with the Japanese Indices to form a cluster on the next 

higher level. However, the highest correlation coefficient is found with the Heng Seng futures. Interestingly, the South-African index 

shares a subcluster with the European and Eurozone indices. Among the commodities, the relatively stand-alone positioning of natural 

gas became apparent, which indicates an entirely surprising result. As a separate branch, it is grouped with agricultural (soft) 

commodities. The soft and metals commodities occupy distinct clusters as expected. Among the fossil energy stocks and commodities 

(Figure 1), Brent oil returns development turns out to be more closely related to WTI and US oil company stocks. The revealed 

interactions awaken demand for further in-depth investigations. The technique gave an outlook, which additional factors could be 

taken into focus. The applied method provides state-of-the-art grouping and visualization tools and an accelerated screening 

opportunity. Correlation clustering can be a helpful tool in the screening process for relationships of oil in the markets allowing 

intuitive pattern recognition. Visualization techniques are capable of offering improved reporting performance. The hierarchical 

clusters and correlation patterns demonstrated extended market interactions. Indications exist that the highest correlation values do 

not always follow the lowest grouping level. They also occur among scores separated by high hierarchical levels. Different reasons 

may produce a high degree of similarity in the price development, e.g., closely related economic environments, spillover effects 

originating from different economic branches or macroeconomic news announcements. It would be supportive to combine the method 

with additional techniques, e.g., machine learning and autoregressive methods like ARMAX using exogenous variables, to examine 

the indicated historical correlations more profoundly and to reveal real-time interactions between the market players. 
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Appendix 

Figure 1 – Energy Sector: Crude Oil Stock Companies 

Anadarko Petroleum Corporation (APC) USA 

Exxon Mobil Corporation (XOM) USA 

Range Resources Corporation (RRC) USA 

Southwestern Energy Company (SWN) USA 

Valero Energy Corporation (VLO) USA 

Gazprom (GAZP) Russia 

NK Rosneft PAO (ROSN) Russia 

Lukoil (LKOH) Russia 

Oesterreichische Mineralöl Verwaltung AG (OMVV) Austria 

Total SA   (TOTF) France 

Ente Nazionale Idrocarburi   (ENI) Italy 

Equinor ASA ADR   (EQNR) Norway 

Schlumberger NV   (SLB) Netherlands 

Repsol   (REP) Spain 

 

Figure 3 – Global Stock Market Index Futures 

Asia:  

China A50 China 

China H Shares China  

Hang Seng Futures China  

Bank NIFTY India  

Nifty50 India  

Nikkei225 Japan  

TOPIX /Tokyo Stock Price Index Japan 

Singapore MSCI Singapore 

KOSPI200 /Korean Stock Price Ix South Korea 

TA35 Israel 

BIST100 (Borsa Istanbul) Turkey 

Australia:  

S&P ASX200 Australia 

Europe:  

ATX (Austrian Traded Index) Austria 

Euro Stoxx50 Eurozone 

CAC40 France 

FTSE100 / Financial Times Stock Exchange Index Great Britain 

DAX Germany 

TecDAX Germany 

AEX (Amsterdam Exchange Index) Netherlands 

OMXS30 Sweden 

Africa:  

FTSE JSE40 (Johannesburg Stock Exchange) South Africa 

North America:  

S&P TSX Composite (Toronto Stock Exchange) Canada 

Dow30 USA 

Nasdaq Futures USA 

S&P500 USA 

 


