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ABSTRACT 

A periodic network with uniform single metal active site, in coordination with redox-active organic 

ligands, is a promising class of materials for next generation single atom catalysts. Towards this 

quest, in this dissertation I have carried out first-principles density functional theory (DFT) based 

calculations of the geometrical and electronic structure and magnetic properties of several 

transition-metal-organic-chains (TM-C) both in gas phase as well as on Au(111) surface. Of 

particular interest are dipyridyltetrazine (DT),  Bis-pyrimidine (BP), and 1,10-phenanthroline5,6-

dione, (PDO) ligands used to design the TM-C with several single TM atoms as the coordination 

center.  I have screened several TM atoms to get their coordination geometry (stable structure ) as 

well as analyzing their chemical activity through adsorption of small molecules on the TM center. 

Our results suggest that TM atoms with partially occupied d-orbitals exhibit strong affinity, while 

the TM atoms with fully occupied d-orbitals show weak affinity to the CO and O2 molecule. We 

also investigate the effect of support (Au(111)) on geometry and charge state in case of V-BP and 

V-PDO systems, and found that the support not only alters the local coordination of TM-Cs, but 

also has significant charge transfer from TM-C to Au(111).   

The tetrazine-based ligand, DT is only able to undergo a two-electron reduction, which limits the 

complexation to one metal per ligand. We studied the complexation of tetraethyltetraaza- 

anthraquinone (TAAQ) with elemental Fe, leading to complex metal–organic chains. We utilized 

the multiple binding pockets of TAAQ and achieve higher metal:ligand (M:L) ratios. Our results 

of various Fe:TAAQ ratio, suggests that thermodynamically one cannot create FeTAAQ species 

with higher than 2:1 M:L ratio. 
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The second part of this dissertation deals with electronic structure and excitation spectrum of 

hydrogenated single layer and clean bilayer MoS2. We calculate the excitation spectrum of single-

layer MoS2 at several hydrogen coverages by using Density-Matrix Time-Dependent Density-

Functional Theory (TDDFT). Binding energies of the excitons of the hydrogenated MoS2 are 

relatively large (few tens of meV), making their experimental detection facile and suggesting 

hydrogenation as a knob for tuning the optical properties of single-layer MoS2. To examine 

ultrafast charge dynamics in bilayer MoS2, we applied DFT+Liouville equation approach and 

found that in conjunction with electron-phonon interaction ultrafast charge dynamics  has a strong 

effect on the calculated emission spectrum. Our results  reveal the importance of ultrafast charge 

dynamics in understanding photoemissive properties of a few-layer transition-metal 

dichalcogenide. 
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CHAPTER 1:  INTRODUCTION 

Supported transition metal (TM)  nanoparticles are the most widely used as a heterogeneous 

catalyst in industrial reactions due to their high dispersion, large concentration of highly 

undercoordinated surface sites, and metal–support interaction that often greatly alters their 

catalysis[1-4]. The size of TM nanoparticles is a key factor in determining the efficiency of such 

catalysts. Because under-coordinated TM atoms often function as the catalytically active sites, 

therefore the specific activity per TM atom usually increases with decreasing size of the TM 

particles. However, the surface free energy of TM significantly increases with decrease in the 

particle size. This increase in surface free energy may cause aggregation of TM atoms into small 

clusters. One way to stabilize and avoid the TM species from  aggregation is by using an 

appropriate support material that strongly interacts with the metal species. Such a strong metal-

support interaction helps in forming and maintaining  finely dispersed metal clusters with a high 

catalytic activity, an approach industry has used for a long time. Nevertheless, in practical 

supported metal catalysts the size and morphology  of adsorbed metal particles is inhomogeneous, 

usually consisting of a mixture of sizes from nanoparticles to sub-nanometer clusters. These 

nanoparticles possess broad distribution of undercoordinated metal sites. This heterogeneity 

reduces the  activity and  selectivity of the supported catalyst by hindering the control of active 

sites of interest. 

The ultimate small-size limit for metal particles is the single-atom catalyst (SAC), which consists 

of isolated metal atoms singly dispersed on the support. SACs maximize the efficiency of metal 

atom use: That is particularly important for supported noble metal catalysts. Moreover, with well-



    

2 

 

defined and uniform single-atom dispersion, SACs offer great potential for achieving high activity 

and selectivity [5].  

The goal of this thesis is to investigate the geometrical structure, electronic structure, charge state 

of metal organic chains, and probe the chemical activity of single TM atoms in coordination with 

various organic ligands of different reducing capability. The design of well dispersed metal organic 

chains with single metal  active site, can thus be used as catalyst for energy needs. A variety of 

problems are addressed in this dissertation. Together they invite us to examine  electronic structure, 

magnetic ground state, vibrational spectrum, optical and excited states of a range of materials from 

one-dimensional transition-metal-organic chains to two-dimensional transition-metal 

dichalcogenide. The choice of systems investigated in this study is motivated by available 

experimental data, whose rationalization is one of the goals of the research. The results of this 

work are obtained by means of state-of-the-art computational approaches based on density 

functional theory (DFT) and time-dependent density functional theory(TDDFT). The organization 

of the rest of the dissertation is follows: 

Chapter 2 introduces the set of theoretical methods employed in the present work to disclose 

certain qualities characteristic of electronic properties of involved metal organic chains and 2D 

MoS2, the chapter discusses the DFT and TDDFT methods for optimizing  structure and 

calculating of formation energies, adsorption energies, electronic structure, excited states, and 

related properties. 

Chapter 3 describes an ab-initio study of the screening of geometry of transition metal-organic 

chains (TM-C) in forming a stable planar chain structure, of their electronic structure, and of the 
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propensity for adsorption of small molecules on metal site of TM-C, using density functional 

theory with the inclusion of van der Waals interactions. By using organic ligand di-pyridyl-

tetrazine (DT), the screening study helps identify the candidate TM-DT on the  basis of relative 

stability as well as propensity for incoming gas molecules to interact with TM centers.  

Chapter 4   investigates the structure and chemical properties of non-planar metal-organic chains. 

The  investigation (still ongoing) is based on the quest to discover how the chemistry of metal 

center may be tuned by different organic ligands. By using Bis-Pyrimidine (BP) as a ligand we are 

able to compare the reducing capacity of ligand BP with  DT as well as change in oxidation state 

of TM center (see chapter 3). We also examined the effect of Au(111) support on the geometry 

and chemical state of M-BP chains. 

Chapter 5  presents the results of our  DFT calculations concerning phenanthroline dioxide (M-

PDO), both in gas phase and on Au(111). It  reveals chains with planar MO2N2 coordination 

environment. We computed the charge state of metal centers and PDO in M-PDO formation and 

study the effect of Au(111) support on charge state as well as structure of M-PDO chains (with 

M=Vanadium).  
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Figure 1.1: Schematic representation of metal organic complexation making a  linear chain, in gas 

phase as well as on Au(111) support. The charge density difference cartoon shows the charge 

redistribution in TM-C on Au(111) support. 

Chapter 6 We have shown the complexation between TAAQ ligand and iron. TAAQ functions as 

a redox-active ligand to form complex metal–organic structures. The TAAQ ligand is designed for 

greater reductive capacity and more metal binding pockets than do those taht are usually employed 

in metal–organic coordination networks. We also present the vibrational characteristics of TAAQ 

molecule and molecular network on Au(111) support and compared the results with experimental 

findings. 

Chapter 7 deals with the excited states and exciton formation in hydrogenated MoS2. We calculate 

the excitation spectrum of single-layer MoS2 at several hydrogen coverages by using first-

principles Density-Matrix Time-Dependent Density-Functional Theory (TDDFT).  
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In chapter 8 we discuss the ground state electronic structure and examine ultrafast charge dynamics 

in bilayer MoS2, by applying density functional theory + Liouville equation approach.  We found 

that in conjunction with electron-phonon interaction the ultrafast charge dynamics has a strong 

effect on the calculated emission spectrum. Our results thus reveal the importance of ultrafast 

charge dynamics in understanding photoemissive properties of a few-layer transition-metal 

dichalcogenide. The conclusion derived from the thesis is presented in chapter 9.  
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CHAPTER 2:  THEORETICAL METHODS 

2.1  Many-Body Equation 

The many-body Hamiltonian describing a system of interaction electrons and nuclei reads 

𝐻 =  𝑇̂𝑒 + 𝑇̂𝑛 + 𝑉̂𝑒−𝑒 +  𝑉̂𝑛−𝑛 + 𝑉̂𝑒−𝑛   ( 2.1 ) 

Where 𝑇̂𝑒 is the kinetic energy operators for the electrons in the system,  𝑇̂𝑛 is the kinetic energy 

operator for each nucleus in the system, 𝑉̂𝑒−𝑒 is the potential energy  arising from electron-

electron interaction, 𝑉̂𝑛−𝑛 is the potential energy arising from nuclei-nuclei interaction also 

known as nuclear repulsion energy, 𝑉̂𝑒−𝑛 is the potential energy between electrons and nuclei in 

the system. 

𝐻 =  ∑ −
ħ2

2𝑚𝑒
∇𝑖

2
𝑖 − ∑

ħ2

2𝑀𝐼
∇𝐼

2 + 𝑖  ∑
𝑒2

2|𝑟𝑖−𝑟𝑗 |
+𝑖≠𝑗 ∑

𝑍𝐼𝑍𝐽𝑒2

2|𝑅𝐼−𝑅𝐽 |
−𝐼≠𝐽 ∑

𝑍𝐼𝑒2

2|𝑟𝑖−𝑅𝐼 |𝑖,𝐼     ( 2.2 ) 

Which represents a sum of kinetic energy terms 𝑇̂as well as electrostatic Coulomb interactions 𝑉̂. 

In equation 2.2, 𝑟𝑖 represents coordinates of the i’th  electron (with mass 𝑚𝑒and charge -e), and 𝑅𝐼 

are the coordinated of I’th nucleus (with mass 𝑀𝐼and charge 𝑍𝐼e). The properties of the interacting 

system are now in principle derivable from the time-independent Schrödinger equation. 

𝐻̂Ψ𝑖(𝑟, 𝑅) =  𝐸𝑖Ψ𝑖(𝑟, 𝑅)   ( 2.3 ) 

where 𝐸𝑖 is energy of the quantum mechanical state  Ψ𝑖(𝑟, 𝑅). Here r and R  are the full set of 

electronic and nuclear coordinated, respectively.  If we have a system of 𝑁 nuclei and 𝑛 electrons, 

there will be totally 3𝑛 + 3𝑁 variables to describe the whole system.  It is extremely challenging 

to obtain the full wave function of a system, thus necessary to apply  approximations , for example, 

neglecting the kinetic energy of the nuclei (second term of equation 2.2) and the electrostatic 
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nucleus-nucleus repulsion (the fourth term of equation 2.2), since electrons move much faster than 

nuclei. This idea was an approximation introduced by Born and Oppenheimer in 1927 [6] 

2.2 Thomas-Fermi Model 

In 1920s Thomas and Fermi realized that statistical considerations should be considered to 

approximate the distribution of electrons in an atom. The Thomas model (1927) stated that 

“Electrons are distributed uniformly in the six-dimensional phase space for the motion of an 

electron at the rate of two for each h3 of volume,” and that there is an effective potential field that 

“is itself determined by the nuclear charge and this distribution of electrons” [7,8].  Assume that 

the space was divided into many small boxes (cells) with the same side length of 𝑙, and volume 

∆𝑉 =  𝑙3, each containing fixed number of electrons ∆N. Assume that the electrons in each cell 

behave like independent fermions at 0 K, and the cells are independent to each other. The energy 

levels of a particle in a three-dimensional infinite well are given by the formula 

  𝜀(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =
ℎ2

8𝑚𝑙2 (𝑛𝑥
2, 𝑛𝑦

2 , 𝑛𝑧
2)       ( 2.4 ) 

where 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 = 1,2,3. For higher quantum numbers the number of distinct energy levels with 

energy smaller than  𝜀 can be approximated by 1/8th part of a sphere with radius R in the space 

(𝑛𝑥 , 𝑛𝑦, 𝑛𝑧). This number is  the number of energy levels between 𝜀 and 𝜀 + 𝛿𝜀 is accordingly  

 Φ(𝜀) =  
𝜋

6
(

8𝑚𝑙2𝜀

ℎ2 )
3

2⁄

   ( 2.5 ) 

𝑔(𝜀)∆𝜀 = φ(𝜀 + 𝛿𝜀) −  𝜑(𝜀) 

               =
𝜋

4
(

8𝑚𝑙2

ℎ2 )
3

2⁄

𝜀
1

2⁄ 𝛿𝜀 + 𝑂((𝛿𝜀)2)  ( 2.6 ) 
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where the function  𝑔(𝜀) is the density of state at energy 𝜀.  In order to compute the total energy 

for the cell with ∆N electrons, we need the probability for the state with energy 𝜀, to be occupied 

which we call 𝑓(𝜀). This is the Fermi-Dirac distribution. 

  𝑓(𝜀) =  
1

1+𝑒𝛽(𝜀−𝜇)
    ( 2.7 ) 

which at 0K reduces to a step function: 

𝑓(𝜀)  = 1,      𝜀 <  𝜀𝐹 

           = 0,      𝜀 >  𝜀𝐹   as  𝛽 →∝ ( 2.8 ) 

where  𝜀𝐹 is so-called Fermi energy. All the states are with energy smaller than 𝜀𝐹 are occupied 

and those with energy greater than 𝜀𝐹 are empty. We can find the total energy of electrons in this 

cell by summing the contributions from different energy states. 

Δ𝐸 = 2 ∫ 𝜀𝑓(𝜀)𝑔(𝜀)𝑑𝜀      

       = 4𝜋 (
2𝑚

ℎ2
)

3
2

𝑙3 ∫ 𝜀
3

2⁄ 𝑑𝜀

𝜀𝐹

0

 

       =
8𝜋

5
(

2𝑚

ℎ2 )
3

2⁄

𝑙3𝜀𝐹

5
2⁄

    ( 2.9 ) 

where the factor 2 appears because each energy level is doubly occupied, by one electron with 

spin α and another with spin β. The Fermi energy  𝜀𝐹 is related to the number of electrons ∆N in 

the cell, through the formula  

 Δ𝑁 = 2 ∫ 𝑓(𝜀)𝑔(𝜀)𝑑𝜀 
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         =
8𝜋

5
(

2𝑚

ℎ2
)

3
2⁄

𝑙3𝜀𝐹

3
2⁄

    ( 2.10 ) 

Eliminating 𝜀𝐹 from equations 2.9 and 2.10 we obtain  

Δ𝐸 =
3

5
Δ𝑁𝜀𝐹 

     =
3ℎ2

10𝑚
(

3

8𝜋
)

2
3⁄

𝑙3 (
Δ𝑁

𝑙3 )
5

3⁄
 ( 2.11 ) 

This equation 2.11 is the relation between total kinetic energy and the electron density 

 𝜌 = Δ𝑁
𝑙3⁄ =  Δ𝑁

ΔV⁄ . The total kinetic energy can be found by adding the contributions from 

all cells.  

  𝑇𝑇𝐹[𝜌] = 𝐶𝐹 ∫ 𝜌
5

3⁄ (𝑟)𝑑𝑟 ( 2.12 ) 

where the limit Δ𝑉 → 0, with 𝜌 = Δ𝑁
𝑙3⁄ =  Δ𝑁

ΔV⁄ = 𝜌(𝑟) finite has been taken to do 

integration instead of summation. This is the famous Thomas-Fermi kinetic energy functional. 

The energy formula for an atom in terms of  electron density alone can be written as  

 𝐸𝑇𝐹[𝜌(𝑟)] = 𝐶𝐹 ∫ 𝜌
5

3⁄ (𝑟)𝑑𝑟 − 𝑍𝐶𝐹 ∫
𝜌(𝑟)

𝑟
𝑑𝑟 +  

1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

|𝑟1−𝑟2|
𝑑𝑟1𝑑𝑟2 ( 2.13 ) 

This is the energy functional of Thomas-Fermi theory of atoms. We assume that the ground state 

of an atom can be achieved by minimizing the energy functional using electron density with a 

constraint.  

  𝑁 = 𝑁[𝜌(𝑟)] = ∫ 𝜌(𝑟)𝑑𝑟 ( 2.14 ) 
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where N is the total number of electrons in the atom. This constraint can be incorporated using 

Lagrange multiplier method. The ground-state electron density must satisfy the variational 

principle. 

 𝛿{𝐸𝑇𝐹[𝜌] − 𝜇𝑇𝐹(∫ 𝜌(𝑟)𝑑𝑟 − 𝑁)} = 0 ( 2.15 ) 

 which yields the Euler-Lagrange equation. 

  𝜇𝑇𝐹 =  
𝛿𝐸𝑇𝐹[𝜌]

𝛿𝜌(𝑟)
=  

5

3
𝐶𝐹𝜌

2
3⁄ (𝑟) − 𝜑(𝑟)  ( 2.16 ) 

where  

  𝜑(𝑟) =
𝑍

𝑟
− ∫

𝜌(𝑟2)

|𝑟−𝑟2|
𝑑𝑟2 ( 2.17 ) 

Thomas-Fermi model was model which cannot predict the molecular binding energy and also 

accuracy for atoms is not great as compared to other methods, so Thomas Fermi was considered 

to be an oversimplified model of not much importance for quantitative predictions in atomic, 

molecular and solid-state physics. However the landmark paper by Hohenberg and Kohn in 1964 

[9] provided a fundamental mathematical theorems showing that the Thomas Fermi model may be 

treated as an approximation to an exact theory, the density functional theory for ground states.  

2.3 The Hohenberg-Kohn Theorems 

The first Hohenberg-Kohn Theorem states that “ the external potential 𝑣(𝑟) is determined, within 

a trivial additive constant, by the electron density 𝜌(𝑟).  To prove this theorem consider the 

nondegenerate ground state of a system with N-electrons with electron density 𝜌(𝑟). Assume if 

there were two external potentials 𝑣 and 𝑣′ differing by more than a constant, each giving same 𝜌 

for its ground state, we would have two Hamiltonians 𝐻 and 𝐻′. The ground state densities would 
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be same and the normalized wave functions Ψ and Ψ′ would be different. Let us take Ψ′ as trial 

wavefunction for the 𝐻̂,  

𝐸0 <  〈Ψ′|𝐻̂|Ψ′〉 =  〈Ψ′|𝐻̂′|Ψ′〉 +  〈Ψ′|𝐻̂ − 𝐻̂′|Ψ′〉  

                                = 𝐸0
′ + ∫ 𝜌(𝑟)[𝑣(𝑟) − 𝑣′(𝑟)] 𝑑𝑟 ( 2.18 ) 

where 𝐸0 and 𝐸0
′  are ground-state energies of 𝐻̂ and 𝐻̂′, respectively. Similarly take  Ψ as a trial 

wavefunction for the 𝐻̂′ problem.  

𝐸0
′ <  〈Ψ|𝐻̂′|Ψ〉 =  〈Ψ|𝐻̂|Ψ〉 +  〈Ψ|𝐻̂′ − 𝐻̂|Ψ〉 

                               = 𝐸0 + ∫ 𝜌(𝑟)[𝑣(𝑟) − 𝑣′(𝑟)] 𝑑𝑟 ( 2.19 ) 

Adding equation 2.18 and 2.19  

𝐸0 +  𝐸0
′ <   𝐸0 + 𝐸0

′  ( 2.20 ) 

is a contradiction, so there cannot be two different 𝑣 that give same 𝜌 for their ground states. 

Thus, the electron density determines N and 𝑣 and all related properties of ground-state, e.g. 

kinetic energy T[𝜌], potential energy V[𝜌] and total energy E[𝜌]. We can write equation 2.13 to 

show explicit 𝑣 dependence. 

 𝐸𝑣[𝜌] = 𝑇[𝜌] + 𝑉𝑛𝑒[𝜌] +  𝑉𝑒𝑒[𝜌] ( 2.21 ) 

             = ∫ 𝜌(𝑟)𝑣(𝑟)𝑑𝑟 + 𝐹𝐻𝐾[𝜌] 

where  

 𝐹𝐻𝐾 = 𝑇[𝜌] + 𝑉𝑒𝑒[𝜌]  ( 2.22 ) 
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The second Hohenberg-Kohn theorem provides the energy variational principle. It reads: for a 

trial density 𝜌 ̃(𝑟), such that 𝜌 ̃(𝑟) > 0 and ∫ 𝜌 ̃(𝑟) 𝑑𝑟 = 𝑁,  

𝐸0 ≤ 𝐸𝑣[𝜌̃] ( 2.23 ) 

where 𝐸𝑣[𝜌̃] is energy functional. To prove this theorem, we know according to HK first theorem 

that 𝜌̃ determines its own  𝑣̃. Thus 

 〈Ψ|𝐻̂|Ψ〉 = ∫  𝜌̃ (𝑟)𝑣(𝑟)𝑑𝑟 +  𝐹𝐻𝐾[ 𝜌̃] =  𝐸𝑣[𝜌̃] ≥ 𝐸𝑣[𝜌] ( 2.24 ) 

Assuming the differentiability of 𝐸𝑣[𝜌] the variational principle requires that the ground-state 

density satisfy the stationary principle. 

 𝛿{𝐸𝑣[𝜌] − 𝜇(∫ 𝜌(𝑟)𝑑𝑟 − 𝑁)} = 0 ( 2.25 ) 

which is Euler-Lagrange equation 

 𝜇 =
𝛿𝐸𝑣[𝜌]

𝛿𝜌(𝑟)
= 𝑣(𝑟) +  

𝛿𝐹𝐻𝐾[𝜌]

𝛿𝜌(𝑟)
 ( 2.26 ) 

where 𝜇 is chemical potential. If we know 𝐹𝐻𝐾[𝜌] equation 2.25 would be an exact equation for 

ground-state 𝜌. 𝐹𝐻𝐾[𝜌] is universal functional of 𝜌(𝑟). If we have an explicit form of 𝐹𝐻𝐾[𝜌] we 

can apply this method to any system.  

2.4  Kohn-Sham Equations 

The energy functional 𝐸[𝜌(𝑟)] is, in principle, only dependent on 3-spatial variables of the density 

𝜌(𝑟) and much simpler than the minimization of 〈Ψ′|𝐻̂|Ψ′〉 including 3n-dimensional variables 

of trial function Ψ′. However, the real difficulty is the evaluation of functional 𝐸[𝜌(𝑟)]; neither its 

explicit functional form is known nor is there a systematic procedure for finding such functional 
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dependence on 𝜌(𝑟) . Indeed, the definition of  𝐹𝐻𝐾[𝜌] requires the minimization of 3n-

dimensional trial wave functions. The key realization was made by Kohn-Sham in 1965[10]  with 

the emergence or “invention” of the Kohn-Sham(KS) fictitious  noninteracting system. More 

precisely, constructing a fictitious system of non-interacting electrons that have the same ground-

state density as the true system of interacting electrons. To understand the importance of this 

simplification, we will start by writing  

 {−
1

2
∇2 +  𝑉𝑠(𝑟)} 𝜑𝑗(𝑟)⃗⃗⃗⃗  =  𝜖𝑗𝜑𝑗(𝑟)⃗⃗⃗⃗  ( 2.27 ) 

𝑉𝑠(𝑟) is the potential of single particle, and 𝜑𝑗(𝑟)⃗⃗⃗⃗  is the single-occupied wavefunction of the 

fictitious particles. In the case of a non-interacting system of n electrons, we can construct the 

wave function from the single electron wave function 𝜑𝑗(𝑟)⃗⃗⃗⃗  (𝑗 = 1, … , 𝑛), called the Kohn-

Sham(KS) orbitals, and the density is given by,  

 𝜌(𝑟) =  ∑ 𝜑𝑗
∗(𝑟)𝜑𝑗(𝑟)𝑛

𝑗=1  ( 2.28 ) 

The charge density thus obtained is same as ground state charge density of real system. To find 

the KS potentials we will go back to the result obtained in Hohenberg-Kohn second theorem for 

a system of N interacting electrons 

𝐸[𝜌(𝑟)] =  𝑇[𝜌(𝑟)] + 𝑉[𝜌(𝑟)] + 𝑉𝑒𝑒[𝜌(𝑟)] ( 2.29 ) 

where 

𝑉[𝜌(𝑟)] = ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑3𝑟 ( 2.30 ) 

 and 

 𝑉𝑒𝑒[𝜌(𝑟)] = 𝐸𝐻[𝜌(𝑟)] + 𝐸𝑋𝐶[𝜌(𝑟)] ( 2.31 ) 
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𝐸𝐻[𝜌(𝑟)] is classical Hartree potential. 

𝐸𝐻[𝜌(𝑟)] =  ∫
𝜌(𝑟)

|𝑟−𝑟′|
𝑑𝑟′ ( 2.32 ) 

𝐸𝑋𝐶[𝜌(𝑟)] is unknown, the ground state energy can be obtained using variational method. 

𝐸𝐺𝑆[𝜌(𝑟)] =
𝛿𝐸[𝜌(𝑟)]

𝛿𝜌
|𝜌=𝜌𝐺𝑆

 ( 2.33 ) 

For non-interacting system  

 𝐸𝐺𝑆[𝜌(𝑟)] =  
𝛿𝑇[𝜌(𝑟)]

𝛿𝜌
|𝜌=𝜌𝐺𝑆

+ 𝑉𝑠(𝑟) ( 2.34 ) 

where  

𝑉𝑠(𝑟) =  𝑉𝑒𝑥𝑡[𝜌(𝑟) + 𝑉𝐻[𝜌(𝑟)] + 𝑉𝑋𝐶[𝜌(𝑟)] ( 2.35 ) 

with  

𝑉𝐻[𝜌(𝑟)] =  
𝛿𝐸𝐻[𝜌(𝑟)]

𝛿𝜌
|𝜌=𝜌𝐺𝑆

 ( 2.36 ) 

and 

 𝑉𝑋𝐶[𝜌(𝑟)] =  
𝛿𝐸𝑋𝐶[𝜌(𝑟)]

𝛿𝜌
|𝜌=𝜌𝐺𝑆

 ( 2.37 ) 

Therefore, Kohn Sham potential is the sum of original external potential, the classic Hartree 

potential and the unknown exchange-correlation potential. This also indicates that having that last 

piece of information about 𝑉𝑋𝐶[𝜌(𝑟)] can provide the set of self-consistent equations that finally 

gives the Hamiltonian and ground state energy of the original system using the non-interacting 

electrons, i.e. all the physical properties of a system in ground state. It is important to notice that 

these equations are based on two theorem which provide guidelines to find the global minimum of 
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system, by  self-consistently finding the ground state density and therefore this is where DFT is 

limited in its power to describe physical properties of systems. It is “only” accurate for ground 

state properties and not excited states. The self-consistent Kohn-Sham equations can be solved 

iteratively.  

2.5 Exchange and correlation Functionals 

The only remaining part, and the most difficult task, is the explicit evaluation of the exchange-

correlation functional 𝐸𝑋𝐶[𝜌(𝑟)]. Unfortunately, there is no systematic method of evaluating 𝐸𝑋𝐶 

for the real system of many electrons. However, owing to its unknown form the approximations 

are used widely with efficiency and low computational cost. While there are several 

approximations, we discuss only the two most used ones: the local density approximation and the 

generalized-gradient approximation functionals. 

2.5.1 The local Density Approximation (LDA) 

The local density approximation (LDA) assumes that the exchange-correlation energy experienced 

by each electron at point r  is the same as that of a homogeneous electron gas with the same electron 

density. Using this approximation, the exchange energy and potential are calculated exactly as: 
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Figure 2.1: A flow chart representation of self-consistent ground state DFT calculations. 

𝐸𝑋 = ∫ 𝜌(𝑟)𝑉𝑋𝑑𝑟 ( 2.38 ) 

and  

 𝑉𝑋 =  − (
81

64
)

1
3⁄

𝜌
1

3⁄ (𝑟) = −
0.4582

𝑟𝑠
 ( 2.39 ) 

𝑟𝑠 is the effective radius of the sphere with density  𝜌(𝑟) and is defined as: 
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4

3
𝜋𝑟𝑠

3 =
1

𝜌
 ( 2.40 ) 

Calculations of the correlation energy 𝐸𝑐  and potential 𝑉𝑐  is a difficult many-body problem. 

However, there are approximations to do so. Various approximations such as Vosko-Wilk-Nusiar 

(VWN) [11], Perdew-Zunger (PZ) [12] have been made to calculate the correlation energy. For 

example, the (PZ) approximation is widely used which presents the correlation potential as: 

𝑉𝑐 = {−0.1423(1 + 1.0529√𝑟𝑠 + 0.3334𝑟𝑠     𝑖𝑓 𝑟𝑠  ≥ 1 

           {−0.048 + 0.0311ln𝑟𝑠  + 0.002𝑟𝑠ln𝑟𝑠  − 0.0016𝑟𝑠  𝑖𝑓 𝑟𝑠 < 1 ( 2.41 ) 

Though it is a very  simplified approximation, yet LDA performs very well by calculating lattice 

parameters that are usually 1 − 2% larger than experimental value. It fails, however, in many cases 

including: the magnetic properties, the electronic structure of strongly correlated systems, the 

dissociation energy of molecules and the adsorption energy of atoms and molecules on solid 

surfaces. 

2.5.2 The Generalized-Gradient Approximation (GGA) 

The next construction is to include both density and the gradient of the density in the evaluation, 

called the generalized gradient approximation (GGA). The first attempt in this direction was 

proposed by Kohn and Sham as gradient expansion approximation (GEA) [10]. However, this 

approximation resulted in worse failures than LDA. To solve this problem a variety of exchange-

correlation functionals have been proposed in which the exchange-correlation energy has the 

following form 

𝐸𝑋𝐶 = ∫ 𝐹𝑋𝐶[𝜌(𝑟) , ∇𝜌(𝑟), ∇2𝜌(𝑟). . ]𝑑𝑟 ( 2.42 ) 
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The generalized-gradient approximation (GGA) not only the exchange-correlation energy is a 

functional of electron density at 𝑟, but also it is functional of charge variations at each point of 

space 𝑟. GGA functionals have been calculated using two different strategies. The first known as 

ab initio approach, starts with the derivation of theoretical expression for 𝐹𝑋𝐶  . It then requires the 

functional to satisfy some or all known properties of the 𝐸𝑋𝐶  . The second strategy, known as an 

empirical approach, is based on fitting all the parameters of 𝐹𝑋𝐶  to reproduce many known 

experimental values. There are many variations for first one such as LYP[13] , PW91 [14]  and 

PBE [15]. One of the  shortcomings of both LDA and GGA is that because the non-locality of 

electrons is not fully considered, both approximations do not capture the long-range interactions. 

2.6 van der Waals interactions in DFT 

The van der Waals interactions are relatively weak, widespread in nature, play an important role 

in many chemical systems, describing interactions between atoms and molecules. For example,  

van der Waals interaction is the source of stability for physisorption of molecules on surfaces. DFT 

with LDA and GGA functionals has been extremely successful in predicting structural, elastic, 

vibrational properties of materials bound by metallic, ionic, covalent bonds, but neither LDA nor 

GGA describe vdW interaction. There are two ways: The first way is to add an empirical damped 

dispersion correction, which has been presented in well-known methods, such as, DFT-D [16] 

DFT-D2[17] ,and DFT-D3 [18],The second way is to develop a truly non-local exchange-

correlation functional as in the well-known vdw-DF [19]and vdw-DF2 [20] methods.  
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2.6.1 DFT-D 

A simple and crude approximation is the pair interaction between two ions, which was proposed 

by Grimme in 2004 [16], known as DFT-D. In this approximation, the total energy of the system 

consists of two different parts: (1) the total energy from DFT calculation (2) and an empirical 

damped dispersion correction 

𝐸𝑡𝑜𝑡
𝐷𝐹𝑇−𝐷 = 𝐸𝑡𝑜𝑡

𝐷𝐹𝑇 + 𝐸𝑡𝑜𝑡
𝑑𝑖𝑠𝑝

 ( 2.43 ) 

  𝐸𝑡𝑜𝑡
𝑑𝑖𝑠𝑝 = −𝑠6 ∑ ∑

𝐶6
𝑖𝑗

𝑅𝑖𝑗
6 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗)

𝑁𝑎𝑡
𝑗=𝑖+1

𝑁𝑎𝑡−1
𝑖=1  ( 2.44 ) 

Here, 𝑁𝑎𝑡 is the number atoms in the system, 𝐶6
𝑖𝑗

denotes the dispersion coefficient for atom pair 

ij, 𝑠6 and 𝑓𝑑𝑚𝑝are scaling factors and damping function, 𝑅𝑖𝑗 is an interatomic distance.  

2.6.2 DFT-D2 

Part of the problems of the original DFT-D approach, especially with heavier elements, can be 

traced back to the combination rule employed for the composed 𝐶6
𝑖𝑗

coefficients that gives too 

much weight to the smaller coefficient (lighter atom). Careful testing of systems including 

elements up to xenon and large hydrocarbons with many hydrogen atoms showed that a geometric 

mean of the coefficient would lead to a better approximation. This is the second version of 

Grimme's dispersion correction method [17], labeled as DFT-D2: 

𝐸𝑡𝑜𝑡
𝑑𝑖𝑠𝑝 = −𝑆6 ∑ ∑

𝐶6
𝑖𝑗

𝑅𝑖𝑗
6 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗)

𝑁𝑎𝑡
𝑗=𝑖+1

𝑁𝑎𝑡−1
𝑖=1  ( 2.45 ) 

Where  𝑠6 and 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗) are scaling factors and damping function to avoid the divergence at short 

distance and is given by 
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                                                                𝑓𝑑𝑚𝑝(𝑅𝑖𝑗) = 1 1 + 𝑒
−𝑑(

𝑅𝑖𝑗

𝑅𝑟−1
)

⁄  ( 2.46) 

Where 𝑑=20;  𝑅𝑖𝑗 is the sum of atomic vdW radii of atom 𝑖 and 𝑗. The coefficient 𝐶6
𝑖𝑗

 is calculated 

as the follow: 

                                                                                𝐶6
𝑖𝑗

= √𝐶6
𝑖𝐶6

𝑗
 ( 2.47) 

These coefficients are computed for a list of atoms corresponding to each DFT functional in [17]. 

Although DFT-D2 works very well in producing accurate binding energies between molecules as 

wells as atoms, it does not work very well for extended systems since it is independent of system. 

A newer version of this method was proposed by Grimme et al. in 2010 [18], which addresses 

these issues, known as DFT-D3 

2.6.3 DFT-D3 

DFT-D3 is the third version of DFT-D, which was proposed by Grimme et al. in 2010. The 

dispersion coefficients are calculated from first principles based pre-calculated 𝐶6 coefficients, 

which is from a large database of dispersion coefficients calculated accurately for any pair of atoms: 

                                                                                     𝐸𝑡𝑜𝑡
𝑑𝑖𝑠𝑝 = 𝐸𝑛=6

𝑑𝑖𝑠𝑝 + 𝐸𝑛=8
𝑑𝑖𝑠𝑝

 ( 2.48) 

Where 

                                                                                𝐸6
𝑑𝑖𝑠𝑝 = 𝑠6𝑓6(𝑟𝑖𝑗)

𝐶6
𝑖𝑗

𝑟𝑖𝑗
6  ( 2.49) 

Here the coefficients  
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 𝑓𝑛(𝑟𝑖𝑗) =
1

1+6[
𝑟𝑖𝑗

𝑠𝑛𝑅𝑖𝑗
]

−𝛼  ( 2.50 ) 

Where 𝑠𝑛 and 𝛼 are empirical parameters, 𝑅𝑖𝑗 is the cutoff radius of atom i and j.  

2.7 van der Waals Density Functional 

The methods vdW-DF and vdDW-DF2 [19,20] are vdW exchange-correlation functionals to take 

into account the vdW interaction into DFT calculations. In contrast to empirical damped dispersion 

corrections based on external parameters like the DFT-D family, the vdW-DF functional directly 

calculate the dispersion interaction from electron density. The vdW-DF method uses an exchange-

correlation functional, which combines of all the correlations for all ranges: 

𝐸𝑋𝐶 = 𝐸𝑋
𝐺𝐺𝐴[𝜌(𝑟)] + 𝐸𝐶

𝐿𝐷𝐴[𝜌(𝑟)] + 𝐸𝐶
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙[𝜌(𝑟)] ( 2.51 ) 

The non-local term for correlation energy is given by 

𝐸𝐶
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙[𝜌(𝑟)] =

1

2
∫ 𝑑3𝑟𝑑3𝑟′ 𝜌(𝑟)𝐾(𝑟, 𝑟′)𝜌(𝑟′) ( 2.52 ) 

𝐾(𝑟, 𝑟′) is a universal kernel and its definition for different classes of vdW-DF methods can be 

found in the literature. The first and second terms in eq. (2.52) are the exchange energy evaluated 

using GGA functional and the local correlation energy obtained using LDA. Although this method 

is computationally more expensive than DFT-D methods, it improves the values of lattice 

parameter and binding energies because of more accurate approach for considering the non-local 

interactions. 



    

22 

 

2.8 Practical DFT Methods for Periodic Structures 

Even after we have in hand the approaches to calculate the exchange-correlation functional and 

van der Waals interactions, it is still a problem to apply DFT to a realistic system because it 

contains infinite number of electrons and nuclei. By the help of Bloch’s theorem [21], one can 

apply DFT methods to a periodic system. 

2.8.1 Bloch’s Theorem 

Schrödinger’s equation of an independent electron can write as 

[−
ℏ

2𝑚
∇2 + 𝑉 + 𝑉(𝑟)] Ψ(𝑟) = 𝐸 Ψ(𝑟) ( 2.53 ) 

If the electron is in a periodic potential 

𝑉(𝑟 + 𝑙) = 𝑉(𝑟) ( 2.54 ) 

The solution should be plane waves 

Ψ(𝑟) = 𝑢𝑘(𝑟)𝑒𝑖𝑘.𝑟 ( 2.55 ) 

Where 𝑢𝑘(𝑟) have the same periodic symmetry as the lattice 

 𝑢𝑘(𝑟 + 𝑙) = 𝑢𝑘(𝑟) ( 2.56 ) 

For the wave function at 𝑟 + 𝑙, it should be 

Ψ𝑘(𝑟 + 𝑙) = 𝑢𝑘(𝑟 + 𝑙)𝑒𝑖𝑘.(𝑟+𝑙) = 𝑢𝑘(𝑟)𝑒𝑖𝑘.𝑙𝑒𝑖𝑘.𝑟=𝑒𝑖𝑘.𝑙Ψ𝑘(𝑟) ( 2.57 ) 

Which is known as Bloch’s theorem.  The physical meaning is that the wave function at 𝑟 + 𝑙  and 

𝑟 is with same probability density |𝜓(𝒓)|2, whereas different phase factor 𝑒𝑖𝑘.𝑙. 
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2.8.2 k-point Sampling 

Using Bloch’s theorem there could be infinite number of  vectors which give the same wave 

function. Since reciprocal lattice is also periodic it can be considered as a collection of unit cells 

in momentum space. This unit cell is called Brillouin Zone (BZ). The whole momentum space can 

be reproduced by translation of 𝑘 vectors of BZ. Therefore, if we solve the KS equations at certain 

k- points we can have reasonable results for the unit cell. The set of these 𝑘 points is called 𝑘-point 

sampling. The BZ is sampled by equally spaced mesh points which is called Monkhorst and Pack 

method [22]. The accuracy of calculation is dependent on the density of mesh points. In practice 

one needs to test the accuracy of calculations for different number of 𝑘-points until the increase in 

the density of mesh points does not affect the energy of system, i.e. convergence is achieved. 

2.8.3 Plane-wave Basis Sets 

Assuming that a unit cell is defined with three vectors 𝑎1, 𝑎2, and  𝑎3 , the volume of the unit 

cell is  

 Ω = 𝑎1. (𝑎2 × 𝑎3) ( 2.58 ) 

We consider a periodic case in which 𝒓 and 𝒓+𝑹 has same properties. For direct lattice vectors 

𝑹, one can write it as 

 𝑅 = 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3 ( 2.59 ) 

where 𝑎1, 𝑎2, and 𝑎3 are all integers.  And there are three vectors 𝑏1 , 𝑏2, and 𝑏3, in reciprocal 

lattice and there is a relationship between 𝑎𝑖 and 𝑏𝑖: 

𝑏𝑖. 𝑎𝑖 = 2𝜋𝛿𝑖𝑗 ( 2.60 ) 
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We can write the reciprocal lattice vector as  

𝐺 = 𝑛1𝑏1 + 𝑛2𝑏2 + 𝑛3𝑏3 ( 2.61 ) 

Bloch’s function can be described in reciprocal lattice vectors: 

𝜓𝑘(𝑟) = ∑ 𝐶𝑘+𝐺𝐺 𝑒𝑖(𝑘+𝐺).𝑟 ( 2.62 ) 

Where 𝑢𝑘(𝑟) also being periodic in the reciprocal space 

𝑢𝑘(𝑟) = ∑ 𝐶𝑘+𝐺𝑒𝑖𝐺.𝑟
𝐺  ( 2.63 ) 

Kinetic energy operator is diagonal in the plane wave basis 

−
1

2
∇2𝜓𝑘(𝑟) = −

1

2
(𝑖(𝑘 + 𝐺))2 ∑ 𝐶𝑘+𝐺𝑒𝑖(𝑘+𝐺).𝑟

𝐺 =
1

2
(𝑘 + 𝐺)2𝜓𝑘(𝑟) ( 2.64 ) 

So kinetic energy cutoff is defined as: 

𝐸𝑐𝑢𝑡 =
1

2
|𝑘 + 𝐺|2 ( 2.65 ) 

However, the coefficients, 𝑘 + 𝐺 , for the plane waves with small kinetic energies are more 

important than those with large kinetic energies. Thus, the plane wave basis set can be truncated 

to include only plane waves that have kinetic energies that are smaller than some cutoff energy as 

illustrated. Kohn-Sham equation can be rewritten with Plane-wave Basis Sets as: 

𝐸𝑐𝑢𝑡 = ∑ [
1

2
|𝑘 + 𝐺|2𝛿𝐺𝐺′ + 𝑉

𝐺𝐺′
𝑒𝑓𝑓

] 𝐶𝑖,𝑘+𝐺 = 𝜀𝑖𝐶𝑘+𝐺′𝐺′  ( 2.66 ) 

where 

𝑉
𝐺𝐺′
𝑒𝑓𝑓

= ∫ 𝑉𝑒𝑥𝑡
𝑒𝑓𝑓

𝑒𝑖(𝐺−𝐺′)𝑑𝑟 ( 2.67 ) 

Here 𝐸𝑐𝑢𝑡 is the plane wave cutoff energy. It is the highest kinetic energy of all basis functions and 

determines the number of basis functions. The basis set convergence can be systematically 
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controlled by increasing the plane wave cutoff energy. To reduce errors, we can increase the cutoff 

energy, the strength of plane-wave basis sets is its implementation ease, controllable accuracy (by 

varying the number of plane-wave basis set), and its appropriateness for periodic systems. 

2.9 Pseudopotential Approximation 

Pseudopotentials constitutes a possible way of avoiding atomic core states in first principles 

calculations of molecules and solids. The need for avoid core states arises in view of both the 

expensive work of considering all atomic states in such calculations, and that chemical bonds in 

molecules and solids involve valence states to a major extent. To avoid huge calculation on core 

electrons, the pseudopotential approximation was developed by Phillips and Kleinman [23], which 

behave as a smooth plane wave at the core replacing those of the core electrons. Real wave function 

of the valence electrons 𝜓𝑣(𝑟, 𝑘) is supposed to combine linearly with a smooth valence function 

𝜆𝑣(𝑟, 𝑘) and expand the remaining portion in terms of core states 𝜙𝑐(𝑟, 𝑘), which can be described 

as: 

 𝜓𝑣(𝑟, 𝑘) = 𝜆𝑣(𝑟, 𝑘) − ∑ 𝜎𝑐𝑣(𝑘)𝜙𝑐(𝑟, 𝑘)𝑐  ( 2.68 ) 

Because the smooth valence function 𝜆𝑣(𝑟, 𝑘) is orthogonal to core states 𝜙𝑐(𝑟, 𝑘), we can get the 

portion parameter 𝜎𝑐𝑣(𝑘): 

 𝜎𝑐𝑣(𝑘) = ∫ 𝑑𝑟′𝜙𝑐
∗(𝑟, 𝑘) ( 2.69 ) 

Schrödinger’s equation of valence electrons is  

𝐻̂𝜓𝑣(𝑟, 𝑘) = 𝐸𝑣(𝑘)𝜓𝑣(𝑟, 𝑘) ( 2.70 ) 

Schrödinger’s equation of core  electrons is  
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 𝐻̂𝜙𝑐(𝑟, 𝑘) = 𝐸𝑐(𝑘)𝜙𝑐(𝑟, 𝑘) ( 2.71 ) 

Substituting equation 2.69 into equation 2.71 

𝐻̂[𝜆𝑣(𝑟, 𝑘) − ∑ ∫ 𝑑𝑟′𝜙𝑐
∗(𝑟, 𝑘)𝜆𝑣(𝑟, 𝑘)𝜙𝑐(𝑟, 𝑘)𝑐 ] = 𝐸𝑣(𝑘)𝜓𝑣(𝑟, 𝑘) ( 2.72 ) 

The left-hand side of this equation  

𝐻̂𝜆𝑣(𝑟, 𝑘) − 𝐸𝑐(𝑘)𝜙𝑐(𝑟, 𝑘) ∑ ∫ 𝑑𝑟′𝜙𝑐
∗(𝑟, 𝑘)𝜆𝑣(𝑟, 𝑘)𝑐  ( 2.73 ) 

The right-hand side of the equation reads 

𝐸𝑣(𝑘)𝜆𝑣(𝑟, 𝑘) − 𝐸𝑣(𝑘) ∑ ∫ 𝑑𝑟′𝜙𝑐
∗(𝑟, 𝑘)𝜆𝑣(𝑟, 𝑘)𝜙𝑐(𝑟, 𝑘)𝑐  ( 2.74 ) 

Left-hand side=right hand side 

[𝐻̂ +  (𝐸𝑣(𝑘) −  𝐸𝑣(𝑘)) ∫ 𝑑𝑟′𝜙𝑐
∗(𝑟, 𝑘)𝜙𝑐(𝑟, 𝑘)]𝜆𝑣(𝑟, 𝑘)] =  𝐸𝑣(𝑘)𝜆𝑣(𝑟, 𝑘) ( 2.75 ) 

We define the pseudopotential 

𝐻̂𝑝𝑠𝑒𝑢𝑑𝑜 =  𝐻̂ +  (𝐸𝑣(𝑘) −  𝐸𝑣(𝑘)) ∫ 𝑑𝑟′𝜙𝑐
∗(𝑟, 𝑘)𝜙𝑐(𝑟, 𝑘) ( 2.76 ) 

In the first-principle calculation, norm-conserving pseudopotential method is one of common 

methods, which was proposed by Hamann, Schlüter and Chiang in 1979 [24]. The new family of 

energy-independent pseudopotentials introduced here have the following desirable properties 

(1) Real and pseudo valence eigenvalues agree for a chosen “prototype” atomic configuration. 

(2) Real and pseudo atomic wave functions agree beyond a chosen “core radius”𝑟𝑐. 

(3) The integrals from 0 to r of the real and pseudo charge densities agree for 𝑟 < 𝑟𝑐 , for each 

valence state (norm conservation). 

(4) The logarithmic derivatives of the real and pseudo wave function and their first energy 

derivatives agree for 𝑟 < 𝑟𝑐 
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However, for elements belonging to Period 1 element and transition element, norm-conserving 

pseudopotential required large values of 𝐸𝐶𝑈𝑇. In 1990, Vanderbilt proposed a new and radical 

method for generating pseudopotentials by relaxing the norm-conservation constraint to obtain 

smoother pseudo wave functions [25].Pseudopotentials generated in this way (due to their softness) 

require a much smaller planewave cutoff and thus a much smaller number of planewaves. For this 

reason, they are usually called as ultrasoft pseudopotentials (USPP). This can be done by splitting 

the pseudo wave functions into two parts: Ultrasoft valence wave function that do not fulfill the 

norm conservation criteria In 1994, Blöchl introduced the projector-augmented wave method 

(PAW) [26] an all-electron equivalent method – that can be used for high accuracy first principles 

simulations. In (1999), Kresse and Joubert [27] made reformulation of the method to calculate 

electron density and illustrated the internal relations between USPP and PAW, so that PAW 

method became widely used. The main idea of the method is to use a transformation operator that 

can map the true wave functions onto pseudo wave functions. Since pseudo wave functions are 

computationally favorite, they are used in the Kohn-Sham equation. Once pseudo wave functions 

are obtained, the transformation operator constructs real wave functions that are used for 

evaluating observables.  

2.10 Bader Charge Analysis 

In so many cases the charge transferred among interacting atomic species, provides useful insight 

on the nature of bonding. However, the main basis for solving Kohn-Sham equations is electron 

density which is a continuous quantity and is not an observable. Therefore, to find the amount of 

charge transferred among atoms, a definition of atom based on charge density is required. Richard 
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Bader proposed a model named “Atoms in Molecules” (AIM) [28] to estimate the space of an 

individual atom by a 2D zero flux surface on which the charge density is a minimum perpendicular 

to this surface. These regions are called Bader volumes. The mathematical condition to be satisfied 

is: 

∇𝑛(𝑟). 𝑛(𝑟) = 0 ( 2.77 ) 

𝑛̂(𝑟) is the unit vector of the 2D surface and ∇𝑛(𝑟⃗) gives the gradient vector field of charge 

density Through an iterative procedure the product of ∇𝑛(𝑟⃗) and 𝑛̂(𝑟⃗) are calculated until the 

gradient of the produced trajectory satisfies the above condition. Bader’s method not only provides 

[29] a tool to visualize atoms in molecules, it also gives information on the transferred  charge or 

multipole moments of interacting atoms. The total charge of each atom is estimated in Bader 

volume. In recent years, an algorithm has been developed by Henkelman et al [29] which 

implements Bader analysis in DFT calculations. This algorithm uses a grid-based calculation to 

obtain total charge of an atom. To achieve accurate results a fine grid should be used to avoid cusps 

at core region and provide correct number of valence electrons 

2.11 Time-Dependent Density Functional Theory (TDDFT)  

Accurate theoretical description of the optical properties of materials, especially semiconductors, 

is very important. From the practical side, these properties define the ability to absorb and emit 

light and many other features of the systems. Additionally, one needs to properly explain 

spectroscopic and other optical experimental data used to analyze the optical properties of 
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materials. These properties are defined to a large degree by the excited states in the system, thus, 

it is very important to correctly describe the optical absorption spectrum that includes all possible 

types of excitations in order to understand the properties of the existing and predict the properties 

of new materials. The standard modern ab initio tool to study excitations in finite systems and solids 

is TDDFT [30] , an effective theory of charge density, in which all  effects of electron-electron 

interactions and, hence all  nontrivial excitations are described by the XC potential.  Unfortunately, 

in the case of solids, standard TDDFT XC potentials, like adiabatic LDA and GGA, do not give 

excitonic peaks in the absorption spectrum, or give such peaks with extremely small binding 

energies (see, e.g., [31-33]). Therefore, until very recent times the studies of  excitons in 

semiconductors were almost universally based on a combined ab initio+many body approach, in 

which the GW calculations of the single-particle electronic structure were succeeded by 

calculations of the two-particle spectrum (that may include excitonic peaks) by solving the Bethe-

Salpeter equation (BSE). This  BSE approach [34-36]recommended itself as a reliable tool after 

being tested on many systems, though one also meets with difficulties when using it: large 

computational times, especially in the case of complex systems, not always well-adjusted 

approximations for the vertex function in solving the BS equation, etc. Thus, it would be very 

desirable to develop TDDFT XC potentials  for excitons. Indeed, TDDFT is free from both 

shortcomings mentioned above—it is computationally much less expensive and is, in some sense, 

“exact”, i.e., one does not need to make any approximation for the XC potential. Since excitons 

can be considered within  linear response theory, to study these excitations one basically needs 

only the linear part of the XC potential defined by the XC kernel. 
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2.11.1 Charge Susceptibility, Absorption Spectrum and Excitons  

Excitons are very often identified as isolated peaks below the conduction band edge in the 

experimentally observed absorption spectrum. The last function can be calculated from the result 

for the charge susceptibility. In this section, we give details of the general scheme on how to 

calculate  charge susceptibility within  many-body theory and TDDFT and how to obtain the 

absorption spectrum using these functions. More details on this can be found, for example, in Ref 

[37]. 

2.11.2 Many-Body Susceptibility 

To calculate the charge susceptibility, let us begin with the formulation of general problem of  

linear response. In a perturbed system, one can separate the time-dependent charge density into 

the static (initial) and the perturbed (fluctuating) parts 

n(r⃗, t) = n0(r⃗) + n1(r⃗, t). ( 2.78 ) 

The space- and time-dependencies of the fluctuating part of the charge density n1(r⃗, t) are 

defined by the external potential: 

v(r⃗, t) = v0(r⃗) + v1(r⃗, t)θ(t − t0), ( 2.79 ) 

where the first and the second parts are the static (including the ion) and the time-dependent (turned 

on at time 𝑡0) parts of the potential, respectively. The second term also defines the interaction part 

of the many-body Hamiltonian operator in the Heisenberg representation: 

Ĥ1(t) = ∫ d3r′v1(r⃗′, t)n̂ (r⃗′), ( 2.80 ) 
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where n̂(r⃗′) is the charge-density operator (here and below, the subscript 1 stands for the first-

order, or linear, approximation). Part (2.80) of the total Hamiltonian Ĥ(t) = Ĥ0 + Ĥ1(t) defines 

the effects of the perturbation on the system (Ĥ0 is the Hamitonian of the unperturbed system). In 

order to find the charge susceptibility (and, hence, as we show below, the absorption spectrum), 

one does not need to solve the general nonequilibrium problem with the total, and usually a rather 

complicated, Hamiltonian Ĥ(t). As an alternative, one can calculate the susceptibility within the 

linear-response approximation by finding first the eigenenergies Ωn and eigenfunctions Ψn from 

the solution of the static Schrödinger equation with the Hamiltonian Ĥ0. Ωn and Ψn define the 

charge susceptibility, or the retarded density-density response function: 

χnn(r⃗, r⃗′, t − t′) = −iθ(t − t′)⟨Ψ0|[n̂(r⃗, t − t′), n̂(r⃗′, 0)]|Ψ0⟩ ( 2.81 ) 

(where [… , … ]  is the commutator of the density operators. The last function in frequency 

representation: 

χnn(r⃗, r⃗′, ω) = −i ∫ dτθ(τ)⟨Ψ0|[n̂(r⃗, τ), n̂(r⃗′, 0)]|Ψ0⟩eiωτ∞

−∞
 ( 2.82 ) 

allows one to calculate the absorption spectrum (see Section 2.11.5). 

In the linear-response approximation, the expression for the susceptibility also defines the 

density fluctuation as functional of the external potential 

n1(r⃗, t) = ∫ dt′ ∫ d3r′χnn(r⃗, r⃗′, t − t′)v1(r⃗′, t′)
∞

−∞
, ( 2.83 ) 

i.e., Equations (2.81) and (2.82) completely define the excitation spectrum and the spatio-temporal 

charge dynamics. 
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To find the explicit frequency-dependent expression for the susceptibility (from Equation (2.82)), 

one can insert the sum of the product of eigenvectors ∑ |Ψ𝑛⟩⟨Ψ𝑛|∞
𝑛=0  (equal one) between the 

density operators in Equation (2.82), and then use the interaction representation for the density 

operators: n̂(𝑟, τ) = eiĤ0τn̂(𝑟)e−iĤ0τ (n̂(𝑟) on the right-hand side is time-independent), and use 

the fact that e−iĤ0τ|Ψ𝑛⟩ = e−iΩ𝑛τ|Ψ𝑛⟩. This gives: 

χnn(r⃗, r⃗′, ω) = ∑ (
⟨Ψ0|n̂ (r⃗)|Ψn⟩⟨Ψn|n̂(r⃗′)|Ψ0⟩

ω−Ωn+Ω0+iη
−

⟨Ψ0|n̂(r⃗′)|Ψn⟩⟨Ψn|n̂(r⃗)|Ψ0⟩

ω+Ωn−Ω0+iη
)∞

n=0  ( 2.84 ) 

The last result can be also used to calculate the frequency-dependent fluctuating charge density 

from the frequency transform of Equation (2.83): 

n1(r⃗, ω) = ∫ d3r′χnn(r⃗, r⃗′, ω)v1(r⃗′, ω). ( 2.85 ) 

To summarize, knowledge of the eigenenergies and eigenfunctions of the unperturbed system 

allows one to calculate the charge susceptibility from Equation (2.84), which gives the excitation 

and absorption spectrum, including the excitonic peaks, and in general to obtain the linear-response 

charge dynamics from Equation (2.83) or Equation (2.85). 

2.11.3 TDDFT Susceptibility 

In TDDFT, the many-body problem is mapped on an effective problem of one electron in an 

“external” Kohn-Sham (KS) potential: 

vKS[n](r⃗, t) = v(r⃗, t) + ∫ d3r′ n(r⃗⃗′,t)

|r⃗⃗−r⃗⃗′|
+ vXC[n](r⃗, t), ( 2.86 ) 

which is in general a non-linear functional of the charge density (the first, the second and the last 

terms on the right-hand side are the external, Hartree and the XC potentials, correspondingly). To 
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find the linear-response TDDFT susceptibility, one can begin with substituting the linear (in 

external field and density) part of the KS “perturbing” potential vKS1(r⃗′, t′)  into the linear-

response TDDFT analogue of the many-body Equation (2.83): 

n1(r⃗, t) = ∫ dt′ ∫ d3r′χKS(r⃗, t, r⃗′, t′)vKS1(r⃗′, t′), ( 2.87 ) 

where: 

χKS(r⃗, t, r⃗′, t′) =
δn[vKS](r⃗⃗,t)

δvKS(r⃗⃗′,t′) | vKS=vKS[n0](r⃗⃗)
 ( 2.88 ) 

is the KS susceptibility. The explicit expression for the linear KS XC potential is:  

vKS1[n](r⃗, t) = v1(r⃗, t) + ∫ d3r′ n1(r⃗⃗′,t)

|r⃗⃗−r⃗⃗′|
+ vXC1[n](r⃗, t), ( 2.89 ) 

The only nontrivial (XC) part of the KS potential can be written as:  

vXC1[n](r⃗, t) = ∫ dt′ ∫ d3r′ fXC(r⃗, t, r⃗′, t′) n1(r⃗′, t′) ( 2.90 ) 

where: 

fXC(r⃗, t, r⃗′, t′) = (
δvXC[n](r⃗⃗,t)

δn(r⃗⃗′,t′)
)

n0(r⃗⃗)
 ( 2.91 ) 

is the XC kernel, the key component of the TDDFT theory for excitons. 

As the next step of the derivation of the equation for the susceptibility, one can substitute Equation 

(2.90) into Equation (2.89), and then Equation (2.89) into Equation (2.87), which gives: 

n1(r⃗, t) = ∫ dt′ ∫ d3r′χKS(r⃗, t, r⃗′, t′) [v1(r⃗′, t′) + ∫ dτ ∫ d3x {
δ(t′−τ)

|r⃗⃗′−x⃗⃗|
+ fXC(r⃗′, t′, x⃗⃗, τ)} n1(x⃗⃗, τ)]

 ( 2.92 ) 
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Expressing the linear charge density in the last equation in terms of the susceptibility Equation 

(2.83) gives the TDDFT equation for the charge susceptibility in terms of the KS susceptibility 

and the XC kernel:  

χnn(r⃗, t, r⃗′, t′) =  χKS(r⃗, t, r⃗′, t′) + ∫ dτ ∫ d3x ∫ dτ′ ∫ d3x′χKS(r⃗, t, x⃗⃗, τ) {
δ(τ−τ′)

|x⃗⃗−x⃗⃗′|
+

∞

−∞

fXC(x⃗⃗, τ, x⃗⃗′, t′)} χnn(x⃗⃗′, τ′, r⃗′, t′). ( 2.93 ) 

The KS susceptibility can be obtained from the static DFT results for the KS eigenfunctions 

φi
0(r⃗) and eigenenergies Ei as: 

χKS(r⃗, r⃗′, ω) = ∑ (fk − fj)
φj

0(r⃗⃗)φk
0∗(r⃗⃗)φj

0∗(r⃗⃗′)φk
0(r⃗⃗′)

ω−Ej+Ek+iη

∞
j,k=1 , ( 2.94 ) 

where EF is the Fermi- or the highest-occupied molecular orbital energy and fj = 𝜃(EF − Ej) are 

the state occupancies (see [38] for the details of the derivation of the last equation). 

Equation (2.93) can be also written in the frequency domain: 

χnn(r⃗, r⃗′, ω) = χKS(r⃗, r⃗′, ω) + ∫ d3x ∫ d3x′χKS(r⃗, x⃗⃗, ω) {
1

|x⃗⃗−x⃗⃗′|
+ fXC(x⃗⃗, x⃗⃗′, ω)} χnn(x⃗⃗′, r⃗′, ω)

 ( 2.95 ) 

Then, inverting Equation (2.95) one may obtain the XC kernel in terms of the KS and total 

susceptibilities: 

fXC(r⃗, r⃗′, ω) = χKS
−1(r⃗, r⃗′, ω) − χnn

−1(r⃗, r⃗′, ω) −
1

|r⃗⃗−r⃗⃗′|
. ( 2.96 ) 

Thus, one can calculate the charge susceptibility from Equation (2.93) by using the static DFT 

result for the KS susceptibility (from Equation (2.94)) and the TDDFT XC kernel. Provided the 



    

35 

 

XC kernel has the proper form, one can obtain the exciton peaks in the absorption spectrum 

obtained from the susceptibility, as shown in section 2.11.5. 

2.11.4 Susceptibility: Finite vs. Extended (Periodic) Systems 

The results obtained in the last two Subsections are valid in the general cases of finite systems and 

infinite non-periodic systems. In this subsection, we present the corresponding formula for the 

TDDFT susceptibility for periodic systems. In the last case, the problem is simplified, since one 

needs the KS eigenfunctions in the primitive cell only and the eigenvalues (band energies) are 

defined by the momenta in only one, the first, Brillouin zone.  

Indeed, due to translation invariance of the response function: 

χ(r⃗, r⃗′, ω) = χ(r⃗ + R⃗⃗⃗, r⃗′ + R⃗⃗⃗, ω) ( 2.97 ) 

(R⃗⃗⃗ are lattice vectors) and of the other functions, like χKS(r⃗, r⃗′, ω), fXC(r⃗, r⃗′, ω) and the Coulomb 

potential 
1

|r⃗⃗−r⃗⃗′|
, one can express them as Fourier sums:  

χ(r⃗, r⃗′, ω) =
1

V
∑ ∑ e−i(k⃗⃗⃗+G⃗⃗⃗)r⃗⃗χ(k⃗⃗ + G⃗⃗⃗, k⃗⃗ + G⃗⃗⃗′, ω)ei(k⃗⃗⃗+G⃗⃗⃗′)r⃗⃗′

G⃗⃗⃗,G⃗⃗⃗′k⃗⃗⃗  ( 2.98 ) 

(and similar for χKS(r⃗, r⃗′, ω) and fXC(r⃗, r⃗′, ω)) and:  

1

|r⃗⃗−r⃗⃗′|
=

1

V
∑ ∑ e−i(k⃗⃗⃗+G⃗⃗⃗)r⃗⃗δG⃗⃗⃗,G⃗⃗⃗′

4π

|k⃗⃗⃗+G⃗⃗⃗|
2 ei(k⃗⃗⃗+G⃗⃗⃗′)r⃗⃗′

G⃗⃗⃗,G⃗⃗⃗′k⃗⃗⃗ , ( 2.99 ) 

where G⃗⃗⃗ and G⃗⃗⃗′ are the reciprocal vectors. To simplify the expressions for the functions in the sums 

in the last equations, we introduce the definitions: 

χG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) = χ(k⃗⃗ + G⃗⃗⃗, k⃗⃗ + G⃗⃗⃗′, ω), ( 2.100 ) 
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vG⃗⃗⃗(k⃗⃗) =
4π

|k⃗⃗⃗+G⃗⃗⃗|
2 ( 2.101 ) 

Substituting Equations (2.98)–(2.101) into Equation (2.95) gives the (reciprocal vector) matrix 

equation for the charge susceptibility:  

χG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) = χKSG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) + 

∑ χKSG⃗⃗⃗G⃗⃗⃗1
(k⃗⃗, ω) {vG⃗⃗⃗1

(k⃗⃗, ω)δG⃗⃗⃗1G⃗⃗⃗2
+ fXCG⃗⃗⃗1G⃗⃗⃗2

(k⃗⃗, ω)} χG⃗⃗⃗2G⃗⃗⃗′(k⃗⃗, ω)G⃗⃗⃗1,G⃗⃗⃗2
, ( 2.102 ) 

where the frequency-dependent KS matrix susceptibility is defined as: 

χKSG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) =
1

V
∑ ∑

(f
lk⃗⃗⃗+k⃗⃗⃗′−f

jk⃗⃗⃗′)

ω+ε
jk⃗⃗⃗′−ε

lk⃗⃗⃗+k⃗⃗⃗′+iη

∞
j,l=1k⃗⃗⃗′ ∫ d3rφ

jk⃗⃗⃗′
0∗ (r⃗)e−i(k⃗⃗⃗+G⃗⃗⃗)r⃗⃗φ

lk⃗⃗⃗+k⃗⃗⃗′
0 (r⃗)  ×

∫ d3r′φ
lk⃗⃗⃗+k⃗⃗⃗′
0∗ (r⃗′)ei(k⃗⃗⃗+G⃗⃗⃗′)r⃗⃗′

φ
jk⃗⃗⃗′
0 (r⃗′), ( 2.103 ) 

and 𝑗, 𝑙 are the band indices (for derivation of the last expression, see, for example, [37]) 

The solution of the matrix Equation (2.102) for χG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) (in practice, the equation is solved with 

a finite number of the reciprocal vectors that defines the rank of the matrices) basically consists of 

matrix inversion, and can be written as: 

χG⃗⃗⃗1G⃗⃗⃗2
= ∑ (𝐴−1)

G⃗⃗⃗1G⃗⃗⃗3
𝜒

G⃗⃗⃗3G⃗⃗⃗2

0
G⃗⃗⃗3

, ( 2.104 ) 

where:  

AG⃗⃗⃗1G⃗⃗⃗3
= δG⃗⃗⃗1G⃗⃗⃗3

− ∑ 𝜒
G⃗⃗⃗1G⃗⃗⃗4

0  fHXCG⃗⃗⃗4G⃗⃗⃗3G⃗⃗⃗4
, ( 2.105 ) 

and:  

fHXCG⃗⃗⃗4G⃗⃗⃗3
 = vG⃗⃗⃗4

δG⃗⃗⃗4G⃗⃗⃗3
+ fXCG⃗⃗⃗4G⃗⃗⃗3

 ( 2.106 ) 
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(we have omitted the momentum and frequency indices (k⃗⃗, ω), which are the same for each 

function and matrix in Equations (2.104)–(2.106)). The required number of the required reciprocal 

vectors is needed to be checked separately for each problem. 

In the next subsection, we present details how one can obtain the absorption spectrum by using the 

susceptibilities from Equations (2.84), (2.95), and (2.104).  

2.11.5 Absorption Spectrum 

The absorption spectrum can be obtained by calculating the imaginary part of the macroscopic 

dielectric function ϵmac(ω)  that can be found by space-averaging the dielectric function 

𝜖(r⃗, r⃗′, ω) . The last function relates to the charge (optical) susceptibility from the previous 

subsections as: 

ϵ(r⃗, r⃗′, ω) = 1 + 4πχ(r⃗, r⃗′, ω). ( 2.107 ) 

In order to perform the macroscopic averaging of the last function, one can use the equation that 

connects the microscopic electric induction and the electric field by means of the dielectric 

function: 

D⃗⃗⃗(r⃗, ω) = ∫ d3r′ϵ(r⃗, r⃗′, ω)E⃗⃗⃗(r⃗′, ω), ( 2.108 ) 

which, in the case of a periodic system, can be transformed to: 

𝐷⃗⃗⃗G⃗⃗⃗(k⃗⃗, ω) = ∑ ϵG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω)E⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω)𝐺⃗′ . ( 2.109 ) 

Averaging of the last equation over the unit cell gives the scalar relation between the macroscopic 

quantities: 

𝐷⃗⃗⃗mac(ω) = ϵmac(ω)E⃗⃗⃗mac(ω). ( 2.110 ) 
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In the homogeneous case, when 𝜖(r⃗, r⃗′, ω) = 𝜖(r⃗ − r⃗′, ω) , the dielectric function 𝜖(r⃗, r⃗′, ω) 

depends on the difference of two spatial vectors and its Fourier transform ϵG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) is diagonal 

in the reciprocal vector indices. In this case, the average of 𝜖(r⃗, r⃗′, ω) can be easily obtained by 

integrating over (r⃗ − r⃗′), which gives:  

ϵmac
hom(ω) = ϵhom(q⃗⃗ → 0, ω). ( 2.111 ) 

In the general, non-homogeneous, case due to  local-field effects (spatial fluctuations), the situation 

is more complicated since ϵG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) is a non-diagonal matrix. In particular, in the case of cubic 

systems, to calculate ϵmac(ω), one needs to perform the matrix inversion (see, e.g., [39]) 

ϵmac(ω) =  [ϵ
G⃗⃗⃗G⃗⃗⃗′
−1 (k⃗⃗ → 0, ω)|G⃗⃗⃗=0,G⃗⃗⃗′=0]

−1
. ( 2.112 ) 

In order to connect ϵ
G⃗⃗⃗G⃗⃗⃗′
−1 (k⃗⃗ → 0, ω) with the charge susceptibility matrix, one can write, in analogy 

with Equation (2.110), the equation: 

𝑣1(r⃗, ω) = ∫ d3r′𝜖(r⃗, r⃗′, ω) [𝑣1(r⃗′, ω) + ∫ 𝑑3𝑟′′ 𝑛1(𝑟′′,𝜔)

|r⃗⃗′−𝑟′′|
], ( 2.113 ) 

Using Equation (2.83) gives: 

𝜖−1(r⃗, r⃗′, ω) = 𝛿(r⃗ − r⃗′) + ∫ 𝑑3𝑟′′ 𝜒(𝑟′′,𝑟′,ω)

|𝑟−𝑟′′|
. ( 2.114 ) 

In the periodic case, the last equation can be transformed to: 

ϵ
G⃗⃗⃗G⃗⃗⃗′
−1 (k⃗⃗, ω) = 𝛿G⃗⃗⃗G⃗⃗⃗′ + vG⃗⃗⃗(k⃗⃗)χG⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω). ( 2.115 ) 

One can show from the last equation that the macroscopic dielectric function is: 

ϵmac(ω) = 1 − v0(k⃗⃗ → 0)χ̅00(k⃗⃗ → 0, ω), ( 2.116 ) 

where χ̅G⃗⃗⃗G⃗⃗⃗′(k⃗⃗, ω) is calculated from Equation (2.102) with: 
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vG⃗⃗⃗(k⃗⃗) = {
 0, G⃗⃗⃗ = 0 
4π

|k⃗⃗⃗+G⃗⃗⃗|
2 , G⃗⃗⃗ ≠ 0  ( 2.117 ) 

(for details of the derivation of Equation (2.115) and references, we refer the reader to Appendix M 

of [37] ) 

2.11.6 TDDFT and Excitons: The Density-Matrix Approach 

To begin, the discussion on studies of excitons with “pure” TDDFT, we present the DM 

formulation of this theory [32,33,40], which is one of the most convenient schemes for the practical 

applications. To derive the DM-TDDFT equation for the exciton binding energy, one can begin 

with the KS equation: 

i
∂Ψk

v(r,t)

∂t
= H(r, t)Ψk

v(r, t), ( 2.118 ) 

where k is the wave vector, v is the valence-band index, and the KS Hamiltonian is:  

H(r, t) = −
∇2

2m
+ VH[n](r, t) + VXC[n](r, t) + erE(t). ( 2.119 ) 

In the last equation, the terms on the right-hand side are the kinetic (first), Hartree (second), and 

XC (third) potentials, and an external homogeneous electric field (the last term). Equation (2.118) 

has to be solved self-consistently with the equation for the electron density: 

n(r, t) = ∑ |Ψk
l (r, t)|

2

l,|k|<kF
 ( 2.120 ) 

where l are the occupied band indices. In the DM representation, Equations (2.118) and (2.119) 

are solved by expanding the KS wave function in the basis of the static DFT wave functions φk
0l(r): 

Ψk
v(r, t) = ∑ ck

vl(t)φk
0l(r)l . ( 2.121 ) 
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The time-dependent coefficients c𝐤
vl(t) completely describe the system dynamics. Below we drop 

index v for sake of simplicity, since we will consider the case of one valence band. The coefficients 

c𝐤
l (t) can be found from the following equation: 

i
∂ck

m

∂t
= ∑ Hkk

mlck
l

l , ( 2.122 ) 

where: 

Hkq
lm(t) = ∫ φk

0l∗(r)H[n](r, t)φq
0m(r)dr. ( 2.123 ) 

However, to study the system response it is more convenient to consider the bilinear combination 

of c-coefficients, the density matrix:  

ρkq
lm(t) = ck

l (t)cq
m∗(t). ( 2.124 ) 

Its diagonal elements describe the level occupancies, while the non-diagonal ones—the electron 

transitions, including the excitonic effects. The matrix elements satisfy the Liouville equation: 

i
∂ρkq

lm(t)

∂t
= [H(t), ρ(t)]kq

lm . ( 2.125 ) 

In the case of two (valence v and conduction c) bands, one can derive the exciton TDDFT equation 

for the non-diagonal element 𝜌𝑘𝑞
𝑐𝑣 (𝑡) by using Equations (2.119), (2.120), (2.123), and (2.125). 

Expansion of the charge density fluctuations in Equation (2.125), in terms of the density matrix 

elements  (Equation (2.124)) (by using Equation (2.120)), leads to the TDDFT Wannier equation 

[33]: 

[(εk+q
c − εk

v)δkk′ + Fkkk′k′
cvvc ]ρn,k′+αq

cv (ω) = En,q, ρn,k+αq
cv , ( 2.126 ) 

where q is the exciton momentum, α is the reduced hole mass, and n is the bound state number. 

The effective electron-hole interaction is described by the last term in the brackets defined as: 
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F kqk′q′
abcd (ω) = ∫ dr1dr2φk

0a∗(r1)φq
0b(r1)fXC(r1, r2, ω)φk′

0c∗(r2)φq′
0d(r2). ( 2.127 ) 

One can obtain the excitonic binding energies from Equation (2.126) by setting q = 0. We have  

generalized  the above formalism  for the case of higher excitations—trions and biexcitons [40]. One 

can derive equations for these quasi-particles similar to Equation (2.126) by expanding the 

corresponding wave functions in terms of three (trion) and four (bi-exciton) KS wave functions 

with the coefficients that include the corresponding polarization matrix elements. The solution of 

the equation for this element will give the binding energy for the trion and biexciton. In addition 

to the e-h attraction terms of type (2.126), and the equation will also include the e-e and h-h 

repulsion terms with the interaction matrix elements: 

w𝑘1𝑘2𝑝1𝑝2

𝑐𝑑𝑎𝑏 =
1

𝜀𝑒𝑒
∫ 𝑑𝑟1𝑑𝑟2 𝜑𝑘1

0𝑐∗(𝑟1)𝜑𝑘2

0𝑑∗(𝑟2)
1

|𝑟1−𝑟2|
𝜑𝑝1

0𝑎(𝑟1)𝜑𝑝2
0𝑏(𝑟2) ( 2.128 ) 

(𝜀𝑒𝑒 is static e-e screening; for details, see [40]) 

In the following subsection 2.11.7 I present an overview of the long range (LR) kernal to study 

excitons with TDDFT. To calculate the excitonic energy one can proceed in three ways:  

(1) to calculate the dielectric function with a given fxc, as described in section 2.11.1.  Then, the 

excitonic binding energies will be identified as peaks in the absorption spectrum. 

(2) to propagate in time the KS equation, with consequent frequency transformation of the 

polarization matrix element which also defines the absorption spectrum that might include 

excitonic peaks. 

(3) to solve the linearized Equation (2.126) for the excitonic binding energies. 
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The first and the third approaches correspond to the linear response (where the XC kernel is used), 

while the second might be regarded as a more general, since the time-propagation of the KS 

equation can be performed for any non-linear XC potential. 

Below, we describe the LR-XC kernel which we will use to calculate the excitonic binding energies 

with Approach 3. 

2.11.7 LR XC Kernel 

Indeed, taking into account effects of LR interaction improves significantly the situation, the 

binding energies are often of order of the experimentally observed values. The simplest LR kernel 

is the kernel with the same name: 

fXC
LR(r, r′) = −

1

ε

1

|r−r′|
, ( 2.129 ) 

where ε is the effective scattering parameter (dielectric function).  

More systematically one can construct an XC kernel that considers the effects of the LR interaction 

by using an energy functional that includes such effects. A natural choice for such a functional is 

the exact exchange (EXX) energy: 

EX
exact[φ(0)] = −

1

2
 ∑  ∫ d3r ∫ d3r′ φiσ

0∗(r′)φjσ
0 (r′)φiσ

0 (r)φjσ
0∗(r)

|r−r′|σ,i,j , ( 2.130 ) 

where 𝜎 is the spin variable and 𝑖 and 𝑗 are other quantum numbers that correspond to given state. 

Since the corresponding XC potential (OEP [41,42]) and the kernel depend on the set of orbitals, 

to obtain the XC potential one needs to perform the functional differentiation of the energy  

(Equation (2.130)) by using the chain rule, which can be symbolically written as 
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 𝑣𝑋𝐶𝜎
0 (𝑟) =

𝛿𝐸𝑋𝐶
𝑒𝑥𝑎𝑐𝑡[𝜑(0)]

𝛿𝑛𝜎(𝑟)
=

𝛿𝐸𝑋𝐶
𝑒𝑥𝑎𝑐𝑡[𝜑(0)]

𝛿𝜑
𝑗𝜎′
0 (𝑟′)

𝛿𝜑
𝑗𝜎′
0 (𝑟′)

𝛿𝑛𝜎(𝑟)
+

𝛿𝐸𝑋𝐶
𝑒𝑥𝑎𝑐𝑡[𝜑(0)]

𝛿𝜑
𝑗𝜎′
0∗ (𝑟′)

𝛿𝜑
𝑗𝜎′
0∗ (𝑟′)

𝛿𝑛𝜎(𝑟)
. Performing the 

differentiation and applying some other transformations in the resulting equation will lead to the 

following equation for 𝑣𝑋𝐶𝜎
0 (𝑟): 

∑ ∫ d3r′[vXCσ
0 (r′) − ΥXCjσ

0 (r′)]φiσ
0 (r)φiσ

0∗(r′) ∑
φkσ

0 (r′)φkσ
0∗ (r)

εjσ−εkσ
k≠j  σ,i,j + c. c. = 0, ( 2.131 ) 

where:  

ΥXCjσ
0 (r) =

1

φjσ
0∗(r)

δEXC
exact[φ(0)]

δφjσ
0 (r)

. ( 2.132 ) 

The fist summation in Equation (2.131) is performed over the occupied states, while the last one—

over all states. Since one cannot invert Equation (2.131) in order to obtain the explicit analytical 

expression for the XP potential (though the exact potential can be obtained numerically[43]), to 

get a feeling of the main features of the OEP potential one needs to transform the equation to a 

more convenient form by doing some approximations. The simplest one, the so called KLI 

approximation [44], is based on approximating the energy differences in this equation by the 

effective average value 𝜀𝑗𝜎 − 𝜀𝑘𝜎 = Δ𝜀. In this case, the equation is significantly simplified: 

vXCσ
KLI (r) =

1

2nσ(r)
∑ njσ(r)[ΥXCjσ

0 (r) + (v̅XCjσ
KLI − Υ̅XCjσ

0 )] σ,i,j + c. c., ( 2.133 ) 

with: 

v̅XCjσ
KLI = ∫ d3rφjσ

0∗(r)vXCjσ
KLI (r)φiσ

0 (r). ( 2.134 ) 

While it is much easier to solve the KLI (Equation (2.133)) than the general OEP (Equation 

(2.131)), in practice some additional approximations in the KLI equation are often used. One of 
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them is to neglect the spatially-independent term under the integral (𝑣̅𝑋𝐶𝑗𝜎
𝐾𝐿𝐼 − Υ̅𝑋𝐶𝑗𝜎

0 ), which gives 

the Slater XC potential: 

vXCσ
Slater(r) =

1

2nσ(r)
∑ njσ(r)[ΥXCjσ

0 (r) + ΥXCjσ
0∗ (r)] σ,i,j , ( 2.135 ) 

Further simplification is the approximation of the orbital charge density in the denominator of the 

last expression by the average value, which gives the global averaging method (GAM) XC 

potential: 

vXCσ
GAM(r) =

1

2Nσ
∑ njσ(r)[ΥXCjσ

0 (r) + ΥXCjσ
0∗ (r)] σ,i,j . ( 2.136 ) 

Using the differentiation chain rule in Equations (81), (83), and (84) as above, one can obtain the 

expressions for the KLI, Slater, and GAM XC kernels, correspondingly (actually, in the KLI 

case—the equation for the kernel). We present here the expressions for the Slater kernel: 

fXCσ
Slater(r) = −

2|∑ φjσ
0 (r)φjσ

0∗(r′)j,σ |

|r−r′|n0(r)n0(r′)
. ( 2.137 ) 

As it follows from the results above, the three kernels contain the Coulomb singularity, which 

results in a rather good description of the exciton energies even in the GAM case. 
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CHAPTER 3:  LINEAR TRANSITION METAL-DIPYRIDYLTETRAZINE 

CHAINS WITH ACTIVE METAL SITE 

Creation, stabilization, characterization, and control of single atom transition metal (TM) sites may 

lead to significant advancement of the next-generation catalyst. We have performed density 

functional theory-based calculations of TM-dipyridyltetrazine (DT) chains in which TM atoms are 

stabilized and separated by the DT molecules. We found two types of geometries of TM-DT chains 

(planar and non-planar). Our calculations show that the formation energies of the chains are high 

(~2.0 to 7.9 eV), suggesting that these chains can be stabilized. Moreover, by calculating the 

adsorption energies of CO, and O2 on the metal atom sites of the chains with planar configuration, 

we found that these molecules/atoms strongly bond to TM atoms Mo, Cr, Fe, V and Co occupying 

these sites, suggesting that these TM-DT chains are potential candidates for CO oxidation catalyst. 

Other chains with Au, Ag, Cu, and Ni form a non-planar structure. The adsorption energies of CO 

and O2 on these metal centers with planar geometry, ranges from 1.0 to 4.0 eV. The O2 molecule 

undergoes dissociation while adoption on V center and causes strong distortion to V-DT chain.  

We investigated the oxidation state of these metal centers using core level shift. For Pt and V, the 

calculated +2 oxidation state is consistent with the experimentally reported value.  

3.1 Introduction 

The conventional metal catalysts (nanoparticles or bulks) offer an  abundance of active metal sites, 

with many different coordination numbers, using them in a controlled and well-ordered fashion 

for catalysis is challenging job. Recent theoretical and experimental studies have shown that sub 

nanometer-sized metal clusters can sometimes show better catalytic activity or selectivity than the 
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nanometer-sized particles [45-51]. The size effect on catalytic performance can be seen in 

chemically inert gold: upon downsizing bulk gold to nanoparticles or even to sub nanoclusters 

gold exhibits extraordinary catalytic performance in many heterogeneous reactions [45,52]. But 

although sub nanoclusters even smaller in size as compared to bulk still contain multiple active 

centers, they do not always afford the particular activity desirable  for specific catalytic processes. 

The search for catalysts with well-defined and ordered single active centers is crucial both for 

understanding catalytic mechanisms and for improving the catalytic performance [53]. To make 

use of each metal atom, the most effective way is to downsize the metal particles and distribute 

their centers in a  well-ordered array. Such is the ultimate goal of fine dispersion [54-57]. Single 

metal atoms on support surfaces provide a good opportunity to tune active sites and optimize the 

activity, selectivity, and stability of heterogeneous catalysts, offering the potential for applications 

in a variety of industrial chemical reactions [5].  B. Qiao et. al. synthesized and characterized a 

catalyst that consists of single Pt atoms uniformly dispersed on a high surface area of  FeOx 

support . This catalyst showed extremely high activity for both CO oxidation and PROX reactions. 

The chemical reactivity of single Pt atoms is quite different from that of single Au atoms or cations 

on the same support [45,58,59]. The use of metal−organic complexes in surface catalysts is 

therefore of interest for  creating well-defined and highly regular single-site centers [60]. Single-

sites in many systems also show higher selectivity than typical heterogeneous catalysts [53].  The 

technique for forming systematically distributed discrete single-sites is to exploit on-surface 

metal–ligand coordination to produce metal–organic networks (MON) on a solid surface. The 

uniformity of single sites thus produced is of prime interest for designers of catalysts [53,61-64]. 

Recent experimental study has showen that creation and stabilization of well-defined single metal 
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site Pt (II) within tetrazine coordinated chains on Au (100) surface is possible [63]. The authors 

have also demonstrated that these redox-assembled chains are stable to 150 C°.  Moreover, these 

chains may be used as model systems for exploring the coordination chemistry of single-site 

transition metals that hold potential for future applications in tandem catalysts [63]. However, it 

has been shown that Pt-centered chains are not chemically active [65]. The question that naturally 

arose is: might there be other TM centers that could form stable structures in coordination with 

DT, which would be more reactive than Pt-centers in Pt-DT chain structure? 

As this chapter describes, We have screened many different transition metal atoms coordinated 

with DT using first-principles density functional theory (DFT), to check their propensity to serve 

as active sites for the adsorption of several molecules and atoms of interest.  I first present the 

equilibrium structure of TM-DT chains. To check if the metal centers are chemically active in 

these TM-DT chains I then  calculate the adsorption energies of molecules like CO, O2  at the metal 

site of TM-DT chain. I am then able to  address the following questions: Do any transition metals 

other than Pt [63] form sufficiently  stable configuration? Do these metal centers play a role in 

surface reactions?   

3.2  Calculation Details and Model System 

We performed Ab initio calculations based on density functional theory (DFT) with the plane‐

wave and pseudopotential method implemented in the Quantum Espresso package [66]. The 

exchange and correlation energy and potential were calculated with the Perdew–Burke–Ernzerhof 

(PBE) parameterization [15] of the generalized gradient approximation (GGA). The electron wave 

function was expanded in a plane‐wave basis set cut‐off 60 Ry. A   3×1×1 Monckhorst–Pack grid 
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[22] was used for the k‐points.   A vacuum slab of 15 Å was used in the direction normal to the 

plane of TM-DT chain to ensure the absence of interlayer interactions in that direction.  optB86b-

vdW [67] functional are used to compare the adsorption energy values. The optB86b-vdW 

functional is a modified version of the vdW-DF [19], with an empirically optimized B86b-like 

exchange functional.  Atomic charges were evaluated using the Bader analysis [29].  

The model system is shown schematically in Figure 3.1. Each unit cell is composed of two metal 

centers (both are V, Cr, Mo, Fe, Co, Ni, Pd, Pt, Cu, Ag and Au) and two DT molecules. To get the 

equilibrium metal-metal (M-M) separation, we relaxed the system with various value of M-M 

separations to obtain formation energy as function of M-M separation, from which a third order 

polynomial fitting is used to determine the equilibrium separation. Here, formation energy (𝐸𝑓) is 

defined as   

 𝐸𝑓 =  
1

2
 {𝐸𝑡 − 2 × (𝐸𝑚𝑜𝑙 + 𝐸𝑚𝑒𝑡𝑎𝑙)}    ( 3.1 ) 

where 𝐸𝑡 is the total energy in of the TM-DT chain, and 𝐸𝑚𝑜𝑙  and 𝐸𝑚𝑒𝑡𝑎𝑙, are the energies of DT 

molecule, and metal atom, respectively.  

For calculations of adsorption energies of CO and O2 on metal site of TM-DT chain we have 

chosen the systems with planar geometrical configuration. Adsorption energy is defined as,  

𝐸𝑎𝑑𝑠 = 𝐸𝑀𝑂𝐶+𝑚𝑜𝑙 − 𝐸𝑀𝑂𝐶 − 𝐸𝑚𝑜𝑙  ( 3.2 ) 

Here  𝐸𝑀𝑂𝐶+𝑚𝑜𝑙 ,  𝐸𝑀𝑂𝐶  and 𝐸𝑚𝑜𝑙  are the total energies of TM-DT chain with the adsorbed 

molecule, the isolated TM-DT chain and the isolated gas molecule (CO and O2), respectively. The 

negative values of 𝐸𝑎𝑑𝑠 represent exothermic reaction which are favorable as the activation energy 
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barrier for these reactions to take place is smaller as compared to the endothermic reactions for 

reaction rates 

To identify the chemical state of TM centers, we have performed the calculations by shifting one 

electron from the core level of each TM center to fermi level, and compare the shifted value of 

binding energy of core level with respect to the binding energy of core level in bulk of each TM 

center.  

 

Figure 3.1: Schematic representation of TM-DT chain, used in the calculations. Large gold balls 

represent metal atom, black, blue, and green balls represent C, N and H atoms, respectively. The 

numbers 1-4 assigned to N atoms coordinated with metal atom are for reference.  

3.3  Results and Discussions 

3.3.1 Formation of TM-DT chains 

Table 3.1 summarizes formation energies, magnetic phase, and geometry of all studied TM-DT 

chains under consideration. Note here that we have carried out DFT calculations in ferromagnetic 

(FM), antiferromagnetic (AFM) and non-magnetic (NM) state which enables us to determine the 

lowest energy configuration.  For NM state, calculations were performed without considering spin 
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polarization, for FM state we assign parallel spin to both the metal centers with in the cell, while 

for AFM state we assign anti-parallel spin to the metal centers ( spin up for first metal center and 

spin down for second metal center). For each chain we have considered these three magnetic 

configurations, and found that Mo-, Cr-DT chains in FM state has lowest energy, while V-DT 

chain has lowest energy in AFM state. All other TM-DT chains has lowest energy in NM state. By 

analyzing the geometries, we found that systems with low formation energies like Au, Ag, Cu and 

Ni form non-planar distorted structure, while systems having higher values of formation energies 

like Co, Cr, Fe, Mo, Pd, Pt and V form planar structure.  Note that we have simulated all these 

system in gas phase.  

In Figure 3.2 we showed the dependence of formation energy on the number of valence electron 

of metal centers. The TM with fully occupied d-orbital form non-planar structure like Au, Ag 

and Cu, while the TM with partially occupied d-orbital like Co, Cr, Fe, Mo, Pd, Pt and V form 

square planar structure. However, Ni with 8 electrons in the 3d state form a non-planar structure. 

We are interested in stable chain with planar structures for catalyst applications, thus we further 

investigate only planar chains. Here after we will discuss the properties of planar chains only.  

Table 3.2 lists Bader charges of TM-DT, the Bader charge on each TM atom and the neighboring 

N atoms of the DT chain, show that TM atoms were oxidized, and the DT ligands are reduced. 

The occupancies of d-sub levels of metal atoms in TM-DT chain configuration is shown in Table 

3.3. These occupancies are calculated by integrating the projection of total density of states on the 

d-orbitals of the metal atoms. The complete and partial occupancies of d orbitals of metal atoms 

dictate the favorability of adsorption of gas molecules like CO and O2. By analyzing the binding 

energy shift of core level, we found that the core level 2p of V has shifted 0.66, which corresponds 
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to +2 oxidation states of V consistent with the experimental value [68,69]. the core level 4f of Pt 

has shifted 2.64 eV corresponds +2 oxidation state of Pt in Pt-DT chain consistent with the 

theoretical and experimentally reported value.[63,65].   

Table 3.1: List of metal centers, the equilibrium Metal-Metal separation in units of Å, formation 

energies per ½ cell  calculated in electron volts (eV), magnetic ground states and equilibrium 

geometrical structure. 

Metal M-M distance Formation energy  Magnetic state Structure 

Au 6.824 -2.824 NM Non-planar 

Ag 7.127 -2.573 NM Non-planar 

Co 6.617 -6.899 NM Planar 

Cr 6.809 -5.589 FM Planar 

Cu 6.764 -4.138 NM Non-planar 

Fe 6.649 -6.132 NM Planar 

Mo 6.984 -6.127 FM Planar 

Ni 6.626 -6.059 NM Non-planar 

Pd 6.799 -4.842 NM Planar 

Pt 6.784 -6.761 NM Planar 

V 6.848 -7.996 AFM Planar 
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Figure 3.2: Formation Energies of Metal-Organic Chains in units of eV/ (1/2) cell, plotted against 

number of valence electrons of metal atoms.  

Table 3.2: Bader charges on TM atoms and the neighboring N atoms of DT chain coordinated with 

metal center, electron lose is represented by negative sign and gain is represented by positive sign 

Metal Center Charge Lose (e) N1 N2 N3 N4 

Mo -1.24 +0.36 +0.36 +0.23 +0.23 

Cr -1.22 +0.36 +0.36 +0.22 +0.22 

Fe -0.96 +0.29 +0.29 +0.14 +0.14 

Co -0.87 +0.25 +0.25 +0.16 +0.16 

Pd -0.66 +0.19 +0.19 +0.12 +0.12 

Pt -0.72 +0.22 +0.22 +0.11 +0.11 

V -1.18 +0.38 +0.38 +0.23 +0.23 
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Table 3.3: Occupancies of d-sub levels of metal centers in TM-DT chain 

M 𝑑𝑧2 𝑑𝑥2−𝑦2 𝑑𝑧𝑥 𝑑𝑧𝑦 𝑑𝑥𝑦 

Mo 0.94 0.70 0.99 1.00 0.94 

V 0.88 0.55 0.47 0.74 0.92 

Cr 0.95 0.62 0.98 0.97 0.95 

Fe 1.76 0.75 1.11 1.54 1.80 

Co 1.83 0.81 1.50 1.70 1.83 

Pd 1.89 1.12 1.89 1.94 1.86 

Pt 1.81 1.03 1.84 1.90 1.84 

3.3.2 Adsorption of O2 on TM centers 

The calculated values of adsorption energies of O2 on different metal center are shown in Figure 

3.3.  A higher (absolute) values of adsorption energy corresponds to a stronger bonding of adsorbed 

molecule with TM site.  

 

Figure 3.3: Adsorption Energies (Eads) of O2 adsorbed on TM site of TM-chain 
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We analyzed the frontier orbitals of  metal atoms and found that all the d-orbitals of Pd and Pt are 

completely occupied (Figure 3.13). The calculated adsorption energy of O2 on Pd and Pt is less 

than 100 meV. The chain structure remains planar after O2 adsorption, while the O2 molecule 

resides on top of Pd and Pt well beyond the Pd-, Pt-O bond length. Figure 3.4 shows schematically 

the adsorption of O2 on Pd, Pt site. The Pd-, Pt-O separation is 3.49, 3.76 Å respectively. In the 

Figure 3.4 b ,c  we have also plotted the charge density difference, which shows that there is no 

hybridization taking place between the d-orbitals of metal center and the p-orbitals of O2 molecule. 

Thus, we can conclude that these two metal centers are not chemically active for O2 molecule, thus 

Pd-, PT-DT chains are not suitable candidates to be used as a catalyst for O2 reduction-reaction. 

 

Figure 3.4: Schematic representation of (a) O2 adsorption on Pd-, Pt-DT chain. Large gold balls 

represent Pd, Pt atom, black, blue, green, and green balls represent C, N, H and O atoms, 

respectively. The charge density difference (b) O2-Pd-DT and (c) O2-Pt-DT plot showing no 

chemical bond formation between Pd, Pt and O atoms. Red and blue iso-surfaces indicate electron 

accumulation and depletion regions, respectively. The iso-surface value is 0.001 e/Å3. 

The calculated absolute value of adsorption energy of O2, 0.779 and 1.578 eV on Co and Fe site 

respectively.  The charge density difference plot that these TM centers are making a chemical bond 

with O2 molecule.  In  Figure 3.5 we plot  schematically the preferred orientation of O2 adsorption 

on Co and Fe site, the charge density difference plot shows that one of the O makes bond with the 
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metal center with relaxed  Co-O bond length 1.89 Å and Fe-O 1.79 Å  while Co-O-O and Fe-O-O 

angles are 117.8°, 121.3° respectively. The Adsorption of O2 causes a small out of plane 

displacement ~ 0.12 Å to Co atom, while this out of plane displacement is ~ 0.47 Å to Fe atom. 

This out of plane displacement of metal center eliminates the planarity of chain. 

 

Figure 3.5: Schematic representation of (a) O2 adsorption on Co-, Fe-DT chain. Large gold balls 

represent Co, Fe atom, black, blue, green, and red balls represent C, N, H and O atoms, respectively. 

The charge density difference (b) O2-Co-DT and (c) O2-Fe-DT plot showing chemical bond 

formation between Co, Fe and O atoms. Red and blue iso-surfaces indicate electron accumulation 

and depletion regions, respectively. The iso-surface value is 0.002 e/Å3. 

The calculated absolute value of adsorption energy of O2, 2.476 and 3.428 eV on Cr and Mo site, 

respectively. We plot the charge density difference in Figure 3.6, which suggest that these TM 

centers are making a chemical bond with O2 molecule, Figure 3.6a shows schematically the 

preferred orientation of O2 adsorption on Cr and Mo site. The orientation of O2 in adsorbed phase 

is parallel to the plane of TM-DT chain, while the orientation of O2 was tilted out of plane in case 

of adsorption on Co-, and Fe-DT chain.  Adsorption of O2 causes a large out of plane displacement 

~ 0.50 and 0.51 Å to Cr and Mo atoms respectively, thus distorts the planarity of the TM-DT chain. 
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The relaxed O-O bond length of O2 molecule in adsorbed phase on Cr and Mo is 1.431 and 1.469 

Å respectively.  This stretched O-O bond suggest the weakening of O-O bond.  

 

Figure 3.6: Schematic representation of (a) O2 adsorption on Cr-, Mo-DT chain. Large gold balls 

represent Cr, Mo atom, black, blue, green, and red balls represent C, N, H and O atoms, 

respectively. The charge density difference (b) O2-Cr-DT and (c) O2-Mo-DT plot showing 

chemical bond formation between Cr, Mo, and O atoms. Red and blue iso-surfaces indicate 

electron accumulation and depletion regions, respectively. The iso-surface value is 0.002 e/Å3. 

We found that O2 adsorption on V center cause structural distortion in the chain, O2 adsorbs on V 

as a dissociated form and distorts the planarity of chain.  

 

Figure 3.7: Schematic representation of O2 adsorption on V-DT chain. Large gold balls represent 

V atoms, black, blue, green, and red balls represent C, N, H and O atoms, respectively. 
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By analyzing the adsorption of O2 on metal sites of TM-DT chains we found three types of 

adsorptions. For Pd- and Pt-DT chains O2 is physio adsorbed, with no overlapping of orbitals (no 

hybridization of Pd-, Pt orbitals with the orbitals of O2) and the TM-O distance is not within the 

bond length of the Pd-, Pt-O bond length.  The absolute value of adsorption energy shows that O2 

is interacting with the metal site weakly. This weak interaction is not affecting the planarity of 

chain structure. However, there is some charge redistribution occurs at TM site, such that there is 

depletion of charge at TM site while accumulation of charge at O2 molecule. This polarity of 

charge is causing the weak electrostatic attraction between TM center and O2 molecule. We found 

that O2 is making chemical bond with Co and Fe such that O-O is oriented out of TM-DT plane. 

One of the O is making bond with TM while another O of the O2 molecule is not interacting directly 

with the TM center.  In case of Cr and Mo center O2 is making chemical bond with TM center 

such that both the O atoms of the molecule are interacting with TM-center via hybridized bond. 

The absolute value of adsorption energy shows strong interaction of the adsorbates with the host 

system.  

3.3.3 Adsorption of CO on TM centers 

The calculated adsorption energy of CO on Pd and Pt is 23 and 79 meV respectively. The Pd- 

and Pt-C distance is 3.186, 3.372 Å respectively. 
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Figure 3.8: Schematic representation of (a) CO adsorption on Pd-, Pt-DT chain. Large gold balls 

represent Pd, Pt atoms, black, blue, green, and red balls represent C, N, H and O atoms, 

respectively. The charge density difference (b) CO-Pd-DT and (c) CO-Pt-DT plot showing no 

chemical bond formation between Pd, Pt and CO molecule. Red and blue iso-surfaces indicate 

electron accumulation and depletion regions, respectively. The iso-surface value is 0.001 e/Å3 

The calculated adsorption energies of CO on Co and Fe site is 0.946 and 1.719 eV respectively 

Figure 3.9 shows schematically the orientation of the adsorbed CO molecule on Co and Fe site of 

the TM-DT chain. Adsorption of CO causes an out of plane displacement ~ 0.30 Å to both Co and 

Fe atom, thus distorts the planarity of the TM-DT chain.  

 

Figure 3.9: Schematic representation of (a) CO adsorption on Co-, Fe-DT chain. Large gold balls 

represent Co, Fe atom, black, blue, green, and red balls represent C, N, H and O atoms, respectively. 

The charge density difference (b) CO-Co-DT and (c) CO-Fe-DT plot showing chemical bond 

formation between Co, Fe and C atom of CO molecule. Red and blue iso-surfaces indicate electron 

accumulation and depletion regions, respectively. The iso-surface value is 0.002 e/Å3. 
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Figure 3.10: Schematic representation of (a) CO adsorption on Cr-, Mo-DT chain. Large gold balls 

represent Cr, Mo atom, black, blue, green, and red balls represent C, N, H and O atoms, 

respectively. The charge density difference (b) CO-Cr-DT and (c) CO-Mo-DT plot showing 

chemical bond formation between Cr, Mo, and C atom of CO molecule. Red and blue iso-surfaces 

indicate electron accumulation and depletion regions, respectively. The iso-surface value is 0.002 

e/Å3.  

The calculated absolute value of adsorption energy of CO, 1.085 and 2.131 eV on Cr and Mo site 

respectively. Figure 3.10 shows schematically the orientation of the adsorbed CO molecule on Cr 

and Mo site of the TM-DT chain. Adsorption of CO causes an out of plane displacement ~ 0.29 

and 0.31 Å to Cr and Mo atoms respectively, thus distorts the planarity of the TM-DT chain.  The 

calculated absolute value of adsorption energy of CO, 1.38 eV on V site.  Figure 3.11 shows 

schematically the orientation of the adsorbed CO molecule on V site of the V-DT chain. 

Adsorption of CO causes an out of plane displacement ~ 0.30 Å to V atom, thus distorts the 

planarity of the V-DT chain.  

By analyzing the adsorption of CO on metal sites of TM-DT chains we found two types of 

adsorptions. For Pd- and Pt-DT chains CO is physio adsorbed, with no chemical bond formation 

between CO and the TM site, the TM-C distance is not within the bond length of the Pd-, Pt-C 
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bond length.  The absolute value of adsorption energy shows that CO is interacting with the metal 

sites weakly. 

 

Figure 3.11: Schematic representation of CO adsorption on V-DT chain. Large gold balls represent 

V atoms, black, blue, green, and red balls represent C, N, H and O atoms, respectively. 

Thus TM-DT chain retains its planarity while interacting with CO. We found that CO is making 

chemical bond with Mo, Cr, Co, and Fe such that CO is oriented out of TM-DT plane. In adsorbed 

phase of CO on TM site, C is making bond with TM center.  The absolute value of adsorption 

energy shows strong interaction of the adsorbates with the host system.  

 

Figure 3.12:Adsorption Energies (Eads) of CO and O2 adsorbed on different TM site of TM-DT 

chains. The adsorption energy has been calculated using two different functionals PBE and 

optB86b.  
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Figure 3.13: Projected density of states (PDOS) of (a) Pt, (b) Pd, d-state. Fermi energy is set at 

zero.  

Before summarizing, the electronic structure of the metal center will be presented. We have 

presented the PDOS of TM d-orbitals, for the cases where TM forms square planar coordination 

with DT ligands. Figure 3.14 shows the PDOS of Mo d-state, and the change in electronic structure 

after the adsorption of CO and O2 on Mo site. The d state of Mo shows spin polarization. Mo 

centered TM-DT chain has a magnetic moment of 2.88 µB per Mo atom. Due to spin polarization, 

each d-sub level splits into two energy levels for spin up and down states. The gap between these 

two levels of dz2 (spin up and down) is ~2.5 eV. When CO is adsorbed on Mo,  this gap reduces 

to ~0.20 eV (See Figure 3.14(b)). The p orbital of C is making hybridized bond with dxz of Mo.  

The adsorption of CO suppresses the spin polarization, the magnetic moment after CO adsorption 

reduces to 1.1 µB per Mo atom.  The p orbitals of O2 makes bond with dxy and dxz orbitals of Mo.  

The magnetic moment of O2 adsorbed system is 1.9 µB per Mo atom.  

The PDOS of Cr d-state, and the change in electronic structure after the adsorption of CO and O2 

on Cr top side are shown in Figure 3.15 . The d state of Cr shows spin polarization. Cr centered 

TM-DT chain has a magnetic moment of 3.22 µB per Cr atom. Due to spin polarization, each d-

sub level splits into two energy levels for spin up and down states. The gap between these two 
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levels of dz2 (spin up and down) is ~2.5 eV. The p orbital of C is making hybridized bond with dxz 

of Cr.  The adsorption of CO suppresses the spin polarization, the magnetic moment after CO 

adsorption reduces to 2.37 µB per Cr atom.  The p orbitals of O2 on top of Cr makes bond with dxy 

and dxz.  The magnetic moment of system is 1.97 µB per Cr atom.  

 Figure 3.16-3.17 shows the PDOS of Fe and Co d-state, and the change in electronic structure 

after the adsorption of CO and O2 on Fe and Co top side. The p orbital of C is making hybridized 

bond with dxz and dxy of Fe and Co.  The p orbital of O make bond with dxz and dxy.  

Figure 3.18-3.19, shows the PDOS of Pd and Pt d-state, and the change in electronic structure after 

the adsorption of CO and O2 on Pd and Pt top side. All the d states are buried deep inside the 

valence band except dx2-y2, however there is no significant overlap of states of adsorbates with the 

d states of Pt and Pd.  Figure 3.20 shows the PDOS of V d-state, and the change in electronic 

structure after the adsorption of CO and O2 on V side of V-DT chain.  The p orbital of C is making 

hybridized bond with dyz of V.  The p orbital of O make bond with dz2 and dxy. 

 

Figure 3.14: Projected density of states (PDOS) of (a) Mo-d  state in  Mo-DT chain, (b) Mo-d and 

C-p states in case of CO adsorbed on Mo site of Mo-DT chain and (c) Mo-d and O-p states in case 

of O2 adsorbed on Mo site of Mo-DT chain,  where blued dashed line represents p-state of C and 

O respectively. The positive (negative) values of PDOS show spin-up (spin-down) states. 
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Figure 3.15: Projected density of states (PDOS) of (a) Cr-d  state in  Cr-DT chain, (b) Cr-d and C-

p states in case of CO adsorbed on Cr site of Cr-DT chain and (c) Cr-d and O-p states in case of 

O2 adsorbed on Cr site of Cr-DT chain,  where blued dashed line represents p-state of C and O 

respectively. The positive (negative) values of PDOS show spin-up (spin-down) states 

 

Figure 3.16: Projected density of states (PDOS) of (a) Fe-d  state in  Fe-DT chain, (b) Fe-d and C-

p states in case of CO adsorbed on Fe site of Fe-DT chain and (c) Fe-d and O-p states in case of 

O2 adsorbed on Fe site of Fe-DT chain,  where blued dashed line represents p-state of C and O 

respectively. 
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Figure 3.17: Projected density of states (PDOS) of (a) Co-d  state in  Co-DT chain, (b) Co-d and 

C-p states in case of CO adsorbed on Co site of Co-DT chain and (c) Co-d and O-p states in case 

of O2 adsorbed on Mo site of Co-DT chain,  where blued dashed line represents p-state of C and 

O respectively.  

 

Figure 3.18: Projected density of states (PDOS) of (a) Pd-d  state in  Pd-DT chain, (b) Pd-d and C-

p states in case of CO adsorbed on Pd site of Pd-DT chain and (c) Pd-d and O-p states in case of 

O2 adsorbed on Pd site of Pd-DT chain,  where blued dashed line represents p-state of C and O 

respectively.  
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Figure 3.19: Projected density of states (PDOS) of (a) Pt-d  state in  Pt-DT chain, (b) Pt-d and C-

p states in case of CO adsorbed on Pt site of Pt-DT chain and (c) Pt-d and O-p states in case of O2 

adsorbed on Pt site of Pt-DT chain,  where blued dashed line represents p-state of C and O 

respectively.  

 

Figure 3.20:Projected density of states (PDOS) of (a) V-d  state in  V-DT chain, (b) V-d and C-p 

states in case of CO adsorbed on V site of V-DT chain and (c) V-d and O-p states in case of O2 

adsorbed on V site of V-DT chain,  where blued dashed line represents p-state of C and O 

respectively 

3.4 Discussion 

Since the outer shells of Pd and Pt atom are complete, so no chemical adsorption of O2 and CO 

occurs on top of these two metal centers. The weak interaction of adsorbates (O2 and CO) with 

Pd-, Pt-DT chain is not affecting the chain structure, thus the Pd-, Pt-DT chain retain retains its 
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planarity.  Figure 3.12 shows the comparison of calculated adsorption energies of O2 and CO on 

each metal center. The Pd-, Pt-DT though forms chain structure with high formation energies, Pt-

DT chains are stable even at higher temperatures [22] are not chemically active. This chemical 

inertness toward O2 and CO molecule as discussed above suggest that these types of TM-DT chains 

are not candidate material to be used as catalyst for CO oxidation reaction. The Co-, Fe-DT chains 

show strong affinity toward O2 and CO molecule. The binding energies of O2 and CO is 

comparable on both Co and Fe sites, thus these types of TM-DT chains are good candidates for 

CO oxidation reaction.  The Cr-, Mo-DT chains show strong affinity toward both O2 and CO 

molecules, however the adsorption energy difference of O2 and CO molecule on these metal 

centers is greater than 1.0 eV, thus poisoning the active metal site. The O2 molecule undergoes a 

dissociative adsorption on V-DT chain. The adsorption energy difference of O2 and CO on V site 

of V-DT chain is large enough. Thus V-DT chain is not a good candidate for CO oxidation reaction. 

However, V-DT chain is undergoing a chemical state change from +2 to +4 while reacting with 

O2. For V-DT we have plotted the adsorption energy of O2 on V site in molecular form. The values 

of calculated adsorption energies using two different functionals is different, but we can see the 

adsorption energies exhibit same trend for both used functionals. The key parameter we extract 

through our electronic structure calculations is the occupancy of d-orbital of metal center in TM-

DT chain configuration, through which we can tune the chemistry of the TM-DT chains.   

3.5 Summary 

In summary, we have performed DFT calculations to screen TM-DT linear chains. The higher 

values of formation energies suggest that these TM-DT chains are stable. We have identified the 
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chemical states of metal centers in the TM-DT chains. The TM atoms donate charge to DT 

molecules, making them positively charged, resulting in non-zero oxidation state.  The calculated 

adsorption energies show that both CO and O2 adsorb strongly (chemical adsorption) on Mo, Cr, 

Fe, V and Co sites, and weakly (physical adsorption) on Pt and Pd sites.  In light of the strong 

affinity of TM-DT toward O2 and CO molecule and, the comparable value of adsorption energy of 

these two molecules in case of  Co-, Fe- site, we conclude that Co-, Fe-DT chains can be used as 

a catalyst for CO oxidation reaction. The V center in V-DT chain is playing a role in reducing O2.  
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CHAPTER 4:  NON-LINEAR TM-BIS-PYRIMIDINE (BP) CHAINS  

WITH ACTIVE METAL SITE ON Au(111) 

4.1 Introduction 

This chapter describes our investigation of the structure and chemical properties of non-planar 

metal-organic chains. This investigation (which is ongoing) is motivated by the quest to discover  

how the chemistry of metal center can be tuned by different organic ligands. By using Bis-

Pyrimidine (BP) as a linker we have been able to pin down the relationship between the reducing 

capacity of a given linker and the change in oxidation state of TM center. Analogously with the 

investigation described  in chapter 3,  in this chapter we will begin by  investigating the structure 

of TM-BP chains using different TM atoms. After the initial screening of chain formation, 

magnetic ground state and charge analysis, we choose V-BP as a model system to study the effect 

of support (Au(111) surface) on structure and charge state of V-BP chain. We have shown that V-

DT on Au(100) supports dissociation of molecular oxygen [68]. In this chapter I will be using 

atomic oxygen as a probe to compare the chemical activity of metal center.   

4.2 Computational Method 

We performed Spin-polarized density functional theory (DFT) simulations  for gas phase V-BP 

metal-organic networks and for V-BP on the  Au(111) surface using the Vienna Ab-initio 

Simulation Package (VASP) [70] employing the projector-augmented wave (PAW) [27] and plane 

wave  basis set methods. We used DFT-D3 [18] corrections for accounting the van der Waals 

interactions. The energy cutoff for plane wave expansion was set to 500 eV.  The minimum 

vacuum layer thickness is ~ 15 Å which is large enough to avoid the interaction between 
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neighboring images. Our simulation supercell for gas phase calculations consists of 2 BP 

molecules and 2 V atoms corresponding to the M:BP ratio of 1:1. We used 3×1×1 mesh in 

performing integration over the Brillouin zone for both gas phase as well as on support calculations, 

which is sufficient for the convergence of formation energy. For the system consisting of the BP 

ligands and V adatoms on the Au(111) surface, our supercell consists of 2 V atoms, 2 BP ligands, 

and  5 layer Au(111) slab, all together, we thus have 198 atoms in the supercell. During relaxation, 

the bottom three Au layers are held fixed at their bulk position. All structures are relaxed until all 

component acting on each ion reach a threshold of 0.01 eV/Å. 

4.3 Results and Discussion 

4.3.1 Molecular network formation 

The model Bis-pyrimidine (BP) network is shown in Figure 4.1. The network is composed of 3 

BP molecules and repeats in x-direction. To compare the reducing capacity of the molecule we 

used 2,2'-Biimidazole (H2bim) molecule and the H2bim network (Figure 4.2).  We calculated the 

network formation energy using equation  

𝐸𝑓 =
1

𝑛
[𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 − 𝑛 × 𝐸𝑚𝑜𝑙] ( 4.1 ) 

𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is the total energy of BP, H2bim network, 𝐸𝑚𝑜𝑙 is the total energy  of isolated BP, H2bim 

molecule in gas phase. The calculated value of formation energy is -0.24 and -1.24 eV respectively 

for BP and H2bim network. To quantify the charge transfer from molecule/ molecular network to 

or from Au(111) support, and ligand-support interaction we put these molecules and molecular 

networks on Au(111) support. We represent the molecules and molecular network on Au(111) 
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schematically in Figure 4.3 and 4.4.  We have calculated the adsorption energy of these systems 

using the equation 

𝐸𝑎𝑑𝑠 =
1

𝑛
[𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘/𝐴𝑢(111) − 𝑛 × 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 − 𝐸𝐴𝑢(111)] ( 4.2 ) 

Where 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘/𝐴𝑢(111) is total energy of BP, H2bim-Au111 system, 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is the total energy 

of BP, H2bim network in gas phase and 𝐸𝐴𝑢(111) is total energy of Au(111) slab. The calculated 

value of adsorption is -1.53 and -2.31 eV respectively for BP and H2bim/Au(111) complex.   

 

Figure 4.1: Schematic representation of Bis-pyrimidine (BP) network. The blue, black and green 

color balls represent N, C and H atom, respectively.  

 

Figure 4.2: Schematic representation of 2,2'-Biimidazole (H2bim) network. The blue, black and 

green color balls represent N, C and H atom, respectively. 
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Figure 4.3: Schematic representation of BP molecule (a) and H2bim molecule (b) on Au(111) 

support. The blue, black, green, and gold color balls represent N, C,  H and Au atoms, respectively. 

 

Figure 4.4: Schematic representation of BP network (a) and H2bim network (b)  on Au(111) 

support. The blue, black, green, and gold color balls represent N, C,  H and Au atoms, respectively. 

The electron density redistribution analysis for bot BP and H2bim molecules on Au(111) is  

presented in Figure 4.5. The electron density difference is calculated using equation 

 ∆𝜌(𝑧) = 𝜌𝑚𝑜𝑙/𝐴𝑢(111)(𝑧) − 𝜌𝐴𝑢111(𝑧) − 𝜌𝑚𝑜𝑙(𝑧) ( 4.3 ) 

Where ∆𝜌(𝑧) is the plane (x, y) averaged electron density  difference in the z-direction. 

𝜌𝑚𝑜𝑙/𝐴𝑢(111)(𝑧) , 𝜌𝐴𝑢111(𝑧), 𝜌𝑚𝑜𝑙(𝑧) are the plane averaged charge densities for optimized mol-

Au(111) complex, Au(111) slab and molecules respectively. Electron density difference fluctuates 

from nearly zero at 4th layer (from bottom) on Au slab to accumulation region on 5th layer. There 
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is depletion region  in between the molecule  and the top of Au(111) slab. On the both BP and  

H2bim, the electron density difference is mostly -ve meaning that the molecules lose electrons and 

Au(111) slab gains electron. The charge density difference in case of molecular network (BP and 

H2bim ) on Au(111)  Figure 4.6 shows similar pattern of electron density redistribution. 

Comparison of the magnitude of plane averaged electron density redistribution plots we conclude 

that either isolated molecules or molecular network on Au(111) H2bim is more reducing as 

compared to BP.  

 

Figure 4.5: Edge-on view (yellow are five planes of Au slab) of plane-averaged electron density 

difference (vs. Au slab and gas phase BP (a) and H2bim (b) molecules), showing electron density 

depletion from the BP , H2bim plane (dashed blue line, far right) into top level of Au.  z axis is 

normal to Au planes; bottom Au plane is at 8.4  Å.  BP plane is ~ 3  Å from the top Au layer. 
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Figure 4.6: Edge-on view (yellow are five planes of Au slab) of plane-averaged electron density 

difference (vs. Au slab and gas phase BP (a) and  H2bim (b) molecular network), showing electron 

density depletion from the BP, H2bim plane (dashed blue line, far right) into top level of Au.  z 

axis is normal to Au planes; bottom Au plane is at 8.4  Å.  BP plane is ~ 3  Å from the top Au 

layer.   

4.3.2   Metal organic chain formation 

 

Figure 4.7: Schematic TM-BP network. The blue, black, golden, and green color balls represent 

N, C,  TM, and H atoms, respectively.  

In this section I will be comparing the formation energy of metal organic chain in a fourfold 

coordination with BP ligand with different TM as centers. The TM-BP chain is represented 



    

74 

 

schematically in Figure 4.7.  The formation energy of TM-BP chains can be calculated using the 

equation 

 𝐸𝑓𝑜𝑟𝑚 =
1

2
(𝐸(𝑀𝐿) − 2 × 𝐸(𝐿) − 2 × 𝐸(𝑀))  ( 4.4 ) 

Where E(ML) is total energy of TM-BP chain, E(L) is the total energy of isolated BP molecule and 

E(M) is the total energy of TM atoms. The calculated values of formation energy for different TM 

atoms in TM-BP formation is shown in Figure 4.8 as a function of number of valence electrons. 

The calculated formation energy values show a trend of decreasing formation energy value for 

increasing number of valence electrons.  We also compared the cohesive energy value of these 

used TM atoms. The comparison of cohesive energy value with the formation energy values 

suggest that for  the  TM atoms if the formation energy is higher than the cohesive energy, these 

TM atoms tend to form TM-BP chains as opposed to TM bulk formation or vis versa.   

Our calculations further reveal the non-planar geometric structure of the species formed here. It is 

well established from molecular chemistry that the six membered ring of BP causes steric clash 

between neighboring ligands in M(bidentate)2 structures, leading to twisting of the two NMN 

planes defined by different bidentate ligands.  This might conflict with the idea that surface 

complexes benefit from coplanarity of complex ring planes and the surface. Our  calculation of a 

TM-BP chains in the gas phase (Figure 4.7) located a stationary state which was twisted ~ 32°. 

The twisted structure shows ferromagnetic ground state for  V and Fe, and non-magnetic ground 

state for Sc and Zn.  Although nonplanar, the trans angles NVN average 158°, thus leaving room 

for interaction with an arriving gaseous molecule.  
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In summary these chains, while not fully planar, offer reduced BP2- and oxidized TM with a 

structure suited for interaction with arriving reagent molecule. Changes to these conclusions as a 

result of these chains being calculated on an Au(111) surface are discussed later in this chapter. 

Table 4.1: List of metal centers, the equilibrium M-M separation in units of Å, formation energies 

per ½ cell  calculated in electron volts (eV), cohesive energy (eV), Bader charge (e) on M center, 

and magnetic ground states.  

Metal 

Center 

M-M 

distance  

Formation 

energy 

Cohesive 

energy 

Bader charge 

on TM 

Magnetic 

ground state 

Sc 5.743 -6.57 4.12* +1.69 NM 

V 5.626 -6.20 6.03* +1.25 FM 

Fe 5.329 -5.20 4.87* +0.99 FM 

Zn 5.401 -2.24 1.12* +1.17 NM 

*[71] 

 

Figure 4.8: Formation Energies of M-BP chains in units of eV/ (1/2) cell, plotted against number 

of valence electrons of metal atoms. 

For the interaction of metal centers with arriving atomic oxygen I have computed the adsorption 

energy of atomic oxygen on the metal site of these chains.  The adsorption energy of atomic oxygen 
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on metal centers is presented in Table 4.2. The adsorption energy values are calculated using the 

equation  

 𝐸𝑎𝑑𝑠 =
1

2
(𝐸([𝑂𝑀𝐵𝑃]2) − 𝐸([𝑀𝑃𝐵]2)) −

1

2
𝐸(𝑂2) ( 4.5 ) 

Where 𝐸([𝑂𝑀𝐵𝑃]2)  is the total energy of oxygen adsorbed complex,  𝐸([𝑀𝑃𝐵]2)  is the total 

energy of M-BP chain, and 𝐸(𝑂2) is the total energy of molecular oxygen. The oxygen adsorption 

energy is highest in case of V and Sc, while oxygen makes a vertical bond with V and Sc. In case 

of Fe the Fe-O bond is tilted, and in case of Zn the interaction of Zn with oxygen is such that Zn 

lose one of the bonds with BP ligand. For comparison I presented the atom charge map for Fe-BP 

and V-BP chain as both chains form a magnetic ground state as opposed to the Sc-and Zn-BP 

chains.   

Table 4.2:Adsorption energies of atomic oxygen, calculated in electron volts (eV) 

Complex Adsorption 

energy (eV) 

ScBP -3.77 

VBP -4.21  

FeBP -1.90 

ZnBP -1.94 
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The Bader charge analysis for V-BP and Fe-BP chain shows that V lose 1.25 e in V-BP formation, 

while Fe lose 0.99 e in Fe-BP formation. We have also computed the Bader charge on Sc-BP, Zn-

BP and found that Sc is most oxidizing, and Zn is least oxidizing. The formation energy of Zn-BP 

is least among all suggesting a week Zn-BP coordination. The atom charge on adsorbed atomic 

oxygen is 0.65 e and 0.73 e for O-V-BP and O-Fe-BP, respectively. The Bader charge analysis is 

presented in Figure 4.9 and Figure 4.10 for V-BP and Fe-BP. The color code in Figure 4.9 and 

4.10  represent blue for charge gain and brown for charge lose. The N atoms of the BP gains 

maximum charge, while C in CN2 of the ring lose maximum charge.  

 

Figure 4.9: Bader charges on each atom of V-BP chain (a) and O-V-BP chain. Blue color represents 

electron accumulation and red color represents electron depletion.  
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Figure 4.10: Bader charges on each atom of Fe-BP chain (a) and O-Fe-BP chain. Blue color 

represents electron accumulation and red color represents electron depletion. 

4.3.3 Effect of Support on structure and charge state of V-BP 

To study the effect of support on structure and charge transfer between V-BP chain and support I 

used Au(111) support. The Bader charges on top layer of Au(111) and the schematic representation 

of V-BP/Au(111) system is shown in Figure 4.11. After adsorption of V-BP chain on Au(111) 

support, V charge is increased to +1.4 e while in gas phase V-BP the charge on V was +1.25 e, and 

nitrogen are all -0.1 (less negative than without Au(111)), and  carbons undergo largest (0.4 to 0.5) 

depletion of negative charge.   All top layer Au closest to V gain negative charge (-0.14 to – 0.21), 

and they move out of that layer, towards V by ~ 0.2 Å, to V/Au distances of 2.57 Å,   lower layers 

of  Au gain no charge. The charge density redistribution is shown in Figure 4.12. and the plane 

averaged charged density difference is shown in Figure 4.13. Both charge density contour plot and 

plane averaged line graph show that charge redistribution is limited to the top layer of Au(111). As 

compared to gas phase V-BP non-planar chains, V-BP on Au(111) forms a quasi-planar structure. 

In sum, Au(111) accepts electrons from the highly reducing V-BP.  While this means diminished 
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reducing power in the V-BP chain, the surface V-BP assembly retains reducing power, as is evident 

from observations with adsorption of O.  The adsorption of O on V site also pulls V away from 

Au(111) surface and V-Au distance goes to 3.2 Å. The Bader charge profile on top layer of Au(111) 

after O adsorption on V-BP can be seen in Figure 4.14. The top layer Au closest to V gain negative 

charge (-0.12 e). The charge density redistribution plot ( Figure 4.15 ) and plane averaged charge 

density difference plot ( Figure 4.16 ) show that charged redistribution is limited to the top layer 

of Au(111) while depletion of charge on O-V-BP plane and accumulation of charge at V-BP and 

Au(111) interface site.  

 

Figure 4.11: Bader charges on top layer of Au(111) (a) and schematic representation of V-BP chain 

on au(111) support(b) and Bader charges on V-BP chain (c) . The Au1 and Au2 are the Au atoms 

in direct coordination with V of V-BP chain. In (a) for visualization clarity I plot the Bader charge 

on the top layer Au(111) surface.  
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Figure 4.12:  Charge density difference (red: accumulation, green: depletion) with BP chain 

superimposed (iso value 0.0005 e/Å3).  

 

Figure 4.13: Edge-on view (yellow are five planes of Au slab) of plane-averaged electron density 

difference (vs. Au slab and gas phase V-BP chain), showing electron density depletion from the 

V-BP  plane (dashed blue line, far right) into top level of Au.  z axis is normal to Au planes; bottom 

Au plane is at 8.4  Å.  V-BP plane is ~ 2.6  Å from the top Au layer.   
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Figure 4.14: Bader charges on top layer of Au(111) (a) and schematic representation of O 

adsorption on V-BP chain on Au(111) support. The Au1 and Au2 are the Au atoms in direct 

coordination with V of V-BP chain. In (a) for visualization clarity I plot the Bader charge on the 

top layer Au(111) surface.   

 

Figure 4.15: Charge density difference (red: accumulation, green: depletion) with BP chain 

superimposed (iso value 0.0005 e/Å3).   
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Figure 4.16: Edge-on view (yellow are five planes of Au slab) of plane-averaged electron density 

difference (vs. Au slab and gas phase O adsorbed V-BP chain), showing electron density depletion 

from the V-BP  plane (dashed blue line, far right) into top level of Au.  z axis is normal to Au 

planes; bottom Au plane is at 8.4  Å.  V-BP plane is ~ 3.0  Å from the top Au layer 

4.4 Summary 

In sum, we have performed DFT calculations to screen TM-BP non-planar chains. The comparison 

of the cohesive energy values with the formation energy values suggest that  the  TM atoms tend 

to form TM-BP chains rather than TM bulk. The TM atoms donate charge to BP molecules making 

them positively charged, resulting in non-zero oxidation state. The calculated adsorption energies 

show that O adsorbs strongly on V, Sc, and Fe,  and breaks the Zn-N bond of Zn-BP chain.  Not 

only the effect of Au(111) support  limited to the charge transfer from V-BP to top layer of Au(111), 

but the V-BP/Au(111) interaction converts the non-planar structure of V-BP into a quasi-planar 

structure  
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CHAPTER 5:  REDOX-ACTIVE POLYMERIZATION OF SINGLE 

 METAL ATOMS BY A KETONE 

FUNCTIONALIZED PHENANTHROLINE 

5.1 Introduction 

High  selectivity is one of the key desired features for next-generation catalysts. In order to fully 

understand the active sites, metal sites of a well-defined chemical state and in highly regular 

structure must be  stabilized on surfaces. In this chapter, we report the formation of single-site 

metal centers within phenanthroline (PDO) coordinated polymers, which are designed from 1:1 of 

PDO and transition-metal atoms (Table 5.1). This  molecular design incorporates both redox 

activity and molecular self- assembly of single-site metal centers into thermally stable metal-ligand 

polymers . The functionalization of the phenanthroline core, with ketone, highlights the capability 

of the ligand to achieve redox activity during assembly into metal-ligand polymers. The ketone 

units and bi-dentate binding pockets allow formation of single-site metal centers with a well-

defined chemical and structural state, for Pt as well as Fe and Cr [69]. While all three metals form 

the same polymer chain structure, combine with PDO,  Fe and Cr more readily complex the ligand 

as compared to Pt.  This difference raises interesting questions about the relative propensity of 

certain metals to interact with the ketone group. The thermally stable M-PDO serve as easily tuned 

model systems for single-site metal centers at surfaces that could be developed into support 

structures for future applications in catalysis [69]. In coordination with tetrazine-based ligand, on-

surface Pt forms well-ordered metal-organic chains, and undergoes a chemical state change from 

Pt0 to Pt+2. [63,65]. A common challenge with the use of metals in traditional heterogeneous 

catalyst design is the tendency to form nanoparticles, which have a variety of local atomic 

coordination environments. It is for this reason that heterogeneous catalysts generally suffer from 
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poor selectivity compared to the well-defined inorganic metal-ligand complexes typical of 

homogenous catalysts.  

The  main goal of the study reported in this chapter is to develop transition metal centers with a 

well-defined oxidation state. These results could help design catalysts with chemically uniform 

reaction sites. We chose diketone-functionalized phenanthroline (1,10-phenanthroline5,6-dione, 

PDO) as ligand for two of its properties, both key to the achievement of this goal. First, its 

oxidative potential for stabilizing metal di-cations in two bidentate sites is desirable to produce a 

well-defined oxidation state of the coordinated metal centers. Second, the ligand’s diverging  

geometry can lead to extended polymeric chains on the surface, thus producing highly uniform 

coordination environments for the metal centers. In this chapter, we demonstrate that the formation 

of PDO on any one of  the metals under study (Sc, Ti, V, Cr, Mn, Fe, Ru, Pt) leads to a reaction 

that produces 1D polymer chains of oxidized metal sites and reduced ligands.  

5.2  Computational Method 

We performed Spin-polarized density functional theory (DFT) simulations  for gas phase M-PDO 

metal-organic networks and for V-PDO on the  Au(111) surface using the Vienna Ab-initio 

Simulation Package (VASP) [70] employing the projector-augmented wave (PAW) [27] and plane 

wav  basis set methods. We used DFT-D3 [18] corrections for accounting the van der Waals 

interactions. The energy cutoff for plane wave expansion was set to 500 eV.  The minimum 

vacuum layer thickness is ~ 15 Å which is large enough to avoid the interaction between 

neighboring images. We sampled the Brillouin Zone with 3×1×1 Monckhorst-Pack grid [22] for 

the K-points. Atomic charges were evaluated using the Bader analysis [29]  
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The model system is shown schematically in Figure 5.1. Each unit cell is composed of two metal 

centers (both are Sc, Ti, V, Cr, Mn, Fe, Ru, or Pt) and two PDO molecules. To get the equilibrium 

metal-metal (M-M) separation, we relaxed the system allowing the M-M separations to obtain the 

equilibrium separation. Here, formation energy (𝐸𝑓) is defined as   

𝐸𝑓 =  
1

2
 {𝐸𝑡 − 2 × (𝐸𝑚𝑜𝑙 + 𝐸𝑚𝑒𝑡𝑎𝑙)}  ( 5.1 ) 

where 𝐸𝑡is the total energy in of the MOC, and 𝐸𝑚𝑜𝑙and 𝐸𝑚𝑒𝑡𝑎𝑙, are the energies of molecule, 

and metal atom, respectively.  

 For calculations of adsorption energies of CO and O on metal site of M-PDO chain we have 

chosen the systems with planner geometrical configuration. Adsorption energy is defined as,  

𝐸𝑎𝑑𝑠 = 𝐸𝑀𝑂𝐶+𝑚𝑜𝑙 − 𝐸𝑀𝑂𝐶 − 𝐸𝑚𝑜𝑙  ( 5.2 ) 

Here and 𝐸𝑀𝑂𝐶+𝑚𝑜𝑙,  𝐸𝑀𝑂𝐶 and  𝐸𝑚𝑜𝑙 are the total energies of M-PDO chain with the adsorbed 

molecule, the isolated M-PDO chain and the isolated gas molecule (CO, O, N and O2), respectively. 

The negative values of  𝐸𝑎𝑑𝑠 represent exothermic reaction which are favorable as the activation 

energy barrier for these reactions to take place is smaller as compared to the endothermic reactions 

for reaction rates 

 

Figure 5.1: Schematic representation of M-PDO chains used in the calculations. Large gold balls 

represent metal atom, black balls represent C, blue balls represent N and green balls represent H 

atoms, respectively. 
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5.3 Results and discussions 

5.3.1 M-PDO Chain formation 

Figure 5.3 summarizes formation energies, of all studied M-PDO chains under consideration. By 

analyzing the geometries, we found that all systems form planar chain structure.  Note that we 

have simulated all these system in gas phase. For comparison we listed the formation energies and 

cohesive energies of these TM atoms in their respective bulk formations (Table 5.1) clearly the 

absolute value of formation energy in TM-PDO chain formation is higher than the cohesive energy 

value indicting that all the listed TM prefer to form TM-PDO chains as compared to TM aggregates 

or cluster formation.  Tetrahedral ( Figure 5.2) V-PDO in the gas phase has VO2 and VN2 planes 

accurately orthogonal (89.9o) and only slight distortion of the angle between C2 axes of two 

different PDO, at 169.9o.  There are no significant differences among VO or among VN distances 

from this distortion suggesting that the PES is soft to slight bending.  Distances within the PDO 

are unchanged from those in the planar form, so the degree of charge transfer is not significantly 

changed 

 

Figure 5.2: Schematic representation of M-PDO chains in tetrahedral geometry. Large gold balls 

represent metal atom, black balls represent C, blue balls represent N and green balls represent H 

atoms, respectively 
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Table 5.2 lists Bader charges of metal atoms in M-PDO chain structure. Atomic charges are never 

as large as formal metal oxidation state integers, but trends are useful in tracking changes in a 

periodic table series.  These show vanadium to be the most reducing, Fe less and Pt least of all.  

Metalation of PDO adds negative charge to O, to N and to the C attached to those heteroatoms, 

but other carbons change negligibly. The atomic charges on each atom of M-PDO chain structure 

is represented in color code as shown in Figure 5.4. 

Table 5.1: List of metal centers, the equilibrium M-M separation in units of Å, formation energies 

per ½ cell  calculated in electron volts (eV),  and magnetic ground states.  

Metal Center M-M 

distance  

Formation 

energy 

Cohesive 

energy 

Magnetic 

ground state 

Sc 8.14 -8.94 4.12* AFM 

Ti 8.03 -8.79 5.45* AFM 

V 7.94 -7.95 6.03* FM 

Cr 7.86 -7.02 4.00* FM 

Mn 7.73 -6.48 3.73** AFM 

Fe 7.68 -6.81 4.87* FM 

Ru 7.95 -7.03 6.67* AFM 

Pt 7.86 -7.37 5.50* NM 

*Ref[71], ** Ref[72]  
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Figure 5.3: The calculated value of formation energies for various M-PDO chain structures 

Table 5.2: Bader charges on Metal atoms of M-PDO chain and the O and N atoms of the ligand 

coordinated with metal atom. 

Metal Center Charge Lose (M) Charge gain (N) Charge gain (O) 

Free  -1.17 -1.04 

Sc +1.76 -1.31 -1.13 

Ti +1.52 -1.22 -1.11 

V +1.38 -1.11 -1.24 

Cr +1.30 -1.24 -1.12 

Mn +1.34 -1.26 -1.07 

Fe +1.19 -1.27 -1.07 

Ru +1.07 -1.21 -1.05 

Pt +0.83 -1.16 -1.02 
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Figure 5.4: Bader atom charges on each atom of M-PDO chain, M=V, Cr, Mn, Fe, Ru, Pt 

5.3.2 Magnetic properties of M-PDO chains 

We have carried out DFT calculations in ferromagnetic (FM), antiferromagnetic (AFM) and non-

magnetic (NM) states which enables us to determine the lowest energy configuration.  For NM 

state, calculations were performed without considering spin polarization, for FM state we assign 

parallel spin to both the metal centers with in the cell, while for AFM state we assign anti-parallel 

spin to the metal centers ( spin up for first metal center and spin down for second metal center). 

For each chain we have considered these three magnetic configurations, and found that V, Cr and 

Fe based M-PDO in FM state has lowest energy, while Sc, Ti, Mn and Ru centered chains have 

lowest energy in AFM state.  Pt-PDO chain show nonmagnetic ground state. The local magnetic 

moment on each metal site and the neighboring N and O atoms is listed in Table 5.3. The calculated 

values show that unpair spin is mainly concentrated on metal site (see Figure 5.5) . Among all the 

studied M-PDO chains V, Cr and Fe-PDO form ferromagnetic ground states. The local magnetic 

moment on each of these metal atoms is 2.41, 3.47 and 2.01 𝜇𝐵/𝑎𝑡𝑜𝑚 respectively.  The Sc, Ti, 
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Mn and Ru-PDO chains AFM ground states. Here we refer the FM and AFM to the spin orientation 

of neighboring metal atoms. The spin orientation on neighboring metal atom parallel/anti-parallel 

is named as FM/AFM. The magnetic moment on Sc, Ti and Ru atoms is ± 0.19, ± 1.24, ± 3.14 and 

±1.65 𝜇𝐵/𝑎𝑡𝑜𝑚 respectively. In case of AFM the net spin on the neighboring ligands is anti-

parallel.  

 

Figure 5.5: Spin density map of Sc, Ti, V, Cr, Mn, Fe and Ru-PDO chains, respectively. The 

magenta color represents majority spin density and yellow color represents minority spin density. 

The contour values are set to 0.002 e/Å3  

Our goal here is to establish the nature of bonding between elemental metal M and PDO, which 

has been shown to form linear chains.   DFT calculation yielded stationary states for all M as planar 

and linear chain in the gas phase with two identical MO and two identical MN distances at each 

metal. Overall, the DFT evidence indicates that there are differences in charge transfer between 
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the M studied and PDO, but bond lengths within PDO are relatively insensitive to those, and atomic 

charges (Table 5.2) better reveal the incremental changes 

Table 5.3: Local magnetic moment (𝜇𝐵) on Metal atoms in M-PDO chain formation, N and O 

atoms of the ligand coordinated with metal atoms. 

Metal center Magnetic moment/M N(M) O(M) 

Sc ± 0.19 ± 0.05 ± 0.002 

Ti ± 1.24  ± 0.02 ±0.02 

V 2.41 -0.02 -0.04 

Cr 3.47 -0.04 -0.02 

Mn ± 3.14 ± 0.06 ± 0.003 

Fe 2.01 -0.03 0.002 

Ru ±1.65 ±0.05 ± 0.02 

Pt 0.00 0.00 0.00 

 

5.3.3 Effect of Au(111) support 

The overall study reveals favorable thermodynamics for combining elemental M and PDO, and 

that those chains achieve additional stabilization from binding to Au(111) surface.  In V-

PDO/Au(111), gold atoms rise out of the surface plane, and V moves out if its N2O2 plane, all to 

form V-Au bonds.   In V-PDO/Au(111),  gold atoms nearby V show charge transfer from VPDO, 

consistent with the unusual ability of element gold to accept, not only donate electrons, the former 

when the surface metal/ligand addend is exceptionally electron rich as it is in V-PDO.  The 
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alternative of tetrahedral N2O2 structure around V in the gas phase was sought and a tetrahedral 

structure was found lower in energy by 0.07 eV; this is a relatively minor penalty to pay when a 

planar structure is adopted on Au(111). 

Atomic charges (Table 5.2) are never as large as formal metal  oxidation state integers, but trends 

are useful in tracking changes in a periodic table series.  These show vanadium to be the most 

reducing, Fe less and Pt least of all.  Metalation of PDO adds negative charge to O, to N and to the 

C attached to those heteroatoms, but other carbons change negligibly.   

 

Figure 5.6: Bader charges on top layer of Au(111) (a) and schematic representation of V-PDO 

chain on Au(111) support. In (a) for visualization clarity I plot the Bader charge on the top layer 

Au(111) surface.  

5.3.4 Reactions 

We next moved to study possible atom and groups bound to these electron rich chains including 

again how changing metal can change interaction between chain and added moiety.  We chose, as 

added groups, O, CO and CH2, to deal with extremes of oxidizing power (O), of pi back donation 

(CO) and of a carbene for its potential to effect catalytic conversion of olefins.  Our goal is to learn 

the thermodynamics of formation of these, but also the nature of their bonding. 
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We want to test some of thermodynamic reactions like,  𝑀𝑃𝐷𝑂 +  
1

2
𝑂2 = 𝑂𝑀𝑃𝐷𝑂 ,   𝑀𝑃𝐷𝑂 +

 𝐶𝑂 = 𝑂𝐶𝑀𝑃𝐷𝑂, 𝑀𝑃𝐷𝑂 +  
1

2
𝐻2𝐶𝐶𝐻2 = 𝐻2𝐶𝑀𝑃𝐷𝑂. We have calculated the binding energy of 

the species O, CO and 𝐻2𝐶 on MPDO using the following equations, 

𝐸𝑏(𝐻2𝐶 ) =  
1

2
(𝐸[𝐻2𝐶MPDO]2 − E[MPDO]2 − E[𝐻2𝐶 C𝐻2]) 

𝐸𝑏(𝑂 ) =  
1

2
(𝐸[𝑂MPDO]2 − E[MPDO]2 − E[𝑂2]) 

𝐸𝑏(𝐶𝑂 ) =  
1

2
(𝐸[𝑂𝐶MPDO]2 − E[MPDO]2 − E[CO]) 

Table 5.4: Binding energies of O, CO and H2C on MPDO 

Complex Binding energy (eV) 

OVPDO -4.58 

OFePDO -1.78 

OCVPDO -2.89 

OCFePDO -1.54 

H2CVPDO 0.14 

H2CFePDO 0.74 

 

Adding two oxygen atoms per vanadium to the V(PDO) chain yields the first evidence for 

oxidation of PDO2-. The most stable structure has two oxo (di-anionic oxide) groups in a cis 

arrangement on each vanadium (Figure 5.7). With negligible spin density on the metal (see Figure 

5.8), and thus consistent with a d0 configuration. One bond from vanadium to PDO oxygen has 

been totally lost and a second VN is lengthened by 0.3 Å (relevant molecular structures show that 

any bond trans to oxo is lengthened, as it is here), resulting in tetrahedral vanadium having four 
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ligand atoms at typical distances and one quasi bond. This is a typical coordination number for 

vanadium +5 with two terminal oxo ligands; those molecular species can be 5- and 6-coordinate, 

most often with bi- and tridentate ligands. The bond lengths in the PDO substructure of 

V(O)2(PDO) are consistent with semiquinone form, as are the spin densities on selected atoms 

there. The PDO oxygen not bonded  

 

Figure 5.7: Comparison of bond lengths of VPDO vs OO-V-PDO chain (a) and schematic 

representation of OO-V-PDO chain(b).  Large gold balls represent metal atom, black balls 

represent C, blue balls represent N and green balls represent H atoms, respectively 

to vanadium takes on ketonic character, with a short C=O distance.  The anionic (alkoxide) PDO1- 

oxygen donates to vanadium. If two O atoms oxidize the V(PDO) by four electrons, it becomes of 

interest where three electrons will come from in the nitride NV(PDO). Alternatives, to achieve an 

octet at nitride nitrogen, N3-, are V(5+)PDO(2-) or V(4+)PDO(1-); the former has a d0 

configuration at V while the latter has d1 vanadium, with unpaired spins on the radical PDO1-.  

Geometry optimization of this species shows square pyramidal structure, mirror symmetric, with 

short VN at 1.595 Å.  Distances within the PDO of NV(PDO) match those of a range of calculated 

AM(PDO) species (above) including OV(PDO), thus consistent with PDO(2-). The evidence is 
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that an arriving nitrogen atom    only oxidizes V(PDO) by two electrons, and those come primarily 

from the initial V(2+).  Residual spin density on the nitridyl nitrogen  may forecast susceptibility  

 

Figure 5.8: Spin density map of OO-V-PDO chain. The contour values are set to 0.005 e/Å3 

to hydrogen atom transfer reactivity.   These results also  reveal the strong resistance of PDO(2-) 

in V(PDO) to reducing arriving substrate; the reducing power resides primarily in the metal, 

augmented by the pi donation from N and O of the di-anionic chain-builder ligand. 

5.4 Summary 

In sum we have performed DFT calculations to characterize the M-PDO chains based on the 

geometry, chemical and charge state of different metals in coordination with PDO ligands. Overall 

DFT results based on comparison of energy of formation to the cohesive energy show that TM 

atoms prefer to adopt a fourfold coordination as MN2O2 with PDO ligand as opposed to forming 

metal bulk.  The atomic charges show V be the most reducing, Fe less and Pt least of all.  

Metalation of PDO adds negative charge to O, to N and to the C attached to those heteroatoms, 

but other carbons change negligibly. In V-PDO/Au(111), Au atoms rise out of the surface plane, 

and V moves out if its N2O2 plane, in the process of  forming V-Au bonds. In V-PDO/Au(111),  

Au atoms near V show charge transfer from V-PDO.    
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CHAPTER 6:  COMPLEXATION OF Fe2 IN METAL-ORGANIC 

 REDOX ASSEMBLY 

6.1 Introduction 

Single-site metal centers have generated interest for applications in heterogeneous catalysis for 

desirable high product selectivity. The strategies to achieve single-site centers (SSCs) include: 

single atom alloys [73-77], selective grafting [78], and 1D metal– ligand coordination networks 

[63,64,69] . The uniformity of active sites in metal organic complexes offer reactivity analogous 

to that of molecular catalysts while maintaining the practical benefits of traditional heterogenous 

catalysts. The ability of a ligands to finely tune the reactivity of a reaction is one of the major 

advantages of homogeneous molecular catalysts over typical heterogeneous systems. However, 

the extent of complexity and redox charge transfer that can be achieved in an on-surface  

coordination environment is not fully understood. To understand the metal organic complex 

formation, we used a new family of ligands with strong electron-accepting capacity and a flexible 

coordination environment. Our approach relies on the coordination of an organic ligand with 

elemental metal (Fe). Previous work has demonstrated the ability of systems to form highly 

ordered and regular single-site metal  assemblies [63,64,69]. These assemblies have demonstrated 

the ability to facilitate higher selectivity as illustrated by the reaction of molecular oxygen with V-

dipyridyl tetrazine (DPTZ) chains [68]  

6.2 Objective 

We  aim  to design a metal-organic system in which two metal centers would be close to each other, 

enabling the cooperative reactivity of these metals on a single molecular adsorbate. This arises 
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from a several  examples, in molecular chemistry, where the reactivity of a complex depends on 

two metals cooperatively activating a substrate either in a bi-metallic complex or as two 

equivalents of a  mono-metallic species [79-83].  On the other hand, there are few examples of bi-

metallic complexes that have been observed on surfaces.  The ability of Fe2 centers in metal–

organic coordination networks to dissociate the bond of molecular oxygen as well as capture CO2 

has been demonstrated [84,85].  In order to mirror the successes of bi-metallic systems in 

molecular chemistry, our collaborators have designed and synthesized a tetra-aza-anthraquinone 

ligand (TAAQ, Figure 6.1 (a)) which in principle may host a metal at each of its four equivalent 

binding sites, and we have performed density functional theory based calculations on metal organic 

complexation.   

 As we discussed in chapter 3 , the tetrazine-based ligand, DPTZ has demonstrated on-surface 

redox-activity. However, DPTZ is only able to undergo a two-electron reduction, which limits the 

complexation to one metal per ligand. Some studies using a more oxidizing ligand, Bis-

pyrimidinyltetrazine (BMTZ) have shown the ligand is able to undergo a three-electron  reduction. 

However, even though BMTZ has multiple binding pockets, when exposed to excess V the ligand 

only coordinates one metal [64].  The key design feature of the ligand, TAAQ, is the ability to 

have multiple binding pockets. To fully utilize the available binding pockets, it was also essential 

to design the ligand with the capacity for multiple electron reduction so that it could fully utilize 

the pockets and achieve higher metal:ligand ratios than previously realized. The TAAQ ligand, 

due to their favorable redox properties, have also been used as a conductive linker in organic 

electronics [86,87].  In this chapter, I will present the DFT results  on complexation of TAAQ with 

elemental Fe, leading to complex metal–organic chains. The formation of chains  with irregular 
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structure, pointing to a variety of local coordination geometries. I will present the relative 

thermodynamics, local spin state of  metal center and quantify the amount of charge it donates to 

the TAAQ ligand. I will also discuss the vibrational characteristics of TAAQ molecules in gas 

phase as well as on Au(111) and TAAQ 1-layer network in gas phase as well as on Au(111) 

6.3 Computational details 

We performed first-principles calculations based on density functional theory (DFT) as 

implemented in the VASP code [70] employing the projector-augmented wave (PAW) [27] 

method to treat the interaction between ionic core and valence electrons. We used the generalized 

gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof (PBE) [15] together 

with the DFT-D3 correction[18] to describe the exchange-correlation of electron and to account 

for van der Waals interaction. The energy cutoff was set to 500 eV for the plane-wave expansion. 

All atoms were allowed to relax until the residual force on each atom is below 10-2 eV/Å. Our 

simulation supercell consists of 1 or 2 TAAQ molecules and several Fe atoms corresponding to 

the Fe:TAAQ ratio of 1:1, 2:1, and 4:1. The Fe atoms and TAAQ molecules form linear chains 

along x-direction. We separated the chains with their periodical image along y and z directions by 

vacuum gaps of about 15  Å . We used 3×1×1 mesh in performing integration over the Brillouin 

zone, which is sufficient for the convergence of formation energy. In case of TAAQ 1L-network 

on Au(111) we used a five layer of Au(111) slab. We obtained the interionic force constants using 

VASP [70], the frequencies of vibrations are obtained by diagonalizing the dynamical matrix [88].   

We used DFT to simulate various Fe:TAAQ chain structures corresponding to different 

Fe:TAAQ ratios. Figure 6.2 shows 7 Fen(TAAQ)m formula unit of chain structures resulting from 
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our simulations. Here, n and m are the numbers of Fe and TAAQ, respectively, in a Fen:TAAQm 

chain. The formation energy per formula unit is defined as 

𝐸𝐹 = 𝐸𝐹𝑒:𝑇𝐴𝐴𝑄 − 𝑛 × 𝐸𝐹𝑒 − 𝑚 × 𝐸𝑇𝐴𝐴𝑄 ( 6.1 ) 

and the binding energy of Fe in the chain is defined as 

𝐸𝐵 =
1

2
(𝐸𝐹𝑒:𝑇𝐴𝐴𝑄 − 𝑛 × 𝐸𝐹𝑒 − 𝑚 × 𝐸𝑇𝐴𝐴𝑄) ( 6.2 ) 

where 𝐸𝐹𝑒:𝑇𝐴𝐴𝑄, 𝐸𝐹𝑒,  and  𝐸𝑇𝐴𝐴𝑄 are the total energy of one formula unit of Fen:TAAQm chain, 

isolated Fe atom, and isolated TAAQ molecule, respectively.  

6.4 Results 

6.4.1 Complexation of Fe-TAAQ 

We studied the complexation of TAAQ with elemental Fe, leading to complex metal–organic 

chains. The key features of the TAAQ, is the ability to have  multiple binding pockets. We can 

utilize the pockets and achieve higher metal:ligand ratios. To provide an understanding of the non-

uniform chain structure of Fe:TAAQ seen in STM [89], we performed periodic structure 

calculations using density functional theory for seven candidate Fe:TAAQ chain structures, 

representing 1:1, 2:1, and 4:1 Fe:TAAQ stoichiometry. In further support of metallic Fe being 

present vs. all the Fe complexed in the ligand, our calculations suggest that at high Fe:TAAQ ratio, 

iron atoms prefer forming metallic clusters on Au(111) to being in Fe4TAAQ. Once Fe atoms are 

deposited on the Au surface with the presence of TAAQ,  Fe atoms either form Fe clusters or find 

TAAQ to form Fe-TAAQ complexes. Thus, the competition between binding energy of Fe on 

Au(111) and in Fe-TAAQ chains determines the formation of Fe-TAAQ chains. We found that 
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binding energy of Fe on the Au(111) surface ranges from -4.257 to -5.117 eV, corresponding to 

the case that Fe atoms form an adlayer on the Au(111) surface and that Fe atoms form big clusters 

(bulk like), respectively. Since the amount of Fe is small, the lower (absolute) value is more likely. 

Our results of various Fe:TAAQ ratio, suggests that thermodynamically one cannot create Fe-

TAAQ species with higher than 2:1 metal:ligand ratio. 

While 1:1 and 4:1 Fe:TAAQ ratio structures are straightforwardly designed, 2:1 species are not. 

Among 2:1 species, numerous optimized structures result in four-coordinate iron with highly 

distorted geometries. They are noteworthy in having nonplanar iron coordination geometry, 

between tetrahedral and planar, and with a narrow O-Fe-O angle (~72o) and a very wide NFeN 

angle (~142o), all constrained by ligand donor locations; they also demand considerable nonplanar 

distortion of the TAAQ ligand and have long Fe-N distances (2.04 and 2.10 Å). They differ only 

in the displacement of the ligand plane within the chain. For assembly Fe2TAAQ 4-Coordinate 

tilt, the ligand planes deviate 21º from planarity to give parallel tilted (vs. coplanar) ligands while 

in contrast, in Fe2TAAQ 4-Coordinate up/down, they retain relatively planar, but results in an 

alternating “up/down” assembly. Geometry optimization starting from Fe2TAAQ structures with 

T-shaped Anti and Syn coordination environments led to these four coordinate Fe2TAAQ 

assemblies, again supporting the energetic importance of avoiding unsaturated (lower coordination 

number) iron. Figure 6.3 demonstrates this rearrangement to form a new Fe-N bond having very 
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similar, nearly equi-energetic 4-coordinate structures. Both final geometries yield linear chains. 

 

Figure 6.1: Schematic representation of (a) tetraethyltetra-aza-anthraquinone (TAAQ). The 

black, red, blue and green balls represent C, O, N, and H, atoms  respectively. The red (b) and 

blue (c) color contours represent HOMO and LUMO respectively. The iso value is set to 0.005 

e/Å3 

 

Figure 6.2: Candidate Fe-TAAQ binding structures with their DFT-calculated Fe binding 

energies.  
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Figure 6.3: Structure transformation of 2:1 Fe:TAAQ species from starting geometry (left) to 

optimized structures (right). 

Table 6.1: The calculated value of formation energy of Fe-TAAQ chain structures in gas phase, 

and Fe binding energy.  

  Coordination Chain Formation energy 

(eV/mol) 
Fe binding energy 

(eV/mol) 

  FeTAAQ Trans-Anti -6.55 -6.55 

  FeTAAQ Trans-Syn -6.49 -6.49 

  FeTAAQ T-shaped -5.55 -5.55 

  FeTAAQ Linear 2-Coordinate -2.56 -2.56 

  Fe
2
TAAQ 4-Coordinate up/down -9.99 -5.00 

  Fe
2
TAAQ 4-Coordinate tilt -10.13 -5.06 

  Fe
4
TAAQ  -14.22 -3.56 
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6.4.2 Magnetic Properties of FeTAAQ chains 

We performed spin polarized calculations to determine the magnetic ground state of Fe-TAAQ 

chains. In all calculations our simulation unit consist of 2 TAAQ ligands with 2 and 4 Fe atoms. 

By comparing the total energy of Fe-TAAQ in all possible spin orientations, we present the Fe-

TAAQ chains with lowest energy in particular spin orientation. As can be seen in spin density map 

plot of Fe-TAAQ chains in Figure 6.4, the spin density is concentrated at Fe site in all cases. Chains 

with single Fe center the spin on one Fe atom is antiparallel to another Fe. However, chains with 

2 Fe on site, in case Fe2-TAAQ tilt  spin on one Fe ais antiparallel to another Fe nearby. These two 

Fe atoms are connected via O atoms. In case of Fe2-TAAQ up/down spin on one Fe is parallel to 

spin on another Fe. The spin on the two Fe atoms in direct coordination with each other in case of 

Fe4-TAAQ is parallel, and antiparallel to the spin on Fe pair in coordination via O atoms. The 

calculated local magnetic moment on Fe atoms in each Fe-TAAQ chain is shown in Table 6.2.   

Table 6.2: Calculated magnetic moment in units of 𝜇𝐵/𝑎𝑡𝑜𝑚 on Fe site of Fe-TAAQ chains. 

  Coordination Chain Fe magnetic 

moment  

  FeTAAQ Trans-Anti +1.91(-1.91) 

  FeTAAQ Trans-Syn +1.96(-1.96) 

  FeTAAQ T-shaped +1.96(-1.96) 

  FeTAAQ Linear 2-Coordinate +3.174(-3.174) 

  Fe
2
TAAQ 4-Coordinate up/down +3.32(-3.32) 

  Fe
2
TAAQ 4-Coordinate tilt +3.34(-3.34) 

  Fe
4
TAAQ  +3.35(-3.35) 
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Figure 6.4: Spin density map of Fe-TAAQ complexes. The red color represents majority spin 

density and blue color represents minority spin density. The contour values are set to 0.005 e/Å3  
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6.4.3 Charge Analysis of FeTAAQ chains 

 

Figure 6.5: Atom charges on each atom of Fe-TAAQ chains. 

We present the atom charges on each atom of all FenTAAQm chains in Figure 6.5. The color code 

blue for charge gain and brown for charge lose shows that in all cases Fe lose charge and TAAQ 

gains charge. For comparison I presented the atom charge on Fe, N and O in Table 6.3. The charge 

on both N and O atoms in FenTAAQm chain formation as compared to charge in case of free TAAQ 

ligand shows that both N and O gain charge while Fe lose charge.  The amount of charge lose by 

Fe atom on average is ~ 1.15e in all cases however in case of Fe4-TAAQ Fe lose on average ~0.58 

e.  
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Table 6.3: Bader charges on Metal atoms of Fe-TAAQ chain and the O and N atoms of the 

ligand coordinated with metal atom 

Coordination Chain  Charge  (Fe) Charge (N) Charge(O) 

Free  -1.15 -0.98 

Fe
2
TAAQ tilt +1.14 -1.24 -1.09 

Fe
2
TAAQ up/down +1.15 -1.24 -1.12 

FeTAAQ Trans-Anti +1.17 -1.19 -1.07 

FeTAAQ Trans-Syn +1.18 -1.17 -1.04 

FeTAAQ T-shaped +1.16 -1.26(-1.14) -1.11 

Fe
4
TAAQ +0.58 -1.24 -1.14 

FeTAAQ Linear  +1.16 -1.18 -1.14 

 

6.4.4 Vibrational spectroscopy of on-surface TAAQ complexation 

To further investigate the changes in TAAQ in gas phase vs monolayer network formation on 

Au(111) we perform vibrational calculations based on finite displacement method for both TAAQ 

gas phase as well as TAAQ molecule and molecular monolayer network on Au(111). For TAAQ 

molecular crystal, the ketone C=O stretch mode is (see Figure 6.7) observed around 1682 cm-1. 

For comparison I plot the IR spectrum of isolated TAAQ molecule, TAAQ molecular network 

(gas phase Figure 6.6), TAAQ molecular crystal and found that C=O stretch mode is  observed 

around 1698 cm-1 in  case of isolated TAAQ molecule, and 1687 cm-1 in case of TAAQ molecular 

network. The comparison with experimental high resolution electron energy loss spectroscopy 
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(HREELS) measurements were made ase shown in Figure 6.7. We can follow from Figure 6.7, 

that the calculated IR spectrum has a good match with the experimental HREEL curve for TAAQ 

molecular crystal. We also calculated the IR spectrum for TAAQ molecule on Au(111) support. 

The representative unit TAAQ on Au(111) is shown in Figure 6.8. We calculated the IR spectrum 

systematically by including the contribution of Au(111) support layer by layer to trace the effect 

of Au(111) support on IR spectrum on TAAQ molecule. The calculated IR spectrum (Figure 6.9) 

shows that the effect of Au(111) support is more to the low frequency < 500 cm-1 modes. We 

started the calculations by fixing the Au(111) support, and allow the molecule displacement, 

consequently  we get the IR spectrum for the molecule (blue color in Figure 6.9). We than include 

the effect of Au(111) by allowing the Au(111) displacement layer by layer from top layer to the 

bottom layer and plotted corresponding IR spectrum by including the displacement of Au(111) 

layers. The value of C=O stretch mode is  observed around ~1650 cm-1 for TAAQ  molecule on 

Au(111). As compared to gas phase TAAQ the intensity of C=O  substantialy reduced when 

TAAQ molecule (Figure 6.9) and  also TAAQ molecular network (Figure 6.10) on Au(111).  
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Figure 6.6: Schematic representation of TAAQ network. The black, red, blue and green balls 

represent C, O, N, and H, atoms  respectively. 

 

Figure 6.7: The infrared spectrum of TAAQ molecule (black), TAAQ network (red) TAAQ 

molecular crystal (green) and experimental (black) for TAAQ molecular crystal.  

 

Figure 6.8:  Top view of monolayer TAAQ molecule on Au111. The gold balls represent Au, 

black balls represent C, blue balls represent N and magenta balls represent H atoms, respectively. 
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Figure 6.9: Calculated IR spectrum of TAAQ molecule on Au(111) support (a) and the zoom of 

C=O stretch mode in (b). The calculations are split (details in text). The blue line shows the IR of 

TAAQ molecule only, red color line represents the IR for TAAQ molecule with 1st layer of 

Au(111) support, black color represent IR of TAAQ molecule with top two layers of Au(111) 

support, green color represents the IR of TAAQ molecule with top three layers of Au(111) support, 

yellow color represents the IR of TAAQ molecule with top four layers of Au(111) support and 

gray color represents the IR of TAAQ molecule with all layers of Au(111) support. 

 

Figure 6.10: Calculated IR spectrum of TAAQ network on Au(111) support. 
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6.5 Summary 

We have demonstrated the complexation between TAAQ ligand and iron. TAAQ functions as a 

redox-active ligand to form complex metal–organic structures. The TAAQ ligand is designed for 

greater reductive capacity and more metal binding pockets than are usually employed in metal–

organic coordination networks. In the case of complexation with Fe, we find that this results in 

under-population of the binding pockets, due to the limited reduction capacity of the ligand. Rather 

than achieving uniform di-nuclear centers in straight coordination chains for which the ligands 

were designed, the abundance of binding pockets leads to multiple binding motifs with comparable 

energies and a disordered structure. The calculated IR spectrum of TAAQ gas phase and on support 

show good agreement with experimental results. We also showed that the effect of Au(111) 

support on IR spectra of TAAQ can be approximated by taking into account only top layer of 

Au(111) without losing and quantitative accuracy.  
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CHAPTER 7:  EXCITED STATES IN HYDROGENATED SINGLE-LAYER 

MoS2 

Our calculations of the excitation spectrum of single-layer MoS2 at several hydrogen coverages, 

using a Density-Matrix based Time-Dependent Density-Functional Theory (TDDFT) show that 

the fully hydrogenated system is metallic, while at lower coverages the spectrum consists of spin-

polarized partially filled localized mid-gap states.  The calculated absorption spectrum of the 

system reveals standard excitonic peaks corresponding to the bound valence-band hole and 

conduction-band electron, as well as excitonic peaks that involve the mid-gap charges.  Binding 

energies of the excitons of the hydrogenated system are found to be relatively large (few tens of 

meV), making their experimental detection facile and suggesting hydrogenation as a knob for 

tuning the optical properties of single-layer MoS2. Importantly, we find hydrogenation to suppress 

visible light photoluminescence, in agreement with experimental observations. In contrast, both Li 

and Na atoms transform the system into an n-doped non-magnetic semiconductor that does not 

allow excitonic states. 

7.1 Introduction 

Offering versatile electronic and optical properties, two-dimensional (2D) transition metal 

dichalcogenides (TMDCs) have attracted much interest. They exhibit attractive properties such as 

strong photoresponse and transition from indirect to direct band gap as the number of atomic layers 

decreases to one [90-92].  Furthermore, the bandgap of 2D TMDCs may be tuned quantitatively 

by varying the layer thickness and strain [93,94]. They may also show edge-structure dependent 

semiconducting-to-metallic transitions [95]. At the same time, adsorption of an alkali metal (K) 
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atoms has been shown to have significant influence on the catalytic properties of MoS2 [96-99], 

while the exposure of Na to the MoS2(0001) surface leads to expected n-type dopant shifts of the 

bands [100-102], which is to be contrasted with the effect of Co atoms on the electronic structure 

of WSe2(0001) [102].  While Na atoms act as electron donors in MoS2, Co atoms serve as electron 

acceptors (p-type) in WSe2. These dopants dramatically modify the electronic structure of these 

materials, and thus their excitation spectrum (for example, by enhancing plasmonic properties 

through increased density of carriers). Hydrogenation was found to affect the structural, electronic, 

optical, magnetic and catalytic properties of 2D TMDCs [103]. It could also change the intrinsic 

n-doping to p-doping, at room temperature, and completely saturate sulfur vacancies in MoS2 

flakes [104]. Hydrogenation may also lead to a quench of the photoluminescence (PL) of single-

layer MoS2 [105].  The above properties are, of course, temperature dependent. For example, a 

500 °C heat treatment restores the electronic and optical properties of the system by stimulating 

desorption of the hydrogen atoms [106]. Other 2D TMDCs,  such as monolayer MoSe2, have also 

responded to  hydrogenation via a plasma treatment  [106] inducing a charge transfer from 

hydrogen to MoSe2 which changes the electronic and excitation properties of the system, resulting 

in a shift of the PL peak and a ~3-fold decrease of the electron mobility. 

Significant advances in understanding some of the above properties of hydrogenated monolayer 

MoS2 have been made through application of density functional theory (DFT). It was shown that 

electronic structure and magnetism of hydrogenated monolayer MoS2 can be modified under 

uniaxial tensile strain [107]. Furthermore, magnetic properties of monolayer MoS2 were found to 

depend strongly on hydrogen concentration and adsorption sites: adsorption at the center of the 

hexagonal ring  with a relatively high concentration of H atoms produces itinerant ferromagnetism, 
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while adsorption on sulfur atoms with a low concentration of H atoms yields flat-band 

ferromagnetism [108]. Interestingly, in the latter case, it was found that the electrons are distributed 

on H and neighbor Mo and S atoms, while in the non-magnetic case they are mostly localized on 

the Mo atoms neighboring hydrogen. Another consequential finding is that hydrogenation 

significantly reduces diffusion barriers for Ni and S complexes and helps build stable conducting 

nanorods on MoS2 [109]. DFT calculations have also shown [110] that the interaction of H with 

MoS2 becomes more favorable with increasing hydrogen concentration. Absorption of a single H 

per 4×4×1 cell produces a mid-gap state approaching the Fermi level, and hence significantly 

increases the n-type carrier concentration and as result the system’s electrical conductivity. 

The interplay of spin-valley coupling, orbital physics, and magnetic anisotropy in several 2D 

TMDCs with a single adsorbed magnetic transition-metal (TM) atom was exploited by Shao et al. 

[111] to demonstrate that the spin-flip scattering rates in the systems depend strongly on the 

involved orbitals, since orbital selection rules define the kinetic exchange coupling between the 

adatom and the charge carriers.  These findings point to potential spintronic application  by tuning 

magnetic and spin transport properties via doping  with  TM adatoms. Quite remarkably, it was 

shown theoretically that another hydrogenated 2D material – single layer h-BN – demonstrates an 

oscillatory dependence of the bandgap on hydrogen concentration, making it possible to tune 

absorptive and emissive properties of the system [112]. DFT studies of adsorptive properties of 

monolayer TMDCs [113] have also shown that surface and interlaminar hydrogenations have 

different effects on electronic properties: in several systems surface hydrogenation induces 

magnetism and reduces the bandgap, but does not modify the semiconducting character of the 

monolayer, while interlaminar hydrogenation induces a semiconductor-to-metal transition. 
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Moreover, it has been shown theoretically that, akin to graphene, hydrogenation might 

significantly enhance the critical temperature and superconducting properties of 2D materials 

[114,115]. These results demonstrate a potential of hydrogen functionalization of TMDCs for use 

in electronic and magnetic devices. 

In the experimental and theoretical results described above the excitation spectrum of 

hydrogenated MoS2 plays a very important role. It is thus somewhat surprising that there is a lack 

of an ab initio study of the effect hydrogenation on the excitation spectrum of MoS2. To provide 

this much needed microscopic understanding, we have performed a combined DFT and TDDFT 

study of the excitation spectrum of hydrogenated single-layer MoS2 by paying  special attention 

to changes in the excitonic properties as a function of coverage of hydrogen atoms. In addition, we 

analyze the electronic properties of single-layer MoS2 under adsorption of two other atoms with a 

single s electron in the outer shell - Li and Na. As we shall see, only H as an adsorbate creates non-

hybridized and well-isolated hydrogenic states within the bandgap, bringing forth new excitonic 

states that enrich the excitonic properties of pristine single-layer MoS2.  

7.2 Computational Details 

 We performed calculations based on DFT with the plane-wave and pseudopotential methods as 

implemented in the Quantum Espresso package [66]. We treated exchange correlation effects 

within the generalized gradient approximation in the form developed by Perdew–Burke–Ernzerhof 

(GGA-PBE)  [15] and the local density approximation (LDA), as parameterized by Perdew and 

Zunger (LDA-PZ) [12]. We used ultrasoft pseudopotentials to describe the core-valence electron 

interactions.  For spin-orbit coupling (SOC), we treated the core electrons fully relativistically. We 
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applied kinetic energy cutoffs of 60 Ry and 360 Ry, respectively, for calculations of valence 

electron wave functions and electron density. We used a 16×16×1, 6×6×1,  4×4×1 Monckhorst-

Pack (MP) grid for k-point sampling of the Brillioun zone to generate a fine reciprocal-space grid 

for the 1×1×1, 3×3×1 and 5×5×1 cells,  respectively. We optimized atomic positions and lattice 

parameters, until the residual forces converged to less than 0.01 eV/Å. 

To calculate the excitonic binding energies we used the Density-Matrix TDDFT approach [33,38], 

in which the Kohn-Sham equation i
∂Ψ

𝑘⃗⃗⃗
(r⃗⃗,t)

∂t
= H(r⃗, t)Ψ𝑘⃗⃗(r⃗, t) is solved by using the following 

ansatz for the wavefunction: Ψ𝑘⃗⃗(r⃗, t) = ∑ c
k⃗⃗⃗
l (t)φ

k⃗⃗⃗
0l(r⃗)l , where φ

k⃗⃗⃗
0l(r⃗)  are the static DFT 

wavefunctions (l is the band index, k is the wave-vector) and c
k⃗⃗⃗
l (t) are their time-dependent 

coefficients. The sum in the ansatz is over all bands involved into the optical transitions. In this 

work, we use the two-band approximation which reduces the problem to finding  bilinear 

combination of the c-coefficients that constitute the density matrix: ρ
k⃗⃗⃗
lm(t) = c

k⃗⃗⃗
l (t)c

k⃗⃗⃗
m∗(t). Indeed, 

the elements of the density matrix define practically all properties of the system - the level 

occupancies (diagonal elements), electronic transitions (polarization), excitons (non-diagonal 

elements), etc. The density matrix elements satisfy the Liouville equation:  i
∂ρ

k⃗⃗⃗
lm(t)

∂t
=

[H(t), ρ(t)]
k⃗⃗⃗
lm , where H

k⃗⃗⃗
lm(t) = ∫ φ

k⃗⃗⃗
0l∗(r⃗)H(r⃗, t)φ

k⃗⃗⃗
0m(r⃗)dr  are the matrix elements of the 

Hamiltonian with respect to the static wave functions (Kohn-Sham orbitals). From the valence (v) 

and conduction (c) bands one can derive the TDDFT Casida equation [116], in the Tamm-Dancoff 

approximation [117], for   ρ
k⃗⃗⃗
cv(ω) that describes exciton states by using the linear form of the 

Liouville equation[33]:  
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∑ [(ε
k⃗⃗⃗

c
− ε

k⃗⃗⃗

v
)δ

k⃗⃗⃗k⃗⃗⃗′
+ Fk⃗⃗⃗k⃗⃗⃗′]ρ

n,k⃗⃗⃗′

cv
(ω)k⃗⃗⃗′ = Enρn,k⃗⃗⃗

cv
,  ( 7.1 ) 

where ε
k⃗⃗⃗
c   and  ε

k⃗⃗⃗
v are the free electron and hole energies at the specific wave vector (providing 

their energy dispersion), ρ
n,k⃗⃗⃗′
cv (ω)  is the Nk -component of the polarization vector (Nk  is the 

number of points in momentum space), n numbers the excited state, and  Fk⃗⃗⃗k⃗⃗⃗′  is the TDDFT 

effective electron-hole interaction: 

Fk⃗⃗⃗k⃗⃗⃗′ = ∫ dr⃗1dr⃗2φk⃗⃗⃗

0c∗
(r⃗1)φ

k

0v
(r⃗1)fXC(r⃗1, r⃗2)φ

k⃗⃗⃗′

0v∗
(r⃗2)φ

k⃗⃗⃗′

0c
(r⃗2)  ( 7.2 ) 

defined by the exchange-correlation (XC) kernel fXC(r⃗1, r⃗2) . To obtain the excitonic binding 

energies, we solve  Eq. (1) using both the long-range (LR) and Slater XC kernels[38], as 

implemented in the BEE code that we have developed [33,40]. We use periodic boundary 

conditions along x and y-axis and added a 15 Å vacuum along z-axis to eliminate the interaction 

between the model 2D system and its periodic images. To simulate the system with different 

concentrations of H, Li and Na coverage we used 1×1×1, 3×3×1, and 5×5×1 size supercells, which 

gave us three adsorbate coverages - full, 1/9, and 1/25, respectively.  

The LDA-PZ eigenenergies and ε
k⃗⃗⃗

a
  and eigenfunctions  φ

k⃗⃗⃗
0a(𝑟) are used to construct and solve the 

exciton eigenenergy equation (Eq. 7.1). The solution of Eq.(1) was obtained for the k-point set for 

the irreducible Brillouin zone. An approach similar to the above when applied to calculate the 

exciton and trion binding energies in several TMDCs produced results in reasonable agreement 

with experimental observations [32]. 
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Once the electronic spectrum and the exciton eigenenergies En  and the corresponding ( Nk -

component) eigenvectors ρ
n,k⃗⃗⃗

cv
  were found by solving Eq. (7.1), we calculated the absorption 

spectrum in the usual manner:   

A(ω) = −Im
1

π
∑

fn

ω−En+iδn  .  ( 7.3 ) 

In Eq. (7.3) the summation is performed over excited states n between the initial state valence −

band and final conduction − band states; fn is the oscillator strength of the transition [116,118]: 

fn =
2

3
En|d⃗⃗n|

2
, ( 7.4 ) 

where 

d⃗⃗n = ⟨0|r⃗|n⟩ = ∑ √
2En

0

En
ρ

n,k⃗⃗⃗

cv
   𝑑𝑘

𝑣𝑐
k⃗⃗⃗ ≡ ∑ √

2En
0

En
ρ

n,k⃗⃗⃗

cv
  ⟨φ

k

0v
(𝑟)|𝑟|φ

k

0c
(𝑟)⟩ k⃗⃗⃗   ( 7.5 ) 

is the transition dipole moment from the ground (0) to the excited state n and En
0 and En are, 

respectively, the energies the excited state calculated within DFT and TDDFT, respectively.  The 

summation in Eq.(7.5) is performed over Nk points the irreducible zone obtained using the grid 

scheme as described above and corresponds to all possible vertical transitions from the valence to 

the conduction band. Finally, in Eq.(7.3) we used 𝛿 = 0.1.  We calculated both TDDFT and DFT 

absorption spectra (in DFT case one puts in Eq. (7.5) En → En
0 ) and for ρ

n,k⃗⃗⃗

cv
 – the eigenvectors 

obtained by solving Eq.(7.1) at  Fk⃗⃗⃗k⃗⃗⃗′ = 0). 

 The emission spectra were obtained from the absorption spectrum A(ω) by multiplying it by the 

Planck factor [119]: 
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E(ω) =  
4𝜋𝜔4

𝑒
𝜔−∆

𝑇 −1

 A(ω) ,   ( 7.6 ) 

where Δ is the optical gap  in the system (the difference between the energy of lowest-excited 

state and the energy at the top of valence band) and for temperature we used a representative 

temperature T = 0.01eV  (i.e., of order of room temperature). The spectrum at lower temperatures 

will be similar, but with more narrow peaks.  

To sketch the spatial charge distributions of the electron and the hole comprising the exciton, we 

used the fact that the excited charge density can be expressed in term of the DFT wave functions 

and Liouville matrix elements as: 

δn(r⃗, t) = ∑ (|Ψk⃗⃗⃗
(r⃗, t)|

2
− |Ψk⃗⃗⃗

(r⃗, 0)|
2

)

k<kF

 

= ∑ (ρ
k⃗⃗⃗
cv(t)φ

k⃗⃗⃗

0c
(r⃗)φ

k⃗⃗⃗

0v∗
(r⃗) + ρ

k⃗⃗⃗
vc(t)φ

k⃗⃗⃗

0v
(r⃗)φ

k⃗⃗⃗

0c∗
(r⃗) + ρ

k⃗⃗⃗
cc(t)φ

k⃗⃗⃗

0c
(r⃗)φ

k⃗⃗⃗

0c∗
(r⃗))k<kF

.  ( 7.7 ) 

The first and second terms above correspond to excitation and deexcitation processes, respectively, 

and the third to the charge in the conduction band.  The change of the charge density due to creation 

of the exciton in state n is: 

|Ψ
X,n

(r)|
2

 = ∑ ρ
n,k⃗⃗⃗

cv
 φ

k⃗⃗⃗

0c
(r⃗)φ

k⃗⃗⃗

0v∗
(r⃗)k<kF

.  ( 7.8 ) 

For clarity in visualization of the calculated exciton charge distribution (for  n=1), we plotted 

individual contributions of the electron and hole charges as ∑ ρ
1,k⃗⃗⃗

cv
φ

k⃗⃗⃗

0c
(r)φ

k⃗⃗⃗

0v∗
(0)k<kF

 and 

∑ ρ
1,k⃗⃗⃗

cv
 φ

k⃗⃗⃗

0c
(0)φ

k⃗⃗⃗

0v∗
(r⃗)k<kF

 (i.e., by fixing the electron or the hole coordinate to be zero), 

correspondingly.  



    

119 

 

7.3 Results and Discussion 

In this section, we summarize the results of our calculations and their analysis. We first focus on 

the electronic structure of the pristine and hydrogenated single-layer MoS2. This is followed by 

considerations of the binding energy of the excitons in Sec. 7.3.2.  In Sec. 7.3.3 we discuss the 

calculated absorption and emission spectra of the systems of interest which provides a connection 

with the observed PL data and finally in Sec. 7.3.4, we examine the details of the charge 

distribution related to the excitons being investigated.  Our conclusions are summarized in Sec. 

7.4. 

7.3.1 Electronic structure of pristine and hydrogenated single-layer MoS2  

For pristine and hydrogenated single layer MoS2, shown schematically in Figure 7.1, after ionic 

relaxation, we found the optimized lattice constant to be 3.124 and 3.186 Å, with LDA and PBE, 

respectively, in a good agreement with previous calculations [120].  The direct bandgap at the K 

point is ∼ 1.78 eV and 1.66 eV for LDA-PZ and GGA-PBE, respectively which is also in 

agreement with  previously reported theoretical [121,122] and experimental values [93,123] 

(though, in the experimental case the agreement is accidental, since the measured gap is defined 

by excitonic states).   The band structure obtained using the PBE optimized lattice constant of  

single-layer MoS2 is shown in Figure 7.2.   

Hydrogenation leads to a significant modification of the band structure. We varied the number of 

H atoms from dilute limit (1/25) to full coverage. For  full hydrogen coverage, the system is in the 

metallic regime as evident from the band structure in Figure 7.3(a) and the projected DOS are 

shown in Figure 7.4(a). At low coverages (hydrogen concentrations 1/9 and 1/25) the system 
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remains gapped and the electronic band structure includes partially-occupied spin-polarized mid 

gap states – occupied spin-up states and empty spin-down states (Figure 7.5).These spin-polarized 

states are present in the dilute limit of the hydrogen concentration and are stable at least up to 

concentration ~10%. 

 

Figure 7.1: Schematic representation of (a) pristine,  top view and (b) top view and (c) side view 

of hydrogenated MoS2 used in the calculations. Large green balls represent Mo atoms, yellow balls 

represent S atoms , and blue balls represent H atoms, respectively 

 

Figure 7.2: Calculated band structure of pristine single-layer MoS2 obtained by using GGA-PBE. 

The blue and red colors represent the contribution of the S-p and Mo-d orbitals, respectively. 
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In the case of fully hydrogenated MoS2, the system is in a paramagnetic metallic  state.  One can 

give the following reasoning for the above differences in the spin polarizations of the systems. 

While in the unpolarized case of full coverage the hydrogen atoms adsorb “vertically” on S atoms, 

for partial H coverage, the angle between the H-S bond and MoS2 plane is smaller than 90 degrees 

(tilted H-S bonds, see Figure 7.1(c)). This difference in bonding results in different spin-state 

occupancies. Namely, for full-coverage the H 1s- and S 2pz-charges involved in the bonding and 

antibonding hybridized  levels  include only the z-components of the orbitals, while in the tilted 

case the hybridized states include also px and py orbitals of the sulfur atoms. As a result, there is a 

lower contribution of z-component of the orbital momentum of the H-S subsystem in the partially-

covered case as compared to that of full coverage. Such a decrease of the orbital momentum of the 

H-S subsystem is compensated by an increase of its spin, i.e. in the partially covered system one 

obtains hydrogen states with a finite spin. 

We have also performed corresponding calculations with adsorbed Li and Na atoms and found the 

systems to be in a paramagnetic metallic state at all values of adatom concentration (see Figure  

7.3(b), 7.3(c), 7.6(a) and 7.6(b), and also Refs.[124,125]). A possible reason for this is the larger 

radius of the s-orbitals of Li and Na that is responsible for stronger hybridization of these states 

with those of MoS2, and hence their delocalization, and diminished effects of spin-polarization. 
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Figure 7.3: Band structure of MoS2 fully covered with (a) hydrogen (b) lithium (c) sodium, 

calculated using GGA-PBE. The blue shades represent the contribution of the H, Li, Na-s states 

and red those of Mo and S orbitals.  Here and in Figs. 7.5 and 7.6, the horizontal black lines mark 

the Fermi energy. 

 

Figure 7.4: Projected density of states (PDOS) of MoS2 fully-covered with  (a) hydrogen, (b) 

lithium and (c) sodium atoms. The results are obtained with GGA-PBE. 
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Figure 7.5: Band structure of hydrogenated MoS2 at (a) 1/9 coverage and (b) 1/25 coverage 

obtained with GGA-PBE. Spin-up and spin-down states are shown in red and blue colors, 

correspondingly 

 

Figure 7.6: The same as in the previous figure in the case of MoS2 for 1/9 coverage by Li (a) and 

Na (b) atoms. 
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7.3.2  Binding energies of excitons 

In the pristine system, excitons are formed by conduction-band electrons and valence-band holes 

(Figure. 7.7). The excitonic binding energy ~1.067eV obtained with the Slater XC kernel  is  of 

the same order of magnitude (albeit 2 times larger) when compared with experimental data (0.22-

0.57eV) [126,127]. In the case of hydrogenated systems, the variety of excitonic states is much 

richer. As shown schematically in Figure 7.8, one may expect bound states of electrons and holes 

formed by both MoS2 and hydrogen bands.  Solving Eq.(7.1) for the combinations of electron and 

hole bands in Figure 7.8, we find that the corresponding binding energies are noteworthy, 

especially for the lower (1/25) coverage (see Table 7.1). 

 

Figure 7.7:Schematic representation of e-h pair forming the exciton in the non-hydrogenated 

system. 

Smaller binding energies of the “standard” B exciton for the higher (1/9) coverage can be traced 

to enhanced screening effects arising from H electrons, and smaller binding energy of the 

hydrogen-state exciton, i.e. by hybridization of the “excitonic” hydrogen states with those of the 

surrounding H atoms resulting in weakened electron-hole interaction.  The strongest binding 
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energy and the strength (i.e. probability of the transition to the corresponding exciton state, defined 

by Eq. (7.4)) was found for the C exciton, in which both electron and hole are localized on 

hydrogen atoms. This can be related to the local character of the charges that form the exciton. As 

mentioned above, the strength of this state decreases with increasing coverage. Another important 

result is the enhanced strength of the mixed excitonic states A and B at 1/9-coverage due to larger 

hybridization of the hydrogen and MoS2 states at higher coverages (when the hydrogen electrons 

are more spread out over the surface).  

Table 7.1: The calculated exciton binding energies in meV and the corresponding dipole strengths, 

using the BEE code, for two coverages of hydrogen. The different types of excitons (A-D) are 

defined in Figure. 7.8. The dipole strengths are given in units of the strength. 

   1/25 Coverage   1/9 Coverage  

Exciton Slater LR Strength Slater LR Strength 

A -63.708 -61.346 0.05 -2.406 -1.885 5 

B -57.016 -57.009 1 -1.126 -0.679 1 

C -82.592 -97.578 47 -26.771 -40.25 27 

D -57.043 -57.053 0.1 -1.054 -0.834 6 
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Figure 7.8: Schematic representation of possible excitonic states in the hydrogenated system. 

7.3.3 Absorption and emission spectra 

In Figure 7.9, we plot the absorption and emission spectra for the pure and the 1/25 hydrogenated 

MoS2 in the two-band approximation, as obtained using both DFT and TDDFT (Slater XC kernel), 

to highlight the difference. (In the hydrogenated case, the bands are the occupied and unoccupied 

mid-gap hydrogen bands).  

 

Figure 7.9: Comparison of TDDFT (black curves) and DFT (blue curves) results. Top row: 

absorption (a) and emission (b) spectra of single-layer MoS2 . Bottom row: absorption (c) and 

emission (d) spectra of the MoS2-H system with 1/25 hydrogen coverage. 
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As expected  the DFT optical spectra ( Figure 7.9) does not account for the presence of excitons, 

because of deficiencies in DFT with regard to exchange-correlation effects and because it is a 

theory suitable mainly for the system in its ground state. Both absorption and emission spectra are 

missing the excitonic contribution. What is more important here is that the emission spectrum of 

the hydrogenated system is in the infra-red frequency range (the peak of the spectrum is at ~0.15 

eV), while in the pristine system it is in the visible range (taking into account the fact that the DFT 

electronic bandgap 1.78 eV is ~1eV smaller than the experimental one [126]). The quench of the 

visible photoluminescence in single-layer MoS2 after hydrogenation is in agreement with 

experimental observations [101]. 

7.3.4 Exciton charge distribution 

For visualization of the size of the excitonic states, we have calculated charge distributions for the 

electron and hole states that form the valence-conduction and hydrogen-band excitons B and  C 

(the “standard” and the strongest-bound excitons, see Figure 7.8) at different coverages. The 

results shown in Figure 7.10 find the size of the excitons to be several angstroms for both cases. 

Importantly, the electron and hole that form the hydrogen-band exciton are not localized on the 

same atom (Figure 7.10(a) and 7.10(b)).   
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Figure 7.10: The distribution of the hole (h) and electron (e) charges for the lowest energy excitonic 

states formed by different band charges: (a) top valence band (VB-h), two hydrogen (initially one 

occupied); (b) H-h and one empty; (c) H-e bands; and (d) bottom conduction band (CB) states for 

the 1/25 hydrogen density. The charge densities in (b) and (c) correspond to exciton C and those 

in (a) and (d) to exciton B defined in Fig.7.8.  The lateral dimensions of the super cell, X and Y, 

are in Å. 

7.4 Conclusions 

We have studied electronic and excitonic properties of hydrogenated single-layer MoS2, at three 

coverages, using a combined DFT and TDDFT approach.  Our calculations show that for partial 

hydrogen  coverage the system  acquires spin-polarized mid gap states, and at full coverage 

transforms into a paramagnetic metal. The situation is very different with other s-orbital adsorbates 

- Li and Na – which produce a metallic regime at all coverages. We trace the difference in behavior 

to a weaker hybridization of H electrons with each other and MoS2 states, owing to the smaller 
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radius of the H-s wave function, compared to those of Li and Na, which produces localized mid-

gap hydrogen states (flat bands).  

We have further demonstrated that these spin-polarized states play a very important role in the 

absorption and excitonic properties of the system, resulting in a dominating hydrogen excitonic 

state with infrared absorption and emission, in contrast to the visible spectra exhibited by pure 

MoS2. This result is in agreement with experimental data [101].  The existence of a mid-gap 

excitonic state in a hydrogenated 2D TMDC which has relatively large binding energy and long 

lifetime (large dipole strength) is an important finding by itself, one that may have applications in 

energy harvesting technologies.  
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CHAPTER 8:  ULTRAFAST CHARGE DYNAMICS AND 

PHOTOLUMINESCENCE IN BILAYER MoS2 

Our examination of the interplay of ultrafast charge dynamics and electron-phonon interaction in 

bilayer MoS2 provides a microscopic basis for understanding the features (two peaks) in the  

emission spectrum.  We demonstrate that while the initial accumulation of excited charge occurs 

at and near the Q point of the two-dimensional Brillioun zone, emission  takes place predominantly 

through two pathways:  direct charge recombination at the K point  and indirect phonon-assisted 

recombination of electrons at the K valley and holes at Γ hill of the Brillouin zone. Analysis of the 

wave vector dependencies of the electron-phonon interaction traces the higher energy peak to 

phonon-assisted relaxation of the excited electrons from the Q to the K valley in the conduction 

band. Our results thus reveal the importance of ultrafast charge dynamics in understanding 

photoemissive properties of a few-layer transition-metal dichalcogenide. These calculations are 

based on time dependent density functional theory in the density matrix formulation. 

8.1 Introduction 

Transition metal dichalcogenides (TMDCs) form a layered structure with strong in-plane and weak 

out-of-plane interaction [128,129]. As is now well known, in TMDCs such as MoS2, MoSe2, WS2 

and WSe2 the bandgap that changes from indirect to direct as the thickness of the TMDC reduces 

to that of a  single layer, making it suitable for applications in transistors, photodetectors and 

electroluminescent devices [93,126,129-134]. Single-layers of the above mentioned TMDCs, in 

particular of MoS2, have received significant attention also because of their extremely high 
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photoluminescence (PL), a band gap that lies in the visible spectrum, and strong binding energy 

of excitons [93,126]. 

Bilayer molybdenum disulfide is also a system with remarkable characteristics. It has even higher 

electron mobility and density of states, as compared to single-layer, showing great potential for 

DC and high-frequency electronic applications [135], and with Bernal stacking, sensitive to 

electric field.  Bilayer MoS2 also demonstrates strong PL [126,136-139], and similar to the 

monolayer, it has strongly bound (~100-300 meV) excitonic states [140-143]. However, unlike the 

single layer, bilayer MoS2 displays two distinct peaks in the PL: one at an energy below (~1.6 eV) 

and the other at the same energy (~ 1.9 eV) as that for the single layer [126,141].  While the peak 

around 1.9 eV, emerging from the direct band gap in single layer MoS2, remains unchanged for 

the bilayer, the dependence of the lower energy peak, corresponding to the indirect band gap, has 

been the subject of several investigations [141,144] in which  the nature of stacking and twist angle 

between the two layers has been varied [141]. These studies confirm  the existence of weak 

interlayer tunnel coupling and strong intralayer electrostatic coupling [144], typical of the TMDCs. 

They also point to tunability of the interlayer coupling by twisting the layers relative to each other, 

providing one more avenue for manipulating the optoelectronic properties of few layer MoS2. 

Transport [145], emissivity [146], and electronic [147] properties may be tuned by pressure, and 

Berry curvature, and spin and valley Hall effects, may be manipulated by an applied electric field 

[148]. With promising optoelectronic applications, the characteristics of the charge carriers and 

their bound forms, excitons, biexcitons and trions have been examined [149-152].  The role of 

characteristic vibrational modes [153-155] and electron-phonon coupling [155] in controlling the 
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optical properties on few layer TMDCs has also been the subject of intense research and debate 

(see also  [143] and references therein).  

More germane to this work, analysis of properties at the picosecond timescale of a few-layer MoS2, 

showed [156] that nonradiative relaxation mechanisms dominate the carrier dynamics in the 

system, leading to the speculation that dynamical processes such as valley charge redistribution 

will come into play before radiative emission. In fact, application of bias voltage was found to 

drive charges between different band minima [136], resulting in sub-room temperature 

dissociation of trions which, for the single-layer are stable at room temperature. Although the 

timescale of involved dynamical processes was not discussed by Kümmell et al. [136], the above 

results suggest that bias voltage can be a knob for tuning exciton and trion emission through 

transfer of charge between the layers. In related theoretical work a phenomenological model was 

proposed  [157] to analyze the picosecond valley depolarization dynamics under an external 

electric-field. Tight binding models have also been applied to examine inter-subband transition 

rates in e- and h-doped systems [158]. 

Illustrative as the above experimental and theoretical studies have been in exposing the band 

structure, vibrational dynamics, and optical properties of 2L MoS2, they have not tracked the 

microscopic processes responsible for the emissive properties of 2L MoS2. In particular, the 

following questions have not been addressed: What is the effect of electron-phonon coupling on 

the intervalley charge dynamics at ultrafast time scales? What are the contributions of the different 

valleys to the emission spectrum? Answers to these questions would provide a systemic 

understanding of the response of 2L MoS2 to an ultrafast (femtosecond) pulse, which would in 

turn help manipulate system properties for potential ultrafast applications. With the above in mind, 
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we have applied time dependent density functional theory (TDDFT) in the density matrix 

formalism to examine the temporal evolution of excited charges in the presence of electron-phonon 

interaction and their impact on the emission spectrum. To isolate the effect of electron-phonon 

interactions, we have neglected electron-electron and electron-hole interactions (i.e. excitonic 

effects are ignored), whose inclusion would have small quantitative effect and will not change the 

main conclusions in this work. We calculate phonon dispersion curves and the electron-phonon 

coupling constant using density functional perturbation theory (DFPT), within the harmonic 

approximation. We then include electron-phonon interaction phenomenologically in the Liouville 

equation via additive many-body scattering terms,  in the spirit of semiconductor Bloch equations 

[152].  The details of computational methods are provided in section 8.2. For completeness, the 

calculated electronic structure is summarized in section 8.3. Results for the electron-phonon 

coupling coefficients are discussed in section 8.4, and that for the relaxation of excitations are 

presented in section 8.5, while the calculated emission spectra are presented in section 8.6. Our 

conclusions are summarized in section 8.7. 

8.2 Theoretical and Computational Methods 

8.2.1 Calculations of Electronic Structure   

We performed calculations based on DFT with the plane-wave and pseudopotential methods as 

implemented in the Quantum Espresso package [66]. We treated exchange correlation effects 

within the generalized gradient approximation in the form of Perdew–Burke–Ernzerhof (GGA-

PBE)  [15],  and used ultrasoft pseudopotentials to describe the core-valence interactions. As 

already mentioned, 2L MoS2 is a material with van der Waals inter-layer interaction, whose 
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contribution  we included using the vdW-DF2 method [20]. To mimic single-layer and bilayer, we 

applied periodic boundary conditions along x and y-axis and added a 15 Å vacuum along z-axis to 

eliminate any interaction of the system with its periodic image. For calculations of the bulk system 

we used two MoS2 formula units (12.37 Å thickness) and applied periodic boundary conditions 

along all three coordinate axes. Side and top view of the bilayer are presented schematically in 

Figure 8.1. We described the valence wave functions, and electron density by plane-wave basis 

sets with kinetic energy cutoffs of 60 Ry and 360 Ry, respectively.  We sampled the first Brillouin 

zone with a 14 × 14 × 14 Monkhorst-Pack grid for the bulk system and 14 × 14 × 1 grid for the 

single and bilayer systems. We optimized atomic positions and lattice parameters, until the residual 

forces converged to less than 0.01 eV/Å.  

Note that at the outset we include spin-orbit coupling (SOC) by treating the core electrons fully 

relativistically. These SOC calculations are essential for identifying the splitting at the Brillouin 

zone edge and at the top of the valence band for the single layer. We thus quantified the splitting 

(between the spin-up and spin–down bands) of valence band edge at the K point to be 150 meV, 

in good agreement with the experimental value of 141 meV [159], and verified that they display 

opposite spin ordering  at K and K’ points. For the remaining calculations we chose not to 

distinguish the spins of the excited electrons and thus did not include SOC in the results that are 

presented below. The effect of SOC on the observables of interest here is negligible, and not worth 

the extra computational cost. 
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8.2.1 Calculations of the phonon spectrum and electron-phonon coupling coefficients  

We used density functional perturbation theory (DFPT) as implemented in the Quantum Espresso  

code [66], to first calculate the dispersion of the phonons across the Brillioun zone. For calculations 

of phonon frequencies, the residual forces were converged to less than 0.0001 eV/Å. Next, we 

calculated the electron-phonon coupling coefficients using the DFT results for the ground-state 

atomic and electronic configurations, the corresponding wave functions and band structure, and 

the calculated phonon dispersion. The quantities of interest are the electron-phonon scattering 

coefficients given by  

g q⃗⃗⃗𝑣(k, i, j) = (
ℏ

2Mωq⃗⃗⃗𝑣

)

1
2⁄

⟨ψ
k⃗⃗⃗
𝑖 |

dVSCF

dûq⃗⃗⃗𝑣
. ϵ̂q⃗⃗⃗𝑣|ψ

k⃗⃗⃗+q⃗⃗⃗

𝑗
⟩ ( 8.1 ) 

which correspond to the scattering of electron from state i (momentum 𝑘⃗⃗) to state j (momentum 

𝑘⃗⃗ + 𝑞⃗) due to absorption (emission) of phonon with mode index 𝑣 and momentum 𝑞⃗(−𝑞⃗). In Eq. 

(8.1) M is atomic mass; ψ
k⃗⃗⃗
𝑖  and ψ

k⃗⃗⃗+q⃗⃗⃗

𝑗
  are the electronic wavefunctions for the initial and final 

states, respectively; 
dVSCF

dûq⃗⃗⃗𝑣
 is the gradient of the self-consistent potential with respect to the atomic 

displacements induced by the phonon mode (𝑞⃗,v) with frequency ω𝑞⃗⃗𝑣 and polarization vector ϵ̂𝑞⃗⃗𝑣. 

With the above definition of g𝑞⃗⃗v(𝑘⃗⃗, i, j), one can obtain the phonon line widths: 

γ𝑞⃗⃗ν = 2πω𝑘⃗⃗ν
∑ ∫

d3k

ΩBZ
|g𝑞⃗⃗v(𝑘⃗⃗, i, j)|

2
δ(𝜀𝑞⃗⃗

𝑖 − εF)δ (𝜀
𝑘⃗⃗+𝑞⃗⃗

𝑗
− εF)i,j ,  ( 8.2 ) 

where ΩBZ is the volume of the first BZ, 𝜀𝑞⃗⃗
𝑖  is the energy of the electron in the state (band) i and 

with momentum 𝑞⃗, and εF is the Fermi energy. This brings us to the electron-phonon coupling 

constant for the corresponding phonon mode ν with the wave vector q: 
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λ𝑞⃗⃗ν =
γ𝑞⃗⃗⃗ν

πℏN(εF)ω
𝑞⃗⃗⃗ν
2   ( 8.3 ) 

where N(εF) is the electron DOS at the Fermi level. Using the results for the coupling constant 

(8.3) and phonon dispersion ωqv, one can obtain the isotropic Eliashberg spectral function: 

α2F(ω) =
1

2
∑ ∫

d3q

ΩBZ
ω𝑞⃗⃗νλ𝑞⃗⃗νδ(ω − ω𝑞⃗⃗ν)ν .  ( 8.4 ) 

8.2.2 Time dependent excited state charge densities and emission spectra 

Input from above DFT calculations form the basis for the code based on Density-Matrix Time 

Dependent Density Functional Theory (DM -TDDFT) [33,40] that we used to calculate excited 

state charge densities and the emission spectrum. However, as mentioned above the exchange-

correlation kernel was set to zero. Details of the calculations of the time-dependence of the excited 

charge density may be found in the APPENDIX A and in Ref [160] (in which the formalism is 

given for the more general spin-polarized case). 

To study the effect of electron-phonon coupling on excited-charge dynamics we solved the 

density-matrix Liouville equation with the scattering term (Bloch equations for semiconductors): 

∂ρk
lm(t)

∂t
= [H, ρ]K

lm(t) ≡ ∑ (Hk
ln(t)ρk

nm(t) − ρk
ln(t)Hk

nm(t))n + (
∂ρk

lm

∂t
)

scatt
,  ( 8.5 ) 

where 

Hk
ml(t) = ∫ ψk

m∗(r)Ĥ(r, t)ψk
l (r)dr ( 8.6 ) 

are the matrix elements of the Kohn-Sham Hamiltonian with respect to the static DFT wave 

functions, and (
∂ρk

lm

∂t
)

scatt
 are the scattering terms whose details are provided in the SI. Recall that 

the inherent relationship between the wavefunction and density matrices follows from  the time 
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dependent Schrodinger equation i
∂Ψ

𝑘⃗⃗⃗
(r⃗⃗,t)

∂t
= H(r⃗, t)Ψ𝑘⃗⃗(r⃗, t) when one uses the ansatz Ψ𝑘⃗⃗(r⃗, t) =

∑ c
k⃗⃗⃗
l (t)ψ

k⃗⃗⃗
l (r⃗)l , where ψ

k⃗⃗⃗
l (r⃗)  and c

k⃗⃗⃗
l (t)  are the static DFT wavefunctions and time-dependent 

coefficients, respectively (l is the band index, k is the wave-vector). the problem then reduces to 

finding the coefficients c
k⃗⃗⃗
l (t), or their bilinear combination ρ

k⃗⃗⃗

lm
(t) = c

k⃗⃗⃗
l (t)c

k⃗⃗⃗
m∗(t), the density 

matrices, which satisfy the Liouville equation. 

The strength of the transition dipoles corresponding to the photon-induced electronic transitions 

was calculated from the dipole moment d⃗⃗
k⃗⃗⃗
lm:  

|d⃗⃗
k⃗⃗⃗
lm|

2
= |𝑒 ∫ ψ

k⃗⃗⃗
l∗(r⃗)𝑟ψ

k⃗⃗⃗
m(r⃗)dr|

2
.  ( 8.7 ) 

The electron-phonon coupling terms defined in Eqs. (8.1) - (8.3) were used to calculate the 

scattering terms in the TDDFT Bloch equations from the many-body Bloch equations derived for 

the electron-phonon part of the Hamiltonian He−ph = ∑ ℏg q⃗⃗⃗νa
k⃗⃗⃗+q⃗⃗⃗
l+ a

k⃗⃗⃗
l (bq⃗⃗⃗

ν + b−q⃗⃗⃗
ν+)l,k⃗⃗⃗,q⃗⃗⃗,ν   (a and b are 

the fermion and phonon operators, correspondingly, l and ν are the electron and the phonon band 

indices and k⃗⃗, q⃗⃗ are momenta. For more details, we refer the reader to the SI and  to Ref. [152]. 

We next calculated the absorption spectrum: A(ω) =
ω

nbc
Im[ϵmac(ω)], where  c is speed of light, 

nb is the background refractive index, and  

ϵmac(ω) = 1 − 4πχKS(k⃗⃗ → 0, ω),   ( 8.8 ) 

is the macroscopic dielectric function related to the Kohn-Sham DFT susceptibility χKS as below: 
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χKS(k⃗⃗, ω) =
1

V
∑ ∑ ∑

(f
k⃗⃗⃗+k⃗⃗⃗′
l − f

k⃗⃗⃗′

j
)

ω + ε
k⃗⃗⃗′

j
− ε

k⃗⃗⃗+k⃗⃗⃗′
l + iδ

∞

𝑙=1

∞

j=1k⃗⃗⃗′

∫ d3rψ
k⃗⃗⃗′

j∗ (r⃗)r⃗ψ
k⃗⃗⃗+k⃗⃗⃗′
l (r⃗) 

                                                                           × ∫ d3r′ψ
k⃗⃗⃗+k⃗⃗⃗′
l∗ (r⃗′)r⃗′ψ

k⃗⃗⃗+k⃗⃗⃗′

j (r⃗′).       ( 8.9 ) 

In Eq. (8.9), ε
k⃗⃗⃗
l  and   ψ

k⃗⃗⃗
l (r⃗) are the Kohn-Sham DFT eigenenergies and eigenfunctions, f

k⃗⃗⃗
l  is the 

Fermi factor for the corresponding DFT state; and j and l are the (valence and conduction) band 

indices. In the results below we have included two valence and two conduction bands in the 

summations in Eq. (8.9). Further details may be found in Ref [38]. 

The emission spectrum is then obtained by simply multiplying the absorption spectrum A(ω) by 

the Planck factor [161]: 

E(ω) =
4πω4

e
ω−Δ

T −1

A(ω),   ( 8.10 ) 

where Δ is the optical gap in the system and the temperature is taken to be T = 0.01eV, a value of 

order of room temperature. Furthermore, we have incorporated the nonequilibrium excited charge 

density in the calculation of the emission spectrum. This is accomplished by multiplying the 

expression on the right-hand side of Eq. (8.10) by the total excited state charge density, at the time 

of interest, with energy ℏω  (at 400 fs in Figures 8.5(a) and 8.5(b) below). The rationale for doing 

so follows from the physics of lasers [162]: the probability of emission from the state with given 

energy is proportional to the number of excited atoms that have this energy.  



    

139 

 

8.3 Electronic Structure of bilayer MoS2 

In these single-layer TMDCs, the crystal structure is determined by just the lattice constant ‘a’. 

Our PBE calculations for the lattice constants for the bulk, bilayer, and single-layer MoS2 are 3.173 

Å, 3.172 Å, and 3.170 Å, respectively.  Using these optimized lattice constants, we have calculated 

the electronic band structure of bulk, bilayer, and single-layer MoS2, along the lines connecting 

high-symmetry points of the Brillouin zone (BZ), which are displayed in Figure 8.2 . 

 

Figure 8.1: Schematic representation of bilayer MoS2: (a) side view and (b) top view 

 The calculated band structure of all three systems (Figure 8.2) are in good agreement with 

previous reports[163-166]. Our calculated electronic density of states (DOS) and the projected 

density of states (PDOS) on Mo-d and S-p orbitals for these three systems presented in  Figure 8.3, 

show that the top of valence band and bottom of conduction band are contributed mainly by Mo-

d orbitals, with a strong hybridization of Mo-d and S-p orbitals. The valence band tail in PDOS of 

bulk systems diminishes in case of bilayer and ultimately vanished in case of the single layer. This 

is because the valence band edge at Γ  moves toward lower energy in case of bilayer and single 

layer, compared to that in the bulk, as we can see in Figure 8.2 .  The band structures  also show 
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that bulk and bilayer MoS2 are indirect band-gap semiconductors with the valence band maximum 

(VBMAX) and conduction band minimum (CBMIN) located at the Γ and Q points of the BZ, 

respectively. 

 

Figure 8.2: Band structure of (a) bulk (b) bilayer (c) and single-layer MoS2. Fermi level (horizontal 

blue line) is set to zero. The green dotted line shows the indirect gap for both the bulk and bilayer, 

and direct band gap for single-layer cases 

 

Figure 8.3: Total and Projected Density of States of (a) bulk, (b) bilayer and (c) single-layer MoS2. 

The blue lines represent total density of states; green and red lines represent the projected density 

of states of S-p and Mo-d orbitals, respectively. 

 

We also note that it is evident in Figure 8.2 ,  that the conduction band valley at the Q point starts 

shifting toward higher energy and the valence band hill at Γ point shifts toward lower energy, as 
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the thickness of the model system changes from bulk to two layers, while the valence band hill at 

the K point shifts toward higher energy. Note that for the single layer, the VBMAX and CBMIN 

are both located at the K point. From our calculations we find that the direct K→K gap for single-

layer MoS2 is 1.66 eV and the indirect Γ→ Q gaps for bulk and bilayer MoS2 are 0.92 and 1.49 eV, 

respectively. 

8.4 Electron-Phonon Coupling Coefficients for Bilayer MoS2 

We used the relaxed structure of bilayer MoS2 presented above to calculate phonon dispersion 

curves for bilayer MoS2 which are plotted in  Figure 8.4 (a).  

 

Figure 8.4: Phonon dispersion for bilayer MoS2 (a) and phonon density of states (b)  The horizontal 

dashed lines in (a) show the separation/gap of low frequency and high frequency phonon branches. 

The features seen in Figure 8.4 (a) are in general agreement with previous reports [155,167,168]. 

In bilayer MoS2, there are three acoustic branches: one longitudinal acoustic (LA), one transverse 

acoustic (TA), and one flexural acoustic (ZA). The LA mode reaches a value of 235 cm-1 at M 

point, and 245 cm-1 at K point. We note that there are no degeneracies at the M and K points, and 
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the two crossings of the LA and TA branches just before and after the M point. The high-frequency 

optical modes are separated from the low-frequency modes by a gap of 41 cm-1. We have drawn 

two horizontal blue dashed lines in the dispersion curve (Figure 8.4 (a)) to show the gap. In Figure 

8.4 (a ) the in-plane and out of plane vibrational modes are represented by E2g and A1g. with  ωqv 

from the calculated phonon dispersion curves in Figure 8.4, and using Eq.(8.1) to (8.3) above, we 

calculated the phonon band index-dependent phonon linewidths and electron-phonon coupling 

coefficients that are summarized in Figure 8.5. 

 

Figure 8.5: Calculated band index dependent phonon linewidths (a) and electron-phonon coupling 

constant (b) for the phonon bands at the special k-points of the two dimensional Brillioun zone 

(insets), for bilayer MoS2. 

The largest contribution to the linewidth comes from the A1g  mode at the Γ point. As for the 

electron-phonon coupling, it is the LA mode at the K point that is most dominant, this is followed 

by the contribution from  A1g mode at the Γ point.  From the results in Figure 8.5 (a ), we can also 

infer the lifetimes of the contributing phonon modes are longer than 16 ps, which means that their 
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effect would be very meaningful in our analysis charge dynamics of the system in the hundreds of 

femtosecond time scale.  Our results for the total and band-resolved α2F(ω) (Eliashberg function) 

shown in Figure 8.6 (a) and (b) are reflective of similar trends in the phonon DOS (Figure 8.4 (b)), 

demonstrating that phonons with energies 350-400 cm-1 (43-50 meV) play a dominant dole in the 

dynamics of the system.  

 

Figure 8.6: Eliashberg spectral function (𝛼2𝐹(𝜔))for bilayer MoS2: (a) contribution from all 

modes, (b) modes resolved contributions. 

To compare the phonon properties of bilayer and single-layer MoS2, in Figure 8.7 we present the 

results for the phonon linewidths and electron-phonon coupling constants and in Figure 8.8– the 

results for the Eliashberg function for the single-layer system. From Figure 8.7, it follows that in 

the single-layer case, the K- and Γ-momenta phonon modes are not dramatically distinguished 

from the other k-point modes, contrary to the bilayer case. As we show below, a strong electron-

phonon coupling at phonon momentum K is responsible for a strong indirect emission in the 
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bilayer system. Comparison of the Eliashberg functions in the two systems (Figure 8.6, 8.8) shows 

that while in the bilayer case A2g phonons (frequency ~400cm-1) play dominant role in the coupled 

electron-phonon system, in the monolayer case TA (~180cm-1) is the dominant phonon band. On 

the other hand, the combined contribution of the ZO1 and ZO2 modes to the Eliashberg function in 

the single-layer system gives the second sharp peak at ~400cm-1, similar to the case of bilayer.  

 

Figure 8.7: Calculated phonon linewidths for single layer MoS2 (a) and electron-phonon coupling 

constant (b) for different  bands and k-points. In the insets, the used k-points are defined 

 

Figure 8.8: Eliashberg spectral function (𝛼2𝐹(𝜔)) for single layer MoS2: (a) contribution from all 

modes, (b) modes resolved contributions 
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5.  Electron-Phonon Mediated Relaxation of Excitation in Bilayer MoS2 

 

Figure 8.9: Top: Schematic representation of excitation and recombination processes that lead to 

photoluminescence. Bottom: relative excited charge accumulated initially after the pulse (black) 

and after dynamics  (green) with k-points in the Brillouin zone. 

To get a physical insights into the excitation and emission process of the system at hand, we first 

calculated the momentum-resolved density of the pumped charges excited from the two top 

valence bands (labeled v1 and v2 in Figure 8.9) to the two lowest conduction bands (labeled c1 

and c2 in Figure 8.9) in the case of a 100 fs pulse with an electric field magnitude 1V/Å, using Eq. 

(8.5) and with no electron-phonon interaction for the set of k-points shown in Figure 8.9. Also, we 

calculated the excited charge density for the same set of k-points at longer times (400 fs) after the 

electron-phonon scattering effects are taken into account (see Figure 8.10 and the discussion 

below). The results for both charge densities are shown in bottom Figure 8.9. The pulse excites 

the electrons from the valence to the conduction bands through vertical transitions (photon 

momenta are very small). As one can see from Figure 8.9 (black columns), the amount of the 
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“pumped” excited charge is maximum between Q and Γ point of the BZ, which can be explained 

by a combination of two factors: high valence-bands DOS along these k-points (the bands are 

almost flat) and a relatively shorter separation, between the valence and conduction bands, 

compared to that at other k-points. The high density of the excited charges in another part of the 

BZ – between Γ and M points – can be explained similarly.  The results for the time dependence 

of the excited charge density at different k-points that correspond to the total pumped charges in  

Figure 8.9 are shown in Figure 8.10 (a). We normalized the charge densities at all k-points to the 

same saturated (after 200 fs) value for a better visualization of their difference once electron-

phonon interaction is taken into account. We then calculated the excited state occupancies by 

including the electron-phonon scattering term in Eq. (8.5). As shown in Figure 8.10 (b), the 

occupancies at most of the k-points start to decrease after 200 fs, as electron-phonon coupling 

starts to play a role in scattering electrons out of the Q valley into the K valley. We can see that 

the originally highest-populated Q-valley gets significantly depopulated with electron-phonon 

interaction, in contrast to what happens in the K-valley. The “final” excited charge density at 

different k-points is shown in the bottom of Figure 8.9 (green columns). We also include a 

schematic representation of the electron relaxation due to electron-phonon interaction in the top 

panel of Figure 8.9. The energy required to move an electron from Q valley to K valley of 

conduction band can be estimated by the energy difference of these two valleys, ~ 40 meV. Recall 

from the analysis of the phonon spectrum that the effective (average) phonon energy is also about  

40 meV (see Figure 8.4 (b) for the phonon DOS). Indeed phonons  that populate this energy range 

must be responsible for the inter-valley charge transfer. Thus, we conclude here that electron-

phonon coupling is the main source of depopulation of excited state occupancies at points other 
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than K valley. At the K point, the major contribution to electron-phonon coupling arises from the 

low frequency longitudinal acoustic modes (see Figure 8.5 (b)) which do not affect the occupancy 

of the excited state. It is important to note that an inter-valley electron and hole dynamics was 

reported in work [27] in the case of five-layer MoS2. Similarly, to our results, the inter-valley 

transitions happen at a few hundred-fs timescale. However, due to a different band order, transition 

happen from K- to Q-valley (electrons) and from K- to Γ-valley (holes). 

 

Figure 8.10: The occupancies of conduction band at special k-points (Γ, Q, K and M) of Brillouin 

zone as a function of time. The state occupancies are plotted for the cases  (a) without including 

electron-phonon interaction and (b) with electron-phonon interactions. In Fig (c) zoomed long-

time occupancies from (b) are shown.  

8.5 Calculated Emission Spectrum of Bilayer MoS2 

The calculated emission spectra calculated using TDDFT without and with the electron-phonon 

dynamics taken into account are shown in Figure 8.11  We can see that the spectrum obtained 

before the electron-phonon scattering-induced charge redistribution (Figure 8.11 (a)) has one 

dominating peak related to indirect emission attributed to the 𝐾 → Γ transitions. The direct K-

valley emission is reflected in a relatively weak shoulder in the spectrum. On the other hand, using 
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TDDFT in the case of re-distributed charges we obtained a two-peak emission spectrum, as shown 

in Figure 8.11 (b). The lower energy peak corresponds to indirect 𝐾 → Γ  transition while the peak 

toward higher energy corresponds to the direct K-valley transition. Transformation of the shoulder 

into a pronounced peak in the emission is related to an enhanced charge density in the K-valley 

due to the electron-phonon scattering (bottom Figure 8.9). As it follows from Figure 8.5 (b), the 

strongest contribution to the electron-phonon scattering comes from the LA phonon bands with 

momentum K. Thus, the indirect emission peak is formed mostly by electron transitions 𝐾 → Γ, 

i.e. from the K-valley in the conduction band that has an extra charge due to phonon-assisted 

charge transfer  from Q to the K valley. Interpreting the emission spectrums as calculated using 

TDDFT, we note  that the emission spectrum as calculated with TDDFT + electron-phonon 

scattering gives a rather good agreement with experiment regarding the position of the emission 

peaks found in  Ref. [126](Figure. 3) and Ref.[139] (Figure. 6). An extra small peak found in Ref. 

[126] may come from higher-energy exciton recombination.  The difference in the relative 

magnitude of the peaks in Figure 8.11 (b) are probably the result of the approximation that the 

probability of the emission transition is proportional to the amount of the excited charge density 

in the given valley (we take the charge density at maximum time used in the calculations (400 fs, 

Figure 8.10), which is still a transient time, i.e. the population of the valley can still change during 

total electron-phonon equilibration. It is important to stress that the emission peaks in this work 

come from the inter-band recombination of free electrons and holes, not exciton recombination. 

However, since the exciton binding energies for the different valleys are smaller than the 

corresponding bandgaps, the two-peak emission spectrum in Figure 8.11 (b) will not change 

dramatically when the emission is caused by exciton recombination.  
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Figure 8.11: Emission spectrum of 2L MoS2  calculated by using  TDDFT without (a) and with 

electron-phonon interactions included (b).  The lower energy peak in  emission corresponds to 

indirect emission, while the higher energy peak corresponds to direct emission. 

8.6 Conclusions 

Our investigation of the ultrafast excited charge dynamics and emission spectrum of bilayer MoS2 

demonstrate that electron-phonon interaction leads to transfer of electrons from the lowest-energy 

non-direct-gap Q valleys to the direct-gap K-valleys. This results in photoluminescence spectrum 

with peaks that correspond to the direct (K valley) and non-direct (LA phonon-assisted K  to Γ 

valley) transitions. The emission spectrum obtained  without the inclusion of intervalley dynamics 

consists of a single peak that corresponds  to an indirect emission. The appearance of the second 

peak with the inclusion of electron-phonon interaction, demonstrates that the latter plays an 

important role in the ultrafast charge dynamics and photoluminescence in 2L MoS2. The next step 

is to establish the contribution of the electron-electron and electron-hole interaction, including 

exciton effects, into the ultrafast dynamics and emission of the system. Work in this direction is in 

progress.   
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CHAPTER 9:  CONCLUSION 

In this dissertation, I have explored the structural and catalytic properties of metal organic chains 

both in gas phase and on Au(111) support, using a quantum-mechanical approach, based on density 

functional theory (DFT). The results presented here provide not only understanding of the 

properties of metal organic chains but also guidelines for designing novel metal organic complexes 

for catalytic applications. I have also explored the excitation and optical properties of 

hydrogenated single-layer and clean bilayer MoS2 using methods based on DFT, TDDFT and the 

Liouville equation. Below is a chapter-wise summary of specific conclusions. 

In Chapter 3, I describe a detailed screening study of the electronic structure, structural, magnetic 

and chemical properties of TM-dipyridyltetrazine (DT) based on first-principles DFT. On the basis 

of  structural analysis, we exclude the systems with non-planar coordination. In order to focus on  

the chemical activity of quasi square-planar structures, we computed the adsorption energies of 

CO and O2 and categorized the possible complexes for CO and O2 reaction.  

In Chapter 4, I explore the effect of ligand Bis-Pyrimidine (BP) on chemical state of metal centers 

in a non-planar metal organic chain formation. I also describe  the effect of Au(111) support on 

the geometry and charge state of V-BP: The Au(111) support alters the non-planar geometry of  

V-BP and draws charge from V-BP chain. While this means diminished reducing power in the V-

BP chain, the surface V-BP assembly retains reducing power, as is evident from observations on 

the adsorption of O. 

In Chapter 5 I present DFT calculations on Metal- Phenanthroline (M-PDO),  which both in gas 

phase and on Au(111) reveal chains with planar MO2N2 coordination environment.  Both lengths 
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within PDO of M-PDO complex compared to those in isolated PDO, indicate that the repeating 

unit in the chains is best considered as M2+ PDO2-. Atomic charges reveal decreasing charge 

transfer from M from to V, to Fe to Pt.  V-PDO on Au(111) is calculated to have a planar structure 

when Au closest to V moves out of the Au surface (towards V) and V moves even further out of 

the N2O2 plane (towards Au) creating a typical V-Au single bond. 

In Chapter 6, we clarify the complexation between tetra-aza-anthraquinone (TAAQ) ligand and 

Fe. TAAQ functions as a redox-active ligand to form complex metal–organic structures. In the 

case of complexation with Fe, we find that this results in under-population of the binding pockets, 

due to the limited reduction capacity of the ligand. Rather than achieving uniform di-nuclear 

centers in straight coordination chains for which the ligands were designed, the abundance of 

binding pockets leads to multiple binding motifs with comparable energy and disordered structure. 

We further characterize the TAAQ by carrying out  vibrational spectroscopy calculations on gas-

phase molecule, gas phase molecular network and both molecule and molecular network on 

Au(111). We investigate the effect of Au(111) support on calculated IR spectrum of TAAQ 

molecule and TAAQ monolayer network .  

In Chapter 7 we present our study of electronic and excitonic properties of a hydrogenated  single-

layer MoS2  system using a combined DFT and TDDFT approach.  The existence of a mid-gap 

excitonic state in a hydrogenated single layer MoS2, which has relatively large binding energy  and 

long lifetime (large dipole strength) is an important finding by itself, one that may have 

applications in energy-harvesting technologies.  
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In Chapter 8 we describe our application of density functional theory in combination with the 

Liouville equation to examine ultrafast charge dynamics in bilayer MoS2. We find that electron-

phonon interaction  has a strong effect on the calculated emission spectrum. Our results thus show 

the importance of ultrafast charge dynamics in understanding photoemissive properties of a few-

layer transition-metal dichalcogenide. 

I employed modern quantum-mechanical methods and powerful computational techniques to 

illustrate a mechanism by which  selected metal-organic chains with single and multiple metal 

centers can be designed so as to control the chemical state of the metal center by using organic 

lingand with different reducing capabilities. This  design principle can thus guide experimental 

discoveries and industrial applications. I also provide a detailed description of how hydrogenation 

can be used as a knob to tune the excitation and optical properties of single-layer MoS2. The study 

of the interplay between ultrafast charge dynamics and electron-phonon coupling helps in 

understanding the phonon-assisted intervalley charge dynamics and thus the interpretation of the 

emission spectrum in 2L MoS2  
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APPENDIX A: SUPPLIMENTRY INFORMATION 
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The Liouville equations and the electron-phonon scattering terms 

The density matrix satisfies the Liouville equation: 

 i
∂ρk

lm(t)

∂t
= [H, ρ]lm(t) ≡ ∑ (Hk

ln(t)ρk
nm(t) − ρk

ln(t)Hk
nm(t))n + (

∂ρk
lm

∂t
)

scatt
,                         (SI. 1) 

where  

Hk
ml(t) = ∫ ψk

m∗(r)Ĥ(r, t)ψk
l (r)dr.                                                                                                   (SI. 2) 

The Hamiltonian in the integral in Eq. (SI.2) 

Ĥ(r, t) = −
∇2

2m
+ Vion(r) + VH[n](r) + VXC[n](r) + er⃗E⃗⃗⃗(t).                                                      (SI. 3) 

consists of the DFT Kohn-Sham Hamiltonian (the first four terms) and the laser-pulse perturbation 

potential (the last term). The time-dependence of the applied Gaussian pulse is 

E⃗⃗⃗(t) = E⃗⃗⃗0e
−

t2

τ2 ,                                                                                                                                        (SI. 4) 

where E⃗⃗⃗0 = E0(1,1,1) and E0 = 1V/A and τ = 100fs is the pulse duration. 

Since  

[−
∇2

2m
+ Vion(r) + VH[n](r) + VXC[n](r)]  ψk

m(r) = εk
mψk

m(r),                                                 (SI. 5) 

the matrix elements (SI.2) have a simple form  

Hk
ml = εk

mδml + d⃗⃗k
mlE⃗⃗⃗(t),                                                                                                                      (SI. 6)  

where 

d⃗⃗k
ml = e ∫ ψk

m∗(r)r⃗ψk
l (r)dr,                                                                                                                (SI. 7) 

are the transition dipole moments. 

Finally, substituting Eq.(SI.6) into Eq.(SI.1) one obtains the explicit form of the Liouville 

equations: 
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i
∂ρk

lm(t)

∂t
= (εk

l − εk
m)ρk

lm(t) + E⃗⃗⃗(t) ∑ (d⃗⃗k
lnρk

nm(t) − ρk
ln(t)d⃗⃗k

nm(t))

n

+ (
∂ρk

lm

∂t
)

scatt

.       (SI. 8) 

The diagonal and non-diagonal scattering matrix elements in Eq. (SI.8) have the following form: 

(
∂ρk

ll

∂t
)

scatt

= −2π ∑ gqν
2 δ(εk+q

l − εk
l − ω0){N(ω0)ρk

ll(t)[1 − ρk+q
ll (t)]

q,ν

− (N(ω0) + 1)ρk+q
ll (t)[1 − ρk

ll(t)]} 

−2π ∑ gqν
2 δ(εk−q

l − εk
l + ω0){(N(ω0) + 1)ρk

ll(t)[1 − ρk−q
ll (t)]

q,ν

− N(ω0)ρk−q
ll (t)[1 − ρk

ll(t)]},                                                      (SI. 9) 

(
∂ρk

lm

∂t
)

scatt

 

= −2π ∑ gqν
2 δ(εk+q

l − εk
m − σω0){N(σω0)[ρk

lm(t)ρk+σq
mm (t) − ρk+σq

lm (t)ρk
ll(t)]

q,ν,σ=±1

+ [N(σω0) + 1][ρk
lm(t)ρk+σq

ll (t) − ρk+σq
lm (t)ρk

mm(t)]} − {k ↔ k + σq}, (SI. 10) 

where N(ω0) = 1/[exp[ω0/T] − 1] is the Bose distribution function with used temperature T =

0.1eV  and ω0 = 40meV is the effective phonon frequency.  
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[125] F. Ersan, G. k. Gökoğlu, and E. Aktürk, The Journal of Physical Chemistry C 119, 28648 

(2015). 

[126] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Physical review letters 105, 136805 

(2010). 

[127] F. Wu, F. Qu, and A. H. Macdonald, Physical Review B 91, 075310 (2015). 

[128] K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. K. 

Geim, Proceedings of the National Academy of Sciences 102, 10451 (2005). 



    

168 

 

[129] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature 

nanotechnology 7, 699 (2012). 

[130] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nature chemistry 5, 

263 (2013). 

[131] S. Wu et al., Nature Physics 9, 149 (2013). 

[132] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, 

Nano letters 12, 5576 (2012). 

[133] D. Braga, I. Gutiérrez Lezama, H. Berger, and A. F. Morpurgo, Nano letters 12, 5218 

(2012). 

[134] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS nano 7, 

791 (2013). 

[135] Q. Gao, Z. Zhang, X. Xu, J. Song, X. Li, and Y. Wu, Nature communications 9, 1 (2018). 

[136] T. Kümmell, W. Quitsch, S. Matthis, T. Litwin, and G. Bacher, Physical Review B 91, 

125305 (2015). 

[137] Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, Nano letters 13, 

3329 (2013). 

[138] S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, Nano letters 15, 2526 (2015). 

[139] G. Plechinger, F. Mooshammer, A. Castellanos-Gomez, G. Steele, C. Schüller, and T. 

Korn, 2D Materials 2, 034016 (2015). 

[140] T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, 

Nature nanotechnology 9, 825 (2014). 

[141] K. Liu et al., Nature communications 5, 1 (2014). 

[142] B. R. Carvalho, L. M. Malard, J. M. Alves, C. Fantini, and M. A. Pimenta, Physical 

review letters 114, 136403 (2015). 

[143] A. Molina-Sánchez, K. Hummer, and L. Wirtz, Surface Science Reports 70, 554 (2015). 



    

169 

 

[144] R. Pisoni, T. Davatz, K. Watanabe, T. Taniguchi, T. Ihn, and K. Ensslin, Physical Review 

Letters 123, 117702 (2019). 

[145] Y. Chen et al., Nano letters 17, 194 (2017). 

[146] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr, S. T. Pantelides, and K. I. Bolotin, 

Nano letters 13, 3626 (2013). 

[147] I. Neri and M. López-Suárez, Physical Review B 97, 241408 (2018). 

[148] A. Kormányos, V. Zólyomi, V. I. Fal'ko, and G. Burkard, Physical Review B 98, 035408 

(2018). 

[149] H.-P. Komsa and A. V. Krasheninnikov, Physical Review B 86, 241201 (2012). 

[150] A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, Physical Review 

B 88, 045412 (2013). 

[151] H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Physical review letters 115, 187002 

(2015). 

[152] H. Haug and S. Koch, World Scientific, Singapore (1990). 

[153] G. Froehlicher, E. Lorchat, O. Zill, M. Romeo, and S. Berciaud, Journal of Raman 

Spectroscopy 49, 91 (2018). 

[154] N. Scheuschner, R. Gillen, M. Staiger, and J. Maultzsch, Physical Review B 91, 235409 

(2015). 

[155] Á. Szabó, R. Rhyner, and M. Luisier, Physical Review B 92, 035435 (2015). 

[156] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. 

Huang, ACS nano 7, 1072 (2013). 

[157] T. Yu and M. Wu, Physical Review B 93, 045414 (2016). 

[158] D. A. Ruiz-Tijerina, M. Danovich, C. Yelgel, V. Zólyomi, and V. I. Fal'ko, Physical 

Review B 98, 035411 (2018). 



    

170 

 

[159] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Physical Review Letters 108, 196802 

(2012). 

[160] S. R. Acharya, V. Turkowski, G. Zhang, and T. S. Rahman, Physical Review Letters 125, 

017202 (2020). 

[161] M. Dresselhaus, G. Dresselhaus, S. B. Cronin, and A. G. Souza Filho,  (2018). 

[162] T. P. Pearsall, in Quantum Photonics, edited by T. P. Pearsall (Springer International 

Publishing, Cham, 2017), pp. 201. 

[163] T. Cheiwchanchamnangij and W. R. Lambrecht, Physical Review B 85, 205302 (2012). 

[164] J. Padilha, H. Peelaers, A. Janotti, and C. Van de Walle, Physical Review B 90, 205420 

(2014). 

[165] S. Ahmad and S. Mukherjee, Graphene  Vol.3 No.4 , (2014). 

[166] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, Physical Review B 85, 033305 

(2012). 

[167] Y. Fu et al., npj Quantum Materials 2, 1 (2017). 

[168] C.-H. Chang, X. Fan, S.-H. Lin, and J.-L. Kuo, Physical Review B 88, 195420 (2013). 

 


	Understanding and Predicting Properties of Low-dimensional Functional Materials from First-principles
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1:  INTRODUCTION
	CHAPTER 2:  THEORETICAL METHODS
	2.1  Many-Body Equation
	2.2 Thomas-Fermi Model
	2.3 The Hohenberg-Kohn Theorems
	2.4  Kohn-Sham Equations
	2.5 Exchange and correlation Functionals
	2.5.1 The local Density Approximation (LDA)
	2.5.2 The Generalized-Gradient Approximation (GGA)

	2.6 van der Waals interactions in DFT
	2.6.1 DFT-D
	2.6.2 DFT-D2
	2.6.3 DFT-D3

	2.7 van der Waals Density Functional
	2.8 Practical DFT Methods for Periodic Structures
	2.8.1 Bloch’s Theorem
	2.8.2 k-point Sampling
	2.8.3 Plane-wave Basis Sets

	2.9 Pseudopotential Approximation
	2.10 Bader Charge Analysis
	2.11 Time-Dependent Density Functional Theory (TDDFT)
	2.11.1 Charge Susceptibility, Absorption Spectrum and Excitons
	2.11.2 Many-Body Susceptibility
	2.11.3 TDDFT Susceptibility
	2.11.4 Susceptibility: Finite vs. Extended (Periodic) Systems
	2.11.5 Absorption Spectrum
	2.11.6 TDDFT and Excitons: The Density-Matrix Approach
	2.11.7 LR XC Kernel


	CHAPTER 3:  LINEAR TRANSITION METAL-DIPYRIDYLTETRAZINE CHAINS WITH ACTIVE METAL SITE
	3.1 Introduction
	3.2  Calculation Details and Model System
	3.3  Results and Discussions
	3.3.1 Formation of TM-DT chains
	3.3.2 Adsorption of O2 on TM centers
	3.3.3 Adsorption of CO on TM centers

	3.4 Discussion
	3.5 Summary

	CHAPTER 4:  NON-LINEAR TM-BIS-PYRIMIDINE (BP) CHAINS  WITH ACTIVE METAL SITE ON Au(111)
	4.1 Introduction
	4.2 Computational Method
	4.3 Results and Discussion
	4.3.1 Molecular network formation
	4.3.2   Metal organic chain formation
	4.3.3 Effect of Support on structure and charge state of V-BP

	4.4 Summary

	CHAPTER 5:  REDOX-ACTIVE POLYMERIZATION OF SINGLE  METAL ATOMS BY A KETONE FUNCTIONALIZED PHENANTHROLINE
	5.1 Introduction
	5.2  Computational Method
	5.3 Results and discussions
	5.3.1 M-PDO Chain formation
	5.3.2 Magnetic properties of M-PDO chains
	5.3.3 Effect of Au(111) support
	5.3.4 Reactions

	5.4 Summary

	CHAPTER 6:  COMPLEXATION OF Fe2 IN METAL-ORGANIC  REDOX ASSEMBLY
	6.1 Introduction
	6.2 Objective
	6.3 Computational details
	6.4 Results
	6.4.1 Complexation of Fe-TAAQ
	6.4.2 Magnetic Properties of FeTAAQ chains
	6.4.3 Charge Analysis of FeTAAQ chains
	6.4.4 Vibrational spectroscopy of on-surface TAAQ complexation

	6.5 Summary

	CHAPTER 7:  EXCITED STATES IN HYDROGENATED SINGLE-LAYER MoS2
	7.1 Introduction
	7.2 Computational Details
	7.3 Results and Discussion
	7.3.1 Electronic structure of pristine and hydrogenated single-layer MoS2
	7.3.2  Binding energies of excitons
	7.3.3 Absorption and emission spectra
	7.3.4 Exciton charge distribution

	7.4 Conclusions

	CHAPTER 8:  ULTRAFAST CHARGE DYNAMICS AND PHOTOLUMINESCENCE IN BILAYER MoS2
	8.1 Introduction
	8.2 Theoretical and Computational Methods
	8.2.1 Calculations of Electronic Structure
	8.2.1 Calculations of the phonon spectrum and electron-phonon coupling coefficients
	8.2.2 Time dependent excited state charge densities and emission spectra

	8.3 Electronic Structure of bilayer MoS2
	8.4 Electron-Phonon Coupling Coefficients for Bilayer MoS2
	8.5 Calculated Emission Spectrum of Bilayer MoS2
	8.6 Conclusions

	CHAPTER 9:  CONCLUSION
	APPENDIX A: SUPPLIMENTRY INFORMATION
	The Liouville equations and the electron-phonon scattering terms

	APPENDIX B: LIST OF PUBLICATIONS
	Under Review
	In Preparation

	LIST OF REFERENCES

