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ABSTRACT 

This dissertation's focus is control systems controlled by multiple controllers, each having 

its own objective function.  The control of such systems is important in many practical applications 

such as economic systems, the smart grid, military systems, robotic systems, and others. To reap 

the benefits of feedback, we consider and discuss the advantages of implementing both the Nash 

and the Leader-Follower Stackelberg controls in a closed-loop form. However, closed-loop 

controls require continuous measurements of the system’s state vector, which may be expensive 

or even impossible in many cases. As an alternative, we consider a sampled closed -loop 

implementation. Such an implementation requires only the state vector measurements at pre-

specified instants of time and hence is much more practical and cost-effective compared to the 

continuous closed-loop implementation. The necessary conditions for existence of such controls 

are derived for the general linear-quadratic system, and the solutions developed for the Nash and 

Stackelberg controls in detail for the scalar case. 

To illustrate the results, an example of a control system with two controllers and state 

measurements available at integer multiples of 10% of the total control interval is presented.  While 

both Nash and Stackelberg are important approaches to develop the controls, we then considered 

the advantages of the Leader-Follower Stackelberg strategy. This strategy is appropriate for control 

systems controlled by two independent controllers whose roles and objectives in terms of the 

system's performance and implementation of the controls are generally different. In such systems, 

one controller has an advantage over the other in that it has the capability of designing and 

implementing its control first, before the other controller. With such a control hierarchy, this 

controller is designated as the leader while the other is the follower. To take advantage of its 
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primary role, the leader's control is designed by anticipating and considering the follower’s control. 

The follower becomes the sole controller in the system after the leader’s control has been 

implemented. In this study, we describe such systems and derive in detail the controls of both the 

leader and follower. In systems where the roles of leader and follower are negotiated, it is important 

to consider each controller's leadership property. This property considers the question for each 

controller as to whether it is preferable to be a leader and let the other controller be a follower or 

be a follower and let the other controller be the leader. In this dissertation, we try to answer this 

question by considering two models, one static and the other dynamic, and illustrating the results 

with an example in each case. The final chapter of the dissertation considers an application in 

microeconomics. We consider a dynamic duopoly problem, and we derive the necessary 

conditions for the Stackelberg solution with one firm as a leader controlling the price in the market.  
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CHAPTER ONE  

INTRODUCTION 

 

This dissertation considers the important properties and applications of multi-controller 

multi-objective systems. These systems fall in the general framework of differential non-

cooperative non-zero-sum systems. In this chapter, we review these systems' general background, 

which will be important for the remaining chapters of this dissertation. 

Many control engineering, economic, biological, and social science applications can be 

represented and modeled by simple ordinary differential equations. These control systems have 

been extensively studied for the past several decades [1-10]. In these systems, state variables are 

represented by functions of time and affected by the input parameters and if any external signals, 

such as disturbance signals. One of the main demands of such systems is to be stable because the 

output changes are bounded as the inputs are bounded. From another view, for stable or stabilized 

systems, some systems need to have better behaviors in the time domain. Examples of such 

enhancing systems characteristics include fast-reaching to steady-state and decreasing or 

eliminating the overshooting. The classical control theory tries to solve such a problem for single-

input-single-output. However, for more general systems with higher-order, the problem is more 

complex. The use of the optimization theory to solve such systems with constructing the desired 

characteristics with efficient control signal by mathematically represent what is known as 

performance index or objective function. This construct problem is called the optimal control 

problem. 
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Arising from the systems discussed above are have a single input, and single output and 

system are controlled by only one controller. Classical and advanced control approaches can 

design this controller; the controller is designed by applying optimal control theory tools. 

However, the systems with single input are well defined for such the principle of optimality, and 

it is clear and straight forward for many applications. For example, tools are applied for designing 

a closed-loop controller for linear systems and single quadratic objective function, which is well-

known as LQ systems. On the other hand, many applications cannot be controlled by one 

controller. Thus, no one of the controllers can govern the system's behavior by itself, and neither 

can be the only minimizer for its objective. In other words, the controller must consider the other 

controllers’ syntheses over the time horizon, finite or infinite. The latter makes the problem more 

complex for such systems, i.e., the multiple controllers with multiple objectives, even for the 

simple open-loop systems. The application of the principle of optimality is not clear in these 

systems. However, such systems' design is strategic and based on the method in which  all 

controllers have committed. From focusing on the work done in this research dissertation, these 

strategies (or solutions) could be done simultaneously or in a hierarchical approach. The next 

sections will consider the optimal control problem framework and the multiple -controller 

framework as well. 

1.1 Single-Controller with Single objective problems (Optimal control problems): 

This problem is based on the fact that there is one controller that governs the system’s dynamics, 

and thus this controller will be the optimizer (usually the minimizer) for its objective function. 

Thus, choosing a controller should result in the best value for its objective, in the sense its value 
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is the lowest value among all the other possible controller choices.  In mathematical representation, 

the optimal control problems for the ordinary differential equation, such as the system’s states , 

evolving over time-horizon ,  
ft  can be finite or infinite.  

The state differential equation is  

( ) ( , ( ), ( ))         (0) , [ , ]o o fx t f t x t u t x x t t t= =                           (1.1) 

 

If the controller is chosen from the admissible control strategy, i.e. ( )u t  . In the open-loop 

design, the controller synthesis provided the initial state values 
ox . For a closed-loop design 

approach, continuous information ( )x t   has to be available at each instance of time. For both open/ 

closed-loop approaches, the designed controller role as the minimizer for its objective functions: 

     ( , ( )) ( , ( ), ( ))
f

o

t

f f
t

J S t x t L x u d   = +                                       (1.2) 

 

Where the ( , ( ))f fS t x t  is the terminal cost and the L  is the local ( or called running) cost. 

Many approaches have been invested in finding solutions, control designs, and optimal control 

problems. The next section includes a background introduction for the multi-controller multi-

objective systems framework based on the two main approaches: Nash and leader-follower 

Stackelberg approaches.  

1.2 Control Systems with Multi-Controller with Multi-Objectives  

Control systems whose state variables are controlled by two or more independent 

controllers, each trying to optimize the system performance based on its own criterion , occur in 

many applications such as in transportation systems [11-17], robotics [18-26], biomedical systems 
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[27-36], economic systems [37-47], power systems [48-59], smart energy buildings [60-65], 

military systems [66-71], and many other applications for in networks. The applications example 

of such network systems is unmanned underwater vehicles and satellites[72-76] in different 

context. In work in [72] focuses on team cooperation, namely consensus, for both leaderless (LL) 

and modified leader-follower (MLF) architectures. The recent papers are application of multiple-

controller on cyber-physical systems [77-82], to mention a few. 

Unlike the classical one controller control systems where the sequence of control 

implementation is not an issue, control systems with more than one controller have the additional 

complexity of designating whether the control actions are implemented simultaneously at the same 

time or whether there is a sequence by which the controls are implemented. The Nash approach 

[83], first introduced to the control literature in [84, 85], describes a situation where the control 

actions are implemented simultaneously and exactly at the same time.  Thus, no one controller has 

an advantage over the other in knowing ahead of time how the other controller reacts to its control 

actions.  Such an approach may result in an equilibrium that prohibits each controller from 

deviating from its control actions; simply because if such a deviation is taken, the outcome will be 

unfavorable to the controller exercising such an action. Another approach, known as the 

Stackelberg approach [86], first introduced into the control literature in [87, 88], describes a 

situation where one controller is more powerful than the other resulting in the control actions 

implemented according to a specific hierarchical sequence. The more powerful controller 

implements its control first and is assigned as the leader, and the other controller is then set as the 

follower. Such a hierarchy of decision making was first introduced in the 1950’s by Von 

Stackelberg[86] in the context of two firms making decisions about supplying a product into a 
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common market. The more powerful firm, which was labeled as the “leader”, decided on its 

production level first and the less powerful firm, which was labeled as the “follower”, followed by 

making its decision after knowing the production level of the leader firm. Since then, there has 

been considerable interest in the control literature in this hierarchical control structure for control 

systems with two controllers. [89, 90] Assuming that each controller has its own objective function 

that it wants to optimize, the question is how would the leader controller design its control so that 

when the follower controller follows, the final outcome will be favorable to the leader?  This 

question is very important to address whenever such a hierarchy in control design exists.   

1.3 Nash Control Solution 

The Nash rational in control has been studied by many researchers over the past fifty years 

or so [84, 85]. This type of multiple controller strategy has the property that no one controller will 

benefit by deviating from its agreed Nash control. The optimality is defined by assuming that both 

controllers know each other objective functions during their control design determination, and they 

are designed and implemented simultaneously.  

Suppose the objective function of controller 1 is ( )1 1 2,J u u  , and the objective function of 

controller 2 is ( )2 1 2,J u u  where u1 and u2 are the respective control functions of the two controllers 

and 
1U  2U  are the domains of these controls. The symbolical representation for deriving the Nash 

controls are as follows: 

 ( )
1 1

* *

1 1 1 2 min ,
u U

u J u u


=     (1.1) 

 ( )
2 2

* *

2 2 1 2 min ,
u U

u J u u


=     (1.2) 

Thus, both above equations yield to the Nash strategy inequality  
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 ( ) ( )* * *

1 1 2 1 1 2, ,J u u J u u     (1.3) 

 ( ) ( )* * *

2 1 2 2 1 2, ,J u u J u u     (1.4) 

These inequalities assure each controller that the other controller has no incentive to deviate 

from its Nah control because if it does, it will only be hurting its own objective function.  In this 

sense, the Nash controls provide an equilibrium situation for both controllers.  

The necessary condition for the Nash open-loop solutions for both controllers is illustrated 

in the following  

1.3.1 Nash Open-Loop Solution in Dynamic Systems  

 

Consider two controllers 
1C  and 

2C , responsible for finding the controls 
1u  and 

2u , 

respectively, in which these control variables are continuous functions on the interval 0 , ft t   . The 

two-controller differential system with state equation  

( ) ( )1 2 0 0, , , ,          x f x u u t x t x= =     (1.5) 

and controller 1 has its own objective function  

( ) ( )( ) ( )
0

1 1 2 1 1 1 2, , , ,
ft

f
t

J u u K x t L x u u t dt= +      (1.6) 

and for controller 2 the objective function is  

( ) ( )( ) ( )
0

2 1 2 2 2 1 2, , , ,
ft

f
t

J u u K x t L x u u t dt= +      (1.7) 

Where 0x  is the initial state known by both controllers, and, 1 1u U  and 2 2u U   0 , ft t t    , 

where 0 , ft t   is the fixed time-horizon.  

Depending on the structure of the information for both controllers, such as open-loop structure. 

Hence, the controls depend on the time and initial state 0x , ( )1 1 0,u u t x=  and ( )2 2 0,u u t x=   
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To derive the necessary condition for such systems implementing their controls using the Nash 

strategy, both act simultaneously. In other words, 
1C  picks 

1u  and 
2C  picks 

2u  , at the same time. 

Where the pair ( )1 2 1 2,u u U U  . 

The Hamiltonian function for 
1C  and 

2C  are as follow:  

( ) ( ) ( )1 1 2 1 1 1 2 1 1 2, , , , , , , , ,H x u u t L x u u t f x u u = +     (1.8) 

( ) ( ) ( )2 1 2 2 2 1 2 2 1 2, , , , , , , , ,H x u u t L x u u t f x u u = +     (1.9) 

Where ( )1 1 t = and ( )2 2 t =  are costate variables for 
1C  and .Thus, the necessary conditions 

for 
1C  and 

2C  are addressed below: 

( ) ( )1 2
1 2 0 0

1 2

, , , ,                                            
H H

x f x u u t x t x
 

 
= = = =
 

                                  (1.10) 

( ) ( )
( )

( )( )
( )

11 1 2 1 21
1 1 1

, , , , ,
,                   

K x TL x u u t f x u uH
T

x x x x T
  

 
= − = − − =

   
                 (1.11) 

( ) ( )
( )

( )( )
( )

22 1 2 1 22
2 2 2

, , , , ,
,                 

K x TL x u u t f x u uH
T

x x x x T
  

 
= − = − − =

   
                 (1.12) 

( )
1 1

* 1
1 1 1 2

1

ˆmin , , , 0
u U

H
u H x u u t

u


=  =


                                                                                        (1.13) 

( )
2 2

* 2
2 2 1 2

2

ˆmin , , , 0
u U

H
u H x u u t

u


=  =


                                                                                        (1.14)   

 

These are the necessary conditions for the open-loop Nash strategy nonzero-sum differential 

system. Notice that these equations have mixed boundary where the state equation has a known 

initial state, while the costate equations have the terminal costate values with solving these three 
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differential equations with two algebraic equations (stationary conditions 4 and 5) yield to 

determine the open-loop Nash equilibrium. However, solving such an equation in general not easy 

to solve. Though for some application of linear state variable and quadratic objective function can 

be solved analytically, most of them must are solved numerically.  

1.4 Stackelberg Control Startegy  

The Stackelberg control option is based on one controller having the capability to design 

its controller first, due to its size or faster means of information processing and refers to it as a 

“leader” [87, 88]. Thus, the Stackelberg solution of the two-controller nonzero-sum solution is 

based on assuming these two-controller systems are different in their roles in such the control 

systems are designed hierarchically. Therefore, a controller is called a leader, and the other 

controller is referred to as a follower. The follower follows the leader's strategy in which the leader 

announces his strategy first, and the follower determines his controller according to the leader’s 

announced strategy. The leader foresees and effectively dominate the entire controls determination 

process 

Let 
1U  and 2U be the controller 1and controller 2 admissible sets, respectively, and in turn, 

if their corresponding objective functions are
1 1 2( , )J u u and 

2 1 2( , )J u u , where the 1 1u U . and 

2 2u U  Now if controller 2 is assigned to be the leader and supposed there is exist a mapping such 

that 
2 1:T U U→  such that  

 ( ) ( )1 2 2 1 1 2 1 1, ,          J Tu u J u u u U        (1.15) 

For every 2 2u U  , then as a rational reaction from controller 1, the follower, the following set  

( ) 1 1 2 1 2 1 2 2 2, : ,D u u U U u Tu u U=   =        (1.16) 
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is called the rational reaction set for controller 1 when controller 2 is the leader. Moreover, if there 

is a pair ( )1 2 2 2 1,S Su u D  such that1  

( ) ( ) ( )2 1 2 2 2 2 1 2 1 2 1, ,          ,S SJ u u J u u u u D       (1.17) 

 

Where ( )1 2 2 2,S Su u is called a Stackelberg strategy pair when the controller is the leader. Hence, 

the same process is done when controller 1 is the leader with a change of the indices. The rational 

reaction is set for controller 2, which is now the follower, denoted by 
2D  and the pair 

( )1 1 2 1 2,S Su u D . For the above approach, it is clear that the intersection for both the rational 

reaction sets 
2lD D  , then the common pair ( )1 2,N Nu u is the Nash solution of the two-controller 

system. In this case: if controller 2 is the leader, ( ) ( )2 1 2 2 2 2 1 2, ,S S N NJ u u J u u similarly if controller 

1is the leader ( ) ( )1 1 1 2 1 1 1 2, ,S S N NJ u u J u u . 

1.4.1 Stackelberg Open-Loop Solution in Dynamic Systems  

 

The necessary conditions for the existence of the Stackelberg open-loop control can be 

obtained based on the Stackelberg solution is obtained in the hierarchical scheme. For instance, 

assume the leader 
2C   and announce his strategy first, which leaves controller 1, the follower, with 

no choice just to solve his problem by considering the leader’s announcement. 

1.4.2 For the Following controller  

 

 The Hamiltonian function for the follower, Controller, 1C   

 
1 where the subscription beside the controls index;𝑆2 , the letter S=Stackelberg and number 2 is when the leader is controller  
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( ) ( ) ( )1 1 2 1 1 1 2 1 1 2, , , , , , , , ,H x u u t L x u u t f x u u = +  

The necessary condition for the follower is as follow: 

( ) ( )1
1 2 0 0

1

, , , ,                                       
H

x f x u u t x t x



= = =


                                                                     (1.18) 

( ) ( )
( )

( )( )
( )

11 1 2 1 21
1 1 1

, , , , , ,
,         

K x TL x u u t f x u u tH
T

x x x x T
  

 
= − = − − =

   
                            (1.19) 

( )
1 1

*1
1 1 1 2

1

ˆ0 min , , ,
u U

H
u H x u u t

u 


=  =


                                                                                           (1.20) 

And from the latter condition, there is a reaction for the follower, and for each possible 

action from the leader, there is a reaction from the follower then ( )( )*

1 1 2
ˆu u u t= .  

1.4.3 For the Leading controller  

 

Now, the leader must face two constrains to optimize his objective function, the state 

dynamic equation and the co-state dynamic condition for the follower  

The constructed Hamiltonian function for the leader 
2C becomes as shown in equation (1.21):   

 

( )( )

( )( ) ( )( )
( )( ) ( )( )* *

1 1 2 2 1 2 2* *

2 1 2 2 2 1 2 2 1

*

2 1 2 2 2

, , , , , ,
, , , , ,

, , , , ,

L x u u u t f x u u u t
L x u u u t f x u u u

x x

H x u u u t

  

 

 
+ + − −

 

=

 
 
 
 

        (1.21) 

Where 2 ,   are the costate variables of the leading controller. Thus, the necessary conditions for 

the leading controller are 

( )( ) ( )*2
1 2 2 0 0

2

, , , ,                                                      
H

x f x u u u t x t x



= = =


                              (1.22) 
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( )( ) ( )( )
( )

( )( )
( )

* *

1 1 2 2 1 2 2 12
1 1 1

, , , , , ,
,         

L x u u u t f x u u u t K x TH
T

x x x T
  



  
= = − − =
   

              (1.22) 

And the costate differential equations are derived as follow: 

( )( ) ( )( ) ( )( ) ( )( )* * 2 * *

2 1 2 2 1 2 2 1 1 2 2 1 2 2

2 12 2

2
2

, , , , , , , , , , ,L x u u u t f x u u u L x u u u t f x u u u t

x x x x

H

x
  

   
= − − + +

   

 
= −  

   

  

With terminal value ( )
( )( )

( )
( )

( )( )
( )

2

2 1

2 2

K x T K x T
T T

x T x T
 

  
= −  

   

            (1.23) 

( )( )
( )

2 *

1 2 22

1 1

, , ,
,                                                         0 0

f x u u u tH

x
  

 

 
 = − = =
   
 

               (1.24) 

And the stationary condition for controller 2, the leader,  is as follow: 

( )( )
2 2

* *2
2 2 1 2 2

2

0 min , , ,
u U

H
u H x u u u t

u 


=  =


                                                                                 (1.25) 

Again, the resulting conditions consider as a two-boundary point problem, and solving such a 

problem, in general, is not easy in general. In this dissertation, the solution is obtained for some 

illustrative examples, depending on the system's type, numerically, and analytically. 

The optimal control of systems governed by multiple controllers rather than one controller 

leads to many questions that need to be addressed.  This dissertation addresses the Nash and 

Stackelberg strategies to construct solutions for such problems. More specifically, the 

implementation of the feedback controls in sample data form is addressed. 

In the open-loop control design for multiple controller systems, the design control needs 

only for the state vector's initial state and will be a function of time as well. The other option is the 

closed-loop control option, in which the measurements of the state vector in each instance of time 
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must be available. This requirement for designing a closed-loop may be expensive, and in some 

cases, not possible. The dissertation's proposed method is that the sampled closed loop and the 

samples are pre-specified and equally distributed. In each sample of this proposed approach, the 

control is designed in its open-loop scheme, and thus the whole interval is represented by these 

open-loop controls. This type of control is sampled closed-loop, which is a trade-off between the 

simplicity of designing a single open-loop and reap the advantage of the feedback closed-loop. 

Remarkably, the more samples, the sampled closed loop is approaching to continuous closed loop 

on the Nash control design. For the Stackelberg, increasing the samples leads to the sampled 

closed-loop approaching the continuous Nash closed loop. 

The Stackelberg option is a Leader-Follower approach in which there is a leader controller 

who announces his strategy first, and the other controller is a follower. However, if these roles are 

predetermined, this option can be in mutual agreement: when both realize that they are better off 

with the agreed leader’s selection, the other is selected as a leader. The other possible situation is 

when both prefer to be leaders or both followers. In this dissertation, we suggest when the 

parameter uncertainty, the role selection option availability is dependent on the parameters space 

over which the system is defined. In this dissertation, we define the partitioning of the parameter 

space to classify the ability and availability of the design of the Stackelberg implementation or not. 

The resulting region of the parameter space is used to determine the probability of leadership 

determination. 
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1.5 Organization of the Dissertation 

This dissertation is organized into four main chapters. Chapter one is an introductory 

chapter with a general review of the optimal control problem and its natural extension to the 

multiple controllers' problem, each with its designated own objective functions. Chapter two 

proposes a new method to reap the advantage of the closed-loop properties by designing a less-

costly and straightforward controller for multi-controller systems, which needs fewer amounts of 

state vector measurements. In chapter three, we discuss a significant property for Leader-Follower 

Stackelberg systems, which is so little explored, and we try to give attention to the importance of 

the leadership role with possible changing of the system parameters.  Chapter four applies multi-

controller multi-objective systems in dynamic microeconomic systems where two firms are 

maximizing profits by controlling their production outputs. Finally, we conclude this dissertation 

and suggest new paths for future research in chapter five. 
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CHAPTER TWO  

SAMPLED CLOSED-LOOP 

2.1 Introduction 

In this chapter, we consider control systems controlled by multiple controllers, each having 

its own objective function.  The Nash and leader-follower Stackelberg options for designing the 

controls are considered.  These control options are heavily used as decision options in the non-

zero-sum differential solution theory.  To reap many of the benefits of feedback, the resulting 

designs are best implemented as closed-loop controls. However, closed-loop controls require 

continuous measurements of the system’s state vector, which may be expensive or even impossible 

in many cases.  As an alternative, in this chapter, we consider a sampled closed-loop 

implementation.  Such an implementation requires the state-vector measurements only at pre-

specified instants of time and hence is much more practical and cost-effective compared to the 

continuous closed-loop implementation. We derive the necessary conditions for the general linear-

quadratic problem, develop the Nash's solutions, and Stackelberg controls in detail for the scalar 

case.  An example of a control system with two controllers and state measurements available at 

integer multiples of 10% of the total control interval is presented to illustrate the results. 

2.2 Motivation 

The multi-controller multi-objective control systems theory deals with control systems 

whose state variables are controlled by two or more independent controllers, each trying to 

minimize its own objective function.  Systems of this type occur in many applications in smart 

energy buildings [60], load frequency control, and automatic voltage regulation in power systems 
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[48, 91], biomedical systems [27], to mention a few. Unlike single controller problems where 

optimality is easily defined in minimizing one objective function, defining what optimality means 

in multi-controller multi-objective problems is much more complicated.  Since the state variables, 

and consequently the objective functions, depending on all controllers' control action, defining 

optimality must be done in terms of the choice of controls as implemented by all controllers 

simultaneously and collectively.  The principle of optimality in these systems is defined in terms 

of the rationale assumed by each controller in determining its control variables.  Several d ifferent 

rationales, leading to different definitions of optimality, have been explored in the past several 

decades, mainly within differential solution theory. 

The Nash rationale [83], first introduced to the control literature in [84], describes a non-

cooperative situation in which each controller’s control rationale is to safeguard itself against 

attempts by any other controller from further improving its objective by deviating from its agreed 

Nash control.  This concept of optimality assumes that all controllers know each other’s objective 

functions and that when the controls have been determined, they are all determined and 

implemented simultaneously at the same time.  Another concept, which has proven to be very 

useful in two-controller systems, is the Stackelberg rationale [86].  This concept, first introduced 

to the control literature in [27], also describes a non-cooperative situation except that due to size, 

importance, or faster means of information processing, one controller can arrive and implement its 

control actions before the other.  The controller that can implement its control first is referred to 

as the “leader” and the other as the “follower.”  Thus, the Stackelberg solution is based on a 

hierarchy of control decision-making and is very powerful in deriving optimal controls for the 

leader controller that would benefit it due to the timing advantage over the follower controller.  
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Whether the controllers in a multi-control system are applying Nash or Stackelberg 

controls, they always must make an additional decision on how their controls are to be 

implemented in practice.  As is well known in single controller problems, control variables can be 

implemented in either open-loop or closed-loop form.  The open-loop form is simpler to implement 

in that it only requires knowledge by all controllers of the state variables' initial conditions. It 

represents control functions of time that do not depend on the evolution of the state of the system 

and hence cannot be adjusted if system parameters drift from their nominal values or unknown 

nonlinear distortions occur at any time during the implementation of the control.  On the other 

hand, the closed-loop form is more complex to implement in that it requires knowledge of the state 

vector at every instant of time during implementation, thus necessitating the placement of sensors 

or filters at critical locations of the system to provide measurements of the state variables.  This 

form has a clear advantage [92] over the open-loop form in that should any small perturbations 

occur is the system’s parameters, or should any unknown distortions occur, the state variables 

would change accordingly, causing an adjustment in the control variables to keep the state 

variables as close as possible to their prescribed optimal trajectories.   Such an adjustment would 

not occur in the open-loop implementation because the control variables are completely unaware 

of the system's state once the system is past its initial state. 

An added complication in multi-controller systems, which does not exist in single 

controller systems, is that the open-loop and closed-loop controls are different and produce 

different state trajectories even under ideal conditions [27, 48]. Because the state variable may or 

may not be available to the other controllers for implementation, making the design of the control 

variables for each controller completely different and dependent on the information structure 
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available to the controllers; thus, the controllers must decide whether they would be implementing 

open-loop or closed-loop controls prior to determining their control variables.  This decision is 

very important and must be communicated or known to all the controllers in the system.  

Furthermore, the controllers must accept and implement the same control structure used in the 

controls' design process.  Some controllers' option using open-loop and others using closed-loop 

is also possible; however, simplicity will not be considered in this chapter. 

One of the main issues that may deter the controllers from implementing closed -loop 

controls is cost.  Clearly, the placement of sensors, or measurement devices, to measure the state 

variables continuously over time and transmitting that information to the controllers at every 

instant of time is a very costly process and in some cases may even be impossible due to the 

environment in which the state variables are measured.  For example, in a metal forming process, 

the high temperatures of the environment around the state variables (could be greater than 800o F) 

may prevent the possibility of permanently placing sensors in that environment.  Instead, a less 

costly and more practical option could be to measure the state variables at pre-specified instants 

of time [93], which may or may not necessarily be uniformly distributed over the interval of 

optimization.  The controllers would then implement closed-loop controls only at the instants when 

measurements are obtained and implement open-loop controls following those instants until the 

next instant when measurement becomes available again.  The design of such controllers would 

be an intermediate option between the open-loop and continuous closed-loop options. The fewer 

the measurement samples would produce controls that are closer to the open-loop option, and the 

larger the number of measurement samples would produce controls that are closer to the 

continuous closed-loop option. We will refer to this control structure as a sampled-closed-loop. In 
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this chapter, we will investigate the implementation of this new control structure in the case of 

linear quadratic multi-controller systems. Without loss of generality and for simplicity of notation, 

we will consider only the case of two controllers. Almost all the results derived in this chapter can 

be easily extended to the case of M-controller systems where M > 2.  Furthermore, in the case of 

the Stackelberg controls, without loss of generality, we will only consider the case where controller 

2 is the leader controller.  The results can be easily duplicated for the case where controller 1 is 

the leader. 

2.3 Linear Quadratic Multi-Controller Systems. 

Linear quadratic systems are a very important class of control systems for which optimal 

controllers can be easily derived analytically [1].  A linear-quadratic two-controller system is a 

control system described by the linear differential equation: 

 
1 1 2 2 0 0,    ( )=x  x Ax Bu B u x t= + +     (2.1) 

where x is the state vector, 1u is the control vector of controller 1, and 2u  is the control 

vector of controller 2. The objective functions for the two controllers are quadratic in the form: 

1 1 2 1 1 1 1 1

1 1
( , ) ( )

2 2
f f

f

o

t

t

J u u x C x x Q x u R u dt  = + +     (2.2) 

and 2 1 2 2 2 2 2 2

1 1
( , ) ( )

2 2
f f

f

o

t

t

J u u x C x x Q x u R u dt  = + +     (2.3) 

respectively, where all matrices are symmetric and of proper dimensions and  and are 

positive definite matrices. Controller 1 wants to minimize 1J , while controller 2 wants to minimize

2J . Defining the following matrices  and , it is known [84] that the open-

loop Nash controls for this problem are of the form: 

1R
2R

1

1 1 1 1E B R B− = 1

2 2 2 2E B R B− =
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 1

1 1 1 1( ) ( , )N

o ou t R B K t t x− = −     (2.4) 

  

and    1

2 2 2 2( ) ( , )N

o ou t R B K t t x− = −      (2.5) 

 

where , , and satisfy the coupled differential equations:  

 

1 1 2 2( , ) ( ) ( , ),        ( , )o o o ot t A E K E K t t t t I  = − − =     (2.6) 

 

1 1 1 1 1 1 1 1 2 2 1 1,      ( )fK A K K A Q K E K K E K K t C= − − − + + =     (2.7) 

 

2 2 2 2 2 2 2 2 1 1 2 2,       ( )fK A K K A Q K E K K E K K t C= − − − + + =    (2.8) 

 

It is also known [88] that the open-loop Stackelberg controls with controller 2 as the leader 

is of the form: 

 2 1

1 1 1 1( ) ( , )S

o ou t R B S t t x− = −     (2.9) 

 

and 2 1

2 2 2 2( ) ( , )S

o ou t R B S t t x− = −     (2.10) 

Where 0( , )t t , 
1( )S t , and 2 ( )S t  satisfy the coupled differential equations:  

1 1 2 2( , ) ( ) ( , )              ( , )o o o ot t A E S E S t t t t I  = − − =     (2.11) 

 

1 1 1 1 1 1 1 1 2 2 1 1,       ( )fS A S S A Q S E S S E S S t C= − − − + + =     (2.12) 

 

2 2 2 2 1 2 2 2 2 1 1 2 2 1,      ( ) ( )f fS A S S A Q Q P S E S S E S S t C C P t= − − − + + + = −    (2.13) 

 

1 1 2 2 1 2                   ( ) 0oP AP PA PE S PE S E S P t= − + + + =     (2.14) 

 

( , )ot t 1( )K t
2( )K t
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Note that equations (2.9)-(2.11) are very similar to equations (2.5)-(2.7) except that 

equation (3.11) has the extra term 
1Q P in it that depends on the solution of the linear equation in 

(2.12).   

In both cases, the values of the objective functions when either the Nash or Stackelberg 

controls are used are given by: 

 1 1

1
( )

2
o o oJ x M t x=     (2.15) 

 

 2 2

1
( )

2
o o oJ x M t x=     (2.16) 

where  and  satisfy the linear differential equations: 

1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1( ) ( ) ,  ( )fM A E L E L M M A E L E L Q L E L M t C = − − − − − − − − =   (2.17) 

 

2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2
( ) ( ) ,     ( )

f
M A E L E L M M A E L E L Q L E L M t C = − − − − − − − − =   (2.18) 

 

Where 
1 2 and L L  are replaced by 

1 2 and K K from equations (2.6) and (2.7) in the case of 

the Nash controls and are replaced by 
1 2 and S S from equations (2.10) and (2.11) in the case of the 

Stackelberg controls.  

2.4 Implementation of the Sampled Closed-Loop Controls 

 To simplify the notation, we will now illustrate these controls' implementation on 

a scalar linear-quadratic system.  The extension to higher dimensionality systems can be easily 

done in a very similar way.  Consider the two-controller scalar system: 

1 1 2 2 , [ , ),    ( ) is given o f ox ax b u b u t t t x t= + +      (2.19) 

2 2 2

1 1 1 1 1

1 1
( ) ( ) ( )

2 2
o f

f

o

t

t

J t c x t q x ru dt= + +     (2.20) 

2 2 2

2 2 2 2 2

1 1
( ) ( ) ( )

2 2
o f

f

o

t

t

J t c x t q x r u dt= + +     (2.21) 

1( )M t 2 ( )M t
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Let us now assume that measurements of the state vector can be obtained at discrete pre -

specified instants of time 
1 1, , ,o nt t t −

such 
1 1o n ft t t t−    and which may or may not be 

uniformly distributed over the interval [ , )o ft t . Starting at the interval 
1[ , )n ft t−

 and proceeding 

backward in time until the first interval 
1[ , )ot t is reached, we will solve for the controls successively 

as described below. Assume that at instant  the state vector  can is available for 

measurement by both controllers who will then design and implement sampled closed -loop 

controls of the form
1( , ( ))iu t x t  and 

2( , ( ))iu t x t over the interval .  The system equation 

over this interval   is: 

1 1 2 2 1, [ , ),      ( ) available i i ix ax bu b u t t t x t+= + +      (2.22) 

and 2 2 2

1 1 1 1 1 1 1

11 1
( ) ( ) ( ) ( )

2 2
i i i

i

i

t

t

J t m t x t q x ru dt+ +

+

= + +     (2.23) 

2 2 2

2 2 1 1 2 2 2

11 1
( ) ( ) ( ) ( )

2 2
i i i

i

i

t

t

J t m t x t q x r u dt+ +

+

= + +     (2.24) 

The Nash controls over the interval are obtained from (2.4) and (2.5) -(2.7) and 

are of the form:  

 

1
1 1

1

2
2 2

2

( , ( )) ( )

( , ( )) ( )

N

i i

N

i i

b
u t x t k x t

r

b
u t x t k x t

r






= − 



= −


    (2.25) 

Where, assuming that   and , we have   

 
1 1 2 2( ) ,       ( ) 1ia e k e k t  = − − =     (2.26) 

 

2

1 1 1 1 1 2 1 2 1 1 1 12 ,       ( ) ( )i ik ak q e k e k k k t m t+ += − − + + =     (2.27) 

2

2 2 2 2 2 1 1 2 2 1 2 12 ,        ( ) ( )i ik ak q e k e k k k t m t+ += − − + + =     (2.28) 

it ( )ix t

1[ , )i it t t +

1[ , )i it t +

1[ , )i it t t +

2

1
1

1

b
e

r
=

2

2
2

2

b
e

r
=
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Once 
1( )k t

 
and

2( )k t  are determined from the above equations, the values of the objective 

functions are obtained as: 

 2

1 1

1
( ) ( ) ( )

2
i i iJ t m t x t=     (2.29) 

 

 2

2 2

1
( ) ( ) ( )

2
i i iJ t m t x t=     (2.30) 

 

Where 
1( )m t and 

2( )m t satisfy the linear differential equations obtained (2.17) and(2.18):  

2 1

1 1 1 2 2 1 1 1 1 1 1 12( ) ,      ( ) ( )i i

i im a e k e k m q e k m t m t+

+= − − − − − =     (2.31) 

 

2 1

2 1 1 2 2 2 2 2 2 2 1 22( ) ,  ( ) ( )i i

i im a e k e k m q e k m t m t+

+= − − − − − =     (2.32) 

 

We can follow a similar procedure for the Stackelberg controls. For the interval 
1[ , )i it t t +  

the controls are obtained from (2.4) and (2.9)-(2.10) and are of the form: 

 

 

1
1 1

1

2
2 2

2

( , ( )) ( )

( , ( )) ( )

S

i i

S

i i

b
u t x t s x t

r

b
u t x t s x t

r






= − 



= −


    (2.33) 

Where:                          1 1 2 2( ) ,     (0) 1a e s e s  = − − =     (2.34) 

2

1 1 1 1 1 2 1 2 1 1 1 12 ,      ( ) ( )i is as q e s e s s s t m t+ += − − + + =     (2.35a) 

 

2

2 2 2 1 2 2 1 1 2 2 1 2 1 1 1 12 ,        ( ) ( ) ( ) ( )i i i is as q q p e s e s s s t m t m t p t+ + + += − − + + + = −    (2.35b) 

 

 
1 1 2 2 1 2( ) , ( ) 0ip e s e s p e s p t= + + =     (2.36) 

Once 1( )s t  and
2( )s t  are determined from the above equations, the values of the objective 

functions are obtained as:  
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2

1 1

2

2 2

1
( ) ( ) ( )

2

1
( ) ( ) ( )

2

i i i

i i i

J t m t x t

J t m t x t


= 


=


    (2.37) 

where and satisfy the linear differential equations obtained from (2.17) and 

(2.8):  

2 1

1 1 1 2 2 1 1 1 1 1 1 12( ) ,       ( ) ( )i i

i im a e s e s m q e s m t m t+

+= − − − − − =     

 (2.38) 
 

2 1

2 1 1 2 2 2 2 2 2 2 1 22( ) ,         ( ) ( )i i

i im a e s e s m q e s m t m t+

+= − − − − − =     (2.39) 

 

As mentioned earlier, for both the Nash and Stackelberg controls, the process starts at the 

last interval of time 1[ , )n ft t−  where the boundary conditions at ft t=
 
 are given as 

 1c
 
 and

2c  

proceeds backward in time until the interval 
1[ , )ot t is reached. We will now illustrate the derivation 

of the Nash and Stackelberg controls for the following two-controller control system. 

2.5 An Illustrative Example 

 Consider the following two-controller system: 

 

 
1 2 , [0,1), (0) 1x x u u t x= + −  =     (2.40) 

 

Let the objective function of controller 1 be: 

 2 2 2

1 1

1

0

1
(1) (2 ( ) ( ))

2
J x x t u t dt= + +     (2.41) 

And the objective function of controller 2 be: 

 

2 2 2

2 2

1

0

1
2 (1) ( 4 ( ) 3 ( ))

2
J x x t u t dt= − + − +     (2.42) 

1( )m t
2( )m t
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With the coefficients multiplying 2x being positive in 
1J and negative in 

2J , clearly 

minimizing these objective functions represents a situation where controller 1 is trying to drive the 

state variable x towards the origin (i.e., regulate the system) while controller 2 is trying to drive it 

away from the origin (i.e., destabilize the system).  The interval of control is [0,1] . We will 

consider the case of sampled-closed-loop control, where only ten state vector measurements are 

available 0.1( 1),for 1, ,10it n n= − = . Comparing (2.40)-(2.42) with (2.19)-(2.21) the system 

parameters are
1 21, 1and 1a b b= = = − , the parameters for controller 1 are 

1 1 2c q= = and 
1 1r = , 

the parameters for controller 2 are 
2 2 4c q= = − , and 

2 3r = .  Following (2.25), the Nash controls 

for this system are
1 1( , ( )) ( )N

i iu t x t k x t= − and 
2 2( , ( )) 1/ 3 ( )N

i iu t x t k x t= . Similarly, following 

(2.33) the Stackelberg controls with controller 2 as a leader are 
1 1( , ( )) ( )S

i iu t x t s x t= − and

2 2( , ( )) 1/ 3 ( )i i

su t x t s x t= .   Plots of all solution variables for this problem are shown in Figures 

(2.1) through (2.8). Figures (2.1) and (2.2) show plots of the feedback gains for both the Nash and 

Stackelberg controls.  These are plotted as a pair on the same graph to illustrate the difference 

between the two solutions.  While 1 1and k s  having the same boundary condition at t=1,    2 2and k s

have different boundary conditions due to the p(t) variable in (3.33), which is plotted versus time 

in figure (2.3).  
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Figure (2.1): Plots of 
1( )k t and 

1( )s t vs. time 

 

Figure (2.2): Plots of 
2( )k t and 

2( )s t vs. time 
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Figure (2.3): Plot of ( )p t for the Stackelberg control vs. time 

 

Plots of the parameters 1( )m t and 
2( )m t  which characterize the objective functions are 

shown in Figures (2.4) and (2.5), and plots of the controls and state trajectories are shown in 

Figures (2.6)-(2.8), respectively. Clearly, the state variable's trajectory is approaching the origin, 

which means it has been regulated.  This result indicates that controller1 has been able to 

accomplish its objective in spite of the fact that controller 2 was trying to drive the state away from 

the origin. Plots of the objective functions' values 1J and 2J for both the Nash and Stackelberg 

controls are shown in Figures (2.9) and (2.10).   It is clear from Figure (2.10) that 2 2

S NJ J at every 

[0,1]t which means, as expected, that the leader in the Stackelberg solution (controller 2 in this 

case) achieves better performance using a Stackelberg control rather than a Nash control.  
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Figure (2.4): plots of 
1( )m t vs. time 

 

Figure (2.5): Plots of 
2( )m t vs. time 
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Figure (2.6): Plots of the Nash and Stackelberg controls for controller 1 vs. time. 

 

Figure (2.7): Plots of the Nash and Stackelberg controls for controller 2 vs. time. 
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Figure (2.8): Plots ( )x t for both the Nash and the Stackelberg controls vs. time 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.9): Plots of controller 1 cost-to-go (Nash and the Stackelberg) vs. time. 
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Figure (2.10): Plots of controller 2 cost-to-go (Nash and the Stackelberg) vs. time. 

 

2.6 Conclusion 

In this chapter, we have considered systems that are controlled by more than one controller, 

each having its own objective function.  The optimal control of such systems does not simply 

involve minimizing the objective functions, but it also involves how the various controllers interact 

with each other and how they take the controls of the other controllers into account.  In this chapter, 

we have considered the Nash and Stackelberg control rationales.  These solution concepts are very 

popular in the context of dynamic solutions.  We have considered the special case of linear 

quadratic systems with two controllers and derived and solved in detail all the accompanying 

necessary differential equations for the scalar case.  We then considered the implementation of 

sampled closed-loop controls.  These controls are closed-loop types expect that the feedback loops 
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are closed only at specific instants of time when the state-vector is available for measurement.   We 

have included a two-controller example to illustrate the results.  
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CHAPTER THREE 

LEADERSHIP SELECTION WITH PARAMETER UNCERTAINTY 

 

In leader-follower Stackelberg games, the leader determines and announces its strategy first 

by anticipating the follower’s reaction function, and the follower determines its strategy as the best 

response to the leader’s strategy. Thus, there is a perceived advantage in assuming the role of a 

leader in a Stackelberg game. When the controllers' roles are not determined a propri, both 

controllers must mutually agree on the selection of the leader.  Such an agreement is possible only 

if the controllers realize that they are both better off with the agreed selection of leader than when 

the other controller is selected as leader.  In games with parameter uncertainty, th is option's 

availability depends on the parameter space over which the game is defined.  This chapter describes 

the partitioning of the parameter space to characterize when a Stackelberg solution based on an 

agreed leader selection exists and when it does not. The resulting partition can then be used to 

determine the probability of all possible games where agreement can and cannot be reached. We 

illustrate the results using two examples. 

3.1 Introduction 

The Stackelberg solution [86-88] in two-player nonzero-sum static and dynamic games 

provides an alternative to the Nash solution [83-85] when the two players' roles can be defined as 

leader and follower.  The leader in a Stackelberg game decides on its strategy first, and the follower 

determines its strategy as the best response to the leader’s strategy. The Nash and Stackelberg 

solutions have received considerable attention in both the multiple controller's literature over the 
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past 50 years or so.  The recent books [94] by Basar and Olsder, [95] Yong, [90]Ungureanu , and 

[96] Lambertini provide a very good summary and include most of the relevant references related 

to these two solutions. One of the main advantages of the Stackelberg solution, as was demonstrated 

in [88] and [97], is that the Stackelberg solution is advantageous over the Nash solution for the 

leader.  A controller is always better off being a leader in a Stackelberg game than an equal 

controller in the Nash game.  Hence, as expected, both controllers will compete for the leadership 

role either by acquiring faster means of decision-making or by trying to become dominant in size.  

In doing so, however, each controller has ignored considering the possibility that being a follower 

might be a more beneficial option to it than being a leader.  While this would not be possible in a 

duopoly with two profit-maximizing firms, Hou et al [98], it is a highly probable outcome in two-

player games in general.  To illustrate this point let us first consider the simple 2- controller matrix 

game is shown in Figure (3.1), where each controller has three decision choices.  controller 
1C  

decides on the x variables and wants to minimize its payoff consisting of the first entries in the 

matrix and controller 
2C  decides on the y variables and wants to minimize its payoff consisting of 

the second entries in the matrix.  The Stackelberg Solution with 1C  as leader is 2 3{ , }x y yielding 

payoffs of (3, 4) and the Stackelberg Solution with P2 as leader is 
1 1{ , }x y yielding payoffs of  

(4, 7). Clearly, in this case, both controllers will do better when P1 is the leader and would therefore 

would readily agree that P1 should be the leader.  
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Figure (3.1): A Matrix Example 

 

In games where the leader's selection is negotiable, each of the two controllers will need to 

compare the outcome of the games when it plays the role of leader and when it agrees for the other 

controller to play the role of leader.  Thus, there are four possible options for the controllers to 

consider. Two options occur when each controller determines that it is preferable for it to be a leader 

while simultaneously, the other determines that it is preferable for it to be a follower. These two 

latter options are implementable since, in each case, the controllers can reach a mutual agreement 

on the selection of the leader.  A third option occurs when each controller determines that it is 

preferable for it to be a leader and for the other controller to be a follower, and a fourth option 

occurs when each controller determines that it is preferable for the other controller to be a leader 

and for it to be a follower. Clearly, neither of these last two options is implementable since the 

controllers cannot mutually agree on the leader's selection, and a stalemate will prevail. The 

deadlock can be resolved either by the controllers adopting a Nash approach or by one controller 

considering making side payments to the other controller as an incentive to agree to be a follower.   

The possibility of distributing the roles in a Stackelberg game was first mentioned in [99] Basar in 

the context of a scalar differential game example.  It was also considered in [100] Boyer & Moreaux, 

 
1

y  
2

y  
3

y  

1
x  4, 7  6,16  7, 5  

2
x  9, 14  11,13  3, 4  

3
x  10,15  5,10  2,11 
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and [101] Dowrick in the context of static duopoly problems where it is agreed that even in the 

competitive framework between two firms in a duopoly, it is not unreasonable to expect that they 

may end up coordinating the distribution of their roles as leader and follower in a mutually 

advantageous way. Later on, [102]Van Damme and Hurkens argued that committing to the role of 

leadership is less risky for the low-cost firm so that such a firm will emerge as a leader is a 

Stackelberg duopoly. In a more recent paper, [103] Liu questioned whether a leader firm in a 

duopoly really has a strategic advantage in practice under demand uncertainty.  The paper cites 

several examples of market leaders in the dotcom era that ended up not sustaining the business due 

to uncertainty in demand. Another recent paper [104] Nie, Wand, and Cui argue that in repeated 

games, controllers acting as leaders, in turn, improves cooperation and consequently enhances 

social welfare.   

While most of the early applications of the Stackelberg strategy were in duopoly type 

economic problems, in recent years, there has been an emergence of interest in the Stackelberg 

solution as an effective mechanism for analyzing many of today’s complex engineering systems.   

These include the smart electric grids [105-108], wireless communication systems [109, 110], 

cyber-physical systems [111, 112], and others. The Stackelberg solution has also been of interest in 

problems related to security resource allocation [113], artificial intelligence  [114, 115], economics, 

management, and marketing systems [116-118], and others.  Many of these complex systems do 

not have a naturally designated leader leaving the leadership position open for negotiation.  The 

selection of a leader becomes a very important issue that will affect the entire system's performance.  

Selecting or negotiating who should be the leader in these systems becomes very important, 

especially when it is not obvious that being a leader is always advantageous.  
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In this chapter, we explore the partitioning of the parameter space to characterize the 

various regions when the controllers can mutually agree, and when they do not, on the selection of 

the game leader. If the parameters probability distribution is known, the resulting partition of the 

parameter space can then be used to determine the probability of all possible options of leader 

selection. We illustrate the results with two examples where the parameters are uniformly 

distributed over a bounded space and show how the probabilities of the existence of either 

controller's mutually acceptable selection as a leader can be determined. 

3.2 Stackelberg Solutions with Uncertain Parameters: 

In Stackelberg games defined over a space of uncertain parameters where the leader is to 

be selected by mutual agreement, the challenge is to determine probabilities of occurrence of a 

game where it is advantageous for each of the two controllers to be select as the leader. To 

accomplish this, the regions in the parameter space that delineate when it is advantageous for each 

controller to be selected as a leader need to be determined.  Let Ω be the space of uncertain game 

parameters, and let , 1, 2L

i i   =  be the set of parameters such that the controller i  prefers2 [119] 

to be the leader and F L

i i = −   be the set of parameters such that the Controller i  prefers to be 

a follower. Then Ω can be divided into two regions: (1) A region of Agreement, ΩA, representing 

parameters that characterize Stackelberg solutions where both controllers agree on the leader 

selection, and a region of disagreement, ΩD, representing parameters that characterize Stackelberg 

solutions where both controllers cannot agree on the leader selection. The region of agreement ΩA 

 
2 The preference can be either based on a cardinal ranking of the choices available to each player according to an 

objective function or on an ordinal raking of the choices based on each players’ subjective preference 
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consists of two feasible sub-regions 
A1 1 2

L F =    representing the region where both 

controllers agree that controller 1 should be selected as the leader and 
A2 1 2

F L =  represent 

the region where both controllers agree that controller 2 should be selected.  Similarly, ΩD can be 

divided into two sub-regions: 
DL 1 2

L L =   representing solutions where both controllers 

disagree in that both want to be selected as leaders and 
DF 1 2

F F =  where both controllers 

disagree in that both want the other controller to be selected as leader. Characterizing these regions 

in the parameter space will not only provide information about solutions where the leader 

selections by mutual agreement are possible but also will allow for a determination of the 

probabilities of occurrence of each of these solutions. Such probabilities will help the controllers 

decide a priori on the most advantageous selection of the leader between them. 

To clarify these concepts, let us first consider the simple 2-controller matrix solution shown 

in Figure (3.1), where each controller has three decision choices. The controller 1C   controls the x 

variables and wants to minimize the first entry in the matrix, and the controller 
2C   controls the y 

variables and wants to minimize the second entry in the matrix.  The solution has two uncertain 

parameters  and   in the matrix entries that are uniformly distributed over the bounded region

{( , ) such that 0 8 and 0 12}   =     . Following [99], it can be easily shown that the 

Stackelberg solution with controller 1, 1C  as a leader, always occurs at the location 2 3{ , }x y , and 

the Stackelberg solution with controller 2,
2C , as a leader, always occurs at the location

1 1{ , }x y  

for all ( , )   .  Furthermore, it can be easily shown, as illustrated in Figure (3.2), that: 

 

1) 
A1 {( , )  such that 3 4 and 0 7}    =        
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2) 
A2 {( , )  such that 0 3 and7 12}    =       

3) 
1 {( , )  such that 3 8 and 7 12}D     =       

4) 
2 {( , )  such that 0 3 and 0 7}D     =       

The four regions and their probabilities of occurrence of corresponding solutions are 

indicated in Figure (3.2).  Clearly, the largest region in the parameter space is the region of 

agreement
A  implying that there is a 36% probability that a solution will occur where both 

controllers agree that should be selected as leader and 16% probability that a solution will occur 

where both agree that 
2C  be selected as to be the leader. These are both feasible Stackelberg 

solutions by mutual agreement. Figure (3.2) also indicates that there is a 48% probability that a 

solution will occur where an agreement is not possible with a 26% probability due to both 

controllers want to be selected as leaders and 22% probability due to neither controller wants to 

be selected as leader. This simple example illustrates the importance of determining the regions in 

the parameter space where agreement can be reached on selecting the solution leader.  

 

 

 

 

 

 

 

 

Figure (3.2): Matrix example with variables of 𝛼, 𝛽 
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Figure (3.3): Characterization of the Parameter Space Ω for the solution in figure (3.2) 

 

3.3 Differential Solution example 

 Consider the first-order linear-quadratic differential game example described by 

the linear differential equation: 

1 2 0 , [0,1] , and (0)x u u t x x= −  =      (3.1) 

and quadratic cost functions   

  
1

2 2

1 1 2 1 1
0

1 1
( , ) (1) ( )

2 2 p

J u u c x u t dt
c

= +   (3.2) 

  2

1
2 2

2 1 2
0

2

1 1
( , ) (1) ( )

2 2 e

J u u c x u t dt
c

= +    (3.3) 

where x  is the state variable, 
1 2 and u u  are the control variables of Controllers 1C  and 

2C  

respectively and 1J  2J are their respective cost functions. This classic simple example was first 

considered in [120] Ho, Bryson, and Baron (1965) and has been used since then as a benchmark 
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example to illustrate numerous solution concepts in differential game theory.  Note that
1J and

2J

include the scalars parameters
1 2, , , and p ec c c c , which for the problem to be well defined, must 

satisfy the conditions: 

1 2{ 0, 0, 0, 0}p ec c c c          (3.4) 

If the value of these parameters were known a priori, then it will be possible to determine 

whether or not both controllers can agree on who should be selected as leader. Using the notation 

isju and
1 2( , )i sj sjJ u u , or simply j

iJ , to denote the Stackelberg strategy and corresponding cost for 

controller i when controller j is leader, then both controller s will agree for controller 1 to be selected 

leader if 1 2

1 1J J  and 1 2

2 2J J  both will agree for controller 2 to be selected leader if 2 1

1 1J J  and

2 1

2 2J J . In this chapter, we will assume that the parameters 1 2, , , and p ec c c c are uncertain, and as 

a result, it is not possible to determine a priori whether a leader selection is feasible or not. To  the 

simplicity of notation, let us define the parameters  

1 2, , , and p ec c c c       (3.5) 

To determine the regions of agreement ΩA and disagreement ΩD, we first need to determine 

the set of parameters 2

1 2{ , }a a R  over which the two Stackelberg solutions with either controller 

as leader exist.  It follows (from Eqs. (48)-(53) in [88] ) that the open-loop Stackelberg solution 

with P1 as leader exists provided 2

1 2{ , }a a R  satisfy: 

2

2

2 1

(1 ) 0

(1 ) 0

a

a a

+  


+ +  
                                                                        (3.6) 

The control variables for this solution are  
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 1
1 1 2

2 1(1 )
s ou

a

a
x

a
= −

+ +
   and  2 2

2 1 2

2 1

(1 )

(1 )
s ox

a a
u

a a

+
=

+ +
  (3.7)                                

and the corresponding cost functions for the two controllers are:  

 1 21
1 2

2 1

1

2 (1 )
o

c
J x

a a
=

+ +
   and   

3
1 22 1
2 2 2

2 1

(1 )1

2 [(1 ) ]
o

c a
J x

a a

+
=

+ +
    (3.8) 

Similarly, the open-loop Stackelberg solution with P2 as the leader exists provide

2

1 2{ , }a a R satisfy: 

 
2

1 2

11 0 

(1 ) 0

a

a a + + 

+  
   (3.9) 

The control variables for this solution are: 

 1 1
1 2 2

1 2

(1 )

(1 )
s o

a
u

a a

a
x

+
= −

+ +
 and  

2
2 2 2

1 2(1 )
s ou

a

a
x

a
=

+ +
 (3.10) 

and the corresponding cost functions for the two controllers are: 

 
3

2 21 1
1 2 2

1 2

(1 )1

2 [(1 ) ]
o

c a
J x

a a

+
=

+ +
  and 

2 22
2 2

1 2

1

2 (1 )
o

c
J x

a a
=

+ +
  (3.11) 

Thus, the parameter space 2R over which both Stackelberg solutions exist is: 

 2 2 2

1 2 1 2 1 2 1 2 2 1{ , } 0, 0, (1 ) 0, (1 ) 0, (1 ) 0, and (1 ) 0a a R a a a a a a a a =     +  +  + +  + +   

Figure (3.3) shows the region Ω in R2. Note that the reason the coordinate axes correspond 

to 1 0a =  and 2 0a =  are shown as dotted lines is that these lines are not included as a part of Ω. 

Next, we need to determine the region of agreement A   . As mentioned earlier, ΩA 

consists of two sub-regions
A1 1 2

L F =   where both controllers agree that 1C  should be selected 

as the leader and 
A2 1 2

F L =  where both controllers agree that 
2C  it should be selected as 
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leader.  The region 
1

L is determined by the set of parameters that yield 1 2

1 1J J . Using (3.8) and 

(3.11), this means that:  

 

Figure (3.4): Feasible Region Ω (shown in color) 

 
3

1 1 1

2 2 2

2 1 1 2

(1 )

[(1 ) ] [(1 ) ]

c c a

a a a a

+


+ + + +
   (3.12) 

After numerous algebraic manipulations, the above inequality reduces to: 

 4 2 2 3 2

1 1 2 1 2 1 1 2 2(1 ) 2 (1 ) ((1 ) [(1 ) 2 ] 0c a a a a a a a a+ + + + − + + + +     (3.13) 

and after additional manipulations, it reduces further to: 

 

 2 2 3

1 2 1 2 2 2 12 (1 ) (2 )(1 ) 0c a a a a a a+ + − + +      (3.14) 

and finally, after more manipulations, it simplifies to 

2 2 2

1 1 2 1 1 1 2 1 12 (1 ) ((2 ) (1 ) ) 0c a a a c a a a a− + − + + +     (3.15) 
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Dividing the above inequality by the expression 2 2

1 1 2 1(1 )c a a a+ which is > 0 since 2

1 1 1 pc a c c= yields 

the condition: 

 1

2

2 1

(2 )2
1 0

(1 )

a

a a

+
+ + 

+
   (3.16) 

Now, if 
2 0a   (i.e., if

2 0c  ) then the above inequality (4.16) will always be satisfied when

1 2{ , }a a  . If 
2 0a  then (4.16) must also be satisfied to characterize

1

L .  Thus, in summary, the 

set of parameters for which 
1C  prefers to be the leader is: 

( ) 1
1 1 2 2 2 2

2 1

(2 )2
{ , }  0  or 0 and 1 0  

(1 )

L a
a a a a

a a

  + 
 =     + +   

+   
 (3.17) 

and the set of parameters for which C1 prefers to be a follower is 
1 1

F L = − .  Figure (3.4) 

illustrates the division of   into
1

L and 
1

F .  

Now following a similar derivation, the set 
2

L  such that 2 1

2 2J J  can be determined as: 

( ) 2
2 1 2 1 12

1 2

(2 )2
{ , } 0  or 1 0 if 0  

(1 )

L a
a a a a

a a

  + 
 =    + +    

+   
   (3.18) 

and 
2 2

F L = − .  Figure (3.5) illustrates the division of   into
2

L and 
2

F . The 

superposition of Figures (3.4) and (3.5) when   it is bounded by 
1 2  and a A a A   and 2A=  is 

shown in Figure (3.6).  This figure shows the two regions of agreement ( A1 and
A2 ) and the 

two regions of disagreement ( D1 and
D2 ). It is interesting to note that the feasible region is now 

divided into eight separate regions (labeled I through VIII for ease of referencing) that are related 

to the allocation of roles between the two controllers as follows: 
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Figure (3.5): Regions 
1

L and 
1

F  in Ω 

 

1) A1  It consists of sub-regions I and II, where both agree that 1C   should be selected as a leader. 

2) 
A2 It consists of sub-regions III and IV, where both agree that 

2C  should be selected as a 

leader. 

3) D1 It consists of sub-regions V, VI, and VII, where both disagree, each preferring itself to be 

selected as a leader. 

4) 
D2 It consists of sub-region VIII, where both disagree, each preferring the other controller to 

be elected as leader.  
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Note that 
A1 and 

A2 each consists of a large and a small region that is disconnected,  

while 
D1 consists of three disconnected regions with VII being dominant in size, indicating that 

most solutions would result in each controller wanting itself to be selected as leader. 

 

 

Figure (3.6): Regions 
2

L and 
2

F  in Ω 

 

When the upper bound A of the parameters 
1 2 and a a changes, some of the above 

observations will change accordingly.  For example, when A=0 (i.e., when   is bounded by 

1 20  and 0a a  ), it will follow that D1 will no longer exist, leaving only three possible options 
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with 
D2 being the most dominant indicating a strong preference for solutions where both 

controllers prefer the other controller be selected as leader. 

Finally, solutions that correspond to parameters in the small regions (e.g., II and IV) are 

very sensitive to small perturbations in the parameters causing a wrong potential distribution of 

roles for the controllers.  

 

 

Figure (3.7): Characterization of A1 , 
A2 , D1 and 

D2 in Ω 
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3.4 Probabilities of Occurrence 

Assuming that the parameters 
1 2 and a a are uniformly distributed over,   as shown in 

Figure (3.3) with A as upper bounds 
1 2 and a a , we can calculate the probabilities of occurrence of 

solutions where both agreement and disagreement occur.   The total area of the region Ω in Figure 

(3.4) can be determined analytically as a function of A by direct integration to be equal to 

2 25 5 7
(A 1) 2 0.30328

6
A A

−
+ − = + + . Tables (3.1) and (3.2) list the areas calculated by direct 

integration for each of the various regions in figure (3.6) for three different values of A.  These 

tables also show the probability of occurrence of solutions corresponding to all sub-regions 

individually as well as to the cumulative regions representing agreement and disagreement.  

 

Table (3.1): Probabilities of Occurrence of all individual Sub-regions within   

Type of 

Solution 
Region Area of Region   Probability of Occurrence 

  A=0- 
5 1

2
A

−
=   A=1 A=2 A=0- 

5 1

2
A

−
=  A=1 A=2 

A1  
I 0.0 0.5227 0.9047 1.9047 0.0% 27.20% 27.39% 22.94% 

II 0.0526 0.0526 0.0526 0.0526 17.34% 2.74% 1.59% 0.63% 

A2  
III 0.0 0.5227 0.9047 1.9047 0.0% 27.20% 27.39% 22.94% 

IV 0.0526 0.0526 0.0526 0.0526 17.34% 2.74% 1.59% 0.63% 

D1  

V 0.0 0.3820 1.0000 4.00000 0.0% 19.88% 30.27% 48.17% 

VI 0.0 0.0953 0.0953 0.0953 0.0% 4.96% 2.89% 1.15% 

VII 0.0 0.0953 0.0953 0.0953 0.0% 4.96% 2.89% 1.15% 

D2  VIII 0.1981 0.1981 0.1981 0.1981 65.32% 10.32% 5.99% 2.39% 

Total Area 0.3033 1.9213 3.3033 8.3033  
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Table (3.2): Cumulative Probabilities of Occurrence of Agreement/Disagreement Regions 

Region Area of Region   Probability of Occurrence 

 A=0- 
5 1

2
A

−
=   A=1 A=2 A=0- 

5 1

2
A

−
=  A=1 A=2 

A1  0.0526 0.5753 0.9573 1.9573 17.34% 29.94% 28.98% 23.57% 

A2  0.0526 0.5753 0.9573 1.9573 17.34% 29.94% 28.98% 23.57% 

D1  0.0 0.5726 1.1906 4.1906 0.0% 29.80% 36.05% 50.47% 

D2  0.1981 0.1981 0.1981 0.1981 65.32% 10.32% 5.99% 2.39% 

Area 0.3033 1.9213 3.3033 8.3033  

 

Clearly, for a large parameters space (A=2), the dominant region with the highest overall 

probability of occurrence is 
D1 .  This means that there is a 50.47% probability that both 

controllers will end up disagreeing that 
1C  should be selected as a leader. This probability, 

however, decreases rapidly to 36.05% as the parameter space becomes smaller (A=1) and to 0% 

as space becomes even smaller (A=0-).  The probability of occurrence of an agreement-solution 

A1 or
A2 is 0% when A=0-, becomes equal to the probability of disagreement D1 at about 30% 

for each A1 A2,  and
1D when

5 1

2
A

−
= then increases to 28.98% when A=1 and then 

dropping substantially to 23.57% when A=2.  Clearly, the highest probability of agreement (at 

59.88%) occurs when 
5 1

2
A

−
= and the highest probability of disagreement (at 65.32%) occurs 

when A=0-.  The size of the parameter space is clearly the determining factor of whether a mutual 
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agreement can be reached 
1D →between the two controllers.  Note that if A→ then and the 

probability of disagreement with each controller wanting to be the leader will approach 100%. 

3.5 Conclusions 

 In this chapter, we have explored the problem of selecting the leader in Stackelberg 

games with uncertain parameters.  We have shown that the parameter space can be divided into 

four regions, two of which representing games in which mutual agreement can be reached on the 

selection of leader and the other two representing games in which disagreement between the 

controllers takes place with both controllers either wanting to be leaders or both preferring to be 

followers. A leader's selection can be easily accomplished if the game parameters fall within the 

region of agreement. However, if they do not, then a stalemate condition may prevail, and the 

selection of a leader becomes more complicated. The Nash solution or the possibility of side 

payments may become options to break the stalemate.  The probabilities of occurrence of 

agreement and disagreement games are very useful information for the controllers to use in the 

process of negotiations.  We have illustrated these concepts with two examples and showed how 

the probabilities of occurrence of all games are determined when the parameters are uniformly 

distributed over a bounded space. This chapter provides an illustration of the type of analysis that 

needs to be performed on all Stackelberg games defined over uncertain parameters where the 

leader is to be selected by mutual agreement or negotiation and between the two controllers. 
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CHAPTER FOUR: 

ECONOMIC APPLICATION: DUOPOLIST CASE 

This chapter is devoted to the important application of multiple controllers with multiple 

objective systems in economics. We consider the real case when there are two-firm that control 

the dynamics of a demand function. We derive the necessary condition for Leader-Follower-Firm 

economic Stackelberg control systems. The general results are not easy to solve. In this work we 

proposed the novel demand linear differential state function with quadratic cost functions. 

However, the presence of cross term in the integrating profits function. The derivation of the 

necessary conditions for such systems are presented in this chapter. To demonstrate the important 

of the proposed model, the results, simulation results are presented for the numerical example. 

4.1 Problem Description 

A control system with two controllers, one labeled as a leader whose control is ( ),Lu t and 

the other labeled as follower whose control is ( ),Fu t which is typically described by the differential 

equation over an interval of time [0, ]T  of the form: 

( )
( ( ), ( ), ( ))L F

dx t
x f x t u t u t

dt
= =                 (4.1) 

where ( )x t  is the state variable. For simplicity of notation and without loss of generality, 

we will consider only scalar systems, although most of the derivations can easily be extended to 

higher dimensions. We will assume that the two controllers have two different discounted 

objective functions (profits) that they wish to maximize:  

 
0

( , ) ( , , )

T

rt

L L F L L FJ u u e L x u u dt−=      (4.2) 
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0

( , ) ( , , )

T

rt

F L F F L FJ u u e L x u u dt−=      (4.3) 

Where 
rte− is the discounted factor, and r is the discounted rate for both firms. 

To best describe the Stackelberg Leader-Follower control design process, we will consider 

a specific model of a dynamic economic system of two controlling firms.  This model describes 

two firms controlling a common dynamically evolving market through their product supply 

functions.  The model that we will consider assumes that the product price x(t) (i.e. , state variable) 

depends on the total product supply ( ) ( ) ( )L Fu t u t u t= + where ( )Lu t is the leader supply control 

and ( )Fu t is the follower supply control according to the differential equation: 

( )
( ( ), ( ) ( ))L F

dx t
x f x t u t u t

dt
= = +     (4.4) 

 

This relationship essentially implies that at any instant of time, the product price depends 

on the total supply according to: 

0

0

( ) ( ( ), ( ) ( ))

t

L Fx t x f x u u d   = + +     (4.5) 

Where 0x is the initial price at some arbitrary initial time 
0 0t = . Furthermore, we shall 

assume that the objective of each firm is to maximize its profits over the time horizon [0, ]T  , which 

are now described as: 

 
0

( , ) [ ( )].

T

rt

L L F L L LJ u u e xu C u dt−= −     (4.6) 

and  

 
0

( , ) [ ( )].

T

rt

F L F F F FJ u u e xu C u dt−= −     (4.7) 
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where the term ( )I I Ixu C u−  represents the difference between the revenues 
Ixu  and 

production costs ( )I IC u for firms   and I L F= . In this dynamic control model, the supply 

control functions are determined continuously as a function of time to maximize the profits over 

the specified time horizon. 

The Stackelberg control of the leader is first determined as a function of the control of the 

follower.  To do this, the leader controller must anticipate the follower's maximization problem 

(4.7) for every possible leader control to arrive at its control function. This is accomplished by the 

follower controller using a standard optimal control methodology[1, 121-124]. The Hamiltonian 

for the follower is defined (consider the discount factor for both firms is 0r =  ) as: 

 ( ) ( , )F F F F F L FH xu C u f x u u= − + +     (4.8) 

and the necessary conditions for the follower’s control function are [27]: 

( , )
, ( ) 0L F

F F F F

f x u u
u T

x
  

 +
= − − =


    (4.9) 

     
( ) ( , )

0 F L F
F

F F

C u f x u u
x

u u


  +
= − +

 
    (4.10) 

Where
F is the follower’s Lagrange-multiplier. Thus, for every possible control Lu that the 

leader can implement, the follower will determine its control 
Fu by solving (4.9) and (4.10) where 

and Fx H satisfy (4.4) and (4.8).  These expressions, therefore, define how the follower reacts to 

every possible control choice by the leader.  Now the problem faced by the leader is a little more 

complex.  The leader must determine its control Lu that maximizes (4.6) subject to the constraint 

that 
Fu  satisfies the differential equation (4.9), and the algebraic equation (4.10) can be solved 

implicitly for the follower’s control as a function of x and the leader’s control Lu  ; that is, 
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( , )F F Lu u u x= .  Then, the leader’s control can be determined using a different leader’s 

Hamiltonian defined as: 

( , ( , ))
( ) ( , ( , ))+ ( , ) L F L

L L L L L L F L L F L F

F

f x u u u x
H xu C u f x u u u x u u x

u
  

  +
= − + + − − 

 
 (4.11) 

And the necessary conditions for the leader’s control function become:

2

2

2

( , ) ( , ) ( , )

( , )
                                                        + ,       ( ) 0

L F L F F F L F
L L L F

F F

L F F
L L

F

f x u u f x u u u u f x u u

x u x x u x

f x u u u
u T

u x

   



   +  +    +
= − + + +  

       

 + 
− =

  

   (4.12) 

( , )
, (0) 0L L F

L L L

F F

H f x u u

u
  



  +
= − = =

 
       (4.13) 

2 2

2

( ) ( , ) ( , )
  0

( , ) ( , )
                                      

L L L L F L F F
L

L L L F L

F L F L F F
L

L F L F L

H C u f x u u f x u u u
x

u u u u u

u f x u u f x u u u

u u u u u





    +  + 
= = − + + 
     

   +  + 
− + + 

     

   (4.14) 

These expressions are, in general, very difficult to solve. However, like many of the 

optimal control problem, a solution can be determined analytically in the case where the system is 

linear and the cost functions are quadratic.  This will be discussed in detail in the next section. 

4.2 The Case of Linear Demand and Quadratic Cost Function 

The special case of one controller linear system and quadratic cost functions has received 

considerable interest in the control literature since the 1970s [122, 123]. As in the one controller 

case, considerable insight can be obtained about the system behavior by analyzing this special linear 

quadratic two-controller case. Let the system dynamics in (4.4) be linear and described as follows: 
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0( )           (0)L Fx ax b u u x x= − + =     (4.15) 

 Where a  and b  are positive constants and representing the rate of growth of the state 

variable when no control is applied.  Similarly, let the cost functions in (4.6) and (4.7) be quadratic 

of the form:  

2 21 1
( ) and ( )

2 2
L L L L F F F FC u c u C u c u= =      (4.16) 

Where  and L Fc c are positive constants, and the factor ½ is introduced for mathematical 

convenience. It is clear from (1) that the two controllers can keep the state variable constant 
0x  

throughout the entire time horizon [87] if they both reach a consensus to simultaneously adjust their 

controls so that ( )L Fu u a b x+ = .  However, this is unlikely to happen since if one controller 

increases its control supply to increase its profits, the other controller will have to reduce its control 

to keep the consensus resulting in a reduction in its profits, which may not be acceptable.  In the 

dynamic model described in (4.15), both controllers will continuously adjust their controls in order 

to maximize their objective functions.  Thus, the follower’s maximization problem as described in 

(4.4), (4.8)-(4.10) will have a Hamiltonian in the form: 

( )( )21

2
F F F F F L FH xu c u ax b u u= − + − +     (4.17) 

As well as the following necessary conditions: 

 ( ) 0(0)L Fx ax b u u x x= − + =    (4.18) 

, ( ) 0F F F Fu a T  = − − =                                            (4.19) 

0 F F Fx c u b= − −    (4.20) 

Thus, from(4.20), we have 

1
( )F F

F

u x b
c

= −     (4.21) 
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As a result, the problem faced by the leader is to maximize (4.7)subject to the two 

constraints: 

2

0( ) , (0)L F

F F

b b
x a x bu x x

c c
= − − + =     (4.22) 

And 

 
1

( ) , ( ) 0F F F

F F

b
a x T

c c
  = − − − =     (4.23) 

Derived from (4.18) and (4.19) by replacing 
Fu as described in (4.21).  The corresponding 

Hamiltonian (4.11) becomes: 

     
2

21 1
( ) ( )

2
L L L L L L F L F

F F F F

b b b
H xu c u a x bu a x

c c c c
   
   

= − + − − + + − − −   
   

    (4.24) 

And the necessary conditions (4.12)-(4.14) reduce to: 

1
( ) ,      ( ) 0L L L L L

F F

b
u a T

c c
   = − − − + =     (4.25) 

2

( ) , (0) 0L L L L

F F

b b
a

c c
   = − + − =     (4.26) 

0 L L Lx c u b= − −     (4.27) 

From (4.27) we have: 

1
( )L L

L

u x b
c

= −     (4.28) 

Now combining equations,(4.22)-(4.23) and (4.28) and replacing the controls 
Fu and Lu

with their expressions in (4.21) and (4.28), we get: 

2 2

0( ) (0)L F

L F L F

b b b b
x a x x x

c c c c
 = − − + + =     (4.29) 

1 1
( ) ,   ( ) 0L L L L

L F L F

b b
a x T

c c c c
   = − − − − + =     (4.30) 

 
1

( ) , ( ) 0F F F

F F

b
a x T

c c
  = − − − =     (4.31) 
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with β L
 satisfying equations(4.26). Now, introducing the transformations

L Lk x = , 

F Fk x = , and
L kx = ; and after considerable mathematical manipulations, the solution of these 

equations yields the following control functions for the leader and follower respectively: 

( )( ) 0

1
( ) 1 ( )L L

L

u t bk t t x
c

= −     (4.32) 

( )( ) 0

1
( ) 1 ( )F F

F

u t bk t t x
c

= −     (4.33) 

where ( ), ( ), and ( )L Fk t k t t  are functions of time that satisfy the following differential 

equations: 

( ) ( ) ( ) ( ) ( )
2 2

22 2 1 1
2 ( ) ,       ( ) 0L L L L F L

L F L F F L

b b b b
k t a k t k t k t k t k t k T

c c c c c c

 
= − + + − − + − = 
 

 (4.34) 

( ) ( ) ( ) ( ) ( ) ( )
2 2

22 1
2 , 0 F F L F F F

L F L F F

b b b b
k t a k t k t k t k t k T

c c c c c

 
= − + + − − − = 
 

   (4.35) 

and where ( )k t  satisfies 

( ) ( ) ( ) ( )
2 2 2

( ) ( ) ( )                        (0) 0L F L

L L F F

b b b b
k t k t k t k t k t k t k

c c c c
= − + − =   (4.36) 

and 
( )

0( )

t

d

t e
  

 =  

where:   ( ) ( ) ( )
2 2

L F

L L F F

b b b b
t a k t k t

c c c c


 
= − + − + 
 

    (4.37) 

At this point, we should mention that equations (4.34)-(4.36) are a two-point boundary value 

problem consisting of coupled nonlinear differential equations. Equations (4.34) and (4.35) have 

boundary conditions at the terminal time t=T, while equation (4.36) has a boundary condition at the 

initial time t=0. Once this system of equations is solved for ( )Lk t , ( )Fk t and ( )k t , only ( )Lk t and

( )Fk t are used to generate the function ( )t in (4.37), which in turn is used to calculate the function 

( )t . 
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4.3 Illustrative Example 

As an illustrative example, we consider a control system model of a dynamic market with 

two firms producing and selling the same product.  The model would  follow the differential 

equation (4.15) and profit functions as described in (4.6) and (4.7) with production costs as 

described in (4.16).  Let the problem parameters be defined as follows: 0.03a = , 0.012b = ,

0.60Lc =  and 0.70Fc = , and let the time horizon be such that 30T = . Assuming that the product 

has an initial unit price 
0 10x = , plots of the functions ( )Lk t  ( )Fk t , and ( )k t that satisfy (4.34)-

(4.36) are shown in Figures (4.1) and (4.2), respectively. Plots of the control functions ( )Lu t and 

( )Fu t  are shown in figure (4.3), and a plot of the state variable ( )x t , which represents the product 

price, is shown in Figure (4.4). The total profits accumulated by the firms in this case over the entire 

time horizon are 2,843.70LJ =  and 2, 471.31FJ =  indicating that the firm that has lower production 

costs has achieved higher profits 

Clearly, figure (4.3) shows that in the case of both firms, to maximize their profits, they 

must continuously increase production over the entire time horizon.  Also, it appears that the leader 

firm whose production cost is lower seems to be producing at a higher rate than the  follower firm 

whose production cost is higher. A close examination of the figure (4.4) reveals that the product 

price increases rapidly at the beginning but reaches a peak of almost 12 around t=20 before tapering 

down to 11.5 at t=30., the end of the profit maximization horizon. 

One interesting aspect of this analysis is to examine the profits of both firms and the product 

price as a function of the follower’s production cost. Table (4.1) and Figures (4.4-4.5) show the 

variations of the profits of both firms and the price behavior overtime when the Leader’s cost 
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parameter is fixed 0.60Lc =  , and the follower cost parameter 
Fc  is increased from 0.50 to 1.2. 

Clearly, as the follower's production costs increase, the product price increases and the follower’s 

profits decrease, but the leader’s profits increase.  Thus the leader has an incentive to ensure that 

the follower’s production costs remain as high as possible. In fact, when the follower’s production 

costs are double those of the leader, i.e. 1.20Fc = , the leader’s profits will be double the profits of 

the follower.  Table 1 also shows that, when 0.58128Fc = , both firms accomplish the same profits 

2,761.20L FJ J= = .  It is also interesting to note that the product price behavior as a function of 

time changes markedly as a function of 
Fc . The lower 

Fc , the more the price tends to reach a peak 

value. This peak value shifts to later in time as 
Fc  increases and vanishes when 1.00Fc = .  Beyond 

this value, the price becomes monotonically increasing in time.  This type of price behavior is 

interesting from the consumer point of view. A price that exhibits a peak followed by a drop after 

a certain time is more favorable to the consumer leading to the conclusion that the consumer prefers 

that the follower firm's production costs be more on par with the costs of the leading firm. In the 

next section, some results will be presented for the sensitivity of the parameters variation in the 

proposed model and their corresponding effects on the profits for the two firms.  
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Figure (4.1): Plots of functions ( )Lk t and ( )Fk t  of equations(4.34) and (4.35) 

 

Figure (4.2): Plots of function ( )k t , equation (4.36) 
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Figure (4.3): plots of ( )Lu t  and ( )Fu t  production rates 

 

Figure (4.4): plot of ( )x t  production price 
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Table (4.1): Profits of both firms as a function of 
Fc when 0.60Lc =  

Fc  
L

J  
F

J  

0.50 2708.14       3008.48 

0.52 2720.50          2943.00 

0.54 2733.40  2880.72 

0.56 2746.72         2821.38 

0.58 2760.32        2764.74 

0.58128 2761.20 2761.20 

0.6 2774.11 2710.58 

0.62 2788.02 2658.73 

0.64 2801.97 2609.01 

0.66 2815.93 2561.29 

0.68 2829.85 2515.43 

0.70 2843.70 2471.31 

1.00 3032.24 1963.00 

1.20 3134.67 1729.25 
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Figure (4.5): plot of ( )x t   when 0.6Lc =   and Fc  is increased from 0.50 to 1.20. 

4.4 Sensitivity with parameter variation of the demand function 

Following the results, we have gotten in chapter three and applied to  the proposed model 

and results of the duopolistic. If we suppose that uncertainty happen s in the demand function 

parameters, i.e., changing in a  and 𝑏.  

First, supposing there is an uncertain value of a  around its nominal value, with a fixed 

value of 𝑏, the plot in figure (4.6) shows proportional relations between the a  and both firms’ 

profits. Whereas 0.024a =  which is 80% from its nominal value 0.03a = , the leader firm will 

have profit 2298
L

J =   which is around 80%  from its profit when a  is nominal, and on another 

side, follower firm 1582FJ = which is 64.7%  almost the same percentage of losses. Thus, as the 
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value of a  going up to +20%, 𝑎 = 0.036 , the profits for leader and follower increased by +29% 

and+30% , respectively. 

 

Figure (4.6): Firms’ profits vs. a  fixed 0.012b = . 

 

The other possibility is that change in b ’s value with fixed a . If the variation 𝑏 is ranging 

as follow: { 20% 20%}− →+  from its nominal value, both firms' profits decrease as follows: 

Leader { 13 10%}+ →−  while the follower will change{ 13.5% 11%}+ →− . Figure (4.7) shows the 

full range for the above b ’s variation and the firms’ profits' corresponding effects. 
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Figure (4.7): Firms’ profits vs. b  and fixed 0.03a = . 

 

From the above two possibilities, both firms’ profits will increase as the value a  increases 

and decreases. As the final possible if  both parameters are varying 20% , the 3-dimensional plot 

in figure (4.8) shows the relationship as ( ),a b  pair are change and outcome leader firm profit
LJ

. As expected from the previous results, the possible upper value of a  combined with the lowest 

possible of b  the best profit of leader firm within the range of variations and vice-versa. 

Numerically speaking, as shown from the figure (4.8) the lowest possible value for the leader profit 

( 0.024, 0.0216) 2631LJ a b= = =  and best possible value is ( 0.036, 0.0144) 5554LJ a b= = =   
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Figure (4.8) Leader firm profits versus a  and b  variation 

 

For the same range of variations for the demand function parameters, the profits changes are 

represented by the surface, as shown in figure (4.9). The results can be shown for the lowest and 

best values of the follower profit as follow: ( 0.024, 0.0216) 1507FJ a b= = =  and best possible 

value is ( 0.036, 0.0144) 3384FJ a b= = =  
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Figure (4.9): Follower firm profits versus a  and b  variation 

 

4.4 Conclusions 

In this chapter, we considered control systems controlled by two independent controllers.  

Motivated by real problems in dynamic economics where more powerful big firms can implement 

their production strategies before the less powerful small firms, the leader-follower structure as a 

variation of the traditional control systems has attracted considerable attention in recent years. In 

such systems, due to either size or power, one controller has an advantage over the other in that it 

is capable of designing and implementing its control actions before the other.  This controller is 

referred to as the leader controller and the other as the follower controller. To take advantage of the 

leadership role, the leader controller anticipates the follower controller's reaction and designs its 

control actions taking this reaction into account as a constraint that needs to be satisfied. This makes 

the design process of the leader control much more complicated than the follower control design. 
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Once the leader’s control is designed and implemented, the follower control is traditionally 

designed as an optimal one controller control. In this chapter, we have examined the design process 

of both controllers in detail, and we have shown that the leader implicitly determines the best 

follower’s control that optimizes its performance and designs its control taking into account that the 

follower’s optimal choice is that specific control.  These types of leader-follower control systems 

can be used to describe many practical control systems. An illustrative example and simulation 

results are presented to demonstrate the our proposed differential demand function with using 

Stackelberg framework in such applications. 
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CHAPTER FIVE: CONCLUSIONS 

The control of multi-controller multi-objective systems presented in this dissertation is 

considered a natural extension of the standard optimal control theory. In this dissertation, we have 

discussed properties and applications related to these types of systems. The focus of the 

dissertation is on dynamic systems with two controllers, each having its own objective function to 

minimize over a finite-horizon. The contributions of the dissertation are summarized below. 

5.1 Contributions 

5.1.1 Sampled closed-loop  

 

Chapter two proposed a sampled, instead of continuous, closed-loop schemes for two-

controller multi-objective systems. The necessary conditions for the proposed approach are 

derived in detail for Linear Quadratic (LQ) systems. The theoretical results and implementation of 

the sampled closed loop controls are applied for both Nash, and Stackelberg approaches.  The main 

consideration of this approach is in designing the controls, which is a trade-off between the 

simplicity of implementation of the   open-loop framework and the robustness property of the 

closed-loop framework. The proposed scheme can be a special type of feedback loops that are 

closed only at specific instants of time when the state-vector is available for measurement.  As an 

application for the derived results, we have illustrated a two-controller example for both the Nash 

and Stackelberg solutions where the time horizon is divided into several number of samples.  

Several observations can be made as a result of this example. For the Nash controllers it was 

observed that as the number of samples increased, the system's behaviors for both controllers and 

state trajectory resemble the behavior of the continuous closed loop.  However, the sampled-
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closed-loop Stackelberg implemented controller with a high rate of samples approached the Nash 

continuous closed-loop controls, and state trajectory.  

 

5.1.2 Chosen Roles with Parameters uncertainty   

 

Chapter four is devoted to an application of two controller systems in economics, the 

duopoly model. This model is a linear differential price equation while the profit functions include 

quadratic costs. In this chapter, we presented an illustrative example and derived the necessary 

conditions for the leader-follower Stackelberg approach.  One can conclude that the solution does 

not exist for all possible ranges of cost parameters.  

 

5.1.3 Economic Application: Duopolist Case 

 

Chapter four is devoted to one important application in economic, the duopoly case. The literature 

for two-firm shares the same market and produces the same good and control the demand function 

is mostly static. However, this dissertation tries to consider the price as controlled by a differential 

equation from a control system view. The proposed model is new and has not been considered in 

previous literature. This model is a linear differential price equation while the profit functions are 

quadratic cost and have a cross term. However, due to the fact that the Nash controller’s derivation 

is more straightforward than the Stackelberg controller, the Nash case is not considered in this 

work.  An illustrative example is presented to apply the necessary derived conditions for such 

systems using the leader-follower Stackelberg approach.  One can conclude that the solution does 

not exist for all possible ranges of cost parameters.  
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5.2 Suggestions for Future Research 

There are several interesting problems that have not been   explored in this dissertation and 

remain open for future research.  An important problem is to extend the sampled closed loop 

approach to multiple controllers in nonlinear systems.  Another problem is generalizing the leader-

follower role assignment over system parameters distribution for more general models including 

linear quadratic systems.  Exploring the possible solutions when both controllers are in 

disagreement would also be interesting.  
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