
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2020 

Distributed Multi-agent Optimization and Control with Distributed Multi-agent Optimization and Control with 

Applications in Smart Grid Applications in Smart Grid 

Towfiq Rahman 
University of Central Florida 

 Part of the Computer Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Rahman, Towfiq, "Distributed Multi-agent Optimization and Control with Applications in Smart Grid" 
(2020). Electronic Theses and Dissertations, 2020-. 400. 
https://stars.library.ucf.edu/etd2020/400 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/386386338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd2020%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/400?utm_source=stars.library.ucf.edu%2Fetd2020%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


DISTRIBUTED MULTI-AGENT OPTIMIZATION AND CONTROL WITH APPLICATIONS
IN SMART GRID

by

TOWFIQ RAHMAN
B.Sc. Islamic University of Technology, 2012

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2020

Major Professor: Zhihua Qu



c© 2020 Towfiq Rahman

ii



ABSTRACT

With recent advancements in network technologies like 5G and Internet of Things (IoT), the size

and complexity of networked interconnected agents have increased rapidly. Although centralized

schemes have simpler algorithm design, in practicality, it creates high computational complexity

and requires high bandwidth for centralized data pooling. In this dissertation, for distributed op-

timization of networked multi-agent architecture, the Alternating Direction Method of Multipliers

(ADMM) is investigated. In particular, a new adaptive-gain ADMM algorithm is derived in closed

form and under the standard convex property to greatly speed up the convergence of ADMM-based

distributed optimization. Using the Lyapunov direct approach, the proposed solution embeds con-

trol gains into a weighted network matrix among the agents uses and those weights as adaptive

penalty gains in the augmented Lagrangian. For applications in a smart grid where system pa-

rameters are greatly affected by intermittent distributed energy resources like Electric Vehicles

(EV) and Photo-voltaic (PV) panels, it is necessary to implement the algorithm in real-time since

the accuracy of the optimal solution heavily relies on sampling time of the discrete-time iterative

methods. Thus, the algorithm is further extended to the continuous domain for real-time appli-

cations and the convergence is proved also through Lyapunov direct approach. The algorithm is

implemented on a distribution grid with high EV penetration where each agent exchanges rele-

vant information among the neighboring nodes through the communication network, optimizes a

combined convex objective of EV welfare and voltage regulation with power equations as con-

straints. The algorithm falls short when the dynamic equations like EVs state of charge is taken

into account. Thus, the algorithm is further developed to incorporate dynamic constraints and the

convergence along with control law is developed using Lyapunov direct approach. An alternative

approach for convergence using passivity-short properties is also shown. Simulation results are

included to demonstrate the effectiveness of proposed schemes.
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NOMENCLATURE

Symbol/Abbreviation Description

xi State of agent i.

N Set of agents in the network.
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Aij Matrix representing physical interconnection.

∇xifi(xi) Gradient operator w.r.t variable xi.
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ables by agent i.
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βkij Scalar control gains.

λij, µij Dual variables.

∂ Partial derivative operator.

αi step size of agent i.

Mf Lipschitz constant.

ϕ Uniformly bounded disturbance.
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i Lyapunov function of agent i.

li,mi Indices for max and min,respectively.
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∗
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pi, qi Active and reactive power injection by EV aggregators at

node i.

G Directed graph.

E Set of distribution lines.

Vi, Ii Voltage and current at node i.

Pdi , Qdi Load demand at node i.

Rij, Xij Impedance of branch i→ j.

Ui(pi, qi) Utility function.

ψ Price of electricity.
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CHAPTER 1: INTRODUCTION

In any kind of practical problem which involves decision making, either by the user or by the

device itself, an optimization routine is run to come up with an optimal solution that will solve

the problem in the most desired fashion. Most of this problem can be cast into a mathematical

framework and can then be solved using available optimization algorithms. The optimization rou-

tine can be run centrally where all the data involving the system and its constraints are pooled

into one central entity which runs the necessary steps to optimize the whole system. But in recent

times, due to several shortcomings of centralized structure like scaling and robustness, distributed

optimization has gained a lot of attention. A distributed optimization algorithm must be capable

of collecting localized data across a network of interconnected agents, and each agent must be

able to solve their optimization problem without requiring any centralized coordination. Among

all these algorithms, the Alternating Direction Method of Multipliers (ADMM) has gained a lot

of popularity due to its ability to decompose a complex optimization problem into a sequence of

simpler sub-problems. It combines this decomposability with the superior convergence property

of augmented Lagrangian [1]. ADMM was first introduced by Glowinski & Marroco [2] and by

Gabay & Mercier [3]. Most recently, it has been applied to many applications in such areas as

image processing [4], machine learning [5], resource allocation [6], power system optimization [7]

etc. Due to this diverse range of applications, researchers dug deep into the convergence properties

of ADMM. In this dissertation, a distributed multi-agent setting of ADMM is investigated and an

adaptive penalty method for faster convergence based on the information received by each agent

from its neighboring agents through the communication protocol is developed. In most of the ex-

isting ADMM literature, penalty parameter are set to be constant and identical [8, 9, 10, 11]. The

advantage of using the adaptive penalty is noted in [12, 13, 1], but those results either require global

information or have convergence and scalability issues. Thus in this work, these shortcomings are
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tried to overcome and develop an algorithm where each agent can solve its optimization problem

locally while making the architecture scalable. The problem is setup into a multi-agent problem

where agents are connected among themselves and can communicate with each other. Each agent

runs an optimization routine where it tries to solve its objective function and satisfy its constraints

based on the information it receives from its neighbors. While the optimization routine is running,

some of the information received by an agent is more useful than some other information for con-

verging. So, the algorithm determines the important information and increases the gain on those

and vice versa. In this way, the proposed adaptive penalty method can be made to converge faster.

For the next step in this work, the algorithm is applied to a smart grid setting where a distribution

system with heavy electric vehicle (EV) penetration is chosen. EVs have gained massive popularity

in the recent past due to attention from leading automotive industries and the government’s push to

reduce its emission of greenhouse gases. Although this is good for the environment, the distribution

system is facing problems due to the penetration of electric vehicles. The presence of a large

number of EVs is causing a substantial degradation of the quality and reliability of the power grid.

Despite the adverse effects, EVs can be controlled and used as a power source to benefit the grid.

Also, this control of EVs cannot be done by a centralized body since that would be non-scalable

and would require huge communication bandwidth. To tackle this ever scaling problem, in this

dissertation, a continuous domain multi-agent distributed ADMM algorithm is developed. The

objective is to control the EVs and utilize them to maintain the grid voltage within the normal

operating range while also satisfying the consumers by maximizing their welfare. The developed

algorithm is an extension of the distributed multi-agent ADMM algorithm mentioned above. The

algorithm was developed in the continuous domain since in most of the other algorithms which are

iterative and in discrete time, the accuracy of the optimal solution greatly depends on the sampling

time, thus it is not robust to changes that are prevalent with distributed energy resources like EVs.

We took the update dynamics from the previous algorithm which were in discrete time, converted
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them to continuous-time, and proved the convergence through the Lyapunov direct method. The

algorithm is implemented in an IEEE 123 bus test distribution system to show its effectiveness.

One of the drawbacks of the continuous-domain algorithm is that it is unable to tackle dynamic

constraints such as the state of charge (SOC) of the EVs. To tackle this shortcoming, the algo-

rithm is further developed to incorporate this dynamic constraint. The dynamic update laws are

developed and the convergence with the control law is proven through the Lyapunov approach. An

alternative approach to convergence was also shown using passivity short properties. It was shown

that the dynamics can be expressed in state-space and can be broken down into several subsystems.

Each subsystem has its properties and they can be interconnected together and the whole system

can be proved to be passivity-short. The algorithm is implemented into a smart grid with EV pen-

etration. The problem was formulated into a multi-layer multi-period optimization problem where

the distribution system operator (DSO) solves the optimal power flow and utilizes the EV potential

to regulate the voltage close to 1p.u. Aggregators, who work in tandem with the DSO, provides

input signals to the EVs. The EVs in turn allows the aggregators to use them for grid ancillary

services in exchange for financial compensation. They also have their optimization problem to

solve with the dynamic constraint of SOC to satisfy. Simulation studies were run on the system

with the algorithm in effect and the results were illustrated to plots and figures.

For future work, the algorithm can be further extended to incorporate the temporal dependence

of the objective function due to the dynamic nature of the constraints. With the introduction of

dynamic constraints, static objective functions can no longer be used. So the problem must be

developed into a multi-stage ADMM problem. More simulation scenarios must be run in the smart

grid setting to test the algorithm and measure its scalability and stability. Finally, a comparative

study can be performed with the other distributed ADMM algorithm in the literature with the

algorithm presented in the dissertation and measure the effectiveness of their performance.
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CHAPTER 2: BACKGROUND

In this chapter, a brief review of some of the existing optimization techniques, their definitions, and

properties are presented which acts as a precursor to the ADMM. These concepts act as a baseline

for some of the developments which will be carried out in the subsequent chapters.

Convex sets and functions

Our ability to solve an optimization problem depends considerably on several factors. One such

factor is the form of the objective function and constraint functions. Even when they are smooth

and proper, most of the time it is difficult to solve. There are classes of problems like least-

square problems and linear programming which are easier to solve even when the size of the

problem is huge with thousands of variables and constraints. One such class of problems is convex

optimization which has structured and effective algorithms for solving them reliably and efficiently.

To understand these problems with solution algorithms, we need a basic understanding of convexity

properties.

Definition 1 A set C is said to be a convex set if for any two points x1, x2 ∈ C and any θ with

0 ≤ θ ≤ 1, we have:

θx1 + (1− θ)x2 ∈ C. (2.1)

Thus a set is said to be convex if any two points in the set can be connected by an unobstructed

straight line which also lies in the set. Below are definitions of a convex function.

Definition 2 A function f : Rn → R is convex if domain of f is convex set and for all x1, x2 in
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domain of f , and θ ∈ [0, 1], we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) (2.2)

The above definition of a convex function is sometimes referred to as the “0-th order condition”

for convexity. If the function f : Rn → R is twice differentiable, then we also have the following

definitions.

Definition 3 A differentiable function f : Rn → R is convex if and only if for all x1, x2 in the

domain of f , we have

f(x2) ≥ f(x1) +∇Tf(x1)(x2 − x1) (2.3)

where

∇f(x) =

[
∂f(x)

∂x1

· · · ∂f(x)

∂xn

]
(2.4)

The definition states that for a convex function, the first order Taylor approximation is a global

under-estimator of the function and hence it is called first order condition. The second order

condition is defined by the following definition.

Definition 4 A function f : Rn → R is convex if and only if for all x1, x2 in the domain of f ,

∇2f(x) ≥ 0, (2.5)

where Hessian matrix is

∇2f(x) =

[
∂2f(x)

∂xi∂xj

]
(2.6)

The above definition says that a convex function’s derivative is non-decreasing and the graph of

the function has positive (upward) curvature at x.
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Unconstrained Convex Optimization

An unconstrained convex minimization problem can be stated as below

min
x

f(x) (2.7)

Let X denotes a feasible set for the problem. Suppose that the function is differentiable over a

chosen domain and that partial derivatives of at-least first order exists. Then x∗ is optimal if and

only if x∗ ∈ X and

∇f(x∗)T (x− x∗) ≥ 0 for all x ∈ X (2.8)

The first order necessary and sufficient condition for a relative minimum point x∗ of f(x) is

∇f(x∗) = 0 (2.9)

where∇f(x) is the gradient of the first variant. Since f(x) is differentiable, its domain is open, so

all x sufficiently close to x∗ are feasible. Thus the necessary and sufficient condition is automati-

cally derived from (2.8). In the next section, we discuss the gradient descent algorithm to find the

solution to the problem iteratively.

Gradient Descent

The objective of the gradient method is a to generate a sequence of vectors, x0, x1 · · · xn such that

: f(xk+1) < f(xk). Thus the iterative method can be mathematically expressed as :

xk+1 = xk + αk∆xk (2.10)

6



where αk > 0. Here ∆x is called the search direction and k = 0, 1 · · · denotes the iteration

number. From convexity and from (2.8), the search direction in the descent method must satisfy

∇f(xk)∆xk < 0 (2.11)

A natural choice for the search direction is the negative gradient ∆x = −∇f(x) and the resulting

algorithm is called the gradient descent method. The algorithm is given below

Algorithm 1: Gradient descent method

given a starting point x ∈ X repeat

1. ∆x := −∇f(x).

2. Choose a step size α.

3. update x := x+ α∆x

until stopping criteria is satisfied.

The stopping criteria is usually of the form ||∇f(x)||2 < ε where ε is small and positive.

Constrained Optimization: Lagrangian dual function

In the previous sections, we have shown how to solve unconstrained optimization and use gradient

descent method to solve it numerically. In this section, we will tackle convex optimization with

7



both equality and inequality constraints. Let us consider the following optimization problem

min J(x)

s.t. gi(x) ≤ 0 i = 1, · · · ,m (2.12)

hi(x) = 0 i = 1, · · · p

with variable x ∈ Rn. We assume the domain D = ∩mi=0dom gi ∩ ∩pi=1dom hi is non-empty and

the optimal value of (2.12) is p∗. The basic idea in the Lagrangian duality is to take the constraints

into account by augmenting the objective function with weighted sum of the constraint functions.

We define the Lagrangian L: Rn × Rm × Rp → R as follows:

L(x, λ, µ) = J(x) +
m∑
i=1

λigi(x) +

p∑
i=1

µihi(x) (2.13)

where λi is the Lagrange multiplier associated with the ith inequality constraint gi(x) < 0 and

µi is the Lagrange multiplier associated with the ith equality constraint hi(x) = 0. The vectors

λ and µ are called the dual variables. From here, we can define the Lagrangian dual function

G : Rm × Rn → R as the minimum value of Lagrangian over x : λ ∈ Rm, µ ∈ Rp.

G(λ, µ) = inf
x∈D

L(x, λ, µ) = inf
x∈D

(
J(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x)

)
(2.14)

The dual function also yields the lower bound on the optimal value p∗. That is

G(λ, µ) ≤ p∗ (2.15)
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Let us define x∗ and λ∗, µ∗ as the primal and dual optimal point of the problem (2.12). We assume

the functions J, g1 · · · gm, h1, · · ·hp are convex and differentiable. The necessary and sufficient

conditions for the minimization of problem (2.12) can be given as the Karush-Kuhn-Tucker (KKT)

conditions which are stated below

∇J(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

µ∗i∇hi(x∗) = 0 (2.16)

gi(x
∗) ≤ 0 i = 1, · · · ,m (2.17)

hi(x
∗) = 0 i = 1, · · · , p (2.18)

λ∗i ≤ 0 i = 1, · · · ,m (2.19)

λ∗i gi(x
∗) ≤ 0 i = 1, · · · ,m (2.20)

Many algorithms of convex optimization are basically interpreted as methods for solving the KKT

conditions.

Dual ascent and Augmented Lagrangian

So far, we have shown how we can use gradient descent to solve a problem with primal variable

by following the negative direction of the gradient. In this section, we will show that the same

primal problem can be solved by solving the Lagrangian dual problem using gradient ascent, that

is following the positive direction of the gradient for the dual update. Let us consider the following

problem with an equality constraint:

9



min f(x)

s.t. Ax = b (2.21)

where x ∈ Rn, A ∈ Rm×n and b ∈ Rm. The Lagrangian for the problem (2.21) is given as

L(x, λ) = f(x) + λT (Ax− b) (2.22)

and the dual function is

g(λ) = inf
x
L(x, λ) = −f ∗(−ATλ)− bTλ (2.23)

where λ is the dual variable and f ∗ is the convex conjugate of f . The dual problem is

max g(λ) (2.24)

Assuming strong duality holds, the optimal values of primal and dual problems are the same. Thus,

we can recover the primal optimal point from the dual optimal point as

x∗ = arg min
x

L(x, λ∗) (2.25)

We solve the dual problem using the gradient ascent. The whole algorithm consists of the following

iterations

10



xk+1 := arg minx L(x, λk) (2.26)

λk+1 := λk + αk(Axk+1 − b) (2.27)

where αk > 0 is the step size and k is the iteration counter. To further improve robustness of

the dual ascent algorithm, augmented Lagrangian methods were developed. The augmented La-

grangian for (2.21) is given as

Lρ(x, λ) = f(x) + λT (Ax− b) +
ρ

2
||Ax− b||22 (2.28)

where ρ > 0 is the penalty parameter. The above problem is similar to problem (2.21) since for

any feasible x, the term added to the objective is zero. The augmented Lagrangian can be solved

similar to dual ascent as follows

xk+1 := arg minx Lρ(x, λ
k) (2.29)

λk+1 := λk + ρ(Axk+1 − b) (2.30)

The algorithm is similar to dual ascent for solving problem (2.21) except x-minimization step uses

augmented Lagrangian and the penalty term is used as the step size for dual update. The optimality

conditions for (2.21) can be easily derived from the KKT conditions as

Ax∗ − b = 0 ∇f(x∗) + ATλ∗ = 0 (2.31)
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which are termed primal and dual feasibility, respectively.

Alternating Direction Method of Multipliers

The ADMM algorithm blends the decomposability of dual ascent with the superior convergence

of the method of multipliers. Consider the following problem

min f(x) + g(z)

s.t. Ax+Bz = c (2.32)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. We assume that f and g are convex.

The only difference between the problem above and problem (2.21) is that the variable x is split

into two variables, namely x and z, with objective separable across this splitting. Similar to method

of multipliers, we define the following augmented Lagrangian

Lρ = (x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) +
ρ

2
||Ax+Bz − c||22 (2.33)

and it consists of the following iterations

xk+1 := arg minx Lρ(x, z
k, λk) (2.34)

zk+1 := arg minz Lρ(x
k+1, z, λk) (2.35)

λk+1 := λk + ρ(Ax+Bz − c) (2.36)

12



where ρ > 0 is the penalty parameter. The algorithm is similar to dual ascent and the method

of multipliers: it consists of a x-minimization step (2.34), z-minimization step (2.35) and a dual

variable update (2.36). The necessary and sufficient optimality conditions of ADMM problem

(2.32) are primal feasibility

Ax∗ +Bz∗ − c = 0 (2.37)

and the dual feasibility

0 ∈ ∂f(x∗) + ATλ∗ (2.38)

0 ∈ ∂g(z∗) +BTλ∗ (2.39)

Assuming the functions f and g are convex and the corresponding unaugmented Lagrangian has a

saddle point, ADMM guarantees the following

• Residual convergence. rk → 0 as k →∞, where r = Ax+Bz − c.

• Objective convergence. f(xk) + g(zk) → p∗ as k → ∞ where p∗ is the optimal solution to

problem (2.32)

• Dual variable convergence λk → λ∗.
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CHAPTER 3: DISTRIBUTED MULTI AGENT ADMM FRAMEWORK

In the last decade, the Alternating Direction Method of Multipliers (ADMM) has received much

attention due to its ability of decomposing complex optimization problems into a sequence of

simpler sub-problems that can be solved asymptotically under certain convex properties [15]. Most

recently, it has been applied to many applications in such areas as image processing [4], machine

learning [5], resource allocation [6], power system optimization [7] etc. These diverse applications

also demand a detailed study of ADMM convergence properties [16, 17].

The convergence speed of ADMM relies on the selection of penalty parameters [18], which is

often manually chosen by the user for a specific problem setup. Convergence rate of ADMM is

studied, and earlier work include [16, 19]. It is now well established in the literature that, if the

objective functions are strongly convex and have Lipschitz-continuous gradients, the basic ADMM

algorithms have global linear convergence[8, 9]. The strong convexity conditions are relaxed in

[10], and a constant O(1/n) convergence rate is achieved under mild convex assumptions. It is

shown in [11] that convergence can be achieved in O(1/n2) time if at least one of the objective

functions is strongly convex. These specific results all use constant penalty parameters and, in

practical applications, efficiency of ADMM is highly sensitive to parameter choices and could be

improved via adaptive penalty selection [12, 13, 1].

The first approach that comes intuitively is to use different penalty parameters in each iteration. In

He et al. [12], an adaptive penalty based on the relative magnitude of primal and dual residuals

is proposed to balance their magnitudes. In [18], primal and dual residuals are also used to im-

prove a defined convergence factor while solving a class of quadratic optimization problem using

ADMM. In both these cases, the ADMM algorithm is shown to converge, but global computation

Most of the contents of this Chapter have appeared in [14]
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of primal and dual residuals are required and hence the resulting algorithm is no longer distributed.

In [20], distributed ADMM is implemented to minimize locally known convex functions over a

network, and the effect of communication weights on the convergence rate is investigated. In [21],

the weighted network matrix is adaptively tuned to improve convergence in a consensus-based dis-

tributed problem framework using cooperative control. This idea is used in [22] where a consensus

based distributed ADMM is formulated with a predefined network structure, for which primal and

dual residuals are balanced locally by each agent. However, their adaptive penalty needs to be re-

set after several iterations to guarantee convergence, which results in much weakened convergence

conditions. More recently, adaptive penalty parameters are used in [15] to improve convergence

speed by estimating the local curvatures of the dual functions. However, as pointed out in [23], an

increase in the number of nodes causes the local curvature estimation to be inaccurate and possibly

unstable.

A Lyapunov-based analytical design methodology is proposed to synthesize adaptive penalty pa-

rameters for ADMM to ensure convergence and improve convergence time, all in a multi-agent

setting. The proposed distributed ADMM algorithm is designed in four steps. First, distributed

control gains are embedded into a row-stochastic weighted network connectivity matrix to ensure

consistency of the ADMM between its constraints and network connectivity. Second, the entries of

weighted network matrix are embedded as the penalty parameters into the augmented Lagrangian

for ADMM so they can be adjusted in a distributed manner for each agent to use its local in-

formation and optimize its local objective function. Third, utilizing the convex property of the

individual agents’ objective functions, the standard ADMM formulation is applied to the newly

formulated augmented Lagrangian, the resulting ADMM algorithm with adaptive gains is shown

to be asymptotically convergent, and its iterative ADMM updating laws are derived. Fourth, us-

ing the Lyapunov direct method, adaptive gain updating laws are analytically synthesized, and the

improvement of convergence is proven.
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Distributed ADMM formulation

Let us consider the following distributed optimization problem with a conforming communication

topology among agents:

min
∑
i∈N

fi(xi) (3.1a)

s.t.
∑
j∈Ni

Aijxj = 0 for i ∈ N , (3.1b)

where N = {1, 2, · · · , N} is the set of agents. For agent i, Ni denotes the set of its neighbors

including itself, xi ∈ Rn is its state vector, fi(xi) is its objective function, and Aij are matrices of

appropriate dimensions in the linear constrained equations representing the interconnection of the

physical layer. It should be noted that the number of columns for matrix Aij should be greater than

the number of rows for the problem to be feasible. The problem can be perceived as each agent

i trying to optimize its own objective function while satisfying the network level interconnection

constraint of (3.1b).The following assumption is made on the individual objective functions.

Assumption 1: Functions fi, i ∈ N , are strictly convex and differentiable, and their gradients

denoted by ∇xifi(xi) are Lipschitz continuous. The set of optimal solutions to (3.1) is not empty,

and the corresponding minimum of (3.1a) is finite.
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Network of Agents

Local communication in the network is characterized by a bidirectional graph G = (N , E); specif-

ically, its sensing/communication matrix is binary and of form [24]:

S =



1 s12 · · · s1N

s21 1 · · · s2N

...
...

...
...

sN1 sN2 · · · 1


, (3.2)

where sij = 1 if and only if eij ∈ E . Matrix S has 1 in the diagonal as every agent knows its own

information, and it is equal to the sum of the adjacency matrix and identity matrix. The following

assumption ensures conformity and connectivity of the network, and the multi-agent system is vi-

sualized in figure 3.1.

Figure 3.1: Networked cyber-physical system of multi agents.
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Assumption 2: The communication graph conforms with system constraints in the sense that, if

Aij 6= 0 or Aji 6= 0, sij = sji = 1. And, the communication graph is connected, i.e., matrix S is

irreducible.

Conformity requires that, if agent j is linked to agent i in the ith constraint (3.1b) and through ma-

trixAij , the two agents have a bidirectional communication channel between them. Connectivity is

known [24] to be equivalent to irreducibility. Hence, assumption 2 ensures that the communication

network is connected and each agent can optimize its objective function while satisfying all the

constraints.

Distributed Adaptive-Gain ADMM

To solve (3.1) using ADMM, we introduce a set of auxiliary variables, zji, which are the estimates

of agent j’s variables by agent i [7]. Then, problem (3.1) can be restated as

min
∑
i∈N

fi(xi) (3.3a)

s.t.
∑
j∈Ni

Aijzji = 0 for i ∈ N (3.3b)

xi = zij j ∈ Ni, i ∈ N (3.3c)

where zij are relaxation variables used in the standard ADMM [1]. It should be noted that several
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existing formulations of consensus based ADMM problem, including those in [25] and [26], are

more restrictive than the above. In those setups, each agent tries to reach consensus to a global

value which is often the average of the states over the whole network and that common value

is assumed to be the global optimal point. In our problem formulation, there is a network level

constraint (3.1b) to be satisfied, each agent tries to minimize its own objective function under the

constraints, and the resulting optimal solutions for agents are different in general. For this reason,

we introduced the variable zij which is the observation of the state of agent i at agent j. All

the agents related to the ith agent try to make their estimates zij of xi reach consensus so that a

solution to (3.3) converges to an optimal solution x∗ of the original problem (3.1). The goal of this

reformulation is to solve the optimization problem in a distributed fashion that agent i solves its

own optimization sub-problem by exchanging information with its neighboring nodes in set Ni.

To this end, we form the so-called augmented Lagrangian as:

LD(x, z, λ, µ) =
∑
i∈N

Li(xi, zij, λij, µi), (3.4)

where λij and µi (j ∈ Ni, i ∈ Ni), are the Lagrange multipliers (dual variables) associated with

the constraints,

Li =fi(xi) +
∑
j∈Ni

[
λTij(xi − zij) +

dij
2
||xi − zij||2

]
+ µTi

∑
j∈Ni

Aijzji +
wi
2

∣∣∣∣∣∣∑
j∈Ni

Aijzji

∣∣∣∣∣∣2,

and dij ≥ 0 are regularized but time-varying penalty parameters from a row-stochastic gain matrix

Dk, and wi > 0 is the penalty parameter associated with constraint (3.3b). The augmented La-

grangian reduces to a standard Lagrangian L0 when the penalty terms are removed (i.e., dij = 0
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for all i ∈ N and j ∈ Ni).

To ensure that the proposed adaptive scheme is consistent with local communication network, gain

matrix Dk ∈ RN×N are locally calculated (by row) as

Dk =
[
dkij
]
, dkij =

sijβ
k
ij∑N

l=1 silβ
k
il

, (3.5)

where k ∈ ℵ+ is the discrete time step, and βkij ≥ 0 as local scalar gains (with initial gain values

of β0
ij > 0). Entries dkij (or equivalently βkij) will be updated real-time according to the proposed

design. Clearly, gain matrix Dk is non-negative, row-stochastic and diagonally positive. The

proposed adaptive ADMM approach naturally lends itself to distributed optimization and gives us

the flexibility of adjusting the gains on received information. Should all dkij become a constant

penalty parameter ρ, the proposed design reduces to the standard ADMM algorithm [1].

The ADMM algorithm consists of an x-minimization step, a z-minimization step, and an update of

dual variables. The proposed ADMM algorithm is obtained by applying these steps to the above

reformulation, that is,

1. For any i ∈ N , xi is updated according to

xk+1
i := arg min

xi∈Rn

LD(x, zk, µk, λk) (3.6a)

2. For any i ∈ N and for j ∈ Ni, zji is solved as

zk+1
ij := arg min

zij∈Rn

LD(xk+1, z, µk, λk) (3.6b)
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3. For any i ∈ N and for j ∈ Ni, µi and λij evolves as

µk+1
i := µki + wi

∑
j∈Ni

Aijz
k+1
ji (3.6c)

λk+1
ij := λkij + dkij

[
xk+1
i − zk+1

ij

]
(3.6d)

Convergence property of the proposed ADMM algorithm (3.6) for primal-dual sequences of {xki , zkij}

and {λkij, µki } is summarized as the following lemma:

Lemma 1 Under assumptions 1 and 2, the distributed ADMM algorithm (3.6) is convergent to an

optimal solution provided that, for all i, j

∂dij
∂xi

= 0. (3.7)

Proof: Let’s begin with defining the following error terms: for any i ∈ N , for j ∈ Ni, and for

k ∈ ℵ,

rk+1
ij , [xk+1

i − zk+1
ij ], (3.8)

qk+1
i ,

∑
j∈Ni

Aijz
k+1
ji . (3.9)

Under assumption 1, problem (3.3) has at least one optimal solution, denoted by (x∗i , z
∗
ij, µ

∗
i , λ
∗
ij)

for i ∈ N and j ∈ Ni. Since it satisfies the KKT conditions [27], we have

L0(x∗, z∗, λ∗, µ∗) ≤ L0(xk+1, zk+1, λ∗, µ∗),
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or equivalently,

∑
i∈N

[
fi(x

∗
i ) +

∑
j∈Ni

(λ∗ij)
T (x∗i − z∗ij) + (µ∗i )

T
∑
j∈Ni

Aijz
∗
ji

]
≤
∑
i∈N

[
fi(x

k+1
i ) +

∑
j∈Ni

(λ∗ij)
T rk+1

ij + (µ∗i )
T qk+1

i

]
.

Since the optimal solution satisfies the constraints, we know x∗i − z∗ij = 0 and
∑

j∈Ni
Aijz

∗
ji = 0.

Hence, the above inequality becomes

p∗ ≤ pk+1 +
∑
i∈N

[∑
j∈Ni

(λ∗ij)
T rk+1

ij + (µ∗i )
T qk+1

i

]
, (3.10)

where p∗ =
∑

i∈N fi(x
∗
i ) and pk+1 =

∑
i∈N fi(x

k+1
i ). Also, it follows that

λk+1
ij − λkij = (λk+1

ij − λ∗ij)− (λkij − λ∗ij), (3.11)

zk+1
ij − z∗ij = (zk+1

ij − zkij) + (zkij − z∗ij), (3.12)

zk+1
ij − zkij = (zk+1

ij − z∗ij)− (zkij − z∗ij), (3.13)

µk+1
ij − µkij = (µk+1

ij − µ∗ij)− (µkij − µ∗ij). (3.14)

It follows from (3.6a) that, under (3.7), the optimality condition for agent i is

0 = ∇xifi(x
k+1
i ) +

∑
j∈Ni

λkij +
∑
j∈Ni

dkij

[
xk+1
i − zkij

]
.

Substituting (3.6d) into the above equation yields

0 = ∇xifi(x
k+1
i ) +

∑
j∈Ni

λk+1
ij +

∑
j∈Ni

dkij

[
zk+1
ij − zkij

]
.
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The above equation implies that xk+1
i also minimizes

fi(x
k+1
i ) +

∑
j∈Ni

[
λk+1
ij + dkij(z

k+1
ij − zkij)

]T
xk+1
i . (3.15)

Similarly, it follows from (3.6b) that

0 =− λkij − dkij
[
xk+1
i − zk+1

ij

]
+ ATjiµ

k
j + wjA

T
ji

∑
φ∈Ni

Aφiz
k+1
iφ .

Substituting (3.6c) and (3.6d) in the above equation yields

0 = −λk+1
ij + ATjiµ

k+1
j . (3.16)

Applying Lagrange duality to (3.15), we have

∑
i∈N

[
fi(x

k+1
i ) +

∑
j∈Ni

[λk+1
ij + dkij(z

k+1
ij − zkij)]Txk+1

i

]

≤
∑
i∈N

[
fi(x

∗
i ) +

∑
j∈Ni

[λk+1
ij + dkij(z

k+1
ij − zkij)]Tx∗i

]
.

It follows from (3.16) that

∑
i∈N

∑
j∈Ni

[
− λk+1

ij + ATjiµ
k+1
j

]T
zk+1
ij =

∑
i∈N

∑
j∈Ni

[
− λk+1

ij + ATjiµ
k+1
j

]T
z∗ij.

Adding the above two expressions together and performing simple manipulations, we obtain

pk+1 − p∗ ≤
∑
i∈N

∑
j∈Ni

[
− λk+1

ij rk+1
ij − (µk+1

j )TAjiz
k+1
ij

− dkij(zk+1
ij − zkij)T (rk+1

ij + zk+1
ij − z∗ij)

]
. (3.17)
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Combining (3.10) and (3.17) together with (3.9) and multiplying both sides by 2 yield

0 ≥
∑
i∈N

{∑
j∈Ni

[
2(λk+1

ij − λ∗ij)T rk+1
ij︸︷︷︸

(5.12)

+2dkij(z
k+1
ij − zkij)T rk+1

ij

+ 2dkij(z
k+1
ij − zkij)T (zk+1

ij − z∗ij)︸ ︷︷ ︸
(3.12)

]
+ 2(µk+1

i − µ∗i )T (Aijz
k+1
ji )︸ ︷︷ ︸

(4.23c)

]}
.

Performing the substitutions indicated by the underbraces above, we have

0 ≥
∑
i∈N

[∑
j∈Ni

[ 2

dkij
(λkij − λ∗ij)T (λk+1

ij − λkij)︸ ︷︷ ︸
(3.11)

+dkij|| rk+1
ij︸︷︷︸

(5.12)

||2 + dkij||rk+1
ij − (zk+1

ij − zkij)||2

+ dkij|| zk+1
ij − zkij︸ ︷︷ ︸

(3.13)

||2 + 2dkij (zk+1
ij − zkij)T︸ ︷︷ ︸

(3.13)

(zkij − z∗ij)
]

+
2

wi
(µk+1

i − µ∗i )T (µk+1
i − µki )︸ ︷︷ ︸

(3.14)

]
.

Using the substitutions indicated by the underbraces above, we obtain

0 ≥
∑
i∈N

{∑
j∈Ni

[
1

dkij

[
||λk+1

ij − λ∗ij||2 − ||λkij − λ∗ij||2
]

+
1

wi

[
||µk+1

i − µ∗i ||2 − ||µki − µ∗i ||2
]

+ dkij

[
||zk+1

ij − z∗ij||2 − ||zkij − z∗ij||2
]

+
1

wi
||µk+1

i − µki ||2 + dkij

[
||rk+1

ij + (zk+1
ij − zkij)||2

]]}
.

(3.18)

Considering the following Lyapunov function

V (k) =
∑
i∈N

{∑
j∈Ni

[
dkij||zkij − z∗ij||2 +

1

dkij
||λkij − λ∗ij||2

]
+

1

wi
||µki − µ∗i ||2

]}
, (3.19)

we can rewrite inequality (3.18) in terms of the Lyapunov function as

V k+1 − V k ≤−
∑
i∈N

[∑
j∈Ni

dkij||rk+1
ij + (zk+1

ij − zkij)||2 +
1

wi
||µk+1

i − µki ||2
]
. (3.20)
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Inequality (3.20) shows that consensus (3.3c) is ensured and that µi converges. Convergence of µi

ensures constraint (3.3b) is also satisfied. It also follows from (3.6d) that consensus (3.3c) implies

convergence of λij . These conclude the proof. �

Real Time Iterative Laws of ADMM

Under assumption 1, the ith agent can choose to solve the sub-optimization problems in (3.6) using

a distributed gradient descent technique so solution (3.6a) can be solved real-time but asymptoti-

cally. In particular, by taking partial derivatives of the augmented Lagrangian (3.4) with respect

to xi for the x-minimization step, the negative direction of the gradient is followed to real-time

iteratively solve for the minimization problem (3.6a). The z-minimization step (3.6b) has a closed

form solution since the Lagrangian is quadratic with respect to zij . The dual variables µi and λij

are also updated using the gradient ascent technique, whose structure is identical to (3.6c) and

(3.6d), respectively. Hence, the iterative ADDM (I-ADMM) algorithm for real-time and asymp-

totic implementation becomes: for agent i, aa

x̂k+1
i = x̂ki − αi

[
∇x̂ifi(x̂

k
i ) +

∑
j∈Ni

[
λ̂kij + dkij(x̂

k
i − ẑkij)

]]
(3.21a)

ẑk+1
ji = x̂k+1

j +
1

dkji

[
λ̂kji − ATijµ̂ki − wkiATij

∑
φ∈Ni

Aiφẑ
k
φi

]
(3.21b)

µ̂k+1
i = µ̂ki + wi

∑
j∈Ni

Aij ẑ
k+1
ji (3.21c)

λ̂k+1
ji = λ̂kji + dkji(x̂

k+1
j − ẑk+1

ji ) (3.21d)

where 0 < αi << 1 are the step sizes. For simplicity, αi are chosen to be small and satisfy

α1 = α2 = · · · = αN = α. The real time iterative algorithm (3.21) is a gradient-based optimiza-
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tion and, under convexity, it is guaranteed that its trajectory moves closer to an optimal solution.

Convergence results of algorithm (3.21) are summarized in the following lemma:

Lemma 2 Assume that function
∑

i fi(x) is strictly convex and has a unique optimal x∗. Then,

the following properties hold:

(i) Dynamic system ∑
i

x̂k+1
i =

∑
i

x̂ki − α
∑
i

∇x̂ifi(x̂
k
i ), (3.22)

is globally asymptotically stable and convergent to x∗ for all sufficiently small α provided that

sup
x̂ki ∈<n

‖
∑

i∇x̂ifi(x̂
k
i )−

∑
i∇x∗fi(x

∗)‖
‖
∑

i x̂
k
i − x∗‖

< Mf (3.23)

is uniformly bounded for a positive Lipschitz constant Mf > 0.

(ii) Perturbed dynamic system

∑
i

x̂k+1
i =

∑
i

x̂ki − α
∑
i

∇x̂ifi(x̂
k
i ) + ϕk, (3.24)

is input-to-state stable for all uniformly bounded ”disturbance” ϕk.

(iii) The I-ADMM algorithm (3.21) is convergent to the constrained optimal solution provided that

(3.7) holds.

Proof: (i) It follows from (3.22) that

ek+1 = ek − αi
∑
i

[∇x̂ifi(x̂
k
i )−∇x∗fi(x

∗)],

where ek =
∑

i x̂
k
i − x∗. Considering Lyapunov function V k

e = ‖ek‖2 and using the concept of

Jacobian system (Lemma 1 in [28]), we have
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V k+1
e − V k

e = −2α(ek)T
∑

i[∇x̂ifi(x̂
k
i )−∇x∗fi(x

∗)] + α2
∥∥∑

i∇x̂ifi(x̂
k
i )−

∑
i∇x∗fi(x

∗)
∥∥2

= − 2α(ek)T
[∑

i∇2
ξk
fi(ξ

k)
]
ek
∣∣∣
ξk=ek−τkx∗

+ α2 ‖
∑

i∇x̂i
fi(x̂

k
i )−

∑
i∇x∗fi(x

∗)‖2

‖ek‖2 ‖ek‖2,

where τ k ∈ (0, 1) is a constant parameter for any fixed k. Applying strict convexity of
∑

i fi(·)

and the uniform boundedness property (3.23), we know that [V k+1
e − V k

e ] is negative definite for

small values of α. Hence, global asymptotic stability and convergence to x∗ is established for all

sufficiently small values of α.

(ii) It is straightforward to show using the same Lyapunov argument that, under uniformly bounded

disturbance ϕk, perturbed dynamic system (3.24) is uniformly bounded.

(iii) It has been shown in lemma 1 that x∗ is the optimal solution to algorithm (3.6) and hence to

its gradient version, algorithm (3.21). It follows from (ii) that, during the transient, the algorithm

remains to be bounded. As the gradient algorithm (3.21) evolves, error ϕk becomes small and

diminishing. Thus, asymptotic convergence to x∗ can be established by invoking (i). �

In the implementation, agent i updates not only its own state vector x̂i but also estimates ẑji of

its neighboring agents’ states as well as the associated Lagrange multipliers λ̂ji and µ̂i. This

information flow for updating the iterates are shown in figure 3.2.

In most of the existing ADMM literature, penalties dkij are set to be constant and identical[8, 9,

10, 11]. Advantage of using adaptive penalty is noted in [12, 13, 1], but those results either re-

quire global information or have convergence and scalability issues. These motivate us to develop

the proposed adaptive penalty algorithm whose gain matrix is chosen constructively to retain the

ADMM’s distributed nature while enhancing its scalability and convergence. The dynamic update
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Figure 3.2: Agent i’s information flow for local variable update.

laws in (3.21) are the gradients of the augmented Lagrangian with respect to the primal and dual

states of each agent. In particular, the ith agent updates x̂i according to a composite expression

consisting of the gradient of its own objective function and the summation of its dual updates and

the estimation errors received from its neighbors. Due to the gradient-based optimization under

convexity, the algorithm ensures that the solution trajectory moves closer to an optimal solution by

following the decreasing direction of the gradient. On the other hand, individually at the ith agent,

the ith row entries of matrix D can be adjusted using the control gains βij embedded therein and,

since their adjustments alter the motion direction of trajectory, their choices can also be designed

to improve convergence time, and the proposed design is to make the value of an appropriate Lya-

punov function decrease more at each of the iteration steps. Specifically, the ith agent dynamically

adjusts its penalties to improve convergence time of I-ADMM. This idea was first applied success-

fully to cooperative control among a network of cooperative agents in [21]. An application of this

idea to ADMM is pursued in the next section.

28



Improvement of convergence rate via adaptive gain

At each of the iteration steps, convergence of I-ADMM algorithm (3.21) can be measured using

the following Lyapunov function by agent i:

Ek
i =||x̃ki ||2 + ||µ̃ki ||2 +

∑
j∈Ni

[
||z̃kji||2 + ||λ̃kji||2

]
, (3.25)

where x̃k = x̂k − x̂k−1, z̃k = ẑk − ẑk−1, λ̃k = λ̂k − λ̂k−1 and µ̃k = µ̂k − µ̂k−1 are incremental

residues of the primal and dual variables. The following theorem provides the proposed distributed

adaptive-gain algorithm:

Theorem 1 Convergence of I-ADMM algorithm (3.21) is improved if Lyapunov function Ek+1
i is

made to be more negative through locally and adaptively choosing βkij . Specifically, for each of

k ∈ ℵ+, only two of the penalties dkij (equivalently, gains βkij) are adaptively adjusted as

dkili = dk−1
ili

+ εki dkimi
= dk−1

imi
− εki , (3.26)

where indices li and mi are determined according to

li ∈ Ni =⇒ [x̂i − ẑili ] = max
j∈Ni

[(∇x̂ifi(x̂
k
i ))

T (x̂ki − ẑkij)],

mi ∈ Ni =⇒ [x̂i − ẑimi
] = min

j∈Ni

[(∇x̂ifi(x̂
k
i ))

T (x̂ki − ẑkij)],

quantity

hi(x̃, z̃) = 2αix̃
k
i

[
(x̃ki − z̃kili)− (x̃ki − z̃kimi

)
]

(3.27)

is calculated using the locally-available information, and adjustment εi is chosen to be: for some
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0 < γi < 1,

εki =



γid
k−1
imi

if hi(x̃, z̃) > 0

−γidk−1
ili

if hi(x̃, z̃) < 0

0 otherwise.

(3.28)

Proof: First, note that (3.7) holds under the gain adaptations in (3.26) and that the inequality

(3.17) still holds and remains the same under gain adaptation because matrix Dk still remains

row-stochastic. Hence, both lemmas 1 and 2 holds.

It follows from (3.21) that, for agent i, adaptive gains dij only appear in (3.21a) but not (3.21b) or

(3.21c) or (3.21d). Hence, the expansion of Lyapunov function (3.25) with fixed dkij is given by:

Ek+1
i |dkij not updated =||x̃ki ||2 − 2αi(x̃

k
i )
T
[
∇x̃ifi(x̃

k
i ) +

∑
j∈Ni

λ̃kij

]
− 2αi(x̃

k
i )
T
∑
j∈Ni

dkij(x̃
k
i − z̃kij)

+ ||µ̃k+1
i ||2 +

∑
j∈Ni

[
||z̃k+1

ji ||2 + ||λ̃k+1
ji ||2

]
, (3.29)

in which all the terms with α2
i are neglected due to 0 < αi << 1. Similarly, the expansion of

Lyapunov function (3.25) under the adaptive law presented in theorem 1 has the expression that:

Ek+1
i

∣∣∣dkij updated =||x̃ki ||2 − 2αi(x̃
k
i )
T
[
∇x̃ifi(x̃

k
i ) +

∑
j∈Ni

λ̃kij

]
− 2αi(x̃

k
i )
T

[ ∑
j∈Ni
j 6=li,mi

dkij(x̃
k
i − z̃kij)

− (dkili + εi)(x̃
k
i − z̃kili)− (dkimi

− εi)(x̃ki − z̃kimi
)

]
+ ||µ̃k+1

i ||2

+
∑
j∈Ni

[
||z̃k+1

ji ||2 + ||λ̃k+1
ji ||2

]
. (3.30)
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Hence, Ek+1
i can assume two different values: one with dkij updated according to gain adaptation

law (3.26), and another with no adaptation (i.e., dkij = dk−1
ij for all j ∈ Ni). The difference in their

respective Lyapunov function can be calculated as

∆Ek+1
i := Ek+1

i

∣∣∣dkij updated using (3.26) − Ek+1
i

∣∣∣
dkij not updated

which after simplification becomes

=− εi2αix̃ki
[
(x̃ki − z̃kili)− (x̃ki − z̃kimi

)
]

,− εihi(x, z)

where hi(x, z) is defined in (3.27). Thus, the proof is completed by noting that ∆Ek+1
i < 0 under

choice εki of (3.28). �

Figure 3.3: Concept illustration of the proposed algorithm
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The proposed gain adaptation defined by (3.26) and (3.28) ensures that condition (3.7) holds and

the gains with non-zero initial values will remain positive. It should also be noted that all the in-

formation required for the ith agent to locally calculate and evaluate hi(x̃, z̃) are already gathered

from its neighbors. The proposed concept and the proof of theorem 1 can further be illustrated

through figure 3.3. For agent i, the solid arrow represents an agent’s objective function gradient

vector (i.e., ∇x̂ifi(x̂i)). The dotted black and grey arrows represent the vectors of the differences

between agent i’s state (x̂i) and the observations by the neighbors (ẑji) based on the information

received. The black and grey dotted arrows have angles ∆ and θ with the gradient vector, respec-

tively, where ∆ > θ. In the proposed algorithm, the vector products (i.e., dot products) between

the gradient vector and the difference vectors (x̂i − ẑij) are calculated, and their maximum (in this

case, the vector of smaller angle θ) and their minimum (in this case, the vector of larger angle ∆)

are evaluated. Among the ith row entries in the D matrix, the element to be increased by a small

amount εi corresponds to the maximum dot product so that, in solving for the current iteration, that

maximum term gets a higher weight. To maintain the convex combination (i.e., the row stochastic

property of matrix D), the element to be decreased by the same small amount εi corresponds to the

minimum dot product. This way, the vector most aligned with the gradient vector has more weight

than others, and consequently the time derivative of the system Lyapunov function becomes more

negative to yield faster convergence.

Simulation Results

In this section, the proposed gain adaptation technique is illustrated through simulations and in

two parts. First, the time trajectory of convergence error measure under the proposed adaptive-

gain ADMM is compared to that under fixed penalties for a 5-agent network. Second, comparative

studies are done for scaled-up networks up to 100 agents and for different network topologies so
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improvements of convergence speed are established together with scalability.

In all the simulations, agent i aims to minimize its estimation error between the measured state

xmi ∈ R2 and the state estimate x̂i ∈ R2, where xmi = xi + ni and ni is the measurement noise in a

Gaussian normal distribution. Thus, the individual objective function of agent i can be expressed

in terms of the least square error minimization as fi(xi) = 1
2
||xmi − x̂i||2 which is convex and only

known to agent i. The primal residual is measured by maxi
∑

j∈Ni
|x̂ki − ẑkij|, and the two dual

residuals are given by maxi
∑

j∈Ni
|ẑk+1
ij − ẑkij| and maxi

∑
j∈Ni
|µ̂k+1
ij − µ̂kij|, respectively. These

incremental residuals are chosen to measure the convergence speed as they converge to 0 at the

optimality. In the implementation of algorithms, the following choices are made: stepsize α being

either 0.1 or 0.3, and wi(t0) = 1 for all i ∈ N . Tolerance threshold is chosen to be either 1× 10−3

or 1 × 10−4 [1] in stopping the simulation and determining the number of iterations needed for

convergence when comparing various algorithms.

First, let’s consider a 5-agent ring network (whose connectivity matrix is cyclic). The I-ADMM

algorithm (3.21) is implemented for each agent, and simulations are run twice: one with fixed

gains (in which case dij is computed using (3.5) at k = 0 and then kept constant), and another

with adaptive gains (whose initial values are calculated the same way and afterwards the gains are

updated over time according to theorem 1). Convergence comparison under adaptive-gain ADMM

versus fixed-penalty ADMM is shown in figures 3.4, 3.5 and 3.6, respectively, with respect to

with respect to primal residual and dual residuals. It should be noted that the number of iterations

needed for converge is determined by the primal residual since both dual residuals tend to converge

faster.

Fig. 3.7 shows the magnitude (scaled for the purpose of visualization) and direction of the vectors

∇xifi(xi), λij , and (xi − zij) in equation (3.21a) as well as the resultant vector, all for agent 1 and

super-imposed at the initial point. The primary direction is set by the gradient of the individual
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Figure 3.4: Primal residual (x̂ki − ẑkij): fixed versus adaptive penalty
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agent’s objective function as each agent is trying to minimize its own objective but the resultant

direction is formed by the vector addition given by expression (3.21a). By modifying the weights

(corresponding row entries of the Dk matrix) on the information received by agent 1, the proposed

algorithm alters the direction of the resultant vector more towards the optimal solution for faster

convergence, which is illustrated by figure 3.8. In particular, figure 3.8 shows both the resultant

vectors obtained under the fixed penalty gain and the proposed adaptive penalty gain at different

stages of the evolution of agent 1’s state. It is observed that, under the adaptive algorithm, the

resultant vector is closer to the perpendicular of the level curves of the objective function than that

under a fixed penalty gain (see the zoomed-in portion of fig. 3.8), which corresponds to the value

of Lyapunov function being decreased more (see the proof of theorem 1 in Appendix C). Figure

3.9 shows the resultant vector trajectory taken by agent 1 towards the optimal solution (which is

shifted to the origin as x∗1 = [0, 0]).

In the second set of simulation studies, the 5-agent network and its scaled-up versions up to 100

agents are simulated for various initial conditions and of different connected network topologies

(that are generated by starting with the ring network and then randomly inter-linking each of

the agents to up to a maximum of five other agents). Once again, each simulation setup is run

twice: one with constant penalty gains, and another with the proposed adaptive penalty gains.

For all the networks of certain agents, their convergence times are recorded and their average is

recorded/reported for different step sizes and tolerance limits. The maximum iteration limit is set

to 30, 000. Table 3.1 provides the comparative summary of the results for networks of different

sizes and with different step sizes and tolerance limits. As in any of numerical methods, step size

needs to be chosen to be relatively small in order to avoid oscillations around the optimal solution,

but it should not be too small to slow the convergence. It is shown that the proposed adaptive

gain method does improve the convergence rate no matter what step size is chosen (so long as it

ensures convergence). As expected, when a large step size and a very small tolerance (αi = 0.3
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and tol= 10−4) are used, the algorithm also fails to converge within the maximum iteration limit.

Table 3.1: Comparative analysis of the algorithms

Iterations required for convergence αi = 0.1, tol = 10−3

Number of agents Fixed penalty Adaptive penalty
5 765 471
10 1138 573
25 5934 1924
50 11968 7342
100 Exceeds iteration limit 20369

Iterations required for convergence αi = 0.1, tol = 10−4

5 1493 554
10 3412 913
25 23113 5765
50 Exceeds iteration limit 14117
100 Exceeds iteration limit 23429

Iterations required for convergence αi = 0.3, tol = 10−3

5 886 253
10 2355 862
25 7958 2876
50 11205 7263
100 23429 16173

Iterations required for convergence αi = 0.3, tol = 10−4

5 1578 442
10 3740 864
25 13379 5615
50 Exceeds iteration limit 24654
100 Exceeds iteration limit Exceeds iteration limit

The results of our two-part simulation studies clearly demonstrate the convergence improvement

under the proposed adaptive-gain ADMM algorithm.

In summary, a distributed multi-agent ADMM algorithm with adaptive gains is developed. The

convex properties are utilized to obtain closed form iterative dynamics for the optimization sub-

problems. In contrast to the standard ADMM which uses a fixed penalty gain in the augmented
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Lagrangian, the proposed algorithm embeds control gains into a row-stochastic matrix based on

network connectivity, utilizes the matrix coefficients as the penalty parameters in ADMM, and uses

information received by each agent from its neighbors to adaptively adjust these penalties. The

proposed adaptive algorithm is both distributed and of closed form, and it substantially improves

the rate of ADMM agents’ convergence to an optimal solution. The improvement is analytically

shown by the Lyapunov direct approach. Numerical simulation demonstrates the effectiveness of

the proposed adaptive-gain ADMM.
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CHAPTER 4: CONTINUOUS TIME ADMM ALGORITHM FOR SMART

GRID

In recent times, the number of Electric Vehicles (EVs) in the distribution grid has increased in

large numbers due to the attention from leading automotive industries and the government’s push

to reduce its greenhouse gas emissions. Consumers are also choosing EVs as their primary vehicle

due to the development of charging infrastructure, upgraded battery capacity, and comparable price

[29]. Due to this, EV sales in the United States have tripled between 2014 and 2018[30]. As a

consequence, a high number of EV penetration has caused substantial degradation in efficiency and

reliability of the distribution power grid [31]. As shown in [32, 33], a large number of EV charging

at the same time without proper control can lead to abrupt energy peaks and an overall reduction in

power quality. This scenario can also lead to an increase in the power loss during transmission and

significant voltage drop in the distribution buses. Despite all these adverse effects, most researchers

agree that a large number of EVs is a valuable resource that can be controlled to benefit the grid

[34].

Over the years, different control schemes have been proposed in the literature. In [35], a cen-

tralized optimization scheme was presented to minimize the charging rates and facilitate voltage

regulation, but it poses a scalability issue since an increase in the number of vehicles increases

the number of control variables adversely. The authors in [36] proposed a centralized optimiza-

tion framework to minimize the total charging cost based on time-of-use price. Although shown

to have good results, however, the authors did not consider the appearance of new load peaks in

low price regions causing disruption in the grid operation. Though the centralized schemes pre-

sented in [37, 38, 39] have simpler algorithm design, in practicality, it creates high computational

complexity and requires high communication bandwidth for centralized data pooling. For these
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reasons, researchers in recent studies started looking into distributed architectures for controlling

EVs.

In most of the distributed control strategies, third party entities called aggregators are considered

which acts as a bridge between the Distribution System Operators (DSO) and the EVs [40]. The

major purpose of the aggregators is to collect EV information, communicate and send input signals

to the EVs based on control strategies, thus taking care of the scaling issues as the number of

EVs keep increasing in the grid [41, 42]. In [43], to make the problem into a distributed one,

decomposition techniques are applied in the joint optimization of optimal power flow and EV

charging and is solved in a nested fashion. A primal-dual subgradient method is implemented

in [44] for EV control in a residential distribution network. Although the aforementioned works

provide us with a good EV charging algorithm, they somewhat fail to address the network level

constraints like voltage fluctuation due to EV control in the distribution grid. In [45], a multi-agent

system is presented for EV charging control. The authors investigate the bidding strategy for EV

energy injection into the grid and propose energy management strategies based on it. Another

multi-agent based control structure is proposed in [46] where the authors design EV charging

based on several study factors such as driver behavior, location of charging station, electricity

price, etc. In both cases above, the authors focused on the EVs and their charging strategy but did

not focus on the distribution grid and how their algorithm is affecting the grid. The work in [47]

presents a chance-constrained energy management system based on ADMM where the authors

tackle the stochastic randomness of the EVs and solve an EV charging scheduling optimization

problem. The solution presented tackles the randomness of the EVs well but failed to show how the

proposed charging solution affects the distribution grid. The authors in [48] present a distributed

ADMM based multi-period problem where the DSO solved optimal power flow problems with

high penetration of EV which are controlled by the aggregators. In their problem, they also ensure

that grid security parameters like voltage bound and transmission line limits are maintained. A
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similar kind of objective of EV charging while maintaining voltage in the grid is also proposed

in [49]. In this case, the authors tackled non-separable objective function with coupled power

flow constraints and solved it in a decentralized way by providing a hierarchical method based

on ADMM. In the above-cited works based on ADMM, iterative methods were used which are in

discrete time, and thus the accuracy of the results greatly depends on the sampling time. Due to the

intermittent nature of EV charging in the distribution grid, a very small sampling time is preferred

to solve for the optimization dynamics in real-time otherwise the optimal solution obtained for

a time step might not remain optimal anymore. The work in [31] presented a real-time solution

to EV charge scheduling through a dynamic non-cooperative game approach. The authors used

ADMM to decompose the centralized problem and realize the solution in real-time. The results

are very interesting considering real-time application but then again, the impact of the charging

scheduling on the distribution grid parameters like the voltage is neglected in the study.

Given the shortcomings of the existing research, the paper studies a real-time ADMM algorithm

to be used to schedule EV charging through aggregators while maintaining the voltage profile of

the grid. The contribution of this paper is two-fold: First, we present a novel continuous-domain

real-time ADMM algorithm to solve networked multi-agent systems’ control problems distribu-

tively. With the advent of 5G technologies and smart sensing devices, it is practically possible

to obtain data from the field in one-second resolution [50] and implement a control structure in

real-time. The existing literature of EV charging combined with a power flow problem is solved

iteratively which takes several minutes, thus not utilizing a fair share of the data available as well

as not robust to changes that are prevalent in the distribution system with distributed energy re-

sources. Also, since all the parameters in a power grid are in the continuous domain, we can use

the proposed algorithm to implement a real-time control. Secondly, we formulate an optimization

problem in the distribution system with EV penetration. By using the bi-directional energy transfer

capabilities of EVs using a built-in DC-AC converter, EVs can be treated as any other distributed

42



energy resources present in the grid [51, 52]. We set up a distributed optimization problem with

power flow equations as the constraint where aggregators establish a contract with EV owners en-

abling them to use EVs as energy resources for voltage regulation while compensating the owners

financially. Since the algorithm is in continuous domain and real-time, the aggregators can have a

real-time update of each EVs state of charge and only use them when their state of charge is above

a certain predefined threshold which is agreed through the contract. We solve the problem using

our developed algorithm and show that the EV charge scheduling can be handled in real-time while

keeping the distribution grid parameters within tolerable limits.

Problem Formulation

In this section, we develop the aggregator architecture with EVs and establishes a communica-

tion protocol between them. We also present the branch flow model of the distribution grid with

aggregators and formulate the optimization problem.

Architecture of EV Aggregators

In the distribution system, we have a hierarchical communication structure. On the top is the Dis-

tribution System Operator (DSO) who is responsible for Optimal Power Flow (OPF) calculations

and voltage regulation at each node of the grid. Then, on the second layer, we assume the existence

of a third party entity, generally termed as ”aggregator” in the literature, which can collect and dis-

patch the aggregate information of the EVs (cite the wuhan paper). The EV owners can establish a

contract with a local aggregator allowing them to utilize the EVs for grid purposes in real-time if

it is between a certain State of Charge (SOC) range and in return, they will be compensated finan-

cially. The aggregators works in tandem with the DSO for OPF calculation and voltage regulation
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and works as a ”middleman” between DSO and fleet of EVs. And finally, in the bottom layer, we

have the EVs. When they are connected to a charging station, either commercial or residential, can

chose to connect with aggregaotr sensor network for ancillary services and share only their SOC

and power input/output, thus maintaining the privacy of the owners. The aggregators provide input

signals through the same sensor network and ask the EV fleet to inject power into the grid based on

the OPF calculations. The communication structure between all the entities including the variables

that they handle is illustrated in figure 4.1.

Figure 4.1: The communication structure of aggregators.

It should be noted that the EVs can decide to connect to any aggregator whose sensor network is

in range of the EV based on the compensation rates the aggregator is offering. We assume that the

aggregators can communicate among themselves, thus, if there are multiple EVs under the same

node connected to different aggregators, they can exchange information and can obtain the total

aggregated power injection by EVs at that particular node.
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Branch Flow Model of Power Distribution Network

The branch flow model was first proposed in [53] which has better numerical stability than the

branch injection model. Consider a radial distribution network by a directed graph G = (N , E)

where N := {1, · · · , N} represents the set of buses and E represents the set of distribution lines

connecting the buses in N . Without any loss of generality, the substation of the radial network

is indexed by 1. Each node i ∈ N \ 1 has an unique parent node Γi and a set of children nodes,

denoted by Ci as shown in figure 4.2. We assume each directed line points towards its children,

i.e., power flows from parent Γi to node i. We also assume all the parameters are exact and are free

of uncertainty.

Figure 4.2: A distribution network.

For each bus i ∈ N , Vi is its voltage with Pdi + jQdi being the load demand and pi + jqi is

the aggregated active and reactive power injection by the aggregated EV since EVs are capable

of producing both active and reactive power using four-quadrant charging [54]. For the branch
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Γi → i, Ii is the current flowing through it with RΓii + jXΓii being the impedance of the line and

PΓii + jQΓii being the complex power flowing from the parent Γi to node i. For bus i ∈ N \ 1, the

power balance equations are given as

PΓii = pi + Pdi +
∑
j∈Ci

(Pij +Rijlij) i ∈ N (4.1)

QΓii = qi +Qdi +
∑
j∈Ci

(Qij +Xijlij) i ∈ N (4.2)

where lij = I2
i is the square of current magnitude which is defined as

lij =
P 2
ij +Q2

ij

vi
(4.3)

where vi = V 2
i is the square of the voltage magnitude. Equation (4.3) is a non-linear equation

which can be linearized [55] around current operating point P o
ij, Q

o
ij , v

o
i and loij as below:

lij − loij =
2P o

ij

voi
(Pij − P o

ij) +
2Qo

ij

voi
(Qij −Qo

ij)−
(P o

ij)
2 + (Qo

ij)
2

(voi )
2

(vi − voi ) (4.4)

For the substation bus, equations (4.1) and (4.2) takes the following form

0 = p1 + Pd1 +
∑
j∈C1

(P1j +R1jl1j) (4.5)

0 = q1 +Qd1 +
∑
j∈C1

(Q1j +X1jl1j) (4.6)
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The power flow on all lines (i, j) ∈ E are expressed as

vi − vj = 2(RijPij +XijQij) + (R2
ij +X2

ij)lij (4.7)

The voltage magnitude limits are given by

vmini ≤ vi ≤ vmaxi ∀i ∈ N (4.8)

From the study done by the authors in [56], the distribution line maximum current flow constraint

should take into account the current that flows in the charging susceptance of the line. For the line

(i, j) ∈ E , the thermal limit constraint is given as

lij +
1

4
B2
ijvi +BijQij ≤ lmaxij (4.9)

lij +
1

4
B2
ijvj +Bij(Xijlij −Qij) ≤ lmaxij (4.10)

Let us define set of feasible points which satisfy the inequality (4.8) as follows:

Sv = {vi : (4.8) ∀i ∈ N}, (4.11)

and the inequalities (4.9) and (4.10) as follows:

Sl = {lij : (4.9)− (4.10) ∀j ∈ Ni, i ∈ N}. (4.12)
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Objective Functions

The EV owners sign a contract with the aggregators to maximize their monetary gain by providing

voltage regulation as well as minimize the cost incurred due to charging. Let us define a utility

function Ui(pi, qi), i ∈ N which is concave in nature and expresses the monetary satisfaction of all

the EVs connected at the ith bus. Thus, we can define the EV owners welfare function Wi(pi, qi)

at each bus as follows:

Wi(pi, qi) = ψpi − Ui(pi, qi) i ∈ N (4.13)

where ψ is the price of electricity. The meaning of the welfare functionWi(pi, qi) simple. The EVs

incur expense ψpi by charging their batteries from the grid, but by providing services like voltage

regulation, they can earn revenue defined by the concave function Ui(pi, qi). The overall welfare

function
∑

i∈N Wi(pi, qi) is convex in nature since its an addition of a straight line and a negative

concave function. It should be noted that the welfare function is a function of aggregated power

by the aggregators at each node. The aggregators uses only those EVs whose SOCs are inside a

predefined range. The aggregator then compensate the owners based on the contract agreement.

Since this work only deals with the DSO and aggregator layer, it is beyond the scope of this paper

to define the aggregator-EV relationship and how aggregator compensates the EVs. This issue

would be addressed in our future work. For the grid, the DSO and the aggregators want to use the

EVs to maintain the voltage at each node close to 1p.u. which can be expressed by the following

penalty function which is quadratic and is thus convex:

Hi(vi) = (1− vi)2 i ∈ N (4.14)
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Therefore, we can define the optimization problem for the whole network as follows:

J(p, q, v) =
∑
i∈N

Ji(pi, qi, vi) (4.15)

where Ji(pi, qi, vi) = kiWi(pi, qi) + (1− ki)Hi(vi)

s.t. vi ∈ Sv, lij ∈ Sl (4.16)

(4.1), (4.2), (4.4)− (4.7)

where < 0ki < 1 is the weight on each objective function. The aggregators sum up all the EV

power potential at each node and try to minimize the welfare function
∑

i∈N Wi(pi, qi) for their

customers. The DSO works with the aggregators to obtain EV injection information at each node

and wants to maintain a unity voltage profile
∑

i∈N Hi(vi) in the grid while solving the power

flow in the process. In the next section, we will develop a continuous-domain distributed ADMM

algorithm to solve problem (4.15) in real time.

Continuous-Domain Distributed ADMM Algorithm

In this section, we develop the continuous-domain real-time ADMM algorithm which can be im-

plemented to a broad class of networked multi-agent distributed optimization and control problems.

Then, we show our optimization problem, which is a special case, can be solved distributively us-

ing the developed ADMM method in the continuous domain.
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Network of Agents

Let us consider a networked multi-agent system which is characterized by a bidirectional graph

G = (N , E) where N = {1, 2, · · · , N} is the number of agents and E represents the set of edges

between them. Also, let node 1 be the virtual leader of the network which means, through the

communication network, node 1 can obtain the information of all the nodes in the network if

necessary. We can define the network interconnection with the following binary matrix [24]:

S =



1 1 · · · 1

1 1 · · · s2N

...
...

...
...

1 sN2 · · · 1


, (4.17)

where sij = 1 if and only if (i ↔ j) ∈ E , and sij = 0 if otherwise. The matrix S has 1 in

the diagonal as every agent knows its own information. We have the following assumption which

ensures the connectivity of the network.

Assumption 1: The matrix S is irreducible, i.e., the communication graph is strongly connected.

Using the communication matrix S, let us also define a gain matrix D whose values are calculated

according to the following equation:

D = [dij] ∈ RN×N , dij =
sijβij∑N
l=1 silβil

, (4.18)

where βij > 0 are piecewise-constant scalar gains. The matrix D is a non-negative, row stochastic

and diagonally positive matrix.
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Distributed Real-Time Continuous Domain ADMM

Let us consider the following optimization problem

min
∑
i∈N

fi(xi) (4.19a)

s.t.
∑
j∈Ni

Aijxj = 0 for i ∈ N , (4.19b)

For agent i,Ni denotes the set of its neighboring agents including itself, xi ∈ Rn is its state vector,

fi(xi) is its objective function, andAij are matrices of appropriate dimensions which represents the

interconnection between the agents. The following assumption is made on the individual objective

functions.

Assumption 2: Functions fi, i ∈ N , are convex and differentiable, and their gradients denoted

by ∇xifi(xi) are Lipschitz continuous. The set of optimal solutions to (4.19) is not empty, and the

corresponding minimum of (4.19a) is finite.

The goal is to develop a distributed algorithm so that each agent can solve problem (4.19a) while

satisfying the linear constraint (4.19b) by exchanging relevant information with its neighboring

agents. The problem (4.19) can be solved using ADMM by reformulating it using a secondary

variable zji, which represents the observation of the variables of agent j at agent i. We can then
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reformulate (4.19) as follows [14]:

min
∑
i∈N

fi(xi) (4.20a)

s.t.
∑
j∈Ni

Aijzji = 0 for i ∈ N (4.20b)

xi = zij j ∈ Ni, i ∈ N (4.20c)

where x and z represents the two set of variables in standard ADMM [1]. In the consensus con-

straint (4.20c), the observations zij are forced to equal to the state variable xi, thus the optimal

solution to the problem (4.20) is also optimal to the original problem (4.19). It should be noted

that in problem (4.20), (4.20b) involves only z but (4.20c) contains both x and z. Hence, we form

the so called ”augmented Lagrangian” as follows:

L(x, z, λ) =
∑
i∈N

Li(xi, zij, λij), (4.21)

Li = fi(xi) +
∑
j∈Ni

[
dijλ

T
ij(xi − zij) +

dij
2
||xi − zij||2

]

where λij is the dual variable. In the proposed multi-agent ADMM algorithm, the usual constant

penalty term is replaced with dij from D matrix defined in (4.18). This enables the penalty term to

conform with the actual physical interconnection of the agents[14]. Because of this reason, the La-

grange multiplier λij is also scaled by it. The following theorem provides the continuous-domain

solution to the augmented Lagrangian (4.21) whose proof is provided in the Appendix.
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Theorem 1: The augmented Lagrangian (4.21) can be solved in the continuous domain using the

following dynamics:

ẋi = −α′i

[
∇xifi(xi) +

∑
j∈Ni

dij

[
λij + (xi − z−ij)

]]
(4.22a)

żji = α
′

i[djiλji + dji(xj − zji)− ATijµi] (4.22b)

µ̇i =
∑
j∈Ni

Aijzji (4.22c)

λ̇ji = dji(xj − zji), (4.22d)

where z−ij(t)
4
= zij(t−∆) for some ∆ > 0 is a delayed version of zij .

Proof: ADMM consists of first the x-minimization and then z-minimization, followed by the

updates of the dual variables[1]. Following from the augmented Lagrangian (4.21), The algorithm

is as follows:

1. xi is updated according to

xk+1
i := arg min

xi∈Rn

LD(x, zk, λk, µk), (4.23a)
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2. For j ∈ Ni, zji is solved as

zk+1
ji := arg min

zji∈Rn

LD(xk+1, z, λk, µk)

s.t.
∑
j∈Ni

Aijzji = 0; (4.23b)

3. For i ∈ N and j ∈ Ni, µi evolves as

µk+1
i := µki +

∑
j∈Ni

Aijz
k+1
ji (4.23c)

4. For j ∈ Ni, λji evolves as

λk+1
ji := λkji + dkji

[
xk+1
j − zk+1

ji

]
. (4.23d)

where µi is the dual variable used to relax the constraint (4.20b) in the z-minimization step [20].

The x-minimization step can be solved iteratively while the other steps have an explicit solution

[14]. Under assumption 2, the ith agent can solve the x-minimization sub-problem using the gra-

dient descent technique, that is

xk+1
i = xki − αi

[
∇xifi(x

k
i ) +

∑
j∈Ni

dkij

[
λkij + (xki − zk−ij )

]]
(4.24a)

where k is the time step and αi > 0 is the step size. The variable zk−ij is a previous solution of

z-minimization step and is held constant until xk+1
i reaches optimal solution. For x-minimization

step, agent i gathers zij, λij (j ∈ Ni) information through the communication network from its

neighbors. Then zji has a closed form solution using the updated xi as follows

zk+1
ji = xk+1

j +
1

dkji

[
dkijλ

k
ji − ATijµki

]
, (4.24b)
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For z-minimization step, agent i obtains xj, dji (j ∈ Ni) form its neighbors. Finally, the dual

updates are given as follows

µk+1
i = µki +

∑
j∈Ni

Aijz
k+1
ji , (4.24c)

λk+1
ji = λkji + dkji

[
xk+1
j − zk+1

ji

]
. (4.24d)

The dynamic update laws defined in (4.24) is a gradient-based optimization, and assuming assump-

tion 2 holds, the trajectory generated by the primal and dual variables moves closer to the optimal

solution. The primal variables generate a trajectory towards the negative direction of the gradient

and the dual variables produce trajectory in the positive direction of the gradient. From (4.24a), the

amount of distance covered by the trajectory towards optimality in each iteration can be calculated

as follows:

xk+1
i − xki = −αi

[
∇xifi(x

k
i ) +

∑
j∈Ni

dkij

[
λkij + (xki − zk−ij )

]]

If we divide both side by a small number ∆t, we get

xk+1
i − xki

∆t
= −α′i

[
∇xifi(x

k
i ) +

∑
j∈Ni

dkij

[
λkij + (xki − zk−ij )

]]

where α′i = αi

∆t
. By taking the limit, we can approximate the discrete time steps into the continuous

domain. For x update, we have
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lim
∆t→0

xk+1
i − xki

∆t
= ẋi = −α′i

[
∇xifi(xi) +

∑
j∈Ni

dij

[
λij + (xi − z−ij)

]]
(4.25)

Following similar procedure for z, λ and µ, we obtain the equations provided in theorem 1. �

The above solution to the dynamical equation set (4.22) provides us with the optimal solution to

the problem (4.20). The convergence results of theorem 1 are summarized in lemma 1.

Lemma 1: Under assumptions 1 and 2, the distributed ADMM algorithm (4.22) is convergent to

an optimal solution.

Proof: Let us consider x∗i , z
∗
ji, λ

∗
ji and µ∗i as the primal-dual optimizer of (4.22) which satisfies

the KKT conditions [27]. Thus, we can define the error states as x̃i = xi − x∗i , z̃ij = zij − z∗ij ,

µ̃ij = µij − µ∗ij and λ̃ij = λij − λ∗ij and redefine the update law as:

˙̃xi = −α′i

[
ηi(xi, x

∗
i ) +

∑
j∈Ni

dij

[
λ̃ij + (x̃i − z̃−ij)

]]
(4.26a)

˙̃zji = α
′

i[djiλ̃ji + dji(x̃j − z̃ji) + ATijµ̃i] (4.26b)

˙̃µi = wi
∑
j∈Ni

Aij z̃ji (4.26c)

˙̃λji = dji(x̃j − z̃ji). (4.26d)
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where ηi(xi, x∗i ) = ∇xifi(xi)−∇x∗i
fi(x

∗
i ). Consider the Lyapunov function

V =
n∑
i=1

1

2α
′
i

{
||x̃i||2 + α

′

i||µ̃i||2 +
∑
j∈Ni

||z̃ij||2 + α
′

i||λ̃ij||2 + αidij

∫ t

t−δ
||z̃ij(τ)||2dτ

}

Taking the time-derivative of V yields

V̇ =
n∑
i=1

{
− ηi(xi, x∗i ) + µ̃Ti

∑
j∈Ni

Aij z̃ji +
∑
j∈Ni

[
x̃Ti

[
− dijλ̃ij − dij(x̃i − z̃−ij)

]
+ z̃Tij

[
dijλ̃ij + dij(x̃i − z̃ij)− ATijµ̃i

]
+ dijλ̃

T
ij

[
x̃i − z̃ij

]
+

1

2
dij||z̃ij||2 −

1

2
dij||z̃−ij ||2

]}

ηi(xi, x
∗
i ) is positive definite with respect to x̃i according to the global under-estimator property of

the convex function. Hence we have

V̇ =
n∑
i=1

{
− ηi(xi, x∗i ) +

∑
j∈Ni

[
− dijx̃Ti x̃i + dijx̃

T
i z̃
−
ij + dij z̃

T
ijx̃i −

1

2
dij z̃

T
ij z̃ij −

1

2
dij||z̃ij||2

]}
.

=
n∑
i=1

{
− ηi(xi, x∗i ) +

∑
j∈Ni

[
dij
2
||x̃i − z̃ij||2 +

dij
2
||x̃i − z̃−ij ||2

]}
.

which is negative semi-definite with respect to all the variables and is negative definite with respect

to x̃i as well as both (x̃i − z̃ij) and (x̃i − z̃−ij). �

Real-Time ADMM Solution to EV Management

In this subsection, we show that the optimization problem (4.15) can be solved in a distributed man-

ner using the above method. The aggregators at each bus and DSO can be considered as agents in
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the distribution power network, where DSO at the substation is node 1 who is the virtual leader of

the network. They communicate relevant information among them for OPF calculation and main-

taining voltage regulation. Thus the communication topology between them can be represented by

the communication matrix (4.17). Agent i has the information of its own voltage vi, the aggregated

active and reactive power injection pi, qi. It also has the information of the amount of active power,

reactive power and current that is coming from its parent node. Thus, at agent i, we can define the

state variables as xi = [vi, pi, qi, PΓii, QΓii, lΓii]
T . To solve the problem using continuous-domain

ADMM, we introduce an observation vector zji, which represents the variables of node j observed

at node i as zji = [vij, p
i
j, q

i
j, P

i
Γjj
, Qi

Γjj
, liΓjj

]T [14]. With these vector definitions, we can redefine

the problem (4.15) according to our developed distributed ADMM problem (4.20) as follows

min
xi

∑
i∈N

Ji(xi) + Ivi + Ilij (4.27a)

s.t.
∑
j∈Ni

Aijzji +mji = 0 ∀i ∈ N (4.27b)

xi = zij ∀i ∈ N (4.27c)

vi ∈ Sv, lij ∈ Sl (4.27d)

where Ni
4
= {Γi} ∪ {i} ∪ Ci. Ivi anr Ilij are indicator functions defined as :

Ivi =


0, vi ∈ Svi

∞ otherwise.

(4.28)
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Ilij =


0, lij ∈ Slij

∞ otherwise.

(4.29)

Equation (4.27b) is based on equations (4.1)-(4.7). Tus, we can define the matrix Aij , based on

which agent j represents, as follows

Aii =



0 1 0 −1 0 0

0 0 1 0 −1 0

1 2RΓii 2XΓii 0 0 (R2
Γii

+X2
Γii

)

0 0 0
2P o

Γii

voΓi

2Qo
Γii

voΓi

−1



Aij =



0 0 0 1 0 Rij

0 0 0 0 1 Xij

0 0 0 0 0 0

0 0 0 0 0 0


, j ∈ Ci,

Aij =



0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

− (P o
ij)2+(Qo

ij)2

(voΓi
)2 0 0 0 0 0


, j = Γi, (4.30)

and a vector of constants mji as mii = [Pdi Qdi 0; 0]T , mji = {[Rjilji Xjilji 0; 0]T , j ∈ Ci}

and mij = {[0 0 (R2
ji + X2

ji)lji]
T ,−2(P o

ji)
2voj +2(Qo

ji)
2voj +(P o

ji)
2−(Qo

ji)
2

(voj )2 − loji, j ∈ Γi}. Following

the procedure in Section III-B, we form the augmented Lagrangian using dual vector λij =

[λij(1), λij(2), · · · , λij(6)]T and using theorem 1, obtain the following continuous-domain dynam-

ics for agent i:
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xi update dynamics for each variable:

v̇i =− α′i

[
∇viJi(xi) +

∑
j∈Ni

dij

[
λij(1) + (vi − vj−i )

]]

ṗi =− α′i

[
∇piJi(xi) +

∑
j∈Ni

dij

[
λij(2) + (pi − pj−i )

]]

q̇i =− α′i

[
∇qiJi(xi) +

∑
j∈Ni

dij

[
λij(3) + (qi − qj−i )

]]

ṖΓii =− α′i

[
∇PΓii

Ji(xi) +
∑
j∈Ni

dij

[
λij(4) + (PΓii − P

j−
Γii

)
]]

Q̇Γii =− α′i

[
∇QΓii

Ji(xi) +
∑
j∈Ni

dij

[
λij(5) + (QΓii −Q

j−
Γii

)
]]

l̇Γii =− α′i

[
∇lΓii

Ji(xi) +
∑
j∈Ni

dij

[
λij(6) + (lΓii − l

j−
Γii

)
]]

The auxiliary primal variable zji update dynamics is given as:



v̇ij

ṗij

q̇ij

Ṗ i
Γjj

Q̇i
Γjj

l̇iΓjj


=α

′

idji



λji(1)

λji(2)

λji(3)

λji(4)

λji(5)

λji(6)


+ dji



vj − vij

pj − pij

qj − qij

PΓjj − P i
Γjj

QΓjj −Qi
Γjj

lΓjj − liΓjj


− ATij



µi(1)

µi(2)

µi(3)

µi(4)

µi(5)

µi(6)


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The dual updates are given as follows:



µ̇i(1)

µ̇i(2)

µ̇i(3)

µ̇i(4)

µ̇i(5)

µ̇i(6)


=
∑
j∈Ni

Aij



vij

pij

qij

P i
Γjj

Qi
Γjj

liΓjj




λ̇ji(1)

λ̇ji(2)

λ̇ji(3)

λ̇ji(4)

λ̇ji(5)

λ̇ji(5)


=dji



vj − vij

pj − pij

qj − qij

PΓjj − P i
Γjj

QΓjj −Qi
Γjj

lΓjj − liΓjj



where Aij are defined in (4.30).

Simulation results

In this section, the proposed distributed continuous-domain real-time ADMM algorithm is imple-

mented on the IEEE 123 bus distribution system with EV penetration. First, we simulated a base

case with no EV penetration and control to set up a reference point for the simulation. Then we

included EVs into the system and implemented our proposed algorithm for EV welfare and voltage

optimization with power flow equations as constraints.
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First, we set up the IEEE 123 bus distribution system in OpenDSS and ran the base case without

any control whose voltage profile is shown in figure 4.3. Then we introduced 200 EVs of different

capacities and types into the grid which can be aggregated among 40 buses. Table 4.1 summarises

the different types of input power injection range for EVs and table 4.2 shows the types of EVs

used in the study and their corresponding battery capacity [57]. In the simulation, the welfare

function is defined as a quadratic function: Wi(pi, qi) = app
2
i with the value of coefficients taken

from the literature [58] and the price of electricity was fixed at an average of 15 cents per kWh.

Although the algorithm is capable of handling it, we assumed the EVs only inject active power in

this scenario and the total aggregated reactive power injection is 0. To measure the convergence

to steady-state, we defined the primal residual as maxi
∑

j∈Ni
|xi − z−ij |, and the dual residual as

maxi
∑

j∈Ni
|zij − z−ij | [14, 1]. In the implementation of the algorithm, we chose α′i to be the same

for each node with a value of 0.01 and weight ki is chosen to be 0.2. In the simulation scenarios, we

kept the generation from the sub-station at a fixed point equal to the minimum loading conditions.

We introduced several intermittent renewable resources with a random generation profile. We also

created a random loading profile where the spot loads at each node vary over time. We introduced

our algorithm to all the 40 aggregators to compensate for the intermittent renewable generation and

random loading with the objective of keeping the voltage profile within tolerable range as well as

maximizing their utilization function. In our simulation, we assumed that there is always enough

EVs with acceptable SOC range to compensate for voltage regulation. The simulation was run for

5 hours to observe the impact on the node voltages.

Table 4.1: EV charging categories

Charging method Voltage Max. current Input power
AC level 1 120 V 12 A 1.4 kW
AC level 2 208 - 240 V 32 A 7.2-19.2 kW

DC charging 400 - 1000 V 300 A 50-150 kW
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Figure 4.3: Voltage profile of the base case
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Figure 4.4: Voltages at node 111,113 and 114
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Figure 4.6: Steady state voltage output after using the algorithm
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Table 4.2: EV Types

Brand name Battery capacity
Nissan Leaf 40-62 kWh

Toyota RAV4-EV 41.8 kWh
BMW i3 42.2 kWh

Tesla model 3 75 kWh
Tesla model S 100 kWh
Tesla model X 100 kWh

From the base case, we identified three nodes, namely node 111,113 and 114, which has the three

lowest nodal voltage without control in the circuit. Figure 4.4 shows the evolution of the voltages in

those three nodes over the five hours where control was applied. Figure 4.5 shows the total injection

of active power into the grid by the EVs. It can be seen from both the figure that when ever there is

a rise in voltage (between time period 0-1 hour and time period 3-4 hour) due to more generation

from the intermittent renewable resources or lower loading condition, the total EV active power

injection decreases which means they are charging. The opposite happens whenever there is a loss

in voltage due to higher loading condition or loss of renewable resource, the EVs start discharging

which maintains the voltage above the lower limit of 0.95 pu. In this way the algorithm makes

sure the EV injection follows the voltage profile. Figure 4.6 shows the steady-state voltage at each

node of the test circuit.

In summary, a novel continuous-domain real-time distributed multi-agent ADMM algorithm is

developed for real-time applications. A distribution system was modeled where EV owners sign

contracts with aggregators to allow them to be used for ancillary services like voltage regulation

in exchange for monetary gain. A convex optimization problem with power flow equations as

constraints were set up where each aggregator tries to minimize the EV charging cost while con-

tributing to ancillary services while DSO would maintain the voltage close to unity and solve the
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power flow. In the setup, we only consider DSO and aggregators as the acting agents in the grid and

assume the aggregators can send signals to EVs to alter their power injection in the grid. We as-

sume the SOC of EVs are within a predefined agreed upon range and there is enough EV reserve for

ancillary services. In our future work, we would consider EV optimization with aggregator connec-

tion and also tackle SOC evolution which is dynamic in nature. The developed problem with DSO

and aggregators was cast into a distributed ADMM framework and is solved using the proposed

continuous-domain real-time algorithm by communicating relevant information among them. In

contrast to usual discrete-time iterative solution techniques where the accuracy and optimality of

the solution depend on the sampling and convergence time, the proposed continuous-domain algo-

rithm can solve the optimization and control problems in real-time. Numerical simulations were

carried out on IEEE 123 bus distribution grid to show the effectiveness of the proposed algorithm.

66



CHAPTER 5: ADMM ALGORITHM WITH DYNAMIC CONSTRAINT

In this chapter, we would focus on developing a multi-layer distributed Alternating Direction

Method of Multiplier (ADMM) algorithm which can handle dynamic EV constraints like the state

of charge (SOC) to optimize and control EVs in the grid to properly utilize them for voltage regu-

lation and at the same time, ensure that they are compensated by maximizing their utility function

and have desired state of charge at the end of their charging period. To analyze multi-layer dis-

tributed ADMM, one must understand the basics of original ADMM. Let us consider the problem

below [1]

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c (5.1)

where variables x ∈ Rn and z ∈ Rm. A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp are the matrices

and vector in the linear constraint. We will assume f and g are convex and differentiable and that

their gradients are locally Lipschitz. The problem can be thought of as a general convex linear

equality-constrained problem except for the fact that the main optimization variable has been split

into two parts, namely x and z in this case, with objective function separable across this splitting,

and thus the algorithm is distributed in nature. As with any primal-dual convex optimization, we

form the Lagrangian as follows

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
||Ax+Bz − c||22. (5.2)
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The Lagrangian in this case is called the ”Augmented Lagrangian” due to the fact that an additional

penalty term with multiplier ρ > 0 is added to the objective function. The problem is solved using

ADMM with the following iterations:

xk+1 := arg min
x

Lρ(x, z
k, yk) (5.3a)

zk+1 := arg min
z

Lρ(x
k+1, z, yk) (5.3b)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) (5.3c)

The ADMM algorithm consists of a x-minimization step (5.3a), followed by a z-minimization step

(5.3b) and a dual variable update (5.3c). The primal variables x and z are updated in an alternating

fashion thus the name ”alternating direction”. The ADMM algorithm of this type can only deal

with static linear constraints but falls short when the constraint becomes dynamic in nature. This

is very true when we deal with a distribution network with EV penetration since EV itself has a

State of Charge (SOC) parameter which is dynamic in nature and evolves with time. To tackle the

problem of this nature, in the next section, we will develop our proposed ADMM algorithm with

dynamic constraints in the continuous-time domain.

A Distributed Multi-Agent Networked ADMM

In this section of the chapter, we develop a continuous-domain real-time ADMM algorithm with a

dynamic constraint that can be implemented to a broad class of networked multi-agent distributed

optimization and control problems.
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Networked Mutli-Agent System

Let us consider a networked multi-agent system which is characterized by a bidirectional graph

G = (N , E) where N = {1, 2, · · · , N} is the number of agents and E represents the set of edges

between them. Also, let node 1 be the virtual leader of the network which means, through the

communication network, node 1 can obtain the information of all the nodes in the network if

necessary. We can define the network interconnection with the following binary matrix [24]:

S =



1 1 · · · 1

1 1 · · · s2N

...
...

...
...

1 sN2 · · · 1


, (5.4)

where sij = 1 if and only if (i ↔ j) ∈ E , and sij = 0 if otherwise. That means that if agent i can

communicate with agent j and vice versa, we have an entry of 1 in the position (i, j) in the com-

munication matrix. The matrix S has 1 in the diagonal as every agent knows its information. We

assume that the communication matrix S is irreducible, i.e., the communication graph is strongly

connected.

Figure 5.1 shows the network of multi-agent system. The agents can be connected physically as

we will see in the next subsection and it will also be required when we implement the algorithm in

a power distribution system.

Distributed Dynamic ADMM

In this subsection, we will formulate a distributed networked multi-agent problem with a dynamic

constraint. The work in [14] formulated a similar kind of problem without the dynamic constraint
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Figure 5.1: A networked multi-agent system with both physical and communication layer

and the solution with convergence proof was provided in the discrete-time domain. In this chapter,

we will add a dynamic constraint and tackle the problem in the continuous-time domain.

Consider the following distributed optimization problem:

min
yi

∑
i∈N

fi(yi) (5.5)

s.t.
∑
j∈Ni

Aijzji = 0, ∀i ∈ N ; yi = zij,∀i ∈ N , j ∈ Ni,

ẋi = Fi(xi) +Gi(xi)ui, yi = Hi(xi)

where
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• xi ∈ Rni is the state of the ith agent

• yi ∈ Rli is the output of the ith agent

• fi(yi) : Rli →∈ R is the objective function of agent i

• ui ∈ Rmi is the control (or decision variable) vector.

• Aij are constant matrices of appropriate dimension.

We assume that the functions fi(yi) are convex and differentiable, and their gradients are locally

Lipschitz. In the above problem, y and z are the two primal variables used in the original ADMM.

The matrix Aij represents the physical interconnection between the agents as shown in figure 5.1.

To tackle the problem, let us define the following design principles:

(i) Let

ui = Ui(xi) + ωi

where local feedback control Ui is designed so that subsystem of xi is input-to-state stable and that,

if ωi → ci for any constant ci, yi → ci.

(ii) Input ωi is chosen as the ADMM law.

(iii) Using the communication matrix S, let us also define a gain matrix D whose values are

calculated according to the following equation:

D = [dij] ∈ RN×N , dij =
sijβij∑N
l=1 silβil

, (5.6)
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where βij > 0 are piecewise-constant scalar gains. The matrix D is a non-negative, row stochastic

and diagonally positive matrix.

With the above design principle, we can redifne the optimization problem as follows:

min
ωi

∑
i∈N

fi(yi) (5.7a)

s.t.
∑
j∈Ni

Aijzji = 0 j ∈ Ni, i ∈ N (5.7b)

yi = zij j ∈ Ni, i ∈ N (5.7c)

ẋi = Fi(xi) +Gi(xi)ui (5.7d)

ui = Ui(xi) + ωi (5.7e)

Now we can form the so called augmented Lagrangian as follows:

L(u, z, λ) =
∑
i∈N

Li(ui, zij, λij) (5.8)

Li = fi(yi) +
∑
j∈Ni

[
dijλ

T
ij(yi − zij) +

dij
2
||yi − zij||2

]

It should be noted that only the consensus constraint (5.7c) is used in the augmented Lagrangian

since it is the only constraint that contains both the primal variables. The rest of the constraints are

taken into account while solving the individual sub-problems. Also, the penalty parameter term
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in the augmented Lagrangian is replaced with entries dij from the D matrix defined in the design

principle [14]. This enables the penalty term to conform with the actual interconnection of the

agents. Because of this reason, the dual variable λ is also scaled by the dij term. The augmented

Lagrangian (5.8) is solved using ADMM by solving the following sub-problems in an alternating

sequential manner:

1. For any i ∈ N , ωi is updated according to

ω̇i = arg min
xi∈Rn

L(y, z−, λ) (5.9)

2. For any i ∈ N and for j ∈ Ni, zji is solved as

żji = arg min
zji∈Rn

L(y, z, λ) (5.10)

s.t.
∑
j∈Ni

Aijzji = 0 (5.11)

3. For any i ∈ N and for j ∈ Ni, λji evolves as

λ̇ji = arg max
λji∈Rn

L(y, z, λ) (5.12)

where z− , z(t−) is the immediate past solutions to the problems of (5.11). We use the de-

layed version of z to mimic the alternating behavior of the ADMM algorithm. Using the convex

properties and techniques from [14], we obtain the continuous-time dynamics including dynamic
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constraints for the solution of sub-problems (5.9) - (5.12) as follows:

ω̇i = −αi

[
5yifi(yi) +

∑
j∈Ni

djiλij +
∑
j∈Ni

dij(ξi − z−ij)

]
(5.13a)

żji = −αi[−dijλji − dji(ξj − zji) + ATijµi] (5.13b)

µ̇i = wi
∑
j∈Ni

Aijzji (5.13c)

λ̇ji = dji(ξj − zji). (5.13d)

where µi is the dual variable associated with the constraint (5.11) of z-minimization sub-problem.

The variable ξi is replacing ωi in all the dynamics equations which is to be designed using the

passivity-short framework[59]. Let us also define the error states as ẽi = ei − e∗i where e =

{ui, zij, λij, µi, xi, yi}. With this, the error dynamics are given as

˙̃ωi = −αi

[
(5yifi(yi)−5y∗i

fi(y
∗
i )) +

∑
j∈Ni

dijλ̃ij +
∑
j∈Ni

dij(ξ̃i − z̃−ij)

]
(5.14a)

˙̃zji = −αi[−djiλ̃ji − dji(ξ̃j − z̃ji) + Aijµ̃i] (5.14b)

˙̃µi = wi
∑
j∈Ni

Aij z̃ji (5.14c)

˙̃λji = dji(ξ̃j − z̃ji). (5.14d)

We present theorem 1 below which shows that the error state dynamic equations (5.13) obtained

converges to the optimal solutions.

Theorem 1: Consider the statically and dynamically constrained optimization problem (5.7). Sup-
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pose that Ui is designed such that, for constant matrices Cil, there is an individual positive definite

Lyapunov function V
′
i (xi, ωi) satisfying the following inequality:

[
∇xiV

′

i (xi, ωi)
]T [

Fi(xi) +Gi(xi)Ui +Gi(xi)ωi

]
+
[
∇ωi

Vi(xi, ωi)
]T
ω̇i

≤−
∑
l

ki||ωi − Cilxi||2 +

[∑
l

(ωi − Cilxi)

]T
ω̇i + (yi − vi)ω̇i (5.15)

Then, continuous-time ADMM algorithm (5.14) with

ξi = yi +
∑
l

(ωi − Cilxi)

is globally convergent to the optimal solution.

Proof: Consider the following properties of the convex objective function fi(yi):

• The functions fi(yi) is convex and differentiable. In particular, the gradient of a convex

function is a global under-estimator as:

fi(yi)− fi(y∗i ) ≥ ∇y∗i
fi(y

∗
i )(ỹi). (5.16)

and

fi(y
∗
i )− fi(yi) ≥ ∇T

yi
fi(yi)(−ỹi) (5.17)

Adding the above two inequalities yields

[−∇T
yi
fi(yi) +∇T

y∗i
fi(y

∗
i )]

T ỹi ≤ 0. (5.18)

• The gradient of fi(yi) ( denoted by ∇yif(yi)) is Lipschitz, i.e., ||∇yif(yi) − ∇y∗i
f(y∗i )|| ≤
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li||yi − y∗i ||, where li is Lipschitz constant.

From (5.18), we get [∇T
yi
fi(yi)−∇T

y∗i
fi(y

∗
i )]

T ỹi which is positive definite with respect to ỹ.

Lemma 1: If the gradients denoted by∇yifi(yi) are locally Lipschitz, the sum

−
∑
l

ki||εil||2 − αi

[∑
l

εil

]T
∇yifi(yi)− αỹTi ∇yifi(yi) (5.19)

is negative definite with respect to εil and ỹi for small stepsize αi and for all gain ki > 0 above a

certain threshold.

Consider the Lyapunov function

V =
1

2

N∑
i=1

{
2V

′

i (xi, ωi) + ||ω̃i||2 +
1

wi
||µ̃i||2 +

∑
j∈Ni

[
1

αi
||z̃ij||2 + ||λ̃ij||2

+ dij

∫ t

t−δ
||z̃ij(τ)||2dτ

]}
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It follows from (5.15) that

V̇ ≤
N∑
i=1

{
−
∑
l

ki||ω̃i − Cilx̃i||2 +

[∑
l

(ω̃i − Cilx̃i)

]T
˙̃ω + ỹTi ˙̃ωi + µ̃Ti ˙̃µi

+
∑
j∈Ni

[
z̃Tij ˙̃zij + λ̃Tij

˙̃λij +
1

2
dij

[
||z̃ij||2 − ||z̃−ij ||2

]]}

=
N∑
i=1

{
−
∑
l

ki||ωi − Cilx̃i||2 − αi

[∑
l

ωi − Cilx̃i

]T
∇yifi(yi)

− αỹTi ∇yifi(yi) +
∑
j∈Ni

[
µ̃iAjiz̃ij + ξ̃Ti

[
− dijλ̃ij − dij(ξ̃i − z̃−ij)

]
+ z̃Tij

[
dijλ̃ij + dij(ξ̃i − z̃ij)− ATjiµ̃i

]
+ dijλ̃

T
ij

[
ξ̃i − z̃ij

]
+

1

2
dij||z̃ij||2 −

1

2
dij||z̃−ij ||2

]}

=
N∑
i=1

{
−
∑
l

ki||ωi − Cilx̃i||2 − αi

[∑
l

ωi − Cilx̃i

]T
∇yifi(yi)− αỹTi ∇yifi(yi)︸ ︷︷ ︸

n.d. according to (5.19)

− 1

2
dij||ξ̃i − z̃ij||2 −

1

2
dij||ξ̃i − z̃−ij ||2

which is negative definite with respect to (ξ̃i − z̃ij) as well as (ξ̃i − z̃−ij). This concludes the proof.

�

The dynamic ADMM problem (5.5) can be also proved through the concept of passivity-short

systems. It can be shown that equation set (5.14) can be cast into a passivity-short system. Consider

the following state space diagram

The system in figure 5.2 represents the dynamics from (5.14). The whole system can be broken

down into several subsystems and can be proved to be passivity short.

The gradient system can be presented as follows The above system is passive with input ỹi and
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Figure 5.2: The overall update dynamics

output∇yifi(yi)−∇y∗i
fi(y

∗
i ) since the input-output relationship can be presented as

ỹTi [∇yifi(yi)−∇y∗i
fi(y

∗
i )]

From the global under-estimator property of differentiable convex functions

ỹi[∇yifi(yi)−∇y∗i
fi(y

∗
i )] ≥ 0
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which makes the system passive. Consider the following:

˙̃ui = −αi[∇xifi(ui)−∇u∗i
fi(u

∗
i )] + απ̃i

τ̃i = ũi

The state space model of each agent can be drawn as below:

Consider the following Lyapunov function:

Vi =
1

2αi
||ũi||2

Differentiating the Lyapunov candidate yields

V̇i =
1

αi
ũTi ˙̃ui = −ũTi ∇uifi(ui) + ũi

T∇u∗i
fi(u

∗
i ) + ũTi π̃i

It follows from (5.18) that

V̇i = −ũTi ∇uifi(ui) + ũTi ∇u∗i
fi(u

∗
i ) + ũTi π̃i ≤ τ̃Ti π̃i
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Then, consider the following secondary system

˙̃zij = −αj
[
Ajiµ̃i + π̃ij

]
˙̃µj = wi

∑
i∈Nj

Ajiz̃ij

τ̃ij = z̃ij

The state space model

Consider the Lyapunov function

Vzij =
1

2αj
||z̃ij||2 +

1

2wj
||µ̃j||2

Taking time derivative

V̇zij = z̃Tij

[
π̃ij − Ajiµ̃j

]
+ µ̃Tj

[
Ajiz̃ij

]
= τ̃Tij π̃ij

With the above two systems defined, we can interconnect them in the following ways
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The control inputs are defined as

π̃i = −dij(ũi − z̃ij) + ξ̃i π̃ij = dij(ũi − z̃ij) + ξ̃ij

Defining π̃ = [π̃i π̃ij], ξ̃ = [ξ̃i ξ̃ij] and Γ̃ = [ũi z̃ij], it follows that

V̇ci = V̇ui + V̇zij ≤ π̃T Γ̃

= ũi[−dij(ũi − z̃ij) + ξ̃i] + z̃ij[dij(ũi − z̃ij) + ξ̃ij]

= −dij||(ũi − z̃ij)||2 + ũTi ξ̃i + z̃Tij ξ̃ij ≤ ξ̃T Γ̃

Finally we can complete the ADMM system by adding the Lagrange multiplier subsystem as

follows: With the control laws

ζ̃i = −dijλ̃ij + ψ̃i ζ̃ij = dijλ̃ij
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Using the Lyapunov function:

Vi = Vui + Vzij +
1

2
||λ̃||2

Taking time derivative, it follows that:

V̇i ≤ −dij||ũi − z̃ij||2 + ũTi [ψ̃i − dijλ̃ij] + dij z̃
T
ijλ̃ij + dijλ̃

T
ij[ũi − z̃ij]

= −dij||ũi − z̃ij||2 + ũTi ψ̃i

For visualization, the overall system is presented again below The system can be broken down into

3 smaller subsystems.

1. The blue box is the ADMM subsystem which is output strictly passive.
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2. The red box is the gradient subsystem which is also passive.

3. The green box is the dynamic system which is assumed to be passivity-short and l2 stable.

Now to prove the whole system to be passivity short, consider the following interconnected system

which represents the passive ADMM subsystem in series connection with the dynamic subsystem.

The time derivative of the Lyapunov functions for both the systems can be written as

V̇1 ≤ uTv − γ||v||2 V̇2 ≤ vTy + ε||v||2 − δ||y||2
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Adding the functions

V̇1 + V̇2 ≤ uTv − γ||v||2 + vTy + ε||v||2 − δ||y||2

≤ γ

2
||u||2 +

1

2γ
||v||2 − γ||v||2 +

1

2ε
||v||2 +

ε

2
||y||2 + ε||v||2 − δ||y||2

Simplifying further, we get

V̇1 + V̇2 ≤
γ

2
||u||2 +

ε

2
||y||2 − δ||y||2 − 2γ2ε− γ − ε− 2γε2

2γε
||v||2

≤ γ

2
||u||2 − 2δ − ε

2
||y||2 − 2γ2ε− γ − ε− 2γε2

2γε
||v||2

≤ uTy +
γ(2δ − ε) + 1

2(2δ − ε)
||u||2 − 2γ2ε+ γ + ε+ 2γε2

2γε
||v||2

which shows the system is passivity-short. Next, consider the following system The time derivative

of the both the systems can be written as

V̇3 ≤ uTy +
γ(2δ − ε) + 1

2(2δ − ε)
||u||2 V̇4 ≤ θTη
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Define u = η − y and θ = y − η, we get

V̇3 + V̇4 =≤ (η − y)Ty + k(η − y)T (η − y) + ηT (y − η)

≤ ηTy − ||y||2 + k||η||2 − 2kηTy + k||y||2 + ηTy − ||η||2

≤ 2(1− k)ηTy − (1− k)||y||2 − (1− k)η2

≤ −(1− k)||y − η||2

where k = γ(2δ−ε)+1
2(2δ−ε) . Since k ≤ 1, The derivative of the Lyapunov is negative semidefinite, which

makes the system stable. Then, with the input,

Taking the time derivative and defining u = (η − y) + ω and θ = y − η

V̇3 + V̇4 ≤ uTy + k||u||2 + θTη

≤ ωTy + (η − y)Ty + k||(η − y) + ω||2 + (y − η)η

≤ ωTy + kω2 + k||η − y||2 + 2k(η − y)Tω − (η − y)2

which makes the system input passivity short and L2 stable.
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Dynamic ADMM Application

In our proposed approach, we have divided the distribution system into three separate layers. On

the top layer is the Distribution System Operator (DSO) who is in charge of the overall distribution

grid. The DSO is responsible for maintaining optimal power flow in the grid as well as maintaining

system parameters like voltage within the desired tolerable range. In the next layer, we assume the

existence of a third party entity, generally termed as the aggregator in the literature, which collects

EV information at each node and can also send/receive input/output signals. And in the final layer,

we have all the consumers with the EVs who agree and signs a contract with the aggregators,

allowing them to use the EVs for grid services in exchange for financial compensation. We assume

at any instance of time, if the EV owners permit through the contract, aggregators can gather

information on EV’s active and reactive power injection at each bus through the existing sensor

network between them in real-time. Figure 5.3 shows the structure of the multi-layer distribution

grid and the associated variables which are defined in the next sub-section.

Figure 5.3: The multi-layer representation of distribution grid with associated variables
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Branch Flow Model

For the branch flow model, consider a radial distribution network by a directed graph G = (N , E)

where N := {1, · · · , N} represents the set of buses and E represents the set of distribution lines

connecting the buses in N . Without any loss of generality, the substation of the radial network

is indexed by 1. Each node i ∈ N \ 1 has an unique parent node Γi and a set of children nodes,

denoted by Ci as shown in figure 5.4. We assume each directed line points towards its children,

i.e., power flows from parent Γi to node i.

Figure 5.4: A distribution network.

For each bus i ∈ N , let Ni bet the set of neighboring nodes including node i and its parent, i.e.,

Ni = Γi ∪ {i} ∪ Ci. Also, let Vi be its voltage with Pdi + jQdi being the load demand and pi + jqi

is the aggregated active and reactive power injection by the EVs. For the branch Γi → i, let Ii be

the current flowing through it with RΓii + jXΓii being the impedance of the line and PΓii + jQΓii

being the complex power flowing from the parent Γi to node i. For bus i ∈ N , the power balance
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equations are given as

PΓii = pi + Pdi +
∑
j∈Ci

(Pij +Rijlij) i ∈ N (5.20a)

QΓii = qi +Qdi +
∑
j∈Ci

(Qij +Xijlij) i ∈ N (5.20b)

where lij = I2
i is the square of current magnitude which is defined as

lij =
P 2
ij +Q2

ij

vi
(5.21)

where vi = V 2
i is the square of the voltage magnitude. Equation (5.21) is a non-linear equation

which can be linearized around current operating point P o
ij, Q

o
ij , v

o
i and loij as below:

lij − loij =
2P o

ij

voi
(Pij − P o

ij) +
2Qo

ij

voi
(Qij −Qo

ij)−
(P o

ij)
2 + (Qo

ij)
2

(voi )
2

(vi − voi ) (5.22)

The power flow on all lines (i, j) ∈ E are expressed as

vi − vj = 2(RijPij +XijQij) + (R2
ij +X2

ij)lij (5.23)
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EV Parameters

In our structure, EV owners, who are interested to sign up for grid services, are connected to

aggregators at each node. Thus, The aggregated power of all EVs connected to node i at time t is

pi(t) =

Ei∑
n=1

pevi,n, ∀ i ∈ N (5.24)

where Ei denotes the number of EVs controlled by the aggregator in charge of bus i and pevi,n ∈

{0, pevi,n, pevi,n} is the charging/discharging power of EV n. Let us denote the time of arrival of nth

EV as ta,n and departure time as td,n. The EV owner registers this time with the aggregator so that

they can be used in the continuous-domain real-time optimization framework. The nth EV only

charge/discharge itself between this time-frame. Thus we can write:

pevi,n =


0 t /∈ [ta,n, td,n]

[
pevi,n, p

ev
i,n

]
t ∈ [ta,n, td,n]

(5.25)

The state of charge dynamics si,n of EV can be represented by the following first order differential

equation:

ṡi,n =
ηnp

ev
i,n

Bi,n

(5.26)

At the end of the charging period, the EV consumers wants their EVs to be charged to a specific

state of charge, specifically

si,n(td,n) = sdi,n, n ∈ Ei, i ∈ N (5.27)
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where sdi,n is the desired SOC.

Objective Functions

For the Distribution System Operator (DSO), the objective would be to minimize the generation

cost and maintain the voltage close to unity at every bus over the time horizon, mathematically:

fi(pi, vi) = Ci(pi) +Hi(vi) i ∈ N (5.28)

where Ci(pi(t)) is the cost function for generation production and Hi(vi(t)) is the voltage regula-

tion penalty function.

As for the EV owners, the want to minimize their charging cost and maximize their utility. Thus

we can express their welfare function as follows

Wi,n(pevi,n) = ψi,np
ev
i,n − Ui(pevi,n) n ∈ Ei, i ∈ N (5.29)

We also have a terminal condition, where at the end of a charging period, the SOC of the EV should

be at the desired SOC, that is

Si,n(sdi,n) = ki,n(si,n − sdi,n)2 (5.30)

where ki,n > 0 is the weight on terminal condition.
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Problem Formulation

Let us stack all the state variables into a vector ωi, that is

ωi =
[
vi, pi, qi, PΓii, QΓii, lΓii, p

ev
i,n, q

ev
i,n, si,n

]T ∀n = [1, · · · , Ei], i ∈ N

we also introduce an observation vector zji which represents the variables of node j at node i, that

is zji = [vij, p
i
j, q

i
j, P

i
Γjj
, Qi

Γjj
, liΓjj

, pev,ij,n , q
ev,i
j,n , s

ev,i
j,n ]T . With these definitions, we can formulate our

optimization problem according to the developed dynamic ADMM as follows :

min
ωi

N∑
i=1

Ei∑
n=1

[
φi(ωi)

]
(5.31a)

(5.31b)

s.t.
∑
j∈Ni

Aijzji +mij = 0 ∀i ∈ N (5.31c)

ẋi = Ai(xi) +Bi(xi)ui (5.31d)

yi = zij (5.31e)

yi = ωi (5.31f)

ui = Ui(xi) + ωi (5.31g)

where φi(ωi) =

[
Si,n(si,n) + fi(pi, vi) + Wi,n(pevi,n)

]
, xi = [0 0 0 0 0 0 0 0 si]

T and Ui(xi) = 1.

It should be noted that the objective function is not summed over time since the problem is solved

in real time with continuous-domain dynamics where the arrival and departure time can be tackled

by the individual EV dynamics. Based on what agent j represents, the matrix Aij and vector mij

takes the following form:
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Aii =



0 1 0 −1 0 0 0 · 0 0 · 0 0 · 0

0 0 1 0 −1 0 0 · 0 0 · 0 0 · 0

1 0 0 2RΓii 2XΓii (R2
Γii

+X2
Γii

) 0 · 0 0 · 0 0 · 0

0 0 0
2P o

Γii

voΓi

2Qo
Γii

voΓi

−1 0 · 0 0 · 0 0 · 0


,

Aij =



0 0 0 1 0 Rij 0 · 0 0 · 0 0 · 0

0 0 0 0 1 Xij 0 · 0 0 · 0 0 · 0

0 0 0 0 0 0 0 · 0 0 · 0 0 · 0

0 0 0 0 0 0 0 · 0 0 · 0 0 · 0


, j ∈ Ci,

Aij =



0 0 0 0 0 0 0 · 0 0 · 0 0 · 0

0 0 0 0 0 0 0 · 0 0 · 0 0 · 0

−1 0 0 0 0 0 0 · 0 0 · 0 0 · 0

− (P o
ij)2+(Qo

ij)2

(voΓi
)2 0 0 0 0 0 0 · 0 0 · 0 0 · 0


, j = Γi.

and mii = [Pdi Qdi 0 0]T , mij = {[0 0 0 0]T , j ∈ Ci} and

mij =

{[
0 0 0

(
− 2(P o

ji)
2voj +2(Qo

ji)
2voj +(P o

ji)
2−(Qo

ji)
2

(voj )2 − loji
)]T

, j ∈ Γi

}
.
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Solution Procedure

Following the procedures developed in section 2 and dynamic equation set (5.13), we obtain the

following update dynamics for the system

v̇i = −αi

[
∇viφi(ωi) +

∑
j∈Ni

dij

[
λij(1) + (vi − vj−i )

]]
(5.32a)

ṗi = −αi

[
∇piφi(ωi) +

∑
j∈Ni

dij

[
λij(2) + (pi − pj−i )

]]
(5.32b)

q̇i = −αi

[
∇qiφi(ωi) +

∑
j∈Ni

dij

[
λij(3) + (qi − qj−i )

]]
(5.32c)

ṖΓii = −αi

[
∇PΓii

φi(ωi) +
∑
j∈Ni

dij

[
λij(4) + (PΓii − P

j−
Γii

)
]]

(5.32d)

Q̇Γii = −αi

[
∇QΓii

φi(ωi) +
∑
j∈Ni

dij

[
λij(5) + (QΓii −Q

j−
Γii

)
]]

(5.32e)

l̇Γii = −αi

[
∇lΓii

φi(ωi) +
∑
j∈Ni

dij

[
λij(6) + (lΓii − l

j−
Γii

)
]]

(5.32f)

ṗevi,n = −αi

[
∇pevi,n

φi(ωi) +
∑
j∈Ni

dij

[
λin(7) + (pevi,n − p

ev,j−
i,n )

]]
(5.32g)

q̇evi,n = −αi

[
∇qevi,n

φi(ωi) +
∑
j∈Ni

dij

[
λin(8) + (qevi,n − q

ev,j−
i,n )

]]
(5.32h)

ṡi,n = −αi

[
∇si,nφi(ωi) +

∑
j∈Ni

dij

[
λin(9) + (si,n − sj−i,n)

]]
(5.32i)

where n ∈ [1, · · · , Ei], j ∈ Ni and i ∈ N . The zji is given as
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

v̇ij

ṗij

q̇ij

Ṗ i
Γjj

Q̇i
Γjj

l̇iΓjj

ṗev,ij,n

q̇ev,ij,n

ṡij,n



=αidji



λji(1)

λji(2)

λji(3)

λji(4)

λji(5)

λji(6)

λjn(7)

λjn(8)

λjn(9)



+ dji



vj − vij

pj − pij

qj − qij

PΓjj − P i
Γjj

QΓjj −Qi
Γjj

lΓjj − liΓjj

pevj,n − p
ev,i
j,n

qevj,n − q
ev,i
j,n

sj,n − sij,n



− ATij



µi(1)

µi(2)

µi(3)

µi(4)

µi(5)

µi(6)

µi(7)

µi(8)

µi(9)



The dual updates are given as



µ̇i(1)

µ̇i(2)

µ̇i(3)

µ̇i(4)

µ̇i(5)

µ̇i(6)

µ̇i(7)

µ̇i(8)

µ̇i(9)



=
∑
j∈Ni

Aij



vij

pij

qij

P i
Γjj

Qi
Γjj

liΓjj

pev,ji,n

qev,ji,n

sji,n


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

λ̇ji(1)

λ̇ji(2)

λ̇ji(3)

λ̇ji(4)

λ̇ji(5)

λ̇ji(6)

λ̇jn(7)

λ̇jn(8)

λ̇jn(9)



=dji



vj − vij

pj − pij

qj − qij

PΓjj − P i
Γjj

QΓjj −Qi
Γjj

lΓjj − liΓjj

pevj,n − p
ev,i
j,n

qevj,n − q
ev,i
j,n

sj,n − sij,n



These dynamics were implemented on the IEEE 123 bus distribution system in a co-simulation

with Matlab and OpenDSS.

Simulation Results

In the simulation of the proposed algorithm on the distribution system, we defined Ci(pi) = api p
2
i ,

Hi(vi) = (1 − vi)
2 and Ui(pevi,n) = apnlog(pevi,n + 1) and the parameters of the coefficients were

taken from [58]. The price of electricity was fixed at an average of 15 cents per kWh. We randomly

placed 150 EVs among 40 buses in the system and we fixed that by the end of their charging period,

the EV owners want their vehicles to be charged to at least 90% of its capacity. The value of step-

size αi was fixed at 0.01 for all the nodes. We first ran a base case where the algorithm was not

implemented and figured that bus 111,113 and 114 had the lowest voltage in the whole grid. So we

observed the voltages of those 3 nodes after implementing the algorithm and the results are shown
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Figure 5.5: Voltage at Node 111,113 and 114

in figure 5.5. Figure 5.6 shows the total amount of active power injection by the EVs over 5 hours

responding to the voltage fluctuations in the grid. We selected 3 random EVs around node the

three selected nodes and plotted their active power injection and how their SOC evolved which are

presented in figure 5.7 and 5.8, respectively. The figures shows the arrival and departure time of

the EVs and we can observe that the EVs react to the voltage fluctuations in the grid and eventually

at the end of their charging time, they get their SOC above 90%.

This chapter presents a novel continuous-domain distributed multi-agent ADMM algorithm with

dynamic constraint. In contrast to usual discrete-time iterative solution techniques where the ac-

curacy and the optimality of the solution depend on sampling and convergence time, the proposed

algorithm can solve the problem in real-time. It is also capable of handling dynamic constraints

that are pretty prevalent in distribution power systems with intermittent energy resources like EVs

present. It is proven to converge which is shown using the Lyapunov direct method and the analyt-

ical results were tested on IEEE 123 bus test system. The results obtained are also included for the

illustration of the proposed algorithm.
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Figure 5.7: Active power injection by 3 EVs
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CHAPTER 6: CONCLUSION

With the advent of technologies like 5G and IoT, the number of connected devices is rising expo-

nentially while the network is getting more sophisticated. As a result, the data availability and its

interchange in the network are escalating in both size and complexity. Centralized management of

the network has failed since it is not efficient to gather all the information for single-point commu-

nication. The recent research is moving towards distributed optimization because of its flexibility

and scalability and does not require any centralized coordination. Also, for modern interconnected

systems, convergence time and sampling speed of the data matter a lot since an optimal solution

based on a set of data is no longer optimal after few moments because of the rapid changing of

the system parameters. Keeping these in mind, this dissertation focuses mainly on developing tan-

gible distributed algorithms that can be implemented in real-time. In this dissertation, a network

of interconnected devices is considered where each device acts as an agent. Each agent has its

local objective function to satisfy by exchanging minimum information between its neighbors to

satisfy the global objective. While doing so, they need to also satisfy a network-level constraint

which is defined by the physical interconnection between them. This is a distributed optimization

setting with network-level constraints and it was converted into ADMM by introducing the second

primal variable which is the observation of the neighboring agent’s state at each agent. Several

assumptions were made on the convexity of the local objective functions as well as the strong con-

nectivity of the network. Utilizing these assumptions, a closed-form iterative dynamics in discrete

time is developed for ADMM optimization sub-problems. Each agent optimizes its local objective

functions based on the information it receives from its neighbors, this information can be utilized

to design an algorithm for faster convergence. In contrast to the standard ADMM which uses

a fixed penalty gain in the augmented Lagrangian, the proposed algorithm embeds control gains

into a row-stochastic matrix based on network connectivity, utilizes the matrix coefficients as the
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penalty parameters in ADMM, and uses information received by each agent from its neighbors

to adaptively adjust these penalties. One drawback of this algorithm was that it was solved in

discrete time. With a modern networked system that consists of agents that are intermittent and

whose parameters change very rapidly, an optimal solution a few moments ago does not remain

optimal anymore. So, because of this, the algorithm needs to handle the problem in real-time. For

this reason, the algorithm was further developed into a continuous domain with real-time appli-

cability. To illustrate its effectiveness, it was implemented in a smart grid setting. A distribution

system was considered with distributed energy resources as well as electric vehicles (EVs). The

objective of the problem was to maintain voltage close to unity at each node by using electric

vehicles. EVs would establish a contract with a third party, known as aggregators, who will give

them input signal to charge or discharge based on the energy need of the grid to maintain the volt-

age. A convex optimization problem with power flow equations as constraints were set up where

each aggregator tries to minimize the EV charging cost while contributing to ancillary services

while DSO would maintain the voltage close to unity and solve for the optimal power flow. The

developed problem with DSO and aggregators was cast into a distributed ADMM framework and

is solved using the developed continuous-domain real-time algorithm by communicating relevant

information among them. In contrast to usual discrete-time iterative solution techniques where the

accuracy and optimality of the solution depend on the sampling and convergence time, the pro-

posed continuous-domain algorithm can solve the optimization and control problems in real-time.

In this problem, we solved the problem concerning the DSO and aggregators and left the EV parts

out. EVs have their objectives to fulfill like maintaining a certain level of state of charge. Tackling

this problem would be difficult since the state of charge is dynamic. For this reason, the algorithm

was further developed to accommodate dynamic equations. It was shown that the algorithm can

be shown to be the interconnection of several subsystems, which when added together, can be

shown to be passivity-short. It was again implemented in the same smart grid scenario, except this

time the EVs work as agents of the system as well. The objective for the DSO was to use EVs,
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through aggregators, for voltage regulation in the grid in exchange for financial compensation. For

EVs, the objective was to maximize their gain but in the meantime, also make sure that when they

leave, they leave with the state of charge of their battery above a certain threshold. The setup was

simulated and the results illustrate the effectiveness of the algorithms developed. For future work,

since the algorithm is capable of handling dynamic constraints, the next step would be to solve the

problem where the objective function has temporal dependence.
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APPENDIX A: LIST OF PUBLICATIONS

Journal

T. Rahman, Z. Qu and T. Namerikawa, “Improving Rate of Convergence via Gain Adaptation in Multi-Agent

Distributed ADMM Framework,” in IEEE Access, vol. 8, pp. 80480-80489, 2020.

T. Rahman, Y. Xu and Z. Qu, “Continuous-Domain Real-Time ADMM Algorithm for Distributed EV Charg-

ing and Voltage Stability in Distribution Network” submitted, IEEE Transaction on Automatic Science and

Engineering.

Conference

T. Rahman and Z. Qu,“The role of electric vehicles for frequency regulation during grid restoration,” 2017

IEEE Power & Energy Society General Meeting, IEEE 2017, pp. 1-5.

T. Rahman, R. Harvey, Z. Qu and M. A. Simaan, “A distributed cooperative load control approach for ancil-

lary services in smart grid,” 2017 American Control Conference (ACC), IEEE, 2017, pp. 1401-1406.

Book Chapter

T. Rahman and Z. Qu, “Autonomous Intelligent Charging/Discharging of Electric Vehicles using Distributed

Multi-Agent ADMM Framework for Grid Ancillary Services,” Intelligent Control and Smart Energy Man-

agement: Renewable Resources and Transportation, submitted, Springer Optimization and Its Applications

(SOIA).
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