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ABSTRACT

The growth of High Performance Computer (HPC) systems increases the complexity with respect

to understanding resource utilization, system management, and performance issues. HPC per-

formance monitoring tools need to collect information at both the application and system levels

to yield a complete performance picture. Existing approaches limit the abilities of the users to do

meaningful analysis on actionable timescale. Efficient infrastructures are required to support large-

scale systems performance data analysis for both run-time troubleshooting and post-run processing

modes. In this dissertation, we present methods to fill these gaps in the infrastructure for HPC per-

formance monitoring and analysis. First, we enhance the architecture of a monitoring system to

integrate streaming analysis capabilities at arbitrary locations within its data collection, transport,

and aggregation facilities. Next, we present an approach to streaming collection of application

performance data. We integrate these methods with a monitoring system used on large-scale com-

putational platforms. Finally, we present a new approach for constructing durable transactional

linked data structures that takes advantage of byte-addressable non-volatile memory technologies.

Transactional data structures are building blocks of in-memory databases that are used by HPC

monitoring systems to store and retrieve data efficiently. We evaluate the presented approaches on

a series of case studies. The experiment results demonstrate the impact of our tools, while keeping

the overhead in an acceptable margin.
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CHAPTER 1: INTRODUCTION

Making high-performance computing (HPC) applications efficient and reliable at high process

counts is challenging and requires a comprehensive knowledge of the application behavior, re-

source utilization and system state. This knowledge is necessary to understand and mitigate issues

in HPC application and system performance. Continuous system monitoring is necessary to gain

this knowledge. HPC monitoring systems collect global system information on resource utilization

and system state such as network and Lustre usage; CPU and memory utilization; hardware per-

formance counters; environmental information, such as temperatures and fan speeds. On current

large-scale systems, the collected data for monitoring can be many TB/day [34, 18].

In this dissertation, we tackle these problems in HPC system monitoring:

• Enabling real-time troubleshooting and feedback to system components and applications.

• Streaming application performance data for system monitoring.

• Providing the infrastructure support for durable transactional data structures that are needed

by the in-memory databases persisting monitoring data.

By designing and building tool-sets, we show that real-time analysis and application performance

data streaming can contribute to better understanding of the system and timely responses to various

events in the system. Also, we show that by using the persistent memory technology, we can

build efficient data processing systems. Our experimental results demonstrate the effectiveness

and efficiency our proposed tools and software.

In this chapter, we describe the issues with existing approaches, the importance of these prob-

lems, and the motivation for solving them. We present a high level overview of our solutions and

1



contributions. Finally, a summary of the dissertation and organization is provided.

1.1 Motivation

Real-time troubleshooting and feedback to system components and applications relies on the abil-

ity to perform low latency analysis and to expose the results to application and system components,

such as resource managers. While monitoring systems may support in-situ processing at the point

of data collection (e.g., if the collection is performed by a script), more often the analysis is done

in post-processing off-system (e.g., in a database). Storage and processing of large data sizes can

be demanding, making it difficult to obtain results in a timely fashion. Moreover, data that could

be key to understanding is either not collected or not retained for analysis. Lower latency access to

results can be obtained by incorporating streaming analysis into the monitoring process, but there

are trade-offs in features such as latency, overhead, and analysis complexity.

Post-processing provides the best flexibility for analysis construction since we can answer complex

questions and perform multiple passes of queries through the data to extract meaningful informa-

tion. This flexibility comes at the expense of having the highest latency to solution, with results

not immediately exposed to platform components. Conversely, in-situ processing at the point of

data collection can potentially expose the results to platform components. However, this type of

processing imposes overhead on compute nodes and incurs complexity when the analyses rely on

combinations of data from different nodes. While it can reduce the amount of data for ultimate

storage, it is at the cost of losing data that could be used later. In-transit data processing at aggre-

gation points on the compute platform can enable analysis at locations where performance impact

is not an issue and also provide exposure of the results to the platform components. Also, such

processing may reduce the complexity of and alleviate the need for sophisticated post-processing

analyses.
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In addition to the system level metrics, events from the inside of applications can also have criti-

cal performance implications [102] [79]. Extracting application events, especially in a production

environment, involves challenges such as minimizing the interference with computations, dealing

with the trade-off between the data accuracy and application efficiency, and determining the ap-

propriate time and location of data exposure. Application profiling tools typically take approaches

based on large trace collection or statistical sampling of the program counter and call stack. Cap-

turing application behavior with full details introduces overhead in memory, network bandwidth,

and storage. Furthermore, this approach negatively impacts the application’s ability to execute its

operations and perform computations. On the other hand, it is challenging to choose a subset of

events and compile proper statistical samples that represent the application’s behavior of interest

with reasonable accuracy and efficiency. Many of the performance monitoring libraries accumulate

data and release them after the program termination [130] [140] [134]. Revealing the performance

data at the end of run could be helpful in some cases such as application tuning and optimization

that is performed during development and before deployment. However, continuous system moni-

toring in production environments demands the collection and exposure of data during the run-time

efficiently.

Continuous performance monitoring, especially on large-scale systems, produces a huge amount

of data [34, 18]. The persistence and process of data with this size are challenging and require effi-

cient infrastructures. With persistent or non-volatile memory (NVM) recently becoming available

commercially, there has been a surge of interest in utilizing it not only as a high-capacity main

memory (e.g., Optane DC PM with 3TB per socket [77]), but also for hosting persistent/durable

data. To enable applications to rely on persistent data, approaches to construct persistent data sys-

tems have been proposed. In general, such systems can be categorized based on two aspects. One

aspect is whether they support transactions as primitives or not. A transaction supports ACID:

atomicity (all operations must all succeed or none does), consistency (the data structure state is
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consistent before and after the transaction), isolation (concurrent executions of transactions appear

to take effect in some sequential order), and durability (effects of a transaction are not lost upon a

power failure). Another aspect is whether the persistent data system relies on low-level informa-

tion, such as reads and writes, or relies on high-level information such as data structure semantics.

Table 1.1 illustrates these aspects.

Table 1.1: Taxonomy of persistent data system.

Transactional Non-transactional
High-Level

(Data structure semantics)
PETRA

(This Work)
Persistent

data structures
Low-Level

(Reads/writes)
Persistent Transactional

Memory (PTM) N/A

In one approach, specific persistent data structures, such as list, set, tree, queue, and hash map

have been proposed [32, 158, 113, 56, 110]. These data structures allow the application to execute

individual operations such as node insertion and deletion in a crash atomic manner. However, while

individual operations are crash atomic, transactions are not supported. A problem arises when an

application may need to execute not just single operations atomically, but a sequence of operations

atomically, i.e. as transactions. For example, consider a transaction that moves a node from one

persistent set to another, i.e. {set1.delete(x); set2.insert(x)}. While individual crash atomic

operations are useful, a transaction allows both operations to make durable changes to both sets

atomically. Executing transactions on data structures is an essential functionality [131], especially

in applications such as databases, data analytics tools, and solving complex graph problems [45,

87]. Furthermore, to support a broad spectrum of applications, a more general framework is needed

beyond individual data structure designs.

In another approach, such as Persistent Transaction Memory (PTM) [142], researchers provide
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transactional support by adding durability to general-purpose transactional programming models.

PTMs typically use an underlying Software Transactional Memory (STM) to allow for the exe-

cution of transactions atomically. Since STM already supports ”ACI”, PTM only needs to add

durability (”D”) to STM. Unfortunately, the reliance on STM results in inheriting its limitations.

One issue is that STM relies on low-level information of memory accesses (reads/writes) for con-

flict detection, which is attributed to the problem of voluminous false aborts [68, 20], incurred

by false conflicts stemming from high contention on the data structure’s points of accesses, e.g.,

the top pointer of a stack. Transactions that have read the top of the stack will get aborted if

another transaction writes to the top of the stack, even though they might not conflict based on

the semantics of the data structures, leading to wasted computational resources due to restarting

the transactions [68]. Furthermore, supporting durable transactions requires maintaining (undo or

redo) logs, which incurs performance overheads.

1.2 Integrating Low-latency Analysis into HPC System Monitoring

To solve the first problem, we present an approach that enables both in-situ and in-transit pro-

cessing to address the challenges in low overhead, low latency analysis and in the exposure of

results at arbitrary locations. We implement our method within an existing HPC monitoring sys-

tem, Lightweight Distributed Metric Service (LDMS) [3]. LDMS is used in monitoring large-scale

HPC systems such as NCSA’s Blue Waters [109] Cray XE/XK system with 27,648 nodes. Data

collection intervals are order of 1 minute down to sub-second, thus resulting in substantial data

to be processed for analysis. LDMS is well suited for the integration of analysis within its archi-

tecture because of its support for a) plugins that operate on the data [53], b) node-level exposure

of data and c) arbitrary communication topologies. This flexibility enables us to place analysis

modules at arbitrary locations in the monitored network and use the results of those analyses to
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provide feedback throughout the system (e.g., application processes, resource managers).

In LDMS, plugins exist for data collection (getting data into the infrastructure) and for storage

(getting data out of the system). We enhance the LDMS architecture by adding the infrastructure

for streaming data processing and for handling the transformed data within the system in the same

way as the collected data, thus providing a uniform format for data consumers. Our enhancement,

called a transform module, enables authorized users to provide arbitrary data transformations, at

arbitrary points within the monitoring system’s communication topology. Our flexible and low-

overhead method enables monitoring tools to provide low latency feedback to system components

and applications. It provides the capabilities to perform run-time troubleshooting with near-past

data by eliminating the need for storage before analysis. Furthermore, our approach supports

research on historical data by enabling analysis results to be included in with the raw data to be

stored.

1.3 Production Application Performance Data Streaming for System Monitoring

To solve the second problem, we present an approach to collect application level events and provide

a production-time status of the application. Our approach can integrate with HPC monitoring tools

to support continuous system monitoring in production environments. Independent components

of this approach make it suitable to work with different programming paradigms and monitoring

tools. In our approach, we utilize an efficient inter-process communication (IPC) method to convey

data from the application profiler, which is the data provider, to the data consumer in the perfor-

mance monitoring tool. The application profiler collects data through dedicated counters that are

embedded in the application’s points of interest. The HPC monitoring tool exposes the provided

data at periodic intervals during the application execution. The data exposure at the execution

time enables efficient software-level performance data streaming, which is necessary to provide
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monitoring services in production systems seamlessly.

Run-time performance analysis tools employ event tracing through instrumentation or sampling

approaches to monitor and evaluate HPC applications [2, 134, 130, 108, 91, 92, 140]. Methods

used for instrumentation include modifying the source code, changing the binary code, and func-

tion call interception through linking with specialized libraries such as tools based on Message

Passing Interface (MPI) profiling layer [88]. An extensive amount of information about the de-

sired parts of the application with details is collected to characterize its behavior. However, these

methods usually add significant overhead to the system regarding memory, network bandwidth,

and storage. The high overhead of instrumentation makes these methods unsuitable to apply to

many code regions in applications or in production. Sampling methods collect statistical perfor-

mance data at intervals or when interrupted by external events [130]. In this approach, performance

analysts should tune the sampling intervals to achieve the optimal solution based on specific ef-

ficiency goals. Profiling tools that work based on this model provide the most accurate data at

high frequencies with a considerably high cost. On the other hand, they are more efficient at low

frequencies, but less informative and prone to detail loss [4]. Current approaches either lack the

necessary efficiency to be utilized in production systems or support only post-mortem analysis that

does not present online data about application events during the execution. Also, developers face

challenges when analyzing applications that scale to larger parallel systems [18].

The novelty of our approach is its efficiency in providing exposure of software level events while

the application is running. In our approach, we collect events through software level counters and

expose them to the data consumer in the HPC monitoring tool during the application execution.

We design and implement a tool-set based on our approach and demonstrate its impact using a case

study of the analysis of a scientific application. Our tool-set consists of three components: appli-

cation profiler, shared memory index, and a sampler. The application profiler collects information

about the software level events. The shared memory index provides a mechanism to locate the data
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collected by the application profiler. The sampler utilizes the shared memory index to expose the

data collected by the application profiler instances periodically.

We integrate our approach with the Lightweight Distributed Metric Service (LDMS) system [3], a

monitoring system used on large-scale computational platforms [18]. LDMS provides the infras-

tructure to gather streams of performance data efficiently while keeping the overhead low. The

scalability of LDMS allows us to build a tool-set to monitor large-scale applications. Further-

more, the design of LDMS supports plug-in sub-modules [53]. The sampler component of our

tool-set operates as an LDMS sampler plug-in and is independent of the specific metrics collected

or the application. We demonstrate our approach using applications implemented with MPI. MPI

is one of the most common standards for the development of large-scale scientific applications.

The MPI profiling interface (PMPI) [88] allows us to instrument many HPC applications without

the modification of their source or binary code. The application profiler component of our tool-set

is implemented to profile use of the MPI API, though our method may be adapted to any other

instrumentation approach producing counters.

Our streaming based method enables run-time operational analysis and troubleshooting in HPC

applications. By continuous, efficient, and direct access to application events, monitoring tools

can generate software performance data stream as well as the general system state. The software

level metrics exposure supports the performance analysis based on exploring correlations between

the system events and application internal events. This analysis helps users to understand the ap-

plication behavior and possible performance bottlenecks. Our approach is not trace-based, and it

avoids generating large data sets in the application’s hardware environment. It allows processing

performance data elsewhere while the application is running. Data stream processing allows for

gaining immediately useful insights by computing functional combinations of data. Our tool-set

can benefit a researcher doing application characterization without interfering with the computa-

tion. For example, our tool-set can provide insights that can be used in combination with other
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data sources in an automatic application phase detection approach. This can be achieved without

looking at source code or binary instrumentation.

We demonstrate the impact of our method using an open-source HPC application, Nalu [40]. Nalu

has been chosen as one of the representative simulation codes to be used as a performance bench-

mark for the Trinity Capability Improvement Metric [5]. It is a representative of implicit codes

that have been developed under the Advanced Simulation and Computing (ASC) [6] program. We

show how our tool-set enables us to efficiently identify patterns in the behavior of the application

without any scientific domain knowledge or access to the source code. We leverage LDMS to

collect system level performance data as well as software level data and explore the correlation

between the system and application events. Also, we show how our tool-set enables quick issue

mitigation by assisting in the detection of anomalies in the behavior of the application. We run

tests on two different architectures to understand the interaction of our tool-set with the operating

system and applications on different HPC platforms. These architectures include a system enabled

with the latest generations of Intel Xeon Phi code-named Knights Landing and another system

equipped with Intel Xeon processor.

Our overhead study shows our method imposes at most 0.5% CPU overhead on the application.

1.4 Persistent Transactional Non-blocking Linked Data structures

To solve the third problem, we propose a new approach for constructing a persistent transactional

data system for linked data structures (PETRA). PETRA can be used as an efficient infrastructure

for building in-memory databases for processing performance monitoring data. Our approach,

PETRA, is the first one that relies on a transactional approach but combines it with the high-level

information from the data structure semantics. Beyond having a unique approach, the goals of our
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design are:

• High performance: low overheads added to achieve durability.

• High scalability: performance scaling well with increasing thread counts.

• Non-blocking: there is guaranteed system-wide progress.

PETRA achieves high performance by keeping the number of cache line flushes and memory

fences low. The key to high performance is that data structure semantics provides substantial

advantages over using low-level memory accesses. Consider descriptor objects [64], commonly

used in the design of lock-free data structures [44, 52, 33, 65, 155, 156]. Our descriptor object

(transaction descriptor) contains the information needed to execute a transaction. All nodes that

are accessed by a transaction hold a reference to a shared transaction descriptor. We observe that

transaction descriptors have all of the required information to execute the transaction, and can

be utilized to verify the consistency of the underlying data structures after a crash and correct

possible inconsistencies. These observations lead us to leverage transaction descriptors as redo

logs instead of introducing additional logging constructs. Removal of explicit logging not only

leads to fewer instructions to execute, but also relaxes the ordering constraints between persistent

memory operations, leading to the removal of many persist barriers (cache line flushes and store

fences). In contrast, PTMs typically need to enforce orderings between writes to the log and

writes to the actual data structure. In our methodology, enforcing the persistence of the transaction

descriptors at the end of the transaction is sufficient. Furthermore, since the transaction descriptor

is already needed to manage concurrency, leveraging it to manage crash consistency adds only

minor additional overheads.

PETRA achieves high scalability due to working at the data structure semantics level, hence remov-

ing false aborts. Aborts only occur when transactions conflict on nodes of the data structure based
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on its semantics. Again, this is achieved thanks to the transaction descriptors that we use. Our

transaction descriptors enable a node-based conflict detection scheme that does not rely on trans-

actional memory nor require the use of an additional data structure. Furthermore, when conflicts

are detected, PETRA uses the transaction descriptors to implement a conflict recovery strategy

based on the interpretation of the logical status of nodes instead of explicitly revoking executed

operations in an aborted transaction.

Finally, PETRA is an obstruction-free transactional persistent data system, where system-wide

progress is guaranteed. It does not rely on using locks, hence deadlocks are not possible. With

locks, if a thread holding a lock is pre-empted or if it crashes, no system progress can be made.

With a persistent data system, if the lock is persistent, post-crash recovery is not simple as we

have to recover the thread that held the lock at the crash time [32]. With PETRA, no locks are

used. PETRA utilizes transaction descriptor that ensures global progress through a helping mech-

anism. If a thread is pre-empted while executing a transaction, another thread can help complete

the transaction.

1.5 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 presents the background and related

work. The design and evaluation of the low-latency analysis integration into HPC system moni-

toring is described in Chapter 3. Chapter 4 proposes the the design and experimental evaluation of

the production application performance data streaming for system monitoring. In Chapter 5, we

present the design and evaluation of PETRA, persistent transactional non-blocking data structures.

Finally, we conclude in Chapter 6.
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1.6 Publications

This dissertation is written based on peer reviewed papers published by the author of this disserta-

tion in collaboration with other authors. Chapter 3 includes content from a paper that is published

in the International Conference on Parallel Processing [80]. Chapter 4 is based on a paper that is

published in the ACM Transactions on Modeling and Performance Evaluation of Computing Sys-

tems journal [78]. Some material from each of these papers has been used in the current chapter,

and the following chapter.

1.7 Software

The software developed during this dissertation is publicly available on GitHub repository of the

Ovis project at https://github.com/ovis-hpc/ovis.
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CHAPTER 2: BACKGROUND

In this chapter, we introduce the fundamental concepts and tools used in our work. Next, we place

our proposed approaches in the context of related work.

2.1 LDMS Monitoring Framework

Our approaches leverage LDMS’s capabilities in data collection, transport and aggregation that

enable continuous monitoring in large-scale systems. In the LDMS framework, daemons run on

the resources to be monitored (e.g., compute nodes), and utilize plugins for data sampling and

storage. Daemons can also play the role of an aggregator.

Daemons can aggregate data from other LDMS daemons over various transports, including Infini-

band, iWarp, and Ethernet, in arbitrary communication topologies. The purposes of aggregation

can be arbitrary cases such as feeding data to other consumers, and writing out to some perma-

nent storage system [3, 80]. Aggregators shift the load and overhead of storage and aggregation to

cluster service nodes that do not run HPC applications. This offloading reduces the overhead on

compute node as much as possible and eliminates possible interference between computations and

storage.

Multiple aggregation points can be configured to pull data from disjoint and overlapping sources,

including other aggregators, as shown in Figure 2.1. This flexible communication topology is a

key for performing low latency analysis and feedback that requires bidirectional data flow. This

infrastructure design allows us to perform transforms at arbitrary locations where the computa-

tional overhead is not a concern (e.g., on “aggregation” nodes), but still expose the transformed

data where it is needed. Aggregation nodes in the LDMS context are nodes dedicated primarily to
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aggregation of large collections of sampled data sets (metric sets). Because aggregation nodes are

dedicated to this functionality, the computational intensity of analytics performed on these nodes

has no adverse effect on application performance within the computational infrastructure.

Figure 2.1: LDMS supports arbitrary communication topologies. Green squares indicate nodes;
blue circles indicate LDMS daemons; blue triangles indicate applications. Arrows indicate the
direction of aggregation and data accessing by applications. For example, A can aggregate metric
sets from 4 of LDMS daemons; B can aggregate any metric sets generated on A or aggregated
by A; application X can access metric sets on A; application Y can access metric sets on C. A
command line query tool can also query any daemon remotely to obtain its data.

The typical process of collecting data, or metric values, from compute nodes is as follows. LDMS

daemons on compute nodes, which are configured as sampler daemons, create in-memory data

structures, called metric sets, to store the collected data. They periodically sample new metric

values using sampler plugins. An aggregator connects to a set of sampler daemons and then pe-

riodically reads and stores, in local memory, metric sets from sampler daemons. An aggregator
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might also then store1 (e.g., write out to a file, or a named pipe for forwarding to a disjoint archi-

tecture such as a named pipe to syslog [3]) the metric sets using a store plugin. Daemon instances,

per-daemon plugins, aggregation setup (including topology and sets to be aggregated), rates, and

store parameters are all configuration options.

A metric set consists of meta-data and data sections. The meta-data section retains the description

of the set (e.g., metric names, metric types, size of the set). The data section stores both meta met-

rics, which have values that are either constant or rarely change (e.g., component ID corresponding

to a metric set), and data metrics which store values of frequently changing metrics.

An LDMS daemon stores only a single set of values for its current metric sets. An LDMS daemon

may be queried to get its current metric sets either by an aggregator or via ldms ls, a query tool

that works similarly to how aggregators collect sets from sampler daemons. An annotated example

of the ldms ls output of a metric set is shown in Figure 2.2, including meta-data vs. data sections,

and, for the data, metric data types, names, and values.

A store plugin is notified every time an LDMS daemon obtains an update to a metric set for which it

has been configured for storing. Before our presented approach, in LDMS, some limited streaming

computations and data transformations have been performed using store plugins called function

store plugins. These plugins [17] perform limited computations and filtering on the metric set data

before writing the raw or computed data to storage.

Expanding the store plugin for more general exposure of data and access to the resultant compu-

tations would not be as useful and flexible as the ability to support and expose transformed data

within the metric set context already handled by the infrastructure. In our analysis integration

approach, we overcome this limitation by designing a flexible method to support streaming analy-

1Note the different use of store to write out as opposed to the daemons which store data in memory. We believe
this standard terminology will be clear to the reader.
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sis. This enables us to take advantage of LDMS’s support for arbitrary communication topologies,

including bi-directional communications, to minimize the impact of the computations within the

compute environment while still supporting access, by both system services and applications, to

the transformed data. We can then opt to place the transforms at locations where the computational

impact is not a concern while the resultant transformed set can then be pulled to a node and only

incur the transport cost.

Figure 2.2: Output from the ldms ls command.It shows part of a metric set produced by a sampler
plugin written to collect a variety of metrics from a Cray XE/XK system. In Chapter 3, we utilize
transform plugins to perform some analyses using the metrics related to the Lustre file system.
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LDMS has been used in monitoring large-scale HPC systems such as NCSA’s Blue Waters [109]

Cray XE/XK system with 27,648 nodes. LDMS has performed efficiently on large-scale pro-

duction systems, and overhead assessments have demonstrated no significant detrimental system

impact [3, 34, 35, 109]. LDMS enables low-overhead performance data streaming using the pull

model of aggregators that periodically fetch data from the samplers. This pulling mechanism uti-

lizes the Remote Distributed Memory Access (RDMA) protocol to unburden the compute nodes

of the required functionality and overhead for sending data, storage, and failover handling. Clients

can connect to aggregators and consume the data stream for various purposes such as analysis, and

storage.

2.2 Integrating low-latency analysis

Many widely used HPC monitoring frameworks are intrinsically designed as one-way communi-

cation constructs, thus limiting the ability to feed back the data and analysis results to arbitrary

consumers. Ganglia [105] and Nagios [122] are invoked periodically on the nodes with the data

typically aggregated to a central location. Ganglia is designed to use rrdtool [112] as a back-end

database, which can then be used for off-system analysis and visualization. Nagios supports some

limited failure alert features based on predefined thresholds. ElasticStack [43] ingests input data

into a publish-subscribe message bus, LogStash, and does server-side analysis with ElasticSearch.

This model can ingest data from sources such as Ganglia and Nagios but does not address analysis

on the compute platform. Even if on-node analysis were supported, the message bus interaction

and message parsing would incur additional overhead, as opposed to LDMS’s RDMA, primarily

pull-based model. Collectl [28] can be configured to report delta rather than raw values but not to

perform arbitrary analyses. It is not designed for easy general configuration of arbitrary communi-

cation topologies. TACCStats [46] has in the past collected data on the node to a file which has then
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been collected off the machine nightly. While they have recently enabled run-time collection [47]

via a daemon-based version of TACCStats to an off-platform site, it still does not intrinsically

enable streaming analysis using a general approach as we did in this work. Instead, some lim-

ited analyses like maximum and average for certain metrics have been provided. The SOS [147]

project appears to share our goals with respect to enabling system wide information sharing, low

latency analysis and feedback to both applications and system software. A significant difference

is that SOS is a new framework which incorporates an additional daemon per-node that commu-

nicates with applications and other data collection entities for data acquisition and uses a SQLite

database for both on node and aggregator storage. Its functional scalability, including application

performance impact at large scale, has yet to be established. Published information about SOS’s

online data analysis and automated information migration is insufficient for comparison currently.

Our work leverages an existing HPC monitoring framework with proven scalability to 10s of thou-

sands of nodes. Storage of data values for this work is in native ldmsd metric set data structures

and whatever backend storage is configured for a particular system. Performance libraries such as

PAPI [19] and the perf tool provide limited support for presenting some derived metrics such as

IPC (instructions per cycle) on a local node. Our scalable tool enables flexible analysis on applica-

tion and system resources using various transport protocols in arbitrary communication topologies

at runtime.

Communication architectures and tools such as MRNet [124] and AMQP [111] could be used for

the transport part. However, all the capabilities for data collection, analysis, and exposure of both

raw and transformed data in a uniform way would have to be built. Note that MRNet targets a tree-

based overlay and hence the setup to enable arbitrary and bi-directional communications could

become quite complex. It does not currently support RDMA which therefore increases its innate

overhead for data transfer and feedback based on analyses. MRNet explicitly targets filtering of

data, which is an analysis, at the tree aggregation points to reduce message size. It was used in
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collecting platform data with reduction [16]. Here, we integrate low latency streaming analysis,

and not merely reduction, at arbitrary locations in the entire HPC system, and support building

complex analysis units from basic transform plugins using the chaining capability. AMQP theo-

retically would support more arbitrary communication topologies because of its publish-subscribe

architecture. However, typical applications of this model use self-describing messages, which are

inherently of larger size than the LDMS messages that send only data.

Various tools for big data systems and streaming databases exist (e.g., [1][31][115][62][24]). These

tools provide one-way communication constructs using query interfaces for analyses. This limits

the ability to feed back the data and analysis results to the compute platform. In our work, we

leverage the bidirectional infrastructure of the LDMS framework to enable information feed back

to various system components and applications. This makes the decision-making process in the

system software and applications more informed and environment-aware.

Pipeline capabilities that support filters for analysis and visualization exist in architectures such as

the Visualization Tool Kit, VTK [126]. VTK has a relatively sophisticated model for handling the

pipeline due to the need to handle possibly complex issues such as visible components in the 3D

rendering of objects. Our work seeks to incorporate a much more limited capability for chaining

analyses without the added complexity of writing code utilizing VTK’s language bindings.

Analysis capabilities such as SciPy [129] tools are being applied to computations in HPC analysis

(e.g., [101]) as are no-SQL databases (e.g., [14]) in support of data storage. Efficiency in the

analysis, insertion, and retrieval can provide a performance benefit for data processing, however

they would not entirely obviate the desire to compute and expose data on the platform. Similarly,

the innate collection and transport data capabilities would need to be integrated. Such analysis

capabilities could, however, be used to facilitate the building of the analyses required in the plugins.

19



2.3 Application performance data streaming for system monitoring

A wide range of performance monitoring and analysis tools exist that rely on tracing or profiling

approaches to collect data.

Cloud based tools such as Graphite [38] and Prometheus [120] provide a different set of services

for applications and systems that are hosted on the cloud. Graphite relies on third party tools

for data acquisition services and is mainly used for storage and visualization purposes [146, 86]

in conjunction with monitoring data collection tools in the cloud environment. While Graphite

and its data collectors provide a convenient monitoring mechanism by supporting string format

communication and script based commands, these characteristics limit the frequency, accuracy, and

latency of data collection. Prometheus text-based exposition format does not separate meta-data

from data, limiting the sampling frequency and latency due to the parsing. These limits in addition

to the overhead on the bandwidth and computing resources availability to the primary applications

prevent wide applicability of these tools in HPC environments. While these tools require extremely

capable nodes for data aggregation, our tool builds upon LDMS, which can aggregate on the same

class of hardware the collectors run on. In addition, unlike the equipment requirements of cloud

based solutions like these tools, we build our tool upon LDMS that has demonstrated that it requires

only two aggregator nodes to serve more than 27000 clients on NCSA Blue Waters [3, 109] and a

similar number of nodes on Trinity [34, 35, 100].

Some general purpose system monitoring tools mainly focus on monitoring and analyzing resource

utilization in the system and not the application performance. Some tools such as Ganglia [105]

have limitations in scalability, and Nagios [122] has a different purpose of failure alerting. LIK-

WID Monitoring Stack [123], which targets small-to medium-sized commodity clusters, focuses

on utilizing hardware performance counter data and does not provide software level performance

metrics. GUIDE [138] is another scalable tool for data collection and analysis that focuses on
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the entire HPC ecosystem and does not provide application level insights. Our tool-set streams

software level performance data and has a broader purpose than these tools.

The gprof tool [60] supports both sampling and instrumentation mechanisms separately for se-

quential programs. It creates a report at the end of execution and is not considered a scalable tool

for monitoring large-scale parallel applications. HPCToolkit [2] provides a performance analysis

framework that directly analyzes the binaries of applications without instrumentation. From this

perspective, HPCToolkit and other tools based on this model [57, 75, 127] are mostly used for

MPI call-path profiling and performance tuning during development, releasing the performance

data after program termination. We demonstrate our approach using MPI applications. However,

our design is not limited to a specific programming pattern. Our tool-set combines sampling and

profiling to stream accurate data efficiently and supports run-time analysis.

Periscope [13] takes a distributed search approach to detect performance issues specified by users

and relies on other libraries to collect the performance data. The iterative strategy of Periscope re-

quires the application to follow a specific programming pattern with a region, such as the main loop

in scientific simulations, that repeats during the execution. TAU [108] offers offline performance

analysis of applications based on tracing and profiling approaches and generates the result after

the application termination. Vampir [91] provides visualization of performance traces and profiles

generated by other tools. Scalasca [58] performs post-run analysis using parallel trace replay for

specific performance issues.

TAU could be used as a partner tool in the instrumentation of modifiable applications. However,

the binary or source rewriting mechanisms used by tools like TAU limit their applicability. These

limitations make the tools not suitable choices for many production HPC settings where application

builds have been through specific verification and validation steps. Our streaming based approach

enables run-time analysis and does not enforce a specific programming paradigm.
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Periscope, TAU, Vampir, and Scalasca use Score-P [92] measurement system as the underlying

layer to record performance data. Score-P instruments applications and stores the performance

information in forms of profiles or traces. Besides the support for the offline analysis, Score-P

provides the interface to Periscope to perform the online analysis. However, it does not generate a

stream of performance data during the execution of the application. Tools that use Score-P must

follow a specific work-flow, which typically involves recompiling and relinking the application

using the Score-P compiler. Our implemented tool-set does not require the user to recompile or

relink their application for monitoring.

MPItrace [130], IPM [134], and mpiP [140] specifically support the performance analysis for MPI

applications. MPItrace supports both tracing and sampling based approaches. The sampling mech-

anism is built on top of PAPI [19] and supports sampling based on available hardware counters.

IPM and mpiP collect detailed and statistical performance data respectively, and both generate the

results after the program termination.

We implement a tool-set based on our approach and demonstrate it using MPI applications. Our

tool-set enables operational run-time analysis using performance data streaming. By integrating

this approach with LDMS, we can explore the correlations between events that are happening in

different layers of the software and hardware stack.

2.4 Persistent Transactional Non-blocking Linked Data structures

In this section, we provide an overview of the concepts, techniques, and tools used by PETRA, and

discuss the related work that proposed transactional executions of data structures.

22



2.4.1 Related Work

2.4.1.1 Non-Blocking Progress Assurance

Concurrent data structures can either be blocking or non-blocking based on the progress guarantee

they provide. Blocking data structures do not provide system-wide progress guarantees, such as

the completion of one or more operations. Non-blocking data structures allow scalable and thread-

safe access to shared data while providing progress guarantees that are not possible with the use of

locks. The correctness of such algorithms is typically established by relying on a key correctness

condition, linearizability [67], and its more relaxed derivatives.

One of the techniques employed in non-blocking data structures is the use of descriptor objects [44,

52, 33, 65, 155, 156], which are shared objects that keep the required information for executing data

structure operations and allow several updates to take effect atomically. This shared object allows

for cooperation between threads. When a thread stalls, another thread can read the descriptor object

for it and execute its operations according to the information provided by its descriptor. Such a

thread is referred to as a helper thread and the act as helping.

2.4.1.1.1 Persistent Data Structures

We consider a concurrent data structure “persistent transactional” if it provides the full ACID

guarantee [61]. Specific persistent data structures such as list and set [32, 158], tree [113, 23,

96, 139, 151, 32, 144, 97], queue [56], hash map [110, 128, 32] have been proposed, with each

operation designed to keep data in the containers persistent. The idea of building the structure of

the containers upon recovery have been proposed recently [158, 106]. However, to the best of our

knowledge, they do not provide native support for transactions, i.e. not allowing programmers to
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arbitrarily group multiple operations to execute with ACID properties. To execute transactions on

these data structures, they can be integrated with a PTM-based approach. PETRA introduces a

methodology for adding transactional persistency to concurrent linked data structures, instead of

specific non-transactional data structures.

2.4.1.1.2 (Persistent) Transactional Memory

The typical transactional programming model allows for the transactional execution of atomic

blocks specified by the programmer. Transactional memory was first proposed as a hardware

primitive (HTM) [69] that relies on the cache to buffer a thread’s speculative state. Implementa-

tions on real processors (e.g., Intel TSX) do not guarantee forward progress as a transaction with

size exceeding the cache size aborts the transaction. STM [132] is its software counterpart that is

not restricted with transaction size but incurs higher performance overheads. It performs conflict

detection using memory-level read and write sets. STM’s lack of knowledge about the high-level

data structure semantics introduces false aborts, which restricts concurrency and scalability.

Recently, researchers have added durability to HTM [85, 133], or STM to form PTM [142, 9, 8].

To support durability, software PTMs rely on a (redo or undo) logging mechanism. The log struc-

ture introduces substantial performance overhead. For example, an undo log must persist before

data structure can persist and in the case of using redo logs, a traversal of the write set for concur-

rent read operations is needed [103]. Examples include PMDK [116], Atlas [21], JUSTDO [81],

iDO [98], NV-Heaps [27], Mnemosyne [142], Romulus [30], and generic STM transformation

methods [152]. Some PTMs such as JUSTDO [81], PHTM [9], and PHyTM [8] require special

hardware support not available in commercial processors. Mnemosyne [142] is built on top of

TinySTM [50] and uses a redo log. Romulus [30] relies on data redundancy instead of persistent

logs. OneFile [121] is a variant of Romulus based on a universal construction [66], which tends
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to be expensive because of the overhead that is mainly incurred by its maintenance and instrumen-

tation [67, 49, 26, 99]. There are multiple problems with PTMs. First, PTMs are built on top of

STMs or HTMs, hence relying on low-level information of memory accesses (reads/writes) for

conflict detection, which leads to the problem of voluminous false aborts that are not caused by

actual conflicts at the data structure semantic level. Second, PTMs rely on logging; log updates add

performance-robbing cache line flushes and memory fences, and additional ordering constraints.

Finally, many STMs rely on locks, hence most software PTMs are blocking. In contrast, PETRA

removes false aborts by utilizing high-level data structure semantics, adapts transactional descrip-

tors instead of traditional logging, and provides non-blocking transactional behavior.

2.4.2 PETRA Baseline Selection

2.4.2.1 Choice of the Non-Durable Baseline

Recall that the goals of PETRA design are high performance, high scalability, and non-blocking

progress. Given that there are many choices of non-durable transactional data structure method-

ologies (Table 2.1), we must select one that is most relevant for PETRA design goals. While

all the listed transactional data structure methodologies provide atomicity, isolation, and consis-

tency, they differ in their conflict detection, transaction logging, and progress guarantee. STM

does not use data structure semantic conflict detection, hence is not suitable for PETRA. Transac-

tion logging is an appealing feature for enabling durability since persisting the log is sufficient for

recovery. Lock-free Transactional Transformation (LFTT) [156] and STMs such as Word-based

Software Transactional Memory (WSTM) [55] and Object-based Software Transactional Memory

(OSTM) [55] provide transaction logging. Software Transactional Objects (STO) [55] logs a trans-

action’s actions such as validation, installation, and rollback in a tracking set. Transactional Data

Structure Libraries (TDSL) [136] does not explicitly log transactions, but their methodology could
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be extended to log the read/write set per transaction for recovery. Transactional Boosting [68] is a

lock-based approach that maintains a log of inverse operations for rollbacks that is updated as the

transaction executes. If the transaction does not finish executing, then only a subset of the trans-

action’s operations are included in the log. To extend this approach for the recovery of an entire

transaction, the complete list of transaction operations should be logged regardless of its execution

status. LFTT and lock-free variants of STM are the only methodologies that provide non-blocking

progress. From the table, we decided to choose LFTT to build PETRA on, due to its non-blocking

progress, transactional logging, and data structure semantic conflict detection.

Table 2.1: Comparison of Non-durable Transactional Data Structure Methodologies. They all
support Atomicity, Isolation, and Consistency, but not Durability. Check-marks indicate existing
features.

Transactional
Methodology

Semantic Conflict
Detection

TX Logging
Non-blocking

Progress
LFTT [156] X X X
TDSL [136] X
Transactional
Boosting [68]

X

STO [71] X X
STM [55] X X

2.4.2.1.1 Overview of LFTT

LFTT enables developers to build non-blocking transactional data structures using existing non-

blocking containers. Unlike generic STM-based approaches, LFTT leverages the semantic knowl-

edge of the data structure to allow commutative operations, i.e., operations that have no dependen-

cies on each other, to proceed concurrently in a non-blocking manner. This eliminates most false

aborts due to access conflicts. LFTT also uses this knowledge to find conflicts in non-commutative

operations through a node-based conflict detection mechanism. The progress guarantee in transac-
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tions based on the LFTT approach could degrade to obstruction-freedom if concurrent transactions

access the same keys in reverse order. To guarantee lock-freedom in such cases a pre-processing

technique can be used to ensure that transactions access the keys in the same order. To synchronize

transactions, LFTT uses a cooperative technique [10] allowing threads that share a node in their

transactions to help complete each other’s operations by including the required information in a de-

scriptor. The helping scheme reduces not only false aborts, but also many true aborts, by allowing

the thread that detects the conflict to execute the delayed transaction associated with the conflict-

ing node. Also, in case of an abort, LFTT uses a logical rollback technique that cancels the effects

of an aborted transaction by reversing the logical interpretation of the status of the nodes. This

method eliminates the overhead of physical rollback and wasting CPU cycles, while guaranteeing

system-wide progress. Several variants of LFTT extend this methodology to support more linked

data structures such as dictionary, and binary search trees with features such as dynamic transac-

tions, wait-freedom, transactions among multiple data structures, and transactions on non-linked

data structures such as dynamic arrays [95, 94, 157, 153, 93].
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CHAPTER 3: INTEGRATING LOW-LATENCY ANALYSIS INTO HPC

SYSTEM MONITORING

In this chapter1, we explain our approach to integrate low latency analysis into HPC system mon-

itoring. We start by discussing the motivation for integrating low latency analysis. We explain

the design of the transform module and its components. Next, we demonstrate the impact of our

approach by performing experiments and analyses using different performance data sources.

3.1 Motivation

Large-scale HPC systems utilize a variety of resources (e.g., network and file systems) that are

shared by both processes of a parallel application and those of other concurrently running appli-

cations. Contention for these resources can create congestion that can severely impact application

performance and system efficiency. While monitoring and storage of system data can enable root

cause analysis through post-processing when problems have been identified (typically after a fail-

ure or apparent lack of forward progress of an application), this approach is not well suited for

run-time feedback to utilize the results of such analysis.

Figure 3.1 provides a comparison between typical resource utilization and performance analysis

in HPC monitoring systems based on post-processing (Figure 3.1a) versus our approach based on

integrating in-situ processing on the node or in-transit processing at data aggregation points (Fig-

ure 3.1b). In both approaches, lightweight processes collect data (e.g., error counters, network per-

formance counters, file system access counters) on resources (e.g., compute nodes, LNET routers,

admin nodes). Data flows from sampling points (shown as compute nodes here) to aggregators

1This Chapter includes content from a paper that is published in the International Conference on Parallel Process-
ing [80].
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that manage its disposition after collection. An off-platform machine or cluster typically stores

this data for future use for analysis for troubleshooting and feedback. The processing performed

by the data collector is typically minimal. Typical use cases of the stored data are troubleshooting

and threshold-based feedback (e.g., component temperature too high, therefore take some action).

Troubleshooting is typically driven by a failure of some sort and therefore post-processing with a

human in the loop can be feasible, timewise. Defensive threshold-based, automated low latency

feedback is typically incorporated into system components and not exposed to system administra-

tors.

(a) Traditional post-processing data analysis approach. The data is collected on the compute node and then flows
to the aggregation nodes, which manage and send data to the storage system. The analysis is performed on the
historical information and HPC-centric roles, such as application developers/users and system administrators,
manually trigger required actions based on the feedback.

(b) Proposed integrated streaming analysis approach. We enhance the approach with run-time operational anal-
ysis, which can be performed either in-situ on node or in-transit at data aggregation points. Based on this
information, on-node consumers, such as applications can receive feedback and automatically trigger appropriate
actions. This information can also enable users/admins to make more informed decisions with the additional
run-time analysis. Long-term analysis is still performed with the same approach as described in Figure 3.1a.

Figure 3.1: Differences in the processes of performance analysis: post-processing vs integrated
analysis.

A missing monitoring-related capability is the utilization of the monitored data to enhance appli-
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cation and system efficiency through run-time analysis and exposure of appropriate information.

Most situations would only benefit from a reasonably low latency feedback cycle that could incor-

porate functional combinations of data from multiple, possibly global, sources. Examples include

the use of global network utilization/congestion assessment by a workload manager for job place-

ment and of global Lustre file system utilization by queuing systems for job launch decisions or by

application processes for open/close/read/write timing decisions. While HPC monitoring systems

globally collect the types of data that can be used for these analyses, none provide utilities for

run-time sharing of such information with applications or system access to the results. Other infor-

mation such as power consumption, thermal information, storage bandwidth, memory contention,

and CPU utilization can enable certain applications to realize benefits using a low latency feedback

approach. For example, in multi-core applications, memory contention has been used to manage

concurrency [119], and thread contention analysis has helped to tune non-blocking algorithms [79].

Computations, based on hardware performance counters, of node and job level flop rates, cache

misses rates, and cycles per instruction are used in assessing application resource utilization [11].

In the remainder of this chapter, we describe our modular and extensible approach to providing

capabilities for streaming analysis on either counters or state data in the context of the Lightweight

Distributed Metric Service HPC monitoring framework.

3.2 Low latency Analysis Integration

In this section, we describe our approach to integrate low latency analysis into HPC system mon-

itoring. We explain the design of the transform module and its components. Also, we discuss the

considerations and challenges in our design.
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3.2.1 Transform Design

We enhance LDMS by designing and implementing the transform module to enable streaming

analysis. LDMS collects and transports metrics in a well-defined format. We design the transform

module to take inputs as metric sets and generate output also in the metric set format. This decision

adds flexibility to our design and enables transformed sets to be transported and stored in the same

way as raw sets.

Some of the functionalities that the transform module adds to the LDMS framework are displayed

in Figure 3.3. In this figure, several sources provide data streams. Transform modules take the

provided metric sets and perform the labeled operations using different components within this

module.

Our transform module consists of two components: transform management and transform plugins.

Transform management handles the data flow from receiving an update of a locally obtained or

remotely pulled metric set to obtaining the final output of a transform chain. The transform plugin

is a new plugin type in the LDMS framework. It takes metric sets or individual metrics as input

and derives a transformed set, of one or more metrics, as the output.

3.2.1.1 Transform Management

We enhance LDMS daemons with the transform management functionality. The transform man-

agement creates transform instances according to the user configurations, chains the transform

instances, and optionally passes the output of transform chains to a store plugin to retain the de-

rived metrics. Transform management supports use of both locally obtained and remotely pulled

metric sets for transformation and manages all the transform configurations.
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Some calculations in analyses need input from multiple data sources and metric sets. The transform

management component supports multiple transform plugin instances. This enables application of

transform plugins to a variety of configurations and multiple input sets.

Configuration of a transform includes specification of its input sets. Upon receiving a set update,

an LDMS daemon passes the updated set to each transform instance. Each instance uses the

configuration to determine whether it needs the set for its calculation or not. When all metric

values for the transforms’ output set have been updated, the transform instance notifies the host

LDMS daemon that the updated output set is ready to use.

While our enhancement to the LDMS infrastructure enables users to develop a single transform

plugin that can perform all desired computations, the ability to chain plugins can provide reusable

elements from which more complex calculations can be built. This flexibility may entirely obviate

the need for a user to design and implement any transform plugin. For example, in the Lustre

analysis presented in Section 3.3.2, the computed values include ratios of the rates of some metrics

(e.g., file opens) per compute node relative to the total number of opens from all compute nodes.

The transform management component supports this by providing a path from the output of one

transform plugin to another. The LDMS daemon, enabled with transform management, passes the

output set to each transform instance in the chain according to the provided configurations.

Using a uniform format for the transform’s input and output allows us to treat these just as any

regular metric set in the LDMS framework. This includes the final output as well as any inter-

mediate output sets, which are input sets of another transform instance. LDMS daemons can pass

transform output sets to a store plugin as well to store either the final output set or the intermediate

sets.

We discuss the challenges introduced by the design decisions described here in Section 3.2.2.
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3.2.1.2 Transform Plugin

Transform plugins are responsible for parsing and interpreting their specific configuration, gen-

erating transformed sets, performing mathematical manipulation, and letting the transform man-

agement know when a transformed set is ready. Each plugin receives an input set(s), performs

its mathematical manipulation if metrics of the set are needed in the derivation, and then updates

the corresponding output set. To reduce clutter when the intermediates in a chain of transforms

are not useful as an end goal, transformed sets can be marked as unpublished. Only published

sets can be aggregated and will appear in the ldms ls output. For example, in Figure 3.4, which

shows a sequence of transforms performed on an aggregator, only the final per-node sets need to

be published.

Our flexible design allows the user to develop transform plugins and perform arbitrary analyses

on the performance data stream. More complex analyses are feasible through chaining the basic

plugins together. In this work, we implement several transform plugins to demonstrate and evaluate

the capabilities of our enhancements to LDMS using a case study.

The following list defines the transform plugins implemented for our case study and evaluation.

In all equations, capital letters represent a metric set where a subscript shows a metric within the

metric set and a superscript shows the timestamps attributed to a value.

• delta plugin calculates the difference of a metric between two consecutive timestamps.

delta(t)(M) = N, where

∀i < |M | Ni = M
(t)
i −M

(t−1)
i
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• rate plugin calculates the ratio of the delta and the difference of two consecutive timestamps.

rate(t)(M) = N, where

∀i < |M | Ni =
M

(t)
i −M

(t−1)
i

∆t

• ratio plugin calculates the ratio of different metrics in the same metric set at the same

timestamp.

ratio(t)(M num,M den) = N, where

∀i < |M num| Ni =
M num

(t)
i

M den
(t)
i

• sum vector plugin assumes that input metrics are vectors. It calculates the sum of all ele-

ments in a vector at the same timestamp.

sum vector(t)(M) =

|M |∑
i=0

M
(t)
i

• windowed minimum plugin calculates the minimum of the metrics over a defined window

of timestamps.

min n(t)(M) = N, where

∀i < |M | Ni = min
∀s∈[t−n,t]

M
(s)
i

• windowed maximum plugin calculates the maximum of the metrics in a defined window
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of timestamps.

max n(t)(M) = N, where

∀i < |M | Ni = max
∀s∈[t−n,t]

M
(s)
i

• windowed average plugin calculates the average of the metrics in a defined window of

timestamps.

avg n(t)(M) = N, where

∀i < |M | Ni =

∑t
s=t−nM

(s)
i

n

• combine plugin combines multiple metric sets into a single set according to the user config-

uration. The plugin assumes that all sets have the same sampling interval in order to ensure

it combines the input sets from comparable times.

• global ratio plugin operates on a single metric set. Simple user definable associations of

the metrics in the set are used to determine a group of metrics to sum. The output is a set

with the ratio of each of the individual values to the sum(s). For example, if the set contains

the same two metrics (e.g., Active, MemFree) for each of N nodes, the output will contain

for each metric 1) the sum of all the nodes’ values and 2) the ratio of each node’s individual

value relative to that sum.

• separate plugin separates a single metric set into multiple metric sets according to the user

configuration.

These basic plugins can be chained together to compute the quantities of interest given in Sec-

tion 3.1. In Section 3.3.2, we show how we utilize transform plugins for performing an analysis
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on the Lustre file system, based on the raw data displayed in Figure 2.2.

3.2.2 Challenges and Considerations

We enhance the LDMS monitoring infrastructure with a flexible design for the transform module

to support low latency analysis within the monitoring system. This enables the authorized user to

perform low latency analyses using multiple metric sets from different data sources. It supports the

modularity of the required calculations for analysis by chaining a series of transform plugins. The

ability to place any of the transforms at any location along the data communication path where its

input set(s) are available and from where its output can be used adds an extra level of flexibility

to our design. This flexibility enables target where to apply memory and CPU in the system to

perform analyses. Note that memory and CPU will be approximately the same globally but we can

define where it happens and do it on the fly using this functionality.

With increased flexibility, comes increased need for consideration in transform design. Consider-

ations include:

3.2.2.1 Location variation: Time skew between nodes

Sets are timestamped with the transaction time of the plugin generating the set. Time skew between

a node creating an input set and a different node performing the transform can result in timestamp

offsets that make associations between sets difficult. We include a flag that enables inclusion of

time metrics from the input set(s) into the output set(s) to facilitate such associations. This becomes

more complex as transforms are chained and/or more input sets are supported.
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3.2.2.2 Data Types

Generically, transforms must address computations for all data types in handling the input, within

the computation, and in the output type. Overflow must be recognized and handled. LDMS sup-

ports signed and unsigned 8, 16, 32, and 64-bit integers, floats, doubles, chars, arrays of such, and

generic data blobs. In the example transform plugins mentioned in Section 3.2.1.2, we support

multiple numerical input types and generate output in double to provide consistency, particularly

for mixed input types where multiple values are used in a computation. However, this is not a

restriction in the transform management and infrastructure. New plugins can be developed that

support other data types.

3.2.2.3 Invalidating data/computations in a transform chain

Invalid results must be flagged and propagated throughout the chain of computations. For example,

divide by zero in a ratio transform or negative delta time in a rate computation due to a clock reset

would result in invalid results if used as input in a subsequent transform. Such cases may be

indicated by values such as NaN or inf , depending on the type, or by a validity flag carried with

each variable. In the function store, there is a validity flag carried throughout every computation.

This doubles the output size of the data, but it is immaterial since the store plugin functions off-

host. For the current set of transforms, we handle the invalidity in the data; where necessary we

will implement it as an optional feature on a per-metric basis to enable the user to keep as small as

metric set as desired.
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3.2.2.4 Missing input sets or multiple input sets with time offsets

A transform plugin with multiple input sets faces additional complexity in addressing combina-

tions of data that may be offset in time. These types of plugins handle such offsets based on the

operations within the transform plugin and the implication of the offset on computations. For ex-

ample, in our combine transform plugin, we check the timestamps of the input sets to avoid two

possible issues: (1) combining input sets significantly mismatched in time and (2) lack of progress

if a particular input set does not arrive in a timely fashion (e.g., due to node failures). Timely

output is ensured with use of the validity flag to indicate results based on incomplete data.

Judicious writing of the collector can minimize the need to write multiple input set transforms,

since metrics collected via the same collector will be in the same metric set. For example, the

full set of metrics in the sampled set in Figure 2.2 includes Lustre, network, GPU, and CPU data.

This design choice was motivated by the desire to have a single timestamp associated with all

metrics [18], which eases some processing, particularly for large-scale systems. The legitimacy

of doing this is dependent on the time required for collection of all metrics. Since all plugins

(samplers, transform, and store) carry with them the time of the full transaction of the plugin, this

can be used to get an idea of the possible time offset between the collection of the first metric in a

set and the last. In the case of this set, sampling takes around 425us without GPU data, and 800us

with GPU data, both of which are small compared to the 1 to 60-second intervals of collection

typically used.

3.3 Experimental Evaluation

In this section, we demonstrate the impact of our approach by performing experiments and analyses

using different performance data sources. We study the overhead introduced by our enhancement
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to the LDMS framework. Also, we present a case study of using the transform module for perfor-

mance monitoring and analysis of an HPC file system.

3.3.1 Overhead evaluation

In this section, we evaluate the overhead impact of the transform module. The transform module

is integrated within the LDMS framework. LDMS is proven to perform efficiently on large-scale

production systems, and overhead assessments have demonstrated no significant detrimental sys-

tem impact [3, 34, 35, 109]. Transform plugins run on LDMS daemons that operate as a part of

the LDMS infrastructure to leverage its efficiency and scalability.

To assess the impact of the transform module, we utilize a 2 chassis, 64 node Cray XE/XK testbed

system, called Curie, with a Cray Gemini Interconnect and a Sonexion Lustre file system. This

testbed is representative of the type of hardware of one of our target platforms, Blue Waters. For

our overhead analysis assessments we utilize datasets from /proc/meminfo and /proc/vmstat

sources as a representative sets. These sets have 43 and 97 metrics respectively. We utilize the rate

transformations in the experimental configurations shown in Figure 3.2. Each experiment runs for

30 minutes with a sampling interval of 1 second. Baseline experiments were intended to measure

the inherent CPU time of sampling and aggregation. We repeat the same experiments with the rate

transform running on nodes to measure the CPU overhead of transform plugins.

The additional overhead of running the transform on sampler nodes can contribute to interferes

with the operations of applications running on compute nodes. By moving the transform operations

to aggregator nodes, we eliminate the overhead from the compute nodes, while still enabling low

latency access to the transformed data. Furthermore, aggregators have the additional benefit of

having access to additional producer’s metric sets, which can enable generation of metric sets with

global information aggregates. This information can then be utilized by nodes in assessing current
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global levels of shared resource utilization.

Figure 3.2: Experimental setup for measuring transform module’s overhead. Samplers are col-
lecting two metrics set on each compute node. Aggregators are pulling data from either one sam-
pler, specified by experiments 1,3, and 4, or ten samplers, specified by experiments 2 and 5. The
experiments specified by sections 1 and 2 of the figure are run without any transform plugins.
Experiments 3-5 are run with active transform plugins on nodes.

Table 3.1 shows the total CPU time in microseconds per metric set on each node. In the first row,

the aggregator is pulling data from one sampler node, and in the second row, ten sampler nodes are

providing data to a single aggregator. Around 16 microseconds of overhead for running the rate

transform plugin on the aggregator is seen. By chaining multiple transform plugins, this overhead

increases linearly due to the sequential wiring of transform plugins.

Table 3.1: CPU time per sampled metric set for the baseline and the case that is running a rate
transform plugin. Different number of compute nodes are used to show the efficiency of using the
in-transit approach on aggregators compared to the in-situ analysis on compute nodes.

Experiment type Baseline Transform
# of aggregator nodes # of compute nodes (µs) (µs)

1 1 63.9 71.4
1 10 57.3 73.5

We run the transform plugins on the aggregators pulling data from different number of compute

nodes. Running the transform plugin on one aggregator enables low latency analysis from all of
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the compute nodes. Achieving the same results using the in-situ approach requires running one

instance of the transform plugin on each compute node. In addition, the overhead per sample on

sampler daemons is higher than the overhead per sample on aggregators.

For the baseline, for each sample, a sampler daemon needs to parse /proc/meminfo and /proc/vm-

stat to update each metric in the meminfo and vmstat sets. By contrast, for each sample, an ag-

gregator only performs an RDMA read operation which does not consume any CPU cycles on the

sampling host. Since the read operation is per set, the aggregator does not iterate through each met-

ric in each set. Hence, the overhead per sample on aggregator daemons is lower than the overhead

per sample on a sampler.

3.3.2 Case study: Lustre file system analysis

A case of general interest is discovering and assessing contention in shared parallel file systems.

Since Lustre is a popular shared parallel file system utilized extensively on large-scale HPC sys-

tems, we focus on contention for both meta-data services and read and write bandwidth. Note

that there are caching effects on the client side that we do not address here. In this section, we

demonstrate the applicability of our work to a transform analysis of Lustre metrics. Providing the

types of analyses demonstrated here could be of use to applications and system services running

on the platform hosts in load balancing, partitioning, and scheduling if low latency exposure to

applications and system services were possible.

The goal of this analysis is to make available to consumers on each node and off-platform, data

about each node’s relative use of the file system. To minimize the impact on the compute nodes,

we leverage the bi-directional transport capabilities to perform the computations entirely on the

aggregators for all nodes, and we present small memory footprint output metric sets to per-node

consumers. Figure 3.3 presents the design of our experiment to perform an analysis on Lustre
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metrics using transform plugins. We chose the instantaneous read, write, open, and close values

from the original metric set provided by the LDMS sampler monitoring the Lustre file system

status displayed in Figure 2.2.

The first layer of transform plugins shown in Figure 3.3 is the rate plugin that operates on the

performance data streams generated by the compute nodes. The results generated by the rate plugin

are fed into the windowed function plugins to calculate the average, minimum, and maximum

values reported by the rate plugin in the previous step. In the third layer of transform plugins, the

combine transform merges all of the results from the previous step into one metric set. The global

ratio plugin works on this single metric set and calculates each node’s share of the system resource

utilization. Next, a separator plugin operates on the global ratio’s output and extracts metrics from

it to output multiple metric sets, one for each compute node. Finally, compute nodes receive this

information.

Figure 3.3: Transform sequence and positions in the computation of the transformed Lustre met-
rics.

Figure 3.4 shows representative subsets of intermediate and final transformed metric sets. Naming

conventions for the set instances are determined by the transform, for example, the rate transform

appends rate to the input set name (top of the figure); support for more flexibility in handling

naming conventions is in work. The final analysis results for node nid00004 indicate that its
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average read operations are roughly 10% of all read operations performed in this Lustre system

(marked in green). The final, smaller (size is shown in the final meta-data), per-node metric sets

are available to be pulled back to or queried by LDMS daemons or system software on the compute

nodes.

This global knowledge of Lustre system component utilization, provided by transform plugins,

can be leveraged by application processes for open/close/read/write timing decisions. In addition,

queuing systems can make informed decisions for launching jobs based on this information. Also,

this global knowledge can improve load balancing [41]. Run-time determination of the relative

per-node file system demands can play an important role in system administration. Run-time

availability and exposure of such data would be of benefit to those seeking to resolve issues. These

data can be used to identify the causes of high load on the file system and to identify imbalances

in an application’s resource demands.

Our approach for the in-transit analysis at aggregation points enables run-time operational analysis

with no overhead on compute nodes. Our experimental evaluations demonstrate the capability of

the transform module to support low latency analyses within the monitoring system efficiently.
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Figure 3.4: Example metric sets at stages in a transform sequence. The goal is per-node sets of
windowed avg, min, and max of quantities relative to the set of nodes’ total usage. (1) Rate output
for nid00004 (2) Windowed avg output for nid00004 (3) Combine transform (unshown) (4) Global
ratio output. The component for the metric set instance is the system, with the nodes encoded in the
metric names. (5) Separator output produces per-node sets – nid00004 shown. Computationally
and memory intensive transforms can be done on aggregation nodes, and the final smaller set is
then available to be pulled back to or queried by the compute nodes for use by system software
and applications. All sets are exposed in the same way.
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3.4 Chapter Summary

In this chapter, we presented the design of chaining transform capabilities to support streaming

analysis within an existing production HPC monitoring framework, LDMS. The transformed data

is supported by the same structures as the collected data, thus enabling the transformed data set the

same flexibility in transport and the same exposure as the collected data. We leverage the transport

flexibility of LDMS to enable placement of computationally intensive transformations on hosts

where the overhead would not adversely affect an application and yet be able to transport the result

to hosts, including those hosting applications, where the results are needed.

We have shown the viability of our implementation for a case with production-relevance: run-time

determination of the relative per-node filesystem demands. Run-time availability and exposure of

such data would be of benefit to those seeking to identify the causes of high load on the filesystem

and to identify imbalances in an application’s resource demands.

45



CHAPTER 4: PRODUCTION APPLICATION PERFORMANCE DATA

STREAMING FOR SYSTEM MONITORING

In this chapter1, we describe our approach to collect and expose performance data. We start with an

overview of our model and the system components. We introduce each component and explain the

design decisions. Next, we explain the work-flow and how different components work together to

stream performance data. We discuss the challenges that we face in our tool-set’s design. Finally,

we present case studies of using our tool-set for performance monitoring and analysis of Nalu and

evaluate the overhead impact of using our tool-set when Nalu is running.

4.1 System Overview

Figure 4.1 displays a high-level overview of the system. Our design consists of three components:

an application profiler, a shared memory index, and a sampler. The application profiler, which is

described in Section 4.2, collects information about the software level events. The shared memory

index, which is described in Section 4.3, provides a mechanism to access the data collected by the

application profiler. The sampler, which is described in Section 4.4, utilizes the shared memory

index to expose the data collected by the application profiler periodically.

The shared memory index is identified using a name that is assigned to a region in the shared

memory area on the system. The sampler and the application profiler are configured with the same

index name to access the shared memory index. The shared memory index consists of entries

that each correspond to an application process being monitored. The application profiler instance

puts data collected about its events in a specific location in the shared memory. Each index entry

1This Chapter is based on a paper that is published in the ACM Transactions on Modeling and Performance Eval-
uation of Computing Systems journal [78].
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contains information about this shared memory location. The sampler stores the information about

each application in an instance of a data type called box. A box holds information such as the

metric set description and the data collected by the application profiler.

Figure 4.1: A high-level overview of the system components. Application profilers collect per-
formance data and share them with the sampler using the shared memory index. Shared memory
index consists of one entry per application. Sampler allocates a box for each entry in the index.

As we explain in Section 4.5, these components cooperate with each other in our tool-set to stream

performance data that is collected from the application. In Section 4.6, we discuss the challenges

involved in our design.
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4.2 Application Profiler

In our approach, the application profiler is the data provider to the sampler. The profiler collects

information about application level events. The application profiler assigns dedicated counters

to each application event defined at the software level to perform the data collection. The profiler

provides information about events to the sampler via the shared memory index. This flexible design

enables us to develop customized profilers to accommodate any specific type of application and

programming pattern. The programming paradigm used and the application developer determine

the types of events to be collected and monitored.

We design and develop an MPI profiler as a proof of concept. Our MPI profiler leverages PMPI to

collect data from the application. This method requires no modifications of either MPI applications

or libraries. We rely on the Linux library preloading feature to inject our profiler at run-time. This

mechanism imposes no burden on the programmer to recompile the application, except in statically

linked applications.

Listing 4.1: Example pseudo-code that demonstrates the functionality of MPI profiler query inter-

face

1 SELECT EventID , Rank , count ( Bytes ) , count ( Ca l l s )

2 FROM MPIEvents

3 WHERE MessageBased = True AND MessageSize GreaterThan 10

4 GROUP BY EventID , Rank

Our MPI profiler provides a query interface to retain flexibility and convenience to study various

events with different properties. In this interface, the user can specify events with particular char-

acteristics and features that need to be measured. This mechanism enables the user to focus on the

essential features that have impacts on a specific aspect of application behavior rather than being
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exposed to a massive amount of data that can be generated. Multiple aspects may be specified as

shown by an example pseudo-code in Listing 4.1. This query instructs the MPI profiler to per-

form the measurement per MPI rank and only measure the message size and number of calls for

message-based events where the message handled by that event is greater than 10 bytes.

The application profiler uses the shared memory index to expose events to the sampler. In Sec-

tion 4.3, we explain the shared memory index design.

4.3 Shared Memory Index

To access the information about software level events in applications we need to employ a method

of inter-process communication (IPC). Various communication facilities allow processes to ex-

change data with one another. These facilities can be divided into two categories: Data-transfer

and Shared memory [90]. The first type of communication involves kernel functions in the data

transfer, but in shared memory approaches, processes can communicate with each other by placing

data in a shared memory region. This direct communication makes the shared memory approach

a fast method because it requires few system calls or kernel operations. Unlike data-transfer facil-

ities, shared memory allows one process to make the data visible to any number of processes that

share the same memory region. The shared memory approach enables a process to access shared

data like any other memory area in its virtual address space. This model fits well with application

designs that need to maintain a shared state between multiple processes, such as the approach we

present in this chapter.

Most UNIX based systems provide the support for shared memory. This type of IPC should be

employed cautiously as the operations on the shared memory may need to be synchronized. The

synchronization could negatively impact the advantages of fast communication in shared memory
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approaches depending on the use case. In our implementation, there are a few scenarios, e.g.,

initial configurations, that we use synchronization facilities such as semaphores to protect shared

resources.

We choose POSIX shared memory over System V shared memory in our design as POSIX fea-

tures better fit our implementation needs. The advantages of POSIX IPC include the simplicity of

the interface, consistency with the traditional UNIX file mode, and support for reference counted

objects [90]. Furthermore, POSIX IPC mechanisms are guaranteed to be thread-safe, but System

V IPC techniques do not provide such a guarantee [125]. In our approach, multiple processes,

including parallel applications, utilize shared resources. In Section 4.6, we discuss how we use

reference counts to manage shared resources.

Figure 4.2: The structure of the metrics set in the shared memory index.
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In our implementation, the shared memory index consists of entries corresponding to application

processes being monitored. Each entry stores information about the application instance including

the location in the shared memory of the application instance’s profiling data. This information is

shared with the sampler using the assigned index entry for the application. The data layout that is

shared between the application profiler and sampler is determined dynamically at run-time. This

data layout is called metric set, which defines a collection of metrics and provides data about it.

Figure 4.2 displays the general structure of a metric set that is stored in the specified shared memory

region within our tool-set. There are three chunks of contiguous memory associated with each

metric set. First is the meta-data that provides general information about the metric set as a whole.

The number of monitored events is an example of such information that is stored in the meta-data.

Second is the general information describing the elements of the data chunk, such as the event

name. The final piece of data represents the counter values correspond to collected events by the

application profiler. No history is retained within a profiler or the shared memory index, and, the

allocated memory is overwritten as the profiler provides new information about an event.

The shared memory index allows the application profiler and sampler to access the events infor-

mation simultaneously. In Section 4.4, we describe the role of sampler within our tool-set.

4.4 Sampler

We leverage the Lightweight Distributed Metric Service (LDMS) for data collection, transport,

and aggregation. The typical process of data collection starts with running LDMS daemons on

compute nodes. These daemons, which are configured as sampler daemons, store the collected

data in LDMS metric sets. A sampler daemon stores only the latest set of values for each of its

metric sets and no sample history is retained within a plugin or the host daemon.
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The streaming part of our methodology relies on the sampler component. The sampler is a daemon

plug-in that periodically copies data provided by a source on a monitored computing node and

exposes the collected data to consumers. The sampling frequency, which is defined by the user,

determines the resolution of data. Running a sampler that utilizes the application profiler’s shared

memory as the data source allows us to stream application performance data related to software

level events while the program is running.

We implement the plug-in shm sampler within the LDMS performance monitoring framework.

This sampler stores the information from each application profiler instance in an instance of a data

type called box. A box holds information such as the metric set collected by the application profiler

and other information that is required by LDMS infrastructure. The sampler dynamically discovers

the metric set defined by the profiler and creates the box corresponding to it.

In Section 4.5, we explain how different components within our tool-set cooperate to generate the

stream of application-level performance data.

4.5 Work-flow

Figure 4.3 displays the typical work-flow in our approach, annotated with the associated actions

for each component. Both sampler and application profiler should agree on an index name that is

used to obtain the access to the shared memory index. This index is created at the first call to open

index by any process. Unix shm open API provides a file descriptor that can be used to handle

the shared memory region with the specified name. Subsequent calls to open index do not allocate

a new area in the shared memory, and the file descriptor will be used to access the index. Each

process creates a memory mapping in its virtual address space using the provided file descriptor.

All processes can access the same index and use the mapped memory to share information.
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The user configures the application profiler to monitor events of interest. After the configuration,

the profiler provides the required information about events to the shared memory index. At this

step, the application profiler registers itself as the updater of a metric set in the index using the

provided information. The shared memory index allocates an entry to the application and creates

a shared memory metric set as specified in Figure 4.2.

The sampler periodically scans the index to find new or modified entries and updates its local boxes.

The sampler detects changes in the metric set using a generation number associated with each

index entry allocated to an application. When an application profiler modifies the configurations

of events, the generation number of that entry is incremented. The sampler, as a data consumer,

determines if the generation number it has stored locally matches that associated with the current

produced data by the profiler.

For each new application, the sampler registers itself as a reader of its metric set. Also, the sampler

configures a new metric set in the performance monitoring library infrastructure. After the setup,

the application profiler counts the specified events, as they happen in the application, and updates

the counters associated with events. The sampler reads the counter values at intervals and exposes

them to the consumers.

This work-flow within our tool-set yields application performance data streaming for system mon-

itoring. This cooperation between multiple processes in a shared environment is not without chal-

lenges. In Section 4.6, we explain some challenges involved in this work-flow and how we deal

with them.
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Figure 4.3: The work-flow of our methodology

4.6 Handling Process Failures

In our approach, the index is shared between the sampler and the application processes (e.g., MPI

ranks). The shared resources used in the index and its entries need to be handled carefully in

different scenarios such as crashes. Figure 4.4 exhibits different scenarios using the sampler and

two applications. We explain how we deal with shared resources in different situations. In this
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figure, we have 12 different sets of states and each set shows the state of the sampler, two sample

applications called app 1 and app 2, and an index named I.

We start from the initial state where applications and the sampler are not available. We assume

that the index name is somehow defined in this environment (e.g., defined by the user). Next, we

start the sampler and the applications, and we assume that the sampler wins the race and starts first.

Since the sampler starts first and finds out that the index is not available, it creates index I.

Now, we are in state 2 that the sampler and applications are started, and the index is created.

Applications open the index and register their metric sets in the index. We assign reference counts

to metric sets defined in index entries to keep track of each indexed set. In our example, state

4 displays that the metric set M with two references and the metric set N with one reference is

defined in the index. App 1 is writing into the metric set M and app 2 is writing into the metric sets

M and N. The sampler is reading all sets included in index I.

Now, let us assume that app 2 finishes its execution. App 2 deregisters metric sets M and N before

it terminates. We decrement the reference count for any set that is deregistered. For any set that

the reference count value is zero, the shared resources can be cleaned. If the reference count value

for a set is not zero, it means that another application is writing into this set. In our example, state

7 shows that app 2 is no longer running and app 1 is still writing into set M. Index I contains a

metric set M with one reference, but metric set N does not exist anymore because its reference

count dropped to zero and was cleared from the index.

Starting from state 7, we cover two crash scenarios. First, we assume that app 1 crashes in the

middle of its run. This crash causes a transition to state 8. At this state, none of the applications

are running. Index I still exists with the metric set M with one reference and the sampler is still

reading from this index. To handle this type of crash we use a timeout concept. After a period of

inactivity since the last update in the metric set by the application, the sampler may assume that
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the set is no longer in use. At this step, the sampler notifies the index to remove the stale set. We

end up in state 9 where the sampler is running, and the index is empty.
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Figure 4.4: Index management. The second column of each table represents the state for the
sampler, applications and the index. Transitions between states are displayed using arrows, which
are annotated with the associated action.

Another possible crash scenario, starting from state 7, happens when the sampler quits unexpect-

edly in the middle of the execution. The unexpected quit results in a transition to state 10, where

index I exists with the metric set M and app 1 is running and writing into set M. If app 1 finishes

its execution safely, before terminating, the application profiler cleans the shared resources. If the

last writer upon its deregistration finds out that there are no active readers, it can unlink the index

file. The profiler figures this out using either read timeout or reference counts. However, if app 1

crashes, we will end up in state 11 where no program is running and index I still exists without any

owner. At this step, the queue system epilog cleans up the idle index file between jobs.
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Utilizing reference counts, and read and write timeout mechanisms enables us to manage the allo-

cated resources in different use cases including failures in any of the involved processes.

4.7 Experimental Evaluation

In this section, we demonstrate the impact of our method using an open source HPC application,

Nalu. We start with a brief introduction of Nalu. Next, we present a case study of using our tool-

set for performance monitoring and analysis of Nalu. Finally, we evaluate the overhead impact of

using our tool-set when Nalu is running.

4.7.1 Nalu

Nalu is a massively parallel computational fluid dynamic (CFD) application built on top of the

Sierra Toolkit and the Trilinos solver Tpetra stack. Nalu has been chosen as a representative

simulation code and performance benchmark for the Trinity Capability Improvement Metric [5].

It is a representative of implicit codes that have been developed under Advanced Simulation and

Computing (ASC) program [6].

The results presented in Sections 4.7.2.1 and 4.7.2.2 are extracted from the waleElem model,

which is available in the Nalu repository. We run this model using eight MPI processes on a KNL

system as specified in Table 4.1. In Section 4.7.2.3, we use the milestoneRun model to run Nalu

with thirty MPI processes.
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Table 4.1: System specifications

System Processor Model Cores (Physical) Memory OS Compiler
Clock Threads

KNL Intel XEON Phi 68 16 GB MCDRAM CentOS 7.3 Intel 17.0.1
7250 @ 1.4GHZ 272 96 GB DDR4

Xeon Intel Xeon E5-2683 32 128 GB DDR4 CentOS 7.1 Intel 17.0.1
@ 2.10GHz 32

4.7.2 Case Study

In this section, we present the case study we use to demonstrate one intended use of our tool-

set. First, we explain how our tool-set can provide insights to assist with the process of revealing

application phases. Next, we demonstrate how software level performance data provided by our

tool-set contributes to a better understanding of the application behavior by correlating to hardware

level metrics. Third, we show how our tool-set can help detect issues in the application execution in

a timely manner. Finally, we demonstrate how our tool-set enables HPC users to monitor multiple

scientific applications.

4.7.2.1 Application Phases

Scientific applications typically execute in several phases. They usually start with an initialization

phase and end with a final phase. In parallel scientific applications the intermediate computation

phase typically consists of nested iterations. The computation phase usually dominates the appli-

cation efficiencies and load balance. In this section, we show our tool-set provides information

that can be used as one data source in an automatic phase detection method.

Figure 4.5 exhibits the rate of changes in the number of calls to MPI Issend function during the

execution of Nalu on the waleElem model. Nalu starts with an initialization phase, which involves
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initial communications, initial value assignments to variables, and decomposition. We do not see

any repetitive patterns during the initialization phase (which lasts for about six minutes). After

finishing this initialization, the computation phase begins.

In Figure 4.5, regions surrounded by dashed bubbles demonstrate a periodic behavior in this appli-

cation. We attribute this repetitive pattern to application iterations executed during the computation

phase. To validate this, we add information about the application iterations to the log file produced

by Nalu application. Figure 4.6 displays this information extracted from Nalu log file.

In both figures, we observe six minutes of initialization. Next, the computation phase begins,

which consists of five time-steps as configured in Nalu input file. At each time-step, Nalu runs

three nonlinear iterations. During each iteration, the application solves three equation systems. In

Nalu application’s structure, these equations are identified as MomentumEQS, ContinuityEQS, and

MixtureFractionEQS. According to Nalu’s manual, these systems are used by the WALE model

to capture the asymptotic behavior for flows. By aligning Figures 4.5 and 4.6, we can derive

application phases with the granularity of equation system iterations from the MPI data collected

by our tool-set.

Exposing performance data in a streaming manner by our tool-set enables us to monitor the level

of progress in the application as it is running. We do not need knowledge of the log file location

or its contents to observe detailed application behavior and compare it to previous runs of the

application. To facilitate the phase detection, our tool-set can be used as one data provider in

combination with other data sources in an automatic application phase detection approach. This is

an essential feature, particularly for system support staff lacking specific application knowledge.

Our tool-set provides this information using collected MPI data with a negligible interference with

computation. In Section 4.7.3, we study the overhead of using our approach.
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Figure 4.5: Nalu Phases.
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Figure 4.6: Nalu Phases extracted from log files.

60



4.7.2.2 Correlations of application-level events with other performance data representing

system events

Integrating our software performance counter collection approach with LDMS allows us to study

how events happening at the hardware-level are related to the application-level events. The LDMS

framework provides several sampler plug-ins for the data collection from hardware performance

counters. We can run several sampler plug-ins at the same time as our sampler. In this section,

we use our tool-set to demonstrate a cursory exploration of the correlation between hardware and

software metric time series.

In Figure 4.7, six graphs are plotted together. All graphs share the same x-axis that represents the

run time in minutes. The first graph from the top with ”MPI Issend” label on the y-axis displays the

rate of calls per second to MPI Issend function, which represents the application activities using

software level metrics. The second graph with ”procnet tx bytes” label on the y-axis shows the

byte rate of the data transmission by the network interface. The third graph with the y-axis labeled

”meminfo Dirty” represents the total amount of memory waiting to be written back to the disk.

The fourth graph with ”nfs numcalls” label on the y-axis displays the rate of total RPC calls per

second to NFS. The 5th graph with ”nfs read” label on the y-axis shows the rate of NFS read calls

per second. The last graph with the y-axis labeled ”nfs write” shows the rate of NFS write calls

per second. These metrics represent the I/O activities of the application running on the system.

As we can see from the NFS data and based on the discussion in Section 4.7.2.1, the application

starts with reading from input and configuration files. After this input activity, the initialization

phase begins, which takes around six minutes. The initialization phase mostly involves mesh

distribution and communication setup. Most of the calls to functions like MPI Reduce and MPI -

Scatter happen during this phase. After the initialization, the computation phase starts, which

consists of five time-steps.
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Figure 4.7: Correlations between hardware and software data

The first time-step in Nalu application begins with a sudden increase in the number of read calls

to NFS. Here we can see how the application is interacting with the system using I/O operations,

while it exhibits no signal of the MPI event. NFS reading is followed by a peak in Dirty metric of

memory. This buffering in the NFS software stack is completed with a sudden increase in writing.

This write event involves flushing the data, which is accumulated in memory and indicated by

Dirty, to the disk. The next event is a sudden increase in the amount of data transmitted by the

network interface, which is followed by a considerable number of calls to MPI Issend. All of these

events happened from the beginning of the time-step to the end of the MomentumEQS in the first

nonlinear iteration.

From this point, we can see repeated computation periods interrupted by chunks of file output.

The same pattern with a similar sequence of events repeats. Due to the 1 Hz relatively infrequent
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sampling rate, the profile peaks vary somewhat from one time-step to the next.

Using our tool-set, we can monitor the behavior of applications. Integrating with LDMS enables

us to correlate application level events with metrics that indicate system utilization. Streaming this

performance data enables us to track application progress and detect unexpected behaviors as soon

as they happen during the application run-time.

4.7.2.3 Anomaly detection

One of the challenges in HPC system management is application performance variations that sur-

prise the user. Resource contention in the presence of other processes is an anomaly example that

can cause performance variations and potentially lost computing cycles [15]. The quick detection

of performance variations is critical to mitigate the issues and improve resource utilization in a

timely manner. Typical profiling tools fail to help detect such issues as they occur, because only

post-run analysis methods are available. In this section, we show how our tool-set can help detect

an abnormal behavior in Nalu.

We design an experiment to evaluate the capability of our tool-set to support the anomaly detec-

tion. In this experiment, we run Nalu in an environment where another application might be run

simultaneously. We run this experiment on the Xeon system as specified in Table 4.1. Nalu appli-

cation takes the milestoneRun problem as the input and utilizes thirty MPI processes to run. We

use our tool-set to investigate how the behavior of Nalu application changes in the presence of

other processes.

In Figure 4.8, two graphs are plotted together. Both graphs share the same x-axis that represents

the run time in minutes. The y-axis on both graphs displays the rate of calls per 0.1 second to

MPI Send function. The first graph on the top represents the data collected from the normal run of
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Nalu application. The other graph on the bottom shows the data collected from the abnormal run

where there is contention for system resources in the presence of other processes.
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Figure 4.8: Revealing abnormal behavior

At the beginning of this experiment, we have Nalu and LDMS daemons as the only processes

running on the system. After about 90 seconds from the beginning of the execution of Nalu,

other processes start on the system. The presence of other processes introduces a contention on

system’s resources. We can see this impact on the bottom graph in Figure 4.8 immediately after it

occurs. The resource contentions cause a performance degradation. We can see that the duration

of each application major iteration has increased by a factor of two. At each phase, the rate of calls

to MPI Send function has decreased compared to the normal execution. The termination of the

competing processes after five minutes restores normal operation. We can see that the rate of calls

to MPI Send function in the abnormal run has decreased by half compared to the regular execution.
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Our tool-set can help detect an abnormal behavior in an application as soon as it occurs. The

presented results demonstrate the benefits of our tool-set over the tracing tools in the anomaly

detection. By streaming application-level events we can decrease the latency in the application

analysis and issue mitigation. As in this case, determining the normal behavior for a set of metrics

is application-specific. Our tool-set can be coupled with automatic anomaly detection methods

such as statistical data analysis approaches to automate the process.

4.7.2.4 Monitoring multiple applications

Our approach is designed to enable monitoring of multiple applications. The tool-set interacts with

application processes and these processes can belong to different applications. In this section, we

demonstrate how our tool-set can be used for streaming performance data collected from multiple

applications running at the same time.

We design an experiment to evaluate the capability of our tool-set to monitor four running ap-

plications at the same time. In this experiment, we run one instance of Nalu and three instances

of an MPI based scientific mini-application, MiniMD. MiniMD is a Molecular Dynamics (MD)

mini-application in the Mantevo mini-application project [72]. It represents the computation and

communications of the Lennard-Jones method used in the LAMMPS application [104]. We run

this experiment on the Xeon system as specified in Table 4.1.

In our experiment, Nalu application takes the milestoneRun problem as the input and utilizes six-

teen MPI processes to run. Each instance of the miniMD application is run using the default test

with different problem sizes and number of MPI processes. The smallest instance is run using two

MPI processes and 400000 atoms. The next instance utilizes four MPI processes and has 13500000

atoms in the input configurations. The largest instance of the miniMD uses eight MPI processes to

work on 32000000 atoms that specified in the input configurations.
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Figure 4.9: Monitoring multiple applications. Y axis represents the rate of messages sent using the
MPI Send function.

In Figure 4.9, four graphs are plotted together. All graphs share the same x-axis that represents the

run time in minutes. The y-axis on all plots displays the rate of changes in the volume of messages

that are communicated using the MPI Send function. The first graph from the top with ”Nalu-

16” label on the y-axis represents the rate of messages for the Nalu application that is running

using 16 processes. The second graph with ”miniMD-8” label on the y-axis shows the message

rate for the miniMD application when is run with 8 processes. The third graph with the y-axis

labeled ”miniMD-4” displays the rate of messages for the miniMD application when is run with 4

processes. The last graph with the y-axis labeled ”miniMD-2” shows the message rate for another

instance of the miniMD application that is run with two MPI processes.

As we can see in Figure 4.9, all applications start at the same time. Although the repetitive pattern

can be seen in all of them, each application instance exhibits a different behavior depending on the
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problem and configuration. The miniMD-2 instance executes each iteration faster and send fewer

messages compared to others, e.g., less than 50% of the miniMD-8 messages. This application

finishes its execution after around 5 minutes. The miniMD-4 instance, which has longer iterations,

finishes 3 minutes later. The long iteration and high number of messages of the miniMD-8 instance

indicates that it is solving a larger problem compared to other instances of miniMD.

Another notable point is the difference between the behavior of applications in Figures 4.8 and

4.9. In Section 4.7.2.3, an anomaly is injected to interfere with the computations of the main

application and limit its available resources. Figure 4.8 shows how this interference leads to the

abnormal behavior and the run-time slow-down. In our experiment in this section, we ensure the

availability of computing cores to all applications. 50% of available cores have been used by the

Nalu application. Three miniMD instances use 14 of the remaining 16 CPU cores. As a result, we

do not observe a significant slow-down in this experiment.

Our tool-set enables HPC users to monitor multiple applications. This is achieved by our ap-

proach’s design that utilizes a specific channel for data collection from each application.

4.7.3 Overhead Evaluation

Our approach is intended for the deployment in a production environment on large-scale HPC sys-

tems. As a result, performance and scalability of the implementation become critical requirements.

We investigate the overhead of using our tool-set to validate that our design meets the requirements.

We design a set of experiments to investigate the overhead in different configurations. In our anal-

ysis, we perform the following impact assessments:

• Impact of using our tool-set compared to the base case with no monitoring.

• Impact of changing sampling frequency and data resolution.
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• Impact of the presence of other LDMS samplers.

• Impact of using different strategies in process placements.

We run the experiments in the environments specified by Table 4.1. To avoid hardware variability

within result sets that may obscure small overhead costs, we run the related experiments in series

on the same compute node.

We use two types of systems to run the experiments to understand the interaction of our tool-set

with the operating system and applications on different HPC platforms. The first system includes

compute nodes that are equipped with Intel Xeon Phi 7250 1.4GHZ processors (68 cores), 16 GB

high-speed cache, and 96 GB DDR4 memory. This architecture is used on some HPC platforms

(e.g., [35]) and may still be a representative of future architectures. CentOS 7.3 is running as the

operating system. We build Nalu and its dependencies using Intel Compiler 17.0.1 enabled with

the level three optimization. We refer to this system as KNL. The next system, which we refer to as

Xeon, includes compute nodes that are equipped with Intel Xeon processors, one of the mainstream

processors utilized in HPC systems. On this system, 32 Intel Xeon E5-2683 processors are running

at 2.10 GH with 128 GB memory. CentOS 7.1 is the operating system, and we build Nalu using

Intel Compiler 17.0.1.

We run our tool-set alongside Nalu application to measure the overhead based on the wall time

reported by Nalu’s output log file. Nalu performs the simulation utilizing a computational mesh.

In our experiments, we use an R2 mesh with 2725802 elements and 77 MB file size. We choose a

Nalu problem that is called milestoneRun from Nalu’s regression test suite [39]. This problem has

been used for Trinity acceptance tests [5]. We can use this problem to run Nalu with an arbitrary

number of MPI processes.

We use t-test to verify the statistical significance of these results [74]. For each set of experiments,
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we compare two groups of results. One is the control group which is defined according to the

experiment and the type of impact assessment. The second group includes the results that are

generated by changing the parameter related to the impact assessment experiment. For example,

consider the experiment that we evaluate the impact of the process placement. In this experiment,

we choose placement 1 as the baseline and the group of placement 1 results is the control group.

The changing parameter in this experiment is the type of process placement. Any experiment with

a new process placement generates a new set of results. Every set of results form the second group

for t-test to compare with the control group. This test demonstrates statistically significant results

of our experiments with the p-value less than the chosen threshold of 0.01.

4.7.3.1 Process Placement Strategies

We used several process placement strategies to measure Nalu’s performance in different situations.

Table 4.2 presents these strategies. In the first three placements, all MPI processes and LDMS

daemons are unpinned. In the first placement, we do not reserve any processor for LDMS daemons,

and the application utilizes all available processors, i.e., 272 on KNL and 32 on Xeon. We keep

one and two processors idle in placements 2 and 3, respectively, and the MPI application uses the

rest of the processors. In placements 4-6, we pin all MPI processes and LDMS daemons. The

MPI application utilizes all processors in placement 4, and both LDMS sampler and aggregator

are pinned to the first processor, which results in it being used by three processes. In placement 5,

we do not pin any MPI process to the first processor and use it for both sampler and aggregator.

In placement 6, we dedicate the first and second processors to the sampler and aggregator and pin

270 MPI ranks to the next 270 processors on KNL or 30 MPI ranks to the next 30 processors on

Xeon. In placements 7-9, we apply strategies similar to placements 4-6 with a difference that the

last two, instead of the first two, processors are used for LDMS sampler and aggregator.
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Table 4.2: Process placements used in experiments. Numbers on the second column represent the
number of MPI ranks we use to run Nalu. The third column states whether the processes were
pinned or not. The fourth and fifth columns show core number that we use to run the sampler and
aggregator daemons with pinning.

Placement # MPI Ranks Pinned/ LDMS Sampler Daemon LDMS Aggregator Daemon
Version KNL — Xeon Unpinned Processor Place Processor Place

1 272 — 32 Unpinned Free Free
2 271 — 31 Unpinned Free Free
3 270 — 30 Unpinned Free Free
4 272 — 32 Pinned First First
5 271 — 31 Pinned First First
6 270 — 30 Pinned First Second
7 272 — N/A Pinned Last Last
8 271 — N/A Pinned Last Last
9 270 — N/A Pinned Last Second to last

Previous generations of Intel Xeon Phi processors were known for reserving the first core for the

operating system [84]. In our experiments, we take two approaches based on the reserving first or

last cores for OS activities and LDMS daemons (if available) to investigate this impact. Since this

is not the case for Xeon processors, we do not run experiments in placements 7-9 for Xeon.

Figures 4.10 and 4.11 exhibit Nalu’s performance regarding run-time using different process place-

ment strategies on both KNL (Figure 4.10) and Xeon (Figure 4.11). The vertical axis on both plots

shows run-time in milliseconds and the horizontal axis presents different placement strategies as

described in Table 4.2. The rotated plot outside of the box shows the probability density of the data

at different values [73]. In this figure, we exclude all data from the cases where we run LDMS.

In KNL experiments, Nalu demonstrates the best run-time when using the placement 6, where we

keep the first two processors idle and use the rest of processors (270) as MPI ranks to run the

application. Since we did not run LDMS in these experiments, the first two processors are free to

be used by the system processes. The availability of these processors reduces the OS noise and
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its impact on the application performance and run-time variability. OS activity has been known as

one of the primary causes of the variability [12] and some methods exist to address this issue on

Intel Xeon Phi processors [25].
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Figure 4.10: Run-time of Nalu application with different process placement strategies when run-
ning on the KNL cluster without any LDMS daemons running. The run-time plot for each place-
ment features a kernel density estimation of the underlying distribution of run-time derived from
10 samples. Table 4.2 provides a brief overview of different placements.

We observe the highest run-time in placements 1, 4, and 7. The overhead introduced by using these

strategies are in the range of 6.5% on average. In all of these placements, we use the maximum

available processors to run Nalu application, and system noise and necessary OS activities do not

have any choices other than interrupting tasks being carried out by the MPI application. Choosing

any of placements 2, 3, 5, 8, and 9 roughly adds 4.5% overhead on average to the application.

In Xeon experiments, Nalu exhibits the best run-time when we use all 32 available processors as

MPI ranks. In general, using more processors on the Xeon machine allows Nalu to leverage the
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maximum parallelism. Pinning MPI processes does not seem to provide any benefits on Xeon.

Placements 3 and 6 that keep two processors idle show the highest run-time with an overhead of

4.7% on average. Choosing any of placements 2, and 5 roughly adds 3.2% overhead on average to

the application’s run-time. Placement 4 performs slightly slower by adding 0.2% overhead to the

run-time of the placement 1 that differs only in pinning the MPI processes.
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Figure 4.11: Run-time of Nalu application with different process placement strategies when run-
ning on the Xeon cluster without any LDMS daemons running. The run-time plot for each place-
ment features a kernel density estimation of the underlying distribution of run-time derived from
10 samples. Table 4.2 provides a brief overview of different placements.

Given the best results we get from the placement 6 on KNL, and placement 1 on Xeon, we use

these placements for the impact analysis of using our tool-set for monitoring Nalu.
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4.7.3.2 Sampling frequency impact

In this section, we study how using our tool-set affects the performance of Nalu. We run exper-

iments in two cases: regular Nalu run with no LDMS daemons running and a Nalu run where

LDMS MPI sampler is running at the same time and data is collected from the application. We run

the LDMS MPI sampler with four different frequencies: 0.1 HZ, 1 HZ, 2 HZ, and 10 HZ.
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Figure 4.12: Run-time of Nalu application on the KNL cluster using placement 6 in the cases of
running without monitoring and when LDMS daemons are running on the system with different
MPI sampling frequencies. The run-time plot for each sampling case features a kernel density
estimation of the underlying distribution of run-time derived from 10 samples.

Figures 4.12 and 4.13 depict Nalu’s performance regarding run-time on both KNL (Figure 4.12)

and Xeon (Figure 4.13) when LDMS daemons are not running and the cases where the applica-

tion is monitored with four different sampling frequencies. The vertical axis on both plots shows

run-time in milliseconds and the horizontal axis displays different cases based on the sampling ap-
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proach. For KNL, we run these experiments using the placement 6 where the first two processors

are used by LDMS daemons and the MPI application utilizes the last 270 processors. We use the

placement 1 for running experiments on Xeon where we use all 32 available processors and do not

pin any processes.
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Figure 4.13: Run-time of Nalu application on the Xeon cluster using placement 1 in the cases
of running without monitoring and when LDMS daemons are running on the system with differ-
ent MPI sampling frequencies.The run-time plot for each sampling case features a kernel density
estimation of the underlying distribution of run-time derived from 10 samples.

In KNL experiments, the overhead introduced by using our tool-set on average is within the range

of 0.78% in different sampling frequencies. Running the sampler with the high frequency of 10

HZ, on average, yields a surprisingly acceptable run-time. However, the run-time variability is

high in this case. Running the sampler at 0.1 HZ does not gain performance and, in some cases,

it slightly slows down the application more than higher frequencies. Furthermore, we have lower

data accuracy in this case.
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Running the sampler at 1 HZ and 2 HZ leads to both reasonable performance and data accuracy.

The run-time overhead introduced by both is less than 0.5%. We can see some differences in the

data distribution between these two frequencies. The 2 HZ case shows another small peak in higher

run-time values in addition to the main peak that we have in all cases. On the other hand, the 1 HZ

case demonstrates a distribution closer to normal with one peak.

In Xeon experiments, using our tool-set with the high frequency of 10 HZ and 2 HZ respectively

adds 0.3% and 0.16% overhead on average to the run-time. The run-time overhead of running the

sampler at 1 HZ and 0.1 HZ are both less than 0.1%. Other than the lower overhead, the higher

accuracy in data collected by the sampler at 1 HZ and its distribution distinguish this case from

other cases.

This outcome suggests that we choose to run the samplers at 1 HZ for our next study to get a fair

result.

4.7.3.3 Impact of the presence of other samplers

Collecting data from software and different hardware components at the same time helps gain a

comprehensive understanding of the application behavior.

In this section, we study the impact of running the MPI sampler alongside other samplers on the

run-time of Nalu application.

We run the experiments with four different versions of sampling for this study. Table 4.3 presents

the information about each version. In version 1, we run all of the samplers including the MPI

sampler. In version 2, we only run the MPI sampler. All samplers but the MPI sampler are

evaluated in the version 3. We also have a regular application run in version 4, where no sampler is

running. Other samplers provide statistics related to the virtual memory, RAM and CPU utilization,
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networking, and file systems. The last column of this table indicates the number of metrics that are

collected and exposed by samplers at each second during the execution.

Table 4.3: Sampling versions.

Sampling Running Samplers # Collected Metrics
Version per Second

KNL — Xeon
1 MPI Sampler, vmstat, meminfo, procnetdev, procnfs, procstat 5912 — 903
2 MPI Sampler 2700 — 320
3 vmstat, meminfo, procnetdev, procnfs, procstat 3212 — 583
4 None 0 — 0

Based on the findings from previous sections, for KNL experiments, we use placement 6, where the

first two processors are reserved to be used by LDMS daemons if present. For Xeon experiments,

we use placement 1, where we use all available processors with no pinning involved. When we run

LDMS samplers, i.e., versions 1-3, we set the sampling frequency to 1 HZ.

Figures 4.14 and 4.15 display Nalu’s performance regarding run-time on both KNL (Figure 4.14)

and Xeon (Figure 4.15) when LDMS daemons are not running and the cases where the application

is monitored with many LDMS samplers. The vertical axis on both plots shows run-time in mil-

liseconds and the horizontal axis represents different sampling versions as described in Table 4.3.

In KNL experiments, the overhead introduced by the samplers in different cases is within the range

of 0.5% of the base case, i.e., no sampling. We observe that running all samplers, where we roughly

collect 6000 metrics every second, causes the run-time to be more scattered across the data range.

The non-MPI samplers collect more than 3200 metrics from different data sources every second.

Most of these hardware level data are provided in /proc file system. However, MPI sampler uses

the shared memory index to expose the 2700 metrics collected by the MPI profiler. This seems to

impact the application’s run-time more than other hardware-level samplers. The overhead is still
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within the range of 0.5% of the original application run. A group of HPC users at SNL provided

bounds on acceptable overhead to be less than 1% slowdown [3].
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Figure 4.14: Run-time of Nalu application on the KNL cluster in the cases of running without
monitoring and with LDMS samplers running on the system. The run-time plot for each sampling
case features a kernel density estimation of the underlying distribution of run-time derived from 10
samples. Table 4.3 provides a brief overview of different sampling versions. All of the samplers
collect data at 1 HZ.

In Xeon experiments, the overhead introduced by the samplers in different cases, on average, is

within the range of 0.3% of the base case, i.e., no sampling. When LDMS collects 900 metrics per

second using all samplers, we observe the highest overhead of 0.29%. Using LDMS MPI sampler

alone increases the run-time by less than 0.1%.

Impact analysis results show that the overhead introduced by our tool-set is within the acceptable

overhead range. This makes our tool-set a suitable choice to deploy in a production environment

for continuous monitoring.
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Figure 4.15: Run-time of Nalu application on the Xeon cluster in the cases of running without
monitoring and with LDMS samplers running on the system.The run-time plot for each sampling
case features a kernel density estimation of the underlying distribution of run-time derived from 10
samples. Table 4.3 provides a brief overview of different sampling versions. All of the samplers
collect data at 1 HZ.

Experimental evaluation results demonstrate that our low overhead tool-set helps understand the

behavior of applications by streaming software level performance data. Our approach enables

run-time operational analysis by exploring the correlations between hardware and software level

data.

4.8 Chapter Summary

In this chapter, we developed and demonstrated a hybrid approach to HPC application monitoring

that supports performance analysis in production conditions. This approach takes advantage of
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the low overhead of shared memory and LDMS to provide insights into the application’s behavior

using profiling during the execution. By taking this approach, we avoid the overhead of heavy

tracing methods. We have implemented a tool-set to evaluate its impact. While we demonstrate

our approach using MPI applications, it does not require a specific programming paradigm and the

design is generally applicable. We integrated our tool-set with the LDMS framework to create a

scalable hybrid tool that streams application performance data using profiling. By taking advantage

of the shared memory approach, components within our tool-set can communicate efficiently. We

have resolved challenges of using this method and provided mechanisms for fault management.

We have evaluated our approach using test cases of the open-source HPC code, Nalu. We have

shown how our tool-set provides insights that can be used in combination with other data sources

to reveal application phases during the execution without access to application source code. By

integrating with LDMS, we have run experiments that stream several types of data using hardware

samplers in addition to the software level metrics collected by our tool-set during the execution.

We provided examples that show how this tool-set helps explore the correlations between different

events happening during the execution. Also, we demonstrated how our tool-set helps us to detect

abnormal behavior in an application during the execution.

Overhead results show a slight increase in run-time, which is within the acceptable range. This

feature makes our approach a suitable choice for continuous performance monitoring in a produc-

tion environment. Integrating this approach with LDMS enables streaming performance data to

storage efficiently and supports run-time analysis and feedback to the application.

79



CHAPTER 5: PERSISTENT TRANSACTIONAL NON-BLOCKING

LINKED DATA STRUCTURES

5.1 PETRA Methodology

In this section, we present our PETRA methodology to design non-blocking durable transactional

data structures. Building on top of LFTT, we discuss how we add durability to transactions while

avoiding additional logging overheads.

5.1.1 Overview of the Methodology

Figure 5.1 presents high-level steps to execute transactions using PETRA. Every thread starts the

execution of a transaction by creating a descriptor object that includes information about the trans-

action status, data structure and transaction’s operations.

Create descriptor Begin transaction
Set transaction 

status
End transactionPersist transaction

Execute data 

structure operation

More 

operation?

Operation 

successful?
Commit 

transaction

Abort transaction
YES

NOYES

NO

ExecuteOpsExecuteTransaction

Figure 5.1: Methodology overview

A transaction begins after calling the EXECUTETRANSACTION function that performs initializa-

tion, such as preparing the helping scheme for executing the transaction’s operations. Next, the

EXECUTEOPS function executes the sequence of operations specified by the transaction descriptor

(Section 5.1.4). The results of these executions determine whether the transaction is committed

or aborted. After setting the transaction status atomically1, we perform the required actions to

1Compare-And-Swap (CAS) is an atomic instruction used to perform a conditional update on a shared variable.
CAS succeeds if the contents of the shared variable match an expected value.
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durably commit (or abort) the transaction (Section 5.1.2). Finally, the transaction finishes with

post-execution activities such as marking the removed nodes for deletion. We use the pointer

marking approach to indicate logically deleted nodes [63]. If a node is bit-marked, the key as-

sociated with it is not part of the list. We also assign a logical status to each node based on the

transaction status and type of operations. Further description is provided in Section 5.1.3.

Algorithm 5.1: Type Definitions

1 enum TxStatus
2 Active;
3 Commited;
4 Aborted;

5 enum PersStatus
6 Maybe;
7 InProgress;
8 Persisted;

9 enum OpType
10 Insert;
11 Delete;
12 Find;

13 struct Operation
14 OpType type;
15 int key;

16 struct Desc
17 int size;
18 int txid TxStauts status

PersStatus pstatus
Operation ops[ ];

19 struct NodeInfo
20 Desc* desc;
21 int opid;

22 struct Node
23 NodeInfo* info;
24 int key;
25 ...

We apply the PETRA’s methodology on different linked data structures such as linked list and

skiplist based sets, a multi-dimensional (md) list, and a hash map and present the evaluation results

in Section 4.7. Without losing generality, we illustrate PETRA using a set abstract data type

with three standard operations (INSERT, DELETE, and FIND). We list the constants and data

type definitions in Algorithm 5.1. Each node of the data structure has a pointer, named info,

to an object of type NODEINFO that keeps track of the latest executed transaction on this node.

This information is provided by a reference to the transaction descriptor (desc) and the index

of the most recent operation in the transaction that accessed the node (opid). Other important

information in the transaction descriptor determines the status of the transaction and its durability

status. The transaction status may be Active (being executed), Aborted (a data structure conflict

has been detected necessitating an abort) and Committed (transaction execution is successful). The
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durability status may be Persisted (transaction already persisted), InProgress (transaction being

persisted), and Maybe (persistence status unclear). A transaction becomes visible to other threads

when the transaction status is Committed and persistence status is Persisted.

5.1.2 Durability via Transaction Descriptors

In LFTT, transaction descriptors are used for managing consistency and ensuring progress. When

considering adding durability in PETRA, we deviate from the typical PTM approach of explicit

logging. A PTM may rely on undo logging to keep track of old values of memory locations that

will be written by the transaction. For correct recovery, the log itself must be made durable before

the data structure is written. Alternatively, a PTM may rely on redo logging to record all memory

writes of a transaction that needs to be made durable at transaction commit. The logs are used after

a crash to recover to a consistent state. Thus, traditional logging incurs two types of overheads:

the additional instructions that manage the log and persist the log, and the additional ordering that

requires the log to persist before data structure modification. Note that if crashes are infrequent,

traditional logging is very expensive: each transaction is slowed down even when the log is needed

only when a crash occurs.

A key point of PETRA is our observation that the transaction descriptor object contains sufficient

information of all data structure operations that a transaction must execute. Hence, we can re-

purpose the transaction descriptor as a redo log to support durability. As such, our redo log has

high-level information of data structure operations, rather than low-level information of memory

accesses. Due to this high-level information, in PETRA, persisting a transaction is achieved by

persisting its transaction descriptor, but the data structure itself does not need to be persisted, i.e.

flushed out of the cache. We let the memory system naturally handle the durability of the data

structure and resolve any inconsistency during the recovery using the transaction descriptors. In
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contrast, PTMs must persist both the log and then the data structure in that order. Note that as

computation progresses, changes made by a completed transaction will become durable as cache

blocks modified in the transaction will be gradually evicted from the cache. Thus, in contrast to

PTMs, data structure changes are persisted lazily, as opposed to eagerly in PTMs [7].

Since only transaction descriptors are persisted, if a crash occurs, recovery needs to visit each past

transaction to validate whether all operations specified in the persisted transaction descriptor have

been reflected durably in the data structure. If they have, nothing else is needed. This is likely

the case for most transactions because modified data blocks in the cache will get evicted over

time. Otherwise, the transaction must be repeated, and here the descriptor serves as a redo log

that specifies which operations need to be performed. Recovery procedure details are discussed in

Section 5.1.5.

In addition to the benefits discussed above, a transaction descriptor serves the following additional

purposes. First, by keeping all the necessary information to complete a transaction, descriptors

enable threads to help each other when a transaction is delayed. Delays in transactions can hap-

pen for reasons such as contention on shared resources and the operating system interrupts [156].

Second, it reflects the latest status of the transaction and makes it accessible to all threads that are

executing transactions on common nodes. Finally, it enables detectable execution [56], the ability

to determine after recovery whether a specific operation was executed.

Figure 5.2 presents an example that illustrates how PETRA uses transaction descriptors for helping,

detecting conflicts, and ensuring durability. In this example, the set data structure consists of keys

1 and 3, which were inserted by Thread 1 through transaction t1. t1 was committed and persisted,

as indicated by its Status and PStatus. Next, threads 2 and 3 execute their transactions t2 and t3

concurrently. Transaction t2 specifies two insert operations with keys 4 and 2, while t3 attempts

to delete keys 3 and 4. Thread 3 performs its first operation and updates the info pointer on node
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3 with a new NODEINFO. During the execution of its second operation, a conflict is detected with

t2, which has not finished its operations. Because an active transaction is working on node 4,

t3 does not modify it. Instead, this transaction first helps transaction t2 to complete its remaining

operations. This helping mechanism is possible because PETRA has the semantic knowledge of the

data structure and divides the transaction into multiple steps, i.e., data structure operations. This

division allows for keeping track of the transaction progress. Note that this helping mechanism

can be prone to a livelock problem when circular dependencies between helper threads exist. This

problem is avoided through the use of a per-thread helping stack that contains the descriptors of

the transactions that are being helped and checking for duplicates [156].

1

2

3 4

Node 

Info

Transaction 

Descriptor

t1 t2 t3

Thread 1

Thread 2

Thread 3

Insert(3) Insert(1)

Insert(4) Insert(2)

Delete(3) Delete(4)

Replaced by t3

Access conflict with t2

opid: 1

txdesc:t1

opid: 1

txdesc:t2

opid: 0

txdesc:t1

opid: 0

txdesc:t2

opid: 0

txdesc:t3

opid: 1

txdesc:t3

Type: Insert, key: 3

Type: Insert, key: 1

Status: Committed

PStatus: Persisted

Size: 2

Type: Insert, key: 4

Type: Insert, key: 2

Status: Active

PStatus: Maybe

Size: 2

Type: Delete, key: 3

Type: Delete, key: 4

Status: Active

PStatus: Maybe

Size: 2

Crash in the middle of 

t2 and t3 execution

Figure 5.2: Using transaction descriptors for helping, conflict detection, and ensuring durability.
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Suppose that a crash happens in the middle of the execution of t2 and t3. Neither of these transac-

tions completed before the crash and their effects are not visible to other threads. During recovery,

the members of the set must reflect only the outcome of transactions that were completed and per-

sisted before the crash. In the example, we only accept keys 1 and 3 as the members of the set.

This state of the data structure is verified by the completed and persisted transaction descriptors,

i.e., t1 in this example. If any effect from t2 and t3 remained in the data structure, they would be

canceled during the recovery, because those impacts were not visible before the crash. If any of

the keys 1 and 3 does not exist in the data structure, they will be inserted using the information

provided by the transaction descriptor of t1, which serves as a redo log.

5.1.3 Determining the Logical Status

We adapt the logical transaction management capabilities of LFTT [156] for building durable trans-

actional data structures with ACID properties. We assign a logical status to the nodes to ensure

atomicity and isolation. The status of each node is inferred based on the status of the latest trans-

action that accessed that node. This logical status allows us to hide the intermediate state of the

shared data from concurrent transactions. Modifications are visible to other threads when the

transaction is complete and can guarantee durability. Also, upon abort, a transaction can revoke

the modifications made by the completed operations to guarantee atomicity. One approach to

cancel the effects of the completed operations in transactional data structures is to invoke their

inverse operations [68]. This method increases contention among threads in accessing the shared

data structure without contributing to the overall throughput. Instead, in our logical mechanism,

a transaction inverts its interpretation of the logical status of a node that was last accessed by an

aborted transaction.

Algorithm 5.2 provides the details of our method to determine the node’s status. On line 2, the
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physical presence of a node with the specified key is verified. Determining the logical status of a

key is done by the function ISKEYPRESENT. This function returns a boolean value that indicates

the logical presence of the key in the abstract state of the data structure. This function uses the

information from the last transaction that accessed the node and the descriptor object of the current

transaction. We know that the state of a node is not altered if the last transaction that accessed it

was a FIND operation. We report this node as present in this case (line 6).

Algorithm 5.2: Logical Status
1 Function IsNodePresent(Node* n, int key)
2 return n.key = key

3 Function IsKeyPresent(NodeInfo* info, Desc*desc)
4 OpType op← info.desc.ops[info.opid]
5 if op = Find then
6 return True
7 TxStatus status← info.desc.status
8 PersStatus pstatus← info.desc.pstatus
9 switch status do

10 case Active do
11 if info.desc = desc then
12 return op = Insert
13 else
14 return op = Delete

15 case Committed do
16 return op = Insert and pstatus = Persisted
17 case Aborted do
18 return op = Delete and pstatus = Persisted

In the next step, we read the status of the last transaction that accessed the node. If the last trans-

action is still active and the node was inserted by an operation in the current transaction, we reveal

the presence of the node only to the subsequent operations in the same transaction (line 12). If

the last transaction executed a DELETE operation but is not committed yet, we declare the node as

present.
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If the last transaction has finished its execution on the node, we determine whether its effect is

observable by the current transaction by examining two cases. In the first case (line 16), the key

logically exists only if the last transaction has executed an INSERT operation, committed suc-

cessfully, and made its descriptor durable. In the second case (line 18), we consider a DELETE

operation. By definition, a successful DELETE operation must remove the key from the set. To re-

port a key as present, if the last transaction has executed a DELETE operation, it must have aborted

and persisted its descriptor. If any of the above conditions are not met, the key does not logically

exist from the point of view of the current transaction.

Algorithm 5.3: Update Info
1 Function UpdateInfo(Node* n, NodeInfo*info, bool wantkey)
2 NodeInfo* oldinfo← n.info
3 if IsMarked(oldinfo) then
4 Do Delete(n)
5 return retry

6 if oldinfo.desc 6= info.desc then
7 ExecuteOps(oldinfo.desc, oldinfo.opid+ 1)

8 else
9 if oldinfo.opid ≥ info.opid then

10 return success

11 bool haskey ← IsKeyPresent(oldinfo)
12 if (!haskey and wantkey) or (haskey and !wantkey) then
13 return fail

14 if info.desc.status 6= Active then
15 return fail

16 if CAS(&n.info, oldinfo, info) then
17 return success

18 else
19 return retry

Function ISKEYPRESENT is called by function UPDATEINFO, which starts at line 1 of Algo-

rithm 5.3. An operation in the underlying data structure needs to update the info pointer of its
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active node before making changes. This update is necessary as the info pointer of the node is

used to determine its logical status. The active operation calls function UPDATEINFO to perform

this modification (Figure 5.3). If the target node is logically marked for deletion, we complete

the operation by invoking the base data structure delete method and inform the caller to retry the

current operation. Before updating the node info, the current thread first helps complete other

transactions if needed (line 7 (EXECUTEOPS is illustrated in Figure 5.1)). Also, if a helper thread

already executed the current operation, we can ignore this operation and continue the rest of the

transaction (line 9). Next, we check if the logical presence of a key is matched with the need of

the operation. For example, a DELETE operation expects that the key to be present in the list and

an INSERT operation requires that the key to not be a part of the list. UPDATEINFO evaluates these

conditions in line 11. After verifying the liveness of the current transaction, n.info is updated by

using a CAS (line 16) and the data structure operation can proceed.

5.1.4 Executing Durable Transactions

Algorithm 5.4 presents our method of ensuring the durability of transactions starting at line 1 using

the PERSISTTRANSACTION function. Since we only need to ensure the durability of the transac-

tion descriptor object, the descriptor is all that PERSISTTRANSACTION needs as the input. A

thread in this function first declares its intent to persist the transaction descriptor. This declaration

prevents possible helper threads from re-persisting the descriptor by executing expensive flush and

fence operations. If a thread commits or aborts its transaction, but gets delayed in the middle of

the persistence, another thread can help persist the transaction. The need for help can be inferred

based on the delayed transaction’s status.

If the current thread successfully declares its intent to persist the descriptor, it traverses over all the

operations and flushes the information related to each operation. In the next step, the transaction
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id is assigned to the descriptor. The recovery procedure (Section 5.1.5) uses the transaction id to

determine the order of transactions executed on each key in a data structure. Next, the descriptor

object is flushed to store the remaining information about the transaction. To guarantee that the

persisted transaction is visible, we use the SFENCE instruction. Finally, we set the persistency

status of the transaction to PERSISTED to notify other transactions. After the execution of line 8,

the effect of the current transaction is globally visible. Note that we do not need to ensure the

persistence of the PSTATUS itself, as its value is implied by a transaction that is persisted.

Algorithm 5.4: Persistence of Transactions
1 Function PersistTransaction(Desc* desc)
2 if (CAS(&desc.pstatus, Maybe, InProgress)) or (desc.pstatus == InProgress)

then
3 for op ∈ desc.ops do
4 FLUSH(&op)

5 desc.txid← GetNextTXID()
6 FLUSH(desc)
7 SFENCE()
8 desc.pstatus← Persisted

Function PERSISTTRANSACTION provides durability at low cost by reducing the number of flushes

and fences. In total, the number of flushes corresponds to the size of the transaction plus one more

flush to store the transaction descriptor. Finally, for each transaction, we explicitly execute one

fence instruction regardless of its size.

As illustrated by Figure 5.1, each transaction executes the data structure operations specified by the

descriptor object. Figure 5.3 presents how our methodology executes this step. Each data structure

operation features a CAS-based while loop, which is the typical approach for implementing non-

blocking data structures. Each thread attempts to apply updates on the shared object atomically,

and if it fails, it retries the operation execution if needed. Functions that start with a prefix DO -

represent the methods typically implemented by a linked list-based set, which is the underlying
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data structure in our example. For example, DO LOCATEPRED returns the required nodes and

variables for handling the linkage in the structure, e.g., the predecessor node. DO OPERATION

could be any of DO INSERT and DO DELETE functions that add and remove the necessary links

to perform their operations respectively.

Begin data struct 
operation

Begin CAS-based 
while loop Do_LocatePred()

UPDATEINFO()

Do_Operation()

ISNODEPRESENT()

Result

RETRY

YES

NO

SUCCESS

FAIL
Execute Data 

Structure Operation

Figure 5.3: Executing data structure operation

If the node exists in the structure of the linked list, we call the UPDATEINFO function (line 1 of

Algorithm 5.3) before making changes. This step is necessary to interpret the logical status of a

node and update it to prevent unsafe access by concurrent transactions. Based on the results of the

call to this function, we determine whether another attempt is needed to perform the operation or

return the result. If the node does not exist, no call to UPDATEINFO is needed, and the operation

can proceed.

90



5.1.5 Recovery Management

5.1.5.1 System Support and Memory Addressing

When a system crash, objects in persistent memory need to be found and mapped back into the

process address space. This requires system support, such as memory-mapped files [27, 29, 42,

76, 143, 141, 148], persistent memory-aware file systems [42, 29, 148, 149], or system-managed

objects in memory [150]. Once found, the region may be remapped to the process address space at

a different virtual memory location, hence relocatability needs to be supported [107, 89], such as

using new relocatable pointer formats [145, 22], and persistent page table [150]. Addressing these

issues is orthogonal to PETRA and beyond the scope of this work. Note that there is nothing that

fundamentally prevents these ideas from being applied to PETRA.

5.1.5.2 Recovery Procedure

Recall that PETRA explicitly persists transaction descriptors at the end of each transaction. The

recovery procedure rebuilds the underlying data structure, verifies its consistency using the trans-

action descriptors, and fixes possible inconsistencies that might have occurred as a result of a crash.

Figure 5.4 presents the steps to recover a data structure (linked list-based set) after a crash. Upon

recovery, the initial set is built by loading the head node. Any node reachable from the head node

is a part of this initial list. Next, the transaction descriptors that were persisted by each thread are

read in order to figure out transaction execution records 1©. Based on the transaction descriptors,

we build the key-descriptor map (KDMap) 2©. This involves visiting each committed/persisted

transaction to find the transactions that accessed each key in the data structure. If we have more

than one transaction that is executed on a key, we use TXID of the descriptor to identify the transac-

tion that happened last. Note that TXID is assigned by a global monotonically increasing generator
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before persisting the transaction descriptor (line 5 of Algorithm 5.4). No transaction is visible

to other threads unless TXID of its descriptor is assigned and persisted. The ordering mechanism

here does not need to enforce a global ordering on all transactions. It is only sufficient to know the

order of transactions executed on each key, which can be achieved using TXID generated by tools

such as simple FETCH-AND-ADD operations, time-stamps, or other similar techniques.

Next, we traverse the loaded set 3© and determine the logical status of a key based on the last valid

transaction that is executed on the node with that key. KDMap provides the descriptor for this

transaction. If the descriptor pointer of the node, is not persisted before crash, it does not match

the descriptor found by KDMap. In this case, we remove the node and execute the corresponding

operation based on the data provided by the valid descriptor and we end up in a valid state for

the node. If the descriptor found by KDMap matches the node’s descriptor there are two cases to

consider: 1) node contents are valid, i.e., the value is correct and 2) node contents are invalid. In

the second case, to restore the consistent state, we remove the node and execute the descriptor’s

operation. To fix other possible inconsistencies, we insert the items that, according to the KDMap,

should be present in the data structure but are not 4©. After this step, the data structure is restored

to a consistent state and the recovery procedure is complete 5©.

For each operation op in a committed transaction curtx

op.key exists 

in KDMap?

Set the value to the curtx

descriptor for op.key in 

KDMap

For each node n in the linked-list based set

Descriptor pointed by n

matches the value for 
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No
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Figure 5.4: Recovery steps

To guarantee consistency, we do not need to use any of the transaction descriptors that are not

persisted, even for those transactions that are completed. As we describe in Section 5.2, we use
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durable linearizability [82], which is the strictest correctness property to ensure a consistent state

of the data structures. Durable linearizability requires that the state of the data structure after a

crash includes a consistent subhistory of the operations that actually occurred and were globally

visible before the crash. As we discuss in Section 5.1.3, the effect of a completed transaction is

visible to other threads only when its transaction descriptor becomes persistent.

5.2 Correctness

We now show that PETRA satisfies durable linearizability. Section 5.2.1, presents definitions

known from published work that we use in Section 5.2.

5.2.1 Correctness definitions

Definitions are provided to facilitate reasoning about durable linearizability. An execution of a

concurrent system is modeled by a history, a finite sequence of method invocation and response

events [70]. A response matches an invocation if they are called by the same thread on the same

object. A method call in a history H is a pair consisting of an invocation and next matching

response in H , also referred to as an operation. An invocation is pending in H if no matching

response follows the invocation. An extension ofH is a history constructed by appending responses

to zero or more pending invocations of H . The notation complete(H) denotes the subsequence of

H consisting of all matching invocations and responses. A sequential specification for an object is

a set of sequential histories for the object. A sequential history H is legal if each object subhistory

is legal for that object.

Definition 1. A history H is linearizable if it has an extension H’ and there is a legal sequential

history S such that 1) complete(H) is equivalent to S, and 2) if m0 precedes method call m1 in
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H , then the same is true in S [70].

Legal sequential history S in Definition 1 is referred to as a linearization of H .

Definition 2. Given an executionE, an operationO is durable at step t of the (extended) execution

E if the following holds. For any legal execution E ′, which equals E in the first t steps, if the

execution of the recovery of O completes in E ′, then for any linearization of E ′, O is linearized.

An operation is considered durable if there is sufficient information in NVM such that the recovery

procedure causes this operation to be linearized.

Definition 3. Given an extended execution E, the durability point of operation O is the first point

t in the execution when the operation O becomes durable.

Definition 4. Given an execution E, the durability points of the operations in the execution E

imply an order on the operations, called durability order.

Definition 5. A linearizable object is durably linearizable if for all executions E of the object, 1)

the durability point of each operation is between its invocation and response, and 2) there exists a

linearization of E whose order of operations is the same as the durability order of operations in

E [56].

Definition 6. A history H is strictly serializable if the subsequence of H consisting of all events

of committed transactions is equivalent to a legal sequential history S in which these transactions

execute sequentially in the order they commit [114].

Legal sequential history S in Definition 6 is referred to as a strict serialization of H .

We extend the notion of durable linearizability to transactions by considering an “operation” in

Definition 5 to be a transaction and a “linearization” in Definition 5 to be a strict serialization.
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5.2.2 Durable Linearizability

To prove that PETRA is durably linearizable, it must be shown that for all multithreaded executions

E, 1) the durability point of each transaction is between its invocation and response, and 2) there

exists a strict serialization of E whose order of transactions is the same as the durability order of

transactions in E.

Theorem 1. PETRA is durably linearizable.

Proof. First, it is shown that the durability point of a transaction occurs between its invocation

and response. When EXECUTETRANSACTION is invoked for transaction T1, the operations listed

in T1’s transaction descriptor are executed according to operation order. If T1 detects a conflict

with transaction T2, then T1 helps complete T2 prior to proceeding with its own operations. If

transaction T3 detects a conflict with T1, then T3 helps complete T1. Once T1’s operations have

been completed, a CAS is attempted to either commit or abort T1. If the CAS fails, then some

other thread must have either committed or aborted T1. After T1 has either committed or aborted,

it is persisted by invoking PERSISTTRANSACTION. Since T1 is guaranteed to be durable once it

returns, the durability point for T1 occurs between its invocation and response.

Next, it is shown that there exists a strict serialization of E whose order of transactions is the same

as the durability order of transactions in E. The ISKEYPRESENT function prevents transaction

T1’s operations from being visible to other transactions until T1 is persisted due to the return value

on line 5.2.16 and line 5.2.18. Since the effects of T1’s operations are visible to other transactions

at the instant it is persisted and PETRA is strictly serializable by the LFTT methodology [156],

there exists a strict serialization ofE whose order of transactions is the same as the durability order

of transactions in E.

If a crash occurs, the recovery procedure is invoked by the main thread to restore the state of
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the PETRA-based data structure. It now must be shown that the restored state reflects a strict

serialization of E whose order of transactions is the same as the durability order of the operations

in E. As described in Section 5.1.5, KDMap is a map where the key is the node key and the value

is the most recent committed/persisted transaction that accesses the node key in the data structure.

We now show that a valid state of the data structure can be recovered from KDMap. Since set

operations that access different nodes are commutative, the order of the set operations relative to

different keys does not affect the outcome of the node state. Let T1, T2, ..., Tj, ...., Tn−1, Tn be

the history of committed/persisted transactions in persist order as described in Section 5.1.5. The

ISKEYPRESENT function only enables committed transactions that have persisted to be visible

to other transactions, so the commit order is equivalent to the persist order. Let Tj be the last

committed/persisted transaction to access some node k. Let opj be the last operation in Tj to

access node k. Since Tj commits, this implies that opj succeeds. Let S be the set of nodes that

exist in the list. If opj is FIND or INSERT, node k ∈ S. If opj is DELETE, node k 6∈ S. The same

reasoning applies for all other nodes in the data structure. Therefore, the state of the data structure

consistent with a strict serialization of E whose order of transactions is the same as the durability

order of the operations in E can be recovered from KDMap.

5.3 Experimental Evaluation

In this section, we evaluate our approach and compare it against the state-of-the-art PTM platforms

using various benchmarks.
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5.3.1 Experimental setup

5.3.1.1 Machine Testbed

We conduct our tests on a machine equipped with Intel Optane DC Persistent Memory (DCPM).

The machine has Intel’s most recent second-generation Xeon Scalable processors (codenamed Cas-

cade Lake) with 48 cores (2 sockets), supporting 96 threads. The main memory consists of Optane

DCPM with 6TB total capacity, plus 768GB DRAM. In all experiments, we place persistent data

structures in the DCPM; DRAM is used to store everything else (e.g. code). The machine is con-

figured to run in 100% App Direct Mode [83], which allows applications byte-addressable access

to the persistent memory. The OS is Ubuntu 18.04 LTS. The application and micro-benchmarks

were compiled using gcc 7.4 with the -O3 optimization flag and C++14 standard flags.

5.3.1.2 Micro-benchmarks

We conduct our evaluations on four transactional non-blocking data structures: three different sets

based on linked list, skiplist and multi-dimensional list (mdlist), and hash map. In the linked

list-based set experiments, each thread performs 100, 000 transactions and the key range is set to

10,000. In the experiments for other data structures, each thread performs 1,000,000 transactions

and the key range is set to 1,000,000.

In micro-benchmarks, we compare the overhead and scalability of PETRA against three state-of-

the-art PTMs: OneFile (lock-free version) [121], Romulus (LR version) [30], and PMDK (libp-

memobj++ protected using read-write locks) [116]. We also ran experiments using Mnemosyne [142],

but we did not include the results, because it exhibits the lowest throughput and does not sup-

port more than 31 threads [30]. Romulus was reported to outperform PMDK and Mnemosyne

97



and OneFile shows a slightly better throughput compared to Romulus in some cases in the liter-

ature [30, 121]. We run our micro-benchmark experiments to evaluate the overall performance

using various workloads based on the ratio of read and write operations. This method of eval-

uation, commonly used in the literature [63, 30, 56, 156, 121], consists of a loop that randomly

chooses a transaction to execute with a mixture of read and write operations according to a uniform

distribution, and operation ratio and workload type.

5.3.2 Micro-benchmark evaluation results

Figure 5.5 displays the throughput for the transactional linked list (a,b), map (c,d), skiplist (e,f), and

mdlist (g,h) implementations using different workloads (note the logarithmic scales). Throughput

(y-axes) reflects the number of completed operations per second. In all plots, our scheme is denoted

by PETRA, OneFile by OFLF, Romulus by ROM, and PMDK by PMDK. The transaction size

(number of operations in a transaction) varies from 1 to 16. In Figure 5.5, we report the results

based on the transaction sizes of 1 and 4 to present clear plots and the rest of the results are

reported in Figure 5.6. The transaction size appears as a suffix to each set (e.g., PETRA-4 means

transaction size 4 for PETRA). Each thread allocates memory from a pre-allocated pool. The

number of threads varies from 1 to 96.

Figure 5.5 (a) displays results for a write-dominated workload for the linked list-based set. For a

single thread, all approaches perform close to each other. As the thread count increases, PETRA’s

throughput increases substantially, while the throughput of other approaches stagnates or declines.

The structure of the SET abstract data type makes it a suitable choice to exploit the parallelism of

a multi-threaded system by distributing contention across nodes. PETRA exhibits high throughput

and scalability in this case that can be attributed to its non-blocking approach that keeps abort rates

low. The high abort rates due to false aborts in the alternative approaches keep them from increas-
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ing their throughput. At 48 and 96 threads, PETRA outperforms the next performing technique,

OneFile, by more than one order of magnitudes.
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(a) Linked list: write-dominated
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(b) Linked list: read-dominated
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(c) Map: write-dominated
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(d) Map: read-dominated
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(e) Skiplist: write-dominated
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(f) Skiplist: read-dominated
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(g) MDlist: write-dominated

1 2 4 8 16 48 96
Number of Threads

103

104

105

106

Th
ro

ug
hp

ut
 (O

ps
/s

ec
)

PMDK-1 PMDK-4

(h) MDlist: read-dominated

Figure 5.5: Throughput for transactional data structures for transactions of size 1 and 4. Operation
ratio for write-dominated workload in lists: 40% Insert, 40% Delete, 20% Find and maps: 40%
Insert, 30% Delete, 10% Update, 20% Find. Operation ratio for read-dominated workload in lists:
10% Insert, 10% Delete, 80% Find and maps: 10% Insert, 10% Delete, 5% Update, 75% Find. Key
range for linked list: 10K, other data structures: 1M .

We show the results from read-dominated workloads in Figure 5.5 (b). The results for these work-
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loads follow a similar trend as the write-dominated intensive workload, but OneFile and Romu-

lus exhibit better performance compared to the read-dominated workloads. Romulus uses lighter

synchronization mechanisms to optimize read-only operations that enable reader scalability, with

throughput slightly increasing with thread counts. PETRA uses transaction descriptors for all op-

erations and updates the references even for read operations such as FIND, hence its scalability

remains the same as in write-dominated workload. As a result, PETRA’s throughput advantage

over OneFile and Romulus decreases, but it is still larger than one order of magnitude with 96

threads.

For hash map experiments, in part (c) with the write-dominated case, PETRA outperforms all the

alternative approaches, again thanks to not suffering from many transaction aborts due to helping

and not having false aborts. In part (d) with mostly read operations, similar to the linked list exper-

iments, the throughput of other approaches is improved. PETRA performs not as well for lower

thread counts, but it scales better at higher thread counts and outperforms alternative transactional

implementations. We also evaluate the performance of PETRA’s hash map using a database bench-

mark. These results are presented in Section 5.3.4.

Transactional skiplist and mdlist display a similar trend to the transactional hash map. The base

data structures in both cases [54, 154] have logarithmic search times and execute transactions

more efficiently compared to the linked list-based set. Although for these types of data structures,

in read-dominated cases with lower thread counts all approaches exhibit close throughput, overall

PETRA performs 3 times better than the next best PTM.

5.3.2.1 Impact of transaction size

The general trend of the baseline comparison in transactions of size one can be observed for larger

transactions too. In general, smaller transactions reduce the probability of transaction conflicts and
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boost scalability. However, larger transactions are often needed and convenient to the programmer.

As expected, larger transactions are more vulnerable to conflicts based on the data structure se-

mantics, hence throughput decreases with transaction size for all approaches. For example, going

from size 2 to 4, we observe around 50% reduction in throughput. At the extreme (size of 16), the

throughput is at about 1% compared to that of size 8. Scalability is the key difference between

PETRA and other approaches. The scalability of PETRA across thread counts holds regardless of

the transaction size. In contrast, the throughput of all other PTMs decreases with a higher thread

count.

Although increasing the transaction size results in more aborts, using more threads can compensate

for the loss of throughput. For example, consider the write-dominated workload in the linked list-

based set experiments. At transaction size of 4, using 96 threads results in higher throughput

than executing transactions of size 2 with just 16 threads. The performance loss resulted from

increasing the transaction size for Romulus, OneFile, and PMDK is more severe compared to

PETRA. PETRA with 48 threads and transactions of size 8 outperforms other PTMs in almost

all combinations of transaction sizes and number of threads. By increasing the size to 16, other

approaches almost fail to execute transactions.

Figure 5.6 presents the micro-benchmark results for all transaction sizes. We vary the transaction

size from 1 to 16. As we discussed, large transactions have a higher chance to abort because of the

possible conflicts between the data structure operations. Because of these aborts, the throughput is

decreased across all approaches.

The performance drop in PETRA is lower compared to other approaches. For example, consider

the read-dominated workload in transactional hash map (Figure 5.6(d)), where Romulus has the

best performance between approaches other than PETRA. While PETRA, on average, exhibits

about 45% higher throughput for transactions with one operation, it performs extremely better
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than Romulus for transactions of size 16 and shows more than 200 times higher throughput.
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(a) Linked list: write-dominated
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(b) Linked list: read-dominated
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(c) Map: write-dominated
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(d) Map: read-dominated
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(e) Skiplist: write-dominated
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(f) Skiplist: read-dominated
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(g) MDlist: write-dominated
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(h) MDlist: read-dominated

Figure 5.6: Throughput for transactional data structures for larger transactions. Operation ration
and key ranges similar to Figure 5.5.

5.3.3 TATP benchmark

We evaluate our transactional map in the TATP benchmark [137] by testing UpdateLocation trans-

actions and compare its performance with generic PTMs proposed in the recent literature [152].

Figure 5.7 presents these results. Throughput reflects the number of millions of transactions ex-
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ecuted per second. While other approaches exhibit poor scalability, TLRW [37] and Orec [36,

51, 135] perform as good as PETRA for low thread counts but fail to scale as we increase the

number of threads (TLRW crashed when running with 96 threads). Orec uses ownership records

with variants of undo/redo logging, the locking mechanisms, and lazy/eager approaches. TLRW

is an eager algorithm with readers/writer locks that does not require quiescence to ensure safety

during commit. This feature and other optimizations, such as fence pipelining, contribute to the

better scalability. Similar to write-dominated workloads in Figure 5.5, PETRA demonstrates its

scalability and shows over 9 times higher throughput compared to the best PTM at 96 threads.

This advantage happens as a result of leveraging the data structure semantic knowledge to manage

both concurrency and durability efficiently, which also reduces the number of required flushes and

fences.
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Figure 5.7: Performance comparison of PETRA with general-purpose PTMs in TATP benchmark.
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5.3.4 Database benchmark

We demonstrate the application of our methodology in a persistent key-value store by using PE-

TRA’s transactional map. We integrated our transactional hash map with pmemkv [117], a key/-

value datastore for persistent memory. We evaluate and compare it against an implementation

based on Intel TBB concurrent hash map. To add transactional capabilities to the implementation

based on the TBB map, we use abstract locking with undo logs, analogous to transactional boost-

ing [68]. We use a benchmark named pmemkv bench from pmemkv-tools [118], which provides

a collection of standard read and write benchmarks. The benchmarks are based on the db bench

utility, which is integrated with popular databases such as LevelDB [59] and RocksDB [48].

In all benchmarks, we utilize integer keys and values and each thread executes one million transac-

tions and each transaction performs four operations. In the fillseq benchmark, each thread executes

insert-only transactions using sequential keys. The fillrandom benchmark performs the same but

with random keys per thread. The overwrite benchmark performs the insertions similar to fillran-

dom, but works on a database that is filled with the key-value pairs. The readseq, readrandom,

deleteseq, and deleterandom benchmarks are similar to their fill versions, but perform read and

delete transactions. The readmissing benchmark reads N missing values in random order. In

the readrandomwriterandom benchmark, all threads carry out transactions with both types of op-

erations randomly. In this benchmark, 90% of operations are read and 10% of them are write

operations.

Figure 5.8 presents the results, with the y-axis showing the time (in microseconds) to execute an

operation, while the x-axis shows two sets of bars: cmap represents Intel TBB’s concurrent hash

map, and our approach is denoted with PETRA. Each set contains 7 bars corresponding to the

following thread counts: 1, 2, 4, 8, 16, 48, 96.
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Figure 5.8: Database benchmark. Number of threads in all plots (1,2,4,8,16,48,96).

For write-only workloads, (a-e), PETRA allows faster database transaction execution in all cases.

For read-only workloads, (f-h), PETRA outperforms cmap in low thread counts except when the

system uses threads on both CPU sockets. PETRA’s engine outperforms Intel TBB’s concurrent

map engine in the mixed workload, (i), that each transaction can execute both read and write

operations.
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5.4 Future Work

PETRA brings the benefit of high performance at the cost of space amplification (2 − 3×). Most

of the amplification is due to LFTT. To achieve persistence, PETRA itself only adds 12-35% space

overheads on top of LFTT, depending on the transaction size. This is a reasonable trade-off es-

pecially since persistent memory capacity is much higher than DRAM. In this work, we assumed

that small objects are used in the transactions and operation data fit in the cache-line. To guarantee

failure-atomicity for transactions with larger objects, we need to ensure the durability of the large

object before persisting the transaction, and to persist data that do not fit in a single cache-line,

more flushes are needed. We also assumed that a crash is rare and our methodology follows the

principle of optimizing of the failure-free execution at the expense of possibly slower recovery. In

future work, we plan to employ a periodic checkpointing mechanism to put an upper bound on the

number of past persisted transactions to validate. This mechanism can also improve the persistent

memory space overhead. We also plan to apply our approach to the extended versions of LFTT

to support features such as wait-freedom, dynamic transactions, and more data structures. We will

also apply our techniques in implementing an in-memory database.

5.5 Chapter Summary

In this chapter, we presented PETRA, a new technique to create persistent non-blocking trans-

actional data structures with ACID properties. We leveraged descriptor objects to implement an

efficient scheme that manages concurrency and durability. PETRA achieves high performance

by keeping the number of cache line flushes and memory fences low, persisting a transaction by

only persisting its descriptor, and by persisting data structures lazily without using flushes and

fences. It uses the transaction descriptors as redo logs. It achieves high scalability by eliminat-
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ing false aborts (by utilizing high-level knowledge of data structure semantics) and reducing true

aborts (through helping). PETRA also preserves LFTT’s non-blocking progress guarantee. Our

performance evaluation demonstrates that our approach, on average, exhibits 17× and 3× higher

throughput compared to the state-of-the-art PTM, for mixed workloads that utilize set and other

data structures, respectively.
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CHAPTER 6: CONCLUSION

In this dissertation, we presented approaches that enable the efficient resource utilization and per-

formance analysis in HPC and cloud environments. We presented methods for enabling real-time

troubleshooting of system components and applications, streaming application performance data

for system monitoring, and efficient durable transactional data structures that can be utilized by the

in-memory databases persisting monitoring data.

In Chapter 3, we presented the design of integrating low-latency analysis into system monitoring.

This design enables low-latency access to results both off-platform and on-platform where they

can be used to provide feedback to applications and system services. The transformed data is

supported by the same structures as the collected data, thus enabling the transformed data set the

same flexibility in transport and the same exposure as the collected data. We demonstrated the

effectiveness of our implementation for a case with production-relevance: run-time determination

of the relative per-node filesystem demands. Run-time availability and exposure of such data would

be of benefit to those seeking to identify the causes of high load on the filesystem and to identify

imbalances in an application’s resource demands.

In Chapter 4, we developed and demonstrated a hybrid approach to HPC application monitoring

that supports performance analysis in production conditions. This approach takes advantage of

the low overhead of shared memory and LDMS to provide insights into the application’s behavior

using profiling during the execution. We have implemented a tool-set based on this design to

evaluate its impact. Our experimental evaluations demonstrate the impact of our low-overhead

tool-set in understanding the application behavior during run-time under different situations.

In Chapter 5, we presented PETRA, a new technique to create persistent non-blocking transactional

data structures with ACID properties. We leveraged descriptor objects to implement an efficient
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scheme that manages concurrency and durability. We discussed how PETRA achieves high per-

formance, high scalability, and non-blocking progress. Our performance evaluation demonstrated

that our approach, on average, exhibits 17× and 3× higher throughput compared to the state-of-

the-art PTM, for mixed workloads that utilize set and other data structures, respectively. PETRA

enables the development of in-memory databases which are capable of handling large amount of

data efficiently.
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