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ABSTRACT

Still image emotion recognition (ER) has been receiving increasing attention in recent years due

to the tremendous amount of social media content on the Web. Many works offer both categorical

and dimensional methods to detect image sentiments, while others focus on extracting the true

social signals, such as happiness and anger. Deep learning architectures have delivered great suc-

cess, however, their dependency on large-scale datasets labeled with (1) emotion, and (2) valence,

arousal and dominance, in categorical and dimensional domains respectively, introduce challenges

the community tries to tackle. Emotions offer dissimilar semantics when aroused in different con-

texts, however “context-sensitive” ER has been by and large discarded in the literature so far.

Moreover, while dimensional methods deliver higher accuracy, they have been less attended due

to (1) lack of reliable large-scale labeled datasets, and (2) challenges involved in architecting un-

supervised solutions to the problem. Owing to the success offered by multi-modal ER, still image

ER in the single-modal domain; i.e. using only still images, remains less resorted to. In this work,

(1) we first architect a novel fully automated dataset collection pipeline, equipped with a built-in

semantic sanitizer, (2) we then build UCF-ER with 50K images, and LUCFER, the largest labeled

ER dataset in the literature with more than 3.6M images, both datasets labeled with emotion and

context, (3) next, we build a single-modal context-sensitive ER CNN model, fine-tuned on UCF-ER

and LUCFER, (4) we then claim and show empirically that infusing context to the unified training

process helps achieve a more balanced precision and recall, while boosting performance, yielding

an overall classification accuracy of 73.12% compared to the state of the art 58.3%, (5) next, we

propose an unsupervised approach for ranking of continuous emotions in images using canonical

polyadic (CP) decomposition, providing theoretical proof that rank-1 CP decomposition can be

used as a ranking machine, (6) finally, we provide empirical proof that our method generates a

Pearson Correlation Coefficient, outperforming the state of the art by a large margin; i.e. 65.13%
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(difference) in one experiment and 104.08% (difference) in another, when applied to valence rank

estimation.
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CHAPTER 1: INTRODUCTION

In this chapter1, we first provide a brief history of Emotion Recognition, discussing the core prin-

ciples in the field. Next, Affective Computing, as an interdisciplinary field spanning computer

science, psychology, and cognitive science is further introduced. We then pinpoint the motiva-

tion behind this work as well as the existing gaps we attempt to tackle accordingly. The chapter is

concluded by touching on the main contributions we have made to the area of Affective Computing.

Emotion Recognition: A brief history

Many philosophers, since the dawn of civilization, have reflected on the nature of emotions. Aris-

totle, one of the greatest philosophers of all time distinguished four humors. The Enlightenment

philosophers attempted to identify human emotions and moods. The development of the field of

psychology in the twentieth century, however, enabled a thorough analysis of human emotions

[13]. The term “emotion” constitutes a hypothetical construct; i.e. a conceptual and operational

definition of an underlying phenomenon that constitutes the object of theory and research. While

the term “emotion” is used interchangeably with terms such as affect, feeling, sentiment or mood,

psychologists define the construct as a process of changes in different components rather than a ho-

mogeneous state. Moreover, the differentiation of the emotions (e.g. fear, anger, joy, etc) is based

on specific configurations of changes in the components. The question of how many emotions are

1This chapter includes excerpts from three works previously published by the author of this dissertation:
(1) “Context-Sensitive Single-Modality Image Emotion Analysis: A Unified Architecture from Dataset Construction
to CNN Classification”, Pooyan Balouchian, Hassan Foroosh, 2018 25th IEEE International Conference on Image
Processing (ICIP), 1932-1936
(2) “LUCFER: A large-scale context-sensitive image dataset for deep learning of visual emotions”, Pooyan Balouch-
ian, Safaei M., Foroosh H., 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 1645-1654
(3) “An Unsupervised Subspace Ranking Method for Continuous Emotions in Face Images”, Pooyan Balouchian,
Safaei M., Cao X., Foroosh H., 2019 30th British Machine Vision Conference
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there and what are they plays a crucial role in the design of human affects systems. This question

is answered very differently depending on the theoretical stance adopted [14]. Next, the major

theoretical models of human affect is briefly described [15].

Dimensional Models

Wundt [16] was the first to explicitly formulate the first dimensional model of human affect. He ex-

pressed emotions vary with respect to three independent dimensions: i.e. pleasantness-unpleasantness

(valence), rest-activation (arousal), and relaxation-attention (dominance). Osgood suggested that

all emotions are perceived in terms of valence and arousal [17]. Since then, many dimensional the-

orists hypothesized that the classification of emotions is described by one or both of these central

dimensions.

Discrete Emotion Models

Discrete emotion theorists define a limited number of basic emotions, such as fear, anger, joy,

sadness, disgust and etc. as the core classes every emotion is characterized by. Some models

suggest that the number of core emotions is determined by evolved neural circuits, such as circuit

models [18], or by phylogenetically continuous classes of motivation such as aggression, as in

motivational models; e.g. Plutchik [11]. These core emotions, or a combination thereof, explain a

variety of emotion-descriptive verbal labels in different languages and cultures.

Meaning-oriented Models

Semantic constructs in the emotion vocabularies are used to discuss the structure of different emo-

tions. This is based on the assumption that there exists a mapping between the semantic and psy-
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chological structures of different emotions. A similar theory claims that emotions are constructed

by socio-culturally determined behavior, suggesting that emotions cannot be simply reduced to

basic psycho-biological patterns and that an emotion needs to be defined based on its semantics in

the culture it’s being contextualized in [15].

Adaptational Models

Theorists proponent of the adaptational models suggest that the evolution of mankind has equipped

us with organisms that are capable of reacting automatically to certain events. Such models are re-

ferred to as biological preparedness models of human affect. An example includes the work carried

on by Oahman [19], suggesting that humans are equipped with automatic detection mechanisms

when exposed to certain threat stimuli, such as snakes and spiders.

Componential Models

Componential emotion theorists believe that emotions are aroused by means of a cognitive ap-

praisal of events, suggesting that different reactions in response to certain situations is produced

by the outcome of this evaluation process [14].

Affective Computing

Affective computing revolves around the creation of and interaction with machine systems, capable

of sensing, recognizing, responding to, and influencing emotions [20]. Affective computing is a

multi-disciplinary field that spans across multiple, and somewhat fundamentally disparate, disci-

plines such as psychology, sociology, engineering, computer science, linguistics and physiology.
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Such disparate and wide range of disciplines that affective computing relates to, suggests the im-

mense complexity in understanding of human emotions and its importance in today’s world.

In this section, we further discuss the modern science of affective computing, by first introducing

the concepts of affect sensing and affect generation. Moreover, the application areas of affective

computing are touched on and the ethical issues arising from building of affective systems are

further outlined.

Affect Sensing

The first step towards building an affective computing system is recognizing emotions. The term

affect sensing refers to computer systems, capable of recognizing human emotions by means of

receiving data through signals and patterns [20].

Facial expressions are informative due to their visibility and omnipresence [21]. Face gestures

such as smiling and frowning convey valuable information with the emotion being aroused. Basic

emotion categories, as they relate to the discrete (categorical) emotion model, can be identified

using methods such as HMM, optical flow, active appearance model, and neural networks [22].

These systems may be used in combination relying on early fusion or late fusion techniques. A

widely used system in emotion classification is the Facial Action Coding System (FACS), created

by Paul Ekman, Wallace V. Friesen, and Joseph C. Hager [23]. FACS identifies facial expressions

as well as the muscles producing these expressions. In addition to FACS, the Emotion Facial

Action Coding System (EMFACS) is a similar system used to score the facial actions, applicable

to sensing emotions [23].

Other systems contributing to affect sensing include posture and gesture recognition, which deals

with identifying different body states, when emotions are aroused as a result of being exposed to
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certain visual stimuli. These systems help recognize gestures, resulting from the movement of

different body parts, and postures as they relate to the position of the body of the person subject of

showing emotions.

Furthermore, the vocal expressions are considered as valuable cues in determining human emo-

tions. These include cues suggesting the most important content in the message, and cues arising

from the speaker’s affective state [24]. The common vocal cues with emotion categories are speech

rate, pitch average, pitch range, intensity, voice quality, pitch changes and articulation [25].

Finally, another modality that has recently attracted a lot of attention in the affective computing

community is text. With recent advancements in the field of Natural Language Processing (NLP)

techniques, sentiment analysis tools benefit from computational linguistics and text analysis to

boost the performance in recognizing emotions. Dominating tools and technologies used for this

purpose include WordNet-Affect [26], SenticNet [27], and SentiWordNet [28].

Affect Generation

Another sub-area of affective computing involves designing systems and robotic agents capable of

conveying intention in a human-perceptible fashion. Optimal human-computer interaction require

computer agents to possess the following attributes: embodiment in the physical environment,

quick reactions to unseen events, computational power to meet goals [29]. There exist numerous

use cases that humans benefit from by having intelligent robots, capable of understanding as well as

conveying emotions in a human-like fashion in the context of office, medicine, hotel use, cooking,

marketing, entertainment, recreation, therapy and rehabilitation, among others [30].
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Applications of Affecting Computing

Affective computing has a wide range of application areas. Picard [20] classifies affective com-

puting application areas into three main categories; i.e. (1) systems that detect human emotions,

(2) systems capable of expressing human-like emotions, and (3) systems capable of “feeling” an

emotion. Healthcare systems benefit from affective computing in different ways. Research has

indicated that patients dealing with Asperger syndrome (AS) or high functioning autism (HFA)

experience difficulty expressing their emotions compared to those without these syndromes. Such

traits affect their relationship with others [31]. Tools have been developed to track the behavioral

patterns, moods and triggers for these patients in an attempt to equip their therapists with better

insight into the patients emotional outbursts.

Furthermore, in the context of education system, affective computing systems help teachers to

better understand the engagement of students during lectures. This is done by monitoring con-

versational cues, body language, as well as facial expression recognition using variety of sensors

[32].

Motivation

The popularity of social networks has contributed to rapid growth of multimedia content; i.e. image,

text, audio and video, on the web. Figure 1.1 depicts statistics portraying the daily hours spent with

digital media in the United States from 2008 to 2018, as well as the trend of the number of people

using social media platforms from 2004 to 2018 [4]. The user engagement on popular social me-

dia such as Facebook, Instagram, Snapchat, YouTube, among others, is mainly characterized by

interaction with multimedia content in the form of images and videos. Users post more than 100

million posts on Instagram on a daily basis, 5 billion videos get viewed on YouTube, with more
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(a) Daily hours spent with digital media,
United States, 2008 to 2018 [4]

(b) Number of people using social media platforms,
2004 to 2018 [4]

Figure 1.1: Social Media Usage Statistics [4]

than 60 billion messages sent on WhatsApp. SnapChat is host to more than 109 million users per

day with more than 3 billion daily snaps and 10 billion daily video views. The tremendous number

of multimedia content uploaded on these platforms has resulted in tremendous demand for data

retrieval and understanding.

Affective computing as the interdisciplinary field spanning computer science, psychology, and cog-

nitive science helps in the study and development of systems and devices that can recognize, in-

terpret, process, and simulate human affects [33]. Sentiment analysis and emotion recognition

are among the main areas leveraging affective computing techniques. Image sentiment analysis is

a coarse-grained approach that deals mainly with the polarity of the image, detecting if the still

image is categorized as positive, negative or neutral. On the other hand, image emotion recogni-

tion, entails a fine-grained, deep dive into the themes associated with each emotion, dealing with

recognizing the exact emotion aroused when exposed to certain visual stimuli. While tremen-

dous amount of research has been carried on in the area of sentiment analysis, still image emotion
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Figure 1.2: Excerpt from noise-reduced LUCFER labeled by AMT workers depicting the happi-
ness emotion in 3 different contexts (from left to right): (1) pregnancy, (2) graduation and (3)
picnic.

recognition remains to be less attended [33].

While in a face-to-face interaction, humans detect and interpret interactive signals of their com-

municator with little effort, design and development of an automated system that accomplishes the

same purpose is rather difficult [34]. Moreover, detecting the context the emotion conveys exacer-

bates the challenging nature of emotion recognition, where context is defined as the whole set of

secondary characteristics of a situation or secondary properties of a cognitive or motivational state

of an individual which may modify the effect of an effective stimulation (stimulus) or an oriented

activity [35].
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Main Contributions

Deep learning has recently enabled robust feature learning, yielding promising results in a variety

of computer vision and multimedia tasks such as image classification and scene detection. The

challenge, however, is the demanding nature of these systems for large-scale datasets required for

training. Lack of such large-scale datasets urged us to build UCF ER2, a context-sensitive emotion

recognition dataset containing 50,000 images, labeled with emotion and context. We then built

LUCFER3, a dataset containing 3.6M still images labeled with emotion and context, along with a

rich set of metadata including objects, bounding boxes, related searches, related images, objects

and etc. Both datasets are publicly available for research purposes under the Creative Commons At-

tribution 4.0 International license. LUCFER is 156 times larger than the largest dataset of the kind

currently available; i.e. Flickr-Instagram dataset [12]. To build LUCFER, we first architected a

fully-automated dataset collection pipeline, equipped with a semantic sanitizer component. Chap-

ter 3 further provides details on the architecture of the designed pipeline, providing statistics on

LUCFER.

We further train a context-sensitive classifier to classify images based on both emotion and context,

pioneering the first single-modal context-sensitive emotion recognition CNN model. Using an

empirical approach, we claim and show that embedding context as part of a unified training process

not only helps boost performance, but also helps deliver a more balanced precision and recall.

We draw the conclusion that CNNs are better fit to learn emotion prediction models by running

experiments on fine-grained (context-sensitive) compared to coarse-grained (context-free) datasets,

running extensive experiments supporting the claim.

Having approached emotion recognition from a categorical angle leveraging deep learning, we

2UCF ER: https://cil.cs.ucf.edu/dataset-2/ucf-er/
3LUCFER: https://cil.cs.ucf.edu/dataset-2/labeled-ucf-emotion-recognition/
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explored the problem in the dimensional domain. Continuous dimensional models of human affect

have shown to offer a higher accuracy in identifying a broad range of emotions compared to the

discrete categorical approaches dealing only with emotion categories such as joy, sadness, anger,

etc. Unlike the majority of existing works benefiting from dimensional models of human affect

(VAD; i.e. Valence, Arousal and Dominance) that mainly rely on training-based (supervised) ap-

proaches, here we propose a fully unsupervised novel method for ranking of continuous emotions

in images using canonical polyadic decomposition. To better portray the efficacy of our proposed

approach, we provide theoretical and empirical proof that our system is capable of generating a

Pearson Correlation Coefficient (PCC) that outperforms the state of the art by a large margin;

i.e. 65.13% (i.e. difference in PCC) in one experiment and 104.08% (i.e. difference in PCC) in

another, when applied to valence rank estimation. Towards this aim, we run experiments on four

major emotion recognition datasets; i.e. CK+, AFEW-VA, SEMAINE and AffectNet, and provide

comprehensive analysis on the observed results accordingly. Our datasets are selected in a way to

include images collected under controlled environments such as a laboratory setting; e.g. CK+ and

SEMAINE, semi-controlled environments; e.g. AFEW-VA, and uncontrolled environments (from

the wild); e.g. AffectNet.

We further performed extensive ablation studies to monitor the performance of our designed rank-

ing machine. Our ablation studies are designed to measure the fault-tolerance of the proposed

method. Details on these studies are discussed in chapter 4, section 4.

In chapter 2, we will dig into more details, summarizing the current state of the art in the area

of emotion recognition. The sub-areas and open problems we have tackled in this work will be

further pointed out in the same chapter, specifying similarities and differences between our work

and those proposed by state of the art.

In chapter 3, the architecture of the designed dataset collection pipeline gets further discussed and
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comprehensive statistics on UCF ER and LUCFER will be provided accordingly.

Chapter 4 further digs into details of our proposed approach to the problem of emotion recognition,

portraying empirical and theoretical proofs, when applicable.

Finally, in chapter 6, we summarize the work we are presenting by pinpointing the gaps we have

filled, lessons learned during the whole process, doors closed, while pointing out doors opened as

a result of our effort in this work, concluding by providing some insight on the future directions

the community is currently exploring.
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CHAPTER 2: LITERATURE REVIEW

In this chapter1, we further review the main building blocks of emotion recognition in both cat-

egorical and dimensional domains. The widely-used emotion models and the state of the art in

emotion recognition will further be discussed in this chapter. We further pinpoint how our work is

similar or different compared to state of the art, touching on the sub-areas we address.

Emotion Models in Psychology

There exist mainly two governing emotion representation models deployed in the field of psychol-

ogy: categorical and dimensional. The categorical models classify human emotions into a number

emotion classes, e.g. happiness, anger and etc. Some of the widely used and dominant categori-

cal models the affective computing community benefits from include Mikels’ eight emotions [36],

Ekman’s six basic emotions [37] and Plutchik’s wheel of emotions [38].

An emotion is referred to as sentiment when classified into positive, neutral, or negative polari-

ties. Human emotions, however, are better modeled as continuous coordinate points in a 3D or

2D Cartesian space; i.e. valence, arousal and dominance (VAD) [39]. VAD is the most widely

used dimensional model of human affect, where valence represents the pleasantness ranging from

positive to negative, arousal represents the intensity of emotion ranging from excited to calm, and

dominance represents the degree of control ranging from controlled to in control. Dominance is

1This chapter includes excerpts from three works previously published by the author of this dissertation:
(1) “Context-Sensitive Single-Modality Image Emotion Analysis: A Unified Architecture from Dataset Construction
to CNN Classification”, Pooyan Balouchian, Hassan Foroosh, 2018 25th IEEE International Conference on Image
Processing (ICIP), 1932-1936
(2) “LUCFER: A large-scale context-sensitive image dataset for deep learning of visual emotions”, Pooyan Balouch-
ian, Safaei M., Foroosh H., 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 1645-1654
(3) “An Unsupervised Subspace Ranking Method for Continuous Emotions in Face Images”, Pooyan Balouchian,
Safaei M., Cao X., Foroosh H., 2019 30th British Machine Vision Conference
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Figure 2.1: Plutchik’s Wheel of Emotions

difficult to measure and is often omitted, leading to the commonly used two dimensional VA space

[40].

In our work and as part of proposing a deep learning solution in the categorical domain, we adopt

the Plutchik’s wheel of emotions model depicted in figure 2.1 to build UCF ER (UCF Emotion

Recognition) and LUCFER datasets. This choice was motivated by the depth the Plutchik’s wheel

of emotions represents compared to other emotion models. In 1980, Robert Plutchik constructed

a wheel-like diagram of emotions, depicted in figure 2.1, visualizing eight basic emotions: joy,

trust, fear, surprise, sadness, disgust, anger and anticipation [11]. Plutchik’s three-dimensional

model describes the relations among emotions, which is extremely helpful in understanding how

complex emotions interact and change over time, hence embedding valence as part of its emotion

definition system. The eight sectors are designed to indicate that there are eight primary emotion

dimensions. The cone’s vertical dimension represents intensity - emotions intensify as they move
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Figure 2.2: VAD Model of affective computing, depicting valence, arousal and dominance

from the outside to the center of the wheel.

Furthermore, with respect to our proposed method in the dimensional space, we employ the valence

dimension of the widely-used VAD model of affective computing. Figure 2.2 provides a visual

depiction of the 3-dimensional VAD model in a -1 to +1 rating scale, along with a number of

sample emotion categories in this space.

Image Datasets for Affective Computing

In the early phases of affective computing, before the social networks were widely used by users to

share multimedia content on, the image datasets built and adopted were small in size. IAPS (Inter-

national Affective Picture System), a widely used emotion dataset offers complex scenes, with each

image associated with the mean and standard deviation (STD) of VAD ratings in a 9-point scale
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Table 2.1: Publicly accessible emotion datasets showing (1) number of images, (2) emotion model
adopted, (3) labeling method used, (4) whether or not context-sensitive labels exist, and (5) the
label type; i.e. dimensional, categorical or hybrid. VAD stands for Valence, Arousal, Dominance.

Dataset # Images Emotion Model Labeling Approach Context-Sensitive
Labels? Label Type

IAPS [41] 1,182 VAD Human Judges No Dimensional
ArtPhoto [42] 806 Mikels Human Judges No Categorical
Flickr-Instagram [12] 23,308 Mikels Amazon Mech. Turk No Categorical
Emotion6 [43] 1,980 Ekman+neutral Amazon Mech. Turk No Categorical
EMOTIC [44] 18,316 26 hand-picked categories Amazon Mech. Turk No Hybrid
FlickrLDL [45] 10,700 Mikels Human Judges No Categorical
TwitterLDL [45] 10,045 Mikels Human Judges No Categorical
IAPSa [36] 246 Mikels Human Judges No Dimensional
GAPED [46] 730 Sentiment, VA Human Judges No Hybrid
MART [47] 500 Sentiment Relative Score Method No Categorical
devArt [47] 500 Sentiment Relative Score Method No Categorical
Tweet [48] 603 Sentiment Amazon Mech. Turk No Categorical
FlickrCC [48] ˜500,000 Plutchik’s wheel of emotions Amazon Mech. Turk No Categorical
Flickr [49] ˜300,000 Ekman Keyword Matching No Categorical
IESN [50] 1,012,901 Mikels, VAD Human Judges No Hybrid
UCF ER [1] 50,000 Plutchik’s wheel of emotions Human Judges Yes Categorical
LUCFER [2] 3.6M Plutchik’s wheel of emotions Amazon Mech. Turk Yes Hybrid

[41]. This dataset was manually built and labeled by 100 students. The IAPSa dataset is a subset

of IAPS, composed of 246 images, annotated by 20 students [36]. ArtPhoto, which includes a

set of 806 artistic photographs is annotated by the artist uploading the photos to a photo sharing

website [42]. GAPED (The Geneva Affective Picture Database) is comprised of 520 negative,

121 positive, and 89 neutral images [46], tagged with valence and arousal in a 0-100 rating scale.

MART and devArt datasets both contain 500 abstract paintings each. MART contains paintings

by professional artists and devArt consists of paintings by amateur artists, collected from the Mu-

seum of Modern and Contemporary Art of Trento and Rovereto [47], and the “DevianArt” social

network [47], respectively.

With the advent of social networks, the volume of multimedia content on the web started piling up

fast. This led to creation of large-scale datasets constructed from these sites. The Tweet sentiment
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dataset includes 470 and 113 positive and negative sentiments respectively [48]. The FlickrCC

dataset is constructed based on 1,553 adjective noun pairs (ANPs) to generate a total of 500K

Flickr creative common (CC) images [48]. In this dataset, the images are mapped to the Plutchik’s

wheel of emotions. The Flickr dataset contains a set of 300K images [49]. In this dataset, the

emotion category associated to an image is defined via synsets (list of synonymous words) to

the adjective words found in an image’s tags and comments. A widely used emotion recognition

dataset, i.e. Flickr-Instagram [12], consists of 23,308 images collected from Flickr and Instagram.

Flickr-Instagram uses a keyword-based search approach to crawl Flickr and Instagram. The

collected images are then labeled by 225 Amazon Mechanical Turk (MTurk) workers in an attempt

to sanitize the collected dataset. The Emotion6 dataset [43] is a well-balanced dataset with 330

images representing each of the Ekman’s emotion categories. 15 AMT Workers verified each

image, offering high confidence in the validity of each image assigned to an emotion category.

The IESN (Image-Emotion-Social-Net) dataset [50] contains around 1M images collected from

Flickr, used for personalized emotion prediction. FlickrLDL and TwitterLDL datasets [45] are

constructed for discrete emotion distribution learning. The former one is a subset of FlickrCC,

which are labeled by 11 viewers. The latter one consists of 10,045 images which are collected by

searching various sentiment keywords from Twitter and labeled by 8 viewers.

Table 2.1 lists popular emotion recognition datasets including UCF ER and LUCFER along with

relevant statistics for each. LUCFER differs from the similar datasets mainly in terms of its volume,

rich metadata, multi-dimensional labels; i.e. <emotion-context> it is tagged with, and the fact

that it has valence self-embedded. UCF ER and LUCFER contain 50,000 and 3.6M still images

respectively, tagged with emotion and context categories. Our datasets do not merely rely on human

judges or AMT workers, but the images are also validated by a semantic sanitizer, taking advantage

of a WordNet-based semantic similarity component. This resulted in a higher confidence in the

quality of the constructed dataset. The sanitized set is further enhanced in size through integration
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with the Bing’s Cognitive Services API. The architecture of our dataset construction pipeline is

further discussed in chapter 3 comprehensively.

Deep Learning Methods for Still Image Emotion Recognition

Research in the area of emotion recognition is mainly focused on inferring emotions via multi-

modal approaches, taking advantage of text, still images, audio and video data, relying on deep

learning frameworks. Mainly due to the their capacity that can be controlled by varying their depth

and breadth [51], CNNs have helped many works taking advantage of transfer learning. In a recent

survey on the topic of emotion and social signals [52], it is argued that aside from textual and

written information provided by users, multimodal human behavioral information that is present

within the media provides a vast source of information, referred to as affective and social content.

The majority of these methods model emotions using categorical (using the emotion category as

labels) or dimensional approaches (valence, arousal and dominance) studied by emotion theorists

[53]. Most of the models surveyed in [54] and [55] adopt the categorical approach.

Some of the recent works involving categorical approaches include [56], [57], [49], [12], [42],

[58], [59], [60], [61], while [62], [63], [64] and [65] propose dimensional methods, with some

employing hybrid models leveraging both methods [44].

In [59] and [60], efforts are made to address the problem of visual sentiment analysis based on

CNNs, where the sentiments are predicted using multiple affective cues. It is argued that providing

the localized information of the affective images in addition to the holistic representations, helps

boost performance when experimented on six benchmark datasets; i.e. Flickr-Instagram (FI),

Flickr, Instagram, EmotionROI, Twitter I and Twitter II. In another work, [61], a multi-task deep

framework is developed to leverage the ambiguity and relationship between emotional categories
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Table 2.2: Related works on deep learning based affective computing of still images. Under Task,
cla stands for classification, ret stands for retrieval, and dis d stands for discrete distribution.

Base Network Pre-trained Context Datasets Dataset size Task Result
Custom [68] no no FlickrCC ˜500K cla 0.781
AlexNet [12] yes no FI 23,308 cla 0.583
Custom [69] no no FI, IAPSa, ArtPhoto 23,308, 246, 806 cla 0.730, 0.902, 0.855
GoogleNet-

Inception [70] yes no Flickr-Instagram, IAPSa, Abstract, ArtPhoto 23,308, 246, 279, 806
cla
ret

0.676, 0.442, 0.382, 0.400
0.780, 0.819, 0.788, 0.704

AlexNet [43] yes no Emotion6 1,980 dis d 0.480
VGG16 [61] yes no Emotion6, FlickrLDL, TwitterLDL 1,980, 10,700, 10,045 dis d 0.420, 0.530, 0.530

VGG16 (our work) yes yes UCF ER 50,000 cla 0.711
ResNet-50 (our work) yes yes UCF ER 50,000 cla 0.766

VGG16 (our work) yes yes LUCFER 3.6M cla 0.731

for visual sentiment prediction, showing that the proposed method performs favorably against state

of the art.

Some other works utilize user demographics to infer the emotion of an image ([66] and [67]).

These demographics include gender, age, social and political views of a user on an array of social

networks. These efforts borrow the theory that a correlation exists between the user’s behavioral

patterns and the demographics.

In the closest efforts in the literature, [12] and [44] have made valuable contributions in the area

of emotion recognition dataset construction and building prediction models, forming a baseline

for other works to be compared against. [12] introduced an emotion recognition dataset of 23,308

strongly labeled images to address the challenge posed by unavailability of a large-scale well la-

beled dataset specifically for the task of emotion recognition. Meanwhile, [12] evaluated the deep

visual features extracted from differently trained neural network models, suggesting the deep CNN

features outperform the state-of-the-art hand-tuned features for visual emotion analysis. Their re-

sults demonstrate a classification accuracy of 58.3% on their fine-tuned CNN, forming a baseline

for the community to work with. They choose eight emotion categories derived from a psycholog-

ical study in [36]; i.e. Mikels’ eight emotions.
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In an effort to alleviate the challenges imposed by weakly labeled datasets, [68] employs CNNs.

They follow a three-step process. They first design a CNN to perform sentiment analysis, collecting

roughly 500K training samples, employing a baseline sentiment algorithm in order to label Flickr

images. Next, a progressive strategy is employed in order to fine-tune the deep network. Finally,

the performance on Twitter images is boosted by inducing domain transfer with a small number of

manually labeled Twitter images.

More recently, [70] explored deep metric learning to observe the correlation of emotional labels

with the same polarity, and further proposed a multi-task deep framework in an effort to opti-

mize retrieval and classification tasks. Taking into consideration the relations among emotional

categories in the Mikels’ wheel, they jointly optimized a novel sentiment constraint with the cross-

entropy loss. Extending triplet constraints to a hierarchical structure, the sentiment constraint em-

ploys a sentiment vector based on the texture information from the convolutional layer to measure

the difference between affective images.

The deep methods discussed so far mainly focus on the dominant emotion prediction. There exist,

however, some other methods proposed on emotion distribution learning. A work pioneering this

methodology is a mixed bag of emotions, in which a deep CNN regressor (CNNR) is trained for

each emotion category in Emotion6 [43] dataset based on AlexNet. The number of output nodes

is changed to 1, facilitating prediction of a real value for each emotion category. The Softmax loss

is further replaced with Euclidean loss. The probabilities of all emotion categories are normalized

to enforce the sum of different probabilities to be 1. CNNR poses some limitations. Firstly, the

predicted probability is not guaranteed to be a non-negative value. Secondly, the correlation among

different emotion categories are ignored as the regressor for each emotion category is trained inde-

pendently.

A key area that remains less attended is ignoring the context in which the emotion is conveyed.
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In [44], effort is made to address the problem of emotion state recognition in context. [44] intro-

duces the EMOTIC database, containing 18,316 images, collected in non-controlled environments

containing people in context, combining two different types of annotations; i.e. 26 emotional cat-

egories, and 3 continuous emotional dimensions in the VAD (Valence, Arousal, and Dominance)

space.

The dominant deep learning based methods discussed are summarized in table 2.2 along with

unique features associated with each method. Our work, compared to [12] and [44], is different

in that LUCFER is labeled with 275 (as opposed to 8) different emotion-context categories, con-

taining more than 3.6M labeled images, hence constructing a dataset, 156 times larger than the

largest dataset of the kind currently available in the community; i.e. 23,308 from [12]. Moreover,

LUCFER is not only enriched with emotion categories, but also the context in which the emotion

is triggered under, forming a 2-dimensional label. The term context in [44] is defined by the visual

features defining the background of the main subject in the image, treated as helpers to better de-

fine the emotion in question. On the contrary, context in our work is defined as the circumstances

that form the setting for an event, in terms of which it can be fully understood and assessed, hence

treating it as a semantic, rather than a visual, element in the image. Moreover, borrowing from the

Pluthik’s wheel of emotions [11], we quantized the values 0 to 10 and assigned them to the relevant

emotion categories based on where on the Plutchik’s wheel each emotion category appears.

Machine Learning for Ranking

Ranking data is an important problem of machine learning, mainly approached as a supervised,

semi-supervised or reinforcement learning technique. Its application areas include information re-

trieval, document retrieval, collaborative filtering, sentiment analysis and online advertising [71].

Chapelle and Chang (2011), among other researchers in the field, argue that state-of-the-art learn-
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ing to rank models can be categorized into three types [72].

Pointwise methods, such as decision tree models and linear regression, directly learn the relevance

score of each instance. The final ranking is achieved by simply sorting the result list by these

document scores. Ordinal regression and classification algorithms could benefit from this approach

when used to predict the score of a single query-document pair.

Pairwise methods, such as rankSVM [73] learn to classify preference pairs by learning a binary

classifier that prefers one document over the other given pair of documents. The goal for the ranker

is to minimize the number of inversions in the ranking; i.e. cases where the pair of results are in

the wrong order relative to the ground truth. One could argue that pairwise approaches might have

an edge compared to pointwise approaches considering the fact that predicting relative ordering is

closer to the nature of ranking as opposed to predicting class label or relevance score. A number

of popular learning to rank approaches take advantage of pairwise techniques, namely RankNet

[74], LamdaRank and LamdaMART [75].

Listwise methods, such as LambdaMART [75] tend to directly optimize the measurement for eval-

uating the entire ranking list. Moreover, methods have been proposed that combine more than

one of these categories, e.g. GBRank [76], which proposes a combination of pointwise decision

tree models and pairwise loss. A widely used method utilized as a pairwise approach is rankSVM

[73], which is considered an extension to standard Support Vector Machines (SVM) by Boser et

al. (1992) [77] and Cortes and Vapnik (1995) [78].

Moreover, there are works on unsupervised ranking of images leveraging a probabilistic approach,

such as one by Horster et al. (2009) [79]. Horster et al. (2009) [79] hypothesizes the photos at

the peaks of a distribution are the most likely photos for any given category, making such images

the most representative. In contrast to such probabilistic methods, ours does not require a large

number of images in order to derive a high quality ranking.
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Works on Valence Estimation

While deep architectures have been proven to yield promising results in different computer vision

tasks, specifically classification of multimedia content, they have not been able to offer similar ro-

bust results when applied on continuous valence and arousal estimation. There exist a large num-

ber of works in the domain of valence and arousal estimation, with the majority of these methods

focusing on multimodal audio/video-based estimation as opposed to single modality approaches in

the domain of still images. Valence estimation was mainly approached using coarse-level methods,

posing the problem as a classification problem (e.g. positive vs. negative). Later, researchers in the

field started treating the problem in the continuous domain [80], [81], [82]. The majority of these

approaches mainly rely on metadata derived from other modalities such as text, audio and video to

perform valence estimation [80].

The continuous audio/visual emotion challenge [83], AVEC in short, started in 2011, aims to bring

together researchers from the audio and video analysis communities around emotion recognition

with the goal being to recognize the four continuously valued affective dimensions; i.e. valence,

arousal, dominance and expectancy. Initially starting with a subset of SEMAINE dataset [83]

and later switching to RECOLA [84], computer vision researchers proposed solutions to tackle

the problem of audio/visual emotion recognition in the continuous domain, reporting performance

using the Pearson Correlation Coefficient (PCC).

Several methods have been proposed to address valence estimation in the continuous domain, the

summary of which is presented here in table 2.3.

Numerous existing approaches to valence estimation use static regression [82], [106], [107], [108].

These methods that are mainly used as baseline methods range from linear regression, partial

least squares regression to kernel-based methods such as Nadaraya-Watson kernel regression [86].
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Table 2.3: Related works on continuous valence estimation. Modalities are abbreviated as V:
video, AV: Audio/Video, AVM: Audio/Video/Meta-data and AVP: Audio/Video/Physiological.
PCC stands for Pearson Correlation Coefficient.

Method Modality Dataset Valence (Average PCC)
OA BLSTM-NN [85] AV Semaine subset 0.796
N-W kernel regression [86] AV Semaine (AVEC 12) 0.341
Fuzzy inference system [87] AVM Semaine (AVEC 12) 0.42
CSR [88] AV Semaine subset 0.21
SVR and CCRF [89] V Semaine (AVEC 12) 0.343
RF [90] V Semaine (AVEC 12) 0.454
Doubly sparse RVM [91] V Semaine (AVEC 12) 0.31
Time-delay NN [92] V Semaine (AVEC 12) 0.308
Time-delay NN [92] V AVEC13 0.127
SVR [93] AV AVEC13 0.135
SVR [94] AVM AVEC14 0.587
CCA [95] V AVEC14 0.381
LR [96] AV AVEC14 0.493
Deep belief network [97] AV AVEC14 0.528
OA RVM [98] AVP AVEC15 0.588
LR + boosted regression trees [99] AV AVEC15 0.501
RF + gradient boosting + SGD [100] AVP AVEC15 0.490
RNN [101] AVP AVEC15 0.590
LSTM-RNN [102] AVP AVEC15 0.627
Deep BLSTM-RNN [103] AVP AVEC15 0.616
LSTM - kalman filter [104] AVP AVEC16 0.689
RF + LR [105] AVP AVEC16 0.634

Moreover, different types of fusion methods, including early fusion and late fusion are proposed

with the former offering methods that combine geometric and appearance features before train-

ing, and the latter combining estimations resulted from different modalities and later fusing them

together forming a uniform estimation.

In the next two chapters, i.e. 3 and 4, we provide details on the architecture of our proposed dataset

construction pipeline, followed by our proposed methods to the problem of emotion recognition

in context, tackling the problem from both categorical as well as dimensional angles, highlighting

the differences between our methods vs. state of the art.
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CHAPTER 3: DATASET CONSTRUCTION

With reference to figure 1.1, the volume of multimedia content on the web is increasing at a rapid

pace. On the other hand, due to their demanding nature for large-scale datasets, deep learning

architectures designed to tackle problems in various domains have urgent need for large-scale

structured datasets that are labeled and available for use. This necessity urged us to architect and

develop a reusable dataset collection pipeline built for large-scale datasets. We further used the

pipeline to collect UCF ER and LUCFER, containing 50,000 and 3.6M images respectively and

used both datasets to benchmark our proposed methods.

In this chapter1, we first provide details on the emotion definition system used. Next, we elaborate

on the method developed to collect images from the wild, and the labeling process adopted. We

then discuss the approach employed to enhance LUCFER’s size using Bing’s Cognitive Services

API 2. Furthermore we provide detailed statistics on both UCF ER and LUCFER.

Emotion Definition System

There exist a number of different emotion definition systems in the context of cognitive sciences.

These include the work by [36] (adopted in [12]), collecting descriptive emotional category data

on subsets of the International Affective Picture System (IAPS) to identify images that elicit one

1This chapter includes excerpts from three works previously published by the author of this dissertation:
(1) “Context-Sensitive Single-Modality Image Emotion Analysis: A Unified Architecture from Dataset Construction
to CNN Classification”, Pooyan Balouchian, Hassan Foroosh, 2018 25th IEEE International Conference on Image
Processing (ICIP), 1932-1936
(2) “LUCFER: A large-scale context-sensitive image dataset for deep learning of visual emotions”, Pooyan Balouch-
ian, Safaei M., Foroosh H., 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 1645-1654
(3) “An Unsupervised Subspace Ranking Method for Continuous Emotions in Face Images”, Pooyan Balouchian,
Safaei M., Cao X., Foroosh H., 2019 30th British Machine Vision Conference

2https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
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discrete emotion more than others. A tree-structured list of emotions was described in [109], and

later featured in [110]. In [37], it is demonstrated that there exists a high agreement across mem-

bers of different cultures on selecting emotional labels that fit facial expressions. These include

happiness, surprise, anger, disgust, fear and sadness.

In 1980, Robert Plutchik constructed a wheel-like diagram of emotions portrayed in figure 2.1,

adopted here in this work, visualizing eight basic emotions: joy, trust, fear, surprise, sadness,

disgust, anger and anticipation. Plutchik’s three-dimensional model [11], describes the relations

among emotions, which is extremely helpful in understanding how complex emotions interact

and change over time, hence embedding valence as part of its emotion definition system. The

eight sectors are designed to indicate that there are eight primary emotion dimensions. The cone’s

vertical dimension represents intensity - emotions intensify as they move from the outside to the

center of the wheel.

Collecting Images from the Wild

One of the challenges posed by architectures employing deep learning frameworks is the need for

large-scale datasets. This problem has been tackled in some domains, but not others. Despite ef-

forts made in the area of emotion recognition, this problem remains to be a challenge. In a valuable

recent effort [12], a dataset of 23,308 images is constructed by querying Flickr and Instagram using

a similar approach in [111]. In [111], Flickr is queried using Kobayashi’s 16 affective categories

as keywords. If an image’s labels or the author’s comments contain one affective category, they

consider the image associated with the affect.

In another recent contribution, [44] introduces the EMOTIC database, composed of images from

MSCOCO [112], Ade20k [113] and images that were manually downloaded from Google search

engine. Their database contains 18,316 images, combining two different representation formats:
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Figure 3.1: UCF ER dataset construction pipeline.

i.e. discrete categories and continuous dimensions.

In this work, we propose a novel approach to develop a scalable, configurable and re-usable system

to collect images from the wild. We first designed a large-scale dataset collection pipeline “LDAC

1.0”, used to build UCF ER [1]. We later developed “LDAC 2.0” [2], which is an enhanced version

of “LDAC 1.0”, used to build LUCFER. The two systems are further elaborated on in the following

sections.

LDAC 1.0 and UCF ER

Figure 3.1 depicts LDAC 1.0’s dataset construction pipeline. To build UCF ER, we enriched the

set of emotion keywords, adopted from the Plutchik’s wheel of emotions, by querying WordNet

synsets to append the synonymous words to each emotion category. Moreover, we formed a set of

contexts each emotion category relates to, based on the frequency of different contexts each of the

eight emotions appear in. For instance, the emotion happiness is defined in contexts, including but

not limited to graduation, birthday party, pregnancy, wedding ceremony and sport event, among

others. Using this technique, we formed a matrix of 190 emotion-context pairs.

Next, we crawled the Web, utilizing the RESTFul APIs offered generously by Flickr 3 and Bing

3Flickr API https://www.flickr.com/services/api/
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4, collecting a dataset of over 400,000 images. We then eliminated the duplicates using fdupes

[114]. Moreover, we employed 10 image processing and computer vision experts to evaluate the

relevancy of the images with respect to the labels; i.e. emotions and contexts. The experts were

instructed to eliminate photos including text cues. We ended up with 50,000 strongly labeled,

noise-reduced images labeled with emotion and context. To the best of our knowledge, this is the

first emotion recognition dataset that enriches the label with context in addition to emotion. The

current largest dataset, not benefiting from context, refers to the dataset provided generously by

[12], containing 23,308 images.

A key observation is that [12] initially collects over 3M raw images, and finally ends up with

a sanitized dataset of 23,308 images, indicating 99.3% noise in the initial dataset collected. In

our work, following the approach depicted in figure 3.1, our raw dataset of 400,000 images was

reduced to 50,000, resulting in 87.50% noise. [12] uses an approach similar to [111] to collect

images from Flickr and Instagram, treating an image associated with the affect if an image’s labels

or the author’s comments contain one affective category. The strategy adopted in our web crawl-

ing, depicted in 3.1, plays a crucial role in reducing noise available in our raw collected dataset,

resulting in a strongly labeled dataset more than double the size of the current largest dataset of the

like; i.e. [12].

LDAC 2.0 and LUCFER

The enhanced version of LDAC 1.0, i.e. LDAC 2.0 [2] includes two additional components com-

pared to LDAC 1.0. LDAC 2.0 is integrated to Amazon Mechanical Turk as well as Bing’s Cogni-

tive Services API. The functionality of these newly added components are further discussed in this

section.

4https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
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Figure 3.2: LUCFER dataset construction pipeline.

To build LUCFER, we start from 24 emotion categories; i.e. 8 basic emotion categories plus an

additional set of 16 emotion categories available in the Plutchik’s wheel of emotions, covering

valence [11]. Next, we queried WordNet [115] to extract terms synonymous to our initial list of

24 emotions at hand. We then combined 42 contexts with these emotions to form a 2-dimensional

emotion-context matrix containing 275 emotion-context pairs. This helps us further analyze the

effect of infusing context into the training process. Figure 3.2 further depicts the architecture of

our dataset collection pipeline.

To crawl the Web for images, we used Bing’s Cognitive Services API. To take advantage of Bing’s

filters including face-only, include body parts and etc., we flagged the emotion-context pairs with

the relevant filters when applicable, in order to enforce them during search. Figure 3.3 portrays a

side-by-side comparison between the same search ran “with” and “without” Bing’s head & shoul-

der filter applied. Using this approach, we collected 80,649 images from the wild. Next, we

employed Amazon Mechanical Turk workers to label the weakly-labeled images resulted from

our initial search. AMT workers answered an array of questions on each image. The questions

were designed to validate the weakly-labeled (1) emotion and (2) context, while also capturing the
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(a) Keyword “happiness graduation” searched
on Bing Images with no filter applied

(b) Keyword “happiness graduation” searched on
Bing Images with head & shoulder filter applied

Figure 3.3: Keyword “happiness graduation” searched on Bing Images “with” and “without” head
& shoulder filter applied

(3) number of humans in the image and (4) whether or not the image is a drawing, synthesized,

cartoon-based or real. The workers flagged 43.60% of the images as correctly labeled, resulting

in a validated 35,239 noise-reduced images strongly-labeled with emotion and context. Table 3.1

shows the proportion of noise vs. correctly labeled images in Flickr-Instagram [12], UCF ER [1]

and LUCFER [2]. The noticeable difference in the noise percentage in our method as opposed to

state of the art, prior to the validation step, is attributed to the (1) way we construct our emotion-

context pair, and (2) the use of filters in our search strategy, as well as (3) the semantic sanitization

we perform as a final step to sanitize our dataset. Excerpt from the noise-reduced LUCFER is

depicted in figure 3.4. Next, we will discuss the dataset enhancement method we employed in [2].

Enhancing LUCFER Size

To enhance the size of our dataset, we took advantage of Bing’s “visually similar images” feature

available in its Cognitive Services API. This enabled us to query for images similar to the images
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Table 3.1: Noise percentage in the raw dataset collected by different dataset collection strategies

Dataset Raw Size Sanitized Size Noise % Context Filter-based Search
Flickr-Instagram [12] ˜3M 23,308 (strongly labeled) 99.3% No No
IESN [50] ˜21M 1M (weakly labeled) 95% No No
UCF ER [1] ˜400,000 50,000 (strongly labeled) 87.5% Yes No

LUCFER [2] ˜80,000
35,239 (strongly labeled)

3.6M (weakly labeled)
56.4%

N/A Yes Yes

collected during the first step of the process. It is worth mentioning that the dataset at hand during

this phase includes only noise-reduced strongly labeled images labeled by AMT workers. Taking

advantage of this feature, our system re-crawled the Web, collecting 8,498,660 images. Next we

(i) de-duped the dataset using fdupes [114], and (ii) minimized the noise by comparing the labels

of the AMT labeled images against the labels on the automatically captured images, eliminating

those violating a predetermined semantic similarity measure. This led to creation of LUCFER,

containing a total of 3,605,101 unique images. To avoid the class imbalance problem, elaborated

on in section 4.4, we sub-sampled the dataset to have an equal number of images per class.

We hope that UCF ER and LUCFER serve the Multimedia and Computer Vision communities,

enabling both single-modal and multi-modal methods run experiments on our datasets, specifically

taking advantage of the rich metadata LUCFER is equipped with. Figure 3.4 depicts excerpts from

LUCFER, portraying samples from each basic emotion category, along with the context embedded

in the photo. This figure displays samples from the strongly labeled set validated by AMT workers

as well as the visually similar images collected using Bing’s Cognitive Services API.

Dataset Statistics

In this section, statistics for both UCF ER and LUCFER are shared to enable us do a comparative

analysis between our datasets vs. those of the state of the art.
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Figure 3.4: Excerpts from LUCFER displaying samples from the (1) strongly labeled set validated
by AMT workers, and (2) images pulled using Bing’s Cognitive Services API.

Figure 3.5: Distribution of images per emotion category. Stacked bars show context distribution
across each emotion category.
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Table 3.2: Excerpts from UCF ER emotion-context matrix

Emotion Emotion
Context Joy Context Anger

Baby 4,558 Argument/Quarrel 2,018
Pregnancy 5,074 Protest/Demonstration 6,370
Game/Sport 9,777 Failure 1,639
Family/Friends 9,017 Fight 3,108
Gathering/Reunion 8,089 Police Encounter 3,245
Graduation 4,119
Job/Work/Business 4,001 Emotion
Outdoor 5,064 Context Fear
Party/Event 5,839 Adventure 2,326
Peace/Relaxation 10,413 Police Encounter 3,760
Picnic 3,874 Watching Movie 3,507
Travel/Adventure 7,227 Burglary 2,117

UCF ER

Figure 3.5 depicts the distribution of images per emotion category. Stacked bars show context

distribution across each emotion category. As shown in this figure, the number of images across

different emotion categories is imbalanced. Class imbalance is a classical problem associated to

dataset sizes. We approach this problem by making adjustments to the class weights in our CNN

configuration, shown in figure 3.1 to make our predictions unbiased.

Table 3.2 shows excerpts from UCF ER, reporting on the number of images per emotion-context

pair.

LUCFER

Table 3.3 lists an array of useful statistics on LUCFER showing the basic emotions, synonymous

emotions covering different degrees of valence, relevant contexts paired with different emotion cat-
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egories, along with the number of images collected for each emotion-context pair. It is worth noting

that even though a number of emotion-context pairs are semantically similar; such as {violence-

demonstration} compared to {outburst-demonstration}, the dataset is eventually de-duped, leaving

only unique images used in the training phase. LUCFER also benefits from a rich and structured

set of metadata suitable for computer vision tasks involving emotion recognition ranging from still

image single-modality to multi-modal approaches. LUCFER’s images are accompanied by cap-

tions, recognized entities (people) in the image, person’s gender, bounding boxes, types of clothes

the person is wearing, image resolution and dimensions, and tags among other useful data points.

Table 3.4 shows some commonly-used datasets in the area of emotion recognition.

Table 3.3: Statistics on LUCFER dataset showing (1) basic emotions from Plutchik’s wheel of
emotions [11] and the total number of images collected for each basic emotion, (2) synonymous
emotions covering different degrees of valence, (3) contexts paired with each emotion set (basic
emotion + context, or synonymous emotion + context), and (4) the total number of emotion-context
pairs formed as a result of combining basic emotions and synonyms with their relevant contexts.

Basic Emotions
(# of Images)

Synonymous emotions covering
different degrees of valence

Contexts
(# of Images)

Emotion-Context
Pairs

Anger (611,031)

Violence, Resentment, Outburst, Rage,
Indignation, Unhappiness, Frustration,
Discontent, Annoyance, Outrage,
Displeasure, Animosity

Argument (66,866), Demonstration (95,125),
Fight (67,651), Police (80,467),
Protest (191,098), Sports (83,095),
Work-related (26,729)

62

Anticipation (89,083) Enthusiasm, Vigilance, Expectation
Pregnancy (42,160), Standing in Queue (14,422),
Sports (19,178), Work-related (13,323) 6

Disgust (242,095)
Fatigue, Monotony, Lethargy, Indifference,
Apathy, Boredom, Contempt, Dislike

Food (20,510), People (14,597),
Relationships (4,368), Rubbish (19,272),
Sports (30,912), Studying (70,159),
Watching TV (31,521), Work-related (50,756)

18

Fear (196,501)

Shock, Intimidation, Dread, Stress, Anxiety,
Concern, Despair, Doubt, Horror, Panic, Worry,
Unease, Scare, Apprehension, Disquiet, Mistrust,
Suspicion, Terror, Awe

Adventure (11,984), School Exam (60,962),
Halloween (29,560), Police (50,522),
Relationships (21,049), Surgery (22,424)

25

Joy (1,208,429)
Happiness, Rapture, Pleasure, Delight, Gladness,
Cheer, Amusement, Serenity, Calmness, Tranquility,
Euphoria, Elation, Bliss, Ecstasy, Peace

Babies (69,558), Birthday (42,334), Graduation (103,159),
Group Event (178,116), Party (121,566), Picnic (100,285),
Pregnancy (61,466), Romance (261,372), Sports (66,737),
Traveling (69,421), Wedding (134,415)

85

Sadness (840,691)

Heartache, Melancholy, Bummer, Pensiveness, Grief,
Agony, Discomfort, Mourning, Remorse, Gloom,
Distress, Depression, Sorrow, Misery, Heartbreak,
Anguish, Hopeless

Earthquake (295,202), Funeral (50,637), Hurricane (183,135),
Natural Disaster (233,474), Police (60,164), Romance (18,079) 53

Surprise (164,051)
Disturbance, Astonishment, Bewilderment,
Amazement, Interruption, Interference,
Distraction

Babies (48,182), Conversations (12,668), Driving (29,689),
Engagement/Proposal (17,287), Gifts (56,225) 9

Trust (278,250)
Faith, Confidence, Acceptance, Admiration,
Adoration, Affection, Applause,
Assurance, Praise, Appreciation, Esteem

Babies (14,159), Business Relationship (34,616), Events (18,610),
Nature (54,117), Relationships (55,852), Religion (35,141),
Spirituality (36,747), Sports (29,008)

17

Total 275
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Table 3.4: Statistics on four existing emotion recognition datasets, sharing similar emotion cate-
gories, showing the class imbalance problem. Excerpt from You et al. 2016. [12]

Dataset Amusement Anger Awe Contetment Disgust Excitement Fear Sadness
IAPS-Subset 37 8 54 63 74 55 42 62
ArtPhoto 101 77 102 70 70 105 115 166
Abstract Paintings 25 3 15 63 18 36 36 32
You et al. 4,942 1,266 3,151 5,374 1,658 2,963 1,032 2,922

Table 3.5: Total number of images per emotion category for UCF ER and LUCFER

Dataset Anger Anticipation Disgust Fear Joy Sadness Surprise Trust Total
UCF ER 5,788 1,320 3,250 5,550 22,859 6,200 3,825 1,208 50,000
LUCFER 611,031 89,083 242,095 196,501 1,208,429 840,691 164,051 278,250 3.6M
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CHAPTER 4: PROPOSED METHODS

In this chapter1, we discuss the methods we propose for emotion recognition. As previously dis-

cussed, we approach this problem from two different angles; i.e. categorical and dimensional. We

first approach the problem from a categorical perspective, elaborating on (1) the CNN architec-

tures we design, (2) fine-tuning our CNNs, and (3) the class de-contextualization step added to our

CNNs. To provide empirical proof that our system is capable of delivering superior performance

compared to state of the art, we benchmark our methods on the Flickr-Instagram [12], UCF ER

[1] and LUCFER [2] datasets, and further analyze the result of experiments.

Next, we tackle the problem of emotion recognition from a dimensional perspective based on the

VAD model of human affect. To this end, we develop an unsupervised subspace ranking method for

continuous emotions; we formulate the problem and provide details on rank-1 cp-decomposition,

employed as an unsupervised ranking machine here in this work. Finally, we deliver theoretical

proof on our proposed unsupervised ranking method.

1This chapter includes excerpts from three works previously published by the author of this dissertation:
(1) “Context-Sensitive Single-Modality Image Emotion Analysis: A Unified Architecture from Dataset Construction
to CNN Classification”, Pooyan Balouchian, Hassan Foroosh, 2018 25th IEEE International Conference on Image
Processing (ICIP), 1932-1936
(2) “LUCFER: A large-scale context-sensitive image dataset for deep learning of visual emotions”, Pooyan Balouch-
ian, Safaei M., Foroosh H., 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 1645-1654
(3) “An Unsupervised Subspace Ranking Method for Continuous Emotions in Face Images”, Pooyan Balouchian,
Safaei M., Cao X., Foroosh H., 2019 30th British Machine Vision Conference
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CNN UCF ER - Categorical Approach to Emotion Recognition

CNN UCF ER fine-tuning

In this section, we provide details regarding the approach proposed for training the CNNs used

to run benchmarks on UCF ER. We first chose VGGNet 16 as shown in figure 4.1. As shown

in this figure, the strongly labeled images from UCF ER are fed into VGGNet 16. We resized

the images to 224x224, the default input size for VGGNet 16. We modified the last layer from

1,000 to 190 classes and left the rest of the fully-connected layers intact, tasked with learning a

possibly non-linear function in the invariant feature space, provided by the convolutional layers.

The CNN is tasked with learning a function to classify images into one of the 190 classes derived

from our emotion-context matrix. With respect to the fact that, to the best of our knowledge, no

other work has provided a context-sensitive emotion recognition dataset, our results inferred from

such classification could not be initially compared against state of the art in a fair fashion. This

urged us to add a new layer on top of the fully-connected layer to perform de-contextualization

on the predicted classes by means of mapping the images from a context-sensitive domain onto a

context-free domain accordingly.

We created the new de-contextualization layer by starting from the modified version of softmax

derived from the previous step. The new layer gets as input a K-dimensional vector of proba-

bilities, where K represents the number of classes; i.e. 190. It then converts this representation

to a J-dimensional vector of probabilities, where J represents the number of de-contextualized

classes; i.e. 8, with reference to figure 4.1. The experimental setup will be discussed in section 4

accordingly.

Moreover, as depicted in figure 4.2, we also designed the CNN using ResNet 50, resized images to

299x299, the default input size for ResNet 50, modified the last layer from 1,000 to 190 and left
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Figure 4.1: CNN Fine-tuning - VGGNet 16

Figure 4.2: CNN Fine-tuning - ResNet 50

the rest of the fully-connected layers intact.

Experiments on UCF ER

We first split our dataset of 50,000 strongly labeled images into training, test and validation sets,

80%, 15% and 5% respectively. Table 4.1 shows the experimental setup. UCF ER contains a

merged set of images collected from Flickr and Bing. This promotes an unbiased evaluation to-

wards only one source otherwise.

Table 3.5 shows the number of instances in each emotion category. As shown in figure 3.5, the

number of instances are imbalanced across different emotion categories. This is a classical prob-

lem, referred to as the class imbalance problem, and we approach it by making adjustments to the

class weights in our CNN configuration to make the predictions unbiased.

Next, we configured the CNNs with a batch size of 8, max iteration of 312,500, resulting in 50

epochs for our experiment on the strongly labeled UCF ER. We first fine-tuned the pre-trained
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Table 4.1: Training, test and validation experimental setup on multiple model-dataset pairs

Model-Dataset Pair Training ˜ Testing ˜ Validation ˜ # Epochs
VGGNet 16 - Weakly Labeled UCF ER 320,000 60,000 20,000 50
ResNet 50 - Weakly Labeled UCF ER 320,000 60,000 20,000 50
VGGNet 16 - Strongly Labeled UCF ER 42,370 4,995 2,500 50
ResNet 50 - Strongly Labeled UCF ER 42,370 4,995 2,500 50
VGGNet 16 - Flickr-Instagram [12] - - 23,000 -
ResNet 50 - Flickr-Instagram [12] - - 23,000 -

VGG 16 and ResNet 50 models on the weakly labeled UCF ER, serving as our baseline. We

then further fine-tuned them on the strongly labeled UCF ER. Finally, we used the latter model to

evaluate the accuracy of our predictions on both UCF ER as well as Flickr-Instagram [12] datasets.

These experiments are carried on using Caffe on 2 GPU machines; i.e. a GeForce GTX TITAN X

with 15 GB of memory and a P2 xlarge Amazon instance with 4 virtual CPUs and 61 GiB of

memory.

Discussion

Table 4.2 reports multiple performance metrics; i.e. overall precision, overall recall, overall F1

score and overall accuracy.

With refernece to table 4.2, we also include overall F1 score for the eager reader considering that

Table 4.2: Performance on context-sensitive classification

Model-Dataset Pair Performance Metrics %
Model Dataset Overall Precision Overall Recall Overall F1 Score Overall Accuracy

Fine-tuned VGGNet 16 Weakly Labeled UCF ER 22.74 23.02 20.01 23.68
Fine-tuned ResNet 50 Weakly Labeled UCF ER 24.51 25.43 22.33 24.95
Fine-tuned VGGNet 16 Strongly Labeled UCF ER 65.26 65.64 63.97 71.1
Fine-tuned ResNet 50 Strongly Labeled UCF ER 69.97 71.53 69.62 76.6
Fine-tuned VGGNet 16 You et al. [12] 65.42 66.01 62.33 67.01
Fine-tuned ResNet 50 You et al. [12] 66.47 66.59 63.17 67.91
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Figure 4.3: Confusion Matrix for UCF ER on ResNet 50

in cases when class distribution is imbalanced, F1 score offers useful information when presented

alongside accuracy [116]. F1 score is calculated as 2*(Recall * Precision) / (Recall + Precision).

We compute overall F1 score, with reference to table 4.2, by averaging individual F1 scores for

each emotion category.

We first ran experiments on UCF ER weakly labeled noisy dataset of 400,000 images. Accura-

cies of 23.68% and 24.95% are reported by VGGNet 16 and ResNet 50 respectively. For this

experiment, we configured the CNNs to include an additional catch-all class for noisy images.

We then ran experiments on the strongly labeled UCF ER, resulting in accuracies of 71.1% and
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76.6%, by VGGNet 16 and ResNet 50 respectively. The confusion matrix for this experiment is

depicted in figure 4.3. This suggests a noticeable boost in performance compared to state of the

art; i.e. accuracy of 58.3% by [12]. The injection of context as a dependency to the fine-tuning

process from one side, and our proposed Web crawling strategy from the other side, contribute to

such performance boost.

Finally, we ran another experiment on Flickr-Instagram [12], treating the entire dataset as the

validation set since our pre-trained models on UCF ER are utilized. 6 categories have overlapping

classes between UCF ER and Flickr-Instagram [12]. This experiment, therefore, was run on the

VGGNet 16 and ResNet 50, trained on the 6 shared classes from UCF ER. Results yield accuracies

of 67.01% and 67.91%, respectively. The relatively high accuracy on Flickr-Instagram dataset [12]

demonstrates the efficacy of adding context to our unified training approach; i.e. higher prediction

accuracy compared to the 58% reported by [12], run on their fine-tuned CNN.

CNN LUCFER - Categorical Approach to Emotion Recognition

Having collected LUCFER, containing more than 3.6M images, labeled with emotion and context,

we designed and implemented a CNN architecture to learn an emotion recognition model. We

further utilized this model to empirically observe the effect of using a large-scale context-sensitive

dataset for this task. To this end, in this section, we elaborate on the approach adopted to learn a

context-sensitive emotion recognition classifier by providing details on the (1) fine-tuning process

and the (2) dimensionality reduction method adopted in this work. The latter is accomplished via

adding a new layer on top of the last fully connected layer of the network; i.e. fc8, tasked with

mapping the context-sensitive onto the context-free domain.
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Figure 4.4: LUCFER’s CNN Fine-tuning. *DR stands for Dimensionality Reduction.

CNNLUCFER fine-tuning

A classical problem in machine learning is training classifiers with imbalanced datasets. This leads

to suboptimal classification performance, with the standard classifiers being overwhelmed by the

large ones, while ignoring the small ones [117]. In many works, the ratio of the small to large

classes is as drastic as 1 to 1,000 or even more. Re-sampling and combination methods are used to

alleviate the imbalance problem at the cost of having a smaller training set.

Given the large-scale nature of LUCFER and the web crawling strategy adopted here, we are

less challenged with this problem. Other emotion recognition datasets, however, suffer from this

problem to some extent. These include, but are not limited to the works mentioned in table 2.1.

Some of these works ([12] and [44]) make improvements compared to other ones by collecting

relatively larger datasets. Table 3.4 shows the distribution of images across the emotion categories

adopted by the mentioned related works. Table 3.3 shows LUCFER’s class distribution across eight

basic emotions from Plutchik’s wheel of emotions [11]. The reader’s attention is attracted to the

significant difference in the size of each class in LUCFER compared to related efforts.

We first resized the images to 224x224, VGGNet 16’s default input size. The CNN is tasked with

learning a function to classify images into one of the 275 classes, mentioned in chapter 3. We

started from the VGGNet 16 model, pre-trained on ImageNet. We modified the last fully connected

layer; i.e. fc8, from 1,000 to 275 classes and experimented with different learning rates. We left
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the rest of the fully-connected layers intact to learn a non-linear function in the invariant feature

space, provided by the convolutional layers. Figure 4.4 depicts the CNN architecture discussed.

Class De-contextualization

In the closest works to ours, [12] and [44], classification is performed on 8 and 26 emotion cat-

egories respectively. However, here, due to adding context into the mix, our method performs

classification on 275 categories; i.e. emotion-context pairs. This initially prevented us from being

able to perform a fair comparison against state of the art. To enable a fair comparison, we mapped

our context-sensitive model onto a context-free domain; i.e. migrating from 275 to 8 classes. This

was done via a Dimensionality Reduction approach, referred to as de-contextualization in this

work, further explained in this section.

We perform de-contextualization by mapping high dimensional input data; i.e. 275, onto a low

dimensional space; i.e. 8, such that in the target space, neighborhood points from the input domain

are mapped to one another, forming a new datapoint with partially common characteristics. To

better formulate the problem:

Let S = {
−→
I i, ...,

−→
I n} be the set of input vectors

where
−→
I i ∈ DD for all values of i

The goal is to find a parametric function:

FW : DD −→ Dd

where d is of a lower dimension compared to D
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Figure 4.5: Excerpt from LUCFER with all eight basic emotion categories, portraying (1) images
labeled by AMT workers, (2) visually similar photos collected from the wild using Bing Image
Search API Token-based search, and (3) test images correctly classified using our model.

We implemented the de-contextualization in the CNN level by adding a new layer on top of the last

fully connected layer; i.e. fc8. While this logic could be merged into the last fully connected layer,

to observe the the principle of “Separation of Concerns (SoC)” [118], we chose to encapsulate the

logic in a completely separate layer, hence making the newly added layer re-usable across different

problem domains. This new layer gets as input a n-dimensional vector of probabilities, where n

represents the number of classes (275 emotion-context pairs). It then converts this representation

to a m-dimensional vector of probabilities, where m represents the number of decontextualized

classes (8 basic emotion classes). We further show in the subsequent sections that the proposed

de-contextualization makes our prediction model generalizable and transferable to other datasets.

Experimental Setup

In this section, we provide details on our experimental setup. The experiments shown in table 4.3

are designed to help demonstrate the effect of injecting context to the unified training process (1)

on the precision and recall balance, (2) boost in performance, and (3) the size of dataset required
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for training. All experiments are run using Caffe on 2 GPU machines; i.e. a GeForce GTX TITAN

X (15 GB memory) and a P2 xlarge Amazon instance with 4 virtual CPUs (61 GiB memory).

Experiments on LUCFER

First and foremost, to avoid the class imbalance problem, we sub-sample LUCFER. To this end,

we get t = min(S1, ..., Sn), where Si represents the number of images in each category i and

n represents the number of basic emotion categories; i.e. 8. Next we randomly select from each

category, t images, forming a balanced dataset containing 712,664 images. This produces a uni-

form distribution over all categories. Next, we split our dataset into training and test sets, 80% and

20% respectively. We then configure the CNN with a batch size of 12, max iteration of 2,375,546,

covering 50 epochs for our experiment on the sub-sampled LUCFER.

Table 4.3: Experimental setup on LUCFER training with different configurations along with the
respective performance metrics.

Dataset CNN Model Training Test Batch Size Max Iteration Epochs Training Type Machine Overall
Precision

Overall
Recall

Overall
F1 Score

Overall
Accuracy

LUCFER ImageNet 570,000 142,000 12 2,375,546 50 Context-Sensitive (275) P2 xlarge Amazon Instance 41.03 38.35 38.92 38.37
LUCFER ImageNet 570,000 142,000 12 2,375,546 50 Context-Free (8) P2 xlarge Amazon Instance 38.13 35.23 36.62 35.77
LUCFER Fine-tuned 570,000 142,000 12 2,375,546 50 Context-Sensitive (275) P2 xlarge Amazon Instance 73.50 72.73 72.75 73.12
LUCFER Fine-tuned 570,000 142,000 12 2,375,546 50 Context-Free (8) P2 xlarge Amazon Instance 65.31 61.10 63.66 69.87
LUCFER Fine-tuned 380,000 94,000 12 1,583,333 50 Context-Sensitive (275) P2 xlarge Amazon Instance 73.13 72.23 72.32 72.25
LUCFER Fine-tuned 380,000 94,000 12 1,583,333 50 Context-Free (8) P2 xlarge Amazon Instance 61.93 58.88 60.36 66.93
LUCFER Fine-tuned 190,000 47,000 12 791,666 50 Context-Sensitive (275) GeForce GTX TITAN X 71.20 70.08 70.63 70.98
LUCFER Fine-tuned 190,000 47,000 12 791,666 50 Context-Free (8) GeForce GTX TITAN X 58.82 56.72 57.75 59.78

Experiments on Flickr-Instagram Dataset

To evaluate the generalizability of our method via transfer learning, we ran experiments on a sub-

sampled version of the Flickr-Instagram dataset [12] using our model. Our model was trained on

a context-sensitive dataset; i.e. LUCFER as opposed to the context-free Flickr-Instagram dataset

[12]. Therefore, we designed AMT HITs to first contextualize 6,787 images extracted from Flickr-
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Instagram [12] covering the 4 emotion categories Anger, Disgust, Fear and Sadness. Approxi-

mately 13% of the images; i.e. 890 images, were labeled with contexts matching the same contexts

LUCFER contains. We ran an experiment using our context-sensitive fine-tuned model (originally

trained on 570,000 images) on the 890 images, yielding an accuracy of 67.5% compared to 58.3%

reported in [12]. This performance boost, as high as 9.2%, indicates empirically that our model is

capable of being reused on unseen datasets of similar nature. Moreover, it shows the positive effect

of injecting context to the training process.

Discussion

In this section, we discuss the result of experiments run using configurations in table 4.3. With

reference to section 4, we trained an array of different configurations of the CNN, feeding the

network with different inputs and loss functions. We further evaluated the models with our test

sets. The experiments are performed under two main settings; i.e. context-sensitive and context-

free, with the former using LUCFER labeled with 275 classes (emotion-context pairs) and the latter

using LUCFER labeled with 8 basic emotion classes from Plutchik’s wheel of emotions [11].

Table 4.3 displays various performance metrics, including accuracy, precision, recall and F1 score.

F1 score offers useful information when presented alongside accuracy when the class distribution

is imbalanced [116]. Even though we are not challenged with this problem here as explained in

section 4, F1 score is reported for the eager reader accordingly.

A key observation from table 4.3 and figure 4.7(a) is the effect of context and training size on

precision and recall balance. Figure 4.7(a) helps support Eq. 4.3, showing that precision and recall

becomes more balanced when context is used in the training phase. However, under a context-

free training strategy, feeding the network with more training samples has a reverse effect on the

precision and recall balance, moving towards a more imbalanced precision and recall.
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Figure 4.6: Confusion Matrix for LUCFER Context-Sensitive Experiment run using 570,000 Train-
ing and 142,000 Test Images.

To better formulate this claim, the observation is:

|Precisioncs −Recallcs| < |Precisioncf −Recallcf | (4.1)

where cs and cf stand for context-sensitive and context-free respectively.

Moreover, figure 4.7(b) depicts the effect of context and training size on the classification accuracy.
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Figure 4.7: (a) Line plot showing the effect of context and training size on precision and recall
balance. (b) Line plot showing the effect of context and training size on accuracy.

Under the context-sensitive training, less samples are required to reach a higher accuracy when

compared to a context-free training strategy. This observation justifies our initial claim that adding

context to the training phase alleviates the constant need to have access to large-scale datasets to

some extent. This lends itself to the fact that the network tends to converge to its optimal accuracy

in less iterations. Eq. 4.2 below

max(acccf )−min(acccf ) < max(acccs)−min(acccs) (4.2)

where acc, cs and cf stand for accuracy, context-sensitive and context-free respectively, yields 2.14

< 10.09 when results from table 4.3 are plugged into this equation. This inequality indicates the

demanding nature of context-free methods for more training samples.
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Figure 4.8: Overall accuracy scatter plot showing the overall accuracy distribution prior to de-
contextualization run under the context-sensitive setting

To put the above observations into perspective, table 4.3 reports overall accuracies of 70.98%,

72.25% and 73.12% when fed with 791,666, 1,583,333 and 2,375,546 training images respectively

under a context-sensitive configuration. On the contrary, when the network was trained under a

context-free configuration, overall accuracies of 59.78%, 66.93% and 69.87% were achieved for

791,666, 1,583,333 and 2,375,546 training images respectively. Figure 4.8 portrays the overall

accuracy distribution prior to applying de-contextualization run under the context-sensitive setting.

Table 4.3 shows our model yields superior results compared to the closest effort in emotion recog-

nition in the literature by [12]. An overall accuracy of 73.12% is established using our approach as

opposed to 58.3% reported by [12]. The main differences in our approach vs. that of [12]’s include:

(1) our dataset size is 156 times larger, (2) our training is performed under a context-sensitive con-

figuration and later de-contextualized via dimensionality reduction, (3) our strongly-labeled images
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under each category contain a noticeable number of visually similar images, relying on the dataset

construction approach, previously explained in chapter 3. These key factors, we believe, play key

roles in the boost in performance compared to state of the art. Furthermore, the confusion matrix

for our context-sensitive experiment run on LUCFER using 570,000 training samples and 142,000

testing images is depicted in figure 4.6.

Unsupervised Subspace Ranking for Continuous Emotions

Having proposed a deep learning solution to the problem of emotion recognition in the categorical

domain, it is now time to approach the problem in the unsupervised space in the dimensional

domain of affective computing. In this chapter, we first formulate the problem at hand and further

provide the notations that will be used throughout the rest of this work. Next, we explain how

rank-1 cp-decomposition can be utilized as an unsupervised ranking machine, providing proof

that satisfies three important properties; i.e. permutation invariance, uniqueness, and conformity.

We then deliver a thorough analysis on why our method works theoretically, and further apply

the method to continuous valence rank estimation by running extensive experiments on a set of

widely-used datasets used for the purpose of valence estimation in affective computing. To show

the robustness of our proposed method, we perform an extensive set of ablation studies, and finally

we conclude the chapter by evaluating the results of the experiments run and the ablation studies

carried on.

Problem Formulation and Notations

Our goal is to estimate the valence ranking for an unordered set of images pertaining to one emotion

category, e.g. joy, anger, anticipation, etc. Let {x1, ...,xK} denote a set of images from an emotion
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category, where xk ∈ RI×J , k = 1, ..., K. Let also νk ∈ V denote valence, where V is a continuous

bounded interval in R describing the range of the valence ranking.

Assuming that ν(1) ≤ ν(2) ≤ ... ≤ ν(K), our goal is to design a ranking machine f such that

f(x(1)) ≤ f(x(2)) ≤ ... ≤ f(x(K)), where the subscripts in parentheses indicate the ordered in-

dices. Here, we do not assume availability of any training set with labeled valence to construct

the ranking machine; i.e. our ranking method is unsupervised. We will prove theoretically and

empirically (in the context of emotion valence rank estimation) that rank-1 cp tensor decompo-

sition serves as an unsupervised ranking machine, if we represent the set of images as a 3-way

tensor. Unlike Singular Value Decomposition (SVD) in linear algebra, there are many ways one

could define tensor decomposition in multi-linear algebra. Therefore, in the next section, we start

by providing a description of how rank-r cp-decomposition of a tensor is constructed. This will

allow us to prove some important properties of rank-1 cp-decomposition that make it suitable for

unsupervised ranking (e.g. for images).

We assume that valence rank is encoded within each set I , where all images in I share the same

emotion category with varying degrees of valence. We will show in section ?? why this assumption

holds. In this next section, we further elaborate on the tensor formation and decomposition and

how rank-1 cp decomposition is leveraged to perform valence rank estimation.

Rank-1 cp-decomposition as an Unsupervised Ranking Machine

Let X ∈ RI×J×K be a 3-way tensor constructed by concatenating K images {x1, ...,xK} in any

random order2. We will now prove that the rank-1 decomposition of X provides ranking informa-

tion about xk. The rank of the tensor X is defined as the minimum number of rank-1 tensors that

2For convenience, we describe the results for 3-way tensors, although the theory holds for n-way tensors.
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sum up to X [119]. A 3-way tensor is said to be rank-1 if it can be expressed as an outer product

of three vectors. Although the truncation of the high-order SVD (HOSVD) of a given tensor may

lead to a good low-rank approximation, it is known that this will not necessarily generate the best

possible (least-squares) approximation under the given n-mode rank constraints [120]. Therefore,

we formulate the problem of rank-1 cp-decomposition as:

{û, v̂, ŵ} = argmin
U
‖X − λu ◦ v ◦ w‖F

s.t. λ = X×1u×2v×3w (4.3)

and ‖u‖F = ‖v‖F = ‖w‖F = 1,

where λ is a non-zero scalar, u ∈ RI , v ∈ RJ , w ∈ RK , ◦ is the outer product, ‖ · ‖F denotes the

Frobenius norm, and ×i, i = 1, 2, 3 is the multiplication between a tensor and a vector in mode-i

of that tensor, whose result is also a tensor, namely,

B = X×iu⇐⇒ (B)jk =
I∑

i=1

Xijkui. (4.4)

The optimization problem in Eq. 4.3 can be solved by Generalized Rayleigh Quotient (GRQ)

[121]. However, we used the alternating least squares algorithm (ALS) for optimality and rate of

convergence [120, 122, 121]. The algorithm is summarized in Algorithm 1.

Algorithm 1: Rank-1 cp-decomposition
input : A 3-way tensorX ∈ RI×J×K , and an iteration termination threshold ε
output: Three vectors u, v, andw that minimize ‖X − λu ◦ v ◦ w‖F , where u ∈ RI , v ∈ RJ ,w ∈ RK , and ‖u‖F = ‖v‖F = ‖w‖F = 1

Initialize u(0), v(0), and w(0);

while ‖X − λ(t)u(t) ◦ v(t) ◦ w(t)‖F ≥ ε do
ũ(t+1) = X×2v

(t)×3w
(t) ;

ṽ(t+1) = X×1u
(t)×3w

(t) ;

w̃(t+1) = X×1u
(t)×2v

(t) ;

u(t+1) = ũ(t+1)/‖ũ(t+1)‖;

v(t+1) = ṽ(t+1)/‖ṽ(t+1)‖;

w(t+1) = w̃(t+1)/‖w̃(t+1)‖;

λ(t+1) = X×1u
(t+1)×2v

(t+1)×3w
(t+1);

end

Next, we prove that rank-1 cp-decomposition is effectively an unsupervised ranking machine. For
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this purpose, we prove that it satisfies three important properties, permutation invariance, unique-

ness, and conformity3.

Proposition 1 (Invariance)

Let X̂ = λ û ◦ v̂ ◦ ŵ be the rank-1 decomposition of a 3-way tensor X ∈ RI×J×K that minimizes

‖X − X̂‖F . We maintain that X̂p = λû ◦ v̂ ◦ ŵp would minimize

‖Xp − X̂p‖F , (4.5)

where Xp = X ×1 P = X ×2 P, P is an arbitrary unitary transformation, ŵp = Pŵ, and ×i,

i = 1, 2, 3 is a mode-i tensor-matrix multiplication.

What this implies is that an arbitrary permutation of the images x1, ...,xK in the tensor X would

result in the same permutation of the values in ŵ, but would not change the actual values of the

components of ŵ. Also, due to the nature of the problem considered in this work, we only consid-

ered permutation along the 3rd mode, but the proposition equally applies to all other modes.

Proposition 2 (Uniqueness)

The rank-1 cp-decomposition of a 3-way tensor X ∈ RI×J×K that minimizes ‖X − X̂‖F is unique

up to a non-zero scale factor and arbitrary unitary transformation along any mode.

Note that we eliminate scale ambiguity by explicitly enforcing λ = X×1u×2v×3w

Proposition 3 (Conformity)

Let X̂ = λ û ◦ v̂ ◦ ŵ be the rank-1 decomposition of a 3-way tensor X = Jx1, ...,xKK ∈ RI×J×K

3The proofs are available for review as part of the supplementary material in appendix PROOFS.
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(a) Rank-1 Canonical Polyadic Decomposition.
λ is scalar, u, v and w are vectors,
w = Image-indices × 1, where 1 represents
the single emotion category represented by
the tensor; e.g. joy, anger, surprise, etc.

(b) Visual representation of rank-1 cp-decomposition
enforcing unsupervised valence rank estimation.

Figure 4.9: Rank-1 Canonical Polyadic Decomposition, along with visual representation enforcing
valence rank estimation

that minimizes ‖X − X̂‖F . We have ∀k 6= k′, k, k′ ∈ [1, ..., K]

ŵk ≤ ŵk′ iff 〈xk, ûv̂
T 〉 ≤ 〈xk′ , ûv̂

T 〉 (4.6)

Together, these propositions prove that the cp-decomposition is a unique mapping that ∀k ∈

[1, ..., K] measures the angle between xk and the subspace of RI×J×K spanned by the orthonormal

basis {û, v̂}. Since the mapping is permutation invariant, it is completely unsupervised. Fig-

ure 4.9b depicts the visual representation of the concept graphically, showing intuitively why cp-

decomposition is an unsupervised ranking machine.
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Valence Rank Estimation using Rank-1 cp-decomposition

Why does our method work?

Face images are known to have subspace low-rank behavior, with primarily 4 main factors defin-

ing their low-rank representation (physiology, pose, illumination, expressions). While existing

low-rank representations (eigenfaces, tensorfaces, sparse subspace representations, etc.) have their

own merit, what distinguishes them is their “invariance” with respect to each of the above 4 factors.

Proposition 2 states that rank-1 cp-decomposition is invariant to unitary transformations along all

modes. Since most face pose changes can be modeled by rotation and mirroring, this makes rank-

1 cp-decomposition resilient to pose changes. Since permutation is also unitary, it also implies

that we can work with a collection of still images in any random order, or with video frames with

scrambled frame order. Proposition 3 states that the elements of any of the vectors in the result-

ing rank-1 cp-decomposition measure the “angle” with the subspace represented by the remaining

vectors. Therefore, rank-1 cp-decomposition is not measuring pairwise distances, but rather mea-

suring the “angle” between the rank-1 representation of any slice along a given mode with a global

rank-1 representation of the entire tensor in the subspace defined by remaining modes. This is an

important distinction, because it implies that rank-1 cp-decomposition is robust to global illumina-

tion changes (angles do not get affected by lighting), but also the method is O(n), not O(n2). This

leaves rank-1 cp-decomposition primarily sensitive to the remaining two factors of facial expres-

sions and physiological changes (facial structure/geometry, facial hair, etc.). Of course, for tests

on the same subject, physiological variations are to a large extent limited or non-existent, making

the method very reliable. For cross-subject tests the performance reduces, but still outperforming

the state of the art by a large margin. Note that Proposition 1 states that rank-1 cp-decomposition

is unique, thereby avoiding also a major ill-posedness issue.
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Figure 4.10: Visual representation of rank-1 cp-decomposition enforcing unsupervised valence
rank estimation.

Continuous Valence Rank Estimation

Our proposed approach follows a 3-step process to perform valence rank estimation. The first step

involves structuring images sharing the same basic emotion category into their own groups. The

members of each group share the same emotion while representing a different but close degree of

valence compared to the rest of the images in the group. Next, we form tensors for each group

and later perform a rank-1 cp-decomposition, as explained in section 4, on each group. The last

step involves estimating the valence rank of images in a given group, taking advantage of the

ranking produced by the rank-1 cp-decomposition in section 4 above. Vector w from Algorithm

1 produces a compact signature for the tensor representing the subtle changes along the valence

dimension among the images of each group. This signature is meaningful since (1) all images

within a group share the same emotion category, and (2) images in one group share some level of
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visual similarity, hence enabling each group to be used as the basis for the formation of a visual

signature.

To the best of our knowledge, this is the first effort in the literature that uses a rank-1 cp-decomposition

as an unsupervised ranking machine to estimate valence ranking given an unordered set of images

sharing the same emotion. To validate our initial intuition proved in section 4, i.e. applying rank-1

cd-decomposition as an unsupervised ranking machine, we ran experiments on four major emotion

recognition datasets; i.e. CK+, AFEW-VA, SEMAINE, and AffectNet, to come up with a ranking of

images within each emotion category with respect to their levels of valence.

Figure 4.10 depicts the flow of actions taken starting from grayscaling of an unordered list of

images pertaining to a certain emotion category, to tensor formation, performing the rank-1 cp-

decomposition, followed by producing the valence ranking. This figure also depicts an example

image sequence extracted from CK+ dataset ranked by the rank-1 cp-decomposition.

We assume availability of the emotion category for each image group, which is a safe assumption

when running experiments on any emotion recognition dataset. Results of experiments explored in

section 4 yield promising results when compared to state of the art.

Datasets used in Experiments

To evaluate our proposed method, we used four widely used emotion recognition datasets contain-

ing images and video frames; i.e. the extended Cohn-Kanade Dataset (CK+) [5], AFEW-VA [6],

SEMAINE [7] and AffectNet [8]. We specifically chose this collection of datasets to cover images

collected under controlled, semi-controlled and uncontrolled environments; i.e. (1) CK+ and SE-

MAINE, (2) AFEW-VA, and (3) AffectNet respectively. Figure 4.11 depicts excerpts from all four

datasets. The majority of methods proposed on continuous valence estimation are validated using
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Figure 4.11: Excerpts from CK+ [5], AFEW-VA [6], SEMAINE [7], and AffectNet [8] datasets
showing gradual changes of valence. CK+ and SEMAINE are collected under a controlled envi-
ronment. AFEW-VA is extracted from feature films; i.e. semi-controlled environments. AffectNet
is collected from the wild and its images are result of 15% boundary expansion of OpenCV face
detector [9].

datasets captured in laboratory and under controlled settings, with a limited range of face poses and

occlusions. Since state-of-the-art methods typically base their valence estimation on such data, it

remains unclear whether these methods perform equally well on datasets collected from the wild

[6]. Here we show while our method yields high accuracy when validated on datasets collected

under controlled environments, it delivers high performance on datasets collected from the wild.

CK+ includes both posed and non-posed (spontaneous) expressions and additional types of meta-

data. The target expression for each sequence is fully FACS coded [71]. The CK+ distribution

includes 593 sequences from 123 subjects. The image sequences vary in duration, 10 to 60 frames,

and incorporate the onset (which is also the neutral frame) to peak formation of the facial ex-

pressions [5]. Each sequence is labeled with one of the seven basic emotion categories: anger,
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contempt, disgust, fear, happiness, sadness and surprise.

The SEMAINE database is specifically developed to address the task of achieving emotion-rich

interaction with an automatic agent. It is rich in emotion and the emotions arise spontaneously

in response to an activity, where activity involves a conversation with the agent. The recorded

units are long enough to provide temporally extended patterns. SEMAINE database contains over

45 hours of material, annotated with five fully rated dimensions; i.e. valence, activation, power,

anticipation and intensity, covering seven basic emotion categories; i.e. fear, anger, happiness,

sadness, disgust, contempt and amusement. In this work, we ignore the audio information and

merely focus on the video frames.

AFEW-VA consists of 600 videos extracted from feature films. The videos range from short (around

10 frames) to longer clips (more than 120 frames), and display various facial expressions. The clips

are captured under challenging indoor/outdoor conditions such as complex cluttered backgrounds,

poor illumination, large out-of-plane head rotations, variations in scale, and occlusions. In total,

there are 30,000 annotated frames with per frame levels of valence and arousal intensities, normal-

ized in the range of -10 to 10. Compared to AVEC’14, SEMAINE and RECOLA, AFEW-VA presents

a large variation in the values of valence and arousal while extreme values are less frequent in most

of other databases [6].

AffectNet is a dataset of images of facial emotions collected from the wild containing more than

1,000,000 facial images. Half of the images are strongly labeled and annotated manually for the

presence of seven discrete facial expressions and the intensity of valence and arousal. This dataset

is primarily chosen to participate in our experiments due to the fact that the images are collected

from the wild under uncontrolled settings.

Figure 4.11 depicts excerpts from all four datasets.
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Table 4.4: Performance comparison on AFEW-VA, SEMAINE, CK+ and AffectNet datasets

Method Features
AFEW-VA Dataset SEMAINE Dataset CK+ AffectNet

Valence Valence Valence Valence
Average PCC Median PCC Average PCC Median PCC Average PCC Median PCC Average PCC Median PCC

Support Vector Machines for Regression Norm-shape 0.293 - 0.35 - - - - -
Support Vector Machines for Regression Hybrid-DCT 0.374 - 0.17 - - - - -
Random Forest Norm-shape 0.365 - 0.23 - - - - -
Random Forest Hybrid DCT 0.407 - 0.150 - - - - -
Conditional Random Field Norm-shape 0.244 - 0.275 - - - - -
Conditional Random Field Hybrid DCT 0.137 - 0.173 - - - - -
Deep Convolutional Neural Networks RGB-Images 0.17 - - - - - - -
FT-DCNN RGB-Images 0.26 - 0.268 - - - - -
Bag of Words Hybrid-DCT 0.124 - 0.166 - - - - -
OR Norm-shape 0.25 - 0.18 - - - - -
MKL Shape + DCT 0.401 - 0.296 - - - - -

Proposed Unsupervised Ranking Feature-independent 0.6721 0.7798 0.7143 0.9245 0.7701 0.9546 0.6017 0.6671

Results and Evaluation

To show the efficacy of our proposed method, we applied it to the task of continuous valence rank

estimation by running experiments on the four datasets mentioned earlier in section 4. The results

of these experiments are provided here in this section.

Given a ground-truth and a predicted valence rank estimation, here we report the performance

measured using the Pearson Correlation Coefficient (PCC). PCC is a standard measure, widely

used for measuring valence estimation accuracy. In all our experiments, we report performance in

terms of PCC and compare our results against state of the art. Methods used in the literature to per-

form valence estimation mainly use Support Vector Machine for Regression (SVR), Bag of Words

(BoW), Multiple Kernel Learning (MKL), Conditional Random Field, Tree-based Random Forest

(RF), Ordinal Regression and Deep learning [6]. Our approach differs in that we tackle the prob-

lem as a fully unsupervised ranking problem performed via rank-1 cp-decomposition elaborated

on in section 4.

It is worth mentioning that CK+, SEMAINE and AFEW-VA contain sequence of images with the

same human subject. Conversely, AffectNet, a still image dataset of 1M images collected from the

wild, includes images across different subjects per emotion category. Therefore, we first structured

AffectNet to represent varying degrees of valence per emotion category so that our tensors are as
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Figure 4.12: Distribution of PCC across CK+, SEMAINE, Afew-Va, and AffectNet

dense as possible, covering different degrees of valence in each category. The choice to run exper-

iments on AffectNet stems from the fact that the majority of existing methods in the literature that

report reasonable accuracy on valence estimation run experiments on video sequences that deal

with the same subject in all frames. Here, we claim that our method performs with high perfor-

mance even when run on cross-subject datasets that are not collected under laboratory settings.

Table 4.4 shows valence estimation results obtained by running state-of-the-art methods on AFEW-

VA dataset. SVR performs relatively better than bag-of-words approach most probably due to the

fact that the learned set of vocabulary does not offer as much information as the original shape/DCT

features. Random Forest, on the other hand, perform very well, with a higher correlation than all

other methods when using Hybrid-DCT. CRF does not yield good results, probably because of the
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short temporal dependencies in the video and due to the challenge posed by having to estimate 21

different classes. The features are not ordinal with respect to the labels and therefore the ordinal

regression does not produce high performance results; i.e. variations in valence or arousal are not

always directly correlated with the landmark shifts. Similarly, learning a DCNN from scratch does

not provide good results. The main reason is lack of sufficient training samples needed by these

networks to train a model properly. Finally, the Multiple Kernel Learning approach successfully

combines shape and appearance information, producing very good results for both valence and

arousal.

As reported in table 4.4, our unsupervised ranking method yields superior results when compared

to state of the art with respect to experiments run on AFEW-VA by a large margin, improving the

PCC from 0.407 reported when using Random Forest to 0.6721 using our method. Same trend is

observable in experiments run on the SEMAINE dataset, with our method outperforming state of

the art by a large of margin, improving the PCC from 0.35, reported when Support Vector Machines

for Regression was used, to 0.7143 when our unsupervised ranking machine was applied. In other

words, our method almost doubled the ranking accuracy on the SEMAINE dataset. We get the best

results on CK+ delivering a mean PCC of 0.7701 and a median of 0.9245. This is due to the fact

that the images in this dataset are collected under controlled settings, hence the level of similarity

between different frames in a given sequence is highlighted.

Finally, experiments run on AffectNet yield a PCC of 0.6017, which is relatively lower compared

to our results achieved on CK+, SEMAINE and AFEW-VA. The reason involved is characterized by

the fact that AffectNet emotion categories do not share the same subject, hence cp-decomposition is

challenged in delivering the same performance when compared to other experiments we ran. With

reference to section 4, this behavior is explained due to the fact that, for cross-subject tensors,

the angle between xk and the subspace of RI×J×K spanned by the basis {û, v̂} may not form an

ordered set. Despite this observation, our system delivers a high performance in ranking of the
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valence under a fully unsupervised setting.
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CHAPTER 5: ABLATION STUDIES

In the area of Artificial Intelligence (AI), and specifically Machine Learning (ML), the term abla-

tion refers to the removal of certain components from an AI system to monitor its performance in

an attempt to deduce the level of contribution of such components in the overall performance of

the system. It is especially helpful to examine a method’s robustness to structural damages [123].

In this chapter, we configure and setup an array of ablation studies to measure the robustness

of the unsupervised subspace ranking method proposed in chapter 4 section 4. We previously

discussed the results of our experiments, elaborating on the empirical proof that our method is

capable of delivering high performance under unsupervised settings. However, the experiments do

not unilaterally serve as proof for our method’s robustness. Hence we designed, implemented and

analyzed four different ablation studies to unveil the robustness of our method accordingly.

Ablation Study 1: Accuracy as a function of dataset size and density

In this ablation study, we investigated the accuracy of our ranking method as a function of dataset

size. To do this, we split each image group into 10 different sizes and applied our method to

each subset separately. All of the datasets previously used in our experiments, shared a common

and crucial feature; i.e. the datasets are dense with respect to covering varying degrees of valence.

“Dense” in this context refers to having a uniform distribution of varying degrees of valence spread

across each image group, as opposed to sparse, which represents datasets having widely spaced

intervals. In this study, however, we intentionally distort the density and size of each image group

to further monitor the accuracy yielded by our method with respect to the dataset size and density.

We start from the full dataset and reduce the number of images in ten steps by randomly selecting
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Figure 5.1: Sample set displaying different degrees of valence for emotion anger (excerpts from
CK+ dataset). Figure depicts five of the ten steps, with each step randomly removing 10% of
images to (1) reduce the size, and (2) distort the density of the subset. Blurred images refer to the
images randomly selected and removed in each step.

Figure 5.2: Sample set displaying different degrees of valence for emotion disgust (excerpts from
CK+ dataset). Figure depicts five of the ten steps, with each step randomly removing 10% of
images to (1) reduce the size, and (2) distort the density of the subset. Blurred images refer to the
images randomly selected and removed in each step.

and further removing 10% of the images in each step; i.e. 100%, 90%, ..., 10% of the original

size accordingly. We then measure the ranking accuracy after each step of the size reduction.

Considering that our sub-datasets are generated by means of a random selection process, we run

this ablation study in fifty independent trials and report the average accuracy accordingly.

Figures 5.1 and 5.2 depict “dense” sample sets portraying varying degrees of valence for emotions

anger and disgust respectively. The figures show five of the ten steps of the ablation study, with

each step randomly selecting and further removing 10%, 20%, 30%, ... 90% of the images from
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(a) Full set displaying ground truth vs.
ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9997.

(b) 90% of the original set displaying ground truth vs.
ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9998.

(c) 80% of the original set displaying ground truth
vs. ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9998.

(d) 70% of the original set displaying ground truth vs.
ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9994.

(e) 60% of the original set displaying ground truth
vs. ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9998.

(f) 50% of the original set displaying ground truth vs.
ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9999.

Figure 5.3: Ablation Study 1: Accuracy as a function of dataset size and density. Average PCC
reported is based on fifty independent trials.
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(a) 40% of the original set displaying ground truth
vs. ranking enforced by rank-1 cp-decomposition.
Average PCC: 0.9996.

(b) 30% of the original set displaying ground truth vs.
ranking enforced by rank-1 cp-decomposition.
Average PCC: 1.0.

(c) 20% of the original set displaying ground truth
vs. ranking enforced by rank-1 cp-decomposition.
Average PCC: 1.0.

(d) 10% of the original set displaying ground truth vs.
ranking enforced by rank-1 cp-decomposition.
Average PCC: 1.0.

Figure 5.4: Ablation Study 1: Accuracy as a function of dataset size and density. Average PCC
reported is based on fifty independent trials.

the original set. Our ranking method was further applied to each subset to measure the robustness

of the method with respect to size and density of the subset. Considering that the images are

removed randomly in each step, in order to prevent reporting coincidental behavior due to such

randomization, we performed this ablation study in fifty independent trials and further report the

average accuracy accordingly.

Figures 5.3 and 5.4 depict the ground truth vs. the valence ranking generated by our method for
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(a) Effect of number of images on accuracy.
Y axis shows the full PCC range.

(b) Effect of number of images on accuracy.
Y axis zooming in for higher visibility.

Figure 5.5: Effect of the number of images on PCC. Reported PCC represents Average PCC ran in
fifty independent trials.

each subset of the sample dataset displayed in figure 5.2. As observed in these figures, our method

delivers highly similar rankings in different runs of the method benchmarked on different dataset

sizes. This empirically proves that our ranking method is resilient to dataset size and density,

where “density” refers to the distribution of varying degrees of valence across the test dataset. It is

therefore safe to claim that our method is not challenged by small-scale dataset sizes or by datasets

that do not have a full valence coverage pertaining to the emotion category representing the image

group subject of analysis.

Figure 5.5 portrays the Pearson Correlation Coefficient (PCC) achieved in different steps of the

ablation study, starting from a subset of 10% of the original set (displayed in figure 5.2) to the full

dataset size. As previously claimed, this plot serves as empirical proof that our method delivers

highly similar PCCs when run on datasets of varying sizes and densities. The minimum and maxi-

mum PCC is displayed as 0.9865 and 0.9939 respectively, resulting in a range amounting to 0.007,

ensuring a negligible difference in PCC when run on datasets of varying size and density.

67



Figure 5.6: Sample set displaying different degrees of valence for emotion surprise (excerpts from
CK+ dataset). Each row displays a new outlier injected to the original set.

Ablation Study 2: Accuracy as a function of number of outliers (breakdown point)

In statistics, the “breakdown point” refers to the smallest amount of contamination, causing an

estimator to become useless [124]. In machine learning paradigms and within the scope of an

individual system, “fault tolerance” is achieved by encountering unexpected conditions and equip-

ping the system such that it can cope with such unexpected events. This property of fault-tolerant

systems aims for self-stabilization in an attempt for the system to converge to an error-free state

[125].

In this study, we investigated the accuracy of our ranking method as a function of number of

outliers injected into the test dataset. An “outlier” in this context refers to an image from a different

emotion category than the one shared across all other images in the test tensor. As explained in

chapter 4 section 4, we made an assumption that the images in each image group pertains to the

same emotion category. This assumption is a safe one as all image datasets used in the literature

include the emotion category as the main label. This ablation study, however, is designed to observe

how our method would be challenged if this assumption was violated.

We start by injecting outliers to our test tensor one at a time and further applying our ranking

method to derive a ranking of the emotions based on their varying degrees of valence. The PCC
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(a) Average PCC of 0.9956 achieved by rank-1 cp-decomposition on the original
test set with no outliers injected.

(b) Average PCC of 0.7322 on the distorted
test set after injecting 6% outliers

(c) Average PCC of 0.7100 on the distorted test set
after injecting 12% outliers

(d) PCC of 0.0715 on the distorted test set after
injecting 17% outliers

(e) Average PCC of 0.0575 on the distorted test set
after injecting 22% outliers

Figure 5.7: Ablation Study 2 ran on the original test set and on distorted set with up to 4 outliers
injected.
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Figure 5.8: Effect of percentage of injected outliers on accuracy.

achieved on the original tensor serves as our baseline in this ablation study. We record the PCC

after injecting each outlier to further analyze the fault tolerance of our method.

Figure 5.6 displays a test dataset used in our study. This figure depicts the original sample set, fol-

lowed by the distorted sets, having injected outliers to the original set up to four outliers (i.e. 22%

outliers). Figure 5.7 shows the ranking PCC achieved on the original set vs. the distorted sets in-

cluding outliers. As portrayed in the figure, the system generates lower, but competitive accuracy

up to 12% outliers. However, upon the injection of higher percentage of outliers, accuracy drops

considerably.

Figure 5.8 depicts the plot portraying the effect of the percentage of injected outliers on accu-

racy. Even though the performance of our method noticeably drops after injecting more than an

average of 12% outliers, our system is well equipped to accomplish the task of self-stabilization.
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Figure 5.9: Blue line: Rank-1 cp-decomposition run on a dataset of images sharing the same
emotion category
Dotted green line: Rank-1 cp-decomposition run on the same dataset after injecting a new visually
similar image from the same emotion category.
Red line: Rank-1 cp-decomposition after injecting an outlier from a different emotion category.
Plot portrays visually how an outlier is detected using rank-1 cp-decomposition.

“Self-stabilization” in this context is defined as automatic detection of and auto-removal of the

outliers and further re-generating the ranking accordingly once the set is free of the injected noise.

With reference to our ranking method, elaborated in chapter 4 section 4, rank-1 cp-decomposition

measures the distance between each image in the tensor to the ensemble representation of the re-

maining modes of the tensor. Figure 5.9 helps visualize the automatic outlier detection our method

is equipped with. In this figure, the outlier is easily detectable where a spike is observed on the

plot, representing a longer distance to the group representation of the decomposed tensor.
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Figure 5.10: Sample set displaying images with the full background pixels included (first two
rows), and the same set with background pixels removed (last two rows). Viola-Jones algorithm
[10] used for face detection.

Ablation Study 3: Accuracy as a function of percentage of foreground vs. background pixels

In this study, we further investigate the effect of the percentage of foreground vs. background pixels

on accuracy. For this study, we implemented a pipeline to first detect faces, using the Viola-Jones

algorithm [10]. Next, we continued by adding 25% of the background in an incremental fashion

in four steps to gradually get the original image with the full background. In each step of this

ablation study, we computed the PCC generated by our ranking method to monitor the accuracy as

a function of the percentage of foreground vs. background pixels.

We performed this ablation study on CK+ (Sample displayed in figure 5.10) and AFEW (Sam-

ple displayed in figure 5.16), with the former representing images taken under controlled envi-

ronments with constant backgrounds, and the latter collected under semi-controlled environments

with changing backgrounds. We specifically chose these datasets to better investigate the role of

constant vs. changing background pixels on the ranking accuracy.

Figure 5.11 further portrays the Average PCC generated by our method in each step of the ab-

lation study ran on CK+. Figure 5.15 portrays the plot showing the effect of the percentage of
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(a) Average PCC of 0.9832 on the test set
with 100% background pixels

(b) Average PCC of 0.9659 on the test set
with 75% background pixels

(c) Average PCC of 0.8838 on the test set
with 50% background pixels

(d) Average PCC of 0.8352 on the test set
with 25% background pixels

Figure 5.11: Ablation Study 3 ran on CK+ with 100%, 75%, 50% and 25% background pixels
respectively. CK+ is collected under controlled environments with constant background. Average
PCC is computed based on all experiments run on CK+ dataset.

(a) Accuracy plot in the scale of 0 to 1 (b) Accuracy plot rescaled for higher visibility

Figure 5.12: Ablation Study 3: Effect of percentage of foreground vs. background pixels on
accuracy on CK+ with constant background pixels.
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Figure 5.13: Sample set displaying images with the full background pixels included (first two
rows), and the same set with background pixels removed (last two rows). Viola-Jones algorithm
[10] used for face detection.

foreground vs. background pixels on the PCC our method yields. As observed in this figure, there

exists a linear correlation between the percentage of background pixels and the PCC; i.e. the ac-

curacy drops as the percentage of background pixels is decreased. This observation might at first

be considered counter-intuitive. The reason involves the general perception that background pixels

represent noise and therefore less noise in the dataset is generally expected to deliver higher accu-

racy. Taking a closer look at this ablation study, the backgrounds in CK+ used in this experiment

are constant with no visual changes across the images forming each test group is observed. This

is different from cases where images in a given tensor have different changing backgrounds across

the tensor. Accordingly, this further suggests that the ensemble representation of the decomposed

tensor, formed by vectors u and v (from figure 4.9a) enforce a more meaningful angle (distance)

between the values in vector w (from figure 4.9a) and the global representation of the decomposed

tensor along other modes when constant backgrounds exist across all the tensor images. To chal-

lenge this ablation study, we ran similar experiments on AFEW, specifically due to the fact that

AFEW includes images per emotion category with slightly changing backgrounds.

The ablation study ran on AFEW shows a negative correlation between the percentage of back-

ground pixels and the ranking accuracy; i.e. as more background pixels are removed, higher ac-
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(a) Average PCC of 0.9832 on the test set with
100% background pixels

(b) Average PCC of 0.9659 on the test set with
75% background pixels

(c) Average PCC of 0.8838 on the test set with
50% background pixels

(d) Average PCC of 0.8352 on the test set with
25% background pixels

Figure 5.14: Ablation Study 3 ran on AFEW with 100%, 75%, 50% and 25% background pixels
respectively. AFEW is collected under semi-controlled environments with changing background.

curacy is achieved. This is attributed to the fact that the background in AFEW changes across

different images pertaining to the same emotion category. This property of AFEW’s dataset is due

to the fact that it has been collected under semi-controlled environments from movie clips, hence

changing of the background in different scenes is well expected. Figure 5.13 depicts a sample

dataset from AFEW used in this ablation study. Figure 5.15 further portrays the Average PCC

achieved for different percentages of background pixels. Finally, figure 5.7 depicts the plot show-

ing the effect of the percentage of background pixels on the accuracy achieved by our ranking

method. As observed in this plot, as more background pixels are removed, higher accuracy is
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(a) Accuracy plot in the scale of 0 to 1 (b) Accuracy plot in the rescaled for higher visibility

Figure 5.15: Ablation Study 3: Effect of percentage of foreground vs. background pixels on
accuracy on AFEW with changing background pixels.

achieved.

Ablation Study 4: Accuracy as a function of image resolution (image size)

In this study, we investigate the effect of image resolution (image size) on accuracy. We start by

computing the PCC on the original test set to form our baseline. We, then, generate a new test

set by increasing the image size by 10% and further repeat this operation in increments of 10%,

eventually resizing the images by a factor of 100% (2 times the size of the original image). In each

step of this ablation study, we measure the PCC generated to monitor the effect of image resolution

on accuracy.

Figure 5.16 displays a test set used for this study. Figures 5.17 and 5.18 further depict the PCC

achieved in each step of the ablation study for the portrayed test set. Finally, figure 5.19 displays

a plot portraying the effect of image resolution (image size) on ranking accuracy. As it can be

observed in this figure, our method yields almost identical accuracy in all steps of the study, proving

empirically that our method is robust with respect to image resolution.
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Figure 5.16: Sample set displaying varying degrees of valence for emotion surprise (excerpts from
CK+). Different rows display the same set with varying resolutions (sizes).

Discussion

The four ablation studies discussed in this chapter further unveil numerous hidden properties of

our unsupervised subspace ranking method for continuous emotions. Following, we will provide a

brief discussion on each of the ablation studies and findings thereof.

Ablation study 1 (Accuracy as a function of dataset size and density). The results of this

study provide definitive empirical proof for robustness of our method pertaining to dataset size and

density. We intentionally distorted our datasets by randomly removing images from the original

dataset to break the uniform distribution of valence in the datasets. However, our system was

not challenged by the distorted subsets, still producing highly competitive accuracy. This ablation

study further attests to proposition 3; i.e. conformity, elaborated on in chapter 4 section 4.

Ablation study 2 (Accuracy as a function of number of outliers). In this ablation study, we

injected outliers to our test datasets to monitor the fault-tolerance of our system and further find

the breakdown point. The results suggest that injecting outliers to our test sets will not break

what our system claims to deliver up to a limited percentage of outliers; i.e. 12% of outliers.

However, after the breakdown point is passed, the system’s performance degrades considerably.

With reference to figure 5.9, our system, however, is equipped with a self-stabilization mechanism
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(a) Average PCC for experiments run
on sample set with images of size 247 x 247 pixels

(b) Average PCC for experiments run
on sample set with images of size 269 x 269 pixels

(c) Average PCC for experiments run
on sample set with images of size 292 x 292 pixels

(d) Average PCC for experiments run
on sample set with images of size 314 x 314 pixels

(e) Average PCC for experiments run
on sample set with images of size 336 x 336 pixels

(f) Average PCC for experiments run
on sample set with images of size 359 x 359 pixels

Figure 5.17: Ablation Study 4 ran on a test sample with different image resolutions
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(a) Average PCC for experiments run
on sample set with images of size 381 x 381 pixels

(b) Average PCC for experiments run
on sample set with images of size 404 x 404 pixels

(c) Average PCC for experiments run
on sample set with images of size 426 x 426 pixels

(d) Average PCC for experiments run
on sample set with images of size 448 x 448 pixels

Figure 5.18: Ablation Study 4 ran on a test sample with different image resolutions

to detect and further eject the outliers, hence producing a high accuracy after the ejection process.

It is worth mentioning that as the percentage of outliers increase, the outliers won’t confuse the

ranking machine as they would in the initial phases of injecting outliers. This is due to the fact that

after a certain percentage of outliers is injected into the dataset, the outliers will play the dominant

role in the dataset, representing the inliers more than they represent the outliers. To avoid being

challenged by this phenomena, in this ablation study, once the fault-intolerance of the system is

observed, injecting more outliers was further discontinued accordingly.
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(a) Plot displaying the effect of image resolution
on accuracy. Y axis shows the full PCC range.

(b) Plot displaying the effect of image resolution
on accuracy. Y axis zoomed in for higher visibility.

Figure 5.19: Plots displaying the effect of image resolution on accuracy.

Ablation study 3 (Accuracy as a function of percentage of foreground vs. background pixels).

In this study, we investigated the performance of the system by gradually removing background

pixels from the original images in the set, and further recording the accuracy in each step of the

process. Results indicate that the percentage of the background pixels has a linear correlation with

the generated accuracy when experiments are run on CK+. CK+ includes images taken under con-

trolled environments with constant backgrounds across an emotion category. The observation is

that the accuracy drops as the percentage of background pixels are removed, suggesting a positive

correlation between the percentage of background pixels and accuracy. This is attributed to the

fact that constant backgrounds do not contribute to higher noise as opposed to images across the

same emotion category with changing background pixels. To challenge this observation, a second

set of experiments were run on AFEW. AFEW’s images are collected under semi-controlled en-

vironments and therefore the background of its images change across different images pertaining

to the same emotion category. The observed results suggest that there exists a negative correlation

between the percentage of background pixels and accuracy on such datasets; i.e. as background

pixels are removed accuracy increases. This is due to the fact that changing background across the
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images forming our image tensors is considered noise, carrying no meaningful information and its

removal, naturally, contributes to higher accuracy.

Ablation Study 4 (Accuracy as a function of image resolution). In this study, we investigated

the effect of image resolution on the accuracy. We started by running experiments on the original

datasets. We, then, increased the image resolution by a margin of 10% in incremental steps up

to 100% (double the size of the original dataset). The results of this ablation study strongly prove

that our system is robust with respect to image resolution as the generated accuracy remains almost

intact in different runs of the study.
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CHAPTER 6: CONCLUSION

In this chapter, we first provide a short summary of this dissertation, followed by our main contri-

butions to the field. We further discuss the gaps filled as a result of our contributions. Finally, we

pinpoint the new opportunities our work creates, opening new doors in this area, along with the

future directions the affective computing community is further exploring.

Summary

In this work, we first focus on providing a comprehensive analysis on the field of affective com-

puting, discussing the state of the art and further pinpointing the existing gaps in the field. Our

literature review is followed by introducing our multi-angle proposed methods to the problem of

emotion recognition. We tackle emotion recognition from categorical and dimensional angles, ex-

ploring supervised as well as unsupervised methods. To prove that the proposed methods deliver

what they claim, extensive set of experiments were run to provide empirical proof, and theoreti-

cal proofs were delivered when applicable, as part of the supplementary material attached hereto.

Result of experiments show a considerable boost in performance in the categorical space, while

delivering high performance in the dimensional domain of affective computing, supported by ex-

tensive experiments and ablation studies run to prove the robustness of our method.

Our Contributions

Following, we point out the main contributions delivered in this work, leveraging deep learning:

• we first architected a novel fully automated dataset collection pipeline, equipped with a built-
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in semantic sanitizer,

• we then built UCF ER and LUCFER datasets. LUCFER is the largest labeled emotion recog-

nition dataset collected to date in the literature with more than 3.6M images, labeled with

emotion and context, containing a rich set of metadata,

• next, we build a single-modal context-sensitive emotion recognition CNN models, trained on

our newly constructed datasets,

• we claim and show empirically that injecting context to the unified training process helps

achieve a more balanced precision and recall, while boosting performance, yielding an over-

all classification accuracy of 73.12% compared to 58.3% achieved in the closest work in the

literature.

We now discuss the contributions made, leveraging unsupervised methodologies:

• we propose a novel unsupervised ranking method, based on low-rank tensor decomposition,

• we provide theoretical proof that rank-1 cp-decomposition can be used as a ranking machine

under a fully unsupervised setting, applicable to the problem of valence rank estimation,

• we provide empirical proof that rank-1 cp-decomposition can be used as a ranking machine

under a fully unsupervised setting, by applying the method to valence rank estimation, show-

ing significant improvement in Pearson Correlation Coefficient, outperforming the state of

the art by a large margin; i.e. 65.13% (i.e. difference in PCC) in one experience and 104.08%

(i.e. difference in PCC) in another,

• we finally design and run extensive ablation studies and analyze the robustness of our ranking

method with respect to (1) dataset size, (2) percentage of outliers in the dataset, (3) effect

of percentage of foreground vs. background pixels on accuracy, and (4) effect of image
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resolution on accuracy. Our method is robust to dataset size, density and image resolution.

With respect to the role background pixels play in the system’s performance, our method

delivers higher accuracy as the cluttered background images are removed, and delivers lower

accuracy as constant backgrounds (such as backgrounds in the CK+ dataset) are removed.

Our ranking machine has a breakdown point of 0 with respect to injecting outliers, while

being equipped with self-stabilization by means of rank-1 cp-decomposition.

Doors Closed

Largest context-sensitive emotion recognition dataset. Existing works on affective computing

mainly employ small-scale datasets, or in cases where relatively larger scale datasets are con-

structed, these datasets lack context-sensitive annotations, with context-free annotation quality not

guaranteed. However, multimedia systems addressing the affective computing problems, are in

urgent need of large-scale context-sensitive datasets with rich and high quality metadata. Here we

address this issue by constructing the largest emotion recognition dataset; i.e. LUCFER, with 3.6M

images labeled with emotion and context, also benefiting from a rich set of metadata, including ob-

jects, gender, caption, related searches, related images, image source, bounding boxes, hot spot

coordinates among others. This dataset is available for download under the Creative Commons

Attribution 4.0 International license.

Empirical proof on achieving higher accuracy with context-infused unified training. The

contextual information embedded in multimedia content plays a crucial role in determining the

emotion evoked when exposed to certain visual stimuli. There have been efforts, as discussed in

chapter 2, in the multi-modal space, leveraging NLP techniques to tackle context-sensitive emotion

recognition in the multi-modal domain, however, to the best of our knowledge, our work pioneers

in the area of context-sensitive still image emotion recognition in the single-modal domain, em-
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pirically portraying the efficacy of adding contextual information to the unified training process.

We also show that adding context to the training process helps achieve a more balanced preci-

sion and recall, while boosting performance, yielding an overall classification accuracy of 73.12%

compared to 58.3% achieved in the closest work in the literature,

Unsupervised valence rank estimation using rank-1 cp-decomposition. The majority of pro-

posed methods in the literature to address emotion recognition from a dimensional perspective

explore solutions in the supervised space. Supervised methods, however, are challenged with the

constant need for large-scale labeled datasets that are high quality and re-usable across different

domains. Here in this work, we tackled the problem of valence rank estimation using an unsu-

pervised approach by treating rank-1 cp-decomposition as a ranking machine. To the best of our

knowledge, this is the first effort in the literature to perform an unsupervised ranking of emotions

in the VAD domain using rank-1 cp-decomposition. Result of experiments run on major emotion

recognition datasets; i.e. CK+, SEMAINE, AFEW-VA and AffectNet show the superiority of the

proposed subspace method, showing significant improvement in the Pearson Correlation Coef-

ficient (i.e. from 0.407 to 0.6721 in one experiment and from 0.35 to 0.7143 in another). Our

extensive ablation studies prove the robustness of our method, while portraying the high level of

fault-tolerance our method benefits from.

Doors Opened

Collecting new datasets. We designed and built a highly reusable large-scale dataset construction

pipeline, with simplicity in mind at the time of architecting the system. Lack of access to large-

scale datasets is not only a challenge encountered in affective computing, but also one that other

problem domains deal with. Our designed pipeline, available to the research community under the

Creative Commons Attribution 4.0 International license, enables researchers in different problem
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domains to collect large-scale datasets. Namely, the work proposed in [126] makes use of our

method to build the largest action recognition dataset; i.e. UCF STAR.

Running multi-modal methods on LUCFER. Furthermore, LUCFER, as the largest dataset in

the area of affective computing, and as the only dataset in the literature that is labeled not only

with emotion, but also context, enriched with semantic metadata, facilitates the affective computing

community to use this dataset by applying multi-modal methods that approach emotion recognition

using both still images and NLP techniques. With reference to works in the literature, pointed out

in chapter 2, higher accuracy is achieved using multi-modal approaches in the area of emotion

recognition.

Dissuading the necessity for large-scale datasets by infusing context. In addition, with reference

to the empirical proof provided in chapter 4 suggesting that fusing context into the unified training

process dissuades the necessity for having large-scale datasets, opens room for many empirical

studies to be run on small-scale datasets by first injecting context as part of the unified training

process.

Reusability of our unsupervised ranking machine. Finally, dimensional models of emotion at-

tempt to conceptualize human emotions by defining where they lie in two or three dimensions. A

widely used model of human affect is the VAD (valence, arousal, dominance) model. We showed

theoretically that our unsupervised subspace ranking method is capable of delivering high perfor-

mance. Considering the generalizability of our proposed ranking machine, the eager researcher is

urged to apply the same method to explore other dimensions of the VAD model, i.e. arousal and

dominance, or even other domains.
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Future Directions

Viewer Profiles Clustering. The emotion of people with different interests and backgrounds tend

to be aroused differently when exposed to the same visual stimuli. However, the crowdsourcing

methods adopted perform no clustering of those performing the task of labeling. Clustering view-

ers into their corresponding profiles based on interests and background could provide a feasible

solution.

Viewer-Image Interaction. Current affective computing efforts in the literature mainly leverage

direct analysis of the multimedia content and the signals conveyed such as facial expressions in

order to perform emotion recognition. However, the joint modeling of the multimedia content and

the emotion aroused in the viewers of the multimedia content being examined could better bridge

the affective gap.

Covid-19 Proof Emotion Recognition. The majority of emotion recognition methods heavily

rely on facial expressions to recognize emotions. However, wearing face masks during world

pandemics, such as Covid-19, could pose serious challenges for these methods due to the partial

occlusions on the face. Taking advantage of techniques in psychology that study reading emotions

from the eyes, such as the one proposed by [127], could provide the affective computing community

in constructing pandemic-proof methods.
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The main focus of this supplementary material is the three propositions pointed out in chapter 4

section 4, their significance, and their proofs.

Significance of the Propositions

On theoretical ground the three propositions in our paper establish totally new results for the spe-

cial case of rank-1 cp-decomposition. It is worth pointing out that these proofs are new and are not

repetitions from previously published material.

Proposition 1: The closest proof in the literature is permutation invariance for minimal decompo-

sition of a rank-R tensor (as described below). We prove a more general invariance under unitary

transformation (rotation, reflection, permutation), clearly important in our application of face im-

ages.

Proposition 2: The most general proof of uniqueness is the celebrated theorem of Kruskal (as de-

scribed below). However, Kruskal’s theorem is not applicable here, because it proves uniqueness

for minimal cp-decomposition of a rank-R tensor. We prove uniqueness for rank-1 decomposition

of a rank-R tensor (see below Kruskal’s theorem).

Proposition 3: Angular conformity is significant for both stability (illumination-invariance, and

invariance to adding/removing data), and proof of linear complexity.

On the practical ground Section 3.3 in the paper clearly explains why the method works, directly

as a result of the propositions 1-3, pointing out the fact our method is taking advantage of the
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known property of face images in terms of subspace behavior. This makes our work the first work

recognizing that rank-1 cp-decomposition is a subspace ranking solution, and is fully unsupervised.

It is a generic unsupervised subspace ranking, i.e. may be applicable to other problems of subspace

nature, and in our application, it significantly outperforms state of the art. We will release the code

(and all data is public) for reproducibility.

Brief Background Theory

Before proving the three propositions that support Section 3.3 and the results of the paper, we

cover some related preliminary material from multi-linear algebra, restricting to 3-way tensors for

convenience (although generalizations are well-known).

We start by some basic definitions.

Definition 1 A 3-way tensor X ∈ RI×J×K is said to be rank-1 if it is equal to the outer product of

three nonzero vectors u ∈ RI , v ∈ RJ , w ∈ RK , i.e. X = u ◦ v ◦ w.

Definition 2 A cp-decomposition of a 3-way tensor X ∈ RI×J×K is given by

X =
R∑

r=1

ur ◦ vr ◦ wr, (A.1)

where ur ∈ RI vr ∈ RJ , wr ∈ RK .

When Eq. (A.1) is the minimal sum, the constant R is referred to as the rank of the tensor X .

Definition 3 The matrices U = [u1...uR] ∈ RI×R, V = [v1...vR] ∈ RJ×R, and W = [w1...wR] ∈

RK×R are called the first, second, and third factor matrices of the tensor X , respectively. We
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denote X = [U,V,W]. When X is rank-1, the factor matrices reduce to column vectors. Also,

when the factor matrices are orthonormal, the summation in (A.1) would require a scaling factor.

A celebrated result in multi-linear algebra is the rotational uniqueness theorem due to Kruskal

[128]:

Theorem 1 Let U, V, and W be the first, second, and third factor matrices of the tensor X ,

respectively. Let also rank(U) + rank(V) + rank(W) ≥ 2R + 2. Then rank(X ) = R, and the

decomposition X = [U,V,W] is unique.

Unfortunately, this theorem is not applicable in our case, because it establishes the uniqueness of

the minimal cp-decomposition of a rank-R tensor, whereas our goal is to establish that the rank-1

decomposition of a rank-R tensor is unique. In fact, even when R = 1, Kruskal’s theorem could

not apply, since the Kruscal’s rank condition would require 1 + 1 + 1 ≥ 2 + 2. Therefore, in the

next section, we explicitly derive the uniqueness for rank-1 decomposition of a rank-R tensor.

Proofs of propositions

We start first by the proof of Proposition 2.

Proposition 2 (Uniqueness)

The rank-1 cp-decomposition of a 3-way tensor X ∈ RI×J×K that minimizes ‖X − X̂‖F is unique

up to a non-zero scale factor and arbitrary unitary transformation along any mode.

Let X̂1 = λ1 û1 ◦ v̂1 ◦ ŵ1 and X̂2 = λ2 û2 ◦ v̂2 ◦ ŵ2 be two rank-1 cp-decomposition of a 3-way
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tensor X ∈ RI×J×K that minimize ‖X − X̂i‖F , i = 1, 2. We have:

‖X − X̂1‖2F = ‖X − λ1 û1 ◦ v̂1 ◦ ŵ1‖2F (A.2)

= ‖X‖2F − 2〈X , λ1 û1 ◦ v̂1 ◦ ŵ1〉+ ‖λ1 û1 ◦ v̂1 ◦ ŵ1‖2F (A.3)

= ‖X‖2F − 2〈X×1û1×2v̂1×3ŵ1, λ1〉+ λ21‖û1‖2F‖v̂1‖2F‖ŵ1‖2F (A.4)

= ‖X‖2F − 2λ21 + λ21 (A.5)

= ‖X‖2F − λ21 (A.6)

Similarly:

‖X − X̂2‖2F = ‖X‖2F − λ22 (A.7)

From ‖X − X̂1‖2F = ‖X − X̂2‖2F it therefore follows that λ21 = λ22 or λ1 = ±λ2.

Now, let T be the the linear transformation that maps the orthonormal basis B2 = [û2v̂2ŵ2] to

B1 = [û1v̂1ŵ1], i.e. B1 = TB2. We have:

B1B
T
1 = TB2B

T
2T

T (A.8)

I = TITT (A.9)

where I is the identity matrix.

Therefore TTT = TTT = I. It therefore follows that the rank-1 decomposition of X is unique up

to a unitary transformation and a non-zero scale factor. �
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Next, we prove that the rank-1 decomposition is invariant to unitary transformations along any

mode. This is important to our problem of ranking, since it makes our solution independent of the

order of the input data (input images), any rotation (e.g. due to head pose), and reflection (which

due to face symmetry also results in translation invariance).

Proposition 1 (Invariance)

Let X̂ = λ û ◦ v̂ ◦ ŵ be the rank-1 decomposition of a 3-way tensor X ∈ RI×J×K that minimizes

‖X − X̂‖F . We maintain that X̂p = λû ◦ v̂ ◦ ŵp would minimize

‖Xp − X̂p‖F , (A.10)

where Xp = X ×1 P = X ×2 P, P is an arbitrary K ×K unitary transformation, ŵp = Pŵ, and

×i, i = 1, 2, 3 is a mode-i tensor-matrix multiplication.

Let U, V, and W be the first, second, and third factor matrices of X , respectively. Since P is a

unitary transformation, we have ‖P‖F = 1. Therefore,

‖X − X̂‖F = ‖X − X̂‖F‖P‖F (A.11)

= ‖ [U,V,W]PT − λ [û, v̂, ŵ]PT‖F (A.12)

= ‖ [U,V,PW]− λ [û, v̂,Pŵ] ‖F (A.13)

= ‖X ×i P− λû ◦ v̂ ◦Pŵ‖F , i = 1, 2 (A.14)

= ‖XP − X̂p‖F (A.15)
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On the other hand, let X̂ ′ be any rank-1 tensor that minimizes ‖XP − X̂ ′‖F . We have:

‖Xp − X̂ ′‖F = ‖ [U,V,PW]− X̂ ′‖F (A.16)

= ‖ [U,V,W]PT − X̂ ′‖F (A.17)

= ‖ [U,V,W]− λ′ [û′, v̂′, ŵ′]P‖F‖P‖F (A.18)

= ‖X − λ′ [û′, v̂′, ŵ′]P‖F (A.19)

It follows from Proposition 2 that:

λ′ [û′, v̂′, ŵ′]P = X̂ (A.20)

X̂ ′ = λ [û, v̂, ŵ]PT (A.21)

X̂ ′ = λ [û, v̂,Pŵ] (A.22)

X̂ ′ = X̂p, (A.23)

where the choice of the mode for transformation in (A.13) and (A.22) is arbitrary. �

Finally, we prove conformity. This is an important property of rank-1 decomposition, because it

situates our unsupervised ranking method between point-wise and list-wise methods. Essentially,

each member of the input data (i.e. each image) conforms to the same group-wise ranking, but in-

dividual images are independently ranked. What this implies is that adding/removing any number

of images does not affect the relative ranking of the remaining images.

Proposition 3 (Conformity)

Let X̂ = λ û ◦ v̂ ◦ ŵ be the rank-1 decomposition of a 3-way tensor X = Jx1, ...,xKK ∈ RI×J×K

94



that minimizes ‖X − X̂‖F . We have ∀k 6= k′, k, k′ ∈ [1, ..., K]

ŵk ≤ ŵk′ iff 〈xk, ûv̂
T 〉 ≤ 〈xk′ , ûv̂

T 〉 (A.24)

We have

ŵ = X×1û×2v̂ (A.25)

[ŵ1, ..., ŵK ] = Jx1, ...,xKK×1û×2v̂ (A.26)

Therefore

ŵk = xk×1û×2v̂ (A.27)

=
(
xT
k û
)
v̂T (A.28)

= 〈xk, ûv̂
T 〉, (A.29)

On the other hand, let ŵ(1), ..., ŵ(K) be the sorted elements of ŵ. Then, the indices (1), ..., (K)

would also sort x1, ...,xK in terms of the angle between xk and the subspace spanned by the

orthonormal basis {û, v̂}. Furthermore from the unitary uniqueness and permutation invariance, it

follows that removing any slice xk from the tensor, or adding any new slice x′k would not affect

the ranking among other slices. Therefore:

ŵk ≤ ŵk′ ⇔ 〈xk, ûv̂
T 〉 ≤ 〈xk′ , ûv̂

T 〉 (A.30)

i.e. every slice xk conforms to an internal relative ranking. �
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[89] T. Baltrušaitis, N. Banda, and P. Robinson, “Dimensional affect recognition using contin-

uous conditional random fields,” in Automatic Face and Gesture Recognition (FG), 2013

10th IEEE International Conference and Workshops on. IEEE, 2013, pp. 1–8.

[90] H. Chen, J. Li, F. Zhang, Y. Li, and H. Wang, “3d model-based continuous emotion recogni-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 1836–1845.

[91] S. Kaltwang, S. Todorovic, and M. Pantic, “Doubly sparse relevance vector machine for

continuous facial behavior estimation,” IEEE Transactions on Pattern Analysis & Machine

Intelligence, no. 9, pp. 1748–1761, 2016.

[92] H. Meng, N. Bianchi-Berthouze, Y. Deng, J. Cheng, and J. P. Cosmas, “Time-delay neural

network for continuous emotional dimension prediction from facial expression sequences,”

IEEE transactions on cybernetics, vol. 46, no. 4, pp. 916–929, 2016.

[93] E. Sánchez-Lozano, P. Lopez-Otero, L. Docio-Fernandez, E. Argones-Rúa, and J. L. Alba-
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