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ABSTRACT

Space missions design requires already tested and trusted control algorithms for spacecraft motion.

Rapidly testing control algorithms at a low cost is essential. A novel robotic system that emulates

orbital motion in a laboratory environment is presented. The system is composed of a six degree

of freedom robotic manipulator fixed on top of an omnidirectional ground vehicle accompanied

with onboard computer and sensors. The integrated mobile manipulator is used as a testbed to

emulate and realize orbital motion and control algorithms. The kinematic relations of the ground

vehicle, robotic manipulator and the coupled kinematics are derived. The system is used to emulate

an orbit trajectory. The system is scalable and capable of emulating servicing missions, satellite

rendezvous and chaser follower problems.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

Orbit Motion Emulation

The design and testing of spacecraft control algorithms is a challenging task and has been the

subject of research and development by aerospace engineers for decades. The availability of a

platform that emulates orbital motion and tests the performance and reliability of control algo-

rithms is favorable. Simulating orbital motion in a laboratory environment is good practice to

develop and test reliable control algorithms in real-time. The process usually includes different

kinds of robots to achieve a specific task planned to be carried out in space. Another approach for

testing control algorithms implementation in real-time is Hardware in the Loop (HIL) simulations.

The process of solving the system’s equations are carried out on an embedded computer to test

the performance and reliability of the hardware and the algorithms to be used in space missions.

Many researchers investigated and developed various systems to emulate space vehicles and satel-

lite motion. Choon et al. designed and fabricated two air-bearing vehicles to serve as the main

part of a satellite maneuver testbed, [3]. Other kinds of simulators were developed to simulate the

docking problem. For example, the European Proximity Operations Simulator (EPOS) developed

by the German Aerospace Center uses two robotic manipulators each with 6-DOF fixed on a slide.

EPOS allows docking and rendezvous real-time simulations, [4]. Ananthakrishnan et al. emulated

on-orbit contact dynamics in a one-G ground system by modeling and testing feed-forwared filter

based on prediction. The International Space Statoin (ISS) and spacecraft contact dynamics were

simulated and illustrated using a 6-DOF Stewart platform, [5]. In order to simulate contact tasks

carried out by the special purpose dexterous manipulator, a robotic arm on the ISS, the Canadian

Space Agency developed a task verification facility utilizing a 6-DOF hydraulic robot, [6]. US

Naval Research Lab uses two 6-DOF robotic arms for satellite rendezvous simulation to test ren-

1



dezvous sensors, [7]. Bai et al. presented a high fidelity dynamical model for an autonomous

mobile robotic system to emulate spacecraft motion. They used a mobile omnidirectional base

robot with a 6-DOF Stewart platform, [8]. Fouse et al. proposed an electromagnetic docking sys-

tem to mitigate the uncertainty in high risk operation of small satellites docking. The proposed

system is able to dock at various orientations and is tolerant towards minor misalignments, [9].

In order to emulate the process of removing orbital debris, Papadopoulos et al. presented a hard-

ware emulator consisting of a robot mounted on air bearings and propelled by PWM thruster forces,

[10]. Their preliminary results showed potential for the system to be used reliably for emulation

purposes. Cavalieri et al. presented a guidance, navigation and control product that supports a

ground-based simulation necessary for removing orbital debris autonomously, [11]. They con-

ducted two laboratory experiments and the results verified the operation of the system. Mao and

Wang investigated the concept of space manipulator-based microgravity platform. They used a

system that consists of a manipulator with an end effector shield and a testbed floating in it. The

orbit was assumed to be circular and Clohessy-Wiltshire equations were utilized. Another case

where the initial relative speed is in the opposite direction of the last link was tested. A routine is

engaged to test the reachability of the relative motion by the robotic arm, [12].

In order to ensure equilibrium across the range of robot motion, gravity compensation is a widely

used technique to reduce the actuator loads generated by the robot links weight. Various operations

are achieved at a low motor speed which generate high gravitational torques. In such a case, gravity

compensation is favorable in order to reduce the torques required to operate the robot. The nature

of the forces needed to compensate gravity in a robotic system may be diverse. Mechanical gravity

compensation techniques include gravity compensation by counterweights, gravity compensation

by springs, and gravity compensation by using auxiliary actuators. Optimal control of input torques

can also be used to cancel the gravity effects on a robotic system link, [13]. Adding counterweights

to the robotic system is a classical method applied moving links to keep their center of masses
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stationary. Hand-operated balanced manipulators successfully utilized gravity compensation. The

balanced manipulator has a simple mechanical system used for handling an object in any position

of the workspace while maintaining balance. Constantly canceling gravity allows handling objects

manually, [14]. Auxiliary linkages, any mechanical system linking the initial structure of the robot

with a balancing member, connected with the initial system are another technique used to maintain

balance. Using such mechanisms can reduce the consumption of power and energy, [15].

Omnidirectional Mobile Robots

The term mobile robot is usually interpreted as a gadget that can move self-rulingly from place to

place to accomplish various objectives. Mobile robots are utilized in a wide scope of applications

including production lines, military tasks, medicinal services, pursuit and save, and in homes for

cleaning and lawn mowing. Automated guided vehicles or automatic guided vehicles (AGVs) were

developed in 1953. AGVs are regularly utilized in modern applications to move materials around

an assembling office or a stockroom. Ordinary AGV types are tuggers (AGVs that pull trucks),

unit loaders (AGVs with installed roller tables for parts-plate exchanges), and fork trucks (robots

like manual fork trucks). The utilization of portable robots, and AGVs specifically, is developing

as the scope of robot applications in processing plants, medical clinics, places of business, and

so forth widens. Portable robots can utilize a scope of movement systems, for example, flying,

swimming, slithering, and strolling, [16].

The design and development of ground vehicles and their wheels have been under constant pro-

gression in the past decades. For manmade vehicles and mobile robotics, wheels have been the

number one choice for designers and engineers to achieve motion with good efficiency and simple

mechanism implementation. Unlike legged robots, for instance, the stability study is not of an is-

sue for wheeled robots because all the wheels touch the ground. Hence, three wheels are sufficient
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to guarantee a stable equilibrium of the vehicle, [17].

Four wheel types are generally used for ground robots; Castor wheel, Swedish (Omnidirectional)

wheel, and ball wheel. The standard wheel has 2-DOF and rotates around the axle. The Castor

wheel has 2-DOF and rotates around a steering joint with an offset. The Swedish wheel has 3-DOF

rotating around the axle, rollers and contact point. The ball wheel is basically a ball that supports

the system and rolls in all in-plane directions. It is technically difficult to be realized.

The Swedish wheel and the ball wheel are less constrained in motion that the other wheel types.

The Swedish wheel acts as a normal wheel while providing a low resistance in a different direction.

This direction can be 90 degrees or 45 degrees depending on the type of the Swedish wheel. The

only actively powered joint is around the primary axis of the wheel and the small rollers around the

circumference are passive. The main advantage of Swedish wheel is that the wheel is able to move

kinematically with a very low friction along various possible trajectories while being powered only

from one axis. The choice of wheels depends on the choice of the wheel arrangement that fits the

mission requirements. Maneuverability, controllability and stability are the main characteristics

for the process of choosing a robot that fits the mission. Conventionally, three wheels are essential

for static stability and the center of gravity has to lie the triangle formed by the wheels. For maneu-

verability, omnidirectional robots can move in the (x, y) plane in any direction regardless of the

robot orientation around its vertical axis. Omnidirectional robots usually utilize omnidirectional

wheels or ball wheels in order to achieve the 3-DOF motion. On the other hand, castor wheels can

be used in a four wheel arrangement to achieve the same kind of motion. One of the prominent

examples of using castor wheels for space motion emulation is the ones designed at Texas A&M,

[8]. Moreover, a power castor wheel developed by Holmberg and Khatib was used in the XR4000

mobile robot, [18]. The controllability of the four castor wheel arrangement is lower. Generally

speaking, the relation between controllability and maneuverability is inversely proportional. The

process of translating required translational and rotational velocities to commands in a four castor
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wheel arrangement is more significant, [17].

The Cye personal robot is a nonholonomically constrained differential drive running on two wheels.

It is designed for home, office or research use. Main wheels provide balance for the robot and its

only mean of navigation is dead reckoning which is calculating the vehicle’s current position by

utilizing the history of position and propagating that position based on estimated speeds along time

and course. Dead reckoning is advantageous when it comes to computation simplicity. However,

the main disadvantage with dead reckoning is the accumulation of error with time. Batavia and

Nourbakhsh developed a path planning algorithm for the Cye robot. Their optimization criterion

allowed the robot to find short paths while avoiding obstacles with suitable distance. They demon-

strated the robustness of their planner by conducting 200 real world experiments, [19].

In order to move an omnidirectional robot in a specific direction, more complex control algorithms

are required for the less maneuverable robots. The Tribolo designed at the Swiss Federal Institute

of Technology is based on three independently actuated wheels. This arrangement provides excel-

lent maneuverability but its limitations include the inability to run on irregular surfaces or carrying

big loads.

Uranus is another robot built by Carnegie Mellon with a four Swedish wheel arrangement. It is

composed of four independently motored 45-degree Swedish wheels. The robot can be moved

along any trajectory while spinning around its vertical axis by utilizing the direction and relative

speeds of the four wheels. This design makes the robot an over-actuated system which is not

minimal in terms of control, [20].

Williams et al. presented a dynamical model for holonomic wheeled robots with wheel slip. They

validated their model by experimentally measuring friction coefficients and quantifying the force

to prompt slip. Simulations showed that the initial models disagreed with the experimental results.

The results from this model and the experiment agreed, [21]. Watanabe et al. derived the dynamics
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of an omnidirectional robot with lateral orthogonal-wheels. The resolved acceleration control

system was derived and showed good efficiency, [22].

Rajagopalan developed kinematic expressions of wheeled mobile robots different scenarios for

steering and driving, [24]. Shekar derived a wheel slip dynamic model using accessibility and con-

trollability in nonlinear control theory, [25]. Balakrishna and Ghosal modeled traction taking slip

into consideration for nonholonomic mobile robots, [26]. Scheding et al presented experimental

validation of a navigation system system that can handle autonomous vehicle wheel slip by using

multi-sensor feedback, [27].

Generally, there are some standard controllers that have been designed and implemented like pro-

portional plus integral controllers, Lyapunov based controllers, resolved motion rate controllers

and resolved motion acceleration controllers. The controllers mentioned involve two stages. The

first is kinematic tracking which uses the kinematic model of the robot and used a suitable Lya-

punov function to control the linear and angular velocities. The second uses Lagrange model which

includes the motor dynamics and the gearbox, [28].

Robotic Manipulators

Robot manipulators have various applications like assembly jobs in factories, welding and handling

tasks, and recently operating surgeries in operation rooms. A very common arrangement of robotic

manipulators is the 6 degree of freedom robot that consists of connected rigid links actuate by

motors fixed at joints. Robotic manipulators are fixed in position for specific tasks which limits

its workspace. The Selective Compliance Assembly Robot Arm (SCARA) is rigid vertically but is

compliant in the horizontal position which suits tasks carried out in-plane such as electronic boards

manufacturing. A large working volume can be achieved by confining the motion of a robotic arm
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to one or 2-DOF along overhead rails; this kind of robots is usually called a gantry robot. A

parallel-link manipulator has links connected to the end effector in parallel; this arrangement is

advantageous in having the motors fixed in the base providing a rigorous structure.

Safety and perception are simplified by having the robot immobile. Factory robots can be fast and

precise because of the orderly, well set work environment and the assumption that the location of

objects is well known. These objects are manipulated by a robot’s end effector. The end effector is

usually the tool that will carry out the task. The problem of robotic manipulation is till undergoing

research and development for better performance and newer tasks.

Ruehl et al. presented a test bed for robotic manipulation in microgravity to simulate on-orbit-

servicing missions, [29]. Their platform uses the KUKA-DLR which is an iteration of the current

KUKA LBR iiwa lightweight robot. Boasting precision within 0.1 millimeters, this choice is

highly precise. However, the KUKA LBR suite of manipulators range around $200,000: well

outside the feasible range ROME aims to achieve. Peterson et al proposed a robust platform in

which a hybrid dynamical system is used to switch between various algorithms. The manipulator

hardware used for this application was a PUMA 560 arm. Being another industrial arm, the PUMA

arm has repeatability within 0.1 millimeters, [30].

Mobile Manipulators

Mobile manipulators are robotic manipulators fixed on top of moving bases. They are widely used

in agriculture, space applications and warehouses for big retail companies. Hamner et al devel-

oped a mobile manipulator for insertion assembly missions. Using reactive task control strategies

allowed the system to overcome inherent uncertainties and exceptions, [31]. Peterson et al. and

Nagatani et al developed a mobile manipulator utilizing force and torque control to open a door,
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[30, 32]. Chitta et al. used a graph-based representation to plan arm and base motion to open a

variety of door types, [33]. Kinematic redundancy resolution of mobile manipulators for mate-

rial handling was studied by Pin and Culioli, [34]. In order to optimize the the configuration and

position of the system during movement, they studied its utility to take care of changes in task

constraints or requirements. Obstacle avoidance and maneuverability functions were investigated.

Adavit and Kemp developed a mobile manipulator and called it EL-E. The robot can approach

the location of an object illuminated by a laser pointer and grasp it, [35]. Agah and Tanie pre-

sented control problems accompanied with a mobile manipulator giving objects to Humans, [36].

Tomizawa et al. described a mobile manipulator located in a library to help humans browse books,

[37]. Borth and Pobil demonstrated a voice guided mobile manipulator that can verbally inter-

act with the user to identify and grasp objects, [38]. Holmbery and Khatib designed a powered

caster vhiecle (PCV) demonstrating smooth and accurate motion. The system can be controlled.

Moreover, they proposed a novel approach to model and control parallel redundant system dynam-

ics, [18]. Khatib et al developed models and methodologies for analyzing and controlling new

multiple mobile manipulation systems. The four fixed base manipulation methods were extended

to Stanford Assistant Mobile Manipulators (SAMM). Osumi et al studied cooperating control of

multiple mobile manipulators, [39]. Two mobile base robots performed assembly tasks following

a behavior-based system, [40].

Several studies discussed the problem of configuration optimization. Yamamoto and Yun devel-

oped an algorithm to plan and control the manipulator to be positioned at the preferred configura-

tions measured by its manipulability. The simulation results proved the desired algorithm result.

Consequently, the algorithm was verified in real time on a mobile manipulator system, [41]. A

multi-criteria motion planning of a mobile manipulator systems was carried out by using genetic

algorithms. The multi-criteria were based on manipulability, distribution of torque and obstacle

avoidance, [42].
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The availability of a platform that emulates orbital motion and tests the performance and relia-

bility of control algorithms is favorable. Emulating orbital motion in a laboratory environment

is an important process to develop and test reliable control algorithms and sensors in real time.

The benefit of hardware emulation over software simulation is the ability for engineers to rapidly

control prototype and iterate their control strategies on real-world hardware interfaces. One of the

main challenges in building such platforms is the high cost and the high maintenance expenses.

In this work, we present a mobile manipulator that consists of a 6-DOF robotic manipulator fixed

on top of a holonomic ground vehicle. The 9-DOF Rapid Orbital Emulator (ROME) is capable of

simulating orbital motion in 3 dimensional space. The forward and inverse kinematics of the two

robots as well as the mobile manipulator are derived. Real time experiments for closed loop control

on the ground vehicle, robotic manipulator and mobile manipulator were carried out. The system

integration showed stability with minor vibrations. The trajectory generated for the experiment is

the solution of an elliptic orbit. The solution was carried out using the classical Lagrange Gibbs

method.

The thesis is divided into four main chapters. Chapter two discusses the forward and inverse kine-

matics, simulation and experimental results of the ground vehicle. The robotic manipulator forward

kinematics, path following simulations and experiments are demonstrated in chapter 3. Chapter

4 presents the mobile manipulator coupled forward kinematics, path following simulations, ex-

periments and applications to astrodynamics. Finally, concluding remarks and future work are

presented in chapter 5.
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CHAPTER 2: GROUND VEHICLE

Kinematics Model

The forward kinematics of a three wheeled mobile robot can be described as

χ = f(q) (2.1)

where the joint space q is the set of three motors and wheels, and the Cartesian space χ is the

general 6-DOF vector. An easy and intuitive way of describing this relation is by defining poses,

the combination of position and orientation, in terms of homogeneous transformation matrices.

T I
GV =

RI
GV oIGV

01×3 1

 (2.2)

where RI
GV is the 3 × 3 rotation matrix and oIGV is the position of the origin of the frame of

reference {GV } with respect to the origin of the frame of reference {I}. The model setup is based

on an inertial frame of reference {I} which includes two axes (XI , YI) and the ground vehicle

frame of reference {GV } . The mobile robot body frame is located at the center of gravity of the

vehicle with the X axis passing through wheel number 1 and the Y axis perpendicular to it and

located between wheel number 1 and wheel number 2 as shown in Fig. 2.1, [43]. The rotation

from the ground vehicle frame to the inertial frame can be described by the rotation matrix

R(ψ) =

cosψ − sinψ

sinψ cosψ

 (2.3)
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Figure 2.1: Kinematic arrangement of the mobile robot

where ψ is the rotation angle measured from the horizontal axisX and positive in the counterclock-

wise direction. The position of the center of mass of the vehicle can be described in the inertial

frame as

pIGV = xXI + yYI (2.4)

The homogeneous transformation matrix that takes into account the rotation and translation of the

ground vehicle frame with respect to the inertial frame can be written as

T I
GV =



cosψ − sinψ 0 x

sinψ cosψ 0 y

0 0 1 0

0 0 0 1


(2.5)
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Consequently, the position of each wheel can be described in terms of its angular location and

distance from the origin of the center of mass of the ground vehicle as

pGVi =

xi
yi

 = R(ζ)L

1

0

 (2.6)

where L is the distance from the center of mass to each wheel and ζ is the constant angular location

of each wheel measured counterclockwise from the inertial horizontal axisXI . For the three wheels

pGV1 = L cos(0)XGV + L sin(0)YGV

pGV2 = L cos

(
2π

3

)
XGV + L sin

(
2π

3

)
YGV

pGV3 = L cos

(
4π

3

)
XGV + L sin

(
4π

3

)
YGV

(2.7)

The translational direction unit vector of each wheel with respect to the ground vehicle frame can

be described by the vector

dGVi =
1

L
R
(π

2

)
pGVi , i = 1, 2, 3 (2.8)

The position and velocity of each wheel with respect to the inertial frame can now be expressed as

rIi = pIGV +R

(
ψ +

2π

3
(i− 1)

)
pGVi (2.9)

vIi = ṗIGV + Ṙ

(
ψ +

2π

3
(i− 1)

)
pGVi (2.10)
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The translational velocity of each wheel can be described as follows

Vi = vI
T

i R

(
ψ +

2π

3
(i− 1)

)
di

= ṗI
T

GVR

(
ψ +

2π

3
(i− 1)

)
di + pGV

T

i ṘT

(
ψ +

2π

3
(i− 1)

)
R

(
ψ +

2π

3
(i− 1)

)
di

(2.11)

The translational velocities of the three wheels can then be written as
V1

V2

V3

 =


Rω1

Rω2

Rω3

 = P (ψ)


ẋ

ẏ

ψ̇

 (2.12)

where R is the wheel radius and ωi is the angular velocity of the three wheels and

P (ψ) =


− sinψ cosψ L

− sin(π
3
− ψ) − cos(π

3
− ψ) L

sin(π
3

+ ψ) − cos(π
3

+ ψ) L

 (2.13)

The matrix P (ψ) is always nonsingular for any ψ and its inverse looks as follows

P−1(ψ) =


−2

3
sinψ −2

3
sin(π

3
− ψ) 2

3
sin(π

3
+ ψ)

2
3

cosψ −2
3

cos(π
3
− ψ) −2

3
cos(π

3
+ ψ)

1
3L

1
3L

1
3L

 (2.14)

This model allows for trajectory tracking control along an arbitrary time-varying path according to

13



the control law

V = P (ψ)

(
−Kpχe −Ki

∫
χedt+ χ̇d

)
(2.15)

where χ is the states vector, χe is the error vector and χ̇d is the desired velocity vector


xe(t)

ye(t)

ψe(t)

 =


x(t)

y(t)

ψ(t)

−

xd(t)

yd(t)

ψd(t)

 (2.16)

and the motor output voltage u(t) can be calculated using the control law

u(t) = Kpχe(t) +Ki

∫
χe(t)dt (2.17)

In order to prove the stability of the controller used, consider the Lyapunov function

V =
1

2
χ′χ+

1

2

∫
(χ′e)dtKIχe (2.18)

V̇ = χ′χ̇+

∫
(χe)dtKIχe

= χ′
(
−Kpχe −KI

∫
(χe)dt

)
+ χ′eKIχe)

V̇ = −χ′KPχ < 0

(2.19)

The controller drives the system to a stable equilibrium forKp is a positive definite matrix.
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Simulation and Experimental Results

The kinematics were modeled in Simulink and used to produce linear, circular, and elliptical tra-

jectories as shown in Fig. 2.2. The path following controller used for the ground vehicle is a

proportional integral controller as shown in Fig. 2.3.

Figure 2.2: Path following Simulink model for the ground vehicle

These trajectories were reproduced using the ROME ground platform. For the circle, the trajectory

is given as

x(t) = cos(.25t) y(t) = sin(.25t) ψ(t) = 0 (2.20)

The model follows the circular path smoothly as shown in Fig. 2.4. The absolute error plots are

generated by subtracting the state value from the reference trajectory value.

The ROME ground vehicle uses three omnidirectional wheels in order to allow holonomic motion

in the XY plane. The platform consists of a modified Nexus Robot Kit 10013, using an Arduino
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Figure 2.3: Path following controller for the ground vehicle
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Figure 2.4: Circular trajectory kinematics simulation

MEGA and an Adafruit V2 Motor Shield to control PWM voltages to the three motors in place

of the stock controller and driver. Holes were drilled to the top of the platform to allow mounting

the robotic arm. The ground vehicle uses optical encoders on the motors for velocity feedback and

16



(a) Circular trajectory experimental results
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(b) Circular trajectory experimental error

Figure 2.5: Circular trajectory experimental results and error of the mobile robot

an Optitrack Prime 13W camera system for position feedback. Motive, Optitrack’s accompanying

software, allows position and orientation data to be streamed to Matlab in real time at 240 frames

per second. Motor velocity control is handled by the Arduino, which receives new setpoints over

serial through Matlab using the Matlab Arduino support package.
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Figure 2.6: Ground platform CAD trimetric View

The experiment showed that the mobile robot can follow a circular path with some transient error

at the beginning of the maneuver as presented in Fig. 2.5.

For the line, the trajectory is given as

x(t) = t y(t) = 0 ψ(t) = 0 (2.21)

The results from the line following simulation and experiment agree to as shown in Fig. 2.7 and 2.8.

The line following maneuver remains as one of the simplest maneuvers for the ground platform to

achieve. For the ellipse, the trajectory is given as

x(t) = cos(0.25t) y(t) = 1.5sin(0.25t) ψ(t) = 0 (2.22)

Both the simulation and experiment of the elliptic trajectory agree as shown in Fig. 2.9 and 2. The

mobile robot kinematic model showed good accuracy compared to the experimental realization of

the prescribed maneuvers.
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Figure 2.7: Simulated linear trajectory of the mobile robot
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(a) Straight line tracking experiments results
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(b) Straight line tracking experimental error

Figure 2.8: Linear trajectory tracking experimental results and tracking error of the Mobile Robot
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Figure 2.9: Simulated elliptical trajectory of the mobile robot
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(a) Elliptical trajectory experimental results of the mobile robot
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(b) Error in elliptical trajectory tracking experiment

Figure 2.10: Elliptical trajectory tracking experimental results and error
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CHAPTER 3: ROBOTIC MANIPULATOR

Robotic Manipulator

The serial chain of links are conveniently described using the Denavit-Hartenberg (DH) notation

which is based on a unique setup of the frames of references along the joints in order to reduce the

amount of computation needed to solve the kinematics. The DH notation can be defined as shown

in Table 3.1

DH parameters can be used to construct homogeneous transformation matrices that can be used to

concisely derive the kinematics of a serial chain manipulator. The homogeneous transformation

matrix can be created based on a unique sequence of motions and rotations along the serial link

chain. The sequence is a rotation around z, then a translation along the z axis, followed by a

Table 3.1: DH parameters definition, [1]

Joint
angle

θj the angle between the xj − 1 and xj axes
about the zj−1 axis

revolute joint variable

Link
offset

dj the distance from the origin of frame j−1
to the xj axis along the zj−1axis

prismatic joint variable

Link
length

aj the distance between the zj−1 and zj axes
along the xj axis; for intersection axes is
parallel to ẑj−1 × ẑj

constant

Link
twist

αj the angle from the zj−1 to the zj axis
about the xj axis

constant

Joint
type

σj σ = R for a revolute joint, σ = P for a
prismatic joint

constant
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translation in the x direction and finally a rotation around the x axis.

DHi = Rotz(θi)Transz(di)Transx(ai)Rx(αi)

=



cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1





1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1



=



cos θi − sin θi sinαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


(3.1)

To clarify the concept of DH parameters, a planar two-link arm is considered. The DH parameters

can be constructed from the geometry of the arm shown in Fig. 3.1

The DH parameters of the arm are

Table 3.2: Two-link arm DH parameters

θj dj aj αj
q1 0 a1 0
q2 0 a2 0

The DH parameters stated in Table 3.2 can be used to construct two homogeneous transformation

matrices identical to the matrix generated in Eq. (3.1). The homogeneous transformation matrix is

used to describe the rotation and translation of each frame of reference with respect to the previous

frame of reference. The first 3× 3 submatrix is responsible for the rotation and the first 3 elements
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𝑚1

𝑚2

𝑥2
𝑦2

𝑥1

𝑦1

Figure 3.1: Planar two-link arm, [1]

in the 4th column is responsible for the translation part.

Forward Kinematics

The joint angles change according to the motors input voltage to achieve a certain task. The

number of generalized coordinates is equal to the number of joints which belongs to the space of

all possible configurations (a.k.a the configuration space). The pose of a manipulator in the joint

space changes the position and orientation of the end effector in the task space. The task space is

defined as all the possible end-effector poses. The dimension of the configuration space must be

larger than or equal to the dimension of the task space. The forward kinematics describe the change
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in the pose of the end effector in the task space with respect to the change of the joint angles in

the joint space.Hence, finding the relation between the two spaces solves the forward kinematics

problem. A general form of the forward kinematic relation between the task space and joint space

is

x = Y (q) (3.2)

where x is the task variables vector and q is the joint space variables vector. For articulated

robots, the serial chain of links can be conveniently described using the DH notation which is

based on a unique setup of the frames of references along the joints in order to reduce the amount

of computation needed to solve the kinematics. The wire skeleton with the frames of references is

illustrated in Fig. 3.2. The problem of finding the position of the end effector as a function of the

joint angles with respect to the base frame, defined at joint 1, is achieved by simply multiplying

the six transformation matrices.

TB
E =

6∏
i=1

DHi (3.3)

For each joint i, a Denavit-Hartenberg parameter matrix is created for the transformations. At joint

one, frame one is known as the base frame, and at joint six, frame six is known as the tool frame.

Once each frame is created, matrix products are taken down the kinematic chain of each frame.

For example for the two-link manipulator the homogeneous transformation matrix is written as

T 0
2 = T 0

1 T
1
2

=



c(q1 + q2) −s(q1 + q2) 0 a1cq1 + a2c(q1 + q2)

s(q1 + q2) c(q1 + q2) 0 a1sq1 + a2s(q1 + q2)

0 0 1 0

0 0 0 1


(3.4)
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Figure 3.2: AR2 wire skeleton, [2]

Let T in Eq. (3.5) define a four by four matrix which is the product of the kinematic chain of the

six total four by four Denavit-Hartenberg parameter matrices. Extracting the x, y, z, yaw, pitch,

and roll data is done by examining the T matrix.

T =



T11 T12 T13 x

T21 T22 T23 y

T31 T32 T33 z

0 0 0 1


(3.5)

An interior three by three rotational matrix is embedded within the T matrix, which is used to find
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the yaw, pitch, and roll of the end effector. The x, y, and z positions can be observed within the T

matrix. In order to extract the Eulerian angles from that matrix, a series of equations are used.

RotX(α) = α = arctan2 (T21, T21)

RotY (φ) = φ = arctan2
(
−T31,

√
T 2
32 + T 2

33

)
RotZ(θ) = θ = arctan2 (T32, T33)

(3.6)

The forward kinematics relations can be utilized to visualize the robot’s workspace. The workspace

of a manipulator is the total volume the end effector can reach. The manipulator geometry and the

joints constraints limits the the workspace, [44]. The workspace of the AR2 robot is shown in

Fig. 3.3 The workspace plot was generated by solving the inverse kinematics for configurations

generated using a random number generator and bounded by the limits of each joint. The white

portion in the plot determines that this volume of space is unreachable by the robot due to its design

and joint limits. The dense areas in the center are more points plotted by the solver but the whole

volume including the less dense points and the high density points is reachable.

Inverse Kinematics

The inverse kinematics problem can be stated based on the definition used in Eq. (3.2) as follows

q = g(x) (3.7)

Having a closed form system of equations describing the joint space variables in terms of the task

space variables is very difficult. An effective way of solving the inverse kinematics problem is
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Figure 3.3: AR2 workspace

by introducing the Jacobian. The Jacobian is defined as the matrix that maps the change in the

configuration space to the task space. From Eq. (3.2)

ẋ = J(q)q̇ (3.8)

where the J is the Jacobian matrix and can be defined as

J(q) =
∂Y

∂q
(3.9)

To elaborate on how to calculate the Jacobian matrix analytically, consider the two-link manipula-

tor example. From the homogeneous transformation matrix (3.4), the position of the end effector
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is written as

x
y

 =

a1 cos q1 + a2 cos(q1 + q2)

a1 sin q1 + a2 sin(q1 + q2)

 (3.10)

by differentiation

ẋ
ẏ

 =

−a1q̇1 sin q1 − a2(q̇1) + q̇2) sin(q1 + q2)

a1q̇1 cos q1 + a2(q̇1) + q̇2) cos(q1 + q2)

 (3.11)

The last equation is rewritten as

ẋ
ẏ

 =

−a1 sin q1 − a2 sin(q1 + q2) −a2 sin(q1 + q2)

a1 cos q1 + a2 cos(q1 + q2) a2 cos(11 + q2)


q̇1
q̇2

 (3.12)

The Jacobian matrix of the two-link manipulator is

JRR =

−a1 sin q1 − a2 sin(q1 + q2) −a2 sin(q1 + q2)

a1 cos q1 + a2 cos(q1 + q2) a2 cos(q1 + q2)

 (3.13)

The resolved rate algorithm is an elegant way to solve the inverse kinematics problem was proposed

by Whitney, [45]. The main idea is to avoid solving for the inverse kinematics directly which

is described in Eq. (3.7). Alternatively, the rates of the system are considered. The system is
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integrated one time step and the Jacobian is updated accordingly as described in Eq. (3.14) and

(3.15).

q̇ = J−1(q)ẋ (3.14)

qt+1 = q0 + q̇∆t (3.15)

There are different methods to solve the Jacobian inverse. For example, the Damped Least Squares

(DLS), Damped Least Squares with Singular Value Decomposition (DVS-DLS), Selectively Damped

Least Squares (SDLS), Jacobian Transpose, and other extended versions of these methods, [46, 47,

48, 49, 50, 51]. Generally, Jacobian inverse methods suffer from singularities, involved matrix cal-

culations, and high computational cost. In order to avoid singularities and increase the efficiency

of the solutions, Pechev solved the inverse kinematics problem from a controls point of view, [52].

He constructed the transformation from Cartesian space to joint space in a feedback loop. Hence,

the feedback inverse kinematics worked as a filter without relying on matrix inversion. Another set

of inverse kinematics solutions are Newton’s methods. Formulating the problem as minimization

problem and seeking target configurations to return continuous smooth motion. Methods like Pow-

ell’s method, Broyden’s method, Fletcher, Goldfarb and Shanno (BFGS) method, [53]. Newton’s

methods are not easy to implement and are computationally costly, [54]. The method used in this

work is the pseudo-inverse of the Jacobian for its simplicity. A feedback term was added in order

to minimize the error.

q̇ = J †(q)(ẋr +Ke) (3.16)

where e = xr − x is the error between the reference trajectory xr and actual values of the task

variables x. The error is attenuated by a feedback proportional controllerK.
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Simulation Results

In order to solve the problem of kinematic control, Eq. (3.16) is utilized. The reference velocity

and path fed in to the pseudo-inverse kinematics of the system. The reference position is corrected

by feeding back the position signal. Consequently, the resulting joint speeds are integrated to get

the joint angles that will drive the forward kinematics to calculate the position of the end effector.

The process is illustrated in Fig. 3.4.

𝒌𝑝𝒆 𝑱†(𝑞) ∫
+

−

+ 𝑭𝒐𝒓𝒘𝒂𝒓𝒅
𝑲𝒊𝒏𝒆𝒎𝒂𝒕𝒊𝒄𝒔

ሶ𝒙𝑟

𝒙𝑟 𝒆 ሶ𝒒 𝒒 𝒙+

Figure 3.4: Resolved rate kinematic control

Two different inputs were used for simulation purposes. The first is a ramp velocity input and the

other is a sine wave velocity reference. The system showed convergent behavior tracking these

signals. The position of the end effector is plotted in Fig. 3.5 for the ramp input case. The error

shows an exponential decrease. For the sine wave tracking, the system showed good performance

even with a higher initial condition value as shown in Fig. 3.6(a).
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(b) Y position vs Y trajectory

0 2 4 6 8 10 12 14 16 18 20

time [sec]

0

10

20

30

40

50

60

70

A
R

2 
en

d 
ef

fe
ct

or
 z

 p
os

iti
on

 v
s 

ra
m

p 
tr

aj
ec

to
ry

z [mm]
zref[mm]

(c) Z posotion vs Z trajectory
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(d) Z posotion vs Z trajectory

Figure 3.5: End effector position vs ramp reference using a proportional controller
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Figure 3.6: End effector position vs sine wave reference using a proportional controller

Solving the pose tracking problem is not as straight forward as path following. The rotational

kinematic relations are of a nonlinear nature. Thus, a different pose following algorithm that

propagates the attitude error kinematics is needed. The derivation is included for completeness as

described by Siciliano, [55].
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The desired and current rotation matrices of the end effector can be described as

Rd = [nd, sd,ad]

Re = [ne, se,ae]

(3.17)

where nd, sd and ad are the column vectors of the rotation matrices. The orientation error can be

written as

δR = RdR
T
e (q) (3.18)

The error formulation described in Eq. (3.18) simplifies the pose tracking problem from 9 to only

3 elements. The latter definition can be compared with the rotation matrix

R(γ, r) =


r2x(1− cγ) + cγ rxry(1− cγ)− rzsγ rxrz(1− cγ) + rysγ

rxry(1− cγ) + rzsγ r2y(1− cγ) + cγ ryrz(1− cγ)− rxsγ

rxrz(1− cγ)− rysγ ryrz(1− cγ) + rxsγ r2z(1− cγ) + cγ

 (3.19)

where r is the principle vector of rotation and γ is the principle angle of rotation. The error can be

written as

eo = rsin(γ) (3.20)

By comparing the error matrix in Eq. (3.18) and the matrix in Eq. (3.19), the following definition

of the orientation error and its derivative can be written

eo =
1

2
(ne(q)× nd + se(q)× sd + ae(q)× ad)ėo = LTωd −Lωe (3.21)

where

L = −1

2
(S(nd)S(ne) + S(sd)S(se) + S(ad)S(ae)) (3.22)
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The system of equations to be solved for pose tracking can be written as

ė =

ėp
ėo

 =

 ṗd − Jp(q)q̇

LTωd −LJo(q)q̇

 =

 ṗd

LTωd

−
I 0

0 L

Jq̇ (3.23)

The system of Eq. (3.23) is integrated using MATLAB ode45 over a time span of 10 seconds. The

pose error showed a converging behavior as shown in Fig. 3.7
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Figure 3.7: AR2 pose tracking absolute error

Experimental Results

The selection criteria of the robotic manipulator for ROME are precision and cost efficiency driven.

Relaxing constraints like grip force and payload weight, the selection process was mainly thrusted

by the manipulator mass, repeatablility and reachability. Through a market analysis, it was found

that industrial manipulators were too expensive and hobbyist robotic manipulator kits must be

considered. In addition, manipulators that utilize stepper motors in favor of servo motors were
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preferred because of its higher precision. Following a budget plan, the AR2 robotic manipulator

designed by Chris Annin was utilized to generate the preliminary results and proof of concept of

this project. AR2, see Fig. 3.8 , has 6-DOF, easy to use and program and costs less than $1000.

The price range is very competitive compared to its available counterparts in the market. The

manipulator can be manufactured by 3D printing or by machining aluminum. The main hardware

board used to control the manipulator is an Arduino Mega 2650. The complete assembly of the

robotic arm can be seen in Fig. 3.8(b). The electrical enclosure setup for the robotic manipulator

has to be attached to it and can be seen in Fig. 3.8(c).

(a) AR2 CAD assembly (b) Completed AR2 assembly (c) Electrical enclosure for AR2

Figure 3.8: AR2 manipulator CAD, 3D printed models and electrical enclosure

The experiments performed using AR2 robotic manipulator took place only in the vertical z direc-

tion of the end effector. In order to achieve accurate results, three of the six available joints are

utilized and the rest are locked. The time span of all the experiments is 60 seconds.

The first experiment performed with a ramp reference position and a constant velocity described
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as follows

z(t) =
80

60
t ż(t) =

80

60
(3.24)
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Figure 3.9: AR2 constrained motion in Z direction: ramp trajectory with open loop control

Running a simulation of the AR2 robot with Eq. (3.24) as a reference input, the results have

minimal error as shown in Fig. 3.9. For this time span, feedback control is not necessary to

achieve satisfactory results. For a nonlinear reference path, the simple closed loop resolved rate

algorithm described in Fig. 3.4 is used to reduce numerical errors. The sinusoidal reference input

in Eq. (3.25) and an orbit equation is used for simulation. The results are shown in Fig. 3.10 and

3.11.

z(t) = 80 sin

(
2π

60
t

)
ż(t) =

160π

60
cos

(
2π

60
t

)
(3.25)
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Figure 3.10: AR2 constrained motion in Z direction: Sinusoid experiment using PI controller
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(a) AR2 experiment following LEO orbit: Z Position
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Figure 3.11: AR2 constrained motion in Z direction: LEO experiment using PID controller

Using a Proportional Integral (PI) controller improved the performance and bounded the error to

an average of 1mm as shown in Fig. 3.10(b). In addition, the error reaches its peak around the

inflection points of the sinusoidal wave, partly due to the pseudo-inverse solution of the Jacobian.
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CHAPTER 4: ROME MOBILE MANIPULATOR

ROME is a mobile manipulator composed of a three wheeled omnidirectional ground vehicle with

a 6-DOF robotic manipulator fixed on top of as shown in Fig. 4.1. The system has 9-DOF in total.

The new challenge working with such a system is the redundancy problem which occurs when the

number of actuators exceed the number of physical degrees of freedom of the system. A simple

way to deal with redundancy is to use the kinematic models for the ground vehicle and the robotic

manipulator developed in the previous chapters. The main strategy is to make the ground vehicle

follow a reference trajectory and prompt the ground vehicle and the robotic manipulator to correct

for the errors. The velocity and position in the (xr, yr) plane along with the yaw rate and yaw angle

ψr is provided as a reference input for the ground vehicle. The vertical velocity and the vertical

motion zr is handled solely by the robotic manipulator.

The process is shown in Fig. 4.2. The symbols ”GV FK” and ”AR2 FK” stand for the ground

vehicle forward kinematics and AR2 robotic manipulator forward kinematics simultaneously. Path

following problem is solved following the previously mentioned strategy. The simulation results

for path following are shown in Fig. 4.3. Moreover, the pose tracking simulation results is pre-

sented in Fig. 4.4. The system converges to the desired path in less than one second and to the

desired orientation in less than 5 seconds. The control law used for the mobile manipulator is that

of the ground vehicle in Eq. (2.17) and the robotic manipulator in Eq. (3.23).
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Figure 4.1: ROME hardware assembly
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𝒌𝑝1𝒆 𝑱𝑮𝑽
† (𝑞) ∫

+

−

+
𝑮𝑽 𝑭𝑲

ሶ𝑥𝑟 , ሶ𝑦𝑟, ሶ𝜓𝑟

𝑥𝑟 , 𝑦𝑟 , 𝜓𝑟 𝒆𝐺𝑉 ሶ𝒒1→3 𝒒1→3 𝑥, 𝑦, 𝜓+

𝒌𝑝𝒆 𝑱†(𝑞) ∫
+

−

+
𝑨𝑹𝟐 𝑭𝑲

𝒆𝐴𝑅2 ሶ𝒒4→9 𝒒4→9 𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒+

Δu

Δt

[𝒆𝐺𝑉 1,2 , 𝑧𝑟]

[ ሶ𝒆𝐺𝑉 1,2 , ሶ𝑧𝑟]

Figure 4.2: ROME closed loop resolved rate block diagram
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Figure 4.3: End effector position vs reference position using a Proportional controller
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Figure 4.4: ROME pose tracking absolute error
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Application to Astrodynamics

The two-body problem can be directly applied to satellites motion, or the International Space Sta-

tion orbiting earth, [56]. ROME is used to emulate the orbital motion in a laboratory environment.

The solution of the two-body problem is the Cartesian trajectory to be followed by the end effector.

Consider the classical two body motion differential equation

r̈ = − µ
r3
r (4.1)

where r is the position vector from one body to the other and µ is the gravitational constant.

Lagrange Gibbs (F & G) method offers a closed form solution for the two body problem. At a

given instant, if the position and velocity of an orbiting body are known, then the evolution of

the position and velocity with time can be found in terms of the initial conditions. Consider the

position and velocity vectors

r = xp̂+ yq̂

v = ṙ = ẋp̂+ ẏq̂

(4.2)

for the initial conditions at t = t0

r0 = x0p̂+ y0q̂

v0 = ẋ0p̂+ ẏ0q̂

(4.3)

From the definition of angular momentum

h = r0 × v0 =


p̂ q̂ ŵ

x0 y0 0

ẋ0 ẏ0 0

 = ŵ(x0ẏ0 − y0ẋ0) (4.4)
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A description of the p̂ and q̂ vectors in terms of the initial conditions can be calculated and substi-

tuted into Eq. 4.2 to get

r =
xẏ0 − yẋ0

h
r0 +

−xy0 + yx0

h
v0

v =
ẋẏ0 − yẋ0

h
r0 +

−ẋy0 + ẏx0

h
v0

(4.5)

which can be rewritten in the form

r = fr0 + gv0

v = ḟr0 + ġv0

(4.6)

where f and g are given by

f =
xẏ0 − yẋ0

h
r0

g =
−xy0 + yx0

h
v0

(4.7)

and their time derivatives are

ḟ =
ẋẏ0 − yẋ0

h

ġ =
−ẋy0 + ẏx0

h

(4.8)

To have a proper scale to execute experiments in a confined laboratory environment, the orbit

equation and the initial conditions are normalized. The earth equatorial radius DU is used to

normalize the distance and the solar second TU is used to normalize the time. They are defined as

follows

DU = 6378.137× 103, TU =

√
DU3

µ
, V U =

DU

TU
(4.9)
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where, M is the mass of the earth, the gravitational constant µ = 1 for the canonical units and V U

is the normalized velocity. The equation was solved using the Lagrange Gibbs (F&G) solution for

a Low Earth Orbit (LEO) with the following initial position after normalization. The solution of

the orbit is shown in Fig. 4.6(a)

Position = [−0.5985 1.6634 0.0279]

V elocity = [−0.9523 − 0.0639 0.0110]

(4.10)
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(c) AR2 end effector Z position vs Z trajectory
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Figure 4.5: ROME following an elliptic orbit in a decoupled fashion
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(a) LEO orbit solution using Lagrange Gibbs
method

(b) ROME decoupled simulation

Figure 4.6: 3D plots for ROME following an elliptic orbit

The orbit equation is solved in the Simulink environment and used as a trajectory for simulation.

The orbit tracking simulation is performed in a similar manner as the sinusoidal trajectory tracking.

The velocities (ẋr, ẏr) and the position (xr, yr) are used as an input to the ground vehicle. Further,

the velocity and position (zr, żr) are used to drive the robotic manipulator simultaneously. The

simulation time is calculated based on the calculated orbit period tf = 60.8844 seconds. The

simulation showed that the system is able to track an elliptic orbit as presented in Fig. 4.6(b). The

error converges to zero as shown in Fig. 4.5.

The same orbit is used for ROME orbit following experiment. Following the same procedure, the

vehicle follows the planar position input and the end effector follows the velocity and position

reference in the zr direction. The robotic system successfully followed the reference orbit with

some oscillations as shown in Fig. 4.7.
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Figure 4.7: Error in ground plane motion produced by ground vehicle
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CHAPTER 5: CONCLUSION AND FUTURE WORK

A mobile manipulator was developed to emulate orbital motion in a lab environment. The robot

cost did not exceed $1500. The forward kinematics of the ground vehicle, robotic manipulator

and ROME were derived. The resolved rate of motion for the robotic manipulator and the mobile

manipulator were carried out using Simulink. The simulation results showed convergent behavior.

The experimental results of the closed loop kinematics of the ground vehicle show good accuracy

compared to the model. The solution of the two-body problem is solved to get an orbit trajectory.

The robot followed the elliptical trajectory showing good accuracy with some vibrations. The vi-

brations are due to imperfections in the floor and the light weight of the ground vehicle. Moreover,

the vibrations in the ground vehicle need to be reduced by using higher quality motors. The system

can be extended to simulate and test various space missions and control algorithms like docking

maneuvers and servicing missions. The current system is a good preliminary proof of concept for

the idea of emulating orbital motion using mobile manipulators.

For future work, the ground vehicle Chassis will be designed to have less vibrations to include a

compartment design for the electronics and the batteries. The robotic manipulator power supply

will be redesigned to be portable and lightweight. The dynamics with closed loop feedback con-

trol will be used to eliminate the vibrations from the system. Model Reference Adaptive Control

(MRAC) will be used to follow and imitate the dynamics of orbital motion and other dynamical

systems. The hardware architecture will be investigated for more stability and robustness. Fur-

thermore, the gravity compensation problem will be addressed. In order to maintain equilibrium

while carrying out a task, the gravity vector has to be compensated using mechanisms or feedback

closed loop control. Moreover, the gravity manipulation plays a major role in forcing the robotic

manipulator to simulate space motion. The gravity effects of a robotic manipulator can be found

by formulating the system dynamics.
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