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Abstract: This research follows on from diverse international efforts to safeguard one of the largest natural lakes 
in the world, Urmia lake in North West Iran.  In this research two new numerical packages based on Artificial 
Neural Networks (ANN) and the Least Square Support Vector Machine (LS-SVM) models were developed to 
estimate monthly Total Dissolved Solid (TDS) in the Aji Chay River, one the main tributaries of Urmia lake, Iran.  
A feed forward back propagation (FFB) model was used to obtain a set of coefficients for a linear model, and the 
radial basis function (RBF) kernel was employed for the LS-SVM model. The input data sets of both the ANN and 
LS-SVM models consists of six water quality parameters: TDS, Mg2+, Na+, Ca2+, Cl-, and SO4 

2-
, all collected on a 

monthly time scale over a period of 30 years from the Vanyar and Zarnagh stations, in the Aji Chay watershed. 
The research demonstrated that both models can effectively predict the variability of TDS, but for the Vanyar 
station with the ANN model (giving an R2 value of 0.913 and RMSE of 0.0032, a Nash-Sutcliffe Efficiency (NSE) 
coefficient 0.812 and as such has a more efficient and accurate estimation when compared to the LS-SVM model 
with R2=0.871 and RMSE =0.097 and NSE=0.86. The analysis of Zarnagh station data shows R2=0.853 and 
RMSE=0.0162, NSE= 0.854 for SVM and R2=0.903 and RMSE =0.0091 and NSE=0.85 for ANN. 
Keywords: Urmia Lake; Aji Chay River; TDS; ANN; LS-SVM.  

 
 
1. Introduction 

 
The evaluation and prediction of surface water quality is one of the central challenges in the water resource 

industries today. Due to the parametric complexity, the high cost of phenomenological water examinations [1-6] 
in both field and laboratory situations, and also the lack of experimental water quality data, many researchers have 
utilized data-driven techniques for water quality data retrieval [7-12]. 

Due to reasonable accuracy and relatively low cost, data-driven modelling techniques, known also as black box 
models, have become widespread in recent decades [12-16]. The ANN is one such black box model with a high 
potential for prediction in complicated non-linear systems 

This technique requires a training or calibration phase, and generally estimates the amount of qualitative and 
quantitative parameters. It is relatively accurate in determining the standard deviation of data, and furthermore, 
has the capability of modelling the fundamental relationship between the inputs and outputs with a generalization 
potential [17,18].  The ANN models can be set with a limited number of input variables; conversely, a 
comprehensive number of records is needed to provide quality training data. This is essential as data-driven 
methods have a limited capability to provide accurate forecasts of events that are outside the range of the training 
dataset. Furthermore, when excessive numbers of variables are exploited as inputs, the most correlated variables 
logically dominate the model and, consequently, it is not possible to utilize all the physical knowledge or available 
measurements. Nonetheless, this can be solved by pre-processing techniques which select the most sensitive 
variables and, thus, reduce the input space [19, 20]. 

Another advanced soft method is the LS-SVM, proposed by Vapnik. It is based on the theory of statistical 
modeling which utilizes quadratic programming techniques. The LS-SVM has been used for time series estimation 
with acceptable levels of accuracy [21-24]. Nevertheless, this technique is more time consuming and has high 
computational requirements as a result of the required limited optimization programming. The quality parameters 
of surface water are usually defined as pH, ions, BOD, COD, total dissolved solids (TDS). The latter is the 
combined amount of inorganic and organic substances contained in water [25]. In the present study, ANN and LS-
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SVM soft methods were developed to estimate the contamination of water resources with high accuracy and low 
cost. The case study was performed in the Aji Chay river, a water source that is mainly used for agriculture 
purposes and ecological stability. This study links to the comprehensive international efforts to protect Urmia lake. 
The Aji Chay River discharges into this highly endangered lake and potentially play a main role in preventing its 
desiccation [26]. As such, the developed ANN and LS-SVM techniques were used to model the variation of TDS 
of the Aji Chay River which has escalating salinity due to the increases in pollution levels.  

The main objective of this research is the evaluation of Monthly Total Dissolved Solid using ANN and LS-
SVM techniques in the Aji Chay River [26-28]. Previously numerous researchers have studied the behavior of 
intelligent techniques in the prediction of water quality parameters, but there are few studies that have compared 
both ANN and LS-SVM models to evaluate the total dissolved solids of the AjiChay river, and as such forms the 
principal novelty of this research.  
 
2. ANNs and Least Squares Support Vector Machines 
 
2.1 ANNs 

ANNs can be used in water quality estimation and modeling. In this technique, feed–forward (FF) and back–
propagation (BP) network patterns can be used for the present TDS simulation. It has been shown that the BP 
network pattern with a three–layered structure is desired for predicting and evaluating water resources problems. 
As indicated in Fig. 1, in order to estimate water quality time series, a three–layered feed–forward neural network 
(FFNN) provides a general framework for expressing nonlinear functional mapping between a set of input and 
output data. In this figure, i, j and k indicate input layer, hidden layer and output layer neurons, respectively, and 
the w variable is the used weight by the operating neuron. The term “feed– forward” refers to neuron connectivity 
being defined from a neuron in the input layer to other neurons in the hidden layer, or from a neuron in the hidden 
layer to neurons in the output layer. i.e. the input and output layers are not connected to each other. The clear 
explanation for an output value of a three-layered FFNN is given by Eq. 1 [29-32]. 

 
y�k = f

0[∑ Wkj
MN
j=1 .fh(∑ Wji .xi+wjo)+wko]NN

i=1
                                                                 (1) 

 
where NN and MN are the number of the neurons in the input and hidden layers, WjiWji  is a weight in the hidden 
layer connecting the ith neuron in the input layer to the jth neuron in the hidden layer, wjowjo is the bias for the jth 
hidden neuron, fh is the activation function of the hidden neuron, WkjWkj is a weight in the output layer connecting 
the jth neuron in the hidden layer to the kth neuron in the output layer, wkowko is the bias for the kth output neuron, 
fo is the activation function for the output neuron, xi is the ith input variable of the input layer and yk are analysed 
and observed output variables, respectively. The weights aren’t constant in the hidden and output layers, and their 
amounts can be varied during the network training.  
 

 
Fig. 1. A schematic diagram of a three-layer ANN. 

  
2.2 Least Squares Support Vector Machines 

For the available training data sets, the dimension (D) is defined as equation (2). Where xk is the input data, yk  
is the output data, and R, k and N are real numbers, kernel function and natural numbers respectively. Based on 
the Mercer principle, the kernel function K (0, 0) is defined according to the mapping function ϕ (0):  
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D = (xk, yk)       xkϵRnD = (xk, yk)    xk ϵRn, ykϵRn, k = 1, 2, … N                                                              (2) 

𝜔𝜔 = ∑ 𝑎𝑎𝑘𝑘∅(𝑥𝑥𝐾𝐾)𝑁𝑁
𝑘𝑘=1   

 K(xk, yk) = ∅(xi)T∅(xi)                                                      (3) 
 
LS-SVM is solved in the main space; therefore, the following optimization problem is shown in Eq. 4 and Eq.5: 
 
minJ(ω, b, ξ) = 1

2
ωTω + 1

2
γ∑ ξK

2N
K=1                                                                                                           (4) 

 styk = ωT.∅(xK) + b + ξK(k = 1,2, … , N)                                                                                            (5) 
 
The γ is an acceptable adjustment parameter, it is also the compromise between the training error and pattern 

complexity. The favourable function has a wide extension and generalization capability. The larger the value of 
the γ addresses, the smaller the regression error for the process. The variable ω is the weight matrix. LS-SVM 
describes a distinct loss function compared with the standard SVM, and it transfers the limit of the difference into 
the limit of the equation.  

By using the Lagrange function: 
 
L(ω, b, ξ, a) = J(ω, b, ξ)-∑ ak[ωT∅(xK) + b + ξK-yk]N

K=1                         (6) 
 
ak ∈ R indicates Lagrange multipliers, the optimal a, b can be obtained from the following (Karush-Kuhn-

Tucker) KKT conditions: 
 
∂L
∂ω

= 0, ∂L
∂b

= 0, ∂L
∂ξ

= 0, ∂L
∂a

= 0                                                (7) 

 
The following equations are obtained after implying the above conditions: 
 
ω = ∑ ak∅(xK)N

k=1                                                       (8) 

∑ ak = 0N
k=1 ,  ak = γξK and  ωT.∅(xK) + b + ξK-yk = 0 

 
By eliminating the variables ξ and ω, A linear system of functions is therefore obtained : 
 

�0 θT
θ K + γ-1In

� �ba� = �0y�                                                       (9) 

 
where y=[y1, y2, … , yk]T, θ = [1, … , l], a = [a1,…, an]T  and Ki,j = ∅(xi)T.∅�xj� (i, j=1,…,N). 

Values a and b are obtained by solving Eq. 10. This equation indicates the LS-SVM process function which is 
utilized for water quality investigation. [33]. 

 
f(x) = ∑ aiK(x, xi) + bN

i=1                                                                   (10) 
 
The option and creation of kernel functions is an important stage which affects the implementation of LS-SVM. 

This can prepare an essential process to extend LS-SVM from a linear situation to nonlinear phase. There are 
different general kernel functions such as linear kernel, q-order polynomial kernel function, RBF function and 
sigmoid kernel function [34]. The (Gaussian) radial basis function kernel, or RBF kernel, is a popular kernel 
function used in various kernelized learning algorithms. The RBF kernel on two samples x and x', represented as 
feature vectors in some input space and define as: 

 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = exp (− �𝑥𝑥−𝑥𝑥′�
2

2𝜎𝜎2
)                                     (11) 

 
‖x − x′‖2 may be recognized as the squared Euclidean distance between the two feature vectors. σ is a free 

parameter. An equivalent, but simpler, definition involves a parameter  γ = (1/2σ2) :  
          
𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = exp (−γ‖𝑥𝑥 − 𝑥𝑥′‖2)                        (12) 
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Since the value of the RBF kernel decreases with distance and ranges between zero (in the limit) and one (when 
x = x'), it has a ready interpretation as a similarity measure. The feature space of the kernel has an infinite number 
of dimensions; for σ = 1 , its expansion is shown in eq.13. 

 
exp �-γ�x-x'�2� = ∑ xtx'

j!
∞
j=0  exp �-(1

2
)‖x‖2� exp �-(1

2
)‖x'‖2�                     (13) 

 
3. Study area  

 
This study was carried out in one of the largest watersheds in North-Western Iran, the AjiChay catchment with 

a drainage area of 51,876 km2 and principal channel length of 265 km. This river originates from the southern 
regions of the Sabalan and the Qusheh-dagh Mountains and eventually drains to the basin of Urmia Lake. It is 
important to study of water quality in this river due to the fact that Ajichay river is one of the main available 
resources with average discharge of 0.6 m3/s as drinking water for the west Azarbaijan province. It also important 
in terms of environmental aspects because this river is drained into the Urmia lake. Therefore, the quality of 
Ajichay river water, affects drinking water of West Azarbaijan province area as well as quality of Urmia lake. To 
evaluate the accuracy of the developed ANN and SVM methods, 30-years of TDS data from the AjiChay River 
were collected for the Vanyar station. This sampling point is located at 38°07′00″N and 46°24′18″E and Zarnagh 
station located at 47°14′N 38'00E coordinates with an elevation of 1470 m above mean sea level (See Figure 2) 
[35]. 
 

 
Fig. 2. Layout of the study area. Aji Chay River, Urmia Lake and Vanyar and Zarnagh stations 

 
4. Results and discussion 

 
The inputs of the models were the monthly Mg2+ (Magnesium), Na+ (Sodium), Ca2+ (Calcium), Cl-(Chloride), 

and SO4
2- (Sulfate) with the output being the TDS. The time series of total observed TDS data (experimental data 

collected over 30 years from Vanyar and Zarnagh stations) were randomly classified into two separate parts, i.e., 
20% testing, and 80% training, i.e., 20% testing and 80% training, to operate the applied methods. Table 1 shows 
the statistical specification of the collected TDS data from Vanyar and Zarnagh stations, and Table 2 represents 
the utilized input data classification of the identified models (M). A trial and error process is utilized to acquire 
the optimum percent of data for training and testing assortment. The purpose of this study is to determine the best 
value of performance criteria. Accordingly, three classifications of data were evaluated which includes 30–70 (i.e. 
30% of data for testing and 70% of them for training data) 20–80 and 40–60 modes. Between these three 
classifications, state of 20-80 had optimum result in the criteria performance. Hence, in the both ANN and SVM 
models, 80% of observed data were used for training and 20% were used for the test issue. 
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ANN models require that input data sets be normalized between 0.05 and 0.95. This was accomplished applying 
equation 14 at the model initialization process.  

 
xnew = 0.8 x-xmin

xmax-xmin
+ 0.1                                                                               (14)

  
The variables xnew, x, xmin and xmax are the normalized values of the original parameter, the original data, and the 

minimum and maximum values in the data set, respectively. The standardization provides a better TDS variation 
as an acceptable result for testing regression correlation. 

 
Table 1. Statistical characteristics of the input data used for testing and training 

Statistical characteristics 
 

TDSVanyar TDSZarnagh 
Test Train Test Train 

Data number 320 80 266 66 
Max value 0.903 0.925 0.9 0.9 
Min value 0.124 0.098 0.125 0.099 
Average 0.298 0.017 0.305 0.221 

 
4.1 The ANN model in preliminary test 

For training and testing data settings for the ANN method, the observed data are selected to be under an 80% 
training vs. 20% testing pattern, and the ANN numerical evaluation is determined based on R2 and RMSE. The 
applied ANN was trained using MATLAB version 7.8. The variables’ types and their amounts utilized in the 
present ANN technique are listed in Table 2. In this table, Epochs addresses the number of training steps, MF is a 
membership function and “Trimf” is the abbreviation for triangular membership function (see Figure 3). 

 
Table 2. Parameter types and values used in the developed ANN model 

Gradient Value 
Transfer function TANSIG 
Network type Feed-forward back prop 
Number of layers 2 
Adaption learning function learn GDM 
Performance function  MSE 
Training function Train LM 

 

 
Fig. 3. The architecture of the developed ANN technique 

 
4.2 LS-SVM model in preliminary test     

The training and testing data set for the developed LS-SVM technique is similar to the ANN model (80%-20%), 
and the LS-SVM evaluation process is also taken as R2 and RMSE and NSE. The kernel used in the LS-SVM 
numerical analysis was selected to be (RBF) with the regularization parameters. 
 
4.3 Outputs of the analysis  

The numerical TDS results in Tables 4 and 5 showed that the ANN method has R2=0.913, RMSE=0.0032, and 
NSE=0.812 for the M2 pattern, and R2=0.871, RMSE=0.09 and NSE=0.86for the M2 pattern using the LS-SVM 
model in evaluation of Vanyar station dataset. For Zarngh station: R2= 0.853, RMSE= 0.016 and NSE=0.853 is 
obtained for LS-SVM analysis. The out puts of ANN modelling for Zarnagh station are R2= 0.903, RMSE= 0.009, 
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and NSE= 0.806 (Table 6,7). These facts determine the capability and workability of ANN and LS-SVM as 
efficient soft-methods in estimating TDS. The lower RMSE and higher R2 of the ANN technique compared to the 
corresponding results from the utilized LS-SVM indicates greater precision of the ANN in predicting the TDS. 
The relationship between observed and predicted TDS based on the two investigated approach were presented in 
form of scatter plot and statistical indicators as shown in Figure 4, Figure 5, Figure 6. Figure 7. Sensitivity analysis 
of TDS were preformed based on more important parameters such as Mg2+ and Ca2+ as shown in Figure 8 and 
Figure 9. Statistical evaluation of the models to predict TDS using developed ANN method at Zarnagh and Vanyar 
stations are presented in Table 4 and Table 5 respectively. The same Statistical indices were calculated to evaluate 
the power prediction of TDS using developed LS-SVM method at Zarnagh and Vanyar stations as shown in Table 
6 and Table 7. Statistical indicators for Sensitivity analysis of TDS for Mg2+ and Ca2+ illustrated in Table 8 and 
Table 9. 

 
4.4 Sensitivity analysis 

In order to find out which parameter had the most important influence on ANN outputs, sensitivity analysis was 
conducted on data set. Based on the configurations illustrated in Table 3, to be more specific, the effect of each 
parameter on the amount of output changes was investigated by keeping the other parameters constant. The results 
show that in Vanyar station, the parameterCa2+ is the most important parameter in analysis due to more accuracy 
and the minimum error with the following values: R2=0.9431, RMSE= 0.0043, NSE= 0.86. Table 8 shows the 
result of sensitivity analysis on Ca2+. 

 
Table 3. Applied input configurations for ANN, LS-SVM and Bayesian Network methods (applied on both Vanyar 
and Zarnagh stations data) 

Model Model input (s) 
M1 Mg2+ - Na+- Cl- 
M2 Mg2+ -Na- Ca2+- Cl--  SO4

2- 
Cl SO  
 

-M3 Mg2+ - Na+- SO4
2-Ca2+ 

M4 Ca2+- Cl- 
M5 Na+- Ca2+ 

 
Table 4. Statistical evaluation of the models to predict TDS using the developed ANN method- Vanyar station 
 
Model 

 Train   Test  
NSE RMSE R2 NSE RMSE R2 

M2 0.871 0.016 0.931 0.812 0.003 0.913 
M1 0.869 0.067 0.906 0.804 0.053 0.880 
M3 0.822 0.091 0.827 0.782 0.077 0.814 
M4 0.803 0.010 0.836 0.745 0.090 0.825 
M5 0.790 0.054 0.794 0.713 0.117 0.730 

 
Table 5. Statistical evaluation of the models to predict TDS using the developed ANN method - Zarnagh station 

Model Train Test 
NSE RMSE R2 NSE RMSE R2 

M2 0.885 0.021 0.925 0.806 0.0091 0.903 
M1 0.863 0.016 0.912 0.830 0.054 0.901 
M3 0.852 0.013 0.922 0.803 0.080 0.892 
M4 0.801 0.190 0.913 0.781 0.143 0.880 
M5 0.868 0.290 0.894 0.864 0.201 0.853 
M5 0.790 0.398 0.794 0.713 0.311 0.730 

 
Table 6. Statistical evaluation of the models to predict TDS using the developed LS-SVM method -Vanyar station 

Model Training Test 
NSE RMSE 2R NSE RMSE 2R 

2M 0.850 0.09 0.895 0.860 0.097 0.871 
1M 0.847 0.050 0.89 0.818 0.084 0.842 
3M 0.839 0.093 0.81 0.790 0.160 0.783 
4M 0.786 0.158 0.87 0.720 0.270 0.759 
5M 0.825 0.290 0.80 0.805 0.330 0.704 
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  Fig. 4. Comparison of observed TDS with calculated via ANN a) test, b) train at Vanyar station 

 

 
Fig. 5. Comparison of observed TDS with predicted via ANN. a) test, b) train at Zarnagh station 

 

 
Fig.6. Comparison of observed TDS with calculated via LS-SVM. a) Test, b) Train Vanyar 

 

 
 Fig. 7. Comparison of observed TDS with predicted via LS-SVM a) test, b) train at Zarnagh station 
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Table 7. Statistical evaluation of the models to predict TDS using the developed LS-SVM method-Zarnagh station 
Model  Train   Test  

NSE RMSE R2 NSE RMSE R2 

M2 0.879 0.01 0.916 0.85 0.016 0.8535 
M1 0.874 0.017 0.897 0.830 0.029 0.8472 
M3 0.849 0.021 0.902 0.803 0.038 0.8295 
M4 0.825 0.153 0.844 0.781 0.250 0.8017 
M5 0.819 0.285 0.802 0.864 0.325 0.760 

 
Table 8. The Sensitivity Analysis of water quality parameters (Vanyar station) 
  Ca-TDS Cl-TDS Mg- 

 
Na-TDS SO4-

 Test R2 0.95 0.842 0.810 0.730 0.711 
RMSE 0.004 0.011 0.012 0.028 0.033 

 NSE 0.890 0.823 0.780 0.730 0.700 
Train R2 0.963 0.873 0.819 0.798 0.870 

RMSE 0.001 0.008 0.011 0.017 0.024 
 NSE 0.910 0.900 0.874 0.768 0.810 

 
Table 9. The Sensitivity Analysis of water quality parameters (Zarnagh station) 
  Ca-TDS Cl-TDS Mg- 

 
Na-TDS SO4-

 Test  R2 0.918 0.943 0.928 0.832 0.760 
RMSE 0.0234 0.08 0.0026 0.037 0.060 

 NSE 0.885 0.823 0.900 0.740 0.723 
Train R2 0.940 0.927 0.932 0.893 0.842 

RMSE 0.012 0.023 0.004 0.024 0.059 
 NSE 0.891 0.821 0.915 0.719 0.863 

 

 
Fig. 8. Sensitivity analysis of the outputs of ANN (Vanyar station)-The most effective parameter(Ca2+) 

 

 
Fig. 9. Sensitivity analysis of the outputs of ANN (Zarnagh station)-The most effective parameter (Mg2+) 
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5. Conclusion     
 
This study developed ANN and LS-SVM techniques, to predict the TDS of rivers, i.e., Aji Chay River. To 

assess the performance of used methods, Root mean square error (RMSE), correlation coefficient (R2) and NSE 
were applied as performance indicators for the analysis.  The obtained results demonstrated that the ANN technique 
has a lower RMSE (0.0032) and higher R2 (0.913) with a reasonable NSE coefficient (0.812) for the testing data 
of Vanyar station, compared to that obtained from the LS-SVM method with (R2=0.871 and RMSE =0.097 and 
NSE=0.86. The observed results have a high correlation with the estimated analytical data, and a high accuracy 
for the ANN meta-method in estimating TDS compared to the results from the LS-SVM method. The analysis of 
Zarnagh station data shows R2=0.903 and RMSE=0.0091, NSE=0.806 for ANN and R2=0.853, RMSE =0.016 
and NSE=0.85 for SVM. The novelty of the developed methods can be used for predicting the TDS of other surface 
water bodies. 
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