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ABSTRACT 

The history of cotton breeding in the southeastern United States is multifaceted and 

complex.  Public and private breeding programs have driven cotton’s genetic 

development over the past two centuries.  The Pee Dee breeding program in Florence, 

South Carolina, has had a substantial role in the development of well-adapted cotton 

cultivars with improved fiber strength, fiber length, and performance in farmers’ fields.  

Despite the historic importance of  the cotton germplasm lines and varieties from the Pee 

Dee program, little has been done to characterize the population structure and genetic 

architecture of key traits in this closed breeding program.  Here, I first provide an in-

depth exploration of the rich history of cotton breeding and genetics over the past century 

to provide some context for the remainder of this thesis.  Then, I discuss the interface of 

breeding goals, population genetics, and historical implications of a representative sample 

across 85+ years of cotton breeding in the Pee Dee program.  Once the family structure 

had been evaluated, I applied modern statistical methodology to find gene haplotypes that 

are associated with improved fiber quality or field performance and attempted to trace the 

origin of some beneficial alleles.  Lastly, I talk about the implications of our work and 

how it may influence future breeding efforts to utilize the germplasm from this diverse 

cotton collection. 
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CHAPTER ONE 

LITERATURE REVIEW 

History of Cotton 

Production Characteristics, Taxonomy, and Evolution of Gossypium spp. 

Cotton is cultivated for the elongated epidermal cells or fibers that initiate as 

extensions of single epidermal cells on the outer integument of the ovule.  These fibers 

(or cells) develop into tough hairs which are made up of over 90% cellulose on a dry 

weight basis (Fryxell 1963).  After senescence, the lint and seeds are harvested from the 

open fruit, processed, and used to make a variety of textiles and other materials useful for 

humans.  Cultivated cottons belong to the genus Gossypium (Family: Malvaceae), with 

approximately fifty species currently accepted {Wendel, 2015 #27} and a half dozen 

species important for worldwide economic production and scientific inquiry (Wendel and 

Albert 1992).  More specifically, two tetraploids (Gossypium hirsutum L. and G. 

barbadense L.) and two diploids (G. arboreum L. and G. herbaceum L.) comprise nearly 

all the cultivated cotton grown today (Gillham et al. 1995). 

In the United States, G. barbadense, also known as Pima or Extra-Long Staple (ELS) 

cotton, is grown in California, Arizona, New Mexico, and Texas, and comprises 3% of 

annual production by weight (Johnson et al. 2018). On the other hand, G. hirsutum, or 

Upland cotton, makes up the balance of cotton production and is grown throughout the 

Cotton Belt, from the West Coast to Virginia (Meyer 2020).  Consistently over the past 

five years, the Southeast region has planted approximately three million acres of upland 

cotton, more than the Delta region’s approximately two million acres and Southwest 
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region’s seven million acres.  India, China, and the United States claim two-thirds of 

worldwide cotton production, with the majority of remaining bales coming from 

Pakistan, Bangladesh, Turkey, Vietnam, Brazil, and Australia (Meyer 2020). 

Growing, ginning, and manufacturing cotton is a major worldwide economic force, 

worth more than 120 billion USD annually in the United States alone (NCCA 2011).  It is 

an interesting question indeed wondering how cotton became the ubiquitous material it is 

today, and especially why and how the tetraploid species have elevated vigor and yield.  

Wendel and Cronn (2003) note that there is likely a variety of mechanisms that contribute 

to this observed phenotypic difference, notably the “’buffering’ capacity afforded by 

duplicated genes [… and] the fixed heterozygosity of their duplicated genomes [across 

sub-genomes].”  This principal is akin to a within-individual hybrid vigor (Crow 1948). 

The genome of each diploid cotton species is classified into one of eight genomic 

groups (A, B, C, D, E, F, G, and K) whereas the tetraploids are all of the ADn group 

(Wang et al. 2018).  Besides Upland and Pima cottons, there are three other described 

tetraploid cottons: G. tomentosum Nuttall ex Seemann, G. mustelinum Miers ex Watt, and 

G. darwinii Watt.  The clade including the New World AD-group species arose from a 

single hybridization event one to two million years ago between two diploid species of 

distinct continental origin (Wendel 1989).  The precise donor species in the 

polyploidization event are unknown. The extant species G. arboreum, donating the 

cytoplasmic and maternal nuclear “A” genome originating from Africa and Asia, and G. 

raimondii, donating the paternal nuclear “D” genome originating from the Americas, are 
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the most broadly accepted extant descendants today (Wendel 1989).  Therefore, the 

majority of modern-day cottons are paleo-allotetraploids. 

Although there is little known about the domestication of the tetraploid cottons, it is 

accepted that cotton has been used by humans for at least 75 years {Chowdhury, 1971 

#104;Splitstoser, 2016 #429} and that there were at least four independent domestication 

events (Wendel et al. 1989).  The lack of a strong archaeological record, which exists for 

other crops such as maize (Wang et al. 1999) or potato (Brush et al. 1995), has also 

proven problematic.  However, archaeogenomics has shed some light on the evolutionary 

history of Gossypium.  In archaeo- or paleo-genomics, ancient DNA (aDNA) samples are 

extracted from well-preserved historical specimens, sequenced, and then aligned to 

reference genomes to identify polymorphic loci and genome features (Pont et al. 2019).  

Palmer et al. (2012) used 454 sequencing to identify transposable elements (TEs) 

common and different from archaeological and present-day samples of G. herbaceum and 

G. barbadense.  These data showed how TEs were broadly conserved in G. barbadense, 

while major genomic restructuring occurred in G. herbaceum samples over the same time 

period.  The complex evolutionary history of Gossypium has led to multiple lines of 

inquiry in bioinformatics and genetics. 

Cultivation of Cotton in South Carolina 

Cotton was introduced by immigrants to the United States around 1640 at the latest, 

with the earliest records of cotton cultivation dating to perhaps as early as 1621 (Smith 

and Cothren 1999).  Cotton cultivation began with Sea Island cotton grown along the 

coast in the Sea Island region of the Lowcountry in Georgia and South Carolina (Kovacik 
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and Mason 1985) and expanded rapidly on smallholder farms of the region (Chaplin, 

1991).  Sea Island cotton was distinguished from Upland cottons by long, fine fibers 

extending from smooth, dark black seeds, as compared to the green fuzzy seeds with 

shorter, rougher fibers from Upland cottons (Kovacik and Mason 1985).  The early 

agricultural system along the coastline was primarily sustenance farming in small land 

plots, which focused mainly on the production of indigo and rice.  Sea Island cotton was 

introduced to farmers on Hilton Head Island in 1790, probably coming from the West 

Indies via the Bahamas (Kovacik and Mason 1985).  In this new environment, the 

natively perennial herbaceous shrub was cultivated as an annual (Stephens 1976). 

Before the invention of the modern cotton gin, farmers depended on “naked” seed G. 

barbadense cultivars, whose small black seeds easily separated from the lint using hand-

separation or the churka (roller) gin (Thomas 1965).  The roller gin operates by pulling 

the fibers with rollers or brushes which easily separated from the hard, dark seeds loosely 

attached to the fibers of long-staple or Sea Island cottons.  This method proved 

ineffective on short-staple cottons because of the strength with which the seed clung to 

the fibers.  However, larger-scale cotton cultivation did not become commercially viable 

until the invention of the modern cotton gin by Eli Whitney in 1793 (Chaplin 1991).  The 

cotton gin enabled more facile processing for use in the textile industry by introducing a 

mechanical method to separate the cotton lint from the seed that was effective on Upland, 

short-staple cottons (Thomas 1965).  The explosion of the cotton industry led to many 

new economic opportunities in the antebellum South, including the raising, marketing, 

and processing of cotton fiber and seed (Chaplin 1991). 
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Sea Island cotton cultivation in South Carolina rapidly declined in 1918 with the 

invasion of the boll weevil (Harris 1919).  The industry saw major changes over the 

following two centuries from 1800 onwards, including the elimination of chattel slavery, 

improved access to mechanical implements, and a gradual reduction in coastline 

production of Sea Island cotton, with the final crop grown on Johns Island in 1956 

(Stephens 1976; Kovacik and Mason 1985).  As a consequence, green seed Upland 

cultivars gradually played an increasingly important role in the cotton economy of South 

Carolina, especially in the inland areas where cotton had not previously been cultivated.  

Eventually, these changes resulted in the present Upland-dominant system, which took 

advantage of inland, well-drained soils to produce the hardier G. hirsutum cultivars. 

Cotton remains an important cash crop in South Carolina, but the geography and 

composition of cotton cultivars has dramatically changed since the nineteenth and early 

twentieth centuries.  Today, cotton is grown in South Carolina along a c. 250 km strip 

ranging from the exterior edge of the Sandhills region to c. 50 km from the coast.  The 

primary production areas are the Pee Dee, lower Midlands, and Peach Belt regions along 

the Georgia border.  The top five cotton producing counties (Orangeburg, Calhoun, 

Williamsburg, Lee, and Hampton), accounted for over 50% of the bales produced in SC 

in 2018, the most recent year for which county data is available (Wells 2019).  The top 

counties by planted acreage in 2018 were Orangeburg, Darlington, Williamsburg, 

Calhoun, and Lee. 
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Early Cotton Breeding 

South Carolina effectively had two parallel cotton cultivation systems before the 

arrival of the boll weevil.  The first system was the coastal Sea Island system, which 

included the cultivation of late maturing G. barbadense extra-long-staple cottons and the 

second was the inland G. hirsutum system, which utilized earlier maturing Upland cotton 

cultivars.  Before the introduction of formalized cotton breeding entities, farmers would 

acquire seed from neighbors or researchers and plant from the same seed stock each year.  

There was very little phenotypic selection during this era, so hybridization with other 

cotton strains was commonplace.  Most plant selection occurred on the seed level where 

farmers selected the “best looking” seed to be planted for next year’s crop  (Moore 1956).  

During this early time period of U.S. cotton production, only three Upland cotton strains 

(Georgia Green Seed, Creole Black Seed and Burling’s Mexican Hybrid) served as the 

founding cultigens in the North American Upland cotton gene pool (Calhoun et al. 1997). 

In the Mississippi Delta region, Henry W. Vick introduced the concept of single plant 

selection to cotton breeding in 1939 and used this method to select and reselect superior 

plants for increased plant vigor in the field.  Vick used plant selections to develop the 

“100 Seed” cotton from Burling’s Hybrid seed, which was widely distributed throughout 

the cotton belt (Moore 1956).  His work resulted in the development of pedigreed 

cottonseed, whose authenticity and parentage were supposedly verified by the producer 

and seller of the seed.  Later work to further improve Upland cotton quality focused on 

transferring beneficial quality traits from Sea Island cotton into Upland cotton cultivars.   
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The application of scientific methods to plant breeding gained new prominence in 

South Carolina when David R. Coker began experimenting with cotton breeding in 

Hartsville.  Coker used new hybridization techniques he learned from his friend Herbert 

John Webber (a plant physiologist) to develop new methods for efficient breeding of 

Upland cotton.  Coker and Webber identified variability in the plant material in their 

fields and effectively isolated beneficial crosses of Upland and Sea Island cotton.  

Coker’s work would later be formalized as the Coker Pedigreed Seed company, one of 

the most influential cotton breeding programs of the twentieth century (Coclanis 1999) 

and changed the landscape of the Upland cottonseed industry forever (Coclanis 2001). 

Cotton Breeding at Pee Dee Research Station 

At the same time that Coker was experimenting with breeding improved cotton 

strains in Hartsville, Florence researchers with the United States Department of 

Agriculture and South Carolina Agricultural Experiment Station (SCAES) were working 

on similar issues in parallel (Ware 1937).  Since these two breeding programs were 

located only 30 km apart, there appeared to be significant exchange of germplasm 

resources between Coker Pedigreed Seed Company and their public counterparts 

(Calhoun et al. 1997).  Breeding at the SCAES/Pee Dee Station began in 1900 when J. S. 

Newman crossed Upland and Sea Island cottons.  In 1911, , H. W. Barre and L. O. 

Watson collaborated with Orton and Gilbert of USDA Bureau of Plant Industry to 

identify variability in G. hirsutum var. Dixie and others to wilt-resistance.  This work was 

continued by C. A. McLendon until 1920 when all of the breeders left the Florence 

research station for other work opportunities (Ware 1937). 
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The breeding program at Florence was restarted and formalized in 1935 as part of the 

USDA Agricultural Research Service’s (ARS) goal to revitalize Sea Island cotton 

cultivation (Harrell 1974).  One of the major impediments in Sea Island cultivation was 

the preeminent threat posed by the boll weevil, so new breeding strategies were 

formalized by the station cotton breeders, D. C. Harrell and W. H. Jenkins (Harrell 1974).  

The Sea Island breeding program was moved to Tifton, GA, via Johns Island, SC, in 

1948; however, breeders at the Pee Dee Station took advantage of these genetic resources 

and their experience with G. barbadense to execute intricate and complicated breeding 

plans (Harrell 1974). 

With their breeding objectives now focused on extra-long staple Upland cottons for 

the Southeast, Harrell and Jenkins examined the crosses and selections from their 

program.  Many of the early crosses used pollen from G. barbadense var. Puerto Rico 

Sea Island and Upland cultivars grown by station agronomist E. E. Hall as the seed parent 

(Harrell 1974).  Thousands of crosses were generated within and between their breeding 

materials in an effort to combine the fiber quality traits of Sea Island with the agronomic 

qualities of Upland cotton.  A changing focus in breeding goals across the history of the 

program helps delimit eight specific periods over the history of the program whose 

germplasm releases reflect those goals (Campbell et al. 2011). 

Group one reflected a focus on improved fiber quality by introgressing chromosome 

segments from G. barbadense into reliable, known Upland cultivars, as well as a small 

focus on a generic-wilt resistance.  These releases resulted from the crosses Jenkins and 

Harrel made in the 1930s and 40s.  Group one is particularly important because it 
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represents the selection of major founders in the Pee Dee breeding program population.  

Parental material in group one came from a variety of places, mainly other cotton 

breeders, both in the form of varieties and wild accessions. 

Breeding efforts during the group one era consisted of complex introductions of 

alleles from both Upland and non-Upland cottons.  Alleles from non-Upland cottons were 

introduced from G. barbadense var. Bleak Hall, a Sea Island cotton previously cultivated 

in the Lowcountry of South Carolina (Harrell 1974); G. hirsutum var. Acala, a putative 

intercross between Upland and Sea Island cottons in Mexico (Turner 1974); the Triple 

Hybrid lines, derived from a synthetic tetraploid hybrid G. arboreum x G. thurberi 

crossed to G. hirsutum var. Cook 144-133, with multiple backcrossing to G. hirsutum var. 

Coker 100 (Beasley 1940); the experimental G. barbadense line ‘V’ developed by 

Jenkins; and several unnamed ‘Sea Island’ and ‘Mexican’ cottons (Calhoun et al. 1997).  

Upland alleles were contributed in this cycle by existing elite Upland cultivars and 

breeding lines, particularly: G. hirsutum vars. Coker 100, 100-Wilt and Wilds; California 

breeding line ‘C 6-5’ with ‘Acala’ and ‘Hopi Moencopi’ background (CAES 1960); 

‘AHA 6-1-4’, an ‘Acala’ reselection (Culp and Harrell 1973); and various other Upland-

allele-dominant cultivars via the products of the Triple Hybrid experiments. 

Released germplasm from group one often possessed superior fiber quality, especially 

increased fiber strength and length, but was also often associated with decreased yield 

potential.  The breeding methods utilized during the group one era involved complex 

intercrossing, backcrossing, and random mating.  Jenkins and Harrell used recurrent 

phenotypic selection on very large populations to identify favorable recombinants, isolate 
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them, and intermate favorable selections.  The gene pool established in group one would 

play an important role in future developments in the program (Campbell et al. 2011).  

This material was registered by Culp and Harrell in 1980, although most (if not all) of the 

crosses were made under the direction of Harrell and Jenkins.  It is likely the resources 

produced in group one were distributed widely before publishing their findings. 

Group two had similar goals of improved fiber quality as group one and was largely 

the “reshuffling” of existing alleles in the breeding program.  A major improvement 

during this breeding era was  the introduction of an elite parent, G. hirsutum var. Auburn 

56 from the Delta Research Station, which conferred resistance to Verticillium wilt 

(Smith 1964).  Group three had a strong focus on improved fiber strength combined with 

fiber length, including the introduction of alleles from three elite Upland cultivars: G. 

hirsutum vars. Coker 421, Missouri Delta (‘MO-DEL’), and Carolina Queen and was the 

last group to be released by Harrell before he left the program in 1979 (Culp et al. 

1979a).  Group four broadened the gene pool of the Pee Dee program by introducing 

‘DSRx6-56’, ‘Coker 210’, and other PD breeding lines from group two.  The first new 

breeding line (‘DSRx6-56’) was a short, stormproof breeding line developed by Texas 

Agricultural Experiment Station and was used to increase boll retention and decrease 

plant height (Culp et al. 1979b).  The new line ‘Coker 210’ was a high-yielding release 

from the Coker Pedigreed Seed Company (Calhoun et al. 1997).  This group included the 

released varieties ‘PD-1’, ‘PD-2’, and ‘PD-3’ that was intended for use by growers 

during this period, as well as ‘PD875.’ 
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Group five shifted breeding priorities from the improvement of fiber quality to the 

incorporation of parents with known resistance to insect (Campbell et al. 2011).  This 

generation included the creation of PD695 (a frego bract line) a common parent for the 

majority of new cultivars in group six.  A common donor for insect resistance was G. 

hirsutum var. LA Frego 2, a frego bract line developed at the Louisiana Agricultural 

Experiment Station.  The frego bract (fg) trait in cotton was described as a physical 

marker in the 1950s (Green 1955) and was later associated with resistance to boll rot and 

the boll weevil.  Resistance was conferred by modification of the structure of the bracts 

surrounding the developing cotton boll, modulating oviposition and decreasing the 

number of neonates attacking the boll (Jenkins and Parrott 1971).  Other cultivars 

released during group five varied in the presence of the frego bract trait but all displayed 

some form of insect resistance, indicating that earliness or other cultural changes may 

have also contributed to resistance (Culp et al. 1990). 

Group six included intercrossing between group five cultivar releases in an effort to 

improve the fiber quality of existing insect resistant lines.  The cultivars released in group 

six are almost all full-siblings or half-sibs, with ‘PD695’ and ‘PD875’ either as one or 

both parents.  The stormproof line ‘DSRx6-56’ was also utilized, as well as frego bract 

line ‘5-718’ from JB Weaver at Georgia Agricultural Experiment Station and ‘Deltapine 

7146N’, a nectariless line with tarnished plant bug resistance.  Groups five and six 

exhibited overall lower fiber quality than previous program releases, likely as a tradeoff 

for insect resistance. 
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Group seven involved a continued effort to improve yield in the high fiber quality 

lines generated at the Pee Dee program.  Cultivars from previous breeding groups were 

crossed with a number of high yielding obsolete cultivars, including ‘Deltapine 41’, 

‘McNair 235’ and ‘220’, ‘DES 422’, and ‘Delcot (Delta Cotton) 311’.  The PD parents 

utilized were releases from multiple other breeding groups, especially groups one to four, 

likely as the donor parents for fiber quality alleles. 

Lastly, group eight was focused on improving the presence of desirable recombinants, 

with recurrent selection upon the cultivars from group seven. A few other sources of 

genetic variation were introduced, including ‘Coker 315’, ‘Jimian 8’, and a brown lint 

accession.  This group had a breeding goal of breaking the negative linkage between fiber 

quality and yield. 

A survey of American Upland cotton diversity has been undertaken (Tyagi et al. 

2014).  To date, however, only a single genetic study has been performed to identify 

patterns of inheritance and genetic diversity within the Pee Dee Germplasm Program 

specifically, published by Campbell et al. (2009).  An additional, thorough phenotypic 

evaluation (Campbell et al. 2011; Campbell et al. 2012) has provided an invaluable data 

set that will help inform future genetic endeavors with this closed breeding population.  

Therefore, in order to more adequately characterize the history of the program and make 

these resources available for Pee Dee breeders and others, it is important to undertake an 

in depth genetic survey of the program using newer technology, adding to the volume of 

resources pertinent to cotton breeders and enabling a future of genomics-assisted decision 

making. 
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The Pee Dee cotton breeding program has had at least six breeders.  Based on their 

publication history, I estimate these were the time periods of their tenures: DC Harrell 

1935 to 1980; TW Culp 1971 to 1994; CC Green 1990 to 1994; OL May 1995 to 2001; 

BT Campbell 2004 to present. 

Physiology of the Cotton Plant and Fiber 

Phenology: Early Growth and Fruiting Initiation 

Cotton growth is divided into two overlapping growth stages: vegetative and 

reproductive.  In uncultivated systems, Gossypium spp. primarily grow as herbaceous 

shrubs, usually in a perennial form over most their range (Stephens 1976).  The cotton 

plant grows deep roots during the beginning of its life cycle, providing moderate to 

strong drought tolerance by tapping into subsurface ground water sources (Ball et al. 

1994).  The shoot seedling tissue is highly vulnerable to cold temperatures, disease, and 

mechanical damage.  The array of biotic pathogens that attack cotton seedlings is together 

known as the cotton seedling disease complex (Minton and Garber 1983). Pythium, 

Fusarium, and Rhizoctonia are three of the most common pathogenic agents responsible 

for symptoms of the seedling disease complex. 

While root development is occurring, the plant diverts energy to increasing shoot leaf 

area and height.  The increase in leaf area over time allows for the plant to generate 

carbohydrates in excess of that needed for vegetative growth.  The exact amount of time 

required for the vegetative-reproductive conversion to take place is usually described in 

terms of heat units, or the integral of the temperature-day curve adjusted for a constant 
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temperature component (Reddy et al. 1993).  Other factors can control days to flowering, 

including nutrient availability, water availability, and cultivar selection. 

Flowering takes place over the extent of the summer and fall seasons, as long as 

environmental conditions enable boll retention.  It is hypothesized that some amount of 

stress (i.e., limited nutrient availability) must be present in the environment for cotton to 

produce the optimal yield, or else the plant may grow prolifically resulting in decreased 

energy contribution to fruiting (Boquet et al. 1993).  However, once the transition to 

fruiting has been accomplished, it is likely irreversible (Mauney 1966). 

Development of the Cotton Fiber 

Linters and lint fibers are the two major types of fiber cells that grow from the ovules 

within a developing cotton boll.  Linters are short fibers which adhere to the mature seed 

during ginning.  Cotton lint fibers are longer cells that generally separate during ginning 

(Stewart 1975).  The development of the fiber cells begins at anthesis when the trichome 

cells differentiate from the outside of the developing seed.  Elongation occurs during the 

first 20 to 25 days, after which primary cell wall biosynthesis ends and secondary wall 

deposition begins (Gou et al. 2007).  The final length of the cells is dependent on a 

variety of environmental and genetic variables (Paterson et al. 2003).  Cellulose fills the 

secondary cell wall and provides the strong characteristics of the dry fiber bundles (Basra 

and Malik 1984).  The mature bolls crack and fluff open, revealing the mature cotton lint 

fibers.  Therefore, the development of the cotton fibers is dependent on the environmental 

conditions throughout the c. 50 day development cycle, but overall have strong protection 

from the environment as long as the boll remains closed (Basra and Malik 1984). 
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Cotton Fiber Quality Traits 

Cotton fiber quality includes the range of physical parameters that describe the 

characteristics of a sample of mature cotton fibers.  Although some cotton fiber 

parameters may be highly heritable and stable across environments, many are complex 

traits with major genotype x environment (G x E) interactions and high correlations  

between traits (Campbell et al. 2012).  There are five key fiber traits that generally 

control the price a grower can receive for a bale of cotton: fiber length, fiber uniformity, 

fiber strength, micronaire (mic), and color grade (Cotton Incorporated 2017).   

Fiber length for G. hirsutum is normally in the range 20 mm to 32 mm, whereas 

extra-long staple cottons (especially G. barbadense) ranges from 32 mm to 50 mm.  Fiber 

length is largely cultivar dependent, although nutrient or water limiting conditions can 

negatively influence fiber length (Jackson and Tilt 1968; Shimshi and Marani 1971).  

Fiber uniformity describes the ratio of the mean fiber length to the upper-half mean 

length UHML, where 80% is normal and >85% is highly desirable.  Fiber strength, 

measured in g tex-1, is measured by calculating the force in grams at which a length of 

1000 meters of fibers breaks.  An average value is 27 g tex-1, whereas a very strong 

sample will bear >31 g tex-1 before breaking.  Fiber strength also exhibits high 

heritability (Campbell et al. 2009).  Micronaire is a measure of fiber maturity and fiber 

fineness.  It has a large environmental component by which hot or cold weather and 

adverse soil moisture conditions can result in overly dense or immature fiber 

development.  Micronaire is preferred in the 3.5 to-4.9 mic units range, and outside of 

this range the bale loses market value.  Color, the final major parameter in fiber quality 
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and valuation, is ostensibly controlled by a few major genes which determine the color 

type, such as light brown, green, or white (Kohel 1985; Carvalho et al. 2014), although 

rainfall, storage condition, or ginning can modulate the intensity of the fiber quality for a 

cultivar (Ware 1932). 

The Cotton Genome 

Cotton Cytogenetics 

The first noted study on cotton cytology was undertaken by Cannon (1903) in 

collaboration with H. J. Webber of the USDA Bureau of Plant Industry, the same Webber 

who would later play an instrumental role in the prolific success of Coker Pedigreed Seed 

Company.  Cannon was interested in the formation and fertility of interspecific hybrids, 

especially in G. barbadense x G. hirsutum.  He used F1 hybrid seed generated by Webber 

in South Carolina and planted in a greenhouse in New York Botanical Garden.  Cannon 

observed proper tetrad formation in the gametic cells of the F1 hybrid microspore cells 

and had mixed results with respect to self-fertility for the F1 flowers, indicating that G. 

barbadense x G. hirsutum plants had some level of imperfect fertility but indeed 

appeared to have compatible chromatin (Cannon 1903). W. L. Balls (1910) observed 

“thread-ring” structure and “black-dots,” in a second later study in Egypt, which had not 

at the time been reported in meiosis of other plants.  Interestingly, Balls and Cannon 

report different haploid chromosome numbers (n = 20 for Balls, 28 for Cannon), both of 

which differ from the presently accepted n = 26. 

H. J. Denham conducted a survey of G. barbadense microspore formation (Denham 

1924) and establishment of chromosome numbers for eleven strains of ~7 Gossypium 
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species.  Denham (1924) correctly established the haploid chromosome number for 

“American” and “Egyptian” cottons G. hirsutum and G. barbadense as 26, and the other 

species in the genus as 13, the presently accepted chromosome numbers for these species  

Denham posits that perhaps the 26 chromosome species exhibit “gigantism,” a hypothesis 

at the time that identified that plant mutants with double the amount of normal chromatin 

exhibited vigorous growth. 

The next major advancements in cotton cytogenetics came in 1933-1937, when A. 

Skovsted, a scientist for the Empire Cotton Growing Corporation Cotton Research 

Station in Trinidad, published his landmark series of four papers “Cytological Studies in 

Cotton. I-IV.” 

His first study explored meiosis and mitosis in a sterile triploid hybrid cotton, with 26 

chromosomes from G. arboreum and the additional 13 from a G. herbaceum x G. 

arboreum hybrid (all “A” genome types).  He also studied cell division in a fertile G. 

herbaceum x G. arboreum cross.  Skovsted observed normal cell division and growth in 

the triploid and diploid hybrids but observed poly-valent formation during prophase I of 

meiosis.  The irregular number of chromosomes observed during metaphase II helped the 

author identify that the triploid number likely did not represent 3 sets of 13 completely 

homologous chromosomes.  Additionally, reduced chiasma formation in the G. 

herbaceum x G. arboreum cross supported this hypothesis.  Skovsted also provided two 

hypotheses explaining the apparently lack of homology between chromosomes in the 

diploid cottons. They could be polyploids formed by progenitor species of n=6 and 7, or 

the result of structural rearrangements between chromosomes over time, leading to 
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reduced attraction between chromosomes and therefore irregular n-valent and chiasma 

formation (Skovsted 1933). 

In his second study, Skovsted further explored interesting species hybrids, a fertile 

hybrid of G. barbadense x G. arboreum (2n=39) and another infertile complex cross 

(2n=52) resulting from the aforementioned G. herbaceum x G. arboreum hybrid crossed 

with (G. hirsutum x G. barbadense backcrossed to G. barbadense).  Skovsted notes that 

the New World cottons G. hirsutum and G. barbadense have 13 pairs of small and large 

chromosomes, of which the small chromosomes from the Asiatic cottons only pair with 

the small New World cotton chromosomes but the larger chromosomes are always left 

unpaired.  Skovsted correctly made the determination that New World cottons are 

allotetraploids formed by hybridization between an Asiatic cotton and an unknown other 

species, with chromosome number doubling occurring at some point (Skovsted 1934).  

Skovsted established the first strong cytogenetic evidence of the evolutionary origin of 

the New World cottons with 26 chromosomes.   

Lastly, Skovsted demonstrated that chromosomes from Asiatic hybrids paired during 

metaphase, indicating the presence of homologous chromosomes between the three A-

genome diploids tested.  He suggested that the American diploids are likely related 

because of the shared presence of 13 small chromosomes in haploid cells, as opposed to 

the larger chromosomes in Asiatic species.  However, he did not find evidence that the 

American diploids he examined are likely one of the contributors of genetic content in 

tetraploid New World cottons (Skovsted 1937).  Harland would soon find homologous 
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loci between diploid and tetraploid American cottons, showing the transfer of a “factor” 

for crinkled leaf and petal spot (Harland 1937). 

Recombination Mapping 

Recombination mapping, or the use of recombination rate to determine gene position 

and order, was employed early in cotton genetics.  Stephens (1955) used backcrosses to 

determine the frequency of parental and non-parental phenotype combinations from 

stable tester stocks.  He was able to identify four linkage groups with more than one locus 

and seven independent loci, a total of eleven linkage groups, far less than the 26 

chromosomes in G. hirsutum.  Stephens also postulated that mutant loci “clustered” in a 

few chromosomes, suggesting potentially a higher mutation rate or gene density on 

particular chromosomes.  He also speculated that perhaps the tetraploid nature of cotton 

made the discovery of recessive alleles challenging, since the dominant allele may be 

present in the other genome (Stephens 1955). 

In a review nearly 30 years later, the authors point out that only 61 mutant loci have 

been pinned to one of 16 linkage groups, of which only 11 had been associated with a 

particular chromosome (Kohel et al. 1984).  The slow process of identifying mutants in 

the highly redundant tetraploid cottons have posed many problems throughout the 

process of generating a genetic map for G. hirsutum and G. barbadense. 

Eventually, newer genetic markers took the place of the much slower mutant 

phenotype-genotype marker system.  The first major genetic map for tetraploid cotton 

was released in 1994, utilizing restriction fragment length polymorphisms (RFLPs) from 

an inter-specific cross of G. barbadense x G. hirsutum. Although incomplete, the markers 
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split into 41 linkage groups, of which some mapped to a total of 14 known chromosomes 

(Reinisch et al. 1994).  This work would be further improved by some of the same 

researchers in 2004, when a near-complete genetic map of tetraploid cotton was released 

based on the sequence-tagged site (STS) platform.  The new map covered over 2,500 loci 

and served as an important milestone in cotton genetics research (Rong et al. 2004). 

Genotyping Technologies 

In cotton, two types of genetic markers have been most important for diversity and 

trait evaluation.  Specifically, the PCR-amplified types, such as simple sequence repeat 

(SSR) or RFLP, and newer, more common single nucleotide polymorphism (SNP) 

markers.  Generally, the PCR-amplified marker types are based on the change in the 

length of segment of DNA, whereas the SNP markers are called based on the nucleotide 

base present at a specific genomic position relative to a reference sequence. 

The first significant use of genetic markers was in 1980, when the first RFLP map of 

the human genome was made (Botstein et al. 1980).  The early mapping work in man led 

to future advances, including a high-quality reference genome available today.  Likewise, 

a similar approach was utilized in cotton.  However, it was found difficult to identify 

nucleotide diversity, classically used to describe genetic diversity, in Gossypium (Small 

et al. 1999).  The same phenomenon was also observed in terms of nucleotide diversity 

that would lead to variable SSR genotypes, further complicating the next-best available 

genotyping method in the 2000s (Rungis et al. 2005).  Therefore, newer genotyping 

methods capable of detecting the so-far undetectable genetic variation were desired. 
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Current genotyping strategies have been instead based on SNP markers.  The array-

based methods are currently the least expensive and highly standardized; however, 

genotyping by sequencing (GBS) may soon overtake array technology.  The most widely 

used and publicly available array platform in the United States is the CottonSNP63K 

array, developed by Hulse-Kemp et al. (2015).  The array is based on the principles of 

probe-proband hybridization, base extension, and fluorescence, based on the specific 

fluorescent nucleotide present during the base extension reaction (Gunderson et al. 2005).  

Competing arrays have also been developed based on a different discovery set of SNPs 

(Cai et al. 2017). 

Finally, genome resequencing presents a different set of challenges and opportunities.  

Although currently cost prohibitive to detect the low levels of polymorphism relative to 

repetitive DNA content, lower cost sequencing may make resequencing the most cost-

efficient and highly informative genotyping platform (Chen et al. 2007). 

Biparental Crosses for Mapping Populations 

Biparental crosses have been used for decades in plant genetics to identify large-

effect genes underlying desirable traits, or quantitative trait loci (QTL), especially those 

for resistance to abiotic or biotic stresses, significant changes in plant morphology, 

quality, and others (Wurschum 2012).  Cross-validation in other artificial population is 

used to authenticate the existence and genomic locations of such high-effect genes.   

The approach utilizes two parents which vary significantly for the trait(s) of interest, 

which are then crossed to generate segregating progeny or progeny families.  It is 

possible to map QTL when the parents have the same phenotypic means if the alleles 
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underlying the phenotype vary (Mauricio 2001).  Progenies are then selected for 

opposing phenotypic extremes, dividing the population into groups of discrete 

phenotypes.  Phenotyping is performed on large numbers of advanced heterozygous lines 

to increase the probability of observing a large amount of recombination across all 

chromosomes.  Correlation for each marker allele is tested for significant association with 

the trait of interest, with the lead SNPs carried forward for validation.  Composite interval 

mapping can be used to narrow down the region to specific gene or functional segment. 

Biparental mapping populations are helpful when the time and space are available to 

handle and phenotype large numbers of individuals, especially if linkage disequilibrium 

decays slowly near the causal gene(s).  They are also helpful if natural variation for the 

trait is difficult to find for formulating a diversity panel.  The statistics and experimental 

design are well established, and this approach has helped to identify many genes or 

chromosome regions in cotton underlying agronomic or fiber qualities (Xiao et al. 2010; 

Fang et al. 2010; Fang et al. 2014; Thyssen et al. 2014) 

Xiao et al. (2010) used a biparental population by single seed descent to identify the 

gene underlying resistance to bacterial blight race 18.  The resistant cultivar ‘Delta Opal’ 

was crossed with susceptible ‘DP 388’, and 285 families were advanced to the F4:5 

generation.  Phenotyping was performed on families of 21 seedlings in a greenhouse by 

inoculating cotyledons.  Putative homozygous families, or those with all susceptible or 

resistant plants, had DNA bulked.  Simple sequence repeat markers were used to 

genotype the families and parents.  A linkage map from the results was used to identify 

markers highly correlated with resistance, implicating a subtelomeric gene, B12, on 
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chromosome 14. Marker order and linkage was validated in other elite cotton 

backgrounds.  The resulting marker could be used for marker-assisted introgression of the 

resistance gene. 

Thyssen et al. (2014) used next generation sequencing of a near-isogenic line, 

RNAseq, and bulk segregant analysis to identify the genetic position for the Ligon-

lintless-2 (Li2) locus, a dominant allele underlying a short fiber mutant.  Their approach 

also utilized a biparental population for fine mapping of the locus.  The locus had 

previously been phenotypically assigned to chromosome 18, so the goal of their study 

was to determine where on the chromosome the causal SNP or polymorphism was 

located.  Near-isogenic line generation was conducted by crossing a short lint mutant 

with ‘DP 5690’, then backcrossing to the normal fiber recurrent parent.  RNAseq of 8 

days post anthesis fibers showed a large density of low lint vs regular lint reads mapping 

to a telomere of chromosome 13 of the D genome progenitor G. raimondii (AD chr18).  

The F2 progeny were used for bulk segregant analysis, involving the collection of DNA 

from phenotypically similar lines, to identify a causal gene based on recombination 

around the Li2 locus.  Two SNP markers flanked the locus, which contained a single 

aquaporin gene, although no coding sequence changes were identified in the implicated 

gene.  Nearby transcription factor gene expression varied only for a single C2H2-type 

zinc finger family protein, with increased expression in the Li2 mutant 5 DPA.  The 

authors conclude that they could not identify the mechanism by which the aquaporin 

expression changed, but there was likely a change in a distal control sequence also 
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connected to reactive oxygen species and cellular stress response, affecting cell 

elongation. 

Genome Wide Association Studies 

The first genome wide association study (GWAS) was published in 2002, linking 

disease alleles of the lymphotoxin-alpha gene to increased myocardial infarction risk 

(Ozaki et al. 2002).  The principle of such studies is to examine a population of 

individuals that vary for a trait and then find genetic markers that are highly correlated 

with that trait.  Presently GWAS has expanded across biology to mine for marker-gene 

associations and serves as an additional tool in the quest to identify causal genes and 

alleles.  In cotton, GWAS has played an important role by serving as a starting point for 

many studies seeking to identify sources of resistance to disease, fiber improvement, or 

agronomic performance (Islam et al. 2016; Sun et al. 2017; Huang et al. 2017; Li et al. 

2017; Abdelraheem et al. 2020). 

Many of the most economically important traits in cotton are complex traits.  

Meredith and Bridge (1971) identified early on that there were high correlations between 

many of the complex traits in cotton, suggesting that modified backcrossing or random 

intermating may be superior for generating favorable recombinants.  Campbell et al. 

(2012) also supported this hypothesis by finding significant correlations between many 

traits.  Therefore, either there are many of the same genes controlling multiple different 

traits, perhaps negatively in some cases, or different genes are involved with high 

amounts of pleiotropy.  This observation is crucial in planning and understanding GWAS, 

as the detecting of a positive marker may indeed come at the expense of other important 
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traits, or in fact be caused by an underlying depression in another phenotype.  Ingvarsson 

and Street (2011) further expound on these concerns, especially relevant in terms of 

complex trait dissection in cotton. 

Genome-wide association studies begin with selection of the traits to be studied and a 

panel of variable individuals.  Replicated phenotyping follows, hopefully across a range 

of environments to evaluate the stability of each genotype’s performance.  A genotyping 

platform is selected, and representative samples are processed to make marker allele calls 

across the genome.  A statistical model is identified, like the linear or mixed models, to 

associate the phenotypic data with each of the genetic marker alleles.  During the 

association step, other information about population structure, stratification, or 

confounding characteristics may be included as covariates to improve power and 

decrease the false positive discovery rate.  The resulting significant markers are plotted in 

a Manhattan plot to identify genomic regions with long stretches of associated SNPs.  

The particular markers can then be used for fine mapping applications to identify 

candidate genes and undergo validation. 

For example, a recent study by Abdelraheem et al. (2020) identified resistance to 

Verticillium and Fusarium (Race 4) wilts in the US Upland cotton gene pool.  A 

greenhouse study was performed with 367 genotypes, with 4 and 2 complete replications 

for Verticillium and Fusarium isolates respectively, whereby infected plants were scored 

using disease severity ratings; each genotype was replicated twice in a randomize 

complete block design.  The best linear unbiased prediction (BLUP) was calculated for 

resistance to both resistance traits using a mixed model, treating genotypes as random and 
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other factors fixed.  The CottonSNP63K array was selected as the genotyping platform, 

and polymorphic markers were mapped to chromosomes using BLAST.  Population 

structure was corrected for in the GWAS, performed in TASSEL 5, using a combination 

of Principal Component Analysis, the K (relationship) and Q (group membership) 

matrices from STRUCTURE.  Putative QTLs were identified by using a sliding 1-15 Mb 

window (depending on level of confidence).  The GWASs were performed separately for 

each trial of the experiment, and therefore 4 stable QTLs were identified for Verticillium 

resistance and 2 for Fusarium resistance. 

MAGIC Populations 

Substantial natural variation exists in wild Gossypium species, but there is a paucity 

of well-described, widely distributed tool sets for breeders to utilize the >50 cotton 

species in their breeding programs.  Breeders can identify sources of variation in 

germplasm banks or collect accessions in nature, but the return on investment may be so 

low that such leaps are seldom taken in modern cotton breeding.  Thankfully, new 

sequencing technologies and phenotyping capabilities may make it easier in the future for 

breeders to utilize sources of variation to the most effective extent possible.  One such 

tool for utilizing genetic variation is the creation of so called MAGIC, or multi-parent 

advanced inter-crosses, populations.  Populations constructed from wild cotton 

accessions have the capability to introduce the diverse set of alleles breeders desire while 

reducing the population size necessary to combine most of the alleles (Shim et al. 2018). 

Li et al. (2016) demonstrated how genetic diversity can be maintained in a cotton 
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MAGIC population by using 12 founders for yield, insect resistance, and disease 

resistance. 

MAGIC populations have been proven to be effective breeding tools in a variety of 

crops, such as rice (Bandillo et al. 2013), wheat (Huang et al. 2012), and maize 

(Dell'Acqua et al. 2015).  These populations are generated in four stages (Huang et al. 

2015).  First, a diverse set of founders are selected based on phenotypic, geographic, or 

genetic dissimilarity.  In mixing, the founders are intercrossed to generate a heterogenous 

stock or broad genetic base.  So-called funnels are then used to mix together parents of 

diverse origins to generate lines with the background of multiple founders.  In 

maintenance, advanced intercrossing occurs in the second stage, by which lines across 

funnels are interbred randomly to generate advanced intercross lines, promoting 

recombination.  Inbreeding is then performed.  Inbreeding is used to advance advanced 

intercross lines to a more homozygous state, improving genotyping capabilities especially 

in polyploid crops.  Therefore, the diversity of the original can be utilized and studied 

without underlying population structure causing problems in genetic analysis (Huang et 

al. 2015). 

The biggest difference between MAGIC and nested association mapping (NAM) lies 

in how the crosses are generated early on.  MAGIC utilized intermating between all or 

many parents and subsequent shuffling, whereas NAM combines diverse genotypes with 

a single, well-studied line.  Both approaches can be effective for breaking up linkage, but 

NAM is specifically optimized to use skim-sequencing or GBS to make very large 

population sizes feasible.  NAM has been extremely effective for complex trait dissection 
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in maize since its introduction, and can be especially in other cases where high amounts 

of diversity exist in the founding parents (Yu et al. 2008). 

The original MAGIC population used for genetic studies began development with 

work by Jenkins et al. (2008), termed the Random Mated Upland Population Cycle 5 

(RMUP-C5).  Genotypes from the RMUP-C5 and related derivatives were generated by 

intercrossing 11 elite cotton cultivars in a half diallel design, resulting in 55 families.  

The families were randomly mated by bulking pollen from all 55 families and pollinating 

ten flowers for each family.  A sample of seed from each cycle of random intermating 

was collected and selfed for one generation, generating the CnS1 populations for each of 

the 55 families across six cycles.  Crossed seed from each n intermating generation was 

used to grow female parents for the Cn+1 generation.  The released material represented 

the once selfed seed of the sixth-generation intercrosses C5S1.  Plants from the C5 

generation indicated changes in correlation between multiple fiber qualities and fiber 

qualities and yield, showing that linkage between causal loci were successfully broken up 

with respect to the parents.’ 

The RMUP-C5 served as the important first three steps of MAGIC population 

development.  The fourth step of development, inbreeding, was carried forward by Fang 

et al. (2014) who selfed C5S1 seed for five additional generations to generate C5S6 

recombinant inbred lines (RILs).  To demonstrate the utility of this new breeding 

resource, they used SSR markers, two years of replicated field data, and the software 

packaged TASSEL to identify 54 novel fiber quality QTLs.  Interestingly, overall allele 

frequency for each SSR locus in the RILs was highly correlated (r = 0.99) with the allele 
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frequency in the parental generations, with no obvious population structure indicated by 

STRUCTURE analysis. 

A subset of 547 RILs were used by Islam et al. (2016) to functionally characterize a 

gene underlying fiber quality.  Genotyping-by-sequencing was performed to identify 

6071 polymorphic SNPs, and 223 SSR markers from a prior study were also included.  

All genetic markers were mapped to the ‘TM-1’ reference genome, except 32 SNPs 

which were not anchored to a chromosome.  Phenotypic means were calculated using 

BLUPs over four environments.  The general linear model (GLM) was first used for 

marker-trait association in TASSEL, with PCA as the covariate.  However, the mixed 

linear model (MLM), with relatedness as an additional covariate, was instead employed 

due to a high false discovery rate from the quantile-quantile (QQ) plot of p-values.  A 

total of 86 fiber QTLs were identified using these methods.  The most promising 

candidate gene for fiber quality was GhRBB1_A07, a gene on chromosome 7 coding for a 

very large protein, with an 18 bp deletion variant associated with increased quality.  

Expression analysis and frequency in other elite lines supported their hypothesis.  Islam 

et al. (2016) demonstrate, from start to finish, how the MAGIC population in cotton can 

be used to identify a candidate gene which can be cross validated in other cotton 

germplasm, improving the likelihood of success when used in a marker-based selection 

program. 

The next study on the MAGIC population involved whole genome sequencing and 

fiber quality measurements across twelve location-years, usually in an alpha-lattice 

design (Thyssen et al. 2019).  Reads were mapped to the ‘TM-1’ reference genome and 
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SNPs were called with samtools and bcftools.  Phenotypic means were calculated with 

PROC MIXED in SAS for each location-year, with BLUPs calculated for across 

environment phenotypes.  A separate model was used for micronaire to account for year 

to year environmental differences.  Association mapping was performed with the MLM 

in GAPIT, with 3 eigenvectors of PCA and the kinship matrix as covariates.  GWAS was 

performed for each environment, with 460 SNPs passing the p-value threshold for at least 

one location-year and trait, with micronaire and upper-half mean length showing the least 

environmental stability.  The QTL of large affect from Islam et al. (2016) was validated, 

with pleiotropic effects on multiple traits.  To remove the effect of the beneficial allele, 

the analysis was done on the subset without that haplotype, revealing additional 

significantly associated markers.  Their results show how controlling for environmental 

conditions in the association model, a large number of variants, and an unstructured 

population can result in robust QTL discovery. 

Another 2019 paper from the same group of scientist further focused on dissecting the 

genetic basis of fiber length, specifically upper half mean length from the same set of 

field experiments (Naoumkina et al. 2019).  The GWAS indicated a non-reference 

haplotype on chromosome 24, and those RILs carrying the alternative haplotype had 

shorter fiber length overall.  Interestingly, the only parent homozygous for the alternative 

haplotype had average fiber quality compared to the other parents.  Differentially 

expressed genes (DEGs) from RNAseq exposed 949 differentially expressed genes across 

a set of four RILs, each representing a combination of the reference/alternative 

haplotypes and short/long fibers.  Gene set enrichment analysis (SEA) implicated genes 
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associated with carbohydrate metabolism, redox, cell wall, secondary metabolism, stress, 

and transport.  Three DEGs were determined to be close to the QTL on chr24, with one 

protein-kinase superfamily protein having expression difference between long and short 

fibers RILs, but its association in the trait was ruled out due to observed recombination.  

The auxin-responsive GH3 gene was found to be more lowly expressed in longer fiber 

RILs, reducing the amount of active auxin, and perhaps leading to longer fiber growth. 

Lastly, the most recent study based on the MAGIC population evaluated marker trait 

association for Verticillium wilt resistance (Zhang et al. 2020).  Disease severity ratings 

were given on greenhouse-grown inoculated plants 30d after inoculation, with two soil 

surface inoculations of spore suspension starting at the two true leaf stage and one week 

after.  Two tests, one per greenhouse, were conducted in a randomized complete block 

design with two blocks, including ten seedlings for each of the 550 RILs.  The two tests 

were combined with ANOVA as implemented by PROC MIXED in SAS.  An interaction 

between test and genotype for disease severity was detected, as well as a replication 

effect within each test, indicating confounding environmental or experimental design 

problems.  Polymorphic SNP alleles were identified using Illumina sequencing, which 

were then mapped to the ‘TM-1’ reference genome.  GWAS was performed with GAPIT 

to identify QTLs associated with resistance to Verticillium wilt.  Only three QTLs were 

stable between the two tests, with a few candidate genes involved in pathogen response 

and recognition were implicated. 

In conclusion, the MAGIC population and related GWAS studies show an important 

property of marker-trait association in cotton.  Even with a small number of eleven 
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founders, it is still possible to identify substantial amount of variation for an array of 

traits if there has been enough recombination.  These results support the hypothesis that 

there are many genes and gene combinations that impact fiber quality or agronomic 

qualities.  Here, especially, this is worth noting, since the present study is focused on this 

very feat.  The Pee Dee Germplasm Enhancement Program represents the reshuffling of 

alleles with substantial recombination and selection; the data from the MAGIC 

population suggest that, indeed, if causal genes vary within the Pee Dee gene pool, it will 

be possible to identify these loci, as long as population structure is adequately controlled. 

Structural Properties of the Cotton Genome 

The first major advancement in Gossypium genomics came with the reference 

genome releases of the tetraploid-progenitor A and D genome diploids, G. arboreum (Li 

et al. 2014) and G. raimondii (Wang et al. 2012b), respectively.  The c-value for G. 

arboreum and G. raimondii correspond to genome sizes of 1,746 Mb and 885 Mb, 

indicating the A genome is roughly twice the size of the D genome.  The difference in 

genome size is associated with an increase in retroelements (Grover et al. 2007).  This 

also holds true in tetraploid cottons G. hirsutum and G. barbadense (Hendrix and Stewart 

2005; Fang et al. 2017; Wang et al. 2017a).  In terms of genome structure, it its notable 

that there are large syntenic blocks shared between the two genomes, covering c. 80% of 

the assembled chromosomes.  Namely, large rearrangements are observed on 

chromosomes 2 and 3 of G. raimondii relative to the ancestral state in G. arboreum and 

Theobroma cacao, and large indels on chromosomes 7 and 8 of G. arboreum. 
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The genome sequences were published soon after for cultivated tetraploid cottons G. 

hirsutum  (Li et al. 2015; Zhang et al. 2015) and G. barbadense (Liu et al. 2015; Yuan et 

al. 2015).  The G. hirsutum genome sequence indicated a larger amount of gene loss 

overall in comparison to the diploids (relative to the T. cacao rooted phylogenetic tree), 

likely due to gene redundancy, with more gene loss in the A genome than D (Li et al. 

2015).  Additionally, observations on the ratio of nonsynonymous to synonymous 

changes indicated an increased amount of positive selection on the A genome and overall 

a faster rate of evolution (Fang et al. 2017). These changes are thought to have influenced 

domestication, as well, considering that the D genome progenitor does not have spinnable 

fibers, indicating greater changes in the A genome may have enabled humans to utilize G. 

hirsutum for fiber production (Wang et al. 2017a).  Although there is far less information 

available about structural variants between G. hirsutum and G. barbadense compared 

with that for the diploids, Wang et al. (2017b) report a total of 16 inversions of at least 1 

Mb in length, with the largest inversions on chromosomes 11, 12, 14, and 15. 

Population-level Analysis 

Population Selection and Experimental Design 

Population selection and design is critical when performing a genetic experiment.  

When natural populations are studied, like in ecology studies, a large enough sample size 

must be collected in order to characterize the population, but relatively small sample 

sized can be enough to achieve this goal given enough genetic markers (Nazareno et al. 

2017).  In artificial populations the most important factor is linkage disequilibrium, which 

can decay slowly or variably, substantially biasing the results of the study (Hamblin et al. 
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2011).  Regardless, selection of the population for study is a critical step in designing a 

population genomics experiments.  Simulation or resampling can be used to test for the 

minimum number of markers or individuals required to detect a particular level of 

population structure or separation. 

Wang et al. (2012a) showed population size and balance can affect QTL discovery in 

barley.  They show that with high LD and low effect alleles, coupled with unstable traits, 

a large number of unrelated individuals are necessary in order to detect small effect 

QTLs.  Their results also show how using a combination of STRUCTURE-based 

membership coefficient (Q) and kinship best enable correction for population structure 

and robust QTL discovery.  Balance was achieved by subsampling the existing barley 

cultivars to include an equal number of each across the cultivar categories, allowing the 

overall effect to balance out across the experiment. 

Another consideration with experimental design is the phenotyping method used.  In 

agronomic experiments, many traits are influenced by environmental factors, which 

generate noise when trying to identify small differences in the target parameter between 

genotypes.  Replication across environments can help tease out these effects, which can 

then be used to calculate more accurate true estimates of the cultivar or allele effect on a 

trait.  Genotype x environment (G x E) effects are particularly important, especially in 

cotton where they can drive strong influence on many traits (Campbell et al. 2012).  

Multiple plot replicates and field replicates, when feasible, can increase power and 

confidence in the results of field experiments. 
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Statistical Methods for Population Structure Analysis 

A single marker locus describes a single place in the genome, located at a specific 

physical position on a chromosome.  If the physical position is not known, a genetic or 

map position can be used instead.  The genetic marker can be any polymorphism 

previously described.  Functional regions around a genetic marker can affect how a 

marker is used.  For example, if a marker allele is in high LD with a negative allele, a 

breeder may select against the presence of the negative allele, reducing the frequency of 

the marker allele in the population.  To determine if a marker locus is appropriate for use 

in a study, filtering parameters are first applied to maintain a minimum level of quality.  

The marker can be described by its frequency in the population, given as the minor allele 

frequency (MAF) for SNP markers, calculated by determining the overall proportion of 

the rarer allele in the population.  Marker loci are typically excluded if the MAF < 0.10, 

0.05, or 0.025, depending on the application.  Call rate (CR) is the proportion of 

individuals successfully genotyped.  A CR < 0.90 or 0.75 are typical, depending on the 

genotyping platform and application.  Whether or not an allele call is missing completely 

at random (MCAR) or not plays an important part in the CR selected; for example, the 

systematic absence of a marker allele call could indicate a structural variant, which would 

violate the MCAR assumption.  A chi-square test can be used to see if marker allele 

frequencies violate the Hardy-Weinberg equilibrium (HWE) assumption, which is given 

loose constraints in breeding systems. HWE is typically used to eliminate genotyping 

errors (Hosking et al. 2004). 
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The relationship between marker loci can also be described.  The overall distribution 

of markers across a chromosome is determined by finding the number of polymorphic 

markers per a given map or physical distance, or across the entire genome.  Genomic 

regions without detected variability can also be identified.  Imputation is used to fill in 

gaps given observed frequencies of recombination (Halperin and Stephan 2009).  The 

square of the correlation coefficient (r2) between two marker alleles is used to generate 

linkage maps, identify haplotypes, and remove correlated markers (r2 > 0.8).  D’ can be 

used instead of r2 to describe linkage disequilibrium (VanLiere and Rosenberg 2008).  

These tools together are used to determine if adequate coverage is available for the 

desired applications. 

After characterizing all the marker loci available in a data set, the genetic markers 

passing filtering can be used to characterize the population composition, given 

preassigned groups.  Wright’s FST is used to estimate genetic separation between groups, 

with a value close to zero indicating low separation and closer to one indicating higher 

separation (Wright 1965; Nei 1973).  Other methods are used to test group membership 

or identify the contribution of putative ancestral populations to the observed substructure; 

STRUCTURE and fastSTRUCTURE are two implementations of this methodology 

(Pritchard et al. 2000; Raj et al. 2014).  STRUCTURE provides the user with a 

membership coefficient Q, which corresponds to the proportion of alleles in an individual 

that are assigned to a particular ancestral group according to the model.  The best number 

of groups (k) is chosen by finding the point on the first derivative of the model fit by k 

graph where the rate of improved fit no longer increases, similar to a maximum 
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likelihood estimate.  This method prevents overfitting, since an increased number of 

groups will always fit as well or better as a smaller number. 

Groupings can also be identified de novo using clustering techniques, especially on 

genetic distance calculations.  Clustering is best known in genetics for phylogenetic tress, 

but these analyses may not capture the breeding history accurately in an artificial 

population.  Two other grouping methods exist with different goals, both performed on 

individuals and their SNP calls: principal component analysis (PCA) and discriminant 

analysis of principal components (DAPC).  PCA optimizes the model fit relative to the 

data for individuals, whereas DAPC works on the preassigned groups.  Therefore, DAPC 

may be better when looking for “hidden elements” in genetics data where the true goal is 

to capture the between group variation as much as possible, rather than between 

individual variability (Jombart et al. 2010). 

Genotype x Environment Dissection in GWAS 

Phenotypic stability is of paramount importance for plant breeders because 

environmental conditions for crop production change year to year, crop cultivars are 

often produced in a variety of locations, and management practices may differ by the end 

consumer or use case.  Therefore, when identifying genes and loci underlying 

phenotypes, it is also critical to study how the effects are modulated by non-genic factors.  

Experiments normally attempt to minimize differences due to environmental effects but 

including such effects in an association model can provide crucial information, especially 

for breeding applications.  Here, I will describe what G x E is, techniques and examples 

of how geneticist explore G x E interactions, and applications specifically for cotton. 
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Fisher and Hogben independently introduced the idea of G x E, aimed towards two 

different circumstances.  Fisher introduced the biometric concept, explaining how a 

treatment could result in different observations if the environmental conditions varied, 

whereas Hogben introduced the developmental concept, primarily focused on how the 

development of an organism could be changed if the surrounding environment differed 

(Tabery 2008).  Ideally, G x E is observed as “crossing” in a reaction norm plot, where 

the rank order of a phenotype for levels of one factor, genotype, changes with different 

location, rainfall, temperature, or some other environmental condition.  Non-crossover G 

x E interactions are more frequently observed in cotton, wherein the magnitude of an 

effect changes across environments but the overall rank order does not (Campbell and 

Myers 2015).  The breeding interpretation for this result might be that generally speaking 

a variety or breeding line that performs well in one area will likely perform well in other 

areas, compared to competing varieties; however, the magnitude of the difference in 

phenotypic means between varieties changes across environments. 

More generally, G x E describes how different genotypes change in a non-uniform 

way to a change in environment, an observation which is frequently interpreted as 

antagonistic pleiotropy, or the opposite additive effect of an allele (Des Marais et al. 

2013).  In fact, Des Marais et al. (2013) approximated through a literature survey that at 

least 60% of QTLs in plants exhibit G x E through antagonistic pleiotropy or 

environment-specific effects.  Most detected QTL x E interactions were simply a change 

in the overall effect of an allele, not that opposite effects across environments.  These 

changes in general are frequently referred to as phenotypic plasticity in the literature. 
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Genotype x environment interactions can be observed at the cultivar or locus level.  

Dia et al. (2018) examined G x E for yield in 22 pickling cucumbers varieties over three 

years at seven locations.  Various environmental corrections were considered, such as 

rainfall or humidity.  They used two methods to test for the presence of G x E 

interactions.  Stability analysis was used, where performance for genotypes at each 

location is normalized by an environmental index, which is the average of all genotypes 

for each environment.  Non-stable genotypes are those that deviate differently relative to 

the environmental indices, resulting in a sort of environmental effect in the model. The 

genotype + genotype x environment interaction (GGE) biplot, used in conjunction with 

PCA, was also used.  For all traits studied, significant effects from environment, 

genotype, and G x E were detected, with crossing effects observed as well.  Methods such 

as those by Dia et al. are useful for initially determining if G x E exists for a trait of 

interest but cannot alone show whether or not an underlying genetic component itself is 

impacted by the environment. 

van Eeuwijk et al. (2010) provide an excellent overview on QTL discovery and 

analysis in plants across environments, especially in terms of modelling QTL main and 

interaction effects.  At the macro-scale traits are examined in terms of G x E effects 

overall for an individual’s genotype, but these effects can also be further separated at the 

locus level to determine QTL x E interactions.  The level of interdependence in the model 

between loci, as well as the predicted type of interaction, both impact the interpretation of 

results.   
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Importantly, there exist models for combining and utilizing data from multiple 

environments, accounting for the effect of multiple QTL (and their interactions).  These 

methods are based on the whittling-down of a complex model with thousands of putative 

QTL to one with only the ones that contribute to a large amount of phenotypic variance. 

One approach is to identify significantly associated QTL for the phenotype, then add the 

effect of each QTL to the model until an additional QTL falls below the significance 

threshold.  Then, QTL x E interactions can be tested.  Another approach is the multi-trait 

mixed linear model (MTMM), which uses the covariance matrix between two traits to 

identify the “pooled” effect of two markers on two phenotypes considered together 

(Korte et al. 2012).  The Bayesian multi-trait and multi-environment model (BMTME) is 

another alternative that incorporates observations across environments by successive 

estimation and re-estimation of a very large number of model parameters (Montesinos-

Lopez et al. 2016; Montesinos-Lopez et al. 2018). 

Additional traits can be added to the model to explore pleiotropic effects from QTL, 

correlations between traits, and G x E.  Malosetti et al. (2008) examined five traits across 

eight environments in an F2 population of maize.  Their work was based on the 

aforementioned strategy of searching for genome-wide significant markers and then 

examining those QTLs in more details.  Multiple overlapping QTL peaks were found, 

indicating either pleiotropic or linked loci.  The most effective model tested used the 

direct product of the trait and environment matrices for modelling the genetic covariance.  

This mixed model proved more effective than treating each trait-environment 

combination as its own parameter to estimate, decreasing the computational workload.  
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Their essential finding was that combining traits and environments in a particular 

statistical way can increase power for QTL detection while also preventing spurious 

associations from appearing by searching for too many different associations and over-

fitting the model. 

Another QTL x E detection technique based on Bayesian statistics was demonstrated 

in Barley by Zhao and Xu (2012).  QTL x E interaction are defined as the variance of the 

estimated QTL effects across environments, which is helpful because it makes logical 

sense with the idea of what a QTL x E interaction is in the most general sense: a QTL 

which has variable impact on a trait in different environments.  The results are interpreted 

over the physical course of the genome by overlapping the location of QTL main effects 

and the QTL x E interactions.  In fact, QTL x E interactions could be detected even in 

genomic regions where main effects are masked, as interaction terms can make true 

differences from the main effects approach zero.  For all eight traits tested, QTL x E 

interactions were detected, indicating the existence of unstable QTL underlying each 

trait.  Zhao and Xu demonstrate yet another method for testing for QTL stability, using 

the variance term for QTL effect as the phenotype parameter. 

The first major QTL x E analysis in cotton, by Paterson et al. (2003), tested for the 

interaction by separate QTL detection across years and levels of irrigation.  Six QTL for 

fiber length were detected, of which four indicated QTL x E interaction via differential 

QTL detection; seven main effect and five interactions for length uniformity; nine and 

five for elongation; and 25 main effect and 18 interactions for fineness.  Their results, 

although based on a small number of genetic markers, showed what would later become 
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very clear in the genetic dissection of cotton fiber quality traits -- a QTL in one 

environment would not necessarily show up when tested in a different environment.   

Campbell and Jones (2005) used the additive main effects and multiplicative model 

(AMMI) to detect G x E in South Carolina cotton variety trials.  Lint yield and fiber 

strength showed the largest G x E of all traits tested, with differences in lint yield only 

showing up in the non-yield-limiting conditions.  Non-rank changing interactions were by 

far the most common.  Campbell et al. (2012) tested Pee Dee germplasm to examine G x 

E across the Southeastern US cotton cultivation region. They used regression techniques 

similar to those described by Dia et al. (2018).  Environmental stability for cotton fiber 

quality traits varied significantly by breeding group and genotype, with micronaire 

showing the smallest proportion of variance explained by G x E and length the highest.  

Their results suggest that QTL x E likely underlies the genetic architecture of fiber 

quality traits in the Pee Dee germplasm and deserves further evaluation.  This has 

important implications for GWAS in the Pee Dee material, and methods specifically 

developed for identifying QTL x E in this structured breeding population will need to be 

developed. 
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CHAPTER TWO 

POPULATION STRUCTURE AND GENETIC DIVERSITY OF THE PEE DEE 
COTTON GERMPLASM COLLECTION 

Abstract 

Accelerated marker-assisted selection and genomic selection breeding systems 

require high quality genotyping data for parental material to optimally allocate breeding 

resources.  Since 1935, the Pee Dee cotton germplasm enhancement program has 

developed an important genetic resource for upland cotton (Gossypium hirsutum L.) 

contributing genetics for improved fiber quality, agronomic performance, and genetic 

diversity.  To date, a detailed genetic survey of the program’s eight historical breeding 

cycles has yet to be undertaken.  The objectives of this study were to evaluate genetic 

diversity across and within breeding groups, examine population structure, and 

contextualize these findings relative to the global upland cotton gene pool.  The 

CottonSNP63K array was used to identify 17,441 polymorphic markers (unthinned) in a 

panel of 114 diverse Pee Dee genotypes.  A subset of 4,597 markers was selected to 

decrease marker density bias.  Identity by state (IBS) pairwise distance varied 

substantially, ranging from 0.55 to 0.97.  Pedigree-based estimates of relatedness were 

lowly predictive overall of the observed genetic distances.  Few rare alleles were present, 

with 99.1% new alleles appearing within the first four breeding cycles.  Population 

structure analysis with principal component analysis, discriminant analysis of principal 

components, fastSTRUCTURE, and phylogenetics revealed an admixed population with 

moderate substructure.  Allele frequency analysis indicated potential selection signatures 
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associated with biotic stress resistance.  The results of this study will steer future 

utilization of our program’s germplasm resources, aid in combining program-specific 

beneficial alleles and maintaining genetic diversity, and establish the basis for genomic 

selection. 

Introduction 

The Pee Dee (PD) cotton germplasm enhancement program in Florence, South 

Carolina, was formalized in 1935 as part of the USDA Agricultural Research Service’s 

goal to revitalize Sea Island cotton (Gossypium barbadense L.) cultivation (Harrell 

1974).  Over time, the PD program transitioned into an Upland cotton (Gossypium 

hirsutum L.) long-term breeding effort, focused on the improvement of fiber strength and 

other quality traits, insect resistance, and other key agronomic traits (Campbell et al. 

2011).  Complex intercrossing, mating schemes, and germplasm recycling have led to the 

development of unique breeding materials and cultivars throughout the history of the 

program (Culp 1998).  Sources of genetic diversity for the PD program include 

accessions include G. barbadense, G. hirsutum, and the triple hybrid series composed of 

genes from G. hirsutum, G. arboreum L., and G. thurberi Tod. (Beasley 1940).  

Germplasm releases from PD have been distributed and utilized across many public and 

private cotton breeding programs, especially as a source for combined fiber length and 

strength (Bowman and Gutierrez 2003; Calhoun et al. 1997) 

From 1935 to 2000, the PD program completed eight breeding cycles, generating 

groups of cultivars and germplasm lines in each cycle (Campbell et al. 2011).  Group one 

started with the crossing of founding parents to generate new intercrossed, recombinant 
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lines with interspecific (combination of genetic backgrounds from multiple species) 

sources of fiber length and strength alleles.  Groups two, three, and four were developed 

through the intercrossing of materials generated in the first three cycles.  Groups five and 

six represented a change in breeding objectives as efforts were made to develop host 

plant resistance to the boll weevil (Anthonomus grandis Boh.).  Group seven began 

another change in the PD program, where materials from outside of the breeding program 

were incorporated as breeding parents in an effort to bring new sources of genetic 

variation for increased yield potential.  Group eight resulted from a combination of 

intercrossing of materials developed in prior breeding cycles, along with the introduction 

of more breeding parents from outside the PD program.  The program’s history is 

summarized graphically in Figure 2.1. 

A retrospective accounting of the breeding resources produced from the program over 

its 85-year history was undertaken to better understand the breeding history of the PD 

program and to aid us in efforts to accelerate present breeding efforts.  In 2009, data from 

a multi-site-year field experiment was combined with 80 polymorphic simple sequence 

repeat (SSR) markers to characterize the phenotypic and genetic variability across these 

eight breeding groups (Campbell et al. 2009).  They found variability for multiple fiber 

quality and yield components, including fiber length, fiber strength, fiber fineness, and 

lint percent, among others.  However, the study was limited by molecular markers and 

genotyping techniques available at the time.  Modern genotyping technologies, like the 

CottonSNP63K array released in 2015 (Hulse-Kemp et al. 2015), have enabled a host of 

new experiments and discoveries in cotton. 
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Population structure and diversity, assessed by the scoring of genome-wide genetic 

markers such as single nucleotide polymorphisms (SNPs), is crucial to generating an 

unbiased picture of the genomic landscape before undertaking genome-wide association 

studies (GWAS) or genomic selection (Hamblin et al. 2011).  Multiple methods are 

available for evaluating population structure, ranging from the classic phylogenetic 

model, which uses hierarchical clustering on the genetic distance matrix to identify 

similar and different members of a population (Odong et al. 2011).  Principal component 

analysis has long been used to correct for population structure in further genomic 

analyses (Price et al. 2006).  Other methods, such as discriminant analysis of principal 

components and fastSTRUCTURE, enable the visualization and evaluation of complex 

stratification in such panels as nested association mapping or breeding populations 

(Jombart et al. 2010; Raj et al. 2014; Huang et al. 2015; Maurer et al. 2015; Deperi et al. 

2018). 

Marker-trait association experiments have resulted in the discovery of dozens of 

quantitative trait loci (QTL) underlying diverse traits including salt tolerance, fiber 

quality, and wilt resistance (Sun et al. 2018; Gapare et al. 2017; Abdelraheem et al. 

2020).  Efforts to characterize the genetic diversity and population structure in the US 

upland cotton gene pool have also been undertaken.  Tyagi et al. (2014) used a set of 122 

polymorphic SSR marker, which were able to successfully distinguish 378 cultivars and 

breeding lines originating from the western, southwestern, midsouth, and eastern US 

cotton growing regions.  They observed similar correspondence between PCA, 

STRUCTURE, and allele frequency methods, noting an overall low level of genetic 
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diversity relative to other crop species.  Hinze et al. (2017) evaluated germplasm from the 

upland cotton core collection, with a focus on comparing a catalogue of phenotypic traits 

to SNP genotypes from the CottonSNP63K array. Multidimensional scaling analysis 

revealed overlap between germplasm originating from the US and other places in the 

world, and a moderate ability to distinguish germplasm by US cotton growing region. 

However, they did not observe meaningful clustering within improved upland cotton 

germplasm with the fastSTRUCTURE method. 

The goal of this study was to evaluate genetic diversity across and within PD 

breeding groups and relate these findings to the worldwide improved upland cotton 

germplasm. We hypothesized that this closed (largely inbreeding) breeding program, with 

long breeding cycles, complex intermating, and multiple shuffling of potentially unique 

alleles would provide an interesting population genetics model for studying the effects of 

genetic drift and artificial selection.  Hence, the objectives of this study were to evaluate 

genetic diversity across and within PD program breeding groups by utilizing genome-

wide SNP markers from the Cotton SNP63K array, examine population structure, and 

contextualize these findings relative to the global upland cotton gene pool. 

Materials and Methods 

Description of Plant Genotypes and Genotyping 

Representative plant genotypes from each of eight PD breeding groups were selected 

for examination, covering 96 released breeding lines and cultivars (Figure 2.1).  Seeds 

were requested from the US National Cotton Germplasm Collection in College Station, 

TX, and grown in a greenhouse in Florence, SC, during Winter 2018.  Three seeds for 
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each genotype were planted and thinned to a single plant at the cotyledon stage.  Newly 

emerged leaves were collected in 1.5 ml centrifuge tubes and immediately placed on ice.  

Leaf tissue was stored at -80C until processing for DNA extraction.  Frozen leaves were 

lysed in a tissue homogenizer with two added glass beads.  Genomic DNA extraction was 

performed using the DNeasy Plant Mini Kit (Qiagen Inc, Germantown, MD, USA) 

according to manufacturer instructions.  Sample DNA concentration was measured using 

a NanoDrop Spectrophotometer (Thermo Fisher Scientific Inc, Waltham, MA, USA).  A 

vacuum centrifuge was used to concentrate samples with concentration below 100 ng/µl.  

Samples of 25 µl were loaded onto a 96-well plate and shipped on dry ice overnight to 

the Texas A&M Institute for Genomic Sciences and Society (College Station, TX, USA).  

Upon receipt, samples were quality checked at Texas A&M using the PicoGreen assay 

(Ahn et al. 1996), and adjusted to a DNA concentration of 50 ng µl-1.  Standardized DNA 

samples were hybridized with the CottonSNP63K array, a custom Infinium iSelect HD 

Genotyping Assay (Illumina Inc., San Diego, CA), developed by Hulse-Kemp et al. 

(2015).  The standard cluster file and output parameters were employed for export to a 

plain text final report file 

(https://www.cottongen.org/data/community_projects/tamu63k#T1).  The final report file 

from Illumina GenomeStudio was filtered using a custom Python script, retaining only 

markers listed as Functional Polymorphic (Hulse-Kemp et al. 2015), by minor allele 

frequency (MAF > 2.5%) and call rate (CR > 90%) to generate Dataset One.  Marker 

probe sequences were mapped to the UTX_v2.1 reference genome (Chen et al. 2020). 
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The filtered data was ported to the plink data format for compatibility with plink 1.9 

(Chang et al. 2015).  A SNP matrix in the -1/0/1 format was also generated for use with 

some R packages.  Putative linkage disequilibrium blocks were discovered with the “--

indep-pairwise” command in plink 1.9 (Chang et al. 2015). 

The SNP data of 267 improved upland cotton (Gossypium hirsutum) samples 

genotyped on the CottonSNP63K Array were downloaded from the array project page on 

CottonGen (Yu et al. 2014) and converted to PED format using a custom python script.  

Duplicated genotypes (IBS > 97%) were excluded from further analysis.  A total of 249 

improved upland cotton lines (non-PD lines) were included in the analysis, as well as 114 

PD lines (96 from the present study and 18 from CottonGen).  Markers were filtered to 

include those with MAF > 2.5% and CR > 90%.  Summary statistics were calculated for 

the number of markers passing filtering during each step using the “--het” and “--freq” 

commands in plink.  Percent heterozygosity for each individual in each dataset was also 

calculated by dividing the number of observed heterozygous calls by the total number of 

calls. 

Population Structure Analysis 

Breeding group designations were selected based on parentage and the breeding 

history of the PD program (Campbell et al. 2011).  These group designations were used 

as the prior (assumed) group designation for naïve population structure analyses.  Two 

principal component analysis (PCA) variants were tested to identify a consensus idea of 

clustering with and without thinning and between classic PCA and double-centered PCA.  

The first variant used was classic PCA in plink, which itself is a direct port of the PCA 
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function in EIGENSTRAT (Price et al. 2006), with normal reference/alternate allele 

coding and a built-in method to handle missing data.  The second variant used was 

double-centered PCA as implemented by a custom R script which did not include a 

mechanism for missing values; therefore, the median SNP value for each locus was used 

to replace no-calls.  The double-centered PCA run included an additional pre-processing 

step, which included changing minor allele coding to homozygous major allele=0, 

heterozygous=1, and homozygous minor allele=2 (Gauch et al. 2019).  Biplots of 

individuals for the SNP x Individual interaction were generated for datasets one and two 

with individuals color coded by the prior breeding group number.  Eigenvalues were used 

to calculate percent variance explained by the first two dimension of PC, calculated as the 

eigenvalue for the eigenvector divided by the sum of the eigenvalue for the first 40 

eigenvectors.  To reduce the effect of sign changing on the visual interpretation of PCA 

biplots, the PC1 vector was flipped by multiplying by -1 when necessary (Gauch et al. 

2019). 

To test for differences between breeding groups, discriminant analysis of principal 

components (DAPC) was performed on Dataset Two with the R package adegenet 

(Jombart et al. 2010).  Prior group assignment was based on the original breeding cycle 

assignment.  The plink bed format file was converted to a genind object using the 

“genomic_converter” function in the R package “radiator” (Gosselin et al. 2020).  A 

plink raw file, generated with the “--recode A” flag, was read in together with the map 

file with the “read.plink” command as a genlight object.  DAPC was performed naively 

with the “dapc” command in interactive mode.  To avoid model overfitting, the 
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“optim.a.score” function was used to select the number of principal components.  A 

DAPC biplot was generated using the original group numbers.  The “compoplot.dapc” 

function was used to calculate and graph the assignment of individuals to each of the 

eight breeding groups . 

Population structure was also evaluated with the maximum likelihood tree in MEGA 

X (Kumar et al. 2018).  The concatenated DNA fasta file was generated by exporting 

from ped format with PGDSpider (Lischer and Excoffier 2012) and reading into MEGA 

X.  The best DNA model was chosen using the minimum Bayesian information criterion 

“Find Best DNA/Protein Model” without invariable sites.  A test of phylogeny was then 

performed with the optimal model, the general time reversible model, and the bootstrap 

method with 1000 replicates.  Branches with less than 50% bootstrap support were 

collapsed into polytomies.  The tree was plotted as a phylogram with the “plot.phylo” 

function in the R package “ape” (Paradis and Schliep 2019). 

To test for the number of groups and group membership of each genotype, the 

“chooseK.py” function in fastSTRUCTURE was used for k=1-10 (Raj et al. 2014).  The 

diagram for fastSTRUCTURE results was made by converting to a matrix object in R and 

plotting using the “compoplot” function in adegenet.  To identify DAPC clusters, the 

“find.clusters.genlight” command was used, with 40 PCs retained.  The number of 

DAPC-derived groups was chosen using the minimum value of the Bayesian information 

criterion.  These identified clusters from DAPC were retained and plotted in a Sankey 

diagram to examine the relationship between the three classification methods. 
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Signatures of Selection in the PD Program 

To test for putative signatures of selection in the PD program versus other improved 

Upland cotton genotypes, a marker-specific Bayes factor (BF), analogous to Wright’s 

FST, was estimated for each marker with the function in BayEnv2 (Coop et al. 2010; 

Gunther and Coop 2013).   Samples were classified as PD or World (non-PD).  The log10 

of resulting BFs were plotted in a manhattan plot with a threshold of log10(BF) > 2.  

Allele frequency plots for the each of the significant markers were also generated.  

Putative regions under selection were determined as chromosomal segments containing 

significant markers (BF > 10).  A list of genes and their gene ontology terms in these 

regions was identified using the GFF3 annotation file for the annotation of the Ghir 

reference genome assembly (Chen et al. 2020).  The list of genes was subjected to gene 

enrichment analysis with the weight-count method (p < 0.05) and ranked by Fisher’s 

exact test with the R package ‘topGO’ (Alexa and Rahenfuhrer 2020). 

Gene Enrichment Analysis for Breeding Groups Five and Six vs All 

Each of the 114 PD genotypes were assigned to one of three clusters based on DAPC.  

The cluster containing mostly genotypes from breeding groups five and six was assigned 

as one group for selection analysis, and all other genotypes were assigned to another 

group.  Selection analysis was performed to compare between the groups five and six 

cultivars against all others. 

Results 

Dataset One, the filtered set of markers, contained 17,441 markers anchored to a 

position on the Ghir v2.0 reference genome (Chen et al. 2020).  During filtering, an 
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initial set of 38,869 known polymorphic markers across any Gossypium spp. had 19,952 

markers excluded with MAF < 2.5%, 280 markers excluded with CR < 90%, and 1,196 

were excluded due to no available reference genome position38.  After thinning to 

account for marker redundancy due to high linkage disequilibrium (LD), Dataset Two 

reduced this number to 4,597 markers.  The marker density across 15 of the 26 

chromosomes differed significantly between Dataset One and Two ( A).  In Dataset One, 

the number of markers ranged from 1,629 on chr A08 to 247 on chr A02.  After thinning 

to account for variable marker density, the number of markers per chromosome was more 

uniform, ranging from a maximum of 268 SNPs on chr D05 to 116 on chr A02 

(Supplemental Figure 2.1 B).  Overall, the changes corresponded to a reduction in SNP 

overrepresentation in low recombination pericentromeric regions.   

Of the 9,194 alleles (two alleles for each of 4,597 SNPs) present in at least two of the 

114 individuals in Dataset Two, 95% were introduced, or detected in at least one 

individual, in group one, 2.9% in group two, 1.1% in group three, 0.5% in group four, 

and <0.4% in each of groups five through eight, indicating that most of the genetic 

diversity present in the PD germplasm pool was introduced in the first few cycles of 

breeding development.  Most SNP alleles were present in at least two groups.  However, 

group eight contained five unique SNP alleles, two of which flank a haploblock present 

in the denser set of variants in Dataset One, corresponding to a run of 17 group-unique 

alleles in 408 kb region of chr A05 (109.48 - 109.89 Mb).  Heterozygosity varied 

substantially between genotypes (Supplemental Table 2.2), meaning few SNPs were 

completely fixed in any breeding group .  Of the 9,194 alleles, 457 alleles were fixed 
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(present in at least one copy in every genotype) in breeding group one, 764 in group two, 

854 in group three, 702 in group four, 816 in group five, 561 in group six, 569 in group 

seven, and 273 in group eight. 

Both datasets exhibited similar distributions of identity-by-state (IBS) scores.  The 

mean pairwise genetic distance was highly similar, 0.661 in Dataset One and 0.665 in 

Dataset Two.  Pairwise IBS genetic distances ranged in Dataset Two from 0.553 for 

Sealand-3 (AHK) and Sealand-542 (AHK), the two most dissimilar individuals, to 0.967 

for PD 762 and PD 948, the two most similar individuals.  Comparison of the additive 

genetic relationship matrix derived from these two datasets, which is analogous to IBS 

distance except it ranges from around zero to a maximum of two, also indicated high 

concordance (Supplemental Figure 2.2).  When compared to the generalized numerator 

relationship matrix from NumericwareN, which is the comparable estimate from pedigree 

data, the values calculated from Dataset Two were in higher agreement (R2 = 0.20) than 

those of Dataset One (R2 = 0.13) with the pedigree-based scores (Supplemental Figure 

2.3).  Average within group genetic distances were generally higher (ie, pairs were more 

similar) than between group comparisons (Table 2.1). 

Both PCA and double-centered PCA both showed similar results across the two 

datasets with the exception of PCA on Dataset One (Figure 2.2).  Normal PCA and 

double-centered PCA supported the same relationship between breeding groups in 

Dataset Two.  To mitigate for the effect of variable marker density across the 

chromosomes, further analyses on the PD genotypes was performed with only Dataset 

Two. 
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Both fastSTRUCTURE and phylogenetic analysis were consistent across both 

datasets, so the output from Dataset Two is discussed here.  The results from 

fastSTRUCTURE supported the existence of multiple groups (k = 5), and 55 of 114 

individuals were classified at the ≥80% level of probability (Figure 2.3).  De novo group 

assignments, either through DAPC or fastSTRUCTURE, supported the original eight 

groups with the novel groups representing a superset, or overlap, of the predicted 

breeding groups (Figure 2.4).  The consensus phylogenetic tree also identified the same 

subgroups as fastSTRUCTURE and DAPC (Figure 2.5). 

To explore the genetic differentiation of the PD germplasm (PD Group) from other 

improved G. hirsutum cultivars (World Group), a Bayes factor was calculated to compare 

genetic differentiation relative to the background level of genetic differentiation between 

the groups at each of 20,566 polymorphic SNPs.  The Bayes factor was log10-

transformed and plotted for each SNP, with allele frequencies at six interesting SNPs for 

the eight breeding groups and world group plotted (Figure 2.6).  The 36 putative SNP 

markers under selection were located at 32 genetic locations, distributed across 13 

chromosomes.  These regions contained 118 genes, enriched for gene ontology (GO) 

terms related to response to stimuli, translation, actin, and glutathione metabolic process 

(Table 2.2). 

Discussion 

We hypothesized that a SNP survey of 114 representative individuals from the PD 

cotton germplasm enhancement program would reflect population structure over eight 

breeding cycles, spanning more than 85 years of breeding.  The CottonSNP63K platform 
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provided an efficient and repeatable method for identifying 17,441 high-quality, 

polymorphic SNP markers in the PD cotton germplasm.  Due to the relatively closed 

nature of the breeding program, we expected that large haploblocks could complicate 

estimates of population structure and relatedness.  To compensate for these LD patterns, a 

thinned dataset was generated to ensure that long haploblocks segments would not bias 

our analysis.  The thinned dataset performed surprisingly similarly to the higher-density 

SNP set that included more than four times as many markers, indicating that lower 

density genotyping may have provided an equivalently robust basis for evaluation of 

population structure. 

The effect of thinning on the interpretation of SNP data was first evaluated by 

comparing the additive genetic relationship matrix (GRM) between Dataset One and 

Two, which exhibited strong agreement (R2 = 0.77 - Supplemental Figure 2.2).  

However, when fit to the pedigree-based relationship estimate, pairwise comparisons 

calculated from Dataset Two (R2 = 0.19) fit the expectation better than those for Dataset 

One (R2 = 0.09 - Supplemental Figure 2.2).  Because thinning in Dataset Two reduced 

the high weight from redundant alleles, the dispersion of the GRM was higher in Dataset 

One (SD = 0.044) than Dataset Two (SD = 0.036).  The lower dispersion of scores from 

Dataset Two may have contributed to better fit to the pedigree-based scores. 

Pee Dee breeding groups one through four have common parentage composed of 

approximately 12 diverse founders (Culp et al. 1979).  Indeed, most of the allelic 

diversity was introduced in the first four breeding groups, accounting for 99.5% of the 

total SNP alleles in Dataset Two present in this closed breeding program.  This apparent 
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lack in allelic diversity was compensated by the complex combinations of these alleles 

across the history of the program.  For some genotype pairs we hypothesized a high level 

of genetic similarity; however, some re-selection pairs of lines, published as separate 

germplasm releases purportedly from the same gene pool, were more genetically distinct 

than other completely unrelated pairs.  For example, ‘PD-3’ and PD-3-14, released as a 

reselection of PD-3, had a pedigree-based kinship ~1.00 but a genetic distance of 0.76, 

indicating they were only somewhat more different from each other than the average pair 

of genotypes.  Regardless, the average IBS genetic distance of genotype pairs, ~0.66, 

similar to ~0.71 for improved upland cotton according to Hinze et al. (2017), and ~0.80 

for Tyagi et al. (2014).  The variable estimates reflect differing numbers of genetic 

markers types, population sizes, distribution of markers, type of plant genotypes used in 

the study (ie, obsolete vs elite), and differences in how rare alleles change genetic 

distance.  

We hypothesized that within-breeding group genetic variation would be lower than 

between-breeding group variation, since members of a breeding group tended to have 

similar selection regimes and parents (Table 2.1).  Given the IBS distance scores 

calculated from Dataset Two, with the exception of breeding groups one and five, 

individuals within the group were on average more similar to one another than with 

members of another group, which supported our hypothesis.  Interestingly, individuals 

within groups two and three were more similar to breeding group one than they were to 

each other, perhaps indicating additional selection and/or drift among genotypes in these 
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groups.  This was reflected in the DAPC where k=3 and genotypes from breeding groups 

one, two, and three were primarily placed within the same cluster (Figure 2.4). 

Pairwise genetic distance alone was inadequate to fully capture the genetic diversity 

present within and between breeding groups.  Both methods of PCA analysis (PCA and 

double-centered PCA) for Datasets One and Two had surprisingly consistent results, 

considering the number of SNPs changed by a factor four.  Principal component analysis, 

when applied to genome-wide data, is able to capture underlying genetic structure by 

summarizing the differences between individuals at the SNP by individual interaction 

level (Price et al. 2006; Gauch et al. 2019).  In all cases, once flipped for sign changes in 

PC1, the primary dimension of PC showed a gradient of separation between the earlier 

groups, one through four, on one extreme (Figure 2.2).  The host-plant insect resistant 

breeding groups, five and six, were in the other extreme; and the most recent groups, 

seven and eight, were in the middle.  The primary dimension, PC1, explained between 

10.6% and 13.1% of the variance included in the first 40 PCs.  The second dimension, 

PC2, was the same for all plots except for the plink PCA of the unthinned Dataset One.  

In all other plots, the newer groups, seven and eight, clustered together on one pole and 

the other six groups in the other pole.  In the plink PCA biplots, the group separation was 

not apparent in PC2, with five outlier individuals present at one extreme and all other 

individuals clustering together at the bottom. 

The outliers for the unthinned plink PCA plots in PC2 included PD 3246 (AC 

239/FJA 348), PD 9232 (‘Coker 421’/ PD 2164), PD 93034 (PD 5285/PD 5485), PD 

93004 (Brown Accession/PD -3) and Sealand 3 (resel. ‘Sealand’: ‘Coker Wilds’/’Bleak 
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Hall’) at the furthest extreme, and PD 93001 (Brown Accession/PD-3) and PD 5576 

(‘Deltapine 41’/PD 3246) near the center of the two large clusters.  Two of these 

individuals are brown lint cottons, PD 93001 and PD 93004. PD 3246 is the pollen donor 

for the original cross for PD 5576 and is also a full sib of PD 2164, one of the parents of 

PD 9232.  Although these lines were outliers in this analysis, there were other individuals 

in the study with highly similar parentage and selection strategies, suggesting that 

common pedigrees and brown lint do not alone explain these outliers. 

The loadings for variant weights in PC2 of plink PCA for Dataset One revealed 

significant contribution (27.8% of total variant loadings) from a run of 911 markers in 

high LD on chromosome A08 (16.46 Mb to 79.48 Mb).  After thinning based on putative 

haploblocks, this segment was reduced to include only 21 markers.  Pedigree analysis 

indicated a possible common breeding program origin for this chromosomal segment 

from ‘Hopi Moencopi’ via C-6-5, a California breeding line used early in the 

development of the PD program.  Another potential origin is Coker Wilds or Bleak Hall 

via Sealand. Interestingly, the pericentromeric region of chr A08 has been noted as 

exhibiting low recombination frequency (Shen et al. 2017), which may be due to gametic 

incompatibility associated with multiple large scale inversions in this region of chr A08 

(Yang et al. 2019).  The two individuals near the center of the two major clusters in PC2, 

PD 93001 and PD 5576, were heterozygous for >90% of these 911 markers, indicating a 

potential region of fixed heterozygosity.  These regions accounted for a 70% and 27% 

increase in observed heterozygosity for PD 93001 and PD 5576, respectively, between 

Dataset One and Two (Supplemental Table 2.2).  Five other individuals from the 
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improved germplasm set (‘Coker 315’, ‘Reba P279’, ‘Acala 5’, ‘Lockett BXL’, and 

‘Deltapine 16’) shared this region of heterozygosity.  All other individuals were >95% 

homozygous in this region, except for ‘Sicala-3-2’ and ‘Namcala’ which had a high 

number of no-calls in this region.  Fifty-one of the 249 improved Upland cotton samples 

from CottonGen are homozygous for the minor haplotype. 

The other three PCA biplots, however, show a much clearer picture of the 

interrelatedness of individuals.  An arc of individuals is present, spanning from those 

with low values in PC1 and PC2, near zero values for PC1 and high PC2, and those with 

high values in PC1 and low values in PC2.  The central cluster was mostly composed of 

individuals from groups seven and eight, with overlap on the left of groups one through 

four and on the right groups five and six.  Examination of variant weights did not indicate 

highly weighted genomic regions, a potential indicator of bias as the case had been with 

plink PCA, suggesting that polymorphism across the genome was responsible for 

separation between individuals.  Plots of additional dimensions of PCA did not reveal any 

obvious structure relative to the original breeding group classifications (data not shown). 

One possible biological interpretation of these results is that PC1 and PC2 captured 

two allele frequency gradients (Novembre and Stephens 2008).  The primary axis, PC1, 

may involve alleles associated with high frequency in breeding groups five and six, 

perhaps associated with the genetic background of their parents.  In this model, the earlier 

breeding groups may have low levels of this genetic background, the newest groups 

seven and eight have moderate levels, and groups five and six have the highest frequency.  

Indeed, gene enrichment analysis revealed genes nearby genetic markers associated with 
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the separation between breeding groups five and six and other PD genotypes associated 

with the citric acid cycle, aerobic respiration, and steroid biosynthesis and metabolism.  

Two genes with one of the putative chromosomal segments under selection (chr A03 

97.260 Mb to 97.282 Mb), A05G350300 and A05G350400, are tandem-repeat homologs 

of an Arabidopsis thaliana gene annotated as 2-oxoglutarate dehydrogenase, E1 

component.  The complex of this gene product has been implicated in plant immunity 

response via salicylic acid, suggesting a potential role in host plant resistance (Klessig et 

al. 2016).  The secondary axis, PC2, may involve the frequency of SNP alleles associated 

with elite, modern cultivars, with individuals from groups seven and eight having the 

highest frequency of these alleles. 

Another possibility is that the plink PCA plots of the unthinned Dataset One reveals 

the “true” population structure and the other three plots are examples of PCA “arch 

distortion.” Arch distortion results from the projection of a single gradient onto the first 

two, dominant dimensions of PCA (Gauch et al. 2019).  For example, perhaps PC1 and 

PC2 in the other six PCA plots are simply capturing the same information as PC1 in the 

other two plots.  However, these six plots do not have the characteristic closed arch at the 

bottom of the plot, and both dimensions have plausible biological interpretations. 

Additional support for this two-gradient hypothesis is found in the results from 

DAPC.  These results project a summary of principal components onto the groups rather 

than individuals, thus minimizing error relative to the group assignments rather than 

individuals (Jombart et al. 2010).  Hence, DAPC explores differences within and between 

groups while traditional PCA is optimized for differences across all individuals.  The 
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DAPC biplot, when tuned to the number of PCs included to reduced model overfitting, 

shows the same relationship between breeding groups, and individuals within those 

groups, similar to that in plink PCA and double-centered PCA (Supplemental Figure 

2.4).  Individuals in each group cluster close to each other, with groups two having the 

widely spread individuals, which is consistent with the group two having the highest 

within-group genetic diversity based on average pairwise IBS genetic distance.  

However, the trend for the average position of each group is much more obvious.  From 

group one through four, as the average individual is progressively more “improved” in 

terms of breeding and quality, they plot closer to groups seven and eight.  Additionally, 

the less improved pest-resistant group five, as compared to group six, has individuals 

more widely dispersed in the vertical axis, whereas group six is even further from the 

other groups as selection pressure for insect resistance scaled up across generations. 

While the breeding group classification system provides a historic starting point for 

understanding the structure of breeding program material, it cannot alone account for the 

effects of genetic drift, selection, and/or outcrossing.  In the hope of revealing lasting 

signatures of these dynamics, we plotted populations and membership probabilities for 

each genotype identified using fastSTRUCTURE (Figure 2.3) given the highest 

likelihood number of subgroups (k=6) before the fit value oscillated nearby.  The results 

from fastSTRUCTURE were consistent with our expectations given the breeding history 

for surveyed genotypes.  Population One include three of the ‘Sealand’ germplasm lines, 

resulting from the cross between Coker Wilds and Bleak Hall.  Population Two is 

composed entirely of founding lines and intercrosses between them.  Population Three 
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includes mostly early crosses between founding lines and elite introductions ‘Coker 421’, 

‘MO-DEL’, and ‘AU-56’.  Population Four includes PD 695, PD 875, and 18 selections 

from their progeny, all sharing a common grandparent LA Frego 2, an insect-resistant 

frego-bract line.  We identified PD 2165 (PI 529618) as an outlier in Population Four, 

whereas the other version of PD 2165 (PI 529242) included in this analysis clustered with 

earlier releases as expected. This confirms that the two PD 2165 entries obtained from the 

Germplasm Resource Information Network (USDA-ARS 2015) and used in this study 

represent different genotypes. A definitive explanation for this difference is not known; 

however, it is likely that one of the two versions (likely PI 529618) was mislabeled or the 

result of an outcross upon their inclusion in the collection, as Hulse-Kemp et al. (2015) 

explained when surveying the cotton germplasm collection.  Population Five includes a 

subtree of the entire PD pedigree centered around the cultivar PD-3, all six of its 

descendants included in this study and two of its ancestors, and PD 6992, an outlier for 

this group with a low probability of true membership (43.9%).  Population Six was the 

most diverse group, including germplasm releases resulting from crosses with elite 

materials from Delta Experiment Station, McNair, Deltapine, Stoneville breeding 

programs, and a line developed in China, ‘Jimian-8’ (May 1999).  Fifty-nine of the 114 

genotypes could not be classified into a single population at a probability ≥80%, 

providing evidence for the existence of significant admixture between groups. 

Finally, an unrooted phylogenetic tree was generated using the general time reversible 

nucleotide substitution model to evaluate gene flow across the breeding program (Figure 

2.5).  The ability to resolve branches was fairly low, and most branches collapsed into 
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polytomies due to low (<50%) bootstrap support, except for in cases with simple, 

unidirectional breeding schemes with noncyclic pedigrees.  For example, unique clades 

containing the majority of fastSTRUCTURE Populations one, three, and four are 

obvious.  This provides further evidence that even with a relatively small number of 

SNPs (~4500), we were able to draw insights about the history of breeding efforts in the 

PD program.  Within-clade genetic variation was still relatively high, with branch lengths 

(proportional to genetic distance) > 0.1 usually present between sister taxa, indicating that 

gene flow across generations has contributed to the construction of multiple (10 clades 

with >3 member taxa), small (each clade < 20), diverse populations within the entire 

breeding program. 

Following our analysis of the genetic variation with the PD germplasm, we identified 

genomic segments that distinguished PD genotypes from other improved G. hirsutum 

cultivars and breeding lines.  Generally, PD genotypes tended to cluster together based on 

pairwise genetic distance (Supplemental Figure 2.5).  For SNP loci passing filtering 

(CR > 90%, MAF > 2.5%), 3.5% of alleles were absent entirely from surveyed PD 

genotypes despite being present in the other improved G. hirsutum cultivars and breeding 

lines, whereas only 0.05% were private to the PD program, indicating that most of the 

SNP diversity present in the improved Upland cotton gene pool can be found in the PD 

program as well.  Thirty-five putative selection windows were identified across 14 

chromosomes, ranging from a single SNP with non-significant SNPs 25bp away to a 

larger region spanning 291kb in length, and these concentrated in the telomeric regions of 

each respective chromosome (Figure 2.6).  Most of the SNPs under selection at (overall) 
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minor allele at high frequency (~50%) in the PD genotypes and low frequency (< 5%) in 

the other improved G. hirsutum cultivars and breeding lines.  Minor alleles for each of 

the 35 significant SNPs (p < 0.05) were present in every PD breeding group with low 

preference towards one breeding group over the others.  Therefore, these chromosomal 

segments may be associated with the genetic background of the PD genotypes, regional 

adaptation, or the cumulative results of efforts to improve fiber quality traits, especially 

fiber strength (Campbell et al. 2011; Harrell 1974). 

We further explored these regions by subjecting the genes in the putative selection 

window to gene enrichment analysis using gene ontology (GO) biological process 

annotations.  We identified ten significant GO terms (Fisher’s Exact Test p < 0.05) in five 

chromosomal regions associated with four categories of biological function: 1) response 

to auxin, 2) glutathione metabolic process, 3) actin nucleation, 4) and cellular localization 

and translation. 

The four genes in the enrichment set annotated with the GO term “response to 

stimulus localized to a single 50kb in a segment of chromosome D02 (near 71.394 Mb).  

Although the role of auxin is ubiquitous across an array of morphological and 

immunological traits in plants, other genes in this enrichment set may give us a clue of 

how the PD programs breeding history has changed allele frequency in these particular 

regions.  Gene expression studies in multiple plant species have exposed the potential for 

crosstalk between auxin biochemical pathways and other biotic and abiotic stress 

pathways (Lekshmy et al. 2017).  These four genes are annotated as auxin-responsive 

protein small auxin up RNA (SAUR)-like, coding for small polypeptides (~140 amino 
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acids) with an auxin-inducible motif.  Other members of the SAUR gene family 

colocalize with fiber length and strength QTL (Li et al. 2017), and an association with 

fiber strength has been found nearby on D02 [qFS-Chr14-1.E1.XZV-RIL - (Shang et al. 

2016)].  The minor alleles for these SNPs are found at about 40% frequency across 

breeding groups and is at <5% frequency in other improved cotton germplasm. 

Two adjacent genes on chromosome D03 (6.39 - 6.40 Mb) were targets identified as 

gene set enrichment of glutathione metabolic process.  These two genes (D03G045000 

and D03G045100) have not been previously identified as having a specific role in any 

gene pathways.  The minor alleles at the nearby significant SNP was more prevalent in 

the earlier breeding groups than later breeding groups, suggesting a role in early 

germplasm development.  Genes in the glutathione metabolic pathway in cotton have 

been found to associate with resistance to wilt caused by Verticillium dahliae and 

mediate salt stress (Li et al. 2019; Meloni et al. 2003). 

A pair of tandem-repeat “formin-like protein 20” genes, annotated with the GO term 

“actin nucleation,” were located near a significant SNP on chr A11 (3.35 Mb).  Genes 

that affect the actin network that forms the cellular skeleton have been characterized as 

expressing in cotton fiber development and elongation (Li et al. 2005), and another gene 

that influences the actin network in cotton has been located in a selective sweep during 

domestication (Fang et al. 2017).  Further work is needed to identify genes that influence 

cotton fiber formation and to determine if this locus is important for fiber production. 

Five genes with the GO term “intracellular transport” and eleven with “translation” 

were also identified on chromosomes A11, D02, D03, and D09.  Most of these genes 
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have not been well characterized in cotton, although a few seem to be involved with host 

plant resistance.  Seven of the eleven “translation” genes were annotated as involved in 

the “ribosome” pathway.  One of the genes, A11G030881, a homolog of the Arabidopsis 

ERF1 gene has been found to play a role in resistance to Verticillium wilt (Xu et al. 

2011).  One of the “intracellular transport” genes, A11G032100, is annotated as “vesicle 

transport v-SNARE 11-like”, a member of family of genes that controls the transport of 

precursor molecules during gossypol production(Lang and Jahn 2008; Ting 2014).  

Gossypol levels are under genetic control and are thought to play a role in cotton host 

plant insect resistance (Liu et al. 2015). 

We found evidence for sustained genetic diversity throughout eight breeding cycles 

of the PD program.  Genetic signatures demarcating shifting breeding goals were evident 

after controlling for variable marker density across the genome.  We also found SNP 

alleles with increased frequency in the PD program relative to in other improved upland 

cotton germplasm, with nearby genes enriched for biological functions including 

response to auxin, glutathione biosynthesis, translation, and cellular localization, 

implicating genetic drift for QTLs underlying host plant resistance.  An additional locus 

under selection was found for actin nucleation, which may be a site that participated in 

fiber improvement in the Pee Dee program.  The results of this study contribute to the 

growing body of knowledge regarding the breeding history of upland cotton in the 

southeastern US and the world.  In addition, our findings in this study inform future 

breeding efforts based on PD program materials by establishing the basis for ongoing 

development of marker-assisted selection and genomic selection.  The PD cotton 
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germplasm enhancement program, an 85+ year old cotton improvement experiment, 

serves as a model system to study population genetics in the context of continued cotton 

improvement over the course of multiple breeders, breeding goals, and sources of genetic 

material. 
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Figures and Tables 

Figure 2.1.  The historical relationships between Pee Dee breeding groups. The 
first four groups share a common gene pool primarily established in the first two breeding 
groups and focused on the improvement of fiber and agronomic characteristics.  Groups 
five and six, focused on the development of host plant insect resistant breeding material 
and saw the introduction of new genetic diversity and background incorporated from 
group three.  Groups seven and eight were formed from the combination of older, high 
quality material from the first four groups and new elite upland cultivars released from 
other breeding programs. 
 other breeding programs.  
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Table 2.1.  Identity-by-state genetic distance for between- and within-breeding group 
comparisons, corrected for variable marker density.  A higher number indicates that the 
individuals compared are more similar to each other, and lower numbers indicate individuals 
between groups are more different. 

   Breeding Group 

Breeding 

Group 

 
1 2 3 4 5 6 7 8 

1 0.673 0.680 0.669 0.667 0.636 0.633 0.650 0.646 

2 -- 0.687 0.672 0.671 0.637 0.636 0.647 0.642 

3 -- -- 0.686 0.689 0.663 0.659 0.668 0.662 

4 -- -- -- 0.702 0.665 0.663 0.679 0.672 

5 -- -- -- -- 0.682 0.698 0.662 0.658 

6 -- -- -- -- -- 0.713 0.659 0.657 

7 -- -- -- -- -- -- 0.685 0.672 

8 -- -- -- -- -- -- -- 0.676 
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Figure 2.2.  Comparison between two principal component estimation methods 
before and after correcting for variable marker density. The SNP x Individual biplots 
of the principal component (PC) coordinates for individuals, colored by breeding group, 
in PC1 (horizontal axis) and PC2 (vertical axis).  Percent variance explained by each of 
the first two PCs was calculated by dividing the eigenvalue of the PC by the sum of the 
eigenvalues for the first 40 PCs.  A plink PCA with 17,441 SNPs, B double-centered 
PCA with 17,441 SNPs, C plink PCA with 4,597 SNPs out of strong LD (R2 < 0.8) 
double-centered PCA with 4,597 SNPs out of strong LD (R2 < 0.8). 
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Figure 2.3 The Q plot for six fastSTRUCTURE subpopulations.  Membership 
probability plot for probability of group assignment, sorted by the likeliest group 
assignment for each individual.  The most likely number of populations (k), as 
determined by the model complexity that maximizes marginal likelihood, is 6.  The 
individual names are given along the bottom of the horizontal axis, with the breeding 
group number given above it in the same color scheme as other figures. 
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Figure 2.4.  Overlap between three group designation methods.  Sankey diagram 
showing how individuals in each of the prior breeding groups (center) are classified in 
fastSTRUCTURE (left) and in discriminant analysis of principal components (DAPC) 
(right).  In both DAPC and fastSTRUCTURE, the number of populations or clusters (k = 
6 for fastSTRUCTURE, k = 3 for DAPC) is less than the number of breeding groups (k = 
8). 
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Figure 2.5.  Unrooted consensus phylogenetic Tree for 114 Pee Dee genotypes.  
Phylogenetic analysis was performed in MEGA X with the general time reversible model 
(G=3 classes of evolutionary rates).  Bootstrap values are given for branches with >50% 
support based on 1000 replicates, and other branches are collapsed into polytomies.  
Branch length is proportional to the genetic distance between sub-branches.  Unresolved 
nodes are expected due to high admixture and inbreeding across breeding generations.  
Highlighted clades correspond to populations discovered with fastSTRCTURE. 
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Figure 2.6.  Identifying loci under selection in the Pee Dee Breeding Program.  A 
The log10 Bayes Factor from BayEnv for each of the 20,566 SNPs that were significant 
in separating out the114 Pee Dee from the 249 other improved Upland cotton genotypes.  
B Allele frequency for six significant SNPs in Pee Dee breeding groups one through eight 
(1-8) or other genotypes (W) are given on the horizontal axis.  The red numbers in A and 
B indicate significant SNPs that are near genes annotated with significant gene ontology 
terms.  
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Table 2.2.  Significant Gene Ontology : Biological Process Terms in regions 
under selection.   Gene ontology (GO) terms for Biological Process enriched in the set 
of genes in genomic regions (detected with BayEnv) that differentiate Pee Dee 
genotypes (n=114) from other improved worldwide G. hirsutum material (n=249) 
filtered to include only those terms significant by the graph weight method for Fisher’s 
exact test (p-value < 0.05). 

  Number of Genes with this GO Term  p-value 

GO 
Number 

(Biological 
Process) 

Gene Ontology 
Term (1,341 

terms > 5 
genes) 

Count in 
Whole 

Genome 
(n=24,647 

genes with GO 
annotation) 

Count in 
Selection 
Windows 

(n=52 genes 
with GO 

annotation) 

Expected 
(of 52 

randomly 
chosen 
genes) 

Fisher’s 
Exact 
Test 

Rank 

Weight 
Method 

Fisher’s 
Exact 
Test 

GO:0006749 
glutathione 
metabolic process 9 2 0.02 3 0.00016 0.00016 

GO:0006412 translation 1494 11 3.15 4 0.00024 0.00075 

GO:0009733 response to auxin 263 4 0.55 11 0.00230 0.00230 

GO:0046907 
intracellular 
transport 489 5 1.03 14 0.00364 0.00364 

GO:0045010 actin nucleation 44 2 0.09 16 0.00390 0.00390 

GO:0044743 

protein 
transmembrane 
import into 
intracellular 
organelle 18 1 0.04 67 0.03732 0.03732 

GO:0006452 
translational 
frameshifting 20 1 0.04 69 0.04138 0.04138 

GO:0009416 
response to light 
stimulus 20 1 0.04 70 0.04138 0.04138 

GO:0045901 

positive regulation 
of translational 
elongation 20 1 0.04 71 0.04138 0.04138 

GO:0045905 

positive regulation 
of translational 
termination 20 1 0.04 72 0.04138 0.04138 

 

Supplemental Methods 

Anchoring Marker Probe Sequences to Reference Genome 

Complete marker flanking sequences were downloaded from Hulse-Kemp et al. 

(2015).  The strand orientation was flipped to match the strand indicated in the project 

file Illumina Genome Studio.  The 50 nucleotide sequence upstream of each probe 

sequence was extracted and saved into a fasta file, with each sequence labeled as the 
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corresponding project marker name.  The v2.0 Ghir reference genome assembly (Chen et 

al. 2020) was downloaded from Phytozome (Goodstein et al. 2012).  A local BLAST 

database was built with the “makeblastdb” command.  The probe sequences were queried 

against the database with the “blastn” command.  The strict set of matching BLAST hits 

were filtered to only those with a minimum match length of 45 or longer.  A more lenient 

set was generated to include lower e-value matches with another run of “blastn.” 

A custom python script was used to combine information from the F2 intraspecific 

genetic map presented in Hulse-Kemp et al. (2015), inter-marker correlations, and 

BLAST hits.  First, reciprocal best matches were identified based on inter-marker 

correlation, such that pair of highly correlated markers were identified (R2 > 0.8).  The 

markers were anchored to the reference genome if the highest e-value BLAST hits for 

both markers were within 5 Mb on the same chromosome.  The markers were not 

anchored if the chromosome assignment disagreed with the linkage group assignment 

from the F2 map.  A random subset of 20% of the already anchored markers were chosen 

to extend the number of anchored markers to those with high inter-marker correlation 

with an already anchored marker, further choosing the most likely BLAST hit between 

high quality choices.  Next, the remaining markers with F2 map positions were allocated 

to the corresponding pseudomolecule and inserted only if there was at least one nearby 

marker already inserted that was correlated with that marker.   

This left a few types of markers: 1) those with a disagreement between the lowest e-

value BLAST hit and the chromosome assigned from the F2 map, 2) markers absent on 

the genetic map with competing best insertion positions based on inter-marker correlation 
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and lowest e-value BLAST hit, and 3) markers that either lacked a high quality BLAST 

hit or were not highly correlated with a nearby marker.  To identify the best fitting 

insertion point for each marker, a random marker was chosen repeatedly until all markers 

had been addressed.  For each marker, a goodness of fit score was assigned to each 

BLAST hit, providing a better score to insertion points with anchored markers with high 

inter-marker correlations with the selected marker.   The score was calculated as the sum 

product of pairwise R2 and 1/log10(distance between BLAST hit and anchored marker + 

10).  At first, only those markers with the lowest e-value BLAST hit and LD-based score 

were inserted until no more markers could be anchored.   Accordingly, tie-breaking was 

enabled, which showed a preference to the LD score over the BLAST hit e-value.  Once 

tie-breaking yielded no further anchored markers for markers that either had no good 

BLAST hits or had no correlation with already anchored markers, the low-quality 

BLAST hits were evaluated instead.   

This process was repeated 1000 times for various thresholds of inter-marker 

correlations, chosen from a uniform distribution ranging from R2=0.2-0.79.  The results 

from bootstrapping were filtered to include markers that were successfully anchored to 

any chromosome in at least 80% of trials and mapped at least 20% more to the most 

frequent choice than the second most frequent choice. 

Marker Density 

To explore changes in the distribution of SNP marker loci across potential MAF 

values, between 0.025 and .500, the “density.compare” function in the R package sm was 

used (Bowman and Azzalini 2018).  The nonparametric test for density equality, using 



90 

the “model=equal” flag, was also performed, using the optimal density parameter, h.  

Next, the “sm.density.compare” function was used to evaluate changes in SNP marker 

density across chromosomes for the mapped markers in datasets one and two.  The same 

nonparametric test for density equality was used (* indicates p < 0.05). 

Fit Against Pedigree Data 

The pairwise identity by state (IBS) genetic distance matrix was generated in plink 

1.9 with the “--dist 1-ibs” command for datasets one and two.  Expanded pedigrees were 

used to calculate the generalized numerator relationship matrix, a value proportional to 

the expected percentage of identity by descent (IBD) alleles between individuals, with the 

NumericwareN software (Kim et al. 2016).  Goodness of fit between IBS measurements 

of the two datasets was estimated by plotting the two against each other, and regression 

statistics calculated using “lm” with the formula “plink_IBS_dist_dataset2 ~ 

plink_IBS_dist_dataset1.” To test for goodness of fit to each of the pairwise genetic 

matrices, regression analysis was performed on the observed SNP-based IBS genetic 

distance for datasets one and two as explained by expected IBD estimate for each pair of 

genotypes.  Regression statistics were calculated using the “lm” function in R, with the 

formula “plink_IBS_dist_datasetn ~ NumericwareN_IBD.” 
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Supplemental Table 2.1. Non-default settings for software used in Chapter Two. The 
explanation for the settings is also given. 

Task Program Command Flags/Options Explanation 
n/a 

plink v1.9 

ALL --autosome-num 26 Sets the chromosome set to 26 chromosomes 
--allow-no-sex Disables the no-sex warnings 

Generating 
Thinned Data Set 

--indep-
pairwise 

2500 kb Set the window size to 2.5 Mb 

1 
Set step-size at 1 marker, so all adjacent markers 
are tested 

0.8 
Sets the R^2 threshold for considering SNPs to 
be independent 

Discriminant 
Analysis of 
Principal 

Components 

adegenet 
(R 

Package) 
dapc n.pca = 75 

Set the initial number of principal components 
in model to 75 

n.da = 5 
Calculate 5 discriminant functions in the first 
pass 

Detecting markers 
under selection BayEnv2 bayenv2 

-i X 
Input the file X.txt with the allele counts for the 
two groups.  Each locus is run separately. 

-e envfile.txt 
Enter in a dummy environmental variable file, 
set to -0.707 and 0.707 for the two groups 

-m mat.txt 
File with the background likelihood of 
differentiation at a random SNP locus 

-k 100000 
Perform 100,000 iterations in the Markov chain 
Monte Carlo. 

-r $RANDOM Generates a random seed for each model run 

-p 2 
Sets the total number of populations to 2 (PD 
and non-PD) 

-n 1 
Sets the number of environments being tested to 
1 (the dummy environment) 

-t 
Runs in "test" mode, to generate Bayes factors 
for each SNP 

-s sizes.txt 
Provides the population sizes for the two groups, 
to account for missing data 

-o X 
Saves the output to file X (depends on which 
SNP file was input) 

Aligning SNP array 
probes to reference 

genome 

blast makeblastdb 

-dbtype = nucl Sets the database type to nucleic acid 
-input_type = fasta Input file type is FASTA formatted 

-paste-seqids 
Includes the SeqIDs, which in this case are the 
chromosome/scaffold assemblies 

blast [strict 
matches] blastn 

-outfmt = 6 
Return in a tab delimited format with blast style 
6. 

-num_threads = 4 Use all four CPU threads 
-num_alignments = 
10 Return the ten best alignments 

-perc_identity = 98 
Only extract matches with a minimum identity 
of 98% 

blast 
[lower 
quality 

matches] 

blastn 

-outfmt = 6 
Return in a tab delimited format with blast style 
6. 

-num_threads = 4 Use all four CPU threads 
-num_alignments = 
10 Return the ten best alignments 

-perc_identity = 98 
Only extract matches with a minimum identity 
of 96% 

-word_size = 9 
Use a shorter word size (oppose to normal word 
size 11) to allow for more alignment or errors 
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Supplemental Figure 2.1. .SNP density on each chromosome before and after 
removing redundant markers.  A Marker density, given as the percentage of markers 
on that chromosome within h (~15 Mb for A sub-genome chromosomes, ~5 Mb for D), 
the optimal smoothing parameter, of a given position.  The permutation test of equality 
was used to determine whether the collection of SNP markers could have come from the 
same underlying distribution, i.e.  if they represent the same density of markers 
(markers/Mb in the smoothing window) along the entire chromosome.  Chromosomes 
with significantly different marker densities (p < 0.05) are marked with a “*”.  B The 
marker density, normalized by chromosome size, before and after removing redundant 
markers.  
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Supplemental Figure 2.2.  Pairwise additive relationship values for 6441 
combinations of 114 genotypes in Dataset One and Two.  The line of best fit (m = 
0.70, b = 0.12, R2 = 0.77) is plotted in orange.  Individuals that show high to moderate 
genetic differences tend to have the largest overall change in IBS between the two 
datasets. 
 

 



95 

Supplemental Figure 2.3.  Goodness of fit for pairwise genetic relatedness 
against pedigrees, before and after correcting for marker redundancy. Observed 
genetic relationship matrix for Dataset One (A) and Dataset Two (B) plotted against 
coancestry calculated from extended pedigrees in NumericwareN.  The line of best fit for 
Dataset One (m = 0.19, b = 0.53, R2 = 0.13) and Dataset Two(m = 0.07, b = 0.82, R2 = 
0.20) are given in orange.  A stronger positive association is apparent in B, where the 
observed genetic distance values tend to align more with the expected value.  The cluster 
of points around x = 1 in A and B is due to the large number of comparisons between 
full-sib genotypes.  Outlier genotype pairs have the ID and breeding group number in 
call-outs. 
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Supplemental Table 2.2.  Heterozygosity for each genotype in Dataset One and 
Two.      

Genotype 

Percent of Markers 
that are 

Heterozygous Rank   Genotype 

Percent of Markers 
that are 

Heterozygous Rank 
Dataset
1 

Dataset
2 

Dataset
1 

Dataset
2   

Dataset
1 

Dataset
2 

Dataset
1 

Dataset
2 

PD804 37.38% 35.75% 1 1  PD5582 4.13% 4.11% 58 62 
PD761 33.85% 32.32% 2 2  PD9223 3.97% 4.22% 59 61 
PD-3 (AHK) 32.18% 30.66% 3 3  PD-1 3.82% 5.47% 60 52 
PD94042 30.05% 29.81% 4 5  PD93030 3.32% 3.33% 61 70 
AC-235 27.68% 30.62% 5 4  PD93057 3.05% 2.99% 62 73 
PD5576 25.86% 19.77% 6 8  PD111 3.01% 4.27% 63 60 
PD7723 21.20% 20.22% 7 7  PD-3-14 3.00% 2.70% 64 77 
PD5256 20.20% 17.47% 8 13  PD93007 2.99% 2.60% 65 80 
PD6044 20.15% 22.44% 9 6  PD6179 2.98% 3.71% 66 66 
PD5363 19.22% 16.62% 10 15  PD948 2.92% 3.11% 67 71 
PD94045 19.02% 16.20% 11 17  PD6992 2.84% 4.31% 68 58 
PD93021 18.53% 18.61% 12 11  PD9232 2.83% 3.88% 69 64 
PD5472 17.99% 17.14% 13 14  F 2.77% 3.86% 70 65 
Sealand-542 17.69% 18.85% 14 10  PD738 2.77% 3.64% 71 67 
PD5358 17.49% 15.76% 15 18  PD93002 2.76% 2.92% 72 75 
PD5286 17.37% 14.25% 16 23  Hy-330-278 2.65% 3.39% 73 69 
PD5529 17.14% 18.40% 17 12  PD97019 2.64% 4.10% 74 63 
PD93009 16.77% 16.61% 18 16  PD3249 2.45% 2.29% 75 86 
PD756 15.98% 14.40% 19 21  PD747 2.40% 3.46% 76 68 
SC-1 15.54% 15.53% 20 19  PD683 2.31% 2.00% 77 90 
PD6186 15.00% 18.88% 21 9  PD93003 2.29% 3.05% 78 72 
PD785 (AHK) 14.73% 12.60% 22 27  PD781 2.28% 2.81% 79 76 
AC-241 14.56% 14.05% 23 24  PD781 (AHK) 2.20% 2.98% 80 74 
PD-2 14.49% 14.27% 24 22  PD7458 2.18% 2.61% 81 79 
PD5246 14.06% 13.70% 25 26  PD723 2.08% 2.46% 82 84 
PD785 13.93% 13.83% 26 25  PD2165-618 1.94% 1.92% 83 91 
PD753 13.44% 14.96% 27 20  PD93046 1.90% 2.66% 84 78 
PD771 12.74% 12.05% 28 28  PD9364 (AHK) 1.83% 2.51% 85 83 
PD6132 12.54% 11.58% 29 29  FTA 1.80% 2.42% 86 85 
PD5256 (AHK) 11.26% 8.29% 30 38  Sealand-542 (AHK) 1.78% 2.18% 87 88 
PD93007 (AHK) 10.68% 9.39% 31 35  PD109 1.75% 2.05% 88 89 
PD-1 (AHK1) 10.35% 10.31% 32 32  PD97006 1.72% 2.55% 89 82 
PD5377 9.89% 9.39% 33 34  PD97021 1.70% 2.58% 90 81 
PD7586 9.30% 11.29% 34 31  PD93030 (AHK) 1.54% 2.29% 91 87 
PD93009 (AHK) 9.17% 11.44% 35 30  PD-1 (AHK2) 1.53% 1.49% 92 95 
PD97047 8.95% 4.63% 36 56  PD113 1.38% 1.92% 93 92 
PD878 8.94% 10.12% 37 33  EARLISTAPLE-7 1.21% 1.76% 94 94 
PD93001 8.86% 5.12% 38 54  FJA 1.18% 1.48% 95 96 
PD4548 8.25% 8.23% 39 39  PD7439 1.15% 0.98% 96 103 
PD778 8.18% 8.54% 40 37  EARLISTAPLE-7 (AHK) 1.15% 1.35% 97 98 
PD9363 8.05% 5.52% 41 50  PD5380 0.96% 1.48% 98 97 
PD741 7.85% 7.39% 42 41  PD8619 0.93% 1.22% 99 101 
PD97072 7.81% 9.19% 43 36  PD-3 0.89% 1.81% 100 93 
PD93019 7.74% 6.36% 44 47  PD6520 0.87% 1.24% 101 100 
PD97101 7.61% 6.77% 45 45  PD6208 0.76% 1.24% 102 99 
PD-2 (AHK) 7.55% 7.16% 46 43  PD2165-242 0.58% 1.09% 103 102 
PD9364 7.41% 7.65% 47 40  PD4381 0.57% 0.74% 104 105 
PD97100 7.14% 7.36% 48 42  PD762 0.47% 0.76% 105 104 
PD93043 6.14% 5.71% 49 48  PD695 0.32% 0.41% 106 108 

PD259 6.01% 4.66% 50 55  
Sealand-7-Yellow-Flower 
(AHK) 0.32% 0.41% 107 107 

PD93004 5.54% 4.30% 51 59  PD9241 0.29% 0.50% 108 106 
PD648 5.46% 6.91% 52 44  Sealand-3 (AHK 0.28% 0.33% 109 110 
PD7388 5.12% 4.35% 53 57  PD7501 0.26% 0.30% 110 111 
PD3246 5.08% 6.41% 54 46  PD2164 (AHK) 0.21% 0.26% 111 114 
PD93001 (AHK) 4.98% 5.57% 55 49  PD875 0.20% 0.28% 112 112 
PD93034 4.42% 5.24% 56 53  PD4461Q 0.19% 0.33% 113 109 
PD7496 4.33% 5.49% 57 51  PD2165-242 (AHK) 0.19% 0.28% 114 113 
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Supplemental Figure 2.4.  Discriminant analysis of principal components for the 
eight Pee Dee breeding groups.The DAPC biplot for Dataset Two, with coordinates for 
each individual in discriminant function 1 (DF1, horizontal axis) plotted against 
discriminant function 2 (DF2, vertical axis).  Individuals are represented by a point, 
color-coded for each breeding group.  The ovals represent the expected spatial 
distribution of individuals in DF1 and DF2. 
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Supplemental Figure 2.5.  Dendrogram of the maximum likelihood neighbor-
joining tree for 363 cotton genotypes. The plot was generated through hierarchical 
clustering on the genetic distance matrix for114 Pee Dee and 249 other improved Upland 
cottons.  Branch length is proportional to the genetic distance between the two child 
nodes.  Pee Dee genotypes, the leaves labeled in red, tend to cluster together with a few 
outliers.  Within-group genetic diversity is similar to genetic variation in other clades.  
That subtree topology is similar to that of just the 114 genotypes from this study. 
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CHAPTER THREE 

GENETIC ARCHITECTURE OF COTTON AGRNOMIC PERFORMANCE AND 
FIBER QUALITY IN THE PEE DEE GERMPLASM ENAHANCEMENT PROGRAM 

Abstract 

The Pee Dee Cotton Germplasm Enhancement Program has developed improved 

upland cotton (Gossypium hirsutum L.) genotypes for the Coastal Plains region of the 

southeastern US for over 80 years.  This closed breeding program contains extensive 

genetic variation for fiber quality traits, which has been utilized over the past few decades 

as a source of improved fiber strength and fiber length for public and commercial 

breeding efforts.  An extensive genetic survey of the resources in the Pee Dee program 

was conducted using a combination of 17,226 filtered SNP markers with 14 year-

locations (environments) of previously reported agronomic performance and fiber quality 

data.  Thirty-three independently segregating haplotype blocks associated with variation 

for agronomic performance or fiber quality were identified using a kernel-based, mixed 

linear model for haplotype-set genome-wide association.  Hierarchical clustering and 

haplotype binning revealed 16 previously unreported QTL.  The strongest QTL signals 

were detected in a set of ten haplotype blocks across chromosome D06.  These QTL for 

fiber length, strength, and gin turnout were detected across environments. SNP data 

revealed potential routes of gene flow to and from the Pee Dee program. The results of 

this study provide a basis for genomic selection strategies or pyramiding beneficial 

haplotypes.  
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Introduction 

The farm gate value of US upland cotton (Gossypium hirsutum L.) exceeded $12 

billion USD during 2019 (Johnson et al. 2020).  Lint value is determined primarily by lint 

yield, but fiber quality is also important to meet the needs of textile manufacturers.  

Improved cultural practices optimize yield and fiber quality performance (Lewis et al. 

2000; Viator et al. 2005; Bednarz et al. 2005); however, improved cultivars provide a 

baseline for productivity and are key to enhanced production (Bowman 2000).  Cotton 

breeders often examine yield components such as seed index, bolls m-2, gin turnout, and 

boll weight when evaluating lint yield (Meredith and Wells 1989; Jenkins et al. 1990; 

Lewis et al. 2000).  Negative correlations among these traits makes selection for 

improved overall total lint yield challenging, especially in the context of conventional 

breeding (Tang et al. 1996; Campbell et al. 2012). 

Cotton fiber quality traits are equally complex, and substantial research has been 

conducted to identify the genetic basis of fiber quality (Paterson et al. 2003; Fang et al. 

2014; Li et al. 2016; Islam et al. 2016; Fang et al. 2017; Chandnani et al. 2018; 

Naoumkina et al. 2019; Thyssen et al. 2019).  Fiber quality is most often measured using 

two machines including the high volume instrument (HVI) and the advanced fiber 

information system (AFIS). The HVI measures the characteristics of a bundle of fibers, 

whereas the AFIS measures individual fibers.  Global fiber classification is performed 

with the HVI (Foulk et al. 2007).  Textile mills value the length and strength of the fibers, 

the textural properties (micronaire, fineness, and maturity ratio), and the overall 

uniformity of the fibers (Foulk et al. 2007). 
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Varying heritability estimates for yield and fiber quality indicate the complex basis of 

these traits and the significant interplay between genotype and environment (Paterson et 

al. 2003; Khan et al. 2017; Campbell and Jones 2005).  Genome-wide association studies 

have revealed part of the underlying architecture of multiple fiber quality and yield-

related traits in upland cotton (Thyssen et al. 2019; Hinze et al. 2017; Du et al. 2018; Ma 

et al. 2018; Huang et al. 2018).  These studies have used genetic markers (SNPs or SSRs) 

by fitting a linear model or mixed linear model (MLM) on a single marker at a time.  

Results from single marker analysis studies have a straightforward biological 

interpretation because an additive or dominance model is used to score the effect of a 

(minor) allele. Also, direct estimates of the effect of a single nucleotide polymorphism 

(SNP) or simple sequence repeat (SSR) can be calculated using regression analysis and 

the associated test statistics (Korte and Farlow 2013).  These tests normally treat SNPs as 

fixed effects (Zhang et al. 2010), which can be tested for interactions with other model 

terms, although random effect models also exist (Wang et al. 2016). The disadvantage of 

single marker analysis is the inability to fully account for linkage disequilibrium (LD) 

structure, epistatic interactions between genes, or marker redundancy (Wang et al. 2011). 

In structured populations, such as those from breeding programs or diversity panels, 

higher relatedness than expected among individuals (‘cryptic relatedness’) makes it 

difficult to avoid confounding due to common ancestry between genotypes (Astle and 

Balding 2009).  Domesticated upland cotton is derived from a common gene pool, with 

successive rounds of sub-selection causing at least two identifiable genetic bottlenecks 

(Iqbal et al. 2001).  Prior studies have demonstrated the ability of model covariates to 



102 

efficiently correct for population substructure that can skew genome wide association 

studies (GWAS) results, such as principal component analysis and STRUCTURE 

subpopulation groupings (Price et al. 2006; Odong et al. 2011) and variance component 

partitioning through the decomposition of the kinship matrix (Sun et al. 2010).  At the 

expense of statistical power, the practical consequence of population structure correction 

is the reduction in the discovery rate for significantly associated genetic markers (Shin 

and Lee 2015).  Therefore, there is a balance between increasing model complexity and 

the ability to identify (non-)beneficial variants and simple practical applications, 

especially for plant breeders who are interested in better utilizing germplasm resources. 

A key assumption in single marker analysis is that markers assort independently 

(Waksmunski et al. 2020), enabling one to evaluate the significance of each marker 

separately without considering nearby co-segregating markers.  Composite interval 

mapping can help build association models that integrate nearby markers, although it is 

normally reserved for use in biparental populations with some recent exceptions (Wang et 

al. 2016).  At the significant loss of information, one can also reduce (or thin) markers 

using local LD or a fixed window size to reduce redundancy and the downstream 

computational load (Li et al. 2018).  Another recent advancement is the category of gene-

set tests (variably called SNP-set, haplotype-set, etc.) that test multiple related markers 

together, usually with a correction for the number of markers tested (Wang et al. 2011).   

By combining the principal of kernel based tests (Yang et al. 2008; Morota and 

Gianola 2014) with the concept of gene-sets, Wu et al. (2011) developed the sequencing 

kernel association test (SKAT), with further adaptation to the genetic MLM (with 
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kinship) in the reliable association inference by optimizing weights (RAINBOW) 

method.  Complex kernels are useful for detecting “hidden” signals that may be useful for 

genomic selection, but are difficult to interpret from a biological perspective (Morota and 

Gianola 2014).  One of the simplest kernels is the linear kernel, which is derived by 

calculating the local additive genomic relationship matrix for that gene-set (VanRaden 

(2008).  After the kernel is identified, eigen decomposition or another dimensional 

reduction technique can be used and the resulting model can be solved with efficient 

mixed model association (Kang et al. 2008)  A p-value for each gene-set is produced 

using the likelihood ratio test or score test, which can be directly calculated by comparing 

the model with and without the kernel for that gene-set. 

If haplotypes of co-segregating markers are binned as gene-sets, these haplotype-sets 

can be tested one at a time for association with a trait of interest.  The linear kernel 

calculated for each haplotype-set is a transformation on the pairwise genetic distance for 

each combination of individual genotypes in the study, and the test statistic from 

RAINBOW reflects whether or not the individuals with similar haplotypes have similar 

phenotypic values.  This is different than the test performed in the classic additive model 

with single marker analysis or a multi-locus model, where the effect of each genetic 

marker is directly estimated, and regression analysis is performed based on allele count.  

The haplotype-based kernel association method is fundamentally different, because the 

haplotype is treated as a random effect, and local similarity across multiple loci is what is 

driving the signal detection.  Since haplotype association reduces the number of 

individual tests performed, multiple-test correction procedures can be relaxed, increasing 
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power relative to single marker analysis, especially when detecting effects due to rare 

variants (Wu et al. 2011).  Ideally, haplotype-set GWAS can enable the identification of 

favorable haplotypes in QTL regions, which can be used for plant breeding (Su et al. 

2016). 

For plant breeders, haplotype-set GWAS has many benefits as opposed to classical 

single marker analysis.  Although marker assisted selection schemes have demonstrated 

success for simple, mendelian traits or those with genes of major effect (Fang et al. 2010; 

Chandnani et al. 2018; Abdelraheem et al. 2020), selection on haplotypes as a whole has 

the potential to capture some of the missing genetic variance that ends up as residual 

error in GWAS (Shirali et al. 2018).  In the present study, we aimed to apply haplotype 

GWAS to the Pee Dee germplasm enhancement program.   

Specifically, the Pee Dee program has a long history of fiber quality improvement, 

especially fiber strength, as well as an emphasis on improving other fiber traits and yield 

components.  Previously reported replicated field trials provide an extensive catalogue of 

these phenotypic traits across four states for a total of 14 year-location environments 

(Campbell et al. 2009).  Diversity analysis based on SSR markers (Campbell et al. 2009), 

as well as prior analysis of these field trials (Campbell et al. 2011; Campbell et al. 2012), 

revealed differences in trait correlations over time, extensive environmental interference 

with trait expression, and unique combinations of yield and fiber quality in a few 

founding germplasm lines.  We hypothesized that the haplotype-based GWAS analysis 

would reveal sets of co-segregating SNPs that underlie these key traits, and that we 

would be able to track these haplotypes across the extant cotton cultivars, especially since 



105 

multiple Pee Dee breeding lines were used as donors for fiber strength genes in most of 

the US germplasm (Bowman and Gutierrez 2003).  To that end, the objectives of this 

study were to 1) characterize the genetic architecture of eleven yield-related and fiber 

quality traits in the Pee Dee germplasm by identifying haplotypes with a negative or 

positive effect on these traits; 2) identify and discuss genomic regions with QTL for 

multiple traits; and 3) study linkage disequilibrium and gene flow to anchor these 

findings relative to the complex history of the Pee Dee program.  

Materials and Methods 

A set of 80 Pee Dee genotypes was genotyped on the CottonSNP63K Array (Hulse-

Kemp et al. 2015).  Other improved upland cotton genotypes, 272 from Hinze et al. 

(2017) and 16 from Billings et al. (2020), were used to impute and phase missing SNP 

calls with BEAGLE v5.1 (Browning et al. 2018; Browning and Browning 2007) for this 

set of 80 Pee Dee genotypes.  The set of 80 Pee Dee genotypes examined in this study 

was separated out and filtered post-imputation [minor allele frequency (MAF) > 2.5%; ≥ 

1 individual in each homozygous class].  A thinned set of SNPs, with more uniform 

marker density across the genome, was generated using the “--indep-pairwise” command 

in plink (Chang et al. 2015).  Inter-marker correlation-based haplotype block estimation 

was performed with the “--blocks” command in plink.  Haplotype blocks were considered 

nonoverlapping sets of genetic variants whose alleles are usually inherited together 

(Gabriel et al. 2002).  Some SNPs were considered alone if no nearby SNPs were highly 

correlated. In addition, population structure analysis and the calculation of a kinship 

matrix were performed using fastSTRUCTURE to account for the relatedness between 
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genotypes in this study (see Population Structure Analysis in the Supplemental 

Methods) 

Eighty-two Pee Dee genotypes and two to six commercial check cultivars were grown 

in six locations for either two or three years from 2004 to2006, for a total of 14 

environments in South Carolina, North Carolina, Georgia, and Mississippi (Campbell et 

al. 2009).  These included three locations in South Carolina [Florence (FL04, FL05, 

FL06), Blackville (BL04, BL05, BL06), Hartsville (HV04, HV05)], one location in North 

Carolina (RM05, RM06), one location in Georgia (TFT05, TFT06), and one location in 

Mississippi (ST05, ST06). The trial in each location was carried out in an α-lattice 

incomplete block design and managed according to recommended growing practices for 

each environment.  Fiber analysis was performed with High Volume Instrument and 

Advanced Fiber Information System at the Cotton Incorporated Fiber Testing Laboratory 

(Cary, NC, USA).   

Using the method Campbell et al. (2009) originally implemented for this dataset, 

adjusted phenotypic means were calculated for each of the fourteen traits with a custom 

macro for PROC MIXED in SAS 9.4 (SAS Institute, Cary, NC, USA) with REML.  To 

get an estimate of each genotype’s performance across a wide range of environments, 

least squares means were calculated for the genotypes with the following model:  

 𝑃𝑃 =  𝑈𝑈 +  𝐺𝐺 +  𝑌𝑌𝑌𝑌 +  𝐵𝐵𝑌𝑌𝐵𝐵(𝑌𝑌𝑌𝑌)  +  𝐺𝐺 ∗ 𝑌𝑌𝑌𝑌 +  𝐸𝐸 Eq. 1 

where P is the estimated mean, U is the overall mean, G is the fixed genotype effect, and 

random effects YL (effect of that year-location), BLK(YL) (incomplete block nested in 

year-location), G*YL (interaction between genotype and year-location), and residual 
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error, E.  Like Campbell et al. (2009), we also calculated least square means at the 

individual year-location level.  Only those phenotypic means estimated from a dataset 

with a significant F-statistic (p < 0.05) for the genotype effect were included for GWAS.   

Haplotype-based GWAS analysis was performed with the RAINBOW model, as 

implemented in the function “RGWAS.multisnp” in the R package ‘RAINBOWR’ 

(Hamazaki and Iwata 2020).  A linear kernel-based association test was employed 

following the approach of Hamazaki and Iwata (2020), which is estimated local to each 

haplotype block using the natural and orthogonal interactions (NOIA) method (Vitezica 

et al. 2017).  The NOIA estimates of genetic variance underlying a phenotype have the 

key advantage of allowing separate inferences for additive, dominance, and epistatic 

interactions, as well as reduced skew from markers in high LD or out of Hardy-Weinberg 

equilibrium.  Because we were interested in additive genetic effects, we chose the 

additive portion of genetic variance as partitioned by NOIA.  A simplified version of the 

RAINBOW model is provided here: 

 𝑃𝑃 =  𝑋𝑋𝑋𝑋 +  𝑢𝑢𝑐𝑐  +   𝑢𝑢𝑖𝑖 +  𝐸𝐸 Eq. 2 

Where P is the phenotypic value, Xβ is the vector of fixed effects and model 

intercepts, including those associated with the fastSTRUCTURE Q matrix, uc is  the 

vector of random background genetic effects derived from the kinship matrix K, ui is the 

vector of random effects associated with the i-th SNP-set estimated by transforming the 

local genotypic matrix, and E is random error.  The haplotype-set test estimates variance 

components for the model with SNPs as random effects using the eigen decomposition of 

the local genetic relationship matrix.  The likelihood ratio test, where the null model 
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excludes the SNP-set of interest, was used to estimate the p-value of a given SNP-set by 

testing for significant improvement of model fit.   

For those datasets with a significant F-statistic for the genotype effect, this likelihood 

ratio test was performed for each haplotype block to test for association with all eleven 

traits for the least squares means for the 14 year-locations separately and the overall 

means across all year-locations combined.  Haplotype blocks with a p-value less than 

Bonferroni correction (i.e. p < 0.05/number of blocks) were designated as significant 

haplotype blocks.  Because of occasional missing data, some SNPs were discarded due to 

low MAF after removing individuals with missing phenotypic data. 

Haplotype-based GWAS analysis identified significantly associated haplotype blocks 

but did not explain which single variant, or set of variants, in that chromosomal segment 

conferred a positive or negative effect on the phenotype.  To determine which genotypes 

were associated with the variation for a phenotypic trait, the results from single marker 

analysis were first examined to see if a significant SNP marker was present in the 

haplotype region. If present, no further multi-marker analysis was performed in that 

region.  For this single marker analysis, each genotype was grouped into one of three 

classes (homozygous for the common allele, heterozygous, or homozygous for the minor 

allele) and an F-test for the effect of the marker was performed.  If no significant single 

markers were present in this region, hierarchical clustering was used to group together 

similar haplotypes.  Subsequently, ANOVA was performed to test for association 

between haplotype clusters and trait variation.  Lastly, if there was no significant effect 

due to cluster membership, the genotypes were separated by haplotype and a t-test 
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(α=0.05) was performed to identify variants associated with superior or inferior 

phenotypic values (Li et al. 2020). 

The least common version of each significant haplotype was marked as having an 

increased or decreased effect as compared to the most common variants at that locus by 

examining the results of the pairwise t-test.  These results were visualized using boxplots 

for the phenotype, separated by the appropriate grouping method, and examining the 

direction of each group’s effect.  The percent residual variance explained for the full 

model including all the significant haplotypes was calculated using an R2 measure based 

on the likelihood ratio test (Nagelkerke 1991), where the null model was the mixed linear 

model with no markers.  The calculation was done with the “r.square.LR” function in the 

R package ‘MuMin’ (Barton 2020). 

Hierarchical clustering was performed with the “hclust” and “cuttree” functions in R 

to group together similar haplotype variants (maximum number of groups = 3).  

Separation into unique haplotypes was performed by concatenating all of the SNPs 

together and grouping by unique haplotypes. 

Results and Discussion 

Analysis began with a total of 14 year-locations of raw data for which eleven 

phenotypic traits were collected, including five yield-related components, four HVI fiber 

quality parameters, and two AFIS fiber quality parameters (Table 3.1). A simple, single 

marker analysis was first attempted with just the first two dimensions of PCA as 

covariates, but high genomic inflation factors (λ>2) associated with long-range LD 

resulted in very low statistical power after applying the appropriate correction (Yang et 
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al. 2011).  As a result, the kinship matrix and fastSTRUCTURE membership 

probabilities (k=4) were added to the final GWAS model, with linked markers clustered 

into haplotypes and tested one block at a time. 

The haplotype blocks varied significantly in length, ranging from a 75Mb haplotype 

block containing 1,152 SNPs (chromosome A08) to a pair of SNPs that were 30bp apart 

(A09).  Across the 1,751 haplotype blocks discovered, 75 spanned a length <1kb, 228 

were in the 1kb-10kb range, 603 10kb-100kb, 687 100kb-1Mb, and 158 > 1Mb (Figure 

3.1).  These haplotype block span size estimates are similar to those described elsewhere 

(Abdullaev et al. 2017).  Sporadic and extensive LD structure was previously observed in 

genotypes sourced from the Pee Dee breeding program (Billings et al. 2020), and these 

observations were confirmed on the subset of genotypes studied here.  In addition to the 

1,751 haplotype blocks containing two or more SNPs, an additional 1,487 SNPs were 

assigned to their own haplotype block due to absence of adjacent markers in LD.  One 

consequence of the LD structure of this data set is that mapping resolution can either be 

very fine or very poor, depending on whether or not recombination has occurred 

historically at a given locus.  Strong selection over the course of the breeding program 

may have resulted in reduced LD in genomic regions underlying key traits, perhaps 

having the opposite effect on mapping resolution. 

A linear kernel-based association analysis revealed 66 significant haplotype block-

trait associations. Among these haplotype blocks, 15 trait associations were found in the 

ALL dataset and 51 for traits measured in one of the fourteen individual environments 

(Table 3.2 and Figure 3.2).  The greatest number of significant haplotype blocks were 
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detected in the ALL and ST05 datasets (15 and 14, respectively).  No associations were 

found either year in Rocky Mount (RM05, RM06), in two of three years in Blackville 

(BL05, BL06), or in one year at Tifton (TFT05).  Because duplicate haplotype blocks 

were discovered in different environments, a total of 33 unique haplotype blocks were 

found to be significantly associated with at least one trait (Table 3.3).  

The QTL hits from single marker analysis were compared to the haplotype GWAS to 

look for common genome regions detected in both.  Thirty-seven of the 66 haplotype 

blocks were shared between the two methods. The remaining 29 haplotype blocks were 

identified with haplotype GWAS although no single SNPs in each block was cross-

validated.  Example Manhattan plots of haplotype blocks passing and failing single 

marker analysis cross-validation are given in Figure 3.3.   

There are a few explanations for why an entire block may be significant, but the 

individual SNPs are not.  The haplotype block analysis may be excluding false positive 

QTL (and true QTL) suggested by single marker analysis because of the pooling of 

adjacent SNPs in the local genomic relationship matrix (Hamazaki and Iwata 2020).  

Likewise, the score function applied in RAINBOW with the NOIA kernel is affected by 

the background frequency of a variant, so undue significance is not given to a single rare 

variant in a haplotype block.   

These significant haplotypes with an overlapping signal from single marker analysis 

may indicate QTL of large effect, where a single SNP (or adjacent SNPs) is suitable for 

capturing the underlying genetic variation at a locus contributing to the phenotypic value.  

For the remaining 29 haplotype blocks awaiting cross-validation, other genetic patterns 
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were explored that may explain the observed GWAS signal.  Where a single SNP was not 

adequate, 19 significant haplotype blocks were classified with clustering analysis and 

eleven were separated by unique haplotypes.  A list of findings from each of these steps 

is in Supplemental Table 3.2, and example boxplots for these three categories is given in 

Figure 3.4.  

The percent residual variance explained (PVE) was calculated for each set of 

haplotype blocks for a trait in an environment (Table 3.4).  The PVE ranged from a low 

of 5% for bolls m-2 in ST06 (for one haplotype block) to a high of 60.7% for upper half 

mean length in ST06.  For most traits, the PVE was around 25%, indicating that the error 

variance in the whole model was reduced once adding the effect of the significant 

haplotype blocks.  For upper half mean length, the discovery of many high effect, 

environment-specific QTL contributed to large PVE in most cases.  The single highest 

effect QTL (PVE = 56.1%) was in a haplotype block associated with an increase in upper 

half mean length in ST06. 

In total, five significant haplotypes for yield components, two for lint yield, and 26 

for fiber quality traits were discovered.  These 33 associations were scattered across 26 

independently segregating genomic regions. 

Haplotypes Only Associated with Yield and Yield Components 

Of the seven haplotype blocks associated with lint yield or yield components, two 

were not located to the same haplotype blocks for any fiber quality traits.  One novel 

QTL was discovered in the ST06 data for bolls m-2 on D11 (44.26-45.40 Mb).  Cluster 

analysis revealed a group comprising 26% of individuals in the study with significantly 
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lower bolls m-2 than the most common cluster, made up of 60% of individuals.  The other 

QTL, confirmed by single marker analysis with i52326Gb (chromosome A12, 106.45 

Mb), was associated with a nominal increase in the seed index in the ALL data for the 

three heterozygotes and one homozygote with the T allele.  However, two QTL for seed 

index on either side of this marker were previously reported, suggesting that this is likely 

a genuine association signal [qSI-Pop1-A12-1 (Zhang et al. 2016) and qSI-Chr12-

1.XZ.E2-RIL (Shang et al. 2016a))]. 

Haplotypes Only Associated with Fiber Quality Traits  

Twenty of the 26 fiber quality QTL were not located to the same haplotype blocks for 

lint yield or yield components.  These QTL were distributed across eight chromosomes in 

thirteen genomic regions.  On chromosome A04, two haplotype blocks composed of 

single SNPs were detected.  A QTL for upper half mean length (87.53 Mb) was 

significant in BL04, FL05, ST05, and ALL. A nearby marker significant for strength 

(87.70 Mb) was detected in FL04.  Both of these QTL have been previously reported 

independently [qFL-A5-1.env1 (Shen et al. 2006) and qFS-chr04-1.15ALE (Liu et al. 

2018)].  The beneficial alleles for both QTL are in repulsion except in the case of a few 

unique recombinants, in line with a recent report on related material that shows a 

typically negative correlation between these two traits in segregating populations 

(Campbell 2020).  While Sealand-542 only has the beneficial fiber length allele and PD 

2164 only has the strength allele, Hybrid 330-278 contains both beneficial alleles.  At the 

time when Hybrid 330-278 was released, Culp and Harrell (1980) noted that Hybrid 330-

278 was one of the first products from their breeding program with combined strength 
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and length, with the length and strength both originating from a complex cross that 

included Sealand 542 and the parents for PD 2164 (Harrell 1974). 

Examination of allele frequencies across all of the improved upland cotton 

germplasm SNP data present in CottonGen revealed a frequency of 92% having neither 

beneficial allele; <1% (3) only the strength allele; 4% (15) only the length allele; and the 

remaining 3% (8) having both beneficial alleles.  Interestingly, four of the ten genotypes 

with both beneficial alleles originated from the Pee Dee program [Hybrid 330-278 and 

PD 5582 from this study, ‘PD-1’ and Sealand-7 Yellow Flower from Hinze et al. (2017)], 

three more are from the Coker breeding program (Calhoun et al. 1997), two had 

pedigrees that could not be determined (‘Dekalb 220’ and ‘Locket 1’), and the remaining 

genotype, ‘Tidewater-29’, is a reselection from one of the founding germplasm lines in 

the Acala breeding program, which also includes triple hybrid germplasm in its 

foundation (Zhang et al. 2005).  Previous research has suggested that much of the 

beneficial gain in fiber strength and length can be attributed to these two programs, 

especially regarding the breaking of the negative linkage between fiber quality and 

agronomic performance (Culp et al. 1979).  Six of the seven genotypes with both 

beneficial alleles had a Sea Island (Gossypium barbadense L.) ancestor somewhere in 

their pedigrees, indicating this haplotype may have been introgressed from G. 

barbadense L. 

A single QTL for micronaire was discovered on chromosome A05 (109.45-109.46 

Mb) in BL04.  One third of the genotypes in the study belonged to the beneficial cluster 

at this haplotype block, which had significantly lower micronaire than either of the other 
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two clusters.  On the other hand, a QTL for micronaire with a deleterious effect (higher 

micronaire) minor allele (5% frequency) was detected in FL06 on chromosome D10 

(55.52 Mb).  Chromosome D05 contained two unlinked QTLs for fiber fineness and 

upper half mean length.  The QTL for fineness (31.89-31.91 Mb) was significant only in 

BL04; both the T allele homozygotes and heterozygotes had higher fiber fineness, 

indicating a potential dominance effect at this locus for an undesirable change in fineness 

(this is A1 in Figure 3.4).  The haplotype block for upper half mean length on 

chromosome D05 was detected in ST06 and ALL, with the TTGAC-GAAACGCCA 

present in four of the top eight longest fiber lines.  The haplotype blocks are shown as all 

of the SNPs in that region joined together, with dashes ‘-’ representing that the 

individuals was heterozygous for that SNP. 

Chromosome D06 harbored multiple linked and unlinked QTL for upper half mean 

length.  A small cluster (~14% of individuals) for haplotype block 3004 (22.56-24.28 

Mb) was associated with significantly decreased fiber length in ALL. Another nearby 

association detected in ALL was haplotype block 3005, which spanned 73 SNPs (24.31-

44.42 Mb) including a previously reported QTL region [qFL-D6-1.env2 (Shen et al. 

2006)].  The homozygous T allele group was associated with increased fiber length.  

Seven Mb away on the other side of the centromere, an additional four linked haplotype 

blocks (3008, 3010, 3011, and 3012) were associated with upper half mean length.  All 

four blocks (51.37-57.72 Mb) were significant in ALL and at least four different 

environments, indicating the ability to discover this QTL in a wide range of 

environments.  Another segment (62.17 Mb) was significant for upper half mean length 
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only in ST06, and lastly one more near the end of the chromosome in ALL and both years 

at ST (05, 06).  Each of these haplotypes exhibited a similar pattern where the minor 

haplotype or SNP variant was associated with longer fibers in Sealand-542 and Hybrid 

330-278.  In four of the five blocks, PD 3246 also carried the beneficial haplotype block.  

PD 4461Q and PD 8619 also had the two flanking beneficial haplotypes, while PD 4381 

only had one. However, none of these three genotypes had nearly as long of fibers as the 

superior lines, possibly because Sealand-542 and Hybrid 330-278 also contain additional 

beneficial fiber length alleles located in other regions of the genome. Analysis for block 

3010 showed that the individuals that were heterozygous had decreased fiber length. 

An additional four regions were detected, containing QTL for upper half mean length 

distributed across three chromosomes.  On A08, two linked haplotypes were discovered 

in a previously reported region for the FL05 means [FL3.05CQ (Zhang et al. 2009)].  The 

G allele in block 729 (122.23 Mb) was present in four of the five longest-fiber lines, with 

the notable exception of Sealand-542.  The same pattern was present for the beneficial 

haplotype CAAATAA for block 731 (122.658-122.807 Mb).  PD 9223 also contained the 

beneficial G allele in block 729 but had average fiber length, suggesting the true causal 

locus may be out of linkage with the SNP marker, i49570Gh.  Three additional QTL for 

upper half mean length (block 2813, block 2840/2841, and block 1947) were all 

previously identified [qFL-c24.E9 (Wang et al. 2015), qFL24.2.bb07 (Zhang et al. 2011), 

and qFL-C18-3.Ay07 (Jamshed et al. 2016)]. With the exception of block 2813, each 

QTL exhibited effects in multiple environments. 
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Co-locating Haplotype Blocks for Yield and Fiber Quality 

There were an additional four genomic regions with either overlapping or adjacent 

significant haplotype blocks for both yield and fiber quality traits.  In three of the four 

genomic regions, the high yielding variants were rarely (if ever) found in the same 

individuals as the high quality variants.  This highlights the difficulty overcoming the 

negative relationship between yield and fiber quality which results from the genetic 

linkage of these two traits, typically in repulsion phase (Culp et al. 1979; Meredith and 

Bridge 1971; Smith and Coyle 1997). 

On chromosome D06, two haplotypes (GGTTAGAAATATATACAAGCTGC and 

GATCAGAAATATATACAGGCTGC) composed of a block of 23 SNPs (44.58-48.77 Mb) 

were associated with lower gin turnout in ALL, stronger fibers in FL04, and longer upper 

half mean length in BL04, ST05, ST06, and ALL.  The individuals with this haplotype 

included Hybrid 330-278, PD 3246, PD4381 (the only genotype with the second 

haplotype), PD 4461Q, and PD 8619.  As with the strength and length QTL on A04, 

pedigree analysis revealed that 93% (19 individuals) of all the improved upland cotton 

genotypes with resolvable pedigrees carrying either beneficial haplotype had a Sea Island 

parent somewhere in their pedigree, suggesting a potential origin for this high fiber 

quality allele at the expense of yield.  The gin turnout QTL was previously identified in 

an introgression experiment with cotton landraces [qLP-Pop1-D6-1 (Zhang et al. 2016).  

The upper half mean length QTL was previously reported in a recombinant inbred line 

population, although limited marker density resulted in a much larger window than found 

here [qFL-D6-1.env2 - (Shen et al. 2006)]. 
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On chromosome D07, the predominant SNPs in two unlinked haplotype blocks for 

lint yield in HV04 (3.29 Mb) and fiber strength in HV05 (3.77-3.83 Mb) were associated 

with decreased performance.  Tan et al. (2014) also found a QTL for fiber strength on 

D07 (qFS16.1.2008) only in one of four environments, suggesting a significant genotype 

x environment interaction effect at this locus.   All four of the lowest yielding genotypes 

had the A allele at the i27357Gh marker, and similarly most of the low strength genotypes 

had the A allele at the i01410Gh marker.  No genotypes contained both the negative 

strength allele and the negative yield allele, while six (~12%) contained the deleterious 

allele for yield and more than 25% contained the low strength allele.  Approximately 3% 

of the genotypes in the extant improved upland germplasm contain both negative alleles 

at this locus, indicating that the negative variants at this locus may have been selected 

against in the cotton breeding gene pool. 

There is a long established positive relationship between micronaire and yield, 

although the strong environmental impact on both micronaire and yield complicate the 

stability of this relationship (Elms et al. 2006; Clement et al. 2012).  Therefore, it was no 

surprise that we identified two adjacent haplotype blocks for micronaire and lint yield on 

chromosome A13.  The micronaire QTL (91.61-92.05 Mb) was discovered only in 

TFT06, with a small genotype cluster (~7% frequency) having significantly higher 

micronaire than the other genotypes in that environment.  The micronaire QTL was 

previously reported by Tan et al. (2018), who found a QTL (qFM13.2.2016CQ) cluster 

for fiber strength, elongation, and micronaire in this region.  The significant haplotype 

block for lint yield was ~130 kb away (92.18-93.76 Mb), with those individuals 
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homozygous for the A allele at the i13404Gh marker having significantly lower yield.  

About half of the genotypes contained the favorable combination of carrying neither the 

high micronaire haplotype nor the low yield allele, 32 had only the low yield allele, four 

clustered only with the high micronaire group, and two genotypes had the deleterious 

combination of the high micronaire and low yield variants. 

Associations were also identified on the proximal end of D13 corresponding to two 

haplotype blocks.  One block included only a single SNP marker, i20441Gh (1.18 Mb), 

while the other block included 10 SNPs in strong LD (1.26-1.46 Mb).  Associations with 

both of these blocks were identified for seed index in ST05.  In the second block, a single 

SNP, i152288Gb (1.26 Mb), was significant in single marker analysis.  The beneficial 

SNP alleles for seed index were in perfect LD in this population, with 13 genotypes 

(Earlistaple-7, FJA, FTA, Hybrid 330-278, PD 111, PD 2164, PD 2165, PD 3246, PD 

4381, PD 5377, PD 5472, PD 7496, and PD 9363) homozygous for both beneficial alleles 

for seed index.  In the same haplotype block as i152288Gb, a single marker i12997Gh 

(1.43 Mb) was significant for both fiber strength in FL04 and upper half mean length in 

ST05.  The G allele at this SNP marker was associated with longer and stronger fibers in 

eight genotypes, a subset of those with the beneficial seed index SNPs (the same as above 

excluding PD 111, PD 4381, PD 5472, PD 7496, and PD 9363).  The QTL for fiber 

strength and upper half mean length were previously reported [qFS-Chr18-1.E1.XZV-BC 

(Tan et al. 2018) and qFL18.1.2016HN (Shang et al. 2016b)], although the signal for seed 

index on this end of D13 was not previously reported.   
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Sealand-542 and PD 259 were heterozygous for both markers. PD 9363 carried the 

positive haplotype for seed index but was heterozygous at the strength/length marker. PD 

5529, PD 6992, and PD 785 were heterozygous for the seed index allele and homozygous 

for the non-beneficial strength/length marker.  Due to the unusual LD pattern around 

three critical traits, we performed further analysis on this segment on chromosome D13.  

We surveyed the improved upland cotton germplasm to determine the prevalence of these 

haplotypes. Both the alleles for higher seed index and longer, stronger fiber were detected 

in 10% of the genotypes, neither allele was present in 76%, and 4% were heterozygous at 

one of both loci. Only 2% of the genotypes had only the longer/stronger fiber haplotype, 

and the remaining 8% had only the markers beneficial for seed index.  Examination of the 

available SNP data did not reveal any obvious recombination events or germplasm 

introduction responsible for this combination of beneficial variants.  Further dissection of 

this trait locus would require denser genotyping on more individuals in their pedigrees. 

Conclusions 

In this study, significant haplotypes were identified within the Pee Dee germplasm 

enhancement program associated with variation for four yield components and four fiber 

quality parameters.  A total of 67 significant haplotype associations were found for eight 

traits in ten individual environments and the mean combined across all environments, 

establishing 33 QTL.  Nearly half of these associations (16) were not previously reported.  

Most haplotypes associated with yield components and/or fiber quality were not detected 

consistently across the 14 environments evaluated in this study indicating the importance 

of genotype x environment interaction for these QTL.  In most environments, >50% of 
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phenotypic variance was left unexplained by our QTL model.  The <50% that was 

explained by the QTL was dominated by a small number of major QTL, underscoring the 

difficulty in detecting low effect variants in the presence of high effect variants.  A 

crucial series of fiber length, strength, and gin turnout QTL were found on chromosome 

D06.  Many of the genome-wide signals were driven by the presence of significantly 

lower (or higher) phenotypes for a small number of genotypes, highlighting the power of 

haplotype association for capturing more rare genetic variants, although the method was 

still robust for the few haplotypes that were in higher frequency (Ionita-Laza et al. 2013; 

Hamazaki and Iwata 2020).  Phase information and haplotype inference were also used to 

deduce potential historical introgressions of recombination break points, including 

coupling and repulsion phases, that may have (in part) broken the negative linkage 

between fiber strength and yield.  Results of this study allow for a better understanding of 

the QTL landscape underlying key traits in the Pee Dee program’s germplasm.  Many of 

these beneficial haplotypes were at low frequency in the improved upland cotton gene 

pool, indicating the ability to further improve fiber quality by introgressing these variants.  

Accounting of the genetic basis of key fiber quality traits in this breeding program will 

help breeders plan future crosses and provide the basis for genomic selection in the Pee 

Dee germplasm. 
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Figures and Tables 

Table 3.1.  A summary of phenotypic data collected in fourteen environments 
across Mississippi, Georgia, South Carolina, and North Carolina from 2004-2006.  
Agronomic data include lint percent (GIN), lint yield (LYLD), boll size (BWT), seed 
index (SI), and bolls per square meter (BM2). Fiber quality traits include micronaire 
(MIC), upper half mean length (UHML), strength (STR), fineness (FINE), and maturity 
ratio (MATR). Environments with a non-significant genotype effect on a trait are labeled 
NS.  Environments with data not collected are labeled NA. 

Year-
Location GIN LYLD BWT SI BM2 MIC UHML UI STR FINE MATR 

ALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Blackville 
2004 

✓ NS NS ✓ NS ✓ ✓ ✓ ✓ ✓ ✓ 

Blackville 
2005 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Blackville 
2006 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ NS ✓ 

Florence 
2004 

✓ ✓ NS ✓ NS ✓ ✓ ✓ ✓ ✓ ✓ 

Florence 
2005 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Florence 
2006 

✓ NA ✓ ✓ NA ✓ ✓ NS ✓ ✓ ✓ 

Hartsville 
2004 

✓ ✓ ✓ ✓ NS NS ✓ ✓ ✓ NS ✓ 

Hartsville 
2005 

✓ NA ✓ ✓ NA ✓ ✓ ✓ ✓ ✓ ✓ 

Rocky 
Mount 
2005 

✓ ✓ ✓ ✓ NS ✓ ✓ NS ✓ ✓ NS 

Rocky 
Mount 
2006 

✓ ✓ ✓ ✓ ✓ NS ✓ ✓ ✓ ✓ NS 

Stoneville 
2005 

✓ ✓ NS ✓ NS NS ✓ ✓ ✓ NS NS 

Stoneville 
2006 

NS ✓ NS ✓ ✓ NS ✓ NS ✓ NS NS 

Tifton 
2005 

✓ NS ✓ ✓ NS ✓ ✓ NS ✓ NS NS 

Tifton 
2006 

✓ ✓ NS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Figure 3.1.  Chromosome positions of 1,751 haplotype blocks discovered with 
PLINK and 1,487 single SNPs without any highly linked nearby SNPs.      
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Table 3.2  Number of haplotype blocks associated (padj-BONF < 0.05) with each 
trait-environment combination.  These include for lint percent (GIN), lint yield 
(LYLD), boll size (BWT), seed index (SI), and bolls per square meter (BM2).  Fiber 
quality traits include micronaire (MIC), upper half mean length (UHML), strength 
(STR), fineness (FINE), and maturity ratio (MATR).  Sum is the total number of 
associations found for that row or column, and unique is the number of haplotype blocks 
located across the genome associated with that trait. 

Environment GIN LYLD BWT SI BM2 MIC UHML UI STR FINE MATR Sum 

ALL 1 0 0 1 0 0 13 0 0 0 0 15 

Blackville 
2004 

0 NS NS 0 NS 1 9 0 0 1 0 11 

Blackville 
2005 

0 0 0 0 0 0 0 0 0 0 0 0 

Blackville 
2006 

0 0 0 0 0 0 0 0 0 NS 0 0 

Florence 
2004 

0 0 NS 0 NS 0 5 0 3 0 0 8 

Florence 
2005 

0 0 0 0 0 0 3 0 0 0 0 3 

Florence 
2006 

0 NA 0 0 NA 1 0 NS 0 0 NS 1 

Hartsville 
2004 

0 1 NS 0 NS NS 0 NS 0 NS NS 1 

Hartsville 
2005 

0 NA NS 0 NA 0 2 0 1 0 0 3 

Rocky 
Mount 2005 

0 0 NS 0 NS 0 0 NS 0 0 NS 0 

Rocky 
Mount 2006 

0 0 0 0 0 NS 0 0 0 NS NS 0 

Stoneville 
2005 

0 1 NS 2 NS NS 11 0 0 NS NS 14 

Stoneville 
2006 

NS 0 NS 0 1 NS 7 NS 0 NS NS 8 

Tifton 
2005 

0 NS 0 0 NS 0 0 NS 0 NS NS 0 

Tifton 
2006 

0 0 NS 0 0 1 1 0 0 0 0 2 

Sum 1 2 0 3 1 3 51 0 4 1 0 66 

Unique 1 2 0 3 1 3 18 0 4 1 0  

NS indicates trait-environments with a non-significant genotype effect, so they were 
excluded from GWAS.  Cells marked NA did not have phenotypic data available. 
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Figure 3.2.  The genomic locations of haplotypes containing at least one QTL. 
Traits include lint percent (GIN), lint yield (LYLD), seed index (SI), bolls per square 
meter (BM2), micronaire (MIC), upper half mean length (UHML), strength (STR), and 
fineness (FINE). 
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Table 3.3.  Summary of 33 haplotype blocks containing a total of 66 QTL 
discovered in one or more of the fourteen environments. 

            Trait Associations (in an Environment) 
Block 
Name 

Chr
. Start_BP End_BP 

# 
SNPs Size (bp) 

Yield 
Component Fiber Quality 

block334 A04     87,526,177   -  1  -   UHML (ALL, BL04, FL05, ST05) 
block337 A04     87,659,548   -  1  -   STR (FL04) 

block484 A05   109,455,966  
  
109,456,985  2 

           
1,019   MIC (BL04) 

block2112 D05     31,885,973  
    
31,909,118  2 

         
23,145   FINE (BL04) 

block2129 D05     54,568,741  
    
56,290,754  15 

    
1,722,013   UHML (ALL, ST06) 

block3004 D06     22,558,506  
    
24,280,462  8 

    
1,721,956   UHML (ALL) 

block3005 D06     24,311,943  
    
44,419,100  73 

  
20,107,157   UHML (ALL) 

block3006 D06     44,581,995  
    
48,762,915  23 

    
4,180,920  GIN (ALL) 

UHML (ALL, BL04, ST05, ST06), STR 
(FL04) 

block3008 D06     51,365,756  
    
55,530,869  6 

    
4,165,113   UHML (ALL, BL04, ST05, ST06) 

block3010 D06     56,811,488  
    
57,049,647  11 

       
238,159   UHML (ALL, BL04, FL04, ST05) 

block3011 D06     57,698,372   -  1  -   
UHML (ALL, BL04, FL04, HV05, ST05, 
ST06) 

block3012 D06     57,719,266   -  1  -   
UHML (ALL, BL04, FL04, HV05, ST05, 
ST06) 

block3023 D06     62,167,861   -  1  -   UHML (ST06) 
block3053 D06     65,908,522   -  1  -   UHML (ALL, ST05, ST06) 
block1572 D07       3,290,140   -  1  -  LYLD (HV04)   

block1577 D07       3,777,721  
      
3,832,375  2 

         
54,654   STR (HV05) 

block729 A08   122,232,937   -  1  -   UHML (FL04) 

block731 A08   122,657,930  
  
122,807,477  7 

       
149,547   UHML (FL04) 

block2813 D08     46,985,484  
    
47,065,574  2 

         
80,090   UHML (TFT06) 

block2840 D08     59,823,829   -  1  -   UHML (ALL, BL04, FL05, ST05) 
block2841 D08     59,823,955   -  1  -   UHML (ALL, BL04, FL05, ST05) 
block2249 D10     55,515,327   -  1  -   MIC (FL06) 

block2429 D11     44,262,307  
    
45,395,526  2 

    
1,133,219  BM2 (ST06)   

block1153 A12   106,449,326   -  1  -  SI (ALL)   

block1227 A13     91,611,120  
    
92,046,527  18 

       
435,407   MIC (TFT06) 

block1229 A13     92,180,691  
    
93,755,726  9 

    
1,575,035  LYLD (ST05)   

block1838 D13       1,178,229   -  1  -  SI (ST05)   

block1840 D13       1,262,304  
      
1,453,941  10 

       
191,637  SI (ST05) STR (FL04), UHML (ST05) 

block1947 D13     64,511,540  
    
64,590,058  3 

         
78,518    UHML (ALL, BL04, ST05) 
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Table 3.4.  Percent residual variance explained by significant haplotype blocks.  
Traits include those for yield components including for lint percent (GIN), lint yield 
(LYLD), boll size (BWT), seed index (SI), and bolls per square meter (BM2) and for 
fiber quality traits include micronaire (MIC), upper half mean length (UHML), strength 
(STR), fineness (FINE), and maturity ratio (MATR).  Phenotypic data is from fourteen 
environments across Mississippi, Georgia, South Carolina, and North Carolina from 
2004-2006.  The number of significant haplotype blocks discovered in each test is listed 
in parentheses. 

Environment GIN LYLD G25B SI BM2 MIC UHML UI STR FINE MATR 

ALL 23% 
(1) - - 17.8% 

(1) - - 59.2% 
(13) - - - - 

Blackville 
2004 - NS NS - NS 21.6% 

(1) 
40.9% 

(9) - - 29.4% 
(1) - 

Blackville 
2005 - - - - - - - - - - - 

Blackville 
2006 - - - - - - - - - NS - 

Florence 2004 - - NS - NS - 44.9% 
(5) - 40% 

(3) - - 

Florence 2005 - - - - - - 30.7% 
(3) - - - - 

Florence 2006 - NA - - NA 20.8% 
(1) - NS - - NS 

Hartsville 2004 - 29.1% 
(1) NS - NS NS - NS - NS NS 

Hartsville 2005 - NA NS - NA - 25.5% 
(2) - 27.9% 

(1) - - 

Rocky Mount 
2005 - - NS - NS - - NS - - NS 

Rocky Mount 
2006 - - - - - NS - - - NS NS 

Stoneville 2005 - 33.6% 
(1) NS 19.8% 

(2) NS NS 50.6% 
(11) - - NS NS 

Stoneville 2006 NS - NS - 5% 
(1) NS 60.7% 

(7) NS - NS NS 

Tifton 2005 - NS - - NS - - NS - NS NS 

Tifton 2006 - - NS - - 0.9% 
(1) 

23.6% 
(1) - - - - 

NS indicates trait-environments with a non-significant genotype effect, so they were 
excluded from GWAS.  Cells marked NA did not have phenotypic data available. 
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Figure 3.3.  Manhattan plots for single marker analysis and haplotype-set 
GWAS.  A: A QTL discovered in haplotype-set GWAS and in single marker analysis; B: 
A QTL discovered in haplotype-set GWAS and not present in single marker analysis.  
Point size is proportional to the MAF of the SNP.  The red horizonal line is Bonferroni 
significance (p < 0.05/# of tests) and the black dashed lines indicate the edges of a 
haplotype block (this corresponding information derived from the haplotype-set GWAS 
is only shown in the single marker analysis plots to make the plots easier to compare). 
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Figure 3.4.  Examples of cross-validation for significant haplotypes discovered in 
GWAS.  Boxplots given for single marker analysis (A1/A2), hierarchical clustering (B), 
and unique haplotypes (C).  ANOVA followed by pairwise t-test were used to test for 
differences between groups. 
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Figure 3.5.  The SNP calls for each genotype at the markers associated with fiber 
strength/length.   The observed haplotypes are T and C (T/C); T and A (T/A); C and C 
(C/C); and C and A (C/A).  One individual was heterozygous at both SNPs in the 
haplotype block (-/-). 
 

 

Supplemental Methods 

Population Structure Analysis 

Expanded pedigrees for each of the 81 genotypes included in this study were 

generated and used to calculate the generalized numerator relationship matrix, ‘A’, with 

NumericwareN (Kim et al. 2016).  The thinned marker set was used to calculate the 

additive kinship matrix, ‘G’, by the first method of VanRaden (2008) with the “G.matrix” 

function  in the R package ‘snpReady’ (Granato and Fritsche-Neto 2018).  The combined 

‘K’ method was used to estimate the individual kinship matrix (Velazco et al. 2019).  We 
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used a w weighting factor 0.20, corresponding to a kinship matrix that is a weighted 

average of 20% ‘A’ and 20% ‘Gs’, the scaled VanRaden matrix according to average 

inbreeding in ‘A’ was estimated by the method in Christensen et al. (2012). ‘Gs’ can be 

calculated by solving the following systems of equations: 

  𝐺𝐺𝑠𝑠 =  𝑋𝑋 ∗  𝐺𝐺 +  𝛼𝛼 Eq. S3.1  

 

 
𝑋𝑋 =   

𝐴𝐴𝐴𝐴𝐴𝐴(𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴(𝐴𝐴))  −  𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴)
𝐴𝐴𝐴𝐴𝐴𝐴(𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴(𝐺𝐺))  −  𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺)

 
Eq. S3.2 

 𝛼𝛼 =  𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴)  −  𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) ∗ 𝑋𝑋 Eq. S3.3 

 

The population substructure matrix, ‘Q’, was estimated using the fastSTRUCTURE 

method with default methods for 1 ≤ k ≤ 10 (Raj et al. 2014).  The optimal number of 

subpopulations, k, was identified by the model complexity that maximized marginal 

likelihood with the “choosek.py” command. 
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Supplemental Figures 

Supplemental Table 3.1.  All non-default settings for programs used in this 
study.     

Task Program Command Flags/Options Explanation 

n/a 

plink 
v1.9 

ALL 
--autosome-
num 26 Sets the chromosome set to 26 chromosomes 
--allow-no-sex Disables the no-sex warnings 

Generatin
g Thinned 
Data Set 

--indep-
pairwise 

2500 kb Set the window size to 2.5 Mb 
1 Set step-size at 1 marker, so all adjacent markers are tested 

0.8 Sets the LD threshold (R2<0.8) for considering SNPs to be 
independent 

Determini
ng 

Linkage-
Based 

Haplotype 
Blocks 

--blocks no-pheno-req Find blocks for all individuals, even with missing phenotypes 
--blocks-
max-kb 10000 Find blocks up to 100 Mb in length 
--blocks-
min-maf  0.025  Only find blocks with a minimum MAF of 2.5% 
--
nonfounder
s 

 
Include non-founders in the analysis 

Phasing 
and 

Missing 
Genotype 
Imputatio

n 

BEAGL
E v5.1 

gt = plink.vcf Reads in the genotype file including 388 improve upland cotton SNP 
genotypes 

chomr = i Selects a single chromosome to run 
out = imput.chr_i Sets the output for chromosome i 

window =  200 Allows BEAGLE to perform imputation on an entire chromosome at 
once, 200 cM windows (1 cM = 1 Mb) 

ne = 10000 Effective population size parameter, reduced due to inbreeding 

burnin = 10 Number of model iterations for determining initial haplotype's [6 is 
default] 

iterations = 50 Number of iterations for determining genotype phasing [12 is 
default] 

phase-
states = 500 Number of model states for genotype phases [280 is default] 

imp-step = 0.05 Minimum length for small IBS segments [default 0.1 cM; 0.05 
corresponds to 50 kb] 

imp-nsteps = 10 Number of steps  used for long IBS segments [default 7] 
Determini
ng HMM-

Based 
Phased 

Haplotype
s 

HaploBl
ocker (R 

pkg 
v1.5.13) 

block_calc
ulation 

adaptive_mode 
= ✓ 

Repeats model runs to identify haplotypes covering targeted 
coverage [default 90% coverage/chr] 

consider_multi 
= ✓ 

Considers multi-level edges to identify blocks, aid in dealing with 
phasing inconsistencies [default ] 

node_min = 2 Merge even two runs of SNPs into a new block [default 5] 

Performin
g SNP-set 

GWAS 

RAINBO
WR (R 

pkg 
v0.1.21) 

RGWAS.m
ultisnp 

ZETA = K Use the design matrix and additive kinship matrix, estimated as 20% 
A (pedigrees) and 80% G (vanRaden marker-based kinship) 

structure.matrix 
= fS Pass the fastSTRUCTURE Q-matrix (k=6) 
gene.set = 
plink_blocks 

Markers assigned to one haplotype block each, with markers without 
nearby SNPs in high LD (r2>0.8) assigned to their own block 

min.maf = 
0.025 Minimum MAF 2.5% [default 0.02] 
test.method = 
"LR" Likelihood-ratio test for estimating p-value for each block 
kernel.method 
= "linear" Linear kernel used for estimating local population structure 
test.effect = 
"additive" Only test for additive SNP effects 
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Supplemental Table 3.2.  Summary of validation of haploblocks via single 
marker analysis, haplotype clustering, and separation into unique haplotype blocks.  
In the second, larger table, the methods used to group plant genotypes for means 
separation are “SMA” (single marker analysis), “Clusters” (hierarchical clustering on the 
haplotypes), and “Unique Haps” (separating out in the substituent haplotypes). 

  BM2 FINE GIN LYLD MIC SI STR UHML SUM 

SMA 0 1 0 2 0 3 3 28 37 

Clusters 1 0 1 0 2 0 1 13 18 

Unique 0 0 0 0 0 0 0 10 10 
** Note: there is 1 haplotype block, MIC (TFT06), that was significant 

In RAINBOW but did not show up in means separation. 65 
 

                  
Significant Effect if 

Grouped By:     

TRAIT ENV BLOCK CHR START END #SNP KB 

Haplo 
-log10 

(P) SMA 
Cluste

rs 
Unique 
Haps 

Group 
Method NOTES 

BM2 ST06 block2429 D11 44.262 45.396 2 1133.22 4.82   TRUE TRUE Clusters Cluster 1 (freq = 26%) has SGFT lower mean 

FINE BL04 block2112 D05 31.886 31.909 2 23.15 4.84 i25750Gh TRUE TRUE SMA 
T allele (freq 8%) has SGFT higher mean; 
- heterozygote (freq 3%) has SGFT higher mean 

GIN ALL block3006 D06 44.582 48.763 23 4180.92 4.85   TRUE TRUE Clusters Clust 2 (freq = 8%) has SGFT lower mean  

LYLD ST05 block1229 A13 92.181 93.756 9 1575.04 5.57 i13404Gh TRUE TRUE SMA A allele (freq 43%) has SGFT lower mean 

LYLD HV04 block1572 D07 3.290 3.290 1 0.00 6.46 i27357Gh TRUE TRUE SMA A allele (freq 8%) has SGFT lower mean 

MIC TFT06 block1227 A13 91.611 92.047 18 435.41 4.94   FALSE FALSE NONE - heterozygote (freq 8%) has NS higher mean 

MIC FL06 block2249 D10 55.515 55.515 1 0.00 4.84   TRUE TRUE Clusters Cluster 2 (freq  = 5%) has NS lower mean 

MIC BL04 block484 A05 109.456 109.457 2 1.02 5.31   TRUE TRUE Clusters Clust 3 (freq = 31%) has SGFT lower mean 

SI ALL block1153 A12 106.449 106.449 1 0.00 5.24 i52326Gb TRUE TRUE SMA T allele (singleton) has NS highest mean 

SI ST05 block1838 D13 1.178 1.178 1 0.00 4.88 i20441Gh TRUE TRUE SMA A allele (freq 16%) has SGFT higher mean 

SI ST05 block1840 D13 1.262 1.454 10 191.64 4.90 i52288Gb TRUE TRUE SMA A allele (freq 16%) has SGFT higher mean 

STR HV05 block1577 D07 3.778 3.832 2 54.65 4.92 i01410Gh TRUE TRUE SMA A allele (freq 26%) has SGFT lower mean 

STR FL04 block1840 D13 1.262 1.454 10 191.64 5.27 i12997Gh TRUE TRUE SMA G allele (freq 9%) has SGFT higher mean 

STR FL04 block3006 D06 44.582 48.763 23 4180.92 5.63   TRUE TRUE Clusters Cluster 2 (freq = 8%) has SGFT higher mean 

STR FL04 block337 A04 87.660 87.660 1 0.00 5.21 i49147Gh TRUE TRUE SMA A allele (freq 3%) has NS higher mean 

UHML ST05 block1840 D13 1.262 1.454 10 191.64 5.15 i12997Gh TRUE TRUE SMA G allele (freq 16%) has SGFT higher mean 

UHML ALL block1947 D13 64.512 64.590 3 78.52 4.99   FALSE TRUE 
Unique 
Haps T-G haplotype (freq = 3%) NS higher mean 

UHML BL04 block1947 D13 64.512 64.590 3 78.52 4.85   FALSE TRUE 
Unique 
Haps T-G haplotype (freq = 3%) SGFT higher mean 

UHML ST05 block1947 D13 64.512 64.590 3 78.52 4.86   FALSE TRUE 
Unique 
Haps T-G (freq  3%) SGFT highest max 

UHML ALL block2129 D05 54.569 56.291 15 1722.01 5.09   FALSE TRUE 
Unique 
Haps 

TTGAC-GAAACGCCA (freq = 5%) SGFT higher 
mean 

UHML ST06 block2129 D05 54.569 56.291 15 1722.01 7.53   FALSE TRUE 
Unique 
Haps 

TTGAC-GAAACGCCA (freq = 5%) SGFT higher 
mean 

UHML TFT06 block2813 D08 46.985 47.066 2 80.09 5.57 i18770Gh FALSE TRUE SMA A allele (freq 38%) has SGFT higher mean 

UHML ALL block2840 D08 59.824 59.824 1 0.00 6.55 i04474Gh TRUE TRUE SMA T allele (freq 3%) has NS highest mean 

UHML BL04 block2840 D08 59.824 59.824 1 0.00 5.10 i04474Gh TRUE TRUE SMA T allele (freq 3%) has SGFT higher mean 

UHML FL05 block2840 D08 59.824 59.824 1 0.00 4.92   TRUE TRUE Clusters Cluster 2 (freq = 3%) has NS higher mean 

UHML ST05 block2840 D08 59.824 59.824 1 0.00 5.57   TRUE TRUE Clusters Cluster 2 (freq = 3%) has SGFT higher mean 
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UHML ALL block2841 D08 59.824 59.824 1 0.00 6.55 i04475Gh TRUE TRUE SMA C allele (freq 3%) has NS highest mean 

UHML BL04 block2841 D08 59.824 59.824 1 0.00 5.10 i04475Gh TRUE TRUE SMA C allele (freq 3%) has SGFT higher mean 

UHML FL05 block2841 D08 59.824 59.824 1 0.00 4.92   TRUE TRUE Clusters Cluster 2 (freq = 3%) has NS higher mean 

UHML ST05 block2841 D08 59.824 59.824 1 0.00 5.57   TRUE TRUE Clusters Cluster 2 (freq = 3%) has SGFT higher mean 

UHML ALL block3004 D06 22.559 24.280 8 1721.96 5.57   TRUE TRUE Clusters Clust 3 (freq 14%) has SGFT lower mean 

UHML ALL block3005 D06 24.312 44.419 73 20107.16 5.25 i48830Gh TRUE TRUE SMA T allele (freq 6%) has NS highest mean 

UHML ALL block3006 D06 44.582 48.763 23 4180.92 6.12 i48875Gh TRUE TRUE SMA G allele (freq 6%) has NS highest mean 

UHML BL04 block3006 D06 44.582 48.763 23 4180.92 5.67 i48875Gh TRUE TRUE SMA G allele (freq 6%) has NS highest mean 

UHML ST05 block3006 D06 44.582 48.763 23 4180.92 5.53   TRUE TRUE Clusters Cluster 2 (freq = 8%) has SGFT higher mean 

UHML ST06 block3006 D06 44.582 48.763 23 4180.92 5.60 i48875Gh TRUE TRUE SMA G allele (freq 6%) has SGFT higher mean 

UHML ALL block3008 D06 51.366 55.531 6 4165.11 5.11 i51081Gb TRUE TRUE SMA G allele (freq 6%) has NS highest mean 

UHML BL04 block3008 D06 51.366 55.531 6 4165.11 5.15 i51081Gb TRUE TRUE SMA G allele (freq 6%) has NS highest mean 

UHML ST05 block3008 D06 51.366 55.531 6 4165.11 5.20   TRUE TRUE Clusters Cluster 2 (freq = 8%) has SGFT higher mean 

UHML ST06 block3008 D06 51.366 55.531 6 4165.11 5.15 i51081Gb TRUE TRUE SMA G allele (freq 6%) has SGFT higher mean 

UHML ALL block3010 D06 56.811 57.050 11 238.16 5.61   FALSE TRUE 
Unique 
Haps 

AGGACG-TAAA (freq = 3%) NS higher mean; 
------------ (freq = 7%) NS lower mean 

UHML BL04 block3010 D06 56.811 57.050 11 238.16 5.15   FALSE TRUE 
Unique 
Haps 

AGGACG-TAAA (freq = 3%) SGFT higher mean; 
------------ (freq = 7%) NS lower mean 

UHML FL04 block3010 D06 56.811 57.050 11 238.16 5.00   FALSE TRUE 
Unique 
Haps AGGACG-TAA (freq = 3%) SGFT highest mean 

UHML ST05 block3010 D06 56.811 57.050 11 238.16 6.55   FALSE TRUE 
Unique 
Haps AGGACG-TAA (freq = 3%) SGFT highest mean 

UHML ALL block3011 D06 57.698 57.698 1 0.00 6.75 i11222Gh TRUE TRUE SMA A allele (freq 4%) has SGFT highest mean 

UHML BL04 block3011 D06 57.698 57.698 1 0.00 6.32 i11222Gh TRUE TRUE SMA A allele (freq 4%) has SGFT highest mean 

UHML FL04 block3011 D06 57.698 57.698 1 0.00 5.23 i11222Gh TRUE TRUE SMA A allele (freq 4%) has SGFT higher mean 

UHML HV05 block3011 D06 57.698 57.698 1 0.00 5.13   TRUE TRUE Clusters Cluster 2 (freq = 4%) has NS higher mean 

UHML ST05 block3011 D06 57.698 57.698 1 0.00 7.60 i11222Gh TRUE TRUE SMA A allele (freq 4%) has SGFT higher mean 

UHML ST06 block3011 D06 57.698 57.698 1 0.00 5.56 i11222Gh TRUE TRUE SMA A allele (freq 4%) has SGFT higher mean 

UHML ALL block3012 D06 57.719 57.719 1 0.00 6.75 i19972Gh TRUE TRUE SMA A allele (freq 4%) has SGFT highest mean 

UHML BL04 block3012 D06 57.719 57.719 1 0.00 6.32 i19972Gh TRUE TRUE SMA A allele (freq 4%) has SGFT highest mean 

UHML FL04 block3012 D06 57.719 57.719 1 0.00 5.23 i19972Gh TRUE TRUE SMA A allele (freq 4%) has SGFT higher mean 

UHML HV05 block3012 D06 57.719 57.719 1 0.00 5.13   TRUE TRUE Clusters Cluster 2 (freq = 4%) has NS higher mean 

UHML ST05 block3012 D06 57.719 57.719 1 0.00 7.60 i19972Gh TRUE TRUE SMA A allele (freq 4%) has SGFT higher mean 

UHML ST06 block3012 D06 57.719 57.719 1 0.00 5.56 i19972Gh TRUE TRUE SMA A allele (freq 4%) has SGFT higher mean 

UHML ST06 block3023 D06 62.168 62.168 1 0.00 4.97 i28160Gh TRUE TRUE SMA C allele (freq 6%) has SGFT higher mean) 

UHML ALL block3053 D06 65.909 65.909 1 0.00 5.03   TRUE TRUE Clusters Clust 2 (freq = 8%) has SGFT higher mean 

UHML ST05 block3053 D06 65.909 65.909 1 0.00 5.21   TRUE TRUE Clusters Cluster 2 (freq = 8%) has SGFT higher mean 

UHML ST06 block3053 D06 65.909 65.909 1 0.00 5.14 i17287Gh TRUE TRUE SMA T allele (freq 8%) has SGFT higher mean 

UHML ALL block334 A04 87.526 87.526 1 0.00 6.49 i25348Gh TRUE TRUE SMA C allele (freq 3%) has NS highest mean 

UHML BL04 block334 A04 87.526 87.526 1 0.00 5.40 i25348Gh TRUE TRUE SMA C allele (freq 3%) has SGFT higher mean 

UHML FL05 block334 A04 87.526 87.526 1 0.00 4.99   TRUE TRUE Clusters Cluster 3 (freq = 3%) has NS higher mean 

UHML ST05 block334 A04 87.526 87.526 1 0.00 5.66   TRUE TRUE Clusters 
Clusters 2 (freq = 4%) and cluster 3 (freq = 3%) has 
SGFT higher mean 

UHML FL04 block729 A08 122.233 122.233 1 0.00 5.24 i46570Gh TRUE TRUE SMA G allele (freq 6%) has SGFT higher mean 

UHML FL04 block731 A08 122.658 122.807 7 149.55 5.48   FALSE TRUE 
Unique 
Haps CAAATAA (freq = 5%) SGFT highest mean 
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CHAPTER FOUR 

FINAL CONCLUSIONS AND REMARKS 

Cotton breeders in the Pee Dee breeding program have managed to breed germplasm 

lines and cultivars having improved fiber quality while maintaining an adequate standard 

of yield.  In addition, our work here shows that they were able to accomplish those tasks 

with an apparently narrows genetic base while maintaining genetic diversity and 

generating novel allelic combinations. 

Examination of genome-wide SNP data revealed genetic diversity across 26 

chromosomes, although the level of diversity was variable.  Multiple population structure 

evaluation techniques painted a similar picture, which is that clustering and phylogenetic 

analysis was able to recover some of the original breeding groups in the program, but 

within-group variation stay approximately constant level over time.  Mutations in genes 

associated with host-plant resistance to disease and insects as well as genes potentially 

involved in cotton fiber development helped discriminate genotypes from the Pee Dee 

program compared to other improved upland cotton from around the world. 

Haplotype association analysis helped us understand how the genetic variation within 

the breeding program correlates with fiber quality and field performance.  We found that 

some rare variants from Sea Island cotton likely conferred longer, stronger fiber alleles at 

the detriment of yield components.  Additionally, we found that the predictive capacity of 

our genetic model highly depended on the environment in which data was collected, 

implicating a strong genotype by environment effect on all the studied traits in this 

population. 
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The results of our work have helped us answer multiple research questions.  We 

expected that genome-wide genetic markers would reflect the history of the breeding 

program, which we definitely found.  However, unexpectedly, we found levels of genetic 

diversity on-par with much larger samples of upland cotton, suggesting that the breeding 

techniques and selection methods favored sustained genetic diversity over narrowing of 

the gene pool.  We also found many QTL associated with improved fiber length and 

strength, but our ability to detect genomic regions underlying other traits was limited, 

despite ample variation for those traits.  External environmental effects or non-additive 

genetic effects likely impact the ability to detect a signal with SNPs alone. 

Despite the limitations of our work, there are many practical applications for 

continued improvement of cotton.  The haplotypes or significant SNPs reported here can 

be used directly for introgression breeding by anyone who has the ability to score 

genotypes in their breeding program.  The data presented here could also be used in a 

genomic selection regime to optimize crosses and predict the population sizes necessary 

to capture rare recombinants for even higher yielding, better-quality cotton.  In addition 

to the plant breeding applications, we have also presented a model that other biologists 

can use to study diversity in inbred, pedigreed germplasm collections. 
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Appendix A 

Appendix for Chapters One, Two, Three and Four 

Table A.1.  List of Genotypes in Chapter Two and Three.  The numbers in the 
group column correspond to the Pee Dee Breeding Group or W if it from the world 
improve upland cotton germplasm. “2” were used in diversity analysis, “3” in GWAS. 

Genotype Group Chapter  Genotype Group Chapter  Genotype Group Chapter 
AC-235 1 2 & 3  PD648 6 2 & 3  Acala-1517-99 W 2 
AC-241 1 2 & 3  PD683 6 2 & 3  Acala-1517-New-Mexico W 2 
EARLISTAPLE-7 1 2 & 3  PD723 6 2 & 3  Acala-5_PI-529169 W 2 
EARLISTAPLE-7 (AHK) 1 2  PD738 6 2 & 3  Acala-Maxxa W 2 
F 1 2  PD741 6 2 & 3  Acala-Royale W 2 
FJA 1 2 & 3  PD747 6 2 & 3  Acala-Ultima W 2 
FTA 1 2 & 3  PD753 6 2 & 3  AK-DJURA-182 W 2 
Hy-330-278 1 2 & 3  PD756 6 2 & 3  ALA-70-236 W 2 
Sealand-3 (AHK) 1 2  PD761 6 2 & 3  ALBAR-627 W 2 
Sealand-542 1 2 & 3  PD762 6 2 & 3  ALBAR-K-603 W 2 
Sealand-542 (AHK) 1 2  PD771 6 2 & 3  ALEPPO-I_PI-529450 W 2 
Sealand-7-Yellow-Flower (AHK) 1 2  PD778 6 2 & 3  Allen-333_PI-392289 W 2 
PD2164 (AHK) 2 2  PD781 6 2 & 3  All-Tex-Atlas W 2 
PD2165-242 2 2 & 3  PD785 6 2 & 3  Arkansas-10 W 2 
PD2165-242 (AHK) 2 2  PD804 6 2  ARKOT-8102 W 2 
PD2165-618 2 2  PD878 6 2 & 3  ARKOT-8606 W 2 
PD259 2 2 & 3  PD948 6 2 & 3  AUBURN-56_PI-529215 W 2 
PD3246 2 2 & 3  PD5246 7 2 & 3  AUBURN-634-RNR W 2 
PD3249 2 2 & 3  PD5256 7 2 & 3  B163-AH-P9-029-GIBAND W 2 
PD4381 2 2 & 3  PD5256 (AHK) 7 2 & 3  Beli-Ivzor W 2 
PD4461Q 2 2 & 3  PD5286 7 2 & 3  Big-Boll-Triumph W 2 
PD4548 2 2  PD5358 7 2 & 3  BJA-592 W 2 
PD109 3 2 & 3  PD5363 7 2 & 3  BJA-Glandless-Nectariless W 2 
PD111 3 2 & 3  PD5377 7 2 & 3  Blightmaster W 2 
PD113 3 2 & 3  PD5380 7 2 & 3  BPA-68_PI-365538 W 2 
PD8619 3 2 & 3  PD5472 7 2  BRS-269 W 2 
PD9223 3 2 & 3  PD5529 7 2  BRS-286 W 2 
PD9232 3 2 & 3  PD5576 7 2  BRS-293 W 2 
PD9241 3 2  PD5582 7 2  BRS-335 W 2 
PD9363 3 2 & 3  PD-3-14 8 2  BRS-336 W 2 
PD9364 3 2 & 3  PD93001 8 2 & 3  BRS-372 W 2 
PD9364 (AHK) 3 2  PD93001 (AHK) 8 2  Bulgaria-P73 W 2 
SC-1 3 2 & 3  PD93002 8 2 & 3  CABD3CABCH-1-89 W 2 
PD-1 4 2 & 3  PD93003 8 2  CABD3SHP3S-1-90 W 2 
PD-1 (AHK1) 4 2  PD93004 8 2 & 3  CAHUGLBBCS-1-88 W 2 
PD-1 (AHK2) 4 2  PD93007 8 2 & 3  Cambodia-4 W 2 
PD-2 4 2 & 3  PD93007 (AHK) 8 2 & 3  CASCOT-B-2 W 2 
PD-2 (AHK) 4 2  PD93009 8 2  CD3HCHULBH-1-88 W 2 
PD-3 4 2 & 3  PD93019 8 2 & 3  CD-408 W 2 
PD-3 (AHK) 4 2  PD93021 8 2 & 3  CD-410 W 2 
PD6044 4 2 & 3  PD93030 8 2 & 3  Central W 2 
PD6132 4 2 & 3  PD93030 (AHK) 8 2 & 3  Chaco-510-INTA W 2 
PD6179 4 2 & 3  PD93034 8 2 & 3  Chaco-520 W 2 
PD6186 4 2 & 3  PD93043 8 2 & 3  Christidis-53D7 W 2 
PD6208 4 2  PD93046 8 2  Chureza-87 W 2 
PD6520 4 2  PD93057 8 2  Ciano-Cocorium-92 W 2 
PD6992 4 2 & 3  PD94042 8 2  Cleveland-WR-Wannamakers W 2 
PD875 4 2 & 3  PD94045 8 2  CO27GH-Guazuncho-2-Lacape W 2 
PD695 5 2 & 3  PD97006 8 2  Coker-100-Wilt_PI-528761 W 2 
PD7388 5 2 & 3  PD97019 8 2  Coker-201_PI-529247 W 2 
PD7439 5 2 & 3  PD97021 8 2  Coker-312_PI-529278 W 2 
PD7458 5 2 & 3  PD97047 8 2 & 3  Coker-312_VanDeynze W 2 
PD7496 5 2 & 3  PD97072 8 2 & 3  Coker-315_IW-004 W 2 
PD7501 5 2 & 3  PD97100 8 2 & 3  Coker-315_Wilson W 2 
PD7586 5 2 & 3  PD97101 8 2 & 3  Cokers-Clevewilt-3 W 2 
PD7723 5 2 & 3  08-WZ-51 W 2  Columbia_PI-528743 W 2 
PD781 (AHK) 5 2  320F_PI-529233 W 2  Cook-912-Pope-Clean-Seed W 2 
PD785 (AHK) 5 2  4S-180_PI-529496 W 2  Cristina W 2 
PD648 6 2 & 3  A-618 W 2  Dehkanin W 2 
PD683 6 2 & 3  A-637-33 W 2  Dekalb-220_PI-529222 W 2 
PD723 6 2 & 3  Acala-NEM-X1 W 2  Del-Cerro_PI-529358 W 2 
PD738 6 2 & 3  Acala-NEM-X2 W 2  DELCOT-277_PI-529258 W 2 
PD741 6 2 & 3  Acala-111-Rogers W 2  DELTA-OPAL_IW-124 W 2 
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Genotype Group Chapter  Genotype Group Chapter  Genotype Group Chapter 
DELTA-OPAL_IW-325 W 2  LBBCDBOAKH-1-90 W 2  Saenz-Pena-61 W 2 
DELTA-OPAL_IW-344 W 2  Li1 W 2  Satu-65_PI-529308 W 2 
Deridder-Red W 2  Liao-Mian-7 W 2  SG-1001 W 2 
DES-56 W 2  Lightning-Express W 2  SG-747 W 2 
DES-716 W 2  Limpopo W 2  Shan-5245 W 2 
Dixie-King_PI-529021 W 2  Lisina-11 W 2  Shan-5710 W 2 
Dixie-Triumph W 2  Lockett-1_PI-529115 W 2  Sicala-3-2 W 2 
Dixie-Triumph-Wannamakers W 2  Lockett-BXL W 2  Sicala-40 W 2 
DP-10-1 W 2  Lone-Star_PI-528636 W 2  Sicala-40-FM-966 W 2 
DP-12_PI-528768 W 2  Lu-Mian-14 W 2  Sicala-V-2-FM-989 W 2 
DP-14_PI-528970 W 2  Lu-Mian-14_IW W 2  Sicot-189 W 2 
DP-16_IW-337 W 2  Lu-Mian-14_IW-074 W 2  Sicot-53 W 2 
DP-16_PI-529251 W 2  M-188-RNR W 2  Sicot-70 W 2 
DP-20 W 2  M-240 W 2  Sicot-71 W 2 
DP-25_PI-529280 W 2  MAC7-0238 W 2  Sicot-81 W 2 
DP-491 W 2  Magnolia_PI-529033 W 2  Sicot-F-1 W 2 
DP-50_PI-529566 W 2  MAR5PD208S-4-90 W 2  Sicot-F-1_IW-252 W 2 
DP-55 W 2  McNair-210_PI-529589 W 2  Sioka-1-4 W 2 
DP-5690 W 2  McNair-235_PI-529526 W 2  Soutland-M1 W 2 
DP-6_PI-528969 W 2  MD-26-NE W 2  ST-213_PI-529229 W 2 
DP-66_PI-529565 W 2  MD51-NE W 2  ST-256 W 2 
DP-80 W 2  MD-52-NE W 2  ST-2C W 2 
DP-826 W 2  MD-90-NE W 2  ST-453_PI-601544 W 2 
DP-90 W 2  Meade-Clean-Seed W 2  ST-474 W 2 
DP-90_IW-081 W 2  Mebane_PI-528985 W 2  ST-825 W 2 
DP-Smoothleaf W 2  Namcala W 2  Station-Miller-F W 2 
Dunn-219 W 2  Namcala_IW-314 W 2  Storm-King-TPSA-1 W 2 
Dunn-325 W 2  NC-88-95 W 2  TAM-2562-RKNR W 2 
Empire-WR-61_PI-529224 W 2  New-Boykin_PI-528984 W 2  TAM-90J-57S W 2 
Express-121 W 2  NM24016 W 2  TAM-98D-102 W 2 
Felistana W 2  Northern-Star W 2  TAMCOT-CAMD-E W 2 
FK-290 W 2  NTA-90-8 W 2  TAMCOT-Luxor W 2 
FM-832 W 2  Ogosta W 2  TAMCOT-Pyramid W 2 
FM-993 W 2  PAK-4F_PI-529301 W 2  TAMCOT-SP21 W 2 
FMT-701 W 2  PHY-72-Acala W 2  TAMCOT-SP23 W 2 
FMT-709 W 2  PHY-PSC-355 W 2  TAMCOT-SP37_IW-142 W 2 
GA98028 W 2  PM-101 W 2  TAMCOT-SP37_PI-529637 W 2 
Garant W 2  PM-145 W 2  TAMCOT-Sphinx W 2 
Georgia-King W 2  PM-303_PI-529605 W 2  TASHKENT-I_PI-529447 W 2 
Gregg W 2  PM-54 W 2  TASHKENT-II_PI-529448 W 2 
Gringo-Inta W 2  PM-784 W 2  TASHKENT-III_PI-529449 W 2 
GUAZUNCHO-2 W 2  PM-792 W 2  Tejas W 2 
H-1220 W 2  PMHS-200 W 2  Tidewater-29 W 2 
Half-and-Half_PI-528964 W 2  PMHS-26 W 2  TM-1 W 2 
Hart W 2  Pope W 2  Toole W 2 
Hopi-Moencopi W 2  Pora-Inta W 2  UK-64 W 2 
IAC-17 W 2  R1TM1-GH W 2  UK-77 W 2 
IAC-18 W 2  Reba-B-50_PI-529325 W 2  Victoria_PI-606816 W 2 
IAC-25-RMD W 2  Reba-P-279 W 2  VIR-5850 W 2 
IMA-12427 W 2  Reba-P279_AH-531 W 2  VIR-5913 W 2 
IMA-1318 W 2  Reba-P-288 W 2  VIR-6615 W 2 
IMA-3869 W 2  Rex W 2  VIR-7263 W 2 
IMA-6035 W 2  Riverina-Paplar W 2  Westburn W 2 
IMACD-8276 W 2  RN-96527 W 2  Western-Stormproof W 2 
IM-GH W 2  RN-96625-1 W 2  Wilds-18_PI-528781 W 2 
IRMA-D-742 W 2  Rogers-GL-7 W 2  Zhong-Mian-Suo-7 W 2 
Jiangsu-Mian-3_PI-529478 W 2  SA-1441_PI-529495 W 2  Zhong-Mian-Suo-8 W 2 
LA-887_PI-547084 W 2  SA-2330 W 2  Zhong-Mian-Suo-9 W 2 
Lambright-2020-A W 2  SA-2454 W 2     
Lankart-57_PI-528822 W 2  Sabie W 2     
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Figure A.1.  Polymorphic information content for each single SNP or haplotype 
block.   The PIC was calculated by with the “polysat” package in R. 
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Table A.2.  Polymorphic Information Content for the haplotypes in Chapter 
Three. A higher number indicate better utility for breeding. 

Haplotype 
Block 

Polymorphic Information 
Content 

 

block3004 0.7162  
block704 0.6556  
block3005 0.6348  
block1577 0.5900  
block935 0.5588  
block2813 0.5114  
block1229 0.4956  
block731 0.4852  
block2129 0.4510  
block484 0.3688  
block398 0.3648  
block2429 0.3526  
block2304 0.3475  
block1840 0.3268  
block3010 0.3254  
block1227 0.3031  
block3008 0.2896  
block1838 0.2787  
block1947 0.2095  
block3023 0.1638  
block2112 0.1469  
block729 0.1469  
block1572 0.1382  
block3006 0.1334  
block3053 0.1291  
block2249 0.1198  
block334 0.0802  
block3011 0.0696  
block3012 0.0696  
block1153 0.0587  
block2840 0.0587  
block2841 0.0587  
block337 0.0587  
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