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ABSTRACT 

Polymer Hermetic Sealed (PHS) Tantalum capacitors with pre-polymerized 

PEDOT cathodes and different dielectric thicknesses were used to study the stability of 

Polymer Tantalum capacitors under different environmental conditions. In particular, 

capacitance dependence on temperature, frequency, and dc bias voltage were studied in 

humid and dry capacitors with varying dielectric thicknesses. Capacitance and ESR 

measurements were performed to characterize the capacitors. 

Humid capacitors were observed to have higher capacitance than dry capacitors for 

all dielectric thicknesses. The capacitance for all dielectric thicknesses was observed to 

increase with temperature in both humid and dry capacitors.  Humid capacitors showed a 

stronger temperature dependence at lower temperatures while dry capacitors showed a 

stronger temperature dependence at higher temperatures. These temperature effects were 

more pronounced in thinner dielectric capacitors, and the results were explained by the 

integrity of the dielectric-polymer interface. The capacitance for all dielectric thicknesses 

was also observed to decrease with an increase in frequency, both in humid and dry 

capacitors. The frequency effect was more pronounced in humid capacitors with thinner 

dielectrics. These results were explained by the RC ladder effect, secondary transitions of 

the polar segments of the polymer cathode, and lower reactance and lower self-resonance 

frequency of the thinner dielectric capacitors. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Electrolytic Capacitors 

The discovery of Electrolytic capacitors started with the discovery of valve metals. 

Valve metals are anodes that when inserted in an electrolyte solution form a surface oxide 

layer, which increases resistance of the metal and blocks the current flow [1]. This behavior 

of metal was first discovered by Eugene Ducretet in 1875, which then led to the discovery 

of the Electrolytic capacitor. Electrolytic capacitors that were made of aluminum metal 

were used in AC motors in the 1890s, but none of them were stable. The first stable 

Electrolytic capacitors were developed by Charles Pollak, which he received the patent for 

in 1896 [2]. 

Electrolytic capacitors have metals as an anode, metallic oxide grown on top of the 

metal as a dielectric, and a conductive electrolyte as a cathode. The conductive electrolyte 

could be a liquid solution or a solid. Capacitors with a liquid electrolyte solution are called 

Wet Electrolytic Capacitors, and capacitors with a solid electrolyte are called Solid (or 

Dry) Electrolytic Capacitors. The dielectric thickness of an Electrolytic capacitor is very 

thin compared to capacitors with a plastic dielectric, and this capability of Electrolytic 

capacitors allows for making a capacitor that has a high capacitance in a small volume. In 

Figure 1.1 a photograph of an Electrolytic capacitor from 1914 is shown, which was much 

smaller than any other type of capacitor at the time. 
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Figure 1.1. Electrolytic capacitor from 1914 (oldest known photograph of an Electrolytic 

capacitor), about 5cm in length and 1.5 cm in diameter with a capacitance of 

approximately 2 µF [1]. 

Different metals have been used as the anode for Electrolytic capacitors, but the 

most common ones are Aluminum and Tantalum. Another metal that is often used is 

Niobium. In Figure 1.2 the various metals and electrolytes used in Electrolytic capacitors 

are shown.  
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Figure 1.2. Various types of Electrolytic capacitors [3] 

 

The basic structure of an Electrolytic capacitor is similar to a parallel plate 

capacitor. For this reason, the capacitance of an Electrolytic capacitor can be modeled as a 

parallel plate capacitor, where the capacitance is given by: 

 

𝐶𝐶 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝐴𝐴
𝑑𝑑

     1.1  

 

where 𝜀𝜀0 is the permittivity of free space, 𝜀𝜀𝑟𝑟 is the relative permittivity of the dielectric, A 

is the area of the capacitor, and d is the dielectric thickness. As shown in Equation 1.1, the 
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capacitance of a capacitor can be increased by using a dielectric material with high 

dielectric constant, large surface area and small thickness. 

 

1.2 Wet Electrolytic Capacitors 

Wet Electrolytic capacitors are a type of capacitor where a conductive liquid 

electrolyte solution is used as a cathode. The dielectric of a Wet Electrolytic capacitor is 

formed by inserting the anode metal into an electrolyte bath, applying voltage and passing 

current through it to form an oxide layer. This electrochemical process of forming the oxide 

layer is known as anodization. In Figure 1.3 the anodization process is illustrated. The 

thickness of the oxide layer is controlled by the applied voltage, also known as the 

formation voltage, which is applied between the anode metal and the electrolyte bath. This 

ability of forming a thin oxide layer allows us make capacitors that have a large 

capacitance. However, the oxide growth rate is different from metal to metal. For example, 

for Tantalum capacitors the oxide growth rate is 1.7 nm/V [4], whereas for Aluminum it is 

1.36 nm/V [5]. There is also a limit to the voltage applied across the electrodes to form the 

oxide layer. If the voltage goes above this limit, the impurities in the anode and the 

temperature of the electrolyte bath will cause the dielectric oxide to break down. Aluminum 

has a limit of 1100 V for a maximum thickness of 1.5 µm, and Tantalum has a limit of 700 

V for a thickness of 1.1 µm [5].  

 



5 

Figure 1.3. Principle of anodic oxidation [1] 

There is a two-fold advantage for using Wet Electrolytic capacitors. First, since the 

cathode is a liquid electrolyte it conforms to the dielectric surface, giving it a large surface 

area and thus, a large capacitance. Second, the ability to reform the dielectric at the fault 

(or defect) site during capacitor operation. Impurities on the anode metal or in the 

electrolyte solution used for dielectric formation, create a fault site within the dielectric 

layer. These faults can reside as inclusions of a conductive element in the dielectric and 

lead to the breakdown of the dielectric at lower voltages [4]. In Wet Electrolytic capacitors, 

however, the dielectric layer can be reformed at the fault sites. Since an electrolyte is used 

as a cathode, the anodization process that is used to form the dielectric layer can be used 

to reform the dielectric layer at the fault sites. 
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1.3 Polar and Non-Polar Capacitors 

Based on their polarities and connection to the circuit, capacitors are classified as 

polar or non-polar capacitors. Non-polar capacitors, also known as bipolar capacitors, can 

be connected either way in a circuit, and do not have a distinct polarity. Also, they have 

less leakage current, but they are bigger in size than polar capacitors of the same 

capacitance. Common examples of non-polar capacitors are Ceramic and Mica. On the 

other hand, Polar capacitors are polarity dependent and must be connected in a circuit 

taking their polarity into consideration. Their polarity is labeled on the capacitor case. The 

positive terminal is always connected to the anode and negative terminal to the cathode. If 

they are connected in a circuit in “reverse” polarity, the capacitor, and perhaps the whole 

circuit, can be damaged permanently. Most Electrolytic capacitors are polar capacitors. 

The polarity used in Electrolytic capacitors for circuit connection must be the same as the 

polarity used for the formation of the oxide layer. Reversing the polarities might dissolve 

the oxide layer in the electrolyte and short the capacitor, or in extreme cases the electrolyte 

can heat up and explode [6]. Thus, it is very essential that Electrolytic capacitors are 

connected according to their polarities. 

1.4 Summary of Chapters 

In Chapter 2, the electrical model and some parameters of Electrolytic capacitors 

are discussed. Terms such as dc leakage (DCL), breakdown voltage (BDV), working 

voltage (WV), equivalent series resistance (ESR), and equivalent series inductance (ESL), 

are defined in detail.  
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In Chapter 3, the history of the Tantalum Electrolytic capacitor is reviewed in detail. 

The first Tantalum Electrolytic capacitor was a Wet Tantalum capacitor, which was 

manufactured in the 1940s. Subsequently the Solid Tantalum capacitor was developed in 

the 1950s by Bell Labs, using MnO2 as a solid electrolyte cathode. Fabrication of both Wet 

and Solid Electrolytic Tantalum capacitors are discussed in detail. The instability of 

Tantalum-MnO2 capacitors at high frequency operations is also discussed, where its 

instability is explained using the Resistance-Capacitance (RC) Ladder effect. Furthermore, 

the self-healing property and failure modes of Tantalum-MnO2 capacitors are discussed.  

In Chapter 4, the Polymer Tantalum capacitor is discussed with some historical 

perspective. Some of the benefits of Polymer Tantalum capacitors in comparison to 

Tantalum-MnO2 capacitors are discussed. Fabrication of Polymer Tantalum capacitors, 

especially the two different methods of depositing PEDOT onto the dielectric oxide, is 

discussed. The advantages of using Polymer Hermetic Sealed (PHS) capacitors are also 

discussed. Finally, some new technologies, including Flawless Dielectric Technology (F-

Tech) and Simulated Breakdown Screening (SBDS), are presented.  

In Chapter 5, the fabrication process of the PHS capacitors that are used in this 

research are presented. The electrical measurements employed to characterize the 

capacitors are also presented in this chapter. 

In Chapter 6, the results of the electrical measurements are presented and discussed. 

Capacitance dependence on temperature (C(T)), capacitance dependence on frequency 

(C(f)), and capacitance dependence on dc bias voltage (C(V)) for different dielectric 

thicknesses of the Polymer Tantalum capacitors are investigated under dry and humid 
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conditions. The results are explained using models that are consistent with the known 

theories. 

In Chapter 8, the final chapter, the results from previous chapters are summarized. 

Ideas for future work that would improve the capacitance stability of Polymer Tantalum 

capacitors are also presented. 
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CHAPTER 2 
 

ELECTRICAL MODEL AND PARAMETERS OF ELECTROLYTIC 
CAPACITORS 

 
 

The dielectric that is grown between the anode and the cathode electrode has a very 

high resistance, and its main purpose is to keep the anode and the cathode at a certain 

distance and prevent any flow of current between the anode and the cathode. However, 

capacitors usually experience a relatively small current through the dielectric. This small 

current through the dielectric is known as dc leakage (DCL), or leakage current. The 

leakage current can occur when there are impurities on the electrodes of the capacitor. The 

dielectrics formed over these impurities does not form a strong bond. When a very high dc 

voltage is applied across the capacitor, these bonds can break down and lead to the leakage 

current. The leakage current is proportional to the applied voltage; as the dc voltage applied 

across the capacitor increases, the insulation of the dielectric becomes weaker and the 

leakage current through the dielectric increases. In addition to the electrodes, the leakage 

current is also affected by the strength and thickness of the dielectric. The voltage that 

results in this leakage current in the capacitor is called the Breakdown Voltage (BDV). To 

avoid the leakage current, capacitors are usually manufactured to operate at below half of 

their breakdown voltage. It is dangerous to operate capacitors at their breakdown voltage. 

A high voltage might overheat the capacitor, which results failure in the capacitor and 

sometimes this failure could be an explosion which affects other components that are in 

close proximity to the capacitor. The maximum voltage at which the capacitor operates 
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safely and reliably is called the Working Voltage (WV). The working voltage is determined 

by the manufacturer based on reliability and life tests on a large number of capacitors.  

Another important parameter of Electrolytic capacitors is the maximum reverse 

voltage. The maximum reverse voltage, as the name implies, is the maximum voltage that 

can be applied at a reverse polarity without any damage to the capacitor. This is typically 

a very small voltage for Electrolytic capacitors due to their polar nature. Electrolytic 

capacitors are polar capacitors and applying a high reverse voltage dissolves the oxide layer 

in the capacitor and shorts the capacitor [6]. That is why some capacitor manufacturers 

advise not to use Electrolytic capacitors in a circuit where a reverse voltage could be 

applied across the capacitor. But if a reverse voltage must be applied, manufacturers give 

general guidelines on the maximum reverse voltage that can be applied on the Electrolytic 

capacitors. For example, the most common guidelines for Tantalum Electrolytic capacitors 

are: 10% of the working voltage to a maximum of 1 V at 25˚C, 3% of the working voltage 

to a maximum of 0.5 V at 85˚C, and 1% of the working voltage to a maximum 0.1 V at 

125˚C [7]. Applying a reverse voltage that is bigger than these maximum reverse voltages, 

results in failure in the capacitor, and in an extreme case it might even lead to an explosion 

of the capacitor. Therefore, it is crucial not to exceed the maximum reverse voltage of 

Electrolytic capacitors.  

Practically, capacitors are not ideal, they always have some parasitic components 

that affects their performance and reliability. Some of these parasitic components are 

illustrated in the circuit model of a capacitor that is shown in Figure 2.1. The Effective 

Series Resistance (ESR), also denoted as RS in Figure 2.1, is a frequency dependent 
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parasitic element. The parameters that contribute to the ESR are the lead wire resistance, 

the electrode resistance, and the dielectric loss. The dielectric loss is the energy loss that 

goes into heating the dielectric material when AC voltage is applied. It is essential for the 

ESR to be as low as possible, because high ESR dissipates heat in the capacitor and affects 

the capacitor operation and reduce the expected lifetime of the capacitor, especially for 

those capacitors used in power supply and high frequency applications. The Effective 

Series Inductance (ESL), also denoted as LS in Figure 2.1, is a restriction of current through 

a defined path. The current into and out of the plates of the capacitor must follow a 

restricted path defined by the dimensional properties of the capacitor’s plate [8]. The longer 

is the restricted path, the higher is the ESL. Therefore, ESL determines the speed at which 

the stored energy of a capacitor is transferred to a load. The speed of this energy transfer 

increases as ESL decreases. This is critical for digital circuit applications, such as, 

microprocessors, and therefore, it is essential for ESL to be as low as possible. RP is the 

insulation resistance or the leakage resistance of the capacitor. It determines the ability of 

the dielectric to resist the dc leakage current. CD is the inherent dielectric absorption. 

Dielectric absorption is the measure of the reluctance of the dielectric to give up its 

electrons, which in other words is the incomplete discharge of the capacitor. This is an 

intrinsic property of the material and increases with the dielectric constant [9]. Finally, RD 

is the dielectric loss due to dielectric absorption and molecular polarization [10], and it 

need to be kept as low as possible. Thus, to increase a capacitor’s performance and 

reliability, the values of parasitic elements, such as ESR, ESL, RD and CD, must be as low 

as possible, and RP must be as high as possible.  
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Figure 2.1. Simplified circuit model of a capacitor [10] 

Electrolytic capacitors have higher capacitance per unit volume than any other 

capacitors, which results high volumetric efficiency. Volumetric efficiency is the amount 

of charge that can be held within a given volume. Since charge is the product of capacitance 

and voltage (𝑄𝑄 = 𝐶𝐶 ∙ 𝑉𝑉), volumetric efficiency is measured using the product of 

capacitance and voltage per unit volume or gram, which is expressed as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝐸𝐸 = 𝐶𝐶∙𝑉𝑉
𝑐𝑐𝑐𝑐

 2.1 
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where C is the capacitance, V is the voltage, and cc is the volume in cubic centimeters. 

There are two main reasons for having high volumetric efficiency in Electrolytic 

capacitors, the first one is the large surface area of the dielectric/electrode interface and the 

second one is the small dielectric thickness. This high volumetric efficiency of Electrolytic 

capacitors allows capacitors to be miniaturized, which makes them attractive for military, 

space, and medical applications. 

 

When fabricating Electrolytic capacitors all the above discussed parameters and 

parasitic components must be taken into consideration. In order to avoid leakage current 

and operate capacitors safely, the applied voltage across the capacitors must be under the 

maximum working voltage of the capacitor, which is usually half of the breakdown voltage, 

and the capacitors should not be connected in a reverse bias polarity (- on the anode side 

and + on the cathode side); however, if they are connected in a reverse bias polarity, the 

voltage must be below the maximum reverse voltage. Moreover, to manufacture 

Electrolytic capacitors that have small power loss, high speed of energy transfer to the load, 

stable with frequency, long lifetime, and high reliability, the values of ESR, ESL, RD and 

CD, must be as low as possible, while keeping the leakage resistance (RP) as high as 

possible. 
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CHAPTER 3 

HISTORY OF TANTALUM CAPACITORS 

3.1 Introduction 

Even though Tantalum is a more expensive metal than Aluminum, Tantalum 

capacitors are used extensively throughout the world. That is because of some of the 

benefits Tantalum has over Aluminum metal. Tantalum’s anodic oxide, Ta2O5, has higher 

dielectric constant than Aluminum’s anodic oxide, Al2O3, which allows manufacturers to 

miniaturize the capacitor’s size. The oxide of Tantalum is thermally [11] and chemically 

[12] more stable than that of Aluminum, making Tantalum capacitors preferable for high

reliability applications. Tantalum capacitor’s high volumetric efficiency and longer shelf-

life are also additional advantages Tantalum has over Aluminum [13]. Some comparisons 

of the more important physical characteristics between Tantalum and Aluminum are shown 

in Table 3.1. As shown in Table 3.1, tantalum oxide has a dielectric constant that is more 

than twice of that of aluminum oxide, which contributes to the capacitance and 

miniaturization of Tantalum capacitors. The oxide growth rate of tantalum oxide is also 

higher than that of aluminum oxide, meaning for a given voltage Tantalum gives a thicker 

oxide than Aluminum. There are also some drawbacks of Tantalum metal in comparison 

to Aluminum. Tantalum metal is denser than Aluminum, which makes Tantalum capacitors 

a bit heavier than Aluminum capacitors. The other drawback is that Tantalum is less 

conductive than Aluminum. In general, however, Tantalum capacitors are more 

advantageous than Aluminum capacitors. 
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Table 3.1. Comparison of Physical and Electrical Properties of Tantalum and Aluminum. 
Metal Density(g/cm3) Resistivity 

(ohm-cm) 

Anodic 

Oxide 

Dielectric 

Constant of 

Oxide 

Oxide 

Growth Rate 

(nm/V) 

Aluminum 2.7 2.65 x 10-6 Al2O3 8 1.36 

Tantalum 16.6 12.5 x 10-6 Ta2O5 27.6 1.7 

3.2 Fabrication of Tantalum Capacitors 

Tantalum anodes are fabricated from a pure tantalum metal powder. The particle 

size of the powder is determined based on what type of capacitor one wants to build. Large 

particle sizes are used for high voltage capacitors, whereas fine powders are used for small 

voltage capacitors. This is because during the anodization process, the dielectric grows out 

of the surface of the tantalum particles by about one third of its thickness and into the 

particles by about two thirds [14]. Therefore, if fine powders were used for high voltage 

capacitors, each particle would be consumed and isolated. The surface area is also affected 

by the tantalum powder’s particle size, which determines the volumetric efficiency of the 

capacitor. This volumetric efficiency is measured in charge per unit gram, 𝐶𝐶 ∙ 𝑉𝑉/𝑔𝑔. The 

finer the powder is the larger the total surface area of the tantalum anode, which in turn 

means larger capacitance. Tantalum powder has gone through a transformation in terms of 
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the powder’s particle size. In the 1960s, the volumetric efficiency of tantalum was about 

1000 CV/g. Since then tantalum powder volumetric efficiency increased steadily until 

1981, the year tantalum ore price was at its peak [15]. After 1981 tantalum powder CV/g 

has increased enormously to 150,000 CV/g in the 2000s, and above 250,000 CV/g 

currently. The finest tantalum powders are produced by sodium reduction of potassium 

tantalum fluoride or direct magnesium reduction of tantalum pentoxide [16]. In Figure 3.1 

the evolution of tantalum powder along with photographs of 330 µF Tantalum capacitors 

with a working voltage of 6.3 V, made with coarse, medium, and small size tantalum 

powders, are shown. The sizes of the dots in Figure 3.1 are proportional to the average 

sizes of the tantalum powder particles. As shown in Figure 3.1, the particle sizes of 

tantalum powders have decreased tremendously throughout the years, which led to an 

enormous increase in volumetric efficiency of Tantalum capacitors and, thereby, 

miniaturization of Tantalum capacitors. 
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Figure 3.1. Evolution of tantalum powder [16]. 

To fabricate Tantalum capacitors, the tantalum powder is first placed in a cavity 

with a small tantalum wire in the middle of the powder. A lubricant is mixed with the 

powder to help the particles adhere to each other when pressed. The powder is then 

compressed at high pressure to form a tantalum slug, while allowing for the wire to stick 

out of the pressed slug. 

The tantalum powder particles in the pressed slug are in contact with each other 

and with the tantalum wire, but not good enough contact. Therefore, the slug is sintered to 

create an even better contact between the particles and with the wire. In Figure 3.2 tantalum 
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powder particles in a die cavity before and after pressing and sintering are illustrated. The 

sintering process occurs in a vacuum oven at 1350˚C for 10 minutes, to create a strong 

contact between the particles in the pressed slug. The lubricant used for adhesion between 

the particles is removed during the sintering process.  

Figure 3.2. Tantalum pellet before (a) and after (b) pressing and sintering [4] 

At this point the tantalum slug is as pure as it can get. The point of contact between 

the particles have increased enormously; however, there are still voids in the slug. That is 

why tantalum slug is referred to as a sponge-like structure. The voids in the slug, however, 

turn out to be an advantage for Tantalum capacitors, as they increase the surface area of 

the anode where the dielectric can potentially grow, and thus increase the volumetric 

efficiency of the capacitor. 
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After sintering, an anodic tantalum oxide, Ta2O5, is grown on the exposed surface 

of the tantalum slug using an electrochemical process. The tantalum slug is immersed in 

an acidic electrolyte solution, such as phosphoric acid, at elevated temperature, typically 

85˚C. The electrolyte solution is biased with a voltage to oxidize the exposed tantalum 

surface, and the thickness of the oxide layer is controlled by the voltage applied during the 

oxidation process. The voltage applied is increased linearly until the desired voltage is 

reached while keeping the current constant. The voltage is then kept at the desired level 

while the current decays, to ensure all of the exposed tantalum surfaces are oxidized and 

acquire the same dielectric thickness. The chemical equations that describe this process 

are: 

 

At Anode:  2 𝑇𝑇𝑇𝑇 → 2 𝑇𝑇𝑇𝑇5+ + 10 𝑉𝑉− 

   2 𝑇𝑇𝑇𝑇5+ + 10 𝑂𝑂𝑂𝑂− → 𝑇𝑇𝑇𝑇2𝑂𝑂5 + 5 𝑂𝑂2𝑂𝑂  

At Cathode: 10 𝑂𝑂2𝑂𝑂 + 10 𝑉𝑉− → 5 𝑂𝑂2 ↑ +10 𝑂𝑂𝑂𝑂−  

 

In these chemical reactions, the Tantalum ion, 𝑇𝑇𝑇𝑇5+, from the anode and hydroxide, 

𝑂𝑂𝑂𝑂−, from the electrolyte solution react with each other and form tantalum oxide, Ta2O5, 

and water, H2O, as a by-product. The H2O is then removed from the solution by evaporation 

of hydrogen gas, H2. The surface area of the capacitor can be calculated using the very first 

equation given in Chapter 1, Equation 1.1. The equation is rewritten here for convenience, 

but this time in terms of the surface area: 
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𝐴𝐴 =
𝐶𝐶𝐶𝐶
𝜀𝜀0𝜀𝜀𝑑𝑑

 

 

The thickness of the dielectric oxide can be calculated using the following equation: 

 

    𝐶𝐶 = 𝑇𝑇𝑉𝑉𝑓𝑓     3.1 

 

where a is a proportionality coefficient, which is 1.7 nm/V at room temperature and 2 nm/V 

at 80˚C for tantalum, and Vf is the formation voltage. The formation voltage is the 

maximum voltage applied to grow the oxide during the electrochemical process. 

At this point essentially two thirds of the principal layers of the capacitor have been 

fabricated and the final primary layer is the cathode. Based on the type of cathodes we use, 

Tantalum capacitors can be divided into two types: Wet and Solid. As discussed in Chapter 

1, Wet Electrolytic capacitors have a conducting liquid electrolyte solution as a cathode, 

such as sulfuric acid. Wet Tantalum capacitors were the very first Tantalum capacitors 

manufactured in the 1940s [17]. Wet Tantalum capacitors have the advantage of a cathode 

consisting of a liquid electrolyte that conforms to the dielectric surface, penetrates through 

the voids, and reforms the dielectric at the fault sites during operation. Wet Tantalum 

capacitors are also preferable for application that require high working voltages. They can 

work reliably up to 150 V. 

As much as having a liquid electrolyte as a cathode has the aforementioned 

advantages, there are also some disadvantages to it. Wet Tantalum capacitors are not 

operational at low temperature, because at low temperatures (below 0˚C, or below 10˚C 
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for sulfuric acid) the electrolyte freezes. Wet Tantalum Electrolytic capacitors also have 

high equivalent series resistance, which is due to the poor conductivity of the electrolyte 

cathode. Furthermore, they require a hermetically sealed package since the electrolyte has 

an acidic nature. Leakage of the electrolyte, or a caustic gas that might be generated from 

the electrolyte at high temperature would be dangerous. To combat these disadvantages of 

having a liquid electrolyte as a cathode and the need for even smaller size capacitors, a 

Solid Tantalum capacitor was developed, where a solid electrolyte is used as a cathode. 

3.3 Solid Tantalum Capacitors 

The first Solid Tantalum capacitor was developed by Bell labs in the 1950s [18]. 

The solid electrolyte that was used for this purpose was manganese dioxide, MnO2. MnO2 

is a semiconductor with a resistivity of 2 to 6 ohm-cm [4]. Since it is a solid electrolyte, 

there would not be any danger of leakage of an electrolyte. Compared to Wet Tantalum 

capacitors, the Manganese capacitors had better stability for thermal cycles that were 

required during the surface mount assembly process, and it was also smaller in size and 

had a longer shelf life. However, the maximum working voltage was decreased from that 

of the Wet Tantalum capacitor (150 V) to approximately 50 V. Even though this lower 

maximum working voltage prohibits Solid Tantalum capacitors from high voltage 

applications, the development of low-power electronics makes this problem less 

significant. 

In order to deposit MnO2, the tantalum slug with a dielectric oxide layer on the 

surface is dipped into an aqueous solution of Mn(NO3)2 and then heated in an oven at 
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approximately 250˚C [14] to produce MnO2. This impregnation process continues with 

different concentrations of Mn(NO3)2 until the MnO2 penetrates through the voids and a 

desired thickness of the cathode is reached. The chemical equation that describes this 

process is: 

𝑀𝑀𝐸𝐸(𝑁𝑁𝑂𝑂3)2 → 𝑀𝑀𝐸𝐸𝑂𝑂2 + 2𝑁𝑁𝑂𝑂2 ↑ 

As shown in the chemical equation, at high temperature, typically at 250˚C, manganese 

nitrate decomposes into manganese dioxide and nitrogen dioxide.  

Once the deposition of MnO2 is completed, we have a complete capacitor in theory; 

however, we need packaging for the capacitor to be used in a circuit. First, a thin layer of 

carbon (or graphite) is coated onto the tantalum slug with an outside layer of MnO2. Then 

silver is coated on top of the carbon. The purpose of the carbon is to lower the interfacial 

resistance between MnO2 and silver [19]. In Figure 3.3, each layer of the capacitor, 

including the carbon and silver layers, is shown.  
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Figure 3.3. Structure of Tantalum - MnO2 capacitor [19] 

 

To make an external anode and cathode connection for the capacitor, a leadframe 

plate is welded to the tantalum wire and another leadframe plate is connected to the outer 

layer of the slug (the silver layer) [19]. The whole structure is then inserted into a molded 

epoxy case, with the leadframes bent down and sticking out in order to make an external 

connection. A finished surface mountable capacitor, manufactured by KEMET Electronics 

Corporation, is shown in Figure 3.4. 
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Figure 3.4. KEMET’s Surface mount Tantalum-MnO2 capacitor [20] 

3.4 Resistance-Capacitance (RC) Ladder Effect 

The capacitance of Electrolytic capacitors decreases as frequency increases. The 

same goes for a Solid Electrolytic capacitor; the capacitance stability of Tantalum-MnO2 

capacitors is affected at high frequency operations. This effect of frequency can be modeled 

by the Resistance-Capacitance (RC) ladder effect. In Figure 3.5 the RC-ladder model with 

a distributed capacitive element network in a Tantalum-MnO2 capacitor is illustrated. 

Tantalum powder particles that are covered by Ta2O5 and MnO2, are shown in Figure 3.5, 

forming an individual capacitor element that contributes to the capacitance of the main 

capacitor. Each of these individual capacitor elements are electrically connected to the 

terminals of the main capacitor since the tantalum powder particles are physically 

connected to each other. If we neglect to consider the resistivity of tantalum (ρ = 12.5 x 10-

6 ohm-cm), which is extremely small compare to the resistivity of MnO2 (ρ = 2-6 ohm-cm), 

we can simplify the physical structure of the RC-ladder model that is shown in Figure 3.5 

into the circuit model that is shown in Figure 3.6. This circuit model, that is shown in 

Figure 3.6, considers only the resistance that is created from the resistivity of the cathode, 
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MnO2. For a capacitor element C1, which is located close to the cathode in Figure 3.6, the 

time constant can be expressed as: 

𝜏𝜏1 = 𝐶𝐶1 ∙ 𝑅𝑅1 3.2 

On the other hand, the time constant for a capacitor element Cn, which is located away 

from the cathode (or close to the anode), can be expressed as: 

𝜏𝜏𝑛𝑛 = 𝐶𝐶𝑛𝑛 ∙ (𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3 … + 𝑅𝑅𝑛𝑛) 3.3 

Comparing these two time constants of C1 and Cn, the time constant for Cn is clearly higher 

than that of C1, and because of this higher time constant, Cn will not be able to respond to 

high frequency AC signals within the time period, as the time period of the AC signal will 

be small. The time period is given by, 

𝑇𝑇𝑃𝑃 = 1
𝑓𝑓
 3.4 

The time constant for these individual capacitor elements increases as we move away from 

the cathode (or towards Cn as shown in Figure 3.6) because of the increase in resistance. 

Therefore, if the frequency of the AC signal becomes even higher (or the period becomes 

smaller), capacitor elements that are closer to Cn will also be unable to respond to the AC 

signal within the time period. As more of these capacitive elements stop responding to the 
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AC signal, the total capacitance of the main capacitor will start decreasing, and eventually 

the capacitance of Tantalum-MnO2 capacitors rolls-off at higher frequencies. 

Figure 3.5. RC-ladder physical structure in Tantalum capacitors [21] 

Figure 3.6. RC ladder network 
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3.5 Self-Healing Property of Tantalum-MnO2 Capacitors 

All Tantalum capacitors have impurities that may come from the anode and/or the 

electrolyte, and because of that there are defects created within the dielectric. In Wet 

Tantalum capacitors, these defects or fault sites are reformed by electrochemical processes 

during the capacitor operation. In Solid Tantalum capacitors, that is not possible. However, 

MnO2 has its own way of healing these defect sites. When subjected to a high voltage, the 

defect sites create a path for leakage current and the current through these sites concentrates 

in a small area of the MnO2. This concentrated current creates a local hot spot, and MnO2

become unstable at this high temperature (usually around 470˚C) and becomes oxidized to 

its lower oxide state, Mn2O3. The resistivity of this lower oxide state is much higher than 

MnO2 and blocks the flow of the current past the defect site. This process is called the self-

healing property of Tantalum-MnO2 capacitors, and it is illustrated in Figure 3.7. As 

illustrated in Figure 3.7, the defect site in the dielectric might be a crack or an impurity, 

which is shown as Nickel in the figure, or both. Without the self-healing property of 

Tantalum-MnO2 capacitors, the crack and the impurity in the dielectric will result in a 

leakage current in the capacitor and, thereby, failure of the capacitor. Therefore, once the 

fabrication of the capacitor is completed and ready for electrification, it goes through a 

process called aging. The aging process activates the self-healing mechanism of the 

Tantalum-MnO2 capacitor and eliminates the fault sites by stressing the capacitor at a high 

voltage [19]. 
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Figure 3.7. Self-healing property of a Tantalum-MnO2 capacitor [4] 

3.6 Failure Modes of Tantalum-MnO2 Capacitors 

For the self-healing process to occur the current must be sufficient. If the current 

through the fault site is too low, there would not be enough heat generated to convert MnO2 

into its lower oxide state, and the fault site would not be healed. If the current through the 

fault site is too high, in addition to heating the MnO2 and converting it to its lower oxide 

state, the dielectric also becomes heated. If the heat is sufficiently high, the dielectric itself 

gets converted from its amorphous or glassy structure to a crystalline structure, which 

usually occurs at a temperature around 520˚C [8]. This crystalline structure spreads out 

across the dielectric structure. The crystalline structure of the dielectric is much more 

conductive than the amorphous structure, which leads to a high flow of current through the 
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fault site, which in turn lead to an increase in the heat generation. While all this is taking 

place, MnO2 is releasing oxygen when converted to its lower oxide state, Mn2O3, and the 

tantalum contact that is on the fault site is getting heated. The heated tantalum then starts 

to absorb the free oxygen and create an exothermic reaction. The exothermic reaction 

results in an ignition resulting in a catastrophic failure in the capacitor. The sequence of 

this ignition process is illustrated in Figure 3.8. As illustrated in Figure 3.8, a small crack 

in the dielectric, could lead to an ignition of the whole capacitor. 

Figure 3.8. Ignition sequence of a Tantalum-MnO2 capacitor [19] 

In addition to the issue of ignition with Tantalum-MnO2 capacitors, there is also a 

mechanical issue with having MnO2 as a cathode. As explained earlier, the deposition of 
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MnO2 occurs by dipping the tantalum slug into a Mn(NO3)2 solution and drying it at 270˚C, 

which converts the liquid Mn(NO3)2 into solid MnO2. This process is repeated several 

times until the dielectric layer is fully covered by MnO2. The three materials (Ta, Ta2O5, 

and MnO2), which constitute the capacitor have different coefficients of thermal expansion, 

and in addition to that MnO2 is inelastic and brittle by nature. So, when the capacitor is 

heated to high temperatures repeatedly during the deposition process, the mismatch in 

coefficients of thermal expansion creates a mechanical stress inside the capacitor, which 

eventually leads to a crack in the dielectric layer. This crack leads to a leakage current and 

failure in the capacitor. The cracks usually occur at the wedges. In Figure 3.9 the 

mechanical stress in Tantalum-MnO2 capacitor is illustrated. As shown in Figure 3.9, the 

mechanical stress that is created due to the mismatch in the coefficients of thermal 

expansion between Ta, Ta2O5, and MnO2, results in a crack in the capacitor, especially at 

the wedges. These cracks will lead to a leakage current in the capacitor, and subsequently 

failure of the capacitor. 
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Figure 3.9. Mechanical stress of a Tantalum-MnO2 capacitor [22] 

 

Despite the ignition and the dielectric crack issues, Tantalum-MnO2 capacitors are 

manufactured and used widely throughout the world. The driving force behind finding a 

replacement for MnO2 in Solid Electrolytic capacitors was the need for a highly conductive 

cathode, which would result in lower ESR and an improved high frequency performance 

in Solid capacitors. 
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CHAPTER 4 

POLYMER TANTALUM CAPACITORS 

4.1 Introduction 

In order to replace MnO2 as a cathode in a Tantalum Electrolytic capacitor, higher 

conductive materials were used, such as tetracyano-quinodimethane (TCNQ) and 

conductive polymers. TCNQ is a charge-transfer salt. It has a conductivity of 1 S/cm, which 

is 10 times greater than that of MnO2. Conductive polymers have even higher conductivity 

than TCNQ, ranging from 10 S/cm to 500 S/cm. Conductive polymers were discovered by 

Shirakawa, MacDiarmid and Heeger in 1977 [23], which they received a Nobel Prize for 

in 2000 [24]. The first Polymer Tantalum capacitor was made in Japan in the early 1990s. 

The conductive polymers that were used at the time were polypyrrole (PP) [25, 26, 27] and 

polyaniline (PANI) [28]. Then later, poly(3,4- ethylenedioxythiophene) (PEDOT) was 

discovered and became the most popular conductive polymer in the Solid Tantalum 

Electrolytic capacitors [29]. PEDOT has higher conductivity, and is relatively more stable 

and insensitive to environmental conditions than any other polymer. Polymer Tantalum 

capacitors, however, did not start with great performance or high reliability.  They started 

out with low working voltage, high leakage current, and low reliability, which limited their 

applications to risk-tolerant commercial electronics. After going through transformations 

over the years, the current Polymer Tantalum capacitors have high working voltage, low 

leakage current, and high reliability, which makes them attractive for critical applications. 
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4.2 Benefits of Polymer Tantalum Capacitors 

Polymer Tantalum capacitors have a self-healing capability similar to Tantalum-

MnO2 capacitors. The self-healing mechanism in Polymer Tantalum capacitors can be 

explained by two possible mechanisms [19]. The first self-healing mechanism is related to 

the low-threshold temperature of polymers, which means the low evaporating temperature 

of polymers. When current concentrates in a fault site of the dielectric oxide and creates a 

high temperature, the polymer that is near the fault site becomes heated. As the heating 

continues, the polymer reaches a temperature where it starts to evaporate. This evaporation 

of the polymer creates a vacant site in the cathode near the fault site, which blocks any 

further flow of the leakage current and thus, prevents failure of the capacitor. This self-

healing mechanism of Polymer Tantalum capacitors is illustrated in Figure 4.1 (a). The 

vacated sites in the polymer are illustrated in Figure 4.1 (a), where a leakage current is 

coming from the crack and the impurity, which is Nickel in this case, in the dielectric. The 

second self-healing mechanism is related to the oxidation of polymers. As the polymer near 

the fault site becomes heated, the heated part of the polymer becomes oxidized by 

absorbing the available oxygen. Since an oxidized polymer has higher resistance, it blocks 

any further flow of the current. This self-healing mechanism of Polymer Tantalum 

capacitors due to the oxidation of the polymers is illustrated in Figure 4.1 (b). As illustrated 

in Figure 4.1 (b), the oxidized polymer parts are marked in aqua color, which prevents any 

further flow of leakage current from the crack or impurity in the dielectric. Both of these 

self-healing mechanisms prevent the leakage current and provide an advantage to Polymer 

Tantalum capacitors.  
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Figure 4.1. Self-healing mechanism of a Polymer Tantalum capacitor due to evaporation 

in the polymer layer (a) and due to oxidation in the polymer layer (b) [19]. 

Polymer Tantalum capacitors have higher frequency stability than Tantalum-MnO2 

capacitors and one of the lowest values of equivalent series resistance. One of the main 

reasons for this is the low resistivity of conductive polymers as compared to that of MnO2. 

Due to this high conductivity of polymers, the effect of the RC-ladder effect is lower in 

Polymer Tantalum capacitors. For Polymer Tantalum capacitors, the capacitance roll-off 

begins at a higher frequency than that of Tantalum-MnO2 capacitors. In Figure 4.2 

capacitance as a function of frequency for both MnO2 and Polymer Tantalum capacitors is 

illustrated [19]. As shown in Figure 4.2, the capacitance of the Polymer Tantalum capacitor 

remains stable for far longer than in Tantalum-MnO2 capacitors. 
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Figure 4.2. Capacitance roll-off in Tantalum-MnO2 (T495D 150µF) and Polymer 

Tantalum (T520D 150 µF) capacitors [19]. 

Finally, another advantage Polymer Tantalum capacitors have over Tantalum-

MnO2 capacitors is that, unlike Tantalum-MnO2 capacitors, Polymer Tantalum capacitors 

do not experience an ignition or crack failure. Polymers contain almost no oxygen, which 

is the main source of ignition and catastrophic failure in Tantalum-MnO2 capacitors. 

Because of this lack of oxygen, there would not be any exothermic reaction in Polymer 

Tantalum capacitors that would create a dramatic failure in the device. The other failure 

mode that occurs in Tantalum-MnO2 capacitors, but not in Polymer Tantalum capacitors, 

is the stress induced cracks. The mismatch in the coefficient of thermal expansions between 

Ta, Ta2O5, and MnO2, creates a mechanical stress inside the capacitor. In addition to that, 
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the physical property of MnO2 being brittle and inelastic contributes significantly to the 

crack. However, in Polymer Tantalum capacitors, the mechanical forces that are created 

because of the mismatch in coefficient of thermal expansions are not significant enough to 

create any crack. This is because during the process of depositing the polymer onto the 

dielectric, the drying process occurs at a lower temperature than that of MnO2. 

Furthermore, a polymer is a soft and elastic material, which has the capability to absorb 

any mechanical stress created inside the capacitor. Therefore, Polymer Tantalum capacitors 

do not experience ignition failure or mechanically induced cracks. 

4.3 Fabrication of Polymer Tantalum Capacitors 

The fabrication of Polymer Tantalum capacitors is similar to Tantalum-MnO2 

capacitors, with the main difference being that instead of using MnO2, a polymer is used 

as a cathode. The polymer that is used in this research work is a water dispersion of 

poly(3,4- ethylenedioxythiophene) (PEDOT) doped with poly (styrene sulfonate)(PSS) to 

increase the conductivity of the PEDOT; therefore, from here on the polymer in reference 

is PEDOT doped with PSS. There are two main methods of depositing PEDOT onto the 

dielectric oxide, Ta2O5: in-situ and prepolymerized PEDOT. In-situ oxidative 

polymerization of PEDOT is performed by polymerization of 3, 4-ethylenedioxythiophene 

with iron (III) toluenesulfonate in a ratio of 3:1 [30]. Prepolymerized PEDOT is performed 

by dipping a tantalum slug that is covered with Ta2O5 into a waterborne dispersion of 

nanoscale PEDOT particles and drying it afterward at room temperature and then at 150˚C 

[30]. The PEDOT deposited using this process is also known as slurry PEDOT. There is 
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another PEDOT cathode formation method commonly referred to as hybrid PEDOT. 

Hybrid PEDOT is a combination of both in situ and pre-polymerized PEDOT. In hybrid 

PEDOT, the in-situ PEDOT method is applied for internal impregnation of the porous 

anode and a pre-polymerized PEDOT dispersion is applied as an external part of the 

cathode [31]. Hybrid PEDOT is usually used for low voltage Polymer Tantalum capacitors, 

because low voltage anodes have a relatively small pore structure which makes it difficult 

to impregnate with pre-polymerized PEDOT only. In all of the three methods, a cathode is 

formed by depositing the PEDOT onto the dielectric oxide layer. 

Polymer Tantalum capacitors manufactured using prepolymerized PEDOT, as 

compared to in-situ polymerization, show low leakage current (DCL), high breakdown 

voltage (BDV), high working voltage (WV), and high volumetric efficiency (CV/cc) [30, 

32]. The reason for this improved performance of prepolymerized PEDOT cathodes as 

compared to its counterpart is the resulting potential energy barrier at the dielectric/PEDOT 

interface. For in-situ polymerized PEDOT, the residuals of the oxidizer and monomer in 

the polymerization process create a surface charge at the dielectric/PEDOT interface which 

lowers the potential barrier, resulting in an increase in leakage current and a decrease in 

breakdown voltage [30]. Whereas for prepolymerized PEDOT, the potential barrier at the 

dielectric/PEDOT interface increases as there is no significant surface charge at the 

interface and thus, resulting in a lower leakage current and a higher breakdown voltage.  

Another advantage of prepolymerized PEDOT over in-situ polymerized PEDOT 

cathodes is that it possesses its own self-healing mechanism [30]. The defect sites in the 

dielectric oxide create a path for a leakage current, increasing the temperature in the defect 
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site. This temperature separates the PEDOT and the dopant (poly (styrene sulfonate))(PSS), 

or changes the optimal ratio between them, near the fault site. This separation of the 

PEDOT and the dopant lowers the conductivity of the polymer very significantly. This low 

conductive area of the polymer that is near the defect site prevents any further flow of the 

leakage current, which also prevents any damage to the capacitor.  

Furthermore, prepolymerized PEDOT solves the Polymer Tantalum capacitor’s 

problem of low working voltages. During Tantalum capacitor evolution, evolving from 

Wet Tantalum capacitors to Tantalum-MnO2 capacitors to Polymer Tantalum capacitors, 

one of the main outcomes was an enormous decrease in ESR. However, this decrease in 

ESR came at a cost of reducing the maximum working voltage and volumetric efficiency 

(CV/cc) of the capacitors. As discussed in Chapter 3, the maximum working voltage for 

Wet Tantalum capacitors was approximately 150 V, but for Tantalum-MnO2 capacitors it 

was approximately 50 V. For Polymer Tantalum capacitors, the maximum working voltage 

went down to as low as 25 V. In Figure 4.3 the trends in ESR, maximum working voltage 

and volumetric efficiency of Tantalum capacitors are shown over the years. As shown in 

Figure 4.3, the ESR, the maximum working voltage, and the volumetric efficiency have 

decreased as the Tantalum capacitor technology progresses from one generation to another. 

The reason for the reduction in the maximum working voltage and the volumetric 

efficiency is the increase in leakage current and the decrease in breakdown voltage of 

Polymer Tantalum capacitors. However, KEMET Electronics in collaboration with 

Clemson University has discovered a way to keep the leakage current low while increasing 

the working voltage for Polymer Tantalum capacitors [30]. This was accomplished by 
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using prepolymerized PEDOT as a cathode. For all these reasons, prepolymerized PEDOT 

tends to be the better manufacturing process for Polymer Tantalum capacitors, and 

capacitors fabricated using this method are more reliable and stable than those fabricated 

with in-situ polymerized PEDOT. 

Figure 4.3. ESR, maximum working voltage and volumetric efficiency of D-case 

Tantalum capacitors [33] 

4.4 Polymer Hermetic Sealed (PHS) Tantalum Capacitors 

The next technology phase, after prepolymerized PEDOT Tantalum capacitors, was 

Polymer hermetic sealed (PHS) Tantalum capacitors. PHS Tantalum capacitors are 
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manufactured in using the same methods as any other Polymer Tantalum capacitors; 

however, before the final packaging is performed, which occurs after the coating of the 

carbon and silver layers, the capacitor is exposed to humidity, typically 85% relative 

humidity at a temperature of 85˚C. The capacitor is then hermetically sealed to keep the 

moisture inside the package for a long time. A picture of a KEMET T550 PHS capacitor is 

shown in Figure 4.4. This controlled moisture inside PHS Tantalum capacitors helps in 

stabilizing the leakage current (DCL). In Figure 4.5 the DCL distribution of humid and dry 

PHS Tantalum capacitors that are measured at the rated voltage and 85˚C for a duration of 

2000 hours of life test is shown. As shown in Figure 4.5, the humid capacitor, which is 

shown in (a), has a much more stabilized leakage current than the dry capacitor, which is 

shown in (b). The moisture inside PHS Tantalum capacitors acts as a plasticizer for the 

polymer chains, which makes the chain movement easier by increasing the polymer 

mobility [34]. This property of the moisture allows polymer molecules to form a potential 

barrier at the dielectric/polymer interface by re-orientating themselves relatively quickly 

when an electric field is applied. The potential barrier then limits the flow of the current 

inside the capacitor. Therefore, PHS Tantalum capacitors have the distinct advantage of 

reduced leakage current. 
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Figure 4.4. KEMET T550 PHS capacitor [35]. 

Figure 4.5. DCL distribution of humid (a) and dry (b) PHS Tantalum capacitors [36]. 

4.5 Flawless Dielectric Technology (F-Tech) and Simulated Breakdown Screening 
(SBDS) 

Technologies that were recently discovered to improve the performance and 

reliability of Polymer Tantalum capacitors are flawless dielectric technology (F-Tech) [37] 

and simulated breakdown screening (SBDS) [38]. F-tech improves the performance of the 

capacitor by limiting defects in the dielectric. Polymer Tantalum capacitors are imperfect 

as are all other capacitors; there are defects and impurities in the dielectric layer which 
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affects the performance of the capacitor. The density and size of these defects in the 

dielectric are directly related to the density and size of local defects (or impurities) on the 

tantalum anode before the anodization process [16]. Therefore, the main sources of the 

defects in the dielectric are the tantalum anode and mechanical stress during the 

manufacturing and testing process. The defects that come from the anode are carbide and 

oxide inclusions. The carbide inclusions come from the residuals of the organic lubricant 

that is mixed with tantalum powder at the pressing, and the oxide inclusions come from the 

native oxide in the bulk of tantalum particles during their sintering in vacuum [16]. The 

carbide inclusions are responsible for micropores, an example of which is shown in Figure 

4.6 (a). The oxide inclusions are responsible for crystal growth and cracks, an example of 

which is shown in Figure 4.6(b).  

Figure 4.6. Micropores (a) and cracks (b) on the surface of the Ta2O5 dielectric that is 

formed on the tantalum anode. [33] 
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To avoid the carbons in the tantalum anode, F-tech uses an aqueous de-lubrication 

instead of the traditional thermal de-lubrication [16]. In the thermal de-lubrication, the 

anode is heated and pressed in vacuum to decompose and evaporate the organic lubricant, 

and some carbons from these decomposed organic lubricants are absorbed by the tantalum 

anode. Whereas in an aqueous de-lubrication, the soluble organic lubricant is washed out 

with water from the pressed tantalum anode [37], which makes the tantalum anode carbon 

inclusion free. 

To reduce oxygens from the tantalum anode, F-tech uses magnesium vapor after 

the anode sintering process in vacuum is completed [16]. Magnesium atoms are absorbed 

onto the surface of the tantalum powder and react with oxygen in the tantalum, resulting in 

magnesium oxide, which is then leached from the tantalum surface in a diluted aqueous 

solution of sulfuric acid and hydrogen peroxide, resulting in a reduction of oxygen 

inclusions in the tantalum anode.  

To avoid defects that may appear in the dielectric layer from a mechanical stress 

during the manufacturing and testing process, F- tech welds the tantalum wire to the anode 

after the pressing and sintering of the tantalum anode is completed, while traditionally the 

lead wire is embedded inside the powder before any pressing and sintering are performed. 

Application of this “flawless” technology allows Polymer Tantalum capacitors to be 

manufactured that are essentially defect free, which increases the performance and 

reliability of the capacitor significantly. This is illustrated in Figure 4.7, where a SEM 

image of a Ta2O5 dielectric formed on an F-tech tantalum anode is shown. The dielectric 

is essentially defect free, as it is clearly shown in Figure 4.7. 
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Figure 4.7. SEM image of a flawless Ta2O5 dielectric formed on an F-tech tantalum 

anode. [33] 

Even with the application of the flawless dielectric technology, it is not guaranteed 

that 100% of the finished capacitors will be defect free. There will still be a small 

percentage of the finished capacitors that will have small defects on their dielectric layer. 

Furthermore, these defects might not be detectable using the traditional DC leakage test 

during the end of the line (EOL) testing because these defects are too small and might also 

be introduced into the dielectric layer by the overstressed tests and burn-ins [33]. Therefore, 

to effectively detect capacitors with hidden defects in their dielectric layer, a novel testing 

method called simulated breakdown screening (SBDS) test was developed [38]. This 
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testing method allows for the screening of low breakdown voltage in capacitors. An 

electrical circuit that is used for SBDS is shown in Figure 4.8. As shown in the SBDS 

circuit, the tested capacitor is connected in series with a high value resistor. A voltage that 

is above the average BDV is then applied to the capacitor under test, while the resistor 

limits the current that flows through the capacitor. The charging characteristic of the 

capacitor is then monitored using the voltage measurement across the capacitor, to detect 

the hidden (or small) defects. This method results in the capability of SBDS to detect small 

defects in the dielectric, which will contribute significantly to producing a capacitor that is 

nearly defect free.  

Figure 4.8. An electrical circuit used for simulated breakdown screening (SBDS) 
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CHAPTER 5 

FABRICATION AND ELECTRICAL MEASUREMENTS 

5.1 Fabrication of PHS Tantalum Capacitors 

In this thesis work, we investigated the effects of environmental conditions on 

capacitance stability with temperature, frequency, and dc bias voltage in both dry and 

humid Polymer hermetic sealed (PHS) Tantalum capacitors with a wide range of working 

voltages and corresponding dielectric thicknesses. PHS Tantalum capacitors with four 

working voltages (WV), 15 V, 50 V, 75 V, and 100 V, were investigated, and five samples 

were measured from each working voltage.  

The fabrication of the tantalum anodes for 15 V, 50 V, and 75 V working voltages 

was performed using 12,000 μC/g tantalum powder, with an average particle size of 4.2 

µm, pressed at 5.7 g/cc density into 1.32 g cylindrical pellets with resulting dimensions of 

5.2 mm diameter and 10.7 mm height and sintered at 1650˚C. The 100 V working voltage 

capacitor is considered as a high voltage capacitor, and the sizes of the tantalum powder 

particles are higher than the other working voltage capacitors. Thus, the fabrication of the 

tantalum anodes for 100 V working voltage was performed using 3,500 μC/g tantalum 

powder, with an average particle size of 9.3 µm, pressed at 8.5 g/cc density into 1.96 g 

cylindrical pellets with resulting dimensions of 5.2 mm diameter and 10.7 mm height and 

sintered at 1850˚C. The tantalum powders for both low and high working voltage 

capacitors were obtained from H.C. Starck, and the amount of major contamination in the 

powders were less than or equal to 10 ppm, except for the amount of oxygen, which 
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exceeded 1000 ppm primarily due to the oxygen in the native oxide of tantalum. The 

sintered tantalum anodes were then anodized in 0.1 wt. % phosphoric acid. During the 

anodization process, the dc current density was approximately 1 mA/cm2 and the formation 

voltages were 2.75 times higher than the working voltages. At these conditions, the 

thicknesses of the anodic oxide films were 82.5 nm, 275 nm, 412.5 nm and 550 nm for 15 

V, 50 V, 75 V and 100 V parts, respectively. These oxide thicknesses were calculated 

using the following equation: 

𝐶𝐶 = 𝑇𝑇 ∙ 𝑉𝑉𝑓𝑓 𝑅𝑅𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉 ∙ 𝑊𝑊𝑉𝑉 5.1 

where a is the proportionality coefficient, which is 2 nm/V at 80˚C, Vf Ratio is the 

formation voltage ratio, which is 2.75, and WV is the working voltage [39]. Pre-

polymerized PEDOT doped with Poly Styrene Sulfonate (PSS) was then applied by 

dipping the sintered and anodized tantalum pellets into a waterborne dispersion of 

nanoscale PEDOT particles, followed by drying in air at room temperature and 

subsequently at 150˚C. The molecular weights of PEDOT and PSS were about 1000-2500 

g/mol and 400,000 g/mol, respectively. The particle size in the dispersion ranged from 10 

µm to 40 nm. After application of external carbon and silver layers, the capacitors were 

assembled into nickel-plated brass cans with a glass insulator for positive external 

termination. Before sealing the hermetic cans, the capacitors were exposed to 50% relative 

humidity at room temperature for 24 hours (Humid parts). After the measurements of the 

humid parts were completed, the capacitors were dried in air at 125˚C for 24 hours (Dry 

parts). In both Humid and Dry cases, capacitance values stabilized prior to the 24 hours 
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treatments and did not change during longer treatments. In Figure 5.1 a picture of the 

fabricated PHS capacitors that were used in this thesis work are shown; five samples for 

each dielectric thickness with a total of 20 samples. 

Figure 5.1. A picture of PHS Tantalum capacitors that are used in this thesis work. 

5.2 Electrical Measurements 

Capacitance measurements on humid PHS capacitors were performed using an 

Agilent E4980A Precision LCR Meter. The measurements were performed at various 

frequencies, temperatures, and dc bias voltages, on devices with the four different dielectric 

thicknesses as stated above. Essentially, three types of measurements were performed: 

capacitance versus frequency C(f), capacitance versus temperature C(T), and capacitance 

versus dc bias C(V).  
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Capacitance versus frequency C(f) measurements were performed at room 

temperature and zero dc bias voltage. The capacitance was recorded at the following 

frequencies: 20 Hz, 60 Hz, 120 Hz, 400 Hz, 1 KHz, 4 KHz, 10 KHz, and 40 KHz.  

Capacitance versus dc bias C(V) measurements were performed at room 

temperature and a frequency of 120 Hz. The capacitance was recorded for a wide range of 

dc bias voltages, from 0 V to the working voltage of the capacitor. 

Capacitance versus temperature C(T) measurements were performed at the 

frequencies listed above for various dc bias voltages ranging from 0 V to 10 V. These 

measurements were performed at several temperatures with the specific order of, Room 

Temperature, O˚C, –55˚C, Room Temperature, 85˚C, 105˚C, Room Temperature, 125˚C, 

and Room Temperature. The periodic capacitance measurements at room temperature were 

performed at zero dc bias and a frequency of 120 Hz for the primary purpose of verifying 

that the capacitor was not damaged from the temperature stress. An air bath oven was used 

for the high temperature measurements to heat the capacitors above room temperature, and 

a Dewar flask containing a mixture of dry ice and ethanol was used for the low temperature 

measurements. The temperature was monitored by attaching a thermocouple onto the 

capacitors, and a 15-minute wait time at the desired temperature was employed prior to 

performing the capacitance measurement in order to ensure that the temperature was 

stabilized inside the capacitor. To study the effects of moisture, the capacitors were dried 

as discussed above in the fabrication section, and all measurements were repeated on the 

dried capacitors. 
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CHAPTER 6 

CAPACITANCE DEPENDENCE ON DIFFERENT ENVIRONMENTAL 
CONDTIONS 

6.1 Introduction 

The main goal of this research work was to investigate the capacitance stability of 

PHS Tantalum capacitors under different environmental conditions. The effects of 

temperature, frequency, and dc bias voltage in humid and dry PHS Tantalum capacitors 

with different dielectric thicknesses were investigated. The hermetic seal of the capacitors 

allowed us to maintain a stable humidity level in the capacitors during the electrical 

measurements.  

The investigation is presented in three sections. In the first section, the effects of 

temperature on the capacitance of humid and dry PHS Tantalum capacitors with different 

dielectric thicknesses (82.5 nm, 275 nm, 412.5 nm, and 550 nm) are presented. We studied 

the capacitance loss and gain of both humid and dry PHS parts at different temperatures, 

from -55˚C to 125˚C, with respect to the capacitance at room temperature for all the 

dielectric thicknesses. We compared capacitance differences between humid and dry parts 

at different temperatures for all the dielectric thicknesses. The results are then explained 

using models that are consistent with the known theories. In the second section, the effects 

of frequency on the capacitance of humid and dry PHS Tantalum capacitors with different 

dielectric thicknesses are presented. We studied the capacitance loss as the frequency 

increased from 20 Hz to 40 KHz in both humid and dry PHS parts for all the dielectric 

thicknesses. The results are then explained with models that are consistent with the known 
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theories. In the third section, the effects of dc bias voltage in dry and humid PHS Tantalum 

capacitor with different dielectric thicknesses are presented. We studied capacitance 

dependance on dc bias voltage in both humid and dry PHS parts for all the dielectric 

thicknesses by varying frequency and temperature, separately. The results are then 

explained at the end. 

6.2 Capacitance Dependence on Temperature 

The first environmental condition that was investigated, which affects the 

capacitance of Polymer Tantalum capacitors, was temperature. In Figure 6.1 capacitance 

as a function of temperature (C(T)) in humid and dry PHS capacitors with different 

dielectric thicknesses, Tox, measured at 120 Hz and zero bias voltage, is shown. The results 

show that, for all dielectric thicknesses of both humid and dry PHS capacitors, capacitance 

is directly related to temperature, meaning capacitance increases with temperature. Also, 

for all dielectric thicknesses, the capacitance of humid capacitors is higher than the 

capacitance of dry capacitors; however, the difference in their capacitance decreases both 

at low and high temperatures with respect to room temperature. The decrease in 

capacitance at low temperatures in comparison to the room temperature result (capacitance 

loss) is larger in humid capacitors than in dry capacitors, whereas the increase in 

capacitance at high temperatures in comparison to the room temperature result (capacitance 

gain) is higher in dry capacitors than in humid capacitors. 
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Figure 6.1. Capacitance dependence on temperature in humid and dry PHS capacitors 

measured at 120 Hz and 0 bias voltage for different dielectric thicknesses: (a) 82.5 nm, 

(b) 275 nm, (c) 412.5 nm, and (c) 550 nm.
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The relative change in capacitance with temperature with respect to capacitance at 

room temperature, C(RT), in humid and dry PHS capacitors for different dielectric 

thicknesses, is shown in Figure 6.2. The change in capacitance is calculated as: 

∆𝐶𝐶(%) = �𝐶𝐶(𝑇𝑇)−𝐶𝐶(𝑅𝑅𝑇𝑇)
𝐶𝐶(𝑅𝑅𝑇𝑇)

� ∙ 100 6.1 

As shown in the figure, at low temperatures the capacitance loss in humid capacitors is 

higher than in dry capacitors. Furthermore, for the humid capacitors this capacitance loss 

is higher for thinner dielectrics, whereas for the dry capacitors this capacitance loss is 

approximately the same for all dielectric thicknesses. On the other hand, at high 

temperatures the capacitance gain in dry capacitors is higher than in humid capacitors. For 

the dry capacitors, this capacitance gain is larger for thinner dielectrics, whereas for the 

humid capacitors this capacitance gain is approximately the same for all dielectrics. 
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Figure 6.2. Relative change in capacitance with temperature with respect to capacitance 

at room temperature in humid and dry PHS capacitors, for various dielectric thicknesses. 

In order to look more closely at the endpoints of very low temperature (-55˚C) and 

very high temperature (125˚C), the capacitance change (loss or gain) with respect to room 

temperature as a function of dielectric thickness for both humid and dry PHS capacitors 

was plotted and is shown in Figure 6.3. In Figure 6.3(a) the relative capacitance loss at T 

= -55˚C with respect to room temperature is shown, where the capacitance loss is calculated 

as: 
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𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(%) = �𝐶𝐶(𝑅𝑅𝑇𝑇)−𝐶𝐶(−55℃)
𝐶𝐶(𝑅𝑅𝑇𝑇)

� ∙ 100 6.2 

In Figure 6.3(b) the relative capacitance gain at T = 125˚C with respect to room temperature 

is shown, where the capacitance gain is calculated as: 

𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛(%) = �𝐶𝐶(125℃)−𝐶𝐶(𝑅𝑅𝑇𝑇)
𝐶𝐶(𝑅𝑅𝑇𝑇)

� ∙ 100 6.3 

As can be seen in Figure 6.3, capacitance loss at -55˚C in dry capacitors and capacitance 

gain at 125˚C in humid capacitors are approximately identical for all dielectric thicknesses 

measured. These losses and gains in capacitance are similar to the temperature variation of 

the dielectric constant of the anodic Ta2O5 film [40]. However, capacitance losses at -55˚C 

in humid capacitors are much larger than in dry capacitors, whereas capacitance gains at 

125˚C in dry capacitors are much larger than in humid capacitors, and in both cases the 

observed change is more significant for devices with thinner dielectrics. These results show 

the complicated effects of temperature on different dielectric thicknesses for humid and 

dry capacitors. 
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Figure 6.3. Capacitance loss at -55˚C (a) and capacitance gain at 125˚C (b) with respect 

to capacitance at room temperature versus dielectric thickness in humid and dry PHS 

capacitors. 

To study the capacitance change between humid and dry conditions, the relative 

capacitance change between humid and dry conditions as a function of temperature was 

analyzed and is presented in Figure 6.4. The relative capacitance change was calculated as: 

6.4 
𝐶𝐶(ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) − 𝐶𝐶(𝑢𝑢𝑑𝑑𝑑𝑑)

∆𝐶𝐶(%) = �
𝐶𝐶(ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

� ∙ 100 



57 

As shown in Equation 6.4, the capacitance change was calculated with respect to humid 

parts because humid parts have higher capacitance than dry parts, yielding a positive 

capacitance change. The difference in capacitance between humid and dry conditions is a 

maximum at room temperature and decreases for lower and higher temperatures, as shown 

in Figure 6.4. Furthermore, this capacitance difference is more pronounced for capacitors 

with the thinnest dielectrics. It appears that devices with thick dielectrics are less affected 

by the humidity inside the capacitor. 

Figure 6.4. Relative capacitance change between humid and dry PHS capacitors as a 

function of temperature for different dielectric thicknesses. 
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The effects of humidity on the capacitance of Polymer Tantalum capacitors as well 

as the dependence on temperature can be explained by a model based on the integrity of 

the dielectric oxide/polymer interface [41]. When prepolymerized PEDOT is deposited 

onto the dielectric surface, because of the porous nature of the tantalum anode, not all of 

the surface of the dielectric will have a direct contact with the PEDOT. Some parts of the 

dielectric surface will not have a direct contact with the PEDOT surface, creating a free 

area between the two surfaces which does not contribute to the capacitance of the capacitor. 

This free area that is between the dielectric and PEDOT surfaces is illustrated in Figure 

6.5(a). As shown in Figure 6.5(a), some areas of the dielectric surface do not have direct 

contact with the PEDOT layer. This usually occurs in dry parts, because in humid parts the 

free area is filled with water molecules that are absorbed during humidification. Therefore, 

under dry conditions, only the dielectric surface area that has a direct contact with the 

PEDOT surface contributes to the capacitance. Under humid conditions, when the 

capacitor is humidified, the free area of the dielectric decreases due to a thin layer of the 

absorbed water molecules, which increases the total conductive surface area and thus, the 

capacitance. In Figure 6.5(b) this increase in total conductive surface area for humid 

capacitors is illustrated. As shown in Figure 6.5(b) the PEDOT is now in complete contact 

with the dielectric. 

In Figure 6.2, at low temperatures the capacitance loss in humid parts is larger than 

in dry parts as compared to capacitance at room temperature. This is because the surface 

conductivity of the dielectric in the free area of the humid parts decreases due to the low 

mobility of the ionic charge carriers [42]. Furthermore, in humid parts the adhesion that is 
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created in the free area of the dielectric oxide/PEDOT interface upon humidification is 

weak. Thus, the PEDOT layer can easily shrink at low temperatures, which decreases the 

conductive surface area of the dielectric in the humid parts. This shrinkage of the PEDOT 

layer can also occur in the dry parts to some extent; however, for the dry parts the 

capacitance loss at low temperatures is low and primarily caused by temperature variation 

of the dielectric constant of the anodic Ta2O5 film. 

Also in Figure 6.2, at high temperatures the capacitance gain is higher in dry parts 

than in humid parts as compared to capacitance at room temperature. This is mainly 

because of the expansion of the PEDOT layer in dry parts upon heating, resulting in an 

increase in the conductive surface area of the dielectric and thus, the capacitance. The 

PEDOT layer in humid parts can also expand upon heating; however, the humid parts have 

already absorbed water molecules during humidification, leaving less room for additional 

expansion upon heating [41]. Thus, the capacitance gain in the humid parts at high 

temperatures is low and primarily caused by temperature variation of the dielectric constant 

of the anodic Ta2O5 film. 

Therefore, the coverage of the dielectric oxide layer with PEDOT particles is very 

crucial to the effects of temperature on the capacitance of Polymer Tantalum Capacitors. 

The capacitance of humid PHS Tantalum parts is higher than that of dry parts for all 

dielectric thicknesses and for all temperatures observed. This is because humid parts absorb 

water molecules at the dielectric oxide/polymer interface, which increases the active 

conductive surface area of the dielectric and thus, the capacitance. At low temperatures, 



60 

the capacitance loss in humid parts is larger than in dry parts with respect to capacitance at 

room temperature for all the dielectric thicknesses. This high capacitance loss in humid 

parts at low temperatures is related to the low mobility of ionic charge carriers, which 

decreases the conductivity of the dielectric in the free area. At high temperatures, the 

capacitance gain is higher in dry parts than in humid parts with respect to capacitance at 

room temperature for all the dielectric thicknesses. This high capacitance gain in dry parts 

at high temperature is related to the expansion of the PEDOT layer upon heating, resulting 

in an increase in the active conductive surface area of the dielectric and thus, the 

capacitance. 
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Figure 6.5. Free area between dielectric and PEDOT surfaces for dry capacitors (a) and 

closure of the free area under humid condition of the capacitor (b). 
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6.3 Capacitance Dependence on Frequency 

Secondly, we studied the effects of frequency on the capacitance of Polymer 

Tantalum capacitors with different dielectric thicknesses under humid and dry conditions. 

Capacitance as a function of frequency for both humid and dry PHS capacitors measured 

at room temperature and zero bias voltage is shown in Figure 6.6. According to Figure 6.6, 

at lower frequencies capacitance in humid PHS capacitors reduces gradually with 

frequency while capacitance in dry PHS capacitors remains relatively unchanged, until the 

capacitance of both humid and dry parts begins to roll-off. To determine whether 

temperature has any impact on the frequency dependence of capacitance, the room 

temperature measurements shown in Figure 6.6 are repeated at different temperatures in 

the following sequence; -55˚C, 0˚C, 85˚C, 105˚C, and 125˚C, and the results are presented 

in Figure 6.7. As shown in Figure 6.7, the results at different temperatures are relatively 

similar to the results at room temperature (Figure 6.6), showing the same frequency effects 

on the capacitance of both humid and dry capacitors. This means temperature does not have 

a significant role in capacitance dependence on frequency. Therefore, from here on the 

discussion of capacitance dependence on frequency is based on the room temperature 

measurement result that is shown in Figure 6.6. 

From Figure 6.6, we see that at lower frequencies (below 1000 Hz) the capacitance 

of the humid parts decreases gradually with frequency, while the capacitance of the dry 

parts remains relatively unchanged. Similar to the capacitance loss at low temperatures in 

humid parts, capacitance loss with frequency in humid parts can be related to the low 

mobility of the ionic charge carriers which cannot follow the AC signal at higher 
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frequencies [42]. Eventually, the capacitance in both humid and dry capacitors begins to 

fall sharply at the “knee frequency”, and the capacitance of the humid parts approaches 

that of the dry parts. The “knee frequency” is a frequency where the capacitance begins to 

decline with a large slope. 

Figure 6.6. Capacitance dependence on frequency in humid and dry PHS capacitors 

measured at room temperature and 0 bias voltage for different dielectric thicknesses: (a) 

82.5 nm, (b) 275 nm, (c) 412.5 nm, and (d) 550 nm 



64 

Figure 6.7. Capacitance dependence on frequency in humid and dry PHS capacitors 

measured at different temperatures for different dielectric thicknesses: (a) 82.5 nm, (b) 

275 nm, (c) 412.5 nm, and (d) 550 nm 
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The “knee frequency” in tantalum capacitors with porous tantalum anodes has been 

explained by the RC-Ladder effect (distributed capacitance model), which is discussed in 

Chapter 3.4. This model presents the capacitor as a sum of the capacitances of multiple 

layers starting with the external layer of the anode, followed by the dipper layer, and finally 

the core of the anode. At the “knee frequency”, the period of the AC signal, where its 

equation is given in Equation 3.4 and rewritten below for convenience, 

𝑇𝑇𝑃𝑃 = 1
𝑓𝑓
 

becomes smaller than the time constant of the core capacitive element, which is expressed 

as: 

𝜏𝜏 = 𝑅𝑅 ∙ 𝐶𝐶 6.5 

where R is the equivalent resistant of the core capacitor, and C is the capacitance of the 

core capacitor. When the period of the AC signal (Tp) is less than the time constant of the 

capacitive element (τ), the core capacitive element cannot respond within the time period 

and thus no longer contributes to the total capacitance. Therefore, at frequencies above the 

“Knee” the capacitance begins decreasing sharply with applied frequency. As the frequency 

continues to increase further above the “knee frequency”, Tp also continues to decrease, 

and more capacitive elements that are closer to the core become unable to respond within 
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the time period and they can no longer contribute to the total capacitance which is already 

decreasing. 

However, the “knee frequency” of Polymer Tantalum capacitors is higher than 

Solid Electrolytic (Ta-MnO2) capacitors [19], which implies that Polymer Tantalum 

capacitors have a higher capacitance stability with frequency. This can be explained by the 

higher conductivity of the PEDOT cathode as compared to the conductivity of MnO2 

cathode. The conductivity of PEDOT cathode is also higher than that of the liquid 

electrolyte cathode of Wet Electrolytic capacitors. The difference in conductivity between 

these cathodes becomes larger at lower temperatures where there is a small change in the 

conductivity of PEDOT, which is a p-type nearly degenerate semiconductor [43], some 

reduction in the conductivity of MnO2, an n-type semiconductor with narrow band gap 

[44], and a high reduction in the conductivity of the liquid electrolyte approaching the gel 

state with low ionic mobility at low temperature (-55˚C) [45]. 

In addition to the RC-ladder effect, which can explain the “knee frequency” 

transition of Polymer Tantalum capacitors, there are other minute secondary transitions 

that are observed before the “knee frequency” is reached. These transitions can be observed 

in Figure 6.6 by minor changes in the capacitance versus frequency dependence slope of 

each humid and dry curve in all of the dielectric thicknesses. These transitions might not 

have a significant effect on the general electrical behavior of the capacitors, but they will 

certainly contribute to the understanding of the operation of Polymer Tantalum capacitors. 

As shown in Figure 6.6, these transitions are more visible in humid parts, where the slope 

of the humid parts is a little higher than that of the dry parts at lower frequencies. These 
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secondary transitions are related to the mobility of the conductive polar segments of the 

polymer cathode. The polar segments are smaller branches (or sub-chains) that are attached 

to the main polymer chain. 

Polar segments of polymers respond to an alternating electric field [46, 47]. The 

response ability of these polar segments is associated with a relaxation time, τREL, which is 

the time needed for the segments to return to equilibrium or reach a new equilibrium after 

a disturbance caused by the applied electric field. This relaxation time is affected by the 

polar segment size; for example, large polar segments have a longer relaxation time. The 

relaxation process is characterized by a driving force, P, and it can be expressed as:  

𝑃𝑃 = 𝑃𝑃0𝑉𝑉𝑒𝑒𝑒𝑒 �−
𝑇𝑇𝑃𝑃 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅� � 6.6 

where TP is the signal period. The polar segments response to the electric field is strong at 

lower frequencies, where TP > τREL, in which case the polar segments of the polymers are 

following the applied electric field. However, at higher frequencies, where TP < τREL, 

practically no relaxation takes place; polar segments of a certain size are immobilized. The 

minor transitions occur when the magnitude of TP approaches the magnitude of τREL. In 

comparison to dry capacitors, humid capacitors have relaxation times that are smaller 

because of the water related plasticization in humid capacitors, and therefore, the secondary 

transitions are more pronounced and occur at lower frequencies in humid capacitors. 

The relative change in capacitance with frequency with respect to capacitance at 20 

Hz (the lowest frequency used in this work), C(20 Hz), in both humid and dry PHS 
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capacitors for different dielectric thicknesses was measured at room temperature and the 

results are shown in Figure 6.8. The capacitance change is calculated as: 

∆𝐶𝐶(%) = �𝐶𝐶(𝑓𝑓)−𝐶𝐶(20𝐻𝐻𝐻𝐻)
𝐶𝐶(20𝐻𝐻𝐻𝐻)

� ∙ 100 6.7 

It can be seen in Figure 6.8 that the “knee frequency” is lower in thinner dielectric Polymer 

Tantalum capacitors and it increases with increasing dielectric thickness. Not only is the 

“knee frequency” lower for the thinner dielectric Polymer Tantalum capacitors, but so is 

the effective series resistance (ESR). The ESR of humid and dry PHS capacitors was 

measured at 100 kHz as a function of dielectric thickness and is shown in Figure 6.9. It is 

clear that the ESR increases with dielectric thickness for both humid and dry samples. 

Another important observation from this result is that there is practically no difference 

between the ESR of humid and dry PHS capacitors. 
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Figure 6.8. Relative change in capacitance with respect to capacitance at 20 Hz in humid 

and dry PHS capacitors measured at room temperature. 
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Figure 6.9. ESR, measured at 100 kHz, as a function of dielectric thickness in humid and 

dry PHS capacitors. 

The results presented in Figure 6.8 and Figure 6.9 show a lower “knee frequency” 

and lower ESR in Polymer Tantalum capacitors with thinner dielectrics. Moreover, there 

is only a small difference between the “knee frequency” of humid and dry capacitors, 

except for the thinnest dielectric (82.5 nm) capacitors. These observations require 

explanations beyond the RC-ladder effect. For the same tantalum anode, thinner dielectric 

Polymer Tantalum capacitors have a higher capacitance and, thereby, a lower reactance, as 

well as a lower self-resonance frequency. The equations for reactance (XC) and self-

resonance frequency (fSR) are given in Equation 6.8 and 6.9, respectively. 
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 𝑋𝑋𝐶𝐶 = 1
2𝜋𝜋𝑓𝑓𝐶𝐶

6.8 

𝐸𝐸𝑆𝑆𝑅𝑅 = 1

2𝜋𝜋(𝑅𝑅𝐶𝐶)1 2�
  6.9 

where f is the frequency, C is the capacitance, and L is the parasitic inductance of the 

capacitor. The self-resonance frequency of a capacitor is the frequency at which the 

capacitance resonates with the parasitic inductance of the capacitor, resulting in the lowest 

impedance of the capacitor. As illustrated in Figure 6.10, capacitors behave as a pure 

capacitor until the self-resonance frequency is reached, where the impedance reaches its 

lowest point. The impedance (|𝑍𝑍|) is given by,  

|𝑍𝑍| = �𝐸𝐸𝐸𝐸𝑅𝑅2 + 𝑋𝑋𝐶𝐶2 6.10 

Above the self-resonant frequency, capacitors no longer behave as a capacitor, but behave 

as an inductor. Therefore, the lower reactance and self-resonance frequency could explain 

the lower “knee frequency” in the capacitors with thinner dielectrics as compared to those 

with thicker dielectrics. As shown in the frequency response curve for the capacitor with 

an 82.5 nm dielectric thickness in Figure 6.8, the capacitance levels off at about 10 kHz 

and thereafter begins to increase. This is especially noticeable for the humid capacitors. 

The behavior described here usually occurs at or near the self-resonance frequency. Thus, 

it seems reasonable that lower reactance and lower self-resonance frequency in the thinner 
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dielectrics can adequately explain the lower “knee frequency” and lower ESR in the thinner 

dielectric Polymer Tantalum capacitors. 

Figure 6.10. Illustration of impedance as a function of frequency, showing the self-resonant 

frequency 

6.4 Capacitance Dependence on DC Bias Voltage 

Finally, the capacitance stability of Polymer Tantalum capacitors with dc bias 

voltage was studied. In Figure 6.11 the capacitance dependence on dc bias voltage in both 

humid and dry capacitors measured at room temperature and 120 Hz is shown. To further 

study the capacitance stability with dc bias voltage, capacitance-voltage measurements 

were performed at different temperatures keeping the frequency constant (at 120 Hz) and 
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at different frequencies keeping the temperature constant (at room temperature). In Figure 

6.12 the capacitance as a function of dc bias voltage in humid and dry PHS capacitors for 

different dielectric thicknesses measured at different temperatures and at 120 Hz is shown, 

and in Figure 6.13 the capacitance as a function of dc bias voltage in humid and dry PHS 

capacitors for different dielectric thicknesses measured at different frequencies and at room 

temperature is shown. All these results clearly indicate one thing. The capacitance is not 

dependent on dc bias voltage, irrespective of varying frequency and temperature, in both 

humid and dry PHS capacitors for all dielectric thicknesses.  

Capacitance instability with bias voltage in dry Polymer Tantalum capacitors 

presented in Reference [48] can be related to an increase in DCL at higher voltages. If 

capacitors have high DC leakage currents, measurements of their capacitance will be 

inaccurate since LCR meters are measuring displacement current and cannot distinguish 

between it and the leakage current. Due to technologies, such as “flawless” (F-Tech) and 

simulated breakdown screening (SBDS), used in the fabrication of Polymer Tantalum 

capacitors for this work, DCL was low and stable in both humid and dry capacitors at all 

voltages less than or equal to the working voltages. 
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Figure 6.11. Capacitance dependence on dc bias voltage in humid and dry PHS capacitors 

measured at 120 Hz and room temperature for different dielectric thicknesses: (a) 82.5 

nm, (b) 275 nm, (c) 412.5 nm, and (d) 550 nm 
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Figure 6.12. Capacitance dependence on dc bias voltage in humid and dry PHS capacitors 

measured at different temperatures and 120 Hz for different dielectric thicknesses: (a) 

82.5 nm, (b) 275 nm, (c) 412.5 nm, and (d) 550 nm 
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Figure 6.13. Capacitance dependence on dc bias voltage in humid and dry PHS capacitors 

measured at different frequencies and room temperature for different dielectric 

thicknesses: (a) 82.5 nm, (b) 275 nm, (c) 412.5 nm, and (d) 550 nm 
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6.5 Conclusion 

The effects of temperature, frequency, and dc bias voltage on the capacitance 

stability of Polymer Tantalum capacitors with different dielectric thicknesses were 

investigated under both humid and dry conditions. The results from the electrical 

measurements and corresponding explanations were presented in this chapter. Some of the 

observations are summarized below. 

The capacitance of humid capacitors is higher than that of dry capacitors for all 

dielectric thicknesses and for all temperatures observed. This is mainly because under 

humid conditions the conductivity of the dielectric surface increases in the free area where 

there is no direct contact between the dielectric and PEDOT. This increase in the surface 

conductivity of the dielectric, provided by the thin layer of absorbed water molecules 

during humidification, results in a higher total surface area and thus, a higher capacitance. 

At lower temperatures, the capacitance loss in humid parts is larger than in dry parts with 

respect to capacitance at room temperature for all dielectric thicknesses. This capacitance 

loss in humid parts is related to the lower mobility of the ion charge carriers in the humid 

parts, which decreases the conductivity of the dielectric in the free area. At high 

temperatures, the capacitance gain is higher in dry parts than in humid parts with respect 

to capacitance at room temperature for all dielectric thicknesses. This capacitance gain in 

dry parts is related to the expansion of the PEDOT layer upon heating, increasing the 

conductive surface area of the dielectric and thus, the capacitance. 

At lower frequencies, the capacitance of the humid capacitors decreases slowly 

with frequency, whereas the capacitance of dry capacitors remains relatively unchanged. 
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This capacitance decrease with frequency in humid parts can be related to the low mobility 

of the ionic charge carriers which cannot follow the AC signal at higher frequencies. 

Eventually, the capacitance in both humid and dry capacitors falls sharply at the “knee 

frequency”. This capacitance loss at the “knee frequency” is related to the RC-Ladder 

effect. Finally, we saw that there is practically no capacitance dependence on dc bias 

voltage for both humid and dry Polymer Tantalum capacitors. 
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CHAPTER 7 

SUMMARY AND CONCLUSION 

In this thesis, capacitance stability of Polymer Tantalum capacitors was 

investigated under humid and dry environmental conditions with different dielectric 

thicknesses. Capacitance dependence on temperature (C(T)), capacitance dependence on 

frequency (C(f)), and capacitance dependence on dc bias voltage (C(V)) of both humid and 

dry Polymer Tantalum capacitors with different dielectric thicknesses were investigated. 

The coverage of the dielectric oxide surface with PEDOT particles plays a critical 

role in the effect of environmental conditions on Polymer Tantalum capacitors. The porous 

nature of the tantalum anode prohibits a complete direct contact between the surface of the 

dielectric oxide and PEDOT layer, decreasing the active conductive surface area of the 

dielectric. Since capacitance is directly related to the conductive surface area of the 

dielectric oxide/PEDOT interface, a decrease in the conductive surface area results in a 

decrease in the capacitance. Under humid conditions, because of the absorbed water 

molecules, the conductivity of the dielectric surface increases in the free area where there 

is no direct contact between the dielectric and PEDOT. This increase in surface 

conductivity of the dielectric results in a higher total surface area and, thereby, a higher 

capacitance in humid parts in comparison to the capacitance in dry parts. At lower 

temperatures, the conductivity of the humidified dielectric surface decreases due to the 

lower mobility of the ionic charge carriers, which increases capacitance loss with 

temperature in humid parts in comparison to dry parts. At higher temperatures, the PEDOT 

layer in dry parts expands upon heating, increasing the active conductive surface area and, 
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thereby, increasing the capacitance gain with temperature in dry parts in comparison to 

humid parts. Therefore, the integrity of the dielectric oxide/PEDOT interface is very crucial 

in the capacitance variation with temperature in Polymer Tantalum capacitors.  

Frequency is another parameter that was investigated, which affects the capacitance 

stability of Polymer Tantalum capacitors. At lower frequencies, the capacitance of the 

humid capacitors decreases gradually with frequency, while the capacitance of the dry parts 

remains relatively unchanged. This capacitance decrease with frequency in humid parts 

can be related to the low mobility of the ionic charge carriers which cannot follow the AC 

signal at higher frequencies. Eventually, the capacitance in both humid and dry capacitors 

begins to roll-off at the “knee frequency”. This steep drop in capacitance at the “knee 

frequency” is related to the RC-Ladder effect. The RC-Ladder effect models capacitors as 

a sum of the capacitances of multiple layers starting with the external layer of the anode to 

the core of the anode. As the frequency increases, the capacitive elements that are closer to 

the core stop responding to the applied frequency since  the period of the AC signal is less 

than the time constant of the capacitive element, and thus, no longer contributes to the total 

capacitance. As the frequency continues to increase further above the “knee frequency”, 

the time period of the AC signal also continues to decrease, and more capacitive elements 

that are closer to the core become unable to respond within the time period and are no 

longer able to contribute to the total capacitance. This decrease in capacitance with 

frequency shows the effect of frequency on the capacitance of Polymer Tantalum 

capacitors.  
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The effect of frequency on the stability of capacitance is more pronounced in 

thinner dielectric Polymer Tantalum capacitors as compared to those with thicker 

dielectrics. This can be explained using the lower reactance and lower self-resonance 

frequency of thinner dielectrics, which leads to a lower “knee frequency” in Polymer 

Tantalum capacitors with thinner dielectrics. 

To improve the environmental stability of Polymer Tantalum capacitors, working 

on the integrity of the dielectric oxide/PEDOT interface will be very important. This 

interface can be improved using three possible methods. The first method is usage of a 

coarser tantalum powder during the fabrication of the tantalum anode, which increases the 

pore size and improves the impregnation of the tantalum anode with prepolymerized 

PEDOT particles [41]. However, this method reduces the volumetric efficiency of the 

capacitor, and for this reason most lower voltage capacitors are made with fine powders. 

The second method to improve the integrity of the dielectric oxide/PEDOT interface is by 

depositing the PEDOT using in-situ polymerization instead of prepolymerized PEDOT 

[41]. In-situ polymerization provides better coverage of the dielectric surface with PEDOT 

molecules. The frequency response also improves due to the smaller size molecules in in-

situ PEDOT in comparison to the molecule size in prepolymerized PEDOT. However, in-

situ polymerization has its own disadvantages.  It leaves residual by-products of the 

chemical reactions inside the polymer cathode which are impossible to completely wash 

out, and these by-products affect the breakdown voltage (BDV) and dc leakage current 

(DCL) of the capacitor [32]. The third method to improve the integrity of dielectric

oxide/PEDOT interface is by adding a coupling agent called amine silane to the dielectric 
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surface prior to depositing prepolymerized PEDOT [41]. Applying amine silane improves 

the adhesion between the dielectric and the PEDOT, increasing the active conductive 

surface area of the dielectric and reducing the capacitance difference between humid and 

dry capacitors. 
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Appendix A 

Guide for Heating the Sample and Performing High Temperature Capacitance 

Measurements 

1. Attach a thermocouple on the sample (DUT C1) that is connected to a Digital 

Multimeter, to monitor the temperature of the sample during heating.

2. Connect long wires to both ends of the sample (external ends of the anode and the 

cathode), where the other ends of these wires are connected to the keithley 8101-

PIV Test Box at SMU 1 and SMU 4. The Test Box is then connected to the 

Agilent E4980A Precision LCR meter, which is used to measure the capacitance 

and the equivalent series resistance of the sample.

3. Insert the sample into an Erlenmeyer flask.

4. Insert the Erlenmeyer flask into an Air Bath Oven.

• The Air Bath Oven controls the temperature by regularly heating and 

circulating the air inside the oven.

• The Air Bath Oven that is used in this work can be heated up to 220˚C with 

a resolution of 1˚C.

5. The temperature inside the oven is controlled by the temperature controller of the 

oven; however, the temperature of the sample is monitored by the Digital 

Multimeter that is connected to the thermocouple that is attached to the sample

• When the temperature on the Digital Multimeter reaches the desired value, 

record the temperature, and wait 15-minute at the desired temperature prior
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to taking a capacitance measurement to ensure the temperature inside the 

sample is stabilized. 

6. For high temperature capacitance measurements, first start at room temperature,

and then at 85˚C and 105˚C, respectively, and back to room temperature to ensure 

the sample is not damaged from the high temperatures, and then at 125˚C and 

back to room temperature again to check if the sample is not damaged from the 

high temperature.
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Appendix B 

Guide for Cooling the Sample and Performing Low Temperature Capacitance 

Measurements 

1. Attach a thermocouple on the sample (DUT C1) that is connected to a Digital 

Multimeter, to monitor the temperature of the sample during cooling.

2. Connect long wires to both ends of the sample (external ends of the anode and the 

cathode), where the other ends of these wires are connected to the keithley 8101-

PIV Test Box at SMU 1 and SMU 4. The Test Box is then connected to the Agilent 

E4980A Precision LCR meter, which is used to measure the capacitance and the 

equivalent series resistance.

3. Insert the sample into an Erlenmeyer flask.

4. Insert the Erlenmeyer flask into a Dewar, that contain a mixture of dry ice and 

ethanol, slowly while monitoring the temperature on the Digital Multimeter.

• When the temperature on the Digital Multimeter reaches the desired value, 

record the temperature, and wait 15-minute at the desired temperature prior 

to taking the capacitance measurement, to ensure the temperature inside the 

sample is stabilized.

5. For low temperature capacitance measurements, first start at room temperature, and  

then at 0˚C and -55˚C, respectively, and back to room temperature to ensure the 

sample is not damaged from the low temperatures.
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Appendix C 

Guide for Performing Capacitance and Equivalent Series Resistance (ESR) 

Measurements Using the Agilent E4980A Precision LCR Meter 

1. Turn on the Agilent E4980A Precision LCR Meter by pushing the power button 

and wait for at least 30 minutes prior to taking measurements to allow the LCR 

meter to warm up.

2. Make sure the High current (HCUR) and the High potential (HPOT) terminals are 

connected into one High output terminal using a T-connector, and the Low current 

(LCUR) and the Low potential (LPOT) terminals into one Low output terminal.

3. Connect the High and the Low output terminals into the keithley 8101-PIV Test 

Box using Triaxial cables at SMU 1 and SMU 4.

4. Connect the external wire connectors of the sample at SMU 1 and SMU 4.

5. Push “Meas Setup” button on the LCR meter and use the Up, Down, Left, and Right 

triangular arrow buttons to adjust the parameters as desired. Here are some of the 

parameters that are frequently used for measurements in this work.

a. FUNC: adjusts to series and parallel circuit mode of capacitance, 

inductance, and resistance measurements. In this work, parallel circuit mode 

(CP - RP) is used for capacitance measurements and Series circuit mode (CS

- RS) is used for equivalent series resistance (ESR) measurements.

b. FREQ: adjusts frequency as desired.
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c. BIAS: adjusts the dc bias voltage as desired. However, in order to have a dc

bias voltage, the “DC BIAS” button must be pushed in first.

d. LEVEL: adjusts the voltage level of the AC signal. 1 V is used in this work.

6. Once all the parameters are adjusted to the desired values, press “Display 

Format” to go back to the screen which will show the measurement results.

7. Record the measurement results from the screen.
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Appendix D 
 

Procedure for Measuring Capacitance of Polymer Hermetic Seal (PHS) Capacitors 

 

1. Measurements of capacitance as a function of frequency (C(f)) 

• f = 20 Hz, 60 Hz, 120 Hz, 500 Hz, 1 kHz, 4 kHz, 10 kHz, 40 kHz 

• V = 0 V 

• T = RT (Room Temperature) 

2. Measurements of capacitance as a function of dc bias voltage (C(V) 

• V = 0 V, 1 V, 2 V, 4 V, 6 V, 8 V, 10 V…, WV (working voltage). 

• f = 120 Hz 

• T = RT 

3. Repeat step 1 and 2 for T = RT, 0˚C, -55˚C, RT, 85˚C, 105˚C, RT, 125˚C, RT 

• Wait for 15-minute at each temperature prior to taking measurements. 

 This will help to make sure that the temperature is stabilized inside 

the capacitor. 

• RT and 125˚C measurements must be performed at 120 Hz and 0 V. 

• For measurements at 125˚C, the total time (waiting + measurement) 

should not exceed 1-hour range. 

 Staying for more than an hour at 125˚C might damage the device. 

 

 



 90 

4. Measurements of Capacitance as a function of frequency and dc bias voltage (C(f, 

V)) 

• V = 0 V, 1 V, 2 V, 4 V, 6 V, 8 V, 10V 

• f = 20 Hz, 60 Hz, 120 Hz, 500 Hz, 1 kHz 

• T = RT 

5. KEMET dries the samples.  

• Drying is performed at 125˚C for 24 hours 

6. Repeat steps 1 – 4 for dry samples. 
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