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Abstract

High Entropy alloys (HEAs) are metal alloys consisting of multiple base metals in equimolar

or near equimolar concentrations. HEAs exhibit unique combinations of properties that render them

an attractive choice in many engineering applications. Among HEAs, a single phase face centered

cubic (FCC) CoCrFeMnNi alloy, known as the Cantor alloy, shows simultaneous strength and ductil-

ity specifically at cryogenic temperatures. This has been attributed to the activation of deformation

twinning as an additional mode of plastic deformation. Experimentally it has been observed that

grain boundaries (GBs) facilitate the nucleation of deformation twins in HEAs. However, the role

of GB geometry in the deformation behavior of HEAs remains unexplored. In this thesis work, we

leverage atomistic simulations to systematically investigate the role of GB geometry in the defor-

mation behavior of the Cantor alloy at 77 K. To this end, a series of Cantor alloy bicrystals with

�110� and �111� symmetric twist GBs are constructed and used in tensile deformation simulations.

Simulation results reveal that plastic deformation proceeds by the nucleation of partial dislocations

from GBs, which then grow with further loading by bowing into the bulk crystals leaving behind

stacking faults. Variations in the nucleation stress exist as function of GB character, defined in this

work by the twist angle. Our results provide future avenues to explore GBs as a microstructure

design tool to develop HEAs with tailored mechanical properties.
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Chapter 1

Introduction to High Entropy Alloys

1.1 A Brief Historical Sketch

In traditional metallurgy, metallic alloys are synthesized and fabricated by introducing solute

atoms (i.e., alloying elements) to the host material. These alloying elements greatly influence many

of the physical and mechanical properties of structural and functional metals [1]. Notable examples

of such an approach includes stainless steels and nickel-based alloys. In recent years, a new approach

of fabricating metallic alloys has been introduced by using multiple elements in comparatively high

concentrations, and such systems are termed high entropy alloys (HEAs). The first reported work

on HEAs was introduced in 2002 by B. Cantor at the RQ11 conference in Oxford, and then officially

published in 2004 [2]. Similar research published by S. Ranganathan discussed alloys which are

closely related to HEAs and called the created alloys multimaterial cocktails [3]. Then, the term for

alloys, HEAs, was used for the first time in the research published by Yeh et al. [4]. The name, HEAs,

still remains as the convention to describe such alloys [4]. Owing to their multi-principal element

compositions, HEAs are characterized by unique combinations of properties, including mechanical

strength [4–6], hardness [7, 8], wear resistance [9, 10], and corrosion resistance [11–14]. The

use of multiple principal elements in far-from dilute concentrations unlocks myriad possibilities of

combinations of properties and functionalities that are not typically obtained in conventional metallic

alloys.
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1.2 Thermodynamics of HEAs

In order to provide context for HEA terminology, which is described in the next section, alloy

thermodynamics is briefly introduced in this section. In a system composed of a single component,

the equilibrium phase of the system is dependent on pressure and temperature. An alloy system,

however, involves composition as an additional variable. For example, consider the simple binary

solution system containing pure elements A and B as shown in Fig.1.1. The total Gibbs free energy

of a binary solution can be calculated from the free energies of pure A and B element. Under

the assumption that both the A and B have the same crystal structures and can be mixed in any

proportions to make a solid solution with the same crystal structure, 1 mol of homogeneous solid

solution is made by mixing together the mole fractions of A and B in the alloy. Mathematically, it

can be expressed as

XA +XB = 1 (1.1)

where XA and XB are the mole fractions of each component.

Figure 1.1: A schematic description of mixing process in the alloy system containing elements A
and B [15].

Fig. 1.1 portrays the process that the A and B atoms are mixed together to make a homo-

geneous solid solution. The left image on the Fig. 1.1 shows the configuration of the system which

has a Gibbs free energy, G1, before mixing. G1 lies on the straight line connecting the points that

represent the free energies of pure A and pure B, refer to Fig. 1.2. After the mixing process, the free

energy of the system changes to become

G2 = G1 +∆Gmix (1.2)

G2 is the total free energy after mixing and ∆Gmix is the change in energy caused by mixing.

2



Figure 1.2: A Molar free energy diagram. Variation of the free energy before mixing, G1, as a
function of the mole fraction of B component is depicted [15].

The ∆Gmix, by the definition, can be divided into enthalpy (∆Hmix) and entropy (∆Smix) change

and is given by

∆Gmix = ∆Hmix − T∆Smix (1.3)

For the sake of illustrating the concept of entropy of HEAs, we consider ideal alloys with ∆Hmix

= 0. In this case, the free energy change on mixing is only due to the change in entropy:

∆Gmix = −T∆Smix (1.4)

Thermal entropy can be quantified by invoking Boltzmann equation from statistical thermodynamics,

which relates entropy to the possible configurations:

S = k ln ω (1.5)

where k is Boltzmann’s constant and ω is a measure of randomness. In other words, ω is the number

of possible arrangement of the atoms in the solution under the assumption that there is no change

in volume and heat. In this binary solution system, when A and B mix to form a substitutional

solid solution and all configurations of A and B are equally probable, the number of possible ways

of arranging the atoms on the lattice sites can be expressed as the following:

ωconfig =
(NA +NB)!

NA!NB !
(1.6)

Using Stirling’s approximation (ln N ! ≈ N lnN −N), the mixing entropy is given by the following:

∆Smix = −R(XAlnXA +XBlnXB), (1.7)

where R is the gas constant. By substituting the entropy in the free energy of mixing, ∆Gmix, can

be simplified as

∆Gmix = RT (XAlnXA +XBlnXB) (1.8)

Fig. 1.3 shows a plot of ∆Gmix. The free energy change of mixing for an ideal solution decreases as

XB mol of B increases. The above analysis can be generalized to N number of components, leading

3



Figure 1.3: The change of free energy of mixing as function of composition and temperature for an
ideal solution [15].

to entropy change as:

∆Smix = −R(X1lnX1 +X2lnX2 +X3lnX3 + ...) (1.9)

From the above equation, we can see that the mixing entropy increases as the number of components

in the system increases. Alloy thermodynamics of HEAs can be demonstrated by considering an

equiatomic alloy with n number of components in regular solid state. Its ideal configuration entropy

is calculated by [4, 16]

∆Sconf = −R(
1

n
ln
1

n
+
1

n
ln
1

n
+ ...+

1

n
ln
1

n
) = −R ln

1

n
= R ln n (1.10)

This is the configurational entropy calculated under the assumption that the atoms within the system

are randomly arranged. Using the equation, we can easily compare the configurational entropy of

systems with n number of components and this is illustrated in Table. 1.1.

Table 1.1: Ideal configurational entropies in terms of the gas constant for equiatomic alloys with
components up to 13 [17]

n 1 2 3 4 5 6 7 8 9 10 11 12 13
∆Sconf/R 0 0.69 1.1 1.39 1.61 1.79 1.95 2.08 2.2 2.3 2.4 2.49 2.57

1.3 Terminology

Currently, two main schemes are used to define HEAs: an entropy-based or composition-

based definitions. For the composition based definition, one of the early studies defined HEAs as

"principal elements with the concentration of each element being between 35 and 5 at.%." [17] The

definition is further expanded later on so that HEAs can contain minor elements [16]. For the second

definition, entropy based definition uses the magnitude of the change of configurational entropy to
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Figure 1.4: Categorization of HEAs based on configurational entropy [18].

categorize HEAs. In Fig. 1.4, each entropy category is graphically represented. As mentioned in

the previous section, solid solutions with a high degree of randomness are easier to obtain as the

number of components which have sufficient mole fraction in a system increases. Therefore, HEAs

are defined as alloys having configurational entropies at a random state larger than 1.5R regardless

of the phase state of the alloys at room temperature. This is expressed as the following equation:

∆Sconf ≥ 1.5R (1.11)

Medium-entropy alloys and low-entropy alloys are defined as the following [19]:

Medium-entropy alloys : 1.0R ≤ ∆Sconf ≤ 1.5R (1.12)

low-entropy alloys : ∆Sconf ≤ 1.0R (1.13)

An entropy change of 1R sets the boundary between medium-entropy alloys and low-entropy alloys

as a mixing entropy less than 1R is predicted to be much less competitive with the enthalpy of

mixing. The reason that these boundaries need to be defined is that the basic design principle of

HEAs is to have high mixing entropy so as to enhance the formation of random solid solution phases

and hinder the formation of intermetallic compounds. For comparison, the configurational entropies

of traditional alloys are listed in Table. 1.2.

5



Table 1.2: Configurational entropies calculated for conventional alloys at their liquid state [17]
Systems Alloys ∆Sconf/R at liquid state

Low-alloy steel 4340 0.22, low entropy

Stainless steel
304 0.96, low entropy
316 1.15, medium entropy

High-speed steel M2 0.73, low entropy
Mg alloy AZ91D 0.35 low entropy

Al alloy
2024 0.29, low entropy
7075 0.43, low entropy

Cu alloy 7-3 brass 0.61, low entropy

Ni-based superalloy
Inconel 718 1.31, medium entropy
Hastelloy X 1.37 medium entropy

Co-based superalloy Stellite 6 1.13, medium entropy

Bulk metallic glass
Cu47Zr11Ti34Ni8 1.17, medium entropy

Zr53Ti5Cu16Ni10Al16 1.30, medium entropy

1.4 Four Core Effects

There are four core effects that distinguish HEAs from conventional alloys [3, 4, 17, 19]

including the high entropy effect, the lattice distortion effect, sluggish diffusion, and the cocktail

effect. The high entropy effect is first proposed by Yeh et al. [4]. It is hypothesized that the

existence of multiple primary elements in near equiatomic concentration increases configurational

entropy enough to overcome the enthalpies of compound formation such as intermetallic phases.

Figure 1.5: Possible mixing reactions that can occur with three different prime elements. [20]
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To illustrate, the possible mixing of reactions of an alloy system with three alloying components are

depicted graphically in Fig. 1.5. These include spinodal decomposition, solid solution, intermetallic

formation, multiple solid solution. Spinodal decomposition is very commonly observed in HEAs [4,

21–25], including Fe-Ni-Mn [26, 27], Fe-Cr-Co [28] and Fe-Cr alloys [29]. In the mixing reaction that

forms multiple solid solutions, each component in a system forms separate phases. Intermetallic

compounds are undesirable as they make the alloy brittle [30–32]. Next, the lattice distortion effect

states that the difference of atom sizes in solid solution distort lattice structure from ideal structure

(Fig. 1.6).

Figure 1.6: (a) Depiction of the lattice structure made of atoms with the radii of ri and rj . r̄ in
figure (b) represents the average radius of the atoms [33]

It is hypothesized that this effect has been demonstrated using the intensity of x-ray diffraction

peaks [16, 34, 35]. The Fig. 1.7 shows the distortion effect on the x-ray diffraction graphically.

When all atoms within the alloy system are placed in the perfect lattice sites, a beam of x-rays of

(a) (b)

Figure 1.7: (a) Schematic representation of intrinsic lattice distortion effects on Bragg diffraction
(b) distorted lattice with solid solutions of different atom sizes [33]

wavelength λ is incident on two parallel planes at an angle θ, creating sharp peaks on diffraction

patterns due to constructive interference. However, the system composed of atoms with varying
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atomic radii changes the diffraction angles, altering the interference pattern of the scattered rays.

Hence, the lattice distortion effect decreases the x-ray diffraction intensities beyond the thermal

effect as shown in Fig. 1.8. The lattice distortion effect has been shown to increase the hardness of

Figure 1.8: Temperature and distortion effects on x-ray diffraction intensity [36]

HEAs [16, 35]. Wang et al. [37] found a clear correlation between the magnitude of the local lattice

distortion and the dislocation dissociation distance, showing the potential impact on deformation

behavior on Cantor alloy. Li et al. [38] theoretically explored the effect of the lattice distortion and

showed that the atomic mismatch brings solid solution strengthening effect. Zhao et al. [39] showed

that the yield strength enhancement and lattice friction stress monotonically increase with increasing

lattice mismatch strain. Additionally, the lattice distortion effect has been shown to be correlated

with a decrease in electrical and thermal conductivities [16, 35]. The sluggish diffusion effect is

proposed because diffusion is reported to be slow in HEAs [4]. As diffusion is hard to quantitatively

measure, the hypothesis relies on indirect observations including the presence of nanocrystals in

AlxCoCrCuFeNi as-cast alloy [21] and AlCrMoSiTi after annealing [40]. However, Miracle et al. [41]

analyzed HEA diffusion data and did not find clear evidence of slow kinetics in CoCrFeMn0.5Ni.

The cocktail effect is used to indicate that the unexpected properties can be obtained from

mixing many components. The cocktail effect was first demonstrated by Ranganathan [3] and the

effect is confirmed by other studies [5, 6, 42–45]. The effect implies an increased flexibility in terms

of tailoring the properties of HEAs. As an example, the hardness of CoCrCuNiAlx HEAs depending

on the Al content is shown in Fig. 1.9; the hardness of the alloy increases with increasing Al content,
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Figure 1.9: Hardness and lattice constants of CuCoNiCrAlxFe alloy system are plotted as a function
of Al content, x. (A) hardness of CuCoNiCrAlxFe alloys, (B) lattice constants of an FCC phase,
(C) lattice constants of a BCC phase [4].

implying that the characteristics of the alloy are customizable. To provide a general overview of the

customizability of HEAs, the hardness of currently discovered HEAs is shown in Fig. 1.10, where it

can be seen that the properties of HEAs can vary widely depending on the alloy content.

Figure 1.10: Hardness for HEAs are compared with the conventional alloys including 17-4 PH
stainless steel, Hastealloy, and 316 stainless steel [46].
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1.5 Development of HEAs

The multiple principal elements approach is revealing unexpected alloying mechanisms.

Numerous recent studies on 3d transition metal HEAs, such as CoCrFeMnNi [2, 47–49], CoCr-

FeNi [47, 50], CoFeMnNi [47], CoCrMnNi [47], and Co0.25Cr0.1Fe2Mn1.35Ni1.3 [51], have explored

the impact of temperature [52, 53], grain size [54–56], alloy composition [57–59], strain rate [60],

strain levels [61], and deformation-induced phase transformations [62, 63] on the mechanical behav-

ior of these alloys. In addition, HEAs with new properties which fill the gaps in Ashby type maps

are being discovered [64]. In Fig. 1.11, 3d transition and refractory metal HEAs fill a gap in the

strength-density Ashby map between steels and Ti alloys. The continuous development of HEAs

would provide designers with materials systems with unique combinations of properties.

Figure 1.11: Yield strength and density property space chart. Newly discovered HEAs are super-
imposed on the chart with the conventional alloys. The dashed lines give performance indices for
uniaxial loading (slope, s=1), beam bending (s=3/2) and panel bending (s=2). The chart was made
with the CES EduPack database, level 3 aerospace edition by Gorsse et al. [64]
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Chapter 2

The Cantor Alloy

2.1 The FCC CoCrFeMnNi (Cantor)

The Cantor alloy is a quinary alloy with CoCrFeMnNi composition. The alloy is one of

the first HEAs to exist as a single FCC phase solid-solution [2]. The strength of this alloy is

strongly temperature dependent below 473k and weakly at temperatures up to 1273K. In addition,

modest strain-rate dependence was shown at low homologous temperatures [2]. Understanding the

mechanical properties of the Cantor alloy has been the subject of active research efforts. Its elastic

constants, determined using experimental [65, 66] and computational [67] techniques, were found to

exhibit similar elastic anisotropy as Fe [68]. Experimental studies employed X-ray diffraction [69–73],

scanning electron microscopy [70, 74–76], transmission electron microscopy [52], electron backscatter

diffraction [75, 76], and atom probe tomography [77, 78] showed no indication of either short-range

order, or clustering at a temperature over 800 K. However, a recent experimental study showed Cr

rich precipitates and enrichment of Ni and Mn at the grain boundary (GB) below 1073 K [77] and

suggested that entropy stabilizes the structure above 1073 K and lose over by enthalpy at below 1073

K. Further, density functional theory studies showed potential of phase transformation to hexagonal

close-packed (HCP) below 50 K and two experimental studies implied pressure induced transition

from FCC to HCP [62, 63].
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2.2 Mechanical Behavior of the Cantor Alloy

The Cantor alloy was found to exhibit simultaneous mechanical strength and ductility [41,

48, 53, 54, 69, 79–84] with yield strength values that are comparable to conventional alloys, such

as Ni-based superalloys and steels. A recent experimental study showed mechanical strength of 1

GPa and 60% elongation at cryogenic temperature, 77 K, and the work hardening rate increased

as temperature decreased [52]. Gali and George [70] showed that the yield and ultimate strengths

and ductility all increase simultaneously with decreasing temperature down to 77 K. The Cantor

Figure 2.1: Ashby plot of strength (σy) versus fracture toughness (Kc) for a wide range of materials
including HEAs. The Cantor alloy has been shown to have a fracture toughness in the range 200-300
MPa

√
m, indicating that the alloy is among the most damage-tolerant materials [20, 48].

alloy also showed higher damage tolerance than any known materials. Experimental results showed

that the Cantor alloy has fracture toughness of over 200 MPa
√
m [48, 52, 70], exceeding the fracture

toughness of most pure metals and most metallic alloys. An Ashby plot of strength versus fracture

toughness is presented in Fig. 2.1 and graphically represents the damage tolerance and the strength

of the Cantor alloy compared to existing materials. The unique properties of the Cantor alloy are

due to multiple deformation mechanisms. An experimental study at room temperature [52, 76, 85]

observed the following deformation processes: slip initially occurs by planar glide 1/2�110� disloca-
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tion on {111} plane and the emitted dislocations split into 1/6�112� Shockley partial dislocation.

Deformation twinning is another mode of deformation that is observed in HEAs. As an illustration,

the microstructure of a twinned crystal is visually represented in Fig. 2.2, where the twin planes are

marked by arrows. It is evident that this process is not diffusive as atoms are only sheared by small

distances, typically less than a lattice spacing. Extensive deformation-induced nanotwins have been

observed in the Cantor alloy, as well as other FCC HEAs, at various temperatures, including 77 K,

and with grain sizes ranging from sub-micrometer to millimeter [48, 52, 77, 79, 85, 86]. A �110�

Figure 2.2: The images show crystal structure of twinned grain in atomic scale [20].

dislocation in an FCC lattice usually dissociates into two Shockley partials separated by a stacking

fault defect as shown in Fig. 2.3. The distance between these two Shockley partials is referred to

as the splitting distance. Generally speaking, the lower the stacking fault energy of a crystal, the

larger the splitting distance between the partial dislocations and the wider stacking fault. Hence,

Figure 2.3: Visual representation of dislocation dissociation and formation of stacking fault [87].

the stacking fault energy provides useful insight into the deformation response of a metal. Otto et

al. [52] showed that the extensive deformation twinning of the Cantor alloy at low temperatures

is attributed to its low stacking fault energy. Atomistic calculations exploring the stacking fault

energies in the Cantor alloy showed deformation twinning is thermodynamically favorable at low

temperature [88, 89]. Further, experimental studies showed a relatively wide splitting distance of

3.5-4.5 nm with an average stacking fault energy of 30± 5 mJm−2 in the Cantor alloy [83, 85].
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Chapter 3

Open Questions and Research Plan

3.1 Motivation

In terms of mechanical properties, the Cantor alloy has been shown to have high strength,

ductility, and fracture toughness especially at low temperatures. Recent experimental studies re-

vealed nanotwin nucleation from GBs [79, 83, 90], suggesting the role of GBs as twin nucleation

sites. Fig. 3.1 (a) shows a bright-field TEM image from a study by Laplanche et al. [83] depicting

the nucleation of deformation nanotwins from a GB in the Cantor alloy at a true tensile strain

� = 12.1% and temperature of 77 K. Joo et al. [79] observed that deformation twins nucleated at

GBs at room temperature as shown in Fig. 3.1 (b). The influence of GBs on twin nucleation has

been observed previously in pure metals.

𝝐 = 𝟏𝟐. 𝟏%

(a) (b)

Figure 3.1: (a) A bright-field TEM image depicting nanotwin nucleation from a GB in a CoCr-
FeMnNi HEA at a true tensile strain � = 12.1% and temperature of 77 K. Taken from Ref. [83]. (b)
EBSD image of deformation twins at room temperature. Taken from Ref. [79]
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The experiments by Bell and Cahn [91, 92] on Zn crystals highlighted the impact of defects on

twin nucleation by observing that carefully prepared Zn single crystals can be mechanically loaded

to much higher levels than those at which twins typically form in crystals with Mg-based [93, 94],

and Ti-based [95, 96] systems. This carries implication for the development of the Cantor alloy

with enhanced mechanical properties by designing HEA microstructures with desired density of

GBs. A key step to achieving this goal is to gain an understanding of the role of GB type in

defect nucleation in HEAs. The primary goal of this thesis work is to explore the role of GBs in

the deformation mechanisms of equiatomic CoCrFeMnNi HEA. The ability to probe mechanisms

controlling the unique properties of the Cantor alloy would improve our understanding of this new

class of metallic alloys, enabling their use in many engineering application [46, 66].

3.2 Open Research Questions

While the Cantor alloy has been the subject of many investigations, the following research

questions are still unanswered:

• Do GBs affect the nucleation process of deformation twins? The experimental evidence suggests

that GBs may act as preferential sites for deformation twins nucleation [79, 83, 90].

• How does the GB geometry influence the defect nucleation stress? In general, a GB is defined

by five geometric degrees of freedom; three for misorientation and two for plane normal [97].

3.3 Research Plan

In this work, we leveraged classical molecular dynamics to examine the role of GBs in the

deformation behavior of the Cantor alloy. Especially, we focused our attention on the behavior at

the cryogenic temperature. This is due to the fact that the alloy has shown extensive twinning at

that temperature. Further, we explored the role of GB geometry in the defect nucleation stress in

this alloy. We employed the coincidence lattice sites (CSL) to define and construct �110� and �111�

symmetric twist GBs (STGBs). The reason for choosing twist GBs is two-fold. First, while the

mechanical behavior of GBs has been the subject of active research in atomistic simulations, most

studies have been mainly focused on tilt (symmetric or asymmetric) GBs. In such studies of tilt

GBs, the angle of rotation about the tilt axis is varied leading to different GB types. However, this
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Figure 3.2: Investigation of the GB effect is limited to twist GBs. Two distinct twist axes and
various misorientation angles for each axis were the main focus [1].

will result in bicrystal geometries with different crystal directions along the loading direction, leading

to convoluted effects of GB type and resolved shear stresses on GB planes. Second, by using twist

GBs we are able to probe the behavior of several GB types in bicrystal systems that all share the

same loading axis and, thus, same maximum Schmid factors. In what follows, we briefly highlight

the key steps in our atomistic simulation study.

• Generate a series of the Cantor alloy bicrystals with well defined GB geometry and perform

thermal annealing at 77 K.

• Perform uniaxial tension on all bicrystal geometries up to 12% nominal strain at 77 K.

• Process and quantify the results by calculating the stress-strain curves and observing disloca-

tion emission from GBs.
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Chapter 4

Method and Computational

Approach

4.1 GB Characterization

A GB is described by defining five geometric degrees of freedom (DOF); 3 for misorientation

and 2 for plane normal: 2 DOF define the rotation axis (o), one defines the misorientation angle

(θ), and two describe the GB plane normal (n). Fig. 4.1 schematically shows the GB plane normal

and the rotation axis. The rotation axis can be described using Miller indices as [h0k0l0]. The

misorientation between two grains can then be described by the rotation axis and angle. The GB

plane normal is described using Miller indices as (hnAknAlnA); the nA subscript denotes that the

Miller indices are related to the grain A shown in Fig. 4.1. Using aforementioned parameters, any

GB can be completely characterized by the notation θ°[hokolo], (hnAknAlnA). Tilt GBs are defined

as ones with a rotation axis, o, perpendicular to the GB normal. When the rotation axis and the

GB normal are parallel to each other, the GBs are defined as twist GBs. Table. 4.1 shows one

systematic way to categorize GBs. It is based on the GB plane described in both crystal 1 and

crystal 2 coordinates, and the twist angle ϕ of both planes table.
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Figure 4.1: Variables that define a GB. xA, yA, zA and xB , yB , zB are the axes of the coordinates
parallel to crystallographic directions in grains A and B, respectively. Here o and θ are the rotation
axis and the rotation angle necessary to transfer both grains to an identical position. n denote the
GB plane normal; it determines the orientation of the GB plane [97].

Table 4.1: Systematic GB categorization proposed by Wolf and Lutsko [97].
GB category Standard

Symmetrical tilt GB h1k1l1 = h2k2l2 and ϕ = 0
Asymmetrical tilt GB h1k1l1 �= h2k2l2 and ϕ = 0

Twist GB h1k1l1 = h2k2l2 and ϕ �= 0
Mixed GB h1k1l1 �= h2k2l2 and ϕ �= 0

4.2 Coincidence-Site Lattice (CSL)

In this thesis, the CSL [98] model was used to describe the GBs used in this work. The

concept is developed based on the assumption that the adjoining grains with a high number of

atomic sites shared between the grains possess low interfacial energy because the number of broken

bonds across the boundary is small. When the two grains are misoriented by a specified angle, θ,

around a rotation axis, o, some atomic sites coincide at superposition of the two crystals, and these

sites are termed coincidence sites. The coincidence sites form superlattice, and the parameter that

characterizes the density of the coincident sites is Σ. The Σ value represents the reciprocal number
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Figure 4.2: A top view of along the [001] direction on two interpenetrating cubic lattices misoriented
by 22.6°. The dotted square area forms superlattice of coincident sites and represent Σ13 GB.

densities of lattice sites, and is given by:

Σ =
total number of lattice sites in elementary cell

number of coincidence sites in an elementary cell
(4.1)

As an example, a two dimensional CSL GB is illustrated in Fig. 4.2 through a top view of two

interpenetrating cubic crystal lattices denoted as filled and open markers. The crystals are rotated

22.6° relative to one another along their common [001] twist axis. The superimposed sites forming

a superlattice, a CSL cell, are highlighted by a dotted blue square. This example shows that every

thirteenth lattice site is the coincident site in 22.6° [001] misorientation relationship. The example

boundary is Σ13.

4.3 Preparation of GB Structures

A series of the Cantor alloy bi-crystals with �110� and �111� STGBs were generated and

studied using a second nearest-neighbor modified embedded atom method (MEAM) interatomic

potential fit to the energetics of all unary, binary, and ternary combinations of the CoCrFeMnNi

system [57]. This potential reproduces experimental mechanical properties and solid solution hard-

ening effect in non-equiatomic CoCrFeMnNi HEAs at arbitrary compositions. All MD simulations

reported here were performed using LAMMPS atomistic simulation package [99] and visualizations

of atomistic structures were generated using OVITO [100]. Analysis of dislocation structures was
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performed using the dislocation extraction algorithm (DXA) [101]. The OVITO implementation of

the centrosymmetry parameter, common neighbor analysis (CNA), and polyhedral template match-

ing (PTM) algorithm [102] were used to identify crystal structures and ordering in the atomistic

systems.

GB
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Figure 4.3: A schematic depicting (a) the geometry of the atomistic bi-crystal system and (b) the
mechanical loading applied to these systems.

The first step in our approach was the construction of Cantor alloy bicrystals with pre-

scribed GB geometries. For each bi-crystal, a fully periodic atomistic system was created from two

half crystals, each of which was rotated such that the resulting planar GB between the halves had

the specified misorientation angle. Figure 4.3(a) shows a schematic representation of the bicrystal

geometry used in this work, where the GB plane normal n aligns with the y-axis of both crystals,

Table. 4.2 lists the ten [110] and ten [111] STGBs employed in our work in the order of increasing

Σ value. Also included in the table are the twist angles, crystal x-axis for the upper (x1) and lower

(x2) grains. Fig. 4.4 (a) and (b) show respectively the [111] and [110] zone axes, where several

crystallographic directions are also identified. During the construction of the bicrystals, a sequence

of relative displacements between the upper and lower half-crystals is used in conjunction with atom

deletions and conjugate gradient energy minimizations to identify a low energy GB configuration.

The systems were allowed to expand or contract in the perpendicular direction to the GB plane. In

order to capture the periodicity of a GB atomic structure, the target dimensions of the bicrystal

geometry were set to Lx = Lz = 100 Å and Ly = 600 Å. However, the dimension of each sample

varied slightly so as to accommodate an integer number of unit cells necessary to model each specific
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(a) (b)

Figure 4.4: (a) 111 Zone axis (b) 110 Zone axis

GB. The number of atoms in each sample ranged from 600,000 to 1 million, and Ni, Fe, Mn, Cr, and

Co atoms were randomly assigned in equal amounts. After the bi-crystal construction step, we ther-

mally equilibrated the systems by heating the simulation box to a temperature of 77 K and holding

for 4 ns with a target pressure of zero, allowing the system to expand or contract as appropriate.

This was achieved by performing isothermal and isobaric integration with a 1 fs time step to march

atoms’ positions and velocities using a Nose-Hoover thermostat and barostat [103]. This creates a

trajectory in phase space that is consistent with the isothermal-isobaric (NPT) ensemble. To damp

undesirable oscillations in the system’s temperature and pressure, the drag option within LAMMPS

was used.

21



Table 4.2: For the bicrystal geometry depicted in Fig. 4.3(a), the crystal x-axis for the upper x1
and lower x2 crystals. The crystal z-axis is obtained using z = x×y, where the GB plane normal is
along the crystal y-axis. The x-axis for single crystal systems with a [110] (SC110) and [111] (SC111)
loading axis is also listed.

[110] STGBs [111] STGBs
Σ x1 / x2 θ Σ x1 / x2 θ

value [hkl]upper / [hkl]lower (◦) value [hkl]upper / [hkl]lower (◦)

3 [1 1 1] / [1 1 1] 70.53 3 [1 1 2] / [1 1 2] 60.00
9 [2 2 1] / [2 2 1] 38.95 7 [1 4 5] / [4 1 5] 38.21
17 [2 2 3] / [2 2 3] 86.60 13 [2 5 7] / [5 2 7] 27.80
19 [3 3 1] / [3 3 1] 26.53 19 [1 7 8] / [7 1 8] 46.83
27 [1 1 5] / [1 1 5] 31.60 21 [1 4 5] / [1 5 4] 21.79
33 [2 2 5] / [2 2 5] 58.98 31 [4 7 11] / [7 4 11] 17.90
41 [4 4 3] / [4 4 3] 55.88 39 [2 5 7] / [2 7 5] 32.20
43 [3 3 5] / [3 3 5] 80.63 57 [1 7 8] / [1 8 7] 13.17
51 [5 5 1] / [5 5 1] 16.10 93 [4 7 11] / [4 11 7] 42.10
201 [10 10 1] / [10 10 1] 8.10 111 [1 10 11] / [1 11 10] 9.43

SC110 x = [2 2 5] — SC111 x = [1 1 2] —

The GBs chosen for this study were �110� and �111� STGBs with a wide range of twist

angles and, as a result, GB structures. Each of the two half crystals was rotated about the twist

axis (i.e., the crystal y-axis given by [110] or [111]) by an equal and opposite angle θ/2, where θ

defines the total twist angle as described in Fig. 4.5. The x-direction for each of the crystals after

the rotation is also shown in Table 4.2.

Figure 4.5: Schematic description of STGB rotation. Each upper and lower crystal is misoriented
by an equal and opposite angle θ/2 relative to the reference axis.
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Chapter 5

Results and Discussion

5.1 Twist GB Structures

Projected views of the GB plane depicting the 0 K equilibrated structures before mechan-

ical deformation for five selected GBs are shown in Fig. 5.1. Atoms are colored according to the

centrosymmetry parameter, where the atoms with lighter shade indicate greater deviations from

local FCC ordering. The atomic structures for the Σ111, Σ7, and Σ39 [111] GBs are shown in

Fig. 5.1(a)–(c), respectively, whereas Fig. 5.1(d)–(e) shows Σ9 and Σ17 [110] GBs respectively. In

Fig. 5.1(a) representing the structure of the Σ111 [111] STGB, DXA was used to reveal and char-

acterize the interfacial dislocation network, shown in green lines, within the GB plane. For this

low-twist angle GB, the boundary is comprised of a grid of 1/6 �112� partial screw dislocations with

alternating regions of FCC (atoms colored in black) and HCP (atoms colored in gray) structures,

indicating faulted regions. Similar interfacial dislocation networks in low-angle twist GBs have been

recently observed with atomistic calculations [104, 105]. Chen et al. [106] examined the GB charac-

ter distribution in the Cantor alloy during recrystallization and showed a high density of twin Σ3

and low-angle GBs. In a recent study by Lin et al. [107], high-resolution microscopy was employed

to study boundary dislocations at low-angle (≈ 6 °) GBs in the Cantor alloy and determine their

Burgers vectors and dislocation spacing. Here, it is worth noting that while the GB generation

algorithm used in this work resulted in equilibrated GB structures at 0 K by performing a series

of rigid body translations within the GB plane, i.e., so-called γ-surface method [108, 109], chemical

equilibration was not performed. Such a step includes probing the preferential sites with the GB
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(a)

(b) (c)

(d) (e)

Figure 5.1: View of the GB plane showing the structure for select (a)-(c) [111] and (d)-(e) [110]
STGBs. The structure of (a) Σ111, (b) Σ7, (c) Σ39, (d) Σ9, and (e) Σ17 STGBs are shown.
Atoms are colored according to the centrosymmetry parameter, where lighter colors indicate greater
deviation from local FCC ordering. For the Σ111 [111] STGB in (a), interfacial dislocation network
(green) extracted using DXA are shown.

plane for each of the elemental species, sampling and optimizing the GB atomic density, and probing

segregation effects of one or more elemental species to the GB. The phase space of possible chemical

configurations for the equiatomic five-component Cantor system is large and beyond the scope of

this thesis work. Very recently, Frolov et al. [110] and Zhu et al. [111] developed an evolutionary

algorithm that performs a grand-canonical GB structure search and were able to identify a plethora

of GB phases with different structures in pure metals. Also, Wynblatt and Chatain [112] in a re-

cent computational study have shown using Monte Carlo, molecular dynamics, and lattice statics

methods that both Cr and Mn segregate to GBs in the CoCrFeMnNi Cantor alloy. The study found

that such segregation leads to depletion of bulk compositions when the grain size of these alloys is

reduced into the nanoscale. As a result, the GB structures explored in this work can be regarded

as metastable ones. Indeed, the multiplicity of metastable GB states has been the subject of active

research recently for its influence on the behavior and properties of metallic systems [113, 114].
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5.2 Mechanical Deformation Behavior

After the initial construction and thermal equilibration steps, uniaxial tension up to 12%

was performed along the y-axis of each sample at 77 K and zero pressure in the transverse directions

using the NPT ensemble. This was achieved by defining two slabs in which the atoms were fixed

in their positions relative to each another; refer to Fig. 4.3(b) for a schematic representation of the

mechanical deformation simulations. The slabs used to impose boundary conditions and forces on

the dynamic atoms had a thickness of ≈ 25 Å. Uniaxial tension was applied by moving all fixed

atoms of the upper slab with the same constant velocity of v = 0.3 Å/ps along the y-direction,

while the lower slab remained fixed. The nominal strain along the y-direction of the sample was

calculated as �yy = ∆Ly/Ly(0), where Ly(0) is the initial length, and the stress tensor averaged over

all dynamic atoms was computed using the standard virial expression. We first start by examining

the macroscopic mechanical behavior of the bicrystal systems at 77 K. Figure 5.2 shows stress-strain

curves for the Cantor alloy bicrystals with [110] (Fig. 5.2(a)–(b)) and [111] (Fig. 5.2(c)–(d)) STGBs.

The behavior of Cantor alloy single crystals with [110] (SC110) and [111] (SC111) loading axis are

included for comparison. In all systems, the tensile stress increased monotonically with strain until

a peak point was reached then followed by a stress drop, the value of which was roughly 35% of

the peak value. It is also noticed that the peak point in the stress-strain curve in bicrystal systems

was lower than their single crystal counterparts. As will be discussed later, these stress drops are

associated with partial dislocation nucleation events with GBs serving as heterogeneous nucleation

sites. An exception to this is the bicrystal system with Σ3 (111) STGB, where a close examination

of Fig. 5.2(c)–(d) shows that the peak stress for this system is comparable to the single crystal

one. The coherent Σ3 (111) STGB is resistant to nucleation of defects, which in this system were

found to nucleate homogeneously from the bulk crystals. For the systems with a [110] loading axis,

the maximum Schmid factor for {111}�112� twinning is 0.47 and that for {111}�110� slip is 0.41.

However, for bicrystal geometries with a [111] loading axis those factors were 0.31 and 0.27 for

twinning and slip, respectively. As a result, the [111] is the stiffer direction and bicrystals with a

[111] loading axis attained higher stress states than those with a [110] loading axis.

An experimental study also observed sharp stress drop similar to our �111� STGB. Kireeva

et al. [115] conducted the tensile loading experiment with Cantor alloy single crystals. Each crystal

showed different tensile loading response depending on its crystal orientation. On the [1̄11] crys-

25



0 3 6 9

2

4

6

5 6 7 8
2.7

3.3

3.9

4.5

(a) (b)

0 3 6 9

3

6

9

5.50 6.25 7.00 7.75 8.50
3

4

5

6

7

(c) (d)

Figure 5.2: For the Cantor alloy bicrystals, [(a) and (c)] tensile stress-strain curves and [(b) and
(d)] close-up views around the peak points. Curves for bicrystals with [(a) and (b)] [110] and [(c)
and (d)] [111] STGBs are shown. Curves for Cantor alloy single crystals with [110] (SC110) and
[111] (SC111) loading axis are shown for comparison.

Figure 5.3: High entropy alloy single crystal study, shows similar anisotropy [115].
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tal orientation, the crystal showed a sharp drop in the stress comparable to our �111� simulation

Fig. 5.2(c) and (d). This sharp drop is due to the lower level of resolved shear stress on [111] loading

direction compared to the [110] direction, allowing the crystal to achieve higher stress state before

the emission of dislocations. Also, Fig. 5.2(a) and (c) shows that in all bicrystal systems explored

in this work, a plateau in the stress was observed after the initial stress drops. As will be discussed

below, this plateau in the flow stress is due to the fact that further deformation was achieved by the

growth of GB-nucleated defects (i.e., dislocations) into the bulk grains. Similar trends for the flow

stress have been observed in several metallic systems [116, 117]. Next, we visually inspect the atomic

structures of the Cantor alloy bicrystals during the course of their tensile deformation with a specific

focus at tensile strains near the peak points in the stress-strain diagrams. Here, the PTM algorithm

was used to identify the local structural environment around each atom (FCC, HCP, etc.) and

reveal GB regions and stacking faults that form during deformation. For example, Fig. 5.4 depicts

results for the bicrystal system with a Σ9 [110] STGB, where Fig. 5.4(a) is a schematic illustrating

the intersection of a {111} plane with this GB. Figure 5.4(b)–(d) shows respectively projected views

normal to this {111} plane at nominal tensile strains � = 5.0%, 5.4% and 5.5%, where the GB region

is labeled in blue, FCC atoms in green, and HCP ones, indicative of stacking faults, in red. A

1/6 �112� partial dislocation line, identified by DXA and labeled in black, was observed to nucleate

from the GB and propagate into the bulk crystal leaving behind a stacking fault. The nucleation of

this partial dislocation corresponded to the stress drop observed for this bicrystal system [refer to

Fig. 5.2(b)].

G
B

 Plane

G
B

G
B G

B

(a) (b) (c) (d)

Figure 5.4: For the bicrystal with a Σ9 [110] STGB: (a) a schematic representation showing the
GB plane (blue) and {111} plane (green); and (b)-(d) views along the normal to the {111} plane
depicting the nucleation and growth of a 1/6 �112� dislocation at a nominal strain of (b) � = 5.0%,
(c) � = 5.4%, and (d) � = 5.5%. In (b)-(d), the black line represents the partial dislocation that
demarcates regions of FCC (green) from HCP (red) atoms. The shaded region in blue denotes the
intersection region of the GB and {111} planes.

27



Perspective views demonstrating the nucleation and growth of a partial dislocation in the

bicrystal system with a Σ111 [111] STGB are shown in Fig. 5.5. Snapshots at tensile strains � = 6.1%

[Fig. 5.5(a)], 6.2% [Fig. 5.5(b)] and 6.3% [Fig. 5.5(c)] are shown, where the grid of GB dislocations

is colored in orange, atoms in one crystal are colored in blue, and ones in the second crystal are

removed for a better visualization of the defect structures. The nucleated dislocation line is colored

in green and atoms with HCP structures are in red. At a tensile strain of � = 6.1%, a 1/6 �112�

partial dislocation line nucleated from the GB and grew by bowing out into the bulk crystal leaving

behind a stacking fault. It is observed that the dislocation line has its ends pinned at two nodes

of the GB dislocation network [see arrows in Fig. 5.5(a)]. Again, the stress drop observed in the

stress-strain curve for this bicrystal system [refer to Fig. 5.2(d)] corresponded to the nucleation of

this partial dislocation from the GB. As shown in Appendix A and B, all bicrystal systems examined

in this work exhibited similar trends to the ones depicted in Figs. 5.4 and 5.5. Such results suggest

that GBs serve as heterogeneous nucleation sites for dislocations in the Cantor alloy, and upon

further straining these line defects grow into the bulk crystals leaving behind faulted regions. It is

also observed that in all bicrystal systems explored in this work, no trailing partials were observed

to nucleate from the GBs. This effect was also observed in atomistic simulations of dislocation

nucleation from GBs in pure metals [117, 118]. Derlet and Van Swygenhoven [119] found that the

emission of first partials was enough to relieve local stresses at GBs and that the emission of trailing

partials was not necessary to accommodate the applied loading.

(a) (b) (c)

Figure 5.5: Snapshots of the bicrystal with Σ111 [111] STGB at a nominal tensile strain of (a)
� = 6.1%, (b) � = 6.2%, and (c) � = 6.3% depicting the initial stages of 1/6 �112� dislocation
(green line) nucleation from the GB leaving behind a stacking fault (atoms in red). The orange lines
represent the GB dislocation network and atoms in only one half of the bicrystal system are shown
in blue for a better visualization of the defect structures.
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5.3 Deformation Mechanisms

The mechanical behavior of the bicrystal systems is explored at late stages of deformation.

Figure 5.6(a)-(c) shows respectively snapshots at a nominal tensile strain of � = 6.3% the bicrystals

with Σ3, Σ9, and Σ19 [110] STGBs. In these figures, GB and HCP atoms were labeled in blue and

red, respectively, where HCP ordering is indicative of stacking faults. Atoms with FCC structures

were removed to provide a better visualization of the defect structures. As can be seen from Fig. 5.6,

the density of the nucleated partial dislocations and the resultant stacking faults at a given strain

are dependent on the GBs present in these systems. For example, the bicrystal with a Σ9 [110]

STGB shown in Fig. 5.6(b) exhibits higher density of faulted regions compared to the one with a

Σ19 [110] STGB depicted in Fig. 5.6(c). A close examination of the stress-strain curves for these

bicrystals [refer to Fig. 5.2(b)] shows that the stress required to nucleate these partial dislocations

was higher for the system with a Σ19 [110] STGB than ones with Σ9 and Σ3 [110] GBs. At a tensile

strain � = 15%, Fig. 5.6(d)–(f) shows, respectively, close-up views of the atomic structures for the

bicrystals with a Σ3, Σ9 and Σ19 [110] STGBs, where deformation nano-twins can be observed

in these systems. Here, atoms colored in green and red denote FCC and HCP structures. In all

bicrystal systems examined in this thesis work, GBs were found to facilitate the nucleation of defects

(i.e., dislocations). An exception to this is the bicrystal with the coherent Σ3 (111) STGB, where

dislocations were found to nucleate homogeneously from the bulk crystals. This explains the large

value of the peak stress for this system compared to the other bicrystal ones. Indeed, this effect has

also been observed in other metallic systems [117].

Following the experimental approach by Laplanche et al. [83], we quantified the microstruc-

tural evolution during mechanical deformation by calculating the fraction of stacking fault atoms

with respect to the total in each system, and the results are reported in Fig. 5.7 for bicrystals with

a [110] (Fig. 5.7(a)) and [111] (Fig. 5.7(b)) loading axes. Stacking fault atoms were identified as

ones with HCP ordering using the PTM algorithm. As mentioned above, the observed stress drop

in the stress-strain diagrams corresponded to the nucleation of partial dislocations from GBs, which

in turn grew rapidly into the bulk crystals leaving behind faulted regions. No stacking faults were

observed to nucleate prior to reaching the peak point in the stress-strain diagram. In all bicrystal

systems, the rapid increase in the fraction of faulted atoms at lower strain values compared to the

single crystal systems indicates that GBs serve as efficient nucleation sites for partial dislocations.
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Figure 5.6: For the bicrystals with [110] STGBs: (a)–(c) A comparison of the deformation behavior
for the systems with (a) Σ3, (b) Σ9, and (c) Σ19 GBs at a nominal strain of � = 6.3%, where
red (blue) denote stacking faults (GB) atoms. Atoms with FCC ordering are removed for a better
visualization of the structures. (d)–(f) At a nominal strain � = 15%, close-up views depicting nano-
twinning in [110] bicrystals with (d) Σ3, (e) Σ9, and (f) Σ19 STGBs, where atoms in green (red)
denote FCC (HCP) ordering.
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Figure 5.7: Evolution of the fraction of stacking fault atoms with respect to the total in each
system as a function of tensile strain for bicrystal systems with a (a) [110] and (b) [111] loading axis.
Stacking fault atoms were identified using the PTM algorithm [102].
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The onset of rapid increase in the fraction of faulted atoms occurred at strains up to 30%

lower than that for single crystal systems. Further, the fraction of atoms with local HCP structures

(i.e., stacking faults) reaches an asymptotic value of ≈ 25% at late stages of deformation. Systems

with [110] STGBs nucleated partial dislocations and experienced an increase in fraction of faulted

atoms at lower strain levels compared to bicrystals with [111] STBGs. The lowest levels of applied

tensile strain, leading to partial dislocation nucleation and accompanying increase in the fraction

of faulted atoms occurred in bicrystals with a Σ3 [110], Fig. 5.7(b), and Σ111 [111], Fig. 5.7(b),

STGBs. Our simulation results for the evolution of the fraction of faulted atoms are qualitatively

Figure 5.8: experimental result of twin volume fraction [83].

similar to recent experimental observations. Laplanche et al. [83] observed similar microstructure

development as Fig. 5.7. The nucleation of deformation twins begins after a critical strain from the

experiment and the volume fraction of twins monotonically increases with increasing strain [83]. To

relate the trends observed in Figs. 5.2 and 5.7 to GB geometry, we obtained the ultimate stress and

strain values from the peak point in the stress-strain diagram as a function of GB misorientation

(i.e., twist angle) for all bicrystal systems, and the results are shown in Fig. 5.9.

Again, the bicrystal ultimate stress and strain values are lower than the single crystal

ones, which is an indication that GBs in the Cantor HEA act as heterogeneous nucleation sites for

dislocations. Once these dislocations nucleate from GBs, they grow by bowing into the bulk crystals

leaving behind stacking faults. A close examination of Fig. 5.9 also shows that bicrystals with a [111]

loading axis are characterized by higher ultimate strain [cf. Fig. 5.9(b) and Fig. 5.9(d)] and stress

[cf. Fig. 5.9(a) and Fig. 5.9(c)] values, i.e., more mechanical energy is required to nucleate partial

dislocations from GBs in [111] bicrystals. Variations in ultimate strain and stress values also exist

as a function of GB type, defined in these bicrystal systems by the twist angle θ. For the bicrystals
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Figure 5.9: For the bicrystals with [(a)–(b)] [110] and [(c)–(d)] [111] STGBs, plots of the ultimate
[(a)–(c)] stress and [(b)–(d)] strain as a function of the GBs present in these systems. Ultimate stress
and strain values for Cantor alloy single crystals (dashed red lines) are also plotted for comparison.

with a [111] loading axis, a trend exists, albeit with some scatter, where the ultimate stress and

strain increase with the twist angle θ. Further, an examination of Fig. 5.9(c) and (d) reveals a large

difference in the nucleation stress/strain between the Σ111 and Σ3 GB. Owing to the small twist

angle, θ = 9.43°, of Σ111 and the well defined interfacial dislocation structure, this GB was found to

be the most efficient in nucleating partial dislocations, i.e., it exhibited the smallest ultimate stress

and strain values out of all [111] systems. On the other hand, dislocations were observed to nucleate

homogeneously form the bulk crystals in the system with the coherent Σ3 [111]. For the bicrystal

systems with a [110] loading axis, the trends in ultimate stress and strain are not as clear as the [111]

systems. Ultimate stress and strain values are lower for small (� 30◦) and large (� 60◦) twist angles

compared to intermediate ones. The [110] GBs with the twist angles of 30◦ � θ � 60◦ displayed

a scattered trend. The Σ19 GB was the strongest, followed by Σ33 GB and Σ27 GB. Overall, the
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results depicted in Fig. 5.9 show that while each set of [110] and [111] bicrystal systems have the

same maximum Schmid factors for slip and twinning, variations do exist due to the GBs present in

these systems.

5.4 Strain Rate Effects

In this section, we explore strain rate effects on the deformation behavior and stress-strain

curve of the Cantor alloy. To this end, we explore the bicrystal system with a Σ111 [111] GB. This

bicrystal system was prepared following the approach detailed in Chapter 4. The engineering stress-

strain curves obtained at strain rates (4.8e+07− 4.8e+09 s−1) are shown in Fig. 5.10. The ultimate

stress values are summarized in the Table. 5.1, which are observed to increase with increasing strain

rates. The bicrystal showed about 32 % higher ultimate tensile strength at the highest strain rate

(4.8e+09 s−1) compared to the lowest strain rate (4.8e+07 s−1). In addition, the flow stress after

the initial stress drop for these systems approached a value of 4 GPa.

Table 5.1: Tensile properties of the bicrystal with a Σ111 [111] GB at different strain rates
Strain rate [s−1] Ultimate tensile strength (GPa)
4.8e+07 5.49
1.6e+08 5.58
4.8e+08 5.80
1.4e+09 6.33
4.8e+09 7.33

We compared our simulation results with Cantor alloy experimental data. Shabani et al.

investigated tensile behavior of CoCrFeMnNi Cantor alloy with various strain rates and found an

increasing yield strength with increasing strain rate [60]. Our simulation results are in qualitative

agreement with the experimental data shown in Fig. 5.11. However, the change of yield stress with

the strain rate was less prominent than the simulation result. The discrepancy was attributed to

the difference of the strain rate and temperature. The experimental data were acquired at the

quasi-static to dynamic strain rates (10e−04 − 10e+03 s−1) and performed at room temperature

(293 K). On the other hand, our tensile loading simulation was conducted at shock loading rates

(4.8e+07− 4.8e+09 s−1) with a temperature of 77 K.
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Figure 5.10: Stress–strain curves for Σ111 [111] STGB bi-crystal structures with various strain
rates.

Figure 5.11: CoCrFeMnNi Cantor alloy stress-strain curves [60]

Fig. 5.12 shows snapshots of the atomic structures depicting nucleation of dislocations at the

GB. The dislocation network of Σ111 are colored in yellow lines, atoms in one crystal are colored in

blue, and atoms in the second crystal are removed for a better visualization of the defect structure.

At the strain rate range from 4.8e+07 to 1.4e+09 s−1, we did not observe significant variation in

defect nucleation behaviors depending on the strain rate. However, we observed the simultaneous

nucleation of multiple partial dislocations at the highest strain rate which is shown in Fig. 5.12 (e).
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Figure 5.12: Snapshots of the Σ111 [111] STGB bicrystals with different strain rates. (a) �̇ =
4.8e+07 [s−1] with the nucleation at � = 5.90 % (b) �̇ = 1.6e+08 [s−1] with the nucleation at
� = 6.03 % (c) �̇ = 4.8e+08 [s−1] with the nucleation at � = 6.40 % (d) �̇ = 1.4e+09 [s−1] with the
nucleation at � = 7.20 %(e) �̇ = 4.8e+09 [s−1] with the nucleation at � = 8.62 %

5.5 Multiple GBs

In this section, we examined of having multiple GBs in the bicrystal system in the mechanical

behavior and defect nucleation stress. To this end, we employed the Σ111 GB geometry. Several

realization of this geometry, but with multiple equally-spaced GBs were constructed following the

approach detailed in Chapter 4. Figure 5.13 depicts the bicrystal systems used in this study, where

a total of five bicrystal geometries were constructed with one, three, five, seven, and fifteen GBs.

Table 5.2 lists the dimensions of the simulation box for each system. For the tensile deformation

simulations, a strain rate of 4.8e+08 s−1 was used.

Table 5.2: Dimensions of the simulation box for the bicrystal systems with a Σ111 [111] GB with
different number of GBs.

GB planes Lx (Å) Ly (Å) Lz (Å)
1 104.894 586.950 121.121
3 104.894 588.607 121.121
5 104.894 590.263 121.121
7 104.894 591.919 121.121
15 104.894 598.545 121.121

The deformation behavior of the Cantor alloy bicrystals with one and 15 Σ111 STGBs is
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Figure 5.13: Cantor alloy bicrystals with multiple GBs. Atoms in green (white) denote FCC (GB)
atoms, while atoms in orange denote rigid (left) and moving ones (right).

(a)

(b)

Figure 5.14: For the bicrystal system with a Σ111 GB, the onset of dislocation nucleation from the
GB in a system with (a) one GB at a nominal strain of � = 6.5 % and (b) 15 GBs at a nominal
strain of � = 5.7 %.

depicted in Fig. 5.14. Figure 5.14(a) shows the system with one GB at a tensile strain of � = 6.5 %,

whereas Fig. 5.14(b) depicts the structure of the system with fifteen GBs at a tensile strain of

� = 5.7%. Partial dislocation lines and HCP atoms are labeled in green and purple. For a better

visualization, FCC atoms are excluded from the images. It is evident that adding more GBs provided
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more potential sites for defect nucleation, i.e., multiple dislocations were nucleated from the system

with 15 GBs compared to one dominant dislocation in the bicrystal with one GB.
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Figure 5.15: (a) Stress strain curves for the bicrystal system with a Σ111 GB with a varying number
of GBs. (b) A close-up view around the peak points in the stress strain curves.

The stress strain diagram for these bicrystal systems is shown in Fig. 5.15(a) and a close-up

view of the peak points in the diagrams is shown in Fig. 5.15(b). It can be seen that adding more

GB planes leads to the reduction in the defect nucleation stress, i.e., peak point in the stress-strain

curve shifts to lower stress. This is an indication that the addition of more GBs, all of which have

the same geometry and orientation with respect to the loading axis, leads to softer bicrystal systems,

where less mechanical energy is required to nucleate dislocations from these GBs. It is suggested that

this is due to two main effects. First, the introduction of many GB planes increases the number of

possible dislocation nucleation sites. Second, the increase in the number of GBs reduces the overall

spacing between them. As a result, the interfacial dislocations that make up the Σ111 GB interact

via their long-range elastic fields, which in turn affects the overall state of stress of these bicrystals.

5.6 Effect of Chemical Disorder

Due to the non-dilute nature our HEA bicrystal compositions, it is expected that variations

in the ultimate stress and strain values exist due to variations in the local chemistry within GB

structures. To demonstrate this effect, we examined the behavior of five realizations of the bicrystal

system with Σ3 [111] STGB. Fig. 5.16(a) shows tensile stress strain curves for these systems along

with that of a single crystal system with a [111] loading axis. Variations in the observed ultimate
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stress and strain values are due to the local GB chemistry. Owing to the coherent nature of this

Σ3 GB, it was found to be the most resistant to dislocation emission. In all systems depicted in

Fig. 5.16(a), dislocations nucleated homogeneously from bulk crystals. Figure 5.16(b) depicts the

structure of one bicrystal system showing the nucleation of a partial dislocation (green line) from

the bulk grain, which then leaves behind a stacking fault (atoms colored in red). GB atoms are in

yellow and bulk FCC atoms were removed for a better visualization of the defect structures.

6.25 7.00 7.75 8.50
3

4

5

6

7

(a) (b)

Figure 5.16: (a) Stress strain curves for five realizations of the bicrystal system with a Σ3 [111]
GB, demonstrating the effect of local GB chemistry. The behavior of the single crystal with [111]
loading axis is also shown for comparison. (b) Structure of one bicrystal system with a Σ3 [111] GB,
showing the nucleation of a partial dislocation (green line) from the bulk crystal, which then leaves
behind a stacking fault (atoms colored in red). GB atoms are in yellow and bulk FCC atoms were
removed for a better visualization of the defect structures.
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Chapter 6

Conclusions and Future Work

While the Cantor alloy has been the subject of numerous studies, most of these have been

focused on the effects of element compositions away from the equiatomic composition [57], stacking

fault energies [85, 89], and lattice distortions [37, 120, 121]. The role of GBs in the mechanical

deformation of HEA alloys, therefore, remains poorly understood. Tensile stress-strain diagrams for

Cantor alloy bicrystals with [110] and [111] loading axes show that GBs facilitate the nucleation

of partial dislocations, which with further deformation grow in the bulk crystal leaving behind

stacking faults. This is in agreement with recent experimental findings demonstrating that GBs act

as nucleation sites for mechanical nanotwins [79, 83]. Due to their lower Schmid factors for twinning

and slip, the bicrystals with a [111] loading axis were found to require more mechanical energy to

nucleate dislocations from GBs compared to systems with a [110] loading axis. As shown in Figs. 5.4

and 5.5, nucleation of 1/6�112� dislocations in the bicrystal systems occurred at lower strain values

compared to their single crystal counterparts. In addition, the local GB structure plays in role in the

nucleation process. For example, the bicrystal system with a Σ111 STGB, characterized by a grid of

1/6�112� screw dislocations [see Fig. 5.1(a)], was found to nucleate partial dislocations at the lowest

strain level [refer to Fig. 5.9(c)–(d)] compared to the bicrystal systems with a [111] loading axis.

Overall, our simulation results suggest that the strength of the Cantor alloy can be manipulated by

tailoring the GB types and their populations in an HEA microstructure. It is worth mentioning that

our approach of generating GBs in the Cantor alloy bicrystals employed the commonly used γ-surface

method [108, 109], which aims to mine for the lowest energy GB structure by performing a series

of relative displacements between the upper and lower crystals in conjunction with atom deletions
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and energy minimizations. However, this approach does not consider chemical equilibration, which

includes exploring the preferential sites within the GB for each of the elemental species, sampling

the GB atomic density, and probing adsorption or desorption effects. As a result, the GB structures

explored in this work can be regarded as metastable ones. Indeed, the role of GB metastability has

recently received considerable attention for its influence on the behavior and properties of metallic

systems [113, 122]. For future research, exploring the mechanical behavior of a larger number of GB

types with different misorientation and plane normal degrees of freedom would help establish a more

complete structure-property maps relating the GB geometry to the mechanical behavior of HEAs.

Further, exploring GB solute segregation effects in the Cantor alloy will help researchers unravel the

impact of the chemical states of GBs on the mechanical behavior of these alloys.
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Appendix A �110� GBs : Defect Nucleation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 1: The FCC atoms located in either upper or lower crystal are deleted for visualization. One
of crystals is chosen for deletion depending on the initial defect nucleation site. Blue spheres and
red spheres represent FCC and HCP structure for each. The green lines wrap around HCP structure
(stacking fault) and indicate partial dislocation lines. (a) Σ3 (b) Σ9 (c) Σ17 (d) Σ19 (e) Σ27 (f)
Σ33 (g) Σ41 (h) Σ43 (i) Σ51 (j) Σ201
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Appendix B �111� GBs : Defect Nucleation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2: The FCC atoms located in either upper or lower crystal are deleted for visualization. One
of crystals is chosen for deletion depending on the initial defect nucleation site. Blue spheres and
red spheres represent FCC and HCP structure for each. The green lines wrap around HCP structure
(stacking fault) and indicate partial dislocation lines. (a) Σ3 (b) Σ7 (c) Σ13 (d) Σ19 (e) Σ21 (f)
Σ31 (g) Σ39 (h) Σ57 (i) Σ93 (j) Σ111
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