
Clemson University Clemson University 

TigerPrints TigerPrints 

All Theses Theses 

December 2020 

A Stochastic Model for the Aerodynamics of Irregularly Shaped A Stochastic Model for the Aerodynamics of Irregularly Shaped 

Gravel Gravel 

Md Safwan Ahsanullah 
Clemson University, safwanahsanullah@gmail.com 

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses 

Recommended Citation Recommended Citation 
Ahsanullah, Md Safwan, "A Stochastic Model for the Aerodynamics of Irregularly Shaped Gravel" (2020). 
All Theses. 3451. 
https://tigerprints.clemson.edu/all_theses/3451 

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for 
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact 
kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3451?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3451&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


i 

 
 
 
 
 
 

A STOCHASTIC MODEL FOR THE AERODYNAMICS OF 
IRREGULARLY SHAPED GRAVEL 

 
 

A Thesis 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
Civil Engineering 

 
 

by 
Md Safwan Ahsanullah 

December 2020 
 

 
Accepted by: 

Dr. Nigel B. Kaye, Committee Chair 
Dr. Abdul A. Khan 

Dr. William C. Bridges Jr. 
 
 



 ii

ABSTRACT 
 
 

The flight of compact debris has numerous uncertainties associated and can be 

highly stochastic in nature. Standard flight equations fail to take a lot of these aspects into 

account because of the assumption of the debris particle being spherical in shape. This 

study proposes a stochastic model in an attempt to resolve some key aspects of the said 

uncertainties originated due to the change in orientation of the debris particle during its 

flight, and as a result the alteration of the projected cross-sectional area, the lift and the 

drag coefficients. The model numerically solves the differential equations of motion for a 

large number of gravel pieces taken from five different size gradations. The amount by 

which the drag and lift coefficients (𝛿𝐶஽ and 𝛿𝐶௅), the orientation (𝛿𝜃) and the projected 

area (𝛿𝛼) are varied at each time-step during the flight simulation of a single debris are the 

four parameters used to fit the model to the results obtained from gravel drop experiments. 

An optimization criterion (𝜀) has been introduced and the model has been optimized 

individually for each gradation and globally across gradations of different gravel sizes. 

Upon observing the spread of the landing locations and their radial distances obtained from 

the model under its optimized conditions, it has been found that while the variation of lift 

coefficient appears to have a minimal impact on the trajectory of the particle, the change 

in orientation, drag coefficient and projected area are important factors to be continuously 

perturbed to be able to correctly track the landing locations for a sufficient number of gravel 

pieces. The individual optimization technique has also proven to perform better than the 

global optimization, which is expected as the gravel gradations are geometrically 

dissimilar. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Role of Wind-borne Debris 

Wind-borne debris and missiles in events of severe windstorms, hurricanes and, 

other strong wind events have been observed to cause significant damage to the built 

environment. After more than thirty years of research on hundreds of post-storm 

investigations, Minor (2005) [1] has concluded that the building envelope is crucial to 

satisfactory performance of buildings in windstorms and wind-driven debris is a decisive 

factor in determining the performance of the building envelope. Field investigations show 

how the entire structure of a building suffers from cascading failure following the first 

failure of the envelope. Leakage of the building envelope due to impact by fast-moving 

debris exposes the conditioned space within the building to the external unconditioned 

environment. This results in increased rain and debris infiltration, causing further damage 

to the contents within the interior of the building. This can also lead to internal 

pressurization and increased roof uplift, which can, in severe cases, cause roof lift-off. 

Smith & McDonald (1990) [2] stated in their report following Hurricane Hugo (Charleston, 

SC-1989) that, the damage to the inside of the building and the contents within due to water 

infiltration can cause greater financial loss than the damage to building structure itself. 

Thorough assessments of insurance records following strong wind events also show a 

dramatic increase in the total financial loss for damages that involve breaching of building 

envelope. Sparks et al. (1994) [3] related wind speed to the damage claims and concluded 
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that the size of claims is greater when the building envelope is compromised in the events 

of storms and hurricanes. 

There has been extensive studies and literature for decades, corroborated by 

thorough post-hurricane investigations, on the role of wind-borne debris on built 

environment. Reports after notable wind events such as Hurricane Hugo (1989, Charleston 

SC), Hurricane Andrew (1992, South Florida), Hurricane Alicia (1983, Houston TX) show 

that the wind-borne debris had been a major contributor to the total economic loss  [1]. 

Several studies following Hurricane Alicia have shown that blown-off roof gravel caused 

significant damage to the window glasses of high-rise buildings in Downtown Houston [4]. 

Behr and Minor (1994) [5] have also drawn similar conclusions after Hurricane Andrew, 

which caused an estimated total of US$ 26.5 billion in damage according to the report by 

United States National Hurricane Center [6]. In their report one year after Hurricane Hugo, 

Smith and McDonald (1990) [2] have presented that the blown-off gravel can cause severe 

injury and property damage, and in one case, aggregate has been recorded to have traveled 

more than 245 ft (75 m) from one building to another breaking nearly all of the outer panes 

of double-glazed windows and a number of inner panes as well. In an attempt to address 

the issue of damage from wind-borne debris, building design codes have gone through 

several modifications over time and the existing design guidelines have still proven to fall 

short at times with debris motion initiation occurring at wind speeds lower than the design 

wind speeds. There still exists a significant knowledge gap around the motion initiation 

mechanism and resulting flight. These criteria can be solved only with a deeper 

understanding of the forces acting on particles of random shapes. 
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Debris Classification 

Debris has been classified in different ways based on their shape, size, weight and 

locations. However, the most commonly used scheme of debris classification while 

modeling debris flight, proposed by Wills et al. (2002) [7], classifies the debris in three 

Figure 1: Classification of Debris with dimensions (a) Rod-like Debris (L1 >> L2), (b) Plate-like 
Debris (L1, L2 >> L3), (c) Compact Debris (L1≈L2≈L3≈L) 

L3 

L1 
L2 

L 

L 

L 

L 

L1 

L2 L2 

L1 

(a) 

(b) 

(c) 
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types (shown in Figure 1) based on their geometric shape : rod-like (linear debris), plate-

like (planar debris) and compact debris (three dimensional debris).  

- Rod-like debris has one dimension significantly larger than the other two, 

- Plate-like debris has two dimensions significantly larger than the third one, and 

- Compact debris has similar dimensions in all three directions. 

Motivation 

The standard compact debris flight equations assume that the debris can be treated 

as spherical (Baker 2007 [8], Holmes 2004 [9]) and that it does not rotate. The 

consequences of these assumptions are that 

1. There are no aerodynamic moments acting on the debris 

2. There are no lift forces acting on the debris, 

3. The debris cross-sectional area is independent of orientation, and, therefore,  

4. The only forces acting on the debris are the debris weight (vertically down) and 

aerodynamic drag acting in the direction of the apparent wind.  

These assumptions lead to the derivation of the compact debris flight equations 

which, for a straight-line wind, are two dimensional. They can be written as a set of two 

coupled second order ordinary differential equations 

𝑑ଶ𝑥

𝑑𝑡ଶ
=

𝑑𝑢

𝑑𝑡
=

𝜌𝐶஽𝐴

2𝑚
(𝑈 − 𝑢)ඥ(𝑈 − 𝑢)ଶ + 𝑤ଶ 

(1) 

and 

𝑑ଶ𝑧

𝑑𝑡ଶ
=

𝑑𝑤

𝑑𝑡
=

𝜌𝐶஽𝐴

2𝑚
(−𝑤)ඥ(𝑈 − 𝑢)ଶ + 𝑤ଶ − 𝑔 

(2) 
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In the above equations 𝑥 is the horizontal coordinate in the direction of the wind 

flow, 𝑧 is vertically upward, 𝑚 is the mass of the debris, 𝜌 is the fluid density, 𝐶஽ is the 

drag coefficient (often assumed to be constant), 𝑔 is acceleration due to gravity, 𝑈 is the 

wind speed (taken to be uniform and horizontal), and 𝑢 and 𝑤 are the horizontal and vertical 

components of the debris particle velocity in the horizontal and vertical directions 

respectively. For a long enough flight distance these equations yield a solution in which 

the debris travels horizontally at the wind speed and vertically at its terminal velocity.  

However, irregularly shaped compact debris does not travel in a two-dimensional 

plane. This can be observed by dropping small pieces of gravel into a tank of water and 

observing that they do not fall vertically. Observations from such experiments indicate that 

1. The gravel pieces rotate during their fall 

2. Their fall is not vertical or, in fact, even in a straight line, 

3. The path varies from one piece to the next even for gravel pieces taken from the 

same gravel gradation. 

When a piece of gravel is released from rest it will initially fall vertically because 

the only forces acting on it, are its weight down and the buoyancy force up (assumed 

negligible when falling through air, but significant when falling through water). At this 

point the apparent fluid velocity, that is, the fluid velocity relative to the gravel, will be 

vertically up. Therefore, any deviation of the flight path from vertical must be the result of 

a lift force (i.e. an aerodynamic force that acts normal to the direction of the apparent fluid 

velocity). Further, since the gravel is observed to rotate during flight, the cross-sectional 
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area of the gravel normal to the apparent fluid velocity will vary. These observations violate 

all four of the assumptions listed above.  

To better understand the flight of irregularly shaped compact debris an 

experimental and modeling study was undertaken and is presented below. In chapter 2 the 

experimental methods are described including details of the data analysis and data 

processing. Experimental results are presented in chapter 3 including qualitative 

descriptions of the flight paths and detailed statistical analysis of the landing locations of 

the various gravel pieces dropped. These observations are used to develop a stochastic 

flight model for gravel pieces falling through a stagnant environment (chapter 4). The 

results are discussed in chapter 5, and conclusions are drawn in chapter 6. 
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CHAPTER TWO 
 

EXPERIMENTAL METHOD 
 
 

Experimental Setup 

To gain insight on the motion of irregularly shaped gravel pieces moving through 

a fluid, a simple experimental setup is designed for this study. The setup consists of a clear-

sided tank filled with water and gravel pieces of different sizes as representative of a typical 

compact debris (shown in Figure 2).  

 

The main objective of the experiment is to observe the spread of the landing 

locations of dropped gravel pieces. An earth-fixed, right-handed coordinate system is 

defined with its origin fixed at the center of the cross-section of the tank. The x and y-axes 

are on the horizontal plane as shown in Figure 3 while the z-axis points vertically upwards. 

Figure 2: Some samples of the gravel pieces used in the experiment 
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Table 1 shows the dimensions of the tank used for the experiment: 

Table 1: Dimension of the tank used in the experiments 

Inside Dimensions of Tank 

Length 0.5906 m 

Width 0.2921 m 

Height 0.4001 m 

Top of sand layer to water surface 0.3747 m 

 

Experimental Procedure 

To locate the center of the cross-section (the origin), fishing wire was stretched 

from corner to corner diagonally. Each piece of gravel was released from the center, 

directly below the point where the wires intersect each other. A thin uniform layer of sand 

was placed on the bottom of the tank to prevent gravel pieces from bouncing off the floor. 

For each gravel size, sets of 20 were dropped at a time for easier identification of the 

+y 

+z 

+x O 

Figure 3: Schematic diagram of the water tank and the system of coordinates 
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landing locations and reduced chance of gravel pieces piling on top of each other or 

bouncing off one another. After each set, an aerial photo of the spread was taken from 

directly above the fish tank for further analyses. Figure 4 shows a sample of such photo: 

 

 

From each aerial photo, the landing locations were digitized as a scatter plot with 

respect to a given 2D coordinate system. From the resulting x-y coordinates of the landing 

locations, the radial distance of each point can easily be extracted from the center of the 

tank base (directly below the release point).  

Measurement Technique 

To digitize the landing locations, ScanIt by AmsterCHEM [10] was used. This 

software takes an image file and allows the user to create a 2D coordinate system. Based 

on this defined coordinate system, each landing location is assigned a pair of x-y 

coordinates which can be exported to a spreadsheet. The radial distances of the landing 

locations from the center of the tank base is calculated using the exported data. Figure 5 

below shows the user interface of the software. 

Figure 4: A sample aerial photo of landing locations of 20 dropped gravel pieces 
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Statistical Description of Gravel Size and Shape 

For the experiment in this study, five different sizes of gravel pieces have been used 

denoted as gradations A, B, C, D and E from largest to smallest size in order of their mean 

equivalent radii. For each of the five gravel sizes, a sample of 45 pieces was randomly 

selected, and lengths along the shortest dimension (L1), the longest dimension (L3) and in 

the direction perpendicular to L1 and L3 were measured (L2). Figure 6 shows a 

representation of L1, L2 and L3 measurements for a sample gravel piece: 

Figure 5: User interface of ScanIt showing extraction of coordinates for landing 
locations from a sample aerial photo 
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Both L1 and L2 were, then, normalized by the longest dimension (L3) to assess the 

size variation across the gravel gradations. The mean volume of the gravel pieces for each 

sample is calculated by placing a number of these gravels in water inside a measuring 

cylinder and observing the volume of displaced water. From the mean volumes, mean 

equivalent radii for all the gradations are calculated from the expression of the volume of 

a sphere. Table 2 shows a summary of all these measurements: 

 

 

 

 

 

L3 

L1 

L2 

Figure 6: A gravel piece with bounding cuboid showing length measurements along the 
three directions (L1, L2 and L3) 
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Table 2: Summary of all the dimension measurements for the gravel gradations A 

through E 

 

To understand how the two aspect ratios vary for each gradation compared to the 

other one, and to understand whether or not there is some form of geometric similarity 

across the gradations, 
௅మ

௅య
 for each gradation is plotted against 

௅భ

௅య
 and the resulting spread 

was observed qualitatively. Figure 7 shows the plots obtained for each gradation: 

Gravel Size: A B C D E 

Equivalent Radii, Re [mm] 7.10 5.68 5.60 3.58 1.99 

Mean L1 [mm] 9.99 8.82 8.02 4.21 2.86 

Mean L2 [mm] 16.64 12.75 12.28 7.56 4.62 

Mean L3 [mm] 21.13 18.02 17.69 10.55 7.18 

𝐋𝟏

𝐋𝟑

 
Mean 0.49 0.51 0.46 0.42 0.42 

St. Dev. 0.13 0.16 0.11 0.14 0.13 

𝐋𝟐

𝐋𝟑

 
Mean 0.80 0.73 0.71 0.73 0.67 

St. Dev. 0.12 0.16 0.12 0.15 0.14 
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In the figure above (Figure 7), it can be clearly observed that the spreads vary 

noticeably across the gradations. The spread for gradation C seems to be quite localized 

compared to the other ones. The ratio 
௅భ

௅య
 for gradation C seems to lie mostly between 0.25 

Figure 7: L2/L3 vs L1/L3 scatter plots showing the distribution of the two aspect ratios for each 
gradation. 
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and 0.7, while 
௅మ

௅య
 varies between 0.45 and 0.95. The same ratios for other gravels are more 

spread apart (e.g. 0.2 ≤ 
௅భ

௅య
 ≤ 0.85 and 0.3 ≤ 

௅మ

௅య
 ≤ 1.0 for gradation B). The spreads for A and 

B can be seen to be more skewed towards the upper right region of the plot. Following 

histogram plots (Figure 8) obtained from the two ratios for all gradation also illustrate 

similar observations: 

 

The distribution of  
௅భ

௅య
 is clearly peaked in the middle with little spread on either 

side for gradation C, and 
௅మ

௅య
 has a peak that has a higher frequency than the other gradations 

which skews towards the right. For both ratios, there are relatively fewer occurrences 

further away from the peak compared to other gradations which indicates towards a 

localized spread in Figure 7. From this analysis, we can make a qualitative observation that 

the aspect ratios seem to be different across gradations. This assumption is further checked 

by performing a single-factor MANOVA (Multivariate Analysis of Variance) from which 

Figure 8: Histograms showing the spread of two aspect ratios (L1/L3 and L2/L3) 
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we obtained a p-value below the significance level, αsig = 0.05, which quantitatively proves 

that the differences of means across the gradations are statistically significant. 

Multivariate Analysis of Variance (MANOVA) 

In order to assess the credibility of our qualitative assumption in the previous 

subsection, multivariate analysis of variance (MANOVA) has been performed (using IBM 

SPSS Statistics 27.0 [11]) across the gradations each consisting of two levels of dependent 

variables namely aspect ratios 
௅భ

௅య
 and 

௅మ

௅య
. Single-factor MANOVA is a means of hypothesis 

testing that tells us, for a number of categories, each having multiple levels of dependent 

variables, whether the means across the categories have a variation that is statistically 

significant. This is an extension of ANOVA (Analysis of Variance) where each categorical 

independent variable only has one level of dependent variable. The underlying assumptions 

for MANOVA are: 

i. Absence of multivariate outliers 

ii. Linearity 

iii. Absence of multicollinearity 

iv. Equality of covariance matrices 

Absence of multivariate outliers is checked by assessing the Mahalanobis Distances 

among the participants. From critical chi-square distribution values at p=0.001, the 

maximum Mahalanobis Distance is 13.816 for 2 degrees of freedom. Any Mahalanobis 

Distance beyond this value needs to be removed from the sample, and in our case the 

maximum Mahalanobis Distance was 9.444, which satisfies the first assumption. The 

second assumption is linearity among the dependent variables which has been checked by 
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plotting a scatterplot matrix using JMP® Pro 14 [12] between the dependent variables 

(Figure 9). The next assumption is checked by conducting correlations between the 

dependent variables, and while a moderate correlation is expected, any correlation over 

0.80 presents a concern for multicollinearity. We obtained a Pearson’s correlation 

coefficient of 0.468. Equality of covariance matrices is checked by Box’s M test, for which 

the level of significance is typically taken as 0.001, and we obtained a significance level of 

0.259. After having met all the mentioned conditions, we performed MANOVA and the 

following Table 3 summarizes the analysis. 

 

 

 

Figure 9: Scatterplot matrix to check linearity between the two dependent variables. (Gradations 
A-E from left to right) 
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Table 3: Summary of single-factor multivariate analysis of variance (MANOVA) [11] 

 

As shown in Table 3, p-value obtained from the multivariate tests is 0.000 ( < 0.05), 

and Wilk’s Λ = 0.848, which leads us to reject the null hypothesis. A measure of the effect 

size is given by, ηp
2 = 0.079, which suggests that nearly 8% of the total variance is 

accounted for in the population. 

Multivariate Tests 

Effect Value F 
Hypothesis 

df 
Error df Sig. ηp

2 
Noncent. 

Parameter 

Observed 

Power 

Intercept 

Pillai's Trace .967 3175.96 2.000 219.000 .000 .967 6351.925 1.000 

Wilks' 

Lambda 
.033 3175.96 2.000 219.000 .000 .967 6351.925 1.000 

Hotelling's 

Trace 
29.004 3175.96 2.000 219.000 .000 .967 6351.925 1.000 

Roy's Largest 

Root 
29.004 3175.96 2.000 219.000 .000 .967 6351.925 1.000 

Grades 

Pillai's Trace .158 4.70 8.000 440.000 .000 .079 37.629 .998 

Wilks' 

Lambda 
.848 4.69 8.000 438.000 .000 .079 37.502 .998 

Hotelling's 

Trace 
.171 4.67 8.000 436.000 .000 .079 37.376 .998 

Roy's Largest 

Root 
.101 5.53 4.000 220.000 .000 .091 22.134 .976 
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In an attempt to observe which of the two levels of dependent variable contribute 

to a statistically significant difference, a single-factor ANOVA (univariate test) has been 

performed separately on 
௅భ

௅య
 and 

௅మ

௅య
. The results are shown in Table 4 below: 

Table 4: Summary of univariate tests 

 

 The univariate tests show that, while Fcrit (4,220)= 2.413, we obtained F(4,220) = 

4.12 for 
௅భ

௅య
 and F(4,220) = 5.51 for 

௅మ

௅య
, both of which are greater than Fcrit. The p-values 

obtained for the said variables (0.003 and 0.000 respectively) are also less than the 

Tests of Between-Subjects Effects 

Source Dependent 

Variable 

Type 

III Sum 

of 

Squares 

df Mean 

Square 

F Sig. ηp
2 Noncent. 

Parameter 

Observ-

ed 

Power 

Corrected 

Model 

L1/L3 .31 4 .08 4.12 .003 .07 16.46 .91 

L2/L3 .43 4 .11 5.51 .000 .09 22.06 .98 

Intercept L1/L3 47.37 1 47.37 2497.4 .000 .92 2497.40 1.00 

L2/L3 118.39 1 118.39 6147.2 .000 .97 6147.20 1.00 

Grades L1/L3 .31 4 .08 4.12 .003 .07 16.46 .91 

L2/L3 .43 4 .11 5.51 .000 .09 22.06 .98 

Error L1/L3 4.17 220 .02      

L2/L3 4.24 220 .02      

Total L1/L3 51.85 225       

L2/L3 123.05 225       

Corrected 

Total 

L1/L3 4.49 224       

L2/L3 4.66 224       



 19

significance level, 0.05, which indicates that the null hypotheses for both variables are 

false. Therefore, the test results suggest that both 
௅భ

௅య
 and 

௅మ

௅య
 contribute to the significant 

difference across the gradations. 
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CHAPTER THREE 
 

EXPERIMENTAL RESULTS 
 
 

Observations 

During the experiment, the trajectory of each of the dropped gravel piece has been 

carefully observed. This observation leads us to several findings: each gravel piece rotates 

during its fall, their path of travel is neither linear, nor vertical and for gravel pieces of 

same gradation, each piece has a different trajectory than the other. All these findings 

contradict the underlying assumptions in standard compact debris flight equations. The 

standard debris flight equations for compact debris treat a compact debris as spherical 

(Baker 2007 [8], Holmes 2004 [9]) in shape without rotation. This assumption fails to take 

the aerodynamic moments and lift forces into account which results in a 2D motion of these 

debris in straight-line wind. The experimental findings, however, show otherwise as seen 

in a series of frame-by-frame pictures of a gravel drop in Figure 10. 
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Initially, as a gravel piece is released from rest, it will fall vertically downwards as 

long as the only two forces acting on it are weight (vertically down) and buoyancy 

(vertically up). Since the velocity of the fluid relative to the gravel is vertically upwards at 

Figure 10: Series of 12 frame-by-frame images, showing a single piece of gravel falling 
through water. The vertical red lines correspond to the release location. 
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this point, any subsequent deviation of the piece from vertical is associated with the 

presence of a lift force acting on it in a direction perpendicular to its velocity at any given 

point. Moreover, the rotation of gravel pieces during their fall shows that the projected 

cross-sectional area of the gravel normal to the apparent fluid velocity will continue to vary 

during the fall. Due to these factors, the resulting landing locations for a number of dropped 

gravel pieces will be spread around the center of the tank base as shown in Figure 4 in the 

previous chapter. 

The radial distances of these landing locations from center for each gravel gradation 

are recorded and in Table 5 the means and standard deviations of the radial distances are 

presented. Figure 11 shows the histogram plot of the radial distances for one gravel 

gradation (gradation A). 

Table 5: Means and standard deviations of radial distances obtained from experiments for all the 

gradations 

Gravel Size: A B C D E 

Mean [mm] 56.7 38.9 52.8 48.6 30.1 

St. Dev. [mm] 30.0 28.5 32.2 30.8 22. 3 
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From the histogram in Figure 11, we observe that the peak has a finite non-zero 

value. This implies that only very few pieces actually land directly below the release point, 

rather in most cases, the path traveled by the dropped gravel pieces are not vertical. This is 

qualitatively similar to the drop experiments of Tohidi & Kaye (2017) [13] for rod-like 

debris. 

  

Figure 11:Histogram of radial distances of landing locations for gradation A. 
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CHAPTER FOUR 
 

MODEL DEVELOPMENT 
 
 

This section describes the development and optimization of a stochastic compact 

debris flight model that accounts for variation in gravel geometry, variation in orientation 

during flight, and lift forces generated from asymmetry in the gravel shape and rotation 

during flight. 

Model Equations 

In order to develop a 3-D debris trajectory model, it is necessary to define a fixed 

system of coordinates to track the motion of gravels in 3-D space. Figure 3 shows the fixed, 

right-handed coordinate system that has its origin placed at the release point for the 

experiments and the same coordinate system is used in the model development. The 

position and velocity vectors for the center of a given gravel piece are given by the position 

𝒙 = [𝑥, 𝑦, 𝑧] and velocity, 𝒖 = [𝑢௫ , 𝑢௬ , 𝑢௭] respectively. While the gravel pieces are 

observed to rotate during their fall the model assumes that the rotation only contributes to 

changes in the magnitude of the drag force (through changes in cross-sectional area and 

𝐶஽) and the magnitude and direction of the lift force. As the drag and lift forces are 

modelled stochastically there is no need to explicitly model the aerodynamic moments and 

resulting rotation.  

The equations that govern the motion of these particles are the rectilinear equations 

of motion in three dimensions: 
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𝑑ଶ𝒙

𝑑𝑡ଶ
=

𝑑𝒖

𝑑𝑡
=

𝑭𝒘 + 𝑭𝑩 + 𝑭𝑳 + 𝑭𝒅

𝑚
 

(3) 

where bolded symbols represent Cartesian vectors, and the velocity vector (𝒖) is given by 

𝑑𝒙

𝑑𝑡
= 𝒖 

(4) 

and 𝑚 is the mass of the gravel piece. The forces acting on the gravel are the drag force  

Fd = − ቀ
ଵ

ଶ
𝜌𝐴|𝒖|𝒖𝐶஽ቁ, (5) 

lift force,  

FL = ቀ
ଵ

ଶ
𝜌𝐴|𝒖|ଶ𝐶௅ቁ 𝒏𝑳, (6) 

weight, 

Fw =(0,0, −𝑚𝑔), (7) 

and buoyancy force, 

FB = (0,0, 𝜌∀𝑔). (8) 

Herein 𝜌 is the density of fluid, 𝐴 is a characteristic cross-sectional area for the 

gravel, 𝐶஽ and 𝐶௅ are drag and lift coefficients respectively, g is acceleration due to gravity, 

∀ is a characteristic volume the gravel and 𝒏𝑳 is a unit vector in the direction of lift force. 

See Figure 12 for the kinematic and free body diagrams. Solving the coupled equations (3) 

and (4) leads to the velocity and position of the gravel piece as a function of time. 
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Model Parameters 

However, for any given collection of gravel pieces, even if from the same gradation, 

the values of 𝐴 and ∀ will vary from piece to piece. During flight, changes in orientation 

mean that the area normal to the apparent fluid velocity will vary over time. Changes in 

orientation will also lead to variation in the force coefficients 𝐶஽ and 𝐶௅ and the direction 

of the lift force 𝒏𝑳. Finally, the initial values of all these parameters will vary depending 

on the orientation of the gravel upon release from rest. It is highly likely that, even if all 

these parameters were known explicitly as a function of orientation, it would not be 

possible to predict the trajectory as the results would be so sensitive to the initial release 

angle that, in the absence of perfect knowledge of the release, it would not be possible to 

predict an individual flight path [13]. Therefore, the model development is focused on 

predicting the statistical properties of a large number of trajectories for gravel pieces 

Figure 12:(a) Velocity diagram showing the velocity components in x, y and z directions. 
(b) Free body diagram. 
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released under nominally identical conditions. To do this, 𝐴, 𝐶஽, 𝐶௅ and 𝒏𝑳 are treated as 

randomly varying parameters in the model.  

The ranges, within which Cd and CL are varied in this study, are determined based 

on the work of Chai et al. (2019) [14] whose measurements showed values of 𝐶஽ and 𝐶௅vary 

over the ranges 0.4 < 𝐶஽ < 0.8 and −0.2 < 𝐶௅ < 0.2 respectively for a range of different 

rock pieces oriented in different directions. Given that the force coefficients are functions 

of an unknown orientation and have no knowledge of the distribution of orientation during 

flight, we assume that they are both uniformly distributed between the limits given.  

The area 𝐴 was taken to have a reference value given by 

𝐴ோ = 𝜋𝑅௘
ଶ (9) 

where, 𝑅௘is the equivalent radius of the average gravel piece in a given gradation. It is the 

radius of the sphere that has the same volume as the average gravel piece. The range of 

possible areas is taken to be 

𝐿ଵ
തതത 𝐿ଶ

തതത ≤ 𝐴 ≤ 𝐿ଶ
തതത 𝐿ଷ

തതത (10) 

where 𝐿ଵ
തതത, 𝐿ଶ

തതത, and 𝐿ଷ
തതത are the averages of the shortest, intermediate, and longest gravel 

dimensions respectively as defined in chapter 2. This area calculation assumes that the 

gravel is cuboid and will, therefore, overestimate the areas. However, this overestimation 

is offset by using the average length values such that there will be gravel pieces for which 

𝐿ଵ
തതത 𝐿ଶ

തതത and 𝐿ଶ
തതത 𝐿ଷ

തതത are outside the bounds assumed for 𝐴. The area value used in the model is 

𝐴 = 𝛼𝐴ோ (11) 

where, 𝛼 is a random variable uniformly distributed over the range 
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𝐿ଵ
തതത 𝐿ଶ

തതത

𝐴ோ
≤ 𝛼 ≤

𝐿ଶ
തതത 𝐿ଷ

തതത

𝐴ோ
 

(12) 

As the model does not calculate orientation, the direction of the lift force is only 

known to be normal to the apparent fluid velocity. However, this criterion only identifies 

the plane normal to the velocity vector. A specific unit vector, nL, is, therefore, generated 

by first defining a reference unit vector (nref) in the global x-y plane 

𝒏𝒓𝒆𝒇 = (𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃, 0) (13) 

in which 𝜃 is randomly generated at the start of each flight from a uniform distribution over 

the range 0 ≤ 𝜃 < 2𝜋. The unit vector normal to the direction of the apparent fluid motion 

is calculated by taking the cross product of the unit vector in the direction of the velocity 

with the reference unit vector 

𝒏𝑳 =
𝒖(𝑡) 

|𝒖(𝒕)|
×  𝒏𝒓𝒆𝒇 

(14) 

Therefore, the lift force vector in three dimensions takes the following form: 

FL = ቀ
ଵ

ଶ
𝜌௙𝐴|𝒖|𝒖𝐶௅  ×  𝒏௥௘௙ቁ (15) 

The coupled governing differential equations (3) and (4) are numerically solved in 

MATLAB using a 4th order Runge-Kutta method with fixed time-step. The numerical 

integration is performed under the initial conditions x(t=0)=[0, 0, 0] and u(t=0)=[0, 0, 0], 

and the boundary condition 𝑧 = 𝑧௠௔௫   at 𝑡 = 𝑡௙௜௡௔௟, where 𝑧௠௔௫ is the depth of tank. As 

the time taken to reach 𝑧௠௔௫ is unknown for any given release, the equations are integrated 

for a large enough time that the particle has dropped further than 𝑧௠௔௫ and the time at 
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which 𝑧௠௔௫ is reached, along with the location vector 𝒙 = [𝑥, 𝑦, 𝑧௠௔௫], is calculated by 

interpolating the trajectory data on to 𝑧 = 𝑧௠௔௫. 

At the beginning of each simulation the initial values of the random variables 𝐶஽, 

𝐶௅, 𝛼 and 𝒏𝒓𝒆𝒇 are randomly generated from the distributions described above. Then, at the 

end of each time-step, the values are randomly perturbed before the next time-step in the 

integration. To avoid a drastic change in the magnitude of each of these parameters (e.g. 

𝛼), the new values are generated randomly from a continuous uniform distribution over a 

prespecified range (±𝛿𝛼) about the previous value. So, the new values of 𝐶஽, 𝐶௅, 𝜃 and 𝛼 

are generated randomly from ± 𝛿𝐶஽, ± 𝛿𝐶௅, ± 𝛿𝜃 and ± 𝛿𝛼 ranges about the previous values 

of the corresponding parameters. To illustrate the idea, consider the case where the value 

of 𝐶஽ from the previous timestep was 0.55 and 𝛿𝐶஽ has a fixed value of 0.03 for that 

simulation. Then, the new value of 𝐶஽ for the next time step, for this case, will be randomly 

generated from a uniform distribution between 𝐶஽ − 𝛿𝐶஽ and 𝐶஽ + 𝛿𝐶஽, or 0.52 and 0.58 

for this example. The same perturbation approach is used for  𝐶௅, 𝜃 and 𝛼. 

These random perturbations of 𝐶஽, 𝐶௅, 𝛼 and 𝜃 at each time-step are to account for 

changes in orientation that alter the projected area (𝛿𝛼), the magnitude of the drag and lift 

forces (𝛿𝐶஽ and 𝛿𝐶௅) and the direction of the lift force (𝛿𝜃). Over the course of a given set 

of flight simulations, the statistical distribution of the gravel landing locations will depend 

on the magnitude of the perturbations (𝛿𝐶஽, 𝛿𝐶௅, 𝛿𝛼 and 𝛿𝜃) and the number of times that 

the values are perturbed (𝑁 = 𝑇/𝛿𝑡) where 𝑇 is the time taken to reach 𝑧 = 𝑧௠௔௫ and 𝛿𝑡 

is the integration time-step. To minimize the number of model parameters, the time-step 

was fixed for all simulations and was taken to be the time taken for the equivalent sphere 



 30

to fall one radius when traveling at its terminal velocity. The terminal velocity was 

calculated using the median value of the 𝐶஽ = 0.6 to yield 

𝑈் = ඨ
2(𝐹௪ − 𝐹஻)

0.6𝜌𝐴௘
 

(16) 

The time-step is, therefore, 

𝛿𝑡 =
𝑅௘

𝑈்
 

(17) 

Therefore, the time scale is characteristic of a typical gravel piece within a given gradation 

and is consistently defined over all gradations. 

The ranges of 𝐶஽, 𝐶௅, and 𝛼 are determined from laboratory measurements of gravel 

geometry and wind tunnel measurements of the force coefficients. The equivalent sphere 

properties (𝑚 and 𝑅௘) are also calculated from measurement data. Therefore, the only 

unknown parameters in the model are 𝛿𝐶஽, 𝛿𝐶௅, 𝛿𝛼 and 𝛿𝜃. These four parameters are 

used as fitting parameters to match the simulated landing locations with the experimental 

data. 
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CHAPTER FIVE 
 

MODEL RESULTS AND COMPARISON WITH EXPERIMENTS 
 
 

Model Results and Comparison 

The numerical studies were carried out for different combinations of the four fitting 

parameters discussed in previous chapter. The perturbation ranges 𝛿𝐶஽ , 𝛿𝐶௅ and 𝛿𝛼 were 

varied from 0 to 50% of the overall range of the respective parameter in increments of 2.5% 

of the overall range while 𝛿𝜃 was varied from 0 to 30° in 1.5° increments. This leads to a 

total of 21 values for each perturbation parameter. To capture all possible combinations of 

these four parameters, a total of 214 simulations were run for each drop. This resulted in a 

total of more than 94.25 million simulations of drops for five gravel sizes and 100 drops 

per gravel size. The numerical results for each combination of parameters were, then, 

compared to the experimental measurements in chapter 3. For each gradation, the set of 

fitting parameters that yields the minimum error was extracted as an optimum set of model 

parameters. To show how the other combinations yield less desirable results compared to 

the optimized combination of the parameters, Figure 13 shows the resulting spread of 

landing locations for the largest gravel size (gradation A) as a scatter plot and the ranked 

radial distances obtained from the model are plotted against the ranked experimental radial 

distances. The solid red line has a slope of 1 representing a perfect agreement between the 

experiments and the model. Both these plots are based on the worst set of model 

parameters. 
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It is clear from this set of plots (Figure 13) that the spread obtained from the model 

does not resemble the experimental spread at all. 

Optimization Technique 

For all the combinations of fitting parameters, the numerical simulations give us 

the x and y coordinates of landing locations for one hundred drops per gravel size. The 

radial distances of each landing location from the center of the tank can be easily calculated 

from the coordinates, from which the mean and the standard deviation of the radial 

distances are calculated. To find an optimized combination of 𝛿𝐶஽ , 𝛿𝐶௅ , 𝛿𝜃 and 𝛿𝛼, the 

absolute differences between the two means (numerical and experimental) and the two 

standard deviations are calculated. These two quantities are not to be minimized 

Figure 13: (a) Spread of landing locations obtained from the model in comparison with 
experimental spread (b) Comparison of radial distances obtained from model with 

respect to experimental radial distances. (Both plots are based on worst combination of 
perturbation parameters for Gradation A) 

(a) (b) 
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independently since they are not exclusive of each other. For example, a very localized 

spread (meaning the standard deviation is smaller) can yield a mean which can be same as 

another spread that is less localized (i.e. with higher standard deviation). To optimize both 

these quantities, an optimization parameter (𝜀) is introduced, which is defined in equation 

(18) below as the square root of the sum of the squares of the differences between the 

means and the differences between the standard deviations. 

ε = ට(𝑟̅௘௫௣ − 𝑟̅௡௨௠௘௥௜௖௔௟)ଶ +  (𝜎௥(ୣ୶୮) − 𝜎௥(௡௨௠௘௥௜௖௔௟))ଶ 
(18) 

where, 𝑟̅ is the mean and 𝜎௥ is the standard deviation of the radial distances. The optimized 

set of 𝛿𝐶஽ , 𝛿𝐶௅ , 𝛿𝜃 and 𝛿𝛼 is obtained for the case where 𝜀 is minimum. 

Below, the optimized combination of 𝛿𝐶஽ , 𝛿𝐶௅ , 𝛿𝜃 and 𝛿𝛼, their resulting means 

and standard deviations of radial distances and the experimental means and standard 

deviations of radial distances are shown in Table 6 for each gravel size. 
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Table 6: Optimized combinations of the perturbation parameters and the resulting means and 

standard deviations obtained from the model for all gradations 

 
Gravel Sizes 

A B C D E 

𝛿𝐶஽ 0.13 0.04 0.02 0.01 0.10 

𝛿𝐶௅ 0.000 0.000 0.005 0.000 0.005 

𝛿𝜃 (degrees) 6.00 28.50 4.50 18.00 27.00 

𝛿𝛼 (% of 𝛼௠௔௫ − 𝛼௠௜௡) 
0.1170 

(10%) 

0.5488 

(47.5%) 

0.0894 

(7.5%) 

0.1486 

(12.5%) 

0.5642 

(35%) 

Experimental Mean Radial 

Distance (mm) 
56.7 38. 9 52.8 48.6 30.1 

Numerical Mean Radial 

Distance (mm) 
56.8 38.8 52.8 48.6 30.0 

Experimental St. Dev. (mm) 30.0 28.5 32.2 30.8 22.3 

Numerical St. Dev. (mm) 30.0 28.6 32.2 30.9 22.3 

Optimization Parameter, 𝜀 (m) 5.67 x 10-5 1.10 x 10-4 4.39 x 10-5 5.58 x 10-5 3.35 x 10-5 

 

From the summary presented in Table 6, we can see that for optimized condition, 

𝛿𝐶௅ has zero or near zero values. This indicates that according to this model, the trajectory 

of the dropped gravel pieces depends mostly upon the initial lift coefficient for each drop, 

and during the drop, the variation of CL appears to have minimal impact on the landing 

location. All the other parameters however seem to have noticeable variation across the 

gradations, which is expected since the different gradations are not geometrically similar 

as discussed in chapter 2. In Figure 14(a) below, the spread of landing locations obtained 
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from the optimized combination of 𝛿𝐶஽ , 𝛿𝐶௅ , 𝛿𝜃 and 𝛿𝛼 is shown with the experimental 

spread as a scatter plot for gradation C. Figure 14(b) shows a comparison between the 

ranked radial distances (experimental and numerical) of landing locations for the same 

case. A solid red line shows the line of 100% agreement between the experimental and 

numerical data points. 

 

In Figure 15 below, the comparison of experimental and numerical radial distances 

obtained from the optimized combination of perturbation parameters for each gravel 

gradation are shown: 

 

 

 

(a) (b) 

Figure 14: (a) Spread of landing locations obtained from the model in comparison with 
experimental spread, (b) Comparison of radial distances obtained from model with respect to 

experimental radial distances. (Both plots are based on the optimized combination of 
perturbation parameters for Gradation C) 
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Figure 15 shows that for the optimized model, the numerical data are in good 

agreement with the experiments except at the tail for large values of radial distances (r). 

The model consistently underestimates the top 3-6% at the top and fails to capture the really 

extreme events. 

Figure 15: Comparison between numerical and experimental radial distances. 
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To understand how the optimization parameter (ε) varies near the optimized set of 

fitting parameters, contour plots are generated for ε keeping two of the parameters fixed at 

a time while varying the other two as shown in Figure 16. 

 

From Figure 16, the optimization parameter (ε) appears to have a smooth gradient 

towards its optimized value. However, since ε varies over several orders of magnitudes, 

the contour plots here cannot capture the gradient properly near the minimum as indicated 

by large blue regions near the minimum. From Figure 17 below, where we plot logଵ଴ 𝜀 to 

generate similar contours, we can see that near the optimized condition, ε reduces 

monotonically. A thin blue band on the left figure near the minimum ε indicates that for 

this gradation, ε is quite sensitive to 𝛿𝜃. On the right-hand side figure, however, near the 

minimum, ε appears to have a smooth gradient. 

Figure 16:Contour plots showing variation of optimization parameter (ε) with two 
perturbation parameters at a time while the other two are kept fixed at their optimized 

values. (Gradation C) 
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Global Optimization Criteria 

In an attempt to optimize the entire system globally, we introduce a global 

optimization parameter (εg). To do that, we take the sum of squared optimization 

parameters (ε) [equation (18)] for each combination of perturbation parameters across all 

five gradations and then take a square-root of the sum as shown in equation (19). 

εg = ට∑ 𝜀௜
ଶா

௜ୀ஺  
(19) 

 

The globally optimized combination of the perturbation parameters is then 

characterized by a minimum value of εg. Table 7 below shows the combination of 

parameters and their results for all five gradations. 

 

Figure 17: Contour plots showing variation of logarithm of optimization parameter (log10 ε) with 
two perturbation parameters at a time while the other two are kept fixed at their optimized 

values. (Gradation C) 
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Table 7: Mean and standard deviation of the radial distances obtained from the model under 

globally optimized condition 1 

 
Gravel Sizes 

A B C D E 

𝛿𝛼 0.3509  0.3466 0.3578 0.3565 0.4836 

Experimental Mean Radial Distance (mm) 56.7 38. 9 52.8 48.6 30.1 

Numerical Mean Radial Distance (mm) 51.0 39.9 48.7 45.3 36.5 

Experimental St. Dev. (mm) 30.0 28.5 32.2 30.8 22.3 

Numerical St. Dev. (mm) 27.6 25.2 28.3 28.0 23.9 

Individual Optimization Parameter, εg (m) 0.0062 0.0035 0.0056 0.0044 0.0066 

Global Optimization Parameter, εg (m) 0.0121 

1. Globally optimized perturbation parameters: 𝛿𝐶஽ = 0.09, 𝛿𝐶௅ = 0.005, 𝛿𝜃 = 21° and 𝛿𝛼 = 30% of 

(𝛼௠௔௫ − 𝛼௠௜௡). 

 

From Table 7, we observe that the entire system is globally optimized for a low 

value of 𝛿𝐶௅, which indicates, as we have discussed before, the model offers the best 

prediction when the alteration of lift coefficient (CL) is very minimal compared to the initial 

lift coefficient. The relatively large value of 𝛿𝜃, however, suggests that during the drop, 

the orientation of the gravel pieces keeps altering noticeably, as is our observation from 

videos of experiments (Figure 10). 

In Figure 18 below, the landing locations for gradation C under the globally 

optimized condition is shown on the left-hand side with experimental spread, and on the 

right-hand side, the ranked numerical and experimental radial distances are shown, with 

solid red line indicating a hundred percent agreement between the model and experiment. 
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Figure 18 shows that under the globally optimized condition for gradation C, the 

model loses its accuracy to some extent compared to individual optimization and the 

prediction error towards the tail of radial distance distribution increases. This is in part due 

to the violation of the experimental condition of geometric similarity. A more holistic 

picture can be observed in following Figure 19, where the ranked numerical and 

experimental radial distances are compared for all gradations under the globally optimized 

condition. 

Figure 18: (a) Spread of landing locations obtained from the model in comparison with 
experimental spread, (b) Comparison of radial distances obtained from model with 

respect to experimental radial distances. (Both plots are based on the globally optimized 
combination of perturbation parameters for Gradation C) 

(a) (b) 



 41

 

From Figure 19 we can see that under the globally optimized condition, the model 

predicts the radial distances with a reduced accuracy compared to the individually 

optimized cases. While the model under predicts the distances of landing locations for the 

largest gravel gradation (A), for three middle gradations (B, C and D), the prediction in the 

Figure 19: Comparison between numerical and experimental radial distances for all gradations 
(Based on global optimization) 
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middle and lower end of the distribution are reasonable with an increased rate of under 

prediction at the tail. For the smallest gradation (E), however, the tail region is resolved 

better at the expense of an over prediction in the middle and lower-middle region of the 

radial distance distribution. 
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CHAPTER SIX 
 

DISCUSSION AND CONCLUSIONS 
 
 

Review and Conclusion 

In an attempt to address the shortcomings of standard equations of motion for 

compact debris, this study develops a numerical model that takes alteration of various 

factors during the drop of such debris into account. Due to the underlying assumption of 

compact debris being spherical in shape in the standard equations, the effects of change in 

projected area, drag and lift coefficients and initial release angle throughout a single drop 

cannot be captured. However, from the experiments discussed in chapter 2, it can clearly 

be observed that the said factors play an important role during the travel of each individual 

particle. Based on the experimental findings discussed in chapter 3, we adjusted several 

parameters that offers the best agreement of the model data with the experiments. The four 

fitting parameters that are used to fit the model to the experiments are the amounts by which 

drag and lift coefficients (CD and CL), initial release angle (θ) and the area coefficient (α) 

are varied throughout a single drop after each time step for numerical integration. On an 

individual level, the model offers the best fit at different combinations of these parameters 

for different gradations of gravels which is expected since the gradations are not 

geometrically similar as discussed in chapter 2. 

Under its optimized condition, the model presents reasonable agreement with the 

experiment for most of the drops, however, it consistently fails to capture the extreme 

events at large radial distances and under predicts the top 3-6% of the radial distances of 
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landing locations. We optimized the model globally across all experiments for all 

gradations to obtain one optimum combination of the fitting parameters for all gradations. 

For that case the model appears to present a reduced accuracy overall, with an increased 

rate of under prediction of radial distances mostly towards the tail of the distribution. One 

possible explanation for this underestimation at the tail is that the overall range of CL we 

used (-0.2 < CL < 0.2) while developing the model in this study may have been too narrow. 

Since the deviation of dropped gravel pieces from a vertical trajectory is associated with 

the effect of lift force acting on them, expansion of the range of CL values can be an 

approach to see if the model can capture the tail of the distribution better. We have also 

observed that during the motion of each individual gravel piece, the CL appears to vary 

slightly (as indicated by low value of 𝛿𝐶௅ under optimized condition) according to the 

model, while there is a significant variation in its orientation throughout the drop. Finally, 

we have observed that the optimization parameter (ε), although being quite sensitive to the 

fitting parameters, has a smooth gradient near its minimum value. 

Future Research 

This study addresses the motion of compact debris in stagnant environment, which 

is never the scenario in practical cases. Investigations are required to obtain a more precise 

understanding of the motion of debris in an ambient wind flow. However, transition to air 

is associated with increased relative magnitude of weight force due to the absence of 

significant buoyancy force. This increase in magnitude of vertical force needs to be 

accounted for in time-step consideration. There are scopes of improvement in the proposed 

stochastic model. As shown in this study, when the model is optimized for all five 
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gradations globally, the overall accuracy reduces. This reduction of accuracy can be 

attributed to the fact that the gravel gradations used in this study are not geometrically 

similar. Therefore, one optimization scheme applied globally to all five gradations is 

expected to come at an expense of accuracy compared to the individual optimizations. This 

can be addressed by modifying the fitting parameters used in this study by relating them 

back to the geometric properties of the gravel across their gradations. The model, optimized 

based on the modified fitting parameters, can then be expected to present a more 

generalized set of results for all five gradations with better accuracy. Upon ensuring a more 

accurate fit in all ranges of radial distances for all gradations, this model can be expanded 

to investigating the motion of debris in ambient wind flow by making adjustments to the 

time-step considerations as recommended above. Later the behavior of the model in the 

presence of external wind field can be compared with respect to the physical findings from 

wind tunnel experiments. 

Gaining a thorough understanding of the motion of windborne debris can bring 

great benefit for us to reduce the impact of such debris during extreme wind events. From 

accurate predictions of landing locations of flying debris and missiles, we can take 

preemptive measures to reduce the overall loss of property and lives in case of such extreme 

events. 
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Appendix A 

Fourth-Order Runge-Kutta Methods 

The model presented in this study solves the coupled equations of motion (3) and 

(4) to obtain the position and velocity vectors of each dropped gravel piece. The numerical 

method to solve the said differential equations used in this study is a fourth-order Runge-

Kutta method. Runge-Kutta methods are a family of single-step, explicit, numerical 

techniques for solving first-order ordinary differential equations. For a step size of ℎ =

𝑥௜ାଵ − 𝑥௜, the value of dependent variable at (i+1)th step is given by: 

 𝑦௜ାଵ = 𝑦௜ + 𝑠𝑙𝑜𝑝𝑒. ℎ A1 

 
where slope is constant. The value of slope is calculated at several points within the interval 

h and the number of points that are used for determining the value of slope within that 

interval is how different orders of Runge-Kutta methods are classified. The accuracy of the 

method increases (i.e. truncation error decreases) with increasing order. In this section, we 

will briefly discuss the method. (Gilat and Subramaniam, 2008) [15] 

For a differential equation, given by 
ௗ௬

ௗ௫
= 𝑓(𝑥, 𝑦), the equations for classical 

fourth-order Runge-Kutta method are: 

 
𝑦௜ାଵ = 𝑦௜ +

1

6
(𝐾ଵ + 2𝐾ଶ + 2𝐾ଷ + 𝐾ସ)ℎ A2 
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where, 

 𝐾ଵ = 𝑓(𝑥௜ , 𝑦௜) 

𝐾ଶ = 𝑓 ൬𝑥௜ +
ℎ

2
, 𝑦௜ + 𝐾ଵ

ℎ

2
൰ 

𝐾ଷ = 𝑓 ൬𝑥௜ +
ℎ

2
, 𝑦௜ + 𝐾ଶ

ℎ

2
൰ 

𝐾ସ = 𝑓(𝑥௜ + ℎ, 𝑦௜ + 𝐾ଷℎ) 

A3 

 

Using the known initial value, f(xi, yi) at x = xi, all the coefficients in equation A3 

are calculated to solve for yi+1 from equation A2. The calculated xi+1 and yi+1 will be the 

initial values for (i+2)th step and so on. 
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