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Abstract

The characterization of the damage state of a system provides insight into its performance

and safety during operation. In composite materials, specifically, fiber-reinforced polymers, de-

laminations form from the evolution of cracks in a matrix that leads to adhesion failure between

adjacent laminae. Nondestructive evaluation (NDE) seeks to characterize the state of a material

or system during non-operational times. A previously proposed NDE method employs embedded

magnetostrictive particles between laminae of carbon fiber reinforced polymer (CFRP) for damage

sensing. The phenomenon of magnetostriction couples the mechanical state of a material with its

magnetic state so that a change in the local stress field alters its magnetic susceptibility. The change

in magnetic susceptibility is measured using an induced sensing voltage.

This work aims to provide a preliminary exploration of machine learning to predict the

presence of a delamination using the embedded magnetostrictive particle NDE method with CFRP

laminates. Machine learning algorithms’ ability to decipher and develop relationships among input

features attracted its use since the visual examination of the experimental induced sensing volt-

age plots yielded inconsistent delamination predictions. This work investigated the feasibility of

an analytical model based on the Euler-Bernoulli beam theory to generate data. This model uti-

lized functional relationships to characterize the nonlinear behavior of the magnetostrictive material

Terfenol-D. Fourier series relationships reduced the error in the characterization of the properties

over the previously proposed functions. The previously proposed derived model failed to converge

for the calculation of stress within the magnetostrictive material.

Eight machine learning algorithms were employed using a Python script to classify the pres-

ence of a delamination within a unidirectional HexPly AS4/3501-6 CFRP embedded with Terfenol-D

particles. The maximum accuracy achieved was approximately 80%, whereas the average accuracy

for all the models was just below 71%. The multi-layer perceptron (MLP) models, a neural network
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algorithm, produced the highest prediction accuracy for this two-class classification problem because

of their ability to account for nonlinear relationships. A parametric study involving the architecture

and activation function was necessary for the MLP models because of the range of obtained predic-

tion accuracies. A direct relationship was observed between the number of hidden layers and the

accuracy outliers. Despite the accuracy of the examined machine learning models’ being less than

that of other NDE applications, this preliminary investigation demonstrated that machine learning

could be paired with previously indiscernible experimental data to detect delaminations.
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Chapter 1

Introduction

The increased level of research and development of materials has resulted in incorporating

specifically designed materials into a component or system’s design. Material designers continu-

ally seek new materials that exhibit combinations of desirable properties; for instance, aerospace

companies endeavor to reduce weight without significantly compromising the strength of aircraft

components. Homogeneous materials, such as metals, have undergone extensive research and devel-

opment to examine their microstructure and how it influences material properties. For centuries,

these homogeneous materials were selected for designs based on prior experiences. By blending

different metals, researchers produced alloys with characteristics of the combined materials. After

further development, alternative composite materials emerged into the commercial design space, es-

pecially in the aerospace industry. The popularity of composites has increased because they combine

constituent materials to yield new materials with material properties that differ from those of the

constituents’ properties. By altering the constituent materials, volume fractions, and microstruc-

tural composition of a composite, its overall properties can be tailored to design a material for a

particular purpose. Carbon fiber composites, specifically, have been exploited in designs necessitat-

ing a high specific strength, i.e., the strength-to-weight ratio, as compared to metals [1]. Carbon

fiber reinforced polymers (CFRPs) have specific strength values approximately ten times greater

than aluminum alloys [2]. Research and development of CFRPs have increased with the rise of the

aviation industry.

The utilization of composite materials includes, but is not limited to, designs in the aerospace,

automotive, and athletic industries. Aerospace designers employ composites in elements such as

1



ailerons, elevators, and rudders in airplanes in addition to rotor blades of helicopters and other

vertical-takeoff vehicles. An aircraft experiences fluctuating loads during a single operational use

due to pressure differences and changing atmospheric conditions at the various altitudes the vehicle

operates. Operational usage and environmental conditions affect the structure of a design. Eval-

uation of a vehicle’s structure grants insight into the response and performance of an element or

system of a structure. Structural health monitoring (SHM) and nondestructive evaluation (NDE)

are two techniques commonly employed to examine a structure’s state after enduring environmental

and operational loads. These evaluation techniques can characterize a system based on the presence,

or perceived presence, of damage in a material. The damage state of a system or material is vital for

its operation to avoid potential failure that could lead to financial burdens, not to mention possible

causalities. Evaluating a material or system can be time-intensive and result in extensive downtime,

so developing innovative evaluation techniques could reduce turnaround time. Additionally, these

new methods could result in more accurate evaluation techniques that identify pre-existing internal

damage and damage precursors. The prediction of possible damage sites via damage precursors

would allow operators to determine if a component should be replaced or offer a potential lifespan

estimation for when to replace the component [3].

A benefit of composite materials, as previously mentioned, is the ability to manipulate the

structure of the material. CFRPs consist of carbon fibers embedded in a matrix material. Layers,

also referred to as laminae or plies, of these embedded fibers are stacked on top of one another to

form a composite laminate. Particles can be embedded between adjacent plies or suspended in a

ply of host material to evaluate the damage state of a material. Magnetotagging employs embedded

magnetostrictive particles in a composite material to detect, or “sense”, damage [4]. The theory of

magnetostriction couples the mechanical state of a material with its magnetic state [5]. Damage

within a material alters the local stress field in the material around the damage state. There-

fore, damage near a region of magnetostrictive material induces a change in the magnetostrictive

material’s magnetic susceptibility.

Previous investigations have demonstrated the feasibility of this proposed NDE technique

via analytical, numerical, and experimental methods [3, 6, 7]. An actuating coil first applied an

actuation magnetic field to the CFRP beam with embedded magnetostrictive particles. A sensing

coil then converted the picked up magnetic flux density with an induced voltage to quantify the

change in magnetic susceptibility of the magnetostrictive material, Terfenol-D, per the theory of
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magnetostriction. This embedded technique allowed for an in-place examination of a component,

hence, decreasing a system’s downtime. Evaluating with this approach required a user to have

access to either one or both sides of a component; different apparatuses have been employed for

actuating and sensing based on the situation and operation of the component [8]. Damage in the form

of embedded delaminations was intentionally introduced in experimental laminates at established

locations to observe the effect of the presence of a delamination on the induced sensing voltage.

The examination and interpretation of the obtained induced sensing voltage plots aimed to provide

evidence of the location and presence of a delamination along the length of a CFRP beam. In many

cases, no patterns were discernable that highlighted the presence of a delamination. The presence

of known damage failed to yield any noticeable effect on the induced sensing voltage, which further

complicated this technique’s accuracy.

The main objective of this thesis lies in improving the application of the embedded magne-

tostrictive particle NDE method, specifically, the prediction of detecting the presence of delamina-

tions within a composite beam. Terfenol-D particles will be the magnetostrictive particle embedded

in CFRP beams for sensing. The implementation of numerical expressions to represent the mate-

rial property curves will be investigated in Chapter 3 to provide improved modeling capabilities of

Terfenol-D for given conditions. Though literature exists on the characterization of Terfenol-D, the

material properties and performance of the material are nonlinear and coupled with various param-

eters such as the applied magnetic field intensity and prestress state. Characterizing the properties

of an embedded Terfenol-D lamina requires consideration of the magnetostrictive particles and the

host material enveloping those particles. Accounting for the host material and volume fraction will

better recreate experimental conditions rather than assuming the bulk properties of Terfenol-D to

describe the embedded sensing lamina. Effective material property calculations will be presented in

Chapter 4 for a particulate composite. Machine learning will be applied in Chapter 5 to raw data

from the embedded magnetostrictive particle NDE technique in hopes of improving its prediction

ability. By supplying machine learning algorithms with varying conditions and datasets, the algo-

rithms can decipher trends and relationships to improve the detection ability of this NDE technique.

Ultimately, a trained algorithm could be incorporated into the technique to determine whether or

not damage exists at a given location.
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Chapter 2

Background and Literature Review

2.1 Introduction to Composite Materials

A composite material combines two or more constituent materials to form a new material

with unique properties [1,9–13]. The composite properties combine those of its constituent materials;

therefore, a composite may be tailored by a designer to perform in a specific manner. Properties such

as strength, stiffness, weight, and fatigue life can be improved through the combination of materials.

For example, suspending a stiff material (e.g., metallic particles) in a more compliant material (e.g.,

epoxy resin) can result in a stiff, light composite. The contribution of the constituents’ material

properties is related to the volume fraction of the respective material.

There are four common types of composite materials: fibrous composites, particulate com-

posites, laminated composites, and combinations of these three other types. Fibrous, or fiber-

reinforced, composites consist of fibers embedded in a host material illustrated in Fig. 2.1. The

possible geometries of the fibers include long, continuous fibers and short, discontinuous fibers, also

known as whiskers. The diameter of the embedded fibers can be on the scale of micrometers, as

with carbon fibers. The strength of a fiber-reinforced composite is derived from its fiber selection.

Because of the geometry of a slender fiber, the material properties such as the elastic modulus and

strength are greater in magnitude in the longitudinal direction of the fiber, i.e., in the direction

parallel to the fiber, rather than the radial direction. Particulate composites consist of particles

suspended in a matrix or other host material. The particles and matrix material can be metallic or

nonmetallic. The geometry of the particles can include spheres, discs, and flakes. A challenge with
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Figure 2.1: Fiber-reinforced composites combine fibers with a matrix material to yield a new mate-
rial.

particulate composites lies in their manufacturing. If seeking a uniform composite, the distribution

of the particles in the matrix material must be controlled to ensure that the concentration of the

particles is uniform throughout the composite. The stacking of plies of different materials produces

a laminated composite. Homogeneous materials can be combined in layers to result in a laminate.

Examples of laminated composites include plywood, safety glass, and kitchen countertops.

Carbon fiber reinforced polymers (CFRPs) are one type of fiber-reinforced composite. Stiff,

strong carbon fibers act as reinforcing elements in a more compliant thermoset or thermoplastic

polymer matrix. A single layer of a CFRP is referred to as a lamina or ply; stacking multiple

laminae forms a laminate. CFRPs have grown in popularity in design because of their high specific

strength and specific stiffness compared to metals and technical ceramics [2]. By changing the

orientation of its fiber-reinforced laminae, the overall properties of a laminate can be tailored to

specific values.

Composite materials are initially considered anisotropic and inhomogeneous in nature be-

cause they combine two or more constituent materials in random orientations. An inhomogeneous

composite has properties that depend on the location within the composite. For instance, the ma-

terial properties in a CFRP on a microscopic level are different depending on if the point of interest

lies in the fiber or polymer matrix domain. No planes of symmetry exist for an anisotropic material;

therefore, the material properties differ in all directions at a given point. The orientation of the

point determines the values of the material properties. The assumption of symmetry allows for the

simplification of the composite. When a composite has three mutually perpendicular planes of sym-

metry, it is considered orthotropic. The material properties of an orthotropic material differ only

along the three mutually perpendicular directions. If at a given point there exists only one plane

of symmetry about which the material properties are equal in all directions, the material is con-

sidered transversely isotropic. The properties of a transversely isotropic material differ in only two
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directions. Fiber-reinforced composites can be modeled as transversely isotropic materials because

of the geometry of the fibers. The properties along the radial direction of the fibers are assumed

equal and different from those along the longitudinal axis of the fibers due to the slenderness of the

fiber. The differences in the through-direction properties and those in the transverse direction to

the laminate’s plane are considered negligible. An isotropic material exists when material properties

are equivalent in all directions, often true of homogeneous materials; hence, composite materials are

rarely considered isotropic. Some exceptions may be made based on the structure of the compos-

ite. A particulate composite containing spherical particles could be considered isotropic based on

assumptions made concerning its constituents. A matrix material is often considered isotropic, and

the spherical geometry of the embedded particles lends to an isotropic assumption.

Damage mechanisms of composite materials differ from those of the traditionally studied

crystalline, homogeneous solids because of their micromechanical structure. In a crystalline solid,

damage forms and grows in the lattice structure of the material. Each constituent material must

be considered when discussing damage in a composite. Matrix cracking, fiber breakage, and delam-

inations are common damage mechanisms for composites [1]. Damage growth often begins at the

interface between a filler element, i.e., a fiber or particle, and the matrix material as the magnitude

of the stress field increases around the embedded interstitial body. Damage can occur in the crystal

structure of the constituent materials; however, this type of damage is often not the aim of study

because of the numerous other failure methods. Early damage involves cracking in the composite

matrix region as the matrix is often the more compliant constituent material. The matrix cracks

continue to grow under loading, specifically tensile loading, and may eventually accumulate to form

either a more extensive crack or initiate a delamination site. A delamination exists when internal

constituent materials separate from each other, creating a region of discontinuity. Further debonding

of laminae or the development of void spaces is possible with the growth of delaminations. In the

case of a fiber-reinforced polymer (FRP) composite, fiber breakage occurs when the applied loading

achieves or exceeds the fiber’s ultimate tensile, compression, or shear strength(s). Fiber breakage

typically corresponds to the failure of an FRP because the fiber is the stiffest constituent of the

composite.
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Table 2.1: Elastic constants for a transversely isotropic material.

Elastic constant Description

E1 Elastic modulus along longitudinal direction (1) of fiber

E2 Elastic modulus along transverse direction (2) of fiber

G12 Shear modulus in the plane (12) of the lamina

ν12 Poisson’s ratio in the plane (12) of the lamina

2.2 Mechanics of Composite Materials

2.2.1 Assumptions for Elastic Properties

Assumptions are made when modeling the behavior of a composite material to simplify the

inherent complexity associated with the combination of multiple materials with a random distri-

bution. A fiber-reinforced laminate, specifically a CFRP, is considered throughout the subsequent

discussion. The embedded fibers of the composite are assumed to be linearly elastic and homoge-

neous. Per their geometry, they are considered transversely isotropic with the material properties

equal in the radial direction of the fibers. The matrix is considered linearly elastic, homogeneous,

and isotropic having equivalent material properties in all directions throughout its domain. The

fibers are assumed to be embedded at evenly spaced intervals and parallel in the longitudinal di-

rection. The assumption of perfect bonding between the fibers and matrix eliminates the modeling

of voids and discontinuities within the material. The overall fiber-reinforced lamina may then be

considered a linear elastic, transversely isotropic material. Four elastic constants define the lamina

with respect to its orientation as listed in Tab. 2.1.

2.2.2 Elastic Mechanics of a Lamina

The general form for the elastic stress-strain relationship for a material is given by the

generalized Hooke’s Law (in index notation):

σi = Cijεj , (2.1)

7



where Cij is the stiffness matrix. The stress-strain relationship for a linear elastic, anisotropic

material can be written in matrix form in terms of the individual elastic constants,



σ11

σ22

σ33

τ23

τ13

τ12


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε11

ε22

ε33

γ23 = 2ε23

γ13 = 2ε31

γ12 = 2ε12


(2.2)

which contains 36 independent elastic constants. In contraction notation, the indices on the stress

and strain terms may be simplified such that,



σ11

σ22

σ33

τ23

τ13

τ12


=



σ1

σ2

σ3

σ4

σ5

σ6





ε11

ε22

ε33

γ23

γ13

γ12


=



ε1

ε2

ε3

ε4

ε5

ε6


(2.3)

Symmetry can reduce the number of independent elastic constants in Eq. (2.2) from 36 to 21:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.4)

For an orthotropic material with three mutually perpendicular planes of symmetry which correspond

to the main coordinate system of the laminate, simplifications to Eq. (2.4) can be made to reduce
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the number of independent elastic constants to nine:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.5)

For a material with a plane of symmetry in the 2-3 plane such as a fiber-reinforced composite with

the 1-direction corresponding to the longitudinal direction of the fiber, the stress-strain relationship

for a transversely isotropic material contains only five independent elastic constants:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C22) /2





ε1

ε2

ε3

ε4

ε5

ε6


(2.6)

An isotropic material contains an infinite number of planes of symmetry regarding its material

properties. The stress-strain relationship simplifies the number of independent elastic constants as

given in Eq. (2.5) from nine to two:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 (C11 − C12) /2 0 0

0 0 0 0 (C11 − C12) /2 0

0 0 0 0 0 (C11 − C12) /2





ε1

ε2

ε3

ε4

ε5

ε6


(2.7)

A problem involving a composite laminate can often be considered a plane stress problem

under the assumption the composite is thin and no out-of-plane loads are applied to the laminate.
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For many composites, especially CFRPs, the thickness is often negligible when compared to the

length or width of the sample of interest. The stress state for a plane stress problem is given as:

σ3 = 0, τ23 = 0, τ31 = 0 (2.8)

σ1 6= 0, σ2 6= 0, τ12 6= 0 (2.9)

The three-dimensional relationship in Eq. (2.1) is now reduced to a two-dimensional relationship.

The stress-strain relationship for an orthotropic material is given in terms of the reduced stiffness

terms [Qij ], 
σ1

σ2

τ12

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66



ε1

ε2

γ12

 , (2.10)

or in terms of the compliance matrix, defined by

[S] = [C]−1, (2.11)

εi = Sijσj , (2.12)


ε1

ε2

γ12

 =


S11 S12 0

S12 S22 0

0 0 S66



σ1

σ2

τ12

 (2.13)

The reduced stiffness constants in Eq. (2.10) are related to the compliance matrix [S] coefficients or

expressible in terms of the elastic properties of the lamina:

Q11 =
S22

S11S22 − S2
12

=
E1

1− ν12ν21
=

E2
1

E1 − E2ν2
12

(2.14)

Q12 = Q21 =
S12

S11S22 − S2
12

=
ν12E2

1− ν12ν21
=

E1E2ν12

E1 − E2ν2
12

(2.15)

Q22 =
S11

S11S22 − S2
12

=
E2

1− ν12ν21
=

E1E2

E1 − E2ν2
12

(2.16)

Q66 =
1

S66
= G12 (2.17)
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Figure 2.2: The local coordinate system differs from the global coordinate system in a fiber-reinforced
polymer when the fibers are rotated an angle θ from the global coordinates.

The compliance terms in Eq. (2.13) are calculated using the elastic constants for the lamina:

S11 =
1

E1
(2.18)

S12 = −ν12

E1
= −−ν21

E2
(2.19)

S22 =
1

E2
(2.20)

S66 =
1

12
(2.21)

As previously mentioned, one benefit of employing a fiber-reinforced laminate is the ability

to manipulate its behavior by altering the angle of the plies with respect to a global axis. For a fiber-

reinforced laminate, two coordinates system exist: the local coordinate system of the fiber laminae

(1, 2, 3) and the global, or principal, directions associated with the laminate (x, y, z). An orientation

angle θ is defined as the angle between the global and local axes as illustrated in Fig. 2.2. A mechanics

approach for transforming stress from one coordinate system to another permits converting stress

in the local coordinate system to the global system. In matrix form, this transformation matrix [T ]

is expressed as

[T ] =


cos2 θ sin2 θ 2 cos θ sin θ

sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ

 (2.22)
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The transformation matrix can be applied to transform both stress,


σ1

σ2

τ12

 = [T ]


σx

σy

τxy

 ,

σx

σy

τxy

 = [T ]
−1


σ1

σ2

τ12

 , (2.23)

and strain, 
ε1

ε2

ε12

 = [T ]


εx

εy

εxy

 ,

εx

εy

εxy

 = [T ]
−1


ε1

ε2

ε12

 (2.24)

The shear strain (γ12, γxy) is equivalent to twice the engineering strain (ε12, εxy), or

γ = 2ε (2.25)

The [R] matrix is defined to account for the relationship in Eq. (2.25),


1 0 0

0 1 0

0 0 2

 (2.26)

Transforming the strain from the local to the global coordinate system using the [R] matrix is

accomplished by 
ε1

ε2

γ12

 = [R] [T ] [R]
−1


εx

εy

γxy

 (2.27)

The relationship for attaining the local stress from the local strain is expressed as


σx

σy

τxy

 = [T ]
−1

[Q] [R] [T ] [R]
−1


εx

εy

γxy

 (2.28)
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The transformed reduced stiffness matrix is defined as

[
Q
]

= [T ]
−1

[Q] [R] [T ] , (2.29)

and relates the reduced stiffness constants in the local coordinate system to the global system;

therefore, the
[
Q
]

is a global matrix in the principal directions of the laminate. The transformed

reduced stiffness constants in
[
Q
]

are defined as follows:

Q11 = Q11 cos4 θ +Q22 sin4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ (2.30)

Q12 = (Q11 +Q22 − 4Q66) sin2 θ cos2 θ +Q12

(
cos4 θ + sin4 θ

)
(2.31)

Q22 = Q11 sin4 θ +Q22 cos4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ (2.32)

Q16 = (Q11 −Q12 − 2Q66) cos3 θ sin θ − (Q22 −Q12 − 2Q66) cos θ sin3 θ (2.33)

Q26 = (Q11 −Q12 − 2Q66) cos θ sin3 θ − (Q22 −Q12 − 2Q66) cos3 θ sin θ (2.34)

Q66 = (Q11 +Q22 − 2Q12 − 2Q66) cos2 θ sin2 θ +Q66

(
sin4 θ + cos4 θ

)
(2.35)

The global stress-strain relationship using
[
Q
]

is expressed as


σx

σy

τxy

 =


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



εx

εy

γxy

 , (2.36)

or more generally,

[σ] =
[
Q
]

[ε] (2.37)

2.3 Classical Lamination Theory

The classical lamination theory (CLT) analytically predicts the strain and curvature of a

composite material. The theory’s approach follows similarly to that of the Euler-Bernoulli beam

theory and closely resembles the classical plate theory [14]. The laminate strains and stresses are

estimated for applied loads using the laminae’s material properties. The elastic constants E, G, and

ν are primarily used in the analysis along with information about the individual laminae, including
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the orientation angle θ of the laminae and their thicknesses t. If a thermal difference occurs, i.e.,

a temperature change, thermal loads induce additional stress and strain on the laminate. The

coefficients of thermal expansion α for the laminae determine how temperature affects the magnitude

and direction of the induced strain.

2.3.1 Assumptions

Because composites are defined as an aggregate of two or more distinct materials, simplifying

their behavior is vital for modeling with the elastic relationships presented in Section 2.2.2 [15]. The

laminae are simplified from anisotropic to orthotropic materials. Assumptions also permit for the

CLT to be implemented with a laminate.

1. The thickness of each ply within the laminate is minimal compared to the other dimensions

(t� w and t� l).

2. The layers within the laminate are completely and perfectly bonded to one another.

3. Lines perpendicular to the surface remain straight and perpendicular to the surface following

deformation.

4. The laminate and individual plies are considered to be linear elastic.

5. The stresses and strains through the thickness of the material are negligible.

Assumption 2 implies that no damage can exist within the laminate; damage can include delamina-

tions, fiber or matrix cracking, and voids [1]. No slippage can occur at the interfaces of laminae since

they are perfectly bonded to one another. Additionally, this assumption implies that all the laminae

must deform together. One lamina can not deform in a manner unlike the other n laminae that

form a laminate. An important assumption which simplifies the behavior of modeling the laminate is

assumption 5 which constitutes a plane stress problem; the stress and strain in the direction perpen-

dicular to the plane of the laminate are zero as illustrated by Eq. (2.9). Symbolically, assumption 5

states that σ3 = 0 and ε3 = 0. This assumption can be made by assuming the thickness of the mate-

rial to be negligible compared to other dimensions, as stated by assumption 1. Assumptions of the

CLT specifically relate to the overall laminate rather than the individual laminae, so homogeneous

behavior is necessary when using the CLT.
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2.3.2 Application of Assumptions

As previously mentioned, the classical lamination theory assumes the individual laminae to

display orthotropic material properties. The theory also assumes a plane stress state to eliminate any

through-thickness stress effects. The generalized stress-strain relationship in the principal coordinate

system for an arbitrarily oriented laminate was given in Eq. (2.37). For a laminate with k laminae,

the stress-strain relationship is

{σ}k =
[
Q
]
k
{ε}k (2.38)

where k denotes the position of the lamina of interest within the laminate. The Kirchhoff hypothesis

asserts that a line perpendicular to the original, undeformed surface remains straight and normal to

the deformed surface as shown in Fig. 2.3 (assumption 3). Mathematically, this assumption states

that the shear strains in the direction perpendicular to the xy-plane of the laminate are ignored,

γxz = γyz = 0 (2.39)

Furthermore, the strain components in the z-direction are assumed to be negligible since the laminate

thickness does not change, nor do the laminae become unbonded.

2.3.3 Plate Mechanics

For completeness, the strain experienced within a laminate is defined. Let the displacement

in the x-, y-, and z-directions be denoted by u, v, and w, respectively. The strain is defined as

εx =
∂u

∂x
(2.40)

εy =
∂v

∂y
(2.41)

2εxy = γxy =

(
∂u

∂y
+
∂v

∂x

)
(2.42)
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When flexed, the slope of a plate is equal to the change in displacement in the z-direction divided

by the change in displacement in the direction of interest.

∂w

∂x
: slope in the x-direction (2.43)

∂w

∂y
: slope in the y-direction (2.44)

The CLT assumes a laminate experiences perfect bonding between its constituent materials and

all the laminae that combine to form the laminate (assumption 2); therefore, a laminate may be

considered and modeled as a single body. Ideally, the material is modeled as a homogeneous material.

The midplane, or middle surface, can then be used as a reference within the laminate since a line

straight and perpendicular to the midplane remains straight and perpendicular to the midplane

following deformation [16]. The displacements associated with the midplane are denoted as u0 and

v0 for the x- and y-directions, respectively. Per the Kirchhoff hypothesis, a set of linear functions

describe the displacement at any point in a cross-section of the laminate:

u = u0 − z
∂w

∂x
(2.45)

v = v0 − z
∂w

∂y
(2.46)

The strains in the x- and y-directions can be related to Eqs. (2.45) and (2.46) through differentiation

with respect to the direction of the strain term.

εx =
∂u

∂x
=
∂u0

∂x
− z ∂

2w

∂x2
(2.47)

εy =
∂v

∂y
=
∂v0

∂y
− z ∂

2w

∂y2
(2.48)

γxy =
∂u

∂y
+
∂v

∂x
=
∂u0

∂y
+
∂v0

∂x
− 2z

∂2w

∂x∂y
(2.49)
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Figure 2.3: In the classical lamination theory, the line perpendicular to the midplane when unde-
formed remains straight and perpendicular to the midplane when deformed.

The midplane strains are then defined as

ε0x :=
∂u0

∂x0
(2.50)

ε0y :=
∂v0

∂y0
(2.51)

γ0
xy :=

∂u0

∂y0
+
∂v0

∂x0
(2.52)
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and the midplane curvatures are defined as

κ0
x := −∂

2w

∂x2
(2.53)

κ0
y := −∂

2w

∂y2
(2.54)

κ0
xy := −2

∂2w

∂x∂y
(2.55)

The defined terms in Eqs. (2.50) – (2.55) can be substituted into Eqs. (2.47) – (2.49) to yield

expressions to find the strain field at any point within the cross-section of a laminate.

εx = ε0x + zκ0
x (2.56)

εy = ε0y + zκ0
y (2.57)

γxy = γ0
xy + zκ0

xy (2.58)

In matrix form, Eqs. (2.56)–(2.58) are expressed as


εx

εy

γxy

 =


ε0x

ε0y

γ0
xy

+ z


κ0
x

κ0
y

κ0
xy

 (2.59)

Having defined the strain in an arbitrary, global coordinate system for a lamina, the stress

in the same coordinate system can be calculated. Equation (2.59) can be substituted into Eq. (2.38)

to calculate the stress in the global system using the midplane stress and strain.


σx

σy

τxy

 =


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k


ε0x

ε0y

γ0
xy

+ z


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k


κ0
x

κ0
y

κ0
xy

 (2.60)

2.3.4 Stress and Moment Resultants

While the strain experienced by the laminate is linear and continuous through its thickness,

the stress is a function of the elastic properties of each lamina. The stress can be considered a

piecewise function as the reduced stiffness matrices
[
Q
]

differ between laminae due to differing
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Figure 2.4: Even though the moduli of the individual laminae may differ, the strain is continuous
and linear across the thickness of a laminate when using the classical lamination theory. The stress,
however, can be discontinuous between laminae with changes in slope at the interface coordinates.

elastic properties or orientation angles with fiber-reinforced laminae. Therefore, the stress follows a

continuous, linear relationship in the domain of each lamina, but not across the entire thickness of

the laminate as illustrated in Fig. 2.4. Discontinuities may exist due to the piecewise behavior at

the interfaces of each lamina.

The CLT relates the forces and moments applied to a laminate to the stress and strain

experienced, specifically those at the midplane. For a cross-section of a laminate, the total force

in one direction for an infinitesimal element can be expressed as (the x-direction is used for this

derivation) ∑
Fx =

∑
σx (dz) (y) (2.61)

Assuming that the size of the element decreases such that dz → 0, Eq. (2.61) is expressible in integral

form as

Nx =

∫ h/2

−h/2
σx dz (2.62)

where Nx is the stress resultant in the x-direction and has units of force per length, and h represents

the thickness of the laminate. The h/2 term denotes the locations respective to the outer surfaces of

the laminate as the integration is centered about the midplane of the laminate. The stress resultants
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are expressible as

Nx =

∫ h/2

−h/2
σx dz (2.63)

Ny =

∫ h/2

−h/2
σy dz (2.64)

Nxy =

∫ h/2

−h/2
τxy dz (2.65)

Moment resultants are calculated based on that z is the perpendicular distance from the

midplane to an arbitrary point in the laminate cross-section along the thickness direction. The

moment resultants are:

Mx =

∫ h/2

−h/2
σxzdz (2.66)

My =

∫ h/2

−h/2
σyzdz (2.67)

Mxy =

∫ h/2

−h/2
τxyzdz (2.68)

The units of the moment resultants are torque per unit length. The resultants Mx and My cause the

laminate to bend, whereas Mxy causes twisting. Equations (2.63) – (2.68) are expressed in matrix

form by


Nx

Ny

Nxy

 =

∫ h/2

−h/2


σx

σy

τxy

 dz, (2.69)


Mx

My

Mxy

 =

∫ h/2

−h/2


σx

σy

τxy

 zdz (2.70)

2.3.5 Thermal Resultants

The thermal expansion coefficients are defined for a material in its local coordinate system.

As with the stress and strain, the locally defined coefficients of thermal expansion may be transformed

20



into the principal directions of the laminate using Eq. (2.22),


αx

αy

αxy

 =


cos2 θ sin2 θ −2 cos θ sin θ

sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ − sin2 θ



α1

α2

0

 = [T ]
−1


α1

α2

0

 (2.71)

A coefficient of thermal expansion is created in the shear direction for the case of θ 6= 0◦ or θ 6= 90◦.

The thermal strains in each lamina are then expressible as [17]

εTx =αx∆T (2.72)

εTy =αy∆T (2.73)

εTxy =
γTxy
2

= αxy∆T (2.74)

where ∆T = T1 − T2 represents the change in temperature experienced by the material from state

one T1 to state two T2. The T superscript denotes that the strains are thermal strains. The thermal

resultants are found using the same methodology employed for calculating the mechanical resultants

which combines the elastic properties, orientation angle, and location of the individual lamina to

calculate the thermal resultants:


NT
x

NT
y

NT
xy

 =

n∑
k=1


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k


εTx

εTy

γTxy


k

(hk − kk−1) (2.75)


MT
x

MT
y

MT
xy

 =

n∑
k=1


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k


εTx

εTy

γTxy


k

1

2

(
h2
k − k2

k−1

)
(2.76)

2.3.6 Total Resultants

The total stress and moment resultants are found by adding the mechanical and thermal

resultants together. The hygroscopic resultants are calculated in the same manner as the thermal

resultants in Section 2.3.5 using the hygroscopic coefficients and a moisture difference ∆m rather
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than the temperature change; this effect was disregarded in this discussion.


N total
x

N total
y

N total
xy

 =


Nx

Ny

Nxy

+


NT
x

NT
y

NT
xy

 (2.77)


M total
x

M total
y

M total
xy

 =


Mx

My

Mxy

+


MT
x

MT
y

MT
xy

 (2.78)

2.3.7 Constitutive Relations for a Laminate

The CLT examines the laminate on a macromechanical scale, though, it considers the effects

of the individual laminae by including the elastic properties, orientation angle, and thickness of each

lamina. Equations (2.69) and (2.70) are expressible in terms of k, or the ply number, through

summation: 
Nx

Ny

Nxy

 =

n∑
k=1

∫ hk

hk−1


σx

σy

τxy


k

dz (2.79)


Mx

My

Mxy

 =

n∑
k=1

∫ hk

hk−1


σx

σy

τxy


k

zdz (2.80)

Integrating the expressions in Eqs. (2.79) and (2.80) results in two matrix equations with coefficient

matrices defined by the elastic properties, thickness, and orientation angle of the laminae.


Nx

Ny

Nxy

 =


A11 A12 A16

A12 A22 A26

A16 A26 A66



ε0x

ε0y

γ0
xy

+


B11 B12 B16

B12 B22 B26

B16 B26 B66



κ0
x

κ0
y

κ0
xy

 (2.81)


Mx

My

Mxy

 =


B11 B12 B16

B12 B22 B26

B16 B26 B66



ε0x

ε0y

γ0
xy

+


D11 D12 D16

D12 D22 D26

D16 D26 D66



κ0
x

κ0
y

κ0
xy

 (2.82)
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where

Aij =

n∑
k=1

[
Qij
]
k

(hk − kk−1) (2.83)

Bij =
1

2

n∑
k=1

[
Qij
]
k

(
h2
k − k2

k−1

)
(2.84)

Dij =
1

3

n∑
k=1

[
Qij
]
k

(
h3
k − k3

k−1

)
(2.85)

The matrix equations in (2.81) and (2.82) can be combined and written in a single matrix equation:



Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0x

ε0y

γ0
xy

κ0
x

κ0
y

κ0
xy


(2.86)

In contracted form, Eq. (2.86) expresses the individual elements of each submatrix as its parent

matrix and drops the index notation such that

N

M

 =

A B

B D


 ε0
κ0

 (2.87)

which illustrates the matrix denoted as the [ABD] matrix, or ABD, in composite terminology. The

resultant vector on the left side of Eq. (2.87) is equal to the sum of resultants given by Eqs. (2.77)

and (2.78).

2.3.8 Explanation of ABD Matrices

The defined matrix in Eq. (2.83), the A matrix, is called the extensional stiffness matrix.

From (2.83), the term surrounded by parentheses can be expressed as tk, the thickness of the
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respective lamina.

Aij =

n∑
k=1

[
Qij
]
k
tk (2.88)

tk := hk − hk−1 (2.89)

This matrix relates normal stress and midplane strain. The A16 and A26 terms relate shear strains

to normal stresses and normal strains to shear stresses rather than relating normal stress to normal

strain. If these terms are non-zero values, normal stresses will occur when a shear strain is applied.

The B matrix is referred to as the coupling stiffness matrix, and it relates midplane curvature

and normal stresses. Like the terms in the A matrix, the B16 and B26 constants relate twisting

strains to normal stresses and shear strains to bending stresses. An alternative expression to Eq.

(2.84) is [15]

Bij =
1

2

n∑
k=1

[
Qij
]
k

(hk − hk−1) (hk + hk−1) (2.90)

=

n∑
k=1

[
Qij
]
k
tk

(hk + hk−1)

2
(2.91)

where the (hk + hk−1) /2 term represents the distance from the midplane of the laminate to the

midplane of ply k.

Lastly, the D matrix is termed the bending stiffness matrix. It relates the curvature of the

laminate to the experienced bending moments.

Dij =
1

3

n∑
k=1

[
Qij
]
k

(
h3
k − k3

k−1

)
=

n∑
k=1

[
Qij
]
k

(
t3k
12

+ tz2
k

)
(2.92)

zk :=
hk + hk−1

2
(2.93)

2.3.9 Inversion of ABD Matrix

Equation (2.87) relates the midplane values to the force and moment resultants using the

ABD matrix. In most cases, the midplane strain and curvature are unknown and desired quantities.

The applied, external loads on the laminate are, however, typically known, so the expression in Eq.
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(2.87) requires inverting to express the strain and curvature as functions of the force and moment

resultants,  ε0
κ0

 =

A∗ B∗

C∗ D∗


N

M

 (2.94)

where the starred terms are defined as follows [15]:

[A∗] = [A]
−1 −

[
− [A]

−1
[B]
] [

[D]− [B] [A]
−1

[B]
]−1 [

[B] [A]
−1
]

(2.95)

[B∗] =
[
− [A]

−1
[B]
] [

[D]− [B] [A]
−1

[B]
]−1

(2.96)

[C∗] = −
[
[D]− [B] [A]

−1
[B]
]−1 [

[B] [A]
−1
]

(2.97)

[D∗] =
[
[D]− [B] [A]

−1
[B]
]−1

(2.98)

2.4 Magnetostriction

A magnetostrictive material couples magnetism with mechanics and results in deformation

under an applied magnetic field. Ferromagnetic materials such as iron, cobalt, and nickel display this

behavior. Two ideas have been defined to categorize a magnetostrictive material’s response to its

environment: the Joule and Villari effects [5, 18]. The Joule effect describes the change in material

shape under an externally applied magnetic field. The external magnetic field induces strain in

the magnetostrictive material, and this strain is referred to as magnetostriction. The Villari effect

describes the inverse of the Joule effect. When a mechanical load is applied to a magnetostrictive

material, the magnetic susceptibility of the material changes. Sensors employing magnetostrictive

materials utilize the Villari effect as mechanical energy is correlated to magnetic energy.

A two-dimensional constitutive relationship describes the coupling of the mechanical and

magnetic states [19]:

ε = sHσ + dcH (2.99)

B = dcσ + µσH (2.100)

where ε is the strain, sH the elastic compliance measured at constant H, σ the stress, H the magnetic

field intensity, B the magnetic flux density, and µσ the permeability measured at a constant stress
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σ [20]. In matrix form, the two-dimensional constitutive equations are expressed as [17]



ε1

ε2

ε3

ε4

ε5

ε6

B1

B2

B3



=



sH11 sH12 sH13 sH14 sH15 sH16 d11 d21 d31

sH21 sH22 sH23 sH24 sH25 sH26 d12 d22 d32

sH31 sH32 sH33 sH34 sH35 sH36 d13 d23 d33

sH41 sH42 sH43 sH44 sH45 sH46 d14 d24 d34

sH51 sH52 sH53 sH54 sH55 sH56 d15 d25 d35

sH61 sH62 sH63 sH64 sH65 sH66 d16 d26 d36

d11 d12 d13 d14 d15 d16 µT11 µσ12 µσ13

d21 d22 d23 d24 d25 d26 µT21 µσ22 µσ23

d31 d32 d33 d34 d35 d36 µT31 µσ32 µσ33





σ1

σ2

σ3

σ4

σ5

σ6

H1

H2

H3



(2.101)

The coupling of stress, strain, magnetic field intensity, and magnetic flux density is linearly express-

ible through examining the coefficient matrix in Eq. (2.101).

2.5 Terfenol-D

Terfenol-D was developed at the Naval Ordinance Laboratory in 1971 through alloying

terbium (Te), dysprosium (Dy), and iron (Fe) [21]. The name of the material was derived from

its elements and the laboratory which developed it. The chemical composition of Terfenol-D varies

based on the amounts of iron present such that the composition is Tb1-xDyxFe1.9-2.0 [17,22–24]. The

manufacturer [25] cites the composition of the material as Tb0.3Dy0.7Fe1.92. The rare-earth metals

contribute to Terfenol-D’s magnetostrictive properties, whereas the iron concentration contributes

to the Curie temperature [21]. The Curie temperature, or Curie point, signifies the temperature

at which a material’s magnetic properties experience a notable change [26]. Typical ferromagnetic

magnetostrictive materials have saturation magnetostriction values on the magnitude of λs ≈ 10−6.

Terfenol-D, however, shows saturation magnetostriction ranging from λs = 1.5 × 10−3 to λs =

2 × 10−3 [17, 25, 27]. The difference in saturation magnetostriction deems Terfenol-D as a “giant

magnetostrictive” material [28]. Select properties of Terfenol-D are often listed in literature as a

range of values due to dependence on the crystal structure, geometry, magnetic conditions, and

mechanical conditions. For example, TdVib (formally ETREMA), the manufacturer of Terfenol-D,

lists the value of the elastic modulus as 25–35 MPa for the bulk material [25]. Characterization of
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the properties of Terfenol-D listed in Tab. 4.1 has been limited due to the complex coupling of its

properties with its environment.

2.6 Machine Learning

The processing and decision-making ability of an organism can be attributed to the presence

of a brain structure. Inside the brain, neurons transmit information between one another across

synaptic clefts, which is the region between the axon terminals and dendrites of two neurons [29].

Figure 2.5 displays the structure of an anatomical neuron consisting of an axon, axon terminals,

and dendrites. Neurons are the basis of the brain and allow for information to be transmitted,

interpreted, and perceived. Electrical signals, called spikes or action potentials, transmit across

synapses that occur at the connection between the axon terminals of a transmitting neuron and the

dendrites of a receiving neuron. The receiving neuron interprets the spikes based on some of its

attributes, including timing and strength [29]. Further manipulation occurs inside the neuron where

multiple spikes accumulate to form a single signal to transmit to a neighboring neuron.

As computational abilities increased, a desire emerged to develop an artificial system capable

of mimicking the decision-making and processing ability of a mammalian brain. Following the

creation of The Bombe that deciphered the Enigma code used by the German army in World War

II, Alan Turing published an article titled “Computing Machinery and Intelligence” [30] in 1950 to

explain how intelligent machines could be created [31]. The aptly named Turing Test was proposed

to determine if a machine could be considered intelligent. The Turing Test deemed a machine

“intelligent” if an external, observing machine could not distinguish the interaction of a human with

Figure 2.5: Diagram of an individual biological neuron. [29]

27



Figure 2.6: Artificial intelligence has become a general term to encompass and include more specific
applications.

another human and the machine [31]. The term “artificial intelligence” was coined six years later in

1956 by a group of mathematicians and scientists at the Dartmouth Summer Research Project on

Artificial Intelligence (DSRPAI) [31,32]. At this gathering, mathematicians and scientists discussed

the current and future computer intelligence systems trends and laid the groundwork for future

machine learning advances. The development of intelligent machine algorithms has flourished since

1956 with an increase in computational resources [33].

Initial work with artificial intelligence (AI) investigated its application to game strategy, such

as that involved with checkers, chess, and Go, because a known, desired outcome is identified in each

game—to win [31,34]. Healthcare, household commodities, and cell phones have made AI a standard,

everyday technology through its use for decision-making, providing daily reminders, and acting as

a personal secretary completing tasks via only verbal commands [34, 35]. AI technology has been

impregnated into almost every technology to learn about and optimize a user’s experiences. These

intelligent systems need to interpret the system’s surroundings utilizing quantitative or qualitative

data for decision-making and learning. However, AI has come to serve as a generalized label for

related concepts that invoke methods to mimic the ability of the mammalian brain to solve problems.

Machine learning (ML) and deep learning (DL) extend the generalized idea of machine

intelligence by applying learning methods and highly connected networks to resemble further the

neural structure of a mammalian brain [34, 35]. Figure 2.6 illustrates the relationships between AI,

ML, and DL. In ML, algorithms analyze data to “learn” trends and make predictions based on the
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input data provided; large datasets are essential to training an algorithm effectively [34]. The use

of large datasets (“big data”) aims to reduce the likelihood of supplying an ML algorithm with an

insufficient amount of data. DL, a subset of ML, utilizes a structured neural network (NN) architec-

ture for prediction making. While data processing may be applied, human intervention is reduced

in DL compared to ML as artificial neural networks (ANNs) can extract useful information from

data using pattern recognition techniques [31, 34]. Layers of artificial neurons, called perceptrons

or nodes, are connected in an ANN resembling the mammalian neuron interaction between axons

and dendrites [35]. Figure 2.7 illustrates the operation of a linear perceptron where inputs are com-

bined with a weight function to output a binary value based on a threshold function [36]. A linear

perceptron calculates a comparison value y as

y =

n∑
i=1

wixi + w0 (2.102)

where wi is a weight associated with each input xi, and w0 is an intercept value taken from a bias

value applied to each perceptron [21]. The weight and bias terms are determined using an iterative

scheme. The linearly combined comparison value y is mapped to a new value using a threshold, or

activation, function f . Activation functions may take many forms, and common functions include

the Heaviside and sigmoid function:

Heaviside function: s (a) =

 0, a > 0

1
(2.103)

Sigmoid function: y = sigmoid (α) =
1

1 + exp (−α)
(2.104)

Data passes into a perceptron from a previous layer, undergoes appropriate modification,

and is then passed to the next layer as illustrated in Fig. 2.8. While an ANN can also be considered

an ML method, the distinction between an ANN used for ML and DL is typically the number of

hidden layers in the network. One hidden layer in the ANN is generally associated with ML as

in the NN in of Fig. 2.8. However, a DL ANN includes multiple hidden layers and may consist of

thousands of nodes [21,33]. An ANN, however, has no accepted architecture in terms of the number

of hidden layers or nodes within those layers, and parametric studies are needed to determine the

best combination for a given problem. The performance of an ML algorithm is determined by
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Figure 2.7: A perceptron combines a series of inputs in addition to a bias to produce an output
signal.

metrics such as accuracy, precision, and F1-score. The shared goal of both ML and DL lies in

making predictive models for a problem given a set amount of data.

Figure 2.8: Example of an ANN with a 3-4-2 architecture (three input, four hidden layer, and two
output nodes) demonstrating the connectedness of perceptrons and the flow of information.

2.6.1 Datasets

The learning process associated with machine learning consists of two steps: a training and

testing phase. Each phase introduces a unique set of data to the ML algorithm; a large dataset is

30



typically divided as shown in Fig. 2.9 into subsets for use in the training and testing phases. The

appropriately named training phase focuses on introducing data to the algorithm for “learning”

purposes. A standard percentage for dividing data into training and testing sets does not exist, but

training sets should be greater in number than the testing set to aid in “learning.” The training

set should encompass the breadth of the problem-at-hand to ensure that the algorithm can make

accurate predictions for the scope of the problem [21]. The training set may be further divided into a

specified training and validation set used to test the generalized model with known instances before

testing [21].

Cross-validation is one method used to divide the overall training set into training and

validation sets. The premise of this method is introducing the algorithm to multiple repetitions of

the same dataset but in distinctive combinations such as the k-fold cross-validation scheme presented

in Fig. 2.9 [33]. A validation step allows for a performance check of the algorithm before implementing

the algorithm in its test environment. If the validation step produces undesirable results, parameters

such as the initial weights, bias values, and activation functions for an ANN can be adjusted to alter

performance. Once the training set has been introduced, and the “best” model has been found,

the testing phase of machine learning begins using never-before-seen data. If the ML model fails to

perform as expected at this stage, the learning process can be restarted from the training phase to

improve the hyperparameters. Underperformance can suggest that either the hyperparameters were

improperly set or that the training set was inadequate for the problem-at-hand.

2.6.2 Supervised learning

One type of machine learning is supervised learning. Per its name, the algorithm “learns”

via a controlled, supervised approach. A set of known inputs xi with respective outputs yi are

introduced to the algorithm for pattern association between the given instances with the respective

outcomes [33,38]. Because the input data must be correlated with its respective output, the data used

in supervised learning is called labeled data [38]. The use of labeled data occurs only in the training

phase, and the algorithm trains by reducing the training error between the calculated outcome and

actual value,

Training Error = Etraining =
1

n

n∑
i=1

c (xi,yi, f (xi)) (2.105)
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Figure 2.9: Two sets of data are necessary when using a machine learning algorithm: training
and testing data. A cross-validation approach can be implemented to increase the amount of data
introduced to the algorithm during training. [37]

where the vector xi is the instance (input), yi is the respective outcome, and f (xi) is the trained

model [38]. Empirical error, mean square error (MSE), root mean square error (RMSE), and least

square estimates are frequently used to quantify the performance of the predicted results with the

actual results [21]. When overfitting occurs, the model trains to accurately replicate results for

the trained data but performs less accurately when new, unseen testing data is introduced to the

algorithm [38]. This decrease in prediction accuracy is due to minimizing the training error to an

undesirable minimum.

Supervised learning problems are divided into two categories: classification and regression.

In classification problems, information about an instance (e.g., customer, location, item) is inputted

into the model. The classification algorithm then assigns a discrete class to the data point based

on associations learned in the training phase between the presented information and the desired

output classes. Algorithms can utilize a hyperplane to divide the region between the classes as

illustrated by the red line in Fig. 2.10a for a two-class problem. Classes are often modeled within

algorithms as integers to reduce complexity; the use of binary systems improves computational

efficiency [38]. Regression problems analyze introduced data to produce a function that outputs a
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(a) (b)

Figure 2.10: Two types of supervised learning problems: (a) classification; (b) regression.

continuous value. The predicted relationships can follow linear (as shown in Fig. 2.10b), polynomial,

or nonlinear functions based on the chosen architecture of the algorithm [21]. Data fitting can occur

where the predicted outcomes closely correspond to the training data and differ from relationships

observed in the testing data, i.e., overfitting.

2.6.3 Unsupervised learning

Unlike supervised learning, which uses labeled data, unsupervised learning uses unlabeled

data to train a model. Two applications of unsupervised learning are association and clustering [36].

Clustering tasks, similar to classification problems in supervised learning, separate instances into k

groups or clusters. Algorithms can either be fed the desired number of clusters or be allowed to

discern patterns within the data and determine the appropriate number of clusters [38]. Figure 2.11

illustrates the idea of clustering data into k = 2, 3, 4 clusters. The algorithm determines the cluster

to which a point is assigned by its distance from other data points. The Euclidean distance is one

measure employed to calculate the distance between two points, xi and xj [38]:

d (xi,xj) = ||xi − xj || =

√√√√ D∑
s=1

(xis − xjs)2
(2.106)

Semi-supervised learning combines the concepts of supervised and unsupervised models [33, 38].

This technique employs a mixed set of labeled and unlabeled data during training. The labeled

data identifies trends, and the algorithm then applies the knowledge “learned” from the labeled

data to the unlabeled data in addition to combining unsupervised learning strategies to develop
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Figure 2.11: Example of a clustering problem with two, three, and four classes. [38]

a model. Applications of semi-supervised learning combine supervised and unsupervised learning;

ergo, classification, regression, clustering, and dimensionality reduction are possible problems for a

semi-supervised learning algorithm.

2.6.4 Reinforcement learning

Reinforcement, or reinforced, learning differs from the previously discussed types of machine

learning through the use of real-time information to make decisions. This type of algorithm utilizes

a feedback loop, as shown in Fig. 2.12, between the agent (decision-making algorithm) and the

environment [21,39]. The agent interacts with the environment via issued actions based on analysis

of the current state of the environment. The action aims to accomplish a set task or goal, and a

given policy predefines the possible actions issued by the agent. The action alters the state of the

environment, and a reward is sent to the agent along with information about the new state of the

environment. The agent seeks to produce an action that maximizes the reward. By achieving a

maximum reward, the agent has issued the best action. This feedback loop occurs until the task or

goal is achieved [39]. A critic can be introduced to the algorithm to judge only the past decisions

made by the agent and give feedback [21].

Applications of reinforcement learning primarily concern problems with changing situations

and large state spaces [33]. Game playing (e.g., chess, backgammon, video games) and autonomous

driving are two examples of problems with these situations. Because of its functionality and methods,

reinforcement learning has yet to find application in research focusing on the application ML to

SHM or NDE. The ability to analyze real-time data would prove useful in SHM; however, most work

concerning component monitoring or evaluation does not require continually altering the state of the
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Figure 2.12: Reinforcement learning acts as a feedback loop using information the environment for
the algorithm to make its next action. [38]

environment via actions. The current state of the SHM/NDE field only seeks to obtain information

about a system to comprehend and develop predictions rather than manipulating the environment

of the system to reduce possible damage.

2.7 Structural Health Monitoring and Nondestructive Eval-

uation

All materials inherently accumulate damage during their lifetime due to usage. Ideally,

materials are assumed perfect, meaning that their lattice structures are perfectly intact and not

altered in any manner [40]. Farrar and Worden [41] generalized the definition of damage to encompass

any introduced alterations in a system that affects its performance at either the current or future

state. Regarding a mechanical system, damage describes changes in the material or geometric

properties that could prove unfavorable in current or future performance [41, 42]. A material is

susceptible to damage at any point in its lifespan, and the length-scale of damage ranges from

the microscale to macroscale. Damage initiates in the crystal structure of a material when the

elastic limit is surpassed and crystal plasticity begins. Damage in the lattice, often referred to as

defects or flaws, transpires due to changes in the arrangement of atoms within the crystal lattice

structure. Figure 2.13 illustrates examples of defects which include vacancies (the absence of an

atom in the lattice), interstitials (the addition of an extra atom in the lattice), dislocations, and

grain boundaries [43].
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(a) (b)

(c) (d)

Figure 2.13: Four types of defects that occur on the microscale of a material and can eventually lead
to macrolevel damage: (a) vacancy of atoms (point defect); (b) interstitial of foreign atom (point
defect); (c) edge dislocation (line defect); (d) grain boundary (planar defect);
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Material-level defects accumulate as a material or system encounters continued loading.

These defects eventually turn into damage such as cracks or voids at the system-level. At this point

in a structure’s life, the system-level damage does not typically result in a total system failure, but

this damage level can influence the performance of the system. Mechanical properties such as stiffness

and hardness can deteriorate as the presence of system-level damage increases in a system [44]. Like

material-level defects, system-level damage grows as loading continues and may join together to form

larger-sized damage. For instance, accumulated dislocations can form into cracks, which become

stress concentrations that weaken a material. “Failure” of a system occurs when its performance

has reached a level deemed no longer safe or acceptable because of an accumulation of adverse

damage.

Damage detection processes are implemented to observe a structure for damage. The ulti-

mate goal of applying damage detection methods is reducing the probability of a system unknowingly

reaching a state of failure. The operation of a system and the type of materials used in the design

determine the appropriate and applicable methods for detecting and identifying damage. Special-

ized damage detection disciplines include structural health monitoring (SHM), condition monitoring

(CM), nondestructive evaluation (NDE), health and usage monitoring system (HUMS), statistical

process control (SPC), and damage prognosis (DP) [45]. SHM involves collecting periodic data about

a mechanical system to analyze its performance. In-situ measurements are often recorded using a

real structure during operation to obtain accurate data; therefore, SHM can be regarded as an “on-

line” method [46]. On the other hand, NDE is considered an “off-line” technique because evaluation

occurs during a non-operational state. In a non-operational state, components can be removed and

isolated from a structure for evaluation using methods such as acoustic emission (AE), X-ray scan-

ning, and computerized tomography (CT) scanning. Unlike other damage detection methods, NDE

examines a system with techniques that do not impact its future performance. Intentional damage,

e.g., holes, are not introduced into the component to examine the internal structure [47]. Farrar and

Worden [45] suggested that NDE utilizes an a priori knowledge of damage. NDE focuses on char-

acterizing and evaluating the extent of damage based on a known amount of operation [41]. NDE

occurs more sporadically and often on larger intervals of time, cycles, or other chosen measurable

parameters than SHM.

A generalized four-step process was proposed by Farrar et al. [48] to define any SHM/NDE

process:
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1. operational evaluation,

2. data acquisition and cleansing,

3. feature selection, and

4. statistical model development.

Information and results are passed along in this generalized process as illustrated in Fig. 2.15. Farrar

et al. [41] suggested that machine learning techniques are ideal for the fourth step, statistical model

development, to combine and statistically analyze collected data. Rytter [49] proposed five damage

state descriptions that coincide with the aims of the statistical modeling development step of a SHM

process:

1. Detection/existence: is there damage in the structure?

2. Location: where is the damage in the structure?

3. Type/classification: what kind of damage exists in the structure?

4. Extent/assessment: how severe is the damage?

5. Prognosis: how much useful life remains for the structure?

Any combination of these questions that describe the damage state of a system may be addressed

in a SHM/NDE process. The amount of information about the damage state increases for each

question based on the order listed above. For instance, the prognosis of a damage state requires

information about the type of damage in the structure and the severity of the damage—assuming

damage exists (existence).

2.7.1 Embedded Particle Sensing Methods

Ryan and Miller [50] first proposed designing a system with embedded particles for material

evaluation in their 1973 patent. For the next 15 years, subsequent work investigated the application

of introducing particles to detect explosive material. The application of embedded particles extended

to detecting damage in the form of voids and bond failure in the 1990s [51, 52]. Weisensel [4]

discussed a new approach to nondestructive evaluation utilizing magnetostrictive particles embedded

within a material deemed “magnetotagging”. The constitutive relationships of magnetostriction,

Eqs. (2.99) and (2.100), couple the mechanical stress state of a material with its magnetic state.

Krishnamurthy et al. [53] compared the sensing voltages obtained from an Euler-Bernoulli-derived
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model and experimental work. A deformation compatibility model stated that the deformation of

a infinitesimal element was a function of the free elongation of the magnetostrictive material, the

deformation caused by the reaction force(s), and the strain of the magnetostrictive region [54–56]:

δΛ = δf + δdx (2.107)

A loading line related the free strain, Λ, to the mechanical stress in the magnetostrictive particles,

Λ (H,σ) =
νpEp (H,σ) + (1− νp)Em

(1− νp)EmEp (H,σ)K0 (H0, νp)
(σ − σ0) (2.108)

where the elastic modulus Ep is a nonlinear function of the magnetic field intensity and stress

state. Recent investigations of this NDE method employed experimental testing to correlate induced

sensing voltages with the damage state of a material [6,7,57]. Haile et al. [3] found that embedding

particles in a CFRP negatively affected the breaking stress (a 15% reduction) though increased the

elastic modulus by nearly 20% under fatigue loading. Williams [27] examined the magnetic flux of

experimental laminates statically loaded to predict the presence of damage. Results were compared

using acoustic emission testing to correlate the flux and sensing voltage.

Recent studies utilized a standard fabrication and testing method to experimentally study

this NDE approach [3,6,7,57]. CFRP beams with dimensions of 9.75 × 1 inch (247.65 × 25.4 mm)

made from Hexply AS4/3501-6 were fabricated of various stacking sequences ranging from two to

14 plies. Terfenol-D particles ranging in diameter from 38 to 300 µm were distributed over the

middle six-inch (152.4 mm) domain of the beams. Two techniques distributed the particles across

the region. A hand distribution technique used a straight-edge tool to spread the particles across

the plane of the laminate. A trenching method sought to improve the distribution and yield a more

uniform spread. Delamination damage was simulated using embedded Teflon tape squares.

The experimental setup in Fig. 2.14 employed a sensing circuit to generate and pickup

magnetic fields. The sensing module structure surrounded the CRFP beam being evaluated. An

actuation coil was connected to a power amplifier and waveform generator to produce an actuating

magnetic field. A second coil in the sensing module, a sensing coil, converted the magnetic flux

density picked up from the magnetostrictive material to an induced sensing voltage. The sensing

voltage data was measured and stored using an attached data acquisition system for later analysis.
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Figure 2.14: Experimental setup of the embedded magnetostrictive particle NDE method.

The sensing voltage data was plotted against its position along the length of the beam to observe the

change in voltage. The method illustrated that the presence of Terfenol-D influenced the magnitude

of the induced sensing voltage.

2.8 Machine Learning Application for SHM/NDE

The concept of statistical modeling development encompasses numerous mathematical meth-

ods that can be applied for prediction-making using data analysis trends. Machine learning has

become a useful technique because of its basis in statistical principles. Algorithms have been suc-

cessfully implemented for addressing each of the five damage state descriptions [49]; however, certain

types of algorithms are better suited for addressing particular damage descriptions. Unsupervised

learning algorithms can address questions regarding the existence and location of damage in a sys-

tem. These are the most fundamental descriptions of a damage state due to their lack of need for

prior, contributing information [41]. Determining the existence and location of possible damage can

involve examining a dataset for anomalies, i.e., outlier detection. The remaining three questions

(the type of damage, the extent of damage, and an estimation of the remaining life for a system—

prognosis) are best determined using a supervised learning algorithm as they are more complex

questions requiring more knowledge about the system [41]. Because these three questions require

the most knowledge about a damage state, introducing information into the algorithm for training

is necessary to aid in “learning”.
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Figure 2.15: Farrar et al. proposed a SHM approach using ML that involved four steps: operational
evaluation, data acquisition and cleansing, feature selection, and statistical model development. [48]
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2.8.1 Non-composite Civil Structures

Civil structures commonly employ SHM techniques for damage state analysis to reduce the

probability of catastrophic failure. Monitoring these structures is paramount because of the constant

operational and environmental variabilities to which the structures experience [42]. Failure of these

systems at any point in their lifespan can result in significant casualties and financial loss. Damage

detection and classification are the predominate damage descriptions/questions from [49] addressed

in monitoring civil structures. Basic structural elements ranging from plates [58–60] and beams [61]

to large-scale systems like buildings and trusses [62–64] applied machine learning algorithms for

monitoring. Classification and identification algorithms were used to detect types of damage and

classify the structures of railways [65] and bridges [62, 66] Prognosis and predictive modeling with

ML was utilized to reduce the downtime of machinery [67].

2.8.2 Composite Materials

2.8.2.1 General Composites

The anisotropic behavior of a composite material exists due to the many factors associated

with its structure; the complexity lends to utilizing machine learning algorithms for analysis. A

two-dimensional composite design was investigated using an element-based approach that utilized

“stiff” or “soft” elements [68, 69]. Gu et al. [69] used ML to classify random arrangements of 8x8

and 16x16 element grids produced using finite element methods (FEM) as either “good” or “bad”

based on the ranking of the grid’s predicted toughness. The location of the soft and stiff elements

was ultimately found to determine the overall toughness (strength) of the composite. Soft material

was found to surround introduced cracks to mitigate the localized stress increase around the crack;

this increased the overall toughness of the composite. For maximum stiffness, the soft elements were

aligned in parallel to the unidirectional loading direction. In contrast, alignment of the soft elements

in series with the loading direction resulted in the softest, or most compliant, laminates [68].

Tensile testing of open-hole CFRP laminates paired with a probabilistic neural network

resulted in a feasible method for predicting the open-hole tensile strength [70]. Unlike other algo-

rithms that require large datasets, a probabilistic neural network was shown to predict the tensile

strength to within 4% of the experimental value with a limited amount of data—52 fabricated spec-

imen were studied, and only 36 were used to train. Additional data was created by manipulating
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the experimental data based on observed trends in the experimental results. Jiang et al. [71] used

experimental data in a NN to predict mechanical and wear properties of a composite. A parametric

study on the number of hidden layers and output nodes found that the complexity of the inves-

tigated problem determines the number of each of these parameters. A saturation point can be

achieved regarding the number of hidden nodes in a NN. Complex problems performed better using

a one-output architecture to reduce the consequences of associating multiple inputs with multiple

outputs. Architectures with multiple outputs were found to apply to more straightforward problems.

The feature inputs and nature of the prediction contribute to the complexity of the problem and

its classification as “complex” or “simple.” For instance, a complex problem could involve a fatigue

analysis as it requires large datasets to fully describe the problem, and fatigue is nonlinear in nature,

especially for composites.

2.8.2.2 SHM/NDE of Composites

Composite materials suffer from progressive failure that originates with the cracking or

breaking of individual constituent materials. Multiple factors require consideration to determine the

proper damage detection technique employed. For example, surface cracks can be detected using

magnetic particles applied to the surface of a ferromagnetic material based on the idea that cracks

affect the local magnetic field of a ferromagnetic material [47, 72].

Composite materials, however, often combine non-ferromagnetic constituents. A polymer

matrix with graphite or glass materials is combined to produce a FRP; particulate composites

can consist of various particulate fillers, including metals, ceramics, glasses, and polymers. Many

evaluation techniques used for homogeneous materials can be applied to composites such as visual,

acoustic, optical, imaging, electromagnetic, and modal analysis techniques [72,73]. While expensive

to implement, imaging techniques are particularly useful for composite damage detection as they

provide a visual image of the internal structure of the material. Other methods such as acoustic

emission and modal analyses interpret the response of a material to an applied signal. A benefit

of composites in terms of damage detection is controlling their structure through the constituent

materials selected and the stacking sequence.

Detection Detecting the presence of damage represents the first step to a SHM system, according

to Rytter [49]. When investigating the use of ML for damage detection, damage is often intentionally
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Figure 2.16: Myers and Banerjee [74] illustrated damage with a CFRP using a cross-section image.
Damage, specifically void and agglomeration regions, can be seen by the darkened regions in the
image.

introduced into a system to expedite the damage evolution process and yield repeatable experiments.

Scanning techniques allow for the visual determination of the presence of damage. Marani et al. [75]

investigated the use of thermography with glass fiber reinforced polymers (GFRP). Thermal images

were captured of GFRPs containing drilled holes exposed to sinusoidal heat signals. The existence

of damage was suggested to affect the rate at which heat transferred through a material, so the

time delay involved with the transfer of the applied heat through the GFRP was visually captured

by comparing a series of thermal images. Unsupervised clustering algorithms were employed to

differentiate the homogeneous, i.e., undamaged, and damaged regions of the GFRP specimen.

Sammons et al. [76] employed computerized tomography (CT) scanning to detect the pres-

ence of damage. Simulated data was generated by adding delamination-shaped regions of varying

size, shape, and intensity in the background of undamaged CFRP images. A convolutional neural

network (CNN), used for image recognition, predicted the presence (and location) of 89.17% of the

delaminations in the simulated testing data. The selected patch size employed in the CNN algorithm

reduced the detection rate of large and small delaminations.

Acoustic emission was utilized by Vitola et al. [77] to detect “on-line” damage in a CFRP

plate using piezoelectric transducers attached to its surface. One of the attached transducers gen-

erated a signal that traveled through the plate, and the other transducers acted as sensors—a

common practice for AE methods. Of six k-nearest neighbor (k-NN) algorithms examined, the fine
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and weighted k-NN algorithms yielded the highest classification accuracy of over 90% data points

correctly predicted.

Rodriguez-Cobo et al. [78] investigated the differences in performance of embedded and

surface-mounted fiber optic sensors. Fiber Bragg grating (FBG) was selected as the employed fiber

optic sensor because of its ability to detect strain by a change in length of the physical sensor [79,80].

A hierarchical temporal memory (HTM) algorithm and an ANN were trained and tested using three

datasets: data from only the embedded FBGs, data from only the surface-mounted FBGs, and data

from all the FBG sensors. The HTM algorithms outperformed the ANNs as they are suited for large

datasets.

Location With the existence of damage known, ML algorithms can be combined with SHM/NDE

techniques to locate damage. Determining the location of delaminations was found to be prevalent

in previous literature because of the discernible size of delaminations compared to cracks.

Modal analyses have been utilized to determine the location of damage because “natural

frequencies of any structural component contain the information regarding the presence of delami-

nation along with its size, shape, and location” [81]. Chakraborty [81] generated 201 20-ply CFRP

laminates using finite elements that contained an embedded delamination located at their midplane.

The delamination was modeled by reducing the elastic modulus of the elements in the simulated

delamination region so that the region of the delamination was softer than the surrounding elements.

Valoor and Chandrashekhara [82] attempted to determine the location of midplane delaminations

using a thick composite beam analytical model. The beams were modeled with different boundary

conditions (clamped-clamped, simply-supported, clamped-free), length-to-height ratios, and stack-

ing sequences to determine how the boundary conditions affected the natural frequencies of the

beams. Natural frequencies were calculated to input into a NN to predict the size and location of

the delamination.

Zhang et al. [83] presented three algorithms (a graphical method and two ANN techniques)

to determine the size and location of delaminations in a beam. The ANNs utilized the first seven

frequency changes to predict the interface number containing the delamination, the x-location along

the beam, and the delamination’s size. The first ANN technique used only one ANN to make

predictions. In contrast, the second ANN technique employed a surrogate ANN system consisting of

seven ANNs that each generated one frequency using supplied information about the delamination:
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interface number, x-location, and size. The seven frequencies outputted by the seven ANNs were

then fed into a separate ANN to predict the delamination information. The method employing only

one ANN had an average error for location prediction of 3.11%, whereas the surrogate method had

an average error of 3.34%. The increase in error could be associated with the increased complexity

of the data flow through the surrogate system.

Acoustic emission testing was implemented by Zhao et al. [84] to determine the abscissa

and ordinate values of a delamination in a two-dimensional plate. Acoustic signals were applied at

randomized, but known, points along the surface of experimental and FEA modeled laminates to

represent damage. Predicting the delamination coordinates involved recording measurements along

each axis to determine the specific coordinates. The FEA data yielded a maximum error between

the actual and predicted values of 5.00% and 5.60% in the abscissa and ordinate directions. The

experimental data, though, had greater error values of 7.40% and 9.40%, respectively. This increase

could be attributed to the experimental composites being fabricated with an unknown number of

plies and unknown orientation angles.

Liu et al. [85] presented an acoustic emission-based location prediction method using the

length across the path of a delamination. CFRPs were embedded with 12 piezoelectric transducers

in the configuration shown in Fig. 2.17 to act as a set of six actuators and six sensors, and a crack

was introduced to encourage the growth of a delamination during fatigue loading. X-ray imaging

quantified the size of the delamination caused by the introduced crack. Regression algorithms related

the acoustic emission data to the predicted length of a delamination.

Classification Because various damage mechanisms can occur within a material, determining the

specific type of damage offers insight into the response of a material. When experiencing loading for

an extended period of time, damage naturally occurs and grows; fatigue testing has been utilized in

experimental work to provoke damage growth and development in a material. Dabetwar et al. [87]

used data obtained from the NASA Ames Prognostics Data Repository [88] which tested dogbone

CFRPs embedded with piezoelectric transducers as acoustic emission sensors as shown in Fig. 2.17

under fatigue loading. Data was classified using a three-class problem based on the number of

cracks in the laminate. X-ray images were taken to compare and validate the predicted class by ML

algorithms to the correct class. The accuracy of damage classification for the three-class problem

using frequency data averaged 80% for all but on one (SVM) of the tested algorithms. Larrosa et
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(a) (b)

Figure 2.17: NASA Ames Prognostics Data Repository [86] experimental fatigue testing setup with
12 embedded AE sensors used for collecting data during loading; (a) an image of the notched CFRP
laminate with the sensor array and (b) an X-ray image of a CFRP laminate illustrating the 12 AE
sensor array.

al. [89] also utilized CFRP fatigue data from the NASA Ames Prognostics Data Repository, but

their work focused on statistical feature extraction of both time and frequency domain data. Six

parameters were extracted and combined to yield 511 inputs for the tested ML algorithms.

Farinholt et al. [90] investigated damage classification of drilled holes in composite plates

using an electrical impedance technique [91] paired with fatigue loading. The classification error

for this experiment ranged from 6.6% using a random forest algorithm to 83.2% for a quadratic

discriminant analysis. The second experiment in this work classified embedded delaminations under

fatigue tested 25.4-millimeter wide specimen. The ML approach correctly identified 85.7% of the six

damage mechanisms investigated. Misclassification occurred for the extreme delamination widths

(6.35 and 19.05 millimeters) due to the size of the embedded patch relative to the width of the test

specimen.

Tibaduiza et al. [92] investigated a composite sandwich structure and plate with various

applied damages. Preprocessing tools generated “scores”, values to be used as inputs, for the 20

ML algorithms implemented. A novel data processing method was proposed involving a nonlinear

analysis. Tibaduiza et al. employed nonlinear components as they believed that nonlinear values were

capable of representing data about a structural state in less information than traditional methods.
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Figure 2.18: “One to others” approach using SVMs for problems involving more than two classes. [94]

The results confirmed this proposition as the fine and weighted k-NN algorithms correctly predicted

the state of the CFRP sandwich structures 348 out of 350 times (99.4%). Further, the same types of

ML algorithms had a prediction accuracy of 99.7% and 100%, respectively, in the case of the CFRP

composite plate.

Doyle and Fernando [93] investigated impact damage classification in CFRP plates. A fiber-

optic vibration sensor was mounted to the surface of each plate while impacted using a drop-weight

testing machine or a steel ball bearing. The percentage of correct classifications was above 95% for

all but one of the ANNs tested.

Pawar and Jung [94] applied ML to an analytical approach consisting of aeroelastic and

damage accumulation models for classifying the damage level of helicopter rotor blades. Rather

than classifying a specific type of damage such as a crack or delamination, the extent of damage

was of interest. Three damage classes (negligible, moderate, and severe damage) were defined as

given in Tab. 2.2. A “one to others” technique shown in Fig. 2.18 was implemented in the ML

process such that two support vector machines (SVMs) were used in classifying the three classes.

When all the hub forces and moments were inputted into the “one to others” SVM algorithm, the

highest accuracy was obtained, whereas combinations of only two forces or two moments produced

the lowest accuracy, especially at higher noise levels.

Extent The fourth damage description concerns the severity of the state of damage in a material.

Answering this question provides information about the effect of damage mechanisms. Because
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Table 2.2: Three-class damage classification proposed by Pawar and Jung [94] that relates the
the damage class to the physical damage. A percentage of the used life (or the percentage of life
remaining) can be correlated to the damage class to determine what actions are necessary to reduce
the possibility of failure in-use.

Damage
class

Physical damage level
Life consumption

(%)
Prognostic

Action

Negligible
Damage

Up to matrix crack saturation (crack
density ranges from 0 to the saturation
crack density of 3.0)

0-15% OK

Moderate
Damage

Initial part of debonding/delamination
zone (ESR 0.8-0.88)

15-56% WATCH

Severe
Damage

Last phase of debonding/delamination
(ESR 0.92-0.94)

>56% REMOVE

each damage mechanism grows differently, each type of damage impacts a structure differently.

Since damage affects the microstructure of a material, the local property values around the damage

location differ from those in a pristine, undamaged region. Regression algorithms have been used to

quantify this damage detection question [95].

Gupta et al. [96] proposed a novel SHM technique utilizing mechanoluminescence to quantify

the change in the elastic modulus of a polymer composite under cyclical loading. Organic mechano-

luminescent phosphors were embedded into a polymer composite as sensing elements because they

emit light under a mechanical load. The light intensity, I, emitted by the embedded particles along

with the applied stress, σ, were measured and correlated using a multivariate linear regression model,

E = f (σ, I) = θ0 + θ1σ + θ2I (2.109)

where θ0 was a bias term, and θ1, θ2 were weights associated with the stress and intensity, respec-

tively. The elastic modulus was chosen as the parameter of interest because “structural deterioration

can be observed by modulus relaxation as the component undergoes fatigue failure” [96]. After op-

timizing, the final multivariate linear model was found to be

E = 2.28 + (−0.071)σ + (0.037) I (2.110)

The training and testing error was minimal at 1.25% and 1.32%, respectively, demonstrating the
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viability of this approach for SHM. A drawback to this technique was the usage of mechanolumines-

cent particles; the host material must allow for light to pass through, i.e., the host material must

be transparent to implement this method. A transparent polymer composite can allow for light

emission, but polymers do not function well as structural materials [2].

Seo and Lee [97] presented an electrical resistance method for quantifying damage based

on the degradation of the stiffness of a CFRP laminate. An electrical resistance damage parame-

ter was defined and inputted into NNs to predict either the fatigue life or stiffness of the CFRP.

Implementing electrical resistance for damage detection is feasible for CFRP laminates because of

carbon fiber’s conductivity (e.g., AS4 has a conductivity of approximately 6.54 × 104 siemens per

meter [98]). However, the matrix material acts as an insulator hindering the usage of this approach

for measurements in directions other than in the longitudinal direction of the fibers [99]. Todor-

oki [99], however, presented a finite element method for detecting delaminations in a CFRP using a

set of five electrodes to determine its size and location.

Prognosis The final damage state description, prognosis, requires the most knowledge about the

damage state to address. Information collected from the subsequent damage state descriptions can

help forecast the health of a material or system. The prognostic work with CFRP laminates has fo-

cused on predicting failure before it transpires. There are several mechanisms for failure in a CFRP

(or a generalized FRP) because of the structure and interaction between the fibers and matrix ma-

terials. Failure mechanisms exist for both constituent materials and must be considered as possible

causes of failure. Matrix cracking and fiber breakage are predominantly investigated because load-

ing conditions are typically distributed across a laminate cross-section. These mechanisms usually

correspond to initial and total failure, respectively, of a FRP.

Bheemreddy et al. [100] investigated the use of machine learning with analytical modeling

to predict a failure mechanism specific to FRPs: fiber pull-out. An ANN was trained to predict the

coordinates of points on a load-displacement plot for a single fiber being pulled from an embedding

host matrix. Results from an FEA and an analytical model were compared with the predicted load-

displacement plots by ANNs. The predicted plot by the ANN was found to be a combination of the

analytical and FEA curves due to their usage in training; therefore, the ANN curve fell between the

other two models as shown in Fig. 2.19.
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Figure 2.19: The use of data from analytical and FEA models in an ANN suggest the predicted
load-displacement curve of the ANN is a combination of the two methods [100].

Fatigue The extensive amount of data necessary to fully describe fatigue suggests ML as

a viable option for characterization [101]. Fatigue performance of a material is typically displayed on

a plot of the stress amplitude and the number of cycles to failure (also called the fatigue life); other

parameters for illustrating fatigue life have been implemented, such as acoustic emission data [102].

A material must be cyclically loaded to failure for various stress amplitudes to describe its fatigue

behavior; therefore, a fatigue problem becomes a big data problem consisting of thousands of data

points if using raw, complete datasets obtained from each experiment.

Aymerich and Serra [103] proposed using a NN to predict fatigue strength (the highest

value of stress a material can sustain before failure) based on the number of cycles at failure and

information about the stacking sequence of a CFRP. Neural networks were tested with various

stacking sequences. The models better predicted a laminate with a trained stacking sequence than

an unknown stacking sequence. Subsequent work focused on predicting the fatigue life—a useful

approach for forecasting the life of a composite in a structure to determine how long it can be safely

used without failure—of a composite rather than the fatigue strength.

El Kadi and Al-Assaf [104,105] investigated the use of neural networks to predict the fatigue
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life of glass fiber composites. In [104], feedforward NNs (FNNs), modular NNs (MNNs), and radial

basis function (RBF) networks were examined using data obtained from the cyclical loading of five

unidirectional glass fiber composites. The fiber orientation angle, stress ratio, and maximum applied

stress were inputted into each algorithm to predict fatigue life. The decomposition of a complex

predictive model, such as that involved with fatigue life, into multiple NNs resulted in more accurate

results than using a single NN for modeling. El Kadi and Al-Assaf [105] expanded their work in [104]

by investigating the performance of a MNN using a strain energy term as an input. The strain energy

term combined information about the composite and testing parameters:

∆W+ =
1

2
S11∆σ2

[
1 +R

1−R

]
(2.111)

where S11 was an elastic term calculated from the stress-strain relationship and contained informa-

tion about the fiber orientation angle, ∆σ was the applied stress range, and R was the stress ratio

(R = σmax/σmin). Equation (2.111), however, was only applicable for uniaxial cyclical loading with

positive stress ratio values due to applied assumptions.

Lee et al. [106] found that additional input parameters from those used in [104, 105] were

useful when predicting fatigue life. Introducing the maximum and minimum stresses along with

the tensile and compressive strengths of the material improved the accuracy of the ANNs. An

attempt was made to predict the fatigue life of unknown, untrained materials using an ANN, but

this investigation resulted in errors of over 100%. Figure 2.20 shows that this type of application of

ML may not prove useful as the smallest RMSE was approximately 150%.

El Kadi and Al-Assaf [107] investigated the use of monotonic material properties to predict

the fatigue life of unknown materials using neural networks. The longitudinal and transverse elastic

moduli, longitudinal and transverse tensile strengths, fiber volume fraction, and fiber orientation

angle were inputs based on previous findings in [104]. Polynomial combinations of the material

properties were created to increase the number and variation of input parameters. The smallest

RMSE obtained was 38.7% using a nonlinear combination of material properties: ST90× θ× (log σ)
3
.

Al-Assaf et al. [108] expanded the work of [107] by increasing the number of materials and loading

conditions included in the training process. The RMSE for the unknown prediction models ranged

from 6.1% to 40% when compared to experimental data. Ultimately, it was determined that the

tested material’s properties should fall within the range of material properties used in training the
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Figure 2.20: The RMSE in [106] decreased as more data (composite systems) were introduced to the
ANN for fatigue life predicting. Four composite systems were found to produce the lowest RMSE.

ANN because of the high error obtained in [107,108].

Failure Theoretical models for composite failure are based on the established and well-

studied metallic failure theories. The response of each constituent material must be considered in

composite failure theory. Additionally, the interactions of the constituents at their respective inter-

faces can be included in a theoretical model for completeness. Each constituent has the possibility

of failing at different times in the life of a composite as displayed in Fig. 2.21. Composite failure the-

ories are often empirical, utilizing physical information about the material and its microstructure to

define parameters [109–111]. The complexity of these calculations can be numerically intensive. To

reduce computational expenses, researchers have implemented ML algorithms for failure predictions

because of their ability to model nonlinear relationships.

Because of the complexity of a multi-constituent composite material, anisotropic models

are necessary to model a composite fully. Simplification of a composite to an orthotropic material

is often implemented in failure predictions because of previously developed orthotropic models.

Tsai-Wu [112] proposed a failure surface that utilized a six-dimensional stress field combined with
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Figure 2.21: Over the lifetime of FRP composite under loading, damage mechanisms change and
accumulate to form different mechanisms like cracks and delaminations. [102]

anisotropic strength parameters,

Fiσi + Fijσiσj = 1, i, j = 1, . . . , 6 (2.112)

where Fi and Fij are strength tensors dependent on the composite layup. Assumptions have been

developed with Eq. (2.112) to reduce the symmetry of the model to orthotropic and transversely

isotropic natures. Jones [1] presented the relationships of the strength tensors with monotonic

material properties for a plane stress condition of a transversely isotropic material:

F1σ11 + F2σ22 + F11σ
2
11 + F22σ

2
22 + F66σ

2
12 + 2F12σ11σ22 = 1 (2.113)
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where Fi and Fij are related to the monotonic strengths as

F1 =
1

XT
− 1

XC

F2 =
1

YT
− 1

YC

F11 =
1

XTXC
(2.114)

F22 =
1

YTYC

F66 =
1

S2

where XT and XC are the longitudinal tensile and compressive strengths in the fiber direction, YT

and YC are the transverse tensile and compressive strengths, and S is the in-plane shear strength.

Two forms of the Tsai-Wu criterion were utilized in [113–117]: the form presented in Eq. (2.113) and

an optimized Tsai-Wu criterion. The optimized criterion sought to minimize the error between the

experimental data and the analytical failure surface by optimizing the strength tensor coefficients,

i.e., the monotonic material properties were not used to define the strength tensors. The Tsai-

Wu and the optimized Tsai-Wu failure criterion had ellipsoidal failure envelopes, or surfaces, as

illustrated in Fig. 2.22.

Labossière and Turkkan [113] first suggested the use of a NN for the prediction of the failure

envelope using a softwood, fibrous composite material. Lee et al. [114] investigated the failure of

CFRPs under biaxial loading using an ANN. Bhuiyan et al. [117] confirmed the Tsai-Wu, optimized

Tsai-Wu, and NN failure envelopes obtained in [113,114] using biaxial loading experiments of CFRP

plates. The CFRP plates were subjected to transverse and axial loads to induce failure. The Tsai-

Wu criterion predicted a general symmetric ellipsoid failure surface independent of experimental

data illustrated in Fig. 2.22. Because the optimized Tsai-Wu criterion considered experimental data

in its failure envelope prediction, the failure envelope more closely resembled the experimental data

than the traditional Tsai-Wu criterion.

Lopes et al. [115] proposed the use of a radial basis network with randomized loading

conditions (axial, biaxial, in-plane shear) as inputs for the prediction of the Tsai-Wu factor, i.e., the

sum of the left-hand side of Eq. (2.113). Elhewy et al. [107] investigated the architecture and types of

functions used in an ANN to reduce computational costs over other methods such as finite elements.

Both [107] and [115] demonstrated that ML algorithms could be used to reduce computational
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Figure 2.22: The NN predicted failure envelope minimizes the error between the actual (experi-
mental) values and its predicted values, thus producing an unsymmetric, non-uniform failure enve-
lope. [117]

expenses given sufficient data.

Şerban [116] proposed the implementation of classification and regression algorithms for

predicting failure probability. A two-class problem was defined to include a “fail” and a “not fail”

class for a set of 86, 953 simulated laminates with random ply orientations. The division of classes was

determined by comparing a predicted failure criterion with a critical failure factor. Seven algorithms

were explored, and the minimum and maximum classification errors were 1.33% (k-NN) and 9.08%

(quadratic discriminant analysis), respectively. The regression algorithms predicted the value of the

failure factor, and the results were compared against a value calculated using FEA models. Şerban

projected confidence in both the classification and regression methods based on the error calculated

between the ML and FEA predictions.
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Chapter 3

Analytical Modeling

3.1 Motivation for Implementing a Model

Experimentation can be financially expensive to complete due to a lack of available resources;

some experiments are not repeatable. The creation of Terfenol-D embedded laminates requires

special care to reduce oxidation of the particles during fabrication [118, 119]. The examined NDE

method utilizes a testing apparatus consisting of an actuating-sensing coil connected to a power

amplifier and data acquisition system. A lack of availability to the testing equipment spurred an

investigation into the implementation of an analytical model to predict the presence of a delamination

within a CFRP using magnetostriction. Slight manipulations in testing parameters are also easier to

make in modeling methods than experimentation so that parametric studies can examine the effect

of multiple parameters on the results of the model.

Krishnamurthy et al. [53] proposed a model derived from the Euler-Bernoulli beam theory

to calculate the induced stress in the embedded magnetostrictive material. With the induced stress

found, the constitutive relationship correlated the magnetic susceptibility with the stress state to

predict the induced sensing voltage. The model necessitated the characterization of Terfenol-D to

relate the material’s nonlinear stress-strain and strain-magnetic field intensity relationships. Imple-

menting an analytical model has been previously demonstrated as a method for acquiring data for

machine learning. This analytical model investigation aimed to generate a large dataset of induced

sensing voltages for various stacking sequences to resemble experimental conditions.
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Figure 3.1: Extracted data from a stress-strain plot for Terfenol-D plot given by Butler [120]. Five
bias magnetic fields intensities were experimentally applied to the material.

3.2 Characterization of Terfenol-D

3.2.1 Stress-Strain Relationship

Stress-strain data for Terfenol-D was presented by Butler [120] using experiments with vary-

ing bias magnetic field intensities, H0. The bias magnetic field aligns the magnetostrictive material’s

dipoles along a specific direction during fabrication to increase the effect of magnetostriction. A re-

production of Butler’s experimental stress-strain plot is shown in Fig. 3.1 where the curves were

extracted using the GRABIT function [121] in MATLAB. Using the GRABIT function, data points

were interactively selected for each curve from the original plot. These data points were then ex-

ported and plotted to create the curves using the Python 3.8.5 script in Appendix D.1.1.

3.2.1.1 Ramberg-Osgood Model

Ramberg and Osgood [122] previously showed that a nonlinear stress-strain curve could be

defined by

ε =
σ

E
+K

( σ
E

)n
(3.1)
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Table 3.1: Ramberg-Osgood constants for stress-strain curve [53].

Constant Value

αe 52.287× 10−12

βe −1.218× 10−6(n+1)

n 1.818

where K and n are constants. Their proposed relationship incorporated both elastic and plas-

tic strain terms to produce a single stress-strain curve. Krishnamurthy [53] presented a modified

Ramberg-Osgood expression to quantify the stress-strain behavior of Terfenol-D:

εe = αeσ + βeσ
n (3.2)

where αe, βe, and n are constants. The constants presented in [53] for Eq. (3.2) are listed in Tab.

3.1. Though not explicitly stated, the following relationships were drawn between Eq. (3.1) and

(3.2):

αe =
1

E
(3.3)

βe =
K

En
(3.4)

The proposed Ramberg-Osgood expression for the stress-strain relationship was then expressible

with the constants substituted as:

εe =
(
52.287× 10−12

)
σ +

(
−1.218× 10−6(1.818+1)

)
σ1.818 (3.5)

=
(
52.287× 10−12

)
σ +

(
−1.218× 10−16.908

)
σ1.818 (3.6)

3.2.2 Compliance Term

The compliance term was defined as the inverse of the slope of the stress-strain curve:

s =
dεe
dσ

(3.7)
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Figure 3.2: Extracted data from a strain-magnetic field intensity plot for Terfenol-D plot given by
Butler [120] for seven prestress levels.

For the model proposed in [53], the compliance term was symbolically expressed as

s =
d

dσ
(αeσ + βeσ

n) (3.8)

= αe + βenσ
n−1 (3.9)

where the constants are listed in Tab. 3.1. The compliance term was assumed to be nonlinear because

of its derivation utilizing the nonlinear stress-strain relationship given by Eq. (3.2).

3.2.3 Strain-Magnetic Field Intensity Relationship

Using the GRABIT function [121] in MATLAB, the strain-magnetic field intensity plot

presented by Butler [120] was recreated in Fig. 3.2. The strain-magnetic field intensity relationship

was experimentally dependent on the prestress, σ0, applied to the Terfenol-D material. This prestress

can develop during fabrication due to thermal contraction or applied external loads [17].
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Table 3.2: αij constants found in [53] for respective prestress levels.

σj [MPa] α0j α1j α2j α3j α4j

6.9 -50.2987 3.7301 -4.7000e-03 2.8406e-06 -6.4174e-10

9.6 -81.3171 3.2017 -2.3000e-03 4.0316e-07 1.1572e-10

12.4 -58.7017 1.9530 9.7200e-04 -2.4375e-06 9.0950e-10

17.9 -2.1391 -0.0931 5.1000e-03 -5.2425e-06 1.5458e-09

24.1 22.0131 -0.5268 3.6000e-03 -2.5378e-06 4.9722e-10

38.0 -0.4968 0.2066 -3.7006e-04 1.3335e-06 -5.7574e-10

51.7 0.1733 0.0743 3.4900e-05 2.1599e-07 -4.4299e-11

3.2.3.1 Proposed Quartic Polynomial Relationship

Krishnamurthy et al. [53] proposed a fourth degree polynomial to quantify and express the

nonlinear experimental data given in Fig. 3.2. The relationship correlated the intensity of an applied

magnetic field, H, with the strain induced by the magnetic field, εH :

εH = α0 + α1H + α2H
2 + α3H

3 + α4H
4 = α0 +

4∑
i=1

αiH
i =

4∑
i=0

αiH
i (3.10)

where the αi values in Tab. 3.2 were determined for each of the seven experimental prestress values.

3.2.4 Piezomagnetic Constant

The piezomagnetic constant was defined in [53] as the slope of the strain-magnetic field

intensity curve:

dc =
dεH
dH

(3.11)

For the quartic polynomial relationship given in Eq. (3.10), the piezomagnetic coefficient was sym-

bolically expressible as

dc =
d

dH

(
α0 + α1H + α2H

2 + α3H
3 + α4H

4
)

(3.12)

= α1 + 2α2H + 3α3H
2 + 4α4H

3 (3.13)
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where the αi constants in Tab. 3.2 for the prestress values still applied. An alternative to Eq. (3.13)

was given as

dc = a1 + a2H + a3H
2 + a4H

3 (3.14)

where a1 = α1, a2 = 2α2, a3 = 3α3, and a4 = 4α4.

3.2.5 Permeability

Butler [120] presented experimental data for the nonlinear relationship of the magnetic flux,

B, and magnetic field intensity, H, as a function of the prestress on the Terfenol-D. The magnetic

permeability was defined as

µ =
dB

dH
(3.15)

which is the slope of the magnetic flux-magnetic field intensity curve. Krishnamurthy et al. [53]

suggested that a linear region existed for an interval around H = 0 Oersted. Outside that interval,

the relationship was no longer linear as the slope was not constant. A piecewise function was

proposed to model the magnetic flux-magnetic field intensity curves:

B =


b0H, −H1 ≤ H ≤ H1

b0H1 + b1 (H −H1) , H > H1

−b0|H|+ b1 (H − |H1|) , H < −H1

(3.16)

Likewise, a piecewise function was defined to model the permeability:

µ =


b0, −H1 ≤ H ≤ H1

b1, H > H1, H < −H1

(3.17)

The constants for the piecewise function were dependent on the prestress, as shown in Tab. 3.3.
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Table 3.3: Constants for the piecewise permeability relationship given in [53].

σj [MPa] b0 [Gauss/Oersted] b1 [Gauss/Oersted] H1 [Oersted]

0.00 60.00 3.06 0.00

3.45 38.44 3.18 197.00

10.35 14.88 3.26 459.00

13.80 12.42 3.35 656.00

20.70 8.77 4.30 767.00

3.3 Previously Proposed Model

Krishnamurthy et al. [53] presented a three-step process for modeling the sensing capability

of embedded magnetostrictive material in a composite laminate. The proposed model assumed the

laminate to consist of unidirectional, fiber-reinforced laminae, and the magnetostrictive lamina was

bounded between two of the fiber-reinforced laminae. Simplification of the fiber-reinforced laminae

was made through an orthotropic assumption. The magnetostrictive lamina discussed consisted of

Terfenol-D particles embedded in a resin matrix host; however, the influence of the resin system was

ignored or considered negligible because the bulk properties of Terfenol-D represented the properties

of the sensing lamina. The only source of stress applied to the laminate in [53] came from an actuation

coil with a current in the form

I = I0 sin Ωt (3.18)

The associated magnetic field intensity for a coil was found using principles of magnetism:

H = H0 sin Ωt (3.19)

No mechanical loads were considered to focus on the effects of the actuating coil in the sensing

process. The influence of axial and bending stresses on the performance of the sensing lamina was

examined. The effect of axial stress was determined greater than that of bending stress due to the

induced elongation constraint by the host matrix on the Terfenol-D particles. The magnitude of

the bending stress was related to the symmetry of the laminate. If the magnetostrictive lamina was

embedded along the midplane of a symmetric laminate, the bending stress was negligible as sym-

metric laminates display negligible bending according to the classical lamination theory. Bending

moments, however, are necessary to consider for a laminate with an asymmetrically located magne-
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tostrictive lamina. The problem was deemed nonlinear because of the nonlinearity associated with

the Terfenol-D particles.

Krishnamurthy et al. formulated their analytical model from the principles of the Euler-

Bernoulli theory. The elastic response of a beam was first applied to the composite laminate,

and additional terms were introduced to expand the theory to incorporate the response of the

magnetostrictive material. The following derivation was presented in [53]. The Euler-Bernoulli

theory defines a linear elastic displacement field of

u = U (x)− yV (x),x (3.20)

v = V (x) (3.21)

w = 0 (3.22)

The only non-zero strain term considered in the derivation in [53], εx, was given as

εx = ε− yγ =
dU

dx
− y d

2V

dx2
(3.23)

The stress in the x-direction is found according to the elasticity concept of Hooke’s law as

σx = Eiεx (3.24)

where the subscript i denoted the layer of the lamina. The x-direction corresponded to the longi-

tudinal direction of the fibers, i.e., the axial direction of the fibers. For the magnetostrictive layer,

the elastic modulus was related to the compliance term such that when Ei = Em, the elastic mod-

ulus equaled the inverse of the derived compliance term, Em = 1/s. Unlike the elastic modulus

of the fiber-reinforced laminae, the elastic modulus of the magnetostrictive lamina depends on the

magnetic field intensity applied to the particulate composite during fabrication [123]. The force and

moment resultants of the laminate were found by integrating the stress component

N =

∫
σxdy (3.25)

M =

∫
σxdy (3.26)
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which was the same methodology given in Section 2.3.4 for the classical lamination theory. In matrix

form, the resultants were related to the strain and curvature as

N
M

 =

Ac Bc

Bc Dc


ε
κ

 (3.27)

where the Ac, Bc, and Dc were elastic terms defined as

(Ac, Bc, Dc) =

n∑
i=1

∫ yi+1

yi

Ei
(
1, y, y2

)
dy (3.28)

Note, this formulation of the ABD matrix terms differed from that given in the CLT by Eqs. (2.83)

– (2.85).

3.3.1 Stress due to Force in x-axis

For a symmetric laminate, the number of plies above and below the midplane is equal. The

magnetostrictive sensing lamina must be embedded along the midplane of a laminate if seeking to

preserve symmetry. Three force resultants existed in the laminate illustrated in Fig. 3.3 due to the

applied magnetic field. Unconstrained, the magnetostrictive lamina would ideally expand under the

externally applied magnetic field. However, the surrounding laminae (regions 1 and 2) constrained

the magnetostrictive lamina and constricted any deformation caused by magnetostriction. The host

matrix material would further constrain the magnetostrictive particles, but [53] did not consider this

effect.

The compressive force resultant induced in the magnetostrictive layer equaled

Nm = σhm (3.29)

whereas the tensile force resultants in the surrounding regions equaled

N1 = A1ε, A1 =

p1∑
i=1

∫ yi+1

yi

Eidy (3.30)

N2 = A2ε, A2 =

p2∑
i=1

∫ yi+1

yi

Eidy (3.31)
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Figure 3.3: Force and moment resultants for a asymmetric composite laminate with an embedded
magnetostrictive lamina. [53]

Static equilibrium along the x-direction required

Nm = N1 +N2 (3.32)

Equation (3.32) mathematically stated that the surrounding laminae constrained the magnetostric-

tive material since the force resultants had to equal to ensure no dynamic effects were present.

Substituting the force resultants of the surrounding regions, Eqs. (3.30) and (3.31), into the equa-

tion of equilibrium, Eq. (3.32), yielded the overall strain of the laminate in terms of the force resultant

for the magnetostrictive lamina

ε =
Nm

A1 +A2
(3.33)

The overall strain ε was equal for all the laminae because perfect bonding between layers was

assumed; thus, the strain in the magnetostrictive material equaled the strain in the surrounding

regions 1 and 2. The strain in the magnetostrictive layer was determined through the integration of

the nonlinear, differential form of Eq. (2.99):

dε = dsHσ + dcdH (3.34)∫ ε

0

dε =

∫ σ

0

sdσ +

∫ H

0

dcdH (3.35)
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Eq. (3.35) was rewritten in terms of individual strain terms as

ε = εe + εH (3.36)

where εe was the elastic strain determined from the stress-strain curve, and εH was the strain

relative to the applied magnetic field intensity. Both of these terms required the consideration of

external conditions applied to the lamina during fabrication. Substituting the formulations proposed

by [53] for the strain terms, Eqs. (3.2) and (3.10), the strain in the magnetostrictive material was

symbolically represented by

ε = (αeσ + βeσ
n) +

4∑
i=0

αiH
i (3.37)

Note that the lower limit of summation in Eq. (3.37) differed from that in [53] which was set to i = 1.

Combining Eq. (3.33) with (3.37) resulted in an expression relating the total strain of the laminate

(equal to that of the magnetostrictive lamina) to the force resultant of the magnetostrictive lamina

and the elastic properties of regions 1 and 2:

Nm
A1 +A2

= (αeσ + βeσ
n) +

4∑
i=0

αiH
i (3.38)

The induced stress in the magnetostrictive material was related to the force resultant for the mag-

netostrictive lamina by Eq. (3.29). The two nonlinear strain terms were related to the stress in the

magnetostrictive material by substituting Eq. (3.29) into (3.38):

σhm
A1 +A2

− (αeσ + βeσ
n) =

4∑
i=0

αi (σ)Hi (3.39)

Krishnamurthy et al. [53] suggested that an iterative scheme be used to solve Eq. (3.39) for the

induced stress in the magnetostrictive material because of the nonlinear effects involved with the

material properties of the magnetostrictive material. The iterative expression to find the induced

stress for a given magnetic field intensity H was given as

σj+1hm
A1 +A2

−
(
αeσj+1 + βeσ

n
j+1

)
=

4∑
i=0

αi (σj)H
i (3.40)
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3.3.2 The Effect of the Induced Bending Moment

When the magnetostrictive layer is located asymmetrically, a moment, M , is induced under

loading and should be considered to capture the behavior of the laminate fully. The equation of

equilibrium along the x-direction for this situation per Fig. 3.3 was

M = N1a+N2c−Nmb (3.41)

where a, b, and c were the distances from the top of the laminate to the neutral axes of the respective

regions. Per the AcBcDc matrix relationship, Eq. (3.27), the moment resultant and curvature were

related by

γ =
M −Bcε

Dc
(3.42)

The force resultant matrix expression was adjusted to account for bending,

Nm = A′ε′ +Bcγ (3.43)

where ε′ was an axial strain term that accounted for bending, and A′ = A1 + A2 + Emhm with

Em = 1/s. The elastic modulus of the magnetostrictive material Em, though nonlinear, was assumed

to be linear in consideration of the bending effects because the magnitude of the effect of the moment

was believed to be small compared to the effect of the axial stress. Equation (3.43) was rewritten

in the form of Eq. (3.33):

ε′ =
Nm −Bcγ

A′
(3.44)

Substituting Eqs. (3.37) and (3.29) into (3.44) yielded an expression similar to Eq. (3.39) that

included the effect of the moment:

σhm −Bcγ
A′

− (αeσ + βeσ
n) =

4∑
i=0

αi (σ)Hi (3.45)

The stress was iteratively solved for a given magnetic field intensity H by

σj+1hm −Bcγ
A′

−
(
αeσj+1 + βeσ

n
j+1

)
=

4∑
i=0

αi (σj)H
i (3.46)
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The differences in Eqs. (3.46) and (3.40) are the inclusion of the coupling stiffness coefficient Bc,

midplane curvature κ, and a modified extensional stiffness coefficient A′. While the curvature of the

laminate induced stress on the magnetostrictive material, this effect was hypothesized as small in

magnitude since the calculation of the Bc term involved squaring the thickness of the laminae.

3.3.3 Induced Sensing Voltage

The stresses calculated using Eqs. (3.40) and (3.46) was assumed to be instantaneous for a

time-dependent magnetic field given by Eq. (3.19). Inertial effects from the magnetic field caused by

time dependency were assumed negligible because of the laminate structure. The magnetostrictive

lamina was considered “very thin,” and the strength of the surrounding regions, i.e., the CFRP

laminae, was much greater than that of the Terfenol-D bulk material [53]. Therefore, no movement

was assumed to occur for the magnetostrictive lamina as it was constrained in place sandwiched

between the other two regions (regions 1 and 2). The differential form of Eq. (2.100),

dB = dcdσ + µdH (3.47)

related the incremental change in stress and magnetic field intensity to the incremental change of the

magnetic flux. Integrating this expression using the parameters obtained from the iterative stress

scheme yielded the total magnetic flux density:

B =

∫ σ

0

dcdσ +

∫ H

0

µdH (3.48)

=

[∫ σ

0

a1 (σ) dσ +H

∫ σ

0

a2 (σ) dσ +H2

∫ σ

0

a3 (σ) dσ +H3

∫ σ

0

a4 (σ) dσ

]
+ b0 (σ)H + tr [b0 (σ) (H1 −H) + b1 (σ) (H −H1)] (3.49)

where tr is the tracer function defined by

tr =


0, H < H1

1, H > H1

The ai terms in Eq. (3.49) were defined in Eq. (3.14). All of the constants included in the magnetic

flux expression were dependent on the prestress experienced by the material. The integration of the
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ai terms was found using either an analytical or numerical approach, but no further discussion was

made regarding this integration in [53]. The induced voltage in the sensing coil was determined by

v (t) = −nAdB
dt

(3.50)

where n is the number of turns in the sensing coil, and A is the effective magnetic flux flow cross-

sectional area. The magnetic flux found in Eq. (3.49) was substituted into Eq. (3.50). The derivative

of B was feasible assuming a time-dependent magnetic field.

3.4 Examination of the Nonlinear Constitutive Relationships

3.4.1 Stress-Strain Relationship

The Ramberg-Osgood model proposed in Eq. (3.6) was plotted against the experimental

data presented by Butler [120]. The model was only applicable for the case of a bias magnetic

field intensity of 0 kA/m. The proposed Ramberg-Osgood approximation shown in Fig. 3.4 closely

followed the experimental data for 0 ≤ ε ≤ 0.7e−3 and then began to diverge from the experimental

data above a strain of 0.7e− 3. The results of the Krishnamurthy Ramberg-Osgood model visually

appeared to differ from that presented in [53]. The plot found in the literature appeared to have

a smaller difference between the proposed Ramberg-Osgood model and the presented experimental

data in the region ε > 700e−6. To investigate this discrepancy, the experimental data for the stress-

strain relationship presented in [53] was extracted using the MATLAB GRABIT function [121] for

comparison against the data presented by Butler [120]. Visually, the difference between the extracted

experimental data from [120] and [53] was negligible until a strain of 0.8e− 3 in which case the [53]

set fell below that of the [120] as illustrated in Fig. 3.4. No discussion of additional stress-strain

experiments was included in [53]; therefore, the difference in the [53] values was associated with

the extraction of the experimental data curve from its original source in [120]. The error statistics

in Tab. 3.4 illustrate the difference in the experimental data given in literature by [120] and [53]

from the examination of their differences from the proposed Ramberg-Osgood model. The proposed

Ramberg-Osgood model followed closer to the experimental data presented by [53] than that by [120]
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Figure 3.4: The Ramberg-Osgood model proposed in [53] plotted against the experimental data
given by [120].

Table 3.4: Error statistics for the fit of the proposed Ramberg-Osgood model against experimental
data found in literature.

Experimental Dataset Max Error Mean Squared Error Root Mean Squared Error

Butler [120] 6.082e-05 1.282e-09 3.581e-05

Krishnamurthy [53] 1.088e-03 5.038e-07 7.098e-04

based on the mean squared error (MSE) calculated as [124]:

MSE (y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2
(3.51)

At values of strain less than approximately 0.7e− 3, the proposed Ramberg-Osgood model followed

closer to the Butler data. Above this point, when the two experimental datasets began the noticeably

differ, the Ramberg-Osgood model fell closer to the Krishnamurthy et al. [53] data.

When the range of stress was increased from 0 ≤ σ ≤ 40 MPa to 0 ≤ σ ≤ 100 MPa, Fig.

3.5 shows that the model given by [53] diverged from the experimental data. The Krishnamurthy

Ramberg-Osgood model appeared parabolic in behavior under the extended stress domain. This
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Figure 3.5: When the stress was increased above that given consideration in [53], the proposed
Ramberg-Osgood model diverged from the experimental data given by [120].

behavior was attributed to the value of n, the exponent of the power term in Eq. (3.2). Krishna-

murthy et al. [53] proposed a value of n = 1.818, indicating that the proposed Ramberg-Osgood

model includes an almost quadratic term. The divergence of the proposed model raised applicability

concerns as [53] only included a subset range of stresses, 0 ≤ σ ≤ 40 MPa. Assuming these constants

to be true beyond σ = 40 MPa would lead to a significant deviation in results based on the behavior

presented in Fig. 3.5.

The collapse of the proposed Ramberg-Osgood model for the stress range of 0−100 MPa led

to an investigation to develop a new model to represent the stress-strain relationship. Furthermore,

a generalized model was desired for application to all the stress-strain curves presented in [120].

The stress-strain curves in Fig. 3.1 are nonlinear curves with constantly changing curvatures. A

Fourier series was selected to model the constant undulations in the curves because it combines

trigonometric functions. The general form of a Fourier series is

f (x) =
1

2
a0 +

∞∑
n=1

an cos (nx) +

∞∑
n=1

an sin (nx) (3.52)
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The Fourier series expression investigated in this work differed from Eq. (3.52) by combining the a0

coefficient with the one-half factor:

f (x) = a0 +

p∑
n=1

an cos (nωx) +

p∑
n=1

an sin (nωx) (3.53)

where p is the number of terms included in the series. Additionally, the period of the trigonometric

functions, ω, was determined in the investigation. A generalized three-term Fourier series was fit to

the experimental data to yield a model for the stress-strain relationship:

σ = a0 +

3∑
n=1

an cos (nωε) +

3∑
n=1

an sin (nωε) (3.54)

= a0 + a1 cos (ωε) + b1 sin (ωε) + a2 cos (2ωε)

+ b2 sin (2ωε) + a3 cos (3ωε) + b3 sin (3ωε) (3.55)

Using the curve fitting function in the scipy package [125] for Python 3.8.5, a script

(see Appendix D.1.1) was written to determine the coefficients listed in Eq. (3.55). The extracted

experimental data from the stress-strain plot in [120] was inputted into the function to optimize the

parameters of the Fourier series to fit the experimental data. The values obtained using the Python

script for all five bias magnetic field intensities given by [120] are listed in Tab. 3.5. The values for

the constants are only applicable when the stress is in units of Pascals and the strain in units of

m/m; therefore, the extracted values in Fig. 3.1 must be multiplied by appropriate magnitudes to

obtain a usable form. Figure 3.6 shows the three-term Fourier series functions plotted as solid lines

compared against the experimental data plotted using circular markers.

In terms of error statistics, the three-term Fourier series functions were proficient in fitting

the nonlinear curves of the extracted data. The coefficient of determination (R2) for all five bias

magnetic field intensity curves, Tab. 3.6, were equal to 1.000. Based on this parameter, the Fourier

series model was deemed to have an exceptional goodness of fit. The Krishnamurthy Ramberg-

Osgood model had a coefficient of determination of 0.987 for the stress interval of 0 − 40 MPa. A

parametric study was conducted by changing the number of terms in the Fourier series. The error

statistics significantly decreased when changing the number of terms from one to three. However,

the differences in statistics for the three- and four-term series were much less, suggesting the error

values to be converging. The three-term series was found to best capture the experimental data
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Table 3.5: Constants for a three-term Fourier series modeling the stress-strain relationship of
Terfenol-D.

H0 [kA/m] a0 a1 a2 a3

0 6.014e+07 -7.667e+07 1.307e+07 3.428e+06

30 4.516e+06 -4.995e+07 5.479e+07 -9.352e+06

60 -7.478e+10 1.063e+11 -3.580e+10 4.248e+09

90 -1.394e+10 -3.549e+09 2.471e+10 -7.222e+09

120 -2.539e+10 3.543e+10 -1.118e+10 1.147e+09

H0 [kA/m] b1 b2 b3 ω

0 3.938e+06 -1.537e+07 3.498e+06 -1.359e+03

30 -8.170e+07 1.264e+07 5.558e+06 -8.744e+02

60 3.790e+10 -2.880e+10 6.634e+09 2.771e+02

90 6.221e+10 3.025e+09 -2.233e+10 4.564e+01

120 1.476e+10 -1.094e+10 2.451e+09 3.149e+02

Figure 3.6: The proposed three-term Fourier series fitted the experimental data given by [120]. The
experimental data is plotted using the circular markers, and the color of the marker corresponds to
the respective bias magnetic field intensity.
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Table 3.6: Error statistics for the fit of the proposed three-term Fourier series model against exper-
imental data found in [120].

H0 [kA/m] Max Error MSE RMSE R2

0 2.813e-01 1.117e-02 1.057e-01 1.000

30 2.236e-01 4.737e-03 6.883e-02 1.000

60 1.702e-01 4.077e-03 6.386e-02 1.000

90 2.982e-01 1.295e-02 1.138e-01 1.000

120 2.406e-01 4.568e-03 6.759e-02 1.000

as the inclusion of any additional terms showed only a marginal decrease in error. Increasing the

number of terms beyond three would introduce additional complexity and computational time to

a model while offering marginal, if any, advantages. An increased number of terms would lead to

overfitting of the experimental data.

While the Fourier series captured the shape of the experimental data, there was concern

about whether this type of function was appropriate for modeling this relationship. Fourier series

are commonly employed to reduce noise in signals or characterize oscillating curves, but the stress-

strain curves did not demonstrate any oscillatory behavior. When expanding the domain (or range)

beyond that given by the experimental data, the sinusoidal nature of the model was visible as the

Fourier series began to oscillate. The proposed three-term Fourier series model was determined to

be valid for modeling the nonlinear stress-strain behavior for the domain given by the experimental

data in [120]. Unlike Krishnamurthy’s Ramberg-Osgood model, the general Fourier series could

be applied to all five bias magnetic field intensity values, thus, improving the characterization of

Terfenol-D.

A model in the same formulation presented in [53] was also defined for the case of a stress-

controlled experiment:

εe = a0 +

3∑
n=1

an cos (nωσ) +

3∑
n=1

an sin (nωσ) (3.56)

= a0 + a1 cos (ωσ) + b1 sin (ωσ) + a2 cos (2ωσ)

+ b2 sin (2ωσ) + a3 cos (3ωσ) + b3 sin (3ωσ) (3.57)

A model capable of estimating the strain in terms of the stress was implemented in the model

presented in Section 3.3. A three-term, stress-controlled Fourier series relationship was derived
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Figure 3.7: The coefficients for a stress-controlled Fourier series were determined to model the
experimental data and resemble the formulation presented in [53].

to replace the previously proposed Ramberg-Osgood model. The constants for the stress-controlled

model are listed in Tab. 3.7. The fitted Fourier series shown in both Figs. 3.7 and 3.8 were determined

using the extracted experimental data. In Fig. 3.7, the three-term Fourier series was plotted with

the experimental data as inputs. Figure 3.8 illustrates a shortcoming of the Fourier model: the

oscillatory nature. In this plot, all of the Fourier series functions were plotted with an input stress

range of 0 − 100 MPa. Above the maximum stress observed for each bias magnetic field intensity

curve from the experimental data, three of the curves began oscillating in this increased stress range.

3.4.2 Compliance Term

The compliance term was calculated per the relationship defined in Eq. (3.7). Using the

NumPy package [126] in Python, the difference between adjacent points was calculated as

∆(i) = x(i+ 1)− x(i) (3.58)

The discrete differences in the stress and strain values were calculated for the experimental data
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Figure 3.8: The stress-controlled three-term Fourier series was plotted with a set stress range of
0 − 100 MPa. Three of the curves displayed the sinusoidal behavior expected from the sum of
trigonometric functions within this domain.

Table 3.7: Constants for a three-term stress-controlled Fourier series modeling the stress-strain rela-
tionship of Terfenol-D. The magnitudes of the coefficients differ for the stress-controlled formulation
than those of the strain-controlled.

H0 [kA/m] a0 a1 a2 a3

0 -3.452e-04 -7.911e-04 1.110e-03 1.827e-05

30 6.298e-05 -5.030e-04 6.784e-04 -2.355e-04

60 2.253e-03 -1.721e-03 -8.233e-04 2.936e-04

90 9.068e-04 -9.994e-04 1.244e-04 -3.043e-05

120 8.345e-04 -8.739e-04 -8.843e-06 4.839e-05

H0 [kA/m] b1 b2 b3 ω

0 2.597e-03 1.838e-04 -2.232e-04 2.484e-08

30 1.978e-03 -4.279e-04 -1.999e-04 5.459e-08

60 -1.744e-03 6.585e-04 1.825e-04 5.186e-08

90 8.264e-05 1.234e-05 3.604e-05 4.946e-08

120 -3.521e-04 2.919e-04 -1.442e-05 5.745e-08
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Figure 3.9: The compliance values for the H0 = 0 kA/m experimental data and the proposed
functions to model the experimental stress-strain behavior.

Figure 3.10: The compliance values for the proposed Fourier series modeling the stress-strain be-
havior of Terfenol-D. The experimental data from [120] is plotted using circular markers.
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plotted in Fig. 3.4 in addition to the proposed three-term Fourier series within the Python script.

The compliance term was then found by dividing the discrete difference of the strain by the discrete

difference of the stress. The derivative of the Krishnamurthy Ramberg-Osgood function was taken

such that the compliance term was calculated by Eq. (3.9). Figure 3.9 shows that the experimental

compliance values were comparable except for stress values less than 5 MPa. The proposed Ramberg-

Osgood model resembled a linear function. Based on Eq. (3.9), the y-intercept of the compliance

term curve using the proposed Ramberg-Osgood function is equal to αe, which correlates to 1/E.

The exponent of Eq. (3.9) equaled 0.818; therefore, the curve was not truly linear and displayed

some curvature. The Fourier series resembled the Butler [120] experimental data the closest of the

presented curves/data. Figure 3.10 illustrates the relationship between the experimental [120] and

Fourier series compliance terms. The compliance terms for the Fourier series were only calculated

to the maximum stress values for the respective bias magnetic field intensities shown in Fig. 3.6 to

avoid improper values due to the oscillatory nature of the Fourier series. The Fourier series tended

to underestimate the peak values of the compliance terms for the respective bias magnetic field

intensities, especially for the cases of H0 = 30 and H0 = 90 kA/m.

3.4.3 Strain-Magnetic Field Intensity Relationship

The strain-magnetic field intensity model, Eq. (3.10), was plotted for completeness of the

investigation of the Krishnamurthy et al. [53] analytical model. Using the magnetic field intensity

domain given by [120] of 0 ≤ H ≤ 1500 Oersted, the strain was calculated, and the curves were

plotted in Fig. 3.11. From initial observation, the seven curves appeared to have a similar shape as

the experimental data in Fig. 3.2 for values of H < 1000 Oersted. Above this value, the polynomial

curves appeared to diverge from the shape of the experimental data. When the experimental data

and the Krishnamurthy polynomials were plotted together in Fig. 3.12, an error was observed. The

magnitude of the calculated strain was six magnitudes greater than the experimental data. The

cause of this error was not mentioned in [53], but it was believed that this error occurred due to

improper data used in the curve fitting process. Neglecting the adjustment of the strain values in

Fig. 3.2 or multiplying by the incorrect magnitude would significantly alter the relationships that

deviate from the experimental data without correction.

A new quartic polynomial relationship was defined to accurately reflect the strain-magnetic

field intensity curves in the correct magnitude illustrated in Fig. 3.13. The same formulation pro-
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Figure 3.11: The fourth-degree polynomial representation of the strain-magnetic field curves by [53]
were found to be orders of magnitude off from the experimental data.

Figure 3.12: The quartic polynomial functions [53] deviated from the experimental data given by
[120]. The experimental data is given by the circular markers. Note that the magnitudes of the
strain values are inconsistent and should not be compared without proper adjustment of values.
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Figure 3.13: The fourth-degree polynomial strain-magnetic field intensity relationship with improved
constants defined in this work.

posed in [53] was employed to improve its fit by redefining the constants. Using the curve fitting

function [125] in Python 3.8.5, seven sets of coefficients were determined for the polynomial (one

set for each prestress value). Table 3.8 lists the values of the new constants. The new constants

displayed an improved fit to the experimental data as the maximum difference between the exper-

imental data and the quartic curves displayed in Tab. 3.9 was on the magnitude of 10−5 for six of

the seven curves. Considering all the statistical parameters examined, the most significant error

occurred for the 9.6 MPa prestress curve. As the magnetic field intensity approached the maximum

of the given domain, this curve began to diverge from the experimental data. Deviation in the

prestress curve of 24.1 MPa was also observed about H = 0 Oersted as the curve for this function

did not converge to the origin.

Because a Fourier series was shown to be a viable model for the nonlinear stress-strain

curves, multi-term Fourier series models were investigated for modeling the strain-magnetic field

intensity behavior of Terfenol-D. A three-term, Fig. 3.14, and five-term, Fig. 3.15, Fourier series were

implemented using the curve fitting function [125] in Python. The three-term series exhibited

several undulations at upper values in the domain, especially for the prestress curves of 6.9 and 9.6
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Table 3.8: Constants for a fourth-degree polynomial series modeling the strain-magnetic field inten-
sity relationship of Terfenol-D.

σj [MPa] a0 a1 a2 a3 a4

6.9 -7.627e-05 3.743e-06 -4.677e-09 2.766e-12 -6.202e-16

9.6 -1.249e-04 3.341e-06 -2.454e-09 3.884e-13 1.434e-16

12.4 -8.829e-05 2.081e-06 8.286e-10 -2.422e-12 9.359e-16

17.9 1.319e-05 -1.484e-07 5.164e-09 -5.291e-12 1.567e-15

24.1 7.460e-05 -8.414e-07 4.226e-09 -3.029e-12 6.363e-16

38.0 9.900e-06 1.099e-07 -1.179e-11 9.215e-13 -4.345e-16

51.7 -6.904e-06 1.410e-07 -1.477e-10 3.974e-13 -1.019e-16

Table 3.9: Error statistics for the fit of the improved fourth-degree polynomial model against exper-
imental data found in literature.

σj [MPa] Max Error MSE RMSE R2

6.9 4.946e-05 1.965e-10 1.402e-05 0.999

9.6 9.407e-05 6.665e-10 2.582e-05 0.997

12.4 6.631e-05 5.630e-10 2.373e-05 0.997

17.9 3.018e-05 9.024e-11 9.499e-06 1.000

24.1 4.608e-05 1.569e-10 1.252e-05 0.999

38.0 1.520e-05 3.319e-11 5.761e-06 1.000

51.7 4.343e-06 3.592e-12 1.895e-06 1.000
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Figure 3.14: The three-term Fourier series modeling the experimental strain-magnetic field data.

MPa at approximately 1200 Oersted. The five-term Fourier series, given as

εH = a0 +

5∑
n=1

an cos (nωH) +

5∑
n=1

an sin (nωH) (3.59)

= a0 + a1 cos (ωH) + b1 sin (ωH) + a2 cos (2ωH) + b2 sin (2ωH) + a3 cos (3ωH)

+ b3 sin (3ωH) + a4 cos (4ωH) + b4 sin (4ωH) + a5 cos (5ωH) + b5 sin (5ωH) (3.60)

eliminated these oddities and resulted in smooth curves to model the experimental data with the

constants listed in Tab. 3.10. The error values in Tab. 3.11 improved over those for the fourth-degree

polynomial by an average of an order of magnitude. As with the stress-strain curves, the Fourier

series depended on the experimental data domain because of the Fourier series’s oscillatory nature.

Beyond the presented upper limit of the magnetic field intensity domain, the Fourier series models

diverged from expected behavior by oscillating like trigonometric functions. Their use beyond the

given maximum magnetic field intensity was discouraged without further data to define the region.
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Figure 3.15: The five-term Fourier series modeling the experimental strain-magnetic field data.

Table 3.10: Constants for a five-term Fourier series modeling the strain-magnetic field intensity
relationship of Terfenol-D.

H0 [Oe] a0 a1 a2 a3 a4 a5

6.9 7.661e-04 -5.638e-04 -1.605e-04 -2.392e-05 -1.874e-05 -8.350e-06

9.6 -7.461e+00 8.915e+00 4.200e-02 -2.202e+00 7.644e-01 -5.959e-02

12.4 -6.199e+00 7.312e+00 1.855e-01 -1.878e+00 6.251e-01 -4.527e-02

17.9 6.199e-04 -7.950e-04 1.393e-04 8.646e-05 -4.433e-05 -9.222e-06

24.1 2.977e-04 -8.025e-04 4.385e-04 1.566e-04 -8.730e-05 -1.707e-05

38.0 1.938e-03 -1.196e-03 -1.358e-03 4.784e-04 1.590e-04 -3.061e-05

51.7 8.732e-01 -1.027e+00 -3.327e-02 2.710e-01 -9.109e-02 6.923e-03

H0 [Oe] b1 b2 b3 b4 b5 ω

6.9 1.437e-04 1.812e-04 5.785e-05 9.246e-06 6.583e-06 2.558e-03

9.6 8.952e+00 -7.572e+00 2.148e+00 1.902e-02 -6.523e-02 9.871e-04

12.4 7.522e+00 -6.270e+00 1.706e+00 4.486e-02 -5.557e-02 8.909e-04

17.9 3.943e-04 1.487e-04 -1.417e-04 -4.039e-05 1.272e-05 2.307e-03

24.1 6.470e-04 1.950e-04 -2.408e-04 -5.713e-05 1.938e-05 2.224e-03

38.0 -2.367e-03 7.513e-04 5.828e-04 -1.619e-04 -2.269e-05 1.756e-03

51.7 -1.066e+00 8.894e-01 -2.429e-01 -6.336e-03 8.141e-03 1.071e-03
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Table 3.11: Error statistics for the fit of the proposed five-term Fourier series model against experi-
mental data found in literature.

H0 [Oe] Max Error MSE RMSE R2

6.9 8.019e-06 6.752e-12 2.598e-06 1.000

9.6 5.324e-06 4.442e-12 2.108e-06 1.000

12.4 4.525e-06 1.754e-12 1.325e-06 1.000

17.9 3.442e-06 2.384e-12 1.544e-06 1.000

24.1 3.414e-06 2.365e-12 1.538e-06 1.000

38.0 2.839e-06 1.051e-12 1.025e-06 1.000

51.7 2.133e-06 5.150e-13 7.176e-07 1.000

3.4.4 Piezomagnetic Coefficient

A method for calculating the piezomagnetic coefficient was given by Eq. (3.11) as the slope of

the strain-magnetic field intensity curve. The approach utilized in Section 3.4.2 to calculate the com-

pliance term was also employed for the piezomagnetic coefficient using discrete differences within a

Python script. The extracted experimental data was compared with the polynomial model proposed

in [53] in Fig. 3.16. The polynomial piezomagnetic coefficient curve proposed in [53] was found to

be a factor of 106 off from the experimental data, so Fig. 3.16 shows the polynomial coefficient curve

multiplied by a factor of 10−6. The primary reason for the inclusion of the Krishnamurthy quartic

polynomial in Fig. 3.16 was to examine the shape of the curve against the experimental data. As

with the compliance term, the Krishnamurthy relationship differed at the lower values of the domain,

i.e., H < 200 Oersted. At magnetic field intensity values above that value, however, the polynomial

function followed the shape of the experimental data until a deviation began at H = 1000 Oersted.

The improved fourth-degree polynomial relationship proposed in this work showed the same behav-

ior as the Krishnamurthy polynomial at the lower end of the domain; however, this model followed

the experimental data closer than the Krishnamurthy polynomial. The polynomial formulation

for the strain-magnetic field intensity curves was deemed insufficient for modeling the relationship

based on the deviations of the piezomagnetic coefficient values. Figure 3.17 exhibits the failure of

the polynomial model to represent the piezomagnetic coefficients at magnetic field intensities below

approximately 400 Oersted for prestress values of 6.9, 9.6, and 12.4 MPa.

As with the compliance term, the Fourier series best fit the experimental data for the

piezomagnetic coefficient as evident in Fig. 3.18. The oscillating nature of the Fourier series was

85



Figure 3.16: The proposed five-term Fourier series was found to resemble the experimental piezo-
magnetic coefficients while the polynomial models diverged at low magnetic field intensities for a
prestress of 6.9 MPa.

noted at the extremes of the domain. Near H = 0 Oersted, the Fourier series diverged from

the expected behavior. Local minima appeared such that the slope of the curve changes sign at

approximately 50 Oersted; the 12.4 MPa prestress curve demonstrates this behavior. Deviations

were also observed at the upper limit of the domain where the slope of the lines (except for prestress

values of 38.0 and 51.7 MPa) began to increase negatively because of the Fourier series’s propensity to

oscillate. A case of overfitting was noticed for the two smallest prestress values around 1200 Oersted.

The curves for the seven prestress values undulated throughout the magnetic field intensity domain

to attempt to fit the experimental data. Further investigation of the number of terms in a Fourier

series could yield coefficients that display a smoother behavior. Increasing the number of terms,

though, can lead to overfitting.
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Figure 3.17: The proposed quartic polynomial fails to model the lower three prestress values at low
magnetic field intensities.

Figure 3.18: The proposed five-term Fourier series was found to resemble the calculated piezomag-
netic coefficients using experimental data.
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3.5 Examination of the Krishnamurthy Model

The iterative stress calculation scheme proposed in [53] (Ssection 3.3) was scripted using the

Python script in Appendix D.1.2 to determine the stress induced in the magnetostrictive material.

The symmetric laminate used in this effort consisted of eight unidirectional CFRP laminae made from

HexPly AS4/3501-6 prepreg material with a single magnetostrictive lamina located at the midplane

of the laminate; therefore, there were four plies of CFRP above and below the magnetostrictive

lamina. Bending effects were concerned negligible by selecting a symmetric laminate. Terfenol-D

was used as the magnetostrictive material, and its bulk properties were employed to remain consistent

with [53]. The thicknesses of both the CFRP and Terfenol-D laminae were equal to 125 micrometers

(0.125 × 10−3 meters). The orientation angles of the laminae were also assumed equal such that

the CFRP laminae were aligned in the same direction. No bias magnetic field was assumed applied

during the laminate fabrication, i.e., H0 = 0 kA/m, so the direction of the Terfenol-D lamina was

irrelevant in this investigation. The incorporation of the bias field direction would be embodied in

the model by manipulating the material properties. No discussion was given to characterizing the

bias field direction. The Terfenol-D lamina was assumed to be aligned with the CFRP fibers such

that its orientation yielded the most significant magnetostriction effect. The laminae were aligned

along the x-direction of the laminate to coincide with the Euler-Bernoulli model derivation, where

the only non-zero strain occurred in the x-direction. An arbitrary, constant magnetic field of 10

Oersted was selected as the only loading source during the analysis. In a realistic experiment, the

magnetic field would be sinusoidal and dependent on time, according to Eq. (3.19). This examination

was concerned with an instantaneous value, so time effects were neglected.

3.5.1 Verbatim Krishnamurthy Model

The first attempt at implementing this model followed the proposed method verbatim to that

in [53]. The A1 and A2 values were calculated according to Eq. (3.28) where only the elastic moduli

were used in the calculation of these elastic terms. The longitudinal elastic modulus, E1, of the

CFRP was employed because the Krishnamurthy model was only concerned with the x-direction,

which coincided with the longitudinal direction of the fibers. Though the Ramberg-Osgood and

quartic relationships were shown to yield inconsistent results compared to experimental data, they

were incorporated into the verbatim implementation of the model for thoroughness. The version of
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Eq. (3.10) used in the verbatim implementation did not include the α0 term as the summation of

the fourth-degree polynomial was presented in [53] to begin with an index of one (i = 1).

The variation in magnitude of the polynomial expression for the strain-magnetic field in-

tensity relationship in [53] was evident in Fig. 3.19. The left-hand side of Eq. (3.40) appeared to be

a flat curve compared to the magnetic field intensity strain, εH . The magnetic field intensity strain

value was found to differ depending on whether the α0 term was included. The effect of the term

was noticeable for stress values below approximately 38 MPa. Convergence of the two solutions

was observed above this stress value. The predicted stress in the magnetostrictive material for the

given conditions briefly converged with and without the α0 term at approximately 18 MPa before

diverging until approximately 38 MPa.

The effect of the applied magnetic field intensity was examined by varying its magnitude.

As the applied magnetic field intensity increased above 10 Oersted, though, the solution convergence

and the nature of the quartic polynomial curves changed. The curves of the fourth-degree polynomial

with and without the α0 were influenced by the increase of the magnetic field intensity because of

the polynomial formulation; the magnetic field intensities were raised to powers of 1, 2, 3, and 4.

The effect of the powered terms dominated the effect of the inclusion of the α0 term. The difference

in the curves of the two variations decreased as the magnetic field intensity was increased until they

appeared to collapse on top of each other. The convergence of a solution, i.e., when the LHS and

RHS curves were equal, disappeared at H = 168 Oersted.

The left-hand side of Eq. (3.40) contained the calculated elastic strains that combined the

geometry of the laminate with the stress-strain relationship of the magnetostrictive material. Figure

3.20 illustrates that the effect of the LHS1 term defined as

LHS1 :=
σhm

A1 +A2
(3.61)

was negligible compared to the discussed stress-strain relationships. The A1 and A2 terms, which

both equaled 69.3 MPa-m, dominated in terms of magnitude the value of the σhm term. The overall

LHS1 term increased linearly as the stress increased. The proposed Ramberg-Osgood relationship

yielded comparable values to the three-term Fourier series until approximately 44 MPa, at which

the slope of the Ramberg-Osgood model changed sign and the estimated strain decreased. This

behavior was previously discussed in Section 3.4.1 to arise due to a curve fitting process using only
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Figure 3.19: The values of the iterative Euler-Bernoulli model proposed in [53] for H0 = 0 kA/m
and H = 10 Oersted converged around at a stress value of 18 MPa.

a subset of the experimental stress. While the proposed Ramberg-Osgood model was presented for

stress values above the suggested 40 MPa limit in Fig. 3.20, the results are not considered above the

limit due to known divergence issues.

3.5.2 Improved Models used with the Krishnamurthy Model

The improved nonlinear constitutive relationships proposed in this work were substituted

for their respective terms in Eq. (3.40). Figure 3.21 illustrates the improvement of the magnitude of

the strain predictions of the new relationships over those from [53]. The improved relationships for

the magnetic field intensity strain (RHS) significantly differed from the sum of elastic strain terms

(LHS). The convergence of the elastic and magnetic field strains occurred only for the case of the

improved fourth-degree polynomial, including the α0 term at approximately 1 MPa. Figure 3.22

shows a more informative view of Fig. 3.21 by decreasing the range of the y-axis. The variation of

the three magnetic field intensity strains was found to be on the magnitude of 10−4 which was an

order of magnitude less than the elastic strain values; hence, little variation was illustrated in Fig.

3.21. Convergence of a solution for the stress was not found for any applied magnetic field greater
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Figure 3.20: The elastic strain calculated from the characterization of the stress-strain curves dom-
inated the left-hand side of the iterative equation.

than 8 Oersted with a bias magnetic field intensity of 0 kA/m.

Several issues were noted with the iterative model proposed in [53]. First, the model utilizes

the nonlinear constitutive relationships for the stress-strain and strain-magnetic field curves. The

elastic strain calculated using the proposed Ramberg-Osgood function would be incorrect above a

stress value of 40 MPa because of its derivation with a subset of the experimental stress range given

by [120]. The strains equated in the iterative scheme are considered to be elastic and magnetic

field intensity strains. Two elastic strains were involved: a stress-strain relationship for Terfenol-D

and a term associating the stress of the Terfenol-D with the elastic properties of the laminae above

and below the magnetostrictive lamina. The stress involved with the stress-strain relationship was

assumed to be continuous for the experimental bias magnetic fields. The magnetic field intensity

strain employed seven defined experimental prestress values. The iterative scheme equated the

continuous stress with the piecewise-defined prestresses. To use a continuous prestress value, [53]

employed a linear interpolation method to determine the coefficients for stress values not equal to the

defined prestress values. The linear interpolation method was employed for both the Krishnamurthy

quartic polynomial and the improved strain-magnetic field relationships proposed in this work.
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Figure 3.21: The improved nonlinear constitutive relationships were found to not converge.

Figure 3.22: The elastic strain calculated from the characterization of the stress-strain curves dom-
inated the left-hand side of the iterative equation.
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The quantification of the laminate’s structure in the iterative model, Eq. (3.28), was incon-

sistent with a similar quantity derived in the classical lamination theory. The Krishnamurthy model

implemented an Ac term calculated using only the elastic modulus. The classical lamination theory

utilizes the transformed reduced stiffness matrix, which is a combination of elastic properties. Using

the transformed reduced stiffness matrix, the A11 term in the ABD matrix, which corresponds

to the Ac term, was calculated for a four-ply, unidirectional CFRP stack of AS4/3501-6 as 203.0

MPa-m; an increase in the value of nearly 222%. Increasing the values of the Ai terms would only

decrease the value of LHS1, further decreasing the likelihood of the solution converging.

3.6 Analytical Modeling Conclusions

The formulation for calculating the stress in a magnetostrictive material caused by an applied

magnetic field proposed in [53] was examined in this work. Several conclusions were observed

through the examination of this scheme: i) unsuitable characterization of nonlinear relationships for

Terfenol-D, ii) an absence of convergence of the analytical model to determine the induced stress,

and iii) limitations of the proposed model in [53]. The previously proposed functions to model

the nonlinear stress-strain and strain-magnetic field intensity relationships of Terfenol-D failed to

accurately quantify the relationships. Fourier series functions were introduced in this work to account

for the nonlinear nature of these two relationships for Terfenol-D. The coefficient of determination

was equal to 1.0 for all of the lines fit using the newly proposed Fourier series.

In terms of the stress-strain relationship, a three-term Fourier series was found to model a

stress domain 60 MPa greater than the Ramberg-Osgood function previously proposed in [53] for the

H0 = 0 kA/m curve. The Fourier series was defined for all five bias magnetic field intensities given

in [120] which were previously undefined. The Fourier series fit for the stress-strain relationship

was found satisfactory with an RMSE on the order of 10−1 or less; it failed to diverge from the

experimental data due to the curve fitting process employed to define the constants. Though a

polynomial function was investigated to model the strain-magnetic field intensity relationship, a

five-term Fourier series was ultimately found to exemplary model the relationship with RMSE values

less than 10−6. Increasing the number of terms in the Fourier series was necessary for the strain-

magnetic field intensity relationship to eliminate slight deviations in the curves from the experimental

data. The examination of derived terms from the stress-strain and strain-magnetic field intensity
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relationships further proved the viability of a Fourier series to quantify these relationships. The

previously proposed formulations to quantify the compliance term and piezomagnetic coefficient

in [53] failed to capture the change in curvature of the experimental data, as seen in Figs. 3.9 and

3.16.

Using a Python script, the model proposed in [53] was examined. The original relation-

ships proposed in [53] were first examined despite knowing the nonlinear relationships included in

the model were inaccurate. The iterative stress scheme converged using the previously proposed,

inaccurate relationships at approximately 18 MPa; the magnitude of the magnetic strain, εH , was

nearly 104 times greater than the elastic strain term, εe. From this result, the previously proposed

formulations from [53] were concluded to have errors. The Fourier series relationships proposed in

this work failed to achieve a viable convergence for an induced stress value using the methodology

suggested in [53]. It was concluded that the investigated formulation contained limitations and in-

adequacies to calculate the induced stress in a magnetostrictive material. The scheme was limited

in application to only account for an applied magnetic field. No externally applied mechanical loads

or prestress values on the magnetostrictive material were included in the formulation of the scheme.

Furthermore, two elastic terms included in the scheme, A1 and A2, to account for the compos-

ite material structure were found to differ by 222% from a comparable value calculated using the

classical lamination theory. Improvements to analytically model an embedded sensing lamina are

necessary to yield the induced stress and subsequently induced sensing voltage for the investigated

NDE method.
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Chapter 4

Characterization of Effective

Material Properties

4.1 Motivation for Characterizing Effective Properties

The previous investigations of the embedded Terfenol-D NDE method utilized the Terfenol-

D sensing lamina in two forms: a particulate composite and a film. Two modeling investigations,

Krishnamurthy et al. [53] and Chen and Anjanappa [127], employed the bulk material properties of

Terfenol-D to reflect the embedded particulate lamina and thick film, respectively. The nonlinear

characterizations proposed by [53] modeled the properties of Terfenol-D in both investigations. The

effects of the composition of the sensing laminate were neglected; i.e., the inclusion of a host material

was not considered.

Effective properties combine the properties of all the constituents in their determination.

While the response of Terfenol-D is nonlinear and dependent on the magnetic and stress state of

the material (Sections 3.2 and 3.4), the response of other constituents may be linear and elastic.

Defining effective properties allows for the inclusion of the composition of the sensing lamina in

determining the elastic response of the overall laminate. Analytical models utilize material properties

to quantify materials and their response to loads. Eliminating a constituent material, e.g., an epoxy

matrix, reduces the resemblance of the model to experimentation. The examination of the effective

properties of a particulate sensing lamina sought to improve the modeling of its elastic behavior.
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These properties may also apply to determining the elastic fields of the laminate.

4.2 Purpose of Effective Properties

Analyzing the behavior of composite materials becomes increasingly complicated as the num-

ber of planes of symmetry increases in addition to their inhomogeneous nature created through the

combination of multiple constituents. A micromechanical approach models a laminate by modeling

the constituent materials at their respective locations. The interfacial effects between constituents

can be incorporated into the model to resemble the behavior of a composite better. A macrome-

chanical approach, such as the classical lamination theory in Section 2.3, considers the composite

material a solid, homogeneous body. Elastic properties used in this approach include the elastic

modulus and Poisson’s ratio. For a CFRP, the carbon fibers and the polymer matrix have unique

material properties. The fibers are assumed transversely isotropic, whereas the matrix material is

assumed isotropic. Combining these two materials yields a transversely isotropic lamina with prop-

erties calculated as functions of the constituent properties and volume fractions. For transversely

isotropic fiber-reinforced composites, methods have been previously presented to compute the elastic

properties of the laminate [1]:

E1 = EfVf + EmVm (4.1)

E2 =
EfEm

EfVm + EmVf
(4.2)

ν12 = νfVf + νmVm (4.3)

G12 =
GfGm

GfVm + FmVf
(4.4)

where the subscripts f and m denote the fiber and matrix, respectively, and Vi is the volume fraction

of the respective material in the lamina.

Effective material properties are defined as an average of quantities across a body. Unlike the

approximations presented by Eqs. (4.1) – (4.4), effective properties are equivalent in all directions;

ergo, a material defined by effective properties is considered isotropic. Characterizing a particulate

lamina by its effective properties eliminates the need to account for any distribution discrepancies,

e.g., high or low concentrations of particles, in subsequent modeling once the effective properties

are found. Particle distribution is often assumed uniform throughout a lamina. A finite element
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method could be employed to determine the effective properties if conglomerations of particles or

matrix material were necessary to include. The geometry of the particles also contributes to the

determination of the lamina’s properties. Whiskers, discs, and flakes, for example, can be considered

orthotropic or transversely isotropic based on assumptions set for the analysis. Spheres can be

considered isotropic due to their symmetric geometry. Assumptions of a problem may increase the

planes of symmetry for an individual particulate inclusion due to its scale such that the particulate

may be considered isotropic independent of its geometry.

4.3 Bulk Material Properties

The material properties for the respective materials investigated in this work were collected

and compared from literature [21,123,128–131]. Krishnamurthy et al. [53] along with Chen and An-

janappa [127] modeled the magnetostrictive lamina sandwiched in a composite for sensing purposes

with the bulk properties of Terfenol-D given by the manufacturer ETREMA Products, Inc. (now

TdVib LLC) listed in Tab. 4.1. However, the properties of particles have been found to differ from

those of the material in bulk form. The crystal structure of a material determines the response of the

material to loads; therefore, the quantifiable properties are directly related to the crystal structure.

For a magnetic material, the properties associated with magnetism are related to the existence of

dipoles within the crystal structure. Terfenol-D is commonly distributed in cylindrical rods for use

as transducers. The bulk material has been engineered to have a sizeable magnetostrictive response

along its axial direction by producing the cylinders with “a directional solidification process which

produces a high degree of crystal orientation” [132]. Transforming the Terfenol-D from a bulk ma-

terial to a particle form requires consideration of the crystallographic direction to limit any effects

on the magnetic properties [21, 75, 132]. A design utilizing Terfenol-D likely seeks to utilize the

material’s high value of magnetostriction. Any reduction in this response would negate the material

selection process considered to elect the usage of Terfenol-D.

While research has been conducted on the properties of Terfenol-D in bulk form, the abil-

ity to mechanically analyze micrometer-sized particles independently has yet to be demonstrated.

Kaleta et al. [23] presented obtained properties using rods of Terfenol-D powder composites and

varying bias magnetic fields to control the alignment of dipoles in Terfenol-D particles in the com-

posites. Dobrzański et al. [22] investigated the properties of varying volume fractions of Terfenol-D
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Table 4.1: Material properties of Terfenol-D given by the manufacturer [25].

Physical Property Metric Value

Density (ρ) 9.25 g/cc

Ultimate Tensile Strength (σUTS) 28.0 MPa

Elastic Modulus (E) 25.0− 35.0 GPa

Compressive Strength (Y ) 700 MPa

Bulk Modulus (K) 90.0 GPa

Electrical Resistivity (ρ) 6.00 ×10−5 ohm-cm

Magnetic Permeability (µ) 4.5− 10

Curie Temperature (TC) 357 ◦C

Coefficient of Thermal Expansion (α) 12.0 µm/(m·◦C)

Specific Heat Capacity (cp) 0.320− 0.370 J/g·◦C
Thermal Conductivity (k) 10.5− 10.8 W/(m·K)

Melting Point (Tmelt) 1240 ◦C

Magnetomechanical Conversion Efficiency 49− 56%

Magnetomechanical Coupling Factor 0.7− 0.75

Magnetostrictive Energy Density 0.014− 0.025 J/cm3

Magnetostrictive Strain Production 1500− 2000 µm/m

Sound Speed 1640− 1940 m/s

embedded in a host matrix. Further complicating the classification of Terfenol-D is its nonlinear

behavior, which has yet to be characterized for a particle. In bulk form, properties of the material

are dependent on the magnetic and mechanical state the material is exposed to during manufac-

ture/fabrication [120]. Both the applied bias magnetic field orientating its crystals, specifically the

dipoles, and the subjected prestress on the particles affect the properties of Terfenol-D illustrated

by the relationships presented in Sections 3.2 and 3.4. To demonstrate the calculation of the effec-

tive properties of a particulate sensing lamina, the calculations utilized the manufacturer’s elastic

properties in Tab. 4.1.

A unidirectional CFRP prepreg material was selected in this work consisting of HexTow AS4

carbon fibers and Hexcel 3501-6 structural epoxy. A CFRP prepreg consists of a layer of carbon fibers

impregnated in a matrix, and individual lamina of the prepreg are stacked to form a laminate. An

individual lamina is assumed to be transversely isotropic by assuming that the through-thickness and

transverse direction have similar behavior. The thickness of a prepreg hinders the ability to obtain

the through-thickness material properties. The elastic properties of HexPly AS4/8552 are presented

in Tab. 4.2, or the elastic properties (E1, E2, G12, ν12) can be approximated using Eqs. (4.1) – (4.4)

with the individual constituents properties listed in Tabs. 4.3 and 4.4. The material properties
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Table 4.2: Material properties of HexPly AS4/3501-6 prepreg [128].

Property Value

Fiber volume fraction (Vf ) 60%

Longitudinal modulus (E1) 126 GPa

Transverse modulus (E2) 11 GPa

In-plane shear modulus (G12) 6.6 GPa

Major Poisson’s ratio (ν12) 0.28

Through-thickness Poisson’s ratio (ν23) 0.4

Longitudinal tensile strength (XT ) 1950 MPa (nonlinear, [128])

Longitudinal compressive strength (XC) 1480 MPa

Transverse tensile strength (YT ) 48 MPa

Transverse compressive strength (YC) 200 MPa (nonlinear, [128])

In-plane shear strength (S12) 79 MPa (nonlinear, [128])

Longitudinal thermal coefficient (α1) −1× 10−6 ◦C-1

Transverse thermal coefficient (α2) 26× 10−6 ◦C-1

Thickness (t) 0.22 mm

given for the constituents by [128] differ from those provided by the manufacturer [131, 133] likely

due to variations in testing. CFRP prepregs are highly susceptible to moisture ingression, which

affects their properties; over time, the properties and the adhesiveness of the prepreg decrease if

not cured within the recommended shelf life [131]. Other variation causes include the experimental

data collection methods, the design of the testing specimen, and the actual testing instruments.

Fabrication errors are prone to occur during laminate production, especially with prepreg materials,

as delaminations and voids can form from incomplete adhesion between laminae or the striation of

fibers.
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Table 4.3: HexTow AS4 carbon fiber material properties [128].

Property Value

Longitudinal modulus (E1) 225 GPa

Transverse modulus (E2) 15 GPa

In-plane shear modulus (G12) 15 GPa

Transverse shear modulus (G23) 7 GPa

Major Poisson’s ratio (ν12) 0.2

Longitudinal tensile strength (XT ) 3350 MPa

Longitudinal compressive strength (XC) 2500 MPa

Longitudinal thermal coefficient (α1) −0.5× 10−6 ◦C-1

Transverse thermal coefficient (α2) 15× 10−6 ◦C-1

Table 4.4: Hexcel 3501-6 matrix material properties [128].

Property Value

Longitudinal modulus (E) 4.2 GPa

Shear modulus (G) 1.567 GPa

Poisson’s ratio (ν) 0.34

Tensile strength (XT ) 69 MPa

Compressive strength (XC) 250 MPa

Shear strength (S) 50 MPa

Thermal coefficient (α1) 45× 10−6 ◦C-1
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4.4 Effective Property Approximations

The determination of effective material properties allows a complex material such as a

particulate composite to be modeled as an isotropic material. Calculating an effective property

employs an averaging method that combines the properties of the entire body at points throughout

the body,

P = 〈P 〉 = Peff =
1

V

∫
PdV (4.5)

where P is the property of interest, V is the volume of the body, and P and 〈·〉 denote an averaged

quantity [134]. Mathematical expressions have been defined in literature for calculating the effective

property values instead of using an integral based approach. These expressions account for the

volume of the body using the volume fractions of the constituents since

n∑
i=1

fi = 1 (4.6)

where n is the total number of constituents in a composite and fi are the respective volume fractions.

Volume fractions for the constituents have been determined using a representative volume element

(RVE) [135] or ratios of the cross-sectional areas for each constituent [1].

4.4.1 Effective Elastic Properties

Five well-known effective property models are presented in the subsequent section. For

the particulate laminate investigated, 1 denotes the Tefenol-D inclusion and 0 the epoxy matrix.

Elasticity principles are utilized to calculate a set of properties to model a laminate. These properties

include the elastic modulus E, Poisson’s ratio ν, shear modulus G, and bulk modulus K.

One of the simplest models for estimating properties is the linear rule-of-mixtures method

called the Voigt approximation. This approximation was derived under the assumption that the

strain throughout a composite is uniform,

ε = ε1 = ε2 = · · · = εi (4.7)

and the total stress caused by force P equals the sum of the stresses experienced by the constituents
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such that

P = σA =

n∑
i=1

σiAi (4.8)

Considering a two-dimensional cross-section of the laminate rather than a three-dimension element,

the volume fraction for a constituent is defined as

fi =
Ai
A

(4.9)

where A represents the cross-sectional area. Dividing Eq. (4.8) by A, the stresses are associated

with the volume fractions found using Eq. (4.9). Since the strain experienced in each material is

equal, employing Hooke’s law allows for the elastic moduli to be related to the volume fraction:

E = E0f0 + E1f1 (4.10)

A more generalized expression of the Voigt approximation for a two-phase material is

P = P0f0 + P1f1 (4.11)

where the subscripts 0 and 1 denote the respective material. The Voigt approximation was derived to

calculate the elastic modulus [136], but other properties have been estimated, such as the Poisson’s

ratio and specific mass [137]. Jones illustrates the use of this model to estimate the longitudinal

elastic modulus, Eq. (4.1), and major Poisson’s ratio, Eq. (4.3), of a fiber-reinforced composite [1].

Kursa et al. [138] suggested that the Voigt approximation could be used to estimate the effective

bulk, K, and shear G moduli of a two-phase composite.

Alternatively, the Reuss approximation assumes that each constituent material experiences

a stress equal to that experienced by the overall composite resulting in the approximation [139]

E =

(
f0

E0
+
f1

E1

)−1

=
E0E1

E0f1 + E1f0
(4.12)

This expression resembles that of Eqs. (4.2) and (4.4). Hill found that the Voigt and Reuss models

represented the upper and lower bounds, respectively, of the elastic modulus approximations [140].

An averaged approximation of the bounds leads to a simplified Hill model which is part of the
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Voigt-Reuss-Hill (VRH) approximation:

E = 〈EV oigt, EReuss〉 =
EV oigt + EReuss

2
(4.13)

The VRH approximation demonstrated an inefficiency and inaccuracy involved in estimating effective

properties [141]. A broad range of potential predictions exists between the defined upper and lower

bounds, so researchers derived additional models to fill the region between the bounds in hopes of

more accurate approximations.

Hashin-Shtrikman [142] derived a model based on the interaction of the elastic properties

of the constituents paired with the principle of minimum potential energy. The overall effective

properties of the laminate are found using elasticity relationships:

E =
9KG

3K +G
(4.14)

ν =
3K − 2G

2 (3K +G)
(4.15)

The Hashin-Shtrikman bounds are given by

K = Ki +
fj

1
Kj−Ki

+
1−fj
Ki+Gi

(4.16)

G = Gi +
fj

1
Gj−Gi

+
(1−fj)(Ki+2Gi)

2Gi(Ki+Gi)

(4.17)

with the bulk and shear moduli terms calculated as

Kk =
El

3 (1− 2νl)
Gk =

El
2 (1 + νl)

(4.18)

where i, j, k, l = 1, 0 for a two-phase composite. The lower bound of the model is found by setting

i = 0, j = 1, and k = l. The upper bound is found when i = 1, j = 0, and k 6= l.

Mori and Tanaka [143] developed an approximation using “the solution of a single inclusion

in an infinite matrix phase” [141]. The Eshelby Inclusion Method [144–146] calculated the strain

in the infinite matrix based on the average stress of the matrix material of a two-phase composite.

The bulk and shear moduli used to estimate the elastic modulus and Poisson’s ratio in Eqs. (4.14)
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and (4.15), respectively, are

K −K0

K1 −K0
=

f1

1 + (1− f1) K1−K0

K0+ 4
3G0

(4.19)

G−G0

G1 −G0
=

f1

1 + (1− f1)

(
G1−G0

G0+
G0(9K0+8G0)

6(K0+2G0)

) (4.20)

Kursa et al. [138] proposed an alternative notation for the above models. A general formula,

a set of four equations, were defined based on the shear modulus, bulk modulus, and volume frac-

tion of the inclusion like that of the Hashin-Sktrikman and Mori-Tanaka models. The formulation

proposed in [138] for a two-phase composite,

K = f1α
P
i Ki + (1− f1)αPmKm (4.21)

G = f1α
D
i Gi + (1− f1)αDmGm (4.22)

f1α
P
i + (1− f1)αPm = 1 (4.23)

f1α
D
i + (1− f1)αDm = 1 (4.24)

can be used for various approximations by changing the concentration factors αPr and αDr . For

example, the Kursa formulation equals the Voigt approximation when

αPi = αDi = 1 (4.25)

and the Reuss approximation when

αPi =
K0

f0K1 + (1− f1)K1
αDi =

G0

f0G1 + (1− f1)G1
(4.26)

With the calculated effective bulk and shear moduli using Eqs. (4.21) and (4.22), elasticity relation-

ships, Eqs. (4.14) and (4.15), were used to define the two remaining elastic terms.

4.4.2 Coefficient of thermal expansion

The effects of temperature can lead to unexpected stress and strain within a material if not

considered. The classical lamination theory, for example, can be expanded to account for variations
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in the coefficients of thermal expansion as thermal strains occur from a change in temperature,

εT = α∆T (4.27)

The coefficients of thermal expansion can significantly differ between the constituent materials and

impact the behavior of a material. For instance, a fiber-reinforced material can display bistability if

the laminate is laid up with an asymmetrical stacking sequence [147]. The Hexcel 3501-6 epoxy has a

coefficient of thermal expansion nearly four times greater than that of Terfenol-D, suggesting that it

will expand and contract more than the Terfenol-D particles under a given temperature difference.

The matrix, then, will induce stress on the Terfenol-D particles. As with the elastic properties,

effective coefficients of thermal expansion are necessary to define a homogeneous particulate lamina.

Makarian et al. [75] showed that the most general approximations, the Voigt and Reuss

models, are applicable to the coefficient of thermal expansion. In the Voigt approximation, a uniform

strain exists in a material following a change in temperature. The formulation of the model is the

same as that in Eq. (4.11):

α = f0α0 + f1α1 (4.28)

Likewise, the Reuss approximation assumes that a uniform stress field exists throughout a composite

following an imposed temperature variation and can be expressed as

α =
f0E0α0 + f1E1α1

f0E0 + f1E1
(4.29)

This expression differs from that in Eq. (4.12) because the elastic moduli are necessary to include

when examining the stress per Hooke’s law. Additional models are included in Appendix A.

4.5 Evaluation of Approximations

Application of laminate models, such as the classical lamination theory, utilizes homoge-

neous laminae to quantify the overall laminate behavior. The individual laminae contribute to the

laminate’s overall stress and strain response under applied loads (e.g., mechanical, thermal, hygro-

scopic). The approximations presented in Section 4.4 and Appendix A transform the behavior and

properties of an inhomogeneous particulate composite into a homogeneous material through aver-
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Figure 4.1: Two-dimensional visualization showing spherical inclusion packed tightly. Matrix/host
material still exists within the composite in pockets between the inclusions.

aged values. Previous studies examining embedded Terfenol-D particles for damage sensing modeled

the embedded magnetostrictive lamina using the bulk properties of Terfenol-D [53,55,56]. While this

simplified the analysis, the results failed to appropriately account for the influence of the host mate-

rial on the properties of the embedded sensing lamina. The assumption of bulk properties resembles

that of a particulate lamina having a volume fraction of inclusions equal to one, or f1 = 100%.

For a volume fraction of one, a solid, homogeneous piece of material would require fabrication or

extraction; in the case of a lamina, a film could be produced using sputtering techniques [148,149].

Considering the host matrix in determining the properties of the sensing lamina would improve an

embedded particle sensing model to resemble experimental results better.

A particulate lamina consisting of Terfenol-D particles and Hexcel 3501-6 was selected in

this work in an effort of continuity from previous studies [6, 21, 27, 57, 150]. The volume fraction of

the inclusion was set to range from f1 = 0% to 100% to illustrate the significance of the ratio of

constituents on the overall property values. Limitations on the actual volume fraction of inclusions

would exist for a physical lamina as the volume fraction increases. A spherical geometry does not

allow for a continuous domain of material, meaning that regions of epoxy material would theoretically

exist in pockets between spheres as illustrated in Fig. 4.1. Sideridis et al. [151] derived a model

demonstrating the maximum volume fraction of inclusions based on their radius and the number

of particles in an RVE. Investigations have implemented numerous mathematical algorithms to

ascertain the precise value of the random close packing (RCP) factor for spheres [152]. The average
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Table 4.5: Possible packing factor values for spherical particles based on the fabrication method
employed [153].

Model Description Void Fraction Packing Density

Thinnest regular packing Cubic lattice 0.4764 0.5236

Very loose random packing Spheres slowly settle 0.44 0.56

Loose random packing Dropped into bed; packed
by hand

0.40− 0.41 0.59− 0.60

Poured random packing Spheres poured into bed 0.375− 0.391 0.609− 0.625

Random close packing (RCP) Bed vibrated 0.359− 0.375 0.625− 0.641

Densest regular packing FCC or HCP lattice 0.2595 0.7405

and accepted value for the RCP of spheres is a volume fraction of 64%, as given in Tab. 4.5.

4.5.1 Evaluation of Effective Elastic Property Approximations

The models presented in Section 4.4 were scripted with Python 3.8.5 (given in Appendix

D.2.2) to characterize a particulate lamina consisting of Terfenol-D and Hexcel 3501-6. The volume

fraction of the Terfenol-D particles was designated as the independent variable to examine the effect

of the volume fraction on the overall properties. The approximations for the effective elastic, bulk,

and shear moduli are presented in Figs. 4.2 – 4.4, respectively, and the findings for the effective

Poisson’s ratio are presented in Fig. 4.5. The estimation curves for the effective elastic properties

were predicted to display positive slopes since the elastic properties of Terfenol-D, listed in Tab. 4.1,

were greater than those of the Hexcel 3501-6 epoxy in Tab. 4.4.

All six models converged at the extreme volume fractions to the appropriate property values;

i.e., at f1 = 0%, the properties equaled that of the Hexcel 3501-6 epoxy since no Terfenol-D inclusions

were present. The Reuss, Hashin-Shtrikman, and Mori-Tanaka approximations had continuously

increasing slopes as the volume fraction of particles increased. The slope of the curves changed for

volume fractions above the maximum volume fraction, the RCP factor, of f1 = 64%. Estimations

above this volume fraction were considered hypothetical since they cannot be realistically recreated

in experimentation using uniform spherical inclusions. Below the RCP factor, the curves for the

approximations appeared to have a negligible change in slope as the volume fraction of particles

increased, especially in the region of 0% ≤ f1 ≤ 40%. A linear relationship could replace the more

complicated approximations in the attainable volume fraction domain. The effective Poisson’s ratio

curves in Fig. 4.5, however, showed more nonlinearity than the curves of the moduli; therefore, linear
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Figure 4.2: Evaluation of the effective elastic modulus for various volume fractions of Terfenol-D
particles.

relationships would yield greater errors for simplifying the approximation curves.

4.5.1.1 Moduli

The findings of Hill [140] citing that the Voigt and Reuss approximations were the upper

and lower bounds, respectively, for effective property estimations were confirmed by examining Figs.

4.2 – 4.4. The approximation curves for the elastic (Fig. 4.2) and shear moduli (Fig. 4.4) displayed

a similar shape for the respective approximations. The Hashin-Shtrikman formulation resulted in

a modified upper and lower bound tighter than that of the Voigt-Reuss bounds. Both the Hashin-

Shtrikman and Mori-Tanaka estimations fell between the Voigt-Reuss bounds, and the Mori-Tanaka

approximation fell between both sets of bounds. The Hill approximation, an average of the Voigt

and Reuss models, corresponded to the middle of the Voigt-Reuss bounded region of possible values.

The estimations using the Hill approximation for the moduli fell between the Hashin-

Shtrikman bounds except for the case of the effective bulk modulus (Fig. 4.3). The shape of the

Voigt-Reuss bound for the bulk modulus was determined as the cause for this exception as a larger

deviation between the bounds was observed for this property. The behavior of the Voigt approxima-

tion curve significantly differed from that of the Reuss, Mori-Tanaka, and Hashin-Shtrikman curves.
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Figure 4.3: Evaluation of the effective bulk modulus for various volume fractions of Terfenol-D
particles.

Figure 4.4: Evaluation of the effective shear modulus for various volume fractions of Terfenol-D
particles.
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These three formulations showed a similar shape, especially in the domain above the RCP factor.

These approximations asymptotically diverged from the bulk modulus of the Hexcel 3501-6 epoxy.

The slopes of their curves increased as the inclusion volume fraction increased; then it drastically

increased above f1 = 80%. This Reuss approximation behavior increased the bounded region of

possibility as the distance between the Voigt-Reuss bounds decreased at a slower rate than with the

other two moduli.

The Voigt model was a linear function for the moduli as shown in Figs. 4.2 – 4.4 with a

constant slope (gradient). The linear expression followed the form

P = (P0 − P1) f0 + P1 (4.30)

where P represents one of the three moduli (E, G, K). From the plots, the y-intercepts of the linear

curves were visually determined as the moduli of the Hexcel 3501-6 epoxy matrix material, P1, since

they were the lesser values for the two considered constituent materials.

The elasticity relationships in Eqs. (4.14) and (4.15) were used to determine the effective

elastic modulus and Poisson’s ratio for the Voigt-Reuss-Hill (VRH) approximations to remain con-

sistent with the methodology employed in the Hashin-Shtrikman and Mori-Tanaka approximations.

Using the Voigt and Reuss approximations for the elastic modulus resulted in the same estimates

as those found using the elasticity expression given in Eq. (4.14). The same result was not true for

the effective Poisson’s ratio evident in Fig. 4.6.

4.5.1.2 Poisson’s Ratio

Though Loja et al. [137] stated that the Voigt approximation could be employed to estimate

the effective Poisson’s ratio, the elasticity expression given in Eq. (4.15) yielded a nonlinear curve

that increased the bounded region of possible effective Poisson’s ratios. Per its formulation, when

directly applied, the Voigt approximation produced a linear curve with the form of Eq. (4.30). The

approximation curve found through implementing the elastic relationship for the Poisson’s ratio

diverged from the Hexcel 3501-6 epoxy value and asymptotically approached the Poisson’s ratio of

Terfenol-D. Figure 4.5 shows that using the elasticity relationship results in a more incompressible

particulate lamina than any other models. The elasticity method determined the Terfenol-D to have

a more significant impact on the effective Poisson’s ratio.
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Figure 4.5: Evaluation of the effective Poisson’s ratio for various volume fractions of Terfenol-D
particles using elasticity relationships.

Figure 4.6: Calculating the effective Poisson’s ration with the elasticity relationship results in a
greater bounded region of possible values.
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The shape of the Voigt and Reuss approximation curves in Fig. 4.6 appeared to be near reflec-

tions of one another across the line connecting the two extreme values of (f1 = 0%, νeff = ν3501−6)

and (f1 = 100%, νeff = νTerfenol−D). This line resembled that of the approximation using the Voigt

approximation directly. A slight variation in the curves employing the elasticity relationships was

observed such that one formulation converged more asymptotically than the other at the respective

domain extremes; i.e., the Voigt curve employing the elasticity relationships converged asymptot-

ically to the Poisson’s ratio of Terfenol-D at higher inclusion volume fractions whereas the Reuss

formulation asymptotically converged to the Poisson’s ratio of Hexcel 3501-6 epoxy at lower volume

fractions. At the RCP factor, the elasticity approach yielded effective values closest to that of the

constituent materials. The Voigt approximation resulted in a 0.68% percent difference from the

Poisson’s ratio of Terfenol-D at the RCP factor. In contrast, the Reuss approximation estimated a

difference of 5.71% from the Poisson’s ratio of Hexcel 3501-6 epoxy. This difference illustrated the

convergence of the Voigt-elasticity approximation to the upper bound.

An additional concern of the Poisson’s ratio approximation was a discrepancy that opposed

the statement of Hill [140] that the Reuss approximation coincides with the lower bound of possible

property values. Applying the Reuss approximation directly for the Poisson’s ratio as suggested by

Loja et al. [137], resulted in an approximation predicting the second-highest effective Poisson’s ratio

only behind the Voigt formulations as shown in Fig. 4.5. Both the verbatim and elastic formula-

tions of the Reuss approximation failed to estimate the lowest bound for an experimentally feasible

laminate, i.e., a laminate with f1 < 64%. Below a Tefenol-D volume fraction of 61%, the lower

bound of the Hashin-Shtirkman approximation predicted a lower effective Poisson’s ratio than the

Reuss-elasticity approximation. Only above the RCP factor was the Reuss-elasticity approximation

observed to fall below the Hashin-Shtrikman lower bound and yield the lowest approximation bound

for all the investigated approximations. The Mori-Tanaka approximation was found to estimate the

Poisson’s ratio as the smallest value until f1 ≈ 82%. Further research into the effective Poisson’s

ratio was deemed necessary to address the discrepancies between the bounds and the approximation

of the Mori-Tanaka approximation.
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Figure 4.7: The effective coefficient of thermal expansion ranges between the values of the constituent
materials. Unlike the elastic properties, the Reuss model is not the lower bound for the coefficient
of thermal expansion.

4.5.2 Evaluation of Effective Coefficient of Thermal Expansion Approxi-

mations

The estimations for the effective coefficients of thermal expansion presented in Section 4.4.2

and Appendix A displayed a different behavior than the estimates for the elastic properties illustrated

in Figs. 4.2 – 4.5. The coefficient of thermal expansion of the epoxy matrix (α3501−6 = α0 =

4.5 × 10−5 ◦C−1) was reported in literature to be greater than that of Terfenol-D (αTerfenol−D =

α1 = 1.2× 10−5 ◦C−1). The Voigt and Reuss approximations were no longer found to be the upper

and lower bounds of the approximations demonstrating that the findings of Hill [140] do not extend

to the coefficient of thermal expansion. Figure 4.7 shows that the Turner formulation estimates

the effective coefficient of thermal expansion to be less than the Reuss approximation. The Turner

approximation estimated the lamina’s coefficient of thermal expansion closer to the lower value than

other approximations. The Thomas formulation with a = 1 yielded the same estimation values as the

Voigt approximation because of its formulation, Eq. (A.12). The Tummala-Friedberg formulation

followed the Voigt estimate closely until f1 ≈ 35% and then estimated values slightly greater than

the Voigt approximation. Above the RCP factor, the Tummala-Friedberg approximations diverged
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further from those of the Voigt approximation. The effective coefficient of thermal expansion was

predicted for this approximation to be 7.49 × 10−7 ◦C−1 greater than that of Terfenol-D at f1 =

100% suggesting inaccuracies with the model at high volume fractions of an inclusion. The Kerner

approximation yielded the greatest effective coefficient of thermal expansion values for the domain

except at the upper extreme (f1 ≥ 95%); ergo, the Kerner formulation represented the upper bound

for the effective coefficient of thermal expansion. The Fahmi-Ragai formulation closely resembled

the Wang-Kwei approximation for inclusion volume fractions below 50%. As the volume fraction

increased, these two approximations began to diverge, and the Fahmi-Ragai formulation predicted

an effective coefficient of thermal expansion at f1 = 100% to be 5.27 × 10−7 ◦C−1 less than that

of bulk Terfenol-D. The rest of the models were found to converge to the coefficient of thermal

expansion of Terfenol-D at f1 = 100%.

The Cribb formulation, Eqs. (A.3) – (A.5), utilized the effective bulk and shear moduli of

the lamina in addition to the coefficients of thermal expansion, bulk moduli, and shear moduli of

the constituent materials. Figure 4.8 shows the effective coefficient of thermal expansion curves

calculated using the elastic property approximations presented in Section 4.4.1. The idea of the

VRH approximation was found to be false for the coefficient of thermal expansion. The inverse of

the discussed behavior in [140] was observed. The Cribb estimates using the Voigt approximations

resulted in the lower bound, whereas the Reuss approximations yielded the upper bound. Figure 4.8

is almost a reflection of Fig. 4.3 regarding the behavior of the curves. The Cribb-Voigt approximation

resulted in a nonlinear lower bound, while the Cribb-Reuss formulation produced a linear upper

bound. The Mori-Tanaka curve resided close to the lower bound of the Hashin-Shtrikman estimate

as observed with the elastic property estimates. The Hill curve deviated from this trend, but the

other approximations followed the same behavior regarding the distancing from one another. Figure

4.9 shows that the Turner formulation coincides with the Cribb-Voigt approximation. Nearly half

of the coefficient of thermal expansion formulations yielded estimates similar to that of the Voigt

approximation.
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Figure 4.8: The Cribb model uses the effective bulk and shear moduli to determine the effective
coefficient of thermal expansion.

Figure 4.9: Evaluation of all the presented models for the effective coefficient of thermal expansion
for various volume fractions of Terfenol-D particles.
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4.6 Laminate Analysis with Effective Properties

4.6.1 Single Lamina

The determination of effective properties for a composite material enables the implementa-

tion of laminate analysis tools. Homogeneous materials are defined using averages of the properties

of the constituent materials, so the complexity associated with a composite is reduced. A partic-

ulate lamina was analyzed to examine the effect of the effective properties on the induced stress

magnitude. The sensing lamina consisted of Terfenol-D particles embedded in a host matrix of Hex-

cel 3501-6. The Python script in Appendix D.3 calculated the stress and strain of a single lamina

using the classical lamination theory as presented in Section 2.3. The laminae investigated included

single plies of HexPly AS4/3501-6, Hexcel 3501-6, bulk Terfenol-D, and particulate composites of

Terfenol-D/3501-6. The effective elastic properties discussed in Section 4.4 approximated the values

of the elastic modulus, Poisson’s ratio, and shear modulus. The volume fraction of particles within

the particulate laminae was independently manipulated to examine its effect. The analysis assumed

that the orientation of all the laminae was equal with an orientation angle of zero degrees, i.e., the

unidirectional fibers of the CFRP aligned with the longitudinal direction of the lamina referred to as

the x-direction in Fig. 2.2. There were no mechanical loads applied to the laminae, so the force and

moment resultants equaled zero. Instead, the analysis examined the laminae following the curing

process of fabrication. The script applied a temperature difference of −120 ◦C to account for the

cool-down period; this process reflected the fabrication method employed for creating laminates of

HexPly AS4/3501-6. The stress and strain induced in the laminae, therefore, were caused by thermal

effects.

Figure 4.10 illustrates the variations in the stress magnitudes respective to the effective elas-

tic property approximations. The stress for the particulate lamina was equivalent in the longitudinal

and transverse directions, Figs. 4.10a and 4.10b, respectively, while the HexPly AS4/3501-6 lamina

had differing stress magnitudes due to the difference in longitudinal and transverse coefficients of

thermal expansion. The HexPly AS4/3501-6 CFRP prepreg was the only lamina to exhibit positive

stress in the longitudinal direction of the ply because of the negative coefficient of thermal expansion

in the fiber direction. The bulk Terfenol-D lamina experienced a greater induced compressive stress

than a lamina of only Hexcel 3501-6. The difference in stress magnitude agreed with the comparison

of the coefficient of thermal expansions for these respective materials in Section 4.5.2. The effective
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property approximations demonstrated behavior when calculating stress comparable to that of the

elastic properties. The Voigt approximation yielded the greatest stress values in magnitude; contrar-

ily, the Reuss approximation produced the lowest stress magnitudes. The Voigt approximation for

the coefficient of thermal expansion predicted the particulate lamina to experience the most com-

pressive stress of any of the approximations. Furthermore, the Voigt approximation predicted the

particulate lamina to experience more compressive stress for volume fractions of Terfenol-D greater

than approximately 21% than a lamina of only bulk Terfenol-D.

The approximation of the coefficient of thermal expansion was changed from the Voigt ap-

proximation in Fig. 4.10 to examine the effect of this parameter. The thermal effects were isolated

for study in this analysis by the decision to involve no mechanical loads. When using the Reuss

approximation for the coefficient of thermal expansion shown in Fig. 4.11, the magnitudes of the

thermal stress for the particulate lamina decreased; therefore, they became less compressive. Only

the Voigt elastic property approximation produced stress values between those for the constituent

materials. The other four elastic property approximations yielded stress values for feasible volume

fractions, i.e., less than the random close packing factor of 64%, greater than that of a pure Hexcel

3501-6 lamina. This result contradicted the expected behavior of the stress magnitudes being more

comparable with that of Terfenol-D because the Reuss coefficient of thermal expansion approxima-

tion predicted the effective value to be closer to Terfenol-D than Hexcel 3501-6.

The Blackburn approximation for the coefficient of thermal expansion [154] produced esti-

mates close to the median of the examined approximations in Fig. 4.9. Examining this approximation

offered insight into how the coefficient of thermal expansion impacted the induced stress state in a

particulate lamina as it was not a bound approximation. Figure 4.12 shows that the stress curves

for the effective elastic property approximations were similar to those in Fig. 4.11. The magnitudes

of the stress values were less for all volume fractions using the Blackburn approximation. The Voigt

and Hashin-Shtrikman upper bound approximations appeared near reflections across a line from

their starting and ending points. These were the only two estimates to predict the stress of the

particulate lamina to lie between its constituents. The other three approximations predicted the

stress magnitude to be closer to that of a pure Hexcel 3501-6 lamina.

The extreme coefficient of thermal expansion approximations, i.e., the upper and lower

bounds, found in Fig. 4.9 are plotted in Fig. 4.13. The magnitude of the stress was directly related

to the value of the effective coefficient of thermal expansion. In the case of the Kerner approxi-
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mation, the upper bound in Fig. 4.13a, most of the elastic property approximations yielded stress

magnitudes between those of the constituent materials. The stress curve of the Voigt elastic prop-

erty approximation significantly deviated from the other approximations at nearly 40 MPa greater in

magnitude at f1 = 64% than a lamina of only bulk Terfenol-D. The Cribb-Voigt coefficient of ther-

mal expansion approximation using the Reuss, Mori-Tanaka, and Hashin-Shtirkman lower bound

approximations calculated the stress in the lamina to have almost the same magnitude for Terfenol-D

volume fractions between 12% and 45%. The stress for these three formulations was nearly constant

in this volume fraction range, which was unobserved with other coefficient of thermal expansion

approximations.

4.6.2 Laminate

The classical lamination theory analysis was extended from a single lamina to a laminate.

Three laminates were investigated to examine the inclusion of an embedded sensing lamina and

a delamination. Figure 4.14 shows the stress distribution for a [04] HexPly AS4/3506-1 CFRP

laminate. The magnitude of the stress in this laminate was comparable to that of a single lamina

of HexPly AS4/3501-6 in the longitudinal stress plots in Section 4.6.1. Because the CFRP prepreg

material properties are independent of the volume fraction of Terfenol-D particles, the stress is

unchanged as the volume fraction changes. The symmetric, unidirectional laminate also implied

that the stress field is uniform across the cross-section of the laminate.

A particulate sensing lamina was embedded into the [04] HexPly AS4/3506-1 CFRP laminate

in Figs. 4.15 and 4.16. The magnitude of the stress in the CFRP laminae decreased with the

introduction of a sensing lamina; the sign also changed such that a compressive stress magnitude

was observed. This behavior of compressive stress in the longitudinal direction of a CFRP prepreg

was observed for an asymmetric laminate with an unlike lamina, i.e., not a HexPly AS4/3501-6

lamina, embedded at its midplane. The sensing lamina had a higher magnitude of stress than the

prepreg lamina when embedded along the midplane. The magnitude of stress was nearly two-thirds

less than that observed for a single lamina in Fig. 4.12a. The presence of a lamina made from other

materials in Figs. 4.15 and 4.16 showed that the magnitude of the stress in the sensing lamina is

affected by the structure of the laminate.

The introduction of a delamination in Fig. 4.16 decreased the magnitude of the stress in

the sensing lamina from the case of no delamination present in Fig. 4.15. The properties of the
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(a)

(b)

Figure 4.10: Stress for particulate sensing laminae using effective property approximations. The
coefficient of thermal expansion was calculated using the Voigt approximation; (a) longitudinal and
(b) transverse direction.
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(a)

(b)

Figure 4.11: Stress for particulate sensing laminae using effective property approximations. The
coefficient of thermal expansion was calculated using the Reuss approximation; (a) longitudinal and
(b) transverse direction.
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(a)

(b)

Figure 4.12: Stress for particulate sensing laminae using effective property approximations. The
coefficient of thermal expansion was calculated using the Blackburn approximation; (a) longitudinal
and (b) transverse direction.
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(a)

(b)

Figure 4.13: Stress for particulate sensing laminae using effective property approximations. The
coefficient of thermal expansion was calculated using the extreme bound approximations per Fig.
4.9; (a) Kerner (upper bound) and (b) Cribb-Voigt (lower bound) approximations.
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Table 4.6: Delamination material properties and information used in the classical lamination theory.

Property Value

Longitudinal modulus (E) 100 Pa

Shear modulus (G) 0 GPa

Poisson’s ratio (ν) 0

Thermal coefficient (α) 0 ◦C-1

Thickness (t) 0.01 mm

Figure 4.14: Stress distribution in the longitudinal direction for a [04] HexPly AS4/3506-1 CFRP
laminate.

delamination used for modeling are given in Tab. 4.6. The stress distribution was no longer constant

throughout the cross-section of each lamina. The top prepreg plies (above the delamination) of

the laminate had greater stress magnitudes than those below the delamination. The stress at the

delamination was negligible due to the difference in material properties of the adjacent laminae. A

significant change in stress occurred at the delamination interfaces, and a difference in nearly 22 MPa

existed between the interfaces at the top and bottom of the delamination. While the magnitude

of the stress in the sensing lamina decreased with the introduction of a delamination, the stress

difference across the delamination suggested the presence of damage and encouraged the evolution

of damage at this location.
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Figure 4.15: Stress distribution in the longitudinal direction for a [02/m/02] HexPly AS4/3506-1
CFRP laminate embedded with a Terfenol-D/3501-6 sensing lamina. The effective properties of the
sensing lamina were approximated using the Voigt estimate, and the coefficient of thermal expansion
with the Blackburn estimate. The volume fraction of particles equals 30%.

Figure 4.16: Stress distribution in the longitudinal direction for a [02/m/d/02] HexPly AS4/3506-1
CFRP laminate embedded with a Terfenol-D/3501-6 sensing lamina and delamination. The effective
properties of the sensing lamina were approximated using the Voigt estimate, and the coefficient of
thermal expansion with the Blackburn estimate. The volume fraction of particles equals 30%.
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4.7 Conclusion

The effective properties of a Terfenol-D particulate lamina were investigated in this work to

examine how the inclusion of the host (matrix) material properties affect the mechanical properties

of the sensing lamina. The volume fraction of spherical Terfenol-D particles embedded in a host

matrix of Hexcel 3501-6 was varied from 0 to 100%; though, a maximum random close packing

factor of 64% was taken as the realistic maximum volume fraction that could be achieved based

on the discussed fabrication methods. Effective properties were necessary to combine the property

values of the constituent materials of the particulate composite. The bulk properties of Terfenol-D,

specifically the nonlinear relationships derived from the stress-strain behavior, could be coupled with

the calculated effective properties.

The effective elastic, bulk, and shear moduli displayed an expected behavior of a bounding

problem previously discussed in [140] where the Voigt and Reuss approximations corresponded to

the upper and lower bounds, respectively, of possible values for the modulus. The effective Pois-

son’s ratio failed to adhere to the Voigt-Reuss bounds despite previous literature stating that these

approximations were appropriate for the Poisson’s ratio. The particulate lamina was less incom-

pressible than bulk Terfenol-D, and the Poisson’s ratio was typically closer to that of the matrix

material. The region of possible values of the effective coefficient of thermal expansion was the most

expansive of all the effective properties as 15 approximations were explored.

Using the effective coefficient of thermal expansion, the induced thermal stress in a particu-

late lamina was examined. The value of the coefficient of thermal expansion was concluded to impact

the induced stress significantly. Nearly a 60 MPa difference was obtained using the upper (Kerner)

and lower (Cribb-Voigt) approximations of the coefficient of thermal expansion with the effective

elastic properties calculated using the Voigt approximation for a volume fraction of f1 = 30%.. The

induced thermal stress in the sensing lamina was negative in magnitude, meaning that the sensing

lamina was in compression. The analysis of two CFRP laminates with an embedded sensing lamina

verified this finding. The compressive stress was due to the contraction of the matrix material under

a −120◦C temperature change; this result agreed with previous findings.
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Chapter 5

Application of Machine Learning

5.1 Motivation for Implementation

The application of machine learning has increased in recent times because of its ability to

solve a wide variety of problems. A machine learning algorithm operates by learning from previ-

ous experiences to make predictions about new, never-before-seen information. Statistically based,

machine learning functions act like a black box where the algorithm manipulates the parameters

involved in training internally; the process of analyzing data is solely contained within the algorithm.

Previous work has investigated the application of machine learning for structural health monitoring

and nondestructive evaluation, and promising results were obtained (Section 2.8). The discussed

NDE method investigated in this work, i.e., embedded magnetostrictive particles for damage sensing,

has yet to be coupled with machine learning.

Several complexities were identified through experimental work for detecting damage within

a composite material using embedded magnetostrictive particles. The spread of the magnetostrictive

particles affects the induced sensing voltage [6, 7, 57, 150]. An accumulation of Terfenol-D particles

within the sensing lamina increases the localized sensing voltage resulting in false readings. Alterna-

tive distribution techniques were investigated to create a more even spread and limit any distribution

effects on the voltage [57,127]. Delaminations were intentionally introduced into experimental lami-

nates by embedding film or tape at specified locations. Ideally, the sensing voltage changes when the

coil apparatus passes over a region containing a delamination when implementing this NDE method.

However, the sensing voltages obtained for various experimental laminates failed to distinguish any
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Figure 5.1: Sensing voltage for three composite beams with embedded Terfenol-D particles. The
embedded delamination region is shown by the gray region. (recreated from data taken from [57])

effects in the voltages caused by the embedded delaminations along with the number of plies in the

laminate. Figure 5.1 illustrates the variations in the sensing voltage for three experimental CFRP

laminate beams with different stacking sequences [57]. A half-inch square delamination was embed-

ded in the laminate during fabrication at 4.625 inches from the side of the beam denoted by the zero

inch mark. Changes in the sensing voltage can be observed between the regions with and without

Terfenol-D particles; the particles were spread between approximately 1.875 and 7.875 inches from

the zero mark of the beam. The response of the regions with embedded Terfenol-D particles was

not consistent across the three presented beams, and the behavior at and around the delamination

was unique for each beam. By visual inspection of Fig. 5.1, the location, much less the existence, of

a delamination in the beams could not be determined.

The use of machine learning with the discussed NDE method could predict the presence of

delaminations better than the visible review of a sensing voltage plot. A machine learning algorithm

combines various input parameters to make predictions based on trends identified during the learning

process. In this application, information about the data/sample point would coincide with the

prediction making of an algorithm to determine the presence of a delamination. The variation in the

sensing voltage for undamaged regions and those with a delamination would be accounted for within
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the black-box approach of the algorithms, and relationships could be formulated. The classification

ability of machine learning algorithms would allow a user to input raw, experimental data and yield

a prediction of whether a delamination or other damage precursor existed at a specific location.

5.2 Experimental Data

Data was necessary to train and test the prediction performance of a machine learning

process with the embedded magnetostrictive particle NDE method. Previous literature presented

experimental data for a static beam containing embedded Terfenol-D particles for damage sensing.

Intentional delaminations were incorporated in the experiments to examine the impact of damage

on the induced sensing voltage. A limited set of experimental data limits the exploration of ma-

chine learning for this NDE method, so analytical data was sought not only to compare against

experimental data but as a means for generating data points. The analytical model based on the

Euler-Bernoulli model presented by Krishnamurthy et al. [53] was investigated in Chapter 3, but

the model failed to converge to predict the stress in the magnetostrictive material; ergo, the induced

voltage could not be calculated. Without an analytical model, the investigation of a machine learn-

ing approach for predicting the presence of a delamination was continued utilizing only experimental

data.

After perusing the literature, experimental data for this NDE method was presented in four

works [6, 57, 127, 155]. A total of 1, 380 experimental data points were either obtained from tables

or extracted from plots using the GRABIT function [121] in MATLAB. Each data point contained

the following information, if attainable:

• Source data taken from

• Fiber material

• Matrix material

• Stacking sequence

• Number of plies above Terfenol-D lamina

• Number of plies below Terfenol-D lamina

• The presence of Terfenol-D (1 – yes, 0 – no)

• Peak sensing voltage Vpeak
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• RMS sensing voltage VRMS

• The presence of an embedded delamination (1 – yes, 0 – no)

In some cases, the RMS voltage was not presented or assumed to not be given; the peak voltage was

assumed to be presented. The RMS voltage was calculated as

VRMS =
Vpeak√

2
(5.1)

The breakdown of the data is presented in Tab. 5.1 and contains statistical information about

the RMS voltage for each literature source. The number of points with and without a delamination

is presented in Fig. 5.2 and shows that a lack of experimental delamination data exists. In total, only

70 (5.07%) data points contained delaminations. For a machine learning problem, especially one

attempting to classify the presence of a delamination, a target label occurring in only 5% of the total

dataset raised concern that the algorithm would be unable to properly “learn” sufficient information

about a delamination state. Examining the mean RMS sensing voltages, the experimental setups

were found to be inconsistent based on the discrepancies in the magnitudes of these mean values.

The data found in [57] and [6] was most comparable based on the statistics of the RMS voltage.

A new parameter was defined to create a dataset with more comparable voltage values. An

adjusted RMS voltage value was defined for each data point as

VRMS,adjusted =
VRMS

V RMS, no Terfenol-D

(5.2)

where the average RMS voltage values with no Terfenol-D term (V RMS, no Terfenol-D) in the denomi-

nator was calculated for each CFRP beam. The distribution of the adjusted RMS voltages displayed

Table 5.1: Statistics of the extracted experimental data from literature. The experimental setups
varied evident by the value of the mean RMS sensing voltage.

Source
Data

Points
Delaminations

RMS Sensing Voltage (VRMS) [V]

Mean Standard Deviation Variance

Rudd [57] 1216 42 0.288 3.437e-03 1.181e-05

Myers et al. [6] 95 2 0.216 2.822e-03 7.966e-06

Chen & Anjanappa [127] 37 16 0.530 1.159e-01 1.343e-02

Currie et al. [155] 32 10 2.097 4.527e-02 2.049e-03
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Figure 5.2: Illustration in the lack of delamination data points extracted from literature.

in Fig. 5.3 shows that the adjusted RMS voltage parameter failed to yield comparable values for

the [127] data when compared to the other three datasets. Upon review of the data extracted

from [127], a limited amount of information was given about the laminates. Terfenol-D was either

embedded across the entire length of the laminate or not present at all. A thick film of magne-

tostrictive material was embedded in the laminates rather than particles. The adjusted parameter

results led to the removal of the [127] data from the overall dataset to avoid introducing undesired

outliers to the algorithm that could alter the prediction ability.

The data from [155] was also excluded from consideration because the stacking sequence was

unknown for the experimental laminates. The effect of the stacking sequence was not distinguishable

in the plots of the induced sensing voltage, such as Fig. 5.1, but [7] suggested that the ability to

discern the ply variation could be beneficial. Both the datasets extracted from [57] and [6] contained

information about the stacking sequence. Figure 5.4 displays the distribution of the adjusted RMS

voltages for both of these datasets. The greater mean adjusted voltage the [57] dataset was attributed

to the greater number of data points than [6].

Only 3.34% of the data points in the combined dataset using data from [57] and [6] contained

a delamination. The two delamination points from [6] were recorded using a CFRP beam with a

stacking sequence of [(0/90)3/m/(0/90)3] whereas [57] employed unidirectional CFRP laminates in
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Figure 5.3: The adjusted RMS voltage parameter resulted in more comparable data values for three
of the four extraction sources.

Figure 5.4: The adjusted RMS voltage data extracted from [6] and [57]. The markers imposed over
the box plot are the experimental data points, and the darkened markers are data points obtained
for a region containing a delamination.
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all the conducted experiments. Only unidirectional CFRP laminates were considered for the finalized

machine learning dataset to simplify the features in the dataset. Because the orientation angle of a

unidirectional laminate is equal for all laminae, only an integer value of the number of plies above

and below the Terfenol-D layer was necessary to characterize the composite. A stacking sequence

with mixed orientation angles could be represented this way, but the effects of the orientation angle

on the composite properties would not be appropriately considered. The materials used in [57] were

also the same for all the experimental beams; therefore, there was no need to incorporate the elastic

properties of the materials for this investigation.

5.2.1 Machine Learning Dataset

The data extracted from [57] contained the most number of total data points (1, 216) as

well as the most points with an embedded delamination (42). For a classification problem, though,

an introduced dataset with only 3.45% of a target label would likely yield poor results. An initial

machine learning algorithm was trained and tested with the whole 1, 216 data point set to examine

this hypothesis. The accuracy of the model was found to range from 98 − 100%, and immediate

concerns were raised with accuracies of this magnitude. The initial algorithm was trained with

a training set containing a majority of samples not containing an embedded delamination. The

algorithm predicted no delaminations for almost every data point in the testing set during testing,

even if a delamination existed for the respective testing sample point. The lack of delamination data

meant that randomly dividing the total dataset into training and testing sets could yield sets with

no delamination samples. While machine learning has been associated with “big data,” the data

must represent the investigated problem. It was determined that a subset of the data extracted

from [57] would be best suited for the machine learning investigation in this work.

A total of 98 data points were chosen to be used in the machine learning dataset, and the

extracted information for each data point is presented in Appendix B. The subset contained all 42

delamination points to maximize the exposure of an algorithm to one class of the target labels. Table

5.2 shows that just over 40% of the subset points contained a delamination, which was a significantly

greater ratio than that of the original, complete dataset extracted from [57]. Slightly more points

not containing an embedded delamination were selected for the subset because these points offered

more variance in information about the CFRP beam. Some of the undamaged points contained

no Terfenol-D. The algorithm was exposed to various voltage magnitudes because the regions not
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Figure 5.5: The effect of the presence of Terfenol-D on the adjusted RMS voltage was 0.020 V less
on average that that of the data points with Terfenol-D particles embedded.

Table 5.2: Breakdown of the 98-point data subset taken from [57] for the machine learning algo-
rithms.

With Terfenol-D Without Terfenol-D Total

With Delamination 42 0 42 (42.86%)

Without Delamination 29 27 56 (57.14%)

Total 71 (72.45%) 27 (27.55%) 98 (100%)

containing Terfenol-D had lower induced sensing voltages shown in Fig. 5.5. Nearly 25% of the

data points did not contain Terfenol-D offering an algorithm opportunity to correlate the effect of

Terfenol-D on the adjusted voltage parameter. The 56 data points not containing a delamination

were selected at random using a Python script. This 98-point dataset was unchanged for all the

tested machine learning algorithms to avoid introducing variability caused by the data.

5.2.1.1 Sources of Error

The experimental data employed in this work was previously found in work completed by

Rudd et al. [150] and Rudd [57]. The particle distribution led to variations in the induced sensing

voltages. Accumulations of particles in one region resulted in increased voltages in that region due
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to the localized increase in magnetostriction; likewise, regions void of Terfenol-D particles had lower

induced sensing voltages. A trenching method was suggested in [57] to reduce the error caused by

insufficient spreading, and the presence of localized accumulations of particles was reduced. The

testing apparatus increased variability as the diameter of the actuating and sensing coils had to

be larger than the width and thickness of the experimental beams. While most of the generated

magnetic field was directed towards the beams, the strength of the actuating magnetic field decayed

with distance. The larger the radius of the coils, the smaller the magnitude of the magnetic field

intensity that reached the embedded Terfenol-D particles per the inverse square law:

Hintensity ∝
1

distance2
(5.3)

Alternative sensing methods investigated in [127] aimed at reducing this effect through the use of a

single-sided apparatus. A film was also used by Chen et al. [127] to reduce the distribution effects.

5.3 Tested Machine Learning Algorithms

The machine learning application investigated in this work aimed to detect the presence of

an embedded delamination in a CFRP using experimental data for the embedded magnetostrictive

particle NDE method. This classification problem consisted of two classes: a delamination present

(1) or a delamination not present (0). A select number of machine learning algorithms are applicable

for classification work. The algorithms selected for this work were implemented for SHM/NDE

applications in previous works. The algorithms were also found within the scikit-learn package [37]

for Python. The same processing and implementation methods were followed for each algorithm

examined to reduce variability in the obtained results.

5.3.1 Preparation of Data

The same dataset was employed to eliminate any inconsistencies in the information intro-

duced to the algorithms. All of the known information for the data in Appendix B was not introduced

to the algorithms. The available information, called features, that could be introduced into the al-

gorithms included knowledge about the constituent materials (the fiber and matrix materials), the

stacking sequence, the presence of Terfenol-D, sensing voltage values, and information about the
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presence of a delamination. Prediction errors can arise when a large number of features are included

in an algorithm.

The curse of dimensionality refers to the situation when a dataset contains too many features

in a classification problem [156]. Overfitting of the model and classification error are possible results

of this phenomenon. For example, 26 unique stacking sequences were present in the 98-point dataset,

and each of these stacking sequences needed to be translated to a numerical value for input into the

algorithms. The orientation angle of each ply could be introduced as an independent feature, but

that would require the definition of 16 features for each laminate because the thickest laminate had

16 plies: ([07/m/d/07]), where m referred to the location of the magnetostrictive material and d the

location of the embedded delamination. Quantifying each ply of a laminate in addition to including

the presence of a delamination and Terfnol-D using Boolean logic would result in an undesired

multiplicity of information being supplied to an algorithm. Two latent features were introduced to

reduce the dimensionality of the features by reducing the stacking sequences to the number of plies

above and below the magnetostrictive lamina. This method allowed the stacking sequence to be

reduced from a possible 16 terms to only two (four if including the Boolean logic to represent the

presence of Terfenol-D and a delamination). Integer quantities represented the stacking sequence

rather than the composite nomenclature, thus creating comparable values between data points. The

laminates used in [57] were made of the same fiber and matrix material allowing for the exclusion

of these two features for this initial machine learning application. A total of five features were used

in this two-class problem:

• CFRP plies above the Terfenol-D sensing lamina (integer)

• CFRP plies below the Terfenol-D sensing lamina (integer)

• Presence of Terfenol-D (binary: 1 or 0)

• Adjusted RMS Voltage, VRMS,adjusted (float)

• Presence of delamination (binary: 1 or 0)

Reducing the number of features involved in this machine learning investigation resulted

in a limited scope of application. The elimination of the material properties did not allow for

the explicit inclusion of their values. The obtained sensing voltage was related to the composite’s

material properties, so the trained algorithms were best suited for composites with HexPly AS4/3501-

6 carbon fiber laminae. The use of the adjusted voltage parameter aimed at reducing the effect of
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the dismissal of the consideration of the specific materials. The data points were also limited to basic

information about a laminate’s structure. Variations in the orientation angles of laminae were not

included. Only unidirectional laminates were included in the implemented dataset. Applying new

data to the trained algorithms for prediction should follow the nature of the laminates involved in

training. Previous literature showed that significant error could occur when unfamiliar composites

are introduced to a machine learning algorithm during testing [107,108].

5.3.2 Introduction of Employed Machine Learning Algorithms

A total of eight different machine learning algorithm formulations were employed in this

work for classification. A brief synopsis of each of the methods is included in this section to discuss

the mathematical approach utilized in each formulation. Variations can be made to the methods to

manipulate the relationships and functions implemented during the classification process.

5.3.2.1 Support Vector Machines

Support vector machines (SVM) create hyperplanes to divide data into clusters. They are

commonly implemented for classification problems of various dimensions and can support a high

dimensional space, i.e., many features, by manipulating the formulation. The optimal hyperplane

maximizes the distance to the nearest data points regardless of class during the training phase.

This distance, called the margin, relates to the error of the algorithm; the larger the value of the

margin, the lower the value of the classification error. An SVM seeks to optimize the location of the

hyperplane during training.

The formulation of an SVM assumes that a set of training vectors, xi ∈ Rp, i = 1, . . . , n,

falls in two classes. A target vector is defined as y ∈ {1,−1}n. The overall goal of the method is to

find the direction w ∈ Rp and intercept b ∈ R such that the prediction of the constraint equation,

sign
(
wTφ (x) + b

)
, yields the most number of correct values when compared to the target vector.

The general formulation of a SVM seeks to solve the following minimization problem:

min
w,b

1

2
||w||2 (5.4)

subject to yi (w · x+ b)− 1 ≥ 0, i = 1, . . . ,m

where w is the direction of the hyperplane, b is an intercept value of the hyperplane, and m is the
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number of data points [157]. Alternatively, Eq. (5.4) can be expressed using vector notation [37]:

min
w,b

1

2
wTw (5.5)

subject to yi
(
wTφ (x) + b

)
≥ 1, i = 1, . . . ,m

where φ (x) is a function of x. Variations to the general SVM method incorporate a cost (or penalty)

function to the algorithm. A support vector classifier (SVC) allows data samples to lie a distance

away from their correct margin value. The C-SVC formulation includes the distance ζi paired with a

penalty parameter C which issues a value when the sample is misclassified during training [37,157]:

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (5.6)

subject to yi
(
wTφ (x) + b

)
≥ 1− ζi, ζi ≥ 0, i = 1, . . . ,m

The value of ζi can be manipulated to either loosen or tighten the value of the constraint equation.

The value of C determines the importance of the allowable distance for a sample point from the

hyperplane. A large value of the penalty term will not allow outliers to exist in the solution and will

only be applicable for linearly separable data. A small value of C, on the other hand, loosens the

constraint equation. In the case of C = 0, the hyperplane often fails to classify the data. A kernel

function K (xi, xj) is introduced using the dual problem for the primal:

min
α

1

2
αTQα− eTα (5.7)

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . ,m

where e is a vector containing only ones, Q is an n × n positive, semidefinite matrix, and αi are

called the dual coefficients. The matrix Q contains the kernel such that Qij = yiyjK (xi, xj). The

kernel function allows for the method to classify nonlinear separable data and can take the following
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forms:

Linear kernel: K (xi, xj) = xi · xj = 〈x, x′〉 (5.8)

Polynomial kernel: K (xi, xj) = (xi · xj + c)
d

= (γ〈x, x′〉+ c)
d
, (5.9)

Radial Basis Function (RBF) kernel: K (xi, xj) = exp
(
−γ||xi − xj ||2

)
(5.10)

= exp
(
−γ||x− x′||2

)
(5.11)

Sigmoid kernel: K (xi, xj) = tanh (γ〈x, x′〉+ c) (5.12)

where c, d, and γ are constants supplied to the algorithm during the kernel function declaration.

The predicted value is found as the sign of

∑
i∈SV

yiαiK (xi, xj) + b (5.13)

where SV signifies the data points within the margin of the hyperplane. The decision surface is

related to the order of the kernel function. A similar method to the C-SVC is the ν-SVC formulation,

which places bounds on the margin error. A linear SVC implements the formulation of the primal,

Eq. (5.6), with modification to the loss term:

min
w,b

=
1

2
wTw + C

∑
i=1

max
(
0, yi

(
wTφ (x) + b

))
(5.14)

This type of SVM can only be applied to linearly separable data, so only the linear kernel can be

used in this algorithm formulation.

5.3.2.2 Discriminant Analysis

The discriminant analysis method is defined by the order of the decision surface for the

problem. The surfaces can be linear (LDA) or quadratic (QDA) and can model multiclass problems.

The method involves a probabilistic model that uses the conditional distribution of the data asso-

ciated with each class, P (X | y = k). Using Bayes’ rule, the predictions for each training sample

point x ∈ Rd are determined as

P (y = k | x) =
P (x | y = k)P (y = k)

P (x)
=

P (x | y = k)P (y = k)∑
l P (x | y = l) · P (y = l)

(5.15)

138



Bayes’ rule, as given in Eq. (5.15), mathematically states that the probability of y = k occurring

given the observation of sample x equals the conditional probability of x occurring when y = k times

the probability of observing y = k divided by the probability of observing x. The class k is selected

which maximizes the posterior probability. According to [37], a multivariate Gaussian distribution

models P (x | y) in an LDA and QDA; the density of a multivariate Gaussian distribution takes the

form

P (x | y = k) =
1

(2π)
d/2 |Σk|1/2

exp

(
−1

2
(x− µk)

t
Σ−1
k (x− µk)

)
(5.16)

where d equals the number of features involved in the model. A discriminant analysis model aims

to maximize the posterior probability. For a QDA, the log of the posterior is given as

logP (y = k | x) = logP (x | y = k) + logP (y = k) + Cst (5.17)

= −1

2
log|Σk| −

1

2
(x− µk)

t
Σ−1
k (x− µk) + logP (y = k) + Cst (5.18)

where the Cst term represents the P (x) and other constants from the Gaussian distribution. The

LDA assumes that the Gaussian distributions for each class have the same covariance matrix:
∑
k =∑

. The log of the posterior may then be expressed as

logP (y = k|x) = −1

2
(x− µk)

t
Σ−1 (x− µk) + logP (y = k) + Cst (5.19)

The LDA formulation of the log-posterior uses the Mahalanobis distance, which describes the dis-

tance a sample point x is from the mean µk. Therefore, an LDA model determines the class of a

sample to be that which has the closet mean according to the Mahalanobis distance.

5.3.2.3 Gradient Descent

The gradient descent algorithm is an optimization method that utilizes a hyperplane to

define regions much like SVMs. For a classification problem, the training samples are defined as

(xi, yi) , . . . , (xn, yn) where xi ∈ Rm and yi ∈ {−1, 1}. The scoring function (hyperplane) involved

in gradient descent is modeled by the linear relationship

f (x) = wTx+ b (5.20)
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where, as with the SVM method, w ∈ Rm and b ∈ R [37]. Predictions for a binary classification

problem are determined based on the sign of Eq. (5.20). The gradient descent optimization problem

seeks to minimize the training error to determine the values of the constants w and b. The training

error E employs a loss function which differentiates the gradient descent method from other methods:

E (w, b) =
1

n

n∑
i=1

L (yi, f (xi)) + αR (w) (5.21)

where L is the loss function related to the fit of the model to the samples, R is a penalty term (also

known as a regularization term), and α is a non-negative hyperparameter that controls the influence

of the penalty on the error. Common loss functions include:

Hinge: L (yi, f (xi)) = max (0, 1− yif (xi)) (5.22)

Perceptron: L (yi, f (xi)) = max (0,−yif (xi)) (5.23)

Modified Huber: L (yi, f (xi)) =


max (0, 1− yif (xi))

2
, yif (xi) > 1

−4yif(xi), otherwise

(5.24)

Log: L (yi, f (xi)) = log (1 + exp (−yif (xi))) (5.25)

The regularization term is also user-defined and can take the form of

L2 norm: R (w) =
1

2

m∑
j=1

w2
j = ||w||22 (5.26)

L1 norm: R (w) =

m∑
j=1

|wj | (5.27)

Elastic Net: R (w) =
ρ

2

n∑
j=1

w2
j + (1− ρ)

m∑
j=1

|wj | (5.28)

In machine learning, stochastic gradient descent (SGD) implements the gradient descent method for

each sample. The algorithm calculates the error for each sample point and updates the values of the

model parameters w and b using a learning rate η.
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5.3.2.4 Nearest Neighbor

When applying the nearest neighbor (NN) algorithm to classification problems, the algo-

rithm seeks to find the minimal distance for each sample to a number of clusters representing the

targets. This type of algorithm differs from other machine learning methods as they do not re-

sult in a parameter-based model; they are considered a type of instance-based or non-generalized

learning [37]. The algorithm stores the training samples for future predictions. A common nearest

neighbor method is the k-nearest neighbors (k-NN) formulation where the user defines an integer

value for the number of nearest neighbors k for a specific sample point. Internally, a k-NN algorithm

examines each sample point and determines its classification based on the majority of the nearest

neighbors around the point.

Distance calculations are necessary for determining the nearest points to a specific sample.

In a brute force approach, the distance between a specific sample and the rest of the complete

dataset is calculated. As the number of samples in the dataset increases, this method can prove

computationally intensive. Another approach for implementing a k-NN algorithm is the use of a tree-

based structure for determining the distances. This approach examines the distance relationships

between values to reduce the number of calculations. Two variations of the tree method include the

KD and ball tree approaches [158,159]. The KD tree approach is quick because it reduces the number

of distance calculations by partitioning data, so multidimensional calculations are not required. Low

dimensional problems can be quickly solved using a KD tree approach, whereas the ball tree approach

is better suited for higher-dimensional problems. Data is divided into hyper-spheres using the ball

tree approach, and the results of this approach can be dependent on the structure of the data. The

use of hyper-spheres combined with a triangular distance calculation allows for higher-dimensional

data to be modeled.

5.3.2.5 Näıve Bayes

Näıve Bayes models are beneficial for datasets with a small number of samples because they

independently estimate each feature distribution. This formulation reduces dimensionality and the

possibility of problems arising from the curse of dimensionality [37]. The basis of the näıve Bayes
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method lies in the probability of an outcome given an instance which Bayes’ rule defines by

P (y | x1, . . . , xn) =
P (y)P (x1, . . . , xn | y)

P (x1, . . . , xn)
(5.29)

The näıve conditional independence assumption,

P (xi | y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi | y) (5.30)

is assumed for all i. Substituting this assumption into Eq. (5.29) yields a simplified expression

derived from Bayes’ rule

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(5.31)

Under the assumption that the probability for each instance is equal, P (x1, . . . , xn) would be a

constant value. Therefore, Eq. (5.31) can be expressed as proportional terms to result in the näıve

Bayes probability model

P (y | x1, . . . , xn) ∝ P (y)

n∏
i=1

P (xi | y) (5.32)

The classification rule for the näıve Bayes method employs a maximum a posteriori (MAP) estima-

tion to determine the class label for a sample point; the function is as follows:

ŷ = arg max
y

P (y)

n∏
i=1

P (xi | y) (5.33)

Variations in näıve Bayes classifiers are made through altering the probability distribution of P (xi | y).

For example, a Gaussian näıve Bayes algorithm assumes the likelihood of the features to follow a

Gaussian distribution:

P (xi | y) =
1√

2πσ2
y

exp

(
− (xi − µy)

2

2σ2
y

)
(5.34)

where the standard deviation σy and mean µy are estimated for the population, i.e., the dataset.

5.3.2.6 Decision Tree

The decision tree method partitions data using conditional statements. Decision rules are

applied at each “leaf” of the tree to divide data, and data division occurs until all leaves contain a
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specified number of samples. Mathematically, a series of nodes m are employed; data is analyzed

at each node and then sent away from the node after being divided [37]. A set of training vectors

xi ∈ Rn, i = 1, . . . , l with a corresponding label vector y ∈ Rl are passed into the initial node of a

decision tree. Let the combination of these vectors be denoted by the set Q. The data is divided by

the candidate split θ = (j, tm) which contains the feature j and a threshold tm. At the node, the

dataset is divided into two subsets, Qleft (θ) and Qright (θ):

Qleft (θ) = (x, y) | xj ≤ tm (5.35)

Qright (θ) = Q \Qleft (θ) (5.36)

where Eq. (5.36) states that Qright (θ) contains the remaining data in Q after removing the items in

Qleft (θ). The newly defined sets are then passed to subsequent nodes where the process is repeated.

The impurity that occurs at a node concerns the error in making the data split. The parameters

determined for the candidate split are found from

G (Q, θ) =
nleft
Nm

H (Qleft (θ)) +
nright
Nm

H (Qright (θ)) (5.37)

θ∗ = arg min
θ
G (Q, θ) (5.38)

where H () is an impurity function. For a classification at a region Rm with a number of observations

Nm, the impurity function may take the form of

Gini: H (Xm) =
∑
k

pmk (1− pmk) (5.39)

Entropy: H (Xm) = −
∑
k

pmk log (pmk) (5.40)

Misclassification: H (Xm) = 1−max (pmk) (5.41)

where

pmk =
1

Nm
∑
xi∈Rm

I (yi = k)
(5.42)

Decision trees can act as a white box where the user can define conditional relationships to be used

in the model. The method results in a graphical illustration of the logic involved in classifying

the dataset; however, the data partition process structure can differ with each application of the
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model. The logic employed during classification can over-complicate a model and is not suited for a

generalized problem.

5.3.2.7 Ensemble Methods

Ensemble methods implement several models and then combine their results to improve

generalizability over the implementation of a single model [37]. The predictions of individual models

are averaged using an averaging scheme. One type of ensemble method is a forest of random trees. In

this approach, a set of individual decision trees are trained using the supplied data. The predictions

of the individual trees are averaged together to yield the prediction of the “forest”. In a random

forest classifier model, only a subset of the given dataset is introduced to each decision tree. The

data drawn from the dataset is replaced, so the dataset does not decrease in size for selection.

Randomness increases further in an extremely randomized tree model by randomizing the threshold

tm values for each feature in the set.

5.3.2.8 Neural Network

A nonlinear relationship can be determined using the black-box formulation of a neural

network model, specifically a multilayer perception (MLP) algorithm. This approach combines a

series of neurons (or perceptrons) in layers as illustrated in Fig. 2.7 to determine relationships

between inputs and outputs. A perceptron linearly combines its inputs {xi|x1, x2, ..., xm} with

weights wi and a bias value b such that

y = f (w1x1 + w2x2 + ...+ wmxm + b) (5.43)

The function f is called the activation function, and it determines the value of y outputted to the

subsequent layer of perceptrons. For binary problems, the activation function determines the class
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Figure 5.6: The range of the activation functions vary based on the magnitude and sign of the input.

by calculating y to equal either one or zero. Common activation functions include:

Identity: f (x) = x (5.44)

Logistic/sigmoid: f (x) =
1

1 + exp (−x)
(5.45)

Hyperbolic tangent (tanh): f (x) = tanh (x) (5.46)

Rectified linear unit (ReLU): f (x) = max (0, x) (5.47)

Figure 5.6 illustrates the range an activation function maps the given domain. The obtained range

can span from negative to positive infinity depending on the selected function.

A loss function applies a penalty during training to improve the performance of the model.

A cross-entropy function is employed for a classification problem where [37]

Loss (ŷ, y,W ) = −y ln ŷ − (1− y) ln (1− ŷ) + α||W ||22, α > 0 (5.48)

During training, the MLP improves its performance via loss minimization by updating the weight

and bias values. After calculating the new parameters, they are propagated to the previous layer of
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perceptions via a method known as back-propagation. The model seeks to minimize the loss function

below a specified threshold or until a set number of iterations are completed; if the threshold has

not been met, convergence will not occur.

5.4 Testing Procedure

The algorithms discussed in Section 5.3.2 were investigated in this work using the defined

dataset in Appendix B. A general Python script (see Appendix D.4) was written for use with

the various algorithms. The scikit-learn package [37] was selected for use in the script because of

its machine learning capabilities. The package contains a variety of supervised and unsupervised

learning algorithms along with preprocessing and analysis tools.

Before implementing an algorithm within the script, a pipeline was defined to create a uni-

form process for all the prediction experiments. The pipeline allowed for multiple estimators/pro-

cesses to be linked together such that data flowed from one to the next. The employed pipeline

contained two estimators: a preprocessing step and the machine learning model. A standardization

process was first employed in the pipeline to create a normalized distribution of data for each feature.

A z-score technique was applied to the data of each feature such that the scaled sample had a value

of

xscaled =
x− µ
σ

(5.49)

where µ is the mean of the values for the specific feature, and σ is the standard deviation. Scaling

the data used in an algorithm reduced the likelihood of an outlier sample or a feature set with a large

variance to impact the performance of the algorithm significantly. The scaled data was then passed

through the pipeline and inputted into the specified machine learning algorithm with user-defined

parameters.

The investigated algorithms required a set of features and target labels/classes for classifi-

cation. As previously mentioned, a two-class problem was of interest to classify whether or not a

sample contained an embedded delamination. The presence of a delamination was extracted from

the dataset for use as the target label. Four features were inputted to each model to predict the class

of the sample. The number of plies above and below the Terfenol-D sensing lamina, the presence of

Terfenol-D, and the adjusted RMS voltage were standardized independently and used as the feature

set.
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Two methods were employed to analyze the performance of the investigated machine learning

algorithms. Using a looping scheme of 30 iterations, each of the 1, 249 machine learning models was

trained and tested with a random split of test-train data. The data was split such that 90% of

the data was used during training, and the remaining data was used for testing/prediction making.

Four metrics were calculated by comparing the predicted results from the trained models to the

actual classification. The accuracy, precision, recall, and F1-score were measured for each of the

30 trained models. These metrics were defined using four indicators: true positive (TP ), true

negative (TN), false positive (FP ), and false negative (FN). TP and TN corresponded to the

actual number of each class, i.e., the number of points predicted correctly with and without a

delamination. A FP represented the classification of a true negative as a positive. Similarly, the

number of FNs represented the number of true positives predicted as a negative case. If the presence

of a delamination was considered the negative case, a high number of FP s would raise concern as

the model was predicting damaged states as undamaged. This type of prediction could lead to

catastrophic failure and prove the model to be inefficient at predicting the presence of damage.

Using these indicators, the four performance metrics were defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(5.50)

Precision =
TP

TP + FP
(5.51)

Recall =
TP

TP + FN
(5.52)

F1− Score =
2×Recall × Precision
Recall + Precision

(5.53)

The second portion of the experimentation methodology incorporated a cross-validation

scheme in the training of the algorithms. Repeatedly training a model with the same data can

cause overfitting to occur where the model makes predictions closely resembling the behavior of the

training set. A validation set can be defined to evaluate the performance of the model before testing;

however, implementing a validation step reduces the number of sample points available for training

and testing. Cross-validation schemes seek to mitigate the effect of overfitting by partitioning the

overall training set into subsets. The need for a validation set is also eliminated based on the

methodology of the cross-validation scheme.

For a k-fold cross-validation scheme, the data designated for training is divided into k folds
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as illustrated in Fig. 2.9 where each fold contains an equal number of samples. The model is then

trained using k − 1 folds, and the remaining fold is used for testing. If the number of folds k equals

the number of samples in the dataset, n, the concept of the leave-one-out (LOO) cross-validation

scheme occurs. The length of the training sets differs between a k-fold and LOO approach. For the

LOO scheme, the number of training sets employed for each fold is n− 1, whereas a k-fold scheme

uses (k − 1)n/k. A LOO cross-validation scheme has been found to yield results similar to only

using one training dataset because there is only a single sample point difference. A cross-validation

scheme attempts to reduce the variance in the predictions by looping the training-testing scheme

over the entire training dataset. The algorithms were tested using a k-fold cross-validation scheme

for k = 2 to 98 where the k = 98 scheme resembled the leave-one-out approach. The accuracy for

each partition was recorded to assess the effect of k and determine the most accurate number of

folds for each model.

5.5 Results of Tested Machine Learning Algorithms

Variations of the eight algorithms were made by manipulating internal parameters. For

instance, the number of nearest neighbors was varied for the k-NN algorithms. The mathematical

formulation was also manipulated for each of the eight algorithms explored to yield an experiment

containing a total of 1, 249 models. Appendix C contains a list of the machine learning algorithm

variations employed.

5.5.1 Single Train-Test Data Partition Experiments

Using a 90/10 training-testing data split, the results from the 37, 470 single partition exper-

iments (30 unique runs of each of the 1, 249 models) were examined using the metrics of accuracy,

precision, recall, and F1-score as given in Section 5.4. Table 5.3 contains statistics for the accuracy of

the eight algorithms examined. The mean accuracy of the models was approximately 70%. With an

average standard deviation of 13.23%, the accuracy of the single split experiments exhibited a wide

distribution. The maximum accuracy score for half of the algorithms was over 95%, whereas the

minimum scores for half of the algorithms were below 40%. The distribution of the results suggested

that the employed single partition did not yield datasets capable of representing the breadth of the

classification problem. Using the randomized split, the testing or training set could have contained
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Table 5.3: Accuracy statistics for the eight algorithms examined using 30 variations of each model
with a single data partition for testing and training.

Algorithm Mean Standard Deviation Maximum Minimum

Näıve Bayes 74.33% 14.53% 100.00% 30.00%

Discriminant Analysis 73.50% 12.61% 100.00% 55.00%

Ensemble Method 72.50% 11.77% 90.00% 45.00%

Neural Network 71.76% 13.21% 95.90% 42.77%

Support Vector Machine 71.56% 13.51% 97.78% 44.44%

Decision Tree 70.67% 12.36% 90.00% 40.00%

Stochastic Gradient Descent 68.40% 14.32% 92.00% 32.00%

Nearest Neighbor 67.85% 13.55% 93.50% 39.12%

significantly more samples of one of the two classes. This distribution would sway the performance

of the model to predict a greater number of false positives or false negatives.

5.5.2 K-fold Cross-Validation Experiments

5.5.2.1 General Algorithm Performance

The cross-validation scheme was implemented to introduce more data to each model to

reduce the overall variance [37]. The spread of the results was significantly reduced from those of the

single partition experiments, as shown in Tab. 5.4. The average standard deviation of the accuracy

scores decreased by nearly 84% to an average value of 2.08%. The mean accuracy of the SVM and

MLP algorithms was relatively unaffected by using a cross-validation scheme. The minimum and

maximum accuracy scores for all the algorithms were comparable and much closer using a cross-

validation scheme than a single split with a fixed ratio. The magnitudes of the mean accuracies were

comparable between the single split and the cross-validation schemes at approximately 70%.

Comparing Tabs. 5.3 and 5.4, the decision tree, gradient descent and k-NN algorithms

were found to perform the worst as an algorithm as a whole. Only one decision tree model was

examined, and the poor performance illustrated a shortcoming of the algorithm. This algorithm has

difficulty making generalized predictions for a problem, so the cross-validation scheme challenged

the algorithm with varying training data. The algorithm created a decision process based on the

given features in the training set. Any variations in the testing set would inhibit the ability of the

trained decision tree to make an accurate prediction; therefore, a decision tree was determined to
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Table 5.4: Accuracy statistics based on the algorithm employed for all the cross-validation experi-
ments.

Algorithm Mean Standard Deviation Maximum Minimum

Support Vector Machine 72.13% 1.71% 75.59% 64.33%

Neural Network 71.53% 2.10% 75.10% 62.11%

Ensemble Method 70.92% 1.72% 74.69% 63.79%

Näıve Baye 70.54% 0.55% 72.32% 69.32%

Discriminant Analysis 70.41% 2.82% 74.48% 56.12%

Decision Tree 68.96% 1.90% 76.53% 61.30%

Stochastic Gradient Descent 67.33% 4.08% 77.21% 58.12%

Nearest Neighbor 66.73% 1.75% 70.17% 59.76%

not be an effective model formulation for this problem.

The cross-validation experiments were concerned with the mean accuracy of each respective

fold. The leave-one-out scheme, which uses each sample to test the performance of the model, was

compared against the mean accuracy for various numbers of folds using a parametric study. As the

number of folds increased, the mean accuracy score for the respective fold was found to converge to

the LOO accuracy value as shown in Fig. 5.7. In the first 30 folds, the mean fold accuracy differed

the most from the LOO accuracy but eventually converged to the LOO mean. The term efficient

fold was defined for use in this work as the number of folds less than 30 that corresponded to the

smallest difference between the LOO scheme and fold mean accuracy. Figure 5.8 shows that k = 17

and k = 26 visually appeared the closest to the LOO mean for the SVM-SVC-sigmoid model. The

fold corresponding to k = 26 was the most efficient fold with a percent difference of 1.65%.

This fold value was found to be greater than the commonly accepted values of k = 10 or

k = 20 [37]. Examining the results of the efficient fold number for the examined models in Fig. 5.9

found that a large number of models yielded the best results for a fold range of k = 25−29; however,

a majority of the evaluated models had efficient fold numbers less than the suggested k = 20. A

trade-off was observed in both Figs. 5.7 and 5.8 between the mean accuracy and variance. Though

greater mean accuracy values than that achieved with a LOO scheme were obtained, the variance in

the accuracy scores for each partition of a respective fold scheme increased with the number of folds.

Computational expenses also directly increased with the number of folds; the computational time,

though, was negligible in this work due to the size of the dataset. A k-fold cross-validation scheme

with a fold number less than the number of data points, i.e., a LOO scheme, yielded acceptable
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Figure 5.7: The mean accuracy for each fold of the SVC model utilizing a sigmoid function. The
leave-one-out accuracy (77.55%) is shown by the red line. The error bars show that the spread of
the accuracy increased as the number of folds increased.

accuracy scores.

The performance indicators discussed in Section 5.4 were visualized through confusion ma-

trices. Figure 5.10 shows a confusion matrix for the SVM-SVC-sigmoid model with a k = 26 k-fold

cross-validation scheme. The diagonals of the confusion matrix are related. The diagonal quadrants

going from top-to-bottom and left-to-right show the correct predictions, whereas the other diago-

nal contains the incorrect predictions. The top-left square shows that 34 samples were correctly

predicted as not having a delamination; likewise, 35 samples were correctly predicted to have a de-

lamination. A total of 29 samples (≈ 30%) were incorrectly predicted. More samples were classified

as containing a delamination when the actual sample point did not have a delamination than vice

versa. Only 7% of the samples that contained a delamination were classified as not containing a

delamination; this was the lowest percentage for any of the classification quadrants by this model,

offering promise to the applicability of the specific model.

A majority of the investigated models had the lowest prediction percentage for the cross-

validation experiments in the bottom left quadrant of their confusion matrix; consider this quadrant
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Figure 5.8: The mean accuracy for the first 30 folds of the SVC model utilizing a sigmoid function.
The leave-one-out accuracy (77.55%) is shown by the red line.

Figure 5.9: The distribution of the efficient number of folds.
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Figure 5.10: A confusion matrix for the k = 26 SVC model with a sigmoid function which uses the
number of true positives, true negatives, false positives, and false negatives.

as the case of a false positive. An overprediction of the number of delaminations does not offer

as adverse a failure effect as overpredicting the number of no delamination samples. A system

predicted not to contain a delamination may be considered safe and placed back into operation. If

damage were to exist, however, catastrophic, unexpected failure could occur. On the other hand,

predicting a delamination would signal the necessity to evaluate the system further to determine if

a delamination existed at the given point of interest. Ideally, an implemented model would reduce

the number of false positives and false negatives to limit the need for a secondary examination of a

material or system. Increasing the number of samples in the dataset could increase the variance in

the feature values, ultimately providing more information for learning and trend detection.

5.5.2.2 Multi-layer Perceptron Performance

A total of 1, 149 MLP models were examined during this work. Three parameters were

manipulated to observe their effect on the performance of this type of algorithm. The activation

function was varied to include all the possible functions available within the scikit-learn package [37].

The number of hidden layers and the perceptrons in each hidden layer were parametrically studied
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to examine the effect of the MLP’s architecture on its performance. One, two, and three hidden

layer networks were investigated, and each layer was comprised of a number of perceptions ranging

from one to 100. The general architecture of the MLPs had four input perceptrons, a number of

specified perceptrons in hidden layers, and two output perceptrons correlated to the two class labels:

One hidden layer: 4−Ni − 2, Ni = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100

Two hidden layers: 4−Ni −Ni − 2, Ni = 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100

Three hidden layers: 4−Ni −Ni −Ni − 2, Ni = 20, 40, 60, 80, 100

Table C1 contains the activation functions implemented in this work that are available with [37] for

a MLP classifier.

The performance of the MLP models were compared in terms of their runtime and efficient

fold mean accuracy in Figs. 5.11, 5.12, and 5.13. A standardized z-score, Eq. (5.49), was implemented

to transform these two quantities into a normal distribution to compare the MLP models against

one another. The runtime value corresponded to the computational time required to compute all of

the k-fold cross-validation schemes, not just the efficient fold. Many of the MLP models failed to

converge to the optimization tolerance of 1e−4 when using an epoch of 800 iterations. The runtime

was hypothesized and observed to increase if convergence issues were obtained for a respective model.

The single hidden layer models experienced the most considerable variance in performance

for both parameters, as shown in Fig. 5.11. The number of single hidden layer models run was less

than 20% of the other two architectures. The number of nodes in the single hidden layer was selected

for consistency with the two and three hidden layer architecture studies. Confidence in the results of

the single hidden layer models was not high because of the lack of variation in the examined models.

No decisive conclusion was determined as to whether the single hidden layer architecture was best

suited for this classification because of the limited number of models examined.

In the case of the two hidden layer models, the runtime of the sigmoid (logistic) and hy-

perbolic tangent (tanh) were comparable and closest to the overall mean of all the two hidden layer

models in Fig. 5.12. The tanh function models showed the second least variance among both param-

eters for the models only outperformed by the identity function. In contrast, the logistic function

models exhibited the greatest variance for the efficient fold accuracy, and several outlier models

existed with significantly poor scoring performances relative to the population’s mean.
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Figure 5.11: The one hidden layer MLP models were found to have a wide spread for both the
accuracy and runtime values. The variance was attributed to the lack of models run.

Figure 5.12: The two hidden layer MLP models were found to have a wide spread of runtime. The
stars represent the mean parameters for each set.
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Figure 5.13: The three hidden layer MLP models had several outliers with respect to runtime and
accuracy. The performance of the models for the tanh and ReLU models appear comparable based
on their clusters and mean values. The stars represent the mean parameters for each set.

The effect of including negative values appeared to impact the performance and runtime

of the two hidden layer models. Both the identity and hyperbolic tangent activation functions

accounted for negative values instead of mapping them to zero. The models incorporating these two

functions made predictions with the cumulative highest mean accuracy scores. These functions also

had the shortest runtime averages. The logistic and ReLU functions, which mapped negative values

to zero, produced the worst average scoring performances. Equating any negative values to zero can

decrease the ability of a model to fit the given data; this behavior has been defined as the dying

ReLU problem [160,161]. In the case of two hidden layers, the need to pass negative values through

the function was attributed to the normalization of the feature data implemented in the machine

learning pipeline. A z-score normalization yielded both positive and negative values centered around

a mean of zero; therefore, the feature vectors contained values less than zero. Mapping the negative

values of features to zero inhibited the models from adequately accounting for these features during

learning.

The inclusion of a negative value from the activation function played a lesser role in the
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Figure 5.14: The two hidden layer MLP models had on average a greater mean accuracy using a
k-fold cross-validation scheme. Several outliers existed for both architectures, but most algorithms
had runtimes close to the mean of all the MLP models. The stars represent the mean parameters
for each set.

scoring performance of the three hidden layer models. Both the runtime and accuracy appeared

unaffected for the identity function models by introducing an additional hidden layer. All of the

models implementing this activation function were clustered in the low runtime, high accuracy

quadrant in Fig. 5.13. The logistic function models exhibited the same behavior for three hidden

layers as it did with two hidden layers. A widespread of accuracy values were observed. A cluster

of models employing the logistic activation function had accuracy values comparable to that of

the identity function. However, numerous outliers lowered the overall mean accuracy value for the

overall function to the lowest of the four activation functions. The performance of the ReLU and

tanh functions yielded comparable results as shown by their clusters and mean normalized values in

Fig. 5.13. The models employing the tanh function had a wider spread than those employing the

ReLU function, and a runtime outlier was observed. While the mean accuracy of the tanh function

models was second-lowest, only above that of the logistic function models, the highest accuracy for

a three hidden layer model was obtained using this activation function with a 4− 100− 40− 60− 2

architecture.
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The overall mean performance for the two and three hidden layer models were comparable.

Figure 5.14 shows that the mean performance of the three hidden layer models was slightly worse

in both categories than that for the two hidden layer models. A negative trade-off was observed

between the mean accuracy and runtime as the number of hidden layers was increased in the two

and three hidden layer models. The mean runtime difference for the three hidden layer architecture

and the overall mean runtime of all the MLP models was greater than that for the two hidden

layer models. While computational abilities have increased, the increased number of nodes and

calculations associated with hidden layers correlated to greater computational times. Ergo, the three

hidden layer models predominantly resulted in greater runtimes. The hidden layer node combination

of 60−100−100 with the tanh activation function required the longest computational runtime of all

the MLP models at nearly 40 minutes. This was due to convergence issues as the tolerance between

the calculated and predicted labels during training was not achieved for most of the folds in the k-

fold scheme. The addition of hidden layers increased the complexity of the models. The complexity

associated with this two-class problem classification seemed better suited for a two hidden layer

architecture.

The one hidden layer models exhibited a broad spread of accuracy values for runtimes only a

standard deviation below the mean MLP runtime. The accuracy spread of the two and three hidden

layer architectures were similar as the magnitudes of their maximum and minimum values were

comparable. A majority of the models yielded accuracy values within one standard deviation of the

MLP mean accuracy. Accuracy outliers were present for all three hidden layer architectures. The

three hidden layer architecture presented the greatest number (59) of outliers that fell well below the

mean accuracy of the MLP algorithm, especially in the bottom 100 accuracy values. These outliers

contributed to the decrease of this architecture’s overall mean accuracy being less than that of the

MLP algorithm.

The computational runtime and accuracy were found to have an inverse relationship, but

this relationship was considered insignificant based on the examined models. The greatest accuracy

model had a runtime value at approximately two standard deviations away from the MLP algorithm

mean runtime. Furthermore, two of the three worst-performing models in accuracy occurred at

approximately the MLP mean runtime. Independent of architecture, the five worst-performing MLP

models had a runtime within one standard deviation less than the mean MLP runtime. The inverse

relationship between runtime and accuracy was observed through the examination of the clusters for
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each architecture. The two hidden layer models, which had a lower mean runtime, also outperformed

the three hidden layer models in terms of accuracy. This suggests that a two-hidden layer model

could model the necessary relationships to predict a delamination. The choice of this architecture

would reduce the increased complexities and computational times associated with sizeable neural

network architectures like those used in deep learning.

5.5.2.3 Comparison of All Tested Models

Comparing the accuracy scores for each of the tested models, Fig. 5.15, the multi-layer

perceptron neural network algorithm category was found to outperform the other seven algorithms.

The ten models with the highest accuracy values were found to be MLPs as listed in Tab. 5.5. The

MLP models contained 99 of the top 100 highest accuracy models; 59 of those models were three

hidden layer MLP models. The highest non-MLP model (the SVC-sigmoid model) ranked 90th for

the highest accuracy. The ability of a neural network to learn and predict nonlinear and complex

relationships was evident in these findings. The plots of the sensing voltage, such as Fig. 5.1, have

been found to produce indiscernible induced voltage readings leading to the inability to predict

the presence of a delamination. The investigated machine learning algorithms have demonstrated

the ability to combine stacking sequence information about the laminate with an adjusted voltage

reading to detect the presence of a delamination for a given sample point. The performance of the

MLP models suggested that nonlinear relationships could be defined between the features and target

labels. The relationships between the feature data and target labels were previously unknown by

visual observation of the experimental data.

While the MLP algorithm resulted in the highest efficient fold accuracy values, it also

resulted in the models with the lowest accuracy values listed in Tab. 5.6. Of the 100 models with

the worst accuracy values, Fig. 5.17 shows that 92% of these models were neural networks using an

MLP formulation. Three hidden layer models dominated the list of worst models with 59 of the

worst performances. Figure 5.15 illustrates that the number of models with below-average accuracy

or an outlier performance increased as additional hidden layers were added to the MLP architecture.

The increased complexity and calculations associated with adding additional hidden layers were

unnecessary for this classification problem; the increased complexity hindered performance.

Table 5.6 contains the ten worst performing models in terms of accuracy, and the logistic

(sigmoid) activation function was employed in all of these models. The logistic function was previ-
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Figure 5.15: In terms of the efficient fold mean accuracy, the MLP models outperformed the non-
MLP models on average. More outliers, however, were found for the MLP models.

ously shown to result in more accuracy outliers than the other activation functions. The failure to

account for negative failures was attributed to this finding because seven of the top ten performing

models accounted for negative input values for each perceptron/node. Contradicting the hypothesis

that an increase in the number of hidden layers resulted in a decreased performance, 80% of the top

ten performing models were MLPs containing three hidden layers and 59% of the top 100. Through a

parametric study, no conclusion concerning the effect of the number of hidden layers on the accuracy

of the MLP models was discerned based on the findings of the investigated models. No hidden layer

architecture yielded greater (or worse) results than another. The parametric study demonstrated

the need to investigate variations of a model to identify the best performing parameters.
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Table 5.5: Top ten performing models based on accuracy.

Algorithm Model Name (Attributes) Efficient Fold Accuracy

MLP (2 hidden layers) ReLU, adam, 90− 100 79.22%

MLP (3 hidden layers) tanh, adam, 100− 40− 60 78.40%

MLP (3 hidden layers) identity, adam, 100− 100− 20 77.68%

MLP (3 hidden layers) identity, adam, 60− 60− 80 77.68%

MLP (3 hidden layers) ReLU, adam, 60− 20− 60 77.62%

MLP (2 hidden layers) ReLU, adam, 20− 10 77.55%

MLP (3 hidden layers) identity, adam, 40− 80− 40 77.54%

MLP (3 hidden layers) identity, adam, 40− 40− 80 76.86%

MLP (3 hidden layers) identity, adam, 60− 100− 80 76.67%

MLP (3 hidden layers) identity, adam, 60− 60− 100 76.67%

Figure 5.16: The MLP models with two and three hidden layers significantly outperformed the
non-MLP and single hidden layer models in terms of greatest accuracy scores.
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Table 5.6: Bottom ten worst performing models based on accuracy.

Algorithm Model Name (Attributes) Efficient Fold Accuracy

MLP (3 hidden layers) logistic, adam, 40− 100− 20 46.67%

MLP (2 hidden layers) logistic, adam, 90− 10 49.14%

MLP (3 hidden layers) logistic, adam, 60− 80− 80 50.32%

MLP (1 hidden layer) logistic, adam, 2 52.05%

MLP (2 hidden layers) logistic, adam, 60− 70 53.21%

MLP (1 hidden layer) ReLU, adam, 1 56.12%

MLP (3 hidden layers) logistic, adam, 80− 20− 80 56.94%

MLP (2 hidden layers) logistic, adam, 10− 60 57.08%

MLP (2 hidden layers) logistic, adam, 10− 70 57.10%

MLP (2 hidden layers) logistic, adam, 30− 100 57.10%

Figure 5.17: The MLP models had the most number of models with the lowest accuracy values in
the bottom 100.
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5.6 Conclusions

Eight general machine learning algorithms were considered in this work to predict the pres-

ence of embedded delaminations in CFRP beams. A testing dataset of 98 points was extracted from

a set of 1, 380 points found in four literature sources [6, 57, 127, 155]. The final dataset was deter-

mined by analyzing each source and using a proposed adjusted voltage parameter to standardize the

induced sensing voltage values. A single literature source, [57], was reasoned to be the best source

for this preliminary investigation because all the employed CFRP beams were made of the same

material (HexPly AS4/3501-6) and unidirectional. However, the lack of variation in CFRP beams

reduced the applicability of the trained machine learning algorithms.

The k-fold cross-validation methodology utilized in this work reduced the variance in the

accuracy results for each algorithm type as a whole by nearly 84%. The mean accuracy for the

algorithms as a whole decreased for all but the SVM algorithms when using a cross-validation scheme

to divide the dataset into training and testing data. The SVM and neural network were two of the

best performing algorithms due to their high level of customizability which was examined through

a parametric study. The decision tree, stochastic gradient descent, and nearest neighbor algorithms

were ineffective in this preliminary investigation to predict embedded delaminations. The decision

tree algorithm, for example, is not suitable for generalized problems. The introduction of varying

combinations of data through a cross-validation scheme improves the generalization of a problem of

interest; thus, explaining its low accuracy scores. However, the ensemble method had a greater mean

accuracy because it employed multiple decision trees improving generalizability. The utilization of a

cross-validation scheme was suggested to reduce variability in results while introducing “more” data

to an algorithm for training; the results of the cross-validation experiments were of interest in this

work.

The MLP models were found to yield the best and worst-performing models by examining

each of the 1, 249 models individually. The ability of a neural network to model nonlinear rela-

tionships was presumed to increase the prediction accuracy score of an ML algorithm as 99 of the

top 100 models utilized the MLP formulation. The greatest accuracy achieved was 79.22% with a

two hidden layer MLP architecture using the rectified linear unit activation function (ReLU, adam,

4 − 90 − 100 − 2). On the contrary, the MLP formulation yielded 85 of the 100 worst-performing

ML models. The architecture of the MLP was found to influence the performance of the models.
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Increasing the number of hidden layers in the neural network increased the complexity and calcula-

tions involved with prediction making. A direct relationship was observed between the number of

hidden layers and the number of worst-performing outliers. The MLP models had 12, 21, and 59 of

these worst-performing outliers for one, two, and three hidden layers, respectively.

The accuracy of the MLP models was compared against a standardized runtime quantity to

correlate the computational time with prediction making. The one hidden layer models performed

below the mean accuracy and runtime of all the examined MLP models. However, only 84 MLP

with one hidden layer were examined compared to over 550 for both the two and three hidden layer

models. The difference in the number of models and comparison in performance concluded that

a single hidden layer MLP was not adequate to predict the presence of a delamination using the

obtained data features. The two hidden layer MLPs outperformed the three hidden layer models

by having a mean runtime z-score of -0.178 and mean accuracy z-score of 0.200, whereas the three

hidden layer MLP mean z-scores were 0.222 and -0.113, respectively. While an increase in the number

of hidden layers resulted in a greater number of worst accuracy outliers, no significant conclusive

difference was discerned in this preliminary investigation between the two and three hidden layer

MLPs.

The average accuracy score of all the 1, 249 examined models was approximately 71%,

which was lower than results from other machine learning applications with NDE. The parametric

study employed in this work illustrated the spread of possible results with an MLP due to changing

numbers of nodes and hidden layers. A study on the architecture of a neural network was found

to influence the decision making regarding its application to a problem. No one activation function

or number of hidden layers presented prediction accuracies that significantly outperformed other

combinations of parameters. Further investigation of the architecture of MLP models would aid in

better determining a suitable formulation for a delamination predicting MLP.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work aimed to gain insight into the capability of predicting the presence of delamina-

tions within composite materials using embedded magnetostrictive particles. Implementing a non-

destructive evaluation method allows for damage detection without significant, if any, alterations to

a system. The discussed NDE method involved embedding particles of the magnetostrictive mate-

rial Terfenol-D between carbon fiber reinforced polymer laminae to yield a smart, damage sensing

composite material. The magnetostrictive particles coupled its mechanical and magnetic properties

such that a change in the local stress field due to the presence of a delamination or other damage

precursor resulted in changes in its magnetic permeability. Previous experimental investigations of

this NDE method [6, 7, 57, 150] observed no discernible pattern in the induced sensing voltage for

the locations along the experimental CFRP beams containing embedded delaminations. Alternative

detection and prediction methods were considered in this work to address the inability to predict

the presence of a delamination in experimental CFRP beams embedded with Terfenol-D particles.

Three areas were examined in this work: i) an analytical modeling approach to determine induced

sensing voltages that involved the characterization of Terfenol-D, ii) the determination of effective

property values to quantify the stress in the sensing lamina, and iii) the implementation of machine

learning algorithms to predict the presence of embedded delaminations.

A previously proposed analytical model [53] was examined in this work to compute the

induced stress in an embedded magnetostrictive material; the induced stress could then be correlated
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to an induced sensing voltage. The model employed nonlinear relationships to characterize the stress-

strain and strain-magnetic field intensity relationships. Both of the previously proposed models in

[53] were found to err in quantifying the nonlinear relationships. New relationships were proposed in

this work in the form of Fourier series for their ability to fit the experimental stress-strain and strain-

magnetic field intensity data from [120] as well as the derived compliance term and piezomagnetic

coefficient. A three-term Fourier series for the stress-strain relationship characterized the entire

domain of the experimental data presented in [120] with a maximum RMSE on the order of 10−1.

A five-term Fourier series captured the strain-magnetic field intensity data with an RMSE on the

order of 10−6. However, the Fourier series were only viable to characterize the domain used to fit the

experimental data; outside the domain, the functions oscillated due to the trigonometric functions

involved in the series.

The iterative stress calculation previously proposed in [53] failed to reasonably converge

using the newly proposed nonlinear relationships. Convergence was found to be unlikely using the

formulation presented in [53] because one of the nonlinear relationships, the magnetic strain εH ,

was a function of the magnetic field intensity. As the magnetic field intensity increased, this strain

value increased; therefore, decreasing the likelihood of convergence. The structure of the composite

examined was determined to have a negligible effect on the calculation of the induced stress. Two

elastic terms were utilized in the iterative scheme to represent the makeup of the composite material.

The presence of a delamination had little impact on the value of these terms. The calculation of

these terms differed from that of the stiffness terms found using the classical lamination theory;

the CLT calculated values were 222% greater than those calculated using the formulation presented

in [53]. From this investigation, it was concluded that an alternative method for calculating the

induced stress in a magnetostrictive material be found, especially since the method proposed in [53]

was limited to include only the effects of an applied magnetic field.

To improve the modeling of the sensing lamina, effective properties were examined for com-

bining the properties of the embedded Terfenol-D particles and the host matrix Hexcel 3501-6. Five

widely recognized approximations were applied to the determination of the elastic, shear, and bulk

moduli along with the Poisson’s ratio. The moduli demonstrated the bounding problem associated

with effective properties where approximations yield upper and lower bounds for possible values.

The Poisson’s ratio, though, failed to follow previously suggested bounds, especially the Voigt-Reuss

bounds. Fifteen previously proposed coefficient of thermal expansion approximations were employed
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in this work to quantify the parameter. Nearly half of the approximations estimated the relation-

ship between the volume fraction of inclusions and the value of the coefficient of thermal expansion

to be nearly linear. Using the classical lamination theory, the effect of the effective coefficient of

thermal expansion was examined for modeling the fabrication of the sensing lamina, specifically the

cooling step. The Voigt approximation for the elastic properties yielded the most compressive, i.e.,

the greatest magnitude, induced thermal stress, whereas the other four approximations examined

predicted comparable magnitudes. A direct correlation between the value of the effective coefficient

of thermal expansion and the magnitude of the induced stress was observed. The choice of approxi-

mations to model the sensing lamina was concluded to impact the magnitude of the induced thermal

stress significantly.

The major contribution of this work was the consideration of machine learning for the

prediction of embedded delaminations using the magnetostrictive particle NDE method. A dataset

of 98 points was taken from a previous experimental study [57]. Eight general machine learning

formulations were considered. A parametric study was conducted to manipulate various parameters

for some formulations, and a total of 1, 249 unique models were examined. The mean accuracy

of the 1, 249 models was approximately 71%, which was less than values found in previous ML

applications to NDE. The k-fold cross-validation scheme implemented reduced the variance in the

obtained accuracy by nearly 84% through the introduction of combinations of the dataset to the

models. Based on the reduction in the variance of the scores, it was concluded to examine the

cross-validation results further and consider the utilization of this approach in future investigations.

The SVM and neural network formulations yielded the highest accuracy scores for an algorithm

at 72.13% and 71.53%, respectively. The neural network formulation was specifically considered

because of the number of definable parameters to tailor a model.

The activation function, number of hidden layers, and the number of nodes in each hidden

layer were manipulated to consider their effect on the prediction accuracy. The number of hidden

layers and performance were correlated; as the number of hidden layers increased, the number of

accuracy outliers increased (in terms of both best and worst performance). The three hidden layer

MLP models produced 59% of the top 100 performing models as well as 59% of the worst 100

performing models. Though the three hidden layer MLP models had the greatest number of top-

performing models, the 4−90−100−2 MLP utilizing the rectified linear unit activation function had

the greatest accuracy at 79.22%. The two hidden layer models were found to perform better in terms
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of accuracy and runtime with z-scores of 0.200 and -0.178, respectively, compared to that of the entire

set of MLP models. This preliminary study offered two main conclusions regarding the architecture

of an MLP. First, based on this work, a one hidden layer model failed to account for the complexity

involved with the prediction making of embedded delaminations using the investigated features.

Second, the two and three hidden layer MLPs showed comparable performance, and no conclusion

as to a preferred architecture was obtained. Though, the two hidden layer MLPs outperformed the

three hidden layer models in terms of both average accuracy and runtime. A parametric study should

be considered to optimize the architecture and parameters of an MLP for implementation. From this

work, an MLP neural network was concluded to be the best machine learning formulation to apply

to the embedded magnetostrictive NDE method as it can account for nonlinearities through the

combination of the feature values using linear relationships. Through this work, a preliminary ML

investigation was shown to predict the presence of embedded delaminations using induced sensing

voltages obtained from previous experiments. The use of a ML algorithm for damage detection was

concluded to be a viable combination with the magnetostrictive particle NDE method to predict

the presence of delaminations considering the inability to identify delaminations using plots of the

induced sensing voltage.

6.2 Future Work

By applying machine learning to the embedded magnetostrictive particle NDE method,

phenomena were observed that could impact the prediction making of an algorithm. The data

introduced to the algorithm through training and testing is essential as this is the only information

given to a model. Each sample point along the length of a composite beam would ideally be the same

except for the presence of delamination and Terfenol-D. The distribution of Terfenol-D particles was

previously found to negatively affect the performance of the discussed NDE method due to localized

accumulations of particles. Distribution methods were previously suggested to mitigate these effects

for the particles, such as a trenching method that distributes particles using a channel apparatus.

Alternatively, a magnetostrictive film was employed to eliminate the concerns of an uncontrollable

distribution of particles. An independent fabrication process was utilized in producing the films to

allow for complete control of their creation. This film sought to yield a more even distribution of

the magnetostrictive material to obtain more consistent induced sensing voltage readings across the
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length of a beam. Any damage or fabrication mishaps could be better illustrated using the film

technique.

Further investigation is necessary to determine if the selection of a sensing film reduces any

mechanical effects that may arise through the use of particles. When loaded, the particles in a

sensing lamina would act as stress concentrations, and cracks could propagate from the interface

between the Terfenol-D particles and the host matrix. Research into the effect of the inclusion

of particles is paramount to determine if they adversely impact the mechanical performance of a

composite. The sensitivity of the NDE method is also necessary to quantify to determine how the

magnetostrictive phenomenon responds to any cracks or voids surrounding the Terfenol-D particles

due to their embedding.

An increased amount of uniform testing data would aid the machine learning algorithms

in making predictions. The extracted data was inconsistent between sources in the information

presented regarding the examined features; this led to a reduction in the amount of applicable data.

A single testing setup should be employed to collect additional uniform experimental data to continue

this preliminary investigation. Increasing the number of sample points with embedded delaminations

would improve the quality (and quantity) of information provided to machine learning algorithms

about this target label. Signal noise could also be introduced into the data to add variance to the

values in the feature vectors. The induced sensing voltage, or adjusted RMS voltage, would be

suitable for introducing noise as the other features were integer or binary values. An analytical

model could also provide useful data to machine learning algorithms. The investigated analytical

model proposed in [53] failed to converge in this work and was limited in application. Accounting

for external mechanical loads and differentiating the initial prestress of the Terfenol-D from that

caused by external loads would expand the model. A surrogate neural network approach could also

be applied to generate data. Using inputs such as the presence of Terfenol-D or a delamination,

a surrogate network could produce sensing voltages or laminate information. The data produced

through the surrogate network would be combined to create a single sample point for use in a single

trained network to predict the presence of a delamination.

An investigation into the feasibility of accounting for information through the feature vectors

was started in this work but deemed unnecessary by extracting uniform experimental data from

only one source. Inclusion of the constituent material properties and the stacking sequence of the

composite beam would increase the applicability of the machine learning algorithms. Utilization of

169



stiffness terms or values from the ABD matrix were considered; however, the curse of dimensionality

was feared with the introduction of additional features, especially with the limited dataset size.

The use of terms from the ABD matrix would account for the constituent materials, the stacking

sequence, and the presence of a delamination. Further study is necessary to identify the terms

most impacted by the inclusion of a delamination region and the stacking sequence. Not all 18

independent terms would be suitable as features. Increasing the features to account for additional

information about the laminate of interest would improve the applicability of the trained algorithm

to include different materials and stacking sequences than those investigated in this work. However,

the training data must contain samples for the possible examined laminates to avoid significant

classification errors. An increase in the number of sample points is advisable for any increase in the

number of features.

The cross-validation results presented were mean values for one model using k folds. Mul-

tiple experiments of the same model formulation with the same number of folds would yield results

that would improve the confidence of the reported mean accuracy values. A more extensive para-

metric study of the number of perceptrons in each hidden layer could yield a more accurate MLP

model. Arbitrary numbers of perceptrons were chosen for each hidden layer. However, a grid search

technique can be computed using Python to determine the optimal parameters for a specified metric

by looping through a set of given parameter values [37]. Alternative packages for Python offer ad-

ditional capabilities for predicting with machine learning algorithms by increasing the user-defined

parameters of the algorithms. TensorFlow [162], for instance, implements user-defined neural net-

works to solve problems. Deep learning neural networks are well suited for study using TensorFlow

as it allows users to define the characteristics and formulation of each layer of the neural network.

While the results obtained in this work were acceptable for a preliminary investigation into the appli-

cation of machine learning with the discussed NDE method, further manipulation of the parameters

of the algorithms could increase the prediction accuracy of the models to detect delaminations.
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Appendix A Approximations for the Effective Coefficient of

Thermal Expansion

The following are approximations used to calculate the effective coefficient of thermal ex-

pansion as a function of the volume fractions of the inclusion and host material. Blackburn approx-

imation [154]:

α = αp +
3
2 (1− νp)Vm (αm − αp)

1
2 (1 + νp) + Vm (1− 2νp) + (1− 2νm)

Ep

Em
Vp

(A.1)

Turner approximation [163]:

α =
VmαmKm + VpαpKp

VmKm + VpKp
(A.2)

Cribb approximation [164]:

α = q1αm + q2αp (A.3)

q1 =
Km (Kc −Kp)

Kc (Km −Kp)
(A.4)

q2 =
Kp (Km −Kc)

Kc (Km −Kp)
(A.5)

Kerner approximation [165]:

α = αpVp + αmVm + VpVm (αm − αp) q (A.6)

q =

1
Km
− 1

Kp

Vp

Kp
+ Vm

Km
+ 3

4Gm

(A.7)

Wang and Kwei approximation [151]:

α = αm − Vpq (αm − αp) (A.8)

q =

(
3Ep

Em

)
Vp

Ep

Em
[2Vp (1− 2νm) + (1 + νm)] + 2Vm (1− 2νp)

(A.9)
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The above expressions, specifically for q, were found to be inconsistent with that originally presented

in [166]:

θ =
3
(
Ep

Em

)
(1− νm)

Ep

Em
[2Vp (1− 2νm) + (1 + νm)] + 2Vm (1− 2νp)

(A.10)

α = αm

[
1− Vp

(
1− αp

αm

)
θ

]
(A.11)

Thomas approximation [151]:

αa = αamVm + αapVp (A.12)

where −1 ≤ a ≤ 1 can result in the Voigt and Reuss approximations, respectively. Tummala-

Friedberg approximation [167]:

α = αm − Vpq (αm − αp) (A.13)

q =
1+νm
2Em

1+νm
2Em

+
1−2νp
Ep

(A.14)

Fahmi-Ragai approximation [168]:

α = αm −
3Vp (αm − αp) (1− νm)

2 (1− 2νp) (−Vp) Em

Ep
+ 2Vp (1− 2νm) + (1 + νm)

(A.15)
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Appendix B Data used in Machine Learning

Table B1 contains the 98-point dataset used in the preliminary machine learning investigation.

Table B1: Extracted data used in the machine learning investigation.

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 2 1 [02/m/d/0] 1 0.414 0.293 1.030 0

Rudd 2014 AS4 3501-6 1 2 [0/m/02] 1 0.414 0.293 1.027 0

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 0 0.402 0.284 0.996 0

Rudd 2014 AS4 3501-6 4 4 [04/m/d/04] 1 0.409 0.289 1.017 1

Rudd 2014 AS4 3501-6 2 2 [02/m/02] 0 0.403 0.285 1.002 0

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 1 0.411 0.291 1.019 1

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 0 0.402 0.284 1.000 0

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 1 0.407 0.288 1.014 1

Rudd 2014 AS4 3501-6 7 7 [07/m/07] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 7 7 [07/m/d/07] 1 0.413 0.292 1.024 1

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 1 0.406 0.287 1.011 0

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 1 0.410 0.290 1.016 0

Rudd 2014 AS4 3501-6 7 7 [07/m/d/07] 0 0.403 0.285 0.999 0

Continued on next page
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Table B1 – Continued from previous page

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 6 6 [06/m/d/06] 1 0.411 0.291 1.021 1

Rudd 2014 AS4 3501-6 5 5 [05/m/d/05] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 6 6 [06/m/06] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 7 7 [07/m/d/07] 1 0.413 0.292 1.024 1

Rudd 2014 AS4 3501-6 2 1 [02/m/d/0] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 1 0.409 0.289 1.016 1

Rudd 2014 AS4 3501-6 1 1 [0/m/0] 0 0.403 0.285 0.999 0

Rudd 2014 AS4 3501-6 1 2 [0/m/d/02] 1 0.407 0.288 1.014 1

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 1 0.409 0.289 1.016 0

Rudd 2014 AS4 3501-6 1 1 [0/m/0] 1 0.414 0.293 1.027 0

Rudd 2014 AS4 3501-6 3 3 [03/m/03] 0 0.402 0.284 0.997 0

Rudd 2014 AS4 3501-6 5 4 [05/m/04] 1 0.411 0.291 1.024 0

Rudd 2014 AS4 3501-6 6 6 [06/m/d/06] 1 0.411 0.291 1.021 1

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 1 0.410 0.290 1.021 0

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 0 0.402 0.284 0.996 0

Rudd 2014 AS4 3501-6 5 4 [05/m/04] 1 0.410 0.290 1.021 0

Continued on next page
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Table B1 – Continued from previous page

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 1 0.410 0.290 1.021 1

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 0 0.402 0.284 0.998 0

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 1 0.413 0.292 1.024 0

Rudd 2014 AS4 3501-6 3 2 [03/m/d/02] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 5 4 [05/m/d/04] 1 0.413 0.292 1.027 0

Rudd 2014 AS4 3501-6 6 5 [06/m/d/05] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 5 5 [05/m/d/05] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 7 7 [07/m/07] 1 0.410 0.290 1.020 0

Rudd 2014 AS4 3501-6 7 7 [07/m/07] 1 0.411 0.291 1.024 0

Rudd 2014 AS4 3501-6 4 4 [04/m/d/04] 1 0.407 0.288 1.013 1

Rudd 2014 AS4 3501-6 5 4 [05/m/04] 1 0.410 0.290 1.021 0

Rudd 2014 AS4 3501-6 5 4 [05/m/d/04] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 3 2 [03/m/02] 0 0.403 0.285 1.000 0

Rudd 2014 AS4 3501-6 1 2 [0/m/02] 0 0.405 0.286 1.002 0

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 1 0.407 0.288 1.010 1

Rudd 2014 AS4 3501-6 5 4 [05/m/d/04] 1 0.410 0.290 1.020 1

Continued on next page
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Table B1 – Continued from previous page

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 0 0.402 0.284 0.996 0

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 1 0.407 0.288 1.010 0

Rudd 2014 AS4 3501-6 6 5 [06/m/d/05] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 6 7 [06/m/d/07] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 0 0.403 0.285 0.998 0

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 1 0.410 0.290 1.017 1

Rudd 2014 AS4 3501-6 6 6 [06/m/06] 0 0.405 0.286 1.006 0

Rudd 2014 AS4 3501-6 4 4 [04/m/d/04] 1 0.409 0.289 1.017 1

Rudd 2014 AS4 3501-6 6 7 [06/m/d/07] 1 0.411 0.291 1.024 1

Rudd 2014 AS4 3501-6 3 2 [03/m/02] 1 0.411 0.291 1.021 0

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 1 0.409 0.289 1.013 1

Rudd 2014 AS4 3501-6 5 5 [05/m/d/05] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 7 7 [07/m/07] 1 0.409 0.289 1.017 0

Rudd 2014 AS4 3501-6 3 3 [03/m/03] 1 0.416 0.294 1.032 0

Rudd 2014 AS4 3501-6 6 7 [06/m/d/07] 1 0.411 0.291 1.024 1

Rudd 2014 AS4 3501-6 5 4 [05/m/d/04] 1 0.411 0.291 1.023 1

Continued on next page
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Table B1 – Continued from previous page

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 4 4 [04/m/04] 1 0.409 0.289 1.020 0

Rudd 2014 AS4 3501-6 1 1 [0/m/0] 0 0.403 0.285 0.999 0

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 0 0.402 0.284 0.998 0

Rudd 2014 AS4 3501-6 1 2 [0/m/d/02] 1 0.407 0.288 1.014 1

Rudd 2014 AS4 3501-6 6 7 [06/m/d/07] 1 0.413 0.292 1.027 0

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 6 6 [06/m/06] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 2 1 [02/m/d/0] 1 0.410 0.290 1.020 1

Rudd 2014 AS4 3501-6 3 2 [03/m/d/02] 0 0.403 0.285 0.999 0

Rudd 2014 AS4 3501-6 4 4 [04/m/04] 1 0.411 0.291 1.027 0

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 1 0.410 0.290 1.021 1

Rudd 2014 AS4 3501-6 5 4 [05/m/d/04] 1 0.411 0.291 1.023 0

Rudd 2014 AS4 3501-6 3 2 [03/m/d/02] 1 0.409 0.289 1.017 1

Rudd 2014 AS4 3501-6 2 2 [02/m/02] 1 0.410 0.290 1.019 0

Rudd 2014 AS4 3501-6 3 2 [03/m/d/02] 1 0.413 0.292 1.027 0

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 1 0.411 0.291 1.021 1

Continued on next page



179

Table B1 – Continued from previous page

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 4 3 [04/m/03] 1 0.409 0.289 1.018 0

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 0 0.403 0.285 0.999 0

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 1 0.410 0.290 1.019 1

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 1 0.413 0.292 1.025 1

Rudd 2014 AS4 3501-6 6 7 [06/m/07] 1 0.413 0.292 1.030 0

Rudd 2014 AS4 3501-6 6 5 [06/m/05] 1 0.410 0.290 1.024 0

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 1 0.409 0.289 1.017 1

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 1 0.413 0.292 1.025 1

Rudd 2014 AS4 3501-6 4 3 [04/m/d/03] 0 0.406 0.287 1.009 0

Rudd 2014 AS4 3501-6 3 2 [03/m/02] 0 0.403 0.285 1.000 0

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 1 0.411 0.291 1.019 1

Rudd 2014 AS4 3501-6 5 4 [05/m/04] 0 0.402 0.284 0.999 0

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 1 0.410 0.290 1.021 1

Rudd 2014 AS4 3501-6 3 3 [03/m/d/03] 1 0.409 0.289 1.017 1

Rudd 2014 AS4 3501-6 3 2 [03/m/d/02] 1 0.409 0.289 1.013 1

Rudd 2014 AS4 3501-6 6 7 [06/m/07] 0 0.402 0.284 1.002 0

Continued on next page
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Table B1 – Continued from previous page

Source
Fiber

Material

Matrix

Material

Plies

Above

Plies

Below

Stacking

Sequence
Terfenol-D Vpeak VRMS VRMS,adjusted Delamination

Rudd 2014 AS4 3501-6 2 2 [02/m/d/02] 1 0.410 0.290 1.021 1

Rudd 2014 AS4 3501-6 3 2 [03/m/d/02] 1 0.407 0.288 1.010 1

Rudd 2014 AS4 3501-6 6 7 [06/m/d/07] 1 0.411 0.291 1.024 0

Rudd 2014 AS4 3501-6 4 4 [04/m/04] 1 0.407 0.288 1.016 0

Rudd 2014 AS4 3501-6 1 1 [0/m/d/0] 1 0.410 0.290 1.017 1
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Appendix C Machine Learning Models

A total of 1, 249 models were examined in this work for using eight algorithms found in the scikit-learn package [37] for Python. The
generalized script presented in Appendix D.4 was modified to accommodate the various attributes manipulated for each algorithm.

Table C1: Summary of the manipulations made with each algorithm to yield the tested models.

Algorithm Number of Models Model Attribute(s) Changed

Discriminant Analysis (DA) 2 Linear DA (LDA), Quadratic DA (QDA)

Decision Tree (DT) 1

Ensemble Method 2 Random Forest, Extra Trees

k-Nearest Neighbor (k-NN) 80 Algorithms: BallTree, KDTree, brute, auto; k = 2− 22

Näıve Bayes (NB) 1 Gaussian distribution (GNB)

Stochastic Gradient Descent (SGD) 5 Loss functions: hinge, log, modified huber, squared hinge, perceptron

Support Vector Machine (SVM) 9 Classes: C-support vector classification (SVC), Nu-support vector classifica-

tion (NuSVC), Linear support vector classification (LinearSVC); Kernel: linear,

polynomial, radial basis function (rbf), sigmoid

Multi-layer Perceptron MLP 1,149 Activation functions: identity, logistic, tanh, rectified linear unit (ReLU); Solver

function: proposed stochastic gradient descent (adam); Hidden layers: one

(N1 for Ni = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100), two

(N1 − N2 for Ni = 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100) and three (N1 −

N2 −N3 for Ni = 20, 40, 60, 80, 100)



Appendix D Selected Python Scripts

D.1 Analytical Model Script

The iterative stress-calculating scheme presented in Krishnamurthy et al. [53] was scripted
using Python. The script utilized the nonlinear relationships The Python packages discussed in
[37,125,126,169,170] were employed in this script.

D.1.1 Characterization of Terfenol-D

import os

import numpy as np

import pandas as pd

import scipy as sp

from scipy.optimize import curve_fit

import matplotlib.pyplot as plt

from sklearn import metrics

import Error_Calculations

colors = [’#1f77b4’, ’#ff7f0e’, ’#2ca02c’, ’#d62728’, ’#9467bd’, ’#8c564b’, ’#e377c2’, ’#7f7f7f’, ’#

↪→ bcbd22’, ’#17becf’]

stress_strain_labels_OG = [’H=0 kA/m’,’H=30 kA/m’,’H=60 kA/m’,’H=90 kA/m’,’H=120 kA/m’]

stress_strain_labels = [’0 kA/m’,’30 kA/m’,’60 kA/m’,’90 kA/m’,’120 kA/m’]

stress_strain_index = [’0’,’30’,’60’,’90’,’120’]

strain_mf_labels = [’6.9 MPa’,’9.6 MPa’,’12.4 MPa’,’17.9 MPa’,’24.1 MPa’, ’38.0 MPa’, ’51.7 MPa’]

prestress_index = [’6.9’,’9.6’,’12.4’,’17.9’,’24.1’, ’38.0’, ’51.7’]

fourier3_coefficients = [’a0’, ’a1’, ’a2’, ’a3’, ’b1’, ’b2’, ’b3’, ’omega’]

fourier5_coefficients = [’a0’, ’a1’, ’a2’, ’a3’, ’a4’, ’a5’, ’b1’, ’b2’, ’b3’, ’b4’, ’b5’, ’omega’]

poly4_coefficients = [’a0’, ’a1’, ’a2’, ’a3’, ’a4’]

def fourier1(x,a0,a1,b1,omega):

return a0 + a1*np.cos(omega*x) + b1*np.sin(omega*x)

def fourier2(x,a0,a1,a2,b1,b2,omega):

return a0 + a1*np.cos(omega*x) + b1*np.sin(omega*x) + a2*np.cos(2*omega*x) + b2*np.sin(2*omega*x)

def fourier3(x,a0,a1,a2,a3,b1,b2,b3,omega):

return a0 + a1*np.cos(omega*x) + b1*np.sin(omega*x) + a2*np.cos(2*omega*x) + b2*np.sin(2*omega*x)

↪→ + a3*np.cos(3*omega*x) + b3*np.sin(3*omega*x)

def fourier4(x,a0,a1,a2,a3,a4,b1,b2,b3,b4,omega):

return a0 + a1*np.cos(omega*x) + b1*np.sin(omega*x) + a2*np.cos(2*omega*x) + b2*np.sin(2*omega*x)

↪→ + a3*np.cos(3*omega*x) + b3*np.sin(3*omega*x) + a4*np.cos(4*omega*x) + b4*np.sin(4*omega*x

↪→ )

def fourier5(x,a0,a1,a2,a3,a4,a5,b1,b2,b3,b4,b5,omega):

return a0 + a1*np.cos(omega*x) + b1*np.sin(omega*x) + a2*np.cos(2*omega*x) + b2*np.sin(2*omega*x)

↪→ + a3*np.cos(3*omega*x) + b3*np.sin(3*omega*x) + a4*np.cos(4*omega*x) + b4*np.sin(4*omega*x

↪→ ) + a5*np.cos(5*omega*x) + b5*np.sin(5*omega*x)

def poly4(x,a0,a1,a2,a3,a4):

return a0 + a1*x + a2*pow(x,2) + a3*pow(x,3) + a4*pow(x,4)
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# input data folder

butler_main_folder = os.path.join(os.getcwd(),’Butler_Plots’)

butler_plot_names = os.listdir(butler_main_folder)

plot_type = butler_plot_names[0]

print(’...selecting file from >>> ’ + plot_type)

bulter_plot_specific_folder = os.path.join(butler_main_folder,plot_type)

butler_plot_lines = os.listdir(bulter_plot_specific_folder)

# cycle through files for plot

i = 0

master_ss = pd.DataFrame(columns=fourier3_coefficients,index=stress_strain_index)

master_ss_sigma = pd.DataFrame(columns=fourier3_coefficients,index=stress_strain_index)

master_smf_poly4 = pd.DataFrame(columns=poly4_coefficients,index=prestress_index)

master_smf_fourier3 = pd.DataFrame(columns=fourier3_coefficients,index=prestress_index)

master_smf_fourier5 = pd.DataFrame(columns=fourier5_coefficients,index=prestress_index)

for files in butler_plot_lines:

butler_line = butler_plot_lines[0]

butler_line_filename = os.path.join(bulter_plot_specific_folder,files)

df = pd.read_csv(butler_line_filename)

header_list = list(df)

# stress-strain data

if ’stress’ in plot_type.lower() and ’strain’ in plot_type.lower():

X_data = df[header_list[0]]*pow(10,-6)

y_data = df[header_list[1]]*pow(10,6)

plt.figure(’Butler Stress-Strain Plot Data’)

plt.plot(X_data,y_data*pow(10,-6), color=colors[i], marker=None, linestyle=’-’)

plt.xlim([0,2000e-6])

plt.ylim([0,100e6*pow(10,-6)])

plt.xlabel(’Strain’)

plt.ylabel(’Stress (MPa)’)

plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))

plt.legend(stress_strain_labels, loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Butler_SSData.png’)

if ’line1’ in files.lower():

n = 1.818

alpha_e = 52.287e-12

beta_e = -1.218 * pow(10,-6 * n -6)

y_kr_model = np.linspace(0,100e6,101)

X_kr_model = alpha_e * y_kr_model + beta_e * pow(y_kr_model,n)

df_krishnamurthy = pd.read_csv(’Krishnamurthy_Exp.csv’)

X_kr_exp = df_krishnamurthy[list(df)[0]]*pow(10,-6)

y_kr_exp = df_krishnamurthy[list(df)[1]]*pow(10,6)

plt.figure(’Krishnamurthy Ramberg-Osgood’)

plt.plot(X_data,y_data*pow(10,-6),’o’)

plt.plot(X_kr_exp, y_kr_exp*pow(10,-6),’s’)

plt.plot(X_kr_model, y_kr_model*pow(10,-6), color=colors[2], linestyle=’--’, linewidth=2)

plt.xlim([0,1200e-6])

plt.ylim([0,40e6*pow(10,-6)])

plt.xlabel(’Strain’)

plt.ylabel(’Stress (MPa)’)

plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))
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plt.legend([’Experimental Data (H$_{0}$=0 kA/m)’,’Krishnamurthy Experimental Data (H$_{0}$

↪→ =0 kA/m)’,’Krishnamurthy Ramberg-Osgood Model’], loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Krishnamurthy_Ramberg-Osgood.png’)

plt.figure(’Krishnamurthy Ramberg-Osgood Divergence’)

plt.plot(X_data,y_data*pow(10,-6),’o’)

plt.plot(X_kr_model, y_kr_model*pow(10,-6), color=colors[2], linestyle=’--’, linewidth=2)

plt.xlim([0,2000e-6])

plt.ylim([0,100e6*pow(10,-6)])

plt.xlabel(’Strain’)

plt.ylabel(’Stress (MPa)’)

plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))

plt.legend([’Experimental Data (H$_{0}$=0 kA/m)’,’Krishnamurthy Ramberg-Osgood Model’], loc

↪→ =’lower right’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Krishnamurthy_Ramberg-Osgood_Divergence.png’)

res = []

for idx in range(0, len(y_data)) :

if y_data[idx] > 40e6:

res.append(idx)

y_data_error = y_data[y_data < 40e6]

y_data_error[0]=0

X_butler_error = X_data[X_data < X_data[res[0]]]

X_krButler_model_error = alpha_e * y_data_error + beta_e * pow(y_data_error,n)

X_kr_exp_error = X_kr_exp

X_kr_exp_error[0]=0

X_krExp_model_error = alpha_e * X_kr_exp_error + beta_e * pow(X_kr_exp_error,n)

X_model = np.linspace(0,X_data.values[-1],101)

fs3coef, pcov = curve_fit(fourier3, X_data, y_data, maxfev=10000)

fs3coef_inv, pcov = curve_fit(fourier3, y_data, X_data, maxfev=10000, p0

↪→ =[0,0,0,0,0,0,0,3.14298675609527e-08])

if ’line1’ in files.lower():

ys_kr_model = np.linspace(0,40e6,41)

s_butler_exp = np.diff(X_butler_error) / np.diff(y_data_error)

s_kr_exp = np.diff(X_kr_exp) / np.diff(y_kr_exp)

s_kr_model = alpha_e + beta_e * n * pow(ys_kr_model,n-1)

Xs_kr_model = alpha_e * ys_kr_model + beta_e * pow(ys_kr_model,n)

s_fourier3 = np.diff(X_model) / np.diff(fourier3(X_model, *fs3coef))

plt.figure(’Compliance -H = 0 kA/m’)

plt.plot(y_data_error[:-1]*pow(10,-6),s_butler_exp,’s’)

plt.plot(y_kr_exp[:-1]*pow(10,-6),s_kr_exp,’o’)

plt.plot(ys_kr_model*pow(10,-6),s_kr_model)

plt.plot(fourier3(X_model, *fs3coef)[:-1]*pow(10,-6),s_fourier3)

plt.xlim([0,40e6*pow(10,-6)])

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Compliance Term (1/Pa)’)

plt.legend([’Experimental Data (H$_{0}$=0 kA/m)’,’Krishnamurthy Experimental Data (H$_{0}$

↪→ =0 kA/m)’,’Krishnamurthy Ramberg-Osgood Model’,’Three-term Fourier Series’], loc=’

↪→ upper right’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Compliance_H0.png’)

plt.figure(’Stress-Strain Fourier3 Series’)

plt.plot(X_data,y_data*pow(10,-6), color=colors[i], marker=’o’, linestyle=’none’, label=None)
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plt.plot(X_model,fourier3(X_model, *fs3coef)*pow(10,-6),color=colors[i], linestyle=’-’, label=

↪→ stress_strain_labels[i])

plt.xlim([0,2000e-6])

plt.ylim([0,100e6*pow(10,-6)])

plt.xlabel(’Strain’)

plt.ylabel(’Stress (MPa)’)

plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Fourier3_SScurvefit.png’)

plt.figure(’Fourier3 -sigma (experimental data) input’)

plt.plot(X_data,y_data*pow(10,-6), color=colors[i], marker=’o’, linestyle=’none’, label=None)

plt.plot(fourier3(y_data, *fs3coef_inv),y_data*pow(10,-6), color=colors[i], marker=None,

↪→ linestyle=’-’, label=stress_strain_labels[i])

plt.xlim([0,2000e-6])

plt.ylim([0,100e6*pow(10,-6)])

plt.xlabel(’Strain’)

plt.ylabel(’Stress (MPa)’)

plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Fourier3_sigma-expdata.png’)

y_model = np.linspace(0,100e6,101)

plt.figure(’Fourier3 -sigma (model data) input’)

plt.plot(X_data,y_data*pow(10,-6), color=colors[i], marker=’o’, linestyle=’none’, label=None)

plt.plot(fourier3(y_model, *fs3coef_inv),y_model*pow(10,-6), color=colors[i], marker=None,

↪→ linestyle=’-’, label=stress_strain_labels[i])

plt.xlim([0,2000e-6])

plt.ylim([0,100e6*pow(10,-6)])

plt.xlabel(’Strain (x10e-6)’)

plt.ylabel(’Stress (MPa)’)

plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Fourier3_sigma-model.png’)

s_butler_exp = np.diff(X_data) / np.diff(y_data)

s_fourier3 = np.diff(X_model) / np.diff(fourier3(X_model, *fs3coef))

plt.figure(’Compliance’)

plt.plot(y_data[:-1]*pow(10,-6),s_butler_exp, color=colors[i], marker=’o’, linestyle=’none’,

↪→ label=None)

plt.plot(fourier3(X_model, *fs3coef)[:-1]*pow(10,-6),s_fourier3, color=colors[i], linestyle=’-

↪→ ’, label=stress_strain_labels[i])

plt.xlim([0,100e6*pow(10,-6)])

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Compliance Term (1/Pa)’)

plt.legend(loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Stress-Strain/Compliance.png’)

master_ss.loc[stress_strain_index[i]] = fs3coef

master_ss.to_csv(’Stress-Strain_Fourier3_Coefficients.csv’)

master_ss_sigma.loc[stress_strain_index[i]] = fs3coef_inv

master_ss_sigma.to_csv(’Stress-Strain_Fourier3inv_Coefficients.csv’)

i += 1
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elif ’strain’ in plot_type.lower() and ’magnetic’ in plot_type.lower() and ’field’ in plot_type.

↪→ lower():

X_model = np.linspace(0,1500,1501)

X_data = df[header_list[0]]

y_data = df[header_list[1]]*pow(10,-3)

X_reduced=[]

y_reduced=[]

for j in range(0,len(X_data),3):

X_reduced.append(X_data[j])

y_reduced.append(y_data[j])

X_reduced = np.asarray(X_reduced)

y_reduced = np.asarray(y_reduced)

plt.figure(’Butler Strain-Magnetic Field Plot Data’)

plt.plot(X_data,y_data, color=colors[i], marker=None, linestyle=’-’)

plt.xlim([0,1500])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,1.5e-3,4))

plt.ylim([0,1.5e-3])

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(strain_mf_labels, loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/Butler_SMFData.png’)

df_krishnamurthy_poly4 = pd.read_csv(’Krishnamurthy_SMFpoly4coef.csv’)

y_krpoly4 = df_krishnamurthy_poly4.loc[i][1] + df_krishnamurthy_poly4.loc[i][2] * X_model +

↪→ df_krishnamurthy_poly4.loc[i][3] * pow(X_model,2) + df_krishnamurthy_poly4.loc[i][4] *

↪→ pow(X_model,3) + df_krishnamurthy_poly4.loc[i][5] * pow(X_model,4)

p4coef, pcov = curve_fit(poly4, X_data, y_data)

fs3coef, pcov = curve_fit(fourier3, X_data, y_data,maxfev=10000,p0

↪→ =[0,0,0,0,0,0,0,0.00209553137817916])

fs5coef, pcov = curve_fit(fourier5, X_data, y_data,maxfev=10000,p0

↪→ =[0,0,0,0,0,0,0,0,0,0,0,0.00209553137817916])

plt.figure(’Krishnamurthy Poly4’)

plt.plot(X_model,y_krpoly4)

plt.xlim([0,1500])

plt.ylim([0,1.500e3])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,1.500e3,4))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(strain_mf_labels, loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/Krishnamurthy_Poly4.png’)

plt.figure(’Krishnamurthy Poly4 + Experimental Data’)

plt.plot(X_reduced,y_reduced*pow(10,6), color=colors[i], marker=’o’, linestyle=’none’, label=

↪→ None)

plt.plot(X_model,y_krpoly4, color=colors[i], linestyle=’-’, label=strain_mf_labels[i])

plt.xlim([0,1500])

plt.ylim([0,1.500e3])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,1.500e3,4))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)
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plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/Krishnamurthy_Poly4_ExpData.png’)

plt.figure(’Poly4 Curve-fit’)

plt.plot(X_reduced,y_reduced, color=colors[i], marker=’o’, linestyle=’none’, label=None)

plt.plot(X_model, poly4(X_model, *p4coef), color=colors[i], linestyle=’-’, label=

↪→ strain_mf_labels[i])

plt.xlim([0,1500])

plt.ylim([0,1.5e-3])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,1.5e-3,4))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/Poly4_SMFcurvefit.png’)

plt.figure(’Fourier3 Curve-fit’)

plt.plot(X_reduced,y_reduced, color=colors[i], marker=’o’, linestyle=’none’, label=None)

plt.plot(X_model, fourier3(X_model, *fs3coef), color=colors[i], linestyle=’-’, label=

↪→ strain_mf_labels[i])

plt.xlim([0,1500])

plt.ylim([0,1.5e-3])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,1.5e-3,4))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/Fourier3_SMFcurvefit.png’)

plt.figure(’Fourier5 Curve-fit’)

plt.plot(X_reduced,y_reduced, color=colors[i], marker=’o’, linestyle=’none’, label=None)

plt.plot(X_model, fourier5(X_model, *fs5coef), color=colors[i], linestyle=’-’, label=

↪→ strain_mf_labels[i])

plt.xlim([0,1500])

plt.ylim([0,1.5e-3])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,1.5e-3,4))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(loc=’upper left’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/Fourier5_SMFcurvefit.png’)

if ’6.9’ in files.lower():

dc_butler_exp = np.diff(y_reduced) / np.diff(X_reduced)

dc_krpoly4 = df_krishnamurthy_poly4.loc[i][2] + 2*df_krishnamurthy_poly4.loc[i][3] *

↪→ X_model + 3*df_krishnamurthy_poly4.loc[i][4] * pow(X_model,2) + 4*

↪→ df_krishnamurthy_poly4.loc[i][5] * pow(X_model,3)

s_fourier5 = np.diff(fourier5(X_model, *fs5coef)) / np.diff(X_model)

s_poly4 = np.diff(poly4(X_model, *p4coef)) / np.diff(X_model)

plt.figure(’Piezomagnetic Coefficient 6.9 MPa’)

plt.plot(X_reduced[:-1],dc_butler_exp,’s’)

plt.plot(X_model,dc_krpoly4*pow(10,-6))

plt.plot(X_model[:-1],s_poly4)

plt.plot(X_model[:-1],s_fourier5)
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plt.xlim([0,1500])

plt.ylim([0,4e-6])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,4e-6,9))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Piezomagnetic Coefficient (m/A)’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend([’Experimental Data (’r’$\sigma_0$’’=6.9 MPa)’,’Krishnamurthy Polynomial (x10e-

↪→ 6)’,’Proposed Quartic Polynomial’,’Five-term Fourier Series’], loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/PiezomagneticCoefficient_6-9MPa.png’)

dc_butler_exp = np.diff(y_reduced) / np.diff(X_reduced)

s_fourier5 = np.diff(fourier5(X_model, *fs5coef)) / np.diff(X_model)

s_poly4 = np.diff(poly4(X_model, *p4coef)) / np.diff(X_model)

plt.figure(’Piezomagnetic Coefficient Fourier5’)

plt.plot(X_reduced[:-1],dc_butler_exp, color=colors[i], marker=’o’, linestyle=’none’, label=

↪→ None)

plt.plot(X_model[:-1],s_fourier5, color=colors[i], linestyle=’-’, label=strain_mf_labels[i])

plt.xlim([0,1500])

plt.ylim([0,3.5e-6])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,3.5e-6,8))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Piezomagnetic Coefficient (m/A)’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/PiezomagneticCoefficient_fourier5.png’)

plt.figure(’Piezomagnetic Coefficient Poly4’)

plt.plot(X_reduced[:-1],dc_butler_exp, color=colors[i], marker=’o’, linestyle=’none’, label=

↪→ None)

plt.plot(X_model[:-1],s_poly4, color=colors[i], linestyle=’-’, label=strain_mf_labels[i])

plt.xlim([0,1500])

plt.ylim([0,3.5e-6])

plt.xticks(np.linspace(0,1500,4))

plt.yticks(np.linspace(0,3.5e-6,8))

plt.xlabel(’Magnetic Field Intensity (Oersted)’)

plt.ylabel(’Piezomagnetic Coefficient (m/A)’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend(loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Strain-MagneticField/PiezomagneticCoefficient_poly4.png’)

master_smf_poly4.loc[prestress_index[i]] = p4coef

master_smf_fourier3.loc[prestress_index[i]] = fs3coef

master_smf_fourier5.loc[prestress_index[i]] = fs5coef

master_smf_poly4.to_csv(’Strain-MagneticField_Poly4_Coefficients.csv’)

master_smf_fourier3.to_csv(’Strain-MagneticField_Fourier3_Coefficients.csv’)

master_smf_fourier5.to_csv(’Strain-MagneticField_Fourier5_Coefficients.csv’)

i += 1

D.1.2 Iterative Stress Scheme

import os
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import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from bulkmaterialprop import as4_35016,terfenolD

from interpolate_EBmodel_Krishnamurthy import *

##################################################

# input parameters

H0 = 0

H = 10

##################################################

plies_above = 4

plies_below = 4

plies_ms = 1

num_plies = plies_above + plies_ms + plies_below

ss_angle = [0] * (plies_above + plies_ms + plies_below)

ss_material = [’cfrp’] * plies_above + [’ms’] * plies_ms + [’cfrp’] * plies_below

total_thickness = (plies_above + plies_below) * as4_35016.thickness + plies_ms * terfenolD.thickness

total_thickness = round(total_thickness,10)

z = []

z.append(-0.5 * total_thickness)

A1 = 0

A2 = 0

mslayer = 0

for i in range(0,num_plies):

if ’cfrp’ in ss_material[i] and mslayer == 0:

new_z = z[i] + as4_35016.thickness

A1 = A1 + as4_35016.E1 * (new_z -z[i])

elif ’ms’ in ss_material[i]:

new_z = z[i] + terfenolD.thickness

mslayer = 1

elif ’cfrp’ in ss_material[i] and mslayer == 1:

new_z = z[i] + as4_35016.thickness

A2 = A2 + as4_35016.E1 * (new_z -z[i])

z.append(round(new_z,10))

n = 1.818

alpha_e = 52.287e-12

beta_e = -1.218 * pow(10,-6 * n -6)

sigmaMax = 55

step = 0.1

sigma = np.arange(0,sigmaMax+step,step) * pow(10,6)

sigma_tr = sigma + step

LHS2_fourier3 = []

RHS1_krpoly4 = []

RHS2_krpoly4 = []

RHS1_npoly4 = []

RHS2_npoly4 = []

RHS_nfourier5 = []

LHS1 = np.asarray((sigma_tr * terfenolD.thickness) / (A1 + A2))

LHS2_kr = np.asarray(alpha_e * sigma_tr + beta_e * pow(sigma_tr,n))
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for i in range(0,len(sigma)):

LHS2_fourier3.append(SSfourier3_sum(sigma_tr[i],H0))

esp_Krpoly4, esp_Krpoly4_a0 = interpolateKrPoly4(sigma[i],H)

esp_new_poly4, esp_new_poly4_a0 = interpolateNewPoly4(sigma[i],H)

esp_new_fourier5 = interpolateNewFourier5(sigma[i],H)

RHS1_krpoly4.append(esp_Krpoly4)

RHS2_krpoly4.append(esp_Krpoly4_a0)

RHS1_npoly4.append(esp_new_poly4)

RHS2_npoly4.append(esp_new_poly4_a0)

RHS_nfourier5.append(esp_new_fourier5)

LHS2_fourier3 = np.asarray(LHS2_fourier3)

RHS1_krpoly4 = np.asarray(RHS1_krpoly4)

RHS2_krpoly4 = np.asarray(RHS2_krpoly4)

RHS1_npoly4 = np.asarray(RHS1_npoly4)

RHS2_npoly4 = np.asarray(RHS2_npoly4)

RHS_nfourier5 = np.asarray(RHS_nfourier5)

LHS_kr = np.asarray(LHS1) -np.asarray(LHS2_kr)

LHS_fourier3 = np.asarray(LHS1) -np.asarray(LHS2_fourier3)

diff1_kr = LHS_kr -RHS1_krpoly4

diff2_kr = LHS_kr -RHS2_krpoly4

diff1_fourier3 = LHS_fourier3 -RHS1_krpoly4

diff2_fourier3 = LHS_fourier3 -RHS2_krpoly4

plt.figure(’EB -Iteration Krishnamurthy’)

plt.plot(sigma*pow(10,-6),LHS_kr)

plt.plot(sigma*pow(10,-6),RHS1_krpoly4)

plt.plot(sigma*pow(10,-6),RHS2_krpoly4)

plt.xlim([0,sigmaMax])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.legend([’LHS’,’RHS (without ’r’$\alpha_0$’’)’,’RHS (with ’r’$\alpha_0$’’)’], loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_model_KR.png’)

plt.figure(’EB -Iteration Proposed Models’)

plt.plot(sigma*pow(10,-6),LHS_fourier3)

plt.plot(sigma*pow(10,-6),RHS1_npoly4)

plt.plot(sigma*pow(10,-6),RHS2_npoly4)

plt.xlim([0,sigmaMax])

plt.ylim([-1.4e-3,0.6e-3])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend([’LHS’,’RHS (without ’r’$\alpha_0$’’)’,’RHS (with ’r’$\alpha_0$’’)’], loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_model_poly4.png’)

plt.figure(’EB -Iteration Proposed Fourier Models’)

plt.plot(sigma*pow(10,-6),LHS_fourier3)

plt.plot(sigma*pow(10,-6),RHS_nfourier5)

plt.xlim([0,sigmaMax])

plt.ylim([-1.4e-3,0.4e-3])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)
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plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend([’LHS’,’RHS’], loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_model_fourier.png’)

ymax = 0.2e-3

ymin = -1.4e-3

plt.figure(’EB -Iteration ALL Proposed Models’)

plt.plot(sigma*pow(10,-6),LHS_fourier3)

plt.plot(sigma*pow(10,-6),RHS1_npoly4)

plt.plot(sigma*pow(10,-6),RHS2_npoly4)

plt.plot(sigma*pow(10,-6),RHS_nfourier5)

plt.xlim([0,sigmaMax])

plt.ylim([ymin,ymax])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.yticks(np.linspace(ymin,ymax,9))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend([’LHS’,’RHS -poly4 (without ’r’$\alpha_0$’’)’,’RHS -poly4 (with ’r’$\alpha_0$’’)’,’RHS -

↪→ Fourier5’], loc=’lower left’)

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_model.png’)

ymax = 10e-5

ymin = -12e-5

plt.figure(’EB -Iteration ALL Proposed Models RHS’)

plt.plot(sigma*pow(10,-6),LHS_fourier3)

plt.plot(sigma*pow(10,-6),RHS1_npoly4)

plt.plot(sigma*pow(10,-6),RHS2_npoly4)

plt.plot(sigma*pow(10,-6),RHS_nfourier5)

plt.xlim([0,sigmaMax])

plt.ylim([ymin,ymax])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.yticks(np.linspace(ymin,ymax,9))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.legend([’LHS’,’RHS -poly4 (without ’r’$\alpha_0$’’)’,’RHS -poly4 (with ’r’$\alpha_0$’’)’,’RHS -

↪→ Fourier5’], loc=’lower right’)

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_model_RHS.png’)

plt.figure(’LHS terms’)

plt.plot(sigma*pow(10,-6),LHS1,’-’)

plt.plot(sigma*pow(10,-6),LHS2_kr,’-’)

plt.plot(sigma*pow(10,-6),LHS2_fourier3,’-’)

plt.xlim([0,sigmaMax])

plt.ylim([0,1.4e-3])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.legend([’LHS1 (stiffness term)’,’Ramberg-Osgood’,’Fourier3’], loc=’upper left’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_LHSstrain.png’)

plt.figure(’LHS terms total’)

plt.plot(sigma*pow(10,-6),LHS_kr,’-’)

plt.plot(sigma*pow(10,-6),LHS_fourier3,’-’)

plt.xlim([0,sigmaMax])

plt.ylim([-1.4e-3,0])

plt.xticks(np.linspace(0,sigmaMax,12))
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plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.legend([’Ramberg-Osgood’,’Fourier3’], loc=’upper right’)

plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/EB_LHSstrain_total.png’)

plt.figure(’Difference in Poly4’)

plt.plot(sigma*pow(10,-6),RHS1_krpoly4)

plt.plot(sigma*pow(10,-6),RHS2_krpoly4)

plt.xlim([0,sigmaMax])

plt.ylim([-55,55])

plt.xticks(np.linspace(0,sigmaMax,12))

plt.xlabel(’Stress (MPa)’)

plt.ylabel(’Strain’)

plt.legend([’Krishnamurthy Poly4 (without ’r’$\alpha_0$’’)’,’Krishnamurthy Poly4 (with ’r’$\alpha_0$’’

↪→ )’], loc=’upper right’)

plt.tight_layout()

plt.savefig(’Plots/Krishnamurthy_EBModel/KrPoly4_Comparison.png’)

D.1.3 Interpolation of the Magnetic Strain Relationship Coefficients

A linear interpolation method was applied to calculate the coefficients of the strain-magnetic
field intensity relationship. The functions examined in this script include the polynomial presented
in [53], an improved polynomial, and two Fourier series (three and five term series). The linear
interpolation scheme was taken from [53].

αi = αi1 σ < σ1 (D.16)

αij (σ) = αij +
αi(j+1) − αij
σj+1 − σj

(σ − σj) σj < σ < σj+1 (D.17)

i = 0, 1, 2, 3, 4 j = 1, 2, 3, 4, 5, 6, 7 (D.18)

import numpy as np

import pandas as pd

def SSfourier3_sum(stress,H0):

df_ss_fourier3 = pd.read_csv(’Stress-Strain_Fourier3inv_Coefficients.csv’)

bias_dict = {0:0, 30:1, 60:2, 90:3, 120:4}

stress_strain_index = [’0’,’30’,’60’,’90’,’120’]

df2_row = df_ss_fourier3.iloc[[bias_dict[H0]]]

a0 = df2_row[’a0’][0]

a1 = df2_row[’a1’][0]

a2 = df2_row[’a2’][0]

a3 = df2_row[’a3’][0]

b1 = df2_row[’b1’][0]

b2 = df2_row[’b2’][0]

b3 = df2_row[’b3’][0]

omega = df2_row[’omega’][0]

sum = a0 + a1*np.cos(omega*stress) + b1*np.sin(omega*stress) + a2*np.cos(2*omega*stress) + b2*np.

↪→ sin(2*omega*stress) + a3*np.cos(3*omega*stress) + b3*np.sin(3*omega*stress)

return sum
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def interpolateKrPoly4(stress,H):

df_kr_poly4 = pd.read_csv(’Krishnamurthy_SMFpoly4coef.csv’)

prestress_index = [’6.9’,’9.6’,’12.4’,’17.9’,’24.1’, ’38.0’, ’51.7’]

prestress = [6.9, 9.6, 12.4, 17.9, 24.1, 38.0, 51.7]

stress = round(stress * pow(10,-6),1)

stress_index = df_kr_poly4.index[df_kr_poly4[’stress’] == stress].tolist()

if stress_index:

print(’Prestress level: ’ + prestress_index[stress_index[0]])

a0 = df_kr_poly4[’a0’][stress_index]

a1 = df_kr_poly4[’a1’][stress_index]

a2 = df_kr_poly4[’a2’][stress_index]

a3 = df_kr_poly4[’a3’][stress_index]

a4 = df_kr_poly4[’a4’][stress_index]

elif stress < prestress[0]:

print(’below zero’)

a0 = df_kr_poly4[’a0’][0]

a1 = df_kr_poly4[’a1’][0]

a2 = df_kr_poly4[’a2’][0]

a3 = df_kr_poly4[’a3’][0]

a4 = df_kr_poly4[’a4’][0]

elif stress > prestress[6]:

print(’Maximum stress exceeded.’)

a0 = 0

a1 = 0

a2 = 0

a3 = 0

a4 = 0

elif not stress_index:

print(’...interpolating...’)

for i in range(0,6):

is_between = prestress[i] <= stress <= prestress[i+1]

if is_between:

a0 = df_kr_poly4[’a0’][i] + ((df_kr_poly4[’a0’][i+1] -df_kr_poly4[’a0’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a1 = df_kr_poly4[’a1’][i] + ((df_kr_poly4[’a1’][i+1] -df_kr_poly4[’a1’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a2 = df_kr_poly4[’a2’][i] + ((df_kr_poly4[’a2’][i+1] -df_kr_poly4[’a2’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a3 = df_kr_poly4[’a3’][i] + ((df_kr_poly4[’a3’][i+1] -df_kr_poly4[’a3’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a4 = df_kr_poly4[’a4’][i] + ((df_kr_poly4[’a4’][i+1] -df_kr_poly4[’a4’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

epsilonH = a1 * H + a2 * pow(H,2) + a3 * pow(H,3) + a4 * pow(H,4)

epsilonH_a0 = a0 + a1 * H + a2 * pow(H,2) + a3 * pow(H,3) + a4 * pow(H,4)

return(epsilonH, epsilonH_a0)

def interpolateNewPoly4(stress,H):

df_smf_poly4 = pd.read_csv(’Strain-MagneticField_Poly4_Coefficients.csv’)

prestress_index = [’6.9’,’9.6’,’12.4’,’17.9’,’24.1’, ’38.0’, ’51.7’]

prestress = [6.9, 9.6, 12.4, 17.9, 24.1, 38.0, 51.7]

stress = round(stress * pow(10,-6),1)

stress_index = df_smf_poly4.index[df_smf_poly4[’stress’] == stress].tolist()
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if stress_index:

print(’Prestress level: ’ + prestress_index[stress_index[0]])

a0 = df_smf_poly4[’a0’][stress_index]

a1 = df_smf_poly4[’a1’][stress_index]

a2 = df_smf_poly4[’a2’][stress_index]

a3 = df_smf_poly4[’a3’][stress_index]

a4 = df_smf_poly4[’a4’][stress_index]

elif stress < prestress[0]:

print(’below zero’)

a0 = df_smf_poly4[’a0’][0]

a1 = df_smf_poly4[’a1’][0]

a2 = df_smf_poly4[’a2’][0]

a3 = df_smf_poly4[’a3’][0]

a4 = df_smf_poly4[’a4’][0]

elif stress > prestress[6]:

print(’Maximum stress exceeded.’)

a0 = 0

a1 = 0

a2 = 0

a3 = 0

a4 = 0

elif not stress_index:

print(’...interpolating...’)

for i in range(0,6):

is_between = prestress[i] <= stress <= prestress[i+1]

if is_between:

a0 = df_smf_poly4[’a0’][i] + ((df_smf_poly4[’a0’][i+1] -df_smf_poly4[’a0’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a1 = df_smf_poly4[’a1’][i] + ((df_smf_poly4[’a1’][i+1] -df_smf_poly4[’a1’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a2 = df_smf_poly4[’a2’][i] + ((df_smf_poly4[’a2’][i+1] -df_smf_poly4[’a2’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a3 = df_smf_poly4[’a3’][i] + ((df_smf_poly4[’a3’][i+1] -df_smf_poly4[’a3’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

a4 = df_smf_poly4[’a4’][i] + ((df_smf_poly4[’a4’][i+1] -df_smf_poly4[’a4’][i]) / (

↪→ prestress[i+1] -prestress[i])) * (stress -prestress[i])

epsilonH = a1 * H + a2 * pow(H,2) + a3 * pow(H,3) + a4 * pow(H,4)

epsilonH_a0 = a0 + a1 * H + a2 * pow(H,2) + a3 * pow(H,3) + a4 * pow(H,4)

return(epsilonH, epsilonH_a0)

def interpolateNewFourier5(stress,H):

df_smf_fourier5 = pd.read_csv(’Strain-MagneticField_Fourier5_Coefficients.csv’)

prestress_index = [’6.9’,’9.6’,’12.4’,’17.9’,’24.1’, ’38.0’, ’51.7’]

prestress = [6.9, 9.6, 12.4, 17.9, 24.1, 38.0, 51.7]

stress = round(stress * pow(10,-6),1)

stress_index = df_smf_fourier5.index[df_smf_fourier5[’stress’] == stress].tolist()

if stress_index:

print(’Prestress level: ’ + prestress_index[stress_index[0]])

a0 = df_smf_fourier5[’a0’][stress_index]

a1 = df_smf_fourier5[’a1’][stress_index]

a2 = df_smf_fourier5[’a2’][stress_index]

a3 = df_smf_fourier5[’a3’][stress_index]

a4 = df_smf_fourier5[’a4’][stress_index]

a5 = df_smf_fourier5[’a5’][stress_index]

b1 = df_smf_fourier5[’b1’][stress_index]
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b2 = df_smf_fourier5[’b2’][stress_index]

b3 = df_smf_fourier5[’b3’][stress_index]

b4 = df_smf_fourier5[’b4’][stress_index]

b5 = df_smf_fourier5[’b5’][stress_index]

omega = df_smf_fourier5[’omega’][stress_index]

elif stress < prestress[0]:

print(’below zero’)

a0 = df_smf_fourier5[’a0’][0]

a1 = df_smf_fourier5[’a1’][0]

a2 = df_smf_fourier5[’a2’][0]

a3 = df_smf_fourier5[’a3’][0]

a4 = df_smf_fourier5[’a4’][0]

a5 = df_smf_fourier5[’a5’][0]

b1 = df_smf_fourier5[’b1’][0]

b2 = df_smf_fourier5[’b2’][0]

b3 = df_smf_fourier5[’b3’][0]

b4 = df_smf_fourier5[’b4’][0]

b5 = df_smf_fourier5[’b5’][0]

omega = df_smf_fourier5[’omega’][0]

elif stress > prestress[6]:

print(’Maximum stress exceeded.’)

a0 = 0

a1 = 0

a2 = 0

a3 = 0

a4 = 0

a5 = 0

b1 = 0

b2 = 0

b3 = 0

b4 = 0

b5 = 0

omega = 0

elif not stress_index:

print(’...interpolating...’)

for i in range(0,6):

is_between = prestress[i] <= stress <= prestress[i+1]

if is_between:

a0 = df_smf_fourier5[’a0’][i] + ((df_smf_fourier5[’a0’][i+1] -df_smf_fourier5[’a0’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

a1 = df_smf_fourier5[’a1’][i] + ((df_smf_fourier5[’a1’][i+1] -df_smf_fourier5[’a1’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

a2 = df_smf_fourier5[’a2’][i] + ((df_smf_fourier5[’a2’][i+1] -df_smf_fourier5[’a2’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

a3 = df_smf_fourier5[’a3’][i] + ((df_smf_fourier5[’a3’][i+1] -df_smf_fourier5[’a3’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

a4 = df_smf_fourier5[’a4’][i] + ((df_smf_fourier5[’a4’][i+1] -df_smf_fourier5[’a4’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

a5 = df_smf_fourier5[’a5’][i] + ((df_smf_fourier5[’a5’][i+1] -df_smf_fourier5[’a5’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

b1 = df_smf_fourier5[’b1’][i] + ((df_smf_fourier5[’b1’][i+1] -df_smf_fourier5[’b1’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

b2 = df_smf_fourier5[’b2’][i] + ((df_smf_fourier5[’b2’][i+1] -df_smf_fourier5[’b2’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

b3 = df_smf_fourier5[’b3’][i] + ((df_smf_fourier5[’b3’][i+1] -df_smf_fourier5[’b3’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])
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b4 = df_smf_fourier5[’b4’][i] + ((df_smf_fourier5[’b4’][i+1] -df_smf_fourier5[’b4’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

b5 = df_smf_fourier5[’b5’][i] + ((df_smf_fourier5[’b5’][i+1] -df_smf_fourier5[’b5’][i])

↪→ / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

omega = df_smf_fourier5[’omega’][i] + ((df_smf_fourier5[’omega’][i+1] -df_smf_fourier5[

↪→ ’omega’][i]) / (prestress[i+1] -prestress[i])) * (stress -prestress[i])

epsilonH = a0 + a1*np.cos(omega*H) + b1*np.sin(omega*H) + a2*np.cos(2*omega*H) + b2*np.sin(2*omega

↪→ *H) + a3*np.cos(3*omega*H) + b3*np.sin(3*omega*H) + a4*np.cos(4*omega*H) + b4*np.sin(4*

↪→ omega*H) + a5*np.cos(5*omega*H) + b5*np.sin(5*omega*H)

return epsilonH

D.2 Effective Property Scripts

D.2.1 Effective Elastic Property Calculations

import numpy as np

# voigt approximation

def voigt(propertyA,propertyB,vfA,vfB):

effective_property = propertyA * vfA + propertyB * vfB

return effective_property

# reuss approximation

def reuss(propertyA,propertyB,vfA,vfB):

inv = (vfA / propertyA) + (vfB / propertyB)

effective_property = 1 / inv

return effective_property

# hashin-shtrikman (lower bound)

def hashin_shtrikman_lower(K_td,G_td,K_matrix,G_matrix,vf_td,vf_matrix):

K = K_matrix + np.divide(vf_td,((1 / (K_td -K_matrix)) + (vf_matrix / (K_matrix + G_matrix))))

G = G_matrix + np.divide(vf_td,(1 / (G_td -G_matrix)) + ((vf_matrix * (K_matrix + 2 * G_matrix)) /

↪→ (2 * G_matrix * (K_matrix + G_matrix))))

E_effective = (9 * K * G) / (3 * K + G)

NU_effective = (3 * K -2 * G) / (2 * (3 * K + G))

G_effective = E_effective / (2 * (1 + NU_effective))

K_effective = E_effective / (3 * (1 -2 * NU_effective))

return E_effective, NU_effective, G_effective, K_effective

# hashin-shtrikman (upper bound)

def hashin_shtrikman_upper(K_td,G_td,K_matrix,G_matrix,vf_td,vf_matrix):

K = K_td + np.divide(vf_matrix,((1 / (K_matrix -K_td)) + (vf_td / (K_td + G_td))))

G = G_td + np.divide(vf_matrix,(1 / (G_matrix -G_td)) + ((vf_td * (K_td + 2 * G_td)) / (2 * G_td *

↪→ (K_td + G_td))))

E_effective = (9 * K * G) / (3 * K + G)

NU_effective = (3 * K -2 * G) / (2 * (3 * K + G))

G_effective = E_effective / (2 * (1 + NU_effective))

K_effective = E_effective / (3 * (1 -2 * NU_effective))

return E_effective, NU_effective, G_effective, K_effective

# mori-tanaka

def mori_tanaka(K_td,G_td,K_matrix,G_matrix,vf_td,vf_matrix):

K = (K_td -K_matrix) * (vf_td / (1 + vf_matrix * ((K_td -K_matrix) / (K_matrix + (4/3) * G_matrix)

↪→ ))) + K_matrix

G = (G_td -G_matrix) * (vf_td / (1 + vf_matrix * ((G_td -G_matrix) / (G_matrix + ((G_matrix * (9 *

↪→ K_matrix + 8 * G_matrix)) / (6 * (K_matrix + 2 * G_matrix))))))) + G_matrix
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E_effective = (9 * K * G) / (3 * K + G)

NU_effective = (3 * K -2 * G) / (2 * (3 * K + G))

G_effective = G

K_effective = K

return E_effective, NU_effective, G_effective, K_effective

D.2.2 Effective Elastic Properties

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from bulkmaterialprop import matrix35016

from bulkmaterialprop import terfenolD

import elastic_property_approx as elastic_properties

class Eeff:

voigt = []

class Geff:

voigt = []

class NUeff:

voigt = []

class Keff:

voigt = []

# set volume fraction

vf_td = np.linspace(0,1,101)

vf_matrix = 1 -vf_td

## approximations

elastic_property_labels = [’Voigt’, ’Reuss’, ’Hill’, ’Hashin-Shtrikman (Upper Bound)’, ’Hashin-

↪→ Shtrikman (Lower Bound)’, ’Mori-Tanaka’]

elastic_property_labels2 = [’Voigt -elasticity’,’Voigt -verbatim’,’Reuss -elasticity’,’Reuss -verbatim

↪→ ’, ’Hill’, ’Hashin-Shtrikman (Upper Bound)’, ’Hashin-Shtrikman (Lower Bound)’, ’Mori-Tanaka’]

# VOIGT

Geff.voigt = elastic_properties.voigt(terfenolD.G,matrix35016.G,vf_td,vf_matrix)

Keff.voigt = elastic_properties.voigt(terfenolD.K,matrix35016.K,vf_td,vf_matrix)

Eeff.voigt_elasticity = (9 * Keff.voigt * Geff.voigt) / (3 * Keff.voigt + Geff.voigt)

NUeff.voigt_elasticity = (3 * Keff.voigt -2 * Geff.voigt) / (2 * (3 * Keff.voigt + Geff.voigt))

Eeff.voigt = elastic_properties.voigt(terfenolD.E,matrix35016.E,vf_td,vf_matrix)

NUeff.voigt = elastic_properties.voigt(terfenolD.nu,matrix35016.nu,vf_td,vf_matrix)

# REUSS

Geff.reuss = elastic_properties.reuss(terfenolD.G,matrix35016.G,vf_td,vf_matrix)

Keff.reuss = elastic_properties.reuss(terfenolD.K,matrix35016.K,vf_td,vf_matrix)

Eeff.reuss_elasticity = (9 * Keff.reuss * Geff.reuss) / (3 * Keff.reuss + Geff.reuss)

NUeff.reuss_elasticity = (3 * Keff.reuss -2 * Geff.reuss) / (6 * Keff.reuss + 2 * Geff.reuss)

Eeff.reuss = elastic_properties.reuss(terfenolD.E,matrix35016.E,vf_td,vf_matrix)

NUeff.reuss = elastic_properties.reuss(terfenolD.nu,matrix35016.nu,vf_td,vf_matrix)

# HILL

Geff.hill = (Geff.voigt + Geff.reuss) / 2
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Keff.hill = (Keff.voigt + Keff.reuss) / 2

Eeff.hill = (Eeff.voigt + Eeff.reuss) / 2

NUeff.hill = (NUeff.voigt + NUeff.reuss) / 2

# HASHIN-SHTRIKMAN

# # # upper bound

Eeff.hsub, NUeff.hsub, Geff.hsub, Keff.hsub = elastic_properties.hashin_shtrikman_upper(terfenolD.K,

↪→ terfenolD.G,matrix35016.K,matrix35016.G,vf_td,vf_matrix)

# # # lower bound

Eeff.hslb, NUeff.hslb, Geff.hslb, Keff.hslb = elastic_properties.hashin_shtrikman_lower(terfenolD.K,

↪→ terfenolD.G,matrix35016.K,matrix35016.G,vf_td,vf_matrix)

# MORI-TANAKA

Eeff.mori_tanaka, NUeff.mori_tanaka, Geff.mori_tanaka, Keff.mori_tanaka = elastic_properties.

↪→ mori_tanaka(terfenolD.K,terfenolD.G,matrix35016.K,matrix35016.G,vf_td,vf_matrix)

## EXPORT

K = np.array([Keff.voigt, Keff.reuss, Keff.hill, Keff.hsub, Keff.hslb, Keff.mori_tanaka])

K = np.transpose(K)

K = pd.DataFrame(K, columns=elastic_property_labels, index=vf_td)

K.to_csv(’K_approximations.csv’)

vf_td_reduced=[]

Eeff_hsub_reduced=[]

for j in range(0,len(vf_td_reduced),3):

vf_td_reduced.append(vf_td_reduced[j])

Eeff_hsub_reduced.append(Eeff.hsub[j])

vf_td_reduced = np.asarray(vf_td_reduced)

Eeff_hsub_reduced = np.asarray(Eeff_hsub_reduced)

## EFFECTIVE PROPERTY PLOTS

AR = 8/5

width = 12

fig_size = [width, width/AR]

text_label_x = 0.602

ymin_value = 0

# elastic modulus -elasticity

ymax_value = int(35)

plt.figure(num=1, figsize=fig_size)

plt.plot(vf_td,Eeff.voigt_elasticity*pow(10,-9))

plt.plot(vf_td,Eeff.reuss_elasticity*pow(10,-9))

plt.plot(vf_td,Eeff.hill*pow(10,-9))

plt.plot(vf_td,Eeff.hsub*pow(10,-9),’o-’)

plt.plot(vf_td,Eeff.hslb*pow(10,-9),’o-’)

plt.plot(vf_td,Eeff.mori_tanaka*pow(10,-9))

plt.plot(vf_td, [terfenolD.E*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.E*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(0,ymax_value,int(ymax_value/5+1)), fontsize=12)

plt.ylim(ymin=0, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Elastic Modulus (E$_{eff}$) [GPa]’, fontsize=14)
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plt.legend(elastic_property_labels, loc=’upper left’, frameon=True, framealpha=0.9, ncol=2, fontsize

↪→ =12)

plt.text(0.75,matrix35016.E*pow(10,-9)+0.5,’E$_{3501-6}$ = 4.2 GPa’, fontsize=12)

plt.text(0.75,terfenolD.E*pow(10,-9)+0.5,’E$_{Terfenol-D}$ = 30 GPa’, fontsize=12)

plt.plot([0.64, 0.64],[0, ymax_value],’k--’, alpha=0.5)

plt.text(text_label_x,terfenolD.E*pow(10,-9)+2,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename1 = ’Plots/EffectiveE.png’

plt.savefig(filename1)

# elastic modulus

plt.figure(num=5, figsize=fig_size)

plt.plot(vf_td,Eeff.voigt_elasticity*pow(10,-9),’#1f77b4’)

plt.plot(vf_td,Eeff.voigt*pow(10,-9),’#1f77b4’,linestyle=’--’)

plt.plot(vf_td,Eeff.reuss_elasticity*pow(10,-9),’#ff7f0e’)

plt.plot(vf_td,Eeff.reuss*pow(10,-9),’#ff7f0e’,linestyle=’--’)

plt.plot(vf_td, [terfenolD.E*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.E*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(0,ymax_value,int(ymax_value/5+1)), fontsize=12)

plt.ylim(ymin=0, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Elastic Modulus (E$_{eff}$) [GPa]’, fontsize=14)

plt.legend([’Voigt -elasticity’,’Voigt -model’,’Reuss -elasticity’,’Reuss -model’], loc=’upper left’,

↪→ frameon=True, framealpha=0.9, ncol=2, fontsize=12)

plt.text(0.75,4.7,’E$_{3501-6}$ = 4.2 GPa’, fontsize=12)

plt.text(0.75,30.5,’E$_{Terfenol-D}$ = 30 GPa’, fontsize=12)

plt.plot([0.64, 0.64],[0, ymax_value],’k--’, alpha=0.5)

plt.text(text_label_x,terfenolD.E*pow(10,-9)+2,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename5 = ’Plots/EffectiveE_modelverbatim.png’

plt.savefig(filename5)

# shear modulus

ymax_value = 12

plt.figure(num=2, figsize=fig_size)

plt.plot(vf_td,Geff.voigt*pow(10,-9))

plt.plot(vf_td,Geff.reuss*pow(10,-9))

plt.plot(vf_td,Geff.hill*pow(10,-9))

plt.plot(vf_td,Geff.hsub*pow(10,-9),’o-’)

plt.plot(vf_td,Geff.hslb*pow(10,-9),’o-’)

plt.plot(vf_td,Geff.mori_tanaka*pow(10,-9))

plt.plot(vf_td, [terfenolD.G*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.G*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(0,ymax_value,int(ymax_value/2+1)), fontsize=12)

plt.ylim(ymin=0, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Shear Modulus (G$_{eff}$) [GPa]’, fontsize=14)

plt.legend(elastic_property_labels, loc=’upper left’, frameon=True, framealpha=0.9, ncol=2, fontsize

↪→ =12)

plt.text(0.75,matrix35016.G*pow(10,-9)+0.2,’G$_{3501-6}$ = 1.567 GPa’, fontsize=12)

plt.text(0.75,terfenolD.G*pow(10,-9)+0.2,’G$_{Terfenol-D}$ = 10.385 GPa’, fontsize=12)

plt.plot([0.64, 0.64],[0, ymax_value],’k--’, alpha=0.5)

plt.text(text_label_x,terfenolD.G*pow(10,-9)+0.75,’RCP’, fontsize=12)
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plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename2 = ’Plots/EffectiveG.png’

plt.savefig(filename2)

# bulk modulus

ymax_value = 110

plt.figure(num=3, figsize=fig_size)

plt.plot(vf_td,Keff.voigt*pow(10,-9))

plt.plot(vf_td,Keff.reuss*pow(10,-9))

plt.plot(vf_td,Keff.hill*pow(10,-9))

plt.plot(vf_td,Keff.hsub*pow(10,-9),’o-’)

plt.plot(vf_td,Keff.hslb*pow(10,-9),’o-’)

plt.plot(vf_td,Keff.mori_tanaka*pow(10,-9))

plt.plot(vf_td, [terfenolD.K*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.K*pow(10,-9) for _ in range(len(vf_td))],’k:’)

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(0,ymax_value,int(ymax_value/10+1)), fontsize=12)

plt.ylim(ymin=0, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Bulk Modulus (K$_{eff}$) [GPa]’, fontsize=14)

plt.legend(elastic_property_labels, loc=’upper left’, frameon=True, framealpha=0.9, ncol=2, fontsize

↪→ =12)

plt.text(0.75,matrix35016.K*pow(10,-9)+1.4,’K$_{3501-6}$ = 4.375 GPa’, fontsize=12)

plt.text(0.75,terfenolD.K*pow(10,-9)+1.4,’K$_{Terfenol-D}$ = 90 GPa’, fontsize=12)

plt.plot([0.64, 0.64],[0, ymax_value],’k--’, alpha=0.5)

plt.text(text_label_x,terfenolD.K*pow(10,-9)+10,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename3 = ’Plots/EffectiveK.png’

plt.savefig(filename3)

# poisson’s ratio -elasticity

ymin_value = 0.32

ymax_value = 0.48

step = int((ymax_value -ymin_value) / 0.02 +2)

plt.figure(num=4, figsize=fig_size)

plt.plot(vf_td,NUeff.voigt_elasticity,’#1f77b4’)

plt.plot(vf_td,NUeff.voigt,’#1f77b4’,linestyle=’--’)

plt.plot(vf_td,NUeff.reuss_elasticity,’#ff7f0e’)

plt.plot(vf_td,NUeff.reuss,’#ff7f0e’,linestyle=’--’)

plt.plot(vf_td,NUeff.hill,’#2ca02c’)

plt.plot(vf_td,NUeff.hsub,’#d62728’,marker=’o’,linestyle=’-’)

plt.plot(vf_td,NUeff.hslb,’#9467bd’,marker=’o’,linestyle=’-’)

plt.plot(vf_td,NUeff.mori_tanaka,’#8c564b’)

plt.plot(vf_td, [terfenolD.nu for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.nu for _ in range(len(vf_td))],’k:’)

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(ymin_value,ymax_value,step), fontsize=12)

plt.ylim(ymin=ymin_value, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Poisson’’s Ratio (’r’$ \nu_{eff}$’’) [-]’, fontsize=14)

plt.legend(elastic_property_labels2, loc=’upper left’, frameon=True, framealpha=0.9, ncol=2, fontsize

↪→ =12)

plt.text(0.75,matrix35016.nu+0.0025,r’$\nu$’’$_{3501-6}$ = 0.34’, fontsize=12)

plt.text(0.75,terfenolD.nu+0.0025,r’$\nu$’’$_{Terfenol-D}$ = 0.44’, fontsize=12)

plt.plot([0.64, 0.64],[0, ymax_value],’k--’, alpha=0.5)

plt.text(text_label_x,terfenolD.nu+0.02,’RCP’, fontsize=12)
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plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename4 = ’Plots/EffectiveNU_comparison.png’

plt.savefig(filename4)

# poisson’s ratio

ymin_value = 0.32

ymax_value = 0.46

step = int((ymax_value -ymin_value) / 0.02 + 1)

plt.figure(num=6, figsize=fig_size)

plt.plot(vf_td,NUeff.voigt_elasticity,’#1f77b4’)

plt.plot(vf_td,NUeff.voigt,’#1f77b4’,linestyle=’--’)

plt.plot(vf_td,NUeff.reuss_elasticity,’#ff7f0e’)

plt.plot(vf_td,NUeff.reuss,’#ff7f0e’,linestyle=’--’)

plt.plot(vf_td, [terfenolD.nu for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.nu for _ in range(len(vf_td))],’k:’)

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(ymin_value,ymax_value,step), fontsize=12)

plt.ylim(ymin=ymin_value, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Poisson’’s Ratio (’r’$ \nu_{eff}$’’) [-]’, fontsize=14)

plt.legend([’Voigt -elasticity’,’Voigt -verbatim’,’Reuss -elasticity’,’Reuss -verbatim’], loc=’upper

↪→ left’, frameon=True, framealpha=0.9, ncol=2, fontsize=12)

plt.text(0.75,matrix35016.nu+0.0025,r’$\nu$’’$_{3501-6}$ = 0.34’, fontsize=12)

plt.text(0.75,terfenolD.nu+0.0025,r’$\nu$’’$_{Terfenol-D}$ = 0.44’, fontsize=12)

plt.plot([0.64, 0.64],[0, ymax_value],’k--’, alpha=0.5)

plt.text(text_label_x,terfenolD.nu+0.008,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename6 = ’Plots/EffectiveNU_modelverbatim.png’

plt.savefig(filename6)

D.2.3 Effective Coefficient of Thermal Expansion

import os

import shutil

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from bulkmaterialprop import matrix35016

from bulkmaterialprop import terfenolD

import elastic_property_approx as elastic_properties

class alpha:

voigt = []

class q1_cribb:

voigt = []

class q2_cribb:

voigt = []

##

# set volume fraction

vf_td = np.linspace(0,1,101)
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vf_matrix = 1 -vf_td

K = pd.read_csv(’K_approximations.csv’)

K_voigt = K[’Voigt’]

K_reuss = K[’Reuss’]

K_hill = K[’Hill’]

K_hsupper = K[’Hashin-Shtrikman (Upper Bound)’]

K_hslower = K[’Hashin-Shtrikman (Lower Bound)’]

K_mt = K[’Mori-Tanaka’]

## approximations

# VOIGT

alpha.voigt = elastic_properties.voigt(terfenolD.CTE,matrix35016.CTE,vf_td,vf_matrix)

# REUSS

alpha.reuss = elastic_properties.reuss(terfenolD.CTE,matrix35016.CTE,vf_td,vf_matrix)

alpha.reuss2=(vf_td*terfenolD.E*terfenolD.CTE+vf_matrix*matrix35016.E*matrix35016.CTE)/(vf_td*

↪→ terfenolD.E+vf_matrix*matrix35016.E)

# BLACKBURN

alpha.blackburn = terfenolD.CTE + (((3/2) * (1 -terfenolD.nu) * vf_matrix * (matrix35016.CTE -

↪→ terfenolD.CTE)) / ((1 / 2) * (1 + terfenolD.nu) + vf_matrix * (1 -2 * terfenolD.nu) + (1 -2 *

↪→ matrix35016.nu) * (terfenolD.E / matrix35016.E) * vf_td))

# TURNER

alpha.turner = (vf_matrix * matrix35016.CTE * matrix35016.K + vf_td * terfenolD.CTE * terfenolD.K) / (

↪→ vf_matrix * matrix35016.K + vf_td * terfenolD.K)

# CRIBB

q1_cribb.voigt = (matrix35016.K * (K_voigt -terfenolD.K)) / (K_voigt * (matrix35016.K -terfenolD.K))

q1_cribb.reuss = (matrix35016.K * (K_reuss -terfenolD.K)) / (K_reuss * (matrix35016.K -terfenolD.K))

q1_cribb.hill = (matrix35016.K * (K_hill -terfenolD.K)) / (K_hill * (matrix35016.K -terfenolD.K))

q1_cribb.mt = (matrix35016.K * (K_mt -terfenolD.K)) / (K_mt * (matrix35016.K -terfenolD.K))

q1_cribb.hsub = (matrix35016.K * (K_hsupper -terfenolD.K)) / (K_hsupper * (matrix35016.K -terfenolD.K)

↪→ )

q1_cribb.hslb = (matrix35016.K * (K_hslower -terfenolD.K)) / (K_hslower * (matrix35016.K -terfenolD.K)

↪→ )

q2_cribb.voigt = (terfenolD.K * (matrix35016.K -K_voigt)) / (K_voigt * (matrix35016.K -terfenolD.K))

q2_cribb.reuss = (terfenolD.K * (matrix35016.K -K_reuss)) / (K_reuss * (matrix35016.K -terfenolD.K))

q2_cribb.hill = (terfenolD.K * (matrix35016.K -K_hill)) / (K_hill * (matrix35016.K -terfenolD.K))

q2_cribb.mt = (terfenolD.K * (matrix35016.K -K_mt)) / (K_mt * (matrix35016.K -terfenolD.K))

q2_cribb.hsub = (terfenolD.K * (matrix35016.K -K_hsupper)) / (K_hsupper * (matrix35016.K -terfenolD.K)

↪→ )

q2_cribb.hslb = (terfenolD.K * (matrix35016.K -K_hslower)) / (K_hslower * (matrix35016.K -terfenolD.K)

↪→ )

alpha.cribb_voigt = q1_cribb.voigt * matrix35016.CTE + q2_cribb.voigt * terfenolD.CTE

alpha.cribb_reuss = q1_cribb.reuss * matrix35016.CTE + q2_cribb.reuss * terfenolD.CTE

alpha.cribb_hill = q1_cribb.hill *matrix35016.CTE + q2_cribb.hill * terfenolD.CTE

alpha.cribb_mt = q1_cribb.mt *matrix35016.CTE + q2_cribb.mt * terfenolD.CTE

alpha.cribb_hsub = q1_cribb.hsub * matrix35016.CTE + q2_cribb.hsub * terfenolD.CTE

alpha.cribb_hslb = q1_cribb.hslb * matrix35016.CTE + q2_cribb.hslb * terfenolD.CTE

# KERNER

q_kerner = ((1 / matrix35016.K) -(1 / terfenolD.K)) / ((vf_td / terfenolD.K) + (vf_matrix /

↪→ matrix35016.K) + (3 / (4 * matrix35016.G)))

alpha.kerner = terfenolD.CTE * vf_td + matrix35016.CTE * vf_matrix + vf_td * vf_matrix * (matrix35016.

↪→ CTE -terfenolD.CTE) * q_kerner

# WANG-KWEI
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q_wk = (3 * (terfenolD.E / matrix35016.E) * (1 -matrix35016.nu)) / ((terfenolD.E / matrix35016.E) * (2

↪→ * vf_td * (1 -2 * matrix35016.nu) + (1 + matrix35016.nu)) + 2 * vf_matrix * (1 -2 * terfenolD

↪→ .nu))

alpha.wang_kwei = matrix35016.CTE -vf_td * q_wk * (matrix35016.CTE -terfenolD.CTE)

alpha.wang_kwei2 = matrix35016.CTE * (1 -vf_td * (1 -(terfenolD.CTE / matrix35016.CTE)) * q_wk)

#THOMAS

a=1

alpha.thomas = pow(pow(matrix35016.CTE,a) * vf_matrix + pow(terfenolD.CTE,a) * vf_td, (1 / a))

# TUMMALA-FRIEDBERG

q_tf = ((1 + matrix35016.nu) / (2 * matrix35016.E)) / ((1 + matrix35016.nu) / (2 * matrix35016.E) + (1

↪→ -2 * terfenolD.nu) / (terfenolD.E))

alpha.tummala_friedberg = matrix35016.CTE -vf_td * q_tf * (matrix35016.CTE -terfenolD.CTE)

# FAHMI-RAGAI

alpha.fahmi_ragai = matrix35016.CTE -((3 * vf_td * (matrix35016.CTE -terfenolD.CTE) * (1 -matrix35016.

↪→ nu)) / (2 * (1 -2 * terfenolD.nu) * (-1 * vf_td) * (matrix35016.E / terfenolD.E) + 2 * vf_td *

↪→ (1 -2 * matrix35016.nu) + (1 + matrix35016.nu)))

#####

cte_approximations1 = [’Voigt’,’Reuss’,’Blackburn’,’Turner’,’Kerner’,’Wang-Kwei’,’Thomas (a=1)’,’

↪→ Tummala-Friedberg’,’Fahmi-Ragai’]

cte_approximations2 = [’Cribb (Voigt)’,’Cribb (Reuss)’,’Cribb (Hill)’,’Cribb (Mori-Tanaka)’,’Cribb (HS

↪→ -Upper)’,’Cribb (HS -Lower)’]

cte_approximations_total = cte_approximations1 + cte_approximations2

AR = 8/5

width = 12

fig_size = [width, width/AR]

legend_location = ’upper right’

ymax_value = 4.8e-5

ymin_value = 1e-5

step = 9

plt.figure(num=1, figsize=fig_size)

plt.plot(vf_td,alpha.voigt,’v-’)

plt.plot(vf_td,alpha.reuss2,’p-’)

plt.plot(vf_td,alpha.blackburn,’>-’)

plt.plot(vf_td,alpha.turner,’<-’)

plt.plot(vf_td,alpha.kerner,’1-’)

plt.plot(vf_td,alpha.wang_kwei,’h-’)

# plt.plot(vf_td,alpha.wang_kwei2)

plt.plot(vf_td,alpha.thomas,’2-’)

plt.plot(vf_td,alpha.tummala_friedberg,’^-’)

plt.plot(vf_td,alpha.fahmi_ragai,’+-’)

#

plt.plot(vf_td, [terfenolD.CTE for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.CTE for _ in range(len(vf_td))],’k:’)

#

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(ymin_value,ymax_value,step), fontsize=12)

plt.ylim(ymin=ymin_value, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Coefficient of Thermal Expansion (’r’$\alpha_{eff}$’’) [’r’$^{\circ}$’’C$^{-1}$]

↪→ ’, fontsize=14)

plt.legend(cte_approximations1, loc=legend_location, frameon=True, framealpha=0.9, fontsize=12)

plt.text(0.3,matrix35016.CTE-1.2e-6,r’$\alpha_{3501-6}$’’= 4.5e-5 ’r’$^{\circ}$’’C$^{-1}$’, fontsize

↪→ =12)

plt.text(0.045,terfenolD.CTE+0.3e-6,r’$\alpha_{Terfenol-D}$’’= 1.2e-5 ’r’$^{\circ}$’’C$^{-1}$’,

↪→ fontsize=12)
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plt.plot([0.64, 0.64],[ymin_value, ymax_value],’k--’, alpha=0.5)

plt.text(0.602,matrix35016.CTE-0.75e-5,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename1 = ’Plots/EffectiveCTE_elasticapprox.png’

plt.savefig(filename1)

plt.figure(num=2, figsize=fig_size)

plt.plot(vf_td,alpha.cribb_voigt,’o-’)

plt.plot(vf_td,alpha.cribb_reuss,’v-’)

plt.plot(vf_td,alpha.cribb_hill,’s-’)

plt.plot(vf_td,alpha.cribb_mt,’|-’)

plt.plot(vf_td,alpha.cribb_hsub,’*-’)

plt.plot(vf_td,alpha.cribb_hslb,’D-’)

#

plt.plot(vf_td, [terfenolD.CTE for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.CTE for _ in range(len(vf_td))],’k:’)

#

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.yticks(np.linspace(ymin_value,ymax_value,step), fontsize=12)

plt.ylim(ymin=ymin_value, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Coefficient of Thermal Expansion (’r’$\alpha_{eff}$’’) [’r’$^{\circ}$’’C$^{-1}$]

↪→ ’, fontsize=14)

plt.legend(cte_approximations2, loc=legend_location, frameon=True, framealpha=0.9, fontsize=12)

plt.text(0.3,matrix35016.CTE-1.2e-6,r’$\alpha_{3501-6}$’’= 4.5e-5 ’r’$^{\circ}$’’C$^{-1}$’, fontsize

↪→ =12)

plt.text(0.045,terfenolD.CTE+0.3e-6,r’$\alpha_{Terfenol-D}$’’= 1.2e-5 ’r’$^{\circ}$’’C$^{-1}$’,

↪→ fontsize=12)

plt.plot([0.64, 0.64],[ymin_value, ymax_value],’k--’, alpha=0.5)

plt.text(0.602,matrix35016.CTE-0.75e-5,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename2 = ’Plots/EffectiveCTE_cribbapprox.png’

plt.savefig(filename2)

plt.figure(num=3, figsize=fig_size)

plt.plot(vf_td,alpha.voigt,’v-’)

plt.plot(vf_td,alpha.reuss2,’p-’)

plt.plot(vf_td,alpha.blackburn,’>-’)

plt.plot(vf_td,alpha.turner,’<-’)

plt.plot(vf_td,alpha.kerner,’1-’)

plt.plot(vf_td,alpha.wang_kwei,’h-’)

plt.plot(vf_td,alpha.thomas,’2-’)

plt.plot(vf_td,alpha.tummala_friedberg,’^-’)

plt.plot(vf_td,alpha.fahmi_ragai,’+-’)

#

plt.plot(vf_td,alpha.cribb_voigt,’o-’)

plt.plot(vf_td,alpha.cribb_reuss,’v-’)

plt.plot(vf_td,alpha.cribb_hill,’s-’)

plt.plot(vf_td,alpha.cribb_mt,’|-’)

plt.plot(vf_td,alpha.cribb_hsub,’*-’)

plt.plot(vf_td,alpha.cribb_hslb,’D-’)

#

plt.plot(vf_td, [terfenolD.CTE for _ in range(len(vf_td))],’k:’)

plt.plot(vf_td, [matrix35016.CTE for _ in range(len(vf_td))],’k:’)

#

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)
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plt.yticks(np.linspace(ymin_value,ymax_value,step), fontsize=12)

plt.ylim(ymin=ymin_value, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(’Effective Coefficient of Thermal Expansion (’r’$\alpha_{eff}$’’) [’r’$^{\circ}$’’C$^{-1}$]

↪→ ’, fontsize=14)

plt.legend(cte_approximations_total, loc=legend_location, frameon=True, framealpha=0.9, fontsize=12)

plt.text(0.3,matrix35016.CTE-1.2e-6,r’$\alpha_{3501-6}$’’= 4.5e-5 ’r’$^{\circ}$’’C$^{-1}$’, fontsize

↪→ =12)

plt.text(0.045,terfenolD.CTE+0.3e-6,r’$\alpha_{Terfenol-D}$’’= 1.2e-5 ’r’$^{\circ}$’’C$^{-1}$’,

↪→ fontsize=12)

plt.plot([0.64, 0.64],[ymin_value, ymax_value],’k--’, alpha=0.5)

plt.text(0.602,matrix35016.CTE-0.75e-5,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename3 = ’Plots/EffectiveCTE_allapprox.png’

plt.savefig(filename3)

D.3 Classical Lamination Theory Script

The classical lamination theory script was developed from a script formulation previously
presented in [171].

D.3.1 Classical Lamination Theory

The classical lamination theory was scripted as a function of the volume fraction of the
inclusion, Terfenol-D.

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from matplotlib import animation

import CLT_matprops as CLT_matprops

import clt_functions as clt

from clt_functions_vf import DataExtraction, clt_form_vf

coord_sys = ’MCS’

## coord_sys = ’LCS’

var = ’stress’

# var = ’strain’

axis = 0

# axis = 1

# axis = 2

parameter_string = coord_sys + ’_’ + var + ’_’ + str(axis)

if var == ’strain’:

if axis == 0:

ylabel_string = ’Longitudinal Strain’ ’ (’r’$\epsilon_{1}$’’)’

ymin_value = -0.006

ymax_value = 0.002

factor = 0.8

RCP_text_y = factor * ymax_value

elif axis == 1:

ylabel_string = ’Transverse Strain’ ’ (’r’$\epsilon_{2}$’’)’
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ymin_value = -0.006

ymax_value = 0

RCP_text_y = ymax_value -0.0005

else:

ylabel_string = ’In-plane Shear Strain’ ’ (’r’$\gamma_{12}$’’)’

ymin_value = -0.004

ymax_value = 0.004

factor = 0.8

RCP_text_y = factor * ymax_value

else:

if axis == 0:

ylabel_string = ’Longitudinal Stress’ ’ (’r’$\sigma_{1}$’’)’ ’ [MPa]’

ymin_value = -120

ymax_value = 40

factor = 0.8

RCP_text_y = factor * ymax_value

elif axis == 1:

ylabel_string = ’Transverse Stress’ ’ (’r’$\sigma_{2}$’’)’ ’ [MPa]’

ymin_value = -120

ymax_value = 10

RCP_text_y = 0

else:

ylabel_string = ’In-plane Shear Stress’ ’ (’r’$\tau_{12}$’’)’ ’ [MPa]’

ymin_value = -40

ymax_value = 40

RCP_text_y = ymax_value -5

legend_string = [’HexPly AS4/3501-6’,’Hexcel 3501-6’,’Terfenol-D (bulk)’,’Voigt’,’Reuss’, ’Hashin-

↪→ Shtrikman (Upper)’, ’Hashin-Shtrikman (Lower)’, ’Mori-Tanaka’]

local_data0 = np.empty((0,2), float)

local_data1 = np.empty((0,2), float)

local_data2 = np.empty((0,2), float)

local_data4 = np.empty((0,2), float)

local_data5 = np.empty((0,2), float)

local_data6 = np.empty((0,2), float)

local_data7 = np.empty((0,2), float)

local_data8 = np.empty((0,2), float)

vf_td = np.around(np.linspace(0,1,101),2)

for vf in vf_td:

mat_id_num = 0

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data0 = np.append(local_data0, [vf_datapoint], axis=0)

mat_id_num = 1

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data1 = np.append(local_data1, [vf_datapoint], axis=0)

mat_id_num = 2

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data2 = np.append(local_data2, [vf_datapoint], axis=0)

mat_id_num = 4

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data4 = np.append(local_data4, [vf_datapoint], axis=0)

mat_id_num = 5

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data5 = np.append(local_data5, [vf_datapoint], axis=0)

mat_id_num = 6

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)
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local_data6 = np.append(local_data6, [vf_datapoint], axis=0)

mat_id_num = 7

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data7 = np.append(local_data7, [vf_datapoint], axis=0)

mat_id_num = 8

vf_datapoint = clt_form_vf(vf,mat_id_num,coord_sys,var,axis)

local_data8 = np.append(local_data8, [vf_datapoint], axis=0)

AR = 8/5

width = 12

fig_size = [width, width/AR]

plt.figure(num=1, figsize=fig_size)

if var == ’stress’:

plt.plot(local_data0[:,0],local_data0[:,1]*pow(10,-6))

plt.plot(local_data2[:,0],local_data2[:,1]*pow(10,-6))

plt.plot(local_data1[:,0],local_data1[:,1]*pow(10,-6))

plt.plot(local_data4[:,0],local_data4[:,1]*pow(10,-6))

plt.plot(local_data5[:,0],local_data5[:,1]*pow(10,-6))

plt.plot(local_data6[:,0],local_data6[:,1]*pow(10,-6))

plt.plot(local_data7[:,0],local_data7[:,1]*pow(10,-6))

plt.plot(local_data8[:,0],local_data8[:,1]*pow(10,-6))

else:

plt.plot(local_data0[:,0],local_data0[:,1])

plt.plot(local_data2[:,0],local_data2[:,1])

plt.plot(local_data1[:,0],local_data1[:,1])

plt.plot(local_data4[:,0],local_data4[:,1])

plt.plot(local_data5[:,0],local_data5[:,1])

plt.plot(local_data6[:,0],local_data6[:,1])

plt.plot(local_data7[:,0],local_data7[:,1])

plt.plot(local_data8[:,0],local_data8[:,1])

plt.xticks(np.linspace(0,1,11), fontsize=12)

plt.xlim(xmin=0, xmax=1)

plt.ylim(ymin=ymin_value, ymax=ymax_value)

plt.xlabel(’Volume Fraction of Terfenol-D (f$_{1}$) [X 100%]’, fontsize=14)

plt.ylabel(ylabel_string, fontsize=14)

plt.legend(legend_string, loc=’upper left’, frameon=True, framealpha=0.9, ncol=2, fontsize=12)

plt.plot([0.64, 0.64],[ymin_value, ymax_value],’k--’, alpha=0.5)

plt.text(0.65,RCP_text_y,’RCP’, fontsize=12)

plt.fill_betweenx(y=[ymin_value, ymax_value],x1=[0.64,0.64], x2=[1,1], color=’#b3b3b3’, alpha=0.3,

↪→ hatch=’/’)

plt.tight_layout()

filename = ’Plots/CLT_vf/’ + parameter_string + ’.png’

plt.savefig(filename)

D.3.2 Material Property Values

The effective property approximations were used to approximate the elastic property and
coefficient of thermal expansion values.

import numpy as np

from bulkmaterialprop import matrix35016

from bulkmaterialprop import terfenolD

from bulkmaterialprop import as4_35016
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import elastic_property_approx as elastic_properties

prepreg = {

’E1’ : as4_35016.E1,

’E2’ : as4_35016.E2,

’n12’ : as4_35016.nu12,

’G12’ : as4_35016.G12,

’a1’ : as4_35016.CTE1,

’a2’ : as4_35016.CTE2,

’thickness’ : as4_35016.thickness,

}

td_bulk = {

’E1’ : terfenolD.E,

’E2’ : terfenolD.E,

’n12’ : terfenolD.nu,

’G12’ : terfenolD.G,

’a1’ : terfenolD.CTE,

’a2’ : terfenolD.CTE,

’thickness’ : terfenolD.thickness,

}

epoxy = {

’E1’ : matrix35016.E,

’E2’ : matrix35016.E,

’n12’ : matrix35016.nu,

’G12’ : matrix35016.G,

’a1’ : matrix35016.CTE,

’a2’ : matrix35016.CTE,

’thickness’ : matrix35016.thickness,

}

delam = {

’E1’ : 100,

’E2’ : 100,

’n12’ : 0,

’G12’ : 0,

’a1’ : 0,

’a2’ : 0,

’thickness’ : 0.01e-3,

}

##################################################

def alphaCTE(vf):

vf_td = vf

vf_matrix = 1 -vf

K_voigt = elastic_properties.voigt(terfenolD.K,matrix35016.K,vf,1-vf)

K_reuss = elastic_properties.reuss(terfenolD.K,matrix35016.K,vf,1-vf)

K_hill = (K_voigt + K_reuss) / 2

E, NU, G, K_mt = elastic_properties.mori_tanaka(terfenolD.K,terfenolD.G,matrix35016.K,matrix35016.

↪→ G,vf_td,vf_matrix)

E, NU, G, K_hsupper = elastic_properties.hashin_shtrikman_upper(terfenolD.K,terfenolD.G,

↪→ matrix35016.K,matrix35016.G,vf_td,vf_matrix)

E, NU, G, K_hslower = elastic_properties.hashin_shtrikman_lower(terfenolD.K,terfenolD.G,

↪→ matrix35016.K,matrix35016.G,vf_td,vf_matrix)

selection = 2

if selection == 0:

# voigt

alpha = elastic_properties.voigt(terfenolD.CTE,matrix35016.CTE,vf_td,vf_matrix)

elif selection == 1:
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# reuss

alpha = (vf_td*terfenolD.E*terfenolD.CTE+vf_matrix*matrix35016.E*matrix35016.CTE)/(vf_td*

↪→ terfenolD.E+vf_matrix*matrix35016.E)

elif selection == 2:

# blackburn

alpha = terfenolD.CTE + (((3/2) * (1 -terfenolD.nu) * vf_matrix * (matrix35016.CTE -terfenolD.

↪→ CTE)) / ((1 / 2) * (1 + terfenolD.nu) + vf_matrix * (1 -2 * terfenolD.nu) + (1 -2 *

↪→ matrix35016.nu) * (terfenolD.E / matrix35016.E) * vf_td))

elif selection == 3:

# turner

alpha = (vf_matrix * matrix35016.CTE * matrix35016.K + vf_td * terfenolD.CTE * terfenolD.K) /

↪→ (vf_matrix * matrix35016.K + vf_td * terfenolD.K)

elif selection == 4:

# kerner

q_kerner = ((1 / matrix35016.K) -(1 / terfenolD.K)) / ((vf_td / terfenolD.K) + (vf_matrix /

↪→ matrix35016.K) + (3 / (4 * matrix35016.G)))

alpha = terfenolD.CTE * vf_td + matrix35016.CTE * vf_matrix + vf_td * vf_matrix * (matrix35016

↪→ .CTE -terfenolD.CTE) * q_kerner

elif selection == 5:

# wang-kwei

q_wk = (3 * (terfenolD.E / matrix35016.E) * (1 -matrix35016.nu)) / ((terfenolD.E / matrix35016

↪→ .E) * (2 * vf_td * (1 -2 * matrix35016.nu) + (1 + matrix35016.nu)) + 2 * vf_matrix *

↪→ (1 -2 * terfenolD.nu))

alpha = matrix35016.CTE -vf_td * q_wk * (matrix35016.CTE -terfenolD.CTE)

elif selection == 6:

# thomas

a=1

alpha = pow(pow(matrix35016.CTE,a) * vf_matrix + pow(terfenolD.CTE,a) * vf_td, (1 / a))

elif selection == 7:

# timmala-friedberg

q_tf = ((1 + matrix35016.nu) / (2 * matrix35016.E)) / ((1 + matrix35016.nu) / (2 * matrix35016

↪→ .E) + (1 -2 * terfenolD.nu) / (terfenolD.E))

alpha = matrix35016.CTE -vf_td * q_tf * (matrix35016.CTE -terfenolD.CTE)

elif selection == 8:

# fahmi-ragai

alpha = matrix35016.CTE -((3 * vf_td * (matrix35016.CTE -terfenolD.CTE) * (1 -matrix35016.nu))

↪→ / (2 * (1 -2 * terfenolD.nu) * (-1 * vf_td) * (matrix35016.E / terfenolD.E) + 2 *

↪→ vf_td * (1 -2 * matrix35016.nu) + (1 + matrix35016.nu)))

elif selection == 9:

# cribb-voigt

q1_cribb = (matrix35016.K * (K_voigt -terfenolD.K)) / (K_voigt * (matrix35016.K -terfenolD.K))

q2_cribb = (terfenolD.K * (matrix35016.K -K_voigt)) / (K_voigt * (matrix35016.K -terfenolD.K))

alpha = q1_cribb * matrix35016.CTE + q2_cribb * terfenolD.CTE

elif selection == 10:

# cribb-reuss

q1_cribb = (matrix35016.K * (K_reuss -terfenolD.K)) / (K_reuss * (matrix35016.K -terfenolD.K))

q2_cribb = (terfenolD.K * (matrix35016.K -K_reuss)) / (K_reuss * (matrix35016.K -terfenolD.K))

alpha = q1_cribb * matrix35016.CTE + q2_cribb * terfenolD.CTE

elif selection == 11:

# cribb-hill

q1_cribb = (matrix35016.K * (K_hill -terfenolD.K)) / (K_hill * (matrix35016.K -terfenolD.K))

q2_cribb = (terfenolD.K * (matrix35016.K -K_hill)) / (K_hill * (matrix35016.K -terfenolD.K))

alpha = q1_cribb *matrix35016.CTE + q2_cribb * terfenolD.CTE
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elif selection == 12:

# cribb-mt

q1_cribb = (matrix35016.K * (K_mt -terfenolD.K)) / (K_mt * (matrix35016.K -terfenolD.K))

q2_cribb = (terfenolD.K * (matrix35016.K -K_mt)) / (K_mt * (matrix35016.K -terfenolD.K))

alpha = q1_cribb *matrix35016.CTE + q2_cribb * terfenolD.CTE

elif selection == 13:

# cribb-hsub

q1_cribb = (matrix35016.K * (K_hsupper -terfenolD.K)) / (K_hsupper * (matrix35016.K -terfenolD

↪→ .K))

q2_cribb = (terfenolD.K * (matrix35016.K -K_hsupper)) / (K_hsupper * (matrix35016.K -terfenolD

↪→ .K))

alpha = q1_cribb * matrix35016.CTE + q2_cribb * terfenolD.CTE

elif selection == 14:

# cribb-hslb

q1_cribb = (matrix35016.K * (K_hslower -terfenolD.K)) / (K_hslower * (matrix35016.K -terfenolD

↪→ .K))

q2_cribb = (terfenolD.K * (matrix35016.K -K_hslower)) / (K_hslower * (matrix35016.K -terfenolD

↪→ .K))

alpha = q1_cribb * matrix35016.CTE + q2_cribb * terfenolD.CTE

return alpha

##################################################

def td_voigt_pc(vf):

vf_td = vf

vf_matrix = 1 -vf

a = alphaCTE(vf)

G = elastic_properties.voigt(terfenolD.G,matrix35016.G,vf_td,vf_matrix)

K = elastic_properties.voigt(terfenolD.K,matrix35016.K,vf_td,vf_matrix)

td_voigt = {

’E1’ : elastic_properties.voigt(terfenolD.E,matrix35016.E,vf_td,vf_matrix),

’E2’ : elastic_properties.voigt(terfenolD.E,matrix35016.E,vf_td,vf_matrix),

’n12’ : (3 * K -2 * G) / (2 * (3 * K + G)),

’G12’ : G,

’a1’ : a,

’a2’ : a,

’thickness’ : terfenolD.thickness,

}

return td_voigt

def td_reuss_pc(vf):

vf_td = vf

vf_matrix = 1 -vf

a = alphaCTE(vf)

G = elastic_properties.reuss(terfenolD.G,matrix35016.G,vf_td,vf_matrix)

K = elastic_properties.reuss(terfenolD.K,matrix35016.K,vf_td,vf_matrix)

td_reuss = {

’E1’ : (9 * K * G) / (3 * K + G),

’E2’ : (9 * K * G) / (3 * K + G),

’n12’ : (3 * K -2 * G) / (2 * (3 * K + G)),

’G12’ : G,

’a1’ : a,

’a2’ : a,

’thickness’ : terfenolD.thickness,
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}

return td_reuss

def td_hsub_pc(vf):

vf_td = vf

vf_matrix = 1 -vf

a = alphaCTE(vf)

E, NU, G, K = elastic_properties.hashin_shtrikman_upper(terfenolD.K,terfenolD.G,matrix35016.K,

↪→ matrix35016.G,vf_td,vf_matrix)

td_hsub = {

’E1’ : E,

’E2’ : E,

’n12’ : NU,

’G12’ : G,

’a1’ : a,

’a2’ : a,

’thickness’ : terfenolD.thickness,

}

return td_hsub

def td_hslb_pc(vf):

vf_td = vf

vf_matrix = 1 -vf

a = alphaCTE(vf)

E, NU, G, K = elastic_properties.hashin_shtrikman_lower(terfenolD.K,terfenolD.G,matrix35016.K,

↪→ matrix35016.G,vf_td,vf_matrix)

td_hslb = {

’E1’ : E,

’E2’ : E,

’n12’ : NU,

’G12’ : G,

’a1’ : a,

’a2’ : a,

’thickness’ : terfenolD.thickness,

}

return td_hslb

def td_mt_pc(vf):

vf_td = vf

vf_matrix = 1 -vf

a = alphaCTE(vf)

E, NU, G, K = elastic_properties.mori_tanaka(terfenolD.K,terfenolD.G,matrix35016.K,matrix35016.G,

↪→ vf_td,vf_matrix)

td_mt = {

’E1’ : E,

’E2’ : E,

’n12’ : NU,

’G12’ : G,

’a1’ : a,

’a2’ : a,

’thickness’ : terfenolD.thickness,

}
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return td_mt

D.3.3 General CLT Functions

The functions defined in this script were modified from those presented in [171]

import numpy

class LaminateLayupError(TypeError): pass

def calc_stressCLT(mat_list, lam, F, fail_list = None, dT = 0, dM = 0):

""" Calculates stress and strain vectors according to CLT. """

# Get number of layers

num = len(lam["ang"])

# total_thk = numpy.sum(lam["thk"])

# Z vector contains z coordinates.

Z = assemble_Z(lam)

# Calculates stiffness matrix based on laminate properties.

ABD = assemble_ABD(mat_list, lam, Z, fail_list)

# Calculates thermal, moisture resultants and adds to Forces vector

Nt = calc_thermal_forces(mat_list, lam, Z, fail_list, dT)

F = F + Nt

# Nm = calc_moisture_forces(mat_list, lam, Z, fail_list, dM)

# F = F + Nt + Nm

# Calculates strain vector by solving eq. form AX = B

strain_vector = numpy.linalg.solve(ABD, F)

# Initializes strain and curvature vectors & defines values

strains = curvatures = numpy.zeros((1, 3))

strains = strain_vector[:3]

curvatures = strain_vector [3:6]

# Initializes Laminate System (LS) strain vectors (inferior and superior)

LS_strain_inf = numpy.zeros((3, num))

LS_strain_sup = numpy.zeros((3, num))

# Assign Laminate System strain (Epsilon = Epsilon0 + kappa*z)

for i in range(num):

LS_strain_inf[:3,i] = strains + curvatures*Z[i]

LS_strain_sup[:3,i] = strains + curvatures*Z[i+1]

# Initialize Material System stress & strain vectors (inferior and superior)

MS_strain_inf = numpy.zeros((3, num))

MS_strain_sup = numpy.zeros((3, num))

MS_stress_inf = numpy.zeros((3, num))

MS_stress_sup = numpy.zeros((3, num))

LS_stress_inf = numpy.zeros((3, num))

LS_stress_sup = numpy.zeros((3, num))

# Calculates Material System stresses and strains

Z = numpy.flip(Z)

for i in range(num):

mat_id = lam["mat_id"][i]
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mat_prop = mat_list[mat_id]

T = assemble_matrixT(lam["ang"][i])

R = numpy.array([[1,0,0],[0,1,0],[0,0,2]])

Rinv = numpy.linalg.inv(R)

RTR = numpy.dot(numpy.dot(R,T), Rinv)

Ak = numpy.dot(RTR,strains)

Bk = numpy.dot(RTR, curvatures)

MS_strain_sup[:,i] = Ak + Bk * Z[i+1]

MS_strain_inf[:,i] = Ak + Bk * Z[i]

Qbar = assemble_matrixQbar(mat_prop,lam["ang"][i])

A1k = numpy.dot(Qbar,strains)

B1k = numpy.dot(Qbar,curvatures)

MS_stress_sup[:,i] = A1k + B1k * Z[i+1]

MS_stress_inf[:,i] = A1k + B1k * Z[i]

A2k = numpy.dot(T,A1k)

B2k = numpy.dot(T,B1k)

LS_stress_sup[:,i] = A2k + B2k * Z[i+1]

LS_stress_inf[:,i] = A2k + B2k * Z[i]

# Outputs the stresses and strains vectors.

# LCS = Laminate System; MCS = Material Coordinate System;

# inf = inferior; sup = superior.

return {"LCS" : {"stress" : {"inf" : LS_stress_inf,

"sup" : LS_stress_sup},

"strain" : {"inf" : LS_strain_inf,

"sup" : LS_strain_sup}},

"MCS" : {"stress" : {"inf" : MS_stress_inf,

"sup" : MS_stress_sup},

"strain" : {"inf" : MS_strain_inf,

"sup" : MS_strain_sup}}}

def assemble_Z(lam):

""" Assembles Z vector which contains z coordinates of laminate. """

if not isinstance(lam, dict):

raise LaminateLayupError(’Laminate has to be a dictionary.’)

# Get number of layers

num = len(lam["ang"])

total_thk = numpy.sum(lam["thk"])

Z = numpy.zeros(num + 1)

Z[0] = -total_thk/2

for i in range(num):

Z[i + 1] = Z[i] + lam["thk"][i]

return Z

def calc_thermal_forces(mat_list, lam, Z, fail_list = None, dT = 0):

""" Calculates force resultants due to temperature variations. """
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if (not (isinstance(mat_list, (tuple, list))) or

not (isinstance(lam, dict)) or

not (isinstance(Z, numpy.ndarray))):

raise LaminateLayupError(’invalid input(s) for this function’)

num = len(lam["ang"])

Nt = numpy.zeros(6)

a = numpy.zeros(3)

a_LCS = numpy.zeros(3)

for i in range(num):

mat_id = lam["mat_id"][i]

mat_prop = mat_list[mat_id]

ang = lam["ang"][i]

#alpha (material coord system) vector

a = [mat_prop["a1"], mat_prop["a2"], 0]

T = assemble_matrixT(ang)

Ti = numpy.linalg.inv(T)

a_LCS = numpy.dot(Ti, a)

# Checks if there’s failure list

if isinstance(fail_list, list):

Q = assemble_matrixQ(mat_prop, fail_list[i])

else:

Q = assemble_matrixQ(mat_prop)

Qbar = numpy.dot(numpy.dot(Ti, Q), T)

Nt[:3] = Nt[:3] + numpy.dot(Qbar, a_LCS) * dT * (Z[i+1] -Z[i])

Nt[3:6] = Nt[3:6] + numpy.dot(Qbar, a_LCS) * dT * (1/2) * \ (Z[i+1]**2 -Z[i]**2)

return Nt

def assemble_matrixT(angle):

""" Assembles T matrix (angles transformation matrix LCS -> MCS). """

if not isinstance(angle, (int, float)) or not (-360 <= angle <= 360):

raise LaminateLayupError("lamina angle is not between +- 360 degrees"+

" or it is not an int/float")

#Transforms angle (degrees) to angle (radians)

angle = numpy.pi*angle/180

cos = numpy.cos(angle)

sin = numpy.sin(angle)

cs = cos*sin

cc = cos**2

ss = sin**2

T = numpy.zeros((3, 3))

T = numpy.array([[cc, ss, 2*cs ],

[ss, cc, -2*cs ],

[-cs, cs, cc-ss]])

return T

def assemble_matrixTinv(angle):

""" Assembles T matrix (angles transformation matrix LCS -> MCS). """
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if not isinstance(angle, (int, float)) or not (-360 <= angle <= 360):

raise LaminateLayupError("lamina angle is not between +- 360 degrees"+

" or it is not an int/float")

#Transforms angle (degrees) to angle (radians)

angle = numpy.pi*angle/180

cos = numpy.cos(angle)

sin = numpy.sin(angle)

cs = cos*sin

cc = cos**2

ss = sin**2

Tinv = numpy.zeros((3, 3))

Tinv = numpy.array([[cc, ss, -2*cs ],

[ss, cc, 2*cs ],

[cs, -cs, cc-ss]])

return Tinv

def assemble_matrixQ (mat_prop, fail_type = None):

""" Assembles Q matrix (reduced elastic matrix) for a given layer. """

if not isinstance(mat_prop, dict):

raise TypeError(’mat_prop must be a dictionary’)

E1 = mat_prop["E1"]

E2 = mat_prop["E2"]

n12 = mat_prop["n12"]

G12 = mat_prop["G12"]

n21 = n12*E2/E1

Q11 = E1/(1 -n12*n21)

Q12 = n12*E1*E2 / (E1 -(n12 ** 2) * E2)

Q22 = E1*E2 / (E1 -(n12 ** 2) * E2)

Q66 = G12

Q = numpy.zeros((3, 3))

Q = numpy.array([[Q11, Q12, 0],

[Q12, Q22, 0],

[0, 0, Q66]])

return Q

def assemble_matrixQbar (mat_prop,angle):

""" Assembles Q matrix (reduced elastic matrix) for a given layer. """

if not isinstance(mat_prop, dict):

raise TypeError(’mat_prop must be a dictionary’)

E1 = mat_prop["E1"]

E2 = mat_prop["E2"]

n12 = mat_prop["n12"]

G12 = mat_prop["G12"]

n21 = n12*E2/E1

Q11 = E1/(1 -n12*n21)

Q12 = n12*E1*E2 / (E1 -(n12 ** 2) * E2)

Q22 = E1*E2 / (E1 -(n12 ** 2) * E2)

Q66 = G12
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Q = numpy.zeros((3, 3))

Q = numpy.array([[Q11, Q12, 0],

[Q12, Q22, 0],

[0, 0, Q66]])

angle = numpy.pi*angle/180

cos = numpy.cos(angle)

sin = numpy.sin(angle)

cs = cos*sin

cc = cos**2

ss = sin**2

T = numpy.zeros((3, 3))

T = numpy.array([[cc, ss, 2*cs],

[ss, cc, -2*cs],

[-cs, cs, cc-ss]])

Tinv = numpy.array([[cc, ss, -2*cs],

[ss, cc, 2*cs],

[cs, -cs, cc-ss]])

R = numpy.array([[1,0,0],[0,1,0],[0,0,2]])

Rinv = numpy.linalg.inv(R)

Qbar = numpy.dot(numpy.dot(numpy.dot(numpy.dot(Tinv, Q), R), T), Rinv)

return Qbar

def assemble_ABD(mat_list, lam, Z, fail_list = None):

""" Assembles ABD matrix (laminate stiffness matrix). """

if (not (isinstance(mat_list, (tuple, list))) or

not (isinstance(lam, dict)) or

not (isinstance(Z, numpy.ndarray))):

raise LaminateLayupError(’invalid input(s) for this function’)

num = len(lam["ang"])

A = B = D = numpy.zeros((3,3))

Z = numpy.flip(Z)

for i in range(num):

mat_id = lam["mat_id"][i]

mat_prop = mat_list[mat_id]

ang = lam["ang"][i]

Qi = assemble_matrixQbar(mat_prop,ang)

A = A + Qi*(Z[i+1] -Z[i])

B = B + (1/2)*Qi*(Z[i+1]**2 -Z[i]**2)

D = D + (1/3)*Qi*(Z[i+1]**3 -Z[i]**3)

ABD = numpy.zeros((6,6))

ABD[:3, :3] = -A

ABD[:3, 3:6] = ABD[3:6, :3] = -B

ABD[3:6, 3:6] = -D

return ABD

def ABCD_matrix(ABD):

A = ABD[0:3,0:3]

B = ABD[0:3,3:]

D = ABD[3:,3:]
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Astar = numpy.linalg.inv(A)

Bstar = -1 * numpy.linalg.inv(A) * B

Hstar = B * numpy.linalg.inv(A)

Dstar = D -B * numpy.linalg.inv(A) * B

Aprime = Astar -Bstar * numpy.linalg.inv(Dstar) * Hstar

Bprime = Bstar * numpy.linalg.inv(Dstar)

Hprime = -1 * numpy.linalg.inv(Dstar) * Hstar

Dprime = numpy.linalg.inv(Dstar)

AB = numpy.concatenate((Aprime,Bprime),axis=1)

CD = numpy.concatenate((Hprime,Dprime),axis=1)

ABCD = numpy.concatenate((AB,CD),axis=0)

return ABCD

import numpy as np

import clt_functions as clt

import CLT_matprops as CLT_matprops

def DataExtraction(lam, res, coord_sys, axis, var):

# Sets obligatory data for the instance.

lam = lam

# Gets number of layers and loadsteps

num_layers = len(lam["ang"])

# Isolates stress & strain results from array

res = res

Z = clt.assemble_Z(lam)

X = { "inf" : np.zeros((num_layers)),

"sup" : np.zeros((num_layers)) }

Y = { "inf" : np.zeros((num_layers)),

"sup" : np.zeros((num_layers)) }

P = np.zeros((num_layers*2, 2))

# Iterates the layers, add data to plot

for layer in range(num_layers):

X["inf"][layer] = res[coord_sys][var]["inf"][axis][layer]

Y["inf"][layer] = Z[layer]

X["sup"][layer] = res[coord_sys][var]["sup"][axis][layer]

Y["sup"][layer] = Z[layer + 1]

P[layer*2] = [X["inf"][layer], Y["inf"][layer]]

P[layer*2 + 1] = [X["sup"][layer], Y["sup"][layer]]

return P

def clt_form_vf(vf,mat_id_num,coord_sys,var,axis):

prepreg = CLT_matprops.prepreg

td_bulk = CLT_matprops.td_bulk

epoxy = CLT_matprops.epoxy

delam = CLT_matprops.delam

td_voigt = CLT_matprops.td_voigt_pc(vf)

td_reuss = CLT_matprops.td_reuss_pc(vf)

td_hsub = CLT_matprops.td_hsub_pc(vf)

td_hslb = CLT_matprops.td_hslb_pc(vf)

217



td_mt = CLT_matprops.td_mt_pc(vf)

##################################################

# Assembles material list

mat = [prepreg, td_bulk, epoxy, delam, td_voigt, td_reuss, td_hsub, td_hslb, td_mt, []]

##################################################

# Initializes dictionary of the laminate layup configurations

# thk is thickness; ang is angle; mat_id is material id

lam = {’thk’: [], ’ang’: [], ’mat_id’ : []}

lam[’ang’] = [0]

lam[’thk’] = [prepreg[’thickness’]]

lam[’mat_id’] = [mat_id_num]

##################################################

# Vector F with the applied generalized stress (unit N/m / N.m/m)

F = np.array([ 0, # Nx

0, # Ny

0, # Nxy

0, # Mx

0, # My

0]) # Mxy

# F = F * pow(10,3)

##################################################

# Temperature and moisture variations

delta_T = -120

delta_M = 0

res = clt.calc_stressCLT(mat, lam, F, None, delta_T, delta_M)

P = DataExtraction(lam, res, coord_sys, axis, var)

vf_datapoint = [vf, P[0,0]]

return vf_datapoint

D.4 General Machine Learning Script

The script presented in this section was responsible for the SVM (SVC) machine learning

algorithms. Modification of the algorithm chose required changing the models imported from the [37]

package in addition to changes in the parametric parameters. For instance, a k-NN algorithm

required that the number of nearest neighbors k be defined. For a MLP, the number of nodes and

hidden layers were specificed in addition to the activation function. A looping structure was scripted

such that the script automatically cycled through a list of given parameters. The Python packages

discussed in [37,126,169,170] were employed in this script.
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import os

import sys

import shutil

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import sklearn as sklearn

from sklearn import svm

from sklearn import model_selection

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn import metrics

from sklearn.metrics import plot_confusion_matrix

# from sklearn.model_selection import KFold, cross_val_score

import pickle

import custom_confusionmatrix as cm

import model_stats

def get_model(kernel):

main_model = svm.SVC(kernel=kernel, C=1)

model = make_pipeline(StandardScaler(), main_model)

# model = svm.SVC(kernel=kernel, C=1)

return model

def evaluate_model(kernel,cv):

model = get_model(kernel)

score = model_selection.cross_val_score(model, X, y, scoring=’accuracy’, cv=cv, n_jobs=-1)

score = np.array([(score)])

return score

def model_statistics(score):

mean_fold = np.mean(score)

min_fold = np.min(score)

max_fold = np.max(score)

mean_fold = np.asarray(mean_fold)

min_fold = np.asarray(min_fold)

max_fold = np.asarray(max_fold)

minmean_fold = np.abs(min_fold -mean_fold)

maxmean_fold = np.abs(max_fold -mean_fold)

df_score = pd.DataFrame(score)

return mean_fold, min_fold, max_fold, minmean_fold, maxmean_fold, df_score

## model parameters

kernels = [’linear’, ’poly’, ’rbf’, ’sigmoid’] # rbf -default

kernel_type = kernels[3]

folds_consideration = 30

model_string = ’SVM_SVC’ + ’_’ + kernel_type

## select file to import & import

author = ’Rudd’

filename = ’master_delam_’ + author + ’.csv’

filename = os.path.join(os.getcwd(),’ML_Datasets’,filename)

df = pd.read_csv(filename)
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## extract desired data

X = df.drop([’source’, ’fiber_material’, ’matrix_material’, ’stacking_sequence’, ’voltage_peak’, ’

↪→ voltage_RMS’, ’delamination’, ’delam_length’, ’delam_width’], axis=1)

X = np.array(X)

predict_label = "delamination"

y = np.array(df[predict_label])

## setup & run model

x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, test_size=0.1)

num_iterations = 30

best = 0

# model_string = ’SVM_SVC’ + ’_’ + kernel_type

iter_string = model_string + ’_’ + str(num_iterations) + ’iterations.csv’

stats_header = [’iteration’, ’accuracy_best’, ’accuracy_current’, ’precision’, ’recall’, ’f1_score’]

stats = pd.DataFrame([])

for i in range(num_iterations):

x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, test_size=0.1,

↪→ random_state=None)

model = get_model(kernel_type)

model.fit(x_train, y_train)

predicted = model.predict(x_test)

acc = metrics.accuracy_score(y_test, predicted)

f1 = metrics.f1_score(y_test, predicted)

precision = metrics.precision_score(y_test, predicted, zero_division=0)

recall = metrics.recall_score(y_test, predicted)

if acc > best:

best = acc

iter_best_string = model_string + ’_’ + str(num_iterations) + ’iterations_BEST.pickle’

with open(iter_best_string, "wb") as f:

pickle.dump(model, f)

iter_stats = np.array([[int(i), best, acc, precision, recall, f1]])

stats = stats.append(pd.DataFrame(iter_stats))

# print(’Current: ’, acc, "Best: ", best)

## output iteration stats to .csv file

stats.columns = stats_header

stats.to_csv(iter_string,index=False)

folds = range(2,len(X))

cv_acc = pd.DataFrame([])

cv_mean = np.array([])

cv_min = np.array([])

cv_max = np.array([])

cv_minmean = np.array([])

cv_maxmean = np.array([])

## iterate number of folds

for k in folds:

cv = model_selection.KFold(n_splits=k, shuffle=False, random_state=None)

model = get_model(kernel_type)

score = evaluate_model(kernel_type, cv)
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mean_fold, min_fold, max_fold, minmean_fold, maxmean_fold, df_score = model_statistics(score)

cv_acc = cv_acc.append(pd.DataFrame(score))

cv_mean = np.append(cv_mean, mean_fold)

cv_min = np.append(cv_min, min_fold)

cv_max = np.append(cv_max, max_fold)

cv_minmean = np.append(cv_minmean, minmean_fold)

cv_maxmean = np.append(cv_maxmean, maxmean_fold)

# maximum number of folds (LeaveOneOut method)

ideal_score = evaluate_model(kernel_type,model_selection.LeaveOneOut())

ideal_mean, ideal_min, ideal_max, ideal_minmean, ideal_maxmean, ideal_df_score = model_statistics(

↪→ ideal_score)

## efficient number of folds

mean_diff = np.abs(ideal_mean -cv_mean[0:folds_consideration])

eff_index = np.argmin(mean_diff)

eff_numfolds = folds[eff_index]

print(’Efficient number of folds: {}’.format(eff_numfolds))

## export fold scheme performance (accuracy) per fold

cv_acc.index = folds

cv_score_string = str(model_string + ’_’ + str(np.max(folds)) + ’folds.csv’)

cv_acc.to_csv(cv_score_string, index=True, header=None)

cv_stats = pd.DataFrame([cv_mean, cv_min, cv_max, cv_minmean, cv_maxmean]).transpose()

cv_stats.columns = [’mean’, ’min’, ’max’, ’min-mean’, ’max-mean’]

cv_stats.index = folds

cv_statscore_string = str(model_string + ’_’ + str(np.max(folds)) + ’folds_stats.csv’)

cv_stats.to_csv(cv_statscore_string, index=True)

model_stats.model_scores(model_name=model_string,eff_fold_number=eff_numfolds,eff_fold_mean=cv_mean[

↪→ eff_index],LOO_mean=ideal_mean)

## errorbar plot (all folds)

errorbar_plot_filename = str(model_string + ’_’ + str(np.max(folds)) + ’folds.png’)

plt.figure(num=1, figsize=(8, 6), dpi=80, facecolor=’w’, edgecolor=’k’) # create a figure object

plt.errorbar(folds, cv_mean, yerr=[cv_minmean, cv_maxmean], fmt=’o’)

plt.plot(folds, [ideal_mean for _ in range(len(folds))], color=’r’)

plt.xlabel(’Number of Folds’, fontsize=14)

plt.ylabel(’Mean Accuracy of Model’, fontsize=14)

plt.tight_layout()

plt.savefig(errorbar_plot_filename)

## errorbar plot (first 20 folds)

eff_num_iter = folds_consideration-1

errorbareff_plot_filename = str(model_string + ’_2-’ + str(folds_consideration) + ’folds.png’)

plt.figure(num=2, figsize=(8, 6), dpi=80, facecolor=’w’, edgecolor=’k’) # create a figure object

plt.errorbar(folds[:eff_num_iter], cv_mean[:eff_num_iter], yerr=[cv_minmean[:eff_num_iter], cv_maxmean

↪→ [:eff_num_iter]], fmt=’o’)

plt.plot(folds[:eff_num_iter], [ideal_mean for _ in range(len(folds[:eff_num_iter]))], color=’r’)

plt.xlabel(’Number of Folds’, fontsize=14)

plt.ylabel(’Mean Accuracy of Model’, fontsize=14)

plt.xticks(range(0,folds_consideration+3))

plt.tight_layout()

plt.savefig(errorbareff_plot_filename)
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## confusion matrix for most efficient fold

confusion_matrix_plot_filename = str(model_string + ’_ConfusionMatrix_’ + str(eff_numfolds) + ’folds.

↪→ png’)

cm.plot_custom_confusion_matrix(get_model(kernel=kernel_type),X,y,cv=eff_numfolds)

plt.xlabel(’Predicted Label’,fontsize=14)

plt.ylabel(’True Label’,fontsize=14)

plt.tight_layout()

plt.savefig(confusion_matrix_plot_filename)

D.4.1 Model Statistics

Functions were defined to create .csv files with the accuracy metric scores of the cross-

validation experiments for each algorithm.

import os

import shutil

import pandas as pd

import numpy as np

from datetime import datetime

## create .csv of model/cv data

columns=[’model_name’,’efficient_fold’,’efficient_fold_mean_score’,’LOO_mean’,’timestamp’]

def model_scores(model_name, eff_fold_number, eff_fold_mean, LOO_mean):

model_dict = {’model_name’ : model_name,

’efficient_fold’ : eff_fold_number,

’efficient_fold_mean_score’ : eff_fold_mean,

’LOO_mean’ : LOO_mean,

’time’ : datetime.now()}

filename = os.path.join(os.getcwd(),’Scores’,’model_fold_data.csv’)

df = pd.read_csv(filename)

row_index = df[df[’model_name’] == model_name]

if not row_index.empty:

print(’ > > > ’ + model_name + ’ entry already exists. Updating now..........’)

df.loc[df.model_name == model_name, ’efficient_fold’] = eff_fold_number

df.loc[df.model_name == model_name, ’efficient_fold_mean_score’] = eff_fold_mean

df.loc[df.model_name == model_name, ’LOO_mean’] = LOO_mean

df.loc[df.model_name == model_name, ’time’] = datetime.now()

else:

print(’ > > > ’ + model_name + ’ does not exist. Adding entry to file now..........’)

df = df.append(model_dict, ignore_index=True)

## sort df by models

df = df.sort_values(by=[’model_name’])

## export df

df.to_csv(filename,index=False)

## record info about MLP

columns=[’model_name’,’efficient_fold’,’efficient_fold_mean_score’,’LOO_mean’,’runtime’,’timestamp’]

def MLP_info(model_name, eff_fold_number, eff_fold_mean, LOO_mean, runtime):

model_dict = {’model_name’ : model_name,
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’efficient_fold’ : eff_fold_number,

’efficient_fold_mean_score’ : eff_fold_mean,

’LOO_mean’ : LOO_mean,

’runtime’ : runtime,

’timestamp’ : datetime.now()}

filename = os.path.join(os.getcwd(),’Scores’,’MLP_fold_data.csv’)

df = pd.read_csv(filename)

row_index = df[df[’model_name’] == model_name]

if not row_index.empty:

print(’ > > > ’ + model_name + ’ entry already exists. Updating now..........’)

df.loc[df.model_name == model_name, ’efficient_fold’] = eff_fold_number

df.loc[df.model_name == model_name, ’efficient_fold_mean_score’] = eff_fold_mean

df.loc[df.model_name == model_name, ’LOO_mean’] = LOO_mean

df.loc[df.model_name == model_name, ’runtime’] = runtime

df.loc[df.model_name == model_name, ’timestamp’] = datetime.now()

else:

print(’ > > > ’ + model_name + ’ does not exist. Adding entry to file now..........’)

df = df.append(model_dict, ignore_index=True)

## sort df by models

df = df.sort_values(by=[’model_name’])

## export df

df.to_csv(filename,index=False)

D.4.2 Confusion Matrix

A modification to the confusion matrix script given by [37] was made to explicitly label the

axes for the given class labels.

from itertools import product

import numpy as np

import sklearn

from sklearn.utils import check_matplotlib_support

from sklearn.metrics import confusion_matrix

from sklearn.utils.validation import _deprecate_positional_args

from sklearn.base import is_classifier

import matplotlib as mpl

class ConfusionMatrixDisplay:

"""Confusion Matrix visualization.

It is recommend to use :func:‘~sklearn.metrics.plot_confusion_matrix‘ to

create a :class:‘ConfusionMatrixDisplay‘. All parameters are stored as

attributes.

Read more in the :ref:‘User Guide <visualizations>‘.

Parameters

----------

confusion_matrix : ndarray of shape (n_classes, n_classes)

Confusion matrix.

display_labels : ndarray of shape (n_classes,), default=None

Display labels for plot. If None, display labels are set from 0 to

‘n_classes -1‘.

Attributes

----------

im_ : matplotlib AxesImage
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Image representing the confusion matrix.

text_ : ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, \

or None

Array of matplotlib axes. ‘None‘ if ‘include_values‘ is false.

ax_ : matplotlib Axes

Axes with confusion matrix.

figure_ : matplotlib Figure

Figure containing the confusion matrix.

"""

def __init__(self, confusion_matrix, *, display_labels=None):

self.confusion_matrix = confusion_matrix

self.display_labels = display_labels

@_deprecate_positional_args

def plot(self, *, include_values=True, cmap=’Blue’,

xticks_rotation=’horizontal’, values_format=None, ax=None):

"""Plot visualization.

Parameters

----------

include_values : bool, default=True

Includes values in confusion matrix.

cmap : str or matplotlib Colormap, default=’viridis’

Colormap recognized by matplotlib.

xticks_rotation : {’vertical’, ’horizontal’} or float, \

default=’horizontal’

Rotation of xtick labels.

values_format : str, default=None

Format specification for values in confusion matrix. If ‘None‘,

the format specification is ’d’ or ’.2g’ whichever is shorter.

ax : matplotlib axes, default=None

Axes object to plot on. If ‘None‘, a new figure and axes is

created.

Returns

-------

display : :class:‘~sklearn.metrics.ConfusionMatrixDisplay‘

"""

check_matplotlib_support("ConfusionMatrixDisplay.plot")

import matplotlib.pyplot as plt

if ax is None:

fig, ax = plt.subplots(figsize=(8,6))

else:

fig = ax.figure

cm = self.confusion_matrix

n_classes = cm.shape[0]

self.im_ = ax.imshow(cm, interpolation=’nearest’, cmap=cmap)

self.text_ = None

cmap_min, cmap_max = self.im_.cmap(0), self.im_.cmap(256)

if include_values:

self.text_ = np.empty_like(cm, dtype=object)

# print text with appropriate color depending on background

thresh = (cm.max() + cm.min()) / 2.0

for i, j in product(range(n_classes), range(n_classes)):

color = cmap_max if cm[i, j] < thresh else cmap_min

if values_format is None:

text_cm = format(cm[i, j], ’.2g’)

if cm.dtype.kind != ’f’:

text_d = format(cm[i, j], ’d’)

if len(text_d) < len(text_cm):
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text_cm = text_d

else:

text_cm = format(cm[i, j], values_format)

self.text_[i, j] = ax.text(

j, i, text_cm,

ha="center", va="center",

color=color,fontsize=24,weight=’bold’)

if self.display_labels is None:

display_labels = np.arange(n_classes)

else:

display_labels = self.display_labels

# fig.colorbar(self.im_, ax=ax)

ax.set(xticks=np.arange(n_classes),

yticks=np.arange(n_classes),

xticklabels=display_labels,

yticklabels=display_labels,

ylabel="True label",

xlabel="Predicted label")

ax.set_ylim((n_classes -0.5, -0.5))

plt.setp(ax.get_xticklabels(), rotation=xticks_rotation)

self.figure_ = fig

self.ax_ = ax

return self

def plot_custom_confusion_matrix(model, X, y_true, cv, *, labels=None,

sample_weight=None, normalize=None,

display_labels=None, include_values=True,

xticks_rotation=’horizontal’,

values_format=None,

cmap=’Blues’, ax=None):

y_pred = sklearn.model_selection.cross_val_predict(model, X, y_true, cv=cv)

cm = sklearn.metrics.confusion_matrix(y_true, y_pred, sample_weight=sample_weight,

labels=labels, normalize=normalize)

display_labels = [’No Delamination’, ’Delamination’]

disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=display_labels)

return disp.plot(include_values=include_values,

cmap=cmap, ax=ax, xticks_rotation=xticks_rotation,

values_format=values_format)
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