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ABSTRACT 

Visual servoing is a control technique that uses image data as feedback in a motion 

control loop. This technique is useful in tasks that require robots or other automated motion 

systems to automatically inspect parts or structures in motion. One specific method of 

visual servoing is Image Based Visual Servoing (IBVS), a method that simply minimizes 

the differences between an observed image orientation and a desired one. This method 

works well for orientations where the differences are small, but in the case where the 

desired orientation is more difficult to reach, the system can become unstable, either 

driving to infinity through a phenomenon known as camera retreat or following non-

optimal and non-repeatable trajectories. This work attempts to address camera retreat and 

other non-optimal paths by applying dynamic programming, an optimal control method 

that can determine an optimal trajectory by partitioning possible trajectories into multiple 

smaller trajectories. Using a cost function to penalize undesirable sub trajectories, the 

optimal overall trajectory can be determined and initiated. This work attempts to explore 

an optimized portioned approach using dynamic programming to address camera retreat. 

The motivation for this is to create a high precision visual servoing sequence suitable for 

high tolerance automated processes; specifically, quality inspection of airplane wire 

harnesses. 
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CHAPTER ONE 

Introduction 

Visual servoing is an image-based control technique that involves collecting image 

data from a vision sensor (typically a camera) as an input to a control loop. This input is 

used to determine how to control and drive a system. Vision-based robotic systems using 

such techniques are employed in a variety of manufacturing industries for inspection within 

the food, medical, aerospace, and automotive industries.  A major advantage of vision-

based robotic systems  is systematically avoiding the  introduction of potential error by 

humans, who may become apathetic and miss details of the inspection criteria [1]. With 

the rise of these systems in so many areas, research in visual servoing is becoming more 

critical so these systems can continue to meet the demands of inspection in manufacturing, 

specifically to improve the accuracy, optimality and robustness of vision based control 

systems [1][2][3][4].  Reducing the cost of these systems is also important and considered 

a goal. 

Image Based Visual Servoing (IBVS) is a common control scheme used in 

automated visual inspection processes. The simplicity of implementation as well as the 

ability to always drive the system to the desired solution makes the method adequate for 

most applications [5][6][7][8]. However, in the traditional control scheme a phenomenon 

known as camera retreat can often drive the system to instability or cause the system to 

follow a non-optimal trajectory while trying to reach the solution. Specifically, a 

singularity in the calculation causes the system to approach infinity. This limits the possible 

implementations for tasks that require precision inspection or tasks that have physical 
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constraints that limit the motion of the system. The details on the framework of this control 

scheme and the limitations of camera retreat will be discussed in detail. When using IBVS, 

inspection must also be executed at a speed that is timely, cost effective and does not set 

back production [1]. The quality of the image being used as an input must also be high 

enough to correctly interpret the image for the controller. This ensures that the system 

drives itself to the correct state based on the input. The ability to capture high-quality 

images opens the possibility for high precision inspection applications, and further 

emphasizes the need for optimal control of IBVS to capture usable visual inputs [9]. One 

way to ensure high quality image capturing and precise actuation is by implementing 

optimization techniques into common visual servoing control schemes. This combination 

of optimization and control is known as optimal control theory [10][11]. 

Optimal control theory is the practice of determining a control law for a system to 

reach a certain set of optimality criteria.   For a robotic system, common optimization 

criteria include the minimization or maximization of time, efficient path planning, and 

optimal trajectories for driving a system to a desired state. The mechanical constraints of 

the system like motor torque limitations, battery life, or physical limitations of the robotic 

system allow one to determine if and how an optimality criterion can be satisfied based on 

the specifics of a system. To ensure the system’s motion is optimal and to combat camera 

retreat, the intention of this work is to introduce an optimal control method known as 

dynamic programming to the traditional visual control scheme. 

 Dynamic programming is a recursive optimization technique of selecting the 

optimal path in a partitioned space by calculating the minimum cost to go using a specified 
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cost function. The cost function is determined based on system constraints. Starting from 

the desired state of the system, the minimum cost to go for each state in the partitioned 

space is calculated recursively until the current state is reached [11][12]. This process 

exhausts all possible trajectories, allowing the optimal state sequence to be determined 

which in turn determines the optimal state trajectory. The details of this approach will be 

further discussed in Chapter 2. 

We can combine dynamic programming with IBVS through the image Jacobian 

matrix (or interaction matrix), which is a matrix representation of all the intrinsic camera 

parameters. The interaction matrix characterizes the image dynamics and can be directly 

incorporated into the cost function of a dynamic programming control scheme. This allows 

the minimum cost to go to be calculated for a system based on the image dynamics of the 

system, creating an optimal IBVS control method that can handle the camera retreat 

phenomenon as well as trajectories that are not optimal.  

In Chapter 2, an introduction to visual inspection, dynamic programming, and 

IBVS is presented. In Chapter 3, the framework to address a specific scenario of IBVS in 

which the system follows non-optimal trajectories is developed. Chapter 4 gives an 

example application, while Chapter 5 describes suggestions for future research.  
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CHAPTER TWO 
 

Background and Literature Review 
 

2.1. Visual Inspection 

Visual inspection is a common step in manufacturing processes to determine part 

quality. It also is a key process in a variety of other industries, for example construction 

where one may need to verify the structural integrity of a building [4][9][13][14][15][16]. 

Inspectors look for both cosmetic and functional defects in the production process, or in 

the case of structural integrity, evaluating cracks and deformities in buildings that could 

cause the structure to collapse [1]. With inspection becoming more integral in so many 

industries, the push to accurately automate this traditionally manual process is becoming 

more critical to save cost and time. Performing manual inspection requires a physical 

person to complete the task which opens the door for human error. These sort of tasks also 

tends to be viewed as tedious which can cause inspectors to conduct the inspection 

inadequately [17]. Automating this process eliminates the need for human interaction and 

in most cases, performs the inspection in a more accurate and effective way. Automation 

however, is still not a trivial process and does not automatically ensure better performance. 

It depends heavily on the systems used to develop the processes [18]. To automate a manual 

inspection process, the tasks must be broken into three stages: visual input, image 

processing and output inspection [5]. During the input stage, the images are captured, 

loaded into the system, and stored. In the processing stage, the predetermined features of 

interest are extracted and compared to validate correctness with respect to desired colors, 

orientation, and other features desired by the user. The output of the inspection is what the 
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user sees to perform further analysis and verification. Processing the output can also be 

automated depending on the application. The contributions of this work are aimed at the 

input stage; specifically, improving the ability of a system to accurately and optimally 

position itself to capture the best image for inspection. In order to make sure the best picture 

is taken; robust and optimal image-based control strategies are necessary so servo the 

system. 

Methods for visual inspection have become over time more advanced and efficient, 

taking advantage of accelerating camera and image enhancement technologies to better 

determine and classify features of interest. In a continuance of that trend, inspectors have 

also placed cameras on automated systems such as mobile ground robots or unmanned 

aerial vehicles in order to be more efficient or to reach areas beyond the ability of humans 

[19]. Along an assembly line, cameras placed within production can gather data on each 

part [20], while unmanned drones taking pictures for building inspectors can help with 

areas that are unsafe or inaccessible; these systems also free up human capacity. However, 

image analysis is still key to determine and classify faults, in order to more fully automate 

the inspection process. To that end, computer models of image recognition need to be 

trained through machine learning [21].  

Automated Visual Inspection (AVI) is a class of image processing methods for 

quality control which covers a wide range of different techniques based on filtering, 

learning, and a hybridization of different methods [17]. Precision placement of cameras or 

image capture devices is critical to such methods’ success; visual servoing is often used to 

actively adjust position based on application [22][23]. This means that by improving the 
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precision and accuracy of visual servoing techniques used in AVI processes, we get higher 

quality images and more accurate inspection. Visual servoing allows for images to be taken 

from different angles and magnifications, in order to classify different types of faults. 

However, the introduction of this motion introduces complication in analysis due to the 

need for the image processing algorithm(s) to understand the correct orientation and part 

position. In addition, the camera should minimize the travel time to the target pose in order 

to maximize the number and quality of images [5]. While so many applications have 

benefited from the advances in computer vision, high precision applications still require 

more precision in the visual control methods used to be considered the standard. For 

example, in manufacturing environments where the objects of interested are in complex 

configurations and difficult to reach or with larger parts that require multiple images to be 

captured for inspection. While these problems present themselves in a wide variety of 

manufacturing environments, we have seen these problems frequently in the aerospace 

industry as they look to move to more automated manufacturing processes. 

The aerospace industry is known for its tight tolerance and heavily manual 

processes, however with the advances happening in automation, this industry is also 

looking to automate; specifically, automated inspection for pre and post analysis of parts 

for quality assurance. Our lab partnered with the company, SAFRAN, a leader in the 

aerospace manufacturing industry and specifically, airplane wire harness manufacturing, 

to explore ways to automate some of their inspection process. Airplane wire harnesses are 

complex and are manufactured in a wide variety of configurations that require precise 

inspection to differentiate between wire harness features and connection points. Incorrect 
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assembly in these connections points lead to catastrophic failure in operations. This 

precision in the manual inspection meant that the automated process had to be optimal and 

precise if it were to be implemented. After exploring what image control techniques were 

commonly used in manufacturing environments, Image Based Visual Servoing (IBVS) 

appeared to be the standard due to its ease of implementation and ability to always converge 

on the desired camera pose. In chapter three, we will explore in detail how some of the 

early attempts to help automate the inspection of a process that has tight tolerances helped 

to motivate the investigation into more precise methods of image-based control. In the next 

section, IBVS will be explained at a high level as well as the mathematical framework for 

how it works and its shortcomings.  

2.2. Image based visual servoing 

Image Based Visual Servoing (IBVS) is a method of visual servoing in which the 

control is based on dynamics from the image points located in the image plane. In this 

section we will give the necessary background information of the IBVS frame work using 

nomenclature that is used in the literature. As mentioned earlier, IBVS is used in a wide 

variety of control schemes to servo and control various types of robotic systems 

[5][24][25][26]. The basic principle behind IBVS is to simply minimize the difference 

between a desired image orientation and the image orientation being displayed on the 

camera. Figure 2.1 shows a visual representation of this idea. This simplicity is what first 

motivated the use of IBVS for quality inspection. Desired features of the parts were already 

known and the control law, in theory, could easily servo to specific features on the wire 

harness.  
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Figure 2.1: Visual representation of the basic idea behind image based visual servoing. The desired object 

orientation is known, and the goal is to minimize the differences between known and current image 

orientation.    

While conceptually IBVS is simple to understand, there are multiple aspects of an 

automated system that must be considered before implementing. Limitations in the 

environment, computational power, and mechanical constraints are important entities to 

consider in the control scheme. Figure 2.2 is a well known control scheme that most robotic 

systems implementing IBVS use [27]. 

 

Figure 2.2: Block diagram representation of IBVS control scheme in robotic control scheme. This diagram 

was used for initial testing of IBVS once we implemented it on our system.  

Desired object orientation Current object orientation 

+ 

Control 
Law 

Camera 
Frame 

Object in camera 
frame 
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The kinematics (also referred to as the equations of motion) include the limitations of the 

geometric representation of the robot. While we must consider these limitations when 

assessing what the robot can accomplish, we must also consider the physical capabilities 

of the motors or joints of the robot. In theory, the IBVS control law can then drive the 

system closer to the desired image position considering these constraints. It will be shown 

later that IBVS does not handle these constraints well. The control law used in this block 

diagram is derived from the image dynamics and is outlined below.  Let Equations (1) and 

(2) 

 

𝑟 = (𝑥, 𝑦, 𝑧)𝑇         (1) 

 

�̇� = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧 , 𝜔𝑥, 𝜔𝑦, 𝜔𝑧)
𝑇
        (2) 

 

represent the coordinates of a robot end-effector and its velocity, respectively in a 3 

dimensional space [28]. The vector �̇� is composed of the linear and angular velocities, 

which can be separated into Equations (3) and (4), which are 

 

𝐸 = (𝐸𝑥2, 𝐸𝑦, 𝐸𝑧)
𝑇
         (3) 

 

𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)
𝑇
         (4) 
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where T is the linear velocity and 𝜔 is the angular velocity [28]. Let Equation (5)  

 

   𝑓 = (𝑢, 𝑣)𝑇          (5) 

 

be the image-plane coordinates of a point in the image and Equation (6) 

 

  𝑓̇ = (�̇�, �̇�)𝑇          (6) 

 

be the corresponding velocity [28]. In order to form the control law, we must also include 

what is known as the interaction matrix, which relates the motion of the camera to the 

motion of the feature point. The derivation of Equation (7) can be found in Appendix A. 

 

𝐿𝑠 = [

𝜆

𝑧
0 −

𝑢

𝑧
−

𝑢𝑣

𝜆

(𝜆2+𝑢2)

𝜆
−𝑣

0
𝜆

𝑧
−

𝑣

𝑧

−𝜆2−𝑣2

𝜆
 

𝑢𝑣

𝜆
𝑢

]     (7) 

 

Here λ is the focal length of the camera. We can combine these camera properties to get 

the velocity of the image coordinates with respect to the camera properties by multiplying 

the interaction matrix by Equation (3), resulting in Equation (8).  

 

𝑓̇ = 𝐿𝑠(𝑓, 𝑟)�̇�          (8) 
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This equation can then be used to form a control law based on the physical limitations of 

the camera in combination with the with the image space dynamics. A simple and widely 

used control for this type of control scheme is 

 

𝑈 = 𝑘𝐿𝑠
−1(𝑓, 𝑟)�̇�         (9) 

 

where k is a gain matrix and U is the control input.  

While the control law for IBVS is relatively simple, there are two main problems 

that arise with implementation, the first being constraint handling. The inability of IBVS 

to handle various constraints including robot workspace constraints, visual constraints, and 

limits on the robotic system itself motivated the work of a variety of research in constrained 

IBVS. This is typically done by formulating the problem as a nonlinear problem. One 

approach that has been successful is the work done in [12]. Here, they developed a method 

of combining Model Predictive Control (MPC) with IBVS, formulating what they call 

Visual Predictive Control (VPC). MPC works well due to its ability to constrain the inputs 

and outputs of the system directly into the control law. In the case of IBVS, the constraints 

are limitations of the image coordinates of the desired image. These limitations are driven 

by the physical constraints mentioned earlier. While VPC aided in helping IBVS handle 

constraints, it still fails in addressing the second shortcoming of IBVS: following 

nonoptimal trajectories. In certain cases where depth is of a certain value relative to the 

image coordinates, the system follows nonoptimal trajectories when converging on the 

desired camera pose. One nonoptimal trajectory that occurs in most applications is called 
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camera retreat. In this scenario, the control causes the system to converge to infinity and 

never reaches the desired posse. IBVS has previously been subject to attempts to apply 

optimal control to a prescribed path addressing camera retreat using partitioned 

approaches, however most partitioned approaches are not optimal. This motivates the use 

of investigating dynamic programming (DP), an optimization technique that can be 

partitioned.  While MPC will not be used explicitly, the derivation for optimizing IBVS 

using DP follows a similar pattern due to the nature of most control optimization 

techniques. The details of the derivation will be discussed later, however first the problem 

of camera retreat will be explained.  

2.3. Nonoptimal trajectories and camera retreat 

The two main problems with the IBVS control scheme this work aims to address 

are the emergence of nonoptimal trajectories when converging on the desired camera pose 

as well as the camera retreat phenomenon, which causes the system to drive to infinity 

while attempting to converge [29][30][31]. The beauty of IBVS is that the system will 

always try to converge to the desired camera pose and will never approach a camera pose 

that it is not wanted, however the path the system takes is not always optimal, sometimes 

even in trivial cases. The issue stems from depth estimation of each of the feature points of 

desired camera pose. The interaction matrix requires knowledge of depth in order to 

accurately compute the interaction, and this depth does not always remain constant in 

practice nor is it always known and attainable. The techniques used to address this problem 

often include a sensor typically stereo techniques involving multiple cameras, to estimate 

depth in real time [28]. These techniques do aid in smoothing out the paths to looking more 
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“normal”, however these methods are not always practical depending on the application 

and the path to convergence may still not be optimal. For the applications in this thesis, we 

assume depth to be constant, however even at constant depth, the phenomenon of camera 

retreat still is an issue; often worsening depending on the depth and the degree of rotation 

in the z axis. Typically, camera retreat happens with larger rotation, however the 

phenomenon can happen with small rotations as well. To illustrate the sensitivity of camera 

retreat to certain rotations, a simulation where the object of interest is a square is shown in 

Figure 2.3 and Figure 2.4. Each simulation has two different initial offsets in the z axis with 

the same goal camera pose. In these simulations, the square where the vertices are stars 

indicate the desired camera pose, and the square with circle vertices indicates the initial 

camera pose. The solid blue lines represent the path the square took to reach the desired 

pose. Figure 2.3 illustrates how the control law drives the system to the desired camera 

pose following the obvious solution of traveling in a straight line to reach the desired 

camera pose. Figure 2.4 illustrates the problem of camera retreat where it converges to the 

desired camera pose after first retreating far away in the z axis. Despite the goal camera 

pose remaining the same, in Figure 2.4 we see the slight change in rotation causes the 

camera to retreat to infinity. IBVS struggles in handling rotations due to singularities that 

occur in the interaction matrix. These singularities can occur at any point in the control 

algorithm and are mainly addressed as they occur in a specific application. Both 

simulations we run at the same initial depth.  
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Figure 2.3: Case of IBVS converging optimally with respect to time to a known camera pose.  certain rotations 

about the z axis, IBVS converges in an intuitive way.  

 

 

 
---- Desired Point 
---- Initial Point 
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Figure 2.4: Case of IBVS with same goal camera pose at different initial orientation around the z axis. The 

slight change in rotations causes a drastically different path to the desired camera pose despite the solution 

being trivial.  

 
The details of this simulations will be discussed in a later section; however, it is important 

to note that these simulations were run with the unconstrained IBVS control law outlined 

above. 

`When first examining the problems of camera retreat, it may seem like there may 

not be applications where large rotations would be a concern, however what makes the 

issue worth examining is the fact that small rotations can also trigger camera retreat 

depending on the depth. Small rotations can stem from vibrations on the system or even 

occur in the process of trying to reach a desired pose along the trajectory. As mentioned 

---- Initial Point 
---- Desired Point 
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before, there are other partitioned approaches to solving this issue, however non guarantee 

optimality. Dynamic programming is one partitioned technique that partitioned the 

environment to penalize following non optimal trajectories while also providing an optimal 

solution. In the next section, dynamic programming (DP) will be examined, along with the 

ways in which it could address the shortcomings of IBVS. 

2.4. Dynamic programming 

Dynamic programming is a method of optimal computation involving decomposing 

a problem into smaller subproblems. The smaller subproblems act as steps for the overall 

problem solution; the solutions to these smaller subproblems are obtained and then indexed 

to determine the optimal solution, meaning it works best for optimizing solutions that are 

recursive in nature [11][32][33][34][35][36][34][37]. To better understand this, it is 

necessary to first understand the Bellman principle of optimality: 

 

An optimal policy has the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy with 

 regard to the state resulting from the first decision [11]. 

 

This principle is the underlying foundation as to why dynamic programming works. Once 

a path is deemed optimal to reach the solution, all subsequent paths are also deemed to be 

optimal. To further illustrate this example, consider the path below in Figure 2.5 going 

from point A to point C.  
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Figure 2.5: Optimal path from A to C with associated costs. 𝐽𝐴𝐵 represents the cost go from point A to B and 

𝐽𝐵𝐶  represents the cost to go from B to C 

 

To prove the principle of optimality, we first assume the path in Figure 2.5 is the 

optimal path from point A to C. According to the Bellman principle of optimality, this 

means the path from B to C is also optimal. We measure this in the form of a cost value, 

which is typically a value determined by a function of interest that is being minimized. 

This function could be functions of time, displacement, or even something like battery 

usage. In this example, we use arbitrary costs 𝐽𝐴𝐵 and 𝐽𝐵𝐶 , which are the cost to go of an 

arbitrary performance measure to be minimized from point A to B and from point B to C, 

respectively. The cost to go from A to C, which is also the optimal path in this example, is 

given by 𝐽𝐴𝐶
∗ . The optimal cost from A to C can be represented by Equation (10) as 

 

𝐽𝐴𝐶
∗ = 𝐽𝐴𝐵 + 𝐽𝐵𝐶          (10) 

 

The “*” in this notation indicates that this is the optimal path from A to C as there are more 

nonoptimal paths from A to C. Let us consider one of these alternative paths to show, by 

JAB 

JBC 
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contradiction, that if in fact  𝐽𝐴𝐶
∗   is the optimal,  𝐽𝐵𝐶  must also be optimal from B to C based 

on the Bellman principle. In Figure 2.6 below, another potential path from B to C is shown  

with and associated cost.  

 

Figure 2.6: Optimal path from A to C with two potential paths from B to C. 

 

Here the cost from B to D to C is given by 𝐽𝐵𝐷𝐶 . To prove by contradiction, we first assume 

the new path BDC is the optimal path from B to C, which means that 

 

𝐽𝐵𝐷𝐶 <  𝐽𝐵𝐶  (11) 

 

In terms of the optimal cost to go from point A to B, this means that the following equation 

must also be true 

 

𝐽𝐴𝐵 + 𝐽𝐵𝐷𝐶 < 𝐽𝐴𝐵 + 𝐽𝐵𝐶 = 𝐽𝐴𝐶
∗   (12) 

 

The only way Equation (12) can be true is by violating the initial assertion that the optimal 

path is A-B-C, thus by contradiction, B-C must also be the optimal path from B to C. It can 

JAB 

JBC 

JBDC 
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be shown how this can be extended to a multistage decision-making process by considering 

Figure 2.7.  

 

Figure 2.7: Multi-stage decision making using principle of optimality. Optimal paths from B to E, C to E, 

and D to E are known. 

 

Let us consider a system going from state A to state E following the most optimal trajectory. 

Currently, the optimal path for B-E, C-E, and D-E is known along with the associated cost 

𝐽𝐵𝐸
∗ , 𝐽𝐶𝐸

∗ , 𝐽𝐷𝐸
∗ . What it is not known and is if path A-B, A-C, or A-D is the optimal path to 

take from State A. This is the subproblem dynamic programming aims to compute and 

solve. If it is determined that, for example, C is the next state the system can achieve 

optimally, then by the Bellman principle, C-E is the optimal, terminal path to take and path 

A-C-E is the optimal path from state A to E. The same applies for path A-B and path A-D. 

In order to find which of the three paths is optimal, the total cost for each potential path 

must be calculated and compared via Equations (13) (a-c). 
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𝐽𝐴𝐵𝐸
∗ = 𝐽𝐴𝐵 + 𝐽𝐵𝐸

∗   (13.a) 

𝐽𝐴𝐶𝐸
∗ = 𝐽𝐴𝐶 + 𝐽𝐶𝐸

∗  (13.b) 

𝐽𝐴𝐷𝐸
∗ = 𝐽𝐴𝐷 + 𝐽𝐷𝐸

∗  (13.c) 

 

The optimal path can be determined by calculating the minimum cost of these equations. 

Dynamic programming extends this decision-making process to a sequence of decision- to 

determine the optimal trajectory and path. The next section examines how this 

computational technique can be combined with IBVS to both optimize and constrain IBVS. 

2.5. Dynamic programming and IBVS 

In this section we formulate the IBVS optimal control problem with dynamic 

programming. As mentioned previously, the goal of dynamic programming is to determine 

the optimal trajectory by calculating smaller sub trajectories through a cost function [38]; 

for the vision positioning application, the cost function represents the error e between a 

desired point and the current pose of the camera [27]. Equation (14) shows this error term 

as a vector of feature points of the image.  

 

𝑒 = 𝑠𝑑 − 𝑠                                (14) 

Here, sd is the desired point and s is the current pose of the camera. Discretizing this 

equation allows it to be implemented into a stepwise algorithm to determine the error at 

each time step. The discretized version of this equation is given in Equation (15): 
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𝑒(𝑘) = 𝑠𝑑(𝑘) − 𝑠(𝑘), 𝑘 = 1,2, … . . 𝑛              (15) 

 

The variable n is the number of time steps. There are three main constraints that are 

considered: mechanical constraints, which are based off the geometric model of the 

automation system (and also determine the camera pose), visibility constraints that ensure 

that the visual measurements stay in the image plane, and control input constraints which 

are based on actuator limitations [27]. The geometric model is represented by p(k) and is 

dependent on individual joint measurements q(k), as represented by Equation (16) and (17) 

below. 

 

𝑝𝑚𝑖𝑛 ≤ 𝑝(𝑘) ≤ 𝑝𝑚𝑎𝑥                          (16) 

 

𝑞𝑚𝑖𝑛 ≤ 𝑞(𝑘) ≤ 𝑞𝑚𝑎𝑥.              (17) 

 

The visibility constraints are based on the predictive model of the trajectory sm and given 

by the following relationship:  

 

𝑠𝑚𝑚𝑖𝑛
≤ 𝑠𝑚(𝑘) ≤ 𝑠𝑚𝑚𝑎𝑥

             (18) 

Lastly, the control constraints can be represented by Equation (19): 

 

𝑈𝑚𝑖𝑛 ≤ 𝑈(𝑘) ≤ 𝑈𝑚𝑎𝑥              (19) 
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where U is the control input. A cost function that is commonly used for minimizing IBVS 

is given by Equation (20) 

 

 𝐽(𝑈) = ∑ [𝑠𝑑(𝑗) − 𝑠𝑚(𝑗)]𝑇𝑄(𝑗)[𝑠𝑑(𝑗) − 𝑠𝑚(𝑗)]
𝑘+𝑁𝑝

𝑗=𝑘+1
    (20) 

 

Where Q(j) is a symmetric definite-positive identity matrix. 𝑁𝑝 represents the horizon over 

which the cost function is to be optimized. For dynamic programming, the larger this 

horizon, the more optimal the solution. Using this cost function in simulation, the optimal 

control sequence can be found with the goal of minimizing the control input.  

To calculate the model sm, the following equations are used as an approximation of 

Equation (8): 

𝑠𝑚(𝑘 + 1) =  𝑠𝑚 +  𝑠𝑚
′               (21) 

 

𝑠𝑚
′ (𝑘) =   𝐿𝑠(𝑘)𝑇𝑒�̇�(𝑘)             (22) 

 

𝑠𝑚(𝑘 + 1) =  𝑠𝑚 +  𝐿𝑠(𝑘)𝑇𝑒�̇�(𝑘).           (23) 

 

Ls is the interaction matrix given earlier as Equation (7), 𝑇𝑒 is the sampling period between 

states, and �̇� is the camera velocity.  

To final step before implementing dynamic programming is to penalize the control input. 

This is to ensure that our system does not reach an optimal solution through a control that 
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is not achievable. In this case, the camera velocity is the control input. From this, Equation 

(24) is derived as 

 

𝐽(𝑈) = ∑ [𝑠𝑚(𝑗) − 𝑠𝑑(𝑗)]𝑇𝑄(𝑗)[𝑠𝑚(𝑗) − 𝑠𝑑(𝑗)]
𝑘+𝑁𝑝

𝑗=𝑘+1
 + �̇�(𝑘)𝑇 ∗ 𝑅 ∗ �̇�(𝑘)                  (24) 

 

R is a weighted matrix for the control variables. To calculate the control term �̇�(𝑘), the 

following equation is used: 

 

�̇�(𝑘) = (𝑠𝑚(𝑘) − 𝑠𝑚(𝑘 + 1))/( 𝐿𝑠(𝑘)𝑇𝑒)          (25) 

 

Using Equation (25), the optimal path can be determined with respect to the velocity of the 

overall system. The path is constrained with respect to the velocity upper and lower bounds  

 

−.1 ≤ �̇�(𝑘)  ≤  .1                       (26) 

 

and the minimum cost is determined by Equation (24) for each control input. The goal of 

this cost function is to minimize the time it takes to reach the desired camera pose. This 

will in turn, minimize path traveled to reach the desired pose making it optimal.   

As mentioned earlier, the goal is to focus on a specific set of cases and not to redefine the 

entire IBVS control scheme. We will see there are cases of IBVS in the next chapter where 

the trajectory is time optimal and similar to the combined DP and IBVS control scheme. 
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2.6. Summary 

In this section we have reviewed some of the common methodologies in vison-

based control and visual servoing. With automation becoming more and more popular in a 

variety of different industries, the need for robust and optimal visual control techniques is 

becoming more necessary. In the aerospace industry specifically, this precision will be 

critical in the implementation of more automated systems as the tolerances and 

requirements are tight specific. Image Based Visual Servoing (IBVS) is a common visual 

servoing technique used in the manufacturing industry, however there are shortcomings 

like camera retreat and following nonoptimal trajectories that prevent it from being used in 

scenarios where precision is key. These shortcomings stem from the difficulty in estimating 

depth, a key component in calculating the interaction matrix in the traditional control 

scheme. While there have been attempts to more accurately estimate depth, these methods 

often involve drastic modifications to the system and are not always practical. This 

motivates the need for partitioned approaches to IBVS to deal with camera retreat and non-

optimal trajectories. While these attempts have been useful in converging the system in a 

way that is not completely abnormal, the trajectories are not always optimal, again limiting 

the application. Dynamic Programming (DP) is an optimal control technique that both 

partitions the IBVS control scheme while ensuring optimality.   

In Chapter 3 we will expand upon the combined formulation above and see specific 

examples of combining DP with IBVS and how it affects the performance. MATLAB 

simulation will be used to compare the results of the traditional IBVS control scheme as 

well as the combined IBVS and DP control scheme. In order understand how this technique 
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measures up to less eloquent visual control techniques, we will also look at a case study 

done in the early stages of attempting to automate inspection of the airplane wire harnesses. 

These attempts were the main motivation into attempting to implement IBVS as well as a 

good baseline comparison to evaluate performance.  
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CHAPTER THREE 

 
Case Study and Experimental Results 

 
 
 In this chapter we will show the development and implementation of a system used 

to conduct a case study on feature detection. The case study shows how critical vision-

based control techniques are for applications that require high precision. The chapter will 

be outlined as follows: introduction of the problem of the case study, difficulties in 

detecting features on wire harnesses, prototype development of system used for case study, 

image processing and capturing techniques used for feature detections, and lastly, problems 

with synchronization of motor control and image processing. 

3.1. Case Study Introduction 

SAFRAN is one of the leading manufacturers of airplane wire harnesses in the 

world. As a leader in this industry, working with them gave a unique perspective on the 

future of automation of manufacturing processes in the aerospace industry. Assembly and 

inspection in this industry are typically a manual process due to the tight tolerance 

requirements. A mistake in any stage of this process, whether it is improper inspection, 

improper assembly, or improper placement in the airplane could lead to catastrophic failure 

during operation [39][40][41]. This typically discourages efforts in automating any stages 

of the process of assembly and inspection due to most automated process not having the 

robustness to perform the operation as precise and accurately as a human. Because of these 

concerns, there has never been a serious attempt to automate by SAFRAN until now. 

SAFRAN challenged us to perform a case study to assess the potential of automating the 
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inspection process of airplane wire harnesses in hopes of expanding what was discovered 

to other stages of the assembly process. In the next section, some of the issues that come 

with attempting to automate the inspection process are explained as well as the 

complexities that come with inspection of airplane wire harnesses.  

3.2. Airplane wire harnesses  

Airplane wire harnesses were first developed in order to aid in routing the 

connections for various electrical components on an airplane. As airplanes developed over 

time, the number of wires necessary for routing increased to the point where it became a 

lengthy process when setting up the electrical components of an airplane [42]. Eventually 

the idea came to assemble the wire harness as they would need to be routed inside the 

airplane. For example, if the connections for the electrical wiring for the lighting of a 

specific section of the aircraft was near the connections for say, the power of the HUD 

display in the cockpit, those wiring connections would be grouped together during the 

assembly process. From Figure 3.1 below, we can see how airplane wire harnesses can be 

complex in wire routing and physical dimensions depending on the harness specifications. 

Some wire harnesses can stretch upward of 30 meters on what is known as a form board 

(FB) with extremely tight orientation requirements at every section. This can cause 

inspection to be critical as one misplacement could mean the airplane fails at a critical 

point. It is not uncommon for the wire harness to be inspected multiple times throughout 

the assembly process and a mistake to still be discovered despite all these precautions to 

ensure correct assembly. These frequency in inspection motivated the idea to automate this 
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process, with the idea being that while the workers assemble the wire harness, an automated 

inspection system could inspect the harness as the same time.  

 

 

Figure 3.1: SAFRAN team members assembling airplane wire harness assemblies for a military aircraft. The 

complex shape and number of critical components make this a heavily manual process. There are many 

opportunities for mistakes during assembly. 

 

Having a system inspecting this way would greatly reduce the need for manual inspection 

and would save time and money. Workers could put their efforts in other aspects of the 

assembly process and increase production rates.  
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 Given the length of some of the wire harnesses, the layout of the facility, and the 

requirement that the system could not interfere with the work of the workers, a track type 

system where inspection system would be attached became the leading solution to the 

problem. Figure 3.2 shows the proof of concept of the system in a manufacturing   

 

 

Figure 3.2: Proof of concept of how inspection system would function in a real manufacturing setting. The 

system would inspect sections of the wire harness that have already been assembled by the worker.  

 

With an understanding of some of the challenges, the problem was focused into a series of 

requirements that the system had to be able to execute. With limited experience in 

automated visual inspection, these initial guidelines were used a base line for the case 

study. We will see how these initial requirements helped to both better understand the 

Camera Track System 

Inspection Features 
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problem and develop new and more essential requirements. The requirements are as 

follows: 

1. The system needed to differentiate between humans and key features of interest in 

the image in order to ensure that the technician was finished working or not 

2. The system had to be able to accurately detect features from a maximum distance 

of 4 ft. This distance was based on the layout of the facility.   

3. The system had to position itself automatically without the need for interaction of 

another worker. Ideally, once the information for the part was loaded, a single 

button push would automatically start the inspection process once the technician 

reached a certain point in assembly 

4. System needed to be relatively cheap and easily implemented into the current 

manufacturing environment. There would potentially need to be hundreds of these 

cameras and while there were off the shelf camera systems, most were expensive 

and not easily implemented.   

With these requirements in mind, efforts were made to investigate the feasibility of 

implementing a system that could meet them. A flow chart was developed in Figure 3.3 

that shows the logical progression of the process. Once the technician finishes assembling 

the wire harness, a computer would load the requirements and specifications for the 

specific FB needed for the harness. Afterwards, the harness would be scanned for 

correctness and a report would be distributed indicating success or failure of assembly. 
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Figure 3.3: Wire harness inspection flow chart. FM means flag marker, a feature of interest in the detection, 

FB is the form board, and EF is electrical figure for the drawing. Flag markers will be discussed in the 

upcoming paragraphs.  

 

This interdisciplinary project required investigation into computer vision, image 

processing, mechanical design, and later, control and image-based control. In the next 

section, the efforts made into each of these areas will be explored as well as how they 

helped in tuning our requirements to better solve the problem. It is important to note that 
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each of the steps taken led to the main research goal of this thesis: to develop an optimal 

and robust vision control techniques to be used for precision visual inspection. 

3.3. Inspection system initial prototype  

The computer vision and image processing aspect of this project will be discussed 

first. The first step was deciding on a camera. Table 3.1 below shows all the cameras that 

were considered below along with the pros and cons.  

Table 3.1: List of potential cameras that were available to use for image capturing and processing. 

Camera Options for Inspection System 

Camera Type: Pros: Cons: 

Raspberry Pi 
Camera Module 

V2 

• Software supported with 
opensource software platforms 

• Good with low light 
photography 

• Option to make a graphical 
user interface (GUI) with 
software available to raspberry 
pi micro controller 

• Lab has worked with this 
camera for other projects  

• Cannot reach as high of 
camera quality as other 
cameras (max 
resolution is 1080p) 

• Limited capability for 
video 

 

Sony IMX219 
for Raspberry 

Pi 

• Capable of high-resolution 
video as well as high quality 
image capturing 

• Usable with raspberry pi 
microcontroller 

• Would have to develop 
a case for the system as 
it is a new camera 

• More expensive for 
features that may not be 
necessary to solve 
problem 

Pixy 
(CMUcam5) 

• Open source however 
interfaced easier with Arduino 
controllers 

• Built in object recognition for 
a variety of colors 

• Built in recognition 
software is limited 

• Would have to develop 
a case 
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Picking a camera was critical, as the camera would have to be cheap, able to take pictures 

at a high enough resolution to process the image and be able to relay the image data for 

post processing of the image on a microcontroller of some sort. The camera that was 

decided on was a raspberry pi camera that raspberry pi offers as an add on attachment to 

their microcontrollers. The main reasoning behind this decision was how much the lab had 

used this camera in the past. There were a lot of resources to develop computer vision 

algorithms using this camera as well as a variety of cases and setups that could be used for 

building a physical system.  

 Once the camera was decided upon, a few prototype systems were developed to 

hold the camera. These systems were mainly used to run initial tests of the computer vision 

code used for analysis by the raspberry pi. The raspberry pi microcontroller offers a wide 

variety of onboard processing and has the capability to programmed in Python. OpenCV, 

an open source computer vision software, has Python bindings that allow it to easily be 

used for various computer vision applications where the controller can be programmed in 

Python. This open source capability also allows us to utilize it on another system used to 

evaluate the performance of IBVS and DP and will be discussed later in this thesis.   

 The first prototype of the system used to hold to camera can be seen in Figure 3.4. 

Utilizing this prototype, there were a lot of critical elements learned about the image 

capturing and image processing that aided in the design of the final system used; 

specifically, addressing point 2 mentioned in the previous section of capturing images at 4  

ft.  
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Figure 3.4: Prototype system developed for initial testing of code. The camera was placed 4 ft from the wire 

harness drawing as that was the estimated distance available for image capturing 
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The structure was made of PVC as its only function was to hold the camera and create a 

constant distance of 4 ft between the drawing and the camera. A raspberry pi micro 

controller with the chosen camera module was connected to a monitor for programming 

using OpenCV. The details of the lessons as learned and how the address point 1 in the 

previous section will be discussed in the next section.  

3.4. Image Processing and OpenCV 

As stated in point 1, it was determined that the system would need to accurately be 

able to distinguish between humans and the desired features of the wire harness. This was 

to ensure that the inspection system was inspecting the correct place of the wire harness. If 

there was a human inside the frame, this would mean that the human was still assembling 

the harness. Keep in mind that the objective of this system would be to inspect section that 

have already been assembled by the technician. Using the raspberry pi camera module and 

some basic human detection algorithms in OpenCV, we explored the idea of human 

detection to see how bust we can make the algorithm. Figure 3.5 shows the results of the 

human detection and the confidence rating the algorithm calculated to show how sure it 

was that it was a human in the picture. The images shown in the figure are snapshots of 

live video feed. This mean the detection algorithm was detecting humans in real time and 

not post processing the images. It was determined that if possible, a live video feed would 

work best for the inspection system.  
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Figure 3.5: Human detection with confidence intervals. The algorithm was able to detect more than one 

human in a frame; however, confidence went down as more humans entered the frame.  
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The algorithm worked well at determining if there were humans in the frame, however 

there were a few things discovered during this test. Recording video required a lot of 

processing power for our microcontroller to record at a high enough resolution to detect 

humans. The image above is a snapshot of a video feed taken at 1080p30, which is the 

highest resolution possible by the camera. Even at this resolution however, we can see that 

the confidence was relatively low. In the first image, the algorithm is only 11% sure that 

the person being shown is a human, and in the second image, it is 4% and 12% sure 

respectively. This cannot be seen in the image, but during the test, the yellow box can be 

seen going in and out, further indicating the uncertainty of the algorithm that the image in 

the frame was a human.  

 Understanding that the algorithm must be able to confidently detect humans in the 

camera frame, attempts were made to increase confidence, however none of the methods 

worked well on post processing of an image as this would need to be done in order to 

reduce the processing power required for a video feed. In order to reduce the processing 

power, the algorithms would need to capture and store images every couple of seconds to 

check for humans in the camera frame which would rapidly deplete storage. The storage 

would need to be used for storing images during the actual inspection process of the system. 

The last attempt made to make the human detection better was to delete the photos as they 

were deemed to not have a human in the image. This solution also did not show consistency 

in confidence as there were still cases where a human was present, and no detection would 

show up. Despite the human detection algorithms not being robust, fortunately the 

detection of flag markers, a key feature of interest in inspection, had simple geometry as 
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well as bright, easy to capture colors that allowed the algorithms for feature detection to 

work with consistency.  

 Flag markers are used as an indicator for SAFRAN to identify key sections on a 

wire harness. Below in Figure 3.6 shows a picture of test wire harness that was used for 

developing the system.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

Figure 3.6: Flag markers on wire harness used for testing. Not a real part used in production but has the shape, 

drawing, and orientation of a real wire harness.  
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This wire harness was donated for testing purposes; however, it closely resembles the wire 

harnesses used in production in the plant. In the figure there are two key components: flag 

marker indicator on the drawing which sows there the marker should be placed on the 

harness, and the physical marker that is placed on the wire harness.  It was decided that the 

flag marker would be the first feature of interest to attempt to detect due to how simple yet 

common the indicator appears on a wire harness. Some wire harnesses can have 20-30 flag 

markers over the course of a 10-meter span. The technique used for the detection of the 

flag marker was an object recognition computer vision algorithm that searched for both 

shape and color. Fortunately, the shape of the flag marker on both the drawing on the 

harness are simple squares. In Figure 3.7 we can see the detection system tested on three 

different flag markers. Notice how cluttered the image is with objects of different shapes 

and colors in the image frame. Despite this, the algorithm still can accurately determine 

that a flag marker was present in the image frame. In testing we noticed that even with a 

human in front of the image plane, the flag marker was still able to be detected thus 

eliminating the need for a human detection, which was not consistent in human detection 

anyway. This helped fine tune the requirement listed in point 1 to not include the need to 

detect humans in the image frame. While the algorithm consistently and accurately detected 

the features, there will a few issues with color differentiation between colors that were 

close in shade; specifically, the colors blue and purple were difficult to differentiate 

between. This could have been improved however we focused on colors that were further 

in shade.  
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Figure 3.7: Flag marker detection algorithm detecting blue and purple flag markers. In this specific image, 

the flag marker that is physically placed on the harness is not shown, however we will see in another image 

that the marker can also detect the physical flag marker on the harness. 
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From the image detection software, we were using, we were able to successfully 

detect a feature on wire harness known as the flag marker. We were able to successfully 

address points 1 and 2, modifying point 1 due to the accuracy if the feature detection 

algorithm used to get detect the flag markers. The next aspect of the issue was positioning 

and controlling the system to accurately and scan and inspect the system for part 

correctness. The current prototype was useful in testing feature detection algorithms, 

however we needed to move to a system that could be placed onto a track above where the 

workers assembled the harness. Investigation began on a designing and building a track 

type system that could hold the raspberry pi camera and micro controller. Figure 3.8 shows 

the camera case used to mount the raspberry pi on a track system. The mount was 3D 

printed and bolted onto a platform designed to mount to a railing track fixture. The design 

of this portion of the system was meant to be simple and effective. There were several ways 

the camera could have been set up for a track system. There were considerations of a variety 

of linear actuators, guide rails and track systems, and rotary shaft systems, however we 

were not interested in the design aspect of solving the problem, but rather developing robust 

algorithms for motion control and image detection. This simple design was effective and 

allowed us to attach the camera mount to a track with a timing belt and stepper motor and 

servo along a track with ease. The case used to house the microcontroller was a standard 

case that came stock. It was modified with 2 holes in order to mount correctly to the guiding 

track.  
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Figure 3.8: Raspberry pi camera attached to raspberry pi microcontroller bolted onto a track mount to be 

attached to a guiding track system 

 

A guiding track frame was developed in order to synchronize the image capturing process 

with motion control. Given the lengths of some of the form boards, we needed a test system 

that was big enough to scan multiple features. The system that was built had a 4ft by 8ft 

section where the wire harness drawing, and physical wire harness would be mounted. The 

track was placed around 4ft away from the board to simulate the real working environment 

in the plant. As stated before in the design of the camera mount, the designing process of 

this structure was not the focus. A simple design was used to isolate both the form board 

and the track. A CAD model of the structure can be seen in Figure 3.9. 
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and case 

Track mount 
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Figure 3.9: Solidworks mode of set up for evaluations of airplane wire harnesses. Model is not a full-scale 
wire harness. A portion of a full-scale harness was used for testing inspection of specific features. 
 

The was frame built from 80/20 extruded aluminum. The raspberry pi subsystem is 

attached to the track and can slide along the length of the wire harness. The camera is 

actuated along the track using a bipolar stepper motor programmed by an Arduino 

microcontroller. At the time of fabrication, several difficulties were unknown and   limited 

the robustness of both servoing the camera and performing the image processing. This led 

to the investigation of image driven servoing. In the next section, examples of the image 

capturing process with the full system along with collected data of the accuracy of some of 

the motion control will be shown. This data is what motivated to use for exploring image 

driven motion control strategies. 
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3.5. Motion Synchronization  

As mentioned in point 3, the system would have to automatically perform the 

operation with limited intervention from the technician. From the flowchart in Figure 3.3, 

a single button push should initiate the sequence of actions needed to complete the 

inspection. Figure 3.10 below shows the full, fabricated system in action inspecting a green 

flag marker on the wire harness.  

 

 

Figure 3.10: Physical set up of inspection systems with visual representation of object recognition. While a 

live camera feed could be seen during operation, it was not recording and only storing images once the 

algorithm was initiated. This was to save storage on the raspberry pi.  

Wire Harness 

Sliding Track 

Camera Feed 

Flag Marker Indicator 

Flag Marker 
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The motor was set to move the camera at a rate of 3 in. per second based on the 4 ft. distance 

between the camera and form board. This allowed for a seamless series of photos to be 

captured along the wire harness. The robustness of the feature detection allowed the camera 

to identify features with the motor moving at this rate. Initially, it was thought that the 

feature detection and the motion of the track could function independent of each other if 

they were initiated at the same time. The experiments that were conducted however, show 

that despite knowing where the object is, often the feature detection will not detect the 

image until after the system has already passed the feature. To measure the performance, a 

graph was developed to track when the snapshot of the feature was taken. This can be seen 

in Figure 3.11.  

 

 

 

Figure 3.11: Graph of feature detection accuracy. This setup combined the feature detection algorithms used 

prior with basic motor control of a stepper motor.  
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On this graph, each section represented roughly a 2-inch window. It can be seen from 

Figure 3.10 how small the physical flag markers are on the system. The algorithm first 

detected the indication of the flag marker on the drawing and then, using the at information 

and location, tracked the location of the physical flag markers. The green rectangle 

represents the location of the flag marker. This was calibrated to be the location where the 

flag marker would be in the center of the screen. The red dots indicated the position where 

the camera detected the feature. There are multiple dots clumped together due to the feature 

detection activating and deactivating. Once the algorithm detected the feature three times, 

it was stop looking for it. Note that the feature was still detected, however it was not at the 

location that it was expected to. There are a few potential reasons for why the feature 

detection location was off. One reason was the velocity that the camera was translating. 

While most of the images to the human eye were clear enough to identify the flag marker, 

we noticed that images that were taken completely still were slightly clearer than those 

taken while in motion despite the velocity being relatively slow. Another issue was the 

distance that the camera was taking the images. In Figure 3.10 you can see how the flag 

marker indicator takes a large portion of the image. Being that the marker must be centered 

for the capture to be considered aligned, if the feature was not entirely in the camera frame, 

it would not detect the feature accurately.  There were attempts address some these issues 

by using the prototype system in Figure 3.4. The results of those can be seen in the graph 

below in Figure 3.12. Note that due to the translation being manual, there is a slight 

variation in the depth of the image capturing. We did not track depth on the graph, so the 
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numerical variance is unknown, however it is slight and did not impact the feature 

detection. 

 

Figure 3.12: Detection algorithm results of prototype system. Used to determine if the capturing could be 

improved with manual variation of the translation speed.   

 

 The first point was captured at a speed that approximated to be around the 3 ips 

velocity of the automated prototype system. The specific value of the velocity was not 

important; however, it was necessary to have a velocity that was relatively close to the 

velocity of the automated system. From the first point on the right, there is still the issue of 

the feature not accurately being detected in the correct space, which was expected.  The 

two points on the left are cases where the camera was slowed down to almost a complete 

stop while translating to capture image. The feature detection began to correctly identify 

the features in both cases before the camera was in the specific location of the feature. 

Some trials were done to test the repeatability of what was happening when scanning the 

flag markers in this way. Table 3.2 below shows the results from those trials as well as the 

percentage of offset the captured image was from the actual feature. The flag markers are 

ordered from right to left (i.e. flag marker 1 represents the right most green marker on the 

graph).  As mentioned before, each of the columns on the graphs represent a 2-inch section.  

Still Capture Points 
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Table 3.2: Data taken of flag marker location compared to flag marker detection. 3 trials were run for three 

different flag markers along the formboard. 

 

The negative percentage offset represents the flag marker being detected before it was 

supposed to while the positive percent offset represents the flag marker being detected 

afterwards. For the first flag marker, it was expected that the feature would be detected 

before the marker was detected given the results from the flag marker detection on the 

automated prototype system. Quantifying it shows an offset of about 8.31%, which is 

relatively high for the aerospace industry. Even in the cases where we slowed the 

translation of the camera down dramatically, the percent offset of detection is still 

considered high for the aerospace industry. SAFRAN typically has tolerances that are 

Trial 1 Trial 2 Trial 3 Avg. 

Flag Marker 1
Location [in]: 32 32 32 32

Capture Location [in]: 34.8 35 34.9 34.9
Percent Difference: -8.05% -8.57% -8.31% -8.31%

Flag Marker 2
Location [in]: 62 62 62 62

Capture Location [in]: 58.8 59.5 60.1 59.4667
Percent Difference: 5.44% 4.20% 3.16% 4.27%

Flag Marker 3
Location [in]: 90 90 90 90

Capture Location [in]: 88.1 88.4 88.4 88.3
Percent Difference: 2.16% 1.81% 1.81% 1.93%
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less than 1% when manufacturing wire harnesses. For the flag marker specifically, an 

offset a few inches could mean catastrophic failure of the plane.  

 A few things were learned in this section about the motion synchronization. The 

first is that having a separate system for the motion of the motor and the image processing 

works well in applications where slight offsets do not affect the interpretation of the data. 

In the case of detecting flag markers, these offsets are too large given the strict requirements 

of the aerospace industry. The second lesson was that image quality is affected when the 

image is being captured in motion even at slower speeds. The reasoning behind using a 

velocity of 3 inches per second was that it was assumed it was slow enough to capture the 

images without blurring the image enough for the feature detection algorithm to still work. 

The natural line of thought after these results would be to have the motor stop to capture 

the flag marker. Being that the location of the flag marker is known in most cases, this 

seems like it would work well. From Table 3.2 we can see this is not the case. While this 

test was manual done, flag marker 1 and 2 were detected earlier than the predicted location 

and still had percent offsets that are considered high in the aerospace industry. It was 

critical that the flag marker is detected in the exact spot that it is supposed to be. An idea 

that was never tested due to limitations was having the camera stop at specific points while 

having a high translational velocity while translating between points. The use of higher 

speeds would prevent the algorithm from activating due to the camera not being able to 

recognize the flag marker at a high speed. It important to remember that initially it was 

thought the motor and the camera would operate separately. This was due to the large 

distances the camera would have to travel in a real manufacturing environment. In this 



50 
 

scenario, the slower velocity would allow a scanning type of procedure to assess 

correctness of the formboard. While a high and precise velocity experiment was not 

conducted due to time, this type of control would be impractical in a real manufacturing 

setting despite being useful in the controlled environment.  

 There are several ways to perform feature detection and it is known that further 

investigation into other image capturing and processing methods could yield better results. 

The more time on this project as well as a deeper background in computer vision would 

aid in understanding ways to improve image capturability and processing. Despite these 

setbacks, there are still valuable lessons and gaps in technology that were discovered 

through this case study if automation is to effectively enter the aerospace industry. The 

main takeaways are: 

• Precise robotic systems are necessary if automated assembly is going to enter the 

aerospace industry. Systems that cannot prove consistency, high precision, and are 

easily to implemented will never be considered.  

• Having separate controllers for image capturing/processing and motor controllers 

requires more advanced computer vision algorithms for high precision 

applications, however the computer vision algorithms used in this work perform 

well for most applications in commercial use as well as industries with more lenient 

tolerance requirements. 

• Techniques using motor control based off image data would work best in 

applications where precision is important. Being able to ensure the camera is in the 
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right position based on how it appears in the camera frame ensures that the feature 

detection is confirming the location in the right place.  

 

The results from this work motivated the investigation of image-based control techniques, 

specifically IBVS. These techniques could guarantee consistency in the detection as the 

feature detection could operate separate of the control. Chapter 4 will go over the 

simulations that were conducted with IBVS as well as the combined IBVS and dynamic 

programming (DP) control scheme.  

3.6.  Summary 

In this chapter, a case study was conducted to illustrate where the motivation to 

investigate image-based control techniques comes from. The aerospace industry is looking 

to follow the trend of automation and is starting by investigating the area of quality 

inspection. This sector of manufacturing in aerospace is critical as parts need to be 

assembled to a tight tolerance to avoid catastrophic failure. SAFRAN, a leader in this 

industry, was interested in automating the inspection process of airplane wire harnesses. 

Given the size and complexity of the harness, a mistake in the assembly process could take 

a long time to both find and fix. The first feature of interest was detecting the flag marker, 

and indication measure used to indicate where on the airplane a specific section of this 

harness needed to be located. Fortunately, this feature specifically had a simple shape and 

is bright in color, opening the door for a wide variety of feature detection algorithms to be 

used. OpenCV was the program of choice used to implement as it could programmed on a 

raspberry pi microprocessor using python. Being able to use the microprocessor was 
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critical as it is cheap and compact. Once the feature detection is consistent enough in the 

image detection, the next step was determining the best way to actuate the camera along 

the form board to detect flag markers. What was initially thought to be the easier aspect of 

the project turned out to be the area where further investigation needed to be done. The 

original approach was to have the image capturing and processing operate independently 

of the motor control (i.e. having the motor move a set velocity and having the camera detect 

features as it passed them). While the features were detected, it was difficult to detect them 

precisely and consistently while the camera was in motion. Precision is critical given the 

tolerances that are typically allowed in the aerospace manufacturing field. Some reasons 

for this lack of robustness were the computer vision algorithms, the speed of the camera, 

and accuracy of the motion control.  

The topic of computer vision is a broad one. While there may be several more 

advanced computer vision techniques to explore, this was not the aim of the work. It was 

deemed more beneficial to explore image-based control methods that would ensure 

precision motor control of the camera. Using these methods would allow us to keep the 

feature detection algorithms which already work well and focus on the motor control. As 

mentioned in Chapter 2, there are several methods of image-based control methods to 

explore, however it deemed that IBVS would be the best for this application. It is relatively 

simple to implement in cases where high precision is not required and is used in a wide 

variety of manufacturing environments already. There are still setbacks that will be 

explored in the next chapter. These setbacks limit the precision required for implementation 

in an aerospace manufacturing environment, however these limitations will be addressed 
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using DP. The algorithms for human detection as well as basic edge detection algorithms 

used for flag marker detection can be found in Appendix B.  
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CHAPTER FOUR 
 

Simulation of IBVS and combined IBVS and DP control scheme 
 
 

This chapter will go over the details of simulating IBVS and the shortcomings. As 

we saw in the last chapter, image-based control techniques could solve the problem of 

imprecise feature detection and control. This chapter is outlined as follows: detailed 

explanation of initial simulations of combined DP and IBVS, robust IBVS simulation with 

shortcomings, DP and IBVS combined control scheme addressing shortcomings, and 

lastly, simulating the combined DP and IBVS control scheme on a for a scenario likely to 

occur in the real world. 

4.1. Initial attempts at combined control scheme 

 
The first simulation was attempting to program the control structure in MATLAB 

based off the equations listed in Chapter 2, specifically Equation (24). In the simulations 

employed to demonstrate this combined approach, DP is applied in a recursive manor using 

Equation (24). This equation is used to minimize the time required for the camera to reach 

the desired pose, which in turn minimizes the distance traveled. At a high level however, 

the process works using the principle of optimality outlined above except for instead of 1 

point, there are multiple. In our simulation, it was decided to track what was assumed to be 

the minimum amount of points necessary to simulate our equation. This was 3 points as it 

was the minimum amount of points needed to form a shape (a triangle in this case). This 

because the interaction matrix must be at minimum a square matrix in order to be properly 
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calculated. Due to the image coordinates inputted into the interaction matrix for one point 

having dimensions of 2x6, in order to run dynamic programming, a minimum of 3 points 

would be required to result in an interaction matrix that is a square 6x6 matrix. We later 

use IBVS with more than three points, however due to the need to calculate the control 

input for dynamic programming in this initial attempt, the interaction matrix Ls ended up 

being a square matrix. As outlined in Chapter 2, when using dynamic programming, all the 

possible paths must be considered in order to determine the minimum cost. When there is 

only one point, this iteration process is relatively straight forward, however with three 

points one must consider the optimal paths to go to each state for each point. This means 

that the minimum cost for one point may imply a direction that is not the minimum path 

for another. Once an optimal path is determined, the optimal path for the other two points 

must be determined based on that point. If the optimal path for the next point cannot be 

determined, the calculation must start over and go to the next minimum path. The number 

of iterations can go up exponentially and require a lot of computations for large translations 

and for image spaces with many potential states. This bring up the importance of correctly 

choosing the state variables. We can get around this by tracking the rotation of the system 

instead of the coordinates for each individual point. We will see this in a later example.  

In the next section, a simulation is shown as well as an example of the limitations 

of IBVS. Some modifications to the code were necessary to extract the data during the 

simulation.  
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4.2. IBVS example 

 
An IBVS example was developed to understand how the combined IBVS and DP 

control scheme could implement into it. One difference in this algorithm was that it 

required 4 points as opposed to 3. This required modifications of our combined scheme by 

adding another 2x6 vector for the fourth point, making the interaction matrix an 8x6 matrix. 

The scale of pixel coordinates was also increased. This did not change anything related to 

our algorithm, however the scale of the cost values calculated in the later sections was 

subsequentially also increased. As mentioned in Chapter 2, rotation about the z axis is 

typically what causes issues with IBVS. We first look at an example where the algorithm 

successfully performs a rotation. We start with a square 400x400 pixel square where the 

desired camera pose is directly centered on the screen. The image space is partitioned into 

a 1000x1000 pixel space. Being that there are four points and the desired pose is directly 

centered onto the screen, coordinates of point 1, 2, 3, and 4 are (𝑢1, 𝑣1) = (300, 300), 

(𝑢2, 𝑣2) = (700, 300), (𝑢3, 𝑣3) = (700, 700), (𝑢4, 𝑣4) = (300, 300), respectively. For 

the rest of these simulation, the desired camera pose will be based off these image 

coordinates.  It also assumed the focal length 𝜆 is equal to 1. The initial camera pose is 

simply rotated about the z axis by 1 radian, or 57°. The trivialness of this case is intentional 

as the simulation should converge onto the desired camera pose without any problems. 

While we will see this, we will also notice how even in this somewhat trivial case, there 

are still issues with the camera taking an unusual path in the z direction before converging. 

While this is a slight detour, it is still concerning in the implementation on a real system 

given the level of precision required. Figure 4.1 below shows the simulation of this 
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translation. The square with the stars represents the desired image orientation and the 

square with the circles represents image orientation. The blue line connecting them 

represents the path taken to reach the desired camera orientation.  

 

 

Figure 4.1:  Case of IBVS performing rotation about z axis and successfully converging following the most 

optimal path to reach the desired trajectory.  
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Running this simulation was important to understanding how IBVS could be run. One thing 

this simulation result doesn’t show however, is the motion in the z direction. A graph was 

generated to track both the translational and rotational positions of the system. The graph 

of both the translational camera position and the rotational camera position can be seen 

below in Figure 4.2.  

 

Figure 4.2:  Camera translational and rotational orientation. The X, Y, and Z represent the camera position. 

The depth of the simulation was set to 1 and since the motion was purely rotational, X and Y are equal to 

zero. Despite having a trivial path to converge to, there is still an instance of camera retreat. R, P, and Y 

represent the rotation about the x, y, and z axis respectively.  

Small case of camera retreat 
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The rotational path taken follows an expected convergence path starting at 1 radian and 

converging to zero, which corresponds to the orientation of the desired camera pose. If you 

look at the camera position however, something unexpected happens. Despite the motion 

being purely rotational, there is a small change in depth while trying to reach the desired 

camera pose. This is a small instance of the camera retreat phenomenon described earlier. 

Even in trivial cases, the camera still tends to drive itself away from the desired pose. This 

is the issue this work aims to correct. Camera movements like these create imprecise 

movements that would not be allowed in an industry with high tolerances. While it is 

unlikely that the system would go a rotation with such a large rotation, let us consider a 

smaller rotation that is more likely to occur in practice. Figure 4.3 below shows another 

rotation about the z axis where camera retreat happens in a more extreme fashion.  
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Figure 4.3:  Small rotations causing drastic camera retreat problems. The rotation here is 9°. 

 

This slight rotation of 9° is a more likely to happen in practice. Small things that could 

cause a slight shift in the camera position could cause the camera to drive itself to infinity 

while trying to servo to the correct location. Figure 4.4 below shows the path the camera 

took in the z direction while attempting to converge. 
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Figure 4.4: Graph of the 9° rotation that caused drastic camera retreat. The depth of the simulation was set to 

1 and since the motion was purely rotational, X and Y are equal to zero. Despite also having a trivial path to 

converge to, camera retreat is more drastic. 

 

After investigation, it was noticed that camera retreat tends to happen when the rotation is 

close to some increment of π. Whether the camera rotates at 9° or 171°, it is viewed the 

same in the IBVS control scheme. Figure 4.5 shows a rotation of 171° and the retreat in 

the Z direction is the same.  

 

 

Drastic case of camera retreat 
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Figure 4.5: Graph of the 171° rotation that also caused drastic camera retreat. The depth of the simulation 

was set to 1 and since the motion was purely rotational, X and Y are equal to zero. Being that the rotation 

amount was close to π, camera retreat occurred. 

 

While in the application of detecting flag marker, there will most likely never be a situation 

where the system would have to perform such a large rotation, it is interesting however to 

discover that even being in the same range as π can cause the system to perform a 

suboptimal convergence. Small perturbations in the system like vibrations could cause the 

camera to follow a drastically different path than necessary. High precision motors and 

actuators could eradicate this problem completely. For a project like the flag marker 

detection on wire harnesses for Safran however, the system needed have both high 

Rotation of 171° 

Same position profile 
of 9° rotation 
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precision and low cost. Low cost motors do not always have smooth and consistent 

rotations.  

 The code used to generate this simulation will be listed in Appendix C. In the next 

section, simulations with DP combined with IBVS will be shown and evaluated. The 

purpose of these simulations is to show how this partitioned approach address camera 

retreat and how it can be used to improve IBVS and following an optimal path. We will 

see that in the same scenario that the system can be driven back to a more optimal path and 

can be improved by incorporating constraints. 

4.3. Adding DP 

 
The most challenging aspect of incorporating DP was developing the algorithm to 

the traditional IBVS control scheme as shown in section 4.1. As outlined in Chapter 3, the 

cost function associated with this framework can be partitioned to the desired image space. 

The code used to develop the simulations in section 4.1 was integrated into the IBVS 

control scheme used to create the simulations above. The first modification to the code that 

needed to be made was changing the number of feature points from 3 to 4. This created an 

8x6 interaction matrix as opposed to the 6x6 square matrix used in the above simulations. 

After that, another challenge was dealing with the partitioning of the image space. In the 

example in section 4.1, the image space was partitioned into a 6 pixel by 6 pixel space. We 

wanted to keep the same desired image pose in the new simulations, so we used the image 

space of 1000 pixel by 1000 pixel. The motion that was being examined was so small that 

having such a large image space required a small number of time steps. The smaller the 
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time steps, the more cost function calculations that must be calculated due to having more 

options to consider for optimality. The beauty of DP is that we can incorporate constraints 

into the algorithm without having to modify our initial cost function (Equation (24)).  This 

can be done by taking advantage of the fact that the motion in this example is purely 

rotational. We know that IBVS will always converge and looking at Figure 4.2 and Figure 

4.5, we see that when camera retreat happens the system is still rotating steadily to the 

correct orientation. This means our cost function only must penalize and update depth. We 

do not need base the cost on each of the feature points as their coordinates are determined 

based on the rotation of the square, eliminating the issue we originally had when running 

the algorithm of having too many options due to calculating the cost at each point for each 

time step. At each time step, if the depth value is too large, we can send the cost to infinity, 

eliminating that path as an option and moving on to the next potential option optimality. 

Figure 4.6 shows the initial results of attempting this combined control scheme on the 

initial and desired camera pose used in Figure 4.3. In order to penalize depth, it was 

necessary to drive create constraints for which the depth could not cross. Initially, a limit 

of -20 was set as an arbitrary value. This can also be seen in Figure 4.6.  
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Figure 4.6: Graph of first successful simulation of combined IBVS and DP simulation. Constraints were put 

on the depth to penalize any attempts to retreat while converging. Rotational convergence followed an 

expected path.  

 

Something to note with this combined scheme is that the smoothness of the curve is lost. 

This is due to the constraints in the simulation and detecting the system wanted to approach 

infinity. Something that is noteworthy is that it did not reach the specific constraint value 

before turning back. This means that a minimum cost had been determined before reaching 

the limit of the constraint, thus creating a more optimized path to the desired pose. 
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Addressing the shape of the curve, we can smooth this by limiting the constraints more. 

The algorithm is not waiting to reach the constraints but minimizing as the system 

approaches those constraint values. Figure 4.7 below shows limitation on depth of -4. 

 

 

Figure 4.7: Graph of first successful simulation of combined IBVS and DP simulation with depth constraint 

of -4. Constraints were put on the depth to penalize any attempts to retreat while converging. Rotational 

convergence followed an expected path.  

 

It can be seen that the curve is a bit smoother and fixes the retreat quicker, however there 

is still a sharp turn around when fixing the retreat that indicates the minimization is 

happening to fast. For a real system, this sharp change in motion would cause a motion that 

is unsmooth and could potential damage the system. We want the constrains within limits 

that follow a smooth trajectory. By constraining the depth down to -2, we can see in Figure 

4.9 a depth that is smooth and more desirable for a real system.  
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Figure 4.8: Graph of first successful simulation of combined IBVS and DP simulation with depth constraint 

of -2. Constraints were put on the depth to penalize any attempts to retreat while converging. Rotational 

convergence followed an expected path.  

 

Here we can see a much smoother control of the depth, significantly minimizing the effects 

of camera retreat during these specific cases. We can also assume that the trajectory is 

optimal in position, as optimizing time directly optimizes position.  

 Lastly, we want to evaluate the performance of scenario that is likely to occur in 

the process of airplane wire harness inspection; that is a motion that is both translating with 

the potential to have a slight rotation. As mentioned before, the slightest offset in angle 

could cause the camera to retreat to infinity or follow a nonoptimal path. We consider the 

same desired camera pose as the previous examples with a rotation of 9°, however we will 

translate the object 200 pixels to the left. Figure 4.9 shows the path taken to reach the 

desired pose.  
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Figure 4.9: Graph of motion of translation and rotation onto a desired camera pose. There were cases of 

camera retreat in this instance as well, however the path taken to reach the desired camera pose is also not 

optimal.  

 
Here we notice that there are both instances of camera retreat and following nonoptimal 

paths. As mentioned in section 2.2, this is due to poor depth estimation. Figure 4.10 shows 

---- Initial Point 
---- Desired Point 
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how the camera converged when trying to reach this state. In this figure we see that when 

the camera tries to retreat, it also affects the convergence in both the X and Y directions.  

 

 

Figure 4.10: A translation with a small rotation causing camera retreat and non-optimal trajectories. The 

rotation aspect of the trajectory was smooth, again indicating that when using DP, we only must penalize the 

depth.  

 

It is important to note that this is a niche case. Further investigation would need to be done 

in order to illustrate why the trajectory followed this specific path, however that is not the 

Camera retreat 
and non-optimal 
trajectories 
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focus of the work. Another interesting aspect of this simulation to look at is the cartesian 

velocities as the simulation was run. For most cases, even the cases shown is Figure 4.3, 

the velocities follow a smooth curve. This means that despite following a nonoptimal path, 

the velocity required to reach the desired camera pose was smooth. Figure 4.11 shows these 

cartesian velocities.  

 

 

Figure 4.11: Cartesian velocities of translation and rotation simulation. Cartesian velocities indicate that the 

camera aggressively tried to reach these states.  
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If we look at the graph, we see spikes in the velocity in all directions, however in the z 

direction there are considerably large spikes in the velocity. It is not known why in this 

specific case the camera retreat happens significantly faster than in a strictly rotational case, 

however in the other cases of camera retreat, the velocity follows a much steadier rate. 

Further investigation would need to be done to better understand why this happens, 

however for now DP can get the trajectory back on track to following the optimal and more 

obvious solution. Figure 4.12 shows the same problem with constraints to limit the camera 

from following this trajectory. We can see in this Figure that DP simply pushed the 

trajectory on track by monitoring depth. Being that the rotation tends to happen as normal, 

penalizing the z direction from retreating results in a smooth path onto the desired camera 

pose. The resulting camera position and cartesian velocities can be seen in Figure 4.13 and 

35 respectively.  
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Figure 4.12: Translational and rotational problem with DP, resulting in optimal trajectory in a trivial case.  
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Figure 4.13: Camera position and orientation with DP applied. Depth was constrained to -1.5 which 

resulted in a smooth trajectory to the desired camera pose.  
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Figure 4.14: Cartesian velocities of translational and rotational problem with DP, resulting in optimal 

trajectory in a trivial case.  

 

The solution in this scenario shows what the obvious trajectory should be in this scenario. 

Again, looking at the cartesian velocities, we can see a smooth transition to the desired 

camera pose.  
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4.4. Summary 

In this chapter, the initial attempts on using a combined IBVS and DP control scheme were 

explored. One of the drawbacks to using DP is the number of computations required in 

situations where cost functions for multiple states must be calculated. As we saw, when 

initially attempting to calculate the cost for 3 feature points, the number of calculations 

required made it difficult for the algorithm to decide which path was optimal. This could 

be due to underlying issues with the code, however solving this issue only matters in the 

case of pure translation. When focusing on the rotational motion only and using that to 

calculate the cost, we could assess the depth at each state of the rotation to penalize a non-

optimal trajectory. This resulted in significantly less cost calculations and a more robust 

combined control scheme overall. In the specific case of small rotation about the z axis, 

camera retreat appears more likely to occur. A simulation illustrating this was shown after 

and applying the combined control scheme, the degree at which camera retreat occurred 

was lowered. It can be improved more by tightening constraints on the depth to get a 

smoother trajectory to the desired camera pose. Finally, a simulation was conducted where 

the trajectory that an inspection system examining airplane wire harnesses might follow 

was run. This simulation included a translation motion with a slight rotation, something 

that can happen with the camera feed in a low-cost system. In this situation, it seems as if 

the translation of the camera exaggerated the camera retreat and caused the camera to 

follow an unorthodox trajectory. The combined control scheme still was able to determine 

the optimal and trivial path to reach the desired camera pose.  
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CHAPTER FIVE 
 

Conclusions and Future Work 
 
 A combined Image Based Visual Servoing (IBVS) and Dynamic Programming 

(DP) control scheme was developed and simulated to address the issue of camera retreat 

that occurs in the traditional IBVS control scheme. This simulation was a partitioned 

approach to improving IBVS that was also optimal in time. Optimizing in time in turn 

optimized the distance taken to reach the desired camera pose. In this chapter, we will 

discuss the results of these simulations, explain the future work and challenges that come 

with implementing this algorithm onto a real system, and lastly some concluding remarks 

about high precision automated systems.  

5.1. Discussion 

 
When initially attempting to develop the combined control scheme, a key challenge 

with DP  in regards to dimensionality was quickly realized. DP works well for systems of 

first order as seen in the examples in Chapter 2. The number of states partitioned in this 

case doesn’t drastically increase the number of calculations that need to be stored as. In the 

example in this work however, the number of states required to be stored is multipled by 

3, turning the 1st order system into a 3rd order system. When intially attempting to 

implement, this wasn’t forseen to be a problem, however when simulating this example the 

number of calculations became too much to store after 1 time step, even after reducing the 

partitioned space to a 12x12 space. There are a few ways to get around this, however none 

of them are practical for this application. The first is to simply increase computational 
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storage capabilities. Doing so however, increases the cost and in our case, defeats the 

purpose of finding a low cost solution to solve the problem. Another method could lie in 

the development of the code used. The code developed is a brute force method of running 

the algorithm, however in may not be optimal in computational storage capcity. It may be 

possible to improve performace by implementing some sort of calculation tracker which 

eliminates values that are clearly not optimal for determining the desired trajectory, 

however two issues still arise from this. It will still be necessary to calculate those 

“unneccesary values” which still takes time and doesn’t significantly decrease computation 

time and second, it reduces the robustness in a sense that those cost values would need to 

be recalculated everytime a different orientation is desired. Once the values are stored, it 

can be used for different trajectories as long as the partitioned image space is the same. The 

last method that could decrease computational storage capacity is a method known as 

“incremental dynamic programming” [43]. The premise of this method takes the traditional 

dynamic programming scheme and targets specific state values for each state variable 

instead of considering the cost for the entire space for each variable. It works well for 

higher order systems as the cost value for one state variables determines the options the 

other state variables can take within a limited range [44][45]. Formulating the control 

scheme this way would be another way to implement DP with IBVS, however as we saw 

determining the cost based on the rotation of the camera is a better state variable to penalize 

as it allows for a large reduction in calculations. Applying incremental dynamic 

programming in theory would still require more calculations than the approach taken in 

this work, however it would require significantly less calculations than the traditional DP 
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control scheme. The initial simulations gave insight into how determining which state 

variable to choose for calculating cost. 

Once the correct variable was determined, an IBVS simulation was run and 

compared to what was expected of the traditional scheme. As mentioned before, IBVS 

struggles with small rotations around the z axis. Specifically the closer it is to multiples of 

π. We can see that despite having a smooth convergence in towards the desired camera 

pose, there was still a retreat in the z direction through a phenomenon known as camera 

retreat. In this scenario, the degree at which the retreat happened is small, however this 

performance was expected from the traditional scheme in this scenario. Another case of 

extreme camera retreat was illustrated with a smaller rotation about the z axis and the 

camera retreated in an even more dramatic fashion. Again, the performance in this scenario 

was expected and validated that the open source code we used to develop the initial 

simulation was behaving as predicited. At this stage, this code was modified to impliment 

DP using the algorithms developed in Chapter 2 and the code used to create the initial 

combined simulations in Chapter 4. After incorporating DP with constraints, the degree at 

which camera retreat happened began to diminish. The initial constraints that were set 

caused the motion of the camera to not be smooth however it drastically limited the degree 

at which camera retreat happened. This jaggedness is caused from the initial constraints set 

on z axis. As the system began to approach this constraint, the algorithm began correct the 

retreat faster in order to not reach the constraint. While this fixed the camera retreat 

problem, a jagged response like this would not be ideal in application. In order to improve 

the performance, tighter constraints were implemented. Limiting the amount the camera 
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could retreat in the z direction drastically decreased the issue of camera retreat in this 

specific scenario, but also smoothed the trajectory of the convergence. Notice however that 

the algorithm does not completely remove camera retreat. Setting the constraint in the z 

direction to the exact desired depth in this scenario causes the simulation to fail. This is 

because the simulation is purely rotational and the traditional IBVS control scheme needs 

to follow this trajectory in order to complete the motion. Once the algorithm notices the 

non optimal trajectory, it begins to drive the system back to the optimal path.  

 For most applications, it is rare that you have a strictly rotational desired camera 

pose. A simulation with a motion that is more likely to occurr, including a translation and 

a rotation of some sort, was conducted. In a combined translational and rotational control 

scenario however, we notice the issue of camera retreat still presents itself in the rotational 

aspect of the trajectory. We also notice that the trajectory not only retreats, but follows an 

nonoptimal trajectory. As mentioned before, a small rotation is likely to occurr in a low 

cost system due to vibrations or in attempts to drive the system to the desired camera pose. 

The scenario in this simulation can happen quite commonly and we noticed this small 

rotation in the camera frame during the image capturing of our initial physical prototype. 

As seen in the results of the simulation, the combined control scheme worked 

excceptionally well, completely smoothing the trajectory and following the trivial 

trajectory as one one predict. The improvement of the performance from implementing the 

algorithm is believed to stem from how extreme the trajectory was initially supposed to be. 

There could be investigation into the specifics of this scenario, but rather than try to 

understand why the simulation followed this specific trajectory, it is more useful to simply 
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correct it, as it is niche case. Small rotations have been known to follow unusual 

trajectories, and the speed at which they converge allows DP to accurately and effectively 

correct it. Based on the results, in situations where high precision and accurate detection 

are required, this combined control scheme allows IBVS to be implemented without 

camera retreat interfering with the convergence.  

5.2. Future work 

In conclusion, Image Based Visual Servoing (IBVS) has limitations when it comes 

to converging to the desired camera pose optimally. When converging along a trajectory 

where a small rotation is involved, it can either retreat far away from the desired camera 

pose through a phenomenon known as camera retreat, or it can follow a suboptimal 

trajectory in trivial cases. These issues limit the application range for IBVS, specifically in 

applications that require high precision like the aerospace manufacturing industry. 

Partitioned approaches have been used to address these shortcomings, however these 

approaches do not guarantee optimality. Dynamic programing (DP) is a partitioned optimal 

control technique that can guarantee optimality of a specific control criteria of interest. In 

this work, DP was applied to IBVS to address the issue of camera retreat while also 

optimizing the path taken to converge onto the desired camera pose. The implementation 

of this control technique prevented camera retreat and following suboptimal trajectories 

while maintaining the beauty of the traditional IBVS control scheme. While this simulation 

worked well, there are still area that require further investigation, specifically when 

implementing the algorithm onto a real system.  
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The first challenge comes with image data. It is required to know what the image 

coordinates of the desired camera pose are, store that data, and be able to synchronize the 

image with where the image is in the camera frame. This would require further 

investigation into the area of image processing. While earlier in this work features of 

interest were able to be detected, there was no information being gathered about where the 

image was in space as the feature detection and servoing of the motor worked separately.  

In the simulation, we can easily characterize where the desired camera pose is as we are 

not extracting it from a real image. Another challenge with implementing the algorithm 

onto a real system is choosing the right system for incorporating dynamics. The simulations 

were based on a system that could move in any direction freely. Future work would be 

spent exploring these areas to implement on a real system.  
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APPENDICES 
 

Appendix A 
Interaction Matrix Derivation 

The Interaction (Jacobian) matrix is a matrix of intrinsic camera properties that relates the 

velocity of the camera to the velocity of the image coordinates. In this section, the 

derivation for this matrix will be developed by incorporating concepts of projecting 3D 

points onto a 2D plane. Combining these concepts with dynamics of a rigid body, we can 

develop the relationship. Let’s take a point in 3D space defined as 𝑟 = (𝑥, 𝑦, 𝑧) and its 

corresponding image plane coordinates in 2D space as 𝑓 = (𝑢, 𝑣). The projection between 

the 3D and 2D space is given by Equation (A1): 

𝑢 =
𝑥

𝑧

𝑣 =
𝑦

𝑧

  (A1) 

By taking the time derivative of Equation (A1), we get Equation (A2) 

�̇� =
�̇�𝑧−𝑥�̇�

𝑧2 =
�̇�−𝑥�̇�

𝑧
 

�̇� =
�̇�𝑧−𝑦�̇�

𝑧2 =
�̇�−𝑦�̇�

𝑧

  (A2) 

The equations represent the velocity of the image points on the 2D plane. From rigid body 

dynamics, we can represent the velocity of a body in space is by Equation (A3): 

�̇� = −𝑣𝑐 − 𝜔𝑐 × 𝑟 ↔ {

�̇� = −𝑣𝑥 − 𝜔𝑦𝑧 + 𝜔𝑧𝑦

�̇� = −𝑣𝑦 − 𝜔𝑧𝑥 + 𝜔𝑥𝑧

�̇� = −𝑣𝑧 − 𝜔𝑥𝑦 + 𝜔𝑦𝑥
   (A3) 

Where 𝑣𝑐 and 𝜔𝑐 represent the translational and rotational velocity respectively. As stated 

before, r is the 3D representation of the camera point in space. We can insert the rigid body 

dynamics from Equation (A3) into Equation (A2) and group the terms to get  
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�̇� = −
𝑣𝑥

𝑧
+

𝑥𝑣𝑧

𝑧
+ 𝑥𝑦𝜔𝑥 − (1 − 𝑥2)𝜔𝑦 + 𝑦𝜔𝑧

�̇� = −
𝑣𝑦

𝑧
+

𝑦𝑣𝑧

𝑧
+ (1 + 𝑦2)𝜔𝑥 − 𝑥𝑦𝜔𝑦 − 𝑥𝜔𝑧

  (A4) 

Which can be written in the form 

�̇� = 𝐿𝑠�̇�  (A5) 

Where the interaction matrix 𝐿𝑠 is   

𝐿𝑠 = [

1

𝑧
0 −

𝑢

𝑧
−𝑢𝑣 (12 + 𝑢2) −𝑣

0
1

𝑧
−

𝑣

𝑧
−12 − 𝑣2 𝑢𝑣 𝑢

]   (A6) 

As mentioned in Chapter 2, we can use this relationship to develop a control law for a 

camera and the image points. Not that this derivation assumes a focal length of one, 

which is why Equation (A6) differs from Equation (7) [29].  
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Appendix B 
Code for Human detection and Edge detection 

Human Detection (MATLAB) 

- Camera Initialization 
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- Detection of human 
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Basic Edge detection 
 
This code is based off open source OpenCV code. This laid the frame work for the 

simulations.  
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Appendix C 
Combined IBVS Control Scheme 
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