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ABSTRACT 

 

 

There is an ongoing need for the design and development of metal alloys with 

improved properties for extreme environment applications. High entropy alloys (HEAs) 

are a group of metal alloys that in contrary to conventional metal alloys can have multiple 

principal elements in high concentrations. HEAs show promising properties better than or 

comparable to conventional metal alloys for a range of temperature down to cryogenic 

temperature. HEAs are good candidates to be used as structural materials for extreme 

environments applications such as in aerospace, automotive, transportation, and energy 

industries, among others. Mechanical behavior and the underlying plastic deformation 

mechanisms and the factors affecting HEAs need to be fully understood to be able to use 

these alloys for the mentioned applications and to design and develop further improved 

metal alloys. 

Low stacking fault energy face centered cubic (fcc) HEAs show simultaneous high 

strength and ductility and specially by the decrease in temperature down to cryogenic 

temperatures, whereas there is usually a tradeoff between strength and ductility in 

conventional metal alloys. Plastic deformation in low stacking fault energy fcc HEAs starts 

with dislocation slip and with the increase in stress, deformation twins nucleate and grow 

as an additional mode of deformation. There have been studies that experimentally and 

computationally looked at slip and deformation twins and the effect of different parameters 

on their nucleation and growth in HEAs. However, the critical resolved shear stress for slip 

which indicates the beginning of the plastic deformation region in some of these HEAs has 

not been found. Also, different factors in deformation twin nucleation and growth have 
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been studied but the effect of grain boundary (GB) types and elemental segregation at GBs 

have not been fully investigated.  

In this research experimental and computational approaches are used to further 

identify the underlying plastic deformation mechanisms in HEAs giving rise to their 

improved properties. High resolution digital image correlation and electron backscatter 

diffraction have been used to find the dislocation slip critical resolved shear stress (CRSS) 

in Al0.3CoCrFeNi polycrystalline under tension. Molecular dynamics (MD) simulations 

and Monte Carlo molecular dynamics (MCMD) simulations have been used to identify the 

effect of different symmetric twist GB types and elemental segregation on deformation 

twins in CoCrFeNi bicrystals at three different temperatures 77 K, 100 K, and 300 K.  

Experimentally Al0.3CoCrFeNi polycrystalline was tested under tension at room 

temperature slip CRSS was found to be 63±2 MPa based on the activated slip system of   

(-1 1 1)[-1 -1 0] which also had the highest Schmid factor of 0.42. The MD simulations 

and the MCMD simulations studies on the CoCrFeNi HEA bicrystals confirmed GBs as 

deformation twin nucleation sites. The mechanical properties and deformation twin 

nucleation changed with different symmetric twist GBs having different sigma values and 

misorientation angles. MCMD simulations revealed GBs becoming Cr-rich and Ni-

deficient which matches the results from experimental observations and MCMD 

simulations of HEAs of similar compositions. Temperature also was shown to influence 

the material properties in this alloy. With the decrease in temperature from 600 K, to 300 

K, to 77 K, the yield strength and stress, and the overall plastic flow stress increased, and 

the modulus of elasticity decreased. The mentioned scientific contributions guide HEA 



iv 

 

design and development with improved properties through GB engineering by populating 

the polycrystals with symmetric twist grain boundaries of high angle misorientation angles 

and segregation engineering and designing chromium-rich GBs. As a next step to this 

research, experimentally, tensile tests at cryogenic temperatures with further post-mortem 

microscopy can be performed to find the CRSS at cryogenic temperatures and characterize 

the slip and deformation twins. Computationally, MCMD chemical equilibrium can be 

continued and reinforcement learning algorithms can be implemented to optimize the 

process. Furthermore, other types of GBs can be considered and the effect of GB geometry 

on the elemental segregation itself can be another route branching from this research.  
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CHAPTER ONE: INTRODUCTION 

 

Parts of this section has been used as part of a journal paper. 

1.1 Background and Motivation 

There is an ongoing and increasing need of materials for extreme environment applications 

to assist with the advancement in technology. Therefore, development of materials with a 

combination of ideal properties for a wide range of external conditions is desirable. High entropy 

alloys (HEAs) are a group of metal alloys with properties better than or comparable to conventional 

metal alloys, making them good candidates as structural materials under extreme conditions [1–

5]. HEAs consist of multiple principal elements in high concentrations whereas conventional 

techniques of alloying use one or two main elements with small amount of secondary elements to 

tailor the alloy to have desirable material properties [6–10].  

In conventional metal alloys there is a tradeoff between the strength and ductility which 

are both desirable properties for structural material. In a group of HEAs called the 3d transition 

metal HEAs, both high strength and high ductility can be achieved with simultaneous improvement 

as the temperature decreases [1,2,11–14]. Also, alloying these HEAs with aluminum results in 

high yield strength among other desirable properties [15–18]. The main plastic deformation mode 

in these HEAs is dislocation slip, and the simultaneous improvement has been attributed to the 

activation of deformation nanotwins as an additional mode of plastic deformation mode 

[2,4,19,20]. In order to use HEAs in different applications, such as aerospace, automotive, and thin 

film, it is important to fully characterize and understand the plastic behavior and its underlying 

phenomena for these HEAs. Also, this knowledge can further help with designing and developing 

materials needed for next generation engineering applications in automotive and aerospace 



14 

 

industries and as structural materials in aggressive environments through populating the 

microstructure with preferential grain boundaries for deformation twin nucleation.  

1.2 High entropy alloys 

Conventional alloying specifically to achieve single-phase materials, starts from one or two 

main elements and secondary elements are added in small quantities to modify and improve the 

properties [21]. Using this approach, the alloys designed and developed are restricted and limited 

to the possible number of combinations [21]. With an ongoing need for materials with novel 

properties to meet technological challenges, unconventional alloying methods have been gaining 

interest in the recent decades.  

With the idea of mixing multiple principal elements in high concentrations, Cantor et al. 

and Yeh et al. introduced HEAs in 2004 [6,22]. Cantor et al. focused on exploring the possibility 

of multicomponent materials and alloys with many different components at equiatomic 

percentages and discovered the single-phase face centered cubic (fcc) HEA CoCrFeMnNi, now 

commonly known as the Cantor alloy [6]. Yeh et al. on the other hand focused on the idea of 

developing simple solid solution alloys containing at least 5 elements with concentrations varying 

from 5 to 35 atom% in order to achieve alloys with high configurational entropy [22]. 

Configurational entropy increases with having large number of elements in high concentrations 

which decreases the Gibbs free energy [21]. The equations of the configurational entropy [10] and 

the Gibbs free energy [23] are as follows: 

∆𝑆𝑚𝑖𝑥 = −𝑅 ∑ 𝑋𝑖𝑙𝑛𝑋𝑖
𝑛
𝑖=1           (1) 

where ∆𝑆𝑚𝑖𝑥 is the configurational entropy of mixing for the alloy, 𝑋𝑖 is the more fraction for each 

of the elements, n in the number of elements, and R is the Boltzmann constant. 



15 

 

∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥             (2)  

where ∆𝐺𝑚𝑖𝑥 is the change in the Gibbs free energy, ∆𝐻𝑚𝑖𝑥 is the change in the system enthalpy, 

T is the temperature in Kelvin and ∆𝑆𝑚𝑖𝑥 is the configurational entropy of mixing of the system. 

In developing HEAs, in order to achieve crystalline solid solutions contributing to the 

ductility and toughness of the alloy, elements with small differences in the atomic size and 

enthalpies of mixing have been considered. A parameter has been proposed by Zhang et al. [24] 

as a design consideration in the development of HEAs besides the entropy of configuration and 

enthalpy of mixing which is based on the atomic size of each element. This parameter is called the 

atomic size difference δ and is found using the following equation: 

𝛿% = 100%√∑ 𝑐𝑖(1 −
𝑟𝑖

∑ 𝑐𝑗𝑟𝑗
𝑛
𝑗=1

)2𝑛
𝑖=1      (3) 

where n is the number of elements, 𝑐𝑖 and 𝑐𝑗 are the compositions of the ith and jth elements, and 

𝑟𝑖 and 𝑟𝑗 are the atomic diameters. The geometry effect and most specifically the atomic size effect, 

is an important consideration in phase formation of metal alloys based on the classis Hume-

Rothery rules of binary solid solution formation [25]. 

HEAs were first introduced having four core effects of high configurational entropy, lattice 

distortion, sluggish diffusion, and the cocktail effect [21,22]. High configurational entropy lowers 

the Gibbs free energy, stabilizing the solid solutions, specifically at high temperatures, and 

therefore reducing the probability of brittle secondary phases. The effect of configurational entropy 

on the solid solution stabilization at room temperature and lower temperatures have been 

challenged as mixing enthalpies due to chemical bonding and lattice strain can have equal or even 

more significant effect [21]. Lattice distortion is due to the differences between the atomic sizes 
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of the elements that are present in high concentration and with random distribution in the lattice 

of HEAs. The localized distortion in the HEA lattice, elastically interact with the movement of the 

dislocations resulting in solid solution strengthening [10,26]. Lattice distortion in HEAs has also 

been known to cause sluggish diffusion. It has been hypothesized that due to the fluctuation in 

potential energies of lattice sites in HEAs, the diffusing species will be trapped at local preferable 

bonding configurations, slowing the diffusion rate [10,27]. A schematic representation of the 

difference in potential energy profile in HEA lattice and pure element is shown in Figure 1.  

However, this has not been systematically studied and in some cases high diffusion rates have been 

observed in HEAs [10,27,28]. The cocktail effect first proposed by Ranganathan is not necessarily 

a core effect, but it means that we cannot expect the HEA to possess the linear superposition of 

the properties of its constituent elements [21,29].  

 

 

 

 

 

 

 

Since the introduction of HEAs, development of non-equiatomic HEAs, multiphase HEAs, 

metastable HEAs, etc. has broadened the possible alloy design space even more in the search of 

alloys with preferable properties [30]. HEAs have been showing mechanical properties better than 

Figure 1. Schematic of the potential energy path in a pure element or a 

dilute solid solution and in HEA lattice. Deep energy traps can be observed 

in the HEA energy path [10,26] 
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or comparable to classical structural alloys, for instance nickel-based alloys and austenitic stainless 

steels, without any systematic endeavor to optimize the properties of HEAs through grain size 

refinement, fine tuning of phase fraction and other methods [1,5,8,10,14,19,20,30–33]. The room 

temperature tensile strength versus elongation to fracture for HEAs and other conventional 

structural alloys are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 As seen in Figure 2, HEAs have both high strength and high ductility compared to 

conventional metal alloys such as nickel alloys, austenitic stainless steels, and aluminum alloys. 

Single phase Face centered cubic (fcc) HEAs specifically is shown to have the highest strength 

and ductily  due to not having brittle intermetallic phases and in the case of low stacking fault 

energy (SFE) fcc HEAs, the activation of deformation twins contributing to ductility of the alloy. 

Low SFE single-phase fcc HEAs have comparable properties to nickel-based superalloys and 

austenitic stainless steel typically having the same 3d transition metal elements, however, they 

have lower ultimate tensile strength compared to 2nd generation advanced high strength steels 

Figure 2. Tensile strength vs. elongation at room temperature for 

HEAs and conventional structural alloys [30]. 
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unless they show twinning-induced plasticity (TWIP) effects [30]. The focus of this research is on 

single phase fcc HEAs due to their properties of high strength and ductility and in order to study 

slip and deformation twins which is observed in these alloys. 

1.3 Plastic Deformation Mechanisms 

When metals reach their yield point, they start to deform plastically. Depending on the 

composition and structure of the material and the environmental and loading conditions, different 

modes of plastic deformation can be activated and result in the plastic deformation.  

The leading modes of plastic deformation in fcc metal alloys are full dislocation slip, partial 

dislocation motion (stacking fault), and deformation twinning. The activated mode depends on its 

corresponding effective energy barriers. The effective energy barriers depends on the grain 

orientation with respects to the external loading direction and the stacking fault energy of the alloy 

[34,35]. In a homogeneous material, dislocation slip and stacking fault or dislocation slip and 

deformation twin modes of deformation can coexist. However, due to similar Schmid factor, 

deformation twinning and stacking faults modes of plastic deformation cannot coexist [34]. 

Generalized stacking fault energy (γ-surface) is a measure of the energy difference between 

two adjacent planes on a given slip plane in a specific slip direction when shear deformation is 

occurring [36,37]. For instance, in the case of fcc crystal, the generalized stacking fault energy 

represents the sheared crystal energy dependency on the {111} plane along the <112̅> direction 

[37]. The generalized stacking fault energy provides information on the alloy plastic deformation 

mechanisms [37,38]. The excess energy related to the stacking fault is called the intrinsic stacking 

fault energy γisf, the stacking fault energy determining the energy barrier to the produce of twin 

fault or stacking fault is called the unstable twinning fault energy and unstable stacking fault 

energy respectively [36,37]. Stacking fault energies are usually found through a combination of 
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density functional theory (DFT) calculations and X-ray diffraction (XRD) experiments. 

Deformation twinning is more probable in materials with low to medium SFE resulting in twinning 

induced plasticity (TWIP) [38] similar to TWIP steels behavior [39]. SFE of a couple of low to 

medium SFE HEAs are shown in Table 1.  

Table 1. Shear modulus G, Poisson’s ratio, lattice parameter and SFE of low to medium SFE HEAs [40]. 

Alloy Shear Modulus 

G, (GPa) 

Poisson’s Ratio Lattice 

Parameter (�̇�) 

Stacking fault 

energy (mJ.m-2)  

CoCrNi 88±2 0.30±0.01 3.529±0.018 18±4 

CoCrFeNi 85±2 0.29±0.01 3.565±0.014 27±4 

CoCrFeMnNi 82±2 0.28±0.01 3.576±0.014 26.5±4.5 

 

Dislocations are linear defects in the crystal lattice causing a lattice to undergo plastic 

deformation at lower stresses than what would have been needed for a perfect crystal lattice [41–

43]. Due to the presence of dislocations, the crystal lattice atomic planes are able to slip by one 

atomic row at a time. Dislocation glide occurs when atomic layers shear relative to one another 

[44]. The slip system in crystal lattices consist of the plane on which the dislocation slips (slip 

planes) and the direction which the dislocation slips towards (slip direction) [45]. The slip plane 

is the plane with more atomic density and the closed pack of the slip plane is the slip direction. In 

the fcc crystal lattice structure, the {111} planes and the <110> directions are the slip systems [45]. 

In fcc metal alloys, the shortest lattice vectors and therefore the most probable Burgers vectors for 

dislocation slip are the ½<110> and <001> types. The 1/2<110> type is more energetically 

favorable and the <001> one is rarely observed [43,45–47]. The direction and magnitude of 

dislocation slip is represented by the Burgers vector. The Burgers vector for dislocation slip is 

along the lattice vectors and during the glide, the dislocations move from one lattice site to an 

adjacent one. The orientation of the slipped and unslipped regions within the crystal would not 
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change [48]. For slip to occur the critical resolved shear stress for slip must be achieved. Therefore, 

the knowledge of the critical resolved shear stress is an important consideration for designing and 

understanding plasticity in polycrystalline alloys. Critical resolved shear stress will be explained 

in section 1.4.    

Twinning is another mode of plastic deformation which is widely seen in alloys with body 

centered cubic (bcc) and hexagonal closed pack (hcp) and fcc lattice structures. Experiments on 

single crystals have shown that deformation twinning occurs at low strength and even before yield 

in bcc metal alloys. In fcc alloys, it is often delayed until later in the plastic region [48,49]. 

Deformation twinning usually is limited to the low to medium stacking fault energy alloys in the 

case of fcc. In these alloys the deformation twinning is very sensitive to temperature, strain, and 

strain rate and its probability increases with decrease in temperature and increase in strain and 

strain rate [48–50].  

Homogeneous simple shear of the parent lattice forms a twin and therefore coordinated 

individual atom displacement occurs (Figure 3). Twin and the parent lattices are related by 

reflection in some plane and in contrary to slip the twinned and untwinned parts of the crystal do 

not have the same crystallographic orientation [48,49]. In the case of defect-assisted twin 

nucleation, dislocation configurations dissociate into single or multi-layered stacking fault serving 

as the twin nucleus.  
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In fcc metals, twinning begins when slip is activated on at least two slip systems. The 

reaction of the primary system dislocations with Burgers vectors, and the coplanar system 

dislocations with Burgers vectors form three Shockley partials [51]. These Shockley partials 

rearrange on successive planes and three-layer fault is formed. Then with the growth of the three-

layer faults in a slip band, a twin is obtained. This theory has been experimentally observed and 

the overall described reaction is energetically favorable [48,49,52]. In fcc metal alloys the twin 

planes are the {111} and the twin directions are the <112> direction [49,52]. The stress needed for 

twin nucleation is called the critical resolved shear stress for twinning and it is further explained 

in Section 1.4 [53,54]. Twins observed in transmission electron microscopy (TEM) micrographs 

for Al0.1CoCrFeNi and electron back scatter diffraction (EBSD) inverse pole figure (IPF) map for 

Al0.5CoCrFeNi HEA are shown in Figure 4. 

 
 
 

Figure 3. Picture of twinning illustrating the atoms and the crystal orientation change with 

respect to the twin plane. (a) is showing the unchanged crystal and (b) is showing the twinned 

crystal [45]. 
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There are different factors affecting the nucleation and growth of deformation nanotwins 

in low stacking fault energy fcc metals and metal alloys. Among these factors are temperature, 

grain size, composition and stacking fault energy, strain rate, and strain. Studies have shown that 

the lower and closer to the cryogenic temperatures, it is more favorable for the twins to nucleate 

and grow [12,20,54,55]. The grain size has an effect on the yield strength of the alloy considering 

the Hall-Petch. The smaller the grain size the higher the yield of the alloy and therefore the stress 

needed to activate the twins would be achieved earlier in the plastic deformation stage. The Hall-

Petch equation is shown below [56]: 

𝜎𝑦 = 𝜎0 + 𝑘
1

√𝐷
                (4)  

where 𝜎0 and k are constants dependent on chemistry and microstructure, D is the grain size, and 

𝜎𝑦 is the yield strength. This equation stems from the empirical work of Hall and Petch on low 

carbon steels [57,58]. On the other hand, it has been shown that that grain size decrease, increases 

the twin spacing and decreases the twins’ thickness and therefore decrease the twinning activity. 

Therefore, an optimized grain size is needed to have deformation twins nucleating and becoming 

activated [38,53,59]. It is worth mentioning that main influence of twinning is improving the work-

Annealing twins 

Figure 4. Deformation twins of Al0.1CoCrFeNi in a TEM micrograph on the (a) (Source: 

[53]) and annealing twins of Al0.3CoCrFeNi in an IPF map using EBSD (b). 

(a) (b) 
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hardening rate and that is due to the grain being divided to twinned and untwined regions, similar 

to grain refinement, causing dynamic Hall-Petch effect and delaying the local necking [60,61]. 

Stacking fault energy (SFE) plays a role on the possibility of deformation twin nucleation and 

growth. Stacking fault energy depends on composition and temperature and plays an important 

role in the alloy deformation mechanisms [60,62,63]. Depending on the SFE the deformation 

mechanisms activated for instance for the case of fcc metals can be slip, twin, phase transformation 

or a combination of these mechanisms [60]. SFE is an indication of the Shockley partial 

dislocations distance and the possibility of local stacking faults to form [60]. 

The range of SFE to have each deformation mechanisms is shown in Figure 5 [64]. Tunning 

the stacking fault energy is considered a design strategy for metal alloys to control the activation 

of deformation mechanisms. For instance in designing twinning-induced plasticity (TWIP), 

transformation-induced TRIP and TWIP/TRIP austenitic steels, HEAs, and other metal alloys, 

tuning the SFE by changing the composition has been widely used [59,64]. 

Strain-rate and strain also have an effect on the twin nucleation and growth in HEAs. 

Twinning has been widely observed in tension at cryogenic temperature, but it has been observed 

that at room temperature twinning is not activated in CoCrFeNi and CoCrFeMnNi in quasi-static 

tension. But when the strain-rate is in the dynamic range there is an addition of deformation twins 

[19]. Also, at the quasi-static strain-rates at high strain of more than 20% deformation twins have 

been observed [54].  

Computational studies have also been done on twin nucleation and growth in fcc metals in 

a smaller scale [34,65]. Twinning in metastable HEA Fe80−xMnxCo10Cr10 and CrMnFeCoNi was 

studied based on the effective energy barriers and the first-principle theory and it was found that 

the main mode of deformation in face-centered cubic metastable high entropy alloys and it depends 
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on the shear strain [34]. In CoCrFeMnNi the critical resolved shear stress for twinning of 

CoCrFeMnNi has been found to be 235±10 MPa [66].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of stacking fault energy on the activation of deformation mechanisms in metal alloys [64] 

 

 

The effect of GB orientation on deformation twinning in TWIP steels and copper and 

aluminum having fcc crystal structures have been studied to some extend [67,68]. But the effect 

of GB characteristics and specifically in HEAs has not been studied thoroughly and the existing 

studies are preliminary [69,70]. The overview of the factors affecting twin and nucleation growth 

in HEAs and the corresponding literature for each factor is shown in Figure 6. 
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Figure 6. Factors effecting the twin nucleation in fcc HEAs and the corresponding selected literature. 

 

1.4 Critical Resolved Shear Stress 

As mentioned in the previous section, fcc lattice structures have slip systems which are 

planes and directions at which dislocation slip occurs. Fcc lattice structure have 12 slip systems 

consisting of the combination of four octahedral planes in the {111} family and six <110> 

directions. The 12 possible slip systems are shown in Table 2. 
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Table 2. The planes and slip directions of the fcc 12 slip systems. 

 

 

 

 

 

 

 

 

 

When a crystal is under loading the shear stress resolved on the slip plane in the slip 

direction for each of the slip systems is called the resolved shear stress. The resolved shear stress 

can be found by using the equation below: 

𝜏 = 𝜎𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆        (5) 

where 𝜏 is the resolved shear stress on the slip plane in the slip direction, 𝜎 is the tensile stress on 

the crystal, 𝜙 is the angle between the load axis and the slip plane normal, and 𝜆 is the angle 

between the load axis and the slip direction. A schematic of the crystal slip plane, normal to the 

slip plane, slip direction and the external tensile force is shown in Figure 7. The term 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆 is 

called the Schmid factor, M. If 𝜎 would be replaced with the minimum stress needed to activate 

the slip, then critical resolved shear stress, 𝜏crss is found. For every crystal based on its orientation 

with respect to the loading direction, Schmid factors for each of the slip systems can be found. The 

slip system with the maximum Schmid factor, considering that other factors of the experiment are 

unchanged, will be the most probable slip system for slip to start nucleation on.  

 

 Plane Slip Direction 

1 (1 1 1) [-1 0 1] 

2 (1 1 1) [1 -1 0] 

3 (1 1 1) [0 -1 1] 

4 (1 -1 1) [0 -1 -1] 

5 (1 -1 1) [-1 0 1] 

6 (1 -1 1) [-1 -1 0] 

7 (-1 1 1) [-1 0 -1] 

8 (-1 1 1) [-1 -1 0] 

9 (-1 1 1) [0 -1 1] 

10 (-1 -1 1) [0 -1 -1] 

11 (-1 -1 1) [-1 0 -1] 

12 (-1 -1 1) [1 -1 0] 
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The same description of the resolved shear stress and the critical resolved shear stress can 

be described for deformation twins and based on the twin planes and directions. Fcc lattice 

structures also have 12 twin systems consisting of the combination of four octahedral planes in the 

{111} family and six <112> directions. The possible twin systems in fcc crystals are shown in 

Table 3 as well as in Figure 8 using a Thompson tetrahedron [71].  

 

Table 3. The planes and twin directions of the fcc 12 twin systems. 

 

 

 

 

 

 

 

 

 Plane Twin direction 

1 (1 1 1) [1 1 -2] 

2 (1 1 1) [1 -2 1] 

3 (1 1 1) [-2 1 1] 

4 (1 -1 1) [1 -1 -2] 

5 (1 -1 1) [1 2 1] 

6 (1 -1 1) [-2 -1 1] 

7 (-1 1 1) [-1 1 -2] 

8 (-1 1 1) [-1 -2 1] 

9 (-1 1 1) [2 1 1] 

10 (-1 -1 1) [-1 -1 -2] 

11 (-1 -1 1) [-1 2 1] 

12 (-1 -1 1) [2 -1 1] 

Figure 7. Schematic of a crystal and its slip plane 

and slip direction with respect to the external 

tensile load. 
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1.5 Scientific Contributions  

HEAs having interesting properties are great candidates to be used as structural materials 

in extreme environment applications. Due to the unique composition of HEAs compared to 

conventional metal alloys, having different elements in their lattices, there exists local fluctuations 

of composition, stacking faults energy, lattice distortion, and lattice strain [21]. Plastic deformation 

mechanisms in low stacking fault fcc HEAs are dislocation slip and deformation twin. Due to the 

unique composition of HEAs, factors influencing the plastic deformation mechanisms need to be 

thoroughly studied. 

This research will address the following research questions: 

a) What is the critical resolved shear stress for dislocation slip in Al0.3CoCrFeNi? 

b) Does GB type influence the twin nucleation in fcc HEAs? 

c) What is the critical resolved shear stress for twin nucleation in CoCrFeNi? Does GB 

type and temperature influence it? 

d) Does elemental segregation at GBs influence the twin nucleation for different GB 

types?  

 

Figure 8. Possible twin systems in an fcc crystal using the Thompson tetrahedron [71].  
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The main scientific continuation of this research are as follows:  

a) Slip critical resolved shear stress in an fcc low stacking fault energy HEA was 

found experimentally using high resolution digital image correlation and electron 

backscatter diffraction, 

b) Grain boundaries have been experimentally observed to be sites for deformation 

twin nucleation in HEAs. However, the effect of different grain boundaries on the 

twin nucleation in HEAs and other low stacking fault energy fcc metal alloys has 

not been thoroughly studied. In this study the effect of different symmetric twist 

grain boundaries on the twin nucleation and the mechanical properties of HEAs at 

cryogenic temperatures was found using molecular dynamics modeling. 

c) Local chemical fluctuations in HEAs can result in elemental segregation at sites of 

the lattice. Grain boundaries are planar defects that cannot be considered as scalar 

objects having homogeneity. Therefore, grain boundaries are possible sites of 

elemental segregation in HEAs. Elemental segregation at grain boundaries and its 

effect on twin nucleation and growth in fcc low stacking fault energy HEA was 

found at three different temperature 77 K, 100 K, and 300 K.  

This research provides insight into the plastic deformation mechanisms in fcc low stacking 

fault energy high entropy alloys. Experimentally the critical resolved shear stress in Al0.3CoCrFeNi 

HEA is found for the first time under tension at room temperature. The effect of grain boundaries’ 

geometry and elemental segregation on the deformation twin nucleation has not been thoroughly 

studied in HEAs and in general in other metal alloys. Computationally using CoCrFeNi HEA 

bicrystal models the preferential grain boundaries (GBs) for twin, GB elemental segregation and 

its effect on twin nucleation, at three different temperature of 77 K, 300 K, and 600 K is found. 
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The results of this research provide the essential information for GB engineering and segregation 

engineering in HEAs to increase their twinnability. Based on the outcomes from this study, alloys 

can be designed with increased boundaries preferential for twin nucleation and further improve the 

properties of HEAs and metal alloys. 

1.6 Chapters Overview 

Chapter two includes the introduction to the experimental techniques for the study to find 

the slip critical resolved shear stress in the fcc Al0.3CoCrFeNi HEA under tension using the strain 

map from high resolution digital image correlation and the microstructural map from the electron 

backscatter diffraction. Chapter three presents the background and motivation, methodology, 

results, discussion, and conclusions on the experimental study. Chapter four goes through the 

introduction to the computational methodologies used in this research for the study to find the 

effect of different symmetric twist grain boundaries in CoCrFeNi bicrystals and the GB elemental 

segregation on the mechanical behavior and twin nucleation at three different temperatures 77 K, 

300 K, and 600 K. Chapters five and six go through background and motivation, methodology, 

results and discussion, and conclusion on the mechanical behavior, material properties and 

deformation mechanisms in the CoCrFeNi bicrysals with different grain boundaries. Chapter seven 

covers the overall conclusions from this study, summary, and future work and Chapter eight 

contains the list of references used in this study. 

 

 

 

 

 



31 

 

CHAPTER TWO: INTRODUCTION TO THE EXPERIMENTAL TECHNIQUES  

 

Parts of this section has been used as part of a journal paper. 

An experimental approach was used to address the first objectives of this research in which 

mechanical tensile testing, high resolution image correlation, and electron microscopy were used 

to study the tensile behavior and calculate the slip critical resolved shear stress in Al0.3CoCrFeNi 

polycrystals. In this chapter the experimental techniques used are discussed and in the following 

chapter the experimental research including, background and motivation, materials and methods, 

results and discussion, and conclusions are presented. 

2.1 Digital Image Correlation 

Digital image correlation (DIC) is a non-contact optical method for acquiring the 

displacement fields during mechanical testing. In this technique, the region of interest on the 

sample is speckled to produce a randomized speckle pattern. The technique and materials used to 

create the speckle patterns depend on the specimen material, testing condition, and the resolution 

at which the strain heterogeneity is expected to be acquired. The DIC pattern size has an optimum 

feature size of 3-5 pixels [72]. The variation and density of the speckle pattern should provide 

unique subsets in different regions with the same amount of black and white regions with good 

contrast. Also, the applied pattern should be thin relative to the test specimen, and the bonding 

between the test piece and the applied pattern should be good. The applied pattern should also have 

acceptable fidelity and deform conformally with the sample surface [73]. In this research three 

different powders, aluminum oxide 1000 mesh, aluminum oxide 360 mesh, and silicon carbide 

1200 mesh were tested to create the speckle pattern. All of the three mentioned powders showed 

acceptable bonding with the surface of the specimen. However, the 1200 mesh silicon carbide 

powder provided better contrast and resolution. To have sufficient contrast between the lightest 
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and the darkest regions of the pattern the light intensity on the region of interest is of importance 

[73]. During the mechanical testing multiple concurrent images are taken of the area of interest. A 

camera and light setup to use DIC for a tensile mechanical test is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

Once the images have been acquired, commercial DIC packages for instance VIC-2D from 

Correlation Solutions, Inc., independently developed DIC code, or in-house image correlation 

codes can be used to process them. DIC tracks the motion of a set of points on a reference image 

in a Lagrangian sense within subsets of the defined area of interest [73]. The reference image can 

be chosen to be the initial image taken prior to the start of the test, or incremental correlation can 

be used so that each image is correlated to its previous image [73,74]. The incremental correlation 

is usually used when there are the images change significantly during the test and cannot be 

correlated to the initial image. The pattern in each of the subsets of the image is approximated 

using interpolant function which is then allowed to change from the reference image based on the 

Figure 9. Camera and light setup to use DIC for a tensile mechanical 

test 
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subset polynomial shape function [73]. The correlation algorithms can be based on the differential 

methods using the first order Taylor’s series expansion or they can be based on the template 

matching which uses the minimization of the gray value different between the subsets in the 

deformed images and the reference image [75]. Then each of the subsets of the deformed images 

are matched with a subset of the reference image.  

Through the coordinates change of the measurement points within each subset the 

displacements are found across the whole area of interest. A strain shape function is fit to the 

displacements resulting in an analytical description of the displacement field. Using the spatial 

derivatives of the displacements in each direction, the strain tensor components are calculated for 

each of the subsets and the strain map is acquired. 

2.2 Electron Microscopy 

Microscopes are widely used in material characterization. In an attempt to increase the 

resolution of microscopes, electron microscopes were developed. Resolution power of 

microscopes, which is the minimum distance between to neighboring object points that can be 

separately images, is one of the most important aspects of a microscope. The resolution of a light 

microscope is limited to the wavelength of the visible light. With the development and 

improvement of electron microscopes higher resolutions have been achieved from the resolutions 

of micrometers achieved with optical microscopes to resolution of picometers achieved by 

scanning tunneling microscopes and transmission electron microscopes [76–79]. 

In general electron microscopy techniques can be divided into two broad techniques, 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using SEM 

lower resolutions are achieved compare to TEM but surface image of bulk samples with larger 
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depth of focus can be achieved [76–79]. Depending on the goal of the study and resolution of the 

features being studied, one or multiple microscopy techniques can be used. 

SEM is the most used microscopic technique due to the ease of specimen preparation, 

general simplicity of the interpretation of the images, and the user-friendliness of the apparatus 

compared to other techniques. Chemical analysis of different elements is also achievable by SEM 

[76]. SEM is widely used in materials science to acquire microscopic structure and differentiating 

several phases from each other due to great depth of field and lateral resolution [79]. In the 

scanning electron microscope, the focused electron beam scans the surface of the specimen line 

by line and based on the interaction between the electron beam and the sample, signals are formed 

which are then electronically detected and amplified [76,77,79]. The inelastic interaction between 

the primary beam electrons and the specimen atoms atomic shells is illustrated in Figure 10. 

  

 

 

 

 

 

 

 

 

 

When the incident electrons shown as PE in Figure 10 have enough energy, the valance 

electrons of the surface atoms are released from the atomic shell, which are called the secondary 

Figure 10. Inelastic interaction between the primary beam 

electrons and the specimen atoms atomic shell electrons [79].  
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electrons. The secondary electrons are used to have the signal and eventually a micrograph of a 

thin layer of the surface is created [76]. After the surface atom valance electrons are released due 

to the interaction with the incident electrons, the resulted empty electron valance is filled again by 

the relaxed atom. Secondary effects as a result of the excess energy release of the electron occurs 

which varies depending on the vacant electron state which are the emission of photon, Auger 

electrons, visible wavelength photons, and X-ray photons [79]. Each of these secondary effects 

contain information from either the sample’s surface microstructure, morphology, phase and 

chemical composition. 

Using the X-ray emission as a secondary effect of the interaction between the incident 

beam and the specimen surface electron in an SEM, compositional analysis of the elements of the 

sample surface is possible [80,81]. Energy-dispersive X-ray analysis (EDX) is a technique in 

which the electron beam is moved across the material, and by analyzing the energy of the emitted 

X-rays an image of the elements in the specimen can be formed as the energy of emitted X-rays 

are element specific [81]. It is noteworthy that the emitted X-rays are from a region about 2 

micrometers deep from the sample surface. Therefore EDX is not considered as a true surface 

technique [80].  

Electron backscatter diffraction (EBSD) based on SEM is another powerful technique that 

can be used to quantitatively measure the microstructural information of the sample surface such 

as the texture, grain size, point to point orientations and phase identification [82,83]. Moreover, 

the boundary misorientations and the distribution of boundary types can be extracted from EBSD 

data [84]. When the incident beam hits the sample surface, a fraction of the electrons diffracts with 

a small loss of energy. Some of these electrons are at the atomic planes with angles that satisfy the 

Bragg equation [85]: 
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𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃         (6) 

where n is an integer, d is the diffracting plane spacing, 𝜃 is the angle of incidence of the electrons 

on the diffracting plane, and 𝜆 is the electrons wavelength. The image produced on the phosphor 

screen from these diffracted electrons, form characteristic Kikuchi bands [85]. Then a sensitive 

charged-couple device (CCD) camera is used to acquire the images which are then postprocessed 

by pattern averaging and background subtraction as seen in the schematic in Figure 11 to produce 

the EBSD microstructural data and maps [84].  

 

 

 

 

 

 

 

 

 

 

When carrying out EBSD, the sample is tilted between 60º and 70º from the horizontal to 

optimize the diffraction pattern and the scattered electrons fraction [82,84–86]. Data from EBSD 

along with the data from EDS can be used for phase characterization of the specimen surface 

[82,84,86]. 

Figure 11. Schematic of the components and process to acquire 

EBSD data in SEM [84]. 
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2.3 Summary 

In this chapter the fundamentals of the experimental methods used in this research has been 

covered. In the following chapter, the experimental study of the slip critical resolved shear stress 

in Al0.3CoCrFeNi HEA using the techniques described in this chapter is explained. Specific 

material and methods of the research are explained in the next chapter. 
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CHAPTER THREE: CRITICAL RESOLVED SHEAR STRESS FOR SLIP IN 

AL0.3COCRFENI HIGH ENTROPY ALLOY 

 

Parts of this section has been used as part of a journal paper. 

In this chapter the experimental study of the critical resolved shear stress for slip in fcc low 

stacking fault energy Al0.3CoCrFeNi HEA is described containing the background and motivation 

of the study, the specific materials and methods, results and discussion, and the conclusions. 

3.1 Background and Motivation 

HEAs were first introduced with the idea of achieving single phase metal alloys or with 

minimal secondary phases by decreasing the Gibbs free energy through increasing the entropy of 

formation. Therefore, initially the idea was to develop alloys with multiple main elements in 

equimolar proportions to achieve highest entropies. Later, this approach was relaxed and HEAs 

were alloyed with elements in different proportions to achieve improved properties [64,87]. 

Adding aluminum at different concentrations Alx to CoCrFeNi has been investigated and it reduced 

the density of the alloy and increased the yield strength due to the solid solution strengthening 

effect [15,18,88–94]. Depending on the amount of aluminum concentration in AlxCoCrFeNi HEA 

the alloy can be single phase fcc for Al contents of less than 5 at%, combination of fcc and bcc 

phases for Al contents of between 5 and 9 at% and bcc phase for Al contents of more than 9 at% 

[95–97]. The EBSD IPF and EDS maps of Al0.3CoCrFeNi being a single phase fcc alloy and 

Al0.5CoCrFeNi having both fcc and bcc phased are shown in Figure 12. 
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Al0.3CoCrFeNi HEA is a single phase fcc HEA with desirable properties such as high 

strength, corrosion resistance, and fatigue resistance [92,94]. In fcc metals and metal alloys, the 

dominant mode of plastic deformation is slip dislocation on {111}<110> system with Burgers 

vector of |𝑏| =
√2

𝑎0
,  𝑎0 being the lattice constant [98].  

Slip nucleation and slip CRSS has been studied in some 3d transition HEA single crystals 

at cryogenic and room temperature. Slip nucleation has been studied in the [59̅1] oriented single 

crystal CoCrFeMnNi, a single phase fcc HEA, and the tensile CRSS was found to be 175 MPa at 

77 K [98]. CRSS for slip was found to be temperature dependent in single crystal Cantor alloy 

regardless of orientation, 56 MPa and 153 MPa at 293 K and 77 K respectively [99]. Cantor alloy 

bulk room temperature Slip CRSS has also been found by single crystal micropillar compression 

to be 33-43 MPa [100]. However, the CRSS for slip has not been found for Al0.3CoCrFeNi HEA. 

Grain level and sub grain level deformation mechanisms and the factors influencing them are 

essential information in design and development of improved HEAs and metal alloys in general. 

Figure 12. EBSD IPF maps (a), (b) and EDS maps (c), (d) of 

Al0.3CoCrFeNi and Al0.5CoCrFeNi HEAs being single phase fcc and 

having fcc and bcc phases respectively. 

(a) (b) 

(c) (d) 
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The micro- and nano-scale mechanisms’ information such as the slip CRSS can provide 

information to develop physics based models of the HEAs. 

In this experimental study the single phase fcc Al0.3CoCrFeNi polycrystal was 

manufactured using vacuum induction melting. Quasi-static strain rate tensile tests were run on 

flat dog-bone samples at room temperature. Strain was measured using high resolution digital 

image correlation (HRDIC) during the tensile test. Critical resolved shear stress for slip was found 

by overlaying the strain map from HRDIC and the microstructural data from EBSD providing an 

insight on the deformation mechanisms in these alloys. 

3.2 Materials and Methods 

In the previous chapter background and overview of the experimental methodologies were 

explained. In this section the specific methodology used for the experimental study of slip critical 

resolved shear stress in Al0.3CoCrFeNi HEAs are explained. 

 Al0.3CoCrFeNi samples were manufactured by vacuum induction melting method. Then 

they were cold rolled to 60% and annealed for 1 hour at 1200°C. Using electro-discharge 

machining, tensile test specimens in the shape of flat dog-bones with gauge length of 16.5 mm, 

width of 3 mm, and thickness of 2 mm were made. One side of the sample was grinded and polished 

using the Buehler EcoMet™ 3 grinder-polisher. This was done in incremental steps up to P4000. 

The specimen was further polished using diamond pastes with abrasive size down to 0.05 microns 

then vibro-polished for 10 hours. 

Five Vickers indentation markers were used to mark the area of interest. The Vickers 

markers were used to overlay the strain heterogeneity map from high resolution digital image 

correlation to the microstructural information from EBSD. The four Vickers markers marked the 
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rectangular area of interest of 450 µm × 400 µm and the fifth one was for the alignment 

consideration [101]. 

Before and after the tensile test, EBSD was performed on the area of interested in order to 

acquire microstructural map. Hitachi SU6600 SEM was used along with the aZtecHKL EBSD 

system software from Oxford instruments to acquire the microstructural data. A 45° tilted holder 

was used to attach the sample using double side conductive carbon tape. The microscope stage 

was then tilted for 25° to achieve the total angle of 70° between the sample surface and the beam 

needed to acquire EBSD data. The accelerating voltage used was 20.0 kV, the acquisition speed 

was 67 Hz, and the step size was 4 µm. The EBSD data from the area of interest, polished as 

described before, prior to and after the mechanical testing was used to be postprocessed using 

MTEX.  

The polished surface of the sample was powdered speckled for the purpose of HRDIC 

using silicon carbide powder grit 1200 mesh having the particle size of 3.8 µm. The fine powder 

particles were air blasted on the specimen surface. The area of interest marked with the Vickers 

markers and powder speckled is shown in Figure 13 taken under a light microscope. 

 

 

 

 

 

 Figure 13. The area of interest in the middle of the flat dog-bone gauge for the 

Al0.3CoCrFeNi sample speckled pattern and marked using five Vickers markers (black 

diamonds). 

200 µm  
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To run the tensile test at room temperature a Psylotech 10 kN load horizontal load frame and the 

Psylotest controlling software were used. The test profile created in the Psylotest was made by a 

combination of ramp profiles and pauses in between. The displacement-controlled ramp profiles 

had the velocity of 3.2 × 10−3  𝑚𝑚
𝑠⁄  accommodating the tensile test quasi-static strain rate of  

2 × 10−4  1 𝑠⁄ . The ramps durations were 5 minutes. After each ramp profile pauses of 30 seconds 

were used during which the camera was refocused if needed. Due to the high resolution of the test, 

the images went out of focus during the test and therefore could not be used for DIC purposes if 

the pauses for refocusing the images were not added. The frequency of data acquisition was 20 

Hz. An Olympus optical microscope was used with the 20x magnification lens with corresponding 

resolution of 0.34 microns/pixel. The Point Grey GS2 camera is attached to the microscope for 

taking the pictures using the Vic-Snap software as the test is running. The images taken during the 

test need to be in focus and with the 20x magnification this is hard to accomplish as the external 

noise and vibrations would cause the images to go out of focus. Therefore, the whole setup was 

placed on an isolation table pressurized at 80 psi to reduce noise and vibration from the ground. 

The uniaxial tensile tests were performed at room temperature. The setup is shown in Figure 14.  

The load data acquired from the Psylotest output file were used to find the engineering 

stress by dividing to the initial cross-sectional area of the gauge of the sample as described by the 

following equation: 

𝜎𝑒𝑛𝑔 =
𝐹

𝐴𝑖
  (7)  

where 𝜎𝑒𝑛𝑔 is the engineering stress, 𝐹 is the applied load, and 𝐴𝑖 is the initial cross-sectional area 

of the sample gauge. 
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The DIC analysis was done using Correlated Solutions software, Vic-2D with a subset size 

of 51 pixels and step size of 5 pixels. The gray value interpolation was selected to be 8-tap spline 

interpolation and Gaussian weights were considered for the subsets. The resolution error 

measurements were found to be 15 µϵ by averaging the strain of the area of interest found from 

five images taken prior to the start of the test at zero load. Using the strain from HRDIC averaged 

on the area which the HRDIC post-processing have been applied to, and the stress found from the 

load output, the engineering stress-strain curve was plot and the material properties were extracted. 

The microstructural information from EBSD and the full field strain map from HRDIC 

were overlaid using the five Vickers indentation markers as explained by Pataky et al. [101]. The 

Schmid factors for each of the grains were found using MTEX and the MATLAB code generated 

for postprocessing the EBSD data. The activated slip system and its corresponding Schmid factor 

is found. Then using the stress initiating the dislocation slip the critical resolved shear stress for 

dislocation slip activation was found. 

Optical Microscope 

Psylotech Load Frame 

Isolation Table 

20X lens 

Grips 

Camera 

 Specimen 

Figure 14. The mechanical testing and digital image correlation setup on an isolation table. (a) Whole setup 

including the Psylotech load frame, Olympus optical microscope with a 20X lens, a Point Grey camera 

connected to a computer for data acquisition. (b) Close up of where the sample is set up in the Psylotech grips. 

 

(a) 

(b) 
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3.3 Results and Discussion 

 Microstructure 

 The initial microstructure of the area of interest marked by the Vickers indentation 

markers is presented in Figure 15. The figure includes the SEM micrograph, energy EDS elemental 

maps, and the EBSD IPF Z map. The grain that is used for slip tracing is shown in Figure 15 (a) 

enclosed by dashed black lines. The possible slip systems with the corresponding Schmid factors 

found using the Euler angles for this grain are shown in Table 4. The slip systems with the highest 

Schmid factors are specifically of interest as they will be used for slip tracing and finding the slip 

CRSS.  

 

Figure 15. Al0.3CoCrFeNi microstructure. (a) EBSD IPF Z map using SEM denoting the grain orientation, (b) 

SEM micrograph, (c) EDS elemental map. The black diamonds are the Vickers indentation markers. 



45 

 

Table 4. Slip systems and the corresponding Schmid factors of the grain of interest. Slip systems with 

maximum Schmid factors are colored in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tensile Behavior  

 

From the quasi-static tensile test and the strains found from the DIC post-processing, the 

modulus of elasticity was found to be 190 GPa and the tensile yield strength was found to be 149.3 

MPa. As shown in Figure 16 the sample showed severe out of plane deformations causing the 

images to be out of focus and therefore unable to be correlated. This out of plane deformation 

started at approximately the strain of 1.8% and stress of 151 MPa and severely affected the focus 

of the images from around the strain of 2.1% and stress of 154 MPa; The test was therefore stopped 

and the ultimate strength was not found. It is important to note that this was after plasticity had 

initiated within the polycrystal specimen.  

 

 

 

 

 

 

Plane Slip Direction Schmid Factors 

(1 1 1) [-1 0 1] -0.317 

(1 1 1) [1 -1 0] 0.082 

(1 1 1) [0 -1 1] -0.082 

(1 -1 1) [0 -1 -1] -0.083 

(1 -1 1) [-1 0 1] 0.083 

(1 -1 1) [-1 -1 0] -0.318 

(-1 1 1) [-1 0 -1] 0.318 

(-1 1 1) [-1 -1 0] 0.491 

(-1 1 1) [0 -1 1] -0.173 

(-1 -1 1) [0 -1 -1] -0.491 

(-1 -1 1) [-1 0 -1] 0.173 

(-1 -1 1) [1 -1 0] -0.317 

Figure 16. Surface of the sample post-mortem revealing out of plane 

deformation causing the images to be out of focus for HRDIC purposes. 
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The tensile yield strength of 149.3 MPa with a low work-hardening rate which is consistent 

with the findings of the study by Shun et al. on the polycrystal of fcc Al0.3CoCrFeNi HEA [91]. 

They reported a yield drop from the stress-strain curve which have not been observed in our study. 

They attributed this drop to the nanoprecipitates found through transmission electron microscopy 

creating Guinier–Preston (GP) zones which are typical of aluminum alloys [102]. 

Critical Resolved Shear Stress for Slip 

 SEM micrographs post-mortem are shown in Figure 17 (a). The area of interest is 

enclosed by a red rectangle in the SEM micrograph on the left. A surface crack is shown using a 

blue arrow. The micrograph on the right only focuses on the area of interest and the activated slip 

bands are observed. Figure 17 (b) shows the strain maps in the area of interest at three different 

global strain levels of 0.004, 0.01. and 0.02. The gray lines are the grain boundaries and the grain 

where the first slip system activated and is shown with a red dasher box. At the strain of 0.004 no 

slip activity is observed and at strain of 0.01 the slip activities are first observed. At the strain of 

0.02 multiple slip systems at different grains are observed. The region pointed at by the white 

arrow had severe out of plane deformation. Figure 17 (c) on the left is the post-mortem EBSD IPF 

Z map. Using the postmortem EBSD data the Schmid factors of the grain are found for all of the 

possible slip systems. The map of the maximum Schmid factor for each grain with the 

corresponding slip systems are shown in right. For the grain at which the dislocation slip is first 

observed, slip tracing is performed using the angle of the activated system with respect to the 

direction of the load and the orientation of the grain itself using the EBSD data, and the activated 

slip system and the corresponding Schmid factor is found.  

 The stress at which dislocations slip are being observed in the grain of interest was found 

to be 150 MPa. All the slip planes in the three-dimensional space were found using Euler angles 
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from the EBSD data and the theoretical direction of the plane with the maximum Schmid factor is 

found on the sample surface. This theoretical plane direction is then compared with the activated 

slip plane from the DIC strain map. The activated slip system in the grain of interest matched with 

the slip system with highest Schmid factor. The slip system with the highest Schmid factor of 0.42 

was found to be the (-1 1 1)[-1 -1 0] slip system and the CRSS for slip was then calculated to be 

63±2 MPa considering several consecutive images at where the dislocation slips are visible from 

the DIC strain maps.  

 In polycrystals grain boundaries can limit the dislocation slip and causing dislocation 

pileups [103]. Also, in finding the CRSS of polycrystals having different grains in different 

orientations, the Taylor factor can be used. Taylor factor is used for accounting for the averaging 

of all the different grain orientations within the polycrystal [104] and is approximately 3.1 for an 

fcc structure [105]. 

 The CRSS for slip in Al0.3CoCrFeNi HEA polycrystal at room temperature under tension 

was found to be 63 MPa. [110]-oriented fcc single micro-crystals of Al0.1CoCrFeNi and 

Al0.3CoCrFeNi tested by in-situ micro-compression at the temperature range of 293 to 573 K had 

slip CRSS to be 239, 260, and 270 MPa for Al0.1CoCrFeNi and 244, 267, and 307 MPa for 

Al0.3CoCrFeNi at 573 K, 423 K, and 293 K respectively [106]. The slip CRSS depends on the size 

pillar size and an inverse power law scaling can be used to extrapolate the bulk CRSS [100].  This 

difference in the CRSS is due to the use of micropillars in the mentioned studies being 

manufactured in such a way that they have less defects compared to the polycrystal studied in this 

research. Further difference when comparing the CRSS from micro-compression tests and 

polycrystalline tensile tests can be due to the strong work hardening of the micropillars due to their 

microstructural orientation [106]. Finding the CRSS in polycrystals is essential as in a wide range 
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of applications polycrystals of the HEAs and metal alloys in general are used. As the different 

orientations of the grains, grain boundaries and their misorientation angles, and other defects in 

the polycrystal affect the overall performance, finding the CRSS in polycrystals will provide a 

more accurate information for practical purposes. 
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Figure 17. (a) SEM micrographs of the sample post-mortem. (b) Strain map from HRDIC at different strains 

overlaid with grain boundary map from EBSD. (c) Post-mortem EBSD (left) maximum Schmid factor map 

(right). 
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3.4 Conclusions 

 

Tensile tests along with high resolution digital image correlation were run on specimens of 

Al0.3CoCrFeNi single phase fcc HEA. The tensile yield strength was found to be 149.3 MPa and 

the modulus of elasticity was found to be 190 GPa. The tensile room temperature slip CRSS was 

found to be 63±2 MPa based on the activated slip system of (-1 1 1)[-1 -1 0] which also had the 

highest Schmid factor of 0.42. 
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CHAPTER FOUR: INTRODUCTION TO THE COMPUTATIONAL TECHNIQUES 

 

Parts of this section has been used as part of a journal paper. 

Computational approach was used to address the next objectives of this research in which 

the effect of GB type, GB elemental segregation, and temperature on the deformation twin 

nucleation and growth is studied in CoCrFeNi HEA bicrystals. This research is done using 

molecular dynamics simulations and Monte Carlo molecular dynamics simulations. The 

introduction of the computational techniques is described in this chapter and the specific studied 

are described in chapters five and six. 

4.1 Molecular Dynamics Simulation 

 

In order to study the mechanical behavior of different materials and structures under 

different loading conditions and to find the underlying physical phenomena, computational 

methods can be used. Computational methods along with experimental methods can provide a 

range of information which might not be possible with either of the methods separately. For 

instance, in experiments one of the limitations can be the characterization tools and scopes 

resolution or the limited field of view. The limitations for computational methods are the 

assumptions made and the hardware limitations to run the simulations. Therefore, the choice of 

computational or experimental study considering the resources is an important choice in 

approaching a problem.  

The computational techniques in computational mechanics and materials science 

considering the length scale and time scale they are based on are macroscale modeling, for instance 

finite elements method simulations, microscale modeling, such as crystal plasticity models, 

atomistic modeling, such as molecular dynamics modeling and ab-initio modeling such as density 
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functional theory (DFT) calculations. The time scale and length scale of these computational 

techniques are shown and compared in Figure 18. Depending on the study one or a combination 

of these methods can be used.  

 

 

 
 

In this study the molecular dynamics modeling has been chosen to study the effect of GB 

types and GB segregation on the mechanical behavior and the deformation mechanisms in 

CoCrFeNi HEA bicrystals which is thoroughly discussed on the next chapter. Developing 

bicrystals with specific GBs is not feasible and therefore experimental study is not an option. 

Amongst the computational techniques, as the deformation mechanisms are known to be in the 

nanoscale, molecular dynamics simulation is the chosen approach.  

Figure 18. Length scale and time scale of computational simulation methods used in physics, 

computational materials science, and computational mechanics amongst other fields of research. 
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Molecular dynamics (MD) simulation method is based on the physical movement of atoms 

and molecules. In MD simulations, atoms and molecules are considered as basic particles and the 

Newton’s second law of motion, F=ma, where F is the force vector, m is the atomic mass, and a 

is the acceleration vector, is applied on the particles in the simulation [107]. The trajectories of the 

particles are found at each step of the simulation. A simplified molecular dynamic algorithm can 

be seen in Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial positions and velocities for each of the atoms are given to the system and by applying 

the interatomic potential to the entire system through first order derivative of the potential with 

respect to the atom coordinates, the forces on each atom can be derived. Newton’s second law of 

motion is then used to calculate the accelerations and through the time integration with respect to 

the time step, the position and velocities of each atom is updated. This procedure can be repeated 

until the desired material condition is reached [107–109].  

At each time step of the simulation, parameters including atom velocities, forces, system 

dimensions, and energy components can be pulled out. Further through original outputs and 

Figure 19. Simplified algorithm of the molecular dynamics simulation. 
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statistical postprocessing properties including the structural and mechanical properties, GB and 

defect structures, and radial distribution functions can be calculated [107].  

From the described procedure based on the algorithm in Figure 19, the importance of the 

interatomic potential to find the forces on each atom and update the positions and velocities of the 

atoms in the systems is realized. In the next sections, an overview of the interatomic potentials is 

presented. 

4.2 Monte Carlo Simulation  

MD simulations reproduce the small amplitude oscillations of atoms and atoms crossing 

the barrier from one lattice site to another rarely occurs within the timescale of MD simulations 

[110,111]. An alternative technique in studying the atom scale processes is using the Monte Carlo 

methods [111].  

Monte Carlo (MC) method is a statistical technique which uses the Boltzmann factor for 

probability and discrete and random steps for sampling. MC simulations, in contrast to MD 

simulations is not deterministic. MC method is based on the condition expressed as [111]: 

𝑊(𝒓′|𝒓)𝑃(𝑟) = 𝑊(𝒓|𝒓′)𝑃(𝒓′)       (8) 

where P(r) is the probability of finding a particle at position r, and 𝑊(𝒓′|𝒓)is the probability of 

transition of the particle from one position r to another position 𝒓′. Considering that P follows a 

Boltzmann distribution we have: 

 
𝑊(𝒓′|𝒓)

𝑊(𝒓|𝒓′)
= exp (−𝛽Δ𝑈)                     (9)  

where 𝛽 =
1

𝑘𝐵𝑇
, 𝑘𝐵 is the Boltzmann constant, T is the temperature in Kelvin, and Δ𝑈 is the 

potential energy change in the system. The method lets the atoms jump around randomly to find 

the minimum energy state [107]. MC simulation steps thermodynamically probe the favored 
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configurations. The energy of the current system is computed, random atom is chosen, and a 

displace/swap is attempted. Then the energy of the new state is computed and the difference 

between the energy of the two states is found, ∆𝑈 = 𝑈𝑠𝑤𝑎𝑝 − 𝑈𝑖𝑛𝑖, where 𝑈𝑠𝑤𝑎𝑝 is the energy of 

the swapped configuration and 𝑈𝑖𝑛𝑖 is the energy of the initial configuration. The move is accepted 

with the probability 𝑃𝑎𝑐𝑐 = min {1, exp[−∆𝑈/𝑘𝐵𝑇]} [107,111,112]. 

Combination of MD/MC simulations can be used to provide a dynamics picture of the 

system which requires timescales beyond the reach of MD simulations. Combined MD/MC 

simulations in which some atoms are moved by MD simulations and some are moved by MC 

simulations, hybrid MD/MC simulations in which atomic displacement description is in part 

stochastic and in part deterministic, and sequential MD/MC simulations in which MD simulations 

and MC simulations cycles alternate are among the algorithms in which MD simulations and MC 

simulations are used together [110,111].   

4.3 Interatomic Potentials 

In atomistic simulations interatomic potential is of great importance. The interatomic 

potential defines the interactions of the atoms in the system and the choice of them influences the 

results of the simulations [113]. Potentials are mathematical expressions of the dependance of the 

system’s energy on its particles’ coordinates. Interatomic potential functions for specific systems 

are proposed and parameterized by using calculated data from first-principles methods and 

experimental data [107]. 

Embedded atom method (EAM) potentials are the most common models of atomic bonding 

used in metallic systems. EAM potentials are conductive to large-scale computer modeling due to 

their mathematical simplicity and they are rooted in DFT [113]. EAM potentials capture some 
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electronic effects and meanwhile maintain the potential simplicity by considering the effective 

electron density at a given atomic site. The mathematical form of the EAM potential is as follows: 

𝑈𝐸𝐴𝑀 =
1

2
∑ 𝑈𝑖𝑗(𝑟𝑖𝑗) + ∑ 𝐹𝑖(𝜌𝑖)𝑖𝑖≠𝑗          (10) 

where 𝑈𝐸𝐴𝑀 is the EAM potential, 𝑈𝑖𝑗(𝑟𝑖𝑗) is the pair interaction, 𝑟𝑖𝑗 is the scalar distance between 

the atoms i and j, and 𝐹𝑖(𝜌𝑖) is the embedding energy function as a function of electron density 𝜌𝑖. 

The electron density at site i is the superposition of valance-electron clouds from all the other 

atoms: 

𝜌𝑖 =
1

2
∑ 𝜌𝑗(𝑟𝑖𝑗)𝑗(≠𝑖)       (11) 

The electron densities at each MD run are computed at various sites, embedded energies 

are evaluated and added to the pair potentials. EAM potentials are suitable for most metals, 

transition metals and especially for fcc metals [107]. 

4.4 Type of Ensembles 

 In atomistic simulations each atom moves and behaves differently within the simulation 

box, but after a proper simulation and equilibrium, the collection of all configurational possibilities 

with the same macroscopic/thermodynamic properties is considered an ensemble. In MD and MC 

various ensembles with different controlled variables can be used. The integration of Newton’s 

equations of motion allows the constant-energy surface of a system, however during the molecular 

simulation other variables might need to be held constant [107,114]. 

 The variables that are attempted to be held constant are number of atom N, volume V, 

pressure P, temperature T, energy E, and enthalpy H. In all of the ensembles the number of 

particles, N, is conserved and the available ensembles are NVE having constant volume and 

energy, NVT having constant volume and temperature, NPT having constant pressure and 

temperature, and NPH having constant pressure and enthalpy [107]. 
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NVE ensemble is obtain by solving the Newton’s equation without pressure and 

temperature controls. This ensemble is known as the microcanonical ensemble and the energy is 

conserved when this ensemble is generated. In this method desired temperature cannot be achieved 

due to not using temperature control methods when facilitating the energy flow and it is not suitable 

for equilibrium [107,114]. In NVT ensemble the temperature is controlled using direct temperature 

scaling during initialization and temperature bath coupling during the data collection. This 

ensemble is called the canonical ensemble and the volume is kept constant during the simulation 

runs [107,114,115]. In the NPT ensemble temperature and pressure are both controlled, and the 

pressure is adjusted by volume change. This ensemble can be used during equilibrium and when 

the correct pressure, volume, and densities are of importance during the simulation [107,116]. It 

is noteworthy that in these ensembles the goal is not to have a constant temperature but rather to 

have the desired temperature as the average temperature of the systems.  

4.5 Conclusions 

In this chapter the fundamentals of the computational methods used in this research has 

been covered. In the following chapters, the atomistic modeling study of the effect of GB type, 

GB elemental segregation, and temperature on the deformation twin nucleation in CoCrFeNi HEA 

bicrystals are explained. Specific material and methods of the research are discussed in the next 

chapters. 
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CHAPTER FIVE: EFFECT OF GRAIN BOUNDARY TYPE ON THE MECHANICAL 

BEHAVIOR IN COCRFENI HIGH ENTROPY ALLOYS 

 

Parts of this section has been used as part of a journal paper. 

5.1 Background and Motivation 

CoCrFeNi is in the 3d transition metal HEA group and it is in the family of CoCrFeMnNi 

HEA also known as the Cantor alloy. CoCrFeNi is an equimolar HEA having 25% of each element. 

CoCrFeNi HEA similar to most if the HEAs in the Cantor family shows simultaneous strength and 

ductility for a range of temperature. Strength and ductility both increase as the temperature 

decrease to cryogenic temperature [12,54]. This has been attributed to the nucleation and growth 

of deformation nano-twins as an additional mode of plastic deformation [12,54]. This is typical of 

fcc metals and alloys with low stacking fault energy. CoCrFeNi is a single phase fcc HEA with a 

stacking fault energy of 30-33 mJm−2 [19,117,118] which is considered within the range 

energetically necessary for deformation twins to nucleate. Also, as mentioned before, HEAs have 

local compositional and chemical variations which results in local variation of stacking fault 

energy in the lattice, making parts of the lattice more favorable for twin nucleation that others. 

It has been observed experimentally that deformation twins nucleate from defects in the 

alloy for instance the GB. Recently, nucleation of deformation twin from GB has been observed 

in CoCrFeMnNi HEA, shown in Figure 20 [13]. This observation has also been made in studies 

on other metals. Therefore, GB as preferential cite for twin nucleation needs to be further studied. 
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GB characteristics can have an effect on the continuum level material properties such as 

ductility and strength [119]. GB properties such as disorientation angle, ∑ value, and boundary 

energy vary with boundary types [119]. In GB engineering, considering the overall material 

properties, the goal is to enhance or reduce boundary types. Five degrees of freedom in the 

crystallographic space can be used to define GB types, three for the relative angles between two 

neighboring grain and two for the relative orientation of the boundary plane to the grains [119].  

Considering the experimental results that grain boundaries are preferential sites for twin 

nucleation, and knowing that different GB types can effect material properties in general, it is 

important to understand the effect of different GB types on the twin nucleation and growth in fcc 

HEAs. To do so, bicrystals of the HEAs having different GB types need to be tested under tension. 

However, growing bicrystals with specific GBs is not feasible and computational techniques need 

to be used. In this study, MD has been used to model and mechanically test bicrystals of CoCrFeNi 

HEA to answer the following question:  

• Does GB type influence the twin nucleation in fcc HEAs? 

Figure 20. TEM (a) bright field, (b) dark field, (c) diffraction pattern showing twin nucleation from grain 

boundaries in CoCrFeMnNi HEA [13]. 

(a) (b) (c) 
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• What is the critical resolved shear stress for twin nucleation in CoCrFeNi? Does GB type 

and temperature influence it? 

• What is the effect of adding Mn in the twinning behavior of fcc HEAs? 

The results of this research further help with understanding the physical phenomena and 

the alloy development to reach to even better properties in metal alloys by GB engineering. 

5.2 Materials and Methods 

As an overview of the methods, large-scale atomic/molecular massively parallel simulator 

(LAMMPS) which is a classical molecular dynamics code was used in this study [120]. Clemson 

University Palmetto Cluster was used to run the simulations. Atomic positions and visualizations 

were done using open visualization tool (OVITO) [121]. OVITO and MATLAB were used for 

post processing of the data. 

Symmetric Twist Grain Boundaries 

A series of CoCrFeNi bicrystlas with <110> symmetric twist grain boundaries (STGBs) 

were generated using the second nearest-neighbor modified EAM interatomic potential from the 

work by Choi et al. [69] on CoCrFeMnNi HEA. Experimental mechanical properties and solid 

solution hardening effects observed experimentally has have been successfully reproduced using 

this potential [69]. The bicrystals of the CoCrFeNi HEA with prescribed GB geometries were 

constructed by creating a fully periodic atomistic system from two half crystals. Each of the half 

crystals was rotated to result in the specified misorientation angle of the planar GB between the 

halves. A series of rigid body translation was performed on the bicrystals within the GB plane 

resulting in equilibrated GB structure (γ-surface method) [122,123]. A schematic of the bicrystal 

model is shown in Figure 21. The different GB sigma values, corresponding misorientation angles 
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and the crystals x-axis for the upper and lower grains are shown in Table 5. The sigma values are 

shown in an increasing order where 1/sigma corresponds to the coincidence lattice points. 

 

 

 The target dimensions of the bicrystal geometry were set to 100 Å × 600 Å × 100 Å with 

small variations for each of the bi-crystals with different grain boundaries and the number of atoms 

for each of the simulation boxes was 700000 with variations for each of the bi-crystals with 

different grain boundaries.  

 

Table 5. Sigma values, corresponding misorientation angles, and the upper and lower crystals x-axis for 

all the grain boundaries. 

Sigma Misorientation Angle [hkl] x-upper/ [hlk] x-lower 

3 70.53 [11̅1̅]/[1̅11̅] 

9 38.95 [22̅1̅]/[2̅21̅] 

17 86.60 [22̅3̅]/[2̅23̅] 

19 26.53 [33̅1̅]/[3̅31̅] 

27 31.6 [11̅5̅]/[1̅15̅] 

33 58.98 [22̅5̅]/[2̅25̅] 

41 55.88 [44̅3̅]/[4̅43̅] 

43 80.63 [33̅5̅]/[3̅35̅] 

51 23.07 [55̅1̅]/[5̅51̅] 

Figure 21. Schematic of the bi-crystal structure. The top and the bottom crystals are shown 

with their local corresponding coordinate systems. 
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Mechanical Testing 

Prior to the mechanical testing the system was relaxed at the desired temperatures using 

the NPT ensemble. Nose-Hoover style isothermal-isobaric (npt) fix command was used [124–128]. 

The barostatting can be done either as iso (hydrostatic) and aniso to specify all 6 components of 

an external stress tensor. Iso means coupling all 3 diagonal components together (hydrostatic 

pressure) and dilate/contract all the dimensions together. The 77 K thermal equilibration 

simulations were run using the aniso setting to have the x, y, z, dimensioned controlled 

independently for 300000 steps (300 picoseconds). 

 The mechanical tests of uniaxial tension were performed with the strain rate of 5×108 s-1 

at the desired temperatures for each of the grain boundaries and using the NPT ensemble the 

pressure in the transverse directions was set to be zero. Layers of atoms were fixed on the top part 

and bottom part. The atoms positions in these parts were fixed relative to each other. The thickness 

of this fixed part is around 25 Å and was used to impose the forces on the dynamic atoms and as 

imposed boundary conditions, Figure 22. The bottom part did not move during the simulation and 

the top part will move with the applied velocity to mimic the experimental tensile test. Periodic 

boundaries were used along the x and z dimensions for the simulation box. But along for the y-

direction the shrink-wrap boundary condition was used for the mechanical testing. The tensile tests 

were run for 300000 steps (300 picoseconds) at the desired temperature of 77 K. The LAMMPS 

codes of the simulations are presented in Appendix A. 
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Post Processing 

After the mechanical tests, the output data was used and post-processed to plot the stress-

strain curves and find the material properties. Stress was found using the compute stress/atom 

command in LAMMPS. This command computes per-atom stress tensor for each atom [129]. 

Strain was calculated from the change in length in the y direction over the initial length not 

considering the fixed parts. Using the dump files and in OVITO the dislocation extraction 

algorithm (DXA) was used to analyze the dislocations. The centrosymmetric parameter, common 

neighbor analysis (CNA), and polyhedral template matching (PTM) algorithm were used to find 

the crystal structures and the orderings.  

 

 

 

 

 

 

Figure 22. Schematic of the bi-crystal simulation box and the fixed atoms regions. 
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5.3 Results and Discussion  

Elemental Percentage and Distribution 

The percentages of each of the four elements in the simulation box was investigated to 

assure elemental percentages of 25% in each of the bi-crystal models after randomly assigning the 

four elements Co, Cr, Fe, Ni. The concentrations of each element for each of the bicrystals with 

specific grain boundaries are shown in Table 6. As shown the concentration deviations from the 

25% are negligible. 

Table 6. Elemental concentration for each of the bi-crystals models with different GB sigma values  

 

  

 

 

 

 

 

Uniform and randomized distribution of the four elements Co, Cr, Fe, and Ni in the 

bicrystal models was also investigated visualizing the in OVITO shown in Figure 23 and also by 

calculating short-range order (SRO) parameters for the possible nearest bonds. Radial distribution 

function (RDF) with cutoff radius of 3.2 Å in OVITO was used. RDF shows the probability of a 

particle at a distance ‘r’ from another particle and it can be used to check the SRO. The equation 

for the RDF g(r) is, 

GB sigma value Fe% Ni% Cr% Co% 

17 25.02 25.07 24.99 24.92 

19 25.05 25.06 24.93 24.97 

27 24.03 24.90 25.04 25.04 

33 24.92 24.96 25.15 24.97 

41 24.96 25.02 25.04 24.99 

43 25.02 24.98 25.02 24.98 

51 25.01 24.97 24.98 25.04 
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𝑔(𝑟) = lim
𝑑𝑟→0

𝑝(𝑟)

4𝜋(
𝑁𝑝𝑎𝑖𝑟𝑠

𝑉
⁄ )𝑟2𝑑𝑟

         (12) 

 

where r is the distance between a pair of particles, V is the total volume of the system, Npairs is the 

number of unique pairs of atoms, and p(r) is the average number of atom pairs found at a distance 

between r and r + dr [130]. As shown in Figure 24 the probability of existence of each of the pair 

are close to each other insuring randomized distribution of the elements in the HEA bi-crystal 

model after randomly assigning the four elements in the bicrystal models. The RDF shown is for 

GB sigma 33 but the results were consistent for other GBs. 

 

 

  

 

 

 

 

Figure 23. Visual inspection of the uniform distribution of each element in the bi-

crystal model for GB sigma 33. 

Figure 24. RDF function for GB sigma 33 at 77 K after randomly 

assigning the elements to the model. Elements 1, 2, 3, 4 are Fe, Ni, Cr, Co, 

respectively. 
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Mechanical Behavior 

The 77 K tensile mechanical behavior of the CoCrFeNi HEA bicrystals is first examined 

and compared to the results from the same study on the CoCrFeMnNi HEA bicrystals (from our 

collaborator). The stress strain curves from the mechanical testing at 77 K, for <110> for 

CoCrFeNi (this study) and CoCrFeMnNi (collaborator) are shown in Figure 25.  

 

 

 

 

 

 

 

 

 

 

 

 

As seen from the stress strain curves, different grain boundaries resulted in different stress-

strain curves for each alloy bicrystal. Overall, yield strength of CoCrFeNi HEA were higher than 

that of CoCrFeMnNi, which matches with what is observed from experiments [20,131]. Generally, 

the mechanical behavior of the two HEA are similar to austenitic steel [11,20,117].   

Figure 25. Stress-strain curves for CoCrFeNi and both CoCrFeNi and CoCeFeMnNi bi-

crystals with different <110> symmetric grain boundaries 
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From the manufacturing and cast-ability point of view, manganese severely partitions into 

liquid region during the manufacturing having  a solidification partitioning factor of less than one 

[132]. From the corrosion point of view, adding manganese to CoCrFeNi impairs corrosion 

resistance of the solid solution and deteriorates the pitting corrosion of the alloy as shown 

in Figure 26 [5]. From the mechanical properties point of view, adding manganese lowers the 

yield and ultimate strength and therefore it is detrimental to the strength [11,19,20,117,131], also 

observed from the this research for all of the GBs studied. Both CoCrFeNi and CoCrFeMnNi 

showed promising properties to be used at cryogenic temperatures but overall CoCrFeNi HEA is 

a better candidate. 

 

 

Figure 26. SEM and EDS micrographs of Pits formed at 75 °C at applied potentials of 

+0.2 V vs. SCE in 0.1 M NaCl on (a1–3) CoCrFeNi and (b1–3) CoCrFeMnNi [5]. 
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To further investigate the effect of the geometry of GBs on the mechanical behavior of the 

CoCrFeNi HEA bicrystals, the yield stress as a function of GB misorientation angle (twist angle) 

are shown in Figure 27. An overall decreasing trend of the yield strengths with the increase in the 

GB misorientation angle is observed. The GB with the sigma value of 17 corresponding to the 

highest misorientation angle of 86.6º had the lowest yield strength of 8.89 GPa. The GB with the 

sigma value of sigma 51 corresponding to the lowest misorientation angle of 23.07 had the highest 

yield strength of 9.59 GPa. There are two discrepancies observed for GBs with sigma values of 33 

and 43 with the corresponding misorientation angles of 58.98º and 55.88º. 

 

 

 

 

 

 

 

 

 

 

Deformation Mechanism 

For all of the CoCrFeNi HEA bicrystals, the partial dislocations nucleated from the GBs 

and further grew in the bulk crystal. This facilitated the nucleation of deformation twins and 

confirmed GBs as nucleation sites of deformation twins as also observed experimentally [13]. As 

a demonstration the GB region of the sigma 33 GB bicrystal is shown as the dislocations and 

Figure 27. Yield strength versus misorientation angles of the GBs for 

each of the CoCrFeNi bicrystals tested under tension at 77K 



69 

 

further deformation twins are nucleating from the GB (Figure 28). The other GBs showed the same 

deformation nucleation behavior.  

 

5.4 Conclusions 

Using MD simulations, the tensile behavior of CoCrFeNi HEA bicyrstals with different 

symmetric twist grain boundaries were studied at 77 K and compared with the results from 

CoCrFeMnNi HEA bicrystals. Addition of Mn to CoCrFeNi HEA is detrimental to the yield and 

ultimate strength observed from experimental and MD modeling studied. Also adding Mn is 

detrimental for manufacturing, corrosion, and strength of the material. Therefore, overall, the 

performance of the CoCrFeNi HEA a better than CoCrFeMnNi HEA. Twin nucleation started from 

the GBs, confirming GBs as preferential sites for twin nucleation. GB types affect the deformation 

twin behavior of the HEA bicrystals. Overall, with the increase of the misorientation angles the 

yield strength and the strength for twin nucleation decrease. The results of this research confirmed 

the effect of the GB types on twin nucleation in low stacking fault energy fcc HEAs and can further 

be used in GB engineering to populate the alloy with the preferential GBs. 

Figure 28. The grain boundary for the CoCrFeNi bicrystal with sigma 33 region is 

shown with the Shockley partial dislocation shown in green and the HCP phase shown 

in red. Demonstrating the nucleation of partial dislocations and deformation twins. 
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CHAPTER SIX: EFFECT OF TEMPERATURE AND GRAIN BOUNDARY ELEMENTAL 

SEGREGATION ON THE MECHANICAL BEHAVIOR AND DEFORMATION 

MECHANISMS IN COCRFENI HIGH ENTROPY ALLOYS 

 

Parts of this section has been used as part of a journal paper. 

6.1 Background and Motivation 

In general defects in the lattice are thermodynamically preferable sites for solution trap, 

and therefore elemental segregation when sufficient solute diffusion occurs. Grain boundaries in 

metal alloys are defects that affect material properties such as tensile strength, strain hardening, 

fatigue resistance, and fracture toughness [133,134].  

Grain boundaries are planar defects and require 5 parameters to be characterized and they 

cannot be considered as scalar objects having homogeneity. Therefore, specifically in HEAs, grain 

boundaries are considered as potential sites for elemental segregation. Experimentally, to explore 

the chemical homogeneity and possible elemental segregation down to the atomic level, local 

electrode probe tomography (APT) can be used (Figure 29)  [59,135,136]. 

 

 

 

 

 

 

 

 

 

 
Figure 29. Characterization of non-equiatomic Fe40Mn40Co10Cr10 HEA using 

(a) SEM and EDS, (b) EBSD, and (c) APT [59]. 
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Computationally Frolov et al. [137] and Zhu et al. [138] developed performed a grand-

canonical GB structure search and identify a GB phases with different structures in pure metals. 

Also, Wynblatt and Chatain [139] in a recent computational study have shown using MCMD 

simulations that both Cr and Mn segregate to GBs in the CoCrFeMnNi HEA. Nano-scale elemental 

segregation as a potential factor affecting twin nucleation at grain boundaries is an important 

consideration that has not been studied in HEAs. 

 In the previous chapter the effect of GB type was investigated. In this study, the bicrystals 

with different <110> symmetric twist GBs introduced in the previous chapter were chemically 

equilibrated using Monte Carlo molecular dynamics (MCMD) simulations. Then the bicrystals 

were tested under tension at three different temperatures of 77K, 300K, and 600K using molecular 

dynamics simulations to answer the following research questions: 

• Does any of the Co, Cr, Fe, and Ni segregate at the GB in CoCrFeNi HEAs? 

• Does elemental segregation at GBs influence the twin nucleation for different GB 

types?  

The results of this research further can be used for designing and developing HEAs with 

improved properties through GB engineering and segregation engineering. 

6.2 Materials and Methods  

The bicrystals with the different symmetric twist GBs introduced and developed in the 

research presented in Chapter 5 are going to be used in this research. The sigma values, 

misorientation angle and the upper and lower crystal x-axis is given in Table 7. 

Monte Carlo Molecular Dynamics 

To study the elemental segregation at the GB and its effect on the twinning behavior of the 

alloy before running the tensile tests the system was chemically equilibrated using Monte Carlo 
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molecular dynamics (MCMD). MCMD is possible in LAMMPS using the atom/swap Fix Style 

command. This fix performs MC swaps of pairs of atoms. “fix nvt” was used to move all the atoms 

in the simulation domain with the regular time integration displacement which results in MCMD 

simulation. In the case of fix nvt the Nose-Hoover style equation of motion generate positions and 

velocities are sampled from canonical ensembles [124–128]. The potential energy, and the total 

energy were evaluated prior and after the MCMD runs. A MATLAB code was written to plot the 

change in elemental distribution along the y-axis of the simulation box prior and after the MCMD 

runs by cutting several bins parallel to the GB. 

 
Table 7. Sigma values, corresponding misorientation angles, and the upper and lower crystals x-axis for 

all the grain boundaries. 

 

 

 

 

 

 

 

 

 

 

 

Mechanical Testing 

Prior to the mechanical testing the system was relaxed at the desired temperatures using 

the NPT ensemble. Nose-Hoover style isothermal-isobaric (npt) fix command was used [124–128]. 

The 77K, 300K, and 600K thermal equilibration simulations were run using the aniso setting to 

have the x, y, z, dimensioned controlled independently for 300000 steps (300 picoseconds). 

 The mechanical tests of uniaxial tension were performed with the strain rate of 5×108 s-1 

at the desired temperatures for each of the grain boundaries and using the NPT ensemble the 

pressure in the transverse directions was set to be zero. Layers of atoms were fixed on the top part 

Sigma Misorientation Angle [hkl] x-upper/ [hlk] x-lower 

17 86.60 [22̅3̅]/[2̅23̅] 

19 26.53 [33̅1̅]/[3̅31̅] 

27 31.6 [11̅5̅]/[1̅15̅] 

33 58.98 [22̅5̅]/[2̅25̅] 

41 55.88 [44̅3̅]/[4̅43̅] 

43 80.63 [33̅5̅]/[3̅35̅] 

51 23.07 [55̅1̅]/[5̅51̅] 
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and bottom part. The atoms positions in these parts were fixed relative to each other. The thickness 

of this fixed part is around 25 Å and was used to impose the forces on the dynamic atoms and as 

imposed boundary conditions, Figure 22. The bottom part did not move during the simulation and 

the top part will move with the applied velocity to mimic the experimental tensile test. Periodic 

boundaries were used along the x and z dimensions for the simulation box. But along for the y-

direction the shrink-wrap boundary condition was used for the mechanical testing. The tensile tests 

were run for 1000000 steps (1000 picoseconds). 

Post Processing 

After the mechanical tests, the output data was used and post-processed to plot the stress-

strain curves and find the material properties. Stress was found using the pressure in the y direction 

output from LAMMPS rescaled based on the dynamic portion. The pressure computation in 

LAMMPS is on the entire systems of atoms using the equation below [129]: 

𝑃 =
𝑁𝑘𝐵𝑇

𝑉
+

∑ 𝑟𝑖∙𝑓𝑖
𝑁′
𝑖

𝑑𝑉
      (13) 

where N is the number of atoms in the system, 𝑘𝐵 is the Boltzmann constant, T is the temperature, 

d is the system dimension, V is the volume of the system, and 𝑟𝑖 and 𝑓𝑖 are the position and force 

vector of atom i. As the top and bottom of the bi-crystals are fixed the pressure calculated by 

LAMMPS needs to be rescaled. Strain was calculated from the change in length in the y direction 

over the initial length not considering the fixed parts.  Using the dump files and in OVITO the 

dislocation extraction algorithm (DXA) was used to analyze the dislocations. The centrosymmetric 

parameter, common neighbor analysis (CNA), and polyhedral template matching (PTM) algorithm 

were used to find the crystal structures and the orderings. 

6.3 Results and Discussion 

Chemical Equilibrium Results 
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After the MCMD runs, the temperature, total energy, and potential energy have been 

plotted versus the steps of MCMD simulations and are shown in Figure 30 for GB with sigma 33 

at temperature of 77 K, 300 K, and 600 K. The results for other grain boundaries were similar. Due 

to the high entropy of configuration in these alloys, reaching to the chemical equilibrium and 

lowest energy state is not expected. As observed in Figure 31 the volume of the system changes 

with the MCMD simulations. Increase in the volume is observed with the decrease in potential 

energy. 

Figure 30. Temperature, total and potential energy versus the steps during the MCMD 

simulations for GB with sigma of 33 at (a) 77 K, (b) 300 K, and (c) 600 K. 

 

(a) (b) 

(c) 
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The distribution of the elements along the loading direction (y-direction) was plotted for 

the two cases as well as for before running any MCMDs using the snapshot dump files providing 

each elements configuration within the simulation box. A MATLAB code was written to extract 

the information from the snapshot dump file and plot the elemental distribution along the y-axis. 

In the dump files the atom coordinates are written in the scaled format from 0 to 1 and therefore 

Figure 31. GB1 with sigma 33, at 77 K results from 881800 MCMD runs, including (a) 

the temperature, (b) the potential, and total energy, and (c) the volume of the system. 

 

(a) 

(b) 

(c) 
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this scaled number should be multiplied by the length of the box in each direction and then be 

added to the lower dimension of the box in that direction.  

The number of bins was chosen to be 32 such that, the elemental percentage change can be 

captured for the GB region. This was based on this consideration that the boundary thickness is 

roughly ten layers of atom (20 Å) [140]. The number of bins was programmed to be modifiable in 

case of additional/unforeseen considerations. The y-axis length of the box and the number of atoms 

for GB1 (sigma 33) at 77 K before, at the 882000, and at 891000 steps of MCMD were 619.08 Å 

and 774048 respectively. The graphs of the elemental percentages are shown in Figure 32 for the 

three snap shots. The bin related to the GB is enclosed by red dashed lines. It can be observed from 

the graphs that before running the MCMD simulations, at the GB bin, the elemental percentages 

of Fe, Ni, and Co, were in the same range but for Cr this percentage is higher, After MCMD runs 

the GB became more Cr-rich and Ni-deficient. This trend continues as more MCMD simulations 

are run. It is also noteworthy that although this trend on increase in Cr and decrease Ni was 

observed, this change did not significantly affect the number of atoms in the GB bin. In the 

boundary bin the number of atoms was roughly 24186 therefore the Cr element percentage in the 

GB bin changed from 25.9% to 26.1% to 27.4%.  

Mechanical Behavior 

The mechanical tests were run for all the GBs at the three different temperatures of 77K, 

300K, and 600K, using the restart files from MCMD runs. The stress-strain curves are shown for 

each GB at the three different temperatures in Figure 33. The mechanical properties for all the 

grain boundaries at different temperatures, modulus of elasticity and yield strength are shown in 

Table 8. In order to find the modulus of elasticity, due to the elastic region being non-linear, region 
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of the curve before the yield point was selected, a second order degree polynomial was fit to the 

data for different ranges of data from the beginning to the yield point and then averaged. 

Figure 32. Elemental distribution along the y-axis length of the simulation box, for GB1, at 77 K, (a) before MCMD 

runs, (b) after 882000 and (c) after 891000 MCMD runs. Grain boundary region is enclosed by the red dashed line. 

 

(a) 

(b) 

(c) 
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 Figure 33. Stress-strain curves for the seven GBs and at three temperature (a) 77 K, (b) 300 K, and (c) 600 K. 

 

 

 

(a) 

(b) 

(c) 
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Table 8. Mechanical properties for all the GBs and at all the temperatures for the uniaxial tensile test. 
 

 

The stress strain behavior and material properties were different for different GBs and for 

the different temperatures for each of the GBs. Yield strength and yield stress increased with the 

decrease in temperature for all the GBs. The modulus of elasticity increased with the increase of 

temperature. Considerable softening generally occurs at temperatures above about 0.6 of the 

absolute melting point of an alloy. The melting point of CoCrFeNi is 1700 K [141] and therefore 

tensile tests were done at 1050 K for two of the GBs (sigma 27 and sigma 19) to capture the trend 

for the modulus of elasticity with the increase of temperature. As expected, the modulus was lower 

than that of all the other three temperatures for both GBs tested.  

Sigma Misorientation 

Angle 

Temperature 

[K] 

Modulus of 

Elasticity 

[GPa] 

Yield 

Strength 

[GPa] 

Yield 

Strain 

% 

 

27 

 

31.6 

77K 170.2±0.5 9.17 6.8 

77K, 2nd trial 170.4±1.0 9.08 6.6 

300K 173.9±0.8 7.69 5.3 

600K 179.3±0.6 5.96 4.2 

1050K 169.3±0.7 4.88 3.6 

 

19 

 

26.53 

77K 166.7±0.5 8.3 6.6 

300K 176.5±0.5 7.43 5.3 

600K 177.8±0.7 5.95 4.1 

1050K 165.8±1.2 4.92 3.8 

 

17 

 

86.60 

77K 187.6±0.8 9.76 6.8 

300K 190.2±0.6 9.31 6.1 

600K 191.1±0.2 7.94 5.2 

 

51 

 

23.07 

77K 165.7±0.4 7.92 5.9 

300K 174.4±0.3 7.44 5.3 

600K 176.2±0.8 5.93 4.2 

 

43 

 

80.63 

77K 180.9±1.1 10.10 6.9 

300K 189.3±0.3 8.35 5.4 

600K 190.5±0.3 6.87 4.5 

 

41 

 

55.88 

77K 177.6±0.9 9.67 6.7 

300K 186.9±0.5 7.74 5.1 

600K 186.4±0.6 7.12 4.8 

 

33 

 

58.98 

77K 181.1±1.1 10.45 7.3 

300K 186.6±0.5 8.46 5.6 

600K 188.1±0.2 7.62 5.0 
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To further investigate the effect of the geometry of GBs on the mechanical behavior of the 

CoCrFeNi HEA bicrystals, the mechanical properties as a function of the GB misorientation angle 

(twist angle) at the three different temperatures are shown in Figure 34. The modulus of elasticity 

for all the temperatures increased with the increase in misorientation angle except for sigma 27 

and sigma 33 with the corresponding misorientation angles of 31.6º and 58.98º. Yield strength and 

yield stress also show an overall increase with the increase of the misorientation angles with 

discrepancies specifically for the 77 K results. 

Deformation Mechanism 

To investigate and characterize the activated deformation mechanisms, the dump files 

generated during the mechanical testing were looked at using OVITO. Polyhedral template 

matching (PTM) analysis was used to determine the atomic structures. Stacking faults (SFs) were 

found based on HCP structure in the fcc phase. The onset of the Shockley partials and further the 

nucleation of SFs were correlated with the corresponding stresses. Finding the activated 

deformation systems, and therefore the Schmid factors, the critical resolved shear stresses for 

deformation twin nucleation were found for each GB and at each temperature. 

For sigma 27, 77 K, 300K, and 600 K the simulation box showing the dislocations and SFs 

have been shown for three different stances, one from the elastic region, one from the yield region 

and one from the plastic region (Figure 35).  Also, the GB has been zoomed in to show the 

nucleation of SFs and deformation twins and their systems (Figure 36). The results were similar 

for the other GBs and the results for all the GBs are shown in Table 9. 
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(c) 

Figure 34. (a) Modulus of elasticity, (b) yield stress, and (c) yield strain % 

versus the GBs’ misorientation angle at three different temperature. 
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(a) 

(b) 

(c) 

Figure 35. Simulation system during the tensile test, red color is associated with 

the deformation twins corresponding to the elastic region, the yield region, and 

the early plastic region for GB sigma 27 at (a) 77K, (b) 300K, and (c) 600K. 
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1/6[2 -1 -1] 

1/6[-2 1 -1] 

Figure 36. The grain boundary region is shown with the Shockley partial dislocation shown in green and the HCP 

phase shown in red on for GB 27 at (a) 77K, (b) 300K, and (c) 600K. The Burgers vectors of the activated 

systems is shown in light pink for 77K. 

 

(a) 

(b) (c) 
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As seen in Figure 36 the Burgers vector of activated systems in the two grains of the bi-

crystal is shown to be 1/6[2 -1 -1] and 1/6[-2 1 -1] which are both in the direction of twin systems 

in fcc crystals. For all the GBs studied, the Shockley partial dislocations started nucleating from 

the GBs. With the growth of the Shockley partials in the bulk crystal, stacking faults were left 

behind which eventually nucleated the deformation twins when the resolved shear stress reached 

the CRSS for twin. 

 
Table 9. Critical resolved shear stress (CRSS) for twining for all the GBs and at all the temperatures for 

the uniaxial tensile test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sigma Misorientation 

Angle 

Temperature 

[K] 

Yield 

Strength 

[GPa] 

CRSS for 

twin 

[GPa] 

 

27 

 

31.6 

77K 9.17 4.32 

77K, 2nd trial 9.08 4.28 

300K 7.69 3.62 

600K 5.96 2.80 

 

19 

 

26.53 

77K 8.3 3.91 

300K 7.43 3.50 

600K 5.95 2.80 

 

17 

 

86.60 

77K 9.76 4.60 

300K 9.31 4.39 

600K 7.94 3.74 

 

51 

 

23.07 

77K 7.92 3.73 

300K 7.44 3.51 

600K 5.93 2.79 

 

43 

 

80.63 

77K 10.10 4.76 

300K 8.35 3.94 

600K 6.87 3.24 

 

41 

 

55.88 

77K 9.67 4.56 

300K 7.74 3.65 

600K 7.12 3.36 

 

33 

 

58.98 

77K 10.45 4.93 

300K 8.46 3.99 

600K 7.62 3.59 
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 The CRSS for twin was different for each of the bicrystals showing the effect of the GB 

type on the twin nucleation behavior at all the three temperatures tested. The Shockley partials and 

further the deformation twins nucleation near a combination of the four elements Co, Cr, Fe, and 

Ni, but the majority of them nucleated near the Cr-rich regions. Therefore, the elemental 

segregation of Cr at the GB facilitated the nucleation of the deformation twin and can be used as 

a guidance in segregation engineering. 

6.4 Conclusions 

The simulation results suggest that symmetric twist GB types affect the mechanical 

behavior and material properties of CoCrFeNi HEA at different temperature. Modulus of elasticity 

increased with the increase in the misorientation angle. No direct trend has been observed between 

the GB misorientation angles and the yield stress and strain in this alloy. With the increase in 

temperature the yield strength, yield strain, and CRSS for twinning decreased, and the modulus of 

elasticity increased. At temperature close to the melting point of the alloy, the softening effect is 

captured and decrease in modulus of elasticity was observed. MCMD chemical equilibrium 

simulations resulted in the GBs being Cr-rich and Ni- deficient  Twin mostly nucleated from the 

Cr-rich regions and therefore doping the GB with Cr can positively affect the twin nucleation in 

this alloy although other considerations should be taken into account for instance the effect of on 

the GB corrosion behavior of this alloy.  
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CHAPTER SEVEN: SUMMARY AND CONCLUSIONS 
 

In this research experimental and computational approaches are used to further identify the 

underlying plastic deformation mechanisms in HEAs giving rise to their improved properties. High 

resolution digital image correlation and electron backscatter diffraction have been used to find the 

dislocation slip critical resolved shear stress in Al0.3CoCrFeNi polycrystalline under tension. The 

tensile yield strength was found to be 149.3 MPa and the modulus of elasticity was found to be 

190 GPa. The tensile room temperature slip CRSS was found to be 63±2 MPa based on the 

activated slip system of (-1 1 1)[-1 -1 0] which also had the highest Schmid factor of 0.42. 

Molecular dynamics and Monte Carlo molecular dynamics simulation have been used to 

identify the effect of different symmetric twist GB types and elemental segregation on deformation 

twins in CoCrFeNi bicrystals at three different temperatures 77 K, 100 K, and 300 K. Addition of 

Mn to CoCrFeNi HEA is detrimental to the yield and ultimate strength observed from experimental 

and molecular dynamics modeling. More twin nucleation and growth in CoCrFeMnNi caused it to 

be more ductile compared to CoCrFeNi when twinning nucleation and growth is accommodated. 

GB types affect the deformation twin behavior of the CoCrFeNi and CoCrFeMnNi HEAs.  

The MCMD simulation results suggest that symmetric twist grain GB types affect the 

mechanical behavior and material properties of CoCrFeNi HEA at different temperature. No direct 

trend has been observed between the GB misorientation angles and the mechanical properties in 

this alloy. With the increase in temperature the yield strength, yield strain, and CRSS for twinning 

decreased, and the modulus of elasticity increased. At temperature close to the melting point of 

the alloy, the softening effect is captured and decrease in modulus of elasticity was observed. 

MCMD runs resulted in an increase in the Cr concentration and a decrease in the Ni concentration 

at the GBs. 
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The results of this research help to further understand the underlying micro and nano-scale 

phenomena of the improved properties observed in HEAs, identify the preferential grain 

boundaries for twin nucleation at different temperature. Therefore, metal alloys with even better 

properties can be designed and developed using GB engineering and elemental segregation 

engineering. 

FUTURE WORK 

Experimental 

Further investigation of dislocation slip and deformation twinning nucleation and growth 

in fcc HEAs requires further electron microscopy on postmortem samples using transmission 

electron microscope (TEM). Although computationally the effects of temperature and GB type has 

been investigated in this research, experimentally further tensile tests at cryogenic temperature 

using HRDIC can further shed light into the twin nucleation preferential grain boundaries. Also, 

in order to exclude the effect of the existence of other grain on the deformation of each crystal and 

the CRSS for slip in the each of the crystals, single crystals of the alloy with different orientations 

can be used. 

Properties of HEAs can further be improved by designing the alloy such that it shows both 

TWIP and transformation induced plasticity (TRIP) behavior. Metastable TWIP/TRIP HEAs can 

be designed by tuning the SFE. The TRIP and TWIP effects, their interaction with dislocation 

plasticity needs to be studied and specifically with respect to the effect of the microstructure of the 

alloy. Therefore, another path to further enrich the information on the grain and sub grain level 

plastic deformation mevhanisms in HEAs in order to reach to improved physics based plasticity 

models of these alloys and to design improved HEAs is to focus on TWIP/TRIP HEA. 
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Computational 

Monte Carlo molecular dynamics (MCMD) can be further continued to ensure achieving 

chemical equilibrium in HEAs. Furthermore, the MCMD can be optimized using reinforcement 

learning techniques or machine learning techniques [142–145]. In MC the atoms are randomly 

chosen for swaps and therefore reaching the equilibrium/lowest possible energy is time consuming 

and computationally expensive. The choice of atoms being chosen for each swap can be modified 

at each step of the simulation based on the knowledge the system gains at each step [146]. 

Therefore, through reinforcement learning, MCMD simulation time can be reduced. 
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APPENDICES 

 

Appendix A: LAMMPS Codes 

Relaxation 

################################################ 

# initialize 

################################################ 

 

units metal 

dimension 3 

boundary p p p 

atom_style atomic 

atom_modify map array 

 

# read in input file 

read_data       hea1.data 

 

mass    1 55.85 

mass    2 58.69 

mass    3 52.00 

mass    4 58.93 

mass    5 54.94 

 

################################################ 

# Potential file 

################################################ 

pair_style meam/c 

pair_coeff * * library.meam Co Ni Cr Fe Mn hea.meam Fe Ni Cr Co Mn 

 

neighbor 2.0 bin 

neigh_modify delay 10 check yes 

variable Tdesird equal 77.0 

variable   Nsteps equal 300000 

variable DumpFreq equal 3000 

 

reset_timestep 0 

 

thermo         100 

thermo_style  custom step temp pe etotal pxx pyy pzz pxy pxz pyz press 

lx ly lz 

velocity all create ${Tdesird} 95812384 

fix 3 all npt temp ${Tdesird} ${Tdesird} 1.0 aniso 0.0 0.0 1.0 

 

dump mydump all atom ${DumpFreq}AnnealOut_*.dump 

dump_modify mydump sort id 

 

run ${Nsteps} 
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unfix 3 

 

print "Print restart" 

write_restart HEA_thermal_equilibrate.restart 

 

Mechanical Testing 

# Mechanical Tensile Test September 2020 

 

################################################ 

# Initializing  

################################################ 

 

units metal #units style is selected to be metal 

# For style metal these are dt = 0.001 picoseconds,skin = 2.0 Angstroms 
dimension 3 #running 3D simulation which is LAMMPS default 

boundary p p p #xyz boundaries are set to be periodic 

atom_style atomic 

atom_modify map array 

 

################################################ 

# Create System 

################################################ 

 

#read in restart file which is from the MCMD step 

read_restart       HEA_MC_882000.restart 

 

mass    1 55.85 #Iron 

mass    2 58.69 #Nickel 

mass    3 52.00 #Chromium 

mass    4 58.93 #Cobalt 

mass    5 54.94 #Mangenese 

 

################################################ 

# Potential file 

################################################ 

 

pair_style meam/c #modified embedded-atom method 

pair_coeff * * library.meam Co Ni Cr Fe Mn hea.meam Fe Ni Cr Co Mn 

 

neighbor  2.0 bin 

neigh_modify  delay 10 check yes 

 

variable Tdesird equal 77.0 #or 300K or 600k 

########################### 

# Equilibrating 

########################### 

 

thermo   100 

thermo_style custom step temp ke etotal press lx ly lz 
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velocity     all create ${Tdesird} 5812775 

fix          1 all npt temp ${Tdesird} ${Tdesird} 1.0 iso 0.0 

0.0 1.0 #isothermal-isobaric ensembles 

run    40000 #timestep= 0.001 picoseconds,40 picoseconds  

unfix   1 

 

################################################# 

# Mechanical Deformation Run 

################################################# 

 

reset_timestep 0 

change_box all boundary p s p #changing the boundary conditions 

 

################################################ 

#Top and bottom clamped regions 

#The other atoms are mobile 

################################################ 

 

variable bottomy equal -310 #slightly changes for each GB 

variable topy equal 310     #slightly changes for each GB 

variable    lbox equal ${topy}-${bottomy} #length of the box in y 

variable    limitbottom equal ${bottomy}+25 #25 A fixed 

variable    limittop equal ${topy}-25 #25 A fixed 

 

#defining the top and bottom fixed regions 

region lower block INF INF INF ${limitbottom} INF INF units box  

 

#the geometry is defined in simulation box units 

# A box value selects standard distance units as defined by the units 
#command, e.g. Angstroms for units = real or metal. A lattice value 

#means the distance units are in lattice spacings. The lattice command 

#must have been previously used to define the lattice spacings. 

 

region upper block INF INF ${limittop} INF INF INF units box  

 

group     lower region lower 

group      upper region upper 

#grouping the upper and lower fixed regions 

group   boundary union lower upper 

#defining the dynamic atoms 

group   mobile subtract all boundary 

 

###################################### 

variable strrate equal 0.0005 #strain rate=0.0005/psec=5*(10^8)/s 

variable vyvalue equal ${strrate}*${lbox-50} #velocity A/psec 

#240000 steps are sufficient to get to strain of 0.12 

#considering the experimental results strain 0.5 

#Nsteps (0.5/strain rate)/dt 

variable Nsteps equal 1000000  

variable ThermoOut equal 1000 

variable DumpFreq equal 2000 

variable NoutAvg equal ${ThermoOut}/100 
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thermo  ${ThermoOut} 

thermo_style custom step temp ke etotal press pxx pyy pzz lx ly 

lz 

 

#each component of the force on atoms of the group are set to 0 

fix    2 boundary setforce 0.0 0.0 0.0 

#lower set velocity is set to zero as the lower part is not moving 

#The units keyword is used by set and ramp. If units = box, the 

#velocities and coordinates specified in the velocity command are   

#in the standard units described by the units command (e.g. 

#Angstroms/fs for real units). If units = lattice, velocities are   

#in units of lattice spacings per time (e.g. spacings/fs) and 

#coordinates are in lattice spacings. 

velocity lower set 0 0 0 units box 

#the upper gripped part has a velocity in the y direction 

velocity upper set 0 ${vyvalue} 0 units box 

#the mobile part velovity ramps up  

velocity mobile ramp vy 0.0 ${vyvalue} y ${bottomy} ${topy} sum yes 

units box 

 

fix      10 all npt temp ${Tdesird} ${Tdesird} 1.0 x 0.0 0.0 1.0 

z 0.0 0.0 1.0 couple xz 

 

 

dump  mydump all atom ${DumpFreq} LoadingFrame_*.dump 

dump_modify mydump sort id 

 

run ${Nsteps} 
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