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ABSTRACT 

The growing interest in battery energy storage systems (BESSs) at both small-scale and 

large-scale levels in power grids highlights their significant roles in future power grids. 

The future grid in the presence of renewable resources such as hydro-power, wind, and 

solar energy face two major technical challenges; location of potential renewable sources 

and uncertainty, which can cause serious issues such as blackouts in power systems. 

However, in both cases, BESSs is one of the promising solutions. While small-scale battery 

energy storage systems can decrease the need for long-distance heavy load transportation 

in the power system, which is one of the primary reasons for the blackouts, large-scale 

BESSs can provide load frequency control to their fast response. A well-managed large-

scale battery integration to the power grid reduces load flow deviation in the tie-lines and 

frequency oscillations caused by small load disturbances. In general, the battery’s small 

time-constants, fast response, and high energy density creates a large spectrum of potential 

applications for BESSs in power systems.  

This thesis focuses on the battery integration to the power system in both distribution and 

transmission level to evaluate its potential impact on power grid; then, it focuses on the 

frequency regulation by taking the advantage of the small-scale and large-scale batteries.  

The first part of this research investigates the small-scale battery integration to the power 

system in the distribution level and its potential effects on the transmission level's 

frequency deviation. It is shown that the higher penetration level of the renewables can 

cause serious issues such as overvoltage, thermal, and frequency deviation issues in the 
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distribution and transmission levels under current tariffs. The load profile's sensitivity to 

the battery characteristics and its efficiency, and electricity tariffs are studied. Then, tariff 

modification as one of the promising tools for load profile adjustment is introduced to 

modify the customers' load profile and mitigate the frequency deviation. The results under 

modified tariffs are compared to the frequency control results in a small microgrid using 

model predictive control. 

In the second chapter, the effect of those new loads on the power flow and inter-area 

oscillation modes are studied. Then a servomechanism controller is designed to damp the 

inter-area oscillations. Considering the small time constant of the large-scale battery, we 

model a large-scale battery integration to the power system to study the effect of its 

integration on the power system's stability. Finally, centralized and decentralized hybrid 

controls are designed on the inverter's firing angle to manage the large-scale battery's active 

and reactive power to damp the oscillations. Results show a notable improvement on 

frequency deviations. 
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CHAPTER ONE 

INTRODUCTION  

1.1.   Overview and Motivation  

The United States has considerable potential renewable energy resources. A total potential 

capacity of more than 8000 GW land-based wind and nearly 7,000 GW capacity of 

concentrated solar power in its seven southwestern states can be named as two primary 

renewable resources [1]. US total electrical energy consumption in 2019 was about 4127 

terawatt-hours (Twh), which is less than 25 percent of potential energy that can be 

harvested in seven southwestern states [2]. However, developing renewable resources 

presents a new set of technological challenges to the power grids, including the locations 

of large-scale renewable resources that are usually far from population centers and the 

renewable generation's unpredictability and variability.  

A small level of renewables can be smoothly integrated into the power grids; however, 

accommodating more than approximately 30 percent of the electricity generation from 

these renewable sources will be challenging and require new approaches to develop and 

operate the power grid. Uncertainty and variability can be dealt with by switching in and 

out fast-acting conventional reserves, installing large-scale storage on the grid, or long-

distance transmission of renewable electricity to enable the access to larger pools of 

resources to balance regional and local excesses or deficits. At present, renewable 

variability is handled almost exclusively by ramping conventional reserves up or down 

based on forecasts. However, as renewable penetration level grows, storage and 
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transmission will likely become more cost-effective and necessary. As renewable 

generation grows, it will be most unlikely for the conventional resources to compensate for 

the renewables' variability. This issue will require the capture of electricity generated by 

wind, solar and other renewables for later use.  

The other challenge in the future grid will be the power transmission. Renewable sources 

are typically distributed over large areas in the upper central and southwestern US, far from 

demand centers in east and west coasts (Fig. 1). This means new strategies and new long-

distance transmission capability will be required to deliver enormous energy generated by 

renewables across the country to the demand centers.  

 

Figure 1. Separation between the renewable sources and demand centers [1] 

On the other hand, heavily loaded long-distance transmission lines increase the likelihood 

of the inter-area oscillations and blackouts in the power system. The American Physical 

Society (APS) proposed a long-term plan to the Department of Energy (DOE) with regard 

to the renewables’ integration to the power grid as follows [1]:  
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i) Extend the DOE/OE (Office of Energy) program on High-Temperature 

Superconductivity for ten years, with a focus on DC superconducting cables for long-

distance transmission of renewable electricity from source to market-based on the given 

road map (Fig. 2); 

ii) Accelerate R&D on wide bandgap power electronics for controlling power flow on 

the grid, including alternating to direct current conversion options and development of 

semiconductor-based circuit breakers operating at 200 kV and 50 kA with microsecond 

response time; and  

iii) Develop an overall strategy for energy storage in grid-level applications that guide 

regulators to recognize the value that energy storage brings to the grid's transmission 

and generation services. 

Considering the promising position of the battery in the future power grid, a 

comprehensive study on the effect of battery integration to the power system in both 

distribution and transmission level is required.  
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Figure 2. The proposed DC superconductor electricity pipeline for carrying large amounts of 

renewable power [1] 

This research has studied the impact of the battery integration's high penetration level on 

voltage and frequency deviation in the distribution system. In this subject, tariff 

modification is proposed to mitigate the battery integration's negative influence on the 

distribution level, especially on the voltage and frequency deviation. The results are 

compared to the Model Predictive Control (MPC) approach to evaluate the approach's 

effectiveness; yet, tariff modification is a complicated and time-consuming procedure. The 

higher penetration level of the renewables, under existing tariffs, in the distribution system 

will cause a higher power flow rate in the transmission level. To control the inter-area 

oscillations resulting from the power flow deviation in transmission level, we studied the 

inter-area oscillations damping scenario by employing the large-scale batteries in the 

transmission level.  
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1.2.   Opportunities and Challenges  

Considering interest in renewable energy, unmanaged renewables integration to the power 

system can cause severe issues in both distribution and transmission level such as; 

Distribution level 

Higher renewables under current tariffs encourage to charge and discharge at the same time 

intervals. This policy will be beneficial for both renewable owners and utilities in the 

renewables' lower penetration level. The distribution system will experience reverse power 

flow from the end-users toward the generation system in a renewable rich system. The 

existing distribution system is designed for one-way power flow from generation toward 

users, and feeders' capacity decreases as they become close to the end-users. As a result of 

existing electricity rating policy and distribution system structure, renewables integration 

into the distribution system can cause the following challenges:  

i) Voltage deviation 

ii) Thermal issues in distribution feeders 

iii) Frequency deviation in islanded microgrids 

iv) Unbalance system  

Transmission level 

The negative impact of the unmanaged renewables integration into the distribution level 

will not be limited to the distribution system and will affect the transmission level. Studies 

show that 30 percent of renewables integration causes higher load flow and puts higher 

stress on transmission lines. Also, load deviation causes inter-area oscillation in the power 
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system, which can cause serious issues to the generation system. These impacts can be 

summarized as:  

i) Higher peak to average ratio 

ii) Frequency deviation, mainly inter-area frequency deviation  

iii) Generator damage under load deviation stress 

iv) Voltage instability 

On the other hand, a well-managed renewables integration increases the resiliency and 

reliability of the system. Taking advantage of the renewables low inertia and fast response, 

we can control the system's power system response to fault occurrence. By utilizing 

renewables in power systems such as energy storage, generation sources need not be 

ramped up or down but can instead be run at optimal efficiency while energy storage 

accounts for variations in the demand.  In addition, BESSs can improve the reliability of 

supply during peak load periods, and BESSs can react to grid demand variations nearly 

instantaneously. BESSs also have the capacity to function over longer durations with a 

wide range of storage and power capacities [1][2]-[4].   

1.3.   Intellectual Merit  

This research focuses on battery integration into the power system and its potential to 

enhance the power system resiliency and reliability. In this regard, two important 

approaches have been taken; tariff modification for small-scale renewables integration to 

the power system by taking advantage of the small-scale battery; and employing the large-

scale battery in transmission level as a fast response control system to inject/absorb 
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deficit/surplus power to maintain system stability. In this subject, sensitivity analysis has 

been done to highlight the most significant factors that can serve the research purpose.  

1.4.   Broader Impacts 

This dissertation is expected to impact electricity customers by helping them to select the 

optimum renewable and battery size to serve their requirements, and utilities to have a clear 

assessment of future power grid in their trattorias to define and impose proper tariffs for 

each sector to improve their services without compromising the system reliability or their 

customer satisfaction. Third-party renewable owners will benefit from this research to 

evaluate the potential investment opportunities in both distribution and transmission levels. 
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CHAPTER TWO 

SMALL-SCALE BATTERY INTEGRATION TO THE DISTRIBUTION SYSTEM 

2.1.    Introduction  

Distributed energy resources (DERs), especially battery energy storage systems (BESS), 

are one of the best solutions to overcome power shortage even if the grid is disconnected 

momentarily. In recent years, utilities have been offering incentive programs and rebates 

to encourage their customers to install solar photovoltaic (PV) panels and battery storages 

on their properties. Batteries are fast-growing among the other renewables due to their 

multi-objective functionality. Battery energy storages provide both power injection and 

absorption into the power grids and have a very fast response time [3]-[4]. A well-managed 

renewables integration to the power systems leads to a more reliable power delivery and 

enhances the performance and power quality [5]-[7]. By employing the DERs in power 

grids, billions of dollars can be cut out of the investment to renovate or upgrade the power 

system. It is shown that the optimal integration of the DERs to the power grid can reduce 

the peak to the average ratio (PAR) in the power system [8]-[10]. Also, DERs integration 

to the power grid will minimize power loss [11] and enhance the power grid characteristics 

such as power quality [12], system resiliency, and stability [13]. However, unstudied DERs 

integration to the power grid, especially the small-scale renewables with high penetration 

level, can cause serious frequency, voltage, and thermal issues in the distribution system 

[14]-[16]. Renewables connection to the power grid, especially in the distribution level, 

will change the feeder loading profile which results in changes in voltage profiles including 
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voltage rise and unbalance, frequent operation of load tap changers (LTCs), line voltage 

regulators, and reactive power flow as a result of voltage regulation activities [17]- [18]. 

Other adverse effects of the renewables integration to the power grid can be summarized 

as overcurrent and overvoltage protection [19], including mis-operation of overcurrent 

protection equipment and temporary overvoltage in the feeders, higher active and reactive 

power losses during the relatively large reverse power flow [20] and reliability and 

operation of the power system. Moreover, due to the application of power electronic 

converters/inverters to integrate the renewables to the power grid, harmonics are produced 

and injected into the power system [14],[16].  

With the approximate 50 percent share in the electricity demand market, the residential and 

small commercial sectors play a substantial role in the future power grid development road 

map. This role will be intensified in the presence of the electric vehicles (EVs) in the future 

power grid. Considering the large number of residential and small-scale commercial 

customers, and their market share in electricity consumption, to implement the small-scale 

renewables in those customers' premises, a comprehensive study is required, particularly 

on battery sizing, price, and optimum exchange of the power to reduce the cost of DERs 

integration for both utilities and customers.  

Many demand-side managements (DSM) techniques have been identified in [9],[10], [18]- 

[22]. Some of these techniques are the load priority techniques [21], [22], the end-use 

appliances control techniques [10], [19], the load shifting and valley filling techniques, and 

the tariff [21], [22]. As one of the demand-side management strategies, electricity tariffs 

are used to modify electricity consumers' behavior. Smart electricity tariffs highlight 
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critically important hours of a year by introducing an extremely high rate to limit the 

demand within the network capacity [23]. It has been shown that the price of electricity by 

itself does not show a significant impact on electricity consumption [24]-[25]. However, it 

can play a significant role in adapting the consumers' electricity consumption behaviors in 

the presence of battery energy storage systems and electric vehicles [26]-[27].  

In the majority of existing literature, a battery is sized based on load shaving [28], [29], 

and frequency control [30]-[31] in the power grid. Battery sizing and its integration to the 

distribution have been studied to minimize the electricity cost for the customer without 

paying deserved attention to the distribution system [28], [29]; or for load shaving and 

frequency regulation in the power grid without considering the customers' interest [30], 

[31].  

2.2.    Problem Statement  

Considering that battery size directly affects the load profile, we need to find an optimum 

size of the battery by considering both sides' (customers and utilities) interests. In this 

regard, our main objective in this section are: 

i) to propose the optimum size of the small-scale battery considering the customers' and 

utilities' interests;  

ii) to study the potential effect(s) of the renewables on a distribution feeder; 

iii) to investigate the sensitivity of the new load profile to the tariff modification and battery 

characteristics; 
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iv) to propose novel tariffs to improve the power quality such as voltage profile and 

frequency deviation in the power system.  

To evaluate the effect of the small-scale renewables' integration on the power system, 

especially on the distribution system, we need to start our study from the end-users. For 

this purpose, a residential household employing solar panels, electric vehicles, and 

stationary batteries in their house (Fig. 4) is chosen as our case study model. The solar 

panels generate electricity to be used at home, and the surplus can be stored in the batteries 

(EV and the stationary battery) or sold back to the power grid. Double arrows represent the 

battery and EV, to emphasize that they can be the consumer or supplier of electrical energy 

to the home/power grid depending on their states of charges (SOCs). The total energy 

exchange between customer and power grid, !! , is measured in the point of delivery 

(POD). !!  is also considered as customer's new load profile from the power system's 

perspective. The customer's load consumption data and solar output power is provided 

from the EPRI website [32].  

 

Figure 3. Schematic of residential load connected to the grid in the presence of the renewables 
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EV’s daily trip is modeled by an imaginary load which simulate the EV’s battery state of 

charge deviation during the trip.  The case study customer’s load consumption, solar output 

and EV virtual load for a residential house are shown in Fig. 4. For the sake of simplicity, 

we assume that EVs can connect to the grid for charging or discharging purpose just from 

home.  

 

Figure 4. Original load, solar output and EV’s virtual load 

 

In the next step, to evaluate the effect of the high penetration level of the renewables on 

the distribution system, the IEEE 123 node feeder (Fig. 5) is considered as the case study 

feeder in which 30 percent of the residential customers are willing to employ renewables 

in their premises. This feeder is a 4.16 kV, relatively short (~7.5 circuit miles total) feeder, 

adapted to serve 650 customers with a peak load of 4 MW. The feeder includes the common 

characteristics that are installed in real networks. Based on the results from the individual 

customers' optimization, we will investigate the power loss and voltage deviation of the 

feeder.   
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Figure 5. Schematic of case study distribution feeder (IEEE 123 node) 

 

2.3.     Battery Sizing  

Battery sizing is a challenging subject, and it depends on the renewables and battery storage 

penetration level in the power grid [9], [17]. Customers with large batteries will be able to 

sell more power to the grid, which is not necessarily beneficial for utilities in a renewable 

rich power grid. To prevent over-estimating the battery's size, we use the Zero Net Energy 

(ZNE) building policy in which customer and utility have zero net energy exchange.  

To calculate the stationary battery's size, we exclude the electric vehicle from calculation. 

We consider load consumption and solar output at each hour of the day as a random 

variable with 108 samples (54 weeks' data consisting of minimum and maximum load 

information). A probability density function (PDF) is derived for each hour. Using the PDF 
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function, we can form the statistical distribution for the power consumption (load) of our 

case study to calculate an upper and lower boundary for the load. To avoid over-estimating 

the battery's size, we consider upper and lower bounds for load consumption and PVs' 

output for specifically given expected values. A maximum and minimum expected limit 

for power consumption is considered using the obtained probability distribution based on 

a given reliability margin. In this study, the expected value is considered 85 percent.  

 

Figure 6. Maximum and minimum load consumption profile 

Upper and lower expected load consumption for the given expected value are shown in 

Fig. 6. Similar maximum and minimum expected limits are defined for solar generation, 

and the results are depicted in Fig. 7. A battery is sized based on the customer's expected 

reliability level. For the defined maximum expected load consumption and minimum 

expected solar output, reliability of the battery performance will be 80 percent for this case 

study, which is calculated based on  !"!"# ≥ !
"!"#$%
# 	%, the probability of load consumption 

being higher than the maximum limit, and !(!$%# ≤ !$%!&'$%
# ), the probability of solar 

output being lower than the minimum limit. The 80 percent reliability of battery means that 
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in any circumstances of load consumption and solar panel output, 80 percent of the time, 

the battery will provide the household load consumption demand. 

 

Figure 7. Maximum and minimum solar generation 

Considering the ZNE policy, the objective function is defined such that the power exchange 

between the power grid and customer be equal to zero. Battery capacity ()&) is also added 

to the objective function to achieve the battery's minimum size. Objective functions and 

constraints stated as 

*'()) = ,-.(/.∑ ‖!!#‖**+

#,- + )&)                                                                             (1) 

!"# = !
"!"#$%
#                                                                                                                (2) 

!$%# = !$%!&'$%
#                                                                                                              (3) 

−!
._&

# ≤ !
&

# ≤ !
0_&

#                                                                                                       (4) 

!!# = !$%# −	!"# + !&#                                                                                                   (5) 

567
&

#1- = 567
&

# +	(!
&

# ∗ ∆:/)&)                                                                                  (6) 
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!", !$%, and !& are load consumption, solar output and battery (dis)charge power 

respectively and !
0_&

#  and !
._&

#  represent the upper and lower limits for the stationary battery 

charge and discharge power and / is a weighting factor to push exchanged power to zero.  

Considering the maximum (dis)charging power of 5 kw for the battery, the optimum battery 

capacity for the case study customer is calculated as 30 kwh. For the rest of the study we 

will consider the above-mentioned data, and an electric vehicle battery capacity of the 75 

kwh with 6 kw charge/discharge power. 

 

2.4.   Battery Integration to the Distribution System 

Considering the optimum size of the battery, in order to study the effect of the renewables 

on the exchanged power between the consumer and power grid at POD, tariff policy is 

required. We consider three different rating policy to evaluate the effect of the small-scale 

battery integration on the power system. Also, to assess the effect of a higher level of 

renewables penetration in the distribution system, we assume that the 30 percent of 

customers connected to the case study feeder are willing to employ renewables in their 

house. The optimization is formulated for one month and the results are shown for one 

week to be traceable. 

 2.4.1.  Time of Use (TOU) Electricity Rate 

In the time of use rating policy, customers pay a higher rate for their electricity 

consumptions during the peak time compared to the off-peak time during the week and 

weekends. Also, the charge and discharge rates for the EVs are similar to the rest of the 
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loads. We consider that the EV is connected to the grid from home. This connection is 

limited to specific time during the night from 8:00 pm till 6:00 am.  

The optimal electricity consumption price is formulated as the following objective function 

*234 = ,-.	[∑ !!# . =#2

#,- ]                                                                                     (7) 

where, !!#  is the exchanged power between the customer and power grid at POD, and =# is 

the energy consumption rate. =# has two values of =$ =6.6 ? @Aℎ⁄  for peak hours (1pm-

7pm) and =5$ =5.4 ? @Aℎ⁄ 	for off-peak hours. The exchanged power equation is: 

!!# = !"# − !$%# + !&# + !6%# + !7_(8#                                                                          (8) 

Where !6%#  is the (dis)charging power for EV and !7_(8#  is the virtual load which defines 

the EV’s monthly trip profile. D is the optimization horizon such as daily, monthly, or 

yearly duration. In this study we consider T=720 for one-month study with ∆: = 1ℎ 

optimization time interval. The optimization in (7) is subjected to the following constraints:  

−!
._(8

# ≤ !6%# ≤ !0_(8#                                                                                                 (9) 

−!
._&

# ≤ !
&

# ≤ !
0_&

#                                                                                                     (10) 

567
&

#1- = 567
&

# +	(!
&

# ∗ ∆:/)&)                                                                                (11) 

0.1 ≤ 567
&

# 		≤ 0.9					                                                                                                (12) 

567&- = 567&2                                                                                                             (13) 

5676%#1- = 5676%# +	(!6%# ∗ ∆:/)6%)                                                                           (14) 

5676%# ≥ 0.5	       at t=7:00 am        and                          

5676%# ≥ 0.5		       at t=5:00 pm                                                                                (15) 

0.1 ≤ 5676%# ≤ 0.9                                                                                                  (16) 
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!0_(8#  and !
._(8

#  represent the upper and lower limits for the EV’s battery. )6% is the total 

battery capacity in EV. 5676%#  represents the state of charge for the EV’s battery which 

should stay between 10 and 90 percent to satisfy given constraint in (7) at all time. The 

state of charge of the stationary and EV batteries should be similar at the beginning and the 

end of the month.  Also, to satisfy minimum state of the charge for morning and afternoon 

trips of the EV, the battery of EV must have at least 50 percent charge at 7:00 am and 5:00 

pm.  

The optimization results for the exchanged power between the customer and distribution 

system is shown in Fig. 8. It is shown that the exchanged power between the customer and 

the distribution system has been increased by 250 percent. Distribution system experience 

two positive peaks before and after peak time and one negative peak during the peak time; 

also, sudden deviations occurs under TOU policy in the presence of the batteries. 

 

Figure 8. Exchanged power profile at POD in TOU rating policy 

Load profiles are for the EV and stationary batteries are presented in Fig. 9. Both batteries 

taking the advantage of the electricity rate difference between the peak and off-peak time 
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to charge and discharge up to their maximum capacity to minimize the cost function. 

 

Figure 9. Stationary and EV batteries (dis)charging profile in TOU policy 

 2.4.2.   Maximum Demand (MD) Electricity Rate 

In maximum demand rating policy as formulated in (17), customers should pay additional 

fee for their maximum electricity demand during the bill rendering period in addition to 

their energy consumption price.  

*9: = ,-.	[(∑ !!# . =#) + I	. !!;<=2

#,- ]                                                                        (17) 

!!# = !"# − !$%# + !&# + !6%# + !7_(8#                                                                               (18) 

!!;<= is the maximum exchanged power between the customer and distribution system at 

POD, I = 300	 ? @A⁄ 	 is the maximum demand fee and optimization results are presented 

in Fig. 10 and Fig. 11 for exchanged power and batteries’ load profile.  

The maximum exchanged load under MD rating policy is less than the original load, 

however, negative power flow and sudden changes in load still are serious issues. Batteries 

in this case charge/discharge so that the maximum exchanged power stays at lowest 

possible rate in order to minimize the customers’ total bill. 
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Figure 10. Exchanged power profile at POD under MD rating policy 

 

Figure 11. Stationary and EV batteries (dis)charging profile under MD rating policy 

Comparing the results in Figs. 8- Fig.11 indicate that TOU policy causes higher positive 

and negative peak, almost twice of the original load peak. In distribution feeders with a 

higher penetration level of the renewable integration, the new peak can exceed feeders’ 

capacity. Also, as a result of reverse power flow, distribution feeders which are designed 

for one-way power flow from generation toward end use customers, experience 

overvoltage and thermal issues. Moreover, sudden load deviation mainly in higher voltage 

level will cause large power flow in transmission level and frequency deviation in the 

power grid. MD can be considered as the best rating policy among all three tariffs, based 
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on load profile results, which force batteries to charge and discharge such that the 

exchanged power decreases to minimum possible value. However, power grid still faces 

two main challenges that should be addressed; sudden load deviation and negative power 

flow. To propose an adequate solution, we need sensitivity analysis with regard to the 

existing variables in the optimization equations. 

2.5.    Voltage Deviation in Distribution System 

Feeder IEEE 123 node is considered as our case study distribution feeder to evaluate the 

effect of the higher level of renewables’ connection on distribution system. The total 

number of the customers on the feeder is 650 customers and total load demand on the feeder 

is 3896 KVA. We assume that 220 customers (approximately 30 percent) are interested in 

renewable energy sources.  

 

Figure 12. Voltage deviation at bus 67 

For the original load consumption profile, the voltage profile in bus 67 (as an example) is 

depicted in Fig. 12. The average active and reactive power losses of the feeder are during 

the month are 33.23 kw and 66.5 kvar respectively where the maximum active and reactive 

power losses are 72.95 kw and 146 kvar. 



 32 

To simulate the effect of renewables connection to the power grid, randomly 30 percent of 

the customers are chosen to be presented with new load profiles under TOU rating policy 

as most popular rating policy which has the highest peak in presence of the renewables. 

The new load profiles will be replaced with the original load profiles. The voltage profile 

of the feeder considering the new load profiles for 30 percent of randomly chosen 

customers is depicted in Fig. 13. The new load shapes cause more voltage deviation also 

the maximum voltage increase from the standard limit. The average active and reactive 

loss are 37.67 kw and 74.5 kvar respectively. The maximum active power loss is 159.7 kw 

and maximum reactive power loss is 317.4 kvar. Both average and maximum power losses 

in the feeder have been increased in results of increased power exchange between the 

customer and the power grid.  

 

Figure 13. Load profile after 30 percent of renewables’ integration in residential sector 

Part of this power loss increases are inevitable as we have connected new device to the 

system to replace gas consumption with clean energy. Comparing the voltage profile in 

Fig. 12 and Fig. 14 clearly show that the renewables integration will affect the distribution 

system power quality and the higher penetration level of the renewables will cause serious 
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voltage issues which needs to be addressed. Voltage deviation under MD tariff with 30 

percent renewables stays in standard region, however, the voltage deviation still is an issue 

[18]. 

 

Figure 14. Voltage deviation at bus 67 with 30 percent of renewables connection in TOU policy 
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CHAPTER THREE 

SENSITIVITY ANALYSIS 

3.1.    Sensitivity to the Tariff Policy  

Peak time in electricity tariffs is defined according to the power grid peak load to encourage 

electricity consumers to shift their consumption away from peak periods. The peak time 

definition will be highly important in the higher penetration level of renewables, especially 

solar and batteries. Last year, San Diego Gas & Electric’s (SDG&E’s) accepted to shift 

time-of-use peak periods from the solar-friendly hours of 11:00 am to 6:00 pm to the less 

sunny hours of 4:00 pm to 9:00 pm in result of renewables integration to the power grid 

[33]. In fact, solar growth forces SDG&E to change its rating policy to reach a better load 

profile.  

3.1.1.  Sensitivity to Peak Time Schedule 

In this section, we study the sensitivity of the battery (dis)charge and power exchange in 

TOU policy to one-hour shift ahead or behind in peak time. The results for power exchange 

between the consumer and power grid for an hour shift of TOU ahead and behind are 

presented in Fig. 15 and Fig. 16 respectively.  

 
Figure 15. Power exchange in POD for one hour ahead in TOU policy 
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Figure 16. Power exchange in POD for one hour behind in TOU policy 

Comparing the results to the original results (Fig.17) indicate that although results for one 

hour behind is better, in both cases the distribution system still is challenged by the reverse 

power flow during the peak time and higher peak load immediately after the peak time.  

 

Figure 17. Exchanged power in POD for TOU policy 

3.1.2 Sensitivity to the Maximum Demand Rate 

It is trivial that the exchanged power is not sensitive to the electricity rating under TOU 

policy. Maximum demand tariff is sensitive to both rate deviation and time of use schedule; 

however, it is more sensitive to the MD fee than the energy price. To evaluate the effect of 
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the maximum demand fee changes in MD strategy, maximum demand fee is increased from 

300 ₵/@A to 800 ₵/@A. Figure 18 depicts power exchange profile for the new MD tariff. 

It is shown that when we increase the maximum demand fee the exchanged power, !! , 

decreases.  

 

Figure 18. Exchanged power deviation with respect to lambda 

To have a precise conclusion and verification of possible saturation point and 

corresponding value of I, we run the optimization for different values of I and plot the 

maximum exchanged power with respect to I. Figure 19 shows the evolution of the 

maximum exchanged power with respect to	I. By increasing the I, the maximum 

exchanged power decreases up to a certain level; after the saturation point, further rise in 

I has no more effect on the maximum power exchange. The higher MD rate forces 

customers to charge their batteries and use them during the peak demands instead of selling 

energy to the power grid during the peak time to reduce their maximum demand. In fact, 

self-feeding will be more profitable for the customers compared to exporting the stored 

energy to the power grid during the peak time.  
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Figure 19. Maximum demand rate effect on !( 

Next, in order to have a better insight on the effect of I on !!  and evaluate the results, we 

chose three arbitrary values of I and showed the result of the optimization in Fig. 20. The 

results indicate that by increasing the I, the magnitudes and number of negative !!5 

decrease. The saturation point depends on the customer’s load consumption behavior and 

the battery’s characteristics [journal].  

 

Figure 20. Exchanged power deviation with respect to lambda 

3.2.    Sensitivity to the Battery Characteristics 

In In addition to I, the parameters of the installed battery in the customer’s property should 

be considered. These parameters affect the exchanged power at POD and consequently 
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effects the saturation I.  To show the effect of battery characteristics on the exchanged 

power under MD tariff, two different batteries are considered. The exchanged power 

formulas for these two cases are defined as:  

 

!!-# = !$%# −	!"# + !&-#                                                                                                     (19) 

!!*# = !$%# −	!"# + !&*#                                                                                                    (20) 

where, !!-# and !!*#  stand for power exchange for battery number 1 and battery number 2, 

respectively. Battery charging/discharging power for each battery is indicated by !
&-

#  , and 

!
&*

# . Let us define *- and ** to be the optimum value of the cost function (17) for the two 

choices of the battery, correspondingly. To have ** = *-, the following should be true: 

∑ !!*# . =#2

#,- + I	.,L M(!!*# ) = ∑ !!-# . =#2

#,- + I.,L M(!!-# )	                                      (21) 

which is equivalent to: 

N(!!*# − !!-# ). =#
2

#,-

+ I	. (,L M(!!*# ) − ,L M(!!*# )) = 0 

Substituting the value of !!-# and !!*#  from (13)-(14), we have  

N(!$%# −	!"# + !&-# − !$%# + !"# − !&*# ). =#
2

#,-

+ I	. ",L M"!$%# −	!"# + !&-# % − ,L M"!$%# −	!"
# + !

&*

# %% = 0 

Then, 

∑ (!
&-

# − !
&*

# ). =#2

#,- + I	. (,L M(!
&-

# ) − ,L M(!
&*

# )) = 0							                                      (22) 



 39 

Considering =# to be the same value for both cases, (22) consists of three sets of variables: 

the maximum demand rate (I), the term ∑ (!
&-

# − !
&*

# )2

#,- , which is  related to the capacity 

difference of the two batteries, and (,L M(!
&-

# ) − ,L M(!
&*

# )).  

To evaluate the effect of battery capacity, we run optimization in (17) for three different 

sizes of battery. We consider the original battery with capacity of 30 @Aℎ and !& = ±5	@A 

used for optimization in section III as our baseline. The other two batteries are selected as 

follows 

P-= 20 @Aℎ, and !& = ±	5	@A 

P*= 30 @Aℎ, and !& = ±	5	@A 

Figure 21 displays the optimization results. 

 

Figure 21. MD rate and exchanged power variation due to battery capacity 

Batteries with different capacities and same charging/discharging power have different 

saturation points for the MD rate. For instance, for a particular value of maximum 

exchanged power, the battery with a larger capacity has a higher maximum demand fee 

rate. In other words, increasing the battery capacity leads to a higher saturation value for 
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I. Moreover, with a higher battery capacity for a given I, the maximum exchanged power 

is lower, and consequently more feeder capacity will be released by this rating policy. 

In the second step batteries are considered to have the same capacities as the bassline but 

different charging/discharging rates as  

P-= 30 @Aℎ, and !& = ±	4	@A 

P*= 30 @Aℎ, and !& = ±	6	@A 

Figure 22 shows the effect of the !& variation on the maximum demand rate curve with 

respect to lambda. Different rates of the !& show slight changes on I, and !!  comparing to 

the battery capacity. Also, after a certain level, !&variation has no effect on !! .  

 

Figure 22. MD rate and exchanged power variation due to battery (dis)charging rate 

3.3.    Sensitivity to Battery Pack’s Efficiency  

Our goal in this section is to investigate the effect of the stationary battery’s performance 

on the load profile optimization; without loss of generality, we consider an ideal model 

with 100 percent efficiency for the PV and electric vehicle’s battery operations. To study 

the effect of the battery performance on its contribution to the demand side load 
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management, we focus on main factors affecting the battery’s performance including 

(dis)charging efficiencies (round-trip efficiency), self-discharging, and depth of discharge 

of the battery. Then, we analyze the effects of these parameters on the demand management 

of the customers connected to the power grid. 

3.3.1.  Round-Trip Efficiency and Self-Discharging Efficiency Modeling  

The exchanged power between the customer and the distribution system considering the 

battery’s overall efficiency generally is formulated as: 

!!# = !"# − !$%# + ST&_0!&_0# − S -

>)_+
U!

&_.

# U + !6%# + !7_(8#                                              (23) 

Where T&_0 and T&_. are the charging and discharging efficiencies of the battery. The state 

of charge of the battery considering the self-discharge (T?), for each time interval is defined 

as 

567
&

#1- = T?567&# + [ST&_0!&_0# − S -

>)_+
U!

&_.

# U ∗ ∆#

A)
]                                                       (24) 

The round-trip efficiency of the battery which also is called as battery efficiency is a 

function of the battery’s temperature, charging/discharging rate and normally is between 

80-93 percent. In this study, we consider an average of 8 percent self-discharge for the 

battery with two values of round-trip efficiencies as 80 and 93 percent in our case study 

[34]. 

3.3.2.  Depth of Discharge and Battery Lifetime 

Depth of discharge of the battery is another effective factor on battery lifecycle and 

behavior in power grid that should be considered. Considering a fixed amount of energy to 
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be cycled through a battery before it requires replacement, regardless of the depth of 

discharge for each individual cycle is not correct. The lifetime of the battery highly related 

to the depth of discharge of the battery and operation conditions. In general, the estimated 

throughput of the battery is derived from the depth of discharge curve of the battery with 

respect to the number of cycles to failure provided by the manufacture. To determine the 

expected life of a battery in the power system, the battery model then sums the Amp hours 

or Watt hours that pass into or out of the battery and when this value reaches the total 

throughput calculated for the battery, the battery life is considered used up. Battery 

manufacturers create their cycles to failure data using specific testing requirements, usually 

at a constant temperature of 25℃ with the condition that when the battery capacity 

diminishes to 80 percent of its nominal capacity it is considered dead (see Fig. 23 adapted 

from [35] and the numbers does not reflect any specific battery brand).  

 

Figure 23. Example of the potential throughput life calculation for a 30-kwh battery with discharges 

from full state of charge to various depth of discharges. 

There are various methods to obtain the lifetime consumption of a battery including the 

Ah-throughput and cycle counting approaches. In this paper, we use the results of the Ah-
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throughput counting method to evaluate the lifetime consumption of the battery. This 

method considers that a fixed amount of energy can be cycled through a battery before it 

requires replacement. The estimated throughput, ( X the total throughput over a battery 

bank lifetime), is expressed as follows  

XB = Y6YBZB)&                                                                                                                (25) 

in which  DoDC is the specific depth of discharge being considered, FC represents the cycles 

to failure for the given DoDC,	and CD is the nominal battery capacity. In our specific case 

study that the SOC level of the battery varies between 10-90 percent, and we call it as our 

ideal battery with efficiency of the 100 percent, the average throughput of the battery is 

calculated as  

X = ∑ :5:&F&A)
,
&-.

G
= 	15696	@Aℎ                                                                                    (26) 

Figure 23 shows that the best performance of the battery occurs in Y6YH = 30%. For 

Y6YH = 30%, the minimum and maximum state of charges of the battery are as follows 

567;BI = (1 − Y6Y)567;<=                                                                                          (27) 

0.7 ≤ 567
&

# ≤ 1					                                                                                                           (28) 

Simulation results and discussion  

Battery efficiency is studied for TOU and MD rates based on given cost function in in (7) 

and (17) are subjected to the following additional constraints:  

567
&

#1- = T?567&# + [ST&_0!&_0# − S -

>)_+
U!

&_.

# U ∗ ∆#

A)
]                                                       (29) 

567;BI = (1 − Y6Y)567;<=                                                                                          (30) 

567;BI ≤ 567
&

# ≤ 567;<=					                                                                                           (31) 
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Since the focus of this study is the effect of the stationary battery’s efficiency on the 

exchanged power between the customer and the distribution system, the efficiency of the 

EV’s battery is considered 100% and we will not impose other additional constraint on 

that.  

To evaluate the effect of the battery efficiency and optimal depth of discharge on the 

customer’s load profile, in the first step, we consider the effect of each factor on the load 

profile separately. Next, we study the effect of all factors on the load profile in combine 

and compare the results to the so-called ideal battery performance. 

Round-trip efficiency impact on the load profile 

To evaluate the effect of the battery’s charging/discharging (round-trip) efficiency on the 

load profile, we consider T? = 1. Moreover, we consider same values for the charging and 

discharging efficiencies. The effect of the round-trip efficiency is studied for the round-trip 

efficiency’s upper and lower boundaries. For this purpose, two values of the 80 and 93 

percent for the round-trip efficiency are applied to the optimization as T&_0 = T&_. = 0.8  

and T&_0 = T&_. = 0.93. The simulation results of the exchanged power at the POD are 

shown in Fig. 24 and Fig. 25 for the TOU and MD policies, respectively.  

The round-trip efficiency doesn’t have notable effect on the maximum exchanged power 

between the customer and the distribution system. However, in both tariffs, the battery 

throughput energy and optimal value have been changed significantly. In the TOU policy 

battery with the efficiency of the 80 percent is no longer beneficial for the demand side 

load management. It is important to note that this result is obtained in presence of the EV 

battery connection. Similar to the TOU policy, in the MD policy the stationary battery only 
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participates in the load management to keep the maximum demand in its lowest level. The 

optimal value in the MD policy has been increased as the battery’s energy loss limits the 

battery’s participation in the optimal value minimization process. The results for the battery 

energy throughput and the optimal values of bills for two tariffs and two values of 

efficiencies are tabularized in Table 1 and Table 2. 

 

Figure 24. Effect of battery’s round trip efficiency on the load profile for the TOU tariff 

 

Figure 25. Effect of battery’s round trip efficiency on the load profile for the MD tariff 

Effect of the battery’s depth of discharge on the load profile 

The best operating region for the battery is a controversial subject. Different constraint on 

maximum and minimum state of the charge for the battery are considered in [37] and [38]. 

In our case study, we consider two scenarios for the depth of discharge in the battery based 
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on manufacture’s data given in Fig. 23. In the first scenario, we consider our so-called 

“ideal battery” with T? = 1 and T&_0 = T&_. = 1. The SOC of the ideal battery is subjected 

to following constraint 

0.1 ≤ 567
&

# ≤ 0.9                                                                                                            (32) 

For the second scenario, we consider a 30 percent of the depth of discharge limit for the 

battery with T? = 1 and T&_0 = T&_. = 1. The constraints on the SOC of the battery based 

on the Fig. 23 is modified to  

567;BI = (1 − Y6Y)567;<=                                                                                          (33) 

0.7 ≤ 567
&

# ≤ 1					                                                                                                          (34) 

The optimization results for the load exchange between the customer and distribution 

system are depicted for the TOU and MD tariff policies in Fig. 26 and Fig. 27, respectively. 

In the TOU policy, the maximum exchanged load has been decreased for YcY = 30% as 

the battery does not have the opportunity to fully discharge during the peak time and as a 

result it needs less power during the off-peak time to be fully charged.  

 

Figure 26. Effect of battery’s depth of discharge on the load profile for the TOU tariff 
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The maximum exchanged power in the TOU has less deviations compared to the ideal 

battery as the unnecessary charge/discharge of the battery has been reduced due to limited 

depth of discharge of the battery.  

 

Figure 27. Effect of battery’s depth of discharge on the load profile for the MD tariff 

In the MD rating policy, Fig. 27, as the battery’s total capacity of (dis)charge has been 

reduced, the battery’s participation in the demand management to minimize the maximum 

exchanged power is not sufficient to maintain the minimum value. The total throughput 

energy of the battery for a one-month optimization under the TOU tariff are 1380 kwh and 

736 kwh for the ideal battery and the battery with 30 percent DOD, respectively. 

Based on given information in Fig. 23, the average throughput energy for the ideal battery 

and battery with DOD=30 percent during their lifetime are 15696 kwh and 18346 kwh. The 

expected lifetime for each battery under the TOU and MD tariffs is:  

Lifetime for ideal battery for the TOU tariff is 
-JKGK

-HLM
= 11.4 months and  

Lifetime for ideal battery for the MD tariff is 
-JKGK

-M*L
= 15.4 months 

The corresponding lifetime of the battery subjected to DOD=30% are as follow  
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Lifetime for the battery with DOD=30% for the TOU tariff is  
-LH+K

NHK	
= 25 months and  

Lifetime for the battery with DOD=30% for the MD tariff is  
-LH+K

NNK	
= 23.6 months 

The results show that the battery has a longer lifetime with the limited depth of discharge. 

Battery under the TOU policy and DOD=30% has the longest lifetime, however, since the 

difference is less than two months the results can be changed in favor of the MD rating 

policy with a simple regulation in the MD ratings which is beyond the scope of this paper.  

Note that the numbers are used for comparison and does not represent any battery brand. 

3.3.3. Comparison between the ideal and real battery effects on the load profile 

To have a precise evaluation on the battery operation in the demand side load management, 

all the above-mentioned constraints are applied to the battery in our case study model and 

the optimization results are compared to the ideal battery. Battery in this scenario is 

subjected to the following efficiency and DOD constraints. 

0.7 ≤ 567
&

# ≤ 1		, T? = 1 − SM.ML
*+
U 		L.d				T&_0 = T&_. = 0.8  

 

Figure 28. Load profile for the ideal and real battery under the TOU rating policy 

Considering all effective factors on the battery’s output and participation to the load 
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management shows a significant decrease in the load exchange between the customer and 

distribution system for both MD and TOU policies as depicted in Fig. 28 and Fig. 29.  

The exchanged power under the TOU policy (Fig. 28) has been decreased compared to the 

results in Fig. 23. The battery participation under the TOU policy (see Fig. 28) has been 

decreased. The decrease in the battery’s participation occurs due to higher cost of stationary 

battery participation. Lower efficiency of the stationary battery makes it no more 

beneficial. The throughput of the battery (68 kwh) in this case has been increased compared 

to case with round-trip efficiency of 80 percent, zero kwh, to keep the minimum state of 

the charge of the battery. Unlike the TOU tariff, the MD policy experiences a notable 

increase in the exchanged power. In the MD policy, a small increase in maximum demand 

is more cost effective than the battery’s energy losses during the charge/ discharge process. 

Finally, all the optimization results for a one-month period are summarized in the Table 1 

and Table 2 for the TOU and MD policies, respectively.  

 

Figure 29. Load profile for the ideal and real battery under the MD rating policy 
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Table 1. Battery operation under Time of Use tariff 

Effective Factor 
Maximum Load 

(kw) 

Optimal 

Value/Bill ($) 

Total Battery 

Throughput (kwh) 

Ideal Case 10.56 69.19 1380 

Round-trip 

Efficiency 

0.8 10.63 77.26 0 

0.93 10.61 75.02 1364 

Depth of discharge 9.9 70.13 736 

Real Case 5.7 76.19 68 

 

Table 2. Battery operation under Maximum Demand tariff 

Effective Factor 
Maximum Load 

(kw) 

Optimal 

Value/Bill ($) 

Total Battery 

Throughput (kwh) 

Ideal Case 3.11 98.38 1028 

Round-trip 

Efficiency 

0.8 3.11 109.46 580 

0.93 3.11 102.86 1036 

Depth of discharge 4.02 103.12 776 

Real Case 4.34 112.88 260 

 

The results of this study are beneficial for the battery industry in addition to those 

customers are interested in employing the battery in their premises to evaluate the 

effectiveness of their investment. We showed that battery efficiency has notable impact on 

the optimal exchanged power, however, it does not affect the load profile shape which is 
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the at most interest of the utilities. Moreover, battery industry can benefit from the results 

to target the most important factors in the battery efficiency and lifetime required to be 

improved. 

3.4.    Inverter Efficiency  

Considering the efficiency curve of the inverter as Fig. 29, and battery (dis)charging power 

rate of −	!&;<= < !
&

# <	 	!&;<=, the total battery pack efficiency, T, can be formulated as 

T = TBI% ∗ T&	                                                                                                                   (35) 

TBI%=TM	[1 − f
Q

$/	.2)
3

2)!"#$2)
3 R]                                                                                               (36) 

Where T& is the battery storage efficiency and, TM is the maximum efficiency of the 

inverter, g	 describes the slip of the curve, and TBI% represents the inverter efficiency. Also, 

the battery SOC will change as           

567
&

#1- = 567
&

# + [T ∗ !
&S0

# − (-
>
) ∗ !

&S.

# ] ∗ ∆#

A)
                                                               (37) 

!
&

# = !
&S0

# − !
&S.

#                                                                                                            (38) 

Where !
&_0

# , !
&_.

# , are the battery’s charge and discharge power, respectively. The battery 

pack has considerably lower efficiency when it (dis)charge with less than ten percent of its 

maximum (dis)charging power. The inverter efficiency (9) is a nonlinear function, 

therefore, we use nonlinear optimization’s tools to solve this formulated optimization 

problem. 

The objective functions in (7) and (17) are to schedule the charging/discharging profile of 

the battery to minimize the corresponding electricity bill. Note that the second term in (17) 
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represents the maximum demand price, which forces the optimization to schedule the 

battery output in a way that the maximum exchanged power between the customer and 

distribution system remains in a minimum possible value. Both scenarios consider two 

battery choices: (i) an ideal battery pack; and (ii) a realistic battery pack with nonlinear 

inverter efficiency, as shown in Fig. 30. 

 

Figure 30. Inverter efficiency curve 

3.4.1.  Scenario 1: TOU Tariff  

The exchanged power between the distribution system and the customer at POD (blue line) 

and the battery (dis)charging power (red line) are shown in Fig. 31 for an ideal battery. 

Figure 31 shows that the battery (dis)charge with maximum capacity to maximize the 

customer’s benefit. The exchanged power and battery (dis)charge power for the battery 

with nonlinear inverter efficiency are represented in Fig. 32, showing the impacts of the 

real inverter efficiency on battery performance compared to the ideal inverter. The battery 

with a realistic inverter has a limited (less than fifty percent) contribution in demand-side 

management to avoid battery power loss due to the inverter’s lower efficiency in lower 

powers. The case study customer’s electricity bill, total battery throughput, and the 

maximum exchanged power for TOU tariff are summarized in Table 3. For a (dis)charge 



 53 

power less than ten percent of its nominal power, in which the inverter has a considerably 

lower efficiency, the number of battery (dis)charges shows a significant drop compared to 

the battery with an ideal inverter. The lower contribution of the battery results in a slightly 

higher electricity bill and a higher load peak at POD.  

 

Figure 31. Exchanged power between the customer and distribution system and the battery (dis)charge 

power for ideal battery pack under TOU electricity tariff 

 

Figure 32. Exchanged power between the customer and distribution system and the battery (dis)charge 

power for the real battery pack under TOU electricity tariff 

 

Table 3. Impact of the nonlinear inverter efficiency under TOU tariff 
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 Customer’s 

bill ($) 

Throughput of the 

battery (kWh) 

Maximum exchanged 

power (kw) 

Ideal battery pack 56.5 2041 6.7 

Real battery pack 69.5 1008 6.9 

 

3.4.2. Scenario 2: MD Tariff 

The simulation results for optimization formulated in (17) for an ideal inverter are shown 

in Fig. 33. A comparison between results in Fig. 33 with Fig. 31 indicates that the battery 

under MD tariff (dis)charges in lower powers to maintain a minimum exchanged power.  

Battery operation in lower powers implies higher impact expectation for a real battery 

application.  

 

Figure 33. Exchanged power between the customer and distribution system and the battery (dis)charge 

power for ideal battery pack under MD electricity tariff 

Figure 34. shows that the exchanged power for the battery with a non-ideal inverter. Due 

to the nonlinear inverter efficiency, battery operation in lower powers is no longer 

beneficial, yet, to minimize the customer bill, battery operation is adjusted to reach the 
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optimal solution. The impacts of the inverter nonlinear efficiency on the customer’s bill 

and load profile are summarized in Table. 4. The total contribution of the battery has been 

decreased to maximize the battery efficiency (performance); thus, the maximum exchanged 

power has been increased. 

 

Figure 34. Exchanged power between the customer and distribution system and the battery (dis)charge 

power for real battery pack under MD electricity tariff 

Table 4. Impact of the nonlinear inverter efficiency under the MD tariff 

 
Customer’s 

bill ($) 

Throughput of the 

battery (kWh) 

Maximum 

exchanged power (kw) 

Ideal battery pack 56.5 1188 2.9 

Real battery pack 64.8 1004 3.3 

 

There are several approaches to overcome or reduce the negative impact of the inverter 

efficiency; imposing constraints on the battery’s operation point, employing a control 

system to switch on and off battery operation, imposing new tariff to force battery operate 

in a limited time to charge with higher power, or choosing a battery pack with a lower 

(dis)charge power to push the operating point to a higher efficiency spectrum. The former 
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solutions are not the optimal and will increase the customer’s bill; however, the latter case 

develops a notable improvement in customer bills and battery contribution in the demand-

side management. To this end, we choose a real battery pack with twenty percent less 

(dis)charge power than the original battery pack. The exchanged power under TOU, and 

MD rating policies for the new battery pack with lower power are shown in Fig. 35 and 

Fig. 36, respectively. The customer’s bill and total battery throughput for TOU and MD 

are summarized in Table. 5.  

 

Figure 35. Exchanged power between the customer and distribution system and the battery (dis)charge 

power for real battery pack with a lower (dis)charge power under TOU electricity tariff 

 

Figure 36. Exchanged power between the customer and distribution system and the battery (dis)charge 

power for real battery pack with a lower (dis)charge power under MD electricity tariff 
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Note: in the battery sizing section, we found minimum battery capacity, which could have 

multiple choices of the battery (dis)charge power. 

Table 5 Impact of the nonlinear inverter efficiency with lower battery (dis)charge power 

 Customer’s bill ($) Throughput of the 

battery (kWh) 

Maximum exchanged 

power (kw) 

Real battery pack 

(TOU tariff) 

69 898 6.6 

Real battery pack 

(MD tariff) 

64.3 882 3.2 
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CHAPTER FOUR 

TARIFF MODIFICATION  

4.1.    Introduction  

To mitigate the negative effect of the distributed energy resources (DERs) connection to 

the power grid; there are several approaches such as putting limitation on the exchanged 

power between the customer and power grid. In this subject, [38] proposed to minimize 

battery and solar size; where [39] suggests employing a larger battery to absorb the PV 

surplus generation. However, in the residential and small commercial sectors, convincing 

the customers to plan their power consumption and their renewables connection to the grid 

will be challenging. The other approach to control the power flow in the distribution feeder 

is imposing effective tariffs on the power consumption to encourage the customers to 

change their load consumption behavior based on utilities interest. The new tariffs can be 

defined so that customers schedule their power consumption, solar panels output and 

batteries (dis)charging schedule such that they gain highest possible benefit. Meanwhile 

under new tariffs and in result of customers new consumption schedule; utilities face lower 

power variation in the system.  

Considering sensitivity of the customers’ load profiles to current tariffs rate change and 

battery characteristics [18]-[26], in this section we propose two different tariffs to mitigate 

the negative effect of renewables’ connection to the power grid; in the first tariff, we add a 

Smoothening Factor Fee (SFF) to limit the load deviation in one of the current tariffs in the 

POD terminal. In the second proposed tariff, we charge customers based on their maximum 
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demand and load deviation at POD. We call the second proposed tariff as Maximum 

Demand Smoothening Fee (MDSF). The optimization for load consumption for these 

tariffs can be formulated as follows:  

*))F = ,- .h∑ (!?# . Z-#2

#,- + !0_6%# . Z(8# % + 	i. ∆!!#]                                                         (39) 

*9:)F = ,- .[ I	.,LM	(Lj5(!!#)) + 	i. ∆!!#]                                                               (40) 

∆!!# = !!#1- − !!#                                                                                                           (41) 

Where i is the SFF and I is MDSF which are regulated by utilities based on general 

customer’s load profile. These factors can be regulated so that the optimal value for 

customers have least changes. New optimizations in both new cases are subjected to given 

constraints in (9) – (16). 

4.2.    Smoothening Factor Fee Rating Policy 

The optimization in (39) is run for the first scenario (TOU rating policy) and the results are 

presented in Fig. 37.  

 

Figure 37. Exchanged power profile in POD and grid under SFF rate 
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It is shown that in result of the tariff modification; i) maximum exchanged power between 

the customer and power system has been decreased from 16.5 kw to 7.0 kw and ii) the 

distribution feeder has positive power flow from the grid to the customer (this occurs in 

result of load deviation constraint and the positive load flow is not always guaranteed), and 

iii) the dramatic load variations in POD have been eliminated. 

4.3.    Maximum Demand Smoothening Fee Rating Policy 

In the second case, the optimization defined in (40), is applied to the case study model and 

the results are depicted in Fig. 38. By tariff modification the maximum exchanged power 

is decreased from 16.5 kw in TOU and 3.6 kw in MD and limited to 2.92 kw, which is also 

lower than 5.7 kw in the original load profile. Load profile for new tariff is smooth and has 

lower maximum without any negative power flow.  

 

Figure 38. Exchanged power profile under MDSF rate 

The main advantage of MDSF tariff to SFF tariff is the lower peak to average ratio (PAR). 

Lower PAR means lower investment requirement for peak time demand in power system 

especially in generation and transmission sector. The voltage deviation for SSF and MDSF 
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tariffs are shown in Fig. 39 and Fig. 40. The average active and reactive power losses for 

SSF rating policy are 31.15 kw and 62 kvar and the maximum active and reactive power 

are 70.58 kw and 141.7 kvar respectively which show notable improvement. Also, the 

average active and reactive power losses for MDSF tariff will be as 30.28 kw and 60.6 

kvar. The maximum active power during the month will be 59.24 kw and the maximum 

reactive power loss is 118.9 kvar. As we expected voltage deviation for MDSF rate has the 

least deviation and power loss is less than the original case.  

 

Figure 39. Voltage deviation at bus 67 under SFF modified tariff 

 

Figure 40. Voltage deviation at bus 67 under MDSF modified tariff 
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4.4.    Frequency Deviation in Small Scale Power Grid 

Our microgrid case study model, Fig. 41, is a combined heat and power (CHP) 

generator. The control system of the generator is designed to regulate the frequency 

deviation to zero for the microgrid with the original load. The nominal capacity of the 

generator is considered 10 kA and ∆!" represents the load deviation from the original load 

profile under renewables connection to the power grid. The load deviation is represented 

in “pu” and the frequency deviation is studied for a one-day period for the sake of 

simplicity. Since the frequency oscillations are damped in less than 100 seconds, we only 

show the frequency oscillations for the first 100 seconds of every hour of the day.  

 

Figure 41. Simplified CHP generator schematic for the case study model 

The control system of the microgrid is set so that the maximum deviation of the frequency 

under the load deviation is less than 0.8 percent (∆l < 0.05) to prevent the frequency 

breakers’ operation. The new load profile under TOU tariff and the original load profile 

are comparable in Fig. 13. The frequency deviation of the microgrid under original and 

new load profiles are depicted in Fig. 42. It is shown that the renewables integration under 

current tariff causes frequency issues which will result in frequency relay operations. 
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Current tariff, as we expected, is not applicable for future grid and they should be modified 

based on future grid requirements and architecture. 

 

Figure 42. Frequency deviations in the microgrid before and after renewables’ integration 

To mitigate the negative effects of the renewables’ integration to the power grid, three 

approaches are considered, and the results are compared together; model predictive control, 

the tariff regulation, and large-scale battery integration into the microgrid.  

4.4.1. Frequency Control by Model predictive Control (MPC)  
 

In this section, we design a model predictive controller on the system shown in Fig. 41. As 

the MPC is a discrete time control approach, we discretize the system with a very small 

sampling time while assuring the controllability of the system does not change. The state 

space representation of the system is  

mM
(@ + 1) = n.M(@) + P.o(@) + P.TA(@)
p(@) = ).M(@)																																																		

                      (42)                                                        

where the control input o(@) determines qU6V	value and A(@) represents the disturbance. 

In this study, we consider load deviation, ∆!" , as the disturbance. The goal of the MPC 

design is to reduce the effects of this disturbance on the frequency deviation as the output 
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of the system. Therefore, the controller and the system should satisfy the following 

constrains 

|o(@)| ≤ |o;<=|, ∀	@                                                                                                       (43) 

|p(@)| ≤ |p;<=|, ∀	@                                                                                                       (44) 

p;<= is selected very small to regulate p(@) to zero. To control the uncertain system (42), 

we design the MPC state feedback controller as  

o(@) = Z(@)M(@)                                                                                                           (45) 

where the following cost function is considered to evaluate the MPC performance.  

* = ∑ *(@)#V

W,M
= ∑ (M(@)2t=M(@) + o(@)2tXo(@))

#V

W,M
                                              (46) 

in which, t= and tX are the weight matrices. Following the robust MPC theories in [40], 

appropriate matrices u, v, and w > 0 should satisfy the following linear matrix inequalities 

(LMIs) so that the state feedback controller guarantees the desired specifications on the 

output and control signals. 

k- = y 1 ∗
M(@) uz ≥ 0 						k* = y

u ∗
w o;<=* {z ≥ 0                                                          (47) 

kH =

⎣
⎢
⎢
⎢
⎡

u ∗ ∗ ∗
n.u + P.v u ∗ ∗
t
=

-/* 0 �{ ∗
t
X

-/* 0 0 �{⎦
⎥
⎥
⎥
⎤
≥ 0                                                                          (48) 

k+ =

⎣
⎢
⎢
⎢
⎡

u ∗ ∗ ∗
n.u + P.w u ∗ ∗
t
=

-/* 0 �{ ∗
t
X

-/* 0 0 �{⎦
⎥
⎥
⎥
⎤
≥ 0                                                                           (49) 

kJ = y
u ∗

).(n.u + P.v) p;<=* {z ≥ 0                                                                            (50) 
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kK = y
u ∗

).(n.u + P.w) p;<=* {z ≥ 0                                                                            (51) 

,-.
Z,\,]

� 	5. ::		(47), (48), (49), (50), (51)                                                                         (52) 

where (*) represents the diagonal transpose of the corresponding array. After finding 

appropriate matrices u, v, and w using MATLAB and YALMIP toolbox for each step, the 

state feedback controller is designed as  

Z(@) = v(@)uS-(@), ∀	@                                                                                                (53) 

The MPC frequency regulation (Fig. 43) shows lower frequency deviation compared to the 

current tariff, however, the oscillation time is longer. The longer oscillation time is a 

challenge in power system especially in large area and in transmission level in which we 

try to damp the inter-area oscillation in a very limited time [41].  

 

Figure 43. Frequency deviations in the microgrid with MPC control 

4.4.2. Frequency Control by Tariff Modification  

In the second case, in order to reduce frequency deviations, we apply the MDSF tariff to 

the same feeder with 30 percent renewables, the new load profile for MSDF rate is shown 

in Fig. 44 and the results for frequency deviation under new tariff are presented in Fig. 45. 
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Figure 44. Load profile after 30 percent of renewables’ integration in residential sector 

 

Figure 45. Frequency deviations in the microgrid under modified MDF tariff 

 

4.4.3. Frequency Control employing Large-Scale Battery  
 

In the third approach, we consider a large-scale battery connected to the microgrid to 

maintain the frequency regulation (see Fig. 46). Large-scale battery energy storage in 

power grid provide ancillary services such as peak load shaving [28], inter-area oscillation 

damping and load frequency deviation regulation [30] have widely been investigated. The 
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battery compensates the deficiency of the generation or absorbs surplus power generated 

by the CHP generator to maintain the frequency at the standard level. Considering the 

existing electricity tariff, presented in Fig. 6, the load frequency deviation in the presence 

of the 30 percent small-scale renewables are shown in Fig. 47. 

 

Figure 46. Battery integration to the microgrid 

The battery integration to the microgrid moderates the frequency deviation; however, 

microgrid still has the frequency issues after peak time. Hence increasing the battery size 

could not be an optimum solution due to the battery installation and maintenance fees. 

 

Figure 47. Frequency deviation in the presence of the large-scale battery 

To closely compare the results obtained with MPC controller and the tariff modification 

approaches, we plot the frequency deviations in hours 9-14 in Fig. 48. The designed MPC 
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controller (blue line) acts better where the load deviation of the costumer is relatively small 

while in large load deviations, tariff modification (green line) is a more effective technique 

to reduce frequency deviations.  

 

Figure 48. The MPC frequency control vs modified tariff 

To closely compare the results obtained with MPC controller and the tariff modification 

approaches, we plot the frequency deviations for both cases for hours 9-14 in Fig. 15. The 

designed MPC controller (blue line) acts better where the load deviation of the costumer is 

relatively small while in large load deviations, tariff modification (green line) is a more 

effective technique to reduce frequency deviations.  

The results for the large-scale battery integration to the microgrid (purple line) compared 

to the tariff modification (green line) are represented in Fig. 49. It has been shown that the 

tariff modification has a lower frequency deviation compared to the large-scale battery 

integration. However, the frequency oscillation in the microgrid is well damped by the 

large-scale battery among the other approaches with regard to its fast dynamic.  

The results in Fig. 48 and Fig. 49 imply that:  
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the smart tariff regulation based on the customers’ load consumption behavior and the 

renewables penetration level is the most promising solution to shape the power grid load 

profile.  

Large-scale battery integration has lower oscillations, as a result, well-managed large-scale 

battery applications in larger microgrids or power system will increase the stability of the 

grids. 

This study highlights the importance of the tariff regulation along with other existing 

control approaches, not as an alternative, to increase the reliability and resiliency of the 

power system in the presence of the renewables. 

 

Figure 49. The frequency deviation in the presence of the large-scale battery vs modified tariff 

The tariff modification is compared to the MPC frequency control and the large-scale 

battery integration into the microgrid. It is shown that the tariff modification is an effective 

tool to improve power system quality, particularly when the load deviation is relatively 

large. Moreover, we discuss that by tariff modification, in addition to the frequency control, 

utilities will be able to smoothen the load profiles in power grids and decrease the PAR. A 
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lower PAR in power systems guarantees lower investment requirements in the generation, 

transmission, and distribution system for a very short period of peak time. 
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CHAPTER FIVE  

LARGE SCALE BATTERY INTEGRATION TO THE POWER GRID 

5.1.    Introduction  

Inter-area oscillations are one of the main concerns in power system small signal stability. 

Since they involve a wide area in power systems, identifying the causes and damping the 

oscillations are a considerable challenge. Undamped inter-area oscillations cause severe 

problems in power systems including large-scale blackouts. Identification and designing a 

proper controller to damp inter-area oscillations in power systems is challenging due to the 

complexity and dynamic nature of the power system. Identification of inter-area oscillatory 

modes and damping of these oscillations have been widely investigated [42]- [44]. A 

distributed algorithmic approach has been studied to estimate the electro-mechanical 

oscillation modes of a power system by using real-time synchrophasor measurements of 

phase angles and frequencies [42]. In another study [43], a procedure for identifying critical 

oscillation modes is proposed based on the oscillation contribution factor, where the 

oscillation contribution factor for each generator is defined based on synthesizing 

parameters such as amplitude, damping ratio and attenuation obtained by the Prony 

algorithm. Tao Jiang et.al, [44] used a stochastic subspace identification (Data-SSI) 

algorithm to identify the system state space model. They proposed a new approach to 

estimate the dominant modes for monitoring inter-area oscillation in the China Southern 

power grid (CSG) by the use of phasor measurement units (PMUs) under both ringdown 

and ambient conditions. In spite of all this research inter area oscillation mode 
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identification and control is still a challenging area due to two factors related to the power 

system dynamic nature: i) the dominant mode varies with respect to the system dynamic 

such as load deviation and ii) the coherency of the system changes with regard to the 

dominant mode alteration. In a recent study, Oakridge National Lab. with co-operation of 

the University of Tennessee shows that the dominant modes cause the interarea oscillation 

changes with respect to load deviation in power system.  Figure 50 shows the oscillation 

occurrence distribution of Eastern Interconnection (EI) through 2013 to 2015 during the 

day for each month [45]. And Fig. 51 shows the dominant frequency distribution of inter-

area oscillations in Eastern Interconnection based on data in Fig. 50. It is shown that the 

dominant modes are a function of load deviation during the day and year. 

 

Figure 50. Inter-area oscillation occurrence distribution of EI 

Considering the fact that the integration of the small-scale renewable increases the load 

deviation in the higher voltage level and will intensify the inter-area oscillation in 

transmission level, we need to identify weak transmission lines and design suitable control. 
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In this subject we need to evaluate the coherency of the generators and identify the weak 

links to balance the load flow or reinforce the weak tie lines.  

 

Figure 51. Dominant frequency distribution of inter-area oscillations in EI 

In a power system formed by interconnecting two or more closely coupled generation/load 

areas through relatively weak ties, the coherent generators in each area exhibit similar rotor 

angle swings after a disturbance [46]- [49]. It is shown that generators that are closely 

coupled in an electrical sense tend to swing together in groups during disturbances, and 

this characteristic behavior can be exploited to reduce the size of the power system model 

[50]- [53]. In the coherency-based method, each coherent group of generators is replaced 

by a single equivalent generator. This achievement helps us to study power system dynamic 

and transient stability without simulation of the full power system [50]. In systems having 

a number of low frequency inter-area modes, we can use the coherency property to identify 

relatively closely coupled generators from the angle components of eigenvectors of the 

inter-area modes [51]. Moreover, we can also identify the buses having angles which 

oscillate coherently with the generator angles. This divides the system into sets of coherent 
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buses and generators equal in number to the number of inter-area modes. The tie lines 

between one coherent group and another are the weak connections which are the root cause 

of the inter-area oscillations. Since the coherency of the power system changes with regard 

to the load deviation, decomposing the power grid based on dominant mode deviation is a 

useful approach to design the decentralized controller for a large-scale system or initiate 

the optimum locating for the large-scale batteries integration to the power system to reduce 

the load flow in the high-risk lines. As decentralized control approaches are more practical 

in large scale systems, they have been widely used in power systems [54- [55]. To design 

each individual controller in a decentralized control approach, no exchange of information 

among different areas is necessary, which makes the control design easier to implement in 

large power systems. Also, decentralized control design of lower dimensional subsystems 

increases system robustness with respect to a wide variety of structured and unstructured 

perturbations in the interconnections [56]. For this purpose, a large-scale system is 

decomposed into smaller subsystems without losing any information. These subsystems 

will have smaller dimensions compared to the large-scale system so that the solution to the 

control design problem will be more tractable.  

Damping the inter area oscillation using the energy storage system is considered in several 

studies [57]-[60]. Damping the oscillations by an energy storage device using particle 

swarm optimization and heuristic dynamic programming is discussed in [59] and shown to 

outperform Power System Stabilizers (PSS) and Flexible AC Transmission Systems 

(FACTS)-enabled damping on the same example system. An energy storage system based 

on Ultra Capacitor technology is proposed for damping control via real power modulation 
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in [60]. However, in all above-mentioned studies the battery has been considered as an 

active power source to inject/absorb active power while the major advantage of BESS is 

the fact that both its active power and power factor are adjustable and controllable by the 

firing angle of the thyristors in the inverter. Therefore, by controlling the inverter, it is 

possible to have reactive power injection in the power system. As the reactive power 

directly affects the voltage deviation in power systems, unstudied reactive power flow may 

cause voltage instability in the network. Considering the growing penetration level of the 

large-scale batteries in future power grids highlights the importance of an accurate battery 

dynamic model to capture the effect of both the active and reactive power injection to the 

power system.   

In this section, we consider a loop shape power system consisting of three different 

interconnected areas with the exact models for the generators and tie lines to see the effect 

of the controller on a loop shape system where we will have different power injection in 

each area. The objective of this section is: 

i) to study the effect of the load deviation on the coherency of the generators; 

ii) to find a systematic solution to design decentralized servomechanism controllers 

for a large-scale system to target specific oscillation modes and damp the 

oscillation.   

iii) to investigate the effect of a large-scale battery integration on the power system 

stability as a control device to damp the inter area oscillations. 

iv) to design a control system to control the active and reactive power of the battery 
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by thyristor firing angle to damp the inter-area oscillation in the power system. 

5.2.    Power System Coherency 

When a power system is subjected to a disturbance such as load deviation or fault id 

transmission lines, the machines of the system tend to separate into groups within which 

the rotors of the member machines oscillate in harmony. This physical property is known 

as coherency, and machines which swing together are called coherent machines. 

Coherency depends, in a complex fashion, on several factors such as machine inertias, 

initial operating conditions, system topology, and the location of the disturbance. In fact, 

it is possible that for a given disturbance a machine may be a member of one coherent 

group, while for a different disturbance the same machine may become a member of 

another coherent group. In order to integrate a large-scale battery to the power grid there 

are several approaches such as frequency regulation [61]- [62], power loss reduction [63], 

and peak load shaving [64].  

As it is mentioned, one of the major challenges in future power grid is power transmission 

from the future renewable resources to the demand centers. DC superconducting cables 

development plan and large-scale battery were two highlighted plans to overcome above-

mentioned issue. In this regard, battery integration to the power system should carefully be 

studied.  

In the section one, we showed that the higher level of small-scale renewables penetration 

in distribution system will be a challenging issue due to abnormal power flow deviation in 

the transmission lines which can be considered as disturbances. Graham in [46] clearly 
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shows that these disturbances can result in power system instability in weak tie lines. In 

this section, we evaluate the potential effect of the load deviation on generators coherency 

to find the potential weak tie lines which should be taken in consideration for large-scale 

battery integration. For this purpose, a three-area power system as shown in Fig. 52 is 

considered as our case study model. The load consumption in area one is altered from 11 +

Ñ2 (Fig.52) to 8 + Ñ2 (Fig. 54) to simulate the small-scale renewables integration in one 

area. The oscillatory frequencies and coherent generators for the first scenario are shown 

in Fig. 54. To evaluate the coherency of the system for current loading, a three-phase fault 

on bus 6 is applied to the system. It is clear that the coherency of the generators (Fig. 53) 

and buses (given in Table 6) are different for each inter-area oscillation modes.  

 

Figure 52. Case study power system generators coherency for the first scenario "4 = 11 + &2 

 



 78 

 

Figure 53. Inter-area oscilation modes and the coherency of the generators for first loading scenario 

For the first mode, f=0.9362 hz, machines in the second area, G3 and G4, will oscillate 

against the rest of the power system while for the second mode, f=1.0547 hz, the third area, 

G5 and G6, will oscillate against the rest of the power system. The weak tie lines for the 

first mode under current load consumption will be the 9-10 and 10-11.  

Table 6. Buses’ coherency for the first scenario 

Bus Mode 0.9362 Mode 1.0547 

1 0.9861 0.0139 0.9917 0.0083 

2 0.8529 0.1471 0.9091 0.0909 

3 0.014 0.986 0.9748 0.0252 

4 0.1483 0.8517 0.8982 0.1018 

5 0.511 0.489 0.0283 0.9717 

6 0.5077 0.4923 0.3558 0.6442 

7 0.0669 0.9331 0.946 0.054 

8 0.1893 0.8107 0.8785 0.1215 

9 0.7241 0.2759 0.8371 0.1629 

10 0.2799 0.7201 0.8299 0.1701 

11 0.5065 0.4935 0.4598 0.5402 

12 0.5076 0.4924 0.3614 0.6386 

13 0.51 0.49 0.133 0.867 

14 0.9336 0.0664 0.9606 0.0394 

15 0.8128 0.1872 0.8883 0.1117 
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In the second scenario, same fault is applied to the system under new loading situation. The 

coherency of the generators (Fig. 53) and buses (given in Table 7) are different for each 

inter-area oscillation modes and from the first loading scenario. For the first mode, 

f=0.9434 hz, machines in the first area, G1 and G2, will oscillate against the rest of the 

power system while for the second mode, f=1.0607 hz, the third area, G5 and G6, will 

oscillate against the rest of the power system (see Fig. 55). The weak tie lines for the first 

mode under current load consumption will be the 9-10 and 9-11.  

To design the proper control system to damp the oscillation we need to identify the 

dominant modes and their occurrence probability to design adequate control with lowest 

cost to meet the reliability of the system. In the next section, a servomechanism control 

design solution will be introduced to damp the effect of the certain oscillatory modes in the 

system. 

 

 

Figure 54. Case study power system generators coherency for the second scenario "4 = 8 + &2 



 80 

 

 

Figure 55. Inter-area oscilation modes and the coherency of the generators for second loading scenario 

 

Table 7. Buses’ coherency for the second scenario 

Buses Mode 0.9434 Mode 1.0607 

1 0.9863 0.0137 0.9923 0.0077 

2 0.8524 0.1476 0.9156 0.0844 

3 0.0147 0.9853 1.0643 -0.0643 

4 0.1447 0.8553 0.9695 0.0305 

5 0.4533 0.5467 0.0293 0.9707 

6 0.4738 0.5262 0.3691 0.6309 

7 0.0689 0.9311 1.0261 -0.0261 

8 0.1869 0.8131 0.9427 0.0573 

9 0.722 0.278 0.8495 0.1505 

10 0.2722 0.7278 0.8839 0.1161 

11 0.479 0.521 0.4774 0.5226 

12 0.4744 0.5256 0.3747 0.6253 

13 0.4606 0.5394 0.1376 0.8624 

14 0.9347 0.0653 0.9631 0.0369 

15 0.8134 0.1866 0.8961 0.1039 
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5.3.    Case Study Model  

We consider a three-area system connected to each other through tie lines in a loop shape 

configuration as shown in Fig. 56.   

 
Figure. 56. Large-scale power system case study model 

The vector X = [X-, x*, XH, x+, XJ, xK]^ represents state variables for the whole system. 

á-, áH, and áJ are the state variables for the first, second, and the third area respectively; 

and á*, á+, and áK, are the tie lines dynamics.  

First Area 

The first area is a subsystem composed of two parts. The first part contains a wind 

generator, a diesel generator, and a battery energy storage as a short-term back-up for wind 

generation.  Energy storage devices as actuators for damping control systems, have several 

advantages.  Most of these devices have very fast response times and can provide both 

power injection and absorption (discharge and charge, respectively). This can allow the 

energy storage system to participate in both power and energy application simultaneously, 

thus increasing the value proposition of the device [3]. The second part is a micro hydro 

generation unit connected to the first part through a tie line. The dynamic model of the first 

part is shown in Fig. 57, and Fig. 58 displayed second part of the model for the first area. 
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The first area has three inputs and three outputs, and it is defined by a	16 × 16 state 

matrix. The state variables defining this area are:  

á- = [∆â-S-, ∆!!: , ∆á(:-, ∆á(:*, ∆Z2 , ∆á_A-, ∆á_A*, ∆á_AH, ∆!'(), ∆!'().U55$ 

, ∆!#B6ST` , ∆â-S*, ∆!!a , ∆!ba , ∆á(a , ∆!U6Va] 

where ∆â-S- is the frequency deviation of the first part (hybrid system), and ∆â-S*	is the 

frequency deviation of the second part (micro hydraulic) [65]. ∆Pcde, ∆Pcdefghhi are 

representing battery dynamics and ∆!7 shows connected load variations in the grid. Inputs 

and outputs of this area, are defined as  

ã- = [∆!A: , ∆!Aj , ∆!U6V`] 

v- = [∆â-S-, ∆!#B6ST` , ∆â-S*] 

 

Figure 57. Dynamic model of wind generator, diesel generator, and battery as a backup [65], [66] 
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Figure 58. Dynamic model of micro hydro generator [66] 

 

Second Area 

The second area is the same as the first part of the first area shown in Fig. 57. This area 

consists of a wind generator, a diesel generator, a battery as a short-term backup for wind 

generation. This subsystem has been modeled with a 10 × 10  state matrix with two inputs 

and two outputs.  

áH = [∆â*, ∆!!: , ∆á(:-, ∆á(:*, ∆Z2 , ∆á_A-, ∆á_A*, ∆á_AH, ∆!'(), 	∆!'().U55$]  

Inputs and outputs for this area are: 

ã* = [∆!A: , ∆!Aj] 

v* = [∆â*, ∆á_AH] 

 

Third Area 

Finally, the third area consists of a reheat-thermal generator unit and a hydro generator. 

These generators are connected together through a tie line as shown in Fig. 59.  This tie 

line is considered so that both generators have same output (referring to case in two areas 

four machines [67]).  
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Figure 59. Dynamic model of a hydraulic generator and a reheat generator connecting through a tie 

line [67] 

This system has two inputs, two outputs and it is modeled via a 11 × 11 state matrix.  

The state variables defining the third area are:  

áH = [∆á(-, ∆!!-, ∆!b-, ∆âHS-, ∆v-, ∆á(*, ∆!!*, ∆!b*, ∆âHS*, ∆!#` , ∆v*]  

where ∆âHS- is frequency variation of the thermal unit, ∆âHS*	is the hydro unit frequency 

variation, and ∆!7-, and ∆!7* are the connected load variations in the grid. 

Inputs and outputs for this area are:  

ãH = [∆!-, ∆!*] 

vH = [∆âHS-, ∆âHS*] 

The original large-scale power system is simulated by a 40 × 40 state matrix containing 

three aforementioned subsystems and three tie lines’ dynamics. This system has seven 

inputs and outputs in total.   
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5.4.    Servomechanism Control Design  

To design a servomechanism control we consider a loop-shaped three-area power system 

connected to each other through tie-lines. The system will be decomposed to three lower 

order system and a decentralized control will be designed for each area based on inter-area 

oscillation modes to damp the oscillation.  

5.4.1. System Decomposition 

For a large-scale system, it is almost impossible to design a central control. Decomposition 

of a large-scale systems with the overlapping structure, especially in power system, has 

been an important research area to solve control design challenge in large-scale systems. 

System decomposition methodology is built based on expanding the system’s state space 

equations; so that, the overlapping subsystems effect is shown as disjoint subsystems.  

Each disjoint subsystem includes all information needed from the rest of the system that 

gives the decomposed subsystem the opportunity of working independently. So, a 

decentralized controller can be designed for each subsystem to guarantee the desired 

performance of the system. There are different decomposition approaches for large-scale 

systems. Some of the common methods are nested epsilon decompositions approach, 

balanced box-decompositions (BBD) method, and overlapping decompositions [68], [69]. 

In this study, we use overlapping decomposition method to decompose the large-scale 

system into smaller subsystems based on its configuration. The schematic of the system is 

represented in Fig. 60. 
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Figure 60. Overlapping decomposition schematic for loop structure 

By considering á = [á-, á*, áH, á+, áJ, áK]2 as the states variables for the whole system 

shown in Fig. 54, the corresponding state matrix is defined as 

n =

⎣
⎢
⎢
⎢
⎡
n-- n-* 0
n*- n** n*H
0 nH* nHH

⋯
n-K
0
0

⋮ ⋱ ⋮
nK- 0 0 ⋯ nKK⎦

⎥
⎥
⎥
⎤
  

Using the overlapping decomposition methodology, the decomposed subsystems will be 

represented as following: 

First decomposed area: 

)*
+̇4 = -̅4*+4 + /+4014
2+4 = 3̅4*+4															

                                                                                                        (54) 

where the first subsystem given in (54) has three inputs and three outputs, and 18 states. 

These states are áè- = [áK, á-, á*]2 and the state matrix, input and output matrix are  

n̅- = ë
nKK nK- nK*
n-K n-- n-*
n*K n*- n**

í  , Pè- = ë
P-H P-- P-*
P*H P*- P**
PHH PH- PH*

í  

Cè- is block diagonal {CKK,	C--,	C**}, and 
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áè- ∈ =-L, ãî- ∈ =H, vè- ∈ =H	, n̅-: =-L × =-L, Pè-:	=-L × =H, and )̅-: =H × =-L.  

Second decomposed area: 

The second subsystem has two inputs and outputs. The subsystem in (55) has 12 states 

which are defined as  áè* = [á*, áH, á+]2 												 

ïá
è̇
* = n̅*áè* + Pè*ãî*
vè* = )*̅áè*															

	                                                                                                      (55) 

The state, input and output matrices for the second subsystem are 

n̅* = ë
n** n*H n*+
nH* nHH nH+
n+* n+H n++

í , Pè* = ë
P*- P** P*H
PH- PH* PHH
P+- P+* P+H

í  

and Cè* is block diagonal {C**,	CHH,	C++} where  

áè* ∈ =-*, 	ãî* ∈ =*, vè* ∈ =*, n̅*: =-* × =-*, Pè*:	=-* × =*, and )*̅: =* × =-*.  

Third decomposed area: 

Finally, the third decomposed subsystem is defined as in (56). It has two inputs and two 

outputs, with 15 states. 

ïX
î̇
H = AîHXîH + BîHUîH
YîH = CèHXîH															

                                                                                                       (56) 

These states are áèH = [á+, áJ, áK]2  and the state, input and output matrices are  

n̅H = ë
n++ n+J n+K
nJ+ nJJ nJK
nK+ nKJ nKK

í , PèH = ë
P+* P+H P+-
PJ* PJH PJ-
PK* PKH PK-

í 

and CèH is block diagonal {)++,	)JJ,	)KK} such that 

áèH ∈ =-H, ã ∈ =*,		v ∈ =*	and n̅H: =-H × =-H, PèH:	=-H × =*, )H̅: =* × =-H.  

After decomposing the large-scale system, still it can be too complicated to deal with 

decomposed subsystems due to their high order equations. An approximation procedure is 
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utilized to generate reduced order models of particular structure that maintain the main 

characteristic behavior of the original system that facilitate the decentralized control 

design. This particular structure is explained in the next section. 

Control Design for Interconnected Systems 

For a linear time-invariant system as  

)
5̇ = -5 + ∑ /5

6
574 75 													

85 = 355								& = 1,2, … . , <
	                                                                                                               (57) 

Referring to the theorem in [70], a decentralized linear time invariant controller exists for the 

decentralized =	control-agent system so that, the closed loop system is stable in sense of Lyapunov 

(asymptotically) if and only if all the decentralized fixed modes of system given in (57) lie on the open left 

half of the complex plane. If we have additive disturbance of  =  added to the right-hand side of (57) such 

that 

>
	?̇4 = -4?4
= =	@4?4

                                                                                                                                           (58) 

where z-ϵ	Rk- , and (Q-,A-) is observable and z-(0) is unknown. Each control agent has a 

pre-specified reference output p
l

U and the aggregated reference vector pU6V =

hp-,U , p*,U , … . , pU,U°
2

to satisfy 

m
	¢̇* = n*¢*					
pU6V =	u*¢*

                                                                                                                 (59) 

It is shown that under certain conditions, there exist a solution to the decentralized 

servomechanism problem so that f(:) → 0 as : → ∞ for all above mentioned disturbances 

[21]. Note that f(:) = p(:) − pU6V(:). 

Consider the special case,  

2̈ = !2̇ + @2 + B0                                                                                                                              (60) 
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where both v(:) and ã(:) are n-dimensional vectors. !, =, and u are real with compatible 

dimension matrices. Having = full rank will guarantee the existence of a solution for the 

servomechanism problem [20]. By defining Y = X-, and v̇ = X* , system can be rewritten 

as 

⎩
⎨

⎧F
*4̇
*8̇
G = H

0 J
! @K H

*4
*8
K + L0

B
M0

2 = [J 0] H
*4
*8
K																							

                                                                                                            (61) 

then, the following theorem can be applied to the system.                                

Theorem [70] 

A necessary and sufficient condition to exist a solution to decentralized servomechanism 

for given system in (60) such that 

 p(:) → pU6V(:)		6•				f(:) → 0    as:   : → ∞ 

for all those classes of disturbances described by (58) and for all pre-specified reference 

inputs described by (59), is that matrix = be full rank. The full rank matrix = guarantees 

the existence of the solution for the given system. Therefore, if we model each subsystem 

with the given structure in (61) such that R matrix be full rank, the existence of a 

decentralized controller will be guaranteed.  

Note: Not all systems given in (57) structure can be rewritten as (60). To take advantage 

of the aforementioned theory in our large-scale system, we will need to identify each 

decentralized subsystem as (61). This will guarantee the existence of a decentralized 

controller for each identified system. In next step, we identify a reduced order model for 

each subsystem in the form of (61). Each area should be identified with a 2, order system, 

where , is the number of inputs in each decentralized subsystem. 
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5.4.2.  System Identification 

specific form represented by (61). This specific form of systems modeling guarantees 

the existence of a solution to the existence of designing controller for the system in 

presence of disturbances such that system’s outputs converge to reference outputs 

asymptotically. This requires reduction in the system order according to the number of 

system’s inputs/outputs and given structure in (61). To this end, we use system 

identification to derive reduced order model for each decomposed subsystem. 

System identification is an approach to model a black or grey (unknown or partially 

known) dynamic system. The estimate model is developed based on observations of 

input/output experimental data. System identification techniques are applicable in time 

domain or frequency domain. In frequency domain identification, discrete Fourier 

transform (DFT) is employed to transfer the data to the frequency domain, then model 

parameters are estimated in the frequency domain. In time domain identification, measured 

data are used directly to estimate model parameters. In this section, we use time domain 

system identification.  

Next, for each of these identified subsystems as the reduced order model of each area, our 

aim is to design a controller to guarantee stable and desired performance of the system in 

the existence of defined disturbances. The designed controllers will be applied to the 

original system to improve the small signal stability of the system. Small signal stability in 

power systems is defined as the ability of the power systems to maintain synchronism when 

they are subjected to small perturbations [67]. Load changes is an example of small 

disturbances which often occur in power systems. The small load changes can be defined 
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as bounded disturbances. In the following, we use servomechanism disturbance rejection 

approach for control design with the purpose of damping the inter-area oscillations. 

5..4.3. Servomechanism Control Design  

As discussed in [70], designing a suitable controller based on the reduced order model 

information such that it works properly on the original system is a real challenge. Practical 

approaches have been proposed to maintain the robustness of the feedback controller [71]- 

[73]. In general, one of the reasons that leads to poor performance of the controller on the 

original system is the error between the original system and the identified one [72]. After 

system decomposition and system identification, the difference between the original 

system and the identified system, especially some of the oscillatory modes, appear as 

disturbances in the system. These errors should be considered in the controller design.  

In this section, we consider the oscillation modes of the original decomposed 

subsystems as input disturbances for the identified subsystems. These modes cause the 

oscillations in the original system and we attempt to damp their oscillatory effects.  

For a given system (62) with input disturbance  

>
5̇ = -5 + /7 + =
8 = 35																				                                                                                                                               (62) 

where the state of the system M is a .-vector, and the output, p, is a •-vector (• ≤ .), and 

i)	ω = (ω-, ω*, … , ωI)′is unknown, unmeasurable disturbance which belongs to a certain 

class of disturbances such that it satisfies (63),  

ω
W

($) + q$ωW

($S-) +⋯+ q*ω̇W + q-ωW = 0 
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P = 1,2,… , Q	                                                                                                                                       (63) 

ii)  closed-loop system dynamic behavior is specified,   

iii) p(:) → pU6V(:)	6•	f(:) → 0 as : → ∞ for all ω, where pU6V = (p-,U , p*,U , … , pU,U) and 

pB,U satisfies the differential equation 

89,6
(<) + R<89,6

(<>4) +⋯+ R88̇9,6 + R489,6 = 0                                                                               (64) 

@ = 1,2, … , . 

where pW,U(0), ṗW,U(0), …, p
W,U

($S-)(0) are specified,  

Davison in [28] shows that, there exists a minimal order linear time invariant differential 

feedback controller of the form 

7 = T?5 + ∑ T@
6
@74 Q@                                                                                                                   (65) 

stabling the closed-loop system, if  

i) (A, B) be controllable 

ii) rank	¨ = . + •q 

where  

Γ =

⎣
⎢
⎢
⎢
⎢
⎡
ℳ$ ℳ$S- …
)n$S- )n$S*P …
⋮ ⋮ ⋱

ℳ* ℳ- P
)nP )P 0
⋮ ⋮ ⋮

)n$S- )nP 					…
)n$S- )P 					…
) 0 					…

			0	 			0	 		0
			0	 			0	 		0
			0	 			0	 		0⎦

⎥
⎥
⎥
⎥
⎤

 

ℳ- = nP + q$P 

ℳ* = n*P + q$nP + q$S-P 
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⋮ 

ℳ$S- = n$S-P + q$n$S*P +⋯+ q*P 

ℳ$ = n$ + q$n$S- + q$S-n$S* +⋯+ q*n + q-{ 

and  

.̇B = Ø.B +

⎝

⎜
⎛
0
0
⋮
0
1⎠

⎟
⎞
"p − pB,U%								- = 1,2, … , τ 

Ø =

⎣
⎢
⎢
⎢
⎡
0						 1
0						 0

0
1

… 	0
… 	0

⋮						 ⋮ ⋮ ⋱	 ⋮
0 0
−q- −q*

0
−q*

			
0 0
… −q$⎦

⎥
⎥
⎥
⎤
 

In our case study system, not all states of the subsystems are available as outputs. 

Therefore, to implement the above controller, state estimation is essential to have access to 

the states of identified subsystems. To this end, a Luenberger observer is designed for each 

identified subsystem to have a good state estimation on the reduced order model [72].  

 

Figure. 61. Observer and output controller configuration 
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The block diagram of the observer and servomechanism controller for disturbance rejection 

is shown in Fig. 61. The oscillation modes causing the oscillation in the original system, 

are considered as disturbances which we desire to damp. 

Remarks 

i) This approach agrees with the results we have for the class of step and impulse 

disturbances in [71] which has been employed for same case study system in [72]. 

ii) This approach can be applied for sinusoidal disturbances except those that can cause rank 

deficiency due to their frequencies [72]. 

iii) ∑M,	and ∑B are found such that the closed-loop system remains stable. This system will 

be robust for any changes in system parameter or feedback gain matrices if the closed-loop 

system stays stable [71]. Note that, there is no guarantee transient behavior will be 

satisfactory [73]. For instance, transient performance may be excessively slow or have 

poorly damped oscillatory behavior [72].  

5.4.4. Results and discussion 

To investigate the effect of the designed controller for inter-area oscillation on the 

original system, we implement the designed controller on the original three area system. 

Next, a step disturbance with magnitude of 0.01 pu at t=10 s, is applied to the system in tie 

line between first and second area. This small perturbation will excite modes of the system. 

This disturbance can be any small signal perturbation in power system representing some 

load connection/ disconnection to the power grid or any other small changes in system’s 

steady state operating point.  
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The results of frequency deviations in each area prior and after applying the 

servomechanism controller to the system are shown in Figs. 62-64. As it is shown, inter-

area oscillations are well damped.  The blue solid lines indicate system response to the 

perturbation when the designed decentralized servomechanism controller is applied to the 

system.  The outputs of the system with no controller are shown via solid red lines. The 

obtained results are in line with our previous work of state feedback controller [72], except 

for the third area. Although the third area has relatively slower damping time, still it fulfils 

the requirements for power quality, and it is more robust to the identification error 

comparing to the state feedback controller. 

 

Figure 62. Frequency deviation in first area due to fault in tie line 

 

Figure 63. Frequency deviation in second area as a result of fault in tie line 
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Figure 64. Frequency variation in third area by cause of fault in tie line 

A loop shape large-scale power system decomposed to three subsystems. Each subsystem 

is identified by a lower order model based on their inputs number in a given structure. A 

servomechanism disturbance rejection controller based on oscillation modes of the system 

is designed for each subsystem and applied to the original system. We show that inter-area 

oscillations are well damped by designed controller. Also, the simulation results confirm 

that servomechanism controller is more robust to delay in the system. For future works, to 

improve the controller design in this system, two approaches exist: (i) improve the system 

identification approach to decrease the identification error in the system; (ii) employ more 

accurate control design approaches for this case. 

CHAPTER SIX 

LARGE-SCALE BATTERY ENERGY STORAGE DYNAMICAL MODELING FOR 

POWER SYSTEM STABILITY ANALYSIS 

6.1.    Introduction  

The increasing penetration of renewable energy sources in the grid can raise the likelihood 

of instability in the power grid, e.g. small signal and voltage instability incidents.  To study 
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the effect of BESS integration on the grid and power system behavior, especially for 

stability analysis, accurate battery modeling plays a key role. In [74] EPRI proposed a 

generic model based on [75] for small signal stability analysis. This model in fact, is a 

combination of several PI controllers and saturation that model the constant active and 

reactive power injection to the power grid. the main assumptions in this model are: i: the 

battery dynamic and chemistry are ignored and ii: the details in DC side of the battery is 

ignored.  In another study, the dynamic model for large-scale batteries and their integration 

in power grids was first proposed in [76]. In this model, the battery was represented by a 

constant voltage source parallel to a resistance and capacitor (RC) circuit. The model was 

later improved and implemented in power system studies [76]-[77]. The proposed model 

in [77] has been used in research studies for load frequency control and power system 

stability analysis [78]- [80]. However, nonlinearity is the major disadvantage of the battery 

model in [78] as it complicates the stability analysis. Moreover, in the majority of the 

existing literature, BESS is studied as an additional active power source from real power 

and frequency variation points of views, while the major advantage of BESS is the fact that 

both its active power and power factor are adjustable and controllable by the firing angle 

of the thyristors in the inverter. Therefore, by controlling the inverter, it is possible to have 

reactive power injection in the power system. As the reactive power directly affects the 

voltage deviation in power systems, unstudied reactive power flow may cause voltage 

instability in the network.  Hence, in power systems small signal stability analysis, d-q 

models of power system components in state space representation must be developed.  
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As the majority of power system studies, including small signal stability analysis, is carried 

out in the d-q axes, a precise model of the battery in the d-q axes is necessary. The lack of 

parametric based models of the battery in d-q axes makes stability analysis more 

challenging especially as the contributions of batteries in power systems are growing 

rapidly. In this paper, we develop an analytical model for the battery and its inverter in d-

q axes. In this study, a new modeling approach using d-q analysis is used for batteries 

integration to the power grid. A state space representation of the battery energy storage 

model accompanied by an inverter in the d-q axes is presented. The inverter firing angle is 

considered as an input to enable the control of the battery’s power factor. The advantages 

of the proposed model with respect to the other battery models [77] – [81] are: i) the 

reactive power has been considered such that grid voltage deviations can be taken into 

account, and ii) the state space model of the battery has been represented in d-q structure, 

which utilize the stability analysis in the power system. 

6.2.    Power System Model 

Small signal stability in a power system is defined as the ability of the power system to 

maintain synchronism in the presence of small disturbances such as load deviations. In this 

context, since the power system is inherently a nonlinear system, the power system model 

is linearized in the vicinity of its operating point for the small signal analysis. This enables 

us to apply linear system theory to the power system even though the system is inherently 

nonlinear.  In this regard, all power system components can be modeled in the state space 

representation as:  
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>
5̇ = -5 + /7
8 = 35 + U7                                                                                                                 (66) 

A general power system structure is shown in Fig. 65. Based on the given model, we can 

define the general equation of the system as:   

[2ABC]∆WD = ∆J( − ∆JE − ∆JF + ∆JG	                                                                               (67) 

 
Figure 65. Power system Structure 

where,  v&X? is the power system admittance matrix, ∆∏# is the voltage deviation in the 

buses and ∆{! , ∆{7 , ∆{), and	∆{'	are the changes in generator, load, static var compensator 

(SVC) and battery current injections to the power system, respectively. 

Generator Model 

The generator model in state space representation varies based on the modeling approaches 

chosen [82]– [83]. For instance, in [82] the generator is represented with five states as:  

∆xo = h∆Ø, ∆l, ∆∫.p , ∆∫qp , ∆∫V.°  

where, Ø is rotor angle, l is the rotational speed, ∆∫.p  and ∆∫qp  are the d and q axes 

generator internal voltages and ∆∫V. is the field voltage. The order of the generator model 

can increase to 16 states as the generator model includes the exciter, power system 
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stabilizer (PSS), and turbine dynamics. The generator differential equations after 

linearization are: 

ï
∆Ṁr = [nr]∆Mr +	[Pr]∆ªr +	[∫r]∆o0r	
∆{r =	 [)r]∆Mr + [Yr]∆ªr																										

                                                                    (68) 

where ∆ªr represents the voltage deviation in the generator bus, ∆{r is the generator current 

deviation and ∆o0r is a small perturbation in the generator reference input variables for the 

generator controllers. Note that, ∆Io, and ∆Vo are represented in d-q axes as  

∆{r =	 y
∆{.r
∆{qr

z and ∆ªr =	 y
∆ªqr
∆ª.r

z 

To be able to study the power system, all other equipment such as loads, SVCs and batteries 

should be written in d − æ format. These devices are modeled in state space representation 

in the following subsections.  

Load Model 

Power system loads including induction motors and nonlinear loads are modeled as  

m∆Ṁ" = [n"]∆M" +	[P"]∆ª" +	[∫"]∆o0" 			
∆{" =	 [)"]∆M" + [Y"]∆ª" 																										

                                                                        (69) 

where, ∆xs are the dynamic loads such as induction motor states and ∆uts are the load 

control inputs. ∆Vs is the load bus voltage deviation and ∆Is	is the load (demand) current 

deviation. For the static loads the equation will be simplified to  

∆{" = [Y"]∆ª" =	 [v"]∆ª"                                                                                                 (70) 

Static Var Compensator (SVC) model 

Similar to the load equations, static var compensator (SVC) in state space representation is 

modeled as  
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m∆Ṁ? = [n?]∆M? +	[P?]∆ª? +	[∫?]∆o0?			
∆{? =	 [)?]∆M? + [Y?]∆ª?																										

                                                                      (71) 

where, ∆M? are the SVC states and ∆o0? are the SVC control inputs. ∆ªk and ∆{?	are the 

SVC bus voltage and current deviations, respectively.  

Battery model 

To add the battery dynamics to the power system model, the battery also should be 

represented as  

∆Ṁ& = [n&]∆M& +	[P&]∆ª& +	[∫&]∆o0&			
∆{& =	 [)&]∆M& + [Y&]∆ª&																										

                                                                     (72) 

Remark1: Note that all equations are in d-q axes, hence: 

∆{(.) =	 y
∆{.
∆{q

z and  ∆ª(.) =	 y
∆∏q
∆∏.

z                                                                                   (73) 

where ∆ª(.) represents voltages deviations in load, SVC or the battery buses, ∆{(.) is the 

current deviations and ∆o0(.) is the small perturbation in their reference input variables. 

Network Equations 

As shown in Fig. 1, generators and loads in the power system network are interfaced to the 

network as current injections This leads us to following equation 

hv&X?_:Z°∆ªZ: = [!!]∆{! −	[!7]∆{7 − [!?]∆{) + [!']∆{'									                                                     

(74) 

v&X?_:Z is the network admittance matrix in d-q axes and !r(-, Ñ) = ¿1 0
0 1¡  if the ith 

generator is connected to the jth bus, otherwise  !r(-, Ñ) = ¿0 0
0 0¡.  Same interfacing 

matrices are defined for !", !?%0, and !' [82]-[83]. 
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After substituting the equations  (68), (69), (71) and (72) in (74) and simplifying, the overall 

system representation becomes  

á̇ = [n#]á + [∫]ã0                                                                                                         (75) 

where 

n# = [n] + [P][!]#[v&X?HI
p ]S-[!][)]	                                                                            (76) 

[!] = [!! 	!7	!)	!']                                                                                                        (77) 

and  

¿v&X?HI
p ¡ ∆ªZ: = [!!][)!][á!] +	[!7][)7][á7] + [!)][))][á)] + [!'][)'][á']          (78) 

n# represents the state matrix of the entire power grid, and the stability of the system is 

studied based on n#. 

To be able to study the effect of the battery integration on the power system stability, we 

need to model the battery in the state space model structure given in (72). Then we will be 

able to add the battery model to the power system model in (74). For this purpose, we 

derive the BESS current equations in d-q axes and linearize them in the vicinity of the 

operating point 

 

6.3.    Battery’s Linear Model  

Large-scale batteries are accompanied by their inverters in power grids [77]. Figure 66 

shows the equivalent circuit model of a battery and its inverter.  To extract the state space 

model of the battery, we consider two cases for the charging and discharging modes. The 
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dynamics of the battery in the charging mode are slightly different from the discharging 

model.  

 

Figure 66. Battery and inverter circuit model 

In the first case, we obtain the state space model of the battery for the charging scenario.  

In the second case, with slight modifications, we obtain the discharging model from the 

first case.  

6.3.1. Charging Mode 

In the charging mode, using Kirchhoff’s voltage law, the output voltage of the battery, ª'2, 

is  

ª'2 =	
H√K

v
∏# 765(¬b) −

H

v
M05{'()                                                                                 (79) 

where, {'() is the battery’s terminal current. The dynamic model of the battery for the 

charging mode is shown in Fig. 61, where, ¬b is the inverter firing angle and ∏# is the bus 

voltage to which the battery is connected.  

Defining I = 1 + H

vb
M05, and R = Rce + Rc^ the battery current is  

{'() =	
H√K

vwb
∏# 765(¬b) −	

-

wb
ª'3A −	

-

wb
ª'-                                                                  (80) 
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where ª'- is the battery overvoltage, and	ª'3A  is the battery open circuit voltage. In the 

nonlinear model of the battery represented in Fig. 67, we consider M& = [ª'3A , ª'q , ¬b]2as 

the state vector of the battery.   

 

Figure 67. Battery and inverter dynamic model in the charging mode 

By linearizing (80) in the vicinity of the operating point of ¬b = ¬UM, ∏# = ∏#M, ª'3A =

ª&50M, ª'- = ª&-M, and {'() = {&M, the current deviation is  

∆{'() =		
H√K

vwb
765(¬UM)	∆ ∏# −	

H√K

vwb
∏#M 5-.(¬UM)	∆¬b −

-

wb
∆ª'3A −	

-

wb
∆ª'-              (81) 

Moreover, using the dynamic block diagram shown in Fig. 61, we have the following state 

dynamics  

∆ª̇'3A =	
-

AJ2
	∆{'() −	

-

AJ2bJ2
	∆ª'3A 	                                                                           (82) 

∆ª̇'- =	
-

AJ.
	∆{'() −	

-

AJ.bJ.
	∆ª'-	                                                                                 (83) 

∆¬̇b =	
WK

2K
	∆¬ − -

2K
	∆¬b                                                                                                 (84) 

Now, considering  

!'() =	
H√K

v
	∏#	{'()	765	(¬b)                                                                                                              (85) 
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u'() =	
H√K

v
	∏#	{'()	5-.	(¬b)                                                                                                                  (86) 

{&. =
%3+_JLMS%3NZJLM

%3
O                                                                                                                                  (87) 

{&q =
%3N_JLM1%3+ZJLM

%3
O                                                                                                                                   (88) 

∏# = √∏
.

* + ∏q*                                                                                                                (89) 

The final state space representation of the battery dynamics and its inverter can be 

summarized as (85)-(89) in the vicinity of its operating point. In this state space model, the 

states are the deviation values of nonlinear states as ∆M& = [∆ª'3A , ∆ª'q , ∆¬b]2. The input 

reference control for the battery is defined as ∆o0& = ∆¬, which controls the active and 

reactive output power of the battery. The outputs are active (∆{&.) and reactive (∆{&q) 

current deviations of the battery. Note that the voltage input signal is in d-q axes as ∆∏ =

h∆∏q , ∆∏. 	°
2 . Note that ∆∏ is the battery terminal voltage deviation as a result of the battery 

connection to the power grid. 

ƒ
∆ª̇'3A
∆ª̇'-
∆¬̇b

≈ = 	n& ë
∆ª'3A
∆ª'-
∆¬b

í +	P&	∆∏ + ∫&∆o0&                                                                  (90) 

y
∆{&.
∆{&q

z = )& ë
∆ª'3A
∆ª'-
∆¬b

í +	Y&	∆∏                                                                                       (91) 

where 

n& =

⎣
⎢
⎢
⎢
⎢
⎡(

S-

bJ2AJ2
− -

bwAJ2
) S-

bwAJ2

SH√K	.	%3P

vbwAJ2
5-.	(¬UM)

S-

bwAJ.
( S-

bJ.AJ.
− -

bwAJ.
) SH√K	.	%3P

vbwAJ.
sin	(¬UM)

0 0 S-

2K ⎦
⎥
⎥
⎥
⎥
⎤

                                            (92) 
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P& =	

⎣
⎢
⎢
⎢
⎡
H√K		%NP

vwAJ2%3P
765	(¬UM)

H√K			%+P

vwAJ2%3P
765	(¬UM)

H√K	%NP

vbwAJ.%3P
765	(¬UM)

H√K	.	%+P

vbwAJ.%3P
765	(¬UM)

0 0 ⎦
⎥
⎥
⎥
⎤
                                                         (93) 

∫& = ƒ
0
0
WK

2K

≈                                                                                                                         (94) 

Finally, the terms of )& = h)&Bl° and Y& = hY&Bl° matrices (-Ñ representing the -#` and Ñ#` 

columns) are as follows 

)&-- =	
SH√K	%+P

vbw%3P
765(¬UM) +  

H√K	%NP

vbw%3P
5-.(¬UM)                                                               (95) 

)&-* =	
SH√K	%+P

vbw%3P
765(¬UM) +  

H√K	%NP

vbw%3P
5-.(¬UM)                                                               (96) 

)&-H =	
SJ+

vObw
∏.M. 5-.	(2¬UM) −

J+

vObw
∏qM. 765	(2¬UM) +

H√K	

vbw%3P
(ª&50M +

ª&-M)[∏.M. 5-.	(¬UM) + ∏qM. 765	(¬UM)]	                                                                          (97) 

)&*- =	
SH√K	%NP

vbw%3P
765(¬UM) −  

H√K	%+P

vbw%3P
5-.(¬UM)                                                             (98) 

)&** =	
SH√K	%NP

vbw%3P
765(¬UM) −  

H√K	%+P

vbw%3P
5-.(¬UM)                                                            (99) 

)&*H =	
J+

vObw
∏.M. 765	(2¬UM) −

J+

vObw
∏qM. 5-.	(2¬UM) +

H√K	

vbw%3P
(ª&50M +

ª&-M)[∏qM. 5-.	(¬UM) − ∏.M. 765	(¬UM)]	                                                                        (100) 

and  

Y&-- =	
S*N

vObw
5-.	(2¬UM) +

H√K	

vbw%3P
Q [∏.M* 	5-.(¬UM) + ∏.M∏qM765	(¬UM)]( ª&50M + ª&-M)(101) 

Y&-* =	
J+

vObw
	765*(¬UM) −

H√K	

vbw%3P
Q [∏qM* 	765(¬UM) + ∏.M∏qM5-.	(¬UM)](ª&50M + ª&-M) (102) 
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Y&*- =	
J+

vObw
	765*(¬UM) −

H√K	

vbw%3P
Q [∏.M* 765(¬UM) − ∏.M∏qM	5-.	(¬UM)](ª&50M + ª&-M)(103) 

Y&** =	
*N

vObw
	5-.	(2¬UM) −

H√K	

vbw%3P
Q [∏qM* 5-.(¬UM) − ∏.M∏qM	765(¬UM)]( ª&50M + ª&-M) (104) 

Having derived the state space model for the battery in the charging mode, we derive a 

similar model for the discharging case.  

 

6.3.2. Discharging Mode 

To modify the charging model in Fig. 61 for the discharging mode two slight changes are 

required: i) changing the firing angle to » = … − ¬; and ii) changing the current flow 

direction. Therefore, the obtained battery voltage is  

ª'2 =	ª'3A − ª'- − (='2 + ª')){'()                                                                         (105) 

Considering the inverse flow of the current, {'() has negative value in the equation (82). 

So, (105) can be modified to  

ª'2 =	ª'3A − ª'- + (='2 + ª')){'()                                                                         (106) 

 

6.2.3. Simulation Results 

To validate the credibility of the obtained linearized model in d-q axes, simulations were 

conducted to compare the behavior against the original model. For brevity, only the results 

for the charging mode are discussed. The discharging mode has the same quality of results. 

In the simulation study, the following system operating conditions were considered:	∏#qM =

100	ª, 

∏#.M = 692.82	ª, ∏#M = 700	ª, and ¬M = 15°. 



 108 

At this operating point, a small perturbation on the firing angle of the inverter with the 

value of ∆¬ = −1.97° was considered. Figure 68 compares the results of the state vector 

M& = [ª'3A , ª'q , ¬b]2in both models. The states in the original model are shown in blue 

and states of the linearized d-q axis model are depicted with red.  

All states start with the same initial conditions as both models were in the same operating 

points. The slopes of deviations are very close to each other and there are slight differences 

in the final values.  

The bias errors are mainly noticeable in the steady state because of the linearization 

approximation whereas the application of this model is for transient behavior in small 

signal analysis for no more than a few minutes time duration.  

 

Figure 68. Open circuit voltage of the battery 

In the original model depicted in Fig. 66, there is no direct access to measure the d-q axis 

currents of the battery. Therefore, to validate the output signals of the obtained model, we 
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compute these currents by solving the following equations for active and reactive power, 

which approximates (107)-(108) as 

!'() = ∏#.{&. + ∏#q{&q                                                                                                (107) 

and  

u'() = ∏#.{&q − ∏#q{&.                                                                                                (108) 

The battery current in d and q axes ( {&., and {&q ) of the original model and the linearized 

model are shown in Fig. 69. The linearized model results are close to the original model, 

particularly in the transient time frame that would be employed in small signal stability 

studies. 

 

Figure 69. Battery d axis output current 

Finally, the effect of the linearized battery integration to the power grid is investigated on 

the two-area case study model and the results are shown in Fig. 70. It is shown that the 

battery connection has improved the stability and transient behavior of the system.  
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Figure 70. Two-area case study model eigenvalue analysis in presence of the battery 

Considering the dynamic model of the battery for charging and discharging mode allows 

us to have full control on four quadrants of active and reactive power. Four quadrant control 

means the real current flow directions can represent either charging or discharging states, 

while the reactive current flows can represent either supplying or absorbing reactive power 

simultaneously and independently (see Fig. 71).   

 

Figure 71. BESS Four quadrant control and operation diagram 

By implementing proper control strategy, the BESS can provide the following 

functionalities in the power grid based on system requirements [84]: 
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1. Voltage control and regulation at the local terminals of the BESS, at the point of 

interconnection (POI) or plant level (when incorporated in a power plant).  

2. Frequency support by quickly providing or absorbing real power or being part of 

automatic generation control (AGC).  

3. Spinning reserves, non-spinning reserves, or supplemental reserves. Generation 

capacity over and above customer demand is reserved for use in the event of 

contingency events like unplanned outages. Many storage technologies can be 

quickly synchronized to grid frequency through power electronics control, so they 

can provide a service equivalent to spinning reserves with minimal to zero standby 

losses (unlike the idling generators). Energy storage is also capable of providing 

non-spinning or supplemental reserves.  

4. Power oscillation damping which is the objective of this research. BESS can be 

used to damp or alleviate power oscillations if the proper supplemental controls are 

deployed, and the BESS is strategically located in the transmission system to be 

able to affect the modes of oscillation of concern.  

Large-scale battery control schematic in power system considering the charge/discharge 

model, which will be able to provide active and reactive power in lead/lag form, is shown 

in Fig. 66. In this model n0 and n. represent the state metrices of the whole system in 

charging and discharging modes respectively. 

 

  



 112 

 

CHAPTER SEVEN 

CONTROL DESIGN  

7.1.    Introduction  

The complexity of the power system is a significant challenge to design and implement 

proper control. There are several approaches to design control for a given system. Each of 

these approaches has its advantages and disadvantages to other approaches that highlight 

their effectiveness for specific applications. Optimal control deals with finding a control 

law for a given system such that a specific optimality criterion is achieved. The control 

problem includes a cost function that is a function of the system's states and control 

variables. As in this research, we are looking for a control approach to be able to deal with 

frequency deviation as the main output of the system along with the battery's active and 

reactive power output, which is limited due to its output power capacity and energy price, 

optimal control approach is considered as the control approach to design the optimal 

control for the batteries.  

Considering the large-scale battery integration to the power grid, and the necessity of 

switching between charging/discharging scenarios implies the centralized control's 

effectiveness to optimally schedule the batteries output power and operating power factor 

to suppress the frequency deviation at minimum cost. However, the power system's 

complexity is a significant challenge to design and implement a proper centralized control. 

On the other hand, decentralized control methods have been widely used in power systems 
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as more practical control strategies compared to centralized control methods in large-scale 

systems. In a decentralized control design, no information exchange among different areas 

is necessary to establish a subsystem controller. Also, any inputs to the subsystem other 

than local inputs are considered as perturbations [85]. This makes the control design and 

implementation easier in large power systems.  

Another important factor that we need to consider in control design is the measurability 

of the system states. In most systems, especially large-scale systems such as the power 

system, it is practically or economically almost impossible to measure systems' states. 

Observer design and implementation give a close estimation of the system state 

information; however, large-scale systems generally experience higher estimation errors or 

convergence problems. To overcome these challenges, the decentralized observer approach 

is introduced and implemented for large-scale systems [86]-[87]. Another practical 

approach is output feedback control, which is based on the system's measurable data, 

allowing us to design a decent controller for the large-scale system [88]- [90].  

Finally, considering the large-scale battery integration to the power grid and the different 

charging/discharging dynamic models of the large-scale battery introduced in the previous 

section, and the necessity of switching between charging/discharging scenarios, the power 

system dynamic model converts to the hybrid system model [91]. Therefore, considering 

the case study model's hybrid nature, we need to design a hybrid optimal control for the 

case study system to optimize system response. 
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This section design and implement four different optimal control approaches to compare 

each control's pros and cons for the case study model to benefit selecting the best control 

approach based on our system characteristics and our objectives. 

To design the control for the case study model, which simulates a large-scale 

interconnected power system, we assume a large-scale battery is connected to each area as 

shown in Fig. 72. The firing angles of the batteries' inverters are considered as control input 

signals. The control inputs schedule the batteries' active and reactive power, so batteries 

inject/absorb both active are reactive power to/from the power grids as needed. The system 

has three batteries, which implies eight different possible scenarios for batteries charging 

and discharging modes.  

 

Figure 72. Battery integration to the three-area case study model 
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7.2.    Centralized State Feedback Control  

To design a centralized state feedback control approach for the case study model, we 

assume the system as 

mṀ = nM + Po
p = )M + Yo                                                                                                               (109) 

The cost function for the system is  

,-. *l = ∫ (M2 	u	M + o2 	=	o)#R
#R$.

	dÕ       for Ñ = 1: 8                                                      (110) 

Where M is system state vector, o is batteries inverter firing angle deviation vector and Ñ 

represents each possible scenario for the batteries operation. u and = are the weighting 

matrices for the system states and inputs, respectively. These matrices help to design a 

control law based on system requirements and constraints.  

Control system law for system (109) based with cost function of (110) is defined as  

o = ∑M                                                                                                                                 (111) 

∑ = −=S-P2!                                                                                                                         (112) 

nŒ2! + !nŒ = −uœ                                                                                                                  (113) 

nŒ = n + P∑                                                                                                                   (114) 

uœ = u − !P=S-P2!                                                                                                          (115) 

System in each time step faces eight optimal value for different scenarios of battery 

operation. To find the final optimum batteries operation policy, a switching policy is 

considered to shift between charging and discharging conditions to minimize the cost 

function in each time interval of (:WS-, :W) and consequently the total cost function of the 

batteries operation in the power system. The update time interval will be a trade-off 
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between the frequency deviation damping period and the battery’s switching capability. 

The hybrid controller selects the scenario with minimum cost function as the operating 

mode for the time interval. Then, the system's states are updated based on the selected 

mode and the selected LQR controller. The objective of the control design is to damp the 

generators’ frequency deviation using the inputs.  

By calculating the control law and implementing the control in our case study model, the 

frequency deviation of the second generator will be as Fig. 73. To clearly show the results 

and batteries operations, batteries operation for two extreme cases and the final batteries 

operation have been plotted.  

 

Figure. 73 Frequency deviation of the generator two in the first area for; (i) original system, (ii) all 

battery charging scenario, (iii) all battery discharging scenario, and (iv) final batteries operation 

7.3.    Decentralized State Feedback Control 

In this section we assume i) we only have access to the local subsystem information and ii) 

all subsystem states are not measurable. To design a decentralized state feedback control, 
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we need to have a decent estimation of the system states, so at first step, a decentralized 

observer is designed for each subsystem.  

7.3.1.  Step 1: Decentralized Observer Design 

It is showen that the existing regulator and servomechanism theories can be modified to 

take into account the presence of persistent fluctuating disturbances and design a 

deterministic controller which consistently maintains set-point regulation, or servo tracking 

for a broad class of realistic external disturbances. Later several approaches are developed 

based on Johnson study to design decentralized observer for a complex system [87]. These 

methods mainly developed based on the assumption of the interconnectivity of the system 

and measurements on the system local and global inputs and/or outputs. Assuming that we 

have access to the system (116) input and output measurements, we will be able to design 

a partially decentralized observer by following instruction. Considering that system in 

(109) has three subsystems, each subsystem -, - ∈ –, has the following dynamics  

ïṀB = nBMB + PBoB + ∑ nBlx

l,-
Ml

pB = )BMB 																																						
											- ∈ –									                                                   (116) 

The system in (116) can be written as 

m
ṀB = nBMB + ªBiB + PBoB
iḂ = —BMB + ZBiB +tBAB

                                                                                          (117) 

mpB = )BMB
TB = “BiB

                                                                                                                 (118) 

M ∈ =I, o ∈ =I,  and p ∈ =; 
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For the system in (116) there exists a decentralized and asymptotically stable observer if 

and only if  

i) Rank 

⎣
⎢
⎢
⎢
⎡

)B 0
)BnB 0

“B—B “BZB
0 “B
0 ªB ⎦

⎥
⎥
⎥
⎤

 = Rank ¿ ))n¡                                                             (119) 

ii) Rank yI{ − nB)B
z = .B for all I with =f(I) 	≥ 0                                       (120) 

The observer for each subsystem is obtained as 

ṀœB = ”B +kBpB + áBTB                                                                                       (121) 

”ẏ = (nB − ‘B)B)”B + DBPBoB + [(nB − ‘B)B)kB + ‘B + –B)pB +	ãBtBAB + [(nB −

‘B)B)áB + wB]TB                                                                                                 (122) 

DB , ãB , –B , kB , áB 	L.d	wB are calculated from 

[DB ãB –B kB áB wB]

⎣
⎢
⎢
⎢
⎢
⎡
{ 				0 				0		 		0
0				 {			 0				 0
0 			0 			)B 				 0
)B 		0 )BnB )BªB
0 		“B 	“B—B “BZB
0 		0 0 		“B ⎦

⎥
⎥
⎥
⎥
⎤

=  

[{ 0 0 ªB]                                                                                                                     (123) 

By having a proper estimation of system dynamic, we will be able to design a control 

system such that the system has the required performance in presence of the disturbances. 
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Knowing that the case study model is an interconnected system, in the next step, a 

decentralized state feedback control for the interconnected system is designed for each 

area. 

7.3.2.  Step 2: Decentralized Control 

In interconnected systems, the optimality of the system is a complicated context in the 

presence of some essential uncertainties among the subsystems, which cannot be described 

in either deterministic or stochastic terms. Unlike standard optimization schemes where 

robustness is a part of the solution, robustness in complex systems is a part of the problem 

and it has to be considered in the design process.  

The case study model in (109) can be rewritten in compact form as 

Ṁ = n:M + P:o + nAM                                                                                                              (124) 

System consists of three subsystems, – = 3, where M ∈ =I, o ∈ =$, and p ∈ =; are states, 

inputs and outputs of the system. The dynamics of the decoupled part of the system in (124) 

can be written as  

Ṁ = n:M + P:o                                                                                                                   (125) 

and its subsystems are  

ṀB = nBMB + PBoB                  - ∈ –                                                                                       (126) 

where (n: , P:) are controllable, n:	is a block diagonal matrix that represents the state 

matrices of the subsystems and nA  defines the interconnection matrix between the 

subsystems [85].  
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n: = d-L’(n:-, n:*, … , n:x)        - ∈ –                                                                                 (127) 

Let us consider the state and input weighting matrices as 

u: = d-L’(u-, u*, … , ux)                                                                                                          (128) 

=: = d-L’(=-, =*, … , =x)                                                                                                     (129) 

where u:	is symmetric nonnegative definite, and =: is a symmetric positive definite 

matrix. The optimal control law for system in (125) and total cost function of the system 

are o:∗ = −∑:M, and *: =	∑ *Bx

B,-
 , where, *B is an individual cost function for subsystem 

- as  

*B(MBM, oB) = ∫ (#
M
M
B

2uBMB + oB2=BoB)dÕ                                                                                   (130)  

∑: = =:S-P:2!:                                                                                                                  (131)  

∑: = d-L’(∑-, ∑*, … , ∑x) and !: = d-L’(!-, !*, … , !x) is the solution of the Riccati 

equation  

n:2!: + !:n: − !:P:=:S-P:2!: + u: = 0                                                                       (132)  

The close loop system and optimal cost will be  

Ṁ = (n: − P:∑:)M                                                                                                             (133) 

*:∗ = MM2!:MM                                                                                                                                (134) 

It is clear that the obtained results are optimal for a closed loop system in form of (134); 

however, for an interconnected system of (125), the closed loop system will be in form of 

(136) and the obtained solution is not optimal. The decentralized optimal control is 
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suboptimal for the system. Considering the interconnectivity of the system and the closed 

loop system (136), the interconnections of the system, matrix nA , plays the perturbation 

role in the system and system will be suboptimal. 

Ṁ = (n: − P:∑: + nA)M                                                                                                          (135) 

nŒ = n: − P:∑: + nA                                                                                                        (136) 

It can be shown that the o:∗  is suboptimal for the system (116) if and only if nŒ is stable. To 

calculate the cost function for (124), a suboptimality index is defined to measure the cost 

of the robustness of the control to the existing structural perturbations. Considering system 

(136), the performance index is defined as 

*:1 =	MM2“MM                                                                                                                      (137) 

“ = ∫ exp"nŒ2:% . —: . exp"nŒ:% d:
1{

M
                                                                                  (138) 

—: = u: + !:P:=:S-P:2!:                                                                                               (139) 

Matrix “ is finite when the nŒ is stable and it can be calculated as the unique solution of the 

Lyapunov matrix equation of the  

nŒ2“ + “nŒ + —: = 0                                                                                                         (140) 

The decentralized control approach for interconnected system is designed and applied to 

the case study model subsystems for both charging and discharging modes. Each battery 

should charge and discharge independently to damp the frequency deviation in the 

interconnected system. Using the discussed decentralized framework, we design the 

optimal controllers for each subsystem. Each subsystem has 17 states (. = 17) one input 
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(q = 1) and 8 outputs (, = 8) including dynamics of the battery in each area. Batteries 

firing angles are considered as control input to schedule the batteries active and reactive 

power to damp the frequency deviations. The system eigenvalues after applying 

decentralized controls are shown in Fig. 74. It is shown that the inter-area oscillation modes 

have moved to the left but still they are slow and will be problematic for the system. These 

complex modes belong to the first area, so by replacing the first area control with a more 

effective control we will be able to improve the system response.  

 

Figure 74. Poles of the case study model 

7.3.3.  Step 3: Optimal Pole Placement 

In optimal control, solutions minimize the overall cost of the control system, meanwhile, 

using the proper weighting matrices helps to target specific states to force system for the 

desired results. However, finding the proper weighting matrices in large-scale systems to 

reach a desired performance is a challenging issue.  Rousan in [97] proposed a solution to 

find an optimal gain to shift systems’ poles to desired locations. This method has the 
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capability of shifting both real and complex poles individually or simultaneously. 

Considering a system as (109), it is shown that we can design a feedback control o = ∑M 

such that it shifts the original systems poles to desired positions. At the same time feedback 

gain, ∑, minimizes the quadratic performance index of the system given in (141).  

* = -

*
∫ (#
M
M2uM + o2=o)dÕ                                                                                            (141) 

To move a real pole to a desired location the control gain is 

∑ = −=S-P27k72                                                                                                        (142) 

k = (æ − q)/(72P=S-P27)                                                                                                     (143) 

Where q is the new and desired position of the pole æ, and 7 is the associate eigenvector of 

the q.  

To move a pair of poles of L ± Ñj  

A = ([L			 − j]2 , [j						L]2)                                                                                                  (144) 

k = ([:					∏]2 , [∏						p]2)                                                                                                  (145) 

Considering  

([5					â]2 , [â						ℎ]2) = 72P=S-P27                                                                            (146) 

72 is the left eigenvectors associated with the complex poles, and the characteristic 

polynomial of the reduced closed loop system (for the given pair of the complex poles) has 

the form of    
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.* + d-. + d* = 0                                                                                                       (147) 

Then 

d- = 5: + ℎp + 2â∏ − 2L                                                                                            (148) 

(5ℎ − â*)(:p − ∏*) = d* − (âj − L5): + (ℎL + âj)p − (ℎj − 5j − âL − L*)∏ − j* −

L*                                                                                                                                     (149) 

To M be non-negative definite symmetric matrix, the following conditions should be 

satisfied 

: > 0 and  :p − ∏* > 0                                                                                                         (150) 

The control gain to relocate the complex poles is  

∑ = −=S-P2!                                                                                                              (151) 

! = 7k72                                                                                                                    (152) 

System poles can be move simultaneously by summation of the gains for each pole 

placement. 

The undamped frequency oscillation modes are located in the first area (see Fig. 75). The 

critical complex poles that cause the frequency oscillations and need to be relocated are -

0.0053 ± Ñ4.35 (for the original subsystem 1). By moving the critical poles to the left, we 

manage to suppress the frequency deviation of the generators. In interconnected systems, 

new poles’ location depends on the possibility of the complex poles relocation based on 

existence of the solution for (148)- (149) equations. The new poles effect the rest of the 

system through the interconnected part.  
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Figure 75. Poles of the case study model subsystems 

7.3.4.  Step 4: Hybrid Control for Interconnected Systems  

The subsystem - of our power system case study with the large-scale battery is represented 

with two state space models for charging and discharging scenarios. The battery in each 

operating mode faces four different scenarios that will choose the optimal one in each time 

interval as shown in (153) and (154).  Thus, the control strategy should be able to frequently 

switch between charging and discharging operating conditions to optimize the battery’s 

operation and reduce the frequency deviations of the system simultaneously. The proposed 

control system schematic, for the battery in the area - is presented in Fig. 76. 

*0BSl = ,-. S∫ "M
BSl

2 	u0BSl 	MBSl + o0BSl2 	=0BSl 	o0BSl%
#R
#R$.

	dÕU 		                                (153) 

 *.BSl = ,-. S∫ "M
BSl

2 	u.BSl 	MBSl + o.BSl2 	=.BSl 	o.BSl%
#R
#R$.

	dÕU                                (154) 

                                                                                         â6•	Ñ = 1: 4		L.d				- = 1: 3  
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Figure 76. Control design approach based on observer-based decentralized control for interconnected 

systems in presence of the large-scale battery 

We use normalized cost function for each subsystem to prevent frequent and unnecessary 

switching between charging and discharging modes. *0BSl represents the charging cost 

function in the @#` time interval for the subsystem i faces scenarios j. Similarly, *.BSl 

represents the discharging cost function in the @#` time interval for the subsystem i faces 

scenarios j. 

Each battery in subsystem - = 1: 3 has two modes of charging and discharging for 

operation. Each of these modes will face four operation scenarios from the other two areas 

(based on the possible combinations of their batteries' operation modes). Also, u0BSl, =0BSl , 

u.BSl, =.BSl define the state and input weighting matrices for charging and discharging 

conditions, respectively. 

The second generator frequency deviation under optimal switching policy based on hybrid 

control’s final decision are shown with purple line in Fig. 77. The jumps in the simulation 
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are the updated initial conditions in result of the batteries switching between the charging 

and discharging modes. 

 

Figure 77. Frequency deviation of the generator two in the first area for; (i) original system, (ii) all 

battery charging scenario, (iii) all battery discharging scenario, and (iv) final batteries operation 

 

The red and yellow lines show the generator’s frequency deviation for battery’s charging 

and discharging scenarios with decentralized state feedback control, while in each time 

interval, the initial conditions of the subsystem (the first area) is updated. The zoomed 

section shows the initial condition update. The final battery operation (the purple line) 

overlaps the charging or discharging operation, and it remains unchanged for the next 

intervals if the cost function is still lower than the other operating mode 

 

7.4.    Centralized Output Feedback Control 

Considering the fact that having access to a large-scale system states information is 

infeasible, the best approach to design a control system for such systems is output-based 

0 5 10 15 20 25 30 35 40 45 50
Time [seconds]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

dF
2

Original System
All charging
All discharging
Final battery operation

24 26 28 30 32 34
-6

-4

-2

0

2

4
10-3



 128 

control approaches. In this section we assume that we have access to all system’s output 

information. For the system (109), considering the cost function in (110), the control law 

for centralized optimal control is  

o = ∑p = ∑)M                                                                                                                                        (155) 

∑ = −=S-P2!ÿ)2()ÿ)2)S-						                                                                                                		(156)	

nŒ2! + !nŒ = −uœ                                                                                                                (157) 

nŒ = n + P∑)                                                                                                                                                 (158) 

uœ = u − !P=S-P2!                                                                                                        (159) 

The hybrid control design is similar to the centralized state feedback approach. By 

designing the centralized output feedback and implementing on the case study mode the 

second generator frequency deviation will be as Fig. 78. 

 

Figure 78. Frequency deviation of the generator two in the first area for; (i) original system, (ii) all 

battery charging scenario, (iii) all battery discharging scenario, and (iv) final batteries operation 

7.5.    Decentralized Output Feedback Control 
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[92]– [94] control design methods. Particularly, the output feedback control design has 

attracted more attention from research scholars as in real-world applications, not all states 

of the systems are accessible. Moreover, several literatures contribute on both theory and 

numerical methods to solve optimal output feedback control problems for decentralized 

systems [95]. In most of the aforementioned literature, any inputs to the subsystem other 

than local inputs are considered perturbations [85]. This makes the control design and 

implementation easier in large-scale systems; however, the control system will be more 

conservative, and the system operation will be different from expected results with higher 

control cost [96].  

In this section, we consider a large-scale power system as the case study model and 

develops a framework for decentralized optimal multi-channel output feedback control 

design to damp inter-area oscillation. In this regard, we use local large-scale batteries to 

control the frequency deviations of the generators locally.  

Multi-Channel Optimal Output Feedback Control 

In optimal decentralized control design approaches, the goal is to achieve an optimal 

global performance by designing local feedback controls. The key feature of these systems 

is that individual agents must make decisions with only partial knowledge of the whole 

system’s states, as having access to the all system's information is infeasible and almost 

impossible.  

Consider an interconnected system as (160); we assume that we have only access to the 

system's local outputs.  
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mṀ = nM + ∑ PB%

B,-
oB

pB = )BM																					
											â6•	∀	- ∈ ∏                                                                        (160) 

where M ∈ =I, o ∈ =I, and p ∈ =; are states, inputs, and outputs of the system, and	∏	is 

the number of subsystems. 

The proposed optimal decentralized output control design aims to find proper oB such 

that minimize the desired cost function. For a linear system (160), the standard cost 

function (performance index) that we aim to minimize is defined as   

* = ∫ (#
M
M2uM + ∑ o%

B,- B

2 =BoB)dÕ                                                                                        (161)  

and the feedback gain is  

oB = ∑BpB                                                                                                                                                  (162) 

The system (1) with the defined control law in (3) is  

Ṁ = n0M                                                                                                                                                    (163) 

n0 = n + ∑ PB%

B,-
∑B)B                                                                                                                              (164) 

∑B = −=
B

S-(P
B

2!‘)
B

2)()B‘)B2)S-                                                                                                         (165) 

Note that ()B‘)B2)S- must be invertible.  

The solution to the close loop system is  

M = f|S#M(0)                                                                                                                              (166) 

M(0) is system’s initial condition and  

* = M(0)2"∫ f|S#{

M
	uœ	f|S#	d:%M(0)                                                                                                     (167) 
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* = 	 M(0)2 	!	M(0)	                                                                                                                 (168) 

Where ! satisfies the Lyapunov equation  

n02 	! + !	n02 +	uœ = 0                                                                                                            (169) 

áM = 	M(0). M(0)2                                                                                                                    (170) 

To calculate the optimal gain with guarantee of the convergence, we follow the gradient 

algorithm as  

i) Choose an initial matrix ∑MB that stabilize the system and a proper step size of Ÿ 

ii)  Solve equation (9) for uœ  

iii) Solve equation (14) for ‘ 

iv) Calculate ∇
B

lℋ = P
B

2!l‘l)
B

2 + =B∑B
l)B‘l)B2 

v) Find ∑
B

l1- = ∑
B

l − Ÿ	∇
B

lℋ 

vi) Solve for *l1- 

vii) Go back to ii  

The step size of Ÿ is adjustable based on ℋ stiffness and  ‹ℋ/‹∑ or calculated based on 

the Anderson-Moore algorithm [26].  

The decentralized optimal output feedback control strategy is used to find the optimal 

output gain for all possible combinations of the batteries’ operation modes.  

The proposed hybrid output control system schematic for each battery is presented in 

Fig. 79. 
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Figure 79. Control design approach based on decentralized control for interconnected systems in the 

presence of the large-scale battery 

At each time interval, the hybrid controller of each subsystem first calculates possible 

charging output (p0) and discharging output (p.); and the corresponding normalized cost 

functions as (153) and (154); to determine the operating mode for the next time interval. 

After selecting the most cost-effective mode, the controller also updates the next time 

interval's initial condition. Similar to the decentralized state feedback control, for 

switching, we use normalized cost function for each subsystem to prevent frequent and 

unnecessary switching between charging and discharging modes. *0BSl represents the 

charging cost function in the @#` time interval for the subsystem i faces scenarios j. 

Similarly, *.BSl represents the discharging cost function in the @#` time interval for the 

subsystem i faces scenarios j. 

Each battery in subsystem - = 1: 3 has two modes of charging and discharging for 

operation. Each of these modes will face four operation scenarios from the other two areas 

(based on the possible combinations of their batteries' operation modes). Also, u0BSl, =0BSl , 
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u.BSl, =.BSl define the state and input weighting matrices for charging and discharging 

conditions, respectively. 

A switching policy will be considered to shift between charging and discharging conditions 

and moving in the operating spectrum to minimize the cost function in each time interval 

of (:WS-, :W) and, consequently, the battery's total cost function in the power system. The 

hybrid controller in each area selects the mode with minimum cost function as the operating 

mode during the time intervals. Then, the system's states are updated based on the selected 

mode and the selected output controller. The control design's objective is to damp the 

generators' frequency deviation using the inputs o0BSl, and o.B_l. The u0B_l and u.B_l are 

designed to reduce the system's frequency deviation with an optimal cost.  

Each battery in subsystem - = 1: 3 has two modes of charging and discharging for 

operation. Each of these modes will face four operation scenarios from the other two areas 

(based on the possible combinations of their batteries' operation modes). Also, u0BSl, =0BSl , 

u.BSl, =.BSl define the state and input weighting matrices for charging and discharging 

conditions, respectively. 

A switching policy will be considered to shift between charging and discharging conditions 

and moving in the operating spectrum to minimize the cost function in each time interval 

of (:WS-, :W) and, consequently, the battery's total cost function in the power system. The 

hybrid controller in each area selects the mode with minimum cost function as the operating 

mode during the time intervals. Then, the system's states are updated based on the selected 

mode and the selected output controller. The control design's objective is to damp the 
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generators' frequency deviation using the inputs o0BSl, and o.B_l. The u0B_l and u.B_l are 

designed to reduce the system's frequency deviation with an optimal cost.  

 

Figure 80. Frequency deviation of the generator two in the first area for; (i) original system with no 

battery operation; (ii) only charging mode; (iii) only discharging mode; (iv) first and second batteries 

charge and third one discharges (v) first and second batteries discharge and third one charges (vi) hybrid 

control final decision. 

 

To elaborate on the switching policy and demonstrate how the hybrid controller decides 

between all scenarios, the battery's detailed operation mechanism under switching 

condition for the generator number two is shown in Fig. 80. Based on the hybrid 

controller’s decision, the optimal controllers' initial conditions get updated at the beginning 

of the next interval. The blue dotted line shows the original frequency deviation of the 

generator. The red and yellow lines show the generator’s frequency deviation for battery’s 

charging and discharging scenarios with output feedback control, while in each time 

interval, the initial conditions of the subsystem (the first area) is updated. The zoomed 

section shows the initial condition update. The bright blue line shows the system frequency 

deviation for the case batteries in the first and second area are charging, and the third 
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battery is discharging, and green line shows the opposite scenario. The other scenarios are 

not plotted to have a clear figure. The final battery operation (the purple line) overlaps the 

charging or discharging operation, and it remains unchanged for the next intervals if the 

cost function is still lower than the other operating mode. The batteries inverter firing angle 

or the control efforts are shown in Fig. 81. Batteries active and reactive output power due to the 

inverters’ angles deviation is shown in Fig. 82.   

 

Figure 81. Control effort (inverter’s firing angle deviation) for each area 

 

Figure 82. Batteires active and reactive output power for each area 

Finally, Buses voltage deviation in result of the batteries operation have been presented in 

Fig. 83. The buses voltage deviations are less than two percent.  
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Figure 83. Buses voltage deviation 
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CONCLUSION 

This dissertation considers battery integration's impact on the power system in both 

distribution and transmission level.  

At the distribution level, we investigate the small-scale battery integration into the power 

system. It is shown that under the current electricity tariff, the higher penetration level of 

renewables integration into the power system causes serious challenges such as over-

voltage and frequency deviations in the power grid. Sensitivity analysis is conducted to 

find the most effective parameters on the load exchange between the customer and POD's 

distribution system.  

Energy consumption-based and demand-based tariffs are introduced to minimize the 

exchanged loads positive and negative peaks and load profile's sudden deviations. Results 

confirm the effectiveness of the tariff regulation approach. 

In the transmission level, the effect of the unmanaged renewables' integration on the power 

system's coherency is investigated. It is shown that the coherency of the power system and 

inter-area frequency deviation depends on power system exchange through transmission 

lines. Large-scale batteries are considered to mitigate the inter-area frequency deviations 

in the case study model. 

A large-scale battery's dynamic model in d-q axis is developed to simulate the battery's 

active and reactive power output in the power grid. Centralized and decentralized state and 

output feedback controls are designed for the batteries to schedule their active and reactive 
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power to minimize the frequency deviation without compromising the system's voltage 

stability.  

• In future work, we aim to extend this study to: 

• New tariff definition for future power grid with new architecture. 

• New energy market design based on new service providers. 

• Investigate the impact of large-scale battery integration on power system transient 

stability. 

• Design the decentralized control system considering the unknown state of operation 

for the other areas. 

• Considering the impact of the communication delay on the control system. 

• Investigating the impact of renewables integration and cyber-attack vulnerability 

of the power grid on power system stability. 

• Design model predictive control with considering constraints on control input and 

system outputs. 

• Considering the large-scale batteries as a third-party service provider under energy 

market regulations. 
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