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ABSTRACT 

 

 

Ultrafast lasers have great capability and flexibility in micromachining of various 

materials. Due to the involved complicated multi-physical processes, mechanisms during 

laser-material interaction have not been fully understood. To improve and explore ultrafast 

laser processing and treatment of dielectric materials, numerical and experimental 

investigations have been devoted to better understanding the underlying fundamental 

physics during laser-material interaction and material micromachining.  

A combined continuum-atomistic model has been developed to investigate thermal 

and non-thermal (photomechanical) responses of materials to ultrafast laser pulse 

irradiation. Coexistence of phase explosion and spallation can be observed for a 

considerably wide range of laser fluences. Phase explosion becomes the primary ablation 

mechanism with the increase of laser fluence, and spallation can be restrained due to the 

weakened tensile stress by the generation of recoil pressure from ejection of hot material 

plume. For dielectric materials, due to the much lower temperature gradient by non-linear 

absorption, the generated thermal-elastic stress is much weaker than that in non-transparent 

materials, making spallation less important. Plasma dynamics is studied with respect to 

ejection directions and velocities based on fluorescence and shadowgraph measurements. 

The most probable direction (angle) is found insensitive to laser fluence/energy. The 

plasma expansion velocity is closely related to electron thermal velocity, indicating the 

significance of thermal ablation in dielectric material decomposition by laser irradiation.  

A numerical study of ultrafast laser-induced ablation of dielectric materials is 

presented based on a one-dimensional plasma-temperature model. Plasma dynamics 
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including photoionization, impact ionization and relaxation are considered through a single 

rate equation. Material decomposition is captured by a temperature-based ablation criterion. 

Dynamic description of ablation process has been achieved through an improved two-

temperature model. Laser-induced ablation threshold, transient optical properties and 

ablation depth have been investigated with respect to incident fluences and pulse durations. 

Good agreements are shown between numerical predictions and experimental observations. 

Fast increase of ablation depth, followed by saturation, can be observed with the increase 

of laser fluence. Reduction of ablation depth at fluences over 20 J/cm2 is resulted from 

plasma defocusing effect by air ionization. Thermal accumulation effect can be negligible 

with repetition rate lower than 1 kHz for fused silica and helps to enhance the ablation 

depth at 10 kHz (100 pulses) to almost double of that with single pulse. The ablation 

efficiency decreases with fluence after reaching the peak value at the fluence twice of the 

ablation threshold. The divergence of tightly focused Gaussian beam in transparent 

materials has been revealed to significantly affect the ablation process, particularly at high 

laser fluence.  

A comprehensive study of ultrafast laser direct drilling in fused silica is performed 

with a wide range of drilling speeds (20-500 μm/s) and pulse energy (60-480 μJ). Taper-

free and uniform channels are drilled with the maximum length over 2000 μm, aspect ratio 

as high as ~40:1 and excellent sidewall quality (roughness ~0.65 μm) at 270 μJ. The 

impacts of pulse energy and drilling speeds on channel aspect ratio and quality are studied. 

Optimal drilling speeds are determined at different pulse energy. The dominating 

mechanisms of channel early-termination are beam shielding by material modification at 
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excessive laser irradiation for low speed drilling and insufficient laser energy deposition 

for high speed drilling, respectively. An analytical model is developed to validate these 

mechanisms. The feasibility of direct drilling high-aspect-ratio and high-quality channels 

by ultrafast laser in transparent materials is demonstrated. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

1.1 Ultrafast laser-matter interaction 

Ultrafast laser pulses refer to the laser pulses with the pulse duration in the order of 

femtosecond (1fs=10-15s) to picosecond (1ps=10-12s). Compared with the longer laser 

pulses (nanosecond=10-9s and millisecond=10-6s), unique characteristics and advantages 

can be achieved during ultrafast laser pulses interaction with different materials, such as 

minimized heat-affected zones (as shown in Figure 1.1), ultrafast material ionization and 

plasma formation, which have attracted intensive attentions in the past several decades on 

the application of processing different materials with ultrafast lasers.  

It has been demonstrated in [1] that ultrafast laser ablation has great advantages 

over longer laser pulses (ns). As shown in Figure 1.2, the molten materials are obvious in 

nanosecond laser ablation in metal, where the drilled hole has rough surfaces and edges. 

By contrast, in femtosecond laser ablation (Figure 1.2), the drilled hole shows sharp edges, 

smooth side walls, and very clean surfaces. This is also true for dielectric materials, as 

studied by [2]. It can be seen from Figure 1.3 that both the surface and the edge quality of 

the machined structures can be improved and better controlled by ultrafast laser pulses. 

With longer pulses, due to the brittleness of fused silica, the structure can be heavily broken 

with 3 ps laser pulses. While for femtosecond laser pulses, the resultant structures can be 

far better controlled during the interaction between fused silica and the laser pulses.  
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Figure 1.1 Material processing side effects of long laser pulses compared with femtosecond 

laser pulses [3]. 

 

Figure 1.2 SEM micrographs of pulse laser ablation and hole drilled in a 100 μm thick steel 

foil with (a) pulse duration 200 fs, fluence 0.5 J/cm2, (b) pulse duration 3.3 ns, fluence 4.2 

J/cm2 [1].  
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Figure 1.3 SEM micrographs of pulse laser ablated fused silica at air, (a) pulse duration 3 

ps, fluence 19.9 J/cm2, (b) pulse duration 220 fs, fluence 10.7 J/cm2, (c) pulse duration 20 

fs, fluence 11.1 J/cm2, (d) pulse duration 5 fs, fluence 6.9 J/cm2 [2].  

Ultrafast laser-matter interaction is highly complicated and could be different for 

different materials, including metals, semiconductors and dielectrics. As shown in Figure 

1.4, typically, the interaction between ultrafast laser pulses and electron is much faster than 

the thermal relaxation process between electron and lattice, so that laser heating of 

electrons is the essential process for laser pulse energy deposition into the material. For 

semiconductors and dielectrics, due to the lack of free electrons in the conduction band, 

there will be free electron excitation before the sufficient number of electrons can be heated. 
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The thermal equilibrium between electron and lattice can be achieved in the picosecond 

regime, through electron-lattice coupling. When the ablation critical condition has been 

satisfied, the ablated material starts to be ejected from the base material, and this ejection 

process can last to the nanosecond range. Due to the localized thermal process of electrons, 

fast energy transfers in the material and continuous material ejection, thermal diffusion in 

the base material is significantly inhibited and the heat affected zones are greatly reduced, 

which enables high-precision processing of materials.  

 

Figure 1.4 Typical pathways of energy dissipation and phase transformations following the 

excitation of a material by an ultrafast laser pulse. Note: ns, nanosecond; ps, picosecond; 

fs, femtosecond [4]. 
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Within the ultrafast laser pulse duration, extremely high laser intensity can be 

obtained, typically above the magnitude of TW/cm2. This is particularly important for 

dielectric materials because free electron has to be excited before efficient laser energy 

deposition on the material can happen. Due to the wide bandgap of dielectrics, electrons 

cannot be excited through linear absorption of laser energy in visible and NIR wavelengths. 

When the laser intensity is sufficiently high, photoionization can be triggered to deposit 

laser energy in dielectrics. Since it is much more easily to achieve high laser intensity, 

ultrafast laser pulses can be taken advantages to process transparent materials (dielectrics) 

and fabricate a variety of optical components, such as waveguides, couplers, Bragg gratings, 

and micro-/nano-channels for microfluidic application in micro-total analysis systems (μ-

TAS). For better application of ultrafast laser in micromachining of dielectric materials, it 

is important to understand the underlying multi-physical processes during laser-material 

interaction.  

Numerous experimental and numerical studies have been devoted to investigating 

the physical processes, however, they are still not clearly understood due to the complicated 

multi-physical process and interrelation between different mechanisms. Therefore, it is 

necessary to conduct further investigation on the fundamental physics during ultrafast 

laser-material interaction to improve the applicability of ultrafast lasers in precise micro-

/nano-machining. Major ablation mechanisms, electronic excitation, numerical modeling 

approaches and micro-drilling in silica glass will be reviewed in the following sections.  
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1.2 Laser ablation mechanisms 

Laser ablation refers to disintegration and ejection of material under laser 

irradiation. Highly localized ablation can be induced by ultrafast laser pulses, due to the 

ultrafast excitation and rapid removal of material, as shown in Figure 1.5. Due to ultrashort 

period for energy dissipation inside the material, thermal diffusion can be minimized, so 

that high-precision micro-/nano-scale structures can be induced in the material and the 

heat-affected zone is limited within nanometer to micrometer. Ablation can happen with 

different mechanisms, depending on the material and laser conditions (pulse duration, 

wavelength, energy, and polarization, etc.). Due to the thermal nature of laser-material 

interaction, thermal ablation is the dominant process responsible for material removal. 

Meanwhile, non-thermal ablation should be considered when non-thermal processes (at 

low temperature) are important during material disintegration.  

1.2.1 Thermal ablation 

With ultrafast laser pulse irradiation, large amount of energy is absorbed by 

electrons. Material will undergo thermal non-equilibrium states, with continuous energy 

transfer between electron and lattice. When sufficient energy has been gained inside the 

lattice, atoms and ions will be able to overcome the energy barriers and escape from the 

material. This material removal process by high energy deposition and high temperature is 

termed as thermal ablation. Several thermal ablation mechanisms have been discussed, 

including phase explosion [5], critical-point phase separation [6], fragmentation [5], and 

vaporization [5]. With different mechanisms, the material will undergo different 



7 

 

 

thermodynamical processes and the ejected material can be characterized with dissimilar 

density, temperature, size and shape. The conditions when ablation can be induced, and the 

characteristics in different mechanisms are provided as follows.  

1.2.1.1 Phase explosion 

Normal boiling can be induced in liquid at relatively low speed of heating process, 

and heterogeneous evaporation happens in the substance with bubble nucleation from 

surfaces, impurities and grain boundaries. On the contrary, if the heating process is too fast 

for the liquid to relax to the binodal curve, the liquid will be superheated with temperature 

higher than the boiling point, and no longer follow the thermodynamic path as in normal 

boiling. Ultrafast laser interaction with material is such a fast heating process leading to 

formation of superheated liquid, which will relax along isentropes intersecting with the 

binodal curve between the triple and critical points, as shown in Figure 1.6 (b). When the 

material enters the metastable liquid region under binodal curve, it undergoes fluctuation 

in density, leading to the nucleation of gas bubbles. The liquid experiences homogeneous 

bubble nucleation, and explodes with the expansion of gas bubbles, resulting in a mixture 

of liquid droplets and vapors. This process is called phase explosion or explosive boiling. 

The occurrence of phase explosion can follow different thermodynamical paths for longer 

pulses, and the material expansion can happen during the heating process, but not 

necessarily during cooling as in femtosecond laser pulses. The material ejection in phase 

explosion is demonstrated in Figure 1.5 (region II), where homogeneous ablation happens 
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under the irradiation of ultrafast laser pulse, and mixture of liquid droplets and small 

clusters can be clearly observed in the ablation plume.  

 

Figure 1.5 Atomic configuration at different time for laser ablation simulation with 100 fs 

pulse at fluence equal to 2.8 times of threshold. Roman numerals identify different regions 

of the target. Region IV is the gaseous region (out of the range of the laser snapshot) [5]. 

1.2.1.2 Critical-point phase separation (CPPS) 

After the initial laser heating and the generation of hot plasma, but before phase 

separation, the material is heated well above the vapor-liquid critical temperature and 

expanded nearly adiabatically. When the adiabatic cooling path arrives close to the critical 

point, due to the thermodynamic instability, the material experiences phase separation via 

spinodal decomposition. This process is termed as CPPS [6]. Different from phase 

explosion, where simultaneous bubble nucleation occurs in the superheated liquid, CPPS 

results in phase separation when the matter is adiabatically cooled through the critical point 

with the formation of a bubble and droplet transition layer.  



9 

 

 

  

  

Figure 1.6 Thermodynamical evolution in the material for different ablation mechanisms, 

including (a) spallation (region I), (b) phase explosion (region II), (c) fragmentation (region 

III), (d) vaporization (region IV) [5]. 

1.2.1.3 Fragmentation 

Fragmentation [7] is similar to the process of CPPS in that the rapidly heated 

material by ultrafast laser pulses undergoes expansion at large strain rates and phase 

separation during relaxation (cooling). The occurrence of void nucleation, development 

and phase separation in fragmentation is completed before entering the binodal curve, so 

that material has been decomposed when the material reaches the metastable region, as 

shown in Figure 1.6 (c). Fragmentation depends on both the relaxation isentrope and the 

(a) (b) 

(c) (d) 
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strain rate. The contribution of the fragmentation becomes more important than phase 

explosion with increasing laser energy absorption in the material.  

1.2.1.4 Vaporization 

For high incident laser energy, the surface layer of the material can be completely 

atomized, and the whole layer rapidly becomes gas due to the early phase separation of gas 

from the base material. As shown in Figure 1.6 (d), the cooling and expansion of this branch 

basically follows the ideal-gas isentropes, indicating the occurrence of vaporization 

process. With high energy exceeding the material cohesive energy, the topmost layers of 

material will undergo complete dissociation. Few large-size clusters can be found in this 

part of the plume, instead, monomers, such as ions, electrons, and neutron atoms will be 

the major composition. The contribution of the ablation from vaporization is much less 

than phase explosion and fragmentation.  

1.2.2 Non-thermal ablation 

Non-thermal ablation is defined to be distinguished from thermal ablation since the 

dominating driving force is non-thermal processes, including electronic or mechanical 

processes. Non-thermal ablation is generally observed with low laser pulse energy, where 

the absorbed energy is not sufficient to generate dense plasma (thermal ablation).  

1.2.2.1 Coulomb explosion 

Intense ultrafast laser pulse induces strong ionization at the material surface. The 

emission of electrons from the surface will leave a high concentration of positive charge. 
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Coulomb explosion originates from these net charge and unbalanced electric forces on the 

surface layer, which is able to pull out the ions with repulsive Coulomb forces [8,9]. The 

amount of uncompensated charge will be neutralized by charge losses through ion ejection 

(Coulomb explosion) or electron transportation from the bulk. The threshold condition to 

induce Coulomb explosion is the critical electrostatic force to overcome the local 

mechanical strength. Due to the high mobility of electrons in metals, the strong electric 

field after electron emission is not easy to form, so that Coulomb explosion is less likely to 

happen in metals than in dielectrics.  

1.2.2.2 Spallation 

There is another non-thermal ablation mechanism, spallation, induced by 

mechanical stress instead of electrical processes. The reason why spallation has been 

identified as non-thermal ablation is originated from its mechanical nature, following the 

terminology of mechanical breakdown of material in solid phase, although this process is 

thermal-assisted spallation in liquid phase. As shown in Figure 1.6 (a), the driving force of 

the material decomposition in spallation is the tensile stress induced by the ultrahigh shock 

wave under the thermal confinement condition. Occurrence of spallation is featured by 

void nucleation, growth, coalescence and disintegration of a whole layer of material, which 

cannot be atomized or further decomposed.  

Spallation is proposed to be the dominant ablation mechanism with low laser energy. 

With rapid heating of material, there will be shock wave generation inside the material. 

This shock wave will propagate and form tensile wave when it reaches and reflects from 
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surfaces. Spallation will be triggered when the tensile wave reflected from the surface is 

able to overcome the material bonding or tensile strength. 

Although different ablation mechanisms can dominate at different range of laser 

pulse energy, generally, these ablation mechanisms could happen simultaneously. The 

contribution from different ablation mechanisms are denoted in different colors in Figure 

1.7. It can be clearly observed that spallation is the dominant ablation mechanism at 

relatively low laser fluences. With the increase of laser fluence (150 eV/A), phase 

explosion and fragmentation become the dominant ablation mechanisms. The reduction of 

spallation is resulted from the weakening or vanishing of tensile wave by the recoil pressure. 

With further increase of fluence, significant increase of fragmentation can be observed and 

becomes the dominant ablation mechanism at high laser fluence. Also, due to the 

increasingly heating of the top layer material, vaporization can be induced, and the 

contribution increases with laser fluences. Phase explosion, as shown in Figure 1.7, 

provides similar contribution of ablation at different conditions, and its requirement of 

heating is slightly lower than fragmentation. Therefore, it can be expected that phase 

explosion can be largely transformed to fragmentation. The relative contribution of 

different ablation mechanisms indicates the interrelation and transition between different 

mechanisms. This observation indicates that phase explosion and the mechanisms at higher 

temperature should account for most of the ablation, and non-thermal ablation (spallation) 

becomes less important at increasing laser fluences.  
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Figure 1.7 Contribution of ablation from different mechanisms for 200 fs laser pulses at 

various fluences [10].  

1.3 Electron excitation in dielectric materials 

Due to the absence of electrons on the conduction band, the interaction between 

dielectric materials with laser pulses is different from metals and semiconductors. For 

visible and near infrared lasers, since the bandgap in dielectric materials (fused silica, 9.0 

eV) is much higher than the single photon energy, linear absorption (inverse 

Bremsstrahlung) is inhibited. With high laser intensities, there will be sufficient density of 

photons to enable multiphoton ionization (MPI), where valence-band electrons (VBE) can 

absorb multiple photons simultaneously and be excited to conduction-band electrons 

(CBE), as shown in Figure 1.8 (a). These conduction-band electrons (CBE) can absorb 

photons through linear absorption (Figure 1.8 (b)) and kinetic energy can be increased by 
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continuous photon absorption. When the energy of CBE is high enough, impact ionization 

(II) can be triggered through CBE collision with another VBE (Figure 1.8 (c)). During the 

early stage of laser pulse interaction (first half pulse), MPI process is the dominant 

ionization process to provide seeding electrons for II. In the late stage of laser pulse, usually 

after tens of femtosecond, II will become the dominant process due to its higher energy 

absorption efficiency. When the laser intensity is further higher, tunneling ionization (TI) 

can be introduced, in which the bandgap or potential barrier can be distorted significantly 

to facilitate the ionization from VBE to CBE. TI is essentially similar to MPI, referring to 

interaction between VBE and multiple photons simultaneously. 

 

Figure 1.8 Electron excitation process laser-induced excitation of dielectric materials (a) 

multiphoton ionization, (b) free-carrier absorption, and (c) impact ionization [11].  

1.4 Numerical modeling for ultrafast laser-material interaction 

Ultrafast laser-matter interaction is a highly complicated process and involving 

multiple physics, which cannot be fully understood through experiments. In addition, 

experiments are limited by available experimental techniques and high costs. Alternatively, 

numerical modeling is a great tool to understand the underlying physics. Numerous 

theoretical works have been devoted to the study of ultrafast laser-material interaction, 
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from continuum scale to atomic scale, focusing on different mechanisms under different 

conditions.  

1.4.1 Two-temperature model 

Among the numerical methods for ultrafast laser-material interaction, two-

temperature model (TTM) has been most widely used to describe laser energy absorption 

in the material and the energy transportation within the material. Due to the much shorter 

laser-matter interaction time than the thermal relaxation (tens of ps) between electron and 

lattice, two nonlinear differential equations are coupled to describe the temperature 

evolution in electron and lattice and the energy transfer between two systems. The initial 

form of TTM was proposed by [12], which does not consider the thermal non-equilibrium 

state in electron upon rapid laser energy deposition. This makes TTM being not suitable 

for ultrafast laser pulse shorter than 100 fs. To remedy this issue, a hyperbolic TTM has 

been developed in [13,14], which can be applied for shorter pulse within 100 fs. Phase 

transition has been further included in [15] to describe the dynamics of solid-liquid 

interface during ultrafast laser melting and ablation. To consider the dynamic removal of 

ablated material, the dynamics of material ejection has been incorporated in TTM as well 

[15]. Further improvement was introduced in [16] to consider the effects of non-

equilibrium electron transport and electron drifting in TTM. TTM has high computational 

efficiency and sufficient capability in capturing the major thermal processes in materials 

under ultrafast laser pulse irradiation. However, it cannot be used to predict non-thermal 
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process, material decomposition process and particle ejection dynamics, therefore, it is not 

suitable for studies of detailed laser-matter interaction and ablation mechanisms.  

1.4.2 Hydrodynamic model 

To consider plasma ejection, laser plasma interaction, and thermomechanical 

processes, Hydrodynamic (HD) model is a good alternative for TTM to demonstrate more 

comprehensive responses in the material under ultrafast laser pulse irradiation. 

Conservation of mass, momentum and energy are coupled to describe plasma generation, 

dynamics and interaction with laser pulse [17,18]. Initially, most HD models only describe 

the plume behavior, so electron-lattice non equilibrium, hot electron emission and resultant 

early stage plasma generation, which are very important for femtosecond laser ablation, 

have been neglected. To address this, TTM has been incorporated into HD model in [19] 

to consider thermal non-equilibrium of electron and lattice. Hot electron emission process 

and the electron transport inside the material have been further considered in HD 

simulation [20]. A comprehensive 2D-HD model has been developed in [21] considering 

photoelectric emission, hot electron emission, electron transport, early-stage plasma, and 

late-stage plume plasma. Compared to TTM, HD model has much higher capability in 

description of the plasma dynamics, however, it is still limited in the frame of continuum 

modeling. Meanwhile, equation of state (EOS) has to be coupled with HD model to 

describe the material properties in a wide range of temperature, density and pressure, so 

that how well the HD can perform relies on the accuracy of the EOS. Generally, during the 

development of EOS, many assumptions have to be made, especially for extreme 
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conditions (extremely high temperature and pressure). Furthermore, HD as a continuum 

model cannot reflect microscopic ablation processes, phase change and structural 

modification under laser induced shock wave. Molecular dynamics (MD) model, as 

atomistic simulation, can compensate the incapability from continuum modeling, and 

provide much more information in atomic scale regarding ablation mechanisms, phase 

transition, particle formation, ejection, relaxation, as well as morphology of ablation crater 

in different materials.  

1.4.3 Molecular dynamics  

Molecular dynamics (MD) simulation demonstrates thermal and non-thermal 

behaviors in the material under different conditions, revealing detailed behaviors in atomic 

scale infeasible for continuum models, including phase transition, nanoparticle formation, 

distribution, and trajectory. The atomistic motion is universally governed by the Newton’s 

second law, and the atomic trajectories are predicted through integration of the equation of 

motion. The atomic interaction (force) is obtained through predefined interatomic potential, 

and no other assumptions need to be made, such as critical ablation conditions (temperature 

and pressure). Lattice parameters have been intrinsically represented through the lattice 

structure and potential, including heat capacity, thermal conductivity, elastic modulus as 

well as their dependence on other properties. However, MD simulation cannot be directly 

used to describe ultrafast laser material interaction because the electron thermal behaviors 

cannot be inherently predicted. To address this issue, modification has to be introduced and 

different methods have been attempted to study different materials and focus on different 
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physics. The scheme of TTM-MD combined approach has been proposed in [22]. Electron 

thermal responses are described in the electron equation as the original form in TTM, 

including laser energy absorption, electron thermal diffusion, and energy coupling with 

lattice. The counterpart lattice equation is replaced by the atomistic governing equation of 

motion. The electron-lattice thermal coupling is represented by external force in the motion 

equation. Alternatively, electron-lattice energy transfer can be introduced through velocity 

rescaling in atoms, so that lattice heating can be achieved through direct velocity scaling 

not from the acceleration by adding external interatomic forces. Both methods satisfy the 

energy conservation law and have been evidenced to be equivalent to each other. To better 

describe the electron dynamics, Monte Carlo (MC) has been incorporated in MD 

simulation to study laser interaction with semiconductors and metals [23,24].  

All these attempts aim to incorporate the electron behavior into classical MD 

simulation to investigate ultrafast laser material interaction. MD simulation is flexible in 

that only the knowledge of material structure and interatomic potential are required to 

conduct the simulation, no thermal and mechanical properties need to be assumed. 

However, in order to improve the suitability of interatomic potential to specific physical 

and chemical phenomena, comprehensive validation and comparison should be performed 

before the final selection of interatomic potential.  

1.4.4 Plasma model 

Material ablation and plasma thermodynamics can be described with TTM, HD, 

and MD, however, during ultrafast laser pulse interaction with semiconductor and 
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dielectrics, electronic dynamics has to be introduced to account for electron excitation and 

transportation. Several numerical approaches have been attempted to describe electronic 

dynamics. Single rate equation (SRE) has been derived from Fokker-Planck equation by 

[25] and used widely to describe ultrafast laser excitation and ablation in dielectric material. 

Photoionization and impact ionization have been considered as the dominant mechanisms 

during CBE excitation. An exponential decay term [26,27] has been further considered to 

represent the relaxation of CBE through self-trapping and recombination, and the life time 

of CBE has been determined as the pulse delay time beyond which no reduction of the 

optical breakdown threshold can be observed under double-pulse irradiation. Electronic 

transportation and energy diffusion [28] have been proposed to be influential for energy 

redistribution inside the material. The SRE has been doubted to be oversimplified in that 

impact ionization is only considered to be proportional to the number density of CBE, and 

the role of kinetic energy on the ionization rate has been neglected. Seeding electrons with 

low kinetic energy are generated by photoionization, and the occurrence of impact 

ionization requires sufficient electron kinetic energy gained through intra-band absorption, 

and this progressive absorption process has been assumed as an instant process in SRE.  

Multiple rate equation (MRE) consisting a couple of rate equations were further 

developed in [29,30] to account for distribution of electrons on discrete energy levels in 

the conduction band (CB), and particle transportation on different energy levels. As shown 

in Figure 1.9, electrons on the bottom level of energy in the CB will be first generated 

through photoionization, and electrons at low energy levels will absorb photon energy to 

jump to higher energy levels. With sequential photon energy absorption, sufficient kinetic 
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energy over the bandgap can be obtained by the electron and able to trigger the impact 

ionization. With the excitation of another CBE from the valence band (VB), both electrons 

will fall back to the bottom level of CB and process to next impact ionization cycle. The 

MRE has been further improved in [31] by incorporating laser beam propagation inside the 

material. The originally simplified one photon sequential intra-band absorption has been 

replaced by Drude plasma absorption to enhance the capability of MRE in description of 

dielectric material ablation at various laser wavelengths, pulse durations and bandgaps.  

 

Figure 1.9 Illustration of the processes providing changes in the density and the energy, 

respectively, of free electrons in the conduction band of a dielectric [29,30].  

Despite these improvements, plasma model itself is still limited in the description 

of laser ablation in dielectric materials. First, plasma model generally relies on the number 

density of electrons to describe the material modification, where a critical number density 

is usually assumed to determine the breakdown of material and no thermal behavior has 

been considered for electrons in thermal ablation processes. Second, plasma model only 

demonstrates the electron behavior and neglect the lattice behavior, where material 

decomposition and ejection mainly happen. Therefore, plasma model should be further 
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combined with a thermal model. Among the aforementioned models, TTM is 

computationally efficient and has sufficient capability to describe thermal behavior during 

laser material interaction. This combined model has been presented in [32,33] and 

temperature-based criteria have been employed to capture the material decomposition in 

dielectric materials.  

1.5 Ultrafast laser micromachining of dielectric materials 

The industrial demand for processing dielectric materials is increasing rapidly, such 

as the cutting, drilling, and marking of glass, diamond, sapphire, etc. However, processing 

dielectric materials is challenging for traditional manufacturing methods due to the 

material’s high brittleness and hardness. Specifically, for microchannel fabrication, there 

will be inevitable cracks and high side-wall roughness with mechanical drilling. In addition, 

the minimum channel size is determined by the mechanical tools and the reduction of tool 

size to micro-level remains demanding. Furthermore, the stability of mechanical 

processing is difficult to guarantee due to the hard contact between samples and tools.  

It is also very difficult for long-pulse laser processing because of the transparency 

of dielectric materials in the visible and near-infrared wavelength range. Nonlinear 

absorption is required to excite free electrons inside the material, however, the ultrahigh 

laser intensity required for nonlinear absorption is not easy to achieve by long-pulse lasers.  

Ultrafast lasers have high enough laser intensity to trigger multiphoton ionization, 

which enables the processing of dielectric materials even with long wavelength. Due to its 

advantages in small heat affected zone, high precision, and high flexibility, it has great 
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potential in high-precision micromachining of dielectric materials, such as the fabrication 

of micro-fluidic devices [34], waveguides [35], micro-sensors [36], etc.  

1.5.1 Hybrid processing 

Numerous efforts have been devoted to the application of hybrid processing. A 

widely used method is the femtosecond laser irradiation and chemical etching (FLICE). 

FLICE combines permanent structural modification in silica glass with laser pulses 

irradiation and chemical etching of the irradiated material using hydrofluoric acid (HF) or 

KOH solutions [37–39]. This method is based on the selectivity of the chemical etching 

process on laser-treated region, so that the irradiated material will be removed with much 

higher rates than other material. Extensive experimental studies have been conducted on 

the implementation and improvement of material processing in this regard.  

Several studies [40–42] performed three-dimensional microfabrication in silica 

glass with the two-step laser-assisted etching process, which allows 3D structures 

fabrication inside silica glass with microscale size, high aspect ratio and great flexibility. 

Hybrid fabrication of glass has been applied [37,43] for the integration of microchannels 

and waveguides for functionality such as biophotonic sensors. The etching rate of silica  

has been demonstrated [44] to have correlation to the morphology of the laser modified 

regions. Efficient etching of microstructures cannot be obtained without the formation of 

self-ordered (linear polarization) and disordered (circular polarization) nanostructures [44]. 

It has been evidenced in [38] that KOH has better selectivity over HF to elongate the 

microchannels in fused silica. The chemical etching process has been further improved [39] 
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by combining two etching agents, HF and KOH, taking advantage of the high etching rate 

of HF and high selectivity of KOH. This method has been proposed to improve the 

capability of FLICE in fabricating complicated microstructures that are infeasible by using 

single-agent etching. Pulse shaping has been applied [45] to improve the controllability of 

the structures. The etching rate using double-pulse irradiation (energy ratio 1:1) is 37 times 

higher than single pulse at the same total energy.  

The fabrication of microstructures in silica glass using FLICE has advantages, such 

as high channel aspect ratios, great structural complexity and well-controlled structure 

quality. However, several disadvantages should be considered. The chemical etching 

process could take a long time (several hours), which significantly reduces the overall 

processing speeds and efficiency. Meanwhile, the selective etching process cannot be fully 

maintained because the unmodified material is also soluble in the etching solution. 

Furthermore, the chemical etching solutions are harmful for human health and environment 

due to their toxicity and corrosivity.  

1.5.2 Direct processing 

More recently, direct laser drilling of glass without post processing has been widely 

investigated and proposed in pursuit of high-speed processing in silica glass. Several key 

factors should be controlled during the drilling process, namely, drilling geometry, 

operation environment, and laser conditions, which includes but not limited to laser pulse 

durations, pulse energy, wavelengths, repetition rates, beam spatial and temporal 
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distributions, etc. The influence of these factors on the resultant microchannel drilling are 

provided as follows.  

1.5.2.1 Drilling geometry 

Due to the transparency of silica glass and highly localized structural modification 

under nonlinear laser absorption, the machining of glass is not limited to exterior-to-interior 

processes, therefore allowing for more flexible geometries and complicated internal 

structures.  

 

Figure 1.10 Schematic diagram of the femtosecond laser-induced modification in glass 

samples, (a) transverse writing geometry, (b) top-to-bottom writing geometry, and (c) 

bottom-to-top writing geometry [44].  

As shown in Figure 1.10, the general geometries of laser modification inside glass 

include transverse writing with focused beam inside material, downwards writing with 

focused beam on the front surface, and upwards writing with focused beam on the back 

surface. Transverse writing is particularly useful for waveguide writing inside glass, 

however, not feasible for drilling process due to the noncircular cross section on the focal 
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spot. Upwards drilling from the back surface has been proposed to increase the length and 

structural quality of the drilled channels. Compared with drilling from the front surface, 

machining from the rear surface can eliminate the shape effects of front surface ablation, 

where the laser energy deposition and distribution on the material surface can be 

significantly affected by material ablation from preceding laser pulses. In addition, drilling 

from the rear surface helps to weaken the interaction between laser pulse and the formation 

of early plasma, which could be relatively strong due to hot electron emission and 

ionization of air in normal atmosphere condition. In some most recent studies [46–49] 

working on laser drilling in silica glass, rear-surface drilling has been more frequently used 

than front-side drilling, in pursuit of high aspect-ratio of the microchannel in glass. 

There are still limitations on application of rear-surface drilling. It has been argued 

in [50] that this method is not applicable to multilayer samples or samples with non-

transparent interlayer. Also, the thickness of samples cannot exceed the working distance 

of the focusing objective. However, as the microchannel drilling is for transparent silica 

glass, and the normal length of drilling is within several millimeters, the application of 

rear-surface drilling in silica glass should not be challenged.  

1.5.2.2 Operation environment 

In general, ultrafast laser ablation of materials can be conducted in air or vacuum 

conditions. For drilling, particularly from the rear surface, it has been proposed that 

immersing the rear surface in distilled water can help to minimize the blocking and 
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redeposition of ablation materials. Different operation environments for laser drilling have 

been compared in previous experimental works.  

X. Zhao and Y. C. Shin [49] comprehensively studied femtosecond laser drilling in 

fused silica from rear surface in air and water. The advantage of drilling from rear surface 

is that the generated early plasma is much weaker than from the front surface, so the 

expansion of the plume plasma is less impeded by the early plasma formation. For drilling 

in air, higher pulse energy results in the increase of the channel depth and diameter. With 

the increase of pulse energy, the thermal effects are more pronounced than relatively low 

pulse energy, so that microcracks can be more noticeable around the channel. The increase 

of side wall roughness can be also observed, mainly due to the redeposition of material 

ejection when the channel became deeper. On the contrary, for drilling in water, the channel 

depth drops dramatically with increase of pulse energy. The reduction of drilling in water 

is mainly due to strong water ionization with the increase of laser pulse energy. The dense 

plasma in water will impede the expansion of plume plasma as well as the water flow inside 

the channels. Meanwhile, drilling in water will help to increase the smoothness of the side 

walls, because particles can be more dissolved in water instead of being redeposited onto 

the side walls.  

B. Xia et al. [51] investigated the superiority of vacuum condition in the ultradeep 

microchannel drilling in PMMA. Efficient energy propagation with the absence of air 

ionization and easy ejection of ablation particles are demonstrated in vacuum drilling 

process. The vacuum condition helps to extend the depth of the channel (Figure 1.11 (a)) 

while maintaining similar channel diameter with increasing pulse number. Saturation has 
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been observed in both aspect ratios and channel depths with increasing pulse energy and 

ambient pressure, respectively. From Figure 1.11 (b) and (c), bending at the end of drilled 

channel can be observed only in air, which could be attributed to the unstable formation of 

filament in air condition as well as the interference of the laser beam propagation by the 

scattering and deflection of the nanoparticle ejection trapped inside the drilled channel.  

 

Figure 1.11 Development of (a) micro channel depth with the pulse number, and micro 

channel shape (b) in air and (c) in vacuum [51]. 

1.5.2.3 Laser conditions 

L. Jiang et al. [52] studied the influential factors on laser induced microchannel 

drilling in air, including wavelengths (680nm-800nm), pulse energy, and pulse number, as 

shown in Figure 1.12. The increase of channel depths and aspect ratios with shorter 

wavelength is attributed to higher density of seeding carriers from MPI. With the increase 

of pulse energy, the channel depth increases monotonously until certain saturation value, 

while the aspect ratio experiences a peak and then decreases due to the increased channel 

diameter. Double pulse ablation displays its superiority in laser drilling with enhanced 
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channel depths at a pulse delay of 200fs. A proper range of 100-300 fs helps to raise the 

channel depth as well as the aspect ratio to 1.3-1.4 times higher. 

 

 

Figure 1.12 Channel depth and aspect ratio as a function of (a) laser wavelength, (b) pulse 

energy, and (c) pulse number [52].  

S. Karimelahi, L. Abolghasemi, and P. R. Herman [47] reported rapid fabrication 

of microchannels in silica glass with Gaussian beam in IR and green light at varying scan 

speeds and repetition rates. Figure 1.13 shows top and side view images of laser 

modification formed for the case of rear-surface drilling at various scan speeds, and 

repetition rates for both IR and green wavelengths at similar pulse energy. For IR lasers, 

channels can be drilled through the 1 mm thickness at all the scan speeds (10-100 μm/s) at 

200 kHz, while for 400 kHz the channel depths are shortened and broken into segments 

varying in hundreds of microns. As for 1 MHz, only random and non-uniform shaped 

(a) (b) 

(c) 
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channels can be generated and there are cracks around the channel entrance. The major 

reason for this deterioration should be attributed to stronger thermal accumulation with 

shortened pulse interval at high repetition rates, which can be evidenced by the formation 

of large heat affected zone (HAZ) surrounding the channel entrance and molten material 

within the channel to discontinue the channel tracks. For green lasers, uniform drilling 

channels can be observed for 200 kHz, and better channels than IR lasers can be drilled at 

400 kHz. For 1 MHz, however, due to the enhanced thermal accumulation effect, the 

formation of HAZ impedes the formation of straight and uniform channels drilled in the 

material.  

 

Figure 1.13 Optical microscope images of top and side views of laser ablation tracks 

formed by the dynamics focal scanning in the up direction at the indicated scanning 

velocities (vs) and laser repetition rates from 200 kHz to 1 MHz for pulse energies of (a) 

13 μJ at 1064 nm and (b) 12 μJ at 532 nm. The inset images show stronger HAZ formation 

effects with increasing repetition rate [47].  
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Figure 1.14 Dependence of channel length on repetition rate fabricated with Bessel beam 

laser pulses [53]. 

 

Figure 1.15 Variation of (a) channel length, (b) mean channel diameter and (c) microscopy 

images of typical structures as a function of pulse energy at repetition rate of 100 Hz [53].  
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With higher pulse energy, the thermal accumulation effect can be more pronounced, 

and the less smooth side walls around the channel can be generated, as observed in [49]. 

Therefore, lower pulse energy is preferable with increasing repetition rates to alleviate high 

energy deposition.  

M. K. Bhuyan et al. [53] used Bessel beams to study the influence of laser pulse 

energy and repetition rates on microchannel drilling in silica glass. The influence of laser 

repetition rates can be observed in Figure 1.14. The channel length deceases from ~70 μm 

to ~20 μm while maintaining stable channel diameter when repetition rates are increased 

from 50 Hz to 2.5 kHz. This observation indicates the impedance of efficient material 

removal by reduced time between successive laser pulses. As for the influence of pulse 

energy shown in Figure 1.15, the diameter increases continuously with higher pulse energy, 

while the channel length only increases until 8 μJ and starts to decrease with further 

increase of pulse energy. Compared with [47], lower pulse energy and much lower 

repetition rates can be used for Bessel beams to achieve stable and well-controlled channel 

drilling in glass [53].  

1.5.2.4 Pulse shaping 

Typically, laser beams have Gaussian shapes in the spatial distribution, and an 

ellipsoidal focal volume can be obtained when focused by a lens (Figure 1.16 (a)). The 

axial confocal length is determined by the focusing geometry (numerical aperture) known 

as the Rayleigh length. Bessel beam, referred to the non-diffracting beam, can be obtained 

through beam spatial shaping by an axicon. The intersection angle between the conical 
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wave and the optical axis, denoted as alpha in Figure 1.16 (b), characterizes the length of 

Bessel beam. The confocal length with Bessel beam can be greatly increased compared to 

Gaussian beam. Based on this feature, using Bessel beam has been proposed to enable high-

throughput and high-aspect-ratio microchannel fabrication in silica for applications of 

microfluidic devices and biosensors.  

 

Figure 1.16 Comparison of focusing geometry and intensity distribution between (a) 

Gaussian and (b) Bessel beams [54]. 

Several studies [50,53,55,56] used Bessel beams to fabricate high-aspect-ratio 

microchannels in silica glass. Z. Wang et al. [57] manipulated the laser pulses through 

temporal and spatial shaping with double-pulse Bessel beam. FLICE method has been also 

applied to improve the length and aspect ratio of the channels. The etching depth can be 

enhanced by 13 times at the optimal pulse delay between double pulses, while the depth 

only doubles by increasing the pulse number from1 to 2000, as shown in Figure 1.17. The 

maximum aspect ratio of microchannel using double pulses reaches about 23:1, which is 
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around ten times of that with single pulse. The different structural changes induced by 

single and double pulse can be attributed to the localized control of electron dynamics by 

the temporally shaped femtosecond laser Bessel beams.  

 

Figure 1.17 Optical transmission microscopy images of microchannel morphology 

evolution after etching by using Bessel beam pulses pre-irradiation at various pulse number 

and pulse energy of 20 μJ for (a) single pulse and (b) double pulse train with pulse delay 

of 10 ps, (c) channel depth and (d) aspect ratio [57].  

Double-pulse drilling has been mentioned above and the superiority to single pulse 

has been demonstrated in [48,57]. Bessel beam can be categorized in spatial shaping of 

laser beam and double pulse method can be classified as temporal shaping of laser beam. 

The aforementioned double-pulse method mainly relies on the temporal separation of 

single pulse into two branches with similar features (wavelengths and pulse durations). 
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There are some other experimental attempts regarding temporal manipulation of laser 

interaction with silica glass.  

 

Figure 1.18 Experimental results of crater depth from different pulse manipulation with 

various pulse delays [58]. 

C. Lin et al. [58] investigated the micromachining of fused silica through double-

pulse method combining femtosecond (120 fs, 800 nm) and nanosecond (30 ns, 355 nm) 

laser pulses with different delays ranging from -60 ns to +60 ns. This method is intended 

to improve the material removal rate through ns pulses. Femtosecond laser pulses are 

applied to excite the dielectric material and absorb the laser energy from ns laser pulses. 

The fluence of the ns pulses can be below the damage threshold. Five cases are compared 

with respect to different delay time, in which only the delay within 30 ns can be treated as 

effective. The 60 ns is too long for the ns pulse to interact with the electrons generated by 

the fs pulse. As shown in Figure 1.18, when ns pulse is applied before the fs pulse (negative 

delay time), material removal is not improved significantly, while when the two pulses are 

fully overlapped, maximum ablation depth can be obtained. No ablation can be seen for all 
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cases if the fluence of the fs pulse is reduced to be lower than the threshold, no matter how 

high the fluence of the ns pulse is (within the studied range). 

 

Figure 1.19 Dependence of (a) depth and (b) diameter of drilled channels on the time 

interval between femtosecond laser pulse and fiber laser [59].  

Y. Ito et al. [59] proposed the combination of femtosecond laser pulses (210 fs) and 

fiber laser pulses (105 μs) to drill glass from the front surface. The long-pulse laser is 

applied after a single shot of femtosecond laser pulse. The efficiency of this method can be 

as high as 5000 times higher than femtosecond laser drilling. Also, the damage and micro-

cracks around the channel in femtosecond laser drilling can be eliminated due to much 

weaker shock waves. As shown in Figure 1.19, the depth and diameter of the channel 

increases as the pulse delay increases, and saturated at 50 μs and 20 μs, respectively. This 

saturation of depth can be attributed to thermal diffusion after femtosecond laser pulse 
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irradiation, and dissipation of filament, which can be completed in the time scale of 100 

μs. Similarly, without pre-irradiation of femtosecond laser pulses, the long-pulse laser 

cannot induce noticeable modification in the material. However, in pursuit of the drilling 

efficiency, without repeated laser pulse irradiation, the final length of the drilled channels 

would not be very long, and the channels are generally tapered. 

 

Figure 1.20 (a) Calculated temporal intensity envelopes of pulses for different third order 

dispersions, 0 fs3, 25×103fs3, 6×105 fs3, and -6×105 fs3, and (b) cross correlations of 

unmodulated and modulated pulses, black lines: calculated envelope [60].  

L. Englert et al. [60,61] employed temporally asymmetric femtosecond laser pulses 

in material processing. This method is proposed to decouple and control photon and impact 

ionization in time. Third-order dispersion, which depends on both the direction and the 

magnitude, is introduced for phase modulation, as shown in Figure 1.20. Positive (negative) 

phase modulation makes high-intensity part arrives before (after) low-intensity part and 
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higher phase change makes the pulse shape distort more. The modulated pulse helps to 

reduce the channel diameter significantly, as shown in Figure 1.21 (a).  

 

Figure 1.21 (a) Diameters of ablation structures for fused silica at zero (dot), positive (red 

right triangular) and negative (blue left triangular) modulated pulses and (b) transient free 

electron density at positive and negative modulated pulses [61].  

These observations can be explained through the decoupled ionization from 

photoionization and impact ionization processes. As confirmed in Figure 1.21 (b), the high 

intensity at the head of the shaped pulse with positive phase changes excited free electrons 

through multiphoton ionization (MPI). The following low-intensity part is still able to 

further heat the material and facilitate impact ionization, therefore achieve large number 

density until the pulse end. By contrast, if negative phase changes are applied, the leading 

low-intensity part cannot be efficiently absorbed by the material and the generation of free 

electrons is dominated by the MPI at the pulse tail. For both cases, the initial excited 

electrons are highly localized due to MPI, so that the ablation diameters are much smaller.  

In summary, numerous improvements have been proposed for the drilling of silica. 

In general, rear-surface drilling is superior to front-surface drilling due to weaker early 

plasma shielding and easier expansion of plume plasma. Vacuum condition is better than 

(a) (b) 
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air condition with absence of air ionization and impedance on plasma ejection. Water can 

facilitate dissolving of ablated material and enhance ultimate drilling length only at 

relatively low laser fluence, but becomes worse than air for high pulse energy. Ultrafast 

pulse laser drilling at relatively low pulse energy is preferable for high quality drilling with 

less heat affected zones and weaker shock waves. The interior structure can be also 

deteriorated by increasing repetition rates due to enhanced energy deposition and 

impedance on the material ejection from the channel. Optimal drilling process can be 

obtained at moderate scan speeds. Bessel beams with much longer confocal length can 

shorten the time of material processing, however, the pulse energy for Bessel beam is much 

higher than Gaussian beam due to the spatially more uniform energy distribution in longer 

path. Combination of two pulses with same or different pulse duration can significantly 

increase the material removal efficiency based on control of the electron dynamics during 

laser material interaction, however, the experimental setup for double-pulse irradiation or 

phase modulation is more complicated. The advantages of different methods can be 

combined to satisfy various demands in industrial and research applications.  

1.6 Research Objectives 

The main objective of this research is to understand the dominating physical 

mechanisms during ultrafast laser pulse interaction with dielectric materials and the micro-

drilling process. Material decomposition mechanisms and plasma dynamics will be studied 

through numerical simulations and experiments. Based on the understanding of laser-
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material interaction processes, micro drilling of fused silica will be investigated. The 

specific objectives include: 

1. Investigation of material decomposition mechanisms, thermal and non-thermal 

ablation processes, laser-induced structural deformation: molecular dynamics simulation 

will be performed incorporating plasma model and two-temperature model to study the 

material decomposition processes and analyze the structural deformation under laser-

induced shock waves.  

2. Investigation of dielectric material excitation, thermal relaxation and ablation 

processes under ultrafast laser pulse irradiation: a plasma model will be combined with 

two-temperature model to understand the electronic and thermal processes in dielectric 

materials and study the ablation rates at different laser conditions.  

3. Investigation of material plume plasma dynamics, including nanoparticle 

generation, evolution, expansion, and distribution at the irradiation of ultrafast laser pulses: 

molecular dynamics simulation and time-resolved measurements of plasma dynamics will 

be carried out.  

4. Investigation of ultrafast laser micromachining process in dielectric materials: 

micro-drilling process will be studied at different laser conditions and the fundamental 

mechanisms for laser-based drilling will be investigated.  
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1.7 Thesis Outline 

Chapter 1 presents the background and motivation, literature review on ablation 

mechanisms, modeling methods, laser-based micromachining of dielectric materials, and 

research objectives.  

Chapter 2 introduces the experimental setups and measurement methods in this 

study. Shadowgraph imaging is applied for measurement of plume plasma dynamics during 

dielectric material surface ablation and drilling process.  

Chapter 3 provides the details of numerical modeling in this research. A single rate 

equation is used in the plasma model to describe the electronic excitation, and relaxation 

processes. Two-temperature model describes the temperature evolution and energy transfer 

in electron and lattice. Molecular dynamics simulation demonstrates thermal, mechanical 

and structural responses inside the material. Combination of these models will provide 

comprehensive description of dominant physical processes in material decomposition and 

plasma evolution.  

Chapter 4 illustrates the dominating ablation mechanisms with molecular dynamics 

simulation incorporated with two-temperature model and plasma model. Thermal and 

mechanical ablation mechanisms are investigated in metal and dielectrics. The critical 

conditions for the occurrence of phase explosion and spallation are determined and the 

ablation criteria are proposed accordingly. Plasma dynamics is comprehensively studied 

based on simulations and time-resolved fluorescence and shadowgraph imaging of laser-

induced plasma.  
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Chapter 5 characterizes the variation of ablation depth at different laser pulse energy, 

pulse durations, focusing geometry, pulse numbers and repetition rates. Plasma model is 

combined with two-temperature model to account for the dominant mechanisms during 

ultrafast laser pulse interaction with dielectric materials. 

Chapter 6 demonstrates microchannel drilling by ultrafast laser at different laser 

pulse energy and drilling speeds and studies their impacts on channel length, diameter, 

aspect ratio, geometry, and side-wall quality. Beam propagation model is developed to 

describe the drilling process and the dominating mechanism of channel self-termination is 

proposed and validated.  

Chapter 7 summarizes the conclusions of this study and future works.  
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CHAPTER TWO 

 

EXPERIMENTAL METHODS 

 

 

This chapter presents the setups for different experiments, including femtosecond 

laser ablation of fused silica, femtosecond laser drilling of fused silica, and 

fluorescence/shadowgraph imaging of plasma dynamics for surface ablation.  

2.1 Ultrafast laser ablation 

The schematic of the experimental setup for femtosecond laser ablation of fused 

silica is shown in Figure 2.1.  

 

Figure 2.1 Experimental setup for femtosecond laser ablation of fused silica. 

A Yb:KGW femtosecond laser source (Pharos, Light Conversion) is employed to 

deliver linearly polarized laser beam at the wavelength of 1030 nm and the pulse duration 

(full width at half maximum) of 190 fs. The laser beam is focused (f =150 mm) on the 

sample surface at normal incidence. The pulse energy is adjusted by a half-wave plate and 

a polarized beam splitter. Fused silica samples (TOSOH-ES, thickness 2 mm) are mounted 
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on a three-dimensional motorized stage to accurately control the position of each ablation 

spot. The experiments are performed in both single- and multi-pulse modes. The ablation 

craters are quantitatively characterized by a laser scanning confocal microscope (Olympus 

LEXT OLS 4000). Laser pulse repetition rate is varied in the range of 10 Hz-10 kHz (pulse 

time intervals of 10
-1

-10
-4

s) to study its influence on ablation.  

2.2 Ultrafast laser drilling 

The schematic of the experimental setup for femtosecond laser drilling of fused 

silica is essentially similar to that for ablation, as shown in Figure 2.2. The focal lens (f=150 

mm) is replaced by a microscope objective (10X) with a numerical aperture of NA=0.30 

to facilitate focusing the laser beam onto the sample rear surface and conducting upwards 

drilling process.  

  

Figure 2.2 Experimental setup for femtosecond laser drilling of fused silica. 

The experimental setup is schematically demonstrated in Figure 2.2. A Yb:KGW 

femtosecond laser source (Pharos by Light Conversion) is employed to deliver linearly 
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polarized laser beam at 1030 nm wavelength, 190 fs pulse duration (full width at half 

maximum) and 1 kilohertz (kHz) repetition rate. The incident beam radius measured at 1/e2 

is ~2.5 mm. The pulse energy is adjusted by a half-wave plate and a polarized beam splitter. 

Fused silica (Corning 7980, thickness 2.5 mm) is selected as the drilling sample for its high 

transparency in optics applications. The channels are drilled in air, with each channel at a 

fresh region to avoid contamination from material redeposition. For rear-side drilling, the 

laser beam is initially focused beneath the rear surface (at normal incidence) by a 10X 

(NA=0.3) microscope objective and moved upwards until the focal spot is above the front 

surface. Samples are mounted on a 3D motorized stage to provide accurate control of 

channel position and drilling speed. After drilling, the length and diameter of the channels 

are measured by optical microscope from the side view. To examine the channel sidewall 

quality, the samples are cut through the channel cross section and characterized by a laser 

scanning confocal microscope (Olympus LEXT OLS 4000).  

2.3 Plasma measurement  

In order to measure the plasma ejection dynamics upon laser ablation in fused silica, 

we take fluorescence and shadowgraph images by ICMOS camera. The setup of surface 

ablation is essentially same as that in section 2.1. For fluorescence measurement, the 

fluorescence of the generated plasma is directly imaged into the ICMOS camera, as shown 

in Figure 2.3. For shadowgraph measurement, the reflective mirror is replaced by a beam 

splitter. As shown in Figure 2.4, the laser beam can be partly reflected as the pump pulse 

to ablate the material, and the part pass through the beam splitter will be taken as the probe 
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pulse. A second-harmonic generation (SHG) is used to halve the wavelength of laser beam 

to make the probe beam in the visible spectrum. Two mirrors mounted on a motorized 

translational stage are used to adjust the time interval between pump and probe beam. The 

generated plasma from the pump beam will be illuminated by the probe beam, and the 

shadowgraph will be imaged in the ICMOS camera.  

 

Figure 2.3 Experimental setup of fluorescence imaging of fused silica plasma. 

 

Figure 2.4 Experimental setup of shadowgraph imaging of fused silica plasma. 
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CHAPTER THREE 

 

NUMERICAL MODELING 

 

 

This chapter presents the numerical modeling methods in description of ultrafast 

laser interaction with dielectric materials. Plasma model accounts for the electronic 

dynamics during laser irradiation of dielectric materials, including electron photoionization, 

impaction ionization, and relaxation. Two-temperature model (TTM) describes the thermal 

responses inside the materials, incorporating laser energy absorption, energy transfer 

between electron and lattice, and thermal diffusion. Molecular dynamics (MD) simulation 

is responsible for investigation of thermal and non-thermal phenomena in atomic scale, 

such as ablation mechanisms, plasma generation and expansion. To study different 

behaviours upon ultrafast laser irradiation, these models can be combined in different 

approaches. Thermal and electronic processes can be captured through combination of 

plasma model and two temperature model. MD model can be further incorporated to 

investigate the material responses in atomic scale. The laser interaction with metals has 

been also studied, with combination of TTM and MD simulation.  

3.1 Two-temperature model (TTM) 

A physics-based one-dimensional numerical model has been developed to describe 

the dynamic process of ultrafast laser-induced ablation (ULIA) by a single pulse in vacuum, 

as shown in Figure 3.1 (shown in two-dimensional to better illustrate the physics). The 

sample surface is located at z = 0, and the incident laser radiation travels along the +z 

direction, perpendicularly to the material surface. The laser energy is first absorbed by free 
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electrons, and then transferred to the lattice through electron-phonon (lattice) coupling. 

When the temperature of the lattice is higher than the temperature criterion, ablation can 

be initiated, forming an ablated crater. Free expansion of ablated material is expected in 

vacuum so that material redeposition is not considered in this model. Despite the ultrafast 

non-thermal feature of ULIA, residual thermal energy cannot be fully eliminated so that a 

HAZ is formed in sub-micrometer scale. Based on this numerical model, dynamic process 

of ablation, dimension of the ablation crater and the HAZ can be predicted.  

 

Figure 3.1 Schematic illustration of ULIA. 

3.1.1 Temperature evolution 

Due to the much faster thermal responses in electrons than lattices, electrons are 

responsible for the absorption of laser pulse energy, and the temperature can be raised up 

drastically to be much higher than the lattice temperature. Electron thermal energy is 

continuously transferred to lattice through electron-phonon coupling, and the thermal 

equilibrium between electron and lattice can be achieved well after the termination of laser 
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pulse. Two nonlinear differential equations in the TTM have been incorporated to describe 

the temperature evolution in electron and lattice, respectively [12],  

( ) ( ) ( )e e e e e lC T K T G T T S
t


=   − − −


                              (3.1) 

( ) ( ) ( )l l l l e lC T K T G T T
t


=   + −


                                 (3.2) 

where t is the time, G the electron-phonon coupling factor, S the laser source term, Ce/Cl 

and Ke/Kl the volumetric heat capacities and thermal conductivities of electron and lattice, 

respectively. To capture the temperature dependency of material thermal properties, the 

quotidian equation of state (QEOS) model [62] is adopted to calculate the volumetric 

energy of electron and lattice within a wide range of temperature, and the material thermal 

properties can be determined as 
/ / //e l e l e lC E T=    and ( )2 / 3e e F eK C v =  , where Ee/l is the 

volumetric energy of electron and lattice, vF the fermi velocity, and υe the electron collision 

frequency, predicted by the Lee-More plasma model [63]. The thermal diffusion in lattice 

can be neglected due to the much smaller Kl compared to Ke. The electron-phonon coupling 

factor G is calculated as /e rG C =   [64], where τr is the mean energy exchange time 

between electron and lattice, which can be determined as ( )/ 2 /r i e em m =  [64], where 

mi is the ion mass, and me the electron mass. The latent heat for melting and vaporization 

is ignored here because its contribution to temperature variation is negligible during ULIA. 

3.1.2 Laser beam profile and propagation 

By assuming both temporal and spatial Gaussian distribution of the pulse, the laser 

intensity can be described as,  
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where I0 is the incident laser intensity, R is the surface reflectivity, τp is the full width at 

half maximum (FWHM) pulse duration, w0 is the beam waist size, and w(z) is the radius 

of the beam spot with a distance of z from the waist given as,  
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where zR is the Rayleigh range, and λ is the laser wavelength.  

Laser intensity attenuation along with penetration can be expressed differently for 

dielectric material and metals, with Eq. (3.6) and (3.7), respectively, in the given forms as 

in [18,65],  
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where α is the absorption coefficient, δN is the cross section for multiphoton ionization with 

N photons, Eg is the bandgap of the dielectric material. Apart from laser energy used for 

electron heating, the other portion is consumed to overcome the band gap for inter-band 

excitation.  
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3.1.3 Optical properties 

The optical properties of the material including the surface reflectivity and the 

absorption coefficient are calculated based on the Drude theory [66]. The complex 

dielectric function of the plasma is given as,  
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where εg is the dielectric function of the unexcited material, nv is the valence band electron 

density, ω is the laser frequency, τe is the free electron collision time, ε1 and ε2 are the real 

and imaginary parts of the complex dielectric function, respectively, and ωp is the plasma 

frequency, which is given as,  
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where ε0 is the vacuum permittivity, and me is the mass of electron.  

For low electronic temperature (Te<TF, TF is the Fermi temperature), material can 

be treated as solid or liquid status, the electronic collision frequency can be expressed as 

the sum of the electron-electron and electron-phonon collision frequencies [67], 
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2

T e
e e

F

A T

T
 − =                                                      (3.11) 

2

2
2 B i

e p s

F

e k T
k

v
 − =                                                 (3.12) 



51 

 

 

where Te and Ti are the temperature of electron and lattice, vF is the Fermi velocity, AT and 

ks are constants, e is the electron charge, kB is the Boltzmann constant,  is the reduced 

Planck constant.  

At high electron temperature (
e FT T  ), υe is approximated by the electronic 

collision frequency in plasma, which is the sum of electron-neutral and electron-ion 

collision frequencies [63,68],  

e e n e i  − −= +                                                    (3.13) 
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where nn and ne are the neutral and electron number density, Z  is the ionization state, μ is 

the chemical potential, me is the electron mass, F1/2 is the Fermi-Dirac integrals, ln  is the 

Coulomb logarithm given by, 

( )2 2
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2
b b = +                                          (3.16) 

where bmax and bmin are upper and lower cutoffs on the impact parameter for Coulomb 

scattering, approximated as,  
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where ni is the ion number density.  

In the transition region of electron temperature between these two regimes, the 

electronic collision frequency can be estimated by the harmonic mean as,  

( ) ( )
1 11

e e e e p e n e i    
− −−

− − − −= + + +                                   (3.19) 

In addition, an upper cutoff υc should be introduced to ensure greater electron mean 

free path than the ion sphere radius,  

0/e c ev r  =                                                  (3.20) 

where r0 is the ion sphere radius, taken as ( )
1/3

0 3 / 4 ir n= , and ve is the characteristic 

electron velocity, calculated as ( )
1/2

2 /e F B e ev v k T m= + .  

Based on the real ( 1 ) and imaginary ( 2 ) part of the complex dielectric function, 

the real ( n ) and imaginary ( ) parts of the refractive index can be determined as,  
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The surface reflectivity R  and absorption coefficient   can be further obtained 

from the Fresnel equations [69],  
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3.1.4 Initial and boundary conditions 

The initial electron and lattice temperatures are set to be room temperature (300 K), 

and non-flux boundary conditions are applied due to the ultrafast period of ablation 

processes,  

( ) ( ), 0 , 0 300Ke lT z t T z t= = = =                                 (3.25) 

/ / 0e l e l

surface bottom

T T

z z

 
= =

 
                                     (3.26) 

The simulation domain is set to be large enough so that the description of non-flux 

boundary at the bottom will not be challenged. 

3.2 Plasma model 

Dielectric materials are initially transparent to visible and near-infrared laser due to 

lack of electrons in the conduction band, like metals and semiconductors. For ultrafast laser, 

sufficiently high laser intensity can be achieved so that the valence band electrons (VBEs) 

are able to be excited to the conduction band through multiphoton ionization (MPI). These 

ionized conduction band electrons (CBEs) will further absorb laser energy, and be able to 

ionize VBEs through impact ionization (II) when the kinetic energy of the CBEs is high 

enough to overcome the bandgap. This dual-mechanism electron excitation process will 

continue to increase the number density of CBEs, and the dielectric materials will behave 

like metallic materials when sufficient number of CBEs have been excited. Continuous 

heating of the CBEs and electron-phonon coupling will lead to lattice heating, breakdown, 
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and decomposition. The dynamics of CBE excitation and relaxation can be modeled 

through single-rate equation (SRE) as follows, 

Ne v e e
II e N

v r

n n n n
In I

t n
 



  −
 = + −     

                               (3.27) 

where ne is the free electron number density, nv is the initial valence band electron number 

density, t is the time, αII is the impact ionization coefficient and τr is the CBE lifetime. Free 

electron excitation from valence band to conduction band is considered to be dominated 

by the processes of MPI and II. The loss of free electrons can be resulted from self-trapping, 

recombination, and relaxation.  

The formation of self-trapping excitons (STEs) has been considered to be an 

important channel for the relaxation of the excited CBEs in dielectrics, especially for fused 

silica, where fast self-trapping can be observed within as short as ~150 fs. The relaxation 

of these metastable STEs cannot be completed earlier than tens of ps, and the characteristic 

lifetime has been experimentally estimated as ~ 34 ps [70]. The STEs, which are situated 

~ 6 eV below the conduction band, can be also re-excited to CBEs through photoionization 

(PI) [71–73] and II [74]. To account for the dynamics of STE, generation and degeneration 

(relaxation) of CBEs and STEs can be modeled through single-rate equations (SREs) as 

follows,  

e
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where 
en  is the CBE number density, 

sn  is the STE number density, t  is the time, 
eS , 

eL , 

sS , and sL  are the generation and loss terms of CBE and STE, respectively, which can be 

determined as follows,  
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n n n n
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where vn   is the initial valence band electron number density, an   is the atom number 

density, g  and 
s  are the excitation rate of valence band electron and STE, r  and s  are 

the relaxation lifetime of CBE and STE, respectively.  

PI and II processes have been considered as the dominant mechanisms in the 

ionization of dielectric materials at irradiation of ultrafast laser pulses, as well as in the re-

excitation of STEs to CBEs. The excitation rate of VBE and STE can be written as follows,  

( )
g

g PI e II U
n  = +                                             (3.33) 

( )
s

s PI s II U
n  = +                                             (3.34) 

where PI , AI  represent the rates of photoionization and avalanche (impact) ionization, 

gU , 
sU  are the bandgap for valence band electron and STE, respectively.  

The PI is highly sensitive to laser intensity due to the nonlinear absorption (optical) 

process. PI has been widely simplified as the multiphoton ionization (MPI) process in the 

SRE, whereas the tunneling ionization (TI) process can dominate with ultrahigh laser 

intensity. Instead of the MPI approximation, the photoionization rate predicted by Keldysh 

theory [75] can be adopted to consider the transition between MPI and TI,  
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where   is the laser frequency, / 2em m =  is the electron reduced mass,  is the reduced 

Planck constant, / lm U eE  =  is the Keldysh parameter for the bandgap U  and the 

laser electric field lE  , e   is the electron charge, 1   and 2   are determined as 

2

1 / 1  = +  and 2 1 /  = , x  denotes the integer part of the number x , K  and E  

are the complete elliptic integrals of the first and second kind, respectively. The function 

( ),Q x  is given as, 
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where ( ) ( )2 2

0
exp

z

z y z dy = − , and /x U = . U  is the effective bandgap, given as, 

( )2

1

2U
U E 


=                                                  (3.37) 

For high frequency and low intensity (electric field) laser ( 1  ), the 

photoionization based on Keldysh formulation can be reduced to the MPI approximation, 

whereas for low frequency and high intensity laser ( 1 ), the TI process turns to be the 

dominating process.  

The generation of CBEs from photoionization (PI) process is providing seeding 

electrons to trigger the impact ionization (II) process when sufficient kinetic energy has 

been achieved by the CBEs to overcome the ionization potential, so that further CBEs can 

be excited from the valence band.  

The II rate can be estimated as [68,74,76],  
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( ) ( )0II eF d    =                                              (3.38) 

where    is the electron energy, ( )eF    is the electron energy distribution function, and 

( ) ( )
2

0 0 / 1   =  −  for    , and zero for     [76]. The rate constant 
0  is taken as 

1.5 fs-1 for fused silica [68].   represents the threshold energy for impact ionization, which 

is estimated as ( ) ( )1 2 / 1U  = + +   [31], where    is ratio between the electron and 

hole mass, taken as unity if equal mass has been assumed for electron and hole. Assuming 

a Fermi distribution for the electrons in the conduction band, and a density of state 

( ) ( )( )
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2 21/ 2 2 /eg m  = , the electron energy distribution function is given as [74],  
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where ( )Ff   is the Fermi distribution function, and FE  is the Fermi energy,  

( )
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=                                               (3.40) 

3.3 Molecular dynamics 

3.3.1 Governing equations 

In MD model, the atomic motion is universally governed by the Newton’s second 

law, and the atomic trajectories are predicted through integration of the equation of motion. 

Different interatomic interaction in different materials are determined through the specified 

potential, and no other assumptions need to be made, such as critical ablation conditions 

(temperature and pressure), and no parameters need to be specified in the lattice, such as 
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heat capacity, thermal conductivity, elastic modulus, and their dependence on other 

properties.  

The combined continuum-atomistic model TTM-MD [77,78] is given as follows,  

( ) ( ) ( )e e e e e lC T K T G T T S
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                           (3.41) 
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F v                                             (3.42) 

where Eq. (3.41) keeps the same form as Eq. (3.1) in TTM to describe the thermal response 

in electron, and Eq. (3.42) is used in replace of Eq. (3.2) to represent lattice behavior in 

atomic level.  

In Eq. (3.42), mi and ri are the mass and position of the ith atom, Fi is the total force 

acting on the ith atom due to its interaction with surrounding atoms, the second term on the 

right hand side in the form of external force represents the thermal energy through electron-

phonon coupling as that in Eq. (3.2), and
i is the coefficient to represent the strength of this 

thermal energy coupling. For a computational cell in the simulation domain, this coupling 

coefficient is treated to be identical for each atom in the cell, given as,  
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where N and V are the number of atoms and volume within a computational cell, kB is the 

Boltzmann constant, and v
T

i  is the thermal velocity of the ith atom, which should be 

distinguished from the absolute velocity vi for the contribution to thermal kinetic energy in 

that, 

T c

i i= −v v v                                                    (3.44) 
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where vc is the center of mass velocity in the collection of atoms in the computational cell, 

calculated in the form of, 

( )
1 1

N N
c

i i i

i i

m m
= =

= v v                                           (3.45) 

Thermodynamic properties are calculated based on the thermal velocity, and lattice 

temperature is defined as, 

( )
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=  v                                           (3.46) 

Pressure, as the most important quantity in study of the mechanical response, can 

be calculated based on the virial theorem [79] given as,  

1
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= + F r                                     (3.47) 

where Fij and rij is the interatomic force and distance between the ith and jth atom.  

The thermal diffusion equation of electron in TTM (Eq. (3.41)) is solved by implicit 

finite difference method to maintain the unconditional stability in numerical calculation. 

The application of the implicit scheme could be computationally more efficient compared 

to the explicit scheme in solving this equation, where multiple sub-steps need to be applied 

within one MD time step to maintain the numerical stability based on the von Neumann 

stability criterion [80,81]. The atomic equation of motion is integrated through the 

Velocity-Verlet algorithm based on the large-scale atomic/molecular massively parallel 

simulator (LAMMPS) [82]. The unit cells in MD simulation domain is defined based on 

the finite difference discretization in TTM, and the cell-based electron temperature in TTM 

is related with the lattice temperature, which is defined as the average thermal kinetic 

energy for the collection of atoms in the corresponding MD cell, as given by Eq. (3.46). 
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During thermalization of lattice, the simulation domain in the MD part will change due to 

thermal expansion and material decomposition, which are considered in the TTM part by 

activating (deactivating) new (existed) cells. The criterion to determine the simulation cell 

activation (deactivation) is based on the atom number, and the critical value is taken as 10 

percent of the average atom number in a cell in the initial MD domain, as suggested in [81]. 

Within the deactivated cells, the electron-phonon thermal coupling will be terminated to 

avoid the influence from unphysically fluctuated lattice temperature, and dynamics of 

atoms will follow the original MD equation of motion without the external force term. In 

addition, along with atomic motion, the number (density) of atoms in the unit cell will 

change, and the variation should affect the local thermal properties, such as thermal 

conductivity and heat capacity, which are dependent on material density [79]. To account 

for this effect, the electron thermal properties are scaled by the ratio of number (density) 

of atoms in the corresponding MD cells to that in the initial system. This consideration is 

especially important when gas bubble and vacuum space form between material layers, 

where the electron thermal diffusion should be neglected.  

This TTM-MD combined model is developed to explore the interaction between 

ultrafast laser and metals. As for study of ultrafast laser interaction with dielectric materials 

(fused silica), the plasma model (SRE) needs to be further combined in TTM-MD model 

to account for electronic dynamics.  



61 

 

 

3.3.2 Interatomic potential 

In study of metals, taking copper as example, embedded-atom-method (EAM) [83] 

potential by [84] has been adopted to describe the interatomic interaction due to its high 

accuracy in describing thermal and mechanical properties for Cu [85]. The potential energy 

of the ith atom is expressed as, 

( ) ( )
1

2
i ij ij

i j i j

E F r r   
 

 
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 
                                   (3.48) 

Where ijr  is the distance between atom i and j,   is a pair-wide potential function,   is 

the contribution to the electron charge density from atom j of type   at the location of 

atom i, and F is an embedding function that represents the energy required to place atom i 

of type   into the electron cloud.  

As for dielectric material, taking fused silica as example, CHIK [86] potential has 

been adopted to describe interatomic interaction due to its high accuracy in predicting 

structural and mechanical properties for fused silica [87],  
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                (3.49) 

where U is the potential, A, B, C are Buckingham parameters, q is the atomic charge, r is 

the interatomic distance between atom i, j, and ε0 is the vacuum permittivity.  

The major drawback of Buckingham potential is the unphysical attraction between 

particles for small distances. This issue can be addressed by adding a higher order short-

range Lennard-Jones term as in [88,89] or by replacing the original potential with a simple 
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second-order polynomial within a small distance [87,90]. In this work, a simple second-

order polynomial is adopted to describe the interatomic interaction for Si-Si, Si-O and O-

O pairs, as in Eq. (3.49) (a), where r0 is the cutoff distance to apply the corrected function, 

and a, b, c are the second-order polynomial coefficients, which were determined to 

maintain the continuity of potential energy and forces with the original potentials at the 

cutoff distances. The atomic charges are 
Si 1.910418q =  and 

o 0.955209q = −  taken from 

CHIK potential [86] and the Buckingham and second-order polynomial coefficients are 

summarized in Table 1. The unphysical attractions for small distances by the original 

Buckingham potential and correction by the harmonic functions are displayed in Figure 3.2 

with solid and dash-dot lines, respectively.  

Table 3.1 CHIK potential parameters used to model fused silica [87]. 

 Si-Si Si-O O-O 

A (eV) 3150.462646 27029.419922 659.595398 

B (Å-1) 2.851451 5.158606 2.590066 

C (eV·Å6) 626.751953 148.099091 26.836679 

r0 (Å) 2.5 1.4 1.4 

a (eV·Å-2) 5.007362 42.332470 25.495271 

b (eV·Å-1) -33.982995 -122.912422 -108.165674 

c (eV) 65.599395 75.225002 122.435286 
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Figure 3.2 CHIK potential for pair interactions. The original Buckingham potential and its 

unphysical region for small distance is represented by the solid lines. The second-order 

polynomial modifications are represented by the dash-dot lines.  

In order to calculate the electrostatic interactions with low computational cost, the 

Wolf method [91] can be adopted alternatively to the Ewald summation [92]. The original 

Coulombic potential can be truncated and shifted in the following form,  
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                     (3.50) 

where 0

wr  is the cutoff distance for electrostatic interaction, taken as 10.17 Å. The potential 

energy and force are smoothed to zero approaching 0

wr . This method has been validated to 

be a good alternative to Ewald summation for silica glass on studies of shock wave impact 

[87,93].  
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To create the characteristic structure of fused silica with disordered network of 

tetrahedra where each silicon is shared by four oxygen atoms, the general method in 

molecular dynamics simulation starts with beta-cristobalite crystal whose density is close 

to 2.2 g/cm3 (typical density of fused silica in experiments [87,93]). This initial 

configuration is heated to 8000 K in the canonical ensemble (NVT) and equilibrated for 

100 ps to diminish the initial crystal structure. The system is then cooled down to the room 

temperature (300 K) at the rate of 10 K/ps. The final stage of simulation is running in 

isothermal-isobaric ensemble (NPT) to release the internal stress at 300 K, and final density 

is obtained to be 2.203 g/cm3, which matches well with the experimental density of 2.2 

g/cm3.  
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CHAPTER FOUR 

 

ULTRAFAST LASER-INDUCED ABLATION MECHANISMS 

 

 

In this chapter, based on MD simulations, ablation mechanism will be investigated 

for both metals and dielectric materials, focusing on spallation (non-thermal ablation) and 

phase explosion (thermal ablation). Nanoparticle formation and dynamics will be also 

investigated.  

4.1 Ablation in metals 

The MD simulation domain has been built up for copper into a face-centered-cubic 

(fcc) crystal in the direction of (1 0 0), with dimensions of around 1 μm by 10.8 nm by 10.8 

nm (3000 by 30 by 30 unit cells with lattice parameter as 3.615 angstrom), consisting of 

over 10 million atoms. The selection of lateral size is balanced between computational cost 

and statistical stability. The lateral size in this study should be sufficiently large to avoid 

the influence on thermal and mechanical responses [94]. Free boundary has been applied 

on the top and bottom surfaces perpendicular to the laser beam propagation direction to 

allow material free movement after laser pulse irradiation, while periodic boundary has 

been applied on the lateral direction to represent much greater laser beam spot size 

compared to the lateral size in MD system.  

The simulation domain has been discretized along (1 0 0) into unified cells with 

grid size of 1 nm. The selection of grid size as 1 nm is able to provide accurate description 

for temperature profile, especially under strong electron temperature gradient, as well as 

sufficient atoms (around 10000 per cell in the initial system) to represent local thermal and 
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mechanical properties. Prior to the irradiation of laser pulse, the MD system is equilibrated 

at 300 K and the internal stress is released by adjusting the simulation domain size. The 

simulation period after equilibration extends up to 500 ps, which is long enough for the 

observation of major thermal and mechanical responses. 

Single-shot pulse with wavelength of 800 nm and pulse duration (FWHM) of 100 

fs has been applied onto the metallic target. Wide range (0.08-5.0 J/cm2) of laser (absorbed) 

fluence has been used to reveal the major mechanisms with different strength of heating in 

the sample.  

4.1.1 Phase explosion  

At moderate and high laser fluence, phase explosion (PE) or explosive boiling has 

been proposed to be the dominating mechanism of material decomposition. Phase 

explosion is featured with homogeneous nucleation and rapid decomposition of material 

into vapor and liquid droplets mixture. Thermal criterion can be applied to determine the 

occurrence of phase explosion, and 0.9 Tcr (critical temperature) has been widely used as 

the threshold temperature TPE. Other values of threshold temperature have been proposed 

as well, such as 0.8 Tcr [95], and the difference could be attributed to the different methods 

how TPE and Tcr have been determined. The method proposed in [96] has been used in this 

work to determine TPE. MD simulation has been done in the isothermal-isobaric ensemble 

(NPT), with fixed pressure and selected temperature. The abrupt increase in the system 

volume reveals the fast phase transformation from overheated liquid to vapor, indicating 

the corresponding temperature as the TPE under the given pressure. Similar to melting 
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temperature, TPE can be raised with increasing pressure, and quasi-linear dependence can 

be observed. The onset of phase explosion is accompanied with relaxation of pressure close 

to 0 GPa [97], so that the measured TPE at 0 GPa can be used as a constant criterion, instead 

of a variable one, to characterize phase explosion. As for the determination of critical 

temperature, the method proposed in [98] can be applied. With a series of canonical (NVT) 

simulation, isotherms on the p-v phase diagram can be obtained, and the critical 

temperature can be determined thereafter. The threshold temperature of phase explosion at 

0 GPa and the critical temperature for copper with the employed EAM potential have been 

measured to be 5980 K and 6700 K, respectively, yielding TPE to be 0.89 Tcr, matching well 

with the widely used thermal criterion. The critical temperature with the EAM potential is 

within the range of reported value (5400-9000K) [99,100], and the critical density ~2.2 

g/cm3 agrees well with the observation in [95]. Taken 5980 K as the threshold temperature, 

the threshold fluence for phase explosion with single laser shot can be therefore determined. 

The evolution of lattice temperature at laser fluence of 0.24, 0.26 and 0.28 J/cm2 is shown 

in Figure 4.1 (a)-(c). The upper limit of the colorbar is set as constant value (6000 K) to 

facilitate the direct observation of phase explosion. Lattice temperature over TPE can be 

observed in Figure 4.1 (a), so that 0.24 J/cm2 can be treated as the threshold fluence for 

phase explosion. At laser fluence of 0.26 and 0.28 J/cm2, as shown in Figure 4.1 (b) and 

(c), greater region with dark red color indicates overheating of material higher than TPE, 

and faster expansion and increasing number of atomization reveals stronger material 

decomposition.  
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Figure 4.1 Evolution of lattice temperature in copper with femtosecond laser single pulse 

at (a) 0.24 J/cm2, (b) 0.26 J/cm2, (c) 0.28 J/cm2, (d) 1.0 J/cm2, (e) 2.0 J/cm2, and (f) 3.5 

J/cm2.  

In the regime of phase explosion, material decomposed through spallation can be 

observed as well. As shown in Figure 4.1, beneath the continuous spatial distribution of 

vapor and liquid mixture, discrete large-size nanoparticles with vacuum space in between 
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should be ejected by spallation. The coexistence of phase explosion and spallation (thermal 

and non-thermal ablation) can be observed for a wide range of laser fluence over 0.24 J/cm2. 

With much higher laser fluence (1.0 J/cm2) shown in Figure 4.1 (d), phase explosion has 

already become the dominating ablation mechanism, and when the laser fluence is raised 

up to 3.5 J/cm2 in Figure 4.1 (f), no clear sign of vacuum gap can be seen in the plume, 

indicating negligible contribution from spallation. The reduced mechanical decomposition 

at high laser fluence could be attributed to the weakened rarefaction wave with fast material 

expansion as well as enhanced recoil pressure. When the material has been superheated to 

ultrahigh level above 15000 K, the critical point phase separation (CPPS) could play an 

important role in thermal ablation. The underlying physics of CPPS is similar to phase 

explosion, both with homogeneous nucleation and fast material decomposition, but the 

detailed thermodynamic trajectory in phase transformation could be different. In addition, 

superheating of material with higher threshold temperature than phase explosion has to be 

satisfied. 

4.1.2 Spallation  

Spallation is mechanical decomposition resulted from ultrafast laser-induced shock 

wave propagation in the material, and the underlying mechanism as well as the critical 

condition are of great interest in this work. Single and multiple spallation can be observed 

in the ablation plume, featured by discrete distribution of ejected large-size clusters away 

from the material. Spallation, as has been mentioned, can happen in the metal micro-size 

films on both the front and rear sides. On the front side, where the material has been 
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thermalized and melted, the decomposition of material is initiated by the arrival of the 

tensile stress carried by the rarefaction wave. Based on this, the front-side spallation should 

be characterized as thermal-assisted mechanical decomposition, resulted from interplay of 

thermal and mechanical effects induced by ultrafast laser. The requirement of material 

heating is much lower than TPE, but still above the regime of melting, otherwise the local 

tensile strength cannot be effectively reduced below the magnitude of pressure wave. Given 

that the material has not been overheated above TPE, the absence of rarefaction wave will 

not bring about ejection of large-size nanoparticles, but limited number of particles 

evaporated from the surface. On the rear side, weakening of material is much lower due to 

thermal effects, and phase transformation from solid to liquid cannot be observed, so that 

the rear-side spallation should be identified as (pure) mechanical disintegration. The nature 

of spallation should be related to mechanical response in the material under tension at 

ultrahigh strain rate (109-1011s-1). To capture the occurrence of spallation and reveal the 

underlying mechanism, the study of ultrafast laser-induced spallation has been coupled 

with separate MD tensile test to obtain the tensile strength, which is tabulated with wide 

range of temperature and strain rate, selected as the most influential quantities. There has 

also been the measurement of spall strength in the flyer-plate or piston-driven shock wave, 

however, not preferable for our current study. On one hand, the dynamic properties, such 

as temperature, strain rate, and spall strength, are measurable but not directly and precisely 

controllable. On the other hand, the generation of shock wave needs large simulation 

domain, which will increase the computational cost significantly. Both these two concerns 

make the direct tensile test on supercell preferable for buildup of reference tensile strength. 
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During the TTM-MD simulation, temperature and strain rates will be measured on each 

grid, and the local tensile strength can be obtained based on the separately measured table. 

The local tensile strength will be compared with the local pressure, and the dimensionless 

quantity tension factor can be calculated as the quotient between the pressure and tensile 

strength. As has been mentioned, our proposition for the onset condition of spallation is the 

tension factor to be greater than unity, indicating higher magnitude of pressure than the 

local tensile strength. The local strain rate is calculated based on the equation given as [85],  

t

u u

x x






  
= + 

  
                                                    (4.1) 

where u is center of mass velocity along the x-axis, and ρ is the material density.  

Based on the proposed method to monitor the spallation events, the threshold laser 

fluence can be determined as 0.1 J/cm2 and 0.22 J/cm2 for front-side and rear-side spallation, 

and contour plots of lattice temperature, pressure and tension factor are shown in Figure 

4.2 and Figure 4.3, respectively. As has been mentioned, discrete (single or multiple) 

distribution of nanoparticle ejection can be observed in both front and rear-side spallation. 

With the increase of laser fluence, the temperature at the surface increases from ~2700 K 

to ~5500 K, however, the peak temperature in both cases cannot reach the threshold 

temperature of phase explosion, so that the sparse distribution of small-size particles in 

Figure 4.1 should be attributed to surface evaporation. The characteristic temperature on 

the interface of spallation is much lower (below 2000 K) compared with thermal ablation 

(phase explosion), so that it could be classified into non-thermal ablation. 
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Figure 4.2 Evolution of (a) lattice temperature, (b) atomic configuration, (c) pressure, and 

(d) tension factor in copper with femtosecond laser single pulse at 0.1 J/cm2. The atoms in 

(b) is colored according to the potential energy.  

There is another non-thermal ablation mechanism as Coulomb explosion [101], 

where particle ejection is driven by the formation of considerably strong electric field near 

the surface. Coulomb explosion is not considered in this work because its less importance 

in the formation of plume plasma for metallic materials, compared with the generation of 

early stage plasma [21,102]. The enhancement of pressure wave magnitude is also apparent, 

especially the compressive (positive) part. On the occurrence of spallation, the shock wave 

propagation would be disrupted and split into two waves (treated as secondary shock 

induced by spallation) travelling towards opposite directions. These phenomena can be 
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clearly seen in the pressure contour plots on for spallation on both sides, and the secondary 

pressure waves are trapped in the detached layers with long-time short-range propagation. 

The secondary shock wave is stronger on the rear side, because the strength depends on the 

peak value prior to the spallation, which is much higher on the rear side (solid) than the 

front side (liquid). 

 

Figure 4.3 Evolution of (a) lattice temperature, (b) atomic configuration, (c) pressure, and 

(d) tension factor in copper with femtosecond laser single pulse at 0.22 J/cm2. The atoms 

in (b) is colored according to the potential energy. 

The distribution of tension factor provides a more direct way to monitor the spall 

events and the validate the proposed spallation criterion. The two regions with high tension 

factor are shown in the zoom-in windows together with the local peak value. In the case of 
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front-side spallation, the condition of mechanical decomposition has been satisfied, and the 

local peak tension factor on the front side is 1.02 (>1.0). The satisfaction of the spallation 

condition has been located between 21 ps and 22 ps, which is much earlier than the 

detachment of the spalled layer from the base material. The local peak tension factor on 

the rear side is 0.85, still far away from the requirement for the onset of spallation. As for 

the case of rear-side spallation, the proposed condition can be satisfied on both sides, and 

the tension factor on the front side reach up to 1.15, indicating the material under super-

tension if the pressure wave is stronger than the threshold. If the peak value of tension 

factor could be greater than 1.0, it is highly possible that there will be multiple spallation, 

happening either simultaneously or sequentially, around the peak value, because the tension 

factor could surpass the threshold (1.0) in a wide region rather than a single position. The 

occurrence of spallation is not an instant process, including void (gas bubble) nucleation, 

growth and coalescence, so that there can be noticed certain time delay in tens of 

picosecond scale between the initiation of spallation (appearance of high tension factor) 

and completion of material detachment. The position where spallation can happen is in 

certain distance away from the surface, which is mainly because the development of strong 

enough tensile stress in the rarefaction wave or the rear-side reflected tensile wave cannot 

be formed instantly but in a long enough period in time or distance in space. This is the 

reason why spallation is accompanied with large-size nanoparticle ejection, and smaller 

clusters can be obtained with increasing laser fluence. Therefore, the ejected material layer, 

especially on the rear side, is limited in a relative thick range over tens of nanometer, unless 

the local material strength can be effectively reduced through enhanced temperature. 
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Detailed process of spallation has been shown in Figure 4.2 (b) and Figure 4.3 (b) to 

facilitate the comparison between front-side and rear-side spallation. In Figure 4.2 (b), void 

generation and development can be clearly seen, and there forms a liquid bridge when the 

void has been elongated and the front-side material is ready to be detach from the sample. 

Along with the separation of material, a liquid spherical nanoparticle has been formed and 

left in the gap space. Similar spallation process can be observed in Figure 4.3 (b) for rear-

side spallation in solid phase as well, however, the spallation process on the rear side is 

much shorter (50 ps) than that on the front side (over 100 ps). In addition, the resultant 

surface roughness in the remaining material is much smaller on the front side than the rear 

side. These differences are mainly because of the different phases where spallation happens. 

On the rear side, spallation happens in solid phase, so that the ultimate tensile strain is 

smaller than the liquid phase on the front side, resulting in faster material breakdown. Also, 

during and after the material rupture, there is no material flow to flatten the newly formed 

surface in solid phase as what happens on the front side in liquid phase. 

4.1.3 Spall strength  

In this work, the determination of tensile (spall) strength is of great importance, 

otherwise, the tension factor cannot be calculated, and the occurrence of spallation can only 

be characterized by the spall strength, which can be largely affected by the temperature and 

the strain rate when the spallation is initiated. In that case, it will be difficult to achieve a 

universal criterion to define the spallation event, because the spall strength could deviate 

from each other among different studies employing different simulation method, spallation 
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condition, and interatomic potential, etc. In this section, our measured tensile strength will 

be compared with measurement through spallation imposed through collision-based shock 

wave [85], and its dependence on temperature will be discussed with comparison to several 

theoretical descriptions in previous studies. Validity of the linear acoustic approximation 

in the measurement of spall strength will be discussed as well.  

Our measurement results of tensile strength for copper with various strain rate (109-

1011/s) at different temperature are shown in Figure 4.4 (a). The spall strength in [85] has 

been measured through the flyer plate-target method at similar strain rate (1010-1011/s) by 

controlling the velocity of flyer plate and adjusting the dimensions of the sample. Good 

agreement can be seen between the spall strength and our measurement of tensile strength 

at well-controlled strain rate and temperature, indicating the nature of spallation as tensile 

process at ultrahigh strain rate. In Figure 4.4 (a), it can be seen that the tensile strength 

follows linear decease with the increase of temperature in the solid regime below melting 

temperature (~1339.6 K), similar to the observation of the spall strength measurement in 

aluminum [103]. When the tensile strength comes into the liquid regime, continuous but 

much slower decrease can be observed, which could be described by the inverse 

exponential function. Other theoretical description and fitting function for the temperature 

dependence of spall strength has been proposed in previous studies [85,104,105]. The 

theoretical derivation based on energetic spall criterion [104] gives: 

( )
1/3

2 36sp c  =                                                   (4.2) 

where c is the sound speed, and   is the surface tension, given in the form of [105]:  
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1.25

0 1 /l crT T = −                                                 (4.3) 

where 0  is the surface tension at the melting temperature.  

 

Figure 4.4 Measurement of (a) tensile strength with various strain rate at different 

temperature, and (b) normalized tensile strength with comparison to theoretical description 

and different fitting models. 

Inverse power law has been proposed in [85] as 
n

sp spT − , and the exponent has 

been determined as ~1.0 through fitting. The aforementioned theoretical description, 

inverse power law and our proposed inverse exponential function has been depicted 

together in Figure 4.4 (b). To avoid the difference from selection of constant parameters, 

all the calculated results have been normalized to the value at 1500 K. The critical 

temperature in Eq. (4.3) is adopted by our measured value as mentioned in Section 3.2. At 

different strain rate, little difference can be observed in the normalized tensile strength in 

this wok, indicating minor/negligible dependence of the scaling law of the sp - spT relation 
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on the strain rate. However, there is great differences between the theoretical description 

and our measurements, which can be characterized by the concave and convex function, 

respectively. Overestimation, especially at high temperature, in the theoretical description 

may lead to underestimated spallation and overestimated fracture period, which has been 

considered in the form given in [104,105]. The inverse power law cannot provide overall 

agreement with our data as favorable as the inverse exponential function. The 1

sp spT −  

relation does provide good prediction for tensile strength in the low temperature range, 

however, increasing deviation with temperature higher than ~2500 K. The adjusted relation 

as 1.5

sp spT −  , which achieves the overall least error, still cannot match with our data, 

indicating first underestimation and then overestimation. In comparison, our proposed 

fitting law as inverse exponential function is able to provide much better agreements in a 

wider range of temperature. The fitting parameter a has been adjusted to be 1700 for the 

best match in this case, and this inverse exponential fitting law could be further validated 

in studies of multiple materials. 

Another method to obtain the spall strength is indirect measurement through the 

linear acoustic approximation [106] in the form of:  

/ 2sp c u =                                                      (4.4) 

where u is the pullback velocity (difference between the velocity at the peak and first 

valley), which can be measured on the rear-side surface with respect to the incoming 

direction of shock wave. The linear acoustic approximation has been widely used in spall 

experiments [107,108] due to its convenience of application in the indirect way, however, 

limitation and inaccuracy has been observed in recent studies [94,106].  
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Figure 4.5 Evolution of rear-side velocity in copper with femtosecond laser single pulse at 

threshold fluence of rear-side spallation (0.22 J/cm2).  

Based on the measurement of pullback velocity profile in the rear-side spallation 

case, shown in Figure 4.5, the spall strength predicted by the linear acoustic approximation 

is ~22.3 GPa, which is ~38% higher than the direct measurement from the pressure profile 

as ~16.2 GPa. Both of these measured results agree well with the observation in spall 

damage simulation [106] using high target-to-flyer thickness ratio to obtain the shock 

loading in Taylor wave. The overestimation in the spall strength from the linear acoustic 

approximation could be mainly attributed to improper usage of parameters in Eq. (4.4). As 

reported in [106], the sound speed could be overestimated by as high as 30%-40% without 

consideration of its dependence on pressure. With the corrected sound speed, the accuracy 

in the prediction of spall strength through linear acoustic approximation can be greatly 

enhanced, which should be highly beneficial to future application of this simplified method.  



80 

 

 

It is of great worth to recall that our introduction of tension factor is important to 

unify the criterion on the occurrence of spallation, which could be largely affected by the 

spall temperature and strain rate, therefore making it difficult to compare among different 

studies. To compare with the reported study on laser-induced spallation of gold in [94], we 

also did the laser simulation for gold, in which the rear-side spallation strength has been 

measured to be ~14 GPa, 20% higher than their measured value as 11.6 GPa. Same EAM 

potential [109] has been applied, so that the main reason for this discrepancy should be the 

difference in spall temperature (not provided in [94] potentially due to different simulation 

settings. The contribution of strain rate in the different spall strength should be much 

weaker because similar value has been obtained calculated from the rear-side velocity 

profile. By this example, we can clearly understand that the introduction of tension factor 

would make more direct and convenient comparison among different studies, so as to 

provide universal criterion for mechanical decomposition in future studies.  

4.1.4 Structural effects  

So far, dominating mechanisms in ultrafast laser-induced thermal and mechanical 

responses, including melting, phase explosion and spallation, have been investigated based 

on the combined continuum-atomistic simulation. Characteristic temperature has been 

generally employed to represent the occurrence and development of melting and phase 

explosion. While in study of mechanical decomposition, dimensionless quantity, tension 

factor, has been introduced and universal criterion for the onset of spallation has been 

proposed and validated, indicating the coincidence between the occurrence of spallation 
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and the over-unity of tension factor. Temperature and strain rate have been considered as 

the most influential parameters in the determination of material strength under tension. 

However, further observations drive us to take other factors into account, which may 

challenge our proposed criterion for mechanical decomposition to certain extent. The 

distribution of tension factor at various laser fluence higher than the threshold value for 

rear-side spallation
rear

spF (0.22 J/cm2) is shown in Figure 4.6. With laser fluence no much 

higher than
rear

spF  until 0.5 J/cm2, the peak tension factor on the rear side, as depicted in 

Figure 4.6 (a) and (b), are greater than 1.0, which is consistent with the spallation criterion, 

and there is slightly increase from 1.04 to 1.05 with the increase of laser fluence from 0.3 

J/cm2 to 0.5 J/cm2, revealing ~5% over-tension in the solid state of material under dynamic 

tensile stress during the propagation of shock wave. When it comes to higher laser fluence 

than ~ 3.0 rear

spF (not necessarily the exact threshold value), as shown in Figure 4.6 (c) and 

(d), one should be able to notice that the peak tension factor drops to ~0.90 where rear-side 

spallation could still be observed. With continuous increase of laser fluence, recovery of 

the tension factor over 0.9 and further increase can be seen in Figure 4.6 (e) and (f), 

becoming 0.93 at 3.0 J/cm2 and 1.00 at 5.0 J/cm2. The appearance of decrease and 

reincrease in the tension factor with increase of laser fluence is of great interest, and could 

be mainly attributed to structural change prior to the incoming the tensile wave. As has 

been mentioned in Section 4.1.3, with ultrafast laser irradiation, material compression 

could be generated at the front surface and shock wave will form with the relaxation of 

pressure and propagate deep into the material. Great tensile stress on the rear-side material 
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will be brought about with the reflection of compressive shock wave, and when the tensile 

stress is greater than the local strength under tension, spallation on the rear side can be 

triggered. Based on this, different from pure tension loading in the measurement of tensile 

strength with the tensile tests, the compressive loading should make a difference in the 

crystal structure prior to the tensile wave in laser-induced rear-side spallation.  

Figure 4.7 summarizes the peak tension factor on rear-side spallation as a function 

of compressive pressure. Decrease of tension factor below 1.0 cannot be observed until the 

compressive pressure reaches ~30 GPa. The tension factor rapidly drops with compression 

up to ~40 GPa, approaching ~0.85, and recovers with stronger compression towards ~50 

GPa. The tension factor becomes stable with compression approaching ~70 GPa, saturating 

at ~0.95. This noticeable valley-shaped regime located between 30 GPa to 60 GPa in 

tension factor uncovers considerable material weakening and subsequent self-

strengthening by increasing compression.  

To elucidate the interrelation between strength variation and structural 

transformation, material structures are analyzed in Figure 4.7 ((a)-(d)) in context with the 

tension factor, where the crystal structures are captured during compression. Below 

compression of ~30 GPa, structural deformation is dominated by dislocation, represented 

by the discrete yellow cells in the main structure of FCC (Figure 4.7 (a)). With compression 

above 30 GPa, planar defects can be formed, introducing stacking faults. Increasing 

compression over ~40 GPa brings about greatly densified and intersecting stacking faults, 

establishing network of orthogonally oriented planar defects (Figure 4.7 (b)). When the 

compressive pressure is elevated above ~50 GPa, twinning faults appear and coexist with 



83 

 

 

stacking faults (Figure 4.7 (c)), and become densified with stronger compression 

approaching ~60 GPa (Figure 4.7 (d)), where twinning faults act as the dominant form of 

structural transformation.  

 

Figure 4.6 Evolution of tension factor in copper with femtosecond laser single pulse at (a) 

0.3 J/cm2, (b) 0.5 J/cm2, (c) 0.8 J/cm2, (d) 1.0 J/cm2, (e) 3.0 J/cm2, and (f) 5.0 J/cm2.  
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Figure 4.7 Tension factor and structural transformation as function of compressive pressure 

at various fluences in laser shock simulations. (a)-(d) correspond to star-marked data points 

enclosed by colored solid squares, depicting crystal structures in laser shock simulations at 

fluence of 0.5, 2.0, 3.0 and 7.5 J/cm2, respectively. Blue, red and yellow atoms represent 

face centered cubic (FCC), hexagonal close packed (HCP) and body centered cubic (BCC) 

structures, respectively. 

The evolution of structure with increasing shock compression and the dominating 

deformation, namely, dislocation, stacking faults and twinning faults, have quantitative 

agreements with previous investigations [110,111] on monocrystalline FCC structure 

(copper). The Hugoniot Elastic Limit (HEL) in copper determined by previous studies 

[110,112] (~30 GPa) has excellent agreement with the transition from elastic deformation 

(dislocation) to plastic deformation (stacking and twinning faults) at ~30 GPa in this work. 

Meanwhile, the transformation in structure from stacking faults and coexistence with 

twinning faults to the dominance of twinning faults, as well as the corresponding 

compressive pressure agree well with previous observations [110,111].  
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Figure 4.8 Comparison of structural transformation in correspondence to spall strength 

variation at different temperature in QI simulations and various fluence in laser shock 

simulations. (a)-(d) correspond to colored square-mark data points, depicting crystal 

structures in QI simulations at 300 K with compressive pressure of 28, 37, 55 and 62 GPa. 

(e)-(h) correspond to colored circle-mark data points, depicting crystal structures in QI 

simulations at 600 K with compressive pressure of 26, 40, 58 and 70 GPa.  
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Based on the tension factor variation and crystal structure analysis, the substantial 

interrelation between structural transformation and spall strength can be established as 

follows. Formation of elastic deformation (dislocation) below HEL introduces negligible 

impact on the spall strength, whereas existence of stacking faults effectuates considerable 

weakening of the material and diminishes the spall strength by as high as 15%. Formation 

of dense and intersecting stacking faults as well as generation of twinning faults at stronger 

compression plays a “self-healing” role in the material, and enhances the spall strength, 

although not to the extent as strong as material in non-defective FCC monocrystalline 

structure.  

These results reveal that formation of stacking faults is the dominating mechanism 

in material weakening, while twinning can strengthen the material during spall process. 

This is in agreement with nanocrystalline copper [113–115], where existence of twinning 

provides obstacles to dislocation motion and leads to enhanced strength close to 

monocrystalline copper. Nevertheless, it has also been demonstrated that increasing 

twinning formation leads to decrease of spall strength in monocrystalline tantalum [116], 

which is resulted from increasing void nucleation sites near twinning boundaries. This 

inconsistence on the role of twinning may be in consequence of two reasons. Firstly, in 

terms of material strengthening, formation of twinning in this work is captured during the 

shock compression stage, whereas the presence of twinning and its impact on spall strength 

in [116] is determined during the tensile loading, which may lead to controversial 

conclusions on the role of twinning. According to [115], there is significantly much less 

twinning presence during tension than compression due to significant detwinning. 
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However, it is unclear whether increasing twinning by stronger shock compression leads 

to increasing twinning presence during tension. Secondly, the study of the twinning effects 

on spall strength may not be performed at same temperature and strain rate. For instance, 

increase of spall temperature can significantly reduce the spall strength, which may conceal 

possible strengthening of material by twinning. This again highlights the importance of 

tension factor in better understanding of the interrelation between structural transformation 

and spall strength, where potential impacts of temperature and strain rate can be fully 

excluded.  

To further confirm aforementioned impacts of structural transformation on the spall 

strength and explore potential effects of temperature, a series of spall tests are performed 

in the QI method at 300 K and 600 K. The compression and tension strain rate have been 

selected as 1011/s and 1010/s, respectively, according to laser shock simulations. The spall 

strength calculated in the QI simulations are normalized and compared with the tension 

factor from laser simulations, as shown in Figure 4.8, and crystal structures ((a)-(h)) are 

extracted during compression at different conditions.  

QI simulations provide a valley-shaped variation in the normalized spall strength 

with excellent agreements with that from the tension factor. The spall strength can decrease 

by around 10% with compression above 30 GPa, providing substantial validation on the 

occurrence of rear-side spallation at tension factor ~0.9 in Figure 4.6 (c) and (d). QI 

simulations (Figure 4.8 (a)-(d)) also provides corroborations for the structural transition 

from dislocation and stacking faults to coexistence with twinning faults and the dominance 

of twinning faults in laser-shock simulations (Figure 4.7 (a)-(d)). Quantitative 
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discrepancies in QI from the laser simulations can be predominantly attributed to different 

shock loading conditions, specifically, the simplified stress loading profile, constant strain 

rate and temperature in the QI simulations instead of the dynamic loading in the laser shock 

simulations.  

Moreover, despite the similarity between 300 K and 600 K in spall strength 

variation, quantitative dependence on the spall temperature is captured. Compared to 300 

K, the elevated minimum spall strength at 600 K indicates declined impacts from structural 

transformation, which can be attributed to enhanced atom mobility at higher temperature. 

Another noticeable discrepancy lies in the inadequate recovery of spall strength at 600 K, 

saturating at ~0.96, which is not as high as that at 300 K whereas in better agreement with 

the tension factor from laser shock simulations. This should be again attributed to the 

enhanced atom mobility, which limits formation of dense twinning faults, so that material 

“self-healing” is diminished. This restrained formation of twinning can be confirmed from 

structural analysis at 600 K, as shown in Figure 4.8 (g) and (h), where dense and 

intersecting stacking faults dominate under strong compression even beyond 60 GPa, while 

twinning faults are imperceptibly generated.  

Tension factor serves as an easy-implemented method to exclude the impacts of 

temperature and strain rate, and better quantify the impacts of structural transformation on 

spall strength. In this regard, future investigations can be performed with consideration of 

different structure types (BCC [108,116], polycrystalline [117,118] and nanocrystalline 

[115]), crystalline orientations [116], grain size [118] and so forth.  
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4.2 Ablation in dielectrics 

The fused silica sample in MD simulation is built up into a domain with length of 

100 nm and square cross section of 10 nm by 10 nm. The selection of lateral size is balanced 

between computational cost and statistical stability. Free boundary condition is applied on 

the top surface normal to the laser beam propagation direction to allow material free 

movement after laser pulse irradiation, while non-reflecting boundary [119] and periodic 

boundary are set on the bottom and lateral direction, respectively. The simulation domain 

has been discretized along the length into unified cells with grid size of 1 nm. The 

simulation time after equilibration extends up to 120 ps, which is long enough for the 

observation of major thermal and mechanical responses. Single-shot laser pulse at 

wavelength of 800 nm and pulse duration (FWHM) of 100 fs has been applied in a wide 

range (3.0-10.0 J/cm2) of laser fluence to reveal the dominant mechanisms at different 

regimes of laser heating.  

4.2.1 Structural properties and ablation threshold 

On the creation of fused silica in molecular dynamics simulation, structural 

properties have been assessed to confirm the characteristic structures in fused silica glass. 

Pair correlation function g(r) and bond-angle distribution (BAD) function p(θ) are obtained 

to account for short to long-range structural features. Measurement of g(r) for Si-Si, O-O, 

and Si-O pairs are shown in Figure 4.9 (a), and the location of the first peak are measured 

as rSi-Si=3.17 Å, rO-O=2.63 Å, and rSi-O=1.63 Å, respectively. These results agree well with 

experimental data rO-O=2.62-2.65 Å, rSi-O=1.61-1.62 Å [120–122] and simulation data rSi-
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Si=3.067-3.155 Å using other potential forms [87,90]. As for BAD measurements, the 

bond-angle distribution of O-Si-O and Si-O-Si angles are calculated and displayed in 

Figure 4.9 (b), and the peak values are located at 109° and 149°, respectively, which are 

also close to those reported from experiments [120–122] and simulation using other 

potential forms [87,90]. Good agreements in structural properties between previous studies 

and this work indicate proper preparation of sample material (fused silica) for the following 

studies of ultrafast laser-induced modifications.  

 

Figure 4.9 (a) Pair correlation function for Si-Si, O-O, Si-O pairs, and (b) bond-angle 

distribution function for O-Si-O, Si-O-Si angles in MD modeling of fused silica at 300 K.  

Tensile strength as an important mechanical property can be used to further validate 

the material structure. Tensile strength is measured as the ultimate strength in the normal 

tensile test [123]. In this work, with CHIK potential, tensile strength is measured for fused 

silica in wide range of stain rate and temperature, which are treated as the most essential 

factors affecting the tensile strength. Figure 4.10 depicts the tensile strength at different 
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strain rates and temperature together with the literature data. Similar variation of tensile 

strength with temperature can be observed for different strain rates. The tensile strength 

follows linear decrease with the increase of temperature below 2000-2500 K, which is 

similar to the observation from metals [85,103]. As for higher temperature, there is faster 

drop of the tensile strength until ~4000 K, and much slower decrease above 4000 K.  

 

Figure 4.10 Comparison of tensile strength for fused silica using CHIK potential and other 

potential forms from literature at various temperature and strain rate.  

Measurements of tensile strength are compared with other potential forms from the 

literature, namely, BKS [124], Pedone [123], and ReaxFF [125]. The depicted data from 

different potentials are measured at strain rate close to 109/s. The measurement of tensile 

strength in this work agrees better with Pedone potential, compared with BKS and ReaxFF 

[126], which predict higher strength than CHIK by 24% and 30%, respectively. 

Additionally, the temperature dependence of tensile strength agrees well with Pedone 

potential.  
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The dependence of tensile strength on strain rate is summarized and compared with 

other potential forms as well, as shown in the inserted window in Figure 4.10. All the data 

are normalized to the strength at 109/s to eliminate the differences of tensile strength from 

different potentials and facilitate the comparison. Similar variation with strain rate can be 

observed for different potential forms, with continuous increase of tensile strength at higher 

strain rate. Strain-rate independence of tensile strength has been observed with ReaxFF at 

strain rate above 1013/s [125], which can be absent for other forms of potential including 

CHIK. However, this will not challenge the validity of observation in laser-induced thermal 

and mechanical responses, as the strain rate in laser modification generally does not exceed 

~1011/s. Despite certain differences in the tensile strength measurement between CHIK and 

other potential forms, similar variation of tensile strength with temperature and strain rate 

has been attained.  

 

Figure 4.11 Ablation threshold fluence of fused silica with ultrafast laser irradiation at 

different pulse duration. 
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Figure 4.11 displays the ablation threshold fluence as a function of pulse duration 

in double-logarithmic (log-log) axis. The threshold fluence in this work is determined 

based on the occurrence of material breakdown in MD simulations and compared to 

experimental and simulation results from the literature. Good agreements can be obtained 

in the whole range of simulation (5 fs-10 ps), and piecewise scaling laws ( n

th pF  ) can be 

applied in different regimes. In the regime below 100 fs, exponent of 0.31 can be obtained 

from linear fitting, while in the regime between 100 fs and 1 ps, the dependence of 

threshold on pulse duration fits well with an exponent of 0.19. As for the regime above 1 

ps, the exponent is fitted as 0.48, which is close to 0.5, so that the scaling law of 
th pF 

can be satisfied. This scaling law for longer pulses is mainly resulted from heat diffusion, 

and in good agreement with previous theoretical [127] and experimental observations 

[25,128]. The threshold fluence for fused silica at different pulse duration has been 

experimentally measured by Mero et al. [129] and scaled with exponent of 0.33±0.01, 

which is in excellent agreement with simulation results in the regime below 100 fs. 

Christensen et al. [31] obtained 0.24 as the fitted exponent in the regime below 1 ps, and 

experimental results from Tien et al. [130] can be fitted with exponent of 0.23 [31], while 

results from Varel et al. [131] can be fitted to exponent of 0.11 below 1 ps. Based on these, 

the scaling exponent (0.19) for current simulation in the regime between 100 fs and 1 ps 

has fair agreement with previous observations falling between 0.11 and 0.24. Therefore, 

threshold fluence predicted from the SRE-TTM-MD combined model matches well with 

experimental and theoretical observations, indicating good capability of the numerical 
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model in demonstration of the dominant physical mechanisms during ultrafast laser pulse 

interaction with dielectric materials in wide range of pulse duration.  

4.2.2 Material decomposition and phase transition 

Figure 4.12 demonstrates the temporal evolution of mass density distribution for 

fused silica at irradiation of a single 100 fs laser pulse with increasing fluence (3.3, 3.5, 

3.6, and 6.0 J/cm2). For better visualization, atomic configurations of ablation plume are 

summarized in Figure 4.13, illustrating different regimes of ablation processes at different 

levels of fluence. 

At the fluence of 3.3 J/cm2, there is no observable material decomposition at the 

surface, and melting is the dominant process at this condition. As shown in Figure 4.12 (a), 

there is clear thermal expansion at the surface, indicated by the movement of surface. There 

are two stages of melting in the material with ultrafast laser pulse irradiation, including 

homogeneous and heterogeneous nucleation [97]. The former one refers to quasi-isochoric 

heating of lattice resulted from hot electrons, while the latter one is much slower, 

dominated by heat diffusion. Due to the much smaller thermal conductivity in fused silica 

than in metals, heterogeneous nucleation would play a much less significant role in the 

development of melting layer. After ~20 ps, as shown in Figure 4.12 (a), the surface starts 

to shrink back to the material, indicating the re-solidification process by surface cooling. 

Due to the slow pace of heat diffusion, the re-solidification process can take much longer 

time than the melting process. Despite the absence of material decomposition, minor 
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surface evaporation can be observed in Figure 4.13 (a), with sparsely distributed 

nanoparticles.  

 

Figure 4.12 Evolution of spatial density distribution with time with 100fs laser at fluence 

of (a) 3.3 J/cm2, (b) 3.5 J/cm2, (c) 3.6 J/cm2, (d) 6.0 J/cm2. Spaces with density lower than 

10% of the bulk material (2.2 kg/m3) are shown as blank portions.  

When the fluence is raised to 3.5 J/cm2, material starts to be decomposed and 

ejected, indicating the occurrence of ablation, so that the ablation threshold fluence for 100 

fs laser pulses can be determined as ~3.5 J/cm2. As shown in Figure 4.12 (b) and (c), a 

whole layer of material can be ablated from the based material, indicating the occurrence 
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of spallation [5,7], and double-layer spallation can be observed with slightly increasing 

fluence (3.6 J/cm2). Spallation is not an instant process, where material decomposition 

comes with void nucleation, growth and coalescence, so that there can be noticeable time 

delay (tens of ps) between the initiation of spallation (arrival of rarefaction wave) and 

eventual material disintegration. As depicted in Figure 4.13 (b) and (c), the material 

between the spalled layer and unablated part would be elongated during the development 

of gas bubble, forming a liquid bridge before the final detachment of spalled layer. 

Meanwhile, spallation is triggered by the tensile wave in an ultrashort period of time (a few 

picoseconds), so that the initiation of spallation is induced by the formation of thermal-

elastic stress under the thermal confinement condition in an ultrafast process. The location 

where spallation happens is in certain distance away from the surface, which is mainly 

because the development of strong enough tensile stress in the rarefaction wave. This is the 

reason why spallation is accompanied with large-size clusters ejection, and smaller clusters 

can be obtained with increasing laser fluence. Spallation can be characterized as thermal-

assisted mechanical decomposition, resulted from interplay of rapid heating and 

mechanical effects induced by ultrafast laser pulses. As a non-thermal ablation process, the 

requirement of material heating in spallation is lower than thermal ablation mechanisms, 

such as phase explosion [5,97,132], critical-point phase separation (CPPS) [6], 

fragmentation [5,7] and vaporization [5,7].  



97 

 

 

 

Figure 4.13 Atomic configuration of fused silica under 100 fs (FWHM) laser pulse 

irradiation at fluence of (a) 3.3 J/cm2, (b) 3.5 J/cm2, (c) 3.6 J/cm2, (d) 4.0 J/cm2, (e) 5.0 

J/cm2, (f) 6.0 J/cm2, (g) 10.0 J/cm2. (d) to (g) are segmented as two figures to represent the 

atomic distribution (1) close to the material surface and (2) upper part in the ablation plume 

plasma. Red and blue particles represent silicon and oxygen atoms, respectively.  

As the laser fluence is further increased (4.0-6.0 J/cm2), the material can be rapidly 

heated to temperature higher than the critical point. In this regime, thermal ablation would 

take over as the dominant mechanisms, covering phase explosion, CPPS, fragmentation 

and vaporization. The rapid heating process leads to formation of superheated liquid, which 

becomes metastable liquid during thermal relaxation. Due to the thermodynamic instability, 

the material can experience phase separation, resulting in a mixture of liquid droplets and 

vapors. As shown in Figure 4.12 (d) and Figure 4.13 (d)-(f), coexistence of liquid clusters 

and gas phase can be clearly observed in the ablation plume. Generally, due to increasing 

thermal effects, the liquid clusters will have sizes smaller than those in spallation. At the 
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fluence of 6.0 J/cm2, transition from phase separation to vaporization becomes obvious in 

the ablation plume (Figure 4.13 (f)), especially in the topmost part. When the laser fluence 

reaches 10 J/cm2, vaporization could play the dominant role in the generation of plume 

plasma. During vaporization, the material will undergo rapid heating towards temperature 

much higher than the critical point, and follow the ideal-gas isentropes during thermal 

relaxation. Under the high energy exceeding the cohesive energy, the material could 

experience complete dissociation, so that large- and moderate-size clusters can be barely 

found in the plume, instead, monomers and tiny-size nanoparticles become the dominant 

composition, as shown in Figure 4.13 (g).  

To better understand different mechanisms of material decomposition, especially 

thermal ablation, detailed thermodynamic trajectories are investigated to represent material 

phase transition. As shown in Figure 4.14 and Figure 4.15, the evolution of material phase 

states is depicted in the temperature-density (T-ρ) phase diagram for selected clusters and 

particles at laser fluence of 4.0 and 10 J/cm2. The critical point, binodal and spinodal curves 

of fused silica are determined with the method proposed in [98] including a serial 

simulation in canonical (NVT) ensemble to obtain isotherms on the pressure-volume (p-v) 

phase diagram. The critical temperature (Tc) and density (ρc) of fused silica based on CHIK 

potential have been determined as 6500 K and 0.65 g/cm3, respectively. Fair agreements 

can be obtained compared with previous studies as Tc=6303 K [133], 6074 K [134], and 

ρc=0.66 g/cm3 [135], 0.65 g/cm3 [133,136], indicating proper determination of critical 

status for fused silica based on CHIK potential.  
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Figure 4.14 Thermodynamic trajectories of different atom groups in atomic configuration 

of fused silica under 100 fs (FWHM) laser pulse irradiation at fluence of 4.0 J/cm2. Red 

and blue particles represent silicon and oxygen atoms, respectively.  

At 4.0 J/cm2, four atom groups are chosen as marked in Figure 4.14 along with their 

temperature-density evolution. For Group 1, which is close to the surface of unablated part, 

the material is heated to temperature below the critical point. The density can be reduced 

to as low as ~1.5 g/cm3 during thermal expansion, and recovered as the material cools down, 

indicating the process from melting to resolidification. Group 2 and 3 represent phase 

separation in the ablation plume, where the local material is initially heated to temperature 

higher than the critical point. During the thermal relaxation process towards the critical 

point, there are no considerable differences in their thermodynamics trajectories. However, 

when the material approaches the critical point and enters the metastable zone, phase 

separation can be initiated under thermodynamic instability. Part of the material can 
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nucleate into liquid phase (Group 2), while the remaining material will continue to the gas 

phase (Group 3), although their initial location and thermodynamic history are close to 

each other. This material phase separation process represents the aforementioned CPPS. 

Similar phenomena can be observed in other phase separation processes (phase explosion 

and fragmentation), and the trajectories can follow paths slightly below or above the critical 

point. As for Group 4, the temperature can be raised much higher (above 10000 K) than 

the critical point, and the material will enter into the gas region before it can be cooled 

down below the critical point, representing the vaporization process.  

 

Figure 4.15 Thermodynamic trajectories of different atom groups in atomic configuration 

of fused silica under 100 fs (FWHM) laser pulse irradiation at fluence of 10.0 J/cm2. Red 

and blue particles represent silicon and oxygen atoms, respectively.  

As for 10.0 J/cm2, four groups are selected in Figure 4.15, denoted as Group 5-8. 

In this regime, phase separation can be rarely observed because most of the material can 
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be heated to temperature much higher than the critical point and vaporization can take over 

as the dominant process. For Group 6-8, basically, the thermodynamics trajectories are 

similar, undergoing direct vaporization. For Group 5, which is close to the top of unablated 

material, the temperature is not raised above critical point, and the final state is close to the 

liquid phase. Similar to Group 1, Group 5 will undergo thermal relaxation and 

resolidification in a longer period. One noticeable change is that the material can be initially 

densified much more significantly to a density of ~2.8 g/cm3 before thermal or mechanical 

relaxation, which is mainly because of the much higher compression (~30 GPa) under high 

fluence compared with lower fluence (<5 GPa). This densification could lead to formation 

of structural deformation, bond breaking and defects surrounding the ablation craters 

[93,137,138].  

Different ablation mechanisms, including non-thermal and thermal ablation, can be 

captured during ultrafast laser interaction with dielectric materials (fused silica). Different 

mechanisms dominate in different regimes of laser fluence. At laser fluence in vicinity of 

the threshold, spallation is the dominant ablation process, accompanied with ejection of 

material layers and large clusters. With the increase of laser fluence, material will undergo 

thermal decomposition, dominated by phase separation processes (phase explosion, CPPS 

and fragmentation), introducing mixture of liquid droplets and gas phase in the plume. At 

even higher laser fluence, vaporization process becomes increasingly dominant. With much 

higher laser energy input, more material will undergo dissociation, forming tiny-size 

nanoparticles and monomers.  
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4.2.3 Spallation 

It has been studied and believed that spallation occurs during ultrafast laser 

interaction with metals and semiconductors in a certain range of laser fluence. However, 

there is still no direct observation regarding the occurrence of spallation in dielectric 

materials under ultrafast laser pulses. Recently, there has been indirect experimental 

observation of spallation in dielectric materials based on optical microscope from pump-

probe measurements [139–141]. In this section, based on the simulation results, detailed 

material responses during interaction with ultrafast laser pulse will be illustrated, and 

consistence with experimental observations will be demonstrated.  

Based on the simulation results in Section 4.2.2 (Figure 4.12 (b) and Figure 4.13 

(b)), it can be observed at laser fluence in vicinity of the threshold that large-size cluster or 

whole layer of material can be ejected from the sample, which is closely related to the 

occurrence of spallation. So far, it has been widely studied and believed that spallation 

occurs during ultrafast laser interaction with metals [5,7,97] and semiconductors [142] 

resulted from mechanical decomposition by shock wave generation and propagation. 

However, there is still no direct theoretical evidence to demonstrate whether and how 

spallation happens during ultrafast laser interaction with dielectric materials.  

The occurrence of spallation is closely related to tensile stress, which is expected 

to surpass the local spall strength on the breakdown of material. However, it remains 

unexplored about the time period required for the tensile stress to overcome the material 

strength, and how the material strength can be affected by temperature and strain rates, etc. 

In addition, as an ultrafast process, laser ablation is highly complicated, making it difficult 
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to be well understood about the material decomposition process, especially how the spall 

strength competes with tensile stress on the occurrence of spallation. Therefore, a 

dimensionless quantity is proposed to capture the occurrence of spallation as tension factor, 

which is defined as the quotient between the stress and the tensile strength. The unified 

critical condition for spallation is the local tension factor greater than 1.0, indicating 

stronger tensile stress than local material strength at the instant strain rate. The calculation 

of tension factor is closely related to the measurements of tensile strength, which is 

tabulated based on separate MD tensile tests with wide range of temperature and strain rate, 

selected as the most influential quantities, as shown in Figure 4.10 (Section 4.2.1). There 

has also been the measurement of material strength in the flyer-plate [85,106] or piston-

driven shock wave [115,143], however, not preferable for our current study. On one hand, 

the dynamic properties, such as temperature, strain rate, and spall strength, are measurable 

but not directly and precisely controllable. On the other hand, the generation of shock wave 

needs large simulation domain, which will significantly increase the computational cost. 

Both concerns make the direct tensile test on supercell preferable for buildup of reference 

tensile strength.  

The distribution of tension factor provides a direct way to monitor the occurrence 

of spallation and to validate the proposed spallation criterion. As shown in Figure 4.16 and 

Figure 4.17, evolution of pressure and tension factor are depicted for laser fluence of 3.3 

J/cm2 and 3.5 J/cm2 (threshold), respectively. Generation of rarefaction wave is close to the 

material surface, and the strength will develop along with propagation into the material. 

The maximum tension factor is marked in the tension factor distribution. As shown in 
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Figure 4.16 (b), at fluence of 3.3 J/cm2 below the threshold, the generation of shock wave 

as well as the rarefaction wave is not strong enough to decompose local materials, which 

can be revealed by the tension factor (0.83) below 1.0. Based on the proposed critical 

condition, absence of spallation can be predicted, which is consistent with the density 

distribution (Figure 4.12 (a)) and atom configuration (Figure 4.13 (a)). When the laser 

fluence is raised to 3.5 J/cm2, spallation has been observed to occur at the surface, as shown 

in Figure 4.12 (b) and Figure 4.13 (b). On one hand, increasing energy deposition at higher 

fluence will enhance the temperature, especially close to the surface, so that local material 

strength can be reduced. On the other hand, higher temperature will strengthen the shock 

wave, so as to increase the strength of rarefaction wave (tensile stress). Both factors drive 

the occurrence of spallation at this fluence, which is consistent with the satisfaction of 

critical condition that the maximum tension factor (1.04) is greater than 1.0. Based on this, 

the occurrence of spallation can be well predicted and corroborated by whether the local 

tension factor can surpass unity, so that the proposed tension factor and spallation criterion 

have been evidenced as a proper manner to monitor spallation during ultrafast laser 

interaction with dielectric materials.  

Tension factor, as a dimensionless variable, helps to unify the spallation criterion 

instead of the spallation strength, which could be considerably affected by the materials, 

interatomic potentials, temperature and the strain rate on the occurrence of spallation. 

Noticeable differences can be observed when comparing spallation strength from different 

works, even for same material and interatomic potential. For laser simulation of gold, the 

spall strength is measured as ~14 GPa, which could be over 20% higher than that from [94] 
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as 11.6 GPa. This difference should be mainly attributed to different temperature and strain 

rates at the location of spallation. Though this inconsistence has been observed for metals 

(gold) and spallation in the solid phase, it is believed that spall strength itself provides 

much weaker evidence on capturing the occurrence of spallation, compared with the 

proposed tension factor in this study.  

 

Figure 4.16 Evolution of pressure and tension factor distribution with time at laser fluence 

of 3.3 J/cm2. 

 

Figure 4.17 Evolution of pressure and tension factor distribution with time at laser fluence 

of 3.5 J/cm2. 
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So far, the occurrence of spallation has been clearly demonstrated based on MD 

simulation, and the underlying physics of spallation has been demonstrated by monitoring 

of shock wave generation and propagation as well as the evolution of tension factor. 

Simulation results in this study can not only corroborate recent experimental observations 

regarding ultrafast laser ablation in dielectric materials, but more importantly, help to 

explore and understand the underlying physics on experimental observation about 

spallation in dielectric materials.  

Newton rings has been observed [139,140] with femtosecond laser pump-probe 

method in dielectric materials, and has been attributed to ultrafast laser-induced spallation 

process with generation and expansion of thin shell. These indirect experimental 

observations can be well corroborated by MD simulation, and the ejection of thin-layer 

material has been clearly demonstrated during material decomposition and expansion. Our 

simulation results provide theoretical evidence that dielectric material can have similar 

thermodynamic trajectories as in metals and semiconductors at the irradiation of ultrafast 

laser pulses, where non-linear absorption and extensive ionization does not prevent the 

material cross the liquid-gas coexistence regime [139]. Meanwhile, the indirect 

experimental observation of spallation in dielectric materials (fused silica in [141]) can 

validate our simulation results on the occurrence of thermal-mechanical responses in 

dielectric materials.  

Furthermore, the time scale of material spallation process matches fairly with 

experiments. As seen from the simulation (Figure 4.12 (b) and Figure 4.17), the generation 

of rarefaction wave and the initiation of spallation (tension factor greater than 1.0) are 
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located within 20 ps, while the material expansion and disintegration extends beyond 100 

ps, indicating an aforementioned non-instant process during spallation. This numerically 

predicted time scale from MD simulation agrees well with those from experiments, where 

the formation of rarefaction wave is induced within tens of picoseconds, and ejection of 

thin shell can be completed at delays in the order of 100 ps [139]. In addition, rarefaction 

wave propagation has been indirectly estimated during the experiments, indicating a 

fluence independence speed close to the value of sound speed in the material with 

acceptable accuracy. This is also true during MD simulation, and the speed can be more 

directly and accurately predicted. As shown in Figure 4.16 and 4.17, the period of pressure 

wave propagation through the 100 nm-thick fused silica material is approximately ~17 ps, 

so that the calculated pressure wave speed is ~5.88 km/s, quite close to the experimental 

longitudinal sound speed (5.90 km/s) for fused silica.  

Spallation, as well as Newton rings in dielectric material at ultrafast laser irradiation 

happens within a certain range of fluence. As demonstrated by the simulation results, the 

occurrence of spallation starts from the threshold fluence. Spallation and thermal ablation 

coexists in the ablation of dielectrics. Phase separation can be clearly observed within a 

certain fluence regime (3.5-5.0 J/cm2) and thermal ablation takes over as the dominant 

mechanism with the increase of laser fluence. Meanwhile, spallation becomes decreasingly 

noticeable with the decrease of rarefaction wave due to strong recoil pressure in the plume. 

With more uniform distribution of small-size nanoparticles instead of large clusters, the 

Newton rings can be barely observed, resulted from the absence of clear and abrupt 

interface between liquid phase and gas phase. This is also similar to metals and 
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semiconductors, where coexistence of non-thermal and thermal processes, and the 

dominance of thermal ablation at high fluence range have been clearly demonstrated. 

However, as dielectric materials have much longer optical penetration depth (~100-200 nm) 

than metals (~10 nm) at 800 nm laser irradiation, non-linear absorption has to precede 

material heating, and the temperature gradient can be much lower, so that the generated 

thermal-elastic stress is much weaker than in non-transparent materials at similar level of 

surface heating.  

Finally, current simulation results help to reveal unsolved phenomena during 

experiments. As mentioned in [140] double-layer ejection of material can be observed in 

the experiments, which has been suspected as fragmentation of the main ablation layer into 

two sub-layers. Whereas based on the simulation results from Figure 4.12 (c) and Figure 

4.13 (c), it is clearly demonstrated that, on the occurrence of double-layer spallation, the 

two discrete spalled layers are not formed by decomposition from a thicker layer, but 

formed sequentially along with the propagation of rarefaction wave. This is similar to the 

study of spallation in metals, where multiple spallation can happen when the strength of 

rarefaction wave is above the threshold value. Meanwhile, based on the trajectory of 

spalled layer position, difference in the ejection speeds of two layers is noticeable, as 

discussed in the experiments [140].  

Simulation in this study opens the door to theoretical evidences in ultrafast laser 

interaction with dielectric materials. Experiments corroborate the observations and 

mechanisms demonstrated in the simulation. Although the studied material is fused silica, 

the SRE-TTM-MD combined modeling provides a novel method to explore material 
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decomposition during ultrafast laser interaction with dielectric materials, especially 

spallation, and dynamics of material ejection processes.  

4.2.4 Plasma dynamics 

In this section, we combine experiments and MD simulation to study material 

ejection dynamics by ultrafast laser irradiation on dielectric material (fused silica), 

covering nanoparticles ejection velocity and direction in the ablation plume.  

The direction of plasma ejection is critical to determine the process of plasma 

redeposition, particularly important for micromachining. To study plasma ejection 

direction, we use fluorescence to capture plasma shape evolution in tens of nanoseconds. 

Fluorescence is triggered by spontaneous photon emission in single pulse ablation on glass 

surface and imaged by ICMOS camera, which has an exposure time as short as 2 ns. The 

evolution of plasma ejection is shown in Figure 4.18 and the color of plasma can reflect 

the temperature and density of plasma.  

In this way, we capture the plasma ejection whole process at three selected laser 

fluence. Great similarity can be observed for different laser fluences and the plasma 

florescence at high fluence is much stronger than low fluence. Also, during ejection, the 

central part has denser and hotter plasma than the edge, so that the kinetic energy and 

ejection velocity is faster. Therefore, the plasma shape becomes umbrella shape at 10 ns.  
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Figure 4.18 Evolution of plume plasma by fluorescence measurement. Target material: 

fused silica, pulse duration: 190 fs, wavelength: 1030 nm, and laser fluence: (a) 5 J/cm2, 

(b) 10 J/cm2 and (c) 20 J/cm2.  

 

Figure 4.19 Comparison of plasma ejection angle between (a) measurements by 

fluorescence images and (b) prediction by MD simulation. The peak of angle spectrum is 

highlighted by orange color.  
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The ejection direction of plasma is measured from fluorescence and the statistics of 

nanoparticle ejection direction is plotted in Figure 4.19. The ejection direction of 

nanoparticle is defined as the angle between velocity vector and the normal direction of 

surface. The number of nanoclusters increases significantly at angle in vicinity of 20-25°, 

and follows approximately exponential decrease with increasing angle. This is in good 

agreement with measurements in fluorescence, where the majority of plasma are ejecting 

in the direction within 25° with respect to the normal direction. Also, it is found that the 

most probable direction (angle) is not significantly affected by the laser fluence. This 

indicates that plasma deposition process is not sensitive to laser fluence/energy.  

Due to the limitation of camera exposure time, florescence cannot be used to 

capture early stage plasma to study ejection dynamics within nanosecond. On this aim, 

shadowgraph images will be used, which has a much higher temporal resolution in 

picosecond level. 

We capture the early-stage plasma ejection at the selected laser fluences from 

hundreds of picoseconds to 4 ns to demonstrate the ejection process from just above surface 

to a well-developed hemispheric shape, as shown in Figure 4.20. Great similarity can be 

observed for different laser fluences as well and the plasma ejection at high fluence is much 

faster than low fluence due to higher temperature.  
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Figure 4.20 Evolution of early plasma by shadowgraph measurement. Target material: 

fused silica, pulse duration: 190 fs, wavelength: 1030 nm, and laser fluence: (a) 5 J/cm2, 

(b) 10 J/cm2 and (c) 20 J/cm2.  

The plasma ejection velocity is measured by shadowgraph images. The evolution 

of velocity is plotted in Figure 4.21. A clear decreasing trend with time is observed for 

plasma, which is mainly resulted from attenuation of plasma kinetic energy by scattering 

with gas molecules in air. The ejection velocity is closely related to plasma temperature 

and laser fluence and the measured peak velocity is compared with prediction from MD 

simulation. As shown in Figure 4.21, the normalized velocity at different laser fluences 

from measurements agrees well with the scale of the root of electron temperature. This 

unveils the fidelity of this computational model and highlights the dominating role of 

thermal ablation in dielectric materials.  
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Figure 4.21 Comparison of plasma ejection velocity between (a) measurements by 

shadowgraph images and (b) prediction by MD simulation.  

4.3 Summary 

Thermal and non-thermal (photomechanical) behaviors in micro-size metal films 

from irradiation of ultrafast laser pulse have been investigated based on combined 

continuum-atomistic approach, including phase explosion (thermal ablation) and spallation 

(non-thermal ablation).  

Coexistence of phase explosion and spallation has been observed for a considerably 

wide range of laser fluence, revealing the complicated interplay of different mechanisms 

in ultrafast laser-induced material decomposition. Phase explosion has higher threshold 

fluence than spallation, and becomes the dominating ablation mechanism with the increase 

of laser fluence.  
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Spallation can be induced on both the front side and the rear side of the metal film, 

where large-size nanoparticles are ejected in liquid and solid phase, respectively. A 

dimensionless quantity, tension factor, has been introduced, based on which a universal 

criterion for the occurrence of spallation has been proposed and validated. This 

dimensionless factor and the accompanying criterion, compared with spall strength, 

provides a better description of the underlying mechanism of spallation and facilitates 

further studies on mechanical behavior in material.  

The spall strength, as the threshold stress to trigger spallation, is well comparable 

to the separately measured tensile strength, where temperature and strain rate have been 

considered as the most influential factors. The tensile (spall) strength follows linear 

decrease with the increase of temperature below melting point, and the inverse exponential 

function can better agree with our measured strength in the liquid regime compared to 

previously proposed theoretical descriptions.  

At higher laser fluence over 0.5 J/cm2, reduction in the spall strength can be 

observed, which should be mainly attributed to the structural deformation from the 

compressive process prior to the material breakdown under tension. With increasing shock 

compression above HEL (~30 GPa), stacking faults form and become densified and 

intersected approaching ~40 GPa. Twinning faults appear and coexist with stacking faults 

at ~50 GPa and becomes the dominating structural defects above ~60 GPa. Formation of 

stacking faults serves as the dominating mechanism for spall strength decrease by ~15%, 

while formation of twinning faults is responsible for material re-strengthening (~10%). 

Spall strength saturates with increasing presence of twinning above ~60 GPa, reaching 



115 

 

 

ultimate value at 95% of the strength in pristine material. This “valley-shape” pattern in 

spall strength with respect to compressive pressure and its interrelation with structural 

transformation has been corroborated by QI simulations. This study highlights the impacts 

of structural transformation by shock compression on spall strength and unveils the “self-

healing” role of twinning in spallation. 

An SRE-TTM-MD combined model has been further developed to investigate 

ultrafast laser interaction with dielectric materials and material decomposition process in a 

wide range of laser fluence. Dielectric material decomposition mechanisms are essentially 

similar to metals and semiconductors, where coexistence of non-thermal and thermal 

processes, and the dominance of thermal ablation at high fluence range are clearly 

demonstrated. However, since dielectric materials have much longer optical penetration 

depth (~100-200 nm) than metals (~10 nm) at 800 nm laser irradiation, non-linear 

absorption has to precede material heating, and the temperature gradient can be much lower, 

therefore the generated thermal-elastic stress is much weaker than in non-transparent 

materials at similar level of surface heating.  

Plasma dynamics is further studied combining computational model and in-situ 

imaging. Fluorescence and shadowgraph images are captured to measure plasma ejection 

direction and velocity, respectively. Good agreements have been obtained between model 

predictions and measurements. It is found that the most probable direction (angle) is not 

significantly affected by the laser fluence, indicating the plasma deposition process 

insensitive to laser fluence/energy. The plasma ejection velocity scales pretty well the root 
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of electron temperature, indicating the dominance of thermal ablation in dielectric material 

decomposition by ultrafast laser irradiation.  
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CHAPTER FIVE 

 

ULTRAFAST LASER ABLATION OF DIELECTRIC MATERIALS 

 

 

Ultrafast laser ablation of dielectric materials has been studied based on a plasma-

temperature combined model, as introduced in Chapter 3. Temperature evolution is 

captured to describe the evolution of ablation depth, where a temperature-based ablation 

criterion is employed and dynamic description of material removal is incorporated for the 

consideration of thermal energy losses through ablation. Characteristics of ablation have 

been investigated, covering laser-induced ablation threshold, optical properties, ablation 

depth, beam divergence effect, plasma defocusing effect in air and thermal accumulation 

effect. Details regarding numerical and experimental observations are described in the 

following sections.  

5.1 Temperature evolution inside bulk material 

The electron and lattice temperature evolution in the bulk material can be predicted 

by the proposed model. With a 190 fs, 1028 nm laser pulse at 6 J/cm2, the calculated 

temperature evolution in fused silica is shown in Figure 5.1. The electron temperature 

experiences fast increase within the pulse duration. As for the lattice, much slower increase 

of the temperature can be observed. When the lattice temperature reaches the vaporization 

temperature, the material ablation is considered to take place. The ablated materials will be 

removed from the simulation domain, and thus there is no further heat transfer between the 

ablated material and the remaining part. Before the lattice reaches thermal equilibrium with 

the electron, continuous temperature increase will happen in the lattice through electron-
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phonon coupling, and more materials will be ablated until the surface temperature of lattice 

is no longer higher than the ablation criterion. The evolution of ablation depth is tracked 

by the coloured surface in Figure 5.1 (b), and the final value will be treated as the final 

depth of the crater.  

 

Figure 5.1 Temporal evolution and spatial distribution of (a) electron and (b) lattice 

temperature in fused silica with a 6 J/cm2, 190 fs, 1028 nm single pulse. The solid line in 

(a) represents the Gaussian-shaped laser intensity profile.  

5.2 Laser-induced ablation threshold 

Laser-induced ablation threshold (LIAT) of fused silica has been determined 

through the temperature-based criterion. The dependence of LIAT on pulse duration has 

been numerically predicted and compared with experimental measurements, as shown in 

Figure 5.2. Good agreement between numerical and experimental results can be observed. 

Scaling law of LIAT can be studied and piecewise linear fitting is applied for three regions. 

In the region of below 40 fs and above 10 ps, the slope is close to 0.5 so that the law of 

(a) (b) 
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th pF   can be applied, as has been observed in [25,144]. As for the middle region, an 

index of 0.216±0.008 has been obtained in the scaling law of th pF  . The linear fitting 

applied on the whole range gives an overall index of 0.290±0.013, which is in excellent 

agreement with the observation in [129] as 0.33±0.01. Based on this, the predicted LIAT 

and the scaling laws for dielectric materials agrees well with experiments in the literature. 

 

Figure 5.2 Ablation threshold of fused silica with pulsed laser irradiation at 780 nm. 

The numerical prediction matches the trend of variation well with experiments in 

[25,144], however, homogeneous discrepancy in magnitude can still be observed. The great 

difference between numerical results and experiments in [25,144] should be attributed to 

the incubation effects [73,145], which is induced by thermal accumulation under multi-

pulse laser irradiation. LIAT can be also affected by band gap [31,129], laser wavelength 

[25], and operations, as has been studied in [146].  
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The aforementioned incubation effect has been experimentally investigated. To 

determine the laser-induced ablation threshold (LIAT), the linear regression method 

[146,147] has been widely applied based on measurement of ablation crater diameter. The 

linear relationship between the square of crater diameter (D2), and the logarithm of the 

pulse energy E or peak fluence F ( 2

02 /F E = ), is given as 

( ) ( )2 2 2

0 02 ln / 2 ln /th thD E E F F = =                               (5.1) 

where ω0 is the laser beam radius at focal spot, Eth and Fth are the ablation threshold pulse 

energy and fluence, respectively. The dependence of D2 on pulse energy is shown in Figure 

5.3 (a) for 1, 10, and 100 pulses. The focal spot radius (ω0) has been extracted by the slope 

as 24.4±1.4 μm. The LIAT can be obtained by extrapolating the linear regression to 2 0D = , 

and the results are collected in Figure 5.3 (b) for pulse number up to 1000. The decrease of 

LIAT can be clearly seen with the increase of pulse number (N), from 3.72 J/cm2 (N=1) to 

~1.5 J/cm2 (N=100). The LIAT remains as a constant level for pulse number over 100. The 

reduction of LIAT with multiple laser pulses irradiation is due to the incubation effects 

[148–151], and can be described by the following expression [150],  

( ) ( )1

, , ,1 ,

k N

th N th th thF F F F e
− −

 = + −                                   (5.2) 

where ,1thF  , ,th NF  , ,thF    represent the threshold fluence for 1, N, and infinite number of 

pulses, respectively, and k is the incubation coefficient to characterize the strength of 

damage accumulation. Instead of the incubation model 
1

, ,1

S

th N thF F N −=  [152] for metals, 

Eq. (5.2) considers the saturation of threshold for large pulse number, and can better 

describe the incubation in LIAT for dielectric materials.  
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Figure 5.3 (a) Measurement of D2 as a function of incident pulse energy and (b) threshold 

fluence as a function of pulse number. The dash-dot lines in (a) represents the linear 

relationship in Eq. (5.1), and solid line in (b) represents the fitting curve by Eq. (5.2). 

Using Eq. (5.2) to fit the measurement of LIAT with different pulse number, good 

agreement can be obtained between the model prediction and experimental results, as 

depicted in Figure 5.3 (b). The constant level of LIAT indicates saturation of threshold 

reduction, which should be related to the low density of CBE excitation and its fast 

relaxation in fused silica, so that no considerable accumulation behavior (electronic and 

thermal) can be induced for the damage. This ultimate LIAT can be further decreased with 

shortened pulse interval comparable to the life time of CBE in fused silica [27].  

5.3 Optical properties 

The evolution of free electron number density excitation in fused silica for a 6 J/cm2, 

120 fs, 800 nm single pulse is shown in Figure 5.4 (a). The total number density of excited 

free electrons from MPI and AI is compared with that from MPI alone, so that contributions 

(a) (b) 
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from MPI and AI can be estimated. As mechanisms of free electron excitation are compared 

and focused, the number density of electron relaxation is not shown in Figure 5.4 (a). The 

Gaussian-shaped profile of laser pulse intensity is also included in a normalized manner. 

MPI is a highly non-linear process and sensitive to the laser intensity, no obvious change 

of electron density can be seen until the central part of the laser pulse. During the first half 

pulse, MPI is the dominant mechanism of ionization, providing seeding electrons for the 

avalanche process, which plays a more important role during the second half pulse. 

Electron excitation tends to saturate for both processes due to the weak laser intensity 

during the pulse tail. Without consideration of electron relaxation in Figure 5.4 (a), the 

stable value in the dash line and the difference between two lines approaching the pulse 

end can be treated as the final contribution from MPI and AI, respectively. 

It can be expected that with the increase of incident laser fluence (intensity), the 

rate of free electrons generation will increase accordingly. Given that avalanche process 

will take over to be the dominant excitation mechanism until sufficient seeding electrons 

have been obtained, earlier initiation and more contribution from avalanche process can be 

expected with higher incident fluence. As shown in Figure 5.4 (b), the quotient of the 

electron excitation from MPI to the total density has been collected for various incident 

laser fluence. The contribution from MPI decreases from below 10-2 at 4 J/cm2, and tends 

to saturate at the level of ~10-8 approaching 24 J/cm2, which can be attributed to excitation 

saturation from valence-band density limitation, and less effective energy deposition due 

to plasma shielding effects. 
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Figure 5.4 (a) Evolution of free electron excitation density within laser pulse duration at 

incident fluence of 6 J/cm2 and (b) contribution of free electron excitation from MPI with 

various incident fluence.  

   

Figure 5.5 Variation of optical properties with (a) time (6 J/cm2) and (b) incident fluence 

with laser irradiation of 120 fs, 800 nm single pulse.  

(a) (b) 

(a) (b) 
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The variation of the electron number density will affect the material optical 

properties. Figure 5.5 shows the evolution of surface reflectivity, and absorption coefficient, 

and reflection of silicon dioxide (quartz) with 120 fs, 800 nm single pulse irradiation. As 

shown in Figure 5.5 (a), the peak values in reflectivity and absorption coefficient are 

obtained when the free electrons reach the peak number density. While the absorption 

coefficient varies monotonously with the number density of free electrons, the surface 

reflectivity will first decrease with the electron number density, reaching the bottom around 

the critical electron density ~1021 cm-3, and then increase quickly. After passing through 

the peak value, the reflectivity will decrease with the relaxation of free electrons, and then 

recover to the reflectivity in unexcited material until the completion of relaxation. Similar 

behavior in reflectivity variation has been observed during electronic excitation in 

dielectric materials [145], as well as semiconductors [24]. Figure 5.5 (b) displays the 

reflection of silicon dioxide with various incident fluence from both experimental 

measurements and numerical predictions. For fluence below the ablation threshold, no 

obvious variations of reflection can be seen, while for higher fluence, the reflection will 

increase quickly and tend to saturate in high fluence regime around 0.4 with 800 nm laser 

irradiation.  

5.4 Laser-induced ablation depth 

Laser-induced breakdown (LIB) and ablation (LIA) will be initiated when sufficient 

energy has been deposited onto the material through CBE excitation and absorption. As 

has been observed in Section 5.3, surface reflectivity will increase significantly at the 
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highly excited state. The increase of surface reflectivity, which reduces the effective laser 

energy deposition, plays an opposite role [24] to the energy absorption through inverse 

Bremsstrahlung. Though this plasma mirror effect exists, there is earlier strong absorption 

before the significant increase of reflectivity [153], leaving more space for fast energy 

deposition with higher fluence laser irradiation [154]. The heat losses taken away by the 

ablated material [155] has been considered in this model through the dynamic description 

of material removal.  

Based on the plasma-temperature combined description of thermal response in 

dielectric materials to ultrafast laser pulses, ablation depth has been collected for various 

incident fluence in multi-case studies with near-infrared laser pulses. Ablation depths of 

silicon dioxide and aluminum oxide are displayed in Figure 5.6. Good agreement with 

experimental measurements has been obtained and similar behavior can be observed for 

these two different materials. No ablation craters can be observed for fluence below the 

LIAT in single-pulse measurements, though material densification and surface depression 

can be monitored [156], which is mainly resulted from laser-induced thermal shock wave 

[157]. Fast transition from gentle ablation regime to strong ablation regime can be observed 

with the increase of fluence around the threshold. The sharpness of ablation depth slightly 

above the threshold also indicates the non-linear feature during the complicated ULIA 

process. When incident fluence is further increased, no more steep increase in crater depth 

can be observed, and the ablation process tends to saturate, indicating a stable energy 

deposition efficiency in various fluences. The good agreements between numerical 

prediction and single-pulse experiments indicate capability of the numerical model to 
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capture major mechanisms in the complicated process of ULIA and give good prediction 

of crater depths.  

   

Figure 5.6 Ablation depth of (a) quartz, 120 fs, 800 nm and (b) sapphire, 160 fs, 795 nm 

with single laser pulse.  

The experimental laser pulse durations shown in Figure 5.6 are within 200 fs, 

however, the numerical approach can capture ablation behavior for wider range of pulse 

duration. As shown in Figure 5.7 (a), the dependence of ablation depth on pulse duration 

is predicted at various incident fluence. For low incident fluence as 5 J/cm2, the predicted 

ablation depth first experiences an increase from 5 fs, reaching the maximum value at ~40 

fs, and then decreases until certain pulse duration, beyond which the ablation threshold will 

be higher than the incident fluence. This phenomenon has also been reported in [32], and 

a close value of pulse duration for peak ablation depth has been predicted as well. With 

higher fluence as 7.5 and 10 J/cm2, similar trend of variation in ablation depth can be 

observed, with slightly longer pulse duration where peak ablation depth can be obtained. 

(a) (b) 
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Wider range of allowed operational pulse duration is obtained for higher incident fluence, 

due to the competition with local ablation threshold as well.  

   

Figure 5.7 Dependence of (a) ablation depth and (b) ablation efficiency on pulse duration 

for various laser fluence.  

Ablation efficiency is of great importance in laser micromachining, which has been 

calculated based on data in Figure 5.7 (a), as shown in Figure 5.7 (b). Ablation efficiency 

in experiments has been defined as the quotient of ablation volume and incident fluence 

[158], and the expansion of crater diameter with the increase of fluence [159] is neglected 

in this one-dimensional model. In the range of fluence from 5 to 10 J/cm2, higher ablation 

efficiency can be obtained with lower incident fluence, resulted from the saturation of 

ablation depth in high fluence region. The decrease of ablation efficiency is observed to be 

initiated with a critical fluence around twice of the threshold [158,160], and for lower 

fluence than the critical value, ablation efficiency still experiences high-rate increase. A 

fluence range for efficient absorption has been defined in [160] where highly efficient 

(a) (b) 
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ablation can be obtained. In a similar approach, a pulse duration range can be defined for 

efficient ablation, and the criterion can be chosen as 80% of the maximum ablation 

efficiency. For low fluence as 5 J/cm2, efficient ablation can be obtained within ~300 fs 

pulses. Wider range of pulse duration for efficient ablation is estimated to be ~1 ps and ~10 

ps for higher incident fluence as 7.5 J/cm2 and 10 J/cm2, respectively. With even higher 

fluence, further wider range of pulse duration for efficient manufacturing can be expected, 

which will induce lower ablation efficiency for femtosecond laser pulses. In addition, 

manufacturing with high pulse energy will bring about more thermal damages, such as 

deteriorated entrance and side wall in microchannels, and cracks in brittle materials. For 

the overall consideration of ablation efficiency and microstructure quality, incident fluence 

in the range of 1-2 times of the threshold is proposed to be the healthy range in operation. 

The pulse duration range predicted with efficient ablation indicates the capability of the 

incident fluence, however, pulses in picosecond region are not widely employed in real 

cases due to the requirement of high pulse energy.  

5.5 Laser beam propagation inside the material 

With more tightly focused laser, the effects of beam divergence will increase in 

Gaussian-shaped beam propagation along the material. This effect has been generally 

neglected in the numerical description of ULIA. As shown in Figure 5.8 (a), ablation depth 

of silicon dioxide has been predicted for different numerical aperture (NA) at various 

incident fluence. The original data without considering this effect is included as reference.  
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Non-linear behavior can be observed that difference of the ablation depth at low 

fluence between different NA is less obvious than that at high fluence. Non-linearity can 

be also seen that the variation of ablation depth increases with NA. This is mainly related 

to the non-linear process of electron excitation, and the energy absorption will display 

certain non-linear behavior accordingly. In addition, the local intensity along with beam 

propagation will decrease in a non-linear manner. Therefore, for cases with NA lower than 

0.1 [161], the consideration of beam divergence can be neglected for the simplicity of the 

numerical model, while for more tightly focused laser experiments [49], this effect is 

supposed to be considered, because the overestimation of ablation depth as high as 10 

percent will be introduced based on current study. The effect of beam divergence on the 

geometry of the ablation crater [162] can be further studied with 2 or 3-dimensional model 

based on this work.  

 

Figure 5.8 Dependence of ablation depth on incident fluence with various NA for (a) 

transparent (silicon dioxide) and (b) opaque (copper) materials.  

(a) (b) 
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It is also believed that the beam divergence effect plays a more important role in 

transparent materials than opaque ones, which have relatively limited optical penetration 

depth. To validate this proposition, ULIA is simulated for a common metal as copper. 

Optical penetration, as well as electron ballistic transportation, are considered, and the 

transient ablation process is captured with the dynamic description as well. The ablation 

depth at different incident fluence has been collected for various NA, as shown in Figure 

5.8 (b), indicating much less evident differences in ablation depth between different NA. 

This phenomenon can be interpreted in two aspects. First, the laser intensity develops in a 

non-linear way with beam divergence below the beam waist, which is assumed be on the 

top surface of the bulk materials. With shorter beam penetration length, the decrease in 

energy deposition from beam divergence will be much lower. Also, there is sufficient 

original free electrons in metallic materials and the dominant mechanism of absorption is 

inverse Bremsstrahlung process, which is much less non-linear than MPI.  

5.6 Plasma defocusing effect 

It is also noticeable that the measurement of D2 deviates from the linear relationship 

(Eq. (5.1)) with the pulse energy exceeding ~200 μJ. Figure 5.9 (a) shows the spatial 

distribution of fluence for Gaussian-shape laser pulse at different energy, with the 

representation of LIAT and measured crater radii by the red dash-dot line and colored 

circles, respectively. The Gaussian distribution in Figure 5.9 (a) is calculated based on the 

measurement of focal spot radius ω0. It can be observed that good agreements can be 

obtained between the predicted crater radii (cross points of fluence profile and LIAT) and 
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the measurement for pulse energy up to 200 μJ. While considerable mismatch can be 

observed for higher pulse energy (300 and 400 μJ), indicating underestimation of crater 

lateral size following the focal spot size measured with linear relationship under relatively 

low energy. This extra expansion in ablation craters for high laser energy can be mainly 

attributed to the plasma defocusing effects induced by air ionization. With generation of 

air plasma, the focal spot will shift towards the incoming laser beam direction, as can be 

observed in the energy-dependence focal variation [163,164] and semi-analytical model 

prediction [163,165]. In order to predict the modified energy spatial distribution under 

plasma defocusing, modified spot radius (ω0,defocus) on the sample surface can be employed 

in replace of the normal value (ω0), and Gaussian spatial distribution has been assumed to 

be maintained. The spatial distribution of fluence can be described by the Gaussian function, 

given as, 

( ) ( )
22

0,defocus 0,defocus2 / exp 2 /F E r  = −
 

                             (5.3) 

Based on Eq. (5.3), the modified Gaussian distribution can be obtained to match 

with the measured crater radii, as shown in Figure 5.9 (b). Through this modification, the 

laser energy is redistributed in a wider region, and the peak fluence at 300 and 400 μJ is 

predicted to drop below that at 200 μJ. The peak fluences from Gaussian distribution with 

normal radius ω0 (Figure 5.9 (a)), and the defocused radius ω0,defocus (Figure 5.9 (b)) are 

denoted as Gaussian and Real, respectively. Below 200 μJ, as shown in Figure 5.10 (a), the 

peak fluence is identical for both cases, however, the predicted Gaussian peak fluence can 

be much greater than the Real one, where the former value is more than 2 and 4 times of 

the latter value at 300 and 400 μJ, respectively. Instead of the linearly increasing Gaussian 
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peak fluence, the Real peak fluence turns to drop beyond 200 μJ down to around 10 J/cm2 

at 400 μJ. Taken 200 μJ as the threshold energy for air ionization, the corresponding peak 

intensity is ~1.04×1014 W/cm2, which is close to the predicted air breakdown threshold 

with 100 fs laser pulse in [166], however, much lower than ~4.5×1014 W/cm2 reported in 

[164] with 12 fs laser pulse. This decreasing breakdown intensity with extended pulse 

duration is consistent with the observation in [167] for ionization of dielectric materials. It 

is worth to mention that laser pulse energy consumption due to air ionization plays a 

negligible role in the reduction of fluence on the sample surface, and no more than 5% 

[102,164,166] of the pulse energy can be consumed for air ionization within the laser 

intensity range considered in this study. Based on this, the energy loss during beam 

penetration in air has been neglected.  

 

Figure 5.9 Gaussian-shape laser fluence distribution based on (a) normal beam focal spot 

radius ω0 and (b) modified radius considering plasma defocusing ω0,defocus. Red dash-dot 

line indicates the single-pulse LIAT, and the circles in (a) and (b) represent the ablation 

crater radii at different pulse energy.  

(a) (b) 
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Ablation rate has been predicted based on both Gaussian and Real peak fluence, 

and compared as shown in Figure 5.10 (b). Instead of the continuously increasing ablation 

rate from Gaussian peak fluence (blue circle), decrease of ablation rate with pulse energy 

over 200 μJ can be successfully predicted based on the Real peak fluence, in good 

agreement with the experimental data. It cannot be fully guaranteed that the laser beam 

propagation can still maintain the Gaussian shape (both temporal and spatial) with air 

plasma defocusing, but in the current simulation and experiments, the simplified Gaussian-

shape assumption can provide good prediction to quantify the ablation rate based on the 

measured crater diameter.  

 

Figure 5.10 Comparison of (a) peak fluence and (b) ablation depth with and without plasma 

defocusing effects as a function of laser pulse energy.  

5.7 Thermal accumulation effect 

Ultrafast laser is proven to have remarkable potential in direct fabrication of 

dielectric materials [34,49,168,169], which are difficult to machine by traditional 

(a) (b) 
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techniques due to high hardness, brittleness and low thermal conductivity. However, the 

material removal efficiency remains unsatisfactory, typically within ~200 nm per laser 

pulse [145,170]. To alleviate this, high-repetition-rate multi-pulse laser irradiation has been 

suggested as a promising solution to diminish the ablation threshold [149,171] and enhance 

the ablation rate [155]. With high-repetition-rate laser pulses, material can be more easily 

ablated by thermal accumulation effect, which is predominantly resulted from material 

heating that cannot be completely relaxed and consequently accumulated under multi-pulse 

irradiation. Prominent thermal accumulation has been confirmed at repetition rates over 

megahertz (MHz) [148,155,171], but the requirement of high repetition rate can raise 

challenges to laser techniques (high-repetition-rate and high-power ultrafast laser) and 

place limitations on promoting this method. Therefore, it will be highly desirable if thermal 

accumulation can be stimulated at low repetition rates, e.g. kilohertz (kHz), to effectively 

enhance ablation rates. However, it was generally believed that repetition rates lower than 

MHz are insufficient to trigger thermal accumulation. This conclusion was found true in 

certain metals and semiconductors [155], but there is a lack of fundamental understanding 

of the mechanism. It is still unclear about other materials, such as dielectrics.  

In addition to thermal accumulation effect, there is also non-thermal accumulation 

effect (by crater surface roughening, structural transformation, phase transition, etc.), 

which can enhance material removal rate under multi-pulse ablation. It was found to reduce 

ablation threshold even at low repetition rates [150]. However, there has been no previous 

study clearly discriminating the contribution by thermal and non-thermal accumulation, 

and usually their combined effect is referred as “incubation effect”. A clear knowledge in 
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this regard will greatly assist one to make the most of thermal accumulation in a variety of 

applications.  

Based on these concerns, to promote thermal-accumulation-assisted ablation 

enhancement (termed as ablation cooling in [155]) in ultrafast laser processing of fused 

silica, we aim to distinguish the thermal and non-thermal accumulation regimes for fused 

silica, unveil the threshold repetition rate to trigger thermal accumulation, and enhance the 

fundamental understanding of the mechanism. For this purpose, ultrafast laser ablation in 

fused silica has been experimentally studied in a wide range of repetition rates (10 Hz-10 

kHz) at varying pulse energy (40 μJ-200 μJ) and pulse number (1-100). We have 

established a comprehensive model incorporating the plasma model and the two-

temperature model (TTM) to simulate ultrafast laser interaction with fused silica by single 

and multiple pulses at varying repetition rates. The fundamental mechanisms of thermal-

accumulation-assisted ablation enhancement can be well interpreted through numerical 

simulation. 

Single-pulse ablation threshold fluence is determined by Liu’s method [147] as 3.72 

J/cm2, which agrees well with measurements in previous works [74,170]. Ablation rates 

(ablation depth per pulse) are evaluated through dividing the depth of ablated crater by the 

pulse number, as summarized in Figure 5.11. With varying pulse number and repetition 

rate, there are two major interesting observations. Firstly, ablation rate increases with 

increasing pulse number, as shown in Figure 5.11 (a). With the repetition rate of 10 Hz, the 

ablation rate is increased by 50-70% by 100 pulses compared to single-pulse ablation at 

the same pulse energy. This enhancement is mainly attributed to non-thermal accumulation 
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effect, leading to increased laser energy deposition and reduced ablation threshold. 

Compared with single-pulse ablation, laser absorption in multi-pulse ablation can be 

increased [172] due to the rough crater surface induced by preceding laser pulses. Besides, 

there is either structural transformation or phase transition in the unablated material, which 

can reduce the energy barriers for ablation.  

 

Figure 5.11 Experimental measurement of ablation rate as (a) a function of pulse energy at 

10 Hz, and (b) a function of laser pulse repetition rate. Simulation results of single-pulse 

ablation rate are depicted in (a). Ablation enhancement by non-thermal and thermal 

accumulation are demonstrated in (b). Pulse numbers are denoted in the legends. 
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Secondly, by increasing the repetition rate to over 1 kHz, the ablation rate is further 

enhanced, in addition to that from the non-thermal accumulation effect. Figure 5.11 (b) 

summarizes the ablation rate as a function of repetition rate, by single and 100 pulses at 

200 μJ. At repetition rates below 1 kHz, the ablation rate by 100 pulses is ~50% higher 

than that by single pulse ablation due to the non-thermal accumulation. Based on its nature, 

non-thermal accumulation effect should not be sensitive to repetition rates. However, when 

the repetition rate further increases, the ablation rate is enhanced by another ~10% (30 nm) 

at 1 kHz, and ~35% (100 nm) at 10 kHz, respectively. The cause of this additional 

enhancement is postulated as the thermal accumulation effect, which is expected to be more 

prominent at increasing repetition rates. As shown in Figure 5.11 (b), at 10 kHz, the thermal 

accumulation and non-thermal accumulation effect co-contribute to an overall ablation 

enhancement of virtually 100% compared with the single-pulse ablation rate. This overall 

effect has been generally termed as incubation effect, but without distinguishing the 

contribution from thermal and non-thermal accumulation effects previously.  

It has been widely accepted that thermal accumulation can only happen at repetition 

rates over MHz [148,155,171], which is in contrast to the observation and hypothesis in 

this study. In order to confirm and understand the occurrence of thermal accumulation at 

kHz, a plasma model and the TTM are combined to study thermal responses to ultrafast 

laser in fused silica [173].  

Based on this model, surface temperature evolutions in single and multiple pulses 

are predicted to study thermal relaxation in fused silica by ultrafast laser ablation. Figure 

5.12 (a) demonstrates the evolution of surface temperature after single-pulse ablation. The 
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surface temperature at 1 ps is close to 3223 K, which is the maximum lattice temperature 

at the surface during ablation. By thermal relaxation until 10 ns, the surface temperature 

drops below the melting point (1986 K [174]). Until 1 ms (pulse time interval for 1 kHz), 

the temperature is ~20 K above the ambient temperature (300 K). This 20 K residual 

temperature is not much, but can be accumulated to have significant impact by applying 

multiple pulses. To clearly show this effect, Figure 5.12 (b) depicts the calculated surface 

temperature evolution by 20-pulse ablation at varying repetition rates. The surface 

temperature data are captured at the moments before the arrival of each successive laser 

pulse, as conceptually demonstrated by the heating and cooling cycle curve. At 10 and 100 

Hz, the surface temperature is cooled sufficiently close to the room temperature by the 

arrival of a successive pulse, and there is negligible thermal accumulation. However, at 

repetition rates over 1 kHz, the thermal accumulation starts to occur. The surface 

temperature is “accumulated” by ~120 K at 1 kHz and over 450 K at 10 kHz. This 

temperature escalation reduces the energy barrier of ablation and consequently increases 

the ablation rates. Supported by the simulation analysis, we can confirm that thermal 

accumulation effect does happen at repetition rates over 1 kHz in fused silica, and is 

responsible for the additional ablation enhancement.  

Another interesting finding by the numerical simulation is that the surface 

temperature relaxation is dominated by thermal conduction, while convection heat loss as 

well as thermal radiation have negligible impacts (even with very high convective heat 

transfer coefficient and emissivity). This is because the laser heated depth (~200 nm) is 

much smaller than the sample thickness (a couple of mm or thicker), and the surface is 
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mainly cooled down by thermal conduction within the time scale considered in this study 

(1 ms or less). Therefore, the threshold repetition rate to trigger thermal accumulation is 

independent on the ambient condition, except for very thin films (thickness of µm or less). 

 

Figure 5.12 Calculated temperature at the surface of unablated material as (a) a function of 

time for single-pulse ablation and (b) a function of pulse number at different repetition rates 

for multi-pulse ablation. Three regimes are represented in (a) with respect to laser pulse 

repetition rate (thermal relaxation time). In (b), temperatures are captured at the moments 

before the arrival of the successive laser pulse, and surface heating and cooling cycles (dash 

curve) are conceptually depicted (not drawn to the temperature-axis scale), where the peak 

temperature of heating is the boiling temperature (3223 K). 
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Based on the current experimental and simulation results, thermal accumulation is 

confirmed to occur at repetition rates over 1 kHz in fused silica. Stronger thermal 

accumulation is expected at repetition rate over 10 kHz to further increase the ablation rate. 

However, when the repetition rate is over 10 MHz, plasma shielding effect [175,176] 

becomes considerable to diminish energy deposition into the bulk material. Based on this, 

multi-pulse ultrafast laser ablation of fused silica can be categorized into three regimes, 

namely, non-thermal accumulation (below 1 kHz), thermal accumulation (1 kHz-10 MHz) 

and plasma shielding (above 10 MHz). The transition from thermal accumulation to plasma 

shielding is not rigorously triggered at 10 MHz, but estimated based on the plasma lifetime 

of ~100 ns. Suppression of laser energy deposition and ablation by plasma shielding relies 

on strong absorption in the ejected dense plasma, so that thermal accumulation and plasma 

shielding are expected to compete in the range of 10-100 MHz.  

The TTM is a computationally efficient model with decent accuracy, however, 

requires the accurate description of multiple thermodynamics and optical properties. In 

order to have a rapid prediction of the threshold repetition rates of thermal accumulation 

in different types of materials, a theoretical model [177] is further adopted to describe 

thermal relaxation process,  
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,                           (5.4) 

where ΔT0 is the maximum temperature change, lz is the initial heating depth, α is the 

thermal diffusivity, and z is position in depth. Copper and silicon are selected as the 
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representative of metals and semiconductors for comparison and their physical parameters 

are listed in Table 5.1.  

Table 5.1 Physical parameters for materials [24,174,178]. 

Parameters Fused silica Copper Silicon 

α [mm2/s] 0.85 111 88 

Tb [K] 3223 2833 3538 

lz [nm] 326.5 150 200 

 

Figure 5.13 Surface temperature relaxation by Eq. (5.4) for fused silica, silicon and copper 

and by the TTM for fused silica. The colored arrows represent the threshold repetition rates 

from non-thermal accumulation to thermal accumulation for different materials.  

Surface temperature evolution in fused silica calculated by Eq. (5.4) (red dash line) 

is depicted in Figure 5.13 in comparison with that from the TTM (black circle line). 

Apparent discrepancy can be observed within 1 μs, which is resulted from different initial 

temperature spatial distributions [177] and strong electron heat diffusion by laser ionization 

not considered in Eq. (5.4). Despite this discrepancy, satisfactory agreement with the TTM 
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can be attained by Eq. (5.4) with relaxation longer than 10 μs, which is close to the time 

scale corresponding to the threshold repetition rates of thermal accumulation. Due to its 

simplicity, we use this single analytical equation to perform a rapid prediction of the 

threshold repetition rates of thermal accumulation in copper and silicon. As shown in 

Figure 5.13, copper and silicon demonstrate thermal accumulation at much higher 

repetition rates. To compare the threshold repetition rates in three different materials (fused 

silica, copper and silicon), taking the residual surface temperature (~50 K) at 10-4 s (10 

kHz) in fused silica as reference, thermal accumulation is anticipated to be considerable at 

repetition rate above 1 MHz and 10 MHz for silicon and copper, which are 100 and 1000 

times higher than that in fused silica (10 kHz), respectively. These repetition rates are well 

corroborated by experiments in [155], where pronounced ablation enhancement has been 

achieved in silicon and copper at 27 MHz and 108 MHz, respectively. As mentioned, 

thermal conduction dominates the thermal relaxation, therefore, differences in thermal 

diffusivity are responsible for these different threshold repetition rates. As shown in Table 

1, the thermal diffusivity of fused silica (0.85 mm2/s) is 100 and 130 times smaller than 

that of silicon (88 mm2/s) and copper (111 mm2/s), respectively, which leads to much 

stronger thermal accumulation in fused silica triggered at kHz. 

5.8 Summary 

Ultrafast laser-induced ablation of dielectric materials has been investigated based 

on a one-dimensional plasma-temperature combined model. CBE excitation and relaxation 

have been involved to describe the evolution of electron number density. Temporal and 
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spatial variations of temperature are monitored to capture the evolution of ablation depth, 

where the vaporization temperature is treated as the ablation criterion and a dynamic 

description of material removal is employed for the consideration of thermal energy losses 

through ablation. Numerical prediction of LIAT and ablation depth based on the proposed 

ablation criterion agree well with experimental observations. With the increase of pulse 

energy, ablation depth experiences sharp increase above ablation threshold, and tends to 

increase slowly. Further increase of energy brings about, however, decrease in ablation 

depth, which can be mainly attributed to plasma defocusing effect with non-equilibrium air 

ionization. With increasing pulse number from 1 to 100, the ablation rate can be increased 

by 100-150 nm with repetition rate below 1 kHz. While with higher repetition rate than 1 

kHz to 10 kHz, more significant enhancement of ablation rate can be observed with multi-

pulse irradiation, as high as 250 nm (almost double of the ablation rate at single pulse). 

This enhanced thermal accumulation effect by increasing repetition rate above 1 kHz can 

be well demonstrated by the simulation. For ULIA, especially for femtosecond laser pulses, 

low fluence manufacturing is proposed for high ablation efficiency and good 

microstructure quality. Consideration of beam divergence in calculation is observed to be 

more important for transparent than for opaque materials. The ablation enhancement with 

multiple pulse and increasing repetition rate provides valuable information to improve the 

processing and micromachining of dielectric materials with ultrafast laser pulses.  
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CHAPTER SIX 

 

ULTRAFAST LASER MICROMACHINING OF DIELECTRIC MATERIALS 

 

 

Ultrafast lasers provide a promising solution for microchannel fabrication in 

transparent materials. Nevertheless, laser-based direct drilling has been believed as 

disqualified to fabricate high-aspect-ratio channels. More importantly, the fundamental 

mechanism of channel self-termination remains elusive. This chapter presents a 

comprehensive study of ultrafast laser direct drilling in fused silica with a wide range of 

drilling speed (20-500 μm/s) and pulse energy (60-480 μJ) to examine the feasibility of 

high-aspect-ratio and high-quality channel drilling inside fused silica. Moreover, the 

dominating mechanism of channel self-termination is discussed.  

6.1 High aspect-ratio and high-quality drilling 

The channels are drilled in the method as described in Section 2.2 and quantitatively 

characterized to evaluate length, diameter, aspect ratio and structure quality as a function 

of drilling speed and pulse energy, as summarized in Figure 6.1. A wide range of pulse 

energy (60-120-180-270-360-480 μJ) and drilling speeds (20-50-100-150-200-250-300-

400-500 μm/s) are applied. The maximum channel length over 2000 μm (with ~60 μm 

diameter) is achieved in this study, which is longer than most of the channels obtained in 

previous studies with even more complicated methods [48,179,180], indicating the 

feasibility of ultrafast laser direct drilling in air to achieve satisfactory channel length 

without complicated setup. As shown in Figure 6.1 (a), the channel length generally 

increases with the pulse energy at the same drilling speed, because of the increasing kinetic 
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energy of the ejected material to escape from longer channels at higher pulse energy [49]. 

However, at drilling speeds lower than 300 μm/s, the channel length starts to decrease after 

the pulse energy reaches 270 μJ. It can be resulted from microcracks by material overeating 

and strong shock waves [49]. This phenomenon does not happen at high drilling speeds 

(over 300 μm/s) because the energy deposition is not sufficient to trigger microcracks with 

such high drilling speeds. 

At the same pulse energy, the channel length first increases with the drilling speed 

to the maximum value and then decreases, introducing an optimal drilling speed for each 

pulse energy. The optimal drilling speed tends to increase with the pulse energy, raising 

from 100 μm/s at 60 μJ to 150, 200 and 300 μm/s at 180, 270 and 480 μJ, respectively. 

This observation for the first time unveils the close correlation between drilling speed and 

pulse energy in channel drilling. In previous studies [47,49,57,179,181,182], the optimal 

drilling speed was believed to be a constant and independent on pulse energy. It is easy to 

understand that the channel length is shorter at high drilling speed due to insufficient laser 

energy deposition for material removal. However, it is surprising that the channel length 

will be reduced at very low drilling speed. The underlying mechanism will be analyzed and 

discussed in Section 6.3.  

The variation of channel diameter with pulse energy and drilling speed is shown in 

Figure 6.1 (b). The channel diameter increases with the pulse energy due to the radial 

expansion of the damage area. As the drilling speed increases, the channel diameter will 

decrease since the energy deposition per unit volume is reduced.  
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Figure 6.1 Ultrafast laser-fabricated microchannel (a) length, (b) diameter, (c) aspect ratio 

and (d) structural and geometric quality as function of drilling speed at different pulse 

energy.  

The aspect ratio is calculated and displayed in Figure 6.1 (c). The maximum aspect 

ratio (~35:1) is obtained at 270 μJ, which is comparable to the highest aspect ratio (40:1) 

obtained by a more complicated method [48] and much higher than those by previous 

studies using laser direct drilling [47,49,179]. The variation of the aspect ratio with drilling 

speeds follows the similar trend with the channel length, since the variation of diameter is 
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less sensitive to drilling speeds. However, the ranking of the aspect ratio can be different 

from that of channel length. For instance, at the drilling speed of 200 μm/s, the aspect ratio 

at 180 μJ reaches as high as twice of that at 480 μJ, while the length at 180 μJ is only three 

fourth of that at 480 μJ. At 300 μm/s, the aspect ratio is comparable between 120 μJ and 

480 μJ, whereas the length at 480 μJ is as high as four times of that at 120 μJ. As a result 

of this changed ranking, the optimal drilling speed in pursuit of the maximum aspect ratio 

can be higher than that for the maximum channel length, for instance, rising from 150 μm/s 

(the maximum channel length) to 200 μm/s (the maximum aspect ratio) at 180 μJ. Taking 

10:1 as the minimum aspect ratio, most of the qualified channels are drilled at drilling 

speeds between 100 and 300 μm/s, which can guarantee a rapid drilling process.  

 

Figure 6.2 Morphology and centerline profile of the cross section in drilled channels at 200 

μm/s drilling speed and pulse energy of (a) 180 μJ, (b) 270 μJ and (c) 480 μJ. The centerline 

profiles are captured along the white dash-dot lines.  
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Besides the channel length and the aspect ratio, the channel sidewall quality is 

important for applications. To examine the quality, side-view optical microscope images 

are captured and depicted in Figure 6.1 (d) for different pulse energy at selected drilling 

speeds (200 and 400 μm/s). The drilled channels appear as the dark regions. Despite 

occasional narrowing at the end of the channel (at high drilling speed of 400 μm/s), 

excellent uniformity is observed in the channels, which are free of tapering and bending. 

 

Figure 6.3 3D representation of cross-sectional morphology in the drilled channels at 200 

μm/s drilling speed and pulse energy of (a) 180 μJ, (b) 270 μJ and (c) 480 μJ.  

To evaluate the sidewall roughness, the channels are cut to examine the cross-

sectional features. Based on the cross-sectional images in Figure 6.2, the sidewall 

roughness is captured from the centerline profile along the dash-dot line. 3D morphology 

in the perspective view is also captured to better demonstrate the channel sidewall quality, 

as shown in Figure 6.3. Smooth sidewalls are achieved at 180 μJ and 270 μJ and rough 
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sidewall is observed at 480 μJ. This rough sidewall is mainly caused by microcracks from 

strong thermoelastic shock waves [49]. The surface roughness (Ra) is measured as 0.65, 

0.66 and 5.17 μm for 180, 270 and 480 μJ, respectively, suggesting satisfactory sidewall 

quality at pulse energy no higher than 270 μJ.  

In summary, 270 μJ serves as the overall optimal pulse energy for channel drilling, 

providing maximum channel length and aspect ratio, outstanding sidewall quality and 

excellent uniformity (free of tapering and bending).  

6.2 Analytical model 

Laser beam propagation and interaction with fused silica is conceptually 

demonstrated in Figure 6.4. In Figure 6.4 (a), the laser focusing geometry and the damage 

profile are represented by the solid and dash-dot line, respectively. The region enclosed in 

the damage profile has local fluence higher than the material ablation threshold Fth. Based 

on this damage profile, the drilling process is schematically illustrated in Figure 6.4 (b), 

where the material will be removed along the upward scanning path of damage profile, 

forming a straight channel from the rear surface.  

Based on Gaussian-beam spatial distribution and focusing geometry, the damage 

region in Figure 6.4 (a) can be analytically described as follows. Given the laser 

wavelength of λ, laser beam radius at focal spot (waist radius) of ω0, pulse energy E, laser 

beam quality M2, and ablation threshold fluence of Fth, the Rayleigh length zR, peak laser 

fluence F0 at the focal spot and the beam radius ω at distance z away from the focal plane 

are defined as follows,  
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The local fluence F in the focusing geometry can be expressed as,  
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where r represents the distance in the transverse direction to the beam center.  

For simplicity, the following auxiliary variable is defined as,  
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and Eq. (6.4) is rewritten in a simplified form as,  
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The damage profile is determined by the material damage threshold fluence, 

2 2
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Based on Eq. (6.7), on one hand, the channel diameter, as well as the maximum Dm 

at given laser fluence can be predicted,  
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                    (6.8).  

This relationship demonstrates a linear dependence of the diameter square on the 

laser fluence applicable in a much wider range of laser fluence (
0 thF eF ) than the 

semilogarithmic relationship limited within 
0th thF F eF  .  

On the other hand, a damage length L is defined as the distance between the focal 

spot to the damage profile in longitudinal direction as shown in Figure 6.4 (a). Let D=0, 

the longitudinal boundary is achieved at 0/thz F F = , which leads to,  

0 1R
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L z z
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= = −                                                  (6.9) 

 

Figure 6.4 Schematic illustration of (a) damage profile in a focused Gaussian laser beam 

and (b) laser-based rear-side drilling in fused silica.  
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This analytical model essentially features the laser beam propagation and 

interaction with dielectrics during drilling process, providing the theoretical basis for 

estimation of material removal dimensions (diameter and damage length L) in laser-based 

dynamics fabrication.  

The damage profile in this analytical model is verified as follows. As shown in 

Figure 6.5 (a), a channel exit is formed on the front surface when the laser beam drills 

through the sample. Since the laser fluences studied are higher than e times of the threshold, 

Eq. (6.8b) is utilized to capture the relationship between the exit diameter and laser pulse 

energy and compare with experimental measurements.  

 

Figure 6.5 Experimental measurements and theoretical estimation of the (a) channel exit 

diameter and (b) surface damage shielding length as function of pulse energy. 

The linear relationship in Eq. (6.8b) can be corroborated by experimental results in 

Figure 6.5 (a), where the physical parameters in Eq. (6.8b) are adopted as ω0=3.95 μm and 

Fth=4.04 J/cm2 measured in Liu’s method [147]. However, the theoretical prediction (blue 
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triangle) is significantly underestimated compared to the experiments (black squares). This 

is mainly because the adopted threshold fluence is determined based on single-pulse 

measurement, whereas threshold decrease due to incubation effect [148,150,152] plays an 

important role during repetitive laser pulse irradiation in the drilling process. To adapt the 

physical parameters, linear fitting is applied to the measured diameters, and the corrected 

damage threshold Fth (N) is determined as 1.53 J/cm2, which is in excellent agreement with 

multi-pulse measurements [183]. Based on this, the linear dependence between the square 

of channel diameter and laser pulse energy (fluence) has been fully validated and 

significant incubation effect inside the material during drilling process has been elucidated.  

Another feature can be evaluated based on the analytical model as well. As 

mentioned, when laser beam is moved approaching the front surface, a channel exit is 

formed on the front surface. This surface damage can start before the arrival of focal spot 

and shield successive laser pulses. Due to this surface damage shielding effect, laser-

induced modification (drilled channel or filament) will terminate at certain position beneath 

the surface exit. The distance (ld) between this termination position and the front surface is 

expected to relate closely with the damage length L defined in Eq. (6.9). To verify this, ld 

is measured at different pulse energy and compared with theoretical estimation (blue 

triangle) based on Eq. (6.9) (ω0=3.95 μm and Fth (1)=4.04 J/cm2), as shown in Figure 6.5 

(b). In contrast to the diameter, the predicted damage lengths are higher than measurements 

based on the single-pulse damage threshold. This overestimation can be attributed to two 

major factors. On one hand, incubation effect in surface shielding is not as significant as in 

the diameter expansion. Surface shielding takes effect as long as there is sufficient surface 
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damage, and successive laser pulses cannot further modify internal materials. Therefore, 

incubation effect is only effective before surface shielding is triggered. On the other hand, 

surface shielding cannot be triggered as soon as the fluence on the front surface just reaches 

the damage threshold, but requires sufficient damage area on the surface. Theoretical fitting 

of the measurements suggests a surface shielding threshold (Fshield) as 6.40 J/cm2, which is 

60% higher than Fth (1). The corresponding diameter to Fshield in the damage profile will be 

considered as the necessary surface damage area for surface shielding. Excellent 

agreements between ld measurements and Eq. (6.9) further validate the analytical model in 

accurate description of laser-based drilling process.  

 

Figure 6.6 Comparison between theoretical prediction and experimental measurements of 

ablation spot diameter square in fused silica as function of off-focal distance at various 

laser intensity for (a) NA=0.01 and (b) NA=0.08. Zero position of z indicates the focal spot 

position, positive and negative values in z axis represent the distance between the sample 

surface and the focal spot position beneath and above the sample surface, respectively.  
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To further examine the damage region profile, the ablation crater diameters at 

different focal positions are measured. Diameter squares are displayed as a function of 

longitudinal position in Figure 6.6 and Figure 6.7 for fused silica and stainless steel, 

respectively. Based on Eq. (6.7), in focused Gaussian-shape laser beam, the damage region 

transition from single-lobe to double-lobe shape at increasing laser fluence across eFth is 

expected. Theoretical damage profiles at different fluences are predicted based on single-

pulse ablation thresholds (3.72 J/cm2 for fused silica [184] and 0.17 J/cm2 for stainless steel 

[148,185]), since incubation effect is eliminated by single-pulse shot on spot. Two shapes 

of damage profiles are validated by experimental measurements, as shown in Figure 6.6.  

Despite the decent agreements at relatively low fluences, deformation of the 

damage region can be observed at high laser fluences, with focal shift (zshift) towards the 

laser beam incoming direction (positive z). This is mainly attributed to strong air ionization, 

where air plasma defocuses the incoming laser beam before it arrives at the designated 

focal plane. This plasma defocusing effect cannot be triggered at laser fluence lower than 

air ionization threshold and becomes increasingly significant with higher laser fluence over 

air ionization threshold. As shown in Figure 6.6, the focal shift in NA=0.01 at intensity of 

1.9×1014 W/cm2 can reach as long as ~1000 μm. On the contrary, in stronger geometrical 

focusing (NA=0.08), the focal shift at similar laser intensity is only ~10 μm. On one hand, 

this much shorter focal shift at high NA is resulted from much shorter Rayleigh length in 

NA=0.08 (~40 μm) than that (~1800 μm) in NA=0.01. On the other hand, Kerr self-

focusing (KSF) plays a more important role in low NA condition than high NA condition 

[186], stimulating air plasma formation at farther distance away from the designated focal 
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plane, so that the focal shift is much greater. The focal shifts are only determined by the 

ambient ionization and insensitive to the sample material. This is confirmed by the identical 

focal shifts of stainless steel to those of fused silica at similar laser conditions.  

 

Figure 6.7 Comparison between theoretical prediction and experimental measurements of 

ablation spot diameter square in stainless steel as function of off-focal distance at various 

laser intensity for (a) NA=0.01 and (b) NA=0.08. Zero position of z indicates the focal spot 

position, positive and negative values in z axis represent the distance between the sample 

surface and the focal spot position beneath and above the sample surface, respectively.  

With plasma defocusing, before arrival at the shifted focal plane, the measured 

damage profiles can accurately resemble the theoretical profile and the maximum diameter. 

In the region below the shifted focal plane, another maximum diameter can be observed, 

however, this diameter is asymmetric to the first maximum diameter and different from the 

predicted one. This second diameter is typically smaller than the predicted value due to 

laser energy loss in plasma ionization and absorption [102]. The diameter discrepancy 

increases with longer damage profile in z direction (much significant discrepancy in Figure 
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6.7 (a)). Therefore, shorter damage profile from high NA focusing geometry and high 

material damage threshold Fth could help to diminish the diameter discrepancy. Even with 

deformed damage profile and different diameters on the two lobes, since the percussion 

drilling diameter is always determined by the maximum diameter, the theoretical prediction 

will be reliable.  

The percussion drilling diameters being not affected by ambient ionization requires 

the laser fluence (eFth) at the first maximum diameter to be smaller than the ambient 

ionization threshold (Fionization). If th ionizationeF F , the first maximum diameter will be 

affected as well, and the drilling diameter can be different from the prediction. Based on 

this, it can be suggested that whether the diameter is affected by ambient ionization depends 

on two quantities, namely, the material damage threshold Fth and the ambient ionization 

threshold Fionization. For low Fth material and high Fionization ambient condition, ionization is 

difficult to occur before the first maximum diameter is reached, therefore, the diameter 

prediction will be accurate. For high Fth material and low Fionization ambient condition, 

ionization is easy to occur before the first maximum diameter is reached, and the diameter 

can be smaller than the prediction. Since Fionization of air is much higher than Fth of most 

materials, air ionization will not affect diameter prediction. For laser-based fabrication in 

liquid [187] (such as water), since the ambient ionization threshold is much lower, the 

impacts on the drilling diameter will be more significant, especially for high Fth material, 

such as fused silica.  
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6.3 Laser-based channel self-termination mechanisms  

To better understand the channel aspect ratio variation with pulse energy and 

drilling speed, it is of particular significance to clarify the fundamental mechanisms of 

channel self-termination. As discussed in the introduction, most researchers believe debris 

accumulation is mainly responsible for channel self-termination, however, this hypothesis 

is questionable. In the following section, we propose alternative mechanisms and provide 

substantial verification on the rationality.  

6.3.1 Early termination at nonoptimal drilling speeds 

The ultrafast laser drilling and termination process is schematically demonstrated 

in Figure 6.8. A circular damage zone in the laser propagation direction is assumed in the 

focused Gaussian beam. At optimal drilling speeds, laser beam movement and material 

removal are maintained at the same paces and the damage zone will be located at the 

glass/air interface. Nonoptimal drilling speeds will introduce mismatch of laser beam 

movement and material removal and lead to early termination (reduced length) of channel 

drilling.  

High drilling speeds will cause the material removal to lag behind the laser beam 

movement. The typical material removal rate by ultrafast laser pulses in fused silica is 100-

300 nm per pulse and the corresponding drilling speed at 1 kHz is 100-300 µm/s. In Figure 

6.8 (a), at higher drilling speeds than this range, the material removal cannot catch up with 

the laser beam movement and the lag will increase gradually. When the damage zone is 

above the channel head, there will be solid material in the lag to impede material removal 
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and the drilling process will be terminated. The lag between the laser beam movement and 

the channel head increases more rapidly at higher drilling speeds, and this results in earlier 

termination (shorter channels).  

On the contrary, when the drilling speed is low, the material removal can always 

catch up with the laser beam movement. If the material along the drill path is transparent, 

continuous material removal is expected and long channels should be drilled. However, 

experiments suggest reduced channel lengths at low speeds. In reality, low drilling speeds 

introduce excessive laser irradiation, which can damage the material above the channel 

head and make this part nontransparent. This nontransparent material will shield the laser 

beam and terminate the drilling process. At decreasing drilling speeds, increasing laser 

irradiation is expected to cause earlier laser shielding and shorter channels. 

 

Figure 6.8 Schematic illustration of channel self-termination at (a) high and (b) low drilling 

speeds. The solid lines in color represent the laser beam focusing geometry, the colored 

areas represent the laser damage area in beam propagation direction and the dark-grey 

regions represent the modified material by repetitive laser pulses.  
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Figure 6.9 (a) Schematic illustration of interrupted laser drilling process. The solid lines in 

gradient colors represent the laser beam focusing geometry. (b) Channel length variation 

with different pause duration. The blue dash-dot line indicates the position where channel 

drilling is paused.  

To examine this hypothesis, we performed another experiment at 270 μJ and 150 

μm/s. The experiment is schematically displayed in Figure 6.9 (a). The channel is drilled 

and deliberately paused at a designated position before self-termination. The drilling 

process is resumed at the same speed afterwards. During the pause duration, laser pulses 

are still applied to mimic the excessive laser irradiation in low-speed drilling and longer 

pause duration corresponds to lower drilling speeds. If the hypothesis is valid, shorter 

channel should be expected with longer pause duration. Figure 6.9 (b) summarizes the 

channel lengths as a function of the pause duration. The channel drilled without pause (zero 

pause duration) is displayed for comparison. Monotonic decrease of channel length is 

observed with longer pause duration, and the channel with 50 seconds pause cannot further 
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drilled after the pause. This experiment provides additional validation on the proposed 

mechanism for early termination by low-speed drilling.  

Early termination by nonoptimal drilling speeds is not triggered instantly by any 

single pulse. Both the lag at high speeds and material damage shielding at low speeds need 

to be accumulated by multiple pulses. Moreover, material removal rates during the whole 

drilling process may not be kept constant due to the inevitable incubation effect, however, 

drilling speeds are kept as constant. Therefore, same paces between the laser beam 

movement and material removal cannot be infinitely maintained and channel cannot be 

drilled infinitely long.  

6.3.2 Damage shielding on front surface  

Besides the dominating mechanism of channel self-termination in Section 6.3.1, 

there is a secondary mechanism as elaborated in the following section. When laser drills 

through the sample, there is an exit formed on the front surface. This front surface damage 

can start (hundreds of microns beneath the surface) before the arrival of the focal spot and 

terminate drilling process by shielding successive laser pulses. This mechanism is 

schematically demonstrated in Figure 6.10. When the laser beam is focused beneath the 

sample rear surface (Figure 6.10 (a)), the front surface laser fluence is much lower than the 

damage threshold. With upwards moving of the focal spot (Figure 6.10 (b)), the front 

surface fluence increases. Once this fluence is higher than the ablation threshold (Figure 

6.10 (c)), front surface damage will be triggered. After that, the surface damage will block 

the laser beam (Figure 6.10 (d)), and the drilling process will be terminated (Figure 6.10 
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(e)). For thick samples (2.5 mm in this work), the impact of surface damage shielding is 

much less important, since most of the drilled channels are self-terminated before surface 

damage shielding takes effect. On the contrary, for samples of 1 mm thickness or less, this 

surface shielding effect will be the dominating mechanism to terminate drilling before self-

termination occurs.  

 

Figure 6.10 Schematic illustration of the rear-side drilling in fused silica. Surface damage 

(white semicircle) is formed on the front surface before the focal spot arrives at the front 

surface, shielding laser beam, and resulting in drilling termination.  

6.4 Summary 

This chapter presents ultrafast laser direct drilling of fused silica and highlighted 

the feasibility of high-aspect-ratio and high-quality channel direct drilling at high 

processing speeds (hundreds of micron per second). Uniform and taper-free microchannels 

have been achieved with maximum channel length over 2000 μm, aspect ratio as high as 

~40:1 and excellent sidewall quality (roughness ~0.65 μm) at pulse energy of 270 μJ. Close 
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interrelation between pulse energy and drilling speed has been demonstrated in affecting 

channel aspect ratio. Optimal drilling speeds can be always observed at different pulse 

energy and these speeds increase at higher pulse energy, from 100 μm/s at 60 μJ to 300 

μm/s at 480 μJ.  

We proposed the dominating mechanism for channel self-termination as mismatch 

of material removal and laser beam movement under repetitive laser pulse irradiation. At 

higher drilling speed over optimal value, material removal cannot catch up with the motion 

of laser focal spot and drilling process terminates due to insufficient laser energy deposition. 

At lower drilling speed below optimal value, excessive laser irradiation induces structural 

modification above channel drilling front, therefore obstruct laser beam propagation and 

terminates the drilling process. We developed an analytical model to quantify laser-induced 

damage inside fused silica and provide substantial verification of this mechanism. Surface 

damage shielding is found to be a secondary mechanism for channel self-termination in 

thick samples (over 2 mm), however, this can be the dominating mechanism in thin samples 

(1 mm thickness or less).  
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CHAPTER SEVEN 

 

CONCLUSIONS AND FUTURE WORKS 

 

 

This chapter summarizes the conclusions in the current stage and discusses future 

works in the next stage.  

7.1 Conclusions 

Ultrafast laser ablation mechanisms and characteristics have been investigated for 

metals and dielectrics. Hybrid models have been developed based on combination of two-

temperature model, plasma model, and molecular dynamics model to reveal fundamental 

physics during laser-material interaction. Material removal has been incorporated in two-

temperature model to take account the thermal energy losses through particles ejection. 

Experiments have been conducted to study key factors in ultrafast laser ablation of 

dielectric materials.  

Thermal and non-thermal (photomechanical) behaviors in micro-size metal films 

from irradiation of ultrafast laser pulse have been investigated based on combined 

continuum-atomistic approach, including phase explosion (thermal ablation) and spallation 

(non-thermal ablation). Coexistence of phase explosion and spallation has been observed 

for a considerably wide range of laser fluence, revealing the complicated interplay of 

different mechanisms in ultrafast laser-induced material decomposition. Phase explosion 

has higher threshold fluence than spallation, and becomes the dominating ablation 

mechanism with the increase of laser fluence. A dimensionless quantity, tension factor, has 

been introduced, based on which a universal criterion for the occurrence of spallation has 
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been proposed and validated. The tensile (spall) strength follows linear decrease with the 

increase of temperature below melting point, and the inverse exponential function can 

better agree with our measured strength in the liquid regime compared to previously 

proposed theoretical descriptions. At higher laser fluence over 0.5 J/cm2, reduction in the 

spall strength can be observed, which should be mainly attributed to the structural 

deformation from the compressive process prior to the material breakdown under tension. 

Separate measurement of spall strength in the QI method considering pre-compression 

corroborate the observation in laser-induced spallation, implicate the considerable 

structural effect on the determination of spall strength. Dielectric material decomposition 

mechanisms are essentially similar to metals and semiconductors. However, since 

dielectric materials have much longer optical penetration depth (~100-200 nm) than metals 

(~10 nm) at 800 nm laser irradiation, non-linear absorption has to precede material heating, 

and the temperature gradient can be much lower, therefore the generated thermal-elastic 

stress is much weaker than in non-transparent materials at similar level of surface heating.  

Plasma dynamics with respect to ejection direction and velocity have been studied 

based on fluorescence and shadowgraph images. Good agreements have been obtained 

between model predictions and measurements. The most probable direction (angle) is 

found not significantly affected by the laser fluence, indicating the plasma deposition 

process insensitive to laser fluence/energy. The plasma ejection velocity scales pretty well 

the root of electron temperature, which highlights the nature of thermal ablation in 

dielectric material decomposition by laser irradiation.  
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Ultrafast laser-induced ablation of dielectric materials has been investigated based 

on a one-dimensional plasma-temperature combined model. Numerical prediction of LIAT 

and ablation depth based on the proposed ablation criterion agree well with experimental 

observations. With the increase of pulse energy, ablation depth experiences sharp increase 

above ablation threshold, and tends to increase slowly. Further increase of energy brings 

about, however, decrease in ablation depth, which can be mainly attributed to plasma 

defocusing effect with non-equilibrium air ionization. With increasing pulse number from 

1 to 100, the ablation rate can be increased by 100-150 nm with repetition rate below 1 

kHz. While with higher repetition rate than 1 kHz to 10 kHz, more significant enhancement 

of ablation rate can be observed with multi-pulse irradiation, as high as 250 nm (almost 

double of the ablation rate at single pulse). This enhanced thermal accumulation effect by 

increasing repetition rate above 1 kHz can be well demonstrated by the simulation. For 

ULIA, especially for femtosecond laser pulses, low fluence manufacturing is proposed for 

high ablation efficiency and good microstructure quality. Consideration of beam 

divergence in calculation is observed to be more important for transparent than for opaque 

materials. The ablation enhancement with multiple pulse and increasing repetition rate 

provides valuable information to improve the processing and micromachining of dielectric 

materials with ultrafast laser pulses.  

Ultrafast laser direct drilling of fused silica has been performed and the feasibility 

of high-aspect-ratio, high-quality and high-speed channel drilling has been highlighted. 

Uniform and taper-free microchannels have been achieved with maximum channel length 

over 2000 μm, aspect ratio as high as ~40:1 and excellent sidewall quality (roughness ~0.65 
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μm). Close interrelation between pulse energy and drilling speed has been demonstrated in 

affecting channel aspect ratio. Optimal drilling speeds can be always observed at different 

pulse energy and these speeds increase at higher pulse energy, from 100 μm/s at 60 μJ to 

300 μm/s at 480 μJ.  

The dominating mechanism for channel self-termination has been proposed as 

mismatch of material removal and laser beam movement under repetitive laser pulse 

irradiation. At higher drilling speed over optimal value, material removal cannot catch up 

with the motion of laser focal spot and drilling process terminates due to insufficient laser 

energy deposition. At lower drilling speed below optimal value, excessive laser irradiation 

induces structural modification above channel drilling front, therefore obstruct laser beam 

propagation and terminates the drilling process. An analytical model has been developed 

to quantify laser-induced damage inside fused silica and provide substantial validation of 

this mechanism. Surface damage shielding is found to be a secondary mechanism for 

channel self-termination in thick samples (over 2 mm), however, this can be the dominating 

mechanism in thin samples (1 mm thickness or less). 

7.2 Future works 

To better understand the laser-material interaction and micromachining processes, 

several subjects are proposed based on the current studies. 
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7.2.1 Ultrafast laser-based processing of transparent materials 

A unique advantage of ultrafast laser processing is nonlinear absorption, which 

enables not only surface processing, but also three-dimensional (3D) internal 

microfabrication of transparent materials such as glass and polymers. My Ph.D. research 

has made me prepared with high-fidelity numerical models and rich experimental 

experiences on transparent material processing. In my future research, I would like to 

extend straight channel drilling to a series of other processes, including (but not limited to) 

cutting, marking, dicing and 3D internal structure fabrication, etc. Ultrafast laser will find 

great opportunities in fulfilling the foreseeable huge demands on transparent material 

processing. Meanwhile, prosperous industrial production with ultrafast laser is promising 

with the rapidly increasing application of novel transparent material, such as flexible 

display materials in mobile phone and variety of other consumer electronics, where high 

precision and minimized thermal effects are critical. 

7.2.2 Dual-wavelength and double-pulse laser processing 

During ultrafast laser fabrication, electrons are mainly responsible for energy 

absorption and thermal transportation, making transient electron dynamics the dominating 

factor in fabrication process. Ultrafast laser permits manipulation of electron dynamics 

through temporal and spatial shaping of laser pulses, which offers high flexibility and 

controllability in modification of material. In my future research, I propose to investigate 

double-pulse fabrication of material using independently controlled laser wavelengths. 

This approach does not only provide more flexibility and controllability in electron 
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dynamics but take advantage of both the high ionization rate of short wavelength (in 

ultraviolet) and high energy absorption of long wavelength (in infrared). This technique 

has great potential in improving machining precision, throughput, reproducibility, and 

controllability. I plan to perform surface machining for primary verification of the 

effectiveness and seek for implementation into other fabrication processes. If successful, 

this technique will find variety of applications, especially in processing of high-value and 

hard-to-machine materials for products requiring high precision, such as sapphire in 

mechanical watches and scratch resistant covers for precious devices.  

7.2.3 Ultrahigh repetition rate (GHz) laser burst processing  

Nowadays the relevance and the robustness of ultrafast lasers are well established 

for many industrial applications. The main limitation is the insufficient productivity 

compared to the needs of the application markets. Increasing the power, pulse energy or 

repetition rate of femtosecond lasers has been a general trend in order to comply to higher 

throughput. One of the strategies is the development of ultrahigh repetition rate (GHz) 

ultrafast laser. When increasing the repetition rate during the process beyond several 

hundred kHz, the delay between the laser pulses is less than the thermal relaxation time 

and there is thermal accumulation in the target material. The resulting rise in temperature 

leads to an ablation efficiency enhancement.  

Current studies on this promising technique heavily rely on experimental studies. 

However, due to the complex setup, high/extra cost [188] and accuracy of experimental 

setup [188], the pulse number in burst, intra-burst repetition rates and burst/pulse fluence 
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are limited. Therefore, a comprehensive perspective towards the effectiveness of laser-

burst technique is still missing and the fundamental mechanism is still unclear. To tackle 

this issue and promote the understanding of laser-burst ablation, I plan to develop a 

physics-based numerical model to study how laser burst interact with material and how 

ablation efficiency change with different burst conditions (pulse number, repetition rate, 

fluence). If successful, the results will provide comprehensive perspective on the 

fundamental mechanisms of laser burst material processing, therefore save a great amount 

of experimental efforts, and promote application of this technique in the manufacturing 

industry.  
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