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ABSTRACT 

 

 

Controlling dry matter intake (DMI) is one strategy to meet the animal’s 

requirements while reducing feed costs and increasing feed efficiency. Controlling intake 

through precision-feeding provides a more nutrient-dense diet, allowing an increase in 

energy and nutrient utilization efficiency while decreasing nutrient loss. The literature 

about precision feeding has provided information regarding optimal N intake and 

different dietary fiber proportions, but more information needs to be addressed. This is 

one of the first attempts to further our knowledge through the use of fat inclusion. In the 

present dissertation, a total of 4 in-vitro and in-vivo experiments were conducted. 

Simulated and applied precision feeding with different forage to concentrate (F:C) ratios 

and fat sources inclusion were used to determine the effect on Holstein and Jersey dairy 

heifer’s digestibility and fermentation. 

An introduction to the importance of investigating strategies to fat 

supplementation in precision feeding for dairy heifers is presented in Chapter 1. 

Background information and justification of the current dissertation is presented in the 

systematic Literature Review in Chapter 2. The objective of the first experiment 

presented in Chapter 3 was to screen the effects of including different types of fat to 

different F:C ratio on digestibility and in-vitro gas production (GP). Treatments included 

either low forage (LF; 35%) or high forage (HF; 70%) with 2 dietary fat concentrations 

(6 or 9% DM) screening for 6 different fat sources plus control (CON). The CON diet 

had a basal fat concentration in the diet [3% fat (0% fat inclusion); and fat sources were 

added to attain 6% or 9% fat and consisted of Coconut oil, CO; Poultry fat, PF; Palm oil, 
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PO; Palm kernel oil, PKO; Ca Salts, MEG; Soybean oil, SOY]. Modules were randomly 

assigned to treatments in a 2×2×7 factorial design and incubated for four 24 h runs. The 

CO-fed module had the highest DM apparent digestibility (AD), followed by SOY and 

PF. The true DM digestibility (IVTDMD) and OM AD were the highest in CO than the 

other types of fat. The AD for DM, OM, NDF, ADF, and IVTDMD was higher in LF. 

Total VFA was lower in modules fed different fat types than the CON and acetate, while 

propionate was the lowest for the CON, which increased the A:P ratio. These results 

suggested that LF diets with high fat concentration can be used under a precision feeding 

system, and different types of fat sources may improve DM and fiber digestibility. 

The second experiment's objective presented in Chapter 4 was to evaluate the 

effects of fermentation and digestion of including different fat sources when high 

concentrate diets with high-fat inclusion are used to simulate precision feeding in 

continuous culture. Four treatments were randomly assigned to 8 continuous cultures in a 

randomized complete block design and ran for 2 periods of 10 d. Diets included high 

concentrate (HC; 65%) with high fat inclusion starting with a basal level of fat as CON 

[3% fat (0% fat inclusion); 9% fat (6% PF; CO; SO inclusion)]. The DM, OM, NDF, 

ADF, and hemicellulose digestibility coefficients (dC) were higher for PF-fed fermenter, 

and CO followed by SO and then CON. Total VFA was higher for CON, and there was a 

reduction in acetate and propionate with different fat treatments. These results suggest 

that simulated precision feeding with HC and high fat supplementation can improve 

digestibility. 
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Chapter 5 presents the third experiment to determine the effects of simulated 

precision feeding of different PF levels at different F:C ratios on digestibility and 

fermentation in continuous culture. Treatments included 2 forage combinations, low (LF; 

35% forage), and high (HF; 70% forage) and 4 levels of PF starting with a basal level of 

fat in the diet [3% fat (0% PF); 5% fat (2% PF); 7% fat (4% PF); and 9% fat (6% PF)]. 

Treatments were randomly assigned to 8 fermenters in a 2×4 factorial design and ran for 

4, 10 d periods. The LF-fed fermenter had higher DM, OM, N, starch, and NFC dC than 

HF. Nutrients digestibility increased linearly with PF inclusion. Bacterial efficiency was 

decreased with PF inclusion. Total VFA was higher for LF, and there was a reduction in 

acetate with LF. The PF inclusion had a linear increase in total VFA, a linear reduction in 

acetate, and a linear increase in propionate. The A:P ratio decreased linearly in both LF 

and HF as PF increased. These results suggest that increasing PF in precision fed LF or 

HF can alter rumen fermentation and improve digestibility. 

Finally, the last experiment's objective in Chapter 6 was to evaluate the effects on 

nutrient digestion and rumen fermentation of including different levels of PF in precision 

fed Holstein and Jersey dairy heifers. Four Holstein and 4 Jersey cannulated heifers were 

randomly assigned to 4 treatments, included a 55% forage diet with 4 increasing PF 

inclusion starting with a basal concentration of fat in the diet [3% fat (0% PF); 5% fat 

(2% PF); 7% fat (4% PF); and 9% fat (6% PF)]. Treatments were administered according 

to a split-plot, 4×4 Latin square design for 4 periods of 21 d. Holstein-group had a lower 

DM, OM, NDF, ADF, and NFC AD than Jersey-group. The inclusion of PF did not affect 

AD. However, starch AD increased linearly as PF increased, whereas NFC AD decreased 
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linearly. Manure output was higher for Holstein, and the PF inclusion showed a linear 

decrease in manure output. Total VFA, acetate decreased linearly as PF increased. 

Concurrently there was a linear increase in propionate, resulting in a linear reduction in 

the A:P ratio. These results suggest that Jerseys utilized nutrients more efficiently than 

Holsteins. Dietary PF inclusion up to 6% in the rations can further reduce DMI in 

precision feeding programs without compromising total-tract digestibility. 

Overall, these studie’s results indicate that PF can be used as a replacement for 

corn in precision-fed Holstein and Jersey dairy heifer diets up to 6% DM. Other fat 

sources with different characteristics can be utilized with relative success, but further 

research is needed. Incorporation of supplemental fat to controlled intake strategies such 

as precision-feeding can reduce feed intake for optimal growth, promising impacts on 

costs. Furthermore, nutrient digestibility, rumen fermentation, and animal performance 

can be enhanced with positive effects on environmental impact. 
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

 

 

Raising dairy heifers is one of the highest routine costs on a dairy farm because 

dairy heifers are fed, bred, housed, and cared for over a resource-draining period before 

they start generating revenue. Therefore, one of the essential intangible goals in a dairy 

farm is to find an efficient system to raise dairy heifers economically. Even though dairy 

heifers represent the second greatest contributor to the whole dairy farm expenses 

(Heinrichs, 1993; Tozer and Heinrichs, 2001), most of the research focuses on lactating 

dairy cattle growing animals are not a priority. Notably, dairy heifers represent the 

operation's future and necessary for the dairy farm enterprise (Heinrichs et al., 2013). 

In recent years, research in dairy heifer nutrition has been one of the most 

increasing areas of interest. That is basically because the feed costs represent the most 

considerable expense in raising dairy heifers representing over 60% of the total cost 

(Gabler et al., 2000; Harsh et al., 2001; Heinrichs, 2013). Wild ruminants can select a diet 

that is appropriate to their nutrient requirements. As an innate antipredator, they have 

adapted to intermittent feeding cycles to avoid grazing at night; therefore, forages 

consumed result in slower passage rate and more efficient digestion (Jensen, 2017). 

Consequently, in the last decade, the research has focused on alternative, more efficient 

feed management practices and less expensive by-products to reduce feed expenses. 

Precision-feeding dairy heifers have proven to substantially reduce feed intake by feeding 

a more energy-dense diet to meet the nutritional requirements while nutrient losses are 

minimized (Zanton and Heinrichs, 2009; Anderson et al., 2015). Accordingly, precision 
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feeding improves feed efficiency through a reduction in DMI. It provides the heifer with 

an adequate amount of nutrients to reach the targeted average daily gain (ADG) thus, 

controlling heifer growth to maximize milk production in subsequent lactations (Hoffman 

et al., 2007; Zanton and Heinrichs, 2008). Controlled intake programs are a classical 

physiological based method to reduce feed expenses that have been reported in beef cattle 

(Koch et al., 1963; Loerch, 1990; Galyean et al., 1999). High forage diets are rich in fiber 

and inherently inefficient in energy and protein utilization (Moody et al., 2007; Zanton 

and Heinrichs, 2007). That can be enhanced by incorporating energy-dense sources such 

as concentrates that provide readily available nutrients that allow reduced intakes to 

precisely meet heifer requirements on a feeding system (Hoffman et al., 2007; Lascano et 

al., 2016). However, high-level addition of concentrates can reduce fiber intake and 

rumen acidosis incidence (Palmquist and Jenkins 1980). Also, the food competition 

between humans and livestock, even though about 86% of livestock feed is not fit for 

human consumption, but grains still account for about 13% of the global livestock DMI 

(FAO, 2018). Modifying the forage to concentrate ratio (F:C) and manipulating nutrient 

fractions allowed precision-fed dairy heifers to achieve adequate nourishment, improved 

N and OM digestibility (Zanton and Heinrichs, 2009), and resulted in similar effects on 

rumen fermentation (Lascano and Heinrichs, 2009; Lascano et al., 2009). 

Feeding supplemental fat has gained interest in the last few decades. Adding fat to 

dairy diets became standard practice for its potential to increase energy density in diets, 

improve palatability, and reduce dietary dustiness (Azain, 2004). Also, cost-effective by-

products from numerous industries can be utilized by ruminants. Several studies 
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conducted on dairy heifers fed dietary fat up to 5% and 7% DM from traditional high or 

low-fat distillers grains (DDGS; Anderson et al., 2009, 2015; Schroer et al., 2014; 

Suarez-Mena et al., 2015). They observed similar total-tract digestibility compared with 

control diets and a DMI reduction by increasing dietary fat content with no adverse 

effects on nutrient utilization while maintaining ADG and overall growth performance. 

Moreover, different fat sources have shown different effects on nutrient 

digestibility and rumen fermentation. In a study conducted by Elliott et al. (1997) on the 

impact of saturation of fat sources in steers, they reported that increasing fat saturation 

tended to increase the NDF and ADF digestibility in the rumen. Other studies have 

reported no differences in ruminal or total tract digestibility of OM or fiber in lactating 

cows fed diets with increasing amounts of dietary fat or different sources of fat 

(Palmquist, 1991; Drackley and Elliott, 1993). Oldick and Firkins (2000) reported that 

acetate responded quadratically as the fat sources' unsaturation degree increased. Also, 

Elliott et al. (1997) reported decreased acetate's molar proportion when different 

saturation fat was fed and increased linearly as saturation increased. However, there is 

limited research regarding the effects of feeding fat on growing dairy heifers, and to what 

extent can be strategically incorporated into precision feeding is unknown. 

On the other hand, due to lack of research, current guidelines for feeding dairy 

cows in the U.S. do not make a specific recommendation for Jerseys (NRC, 2001). Based 

on the Council of Dairy Cattle Breeding (CDCB; 2015), Jersey is the second breed most 

popular in the U.S., and its percentage of cow population increased from 4.9 to 6.4 % 

from 2009 to 2014, while the Holstein population decreased from 89.6 to 83.9%. Also, 
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there are indications that Jerseys have higher total tract digestibility of nutrients than 

Holsteins. Olijhoek et al. (2018) reported that Jersey had a higher DM and OM 

digestibility than Holstein cows fed diets with different two F:C ratios.  

Therefore, this research will examine the effect of increasing fat inclusion in 

simulated and applied precision feeding systems with different F:C ratios on Holstein and 

Jersey dairy heifers. The overall objective is to determine how various fat sources can be 

incorporated into precision feeding rations to optimize nutrient utilization, fermentation, 

and digestibility without impacting animal performance. Overall, the hypothesis is that 

replacing non-fiber carbohydrates with fat in a precision feeding system will further 

reduce intake without compromising nutrient digestibility, rumen fermentation. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

 

HISTORY OF ANIMAL FEEDING 

It is essential to study animal feeding history and understand how and why 

particular practices have advanced. Animal feeding systems were developed before the 

advent of writing. Farm management and animal breeding techniques developed 

spontaneously around 10,000 years, b.c. ago in several ancient areas of early human 

civilization (Coffey et al., 2015). A crescent-shaped area of fertile land in the Middle East 

that extends between the valley of the Tigris and Euphrates rivers (Mesopotamia) across 

to the northeast of the Nile valley was the center of the Neolithic development of 

agriculture, and the cradle of the Assyrian, Sumerian, and Babylonian civilizations (Clay, 

1924). The development of technology and innovation allowed animal agriculture to be 

more productive, efficient and organized as the world’s population grew. With increased 

demand, it was necessary to provide animals with a nutritionally balanced diet. All these 

changes in agriculture in general and animal feeding practices began around the 

beginning of the 19th century (Pederson, 2000).  

During the industrial revolution, there was an increase in grain milling waste. The 

benefits of a balanced diet in animal production and the need to redirect by-products from 

human food were being realized (Freket and Stark, 2011). The modern feed industry was 

initiated when the chemical analysis proved the nutritional value of these grain by-

products. Nowadays, co-products of grain and animal processing are the appropriate 

name for these by-products (Schoeff et al., 2005). At the beginning of the 20th century, 
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feed manufacturing advanced rapidly in all aspects and saw a rapid mill evolution. 

Companies were involved in the feed industry to utilize grain processing by-products 

instead of disposing of them. In 1950, diet formulation became more complicated with 

antibiotics, identifying essential trace minerals, and developing synthetic vitamins. In 

1975, the first automated feed mill began to operate, which helped maximize feed 

production efficiency and minimize the cost of feed per animal produced. Technology 

and software improved many-sided manufacturing, such as particle size characteristics, 

mixing and batching, pellet processing, feed delivery logistics, and others (Ferket and 

Stark, 2011). In 1990, more advanced equipment, including liquid applicators, NIR for 

nutrient analysis, data collection in the feed mill, and the overall computerization of 

operations. 

In 2050, it is estimated that the global population will count 9.6 billion (FAO, 

2018). To feed them, research must continue to increase our knowledge and 

understanding of nutrient balance and digestion. New nutritional strategies such as feed 

additives must be involved to achieve higher animal performance while decreasing feed 

costs. In the future, advanced technology will become further involved in feeding 

systems. That will include analytical techniques such as genetic selection, nutrigenomics, 

and bioinformatics, improve the recycling of by-products into livestock feed, and feed 

consumption for improving animal production efficiency while reducing waste. In this 

way, by involving these technologies in feed formulation, the nutritional value will 

become a more precise science. Also, dairy products will increase and fill the increasing 

population demands (Coffey et al., 2015; FAO, 2018). 
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FEEDING SYSTEMS 

Management of the growing dairy heifer is a balance between what is biologically 

reasonable and economically efficient (Bewley, 2010). Raising dairy heifers at a low 

economic and environmental cost is the goal of each dairy heifer program taking into 

account the future production, health, and welfare of these animals (Sejrsen and Purup, 

1997; Hoffman et al., 2007; Kitts et al., 2011). Usually, producers do not emphasize dairy 

heifer management properly. That is because heifers are nonproductive and provide no 

immediate economic benefits until calving and the onset of lactation (Zanton and 

Heinrichs, 2009a; Kitts et al., 2011). To optimize heifer's body weight gain before 

calving and develop the mammary gland properly for future milk production, adequate 

heifer nutrition is the key. Many farmers do not know that dairy cows' future production 

is based on the impact of heifer nutrition. Even though dairy heifers represent the second 

greatest contributor to the whole dairy farm expenses, most dairy farmers are focused on 

lactating dairy cattle, and dairy heifers are not their priority (Tozer and Heinrichs, 2001; 

Harsh et al., 2001). Very little research has been done on dairy heifer nutrition compared 

to dairy cow nutrition in the past 50 years, whereas most of the research on dairy heifers 

focused on calf nutrition and colostrum (Eastridge, 2006). Great attention must be 

provided to dairy heifer rearing programs because they are the future of milk production 

(Heinrichs et al., 2013). The farm profitability and productivity can be affected by any 

dairy heifer’s management (Hutjens, 2004; Zanton and Heinrichs, 2005). In the last few 

years, there has been tremendous progress toward optimizing heifer’s growth rates, 

reducing AFC, nutrition, and management. Also, producers have become more 
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progressive in using some practices based on heifer’s nutrients requirements to help them 

economically (Heinrichs et al., 2017). Researchers have the opportunity to better 

understand an ideal feeding regime that should be used for animals to provide nutrients in 

amounts that maximize ruminal fermentation, growth of rumen microbes. At the same 

time, minimize nutrients losses to the environment (NRC, 2001). In this literature review, 

we will go through some feeding systems that have been used in dairy heifers programs, 

such as ad-libitum feeding and restricted feeding. 

Ad-libitum Feeding 

Traditionally, dairy heifers are fed ad-libitum where the diets are mostly high in 

forage but low in energy and formulated to not necessarily meet their requirements (Pino 

et al., 2018). In U.S. ad-libitum systems, heifer’s energy intake requirements are 

determine based on the NRC (2001) with a strategy of targeting 1 kg/d as an ADG. Ad-

libitum heifers are usually fed with high-forage, low-energy diets at 110% of the 

expected intake to meet growing animals' nutrient requirements (Greter et al., 2013). 

However, the dry matter intake could be limited based on the high amount of fiber 

consumed by dairy heifers under the ad-libitum feeding system. These heifers are 

physiologically inefficient regarding the forage digestion, and utilization meets the 

animal’s requirements (Pino et al., 2018). Ad-libitum feeding system can result in intake 

discrepancy between individual heifers, possibly affecting the rumen health through 

TMR sorting habits (Hoffman et al., 2006; Greter et al., 2008). Thus, heifers can 

potentially consume a ration that is not balanced for their needs and might increase the 

risk of metabolic disorders, difficulties to target actual growth rate, and decrease feed 
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efficiency (DeVries, 2010). Also, feeding ad-libitum diets reduces nutrient digestibility, 

increasing waste, which could negatively affect the environment.  

Another ad-libitum feeding strategy is formulating a nutrient-dense diet and then 

diluting it with a low-nutritive feedstuff such as straw to limit the feed's nutrient density 

(Hoffman et al., 1996). Also, the passage rate will decrease, and rumination time will 

increase by these low-nutritive feedstuffs, which increase the production of the saliva and 

the buffering capacity of the rumen. Greter et al. (2008) observed that feeding TMR ad-

libitum with increasing straw levels resulted in decreased daily DMI, rate of feeding, size, 

and meal frequency, whereas the time of feeding time and duration of a meal increased. 

Also, heifers in this study achieved an ADG of 0.9 kg/d on 20% straw dilution and 1.0 

kg/d on 10% straw dilution. That indicates that when the ration is appropriately balanced, 

it may enable producers to effectively target growth rate while reducing DMI while 

providing a foraging substrate, which helps the heifers to fill their natural forage 

requirements and behaviors. Reducing the first calving age to 22 to 23 mo reduces the 

expenses during the nonproductive phase of a dairy animal (Heinrichs, 1993). To do this, 

improving growth performance and feed efficiency is necessary (Hoffman et al., 2007). It 

has been shown that increasing dietary energy density can reduce the first calving age 

from 25 to 21 mo, and the cost of raising dairy heifers as well by 18% (Tozer and 

Heinrichs, 2001). However, several studies showed that when heifers offered a higher 

energy diet, their pre-puberty growth rate increased while reducing first lactation milk 

yield (Little and Kay, 1979; Foldager and Sejrsen, 1991). A study was conducted to 

compare ad-libitum feeding and limit feeding on behavior patterns and feeding 
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motivation of dairy heifers. It has been recommended that a low nutritive feedstuff is 

very important to be provided with limit-fed TMR to allow dairy heifers to practice a 

“normal” feeding behavior and diurnal feeding patterns (Greter et al., 2015). 

Without controlling dry matter intake, dairy heifers were fed high energy diets to 

increase their average daily gain in a study conducted by Little and Kay (1979). They 

reported that the milk yield in the first lactation heifers was decreased between 15 to 

48%. Tremere et al. (1968) switched heifer diets to high concentrate from high forage by 

using ground wheat as readily digestible carbohydrate and observed lactic acid 

accumulation in the rumen; rumen pH declined under 5.0, a reduction in fiber digestion 

and VFA concentration. Also, depression in the abundance of cellulolytic bacteria was 

observed when heifers were fed high concentrate diets (Tajima et al., 2001). Calsamiglia 

et al. (2008) also stated that high concentrate diets reduced rumen pH, acetate, and 

butyrate concentration. Furthermore, it reduced the digestibility of OM and NDF and 

reduced nutrient utilization efficiency. However, as a reduction in the calving age is 

desired, researchers have been studying how energy and DMI affect heifer growth 

without affecting their production, health, and welfare (Hoffman et al., 2007; Moody et 

al., 2007; Lascano and Heinrichs, 2009; Zanton and Heinrichs, 2009b; Pino and 

Heinrichs, 2016). In a recent study, Pino et al. (2018) compared ad-libitum versus 

precision-fed diets on rumen fermentation, nutrient digestibility, feed efficiency, and 

Holstein heifers' passage rate. They reported that ad-libitum diets showed lower feed 

efficiency and rumen pH. In contrast, total VFA concentrations were higher, and the 
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passage rate was faster, also showed a higher digestion rate with shorter retention time in 

the rumen than precision diets. 

Restricted Feeding 

In general, restricted feeding refers to feeding the diets in a limited amount or 

offering ad-libitum access to a diet for a limited time (Greter et al., 2013). Sometimes 

feed is restricted, but ME and N are similar, known as limit feeding. The feed is restricted 

for several reasons: avoiding obesity, improving feed efficiency, decreasing feed costs, 

improving growth and reproductive efficiency, and decreasing nutrient excretion (D’Eath 

et al., 2009). Sometimes feed allowance appears to be ad-libitum, but the diet quality is 

reduced, which is still considered restricted feeding because it is consuming a low-quality 

diet containing less energy and nutrients. These rations are usually diluted through bulky 

feedstuffs addition (D’Eath et al., 2009). Over the years, research has shown that 

restricting-feeding has proven successful in many domesticated species such as growing 

and gestation sows in the swine industry, finishing cattle in the beef industry, and dairy 

heifers and dry cows in the dairy industry (Loerch, 1990; Susin et al., 1995; Loerch, 

1996; Wertz et al., 2001). 

Gestating sows are typically fed a nutrient-dense ration in an amount that is 

approximately 60% of their ad-libitum intake to restrict their feed (Kyriazakis and 

Savory, 1997). Restricted-fed sows showed increased feeding rate and decreased time 

spent feeding when sows were restricted-fed compared to ad-libitum-fed animals 

(Terlouw et al., 1991; Bergeron et al., 2000). Feed restriction in beef cattle is usually 

done to increase feed efficiency, decrease nutrients excretion, and feed costs (Murphy 
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and Loerch, 1994; Galyean, 1999). The concept of compensatory growth is typically 

utilized in growing beef cattle where animals are given ad-libitum access to feed and then 

a period of feed restriction, resulting in a more efficient deposition of muscle mass 

(Galyean, 1999). Sainz et al. (1995) reported that calves during the growing period were 

more efficient during the subsequent finishing phase and showed more significant 

compensatory growth when restricted-fed than calves ad-libitum-fed high-forage diet. 

They attributed that to the changes in feed intake and the higher energy requirements that 

high concentrated in restricted feed can offer. Tamminga et al. (1979) conducted a study 

examining the effect of feed intake level on the quantity of protein entering the small 

intestine. Two methods were used to estimate the protein degradation, the first one was 

based on diaminopimelic as a marker, and the second was based on regression. They 

observed N's greater flow to the small intestine was a portion of the N ingested when 

intakes were high compared to low intakes. Due to the increase in the passage rate, N's 

ruminal degradation was lower at a higher level of intake. Wertz et al. (2001) evaluated 

the intake restriction on beef heifers' performance and carcass merit during the finishing 

phase limit-fed or ad-libitum fed corn gluten feed. Limit-fed beef heifers did not have 

compromised feed efficiency than ad-libitum fed heifers with 0.135 versus 0.124 

gain:feed, kg/kg, respectively, and the diets allowed all heifers to achieve a moderate rate 

of gain. Schwartzkopf-Genswein et al. (2002) stated that even though cattle consumed 

more DM when fed ad libitum, restricted-fed cattle consumed more feed during the first 3 

h period after feed delivery. Improvement in feed efficiency has been observed in beef 

cattle managed under restricted feeding programs (Hicks et al., 1990; Loerch, 1990), with 
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an increase of over 15% observed in cattle fed a high-grain ration. That is mainly related 

to the higher digestibility of high grain diets than high forage diets (Klinger et al., 2007). 

Feed restriction also occurs in dairy calves, which are rarely fed ad-libitum in 

commercial production, with most receiving only 10-15% of their body weight (Jasper 

and Weary, 2002). It has been shown that this amount is insufficient to satisfy hunger, 

and calves under restricted feeding make more visits to milk feeder, but that ensure 

optimal growth and development (De Paula Vieira et al., 2008). Studies have reported 

that managing dairy heifer under a typical limit feeding program leads to more efficient 

dry matter digestibility and less manure output without sacrificing growth or performance 

(Driedger and Loerch, 1999; Hoffman et al., 2007). Driedger and Loerch (1999) reported 

that limit-fed nonlactating dairy cows resulted in a 15% greater DM digestibility. In this 

study, DMI was restricted by 30% for cows fed the high-corn diet (6.8 kg/d) compared 

with the high-forage diet (9.6 kg/d). Also, they found a reduction in DM, N, and manure 

excretion, and they attributed the decrease in fecal output to a reduction in nitrogen 

output as ruminant animals fed a low-forage diet have been shown to have improved 

nitrogen retention and efficiency (Driedger and Loerch, 1999; Moody et al., 2007). 

Hoffman et al. (2007) observed an improvement of 28.9% in feed efficiency of limit-fed 

dairy heifer than the ad-libitum-fed diet. Zanton and Heinrichs (2007) fed Holstein 

heifers a high concentrate diet versus a high forage diet and found a decrease in their 

DMI by 0.64 kg/d. It has been reported in several studies that a limit-fed diet can 

successfully control ADG to ensure reaching an optimum weight and age at calving, 

perhaps much more effectively than ad-libitum feeding. Hoffman et al. (2007) stated no 
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differences in ADG and body condition score in limit-fed heifers than ad libitum-fed 

heifers. Zanton and Heinrichs (2007) also observed no differences in ADG between 

heifers fed an HC or HF diet. 

Although the limit-feeding program has various benefits such as reducing feed 

costs and more significant economic and nutrient management benefits, there have been 

welfare concerns associated with this method. Greter et al. (2015) conducted a study 

comparing heifers' behavior on a high concentrate, low forage, limit fed diet to those on a 

traditional high forage diet. It was reported that heifers on the limit fed diet had increased 

motivation for access to a low-nutritive feedstuff and increased time spent standing 

without eating. In natural conditions where feed is not available ad-libitum, cattle 

typically participate in foraging behavior only for 4 to 9 hours per day (Hafez and 

Bouissou, 1975). Therefore, this change in behavior in heifers undergoing a high 

concentrate limit-feeding program can be attributed to either insufficient gut fill or 

inadequate foraging time. However, feeding a low nutritive feedstuff to limit-fed heifers 

may improve behavioral concerns. Kitts et al. (2011) provided a low-nutritive feedstuff to 

examine the heifers' behavioral and growth effects with a limit-fed high-concentrate 

ration. Wheat straw was mixed with TMR, offered on the side, or not offered, and TMR 

was fed at 2.02% of BW. Adding straw to the diets increased feeding time, rumination 

time, decreased inactive standing time, maintained ADG, and improved feed efficiency 

with 6.3 vs. 9.9 DMI/ADG in limit-fed and TMR mixed with straw fed heifers, 

respectively (Kitts et al., 2011). Therefore, feeding heifers a wheat straw can help their 

natural foraging behavior. A study published by Hoffman et al. (2007) also expressed 
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welfare concerns for limit fed dairy heifers, stating that the diet was associated with 

increased vocalizations and oral stereotypes that may suggest hunger and frustration. 

However, Zanton and Heinrichs (2007) state that this increase in vocalization will 

diminish 10 to 14 days after implementing the diet and that this behavior is due to a 

moderate reduction in rumen and gut size.  

Precision Feeding 

Recent research has focused on nutritional changes by increasing the diets' energy 

density while reducing DMI (limit-feeding). That alters and improves dairy heifers' feed 

efficiency without compromising rumen fermentation and milk production (Zanton and 

Heinrichs, 2005; Hoffman et al., 2007; Hall, 2008; Zanton and Heinrichs, 2009b). Wild 

ruminants can select a diet that is appropriate to their nutrient requirements. As an innate 

antipredator behavior, they have adapted to intermittent feeding cycles to avoid grazing at 

night; therefore, forages consumed result in slower passage rate and more efficient 

digestion (Jensen, 2017). Limit feeding an energy-dense diet that provides isocaloric and 

isonitrogenous nutrients required for optimal growth with a targeted ADG of about 800 

g/d in dairy heifers is a feeding program known as precision feeding. Precision diets are 

selected on cost, availability, and nutrient composition, but the metabolizable energy 

(ME) and nitrogen (N) content should stay constant to meet the dairy heifer requirements, 

reduce the expenses of growth energy, and improve feed efficiency (Zanton and 

Heinrichs, 2009b). Based on Lascano and Heinrich (2009), precision-feeding programs 

provide the heifer with precise nutrients to reach the targeted average daily gain (ADG). 

Approximately 800 g/d is recommended prepubertal ADG for large breed dairy heifers to 
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maximize first lactation milk yields. In several studies, a precision feeding system has 

shown improves feed efficiency, reduces nutrient losses, and decreases manure 

production (Hoffman et al., 2007, Moody et al., 2007; Lascano et al., 2009; Zanton and 

Heinrichs, 2009b; Pino and Heinrichs, 2016). Moody et al. (2007) and Lascano et al. 

(2009) observed an increase in DM digestibility and feed efficiency in dairy heifers fed 

with HC diets compared to the LC diet. Rumen fermentation characteristics were similar, 

with no effects on animal’s health. 

Previous research has demonstrated that limit-feeding dairy heifers do not 

negatively impact growth characteristics. Zanton and Heinrichs (2007) conducted a study 

to investigate the effect of limit-fed LC or HC rations on 42 dairy heifers with 

approximately 4 months of age and similar prepubertal rates ADG. Diets were formulated 

using corn silage and grass and were limit-fed to achieve 800 g/d ADG. They observed 

no differences in BW gain, withers height, heart girth, body length, or hip-width between 

treatments. The high concentrate diet was not expected to result in more significant 

visceral fat. Also, it has been demonstrated that future lactation performance did not 

decrease when heifers were limit-fed. Hoffman et al. (2007) conducted research on 54 

gravid Holstein heifers to evaluate the effects of limit-feeding on growth, feed efficiency, 

behavior, and subsequent lactation performance. Eating time was higher for heifers fed 

the control diet than those fed the 90 and 80% limit-fed diets, 19.3, 15.7, and 10.3% of 

the time, respectively. Additionally, limit-feeding heifers slowed the passage rate and 

resulted in greater ruminal retention time and increased ruminal degradation and nutrient 

utilization. Also, they found no differences in milk yield, fat milk yield, milk fat 
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percentage, milk protein percentage, or milk protein yield. They suggested that limit-fed 

heifers did not decrease the lactation performance, and based on the projected first 305 d 

lactation data, it may improve milk and fat yield.  

Lascano et al. (2009) concluded that limit-feeding prepubertal dairy heifers high 

concentrate diets did not significantly affect most structural growth characteristics. This 

study also reported a difference in the bacterial numbers between HC and LC diets, but 

the total ruminal VFA concentrations stayed constant. Also, they reported that a high 

concentrate diet decreased the wet and dry rumen mass, which has been supported by 

evidence from other studies (Hoffman et al., 2007; Lascano and Heinrichs, 2009; Greter 

et al., 2015). In addition, milk yield and its component showed equal or improvement at 

150 d of lactation as heifers limit-fed compared to heifers fed traditional high forage diets 

for equal ADG. In the precision feeding program, every kg reduction in dry matter intake 

equals 2.6 kg decrease in manure excretion (Zanton and Heinrichs, 2008a). Lascano and 

Heinrichs (2009) and Lascano et al. (2009) reported that limit-fed dairy heifers high 

concentrate diets significantly reduced manure output. The most important thing from 

this reduction in manure excretion is that the nutrient losses are reduced, also reduces the 

expenses related to the labor of manure management and disposal. 

 

 

 

 

 



23 

 

RAISING DAIRY HEIFERS UNDER PRECISION FEEDING 

Feed Efficiency 

Several factors can affect feed efficiencies, such as nutrient digestibility, forage 

quality, growth rate, age, body condition, physical activity, gestational stage, 

temperature, and genetics (Zanton and Heinrichs, 2008b). Feed efficiency in dairy cattle 

has a lower heritability than beef cattle because of the selection (Arthur et al., 2001; Van 

Arendonk et al., 1991). Dry matter intake, protein, energy, other nutrient requirements, 

and average body size of dairy cows had increased when genetic selection towards 

greater milk production started (Gabler et al., 2000). The effect of DMI on feed 

efficiency has been widely studied in dairy heifers. Feeding dairy heifers with NRC 

(2001) recommendations generating over-conditioned dairy heifers by greatly exceeding 

the optimum ADG, even though the energy intake is limited under the traditional low-

energy, high-forage diets because of the high fiber content (NRC, 2001) as well as 

prevent fat deposition in the pre-calving heifers (Hoffman et al., 2007; Anderson et al., 

2015; Akins, 2016). Limiting feed intake in dry cows helps improve dry matter 

digestibility and reduce feed costs (Driedger and Loerch, 1999). Similarly, reducing feed 

intake in dairy heifers were observed to control growth rates without affecting milk yield 

at first lactation (Lammers et al., 1999).  

Maximizing energy intake does not maximize feed efficiency because the 

relationship is not linear between both (Ferrell and Jenkins, 1998). Feed efficiency under 

limited feeding is improved by nutrient utilization management (Loerch, 1990; Galyean 

et al., 1999). As dry matter intake by animals increase, the metabolic nutrient cost of 
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digestion increases as well. Nutrient digestion and absorption use a great portion of 

dietary energy due to the intense oxidative metabolism requirement, and the remaining 

energy is used for maintenance, growth, and productivity (Pino and Heinrichs, 2016). The 

gastrointestinal tract, liver, spleen, and pancreas use around 40 to 50% of body oxygen 

consumption. Metabolic activity and oxygen consumption increase as the amount of 

nutrients to digest increase (Huntington and Reynolds, 1983; Reynolds et al., 1991b). 

Reducing intake to 20 or 30% from ad-libitum in growing steers improved feed 

efficiency by 30% while the diets had the same NE for maintenance and growth, and 

animals sustained the same ADG (Loerch, 1990). The reduction in the rumen passage 

rate is the reason behind the improvement in feed efficiency when DMI is reduced, 

allowing an increase in nutrient digestibility (Tamminga et al., 1979; Loerch, 1990). The 

increase in nutrients digestibility help to reduce the nutrients lose and any decrease in 

DMI result a reduction in liver and gut sizes (Hoffman et al., 2007; Reynolds et al., 

1991b), and that could help reduce the energy requirements for maintenance and increase 

the availability of energy for growth (Loerch, 1990; Hoffman et al., 2007). Wertz et al. 

(2001) observed improved feed efficiency as DMI reduced in heifers fed energy-dense 

diets. Feed efficiency improved about 23.7 and 28.9%, respectively, when heifers feed 

intake decreased around 10 or 20% compared to ad-libitum diets; the manure output 

decreased by 12.9 and 34.6% (Hoffman et al., 2007). 

Overall, dairy heifer feed efficiency is improved without any adverse effects on 

growth, health, and milk production under the precision feeding program (Zanton and 

Heinrichs, 2009b). Therefore, precision feeding fat to dairy heifers could help decrease 
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the amount of DMI further, reducing the passage rate in the rumen, increasing the 

digestion and absorption of nutrients, and decreasing the nutrient loss and manure 

excretion. However, there is no information about optimal lipid dietary concentration and 

sources when using precision feeding in dairy heifers. 

Average Daily Gain 

The age at first calving (AFC) determines the optimum growth rate for dairy 

heifers, and the suggested AFC (23 to 24.5 months) has not changed over the years 

(Swanson, 1967; Heinrichs, 1993; Ettema and Santos, 2004). Increasing the AFC will 

increase the nonproductive life of heifer and their raising cost as well. Therefore, one of 

the strategies used to reduce the raising dairy heifers costs is reducing the period of 

growth by increasing the prepubertal average daily gain (ADG) to reach puberty at an 

earlier age and decrease the AFC before 20 months (Swanson, 1967). However, very low 

AFC could potentially affect future lactation potential by preventing the normal 

development of the mammary gland, decreasing first lactation milk production and 

overall performance of the dairy heifer (Swanson, 1960; Roy, 1978; Radcliff et al., 2000; 

Zanton and Heinrichs, 2005; Davis Rincker et al., 2008). Increasing prepubertal ADG 

may reduce mammary development (Sejrsen et al., 1982). Prepubertal ADG and body 

weight at calving and first lactation culling need to be considered in raising dairy heifers 

(Hoffman and Funk, 1992; Ettema and Santos, 2004; Zanton and Heinrichs, 2005). In 

general, an allometric growth rate occurs in the mammary gland before puberty, followed 

by an isometric growth rate after the onset of puberty (Sinha and Tucker, 1969). When 
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high energy diets are fed, the insulin-like growth factor-1 receptors become less sensitive 

(Sejrsen and Purup, 1997). 

It has been suggested that the optimum growth can be achieved by restriction of 

good-quality feed (Swanson, 1967). Meyer et al. (2006) conducted a study on heifers fed 

an elevated or restricted level of nutrients to support 950 or 650 g/d of ADG and its effect 

on mammary development. They reported that elevated nutrient intake did not influence 

the mammary epithelial cell proliferation during the prepubertal period. Also, they 

observed that when heifers were between 250 and 300 kg of BW, there was a 50% 

reduction in mammary parenchyma, indicating that the mammary gland was transitioning 

from allometric to isometric growth. Van Amburgh et al. (1998) fed heifers three 

different energy diets with varied protein sources within each energy treatment. These 

diets were designed to achieve ADG of 0.6, 0.8, and 1.0 kg/d from 90 to 320 kg of BW. 

They reported that the protein source did not show any differences in ADG or milk yield 

between treatments. However, the results showed that heifers grown at an excess of 0.7 

kg/d during the prepubertal period had a 5% decrease in milk yield. Additionally, heifers 

had greater first lactation milk yield when they reached a bodyweight (BW) 82-90% of 

mature size at calving. Furthermore, they concluded that the protein supplementation and 

adequate energy might have synchronized in a better way to meet the tissue requirements 

to increase gain and enable heifers to reach breeding at an earlier weight without any 

adverse effects on mammary development (Van Amburgh et al., 1998). Zanton and 

Heinrichs (2005) conducted a meta-analysis on Holstein heifers to determine the effects 

of prepubertal ADG on milk production, fat corrected milk yield, milk fat, and milk 
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protein during the first lactation. They reported that the optimum average daily gain for 

Holstein heifers was 799 g/d and should be restricted to this level to avoid negative 

effects on lactation potential. Also, that maximizes milk and protein production at the 

first lactation in heifers weighing between 150 and 320 kg of body weight (BW).  

In addition, postpubertal ADG should also be controlled to avoid any over 

conditioning at calving because it can be detrimental to future lactation performance 

(Hoffman et al., 1996; Nor et al., 2013). It has been shown if the dairy farmers in the 

second year of the heifer rearing period made any dietary mistakes will lead to impaired 

lactation performance, such as reduced daily milk yield and compromised fertility (Meyer 

et al., 2006). Roche et al. (2000) found an impairment in cow fertility due to poor feeding 

management between 12 to 18 months of age. An inadequate feeding and synchronizing 

between energy and protein can negatively affect fertility and increase early embryonic 

death. It is essential to adjust the diet to ADG around 800 g/day and support the body 

frame growth and suppress fat deposition after the breeding and breed at 360-400 kg BW. 

Meyer et al. (2006) recommended a similar ADG of about 816 g/day. Additionally, St-

Pierre (2002) suggested a target BW of adult Holstein cows to be around 630-820 kg. 

According to Spiekers et al. (2009), carbohydrate supply should be adjusted to prevent fat 

deposition in the older heifers, mainly starch, and non-digestible starch should be kept at 

acceptable levels. It has been suggested that heifer feeding around the 7th month of 

pregnancy is similar to dry cow feeding, and nutrient concentrations in the diet should be 

increased to levels similar to the production diet only 3 weeks before calving. Patterson et 

al. (1992) suggested that heifers should receive a well-balanced high-energy diet for 
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adequate heifer and fetus growth, without over-conditioning the heifer in order to avoid 

an increased risk of dystocia and metabolic disorders after parturition. 

Passage Rate and Digestibility of Nutrients  

In ad-libitum feeding, the feed intake is usually high, which increases liquid and 

solid passage rate through the rumen and the GI tract in ruminants (Balch and Campling, 

1965; Colucci et al., 1990). The passage rate increases as dietary fiber increase in the 

diets due to the rumen load increase and evacuation stimulus (Clauss and Hummel, 

2005). Whereas, in precision feeding, with the reduction in intake, the rumen passage rate 

decreases, and the diet retention time increase (Tamminga et al., 1979; Wertz et al., 2001; 

Lascano and Heinrichs, 2009). In this case, the diet components will further interact with 

rumen microorganisms, increasing rumen digestion and fermentation (Colucci et al., 

1990; Dijkstra, 1992; Zanton and Heinrichs, 2008a; Zanton and Heinrichs, 2009b; 

Lascano et al., 2016a). The ratio between organs and gut surface to digesta volume stays 

constant in ad-libitum feeding, while this ratio increases due to changes in the GI tract 

volume in precision feeding (Clauss and Hummel, 2005). That increases the retention 

time of nutrients in the rumen and nutrients digestibility because of a greater contact 

surface with gut enzymes for digestion and absorption (Clauss and Hummel, 2005). 

Heifers under precision feeding consume and digest less intake than traditional ad-libitum 

feeding and retain more energy by reducing heat production associated with digestive 

metabolism, which can be used for growth by tissues (Reynolds et al., 1991b). Dry matter 

intake is controlled in precision-fed heifers and energy-dense diets to cover the energy 

and N requirements (Murphy et al., 1994). The reduction in passage rate in precision-fed 
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dairy heifers will reduce microbial protein flow to the small intestine, compensated by 

higher protein digestion and N retention (Zanton and Heinrichs, 2008a). Firkins et al. 

(1986) and Merchen et al. (1986) reported a decrease in rumen digestibility as DMI 

increase with changes in the pattern of ruminal fermentation in steers and sheep fed 

different levels of intake. 

Colucci et al. (1990) conducted studies on sheep and beef cattle comparing 

different F:C with low intake diets and reported that nutrient digestibility increase as 

concentrates increase in the diet due to longer retention time in the rumen. Fecal and 

urine excretion are reduced as nutrient digestibility increases, which is accompanied by a 

reduction in emissions; thus, nutrient loss is reduced (Reynolds et al., 1991b). In addition, 

any reduction in manure production will lead to easier manure management and decrease 

farm expenses in general. Four different levels of DMI as a high forage diet were offered 

to dairy heifers to evaluate the passage rate (Zanton and Heinrichs, 2008a). They 

observed that the rumen passage rate increased as DMI increased up to ad-libitum levels. 

Additionally, they have observed a higher feed efficiency in limit-fed heifers as DM, 

OM, and NDF digestibility increased as intake decreased. Lascano et al. (2016a) showed 

that low forage diets (LF) had a lower turnover rate for solid and liquid fractions than 

high forage diets (HF). Also, as dietary fiber increased in the diets, the passage rate 

increased linearly. In addition, as dietary fiber increased in the diets, the DM, OM, and 

cellulose digestion decreased linearly, whereas a higher DM, OM, NDF, ADF, cellulose, 

and starch digestibility in LF diets due to the retention time changes. The effect of 3 

different intake levels and 3 F:C were evaluated on dairy heifers by Lascano and 
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Heinrichs (2009). They have observed a lower DM turnover rate and a higher rumen 

retention time in heifers that consumed the smallest F:C. Pino and Heinrichs (2016) 

conducted a study to evaluate 4 different DMI with 4 different starch concentrations in 

dairy heifers' diets. They have reported that the DMI decreased linearly as dietary starch 

concentration increased. As starch concentration increased in this study, the DM, 

hemicellulose, and starch digestibility increased linearly. However, treatments did not 

show any effects on NDF and ADF digestibility. Low OM digestibility and high ruminal 

passage rate were observed in dairy heifers at 8 and 20 mo of age fed with low energy 

diets and high DMI (Zanton and Heinrichs, 2016). They have also observed a higher N 

digestion and retention in heifers that received high energy diets with low DMI compared 

to low energy diets with high DMI. Passage rate plays a major role in the nutrients 

digestibility under this system as giving the nutrients a more retention time in the rumen 

to be fermented and digested.  

Forage to Concentrate Ratio 

Dairy farmers traditionally fed dairy heifers with ad-libitum, high forage 

components, low energy diets. However, the high fiber-based diets may decrease diet 

digestibility and result in energy and protein inefficiency (Moody et al., 2007; Zanton and 

Heinrichs, 2007; Zanton and Heinrichs, 2008b). Precision feeding systems are more cost-

effective per unit of energy and protein than forages despite containing more concentrates 

(Zanton and Heinrichs, 2007). High concentrate (HC), high energy diets have been 

shown to reduce DMI in dairy heifers, reduce the nutrient loss in ad-libitum diets, and 

have greater efficiency of using metabolizable energy (ME; Blaxter and Wainman, 1964). 
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These reductions can help reduce the cost of dairy heifers and benefit the farm 

economically (Zanton and Heinrichs, 2009b). 

The use of high concentrate components has been broadly described in ruminant 

diets (Lascano and Heinrichs, 2009; Suarez-Mena et al., 2015; Lascano et al., 2016a). 

When steers consumed HC diets with the same level of ME intake, it has been observed 

that a reduction in heat production and more energy was used for growth. Additionally, 

nutrient digestibility increased as diet concentrate increased (Reynolds et al., 1991b; 

Huntington et al., 1996). Reynolds et al. (1991b) observed that the apparent digestibility 

of DM, OM, CP, EE, NDF, ADF, and hemicellulose increased in steers that consumed a 

low forage (25% DM) diet. Similar results were observed in lambs as the apparent 

digestibility of DM, OM, ADF, NDF, and starch increased linearly when the concentrate 

proportion increased to 92% of the ration (Murphy et al., 1994). Furthermore, as dietary 

concentrate increased in cow and sheep diets, the apparent digestibility of DM, NDF, 

ADF, and hemicellulose increased linearly at low DMI (Colucci et al., 1989). 

In dairy heifers, Zanton and Heinrichs (2008a) found that nutrient utilization 

efficiency was increased as intake decreased even though dairy heifers were fed HF diets 

but with limit feeding intake at the level needed for maintenance. Additionally, Reynolds 

et al. (1991b) fed beef heifers with a constant ME from an HC (25:75) or LC (75:25). 

They found that the HC diet had less heat energy production and retained more tissue 

energy. It has been suggested that HC diets can still meet the nutrient requirements even 

though the DMI of the animal is reduced, which is necessary in order to avoid increased 

ADG (Zanton and Heinrichs, 2007). Feeding HC diets had no negative effect on rumen 
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fermentation, milk yields, and lower manure output (Hoffman et al., 2007; Moody et al., 

2007; Zanton and Heinrichs, 2007; Lascano and Heinrichs, 2009). When HC diets 

(energy-dense diets) were used, DMI was reduced, and propionate increased at the 

expense of acetate. Also, microbial N and MPS' efficiency increased (Merchen et al., 

1986; Colucci et al., 1990; Zanton and Heinrichs, 2008a). Several studies in precision-fed 

heifers have proven that reduction in DMI as a high concentrate (HC) included in the 

diets do not affect rumen pH and fiber digestion (Moody et al., 2007; Lascano and 

Heinrichs, 2009; Lascano et al., 2014; Ding et al., 2015; Pino and Heinrichs, 2016). 

Furthermore, ruminal pH was higher for precision-fed dairy heifers compared to ad-

libitum feeding. Dry matter and OM apparent digestibility were observed to be higher 

when dairy heifers fed HC diets (Suarez-Mena et al., 2015; Lascano et al., 2016a; Zanton 

and Heinrichs, 2016). In addition, it has been reported that the apparent starch 

digestibility increased with HC diets (Lascano and Heinrichs, 2011; Lascano et al., 

2016a; Pino and Heinrichs 2016). Also, Lascano and Heinrichs (2011) and Lascano et al. 

(2016a) observed that the HC diets increased NDF and ADF digestibility. In contrast, 

Zanton and Heinrichs (2009a) did not observe any effect on NDF, ADF, and 

hemicellulose digestibility. It has been clarified that feeding HC diets could limit fiber 

digestibility by shifting the rumen bacteria towards amylolytic bacteria at fibrinolytic 

bacteria's expenses (Mertens and Loften, 1980; Calsamiglia et al., 2008). 

Furthermore, feeding different F:C diets may show differences in nitrogen (N) 

partitioning and utilization (Zanton and Heinrichs, 2009b). Lascano et al. (2016a) fed 

dairy heifers with HC diets and observed no N digestion differences, but N excretion was 
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reduced, and N retention was higher. In contrast, a high CP and N digestibility was 

observed by Zanton and Heinrichs (2009a). Therefore, the HC diets lead to an increase in 

N efficiency by reducing N excretion and increase in N retention (Murphy et al., 1994; 

Moody et al., 2007; Zanton and Heinrichs, 2009b). In beef and dairy heifers, HC diets 

have higher N efficiency and retention, even though the N intake is lower compared to 

LC diets (Reynolds et al., 1991a; Zanton and Heinrichs, 2008a; Lascano and Heinrichs, 

2011). When feeding HC diets, fecal DM, urine, and urinary N excretion were mostly 

lower (Huntington et al., 1996; Zanton and Heinrichs, 2007). Zanton and Heinrichs 

(2007) concluded that N's use is more efficient when HC diets were fed to the dairy 

heifer and observed that 1.8 g N intake/kg BW0.75 is the maximum N efficiency in dairy 

heifers. In general, due to more energy availability in the rumen as in HC diets and rapid 

growth of microbes that can degrade nutrients faster, the DM, OM, and starch 

digestibility is higher than in diets with HF components (Merchen et al., 1986). 

Additionally, dairy heifers fed HC diets under the precision feeding program will reduce 

DMI and stimulate rumen retention to provide a higher digestion response (Zanton and 

Heinrichs, 2009b). 

Feed Costs 

Raising dairy heifer is one of the highest routine costs on a dairy farm (Gabler et 

al., 2000). Dairy heifers are fed, housed, and bred over two years until they calve and 

produce milk. Heifer market prices vary broadly with the many different systems used in 

the rearing process to raise these heifers. The cost of raising dairy heifer based on 

research journals and extension articles varied greatly over the last 20 years, raising each 
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animal ranging from $1,134.06 to $2,241.00 (Gabler et al., 2000; Tranel, 2019). 

Sometimes, the costs exceed 14.4% of what producers calculated (Mohd Nor et al., 

2015). The cost of raising dairy heifers accounts for 15 to 20% of the total annual 

expenses in dairy farms and often represents the second greatest cost to the dairy farm 

(Heinrichs, 1993). The heifer raising cost has increased over the last 5 years ranging from 

$1,730.29 to $2,241.00 in dairy farms in the USA (Tranel, 2019). Reducing extra 

expenditures on raising heifers may reduce the whole-farm expenses (Zanton and 

Heinrichs, 2009b). 

Feed costs are the most considerable expense in raising dairy heifers representing 

over 60% of the total cost (Gabler et al., 2000; Harsh et al., 2001; Heinrichs, 2013). The 

high contribution of feed cost to the total cost associated with raising dairy heifers makes 

it an opportunity to search for alternative, more efficient feed management practices and 

less expensive by-products that reduce feed expenses. To substantially reduce feeding 

costs, a reduction in nutrient intake by feeding animals to meet their requirements 

(precision feeding program) is necessary. Therefore, nutritional needs are covered while 

nutrient losses are minimized (Hoffman et al., 2007; Zanton and Heinrichs, 2008a). 

Accordingly, precision feeding improves feed efficiency by reducing DMI and providing 

the heifer with the minimum amount of nutrients to reach the targeted average daily gain 

(ADG). Thus, controlling heifer growth and minimizing nutrient discharge to the 

environment (Loerch, 1990; Galyean et al., 1999; Hoffman et al., 2007; Zanton and 

Heinrichs, 2008a). The precision feeding program is the most traditional way to reduce 
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feed expenses that have been reported in beef cattle (Koch et al., 1963; Loerch, 1990; 

Galyean et al., 1999). 

On the other hand, different fat sources could be included in a heifer’s diet under 

precision feeding conditions in order to increase the energy density. Based on USDA 

(March 2020), the National Agricultural Statistics Service, the US soybean oil production 

in 2019 was 12063.6 tons, with an average price of $645 per ton, while the coconut oil 

production was 428.7 tons, with an average price of $890 per ton. The palm oil 

production was 1161.0 tons, with an average price of $745 per ton, while the palm kernel 

oil production was 125.2 tons, with an average price of 1320 per ton. In addition, by-

products from numerous industries, such as the poultry industry by-products, can be 

utilized by ruminants. Poultry fat is a by-product of chicken processing and extensively 

produced world-wide and a potential source of valuable nutrients, such as energy. Using 

PF in dairy diets can be an economical energy source. The US PF production was 1249.9 

tons, with an average price of $546 per ton, while the yellow grease production was 

1110.8 tons, with an average price of $434 per ton. Also, animal fat prices were $241 per 

ton (USDA, March 2020). However, more research in the dairy heifer nutrition area 

under precision-feeding programs and its outcomes could further reduce feed costs. 
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DIETARY FAT 

Feeding fat has gained interest in the last few decades, and adding fat to dairy 

diets became common practice for its potential to increase the energy density in diets, 

improve palatability and reduce feed dustiness, which may provide some benefits to the 

animal’s health (Azain, 2004). The advantages of the addition of fat into dairy rations 

include potential increased energy intake for high milk production (Ostergaard et al., 

1981; Ruesegger et al., 1985), the efficiency of energy utilization (Brumby et al., 1978). 

Also, improving rumen fermentation by optimizing starch to fiber ratio (Palmquist and 

Conrad, 1978) without the risk of feeding excessive fermentable carbohydrates (Jenkins 

and McGuire, 2006). 

The literature has noted that feeding fat has some positive effects on beef cow’s 

reproduction (McCullough, 2015) and may help with heat stress during warm and hot 

temperatures and humid environmental weather. Madison et al. (1994) observed that 

feeding supplemental fat during the summertime increased milk production more than it 

did during winter. Furthermore, Skaar et al. (1989) reported that the lactating cows were 

improved their lactation performance when they were fed diets supplemented with fat. 

They suggested that the metabolic heat during digestion and metabolism in fat is less than 

in proteins and carbohydrates. However, supplemental fat can negatively affect dry 

matter intake, milk yield, and milk components if added to a ration in excess amounts 

(Rico et al., 2014). 

Typical heifer’s diets are low in fat due to high forage content and low amounts of 

fat in those forages. Usually, the mixture of cereal grains and forages contain about 3% 
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fat. The total dietary fat does not exceed 6-7% of the DMI, with traditional dairy heifer 

diets typically containing between 2 to 3% fat (NRC, 2001; Moran, 2005). Fats have 

more energy-dense with gross energy of 9.0 kcal/g compared to carbohydrate and protein 

(4.0, 3.2 kcal/g; respectively), which provides energy to ruminants without increasing the 

energy lost heat increment (McCullough, 2015). Several studies have explored different 

feeding fat strategies for dairy cows (Rabiee et al., 2012). However, there is limited 

research regarding feeding fat on the growing dairy heifer under the precision feeding 

system. Therefore, DMI can be reduced further by using fat as an energy source in the 

precision feeding program as long as other nutrients are adjusted to provide the required 

amounts. 

Fat Sources 

Various lipid sources can be grouped into two major categories: natural fats 

(including plant and animal fats) and commercial or specialty fats, which is a unique 

preparation made by using animal or plant fats (Eastridge, 2002). 

Oilseeds are the primary plant-sourced fats such as cottonseed, sunflower, canola, 

flax, and soybeans. Whole oilseeds are commonly used for a dietary fat source because it 

is relatively high in protein, fiber, and energy with a relatively low cost (Schossow, 

2019). However, in order to increase the utilization in the rumen for protein, extruding, or 

roasting is very beneficial (Stern et al., 1985). Also, caution should be exercised in 

feeding pure vegetable oils since they may reduce fiber digestion and milk fat percentage 

(Mohamed et al., 1988). Further research is being conducted to see if encapsulating or 

hydrogenating the vegetable oil will help bypass the rumen and become more readily 
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available to the mammary gland and milk fat synthesis. It is important to mention that 

grass and corn silages contain about 1-3% fat, and the amount of fat within plant species 

depends on maturity at harvest, season, and environment. In contrast, the fat content of 

grains and by-products depending on processing (Boerman and Lock, 2014). Silages and 

preserved forages are commonly added along with commercial fat supplements since 

they make up a significant part of a dairy cow ration. Based on Jenkins and Harvatine 

(2014), the three predominant glycerol-based lipids in animal feed ingredients are 

triglycerides, galactolipids, and phospholipids. The major storage fat in oilseeds is 

triglycerides. Therefore the concentrate feedstuffs are high, while galactolipids make up a 

major portion of the glycolipids within forages (Van Soest, 1994).  

The primary animal fats fed to dairy cattle are tallow, lard, poultry fat, fish meal, 

and grease. Tallow and lard are solid or semi-solid at room temperature, contain more 

saturated fatty acids than the plant-based oilseeds, and high in oleic acid as well (Jenkins 

and Jenny, 1989; Bisphlinghoff, 1990). Tallow can be of different qualities and grades 

and can be readily purchased in barrels with heating instruments to melt the fat for 

mixing purposes (Eastridge, 2002). Poultry fat is a by-product of chicken processing and 

extensively produced world-wide and a potential source of valuable nutrients, including 

energy and protein. Fatty acids composition of rendered animal fats is presented in table 

2.1 (Rouse, 2003). Using poultry fat in dairy diets can be an economical energy source 

and can benefit the poultry industries by providing a market for their by-products 

(Hutchison et al., 2006; Swisher, 2015). The fish meal should be restricted to a maximum 

of 2 to 3% of dietary DM since it contains a significant amount of 20 and 22-carbon 
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polyunsaturated FA, which are very toxic to ruminal bacteria (Hoover et al., 1989). 

Yellow grease is a grease that is wasted from food service operations, and it usually 

contains a mixture of vegetable and animal fats and is used as a fat source for livestock 

and pet foods (Eastridge, 2002). It has been reported that including animal fat in high 

fiber diet decreased concentrations of short and medium-chain fatty acids and increased 

the milk fat (Lucy et al., 1993). 

Several commercial fat preparations are available and commonly sold as rumen 

bypass fats or inert fats such as Energy Booster 100, contained 98 % of total fatty acids, 

which is mainly of stearic acid (C18:0), and Megalac (calcium salt), made from free fatty 

acids of palm oil and calcium (high in C16:0); soybean oil (high in C18:2), or blend of fat 

sources (Eastridge, 2002; Rico et al., 2014). Specialty fats are developed to minimize the 

detrimental effects on rumen fermentation and the risk of decreasing fiber digestion 

(Palmquist and Jenkins, 1982; Jenkins and Harvatine, 2014). As mentioned before, some 

other ways of protecting fatty acids have been reported in the literature, including 

physical and chemical modifications such as encapsulating the unsaturated FA within a 

saturated FA shell or combining unsaturated FA with casein and cross-linking with 

formaldehyde (Jenkins and Bridges, 2007). The difference between specialty fats and 

plant and animal fats that they contain mostly saturated fats compared to unsaturated fatty 

acids (Schossow, 2019). It has been reported that using these specialty fats with high 

saturated fats led to minimizing negative effects on milk fat production, rumen 

fermentation, and feed intakes (Jenkins and Jenny, 1989). They related to the fact that 

hydrogenated yellow grease was more palatable than yellow grease. The hydrogenated 
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one had lower effect on ruminal fermentation and did not affect the intake by maintaining 

gut fill as in the yellow grease. 

Several other alternative feed sources from ethanol, biodiesel, and vegetable oil 

industry such as hominy, canola meal, linseed meal, and dry distillers grain with solubles 

with a moderate amount of fat are on the rise (Eastridge, 2002; Schossow, 2019). In a 

study conducted by Anderson et al. (2015), the dietary fat was up to 7% when fed high 

fat from traditional dried distillers grains (DDGS) to dairy heifers. Distillers grains and 

canola meal were observed to maintain lactating dairy cow diets (Schingoethe et al., 

2009; Christen et al., 2010). Also, the distiller's wet grains were observed to improve the 

efficiency of converting feed to milk by decrease the intakes with similar milk production 

between treatments when fed in place of soybean meal and corn (Schingoethe et al., 

1999). Fat sources with different saturated and unsaturated fatty acids can affect in many 

ways DMI, nutrient digestibility, and rumen fermentation. Each of these fat sources 

differs in how they metabolize, digest, and absorb in ruminants. 

Fat Metabolism in the Rumen 

After feed consumption, dietary fat undergoes an important modification once 

entering the rumen. In the rumen, dietary fat is exposed to two major processes; 

hydrolysis of ester linkages and biohydrogenation (Lock et al., 2006; Figure 2.1). As 

mentioned before, forages and cereal grains contain FA in triglycerides and galactolipids, 

representing the typical ruminant’s diets. Therefore, lipids must become free from the 

coating matrix through mastication and microbial digestive and followed by hydrolysis of 

ester linkages (Palmquist et al., 2005). Rumen bacteria such as A. Lipolytica are 
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responsible for hydrolyzing the lipid molecules by microbial lipases resulting in the 

formation and release. The cleavage of the ester bonds between FA and the glycerol 

backbone in triglycerides, glycolipids, and phospholipids is the hydrolysis (Lourenço et 

al., 2010). The low ruminal pH (less than 6.0) as a result of feeding high concentrate diets 

can negatively affect fat hydrolysis by reducing it even though the rate and extent of 

hydrolysis usually are about 85% (Gerson et al., 1985; Van Nevel and Demeyer, 1996; 

Doreau and Ferlay, 1994; Beam et al., 2000). Van Nevel and Demeyer (1996) suggested 

that the low pH can inhibit lipolytic bacteria's growth and metabolism or directly affect 

their lipase activity. Additionally, as melting point and dietary fat concentration are 

increased, the hydrolysis of fat is decreased (Palmquist et al., 2005; Beam et al., 2000); as 

the saturation of fatty acids increases with an increase in the fat concentration, the 

lipolysis activity of these saturated fatty acids decreases. 

Triglycerides and glycolipids are digested in the rumen and broken down into 

glycerol and FFA, and two or more sugar molecules, while galactolipids are broken down 

into galactose and diacylglycerol, which are metabolized into VFA (McCullough, 2015). 

Saturated fatty acids (SFA) remain unmodified and form carboxylate salts after binding 

with positively charged molecules to pass to the small intestine. In contrast, unsaturated 

fatty acids (UFA) pass to the small intestine after going through the biohydrogenation  

(BH) process and forming carboxylate salts (McCullough, 2015). Following hydrolysis, 

UFA, such as linoleic and linolenic acids, undergo BH by ruminal microbes. The BH is a 

multi-step process involving several isomerization and reduction steps. The end-products 
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are mostly the formation of SFA, C18:0 (stearic acid), and C18:1 (oleic acid; NRC, 2001; 

Harfoot and Hazlewood, 1997). 

Linoleic acid in HF diets is typically biohydrogenated to form conjugated linoleic 

acid (CLA), then to vaccenic acid, and finally to stearic acid. Whereas, in HC diets, 

where rumen pH is low, typically biohydrogenated linoleic acid to CLA isomers without 

continuing down the pathway to stearic acid, thus milk fat depression can occur 

(Baumgard et al., 2000; Lock and Bauman, 2004; Chilliard et al., 2007). It has been 

suggested that the toxic effects of UFA (disrupt cell integrity and limit bacterial growth) 

lead to a mechanism response by ruminal bacteria to deal with it by both BH and cis-trans 

isomerization of dietary UFA (Maia et al., 2007 and Heipieper et al., 2010). In addition, 

the toxic effects increase as unsaturation increases when linolenic is higher than linoleic 

(Maia et al., 2007; Maia et al., 2010). It is estimated that ruminal BH of linoleic and 

linolenic acids ranges from 70 to 95% and 85 to 100%, respectively, and is higher in 

plant oils than animal oils (NRC, 2001; Lock et al., 2006). The SFA could have some 

potential adverse effects on decreasing the ruminal NDF digestibility due to increasing 

the rumination rate. That increases the passage rate of more rapidly fermentable NDF 

(Harvatine and Allen, 2006). It has been reported that the SFA does not negatively 

influence bacterial plasma membrane function and has less detrimental to rumen 

fermentation than UFA (Jenkins, 1993). On the other hand, even though there are less 

than 1% of CLA in milk and beef, but due to its potential benefits in human such as an 

anticarcinogen, antioantherogen, as well as anti-obesity, the CLA isomer has been 

extensively researched by many researchers (McGuire et al., 2000). 
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Fat Digestion in the Small Intestine 

The end-products of rumen hydrolysis and BH that reach the duodenal are mainly 

FFA (85-90%), where SFA (C16:0 and C18:0) represent (65%) of them. The remaining 

lipids (10-15%) are microbial phospholipids that are typically found as potassium, 

sodium, or calcium salts due to neutral conditions in the rumen plus small amounts of 

triglycerides and glycolipids from residual feed material (Doreau and Ferlay, 1994; NRC, 

2001; Lock et al., 2006). Most lipids are digested in the small intestine with 5% in the 

duodenum, 20% in the upper jejunum, 25% in the mid and lower jejunum, the rest 50% is 

digested in the ileum (Leat and Harrision, 1975). After passing the rumen and the low pH 

in the abomasum and duodenum (2.0 to 2.5), the FFA and salts dissociate and attach to 

feed particles (Drackley, 2005). The pancreatic lipases are not active at low pH in 

ruminants; therefore, it cannot break down the FA. Instead of that, micelles must be 

formed to allow certain parts of the bile salts and FFA to interact with the aqueous 

environment (Davis, 1990). Micelles are facilitated by both bile and pancreatic juice 

activity, secreted into the upper duodenum, where FA digestion begins. Bile contains bile 

salts and lecithin (phosphatidylcholine), lecithin is converted to lysolecithin 

(lysophosphatidylcholine; an emulsifier for SFA) by the pancreatic phospholipase A2 

provided by the pancreatic juice, which provides the bicarbonate as well to raise the pH 

(Lock et al., 2006; Figure 2.2). The FA that is attached to feed particles and bacteria 

adsorb by lysolecithin and bile salts and transfer lipids to a soluble micellar phase, which 

is required for FA absorption to happen (Moore and Christie, 1984). 
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The results from 20 different independent studies on lactating dairy cattle were 

compiled; total and individual FA digestibility was calculated (Lock et al., 2006). They 

have reported total FA digestibility ranging from 58% to 86%, with an average of 74%. 

In addition, the mean digestibility values of individual FA were as shown in figure 2.3 

below. Based on results by Doppenberg and Palmquist (1991), it has been reported that as 

the supply of FA increases, the true digestibility of FA may decline. Furthermore, in a 

review paper by Bauchart (1993), it has been discussed that when the LCFA flow is 

elevated, the pancreatic phospholipase A2 activity and bile salts may become restrictive 

for their, which leads to a decrease in their digestibility as well. On the other hand, it has 

been reported that the digestibility of C16:0 in the small intestine was more than C18:0 

(72.5 vs. 54.6%, respectively; Ferlay et al., 1993). In contrast, Enjalbert et al. (1997) 

reported no significant differences between the digestibility of C16:0 and C10:0 when 

feeding Ca-soaps of FA from palm oil or rapeseed at the same inclusion in the ration. It 

seems important to consider duodenal flow differences when comparing these two FA's 

digestibility due to the higher C18:0 flow to the duodenum compared to C16:0. As 

mentioned before, the amount of saturated and unsaturated fatty acids and its 

representative in different fat sources can determine these fats in ruminants' digestibility. 

Fat Absorption in Ruminants 

There is no significant absorption, or any modifications occur during the transit of 

LCFA through the omasum and abomasum (Moore and Christie, 1984). The absorption 

of FA happens in the small intestine, mainly in the jejunum portion. Upon the 

enterocyte’s entry, the acyl-CoA synthetase converts the absorbed FA with chain length 
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>C10 to their coenzyme A derivatives and re-esterified them by the α-glycerolphosphate 

pathway to triglycerides (Bach and Babayan, 1982), and along with phospholipids, 

cholesterol, and apoproteins, they will be formed into chylomicrons, and very-low-

density lipoproteins (VLDL; Bauchart, 1993). Lipoproteins (chylomicrons and VLDL) 

cannot be absorbed directly by intestinal cells due to their large size. Therefore, they must 

leave the cell by pinocytosis and secret into the lymph system and then into the 

bloodstream by way of the intestinal and thoracic lymph ducts (Moore and Christie, 

1984). Figure 2.4 is showing the absorption of fat in the enterocytes of ruminants 

(Navarrete, 2013). It is very important to note that the monoglyceride pathway is not 

active because there is no 2-monoglycerides absorption in functioning ruminants. The 

stearic acid (C18:0) is the main FA reaching the small intestine; the high ability of 

ruminant animals to absorb SFA is related to the dependence on lysolecithin as the major 

micelle stabilizer. In comparison to other amphiphiles, lysolecithin was the only one that 

significantly increased the distribution of C18:0 into the micellar phase and away from 

the particulate phase (Freeman, 1984). However, it has been previously shown that about 

7 to 9% of the stearic acid (C18:0) that enter the enterocyte is desaturated to oleic acid 

(C18:1) in the intestinal mucosa OF sheep (Bickerstaffe and Annison, 1969). 

Lipoproteins travel to specific target tissues after the blood oxygenation, including 

muscle, adipose, and mammary tissue. These tissues contain the lipoprotein lipase, which 

is the enzyme responsible for breaking down the chylomicrons and VLDL. Also, 

lipoprotein lipase brake down the FFA as well, which are then small enough to enter cells 
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and be transformed back into triglycerides; thus, triglycerides can be used as an energy 

source for cell functions (Bauchart, 1993; McCullough, 2015). 

On the other hand, the micelles' formation allows shorter chain FA = / <C10 to be 

absorbed into intestinal cells, with most being absorbed in the jejunum. These FA will 

leave the enterocyte mostly unmodified because they are not easily esterified or 

incorporated into lipoproteins and enter the venous portal system bound to albumin (Bach 

and Babayan, 1982). 

Effects of Fat Feeding 

Dry Matter Intake, Satiety, and Palatability 

Some factors determine the effects of dietary fat on DMI, such as type and form 

of fat, chain length, and FA profile. In some studies, the DMI of dairy cows was 

depressed by added fat (Choi and Palmquist, 1996; Schauff and Clark. 1992). Allen 

(2000) reported that the DMI decreased when calcium salts of palm FA were fed in TMR 

with ranges from 7% to 9% of DM to dairy cows in 11 out of 24 comparisons, and 

unprocessed animal fats decreased DMI as well whereas adding hydrogenated fats did not 

affect DMI. Calcium salts of palm FA had the strongest effect on DMI, approximately 

twice that observed for the unprocessed animal fats. Several authors have reported the 

hypophagic effect of UFA of calcium salts and related it to a different reason: i) Ngidi et 

al. (1990) suggested that the calcium salts diet has lower acceptability, ii) Drackley et al. 

(1992) reported that the gastrointestinal motility had a depression effect by calcium salts 

diet, iii) Allen (2000) stated a that the fiber digestion was reduced with calcium salts diet 

which is responsible for stimulating the distension of reticolo-rumen, or the greater 
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absorption of UFA compared to SFA have a metabolic regulation of DMI. Regarding the 

chain length effect on DMI, the greater hypophagic effects of calcium salts of palm FA 

are probably not related to higher C16:0 content. Even though it has a high content of 

C16:0 relative to other FA sources, there is no evidence that C16 FA is more hypophagic 

than C18 FA (Allen, 2000). Additionally, the C16 to C18 FA ratio did not significantly 

affect the DMI of dairy cows in a regression analysis reported in the literature (Firkins 

and Eastridge, 1994). The FA profile of the dietary fat is another important factor 

determining DMI response to fat. Also, the hypophagic effects of some unsaturated fat 

sources should be reduced by the extensive BH of FA happen in the reticulo-rumen (RR; 

Dawson and Kemp, 1970; Viviani, 1970). However, BH is increased with the degree of 

unsaturation of C18 FA (Kalscheur et al., 1997; Wu et al., 1991) and is decreased as the 

amount of added unsaturated fat increases (Christensen et al., 1998). Drackley et al. 

(1992) reported that the amount of UFA reaching the duodenum affects DMI. Litherland 

et al. (2005) showed that the depression in feed intake was greater after the infusion of 

UFA soy oil in the abomasum than the infusion of unsaturated triglycerides. Palmquist 

and Jenkins (1980) suggested that adding SFA may be a particularly useful fat source 

because these FA have minimal effects on rumen microbial activity.  

The mechanisms that fat reduces feed intake could involve releasing gut 

hormones, fat oxidation in the liver, fat effects on ruminal fermentation and gut motility, 

and palatability and acceptability of diets containing fat. Fat plays a role as a strong 

stimulator of releasing the gut peptide cholecystokinin (CCK) hormone (Liddle et al., 

1985). It has been observed that DMI was decreased by feeding fat to dairy cows, and 
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postprandial plasma concentrations of insulin decreased while CCK increased (Choi and 

Palmquist, 1996). Additionally, feed intake of sheep was depressed by intravenous 

injection of exogenous CCK (Grovum, 1981). Choi et al. (1996) reported that DMI of 

heifers fed a high-fat diet increased by 92% during the first 2-h post-injection of MK-

329, a nonpeptide CCKA receptor antagonist. The direct action of brain CCK on brain 

satiety centers or peripheral action of gut CCK is considered the CCK's hypophagic 

effects (Reidelberger, 1994). The peripheral action of gut CCK includes inhibition of 

gastric emptying and increase distention (Reidelberger, 1994). The signals generated by 

hepatic vagal afferent nerves to brain centers to signal satiety are affected by the liver's 

FA oxidation rate (Scharrer and Langhans, 1986). The DMI of rats fed a diet containing 

18% fat was increased when beta-oxidation of FA was inhibited by mercaptoacetate, an 

inhibitor of acyl CoA dehydrogenases, but that did not affect the DMI of rats fed a 3.3% 

fat (Scharrer and Langhans, 1986). In contrast, injection mercaptoacetate decreased 

heifers DMI (Choi et al., 1997). Also, Litherland et al. (2005) indicated that the 

concentration of plasma glucagon-like peptide 1 increased, whereas CCK's plasma 

concentration did not change when DMI was decreased. Fat is linked to increased 

propionate concentration due to more energy-efficient and rumen fermentation (Manthey 

et al., 2016). There are less methane and carbon dioxide production in propionate than 

acetate (Fahey and Berger, 1988). When propionate was infused into the steers' 

mesenteric vein, the feed intake was reduced (Elliot et al., 1985). Based on Baile's (1971) 

experiments where propionate was injected into sheep and goats' ruminal vein, the DMI 

was decreased. They suggested that propionate receptors in the rumen might control the 
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feed intake. Also, propionate resulted in decreased DMI of dairy cows when infused in 

isocaloric amounts with long-term ruminal infusions (Sheperd and Combs, 1998). It has 

been reported that insulin is associated with a reduction in DMI of sheep (Foster et al., 

1991), and propionate stimulates and increases plasma insulin secretion in sheep 

(Grovum, 1995). 

Satiety centers in the brain integrate all the stimuli to signal the end of a meal, 

such as distension, which stimulates stretch receptors in the RR wall (Harding and Leek, 

1972; Forbes, 1996). Dietary fat is one of the several dietary factors with possible 

distension effects (Choi and Palmquist, 1996). Fat can inhibit fiber digestion in the RR 

resulting in a reduction in the passage rate, increasing distension, and stimulating 

receptors in the RR, reducing DMI (Palmquist and Jenkins, 1980). However, in several 

experiments, there were no interactions between fat and fiber level on DMI (Canale et al., 

1990; Jerred et al., 1990; Klusmeyer et al., 1991; Tackett et al., 1996). Also, the DMI was 

decreased in low fiber diets more than in high fiber diets when fat was added to the diet 

(Elliott et al., 1995; Grant and Weidner, 1992). As mentioned before, high-fat diets 

increased plasma CCK in dairy cows (Choi and Palmquist, 1996), and there is evidence 

that CCK contributes to satiety (Reidelberger, 1994) and suppresses feed intake by 

inhibiting gastric emptying (Moran and McHugh, 1982). Furthermore, the motility of the 

RR was inhibited when unsaturated LCFA was infused in sheep (Nicholson and Omer, 

1983). The greater release of CCK stimulated by high UFA reaching the duodenum is the 

reason for greater hypophagic effects compared to SFA. Additionally, UFA might be 

absorbed and oxidized in the liver more quickly than SFA, generating reducing 
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equivalents and satiety faster. On the other hand, there is evidence that absorbed 

propionate affects satiety. Anil and Forbes (1980) reported that the feed intake was 

reduced over 80% compared with control when propionate was infused into sheep's 

portal vein.  

The acceptability of different fat sources depends on the differences in their 

hypophagic effects. Fat was found to vary in acceptability while fed alone or top-dressed; 

Ca-PFA had the lower acceptability followed by tallow, encapsulated dry tallow, or 

prilled LCFA (Grummer et al., 1990). These differences between fat were decreased 

when they mixed with grain, except for Ca-PFA. The effects of fat sources on the 

acceptability of diets are probably small when fat is included in TMR unless the inclusion 

rates are very high. Furthermore, fat acceptability increased following an adaptation 

period. For example, heat-treated beans are more palatable when top-dressed than other 

fat sources. The top-dressed method may take longer for cows to adapt to whole cotton 

seeds, tallows, or specialty fats. It has been observed when 10% of tallow or animal 

vegetable blend was added to grain mixes with restricted feeding time, the length and size 

of initial meals were reduced, which limits the consumption (Heinrichs et al., 1982). A 

study conducted by (Grummer et al., 1990) compared to intake of different fat sources 

such as booster fat, calcium salts (megalac), energy booster, and tallow and fed to dairy 

cows in different ways, either alone, top dressed on grain, mixed with the grain at the 

10% level, or alone with adaptation period. They observed that tallow had the highest 

intake between fats fed alone without adaptation. Intake of calcium salts (megalac) was 

lower than booster fat or energy booster with adaptation. Specialty fats intake was similar 
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when top-dressed or fed as part of the grain mix. Diluting fat sources with other feed 

ingredients as TMR and gradually adapting cows to the fat may reduce consumption 

problems and palatability differences between fat sources. 

An important consideration is that the FA content of diets in most of these studies 

ranges from 7 to 9% of DM. Also, not all fat sources induced the same responses. Rabiee 

et al. (2012) reported in meta-analysis a great variation between different fat types with 

the same supplement across different diets and studies. The range in responses being as 

much as 5 standard deviations from the mean with positive or negative responses differed 

between fats. However, they concluded that fat inclusion in the diets decreased the DMI 

while increased milk and milk fat production and milk efficiency in general. Overall, 

including dietary fat in the diets can affect the intake amount as a dense energy source. 

The palatability of fat depends on the different sources of fat and the way of offering it to 

the animals. 

Fiber, Soluble Carbohydrate, and Protein Digestibility 

Rumen fermentation is not affected when fat levels are low in the diets because 

rumen microbes can saturate FA, but this capacity can be exceeded at higher levels, and 

UFA can accumulate in the rumen and interfere with rumen fermentation (NRC, 2001). 

Therefore, the digestibility of nonlipid energy sources is reduced (Jenkins, 1993). It has 

been reported that the ruminal digestion of structural carbohydrates can be reduced up to 

50% or more by adding less than 10% of fat to the diet (Ikwuegbu and Sutton, 1982; 

Jenkins and Palmquist, 1984). The reduction in fiber digestibility is accompanied by 

decreased methane production, hydrogen, VFA, and lower acetate to propionate ratio 
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(Boggs et al., 1987; Chalupa et al., 1984; Czerkawski and Clapperton, 1984; Ikwuegbu 

and Sutton, 1982). Limited hindgut fermentation may lower the fiber digestibility 

depression in the whole digestive tract when fat addition inhibits ruminal fermentation 

(Boggs et al., 1987; Jenkins and Fotouhi, 1990). 

In contrast, several current studies showed different fat effect results on fiber 

digestibility using different feeding systems. Manthey and Anderson (2018) reported no 

effects on fiber apparent digestibility when heifers limit fed DDGS with ad libitum grass 

hay. They related that to feeding grass hay as ad libitum, which resulted in a slightly 

different limit feed program than the typical one. Ranathunga et al. (2012) observed that 

the ruminal digestion of NDF was improved in HF diets containing DDGS in dairy cows 

compared with LF diets containing DDGS. They attributed that to fat from DDGS to 

bound in the feed particle and slowly introduced to the rumen. A study conducted by 

Suarez-Mena et al. (2015) observed a quadratic NDF and ADF digestibility response to 

increasing levels of DDGS up to 14% inclusion in the diets. Also, Anderson et al. (2015) 

reported a higher digestibility of NDF and ADF when heifers limit-fed a high-fat DDGS 

compared to a low-fat DDGS. It was suggested that the high-fat DDGS diet contains a 

lower starch content than the low-fat DDGS resulted in higher efficiency of fiber 

utilization and improved total-tract digestion. However, these results did not agree with a 

study conducted by Lascano et al. (2016b) using two levels of fat in a continuous culture 

fermenter, where they did not observe any effects on ADF digestibility between the two 

levels of fat in the diets. Koch (2017) reported depression in NDF and ADF digestibility 

when continuous culture fermenter fed high soybean oil compared to low soybean oil. 
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Koch stated that dietary polyunsaturated fatty acids had been shown to depress fiber dC 

by limiting fiber digestion bacteria (Van Soest, 1994). 

Dietary fat has a less detrimental effect on the digestibility of nonstructural 

carbohydrates in comparison with fiber digestibility (Jenkins, 1993). Bock et al. (1991) 

conducted a study on steers-fed treatments consisted of no added fat, 3.5% tallow, and 

soybean oil soap stock. They reported that adding fat did not affect starch digestibility in 

the rumen, even though DM or fiber digestibility was depressed. In addition, Zinn (1988) 

conducted a study by feeding 4% yellow grease to beef steers and reported normal starch 

digestion in the rumen of steers that were fed additional fat. This observation of normal 

starch digestibility under fat supplementation supports previous observations by McAllan 

et al. (1983).  

The rumen digestibility of protein is also altered when fat addition interferes with 

rumen fermentation (Jenkins, 1993). It has been observed that the protein digestibility in 

the rumen was decreased when linseed oil was infused into the rumen of sheep. Also, 

ammonia concentration decreased as protein digestibility decreased, increasing N flow to 

the duodenum (Ikwuegbu and Sutton, 1982). Similar results were reported when sheep 

were fed additional lipid as com oil or lecithin (Jenkins and Fotouhi, 1990). The changes 

in protein digestibility are usually accompanied by increasing microbial protein synthesis 

efficiencies in the rumen (Jenkins, 1993). However, the increase in microbial protein 

efficiency has been attributed to a reduction in protozoal numbers in the rumen as well as 

less bacterial N recycling (Ikwuegbu and Sutton, 1982; Jenkins and Palmquist, 1984), or 

a higher solids dilution rate in the rumen because of the fat addition (Boggs et al., 1987). 
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Anderson et al. (2015) reported a higher digestibility of protein when heifers limit-fed a 

high-fat DDGS compared to a low-fat DDGS and control diet (73.1% vs. 70.1 and 69.8, 

respectively). It was suggested that the high-fat DDGS diet contains a lower starch 

content than the control, and low-fat DDGS resulted in higher efficiency of protein 

utilization and improved total-tract digestion. 

By-product Dietary Fat 

Typical dairy diets such as forage or TMR contain low amounts of fat, but many 

by-products such as distiller’s grains, bakery waste, poultry fat, vegetable oil, fish meal 

grease, and tallow may be used as a source of fat in the diet in addition to other feed 

product such as commercially inert fat. 

There is limited research regarding the effects of feeding fat to the growing dairy 

heifers. In a study conducted by Anderson et al. (2015), the dietary fat was up to 7% 

when dairy heifer fed high fat from traditional dried distillers grains (DDGS). In another 

study by (Anderson et al., 2009), the diet's fat was close to 5% when a large portion of 

the heifer diet was supplied by wet distillers grains and soybean hulls. Diets with full or 

low-fat DDGS, included at approximately 20 or 30% of dry matter, have been observed 

to maintain ADG and overall growth performance; and similar total-tract nutrient 

digestion in dairy heifers compared with control diets containing corn and soybean meal 

fed ad-libitum (Schroer et al., 2014). Suarez-Mena et al. (2015) conducted a study using 

incremental DDGS proportions included in different forage levels. They reported that 

DMI could be reduced as more DDGS was added by indirectly increasing dietary fat 

content with no negative effects on nutrient utilization. Also, the inclusion of DDGS did 
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not show any effects on microbial CP flow. Manthey and Anderson (2018) reported no 

effects on apparent digestibility when heifers limit fed DDGS with ad libitum grass hay. 

Several studies showed a decrease in the total VFA concentrations and acetate 

concentrations while increasing propionate concentrations and a reduction in the A:P 

ratio on dairy heifer limit-fed DDGS (Suarez-Mena et al., 2015; Manthey et al., 2016; 

Manthey and Anderson, 2018). They suggested the higher propionate concentration is 

related to more energy-efficient and rumen fermentation in heifers fed DDGS diets. 

Leupp et al. (2009) and Suarez-Mena et al. (2015) observed a linear decrease in fecal 

outputs as DDGS level increased in limit-fed dairy heifers' diets. 

Feeding pure vegetable oils can reduce fiber digestibility and milk fat percentage 

(Mohamed et al., 1988). They suggested that feeding FFA as oils are more likely to 

induce MFD than feeding whole oilseeds. In an in vitro study, soybean oil was fed at 

either 3% or 6% of DM. The diet digestibility was increased during the first 24 hours 

after feeding fat, but by 48 hours, the response was decreased (Whitney et al., 2000). 

They attributed the decline in digestibility to the amount of UFA, which plays as 

antimicrobial effects. Hess et al. (2001) reported that the ruminal and total tract NDF and 

OM digestibility were reduced while the microbial efficiency was increased when heifers 

fed soybean oil. Gould et al. (2000) reported the same results where the post ruminal and 

total tract OM and NDF digestibility decreased in lambs-fed soybean oil. In addition, The 

OM, NDF, and intestinal disappearance were not affected. Simultaneously, an increase in 

FA's duodenal flow was reported when lambs were fed varying amounts of safflower oil 

(Atkinson et al., 2006). They attributed the increase in C16:0 flow to the higher dietary 
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intake and the microbial FA as well, while the increase in C18:0 to the higher BH of 

USF. Also, Carter et al. (2002) reported when beef heifers were fed cracked corn with 

soybean oil, an increase in the total FA flow from the duodenal was observed. Brokaw et 

al. (2000) found no difference in OM intake of forage when beef heifers fed normal or 

high oil corn, whereas there was an increase in digestible OM intake. Furthermore, the 

OM and NDF digestibility were less for high oil corn even though the OM and NDF 

disappearance did not differ between treatments (Brokaw et al., 2000). 

Including animal fat in a high fiber diet was observed to increase the milk fat 

while decreased short and medium-chain FA concentrations (Lucy et al., 1993). A study 

conducted by Zali et al. (2020) investigated the effects of feeding calcium salts of poultry 

oil on dairy cows. The DMI was greater for cows fed calcium salts of poultry oil and 

higher milk production than a palmitic acid-enriched fat and a mix between the two. In 

addition, fiber and protein digestibility were similar between treatments. They concluded 

that even though poultry oil's calcium salts improved dairy cows' production but 

decreased feed efficiency. Shike (2013) fed whole raw soybean, flax, or hydrolyzed 

animal fat to beef heifers starting at 7 mo of age and observed no differences in the 

percentage of pubertal heifers at 10, 12, or 14 months. Hutchison et al. (2006) conducted 

a study on steers fed either 4% tallow or 4% poultry fat. They observed that fat addition 

did not affect ADG, and steers consumed poultry fat gained more efficiently than tallow. 

Also, they stated that replacing tallow with poultry fat is a more economical energy 

source with no effects on performance. Only two studies across a summary of more than 

20 dairy studies showed depression in feed intake when feeding tallows or greases (Allen, 
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2000). Onetti and Grummer (2004) suggested a relationship between tallow and forage 

source on the intake effects. The intake was reduced when tallow added to corn silage 

diets and did not increase milk production, while it was the opposite with alfalfa-based 

diets. The true digestibility of tallow was assigned about 68%, while vegetable oils and 

calcium salts were assumed to 86% (NRC, 2001). Jenkins (2006) reported in an 

independent literature review of tallow digestibility compared to other fat sources that 

only tallow and calcium salts of palm FA had numerically higher digestibility than other 

fat sources examined. That could be related to the level of saturation in these fat sources. 

Typical rumen-protected fats are carboxylate salts (soap) forming from the bound 

between the free FA, Ca++, and Mg++. That form has specific properties, such as a more 

saturated, higher melting point, and lower solubility, which gives it the ability to escape 

from the rumen biohydrogenation (McCullough, 2015). Jenkins and Jenny (1989) 

reported that using these specialty fats led to fewer negative effects on rumen 

fermentation, feed intakes, and milk fat production. In addition, several studies reported 

that the DMI of dairy animals was not affected by bypass fat (Naik et al., 2007; Tyagi et 

al., 2009b; Thakur and Shelke, 2010; Sirohi et al., 2010; Mudgal et al., 2012). However, 

Chouinard et al. (1997) reported a decrease, while Tyagi et al. (2009a) reported an 

increase in DMI of dairy animals fed bypass fat. Furthermore, these studies reported that 

bypass fat did not affect the digestibility of DM, OM, CP, NDF, ADF, and cellulose. 

However, CP's digestibility was increased when Ca-LCFA was fed to dairy animals 

(Schauff and Clark, 1992). Also, the EE digestibility was increased when bypass fat was 

fed to dairy animals (Thakur and Shelke, 2010; Sirohi et al., 2010). Ngidi et al. (1990) 
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reported an increase in NDF digestibility when Ca soap's level increased in the diet. It has 

been suggested that the higher apparent total tract digestibility of NDF in cows-fed Ca-

LCFA was related to an increase in post-ruminal degradation (Chouinard et al., 1998). 

The digestibility of ADF under bypass fat addition may be either increased (Naik et al., 

2009) or not affected (Thakur and Shelke, 2010; Sirohi et al., 2010). It has been 

recommended that the ADF digestibility varies depending on the level of fat addition 

with no effect at a low-fat level (Schauff and Clark, 1989). Naik et al. (2007) reported 

that fat did not influence buffaloes' cellulose digestibility.  

Precision-feeding has shown to be advantageous because it improves feed 

efficiency, decreases the amount of wasted feed, decreases nutrient excretion, and 

maintains growth performance. However, most research regarding limit-feeding has been 

conducted using corn and soy-based diets (Zanton and Heinrichs, 2009b). Very limited 

research has investigated precision-feeding heifers using alternative dietary by-products 

such as poultry fat (PF). 

 

 

 

 

 

 

 

 



59 

 

DAIRY BREED (HOLSTEIN AND JERSEY) 

Based on the Council of Dairy Cattle Breed (CDCB, 2015), Holstein and Jersey 

are the two most common dairy breeds in the USA and represent approximately 90% of 

the dairy cows. Holstein represents 83.9% of the dairy cow population, and it is the most 

popular breed used in U.S. dairy farms (CDCB, 2015). Holstein breed is well known for 

producing milk in high amounts, including milk fat and protein. This breed's mature cow 

weighs about 680 kg, and in a 305-d period of lactation, produces approximately 11500 

kg of milk, 420 kg of fat, and 340 kg of protein (USH, 2009). The average age at first 

calving of Holstein is around 26.8 months, and about 38% of them remain alive at 5 years 

of age (Garcia-Peniche et al. 2006). Therefore, the average Holstein productive life is 

approximately 4 years (USH, 2009). Due to the intensive selection process for milk 

production, such as longevity, fertility, and resistance to diseases, Holstein cows may 

present some health issues (Lucy, 2001; Mackey et al., 2007; Xue et al., 2011). 

Furthermore, due to the continuing increase in an inbreeding level in various Holstein 

populations, some dairy farms have been started crossbreeding between Jersey and 

Holstein to improve milk composition and reproductive performance and longevity 

(Hansen, 2000; Xue et al., 2011).  

Jersey is the second breed most popular in the U.S., and its population increased 

from 4.9% to 6.4% from 2009 to 2014 while the Holstein population decreased from 

89.6% to 83.9% during the same period (CDCB, 2015). It has been reported that this 

increase in the Jersey population in comparison to Holstein is due to the higher capacity 

of Jerseys to produce greater milk components (milk fat, true protein, and other solids) 
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since the milk prices depend on these components (Capper and Caddy, 2012). Jersey 

cows produce an average of 7455 kg milk, 347 kg of fat, and 268 kg of protein in 305-d 

production (AJCA, 2009). Mature Jersey cows weigh between 400 to 450 kg, the average 

age at first calving is around 25.8 months, and the average productive life is 

approximately 3.5 years (AJCA, 2009). It has been observed that Jersey × Holstein had 

fewer calving problems, larger estrus periods, fewer services per conception, and shorter 

calving intervals than Holstein (Auldist et al., 2007). Additionally, under heat stress 

conditions, the Jersey cows showed less variability in milk components and smaller 

declines in milk production than Holstein (Smith et al., 2013). Espinoza et al. (2009) 

suggested that Jerseys may require less energy for thermoregulation than Holstein; 

therefore, they show more resistance to heat stress. 

Due to the lack of research, the current guidelines for feeding dairy cows in the 

U.S. (NRC, 2001) do not make specific recommendations for Jerseys. It is not clear if 

adding Jersey cows to the herd would increase income to the overall production. 

Therefore, including Jersey heifers in the current project is to identify the breed 

differences and its efficiency, which may help farms improve economic benefits by 

decreasing feeding costs and potentially adapting/modifying the current feeding practices 

according to breed. 

Dry Matter Intake and Nutrient Digestibility 

The average DMI varies between cow’s breed depending on the bodyweight of 

the animal. Jerseys typically consume more than the larger breeds of cows as a % of BW. 

In a study conducted by Blake et al. (1986), they found that Jersey cows consumed more 
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DM as a percentage of body weight than Holsteins, even though Holstein cows consumed 

one-third and one-fifth more DM than Jersey cows in the first and second trimesters, 

respectively. They attributed that to the relative capacity of the gastrointestinal tract that 

increases proportionally with body weight. In contrast, Heins et al. (2008) observed 

different results when they compared the DMI between Jersey × Holstein crossbred cows 

with pure Holstein cows during the first 150 days of the first lactation. They stated that 

the DMI of the Jersey × Holstein cows did not differ from the Holstein cows during any 

period postpartum. Also, they consumed similar DMI as a percentage of BW, while 

Anderson et al. (2007) reported lower DMI as a percentage of BW for pure Jersey cows. 

Aikman et al. (2008) reported that the passage rate was faster but more digestion 

rate efficient in Jersey than that of the Holsteins. They also noticed that the Jerseys had a 

longer period to ruminate because they allowed more feed to be supplied to the rumen 

throughout the day. Holstein consumed more feed than the Jersey cows; therefore, they 

could not get enough feed with the time given (Aikman et al., 2008). As a result, the 

Jerseys spent most of their time ruminating rather than trying to consume more feed. That 

is an indication that there is a marked difference in the eating and ruminating behavior 

between these two breeds. However, the daily eating time did not differ between breeds, 

but Jerseys spent more time eating per unit of ingested feed (Aikman et al., 2008). They 

attributed that to the fact of smaller mouths that Jerseys have compared it to Holstein. 

They need a larger number of mouthfuls to process an equal volume of feed. They 

concluded that Jerseys seem to have a better way of breaking down the feed materials and 

utilizing them more appropriately. Also, Jerseys tend to be more efficient than Holsteins. 
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On the other hand, there are indications that Jerseys have higher digestibility than 

the Holstein. Olijhoek et al. (2018) observed that the Jersey cows had a higher total-tract 

apparent digestibility of DM and OM than the Holstein cows fed two levels of F:C diets. 

Similarly, higher OM and NDF digestibility for Jersey compared to Holstein-Friesian 

cows were observed by Beecher et al. (2014). Aikman et al. (2008) conducted a study on 

Holsten and Jersey cows fed TMR ad libitum during 3 periods, far-off, close-up, and 

lactation. They observed that DM, OM, ADF, and apparent starch digestibility did not 

differ between breeds. However, NDF digestibility was higher in Jersey than Holstein 

cows, and the DM and OM digestibility were numerically higher in Jerseys. When 

external markers were used, Jersey cows showed a higher digestion rate and efficiency in 

utilizing the diet because of a larger gastrointestinal tract weight relative to BW or a 

higher chewing rate per unit of meal consumed, suggesting particle breakdown and 

rumen outflow were faster in Jersey compared to Holstein (Aikman et al., 2008; Beecher 

et al., 2014). Some other studies reported that Jerseys have a higher feed utilization 

efficiency than large breeds such as Holstein (Oldenbroek, 1988; Grainger and Golddard, 

2004). According to Van Soest (1994), a relatively large gastrointestinal tract as a 

proportion of the BW in Jerseys would indicate a larger area available for nutrient 

absorption; therefore, higher digestibility would be expected. Several studies conducted 

on Holstein and Jersey cows where the N digestibility did not differ between the two 

breeds (Kauffman and St-Pierre, 2001; Aikman et al., 2008; Knowlton et al., 2010; 

Olijhoek et al., 2018). Based on these studies' indications, Jersey heifers might be more 
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efficient in nutrient utilization than Holstein heifers, and comparing these two breeds 

under a precision feeding system is our topic of interest. 

Nutrient and Manure Excretion 

Many nutrients can be excreted in feces and urine due to an excessive amount of 

feeding dietary nutrients, which results in a greater emission of pollutants to the 

environment (Chandler, 1996; Castillo et al., 2013). Based on NRC (2001), any feeding 

system should ideally provide nutrients in amounts that maximize ruminal fermentation 

and growth of rumen microbes while minimizing nutrients losses to the environment. 

Manure excretion is equal to the sum of fecal and urine production (NRC, 2001). 

It has been reported that dairy cow’s manure production on a wet basis based on data set 

from metabolic studies was 66.3 ± 14.4 kg/d and ranged between 27.7 to 114.4 kg/d. In 

contrast, urine production was 23.1 ± 7.19 kg/d, representing one-third of the total 

manure excretion (Nennich et al. 2005). Knowlton et al. (2010) stated that the wet 

manure excretion was higher for Holstein than for Jersey (74.3 and 49.8 ± 2.34 kg/d, 

respectively). On the other hand, the fecal DM of dairy cows ranged from 6.2 to 7.4 kg/d 

as stated by Tomlinson et al. (1996), which is similar to those were reported by Nennich 

et al. (2005) and Weiss and Wyatt (2004) (7.3 ± 1.63 and 6.9 ± 1.5 kg/d, respectively). 

The fecal DM excretion observed by Knowlton et al. (2010) was also higher for Holstein 

compares to Jersey (8.11 and 5.67 ± 0.32 kg/d, respectively). Furthermore, Knowlton et 

al. (2010) indicated that differences in fecal DM output between the two breeds were 

relative to DMI and BW differences. Also, it has been observed that the manure excretion 

had a linear relationship with DMI (Nennich et al., 2005; Figure 2.5). 
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Nitrogen (N) excretion is one of the main concerns from the environmental 

perspective (NRC, 2001). The N that is secreted in milk accounts for 25 to 35% of the N 

that dairy cows consume in the diet (Chase, 1994; Chandler et al., 1996). Almost the rest 

of the remaining N is excreted in feces and urine (NRC, 2001). In several studies, it was 

reported that greater N excretion is due to a higher N intake (Tomlinson et al., 1996; 

James et al., 1999; Krober et al., 2000; Frank et al., 2002; Nennich et al., 2005). 

Kauffman and St-Pierre (2001) observed that the retention of ingested and absorbed N 

tended to be lower in lactating Jerseys compared to Holsteins. They attributed that to the 

differences in the dynamics of rumen digesta flow, the rate of passage, the breed response 

to type, and protein concentration in the diet. Knowlton et al. (2010) observed that fecal 

N excretion was higher for Holstein than for Jersey (243 and 162 ± 10 g/d, respectively) 

as well as the urinary N (213 and 161 ± 6 g/d, respectively). Also, they stated that 

approximately 50% of the total N is excreted in feces and the other 50% in urine. 

Therefore, and based on this observation, Jerseys are showing a more efficient 

performance than Holsteins and might give an interesting result under a precision feeding 

system. 
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CONCLUSIONS 

Dairy heifers usually grow over 22-24 months of age, when the first calving and 

lactation onset generally occurs (Ettema and Santos, 2004). After that, they enter the milk 

production system and begin generating income for the operation; therefore, any 

improvement in efficiency is valued (Heinrichs, 1993). It is necessary to manage dairy 

heifer appropriately to allow them to reach reproductive age in a timely manner at an 

optimal rate of gain to enhance mammary development and avoid any risk of metabolic 

disorders (Zanton and Heinrichs, 2005). That is very important since about 40% of the 

lactating herd is replaced by heifers each year (Kitts et al., 2011). 

Precision feeding can improve feed efficiency by providing highly digestible 

feedstuffs and energy-dense diets while reducing DMI and maintain animal’s 

requirements. Reduce DMI can decrease the passage rate of nutrients in the rumen, diets 

stay longer in the rumen, microbes have a longer time to digest nutrients, thus increase 

nutrient digestibility. Feed costs can be reduced through the reduction of feed intake used 

under precision feeding. Minimal refusals and nutrient losses have been reported with a 

concurrent decrease in manure output. 

This literature review's objective was to cover the possibility of evaluating 

different dietary fat sources with different F:C ratio into dairy heifer’s diets under 

precision feeding systems. That would further reduce DMI, which could help reduce the 

impact of high feed costs on raising heifers. Also, to evaluate the breed differences under 

precision feeding program since neither dietary fat nor breed have been evaluated in 

precision-fed heifer diets. Therefore, more research is needed in-vivo and in-vitro to 
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determine the impact of poultry fat inclusion in precision-fed Holstein and Jersey dairy 

heifer’s diets on digestibility, rumen fermentation, and nutrient excretion. 
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Table 2.1. Fatty acids composition of rendered animal fats (Modified from Rouse, 2003). 

Fatty Acid Tallow Lard Grease Poultry Fat 

Myristic acid C14:0 3.0 1.5 1.5 1.5 

Palmitic acid C16:0 25.0 27.0 23.0 21.0 

Palmitoleic acid C16:1 2.5 3.0 3.5 6.5 

Stearic acid C18:0 21.5 13.5 11.0 8.0 

Oleic acid C18:1 42.0 43.4 40.0 43.0 

Linoleic acid C18:2 3.0 10.5 18.0 19.0 

Linolenic acid C18:3 N/A 0.5 1.0 1.5 

Saturated 49.5 42.0 35.5 30.0 

Unsaturated 47.5 57.4 62.5 70.0 
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Figure 2.1. Fat metabolism in the rumen (Adapted from Lock et al., 2006). 

Abbreviations: Triglycerides (TG), glycolipids (GL), phospholipids (PL), trans fatty acids 

(trans FA), mixture of fatty acids (FAs), and volatile fatty acids (VFA). 
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Figure 2.2. Fat digestion in the small intestine of ruminants (Adapted from Lock et al., 

2006). 
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Figure 2.3. Individual and total fatty acid digestibility in dairy cows (Modified from Lock 

et al., 2006). 
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Figure 2.4. Fat absorption in the enterocytes of ruminants (Adapted from Navarrete, 

2013). 

Abbreviations: Fatty acids (FA); Tryglycerides (TG); Phospholipids (PL); fatty acid CoA 

(FA CoA), Very low-density lipoprotein (VLDL). 
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Figure 2.5. Relationship between DMI and trial-adjusted manure excretion for lactating 

cows (Adapted from Nennich et al., 2005). (Manure excretion (kg/d) = DMI (kg/d) × 

2.63 + 9.4). 
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CHAPTER THREE 

 

SCREENING DIETARY FAT SOURCES AND LEVELS ADDED TO LOW AND 

HIGH FORAGE DIETS USING AN IN-VITRO GAS PRODUCTION SYSTEM 

 

ABSTRACT 

Including dietary fat can increase the energy density of diets fed to ruminants, 

reducing dry matter intake (DMI). Not all fat sources have detrimental effects on nutrient 

digestion and fermentation and can vary depending on the forage to concentrate ratio 

(F:C). Therefore, this study's objective was to screen the effects of including different fat 

types to high and low forage diets in vitro digestibility and fermentation. We 

hypothesized that incorporating fat in low forage diets can improve nutrient utilization 

without affecting digestibility and fermentation in-vitro gas production (GP). Treatments 

included either low forage (LF; 35%) or high forage (HF; 70%) with 2 fat levels (6 or 

9% DM) screening for 6 different fat sources plus control (CON). The CON diet had a 

basal level of fat in the diet (3% fat; 0% fat inclusion); and fat sources were added to 

attain 6% or 9% fat and consisted of [Coconut oil, CO; Poultry fat, PF; Palm oil, PO; 

Palm kernel oil, PKO; Ca Salts, MEG; Soybean oil, SOY]. GP's modules were randomly 

assigned to treatments in a 2×2×7 factorial design and incubated for four 24 h runs. The 

CO-fed module had the highest DM apparent digestibility (AD), followed by SOY and 

PF. The true DM digestibility (IVTDMD) and OM AD were the highest in CO than the 

other fat types. The AD for DM, OM, NDF, and ADF was higher in LF. The 6% fat 

inclusion had a higher GP (109.6 vs. 103.5 mL ± 2.44). Total VFA concentration was 

lower in different fat types than the CON and the acetate molar proportion. The 

propionate was the lowest for the CON, which increased the A:P ratio. The results 
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suggest that an LF diet with high fat concentration can be utilized, and different fat 

sources may improve DM and fiber digestibility. 
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INTRODUCTION 

Feeding fat has gained interest in the last few decades. Adding fat to dairy diets 

became common practice for its potential to increase energy density in diets, improve 

palatability, and reduce feed dustiness (Azain, 2004). The advantages of fat addition to 

dairy rations include a potential increase in energy intake for high milk production 

(Ostergaard et al., 1981; Ruesegger et al., 1985). Also, improve rumen fermentation by 

optimizing starch to fiber ratio (Palmquist and Conrad, 1978) without the risk of feeding 

excessive fermentable carbohydrates (Jenkins and McGuire, 2006). The use of fat can 

enhance high forage-based diets (Reynolds et al., 1991; Zanton and Heinrichs, 2007; 

Naik et al., 2010). Modifying the forage to concentrate ratio (F:C) and manipulating 

nutrient fractions allow precision-fed dairy heifers to achieve adequate nourishment. 

Even though high concentrate precision fed diets showed improvement in N and OM 

digestibility (Zanton and Heinrichs, 2009), and resulted in similar effects on rumen 

fermentation (Lascano and Heinrichs, 2009; Lascano et al., 2009). However, in addition 

to the increase in grain costs, fiber intake can be decreased, and acidosis can occur 

because of feeding rapidly fermented NFC to dairy cattle (Palmquist and Jenkins 1980; 

Nocek, 1997). 

Cost-effective by-products from numerous industries, such as poultry industry by-

products, can be utilized by ruminants. Poultry fat (PF) is a by-product of chicken 

processing and extensively produced worldwide, can be a potential energy source. In 

contrast, soybean oil (SO) can decrease fiber digestion by inhibiting rumen microbes 

(Jenkins, 1993; Pantoja et al., 1994). Whereas coconut oil (CO) might improve rumen 



112 

 

fermentation (Machmuller et al., 2003; Pilajun and Wanapat, 2013). Several commercial 

fat preparations are available as rumen bypass fats or inert fats such as Megalac (calcium 

salts), made from palm oil (Eastridge, 2002; Rico et al., 2014). Specialty fats are 

developed to minimize the detrimental effects on rumen fermentation and the risk of 

decreasing fiber digestion (Palmquist and Jenkins, 1982; Jenkins and Harvatine, 2014). It 

has been reported that using these specialty fats with high saturated fats led to minimizing 

adverse effects on milk fat production, rumen fermentation, and feed intakes (Jenkins and 

Jenny, 1989). 

In a study conducted by Elliott et al. (1997) on the effects of saturation of fat 

sources in steers, they reported that increasing fat sources' saturation tended to increase 

the NDF and ADF rumen digestibility. Other studies have reported no differences in 

ruminal or total tract digestibility of OM or fiber in lactating cows fed diets with 

increasing amounts of dietary fat or different sources (Palmquist, 1991; Drackley and 

Elliott, 1993). Oldick and Firkins (2000) reported that acetate responded quadratically as 

the fat sources' unsaturation degree increased. Several studies have explored various 

strategies for feeding fat to dairy cows (Rabiee et al., 2012). However, there is limited 

research regarding the effects of feeding fat on the growing dairy heifers, and to what 

extent can be strategically incorporated is unknown. Therefore, this study's objective was 

to evaluate the effects on digestibility and fermentation, including different types of fat 

with different F:C ratios using the in vitro gas production system. We hypothesized that 

incorporating fats in low forage diets can improve nutrient utilization without 

compromising fermentation and digestibility in a gas production system. 
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MATERIALS AND METHODS 

Treatments and Experimental Design 

Treatments were two F:C combinations, either low forage (LF; 35%, DM) or high 

forage (HF; 70%, DM) with two dietary fat concentrations (6% or 9%) and six different 

fat source treatments plus control (CON). The CON diet had a basal level of fat in the 

diet [3% fat (0% fat inclusion); and fat sources were added to attain 6% or 9% fat and 

consisted of (Coconut oil, CO; Nature’s oil, Streetsboro, OH; Poultry fat, PF; Valley 

proteins, Inc., Ward, SC; Palm oil, PO; Nature’s oil, Streetsboro, OH; Palm kernel oil, 

PKO; Nature’s oil, Streetsboro, OH; Ca Salts, MEG; Megalac regular; Soybean oil, SOY; 

Nature’s oil, Streetsboro, OH)]. The experiment was conducted using an in vitro 

ANKOMRF gas production (GP; Ankom Technology, Macedon, NY) system. 

Treatments were randomly assigned to one of twenty-eight modules and allocated to a 

different module during each run to remove any module-specific differences. To allow 

the CON to be compared to the other fat treatments using a factorial modeling approach, 

it was assumed in the statistical analysis that the CON had the same fat levels as the other 

treatments, 6% and 9% (not just the 3%). That resulted in a 2×2×7 factorial treatment 

design and a randomized complete experiment design (run was the blocking factor) with 

4 replicates per treatment as incubated for four 24 h runs. Each run was started with a 

clean module and inoculated with fresh ruminal contents collected from two cannulated 

Holstein cows. All diets were fed to the modules as total mixed rations (TMR) and 

predicted nutrient composition determined using NRC (2001). Dietary ingredients and 

chemical composition are presented in Table 3.1. Rations were grounded using a Wiley 
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Mill (Arthur H. Thomas Co., Philadelphia, PA) through a 1-mm sieve, and 1 g of the 

premixed rations were placed in ANKOM F57 filter bags, sealed, and placed into the 

module glass bottle at the beginning of the 24 h incubation. 

Module Culture Conditions 

All procedures involving the surgical and animal care protocols were approved by 

the Clemson University Institutional Animal Care and Use Committee. Around 1800 h, 

the rumen contents were collected from two rumen cannulated Holstein cows fed a 50% 

forage:50% concentrate diet and strained through two-layers of cheesecloth into a 

prewarmed sealed container. The filtered rumen fluid was combined from both cows, 

mixed with a buffer in a 1:4 ratio. Homogenized together under magnetic stirrer and 

purged with CO2 until inoculation into the GP modules. Also, during the time from when 

the rumen contents were collected to dilution and addition to modules (did not exceed 60 

min.), the module glass bottles were maintained at 39oC in a water bath to minimize the 

cold shock of microorganisms. Pre-prepared F57 filter bags (pre-rinsed F57 filter bags in 

acetone for 5 minutes and air-dried to remove surfactant that inhibits microbial digestion) 

containing 1 g of the premixed rations were placed into the module glass bottles. Exactly 

100 mL of diluted inoculum (20 mL inoculum + 80 mL Cone (1998) buffer) was added 

to each gas production module glass bottle and placed in a 39oC shaker water bath (70 

rpm; Julabo SW22, Seelbach, Germany). They have purged continually with CO2 directly 

into the bottle's top until the CO2 filled the module glass bottle and then reattached the 

module to the glass bottle. The module cultures were connected to the computer by a 

radio frequency modem that allows each module to communicate remotely with the 
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computer. After calibrating the gas production sensors, we started recording data using 

the GP software and maintained for a 24 h of incubation and then stopped recording data, 

and data were saved in an excel spreadsheet. 

Sample Collection and Analysis 

After 24 h of incubation of each run, the F57 filter bags were removed from the 

module glass bottles and rinsed out twice with distilled water and gently pressed to 

remove excess gas and water, then placed in a forced-air drying oven for 48 h at 65oC to 

determine the apparent DM digestibility. Following that, F57 filter bags were placed in 

the Ankom Fiber Analyzer and followed the procedure for determining NDF to determine 

the true DM digestibility (when determining true digestibility, it is necessary to remove 

any remaining soluble fractions using natural detergent solution; after rinsing the bags in 

cold tap water until the water is clear, place them in the Ankom Fiber Analyzer; Ankom 

technology method 3). Also, to determine the NDF apparent digestibility. Feed samples 

were ground using a Wiley Mill (Arthur H. Thomas Co., Philadelphia, PA) through a 1-

mm sieve and analyzed for DM, OM, ash, and EE (AOAC, 2000). For NDF and ADF 

(Van Soest et al., 1991), an ANKOM200 Fiber Analyzer (ANKOM Technology 

Corporation, Fairport, NY) was used with heat resistant α-amylase and sodium sulfite 

utilized in the NDF procedure and adjusted for ash content. Additionally, cultural 

contents were mixed thoroughly in the module glass bottles during sampling to ensure 

adequate sampling from the cultures. Culture pH was measured and recorded after 24 h 

of incubation, and a 5 mL sample of culture contents was taken at the same time points 

for VFA and ammonia analysis. Culture samples (5 mL) were pipetted to 15 mL 
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centrifuge tubes containing 1 mL of metaphosphoric acid (25%; w/v), and then, these 

tubes were stored at -20°C until VFA and ammonia analysis, as described by Moody et 

al. (2007). Samples were later thawed and centrifuged at 40,000 × g for 30 min at 4°C. 

After centrifugation, 1 mL of the supernatant was placed in a 2-mL Eppendorf 

microcentrifuge tube and used to analyze NH3-N, according to Chaney's methods 

Marbach (1962) with modifications including reduced sample and reagent volume to 

accommodate the use of a 96-well plate reader. Another 0.5 mL of the supernatant was 

combined with 0.5 mL distilled water and 100 μL of internal standard (86 μmol of 2-

ethylbutyric acid/mL) in a GC vial. GC then analyzed samples for VFA–flame-ionization 

detection according to the methods of Yang and Varga (1989) and injected into a 

Hewlett-Packard 6890 gas chromatograph (San Jose, CA) equipped with a custom packed 

column (2 m × 0.32 cm × 2.1 mm ss; 10% SP-1200/1% H3PO4 on 80/100 Chromosorb 

WAW). 

Statistical Analysis 

All statistical analyses were conducted in SAS version 9.4 for Windows (SAS 

Institute Inc., Cary, NC) using the MIXED procedure. Data were analyzed as a 2×2×7 

factorial treatment structure in a randomized complete block design with forage, fat, 

source, forage × fat, fat × source, and forage × fat × source as a fixed effect, and module 

(forage) and run as a random effect, for the following model: 

Yijk = μ + Fi + Ml(Fi) + Pj + Ck + FPij + PCjk + FPCijk + Rm + eijklm, 

Where Yijk = the dependent variable, μ = the overall mean, Fi = the fixed effect 

of forage, Ml(Fi) = the random effect of a module within forage, Pj = the fixed effect of 
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fat, Ck = the fixed effect of source, FPij = the interaction between forage and fat, PCjk = 

the interaction between fat and source, FPCijk = the interaction between forage, fat and 

source, Rm = the random effect of a run, and eijklm = the residual error. The PDIFF 

option-adjusted by Tukey method was included in the LSMEANS statement to account 

for multiple comparisons. Residuals for all models were found to be normally distributed 

(Shapiro-Wilk test for normality). Least square means are presented in tables, and 

evidence for statistical significance was declared at P ≤ 0.05, while trends for main 

effects and interactions are discussed at 0.10 ≥ P > 0.05. 
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RESULTS AND DISCUSSION 

Diet Composition and Nutrient Inputs 

Diet ingredients and chemical composition values are presented in Table 3.1. 

Diets were planned and formulated to differ mainly in providing dietary fat by adding 

different fat sources. The dietary NDF and ADF were lower for LF diets compared to the 

HF diets, whereas the NFC was higher for LF diets than for the HF diets, as was their 

input because of the lower level of forage and a higher level of concentration in these 

diets (Table 3.1). The dietary EE concentrations increased gradually in the diets up to 9% 

with different fat inclusion. The fat inclusion replaced the ground corn in the control diet 

of both LF and HF diets, and that resulted in a decrease in NFC in the other different 

types of fat treatments. All other components of the rations were formulated to be similar 

between treatments. 

Digestibility of Nutrients 

Forage Effect 

Apparent digestibility coefficients (dC), true dry matter digestibility (IVTDMD), 

and cumulative gas production (GP) are outlined in Table 3.2. The dC of DM, OM, NDF, 

and ADF were greater for the LF-fed module than for the HF-fed module. These 

observations are consistent with results reported in a study conducted on Holstein dairy 

heifers fed LF or HF diets composed of a combination of 40 or 80% CS and corn stover 

(Lascano and Heinrichs, 2011) where DM and OM dC were higher for LF compared to 

HF diets. Two levels of F:C diets were fed to dairy heifers by Lascano et al. (2016b) and 

observed higher DM and OM dC for LF compared to HF diets. Similarly, higher DM and 
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OM digestibilities for LF compared to HF diets were observed by (Suarez-Mena et al., 

2015). The greater digestibility of the LF-fed module can be attributed to the greater 

digestibility of these diets' ingredients (NRC, 2001). Other studies have shown an 

increase in DM and OM dC when LF and HF diets have been fed restrictively (Colucci et 

al., 1989; Reynolds et al., 1991; Murphy et al., 1994). These results did not agree with a 

study conducted on Holsten heifers fed low forage (45% forage) and high forage (60% 

forage) where DM and OM dC did not differ between LF and HF diets (Koch et al., 

2017). The dC of NDF and ADF disagreed with Ranathunga et al. (2012) findings where 

the ruminal digestion of NDF was improved in HF diets containing DDGS in dairy cows 

compared with LF diets containing DDGS. They attributed that to the ability of fat from 

DDGS to bound in the feed particle and slowly introduced to the rumen. Furthermore, 

this could be attributed to the lower pH level for LF diet because cellulolytic bacteria are 

very sensitive to pH and their activity and growth start to decline under pH 6.0 (Russell 

and Wilson, 1996), but the pH in the current study was similar because of the type of 

buffer used in the experiment. Koch et al. (2017), Suarez-Mena et al. (2015), and Zanton 

and Heinrichs (2009) observed that the ADF dC did not differ between LF and HF diets, 

but in agreement with other studies where NDF dC was greater for LF diets (Zanton and 

Heinrichs, 2009; Lascano and Heinrichs, 2011; Lascano et al., 2016b). The LF-fed 

module showed a higher cumulative gas production compared to the HF-fed module. The 

current finding agrees with Kim et al. (2018), where they conducted an in-vitro study to 

measure the total gas production of rumen fluid collected from non-lactating cows fed 

three levels of concentrate diet. They reported that the high proportion of concentrate 



120 

 

produced the highest total gas after 24 h of incubation. They attributed that to the fact that 

the concentrate digestibility is faster than forage digestibility, which explains the higher 

total gas production observed in a high proportion of concentrate. Also, Pilajun and 

Wanapat (2014) reported a higher accumulated gas production as a concentrate level 

increased in the diet when feeding four different F:C ratios and using a gas fermentation 

production technique for 96 h of incubation. 

Fat Effect 

The level of fat inclusion did not show any effect on nutrients dC. These findings 

did not agree with a study conducted by Anderson et al. (2015), where they have 

observed a higher dC of NDF and ADF when heifers limit-fed a high-fat DDGS 

compared to a low-fat DDGS, whereas the DM and OM did not differ between the 

treatments. It was suggested that the high-fat DDGS diet contains a lower starch content 

compared to the low-fat DDGS, which is the case with NFC in our study (Table 3.1) 

resulted in higher efficiency of utilization of fiber and improve total-tract digestion. Also, 

Suarez-Mena et al. (2015) observed a quadratic DM, OM, NDF, and ADF dC response to 

increasing levels of DDGS up to 14% inclusion in the diets. These results agreed with a 

study conducted by Lascano et al. (2016a) using two levels of fat with no added fat or 

3.3% added soybean oil in continuous culture fermenter. They did not observe any effects 

on DM and ADF dC between the two diets' two levels of fat. Koch (2017) reported a 

depression in DM, OM, NDF, and ADF dC when continuous culture fermenters were fed 

high soybean oil compared to low soybean oil. Feeding excess FA has been reported to 

depress fiber digestibility (Rico et al., 2014). Also, the dietary polyunsaturated fatty acid 
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as in soybean oil has been related to limiting the growth of fiber digesting bacteria, which 

reduce ruminal fiber digestibility (Van Soest, 1994). Manthey and Anderson (2018) 

reported no effects on dC when heifers limit fed DDGS with ad libitum grass hay. They 

related that to feeding grass hay as ad libitum, which resulted in a slightly different limit 

feed program than the typical one. The cumulative gas production was decreased as the 

level of fat inclusion increased in the diet. The supplementation of plant oil decreased gas 

fermentation production in a study conducted by Pilajun and Wanapat (2014) using two 

different plant oil inclusion levels. Palmquist (1994) reported that when ruminants 

receive diets with a fat content higher than 7% of DM, the fiber digestion could be 

restricted, which might explain the current finding. 

Source Effect 

The dC of DM, OM, NDF, ADF, and TDM were affected by the type of fat with 

greater DM dC for the CO-fed, followed by SOY, PF, CON, PKO, and PO-fed. Also, 

IVTDMD and OM dC were the highest with the CO-fed module, followed by all MEG, 

SOY, PF, PO, CON, and PKO-fed modules. Furthermore, the NDF dC was higher in 

MEG and CO-fed modules followed by PO, SOY, PF, CON, and PKO-fed module, 

whereas the ADF dC was similar fat types except for the PKO-fed module with the 

lowest value. These observations are consistent with results reported in a study conducted 

by Elliott et al. (1997) on the effects of steers' saturation of fat sources. It has been 

reported that increasing saturation of fat sources (tallow, partially hydrogenated tallow, 

hydrogenated tallow, blend of hydrogenated tallow and hydrogenated fatty acids, and 

hydrogenated fatty acids) tended to increase the NDF and ADF digestibility in the rumen. 
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Several other studies have reported no differences in ruminal or total tract digestibility of 

OM or fiber in lactating cows fed diets with different fat sources (Palmquist and Conrad, 

1978; Ohajuruka et al., 1991; Palmquist, 1991; Drackley and Elliott, 1993). It has been 

reported in an in-vitro study that the CO, which contains high saturated medium-chain 

fatty acids, had no adverse effect on DM digestibility in the in-vitro gas fermentation 

production technique (Pilajun and Wanapat, 2014). That is in agreement with other 

studies on CO's effect on swamp buffalo by the same group (Pilajun and Wanapat, 2013). 

A study conducted by Lascano et al. (2016a) using 3.3% added SO in a continuous 

culture fermenter. They did not observe any effects on DM and ADF dC compared to the 

control diet. Whereas, Koch (2017) reported depression in DM, OM, NDF, and ADF dC 

when continuous culture fermenter fed high SO compared to low SO. Koch stated that 

the dietary polyunsaturated fatty acids had been shown to depress fiber dC by limiting the 

growth of fiber digestion bacteria (Van Soest, 1994). This finding is common in the 

literature (Rico et al., 2014). Bock et al. (1991) conducted a study on steers fed 

treatments consisted of no added fat, 3.5% tallow, and soybean oil soap stock. They 

reported that adding fat did depress DM and fiber digestibility. Zali et al. (2020) 

investigated the effects of feeding calcium salts of poultry oil on dairy cows compared to 

a palmitic acid-enriched fat and a mix between the two. They observed that the fiber and 

protein digestibility were similar between treatments. They concluded that even though 

the calcium salts of poultry oil improved dairy cows' production but decreased feed 

efficiency. Jenkins (2006) reported a literature review of tallow digestibility compared to 

other fat sources that only tallow and calcium salts of palm FA had numerically higher 
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digestibility than other fat sources examined. Ngidi et al. (1990) reported an increase in 

NDF digestibility when Ca soap's level increased in the diet. It has been suggested that 

the higher apparent total tract digestibility of NDF in cows-fed Ca-LCFA was related to 

an increase in post-ruminal degradation (Chouinard et al., 1998). The digestibility of 

ADF under bypass fat addition may be either increased (Naik et al., 2009) or not affected 

(Thakur and Shelke, 2010; Sirohi et al., 2010). It has been reported that the ADF 

digestibility varies depending on the level of fat addition with no effect at a low-fat level 

(Schauff and Clark, 1992). Naik et al. (2007) reported that bypass fat did not influence 

buffaloes' cellulose digestibility. Erickson et al. (1992) reported that hemicellulose 

digestibility was improved with the addition of Ca-LCFA and caused an increase in NDF 

and a decrease in ADF digestibility in dairy cows. Cumulative gas production was 

affected by the different types of fat with the highest value for the CO-fed module and 

SOY-fed module, followed by all of the PF-fed module, CON-fed module, and PO-fed 

module and then MEG-fed module and PKO-fed module. These results did not agree 

with Pilajun and Wanapat (2014) and Pilajun and Wanapat (2013), where they reported a 

reduction in gas production when CO was included in the diets. They attributed that to 

the negative effect of medium-chain fatty acids on the fermentation as they are small 

enough to be readily dissolved and disrupt the cell membranes and inhibit enzymes 

involved in energy production and lead to the microbial death cell (Machmuller, 2006). 
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Characteristics of Fermentation 

Forage Effects 

Culture VFA profile, NH3N, and pH are shown in Table 3.3. The total VFA 

concentration was lower for the LF-fed module than for the HF-fed module, mainly 

because of the lower acetate molar proportion for the LF-fed module compared to the 

HF-fed module. In contrast, propionate and butyrate molar proportions were higher for 

the LF-fed module than the HF-fed module. As a result, acetate:propionate ratio was 

lower in the LF-fed module than in the HF-fed module. The lower total VFA 

concentration for LF-fed fermenters did not agree with in-vitro and in-vivo studies 

(Fuentes et al., 2009; Lascano et al., 2016b). Calsamiglia et al. (2008) concluded that the 

main factor influencing VFA concentration is the interaction between pH and F:C in the 

diets. Also, Moody et al. (2007) stated that the VFA concentrations were higher in LF 

than HF when pH was affected by F:C. In the current study, the pH was similar between 

the LF-fed module and the HF-fed module and is mainly related to the type of buffer used 

in the study to keep the culture in the same pH level 24 h incubation. While, the greater 

acetate molar proportion for HF-fed fermenter is consistent with previous studies 

(Martinez et al., 2010; Gudla et al., 2012; Suarez-Mena et al., 2015; Lascano et al., 

2016b). Acetate results of structural carbohydrate fermentation by cellulolytic bacteria 

and these bacteria can be inhibited by lower NDF inputs as in the present study, which 

may explain the lower acetate molar proportion for LF-fed fermenter (Martin et al., 

2002). Several studies showed that the F:C ratio did not affect propionate and butyrate 

(Rodriguez-Prado et al., 2004; Gudla et al., 2012; Suarez-Mena et al., 2015). Cultural pH 
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was similar between the LF-fed module compared to the HF-fed module. The pH values 

did not agree with a study conducted using Rusitec fermenters as they reported a higher 

pH in HF-fed fermenter than for LF-fed fermenter (Martinez et al., 2010). The NH3N 

concentration was lower for the LF-fed module than for the HF-fed module. These 

findings agree with several studies used different F:C ratio in continuous culture 

fermenter (Calsamiglia et al., 2008; Fuentes et al., 2009; Martinez et al., 2010). The 

lower NH3N in the LF-fed module than in the HF-fed module could be due to ammonia 

for AA's de novo synthesis. 

Fat Effects 

The fat inclusion level in the diets decreased the total VFA concentrations with a 

lower value for the 9% fat-fed module than the 6% fat-fed module. In contrast, the 

acetate, propionate, butyrate molar proportions, and the acetate:propionate ratio were not 

affected by fat inclusion in the diets. Rumen fermentation is not affected when fat levels 

are low in the diets because rumen microbes are able to saturate FA, but this capacity can 

be exceeded at higher levels, and FA can accumulate in the rumen and interfere with 

rumen fermentation (NRC, 2001). The different levels of fat inclusion decreased the 

culture pH. Suarez-Mena et al. (2013) reported a similar rumen pH between treatments as 

DDGS increased in the diets. In contrast, Manthey et al. (2016) observed a linear 

decrease in rumen pH as DDGS increased in the diets, and they attributed that to the F:C 

ratio. Ammonia concentration was increased as the fat inclusion increased in the diets. 

Suarez-Mena et al. (2015) and Manthey et al. (2016) observed similar results, and they 

attributed that to the lower ME intake with the addition of DDGS. Therefore, the 
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microbial capacity to assimilate amino acids and ammonia was negatively affected and 

NH3 accumulated in the rumen (NRC, 2001). Yang et al. (2009) attributed the higher 

NH3N concentration as fat included in the diets is due to the greater proteolytic bacteria. 

Source Effects 

The different types of fat in the diets decreased the total VFA concentrations in 

the modules compared to the CON-fed module. Elliott et al. (1997) reported that the total 

VFA concentration decreased when different fat sources were fed compared to the 

control diet. Pilajun and Wanapat (2014) reported a lower total VFA concentration in the 

in-vitro gas production technique after 48 h incubation with CO diet. They attributed that 

to the negative effect of medium-chain fatty acids on the fermentation. Also, the higher 

total VFA concentration for CON-fed fermenters could be related to the pH as it is the 

main factor influencing VFA concentrations (Calsamiglia et al., 2008). In the current 

study, the pH was lower for the CON-fed module compared to the CO-fed module and 

PF-fed module. Oldick and Firkins (2000) reported that the acetate responded 

quadratically as the fat sources' unsaturation degree increased (tallow, partially 

hydrogenated tallow, and animal-vegetable fat). In addition, Elliott et al. (1997) reported 

a decrease in acetate's molar proportion when different saturation fat (tallow, partially 

hydrogenated tallow, hydrogenated tallow, blend of hydrogenated tallow, and 

hydrogenated fatty acids, and hydrogenated fatty acids) was fed and increased linearly as 

saturation increased. 

In contrast, the propionate molar proportion was higher for the CO-fed module 

and PF-fed module compared to CON-fed module and other fat type treatments. The 
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propionate finding did not agree with a study conducted by Pilajun and Wanapat (2014) 

as they reported a lower propionate in the CO diet after 48 h incubation. Also, with a 

study by Oldick and Firkins (2000), Holstein heifers fed a different degree of fat 

saturation (tallow, partially hydrogenated tallow, and animal-vegetable fat). Elliott et al. 

(1997) reported a linear decrease in propionate as saturation increased. As a result of the 

increase in propionate molar proportion, the acetate:propionate ratio was the lowest in the 

CO-fed module and PF-fed module compared to the CON-fed module and the other fat 

types treatments. Some studies have reported that feeding fat can decrease the 

acetate:propionate ration (Oldick and Firkins, 2000; Elliott et al., 1997) or unchanged 

(Tjardes et al., 1998). They related the decrease in acetate:propionate ratio to the 

reduction in ruminal NDF dC, which is not the case in the current study. Ruminal 

fermentation has been frequently shifted to greater propionate in cows fed fats such as 

tallow, yellow grease, or animal-vegetable blends and resulted in lower 

acetate:propionate ratio (Jenkins and Jenny, 1989; Ohajuruka et al., 1991; Weisbjerg et 

al., 1991; Schauff et al., 1992; Elliott et al., 1993). Butyrate molar proportion was lower 

in the CON-fed module compared to the different types of fat treatments. Manthey and 

Anderson (2018) suggested that the differences in starch contents and intake are the 

reason behind the shift in VFA concentrations and the decrease in acetate and increase in 

propionate. They also suggested that higher propionate is related to more energy-efficient 

and rumen fermentation in heifers fed DDGS diets (Manthey et al., 2016). There are less 

methane and carbon dioxide production in propionate as compared with acetate (Fahey 

and Berger, 1988). Cultural pH was lower for the CON-fed module compared to the 
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different types of fat-fed module. Chibisa et al. (2015) stated that the drop in pH with 

high starch diets is common in the literature. The inclusion of different fat sources in the 

diets increased the cultural pH with the highest pH values were observed at the CO-fed 

module, followed by the PF-fed module compared to the CON-fed module. That agrees 

with a study conducted by Elliott et al. (1997), where they reported an increase in ruminal 

pH as different saturated fat were fed, and they attributed that to the lower fermentable 

carbohydrate content in these diets. The NH3N concentration was similar between the 

different types of fat compared to the CON-fed module except for the MEG-fed module, 

which had the highest NH3N concentration. Elliott et al. (1997) reported a linear increase 

in NH3N concentrations as the degree of saturation increased (tallow, partially 

hydrogenated tallow, hydrogenated tallow, blend of hydrogenated tallow and 

hydrogenated fatty acids, and hydrogenated fatty acids), and they suggested that the 

dietary triglycerides became more unsaturated, and the ruminal protein digestion 

inhibited. These results could be related to better synchrony between N and energy 

availability for microorganism’s activity. These results agreed with previous studies 

where the ruminal NH3N concentrations were not affected by supplemental fat or fat 

source (Doreau and Ferlay, 1995; Pantoja et al., 1995; Oldick and Firkins, 2000). 
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CONCLUSIONS 

Screening different types of unsaturated fat with different inclusion levels in both 

low and high forage diets using a gas production system showed differential effects on 

culture fermentation. Acetate molar proportion decreased, and the A:P ratio while 

maintaining higher pH in more saturated than the unsaturated fat and control treatments. 

The type of fat had some minor effect on the cumulative gas production, whereas the high 

forage and high-fat inclusion decreased the gas production. Results from this study 

demonstrate that poultry fat inclusion along with coconut oil, calcium salt, and palm oil 

inclusion improved true dry matter digestibility significantly in comparison to 

unsaturated soybean oil and the control diet, which has lower dietary fat, while the level 

of fat inclusion had no detrimental impact on nutrients digestibility. These results showed 

that the LF-fed modules consistently resulted in higher nutrient utilization and the 

apparent digestibility of most nutrients. Therefore, we can conclude that the high 

concentrate diet up to 65% with high-fat inclusion up to 6% from by-products dietary 

poultry fat or coconut oil can be successfully included in rations for precision-fed dairy 

heifers without negative effect on nutrient digestibility and fermentation characteristics.
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Table 3.1. Ingredient and chemical composition of low (LF) and high (HF) forage diets containing unsaturated fat sources with 

different fat concentration (CON 3%, CO 6%, PF 6%, PO 6%, PKO 6%, MEG 6%, SOY 6%, CO 9%, PF 9%, PO 9%, PKO 

9%, MEG 9%, SOY 9% DM) fed to in vitro gas production system. 

    Fat type, % in the diet 

Ingredient, % Forage CON 3% CO 6% PF 6% PO 6% PKO 6% MEG 6% SOY 6% CO 9% PF 9% PO 9% PKO 9% MEG 9% SOY 9% 

   Coastal hay LF 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 
 HF 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

   Corn silage LF 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 
 HF 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

   Ground corn LF 51.8 46.4 46.4 46.4 46.4 46.4 46.4 40.8 40.8 40.8 40.8 40.8 40.8 
 HF 24.4 18.6 18.6 18.6 18.6 18.6 18.6 12.6 12.6 12.6 12.6 12.6 12.6 

   Soybean meal (SBM) LF 11.2 13.7 13.7 13.7 13.7 13.7 13.7 16.4 16.4 16.4 16.4 16.4 16.4 
 HF 3.60 6.33 6.33 6.33 6.33 6.33 6.33 9.20 9.20 9.20 9.20 9.20 9.20 

   Mineral mix LF 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
 HF 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

   Fat inclusion LF 0.00 2.80 2.80 2.80 2.80 2.80 2.80 5.79 5.79 5.79 5.79 5.79 5.79 
 HF 0.00 3.04 3.04 3.04 3.04 3.04 3.04 6.19 6.19 6.19 6.19 6.19 6.19 

Chemical composition               

   DM % LF 91.1 90.9 91.6 91.9 92.3 92.1 91.8 92.0 91.8 92.3 92.5 92.3 92.1 
 HF 91.9 91.7 92.2 91.9 92.2 92.0 92.0 92.0 92.5 92.3 92.6 92.4 92.2 

   OM, % LF 95.3 95.5 95.0 95.1 95.3 94.8 94.7 95.1 95.2 95.2 95.0 94.7 94.7 
 HF 93.9 94.1 94.0 94.0 94.1 93.6 94.1 94.0 93.9 93.8 94.0 93.5 94.0 

   CP, % LF 12.0 13.8 13.2 13.2 13.4 13.2 13.5 14.1 13.8 14.5 14.3 14.0 13.8 
 HF 9.40 11.2 11.4 11.0 11.8 11.3 10.7 12.0 12.0 11.9 11.3 12.1 12.1 

   NDF, % LF 22.7 20.2 22.3 22.9 22.7 21.1 22.7 20.5 23.2 22.4 21.2 21.7 23.1 
 HF 37.2 34.3 36.8 37.9 36.9 36.1 36.6 35.2 36.9 39.4 37.1 34.3 36.5 

   ADF, % LF 11.4 11.4 11.5 11.6 11.2 10.5 11.1 12.0 11.8 11.3 10.7 10.7 11.7 
 HF 20.4 19.8 20.2 20.7 20.1 19.7 19.8 21.9 20.3 21.3 20.5 18.9 20.0 

   EE, % LF 3.32 5.58 5.78 5.76 5.84 4.97 5.76 8.59 8.64 8.84 8.40 7.56 8.50 
 HF 3.08 5.48 5.33 5.35 5.51 4.67 5.25 8.21 8.19 8.53 8.38 7.77 8.46 

   NFC, % LF 57.2 55.9 53.7 53.2 53.3 55.5 52.7 52.0 49.5 49.4 51.1 51.4 49.4 
 HF 44.2 43.1 40.4 39.6 39.8 41.5 41.6 38.6 36.7 34.0 37.2 39.4 36.9 

   Ash, % LF 4.63 4.50 4.96 4.85 4.68 5.18 5.22 4.86 4.76 4.77 4.96 5.26 5.25 
 HF 6.04 5.90 5.99 5.98 5.86 6.38 5.82 5.95 6.05 6.14 5.92 6.45 5.96 

   TDN LF 77.1 80.7 81.6 82.4 81.9 80.3 81.9 83.8 85.2 84.7 84.6 78.4 84.3 
 HF 69.4 72.7 73.0 73.3 69.1 70.8 73.1 74.8 77.3 77.0 77.6 71.3 77.5 

   ME, Mcal/Kg LF 2.81 2.94 2.98 3.01 2.99 2.93 2.99 3.06 3.11 3.09 3.09 2.86 3.07 

  HF 2.53 2.65 2.66 2.67 2.52 2.58 2.67 2.73 2.82 2.81 2.83 2.60 2.83 
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1All diets were ground to 1 mm 
2NFC: non-fiber carbohydrates = 100 - (CP + ether extract + NDF + Ash) 
3ME calculated using modified equations from NRC (2001), using TDN values as reported by Cumberland Valley Analytical Services, Inc., Waynesboro, PA. ME = 

(TDN × 4.409 × 1.01 – 0.45) × 0.82. To represent better the increase in energy as fat increased in the diets, another modified equation from NRC (2001) was used. ME = 

(TDN × 4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 
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Table 3.2. Nutrient apparent digestibility of in vitro gas production system fed low (LF) and high (HF) forage diets containing 

different fat sources with different fat concentration (CON 3%, CO 6%, PF 6%, PO 6%, PKO 6%, MEG 6%, SOY 6%, CO 

9%, PF 9%, PO 9%, PKO 9%, MEG 9%, SOY 9% DM). 

                                                                                                                                                                                                                                        

 

1Cumulative gas production in mL; gas pressure was converted to mole using the ideal gas law, n = p (V/RT), and then converted to milliliter using the Avogadro’s law, 

gas produced in mL = n × 22.4 × 1000 
 

 

 

 

 

 

 

 

 

 

 

 

 

  Fat type   Forage   Fat %   

Digestibility, % CON CO PF PO PKO MG SOY   LF HF   6% 9% SE Type F:C Fat 

DM 50.6 c 54.5 a 50.6 c 49.5 d 50.1 cd 49.7 d 51.8 b  54.6 47.3  51.2 50.8 0.48 <0.01 <0.01 0.10 

                  

IVTDMD 72.7 d 76.8 a 73.0 cd 72.9 cd 71.2 e 74.5 b 73.6 c  80.3 66.7  73.4 73.6 0.56 <0.01 <0.01 0.31 

                  

OM 71.0 d 75.4 a 71.2 cd 71.2 cd 69.4 e 72.7 b 71.8 c  78.9 64.6  71.7 71.9 0.35 <0.01 <0.01 0.21 

                  

NDF 58.1 b 59.2 ab 58.0 b 59.7 ab 52.2 c 60.8 a 58.9 ab  66.2 49.9  58.1 58.2 0.86 <0.01 <0.01 0.78 

                  

ADF 53.1 a 53.6 a 53.1 a 54.4 a 45.7 b 55.0 a 53.5 a  62.6 42.5  53.1 52.2 1.08 <0.01 <0.01 0.17 

                  

GP1 mL 110 ab 114 a 109 ab 101 ab 99.1 b 100 b 113 a  111 101  109 103 5.07 0.03 0.01 0.03 

                                    

P value  
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Table 3.3. Volatile fatty acids, NH3N, pH, and GP of in vitro gas production system fed low (LF) and high (HF) forage diets 

containing different fat sources with different fat concentration (CON 3%, CO 6%, PF 6%, PO 6%, PKO 6%, MEG 6%, SOY 

6%, CO 9%, PF 9%, PO 9%, PKO 9%, MEG 9%, SOY 9% DM). 

 

 

 

 

 

 

  Fat type   Forage   Fat %   

Culture fermentation CON CO PF PO PKO MG SOY   LF HF   6% 9% SE Type F:C Fat 

Total VFA, mM 89.6 a 82.8 b 68.9 c 69.4 c 69.1 c 70.3 c 71.2 c  73.1 77.7  80.9 69.9 1.20 <0.01 <0.01 <0.01 

VFA, mol/100 mol                  

Acetate 67.7 a 56.5 e 58.2 d 60.3 c 61.5 bc 62.2 b 62.0 b  56.3 66.1  60.9 61.4 0.58 <0.01 <0.01 0.19 

                  

Propionate 20.8 d 29.0 a 26.8 b 24.4 c 24.8 c 23.9 c 24.5 c  27.9 21.9  24.9 24.9 0.45 <0.01 <0.01 0.94 

                  

Butyrate 11.5 c 14.5ab 15.0 a 15.2 a 13.7 b 14.0 ab 13.5 b  15.9 11.9  14.2 13.7 0.52 <0.01 <0.01 0.17 

                  

Acetate:propionate 3.29 a 2.00 d 2.25 c 2.56 b 2.63 b 2.69 b 2.60 b  2.09 3.06  2.59 2.56 0.06 <0.01 <0.01 0.37 

                  

pH  6.56 b 6.62 a 6.63 a 6.61 ab 6.62 a 6.59 ab 6.61 ab  6.60 6.61  6.62 6.59 0.02 0.29 0.84 0.01 

                  

NH3N, mg/dL 10.6 b 10.8 b 10.1 b 10.2 b 10.3 b 11.6 a 10.2 b  8.70 12.3  10.1 10.9 0.44 0.01 <0.01 0.04 

                                    

P value  
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CHAPTER FOUR 

 

SIMULATING PRECISION FEEDING OF HIGH CONCENTRATE DIETS 

WITH HIGH FAT INCLUSION AND DIFFERENT PLANT-BASED 

SATURATED, UNSATURATED, AND ANIMAL FAT SOURCES IN 

CONTINUOUS CULTURE FERMENTORS 

 

ABSTRACT 

Controlling dry matter intake (DMI) is one strategy to reduce feed costs and 

increase efficiency. Including fat at a high concentrate level can increase the energy 

density of diets fed to ruminants, thus reducing DMI further. Therefore, the objective of 

this study was to evaluate the effects on fermentation and nutrient digestion of including 

different fat sources when high concentrate diets with high-fat inclusion are used under 

simulating precision feeding in continuous culture. We hypothesized that incorporating 

different fat sources to the aforementioned program can improve nutrient utilization 

without affecting rumen fermentation. Four treatments were randomly assigned to 8 

continuous culture in a randomized complete block design and ran for 2 periods of 10 d. 

Diets included high concentrate (HC; 65%) with high-fat inclusion starting with a basal 

level of fat as control [3% fat (0% fat; CON); and 9% fat (6% poultry fat; PF, coconut 

oil; CO, and soybean oil; SO)]. Data were analyzed using the MIXED procedure of SAS 

with repeated measures. The DM, OM, NDF, ADF, and hemicellulose digestibility 

coefficients (dC) were higher for PF and CO, followed by SO and then the CON. Starch 

and FA dC were higher for different fat sources than for the CON. The total VFA 

concentration was higher for CON. There was a reduction in acetate and propionate with 

different fat sources. Mean culture pH and NH3N were the highest for CO, followed by 

PF, then SO, and CON. Protozoa population was higher for CON than for the other fat 
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treatments, followed by CO, PF, and SO. These results suggest that simulated precision 

feeding with high concentrate diets up to 65% and high fat up to 6% can improve nutrient 

digestibility. 
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INTRODUCTION 

High fiber-based diets are inefficient in terms of energy and protein utilization and 

lower digestibility compared to concentrates (Reynolds et al., 1991; Moody et al., 2007; 

Zanton and Heinrichs, 2007). However, that can be potentially enhanced by incorporating 

concentrate, fat, or both to make the diets more energy-dense (Naik et al., 2010). The use 

of high concentrate precision-fed diets showed improvement in OM digestibility (Zanton 

and Heinrichs, 2009) and resulted in similar effects on rumen fermentation (Lascano and 

Heinrichs, 2009; Lascano et al., 2009). However, in addition to the increase in grain 

costs, negative effects of high-level feeding of concentrates on dairy cattle’s fiber intake 

and acidosis incidence can occur (Palmquist and Jenkins 1980; Nocek, 1997). Feeding fat 

has gained interest in the last few decades. Adding fat to dairy diets became common 

practice for its potential to increase the energy density in diets, improve palatability, and 

reduce feed dustiness (Azain, 2004). Unsaturated fatty acids, as in soybean oil (SO), can 

decrease fiber digestion (Jenkins, 1993; Pantoja et al., 1994). Whereas saturated medium-

chain fatty acids, as in coconut oil (CO), may improve rumen fermentation (Machmuller 

et al., 2003; Pilajun and Wanapat, 2013). Additionally, cost-effective by-products from 

numerous industries, such as the poultry industry, can be utilized by ruminants. Poultry 

fat (PF) is a by-product of chicken processing and extensively produced world-wide with 

a potential source of energy (Hutchison et al., 2006; Swisher, 2015). 

On the other hand, the total dietary fat should not exceed 6-7% of the dry matter 

intake (DMI), and the traditional dairy heifer diets typically contain between 2 to 3% fat 

(NRC, 2001). In a study conducted by Anderson et al. (2015), the dietary fat reached up 
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to 7% when fed high fat from traditional dried distillers grains (DDGS) to dairy heifers. 

Also, in another study by Anderson et al. (2009), the diet's fat was close to 5% when a 

large portion of the heifer diet was supplied by wet distillers grains and soybean hulls. 

The level of fat saturation showed an effect on digestibility and fermentation. In a 

study conducted by Elliott et al. (1997) on the effects of saturation of fat sources in steers, 

they reported that increasing fat sources' saturation tended to increase the NDF and ADF 

digestibility in the rumen. Other studies have reported no differences in ruminal or total 

tract digestibility of OM or fiber in lactating cows fed diets with increasing amounts of 

dietary fat or different sources of fat  (Palmquist and Conrad, 1978; Ohajuruka et al., 

1991; Palmquist, 1991; Drackley and Elliott, 1993). Oldick and Firkins (2000) reported 

that acetate responded quadratically as the fat sources' unsaturation degree increased. In 

addition, Elliott et al. (1997) reported a decrease in acetate's molar proportion when 

different saturation fat was fed and increased linearly as saturation increased. The 

objective of this study was to evaluate the effects on fermentation and nutrient digestion 

of including different unsaturated fat sources when high concentrate diets with high-fat 

inclusion are used when simulating precision feeding in continuous culture. We 

hypothesized that incorporating different fat sources at a high concentrate diet to the 

aforementioned program can improve nutrient utilization without compromising 

fermentation and fermenters' digestibility. 
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MATERIALS AND METHODS 

Treatments and Experimental Design 

Diets included high concentrate (HC; 65%) and high-fat inclusion with four 

different fat sources starting with a basal level of fat in the diet as control [3% fat (0% fat; 

CON); and 9% fat (6% poultry fat; PF; Stabilized poultry fat; Valley proteins, Inc., Ward, 

SC); 9% fat (6% soybean oil; SO; Pure soybean oil; Nature’s oil, Streetsboro, OH); and 

9% fat (6% coconut oil; CO; Fractionated coconut oil; Nature’s oil, Streetsboro, OH)]. 

The experiment was designed as a randomized complete block design consisting of 4 

experimental diets split into two blocks of 4 dual-flow continuous culture fermenters 

during 2 periods of 10 d with a total of 4 replicates per treatment. Each period was started 

with a clean fermenter and inoculated with ruminal contents collected from 2 cannulated 

Holstein cows. Adaptation to treatment rations was made over the first 7 d of each period 

and 3 d for sampling collection. Treatments were randomly assigned to one of 4 

continuous culture fermenters in each block and allocated to a different fermenter during 

each period to remove any fermenter-specific differences. All diets were fed to the 

fermenters as total mixed rations (TMR) and predicted nutrient composition determined 

using NRC (2001). Diets were formulated to simulate a precision feeding program in 

continuous culture fermenters to restrict intake. Also, to provide equal amounts of ME 

and N to supply 1.70 g N/kg BW0.75 in Holstein heifers, which has been observed to 

maximize N utilization and allow for 800 g/d of ADG (Zanton and Heinrichs, 2009; 

Lascano and Heinrichs, 2011). Dietary ingredients and chemical composition are 

presented in Table 4.1. Fermenter receiving the CON treatment were fed greater amount 



150 

 

of TMR [(CON; 3% fat; 53.4 g/d as-fed)] than the other treatments [(PF; 9% fat; 47.7 

g/d; (SO; 9% fat; 47.7 g/d; (CO; 9% fat; 47.7 g/d as-fed]. That was because of different 

energy concentrations of the diets and different levels of fat inclusion between the control 

and the other treatments required to maintain isocaloric intake. Rations were prepared and 

mixed in advance, split into two equal amounts, and fed to the continuous culture 

fermenters daily at 0900 and 2100 h. 

Continuous Culture Conditions 

All procedures involving the surgical and animal care protocols were approved by 

the Clemson University Institutional Animal Care and Use Committee. Around 1800 h, 

the entire rumen contents were collected from two rumen cannulated Holstein cows fed a 

50% forage:50% concentrate diet and strained through two-layers of cheesecloth into a 

prewarmed sealed container. The filtered rumen fluid was combined from both cows, 

mixed with a buffer in a 1:1 ratio according to the methods of Slyter et al. (1966), and 

purged with CO2 until inoculation into the continuous culture fermenters. Moreover, the 

time from inoculum collection to fermenter inoculation did not exceed 60 min. 

Approximately 750 mL of diluted inoculum was added to each dual-flow fermenter. The 

fermenters' design and operation were based on a previous design outlined by Teather 

and Sauer (1988), with some modifications include the use of an overflow sidearm that 

angled downward at approximately 45o to facilitate emptying. In addition, a faster stirring 

rate (45 rpm) that still allowed the stratification of particles into three layers; an upper 

mat layer, a middle liquid layer of small feed particles, and a lower layer of dense 

particles (Koch, 2017). A higher feeding rate for the control treatment (53.4 g/d as fed; 
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26.7 g/feeding) to a lower feeding rate in the other treatments to simulate the restricted 

intake was utilized. The buffer solution was also delivered continuously to the cultures 

using a peristaltic pump. Also, it was manipulated to achieve different liquid and solid 

passage rates [(kpl; 8.6%/h for CON, and 7.7%/h for other treatments); (kps; 3.8%/h for 

CON, and 3.2%/h for other treatments; Appendix A)] to simulate a precision feeding 

program in dairy heifers based on an in-vivo study by Lascano et al. (2016b). The buffer 

solution was used to dilute the inoculum (Slyter, 1966) in a 1:1 ratio and was selected 

based on previous works in our lab and included a greater level of NaHCO3 to maintain 

culture pH. The cultures were maintained for 10 d, 7 d for adaptation duration to obtain a 

steady-state fermentation in the cultures, and 3 d for culture sampling (Lascano et al., 

2016a). Fuentes et al. (2009) reported that the cultures' microbial population requires a 5 

d adaptation period. These durations are commonly used in continuous culture 

experiments (Jenkins et al., 2014; Brandao et al., 2018; Dai et al., 2019). The fermenters' 

temperature was maintained at 39°C by a recirculating water bath. Each fermenter was 

continuously purged with CO2 at a rate of 20 mL/min to maintain anaerobic conditions, 

and gas flow rates were checked before the morning and evening feeding to ensure 

consistency. Culture’s pH was monitored using handheld pH probes and calibrated at the 

start of each period. Oxidation-reduction potential (Eh) was measured using the redox 

probe (Traceable 4277 pH/ORP Meter, Control Company, Webster, TX) during the 

sampling day at the same time points of pH measuring. The relative hydrogen score (rH) 

was calculated using the Clark equation for deriving rH from pH and Eh. 
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Sample Collection and Analysis 

On d 8, 9, and 10 of each period, liquid and solid digesta overflow from each 

fermenter were collected in a 2 L Erlenmeyer flask immersed and covered in an ice bath 

to stop the microbial activity. The overflow flasks were weighed, and the total volume 

was recorded once daily at 2030 h. A 20% aliquot of the overflow was collected in a pre-

labeled container and immediately frozen at - 20oC. The 3 d composited overflow 

samples were later thawed, homogenized, and subsampled for later analysis of DM, OM, 

NDF, ADF, and LCFA. On the last day (d 10) of each period, cultural contents were 

mixed thoroughly (120 rpm) during sampling to ensure an adequate sample from the 

cultures. Culture pH and Eh were measured and recorded at 0 (before feeding), 2, 4, 6, 8, 

10, and 12 h, and a 5 mL sample of culture contents were taken at the same time points 

for protozoa (kept in the fridge at 4oC), VFA, and ammonia analysis (frozen at - 20oC). 

Feed and dried overflow samples were ground using a Wiley Mill (Arthur H. 

Thomas Co., Philadelphia, PA) through a 2-mm sieve and analyzed for DM, OM, ash, 

and EE (AOAC, 2000). And through a 1-mm sieve for NDF and ADF (Van Soest et al., 

1991) using an ANKOM200 Fiber Analyzer (ANKOM Technology Corporation, 

Fairport, NY) with heat resistant α-amylase and sodium sulfite utilized in the NDF 

procedure. Starch was analyzed on reground samples (< 0.5-mm screen) using an 

enzymatic procedure (Bach Knudson, 1997). Culture samples (5 mL) were pipetted to 15 

mL centrifuge tubes containing 1 mL of metaphosphoric acid (25%; w/v), and then, these 

tubes were stored at -20°C until VFA and ammonia analysis, as described by Moody et 

al. (2007). Samples were later thawed and centrifuged at 40,000 × g for 30 min at 4°C. 
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After centrifugation, 1 mL of the supernatant was placed in a 2-mL Eppendorf 

microcentrifuge tube and used for the analysis of NH3N according to the methods of 

Chaney and Marbach (1962) with modifications including reduced sample and reagent 

volume to accommodate the use of a 96-well plate reader. Another 0.5 mL of the 

supernatant was combined with 0.5 mL distilled water and 100 μL of internal standard 

(86 μmol of 2-ethylbutyric acid/mL) in a GC vial. 

Samples for VFA were then analyzed by GC–flame-ionization detection 

according to the methods of Yang and Varga (1989) and injected into a Hewlett-Packard 

6890 gas chromatograph (San Jose, CA) equipped with a custom packed column (2 m × 

0.32 cm × 2.1 mm ss; 10% SP-1200/1% H3PO4 on 80/100 Chromosorb WAW). 

Additionally, a 4 mL culture sample was pipetted and preserved in 4 mL of methyl green 

formalin-saline solution (1:2 dilution) and stored in darkness at 4°C for protozoa counting 

(Ogimoto and Imai, 1981). Dried ground feed and overflow samples were sent to the 

Multi-User Analytical Laboratory and Metabolomics Core, Clemson University, SC, for 

the LCFA analysis. Quantities of individual fatty acids present in the cultures were 

determined on a Shimadzu GC-2010 gas chromatograph with a flame ionization detector. 

It was equipped with an SLB-IL111 (Sigma, St. Louis, MO) fused silica capillary column 

(L x I. D. 100 m x 0.25 mm) with 0.2 um film thickness. The initial temperature was held 

at 140°C for 3 min then increased by 3.7°C per min up to 220°C for 60 min. The carrier 

gas was helium purged at 20 cm/s. Fatty acid peaks were identified and separated by 

comparison of the retention times to known standards. 
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Calculations and Statistical Analysis 

Fractional passage rates were calculated according to Lascano et al. (2016b) as 

follows: 

The liquid passage rate in the in-vivo study by Lascano et al. (2016b) was 

8.93%/h for LF (45% forage). Therefore, we assumed 8.60%/h would be the control diet's 

liquid passage rate (35% forage) in our study.  

Liquid passage rate was decreased based on the decreased dry matter intake as we 

increased the fat inclusion in the diets. 

Liquid passage rate (%/h) = drymatter intake (g/d) × liquid passage rate for the 

control (mL/h) × dry matter intake for the control (g/d),   

Buffer input (mL/h) was calculated as follows: 

Buffer input (mL/h) = liquid passage rate (%/h) × fermenter volume (mL), 

In the same way, the solid passage rate was calculated and based on the results of 

our study. 

Metabolizable energy intake (Mcal/d) was calculated as follows: 

ME (Mcal/d) = (digested OM intake × 4.409 (Mcal/Kg) × 1.01 – 0.45) × 0.82, 

assuming that digestible OM intake and total digestible nutrient intake were equal. 

That equation was used for the control diet, which was modified from NRC 

(2001). To represent better the increase in energy as fat increased in the diets, another 

modified equation from NRC (2001) was used as follows: 

ME (Mcal/d) = (digested OM intake × 4.409 (Mcal/Kg) × 1.01 – 0.45) + (0.0046 

× (EE - 3) × 0.82]. 
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All statistical analyses were conducted in SAS version 9.4 for Windows (SAS 

Institute Inc., Cary, NC) using the MIXED procedure. Data were analyzed as a 

randomized complete block design with period and fats as a fixed effect, fermenters as a 

random effect, and repeated measures as needed for the following model: 

Yijk = μ + Fi + Pj + Ck + eijk, 

Where Yijk = the dependent variable, μ = the overall mean, Fi = the fixed effect 

of fat, Pj = the fixed effect of the period, Ck = the fermenter's random effect and, eijk = 

the residual error. The PDIFF option adjusted by the Tukey method was included in the 

LSMEANS statement to account for multiple comparisons. For observations where 

multiple repeated measures occurred in a period, the fixed effects of time and its 

interaction with other fixed effects were included in the model based on a repeated 

measures analysis (Littell et al., 1998). Covariance structures of simple, autoregressive, 

or compound symmetry were chosen for use in the repeated measures analysis based on 

the lowest values of Akaike's Information Criterion and Schwartz's Bayesian Criterion. 

Residuals for all models were found to be normally distributed (Shapiro-Wilk test for 

normality). Least square means are presented in tables, and evidence for statistical 

significance was declared at P ≤ 0.05, while trends for main effects and interactions are 

discussed at 0.10 ≥ P > 0.05. 
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RESULTS AND DISCUSSION 

Diet Composition and Nutrient Inputs 

Diet ingredients and chemical composition values are presented in Table 4.1. The 

dietary EE concentrations increased in the diets up to 9% with the inclusion of different 

lipid sources and, consequently, ME concentration; therefore, daily feeding amount 

decreased as different lipid sources increased. The addition of different lipid sources to 

the diets resulted in 2 different proportions of FA concentrations in the diets, and its input 

increased as well. As planned, the fat inclusion replaced the ground corn in the control 

diet, resulting in a decrease in starch and NFC in the other three different fat treatments. 

All other components of the rations were formulated to be similar between treatments. 

Daily starch and NFC inputs were decreased as fat included in the diets and were 

the opposite with EE input as increased to achieve the planned diets. Consequently, there 

was an input fat effect on OM, NDF, ADF, starch, and NFC to maintain the isoenergetic 

and isonitrogenous treatment design. The liquid and solid passage rates were lower for 

different fat-fed fermenters compared to the control-fed fermenter (Appendix A). Passage 

rates of diets can be slower when intake is limited (Eng et al., 1964; Owens and Isaacson, 

1977; Colucci et al., 1990), and we expected to be even slower when fat is added to the 

diets. 

Digestibility of Nutrients 

Apparent digestibility coefficients (dC) are outlined in Table 4.3. The dC of DM, 

OM, NDF (Figure 4.1), ADF, and hemicellulose were greater for CO-fed fermenter and 

PF-fed fermenter followed by SO-fed fermenter and then CON-fed fermenter. These 
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observations are consistent with results reported in a study conducted by Elliott et al. 

(1997) on the effects of saturation of fat sources in steers; it has been reported that 

increasing saturation of fat sources tended to increase the NDF and ADF digestibility in 

the rumen. Several other studies have reported no differences in ruminal or total tract 

digestibility of OM or fiber in lactating cows fed diets with increasing amounts of dietary 

fat (up to 5.7% total FA ~ 7% EE) or different sources of fat (Palmquist and Conrad, 

1978; Ohajuruka et al., 1991; Palmquist, 1991; Drackley and Elliott, 1993). In contrast, it 

has been reported in a meta-analysis by Weld and Armentano (2017) that adding 3% of 

saturated fats or calcium salts to the diets increased total-tract NDF digestibility. Whereas 

medium-chain fats and unsaturated vegetable oil decreased total-tract NDF digestibility 

of lactating dairy cows. It has been reported in an in-vitro study that the CO up to 5%, 

which contains a high saturated medium-chain fatty acid, had no adverse effects on DM 

digestibility in the in-vitro gas fermentation production technique (Pilajun and Wanapat, 

2014). In a study conducted by Anderson et al. (2015), the authors reported a higher dC 

of NDF and ADF when heifers were limit-fed a high-fat DDGS (7.00% EE) compared to 

a low-fat DDGS (3.08% EE), whereas the DM and OM did not differ between the 

treatments. It was suggested that the high-fat DDGS diet contains a lower starch content 

compared to the low-fat DDGS, which is the case in our study (Table 4.1), which resulted 

in a higher pH and an efficiency of utilization of fiber and improved the total-tract 

digestion. Also, Suarez-Mena et al. (2015) observed a quadratic DM, OM, NDF, and 

ADF dC response to increasing levels of DDGS up to 14% inclusion in the diets (4.99% 

total FA ~ 6% EE). These results did not agree with a study conducted by Lascano et al. 
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(2016a) using two levels of fat with no added fat, or 3.3% added SO in continuous culture 

fermenter where they did not observe any effects on DM and ADF dC between the two 

levels of fat in the diets. In the present experiment, fat represented 3% and 9% of the 

diets, respectively, which is larger than what has been reported in the above study. Koch 

(2017) reported depression in DM, OM, NDF, and ADF dC when continuous culture 

fermenters were fed high SO compared to low SO. Koch (2017) stated that the dietary 

polyunsaturated fatty acids had been shown to depress fiber dC by limiting the growth of 

fiber digestion bacteria (Van Soest, 1994), and this finding is common in the literature 

(Rico et al., 2014). Manthey and Anderson (2018) reported no effects on dC when heifers 

were limit fed DDGS with ad libitum grass hay. They related that to feeding grass hay as 

ad libitum, which resulted in a slightly different limit feed program than the typical one. 

Also, the passage rates of diets can be slower when intake is limited (Eng et al., 1964; 

Owens and Isaacson, 1977; Colucci et al., 1990), and we expected to be even slower as 

fat added to the diets and as we have it in the current study (Appendix A). 

The greater digestibility of fat-fed fermenter can be attributed to the greater 

digestibility of the ingredients in these diets. Also, to a higher retention time of these diets 

in the culture fermenter (Leaver et al., 1969; Colucci et al., 1990) as we decreased the 

passage rate with lower intake, as we planned in our study. On the other hand, the lower 

NDF, ADF, and hemicellulose dC in the CON-fed fermenter could be related to the 

availability of rapidly fermented ingredients such as starch and NFC (Table 4.1). That 

could also be related to more numerous amylolytic bacteria populations associated with 

CON diets (Brown et al., 2006). Furthermore, this could be attributed to the lower pH 
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level for the CON-fed fermenter (Table 4.6) because cellulolytic bacteria are very 

sensitive to pH and their activity and growth start to decline under pH 6.0 (Russell and 

Wilson, 1996). The FA (Figure 4.2) and starch dC were higher in the fat inclusion-fed 

fermenters than the CON-fed fermenter. That is mainly because of the lower starch and 

NFC content (Table 4.1) and their inputs (Appendix A) as corn was replaced with fat in 

the diets. Also, the lower passage rate and higher retention time resulted in more efficient 

fat and starch utilization in the continuous culture fermenter system.  

Fatty Acid Flows and Biohydrogenation 

The overflows of major fatty acids are detailed in Table 4.4. The inclusion of CO 

showed an increase in the overflow of individual saturated FA C12 and C14. That is 

mainly because the CO is relatively high in saturated medium-chain fatty acids such as 

C12 and C14, as we can see from Table 4.2. That agrees with a study conducted by Potu 

et al. (2011) using continuous culture fermenters and different fats supplement. They 

observed that the C14 flow was the highest when fish oil was fed, which is relatively 

higher in C14 compared to animal fat (Rumo-fat) and SO. Whereas the overflow of 

saturated FA C16, C18, and C22 was the highest with PF inclusion. Similarly, that can be 

attributed to PF high saturated long-chain fatty acids such as C16 and C18, as shown in 

Table 4.2 and their inputs in Table 4.3. These observations also agree with an in-vivo 

study where animal fat (Rumo-fat) showed the highest C18 flow (Potu et al., 2011). 

Lascano et al. (2016a) and Koch (2017) observed a reduction in saturated FA C12, C14, 

C20, C22, and C24 when fermenters were fed, increasing starch degradability. Also, 

Lascano et al. (2016a) reported increased daily outflows of individual saturated and total 
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fatty acids when fermenters fed high-fat diets compared to low-fat diets. Similarly, in a 

study conducted on feeding two levels of fat (no added fat or 3.64% of DM) to 

continuous culture fermenters, the high fat-fed fermenters showed a higher outflow of 

C:16, C20, C22, and C24 compared to low fat-fed fermenters (Jenkins et al., 2014).  

The SO-fed fermenter showed the highest flow of individual unsaturated FA 

C18:1, C18:2, and C18:3. That can be attributed to the fact that the SO is relatively high 

in unsaturated long-chain fatty acids (Table 4.2). Potu et al. (2011) reported in an in-vitro 

study that the SO inclusion resulted in the highest flow of C18:1, and they attributed that 

to the highest proportion of C18 unsaturated FA, among other treatment diets. Other 

studies also reported similar increases in C18:1 flows in the rumen (Loor et al., 2002; 

Varadyova et al., 2007) and duodenal (Kucuk et al., 2008) with SO inclusion in ruminant 

animal’s diet. The decrease in C18:1 and C18:2 overflow in CO-fed fermenter and PF-fed 

fermenter is partially related to replacing ground corn with fat and the high 

biohydrogenation efficiency of high-fat diets (Schmidely et al., 2008). That is in 

agreement with a study on dry dairy cows fed two levels of crude fat (2.9% and 7.6%) 

and showed a decrease in C18:2 FA (Zened et al., 2013). 

Additionally, the CON-fed fermenter showed a lower total fatty acid flow 

compared to the other treatments. That is due to the higher content of starch and NFC, as 

well as the lower fat content. Lascano et al. (2016a) and Koch (2017) reported an increase 

in the outflow of C18:2 and C18:3 from the fermenters fed high starch, which resulted in 

a lower extent of biohydrogenation. Cultures under low pH conditions (5.65) showed less 

disappearance of C18 unsaturated FA (AbuGhazaleh and Jacobson, 2007). Martin et al. 
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(2002) and Jenkins et al. (2008) stated that most rumen microbial growth and enzyme 

activities could be impacted under low rumen pH conditions. In the current study, the 

lower pH in CON-fed fermenters (Table 4.5) may have affected culture bacteria and 

reduced the biohydrogenation rates.  

Part of the differences in the unsaturated fatty acids flow is related to the 

differences in the dietary contribution of C18:1, C18:2, and C18:3, while the other part is 

related to the rate of biohydrogenation. The Biohydrogenation rate of C18:2 was 

decreased with a CON-fed fermenter. That aligns with our observations with a lower 

amount of C18:0 flows for CON-fed fermenter and indicating a reduction in the 

biohydrogenation pathway to completion at C18:0. Based on PF's effect on unsaturated 

FA C18, the PF-fed fermenter showed the highest percentage in the biohydrogenation of 

C18:2 and C18:3, followed by both of SO-fed fermenter and CO-fed fermenter and then 

CON-fed fermenter. These results agree with several in-vivo and in-vitro studies as they 

observed that the biohydrogenation rated of unsaturated fatty acids increased as the 

inclusion of fat increased in the diets (Zened et al., 2013; Jenkins et al., 2014; Lascano et 

al., 2016a).  

Characteristics of Fermentation 

Culture VFA profile, NH3N, pH, reduction potential (Eh), relative hydrogen score 

(rH), and total protozoa counts are shown in Table 4.5. The inclusion of different lipid 

sources in the diets decreased the total VFA concentrations with the lowest at CO-fed 

fermenter compared to the CON diet. Elliott et al. (1997) reported that the total VFA 

concentration decreased when different fat sources were fed compared to the control diet. 
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They attributed that to the lower fermentable carbohydrate content in fat-fed diets as corn 

was replaced with fat and as in the current study to maintain the isocaloric intake. Pilajun 

and Wanapat (2014) reported a lower total VFA concentration in the in-vitro gas 

production technique and after 48 h incubation with 5% CO in the diet. They attributed 

that to the negative effect of medium-chain fatty acids on the fermentation. Machmuller 

(2006) stated that the medium-chain fatty acids in the CO are small enough to penetrate 

and disrupt the cell membranes by readily dissolve in the lipid phase. Also, inhibit the 

enzymes involved in energy production and nutrient transfer, leading to reversible and 

irreversible changes that could lead to the microbial cell's death. Also, the higher total 

VFA concentration for CON-fed fermenters could be related to the pH (Calsamiglia et al., 

2008). In the current study, the pH was the lowest with the CON-fed fermenter than for 

other treatments. In addition, as DM inputs decrease with fat inclusion, the passage rate 

decrease and the retention time increase in the continuous culture fermenter as planned in 

the current study, and that could be the reason behind the lower total VFA as fat 

increased in the diets (Appendix A). Furthermore, this reduction could be mainly because 

of the reduction in acetate concentrations as fat included in the diets, specifically with 

SO-fed fermenter and CO-fed fermenter. Even though the dC of NDF and ADF were the 

highest by CO inclusion, the reduction in fiber intake and the starch intake is the reason 

behind the reduction in acetate concentration (Manthey and Anderson, 2018). Acetate 

production within the rumen results from the fermentation of structural carbohydrates by 

cellulolytic bacteria (Enjalbert et al., 1999). Oldick and Firkins (2000) reported that the 

acetate responded quadratically as the fat sources' unsaturation degree increased. In 
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addition, Elliott et al. (1997) reported a decrease in acetate's molar proportion when 

different saturation fat was fed and increased linearly as saturation increased. 

Furthermore, acetate results of structural carbohydrate fermentation by cellulolytic 

bacteria and these bacteria can be inhibited by lower NDF inputs as in the present study, 

which may explain the lower acetate concentration for fat-fed fermenter (Martin et al., 

2002). Rumen fermentation is not affected when fat levels are low in the diets because 

rumen microbes are able to saturate FA, but this capacity can be exceeded at higher 

levels, and FA can accumulate in the rumen and interfere with rumen fermentation (NRC, 

2001). 

However, the propionate concentrations were not affected with fat inclusion 

except the CO-fed fermenter, which was lower than the CON-fed fermenter. The 

propionate observation agrees with a study conducted by Pilajun and Wanapat (2014) as 

they reported a lower propionate concentration in the CO diet after 48 h incubation. Also, 

agrees with Oldick and Firkins (2000) when Holstein heifers fed different degree of fat 

saturation (tallow, partially hydrogenated tallow, and animal-vegetable fat). Elliott et al. 

(1997) reported a linear decrease in propionate as saturation increased. Even though the 

acetate:propionate ratio was not affected and was similar between the treatments. Some 

studies have reported that feeding fat can decrease the acetate:propionate ration (Oldick 

and Firkins, 2000; Elliott et al., 1997) or unchanged (Tjardes et al., 1998). Butyrate, 

valerate, and isobutyrate concentrations were lower in the CON-fed fermenter than the 

CO-fed fermenter but were not different from the PF and SO-fed fermenter. The 

reduction in valerate concentration in CON-fed fermenter could be related to the higher 



164 

 

liquid fraction kp accompanied with lower retention time for CON-fed fermenter (Eun et 

al., 2004; Fuentes et al., 2009). In the present study, the CON-fed fermenter showed a 

lower NH3N concentration. If energy is available, the AA can be incorporated into 

bacteria without deamination (Russell et al., 1991), which would explain the lower 

isobutyrate concentration as lower deamination in the CON-fed fermenter compare to 

CO-fed fermenter. These results are comparable to those reported by several studies 

conducted on dairy heifer limit-fed DDGS (Suarez-Mena et al., 2015; Manthey et al., 

2016; Manthey and Anderson, 2018). In addition, these reports could be due to the 

decline in the culture bacteria population with fat inclusion, as suggested by Suarez-Mena 

et al. (2015), and this is supported by the decline in total protozoa counts as fat included 

in the diets in the current study. Manthey and Anderson (2018) suggested that the 

differences in starch contents and intake are the reason behind the shift in VFA 

concentrations and the decrease in acetate and increase in propionate concentrations. 

Also, they suggested the higher propionate concentration is related to more energy-

efficient, and rumen fermentation in heifers fed DDGS diets (Manthey et al., 2016) 

because there are less methane and carbon dioxide production in propionate as compared 

with acetate (Fahey and Berger, 1988). 

The ammonia concentration increased as the different unsaturated fat included in 

the diets compared to the CON-fed fermenter with the highest concentration in CO-fed 

fermenter followed by PF and then SO-fed fermenter. The lower NH3N in CON-fed 

fermenter than in fat-fed fermenters could be due to the use of ammonia for the de novo 

synthesis of AA. Suarez-Mena et al. (2015) and Manthey et al. (2016) observed similar 
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results, and they attributed that to the lower ME intake with the addition of DDGS; 

therefore, the microbial capacity to assimilate amino acids and ammonia was negatively 

affected and NH3 accumulated in the rumen (NRC, 2001). Additionally, Elliott et al. 

(1997) reported a linear increase in NH3N concentrations as the degree of saturation 

increased (tallow, partially hydrogenated tallow, hydrogenated tallow, blend of 

hydrogenated tallow, and hydrogenated fatty acids, and hydrogenated fatty acids). They 

suggested that the dietary triglycerides became more unsaturated, and the ruminal protein 

digestion inhibited. These results could be related to better synchrony between N and 

energy availability for microorganism’s activity. These results did not agree with 

previous studies where the ruminal NH3N concentrations were not affected by 

supplemental fat or fat source (Doreau and Ferlay, 1995; Pantoja et al., 1995; Oldick and 

Firkins, 2000).   

Cultural pH was lower for the CON-fed fermenter compared to the fat-fed 

fermenters. Chibisa et al. (2015) stated that the drop in pH with high starch diets is 

common in the literature. The inclusion of fat in the diets increased the cultural pH with 

the highest pH values were observed at CO-fed fermenter, followed by PF-fed fermenter 

and SO-fed fermenter compared to the CON-fed fermenter. That agrees with a study 

conducted by Elliott et al. (1997), where they reported an increase in ruminal pH as 

different saturated fat were fed, and they attributed that to the lower fermentable 

carbohydrate content in these diets. Suarez-Mena et al. (2013) reported a similar rumen 

pH between treatments as DDGS increased in the diets. In contrast, Manthey et al. (2016) 

observed a linear decrease in rumen pH as DDGS increased in the diets, and they 
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attributed that to the F:C ratio. The Eh was the lowest for CO-fed fermenter than the other 

two fat treatments and CON-fed fermenter, and the opposite was with the rH. The relative 

H score range from 0 to 42, and 28 is the mid-point because lower than 28 is reducing, 

and higher than 28 is oxidizing. Julien et al. (2010) stated that there is a relationship 

between pH and Eh, and it seemed that the ruminal Eh moved toward higher Eh when pH 

dropped, which is exactly the case in the present study. We observed that the lowest 

reducing Eh (-360.64) was observed when pH was the highest (6.13) with a CO-fed 

fermenter. These findings could be related to the rapidly fermentable carbohydrates for 

the CON-fed fermenter (Huang et al., 2018). 

The total protozoa count was decreased with fat inclusion in the diets, and it was 

the lowest with SO-fed fermenter followed by PF-fed fermenter, CO-fed fermenter, and 

then the highest was the CON-fed fermenter. Oldick and Firkins (2000) reported a 

decrease in total rumen protozoa when fat was supplemented (tallow, partially 

hydrogenated tallow, and animal-vegetable fat) and as the supplemental fat source 

became more unsaturated as in the case of SO-fed fermenter in the current study. 

Whereas, Karnati et al. (2009) observed that total protozoa count was higher with high-fat 

diets (5% animal-vegetable fat). They attributed that the direct incorporation of 

preformed FA might have spared more energy for cell growth, or the BH would have 

decreased FA's toxic concentrations below the threshold. Also, Mathew et al. (2011) 

reported an increase in total protozoa counts in diets containing 4% fat from DDGS and 

monensin. Koch (2017) reported that the polyunsaturated fatty acids did not affect total 

protozoa counts; however, they found an increase in genera Epidinium spp. With high 
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polyunsaturated fatty acids treatment, and they stated that the reason behind that is 

unclear. Yang et al. (2009) reported a decrease in protozoa when Holstein dairy cows fed 

4% supplemental soybean as a source of linoleic acid and linseed oil as a source of 

linolenic acid in diets. Also, they observed a lower number of cellulolytic bacteria and a 

higher proteolytic bacteria number. Ferlay et al. (1993) and Oldick and Firkins (2000) 

reported that the polyunsaturated fatty acids showed a more negative effect than the 

saturated fatty acids on the metabolism of cellulolytic bacteria and a direct effect on 

ruminal protozoa. Several in-vitro and in-vivo studies showed a toxic effect of linoleic 

acid on ruminal protozoa with a consistent decrease in protozoa counts (Sutton et al., 

1983; Hristov et al., 2004; Newbold and Chamberlain, 1988). In addition, Maia et al. 

(2007) observed that the linolenic acid was more toxic on ruminal bacteria than the 

linoleic acid. The effect of fatty acid on bacteria can directly disrupt the microbial cell 

membrane, lipid coating of bacteria and feed particles, and antimicrobial effects on the 

bacterial population (Jenkins, 1993).      
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CONCLUSIONS 

Simulating precision feeding high concentrate and high-fat inclusion with 

different unsaturated fat sources diet in continuous culture fermenter had some effects on 

ruminal fermentation. The total VFA concentration and protozoa population were 

decreased while maintaining higher pH and ammonia concentration in more saturated 

than the unsaturated fat sources and control treatments. This study demonstrates that 

dietary poultry fat inclusion and coconut oil inclusion improved apparent digestibility 

significantly compared to soybean oil and the control diet. Therefore, we can conclude 

that the saturated fatty acids as in the by-products dietary poultry fat, or the saturated 

medium-chain fatty acids as in coconut oil can be successfully included in rations for 

precision-fed dairy heifers up to 6% and reduce the DMI further while improving nutrient 

digestibility. 
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Table 4.1. Ingredient and chemical composition of high concentrate diets, high-fat 

inclusion, and different lipid sources (CON 3%, PF 9%, SO 9%, CO 9% DM) fed to 

continuous culture fermenters. 
          

 
Fat type, % in the diet 

Ingredient,1 % CON 3% PF 9% SO 9% CO 9% 

   Coastal hay 5.00 5.00 5.00 5.00 

   Corn silage 30.0 30.0 30.0 30.0 

   Ground corn 51.8 40.8 40.8 40.8 

   Soybean meal (SBM) 11.2 16.4 16.4 16.4 

   Mineral mix 2.00 2.00 2.00 2.00 

   Fat inclusion 0.00 5.79 5.79 5.79 

Chemical composition     

   DM % 90.5 90.6 90.7 90.0 

   OM, % 95.6 95.2 94.8 95.5 

   CP, % 12.8 14.0 14.2 14.2 

   Soluble P, % CP 23.4 24.3 24.3 23.7 

   NDF, % 20.8 19.8 20.2 20.4 

   ADF, % 9.84 9.20 9.58 9.71 

   Hemicellulose,2 % 10.9 10.6 10.6 10.7 

   Starch, % 39.3 31.9 31.9 31.7 

   Ether extract, % 3.52 8.56 8.69 8.31 

   NFC,3 % 58.5 52.8 51.7 52.6 

   TDN 78.9 86.0 85.4 82.4 

   ME,4 Mcal/Kg 2.88 3.14 3.11 3.01 

   Ash, % 4.41 4.83 5.18 4.55 
1All diets were ground to 2 mm 
2Hemicellulose = NDF - ADF 
3NFC: non-fiber carbohydrates = 100 - (CP + ether extract + NDF + Ash) 
4ME calculated using TDN values as reported by Cumberland Valley Analytical Services, Inc., Waynesboro, PA. ME = 

(TDN × 4.409 × 1.01 – 0.45) × 0.82. To represent the increase in energy as fat increased in the diets, ME = (TDN × 

4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 (Modified from NRC, 2001) 
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Table 4.2. Fatty acid profile of high concentrate diets, high-fat inclusion, and different 

lipid sources (CON 3%, PF 9%, SO 9%, CO 9% DM) fed to continuous culture 

fermenters. 

          
 Fat type, % in the diet 

Fatty Acid, % CON 3% PF 9% SO 9% CO 9% 

C8:0 0.05 0.07 0.03 0.06 

C10:0 0.01 0.02 0.01 0.04 

C12:0 0.05 0.06 0.02 34.5 

C14:0 0.11 0.44 0.07 28.3 

C14:1T 0.01 0.01 0.00 0.12 

C14:1 0.08 0.08 0.04 0.01 

C16:0 14.7 23.9 11.7 6.00 

C18:0 0.04 4.59 0.03 0.99 

C18:1 25.7 32.2 17.3 7.59 

C18:1-11C 1.68 2.65 19.9 0.90 

C18:2 51.9 31.3 44.9 18.9 

C18:3 4.40 2.26 4.17 1.80 

C22:0 0.24 0.30 0.19 0.07 

C24:0 0.49 1.25 0.96 0.37 

C22:2 0.01 0.34 0.41 0.26 

C22:6 0.51 0.51 0.26 0.06 
 

Total, mg/g 
 

28.9 
 

80.2 
 

82.3 
 

78.2 
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Table 4.3. Nutrient apparent digestibility of continuous culture fermenters fed high 

concentrate diets, high-fat inclusion, and different lipid sources (CON 3%, PF 9%, SO 

9%, CO 9% DM). 
      

  Fat type, % in the diet   

Digestibility, % CON 3% PF 9% SO 9% CO 9% SE 

DM 69.0 c 80.1 a 76.3 b 80.9 a 0.35 

OM 74.5 c 84.6 a 81.4 b 85.4 a 0.28 

ADF 33.9 c 50.6 a 46.6 b 51.1 a 0.81 

Hemicellulose 48.7 c 68.0 a 60.6 b 69.3 a 0.68 

Starch 99.7 c 99.9 ab 99.9 b 99.9 a 0.01 
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Table 4.4. Daily fatty acids flow and biohydrogenation of continuous culture fermenters 

fed high concentrate diets, high-fat inclusion, and different lipid sources (CON 3%, PF 

9%, SO 9%, CO 9% DM). 
      

  Fat type, % in the diet   

FA outflow, mg/d CON 3% PF 9% SO 9% CO 9% SE 

Saturated      

   C8:0 16.5 a 12.8 a 10.4 ab 2.15 b 2.90 

   C10:0 3.52 a 1.17 b 1.96 ab 2.32 ab 0.64 

   C12:0 1.78 b 2.09 b 1.99 b 641 a 18.9 

   C14:0 2.41 b 8.70 b 3.00 b 476 a 25.8 

   C16:0 145 c 419 a 248 b 72.9 c 27.0 

   C18:0 29.3 c 501 a 233 b 22.3 c 37.9 

   C22:0 2.20 c 6.66 a 4.04 b 1.62 c 0.54 

   C24:0 2.70 b 4.91 ab 6.18 a 2.36 b 0.97 

Unsaturated      

   C18:1 237 ab 230 b 316 a 117 c 29.1 

   C18:2 434 b 227 c 587 a 241 c 44.9 

   C18:3 24.5 b 13.5 b 43.8 a 16.1 b 3.81 

   Total 1106 b 2628 a 2609 a 2422 a 102 

Biohydrogenation,1 %      

   C18:2 42.1 c 78.9 a 63.3 b 62.1 b 3.39 

   C18:3 60.3 b 82.8 a 70.6 b 69.4 b 3.63 
1Expressed as milligrams of input - milligrams of outflow/milligrams of input for 18:2 and 18:3 
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Table 4.5. Volatile fatty acids, NH3N, pH, Eh, and protozoa population of continuous 

culture fermenters fed high concentrate diets, high-fat inclusion, and different unsaturated 

fat sources (CON 3%, PF 9%, SO 9%, CO 9% DM). 
      

  Fat type, % in the diet   

Culture fermentation CON 3% PF 9% SO 9% CO 9% SE 

Total VFA, mM 111.9 a 83.4 b 88.0 b 66.3 c 4.39 

Individual VFA, mol/100 mol      

   Acetate 49.9 a 47.4 ab 45.2 bc 44.3 c 1.26 

   Propionate 31.4 a 30.2 ab 31.5 a 27.1 b 1.19 

   Butyrate 11.8 b 15.7 ab 14.3 b 18.9 a 1.24 

   Valerate 6.05 bc 5.65 c 8.22 ab 8.64 a 0.81 

   Isobutyrate 0.68 b 0.80 ab 0.71 ab 0.98 a 0.12 

   Acetate:propionate 1.62 1.58 1.46 1.66 0.08 

NH3N, mg/dL 4.84 d 5.64 b 5.09 c 5.91 a 0.02 

pH  5.78 d 6.05 b 5.94 c 6.13 a 0.01 

Eh,1 mV  -296 a -265 a -279 a -360 b 17.9 

rH2 8.35 a 9.92 a 9.22 a 6.90 b 0.60 

Protozoa, 103/mL  26.0 a 19.4 c 16.9 d 22.1 b 0.55 
1Eh = Redox potential 
2rH, Clark’s exponent = ((Eh + 200) / 30) + (2 × pH) 
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Figure 4.1. Neutral detergent fiber apparent digestibility of continuous culture fermenters 

fed high concentrate diets, high-fat inclusion, and different unsaturated fat sources (CON 

3%, PF 9%, SO 9%, CO 9% DM). 
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Figure 4.2. Fatty acid's apparent digestibility of continuous culture fermenters fed high 

concentrate diets, high-fat inclusion, and different unsaturated fat sources (CON 3%, PF 

9%, SO 9%, CO 9% DM). 
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CHAPTER FIVE 

 

SIMULATING PRECISION FEEDING OF HIGH AND LOW FORAGE DIETS 

WITH INCREASING POULTRY FAT INCLUSION IN CONTINUOUS 

CULTURE FERMENTORS 

 

ABSTRACT 

Diets used for precision-feeding are more nutrient-dense, allowing an increase in 

energy and nutrient utilization efficiency while decreasing nutrient loss. Modifying the 

forage to concentrate ratio (F:C) and manipulating nutrient fractions allow precision-fed 

dairy heifers to achieve adequate nourishment. Including dietary fat can increase the 

energy density of diets, reducing intake further. Therefore, the objective of this study was 

to evaluate the effects of simulated precision feeding different levels of poultry fat (PF) 

at different F:C ratio on digestibility and fermentation in continuous cultures. We 

hypothesized that including PF at low forage diets would further reduce intake without 

compromising fermentation and digestibility in fermenters. Treatments included 2 forage 

combinations, low (LF; 35% forage), and high (HF; 70% forage) and 4 levels of PF 

starting with a basal level of fat in the diet [3% fat (0% PF); 5% fat (2% PF); 7% fat (4% 

PF); and 9% fat (6% PF)]. Treatments were randomly assigned to 8 fermenters in a 2×4 

factorial design and ran for 4, 10 d periods. Data were analyzed using the MIXED 

procedure of SAS. The LF-fed fermenter had higher DM, OM, N, starch, and NFC 

digestibility coefficients (dC) than HF. Nutrients digestibility increased linearly with PF 

inclusion. Bacterial efficiency was higher in HF than LF, and the PF inclusion decreased 

the efficiency. The total VFA concentration was higher in LF, and there was a reduction 

in acetate with LF. The PF inclusion decreased acetate and increased propionate linearly. 
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Protozoa population was higher in HF than LF, and the PF inclusion decreased the 

protozoa population linearly. These results suggest increasing PF inclusion in precision 

fed LF or HF can alter rumen fermentation and improve digestibility. 
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INTRODUCTION 

Nutrition determines the dairy heifer growth rate and efficiency and affects the 

time necessary for the animal to attain an optimal size. Therefore, it is important to find 

strategies to raise dairy heifers economically and efficiently to increase dairy industry 

profitability (Lascano et al., 2009). Typical dairy heifers are fed high forage-based diets 

with a large inefficiency inherent with this feeding method; however, this can be 

enhanced by incorporating either energy-dense sources such as concentrates or fat (Naik 

et al., 2010). Modifying the forage to concentrate ratio (F:C) and manipulating nutrient 

fractions allowed precision-fed dairy heifers to achieve adequate nourishment, improved 

N and OM digestibility (Zanton and Heinrichs, 2009), and resulted in similar effects on 

rumen fermentation (Lascano and Heinrichs, 2009; Lascano et al., 2009). Adverse effects 

of feeding rapidly fermented NFC to dairy cattle on fiber digestion and acidosis incidence 

are commonly reported in the literature (Palmquist and Jenkins 1980; Nocek, 1997). 

Cost-effective by-products from other agricultural industries can be utilized as 

sources of energy. The use of fat and other nutrients in dairy diets is increasing due to 

higher energy demands of dairy cows and higher availability of fat supplements (NRC, 

2001). Poultry fat (PF) is a by-product of chicken processing and extensively produced 

world-wide and a potential economical source of energy for dairy diets (Hutchison et al., 

2006; Swisher, 2015). The PF's fatty acid composition is high in unsaturated fatty acids, 

such as Oleic acid 43% and Linoleic acid 19%, also high in saturated fatty acids such as 

Palmitic acid 21% (Rouse, 2003). Several studies conducted on dairy heifers were fed 

dietary fat up to 5% and 7% from traditional wet, dried, high or low-fat distillers’ grains 
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(DDGS; Anderson et al., 2009, 2015; Schroer et al., 2014; Suarez-Mena et al., 2015). 

They observed similar total-tract nutrient digestion in dairy heifers compared with control 

diets; DMI can be reduced as more fat from DDGS were added. Also, found to maintain 

ADG and overall growth performance. However, there is limited research regarding the 

effects of feeding fat on the growing dairy heifers, and to what level can be strategically 

incorporated into precision feeding is unknown. 

Continuous culture systems have been extensively used and improved over the 

years to address major limitations (Koch, 2017). Continuous culture systems are 

relatively inexpensive to operate, provide an advantage for the quick and safe assessment 

of experimental treatments, and provide a cheaper alternative to test preliminary 

hypotheses compared to running an in vivo trial (Hristov et al., 2012). Even though 

omasal sampling allows researchers to evaluate FA concentration flowing out of the 

rumen and available to the animal (Shingfield et al., 2012), this technique/method can be 

difficult and labor-intensive. In contrast, continuous culture systems contain a reaction 

vessel that simulates the rumen, while the omasum in a cow is simulated by the overflow 

port where the effluent is removed. Furthermore, continuous culture systems can be 

easily adjusted to simulate the precision feeding system in dairy heifers by manipulating 

the passage rate based on the DMI and buffer infusion. Therefore, the objective of this 

study was to evaluate the effects of simulated precision feeding of different levels of PF 

at different F:C ratio on digestibility and fermentation in continuous culture fermenters. 

We hypothesized that including PF in low forage diets would further reduce intake 

without compromising digestibility and fermentation in fermenters. 
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MATERIALS AND METHODS 

Treatments and Experimental Design 

Treatments included two F:C combinations, low (LF; 35% forage) and high (HF; 

70% forage), and four different levels of dietary PF inclusion (Stabilized poultry fat; 

Valley proteins, Inc., Ward, SC) starting with a basal level of fat in the diet [3% fat (0% 

PF inclusion); 5% fat (2% PF inclusion); 7% fat (4% PF inclusion); and 9% fat (6% PF 

inclusion)]. The experiment was designed as a 2×4 factorial design consisting of eight 

experimental diets fed to eight dual-flow continuous culture fermenters. Continuous 

culture fermenters were run in 4 replicated periods of 10 d. Each period was started with 

a clean fermenter and inoculated with fresh ruminal contents collected from 2 cannulated 

Holstein cows. Adaptation to treatment rations was made over the first 7 d of each period 

and 3 d for sampling collection. Treatments were randomly assigned to one of eight 

continuous culture fermenters and allocated to a different fermenter during each period to 

remove any fermenter-specific differences. All diets were fed to the fermenters as total 

mixed rations (TMR) and predicted nutrient composition determined using NRC (2001). 

Diets were formulated to simulate the precision feeding program in continuous culture 

fermenters to restrict intake. Also, to provide equal amounts of ME and N to supply 1.70 

g N/kg BW 0.75 in Holstein heifers, which has been observed to maximize N utilization 

in dairy heifers and allow for 800 g/d of ADG (Zanton and Heinrichs, 2009; Lascano and 

Heinrichs, 2011). Dietary ingredients and chemical composition are presented in Table 

5.1. Fermenter fed greater amount for the basal diet treatment [(47.46; LF 3% fat); 

(54.19; HF 3% fat) g/d DM basis] than the other treatments [(45.69; LF 5% fat); (44.25; 
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LF 7% fat); (42.67; LF 9% fat); (51.92; HF 5% fat); (49.83; HF 7% fat); (47.89; HF 9% 

fat) g/d DM basis] because of different energy concentration of the diets between F:C 

combinations and different levels of PF inclusion (Table 5.1 and Appendix B). Rations 

were prepared and mixed in advance and split into two equal amounts, and were fed to 

the continuous culture fermenters daily at 0730 and 1930 h. 

Continuous Culture Conditions 

All procedures involving the surgical and animal care protocols were approved by 

the Clemson University Institutional Animal Care and Use Committee. Prior to the 

morning feeding, the whole rumen contents were collected from two rumen cannulated 

Holstein cows fed a 50% forage:50% concentrate diet and strained through two-layers of 

cheesecloth into a prewarmed sealed container. The filtered rumen fluid was combined 

from both cows, mixed with a buffer in a 1:1 ratio according to the methods of Slyter et 

al. (1966), and purged with CO2 until inoculation into the continuous culture fermenters. 

Approximately 750 mL of diluted inoculum was added to each dual-flow fermenter. The 

fermenter's design and operation were based on a previous design outlined by Teather 

and Sauer (1988), with some modifications include the use of an overflow sidearm that 

angled downward at approximately 45o to facilitate emptying. In addition, a faster stirring 

rate (45 rpm) that still allowed stratification of particles into three layers; an upper mat 

layer, a middle liquid layer of small feed particles, and a lower layer of dense particles 

(Koch, 2017). A higher feeding rate for the control treatment (60 g/d as fed; 30 g/feeding) 

to a lower feeding rate in the other treatments to simulate the restricted intake was 

utilized (Appendix B). The buffer solution was also delivered continuously to the cultures 
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using a peristaltic pump and manipulated to achieve different liquid and solid dilution 

rates for each treatment (Appendix B) to simulate a precision feeding program in dairy 

heifers as reported by Lascano et al. (2016b). The buffer solution was used to dilute the 

inoculum (Slyter, 1966) in a 1:1 ratio and was selected based on previous works in our 

lab and included a greater level of NaHCO3 to maintain culture pH. The cultures were 

maintained for 10 d, 7 d for duration of adaptation to obtain a steady-state fermentation in 

the cultures, and 3 d for culture sampling (Lascano et al., 2016a). Fuentes et al. (2009) 

reported that the cultures require a 5 d of adaptation period to adapt thoroughly. These 

durations are commonly used in continuous culture experiments (Jenkins et al., 2014; 

Brandao et al., 2018; Dai et al., 2019). The fermenters' temperature was maintained at 

39°C by a recirculating water bath, and each fermenter was continuously purged with 

CO2 at a rate of 20 mL/min to maintain anaerobic conditions and gas flow rates were 

checked before the morning and evening feeding to ensure consistency. Culture’s pH was 

monitored using handheld pH probes and calibrated at the start of each period. Oxidation-

reduction potential (Eh) was measured using the redox probe (Traceable 4277 pH/ORP 

Meter, Control Company, Webster, TX) during the sampling day at the same time points 

of pH measuring. The relative hydrogen score (rH) was calculated using the Clark 

equation for deriving rH from pH and Eh. A custom CH4 sensor system monitored gas 

production for CH4 analysis, and daily CH4 output (mmol/d) was estimated. 

Sample Collection and Analysis 

On d 5 prior to evening feeding, samples were collected from the overflow flasks 

after mixing and homogenizing the liquid and solid digesta to determine the background 
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15N abundance. Pulse dose of 0.047 g of (15NH4)2SO4 with 10.2% atom excess of 15N 

(Sigma-Aldrich Co., St. Louis, MO) was mixed with the diet of each treatment and 

infused into each fermenter to label the NH3N pool instantaneously. Also, the buffer 

solution was replaced with a pre-prepared and reformulated buffer that contains 0.075 g/L 

of the enriched (15NH4)2SO4 to replace an isonitrogenous amount of urea to obtain a 

steady-state 15N enrichment of the NH3 pool in the fermenters (Calsamiglia et al., 1996). 

On d 8, 9, and 10 of each period, liquid and solid digesta overflow from each 

fermenter were collected in a 2 L Erlenmeyer flask and immersed and covered in an ice 

bath to stop the microbial activity. The overflow flasks were weighed, and the total 

volume was recorded once daily at 1900 h, and a 20% aliquot of the overflow was 

collected in a pre-labeled container and immediately frozen at - 20oC. The 3 d composited 

overflow samples were later thawed, homogenized, and subsampled for later analysis of 

DM, OM, NDF, ADF, and LCFA. Twenty-four hours before d 10 of each period, 20 mL 

of 50% H2SO4 was added to each overflow flasks to prevent further microbial and 

enzymatic activities. On d 10 of each period, cultural contents were mixed thoroughly 

(160 rpm) during sampling to ensure an adequate sample from the cultures. Culture pH, 

Eh, and CH4 were measured and recorded at 0 (before feeding), 2, 4, 6, 8, 10, and 12 h, 

and a 5 mL sample of culture contents were taken at the same time points for VFA, 

protozoa, and ammonia analysis. On the last day at the end of culture sampling of each 

period, the entire culture contents were strained through 2 layers of cheesecloth into a 

pre-labeled container. Then, centrifuged at 1,000 × g for 10 min at 5oC, and the 

supernatant was collected into a new centrifuge tube and centrifuged at 20,000 × g for 20 
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min at 5oC. Bacteria pellets were collected after discarding the supernatant and freeze-

dried and stored for 15N, N, and OM analysis (Bach et al., 2008). In addition, 5 mL 

samples from the overflow were taken for ammonia analysis and to calculate the N flows. 

Feed and dried overflow samples were ground using a Wiley Mill (Arthur H. 

Thomas Co., Philadelphia, PA) through a 2-mm sieve and analyzed for DM, OM, ash, 

and EE (AOAC, 2000). And through a 1-mm sieve for NDF and ADF (Van Soest et al., 

1991) using an ANKOM200 Fiber Analyzer (ANKOM Technology Corporation, 

Fairport, NY) with heat resistant α-amylase and sodium sulfite utilized in the NDF 

procedure. Starch was analyzed on reground samples (< 0.5-mm screen) using an 

enzymatic procedure (Bach Knudson, 1997). Feed, enriched 15N overflow, background 

overflow, and freeze-dried bacteria pellets were sent to the Ohio State University for N 

and 15N analysis (Thermo EA/IRSM). Culture samples (5 mL) were pipetted to 15 mL 

centrifuge tubes containing 1 mL of metaphosphoric acid (25%; w/v), and then, these 

tubes were stored at -20°C until VFA and ammonia analysis, as described by Moody et 

al. (2007). Samples were later thawed and centrifuged at 40,000 × g for 30 min at 4°C. 

After centrifugation, 1 mL of the supernatant was placed in a 2-mL Eppendorf 

microcentrifuge tube and used for the analysis of NH3N according to the methods of 

Chaney and Marbach (1962) with modifications including reduced sample and reagent 

volume to accommodate the use of a 96-well plate reader. Another 0.5 mL of the 

supernatant was combined with 0.5 mL distilled water and 100 μL of internal standard 

(86 μmol of 2-ethylbutyric acid/mL) in a GC vial. Samples for VFA were then analyzed 

by GC–flame-ionization detection according to the methods of Yang and Varga (1989) 
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and injected into a Hewlett-Packard 6890 gas chromatograph (San Jose, CA) equipped 

with a custom packed column (2 m × 0.32 cm × 2.1 mm ss; 10% SP-1200/1% H3PO4 on 

80/100 Chromosorb WAW). Additionally, 4 mL culture sample was pipetted and 

preserved in 4 mL of methyl green formalin-saline solution (1:2 dilution) and stored in 

darkness at 4°C for protozoa counting (Ogimoto and Imai, 1981). The LCFA in dried 

ground feed and overflow samples were sent to (Multi-User Analytical Laboratory and 

Metabolomics Core, Clemson University, SC). Quantities of individual fatty acids present 

in the cultures were determined on a Shimadzu GC-2010 gas chromatograph with a flame 

ionization detector and equipped with an SLB-IL111 (Sigma, St. Louis, MO) fused silica 

capillary column (L x I. D. 100 m x 0.25 mm) with 0.2 um film thickness. The initial 

temperature was held at 140°C for 3 min then increased by 3.7°C per min up to 220°C for 

60 min. The carrier gas was helium purged at 20 cm/s. Fatty acid peaks were identified 

and separated by comparison of the retention times to known standards.    

Calculations and Statistical Analysis 

The relative hydrogen score (rH) was calculated from pH and Eh by using the 

Clark’s exponent as follows: 

rH = ((Eh + 200) / 30) + (2 × pH) 

CH4 output (mmol/d) was estimated by using the following equation: 

 CH4 percentage measured in fermenter headspace (%) × CO2 gas flow through 

fermenter headspace (20 mL/min) × 60 min × 24 h / 22.4 gas constant (mol/L) / 1000 

Bacterial N flow and bacterial efficiency were calculated according to Calsamiglia 

et al. (1996) as follows: 
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Sample 15N enrichment (atom percentage excess) = sample 15N atom % - 

background 15N atom %, 

Bacterial N flow (g/d) = (NAN flow × atom percentage excess of 15N of 

overflow) / (atom percentage excess of 15N of bacteria), and 

Bacterial efficiency = bacterial N flow (g) / OM truly digested (kg) 

Nitrogen flows were calculated as follows: 

NH3-N flow (g/d) = mg/dL of overflow NH3-N × (g of total overflow flow / 100), 

NAN flow (g/d) = g of overflow N - g of overflow NH3-N, 

Dietary N flow (g/d) = g of overflow NAN - g of overflow bacterial N, 

RUP N flow (g/d) = total N flow - overflow bacterial N flow, and 

RDP N supply (g/d) = total N intake – RUP N flow 

Fractional passage rates were calculated according to Lascano et al. (2016b) as 

follows: 

The liquid passage rate in the in-vivo study by Lascano et al. (2016b) was 

8.93%/h and 10.40%/h for LF (45% forage) and HF (90% forage), respectively. 

Therefore, we assumed 9.75%/h would be the control diet's liquid passage rate (HF; 70% 

forage) in our study.  

Liquid passage rate was decreased based on the decreased dry matter intake as we 

increased the fat inclusion in the diets. 

Liquid passage rate (%/h) = drymatter intake (g/d) × liquid passage rate for the 

control (mL/h) × dry matter intake for the control (g/d),   

Buffer input (mL/h) was calculated as follows: 
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Buffer input (mL/h) = liquid passage rate (%/h) × fermenter volume (mL), 

In the same way, the solid passage rate was calculated and based on the results of 

our study. 

Metabolizable energy intake (Mcal/d) was calculated as follows: 

ME (Mcal/d) = (digested OM intake × 4.409 (Mcal/Kg) × 1.01 – 0.45) × 0.82, 

assuming that digestible OM intake and total digestible nutrient intake were equal. 

That equation was used for the control diet, which was modified from NRC 

(2001). To represent better the increase in energy as fat increased in the diets, another 

modified equation from NRC (2001) was used as follows: 

ME (Mcal/d) = (digested OM intake × 4.409 (Mcal/Kg) × 1.01 – 0.45) + (0.0046 

× (EE - 3) × 0.82]. 

All statistical analyses were conducted in SAS version 9.4 for Windows (SAS 

Institute Inc., Cary, NC) using the MIXED procedure. Data were analyzed as a 2×4 

factorial design with fixed effects of period, forage, PF inclusion, and forage × PF 

interaction, and a random effect of fermenters (forage) and repeated measures as needed 

for the following model: 

Yijklm = μ + Fi + Tj + Pk + FTij + Cl(Fi) + eijklm, 

where Yijklm = the dependent variable, μ = the overall mean, Fi = the fixed effect 

of forage F:C, Tj = the fixed effect of PF sequence, Pk = the fixed effect of period, FTij = 

the interaction between F:C and PF, Cl(Fi) = the random effect of fermenter with forage 

F:C and, eijklm = the residual error. Linear and quadratic polynomial contrasts were 

utilized to analyze the PF main effects and interactions further. For observations where 
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multiple repeated measures occurred in a period, the fixed effects of time and its 

interaction with other fixed effects were included in the model based on a repeated 

measures analysis (Littell et al., 1998). Covariance structures of simple, autoregressive, 

or compound symmetry were chosen for use in the repeated measures analysis based on 

the lowest values of Akaike's Information Criterion and Schwartz's Bayesian Criterion. 

Residuals for all models were found to be normally distributed (Shapiro-Wilk test for 

normality). Least square means are presented in tables, and evidence for statistical 

significance was declared at P ≤ 0.05, while trends for main effects and interactions are 

discussed at 0.10 ≥ P > 0.05. 
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RESULTS AND DISCUSSION 

Diet Composition and Nutrient Inputs 

Diet ingredients and chemical composition values are presented in Table 5.1. The 

dietary NDF and ADF were lower for LF diets compared to the HF diets, whereas the 

starch and NFC were higher for LF diets than for the HF diets, as was their input because 

of the lower level of forage and a higher level of concentrate in these diets (Table 5.1 and 

Appendix B). The EE concentrations increased gradually in the diets with PF addition 

and, consequently, ME concentration; therefore, daily feeding amount decreased as PF 

inclusion increased. The addition of PF to LF and HF diets resulted in 8 different 

proportions of FA concentrations in the diets, and its input increased (Tables 5.1 and 

Appendix B). The PF replaced the ground corn in both LF and HF diets, resulting in a 

gradual decrease in starch and NFC in treatments. All other components of the rations 

were formulated to be similar between treatments. 

By design, daily as-fed and DM input were higher for the HF-fed fermenter 

compares to the LF-fed fermenter based on the nutrient density differences between the 

two diets (Hoffman et al., 2007; Appendix B) to maintain the isoenergetic nature of the 

diets. Similar results were reported by Lascano and Heinrichs (2009), Lascano et al. 

(2009), and Zanton and Heinrichs (2009), where DMI was higher for HF in controlled 

nutrient intake at different F:C ratio. Inputs of ME and N were similar between treatments 

as planned to maintain isoenergetic and isonitrogenous diets, and as recommended by 

Zanton and Heinrichs (2009) for optimum N utilization in precision-fed dairy heifer diets. 

Daily DM, starch, and NFC inputs were decreased as PF included in the diets and were 
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the opposite with EE input as increased to achieve the planned diets. Consequently, there 

was an input effect of F:C and PF inclusion on OM, Ash, NDF, ADF, starch, and NFC to 

maintain the isoenergetic and isonitrogenous design of the treatments. To achieve a better 

simulation of the precision feeding program using the continuous culture fermenters, we 

manipulated and decreased the liquid and solid passage rate (kp) by reducing the buffer 

rate as the DM input decreased based on in-vivo experiment results by (Lascano et al., 

2016b). The liquid and solid turnover rates were lower for the LF-fed fermenter 

compared to the HF-fed fermenter (Appendix B). Passage rates in LF diets can be slower 

compared to HF diets when intake is limited (Eng et al., 1964; Owens and Isaacson, 

1977; Colucci et al., 1990), and we expected to be even slower as more fat was added to 

the diets.   

Apparent Digestibility of Nutrients 

Forage to Concentrate Effect 

Apparent digestibility coefficients (dC) are shown in Table 5.3. The dC of DM, 

OM (Figure 1), N starch, and NFC were greater for the LF-fed fermenter than for the HF-

fed fermenter (P < 0.01). These observations are consistent with results reported in a 

study conducted on Holstein dairy heifers fed LF or HF diets composed of a combination 

of 40 or 80% CS and corn stover (Lascano and Heinrichs, 2011). They reported a higher 

DM, OM, and starch dC for LF compared to HF diets. High rumen degradable protein 

diet with 2 levels of F:C diets were fed to dairy heifers by Lascano et al. (2016b) and 

observed higher DM and OM dC for LF compared to HF diets. Similarly, higher DM and 

OM dC for LF compared to HF diets were observed by (Suarez-Mena et al., 2015). 
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Greater dC of LF-fed fermenter can be attributed to the greater utilization of the 

ingredients in theses diets (NRC, 2001) and to an increased retention time in the rumen of 

LF diets (Leaver et al., 1969; Colucci et al., 1990) as often occurs under controlled intake 

conditions. Other studies have shown increased DM, OM, and starch dC when LF and HF 

diets have been fed restrictively (Colucci et al., 1989; Reynolds et al., 1991; Murphy et 

al., 1994). These results did not agree with a study conducted on Holsten heifers fed low 

forage (45% forage) and high forage (60% forage) where DM and OM dC did not differ 

between LF and HF diets (Koch et al., 2017). Forage represented 35% and 70% of the 

present experiment's diets, respectively, which is a larger difference in F:C than what has 

been reported in the above study. The dC of NDF, hemicellulose, and ash were higher for 

HF-fed fermenter than for LF-fed fermenter whereas, ADF and EE dC did not differ 

between the two groups. The higher NDF dC in HF-fed fermenter agreed with 

Ranathunga et al.'s (2012) findings where the ruminal digestion of NDF was improved in 

HF diets containing DDGS in dairy cows compared with LF diets containing DDGS. 

They attributed that to HF diets' ability to decrease the detrimental effect of fat from 

DDGS on rumen microbes by attaching the fat into the feed particle and slowly 

introduced to the rumen. Furthermore, this could be attributed to the lower pH level for 

LF-fed fermenter (Table 5.6) because cellulolytic bacteria are very sensitive to pH and 

their activity and growth start to decline under pH 6.0 (Russell and Wilson, 1996). These 

results agree with Koch et al. (2017), Suarez-Mena et al. (2015), and Zanton and 

Heinrichs (2009) where ADF dC did not differ between LF and HF diets, but conflicts 

with other studies where NDF and hemicellulose dC was greater for LF diets (Zanton and 
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Heinrichs, 2009; Lascano and Heinrichs, 2011; Lascano et al., 2016b). The lower NDF 

and hemicellulose dC in the LF-fed fermenter could be related to the availability of 

rapidly fermented ingredients. Also, more numerous amylolytic bacteria populations were 

associated with LF diets (Brown et al., 2006). We observed a higher starch and NFC dC 

in the LF-fed fermenter compared to the HF-fed fermenter in the current study.  

Poultry Fat Effect 

Dry matter, OM, N, NDF, ADF, NFC, hemicellulose, ash showed a linear 

increase in dC (P < 0.01) as PF inclusion increased in both F:C diets. Suarez-Mena et al. 

(2015) observed a quadratic DM, OM, NDF, and ADF dC response to increasing levels 

of DDGS up to 14% inclusion in the diets (4.99% total FA ~ 6% EE). Also, Anderson et 

al. (2015) reported a higher dC of NDF, ADF, and N when heifers limit-fed a high-fat 

DDGS (7.00% EE) compared to a low-fat DDGS (3.08% EE), whereas the DM and OM 

did not differ between the treatments. It was suggested that the high-fat DDGS diet 

contains lower starch content compared to the low-fat DDGS resulted in higher efficiency 

of utilization of fiber and CP and improve the total-tract digestion. These results did not 

agree with a study conducted by Lascano et al. (2016a) using two levels of fat (1.01% 

and 2.73% FA ~ 2% and 4% EE) in continuous culture fermenter where they did not 

observe any effects on DM and ADF dC. Koch (2017) reported a depression in DM, OM, 

NDF, and ADF dC when continuous culture fermenter fed high soybean oil compared to 

low soybean oil. Koch stated that the dietary polyunsaturated fatty acids had been shown 

to depress fiber dC by limiting the growth of fiber digestion bacteria (Van Soest, 1994), 

and this finding is common in the literature (Rico et al., 2014). Manthey and Anderson 
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(2018) reported no effects on dC when heifers limit fed DDGS with ad libitum grass hay. 

They related that to feeding grass hay as ad libitum, which resulted in a slightly different 

limit feed program than the typical one. The EE and starch dC increased linearly with an 

increase of PF inclusion. This is mainly because the linear decrease in starch and NFC 

content and their inputs with PF increase in the diets resulted in more efficient fat and 

starch utilization in the continuous culture fermenter system. The passage rates of diets 

can be slower when intake is limited (Eng et al., 1964; Owens and Isaacson, 1977; 

Colucci et al., 1990), and we expected to be even slower as fat added to the diets and as 

we have it in the current study. A linear interaction was observed in the present study for 

CP, EE, NDF, ADF, and hemicellulose dC. The HF-fed fermenter had a higher EE, NDF, 

and ADF dC at 3% and 5% inclusion of fat compared to the LF-fed fermenter at the same 

fat inclusion, but the LF-fed fermenter showed a higher dC at 7% and 9% inclusion of fat 

compared to the HF-fed fermenter at the same fat inclusion. That is mainly due to a 

higher fat input in the fermenter as a higher PF inclusion as required to maintain 

isoenergetic diets in HF diets compared to LF diets, which may have a negative effect on 

microbial growth (Jenkins, 1993; Maia et al., 2007). Therefore, the rumen fermentation is 

not affected when fat levels are low in the diets, as in the case of 3% and 5% fat inclusion 

because rumen microbes are able to saturate FA. However, this capacity can be exceeded 

at higher levels, and FA can accumulate in the rumen and interfere with rumen 

fermentation as in the case of 7% and 9% of fat inclusion, especially with HF-fed 

fermenter (NRC, 2001); therefore, the digestibility of nonlipid energy sources is reduced 

(Jenkins, 1993). 
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Fatty Acid Flows and Biohydrogenation 

Forage to Concentrate Effect 

The overflows of major fatty acids are detailed in Table 5.4. Outflows of 

individual saturated FA C14, C16, C18, C22, and C24 were all reduced with LF-fed 

fermenter compared to HF-fed fermenter. Gudla et al. (2012) reported a reduction in FA 

C16 and C18 flow when a continuous culture fermenter fed low forage diets compared to 

high forage diets. Similarly, in a study conducted on ewes fed five ratios of F:C, the 

duodenal flow of C18 increased linearly with high forage diet, but C16 was not affected 

(Kucuk et al., 2001). Lascano et al. (2016a) and Koch (2017) observed a reduction in 

saturated FA C12, C14, C20, C22, and C24 when fermenters were fed, increasing starch 

degradability. That could be related to the prevalence of microbial species that thrive in 

the rumen when high forage diets are fed (Tajima et al., 2001). The high saturated FA 

flow in HF-fed fermenter in the current study can also result in higher PF inclusion in HF 

diets compared to LF diets since the PF is relatively high in saturated FA (Table 5.2). The 

overflow of the unsaturated FA C18:1 and C18:2 were increased with LF-fed fermenter 

compared to HF-fed fermenter. Part of that is related to the differences in the dietary 

contribution of C18:1and C18:2, while the other part is related to the rate of 

biohydrogenation. Biohydrogenation rates of C18:2 and C18:3 were decreased with LF-

fed fermenter (P < 0.01). That is aligned with our observations with decreased the 

amount of C18:0 flows for LF-fed fermenter and indicating a reduction in the 

biohydrogenation pathway to completion at C18:0. These results are in agreement with 

Gudla et al. (2012) as they reported greater concentrations of C18:1 and C18:2 in 
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fermenters fed with low forage diets with no effect on C18:3, also that reflected a 

reduction in the biohydrogenation of theses FA. Kucuk et al. (2001) observed a decrease 

in C18:1 and C18:2, but an increase in C18:3 of duodenal flow of ewes fed increased 

dietary forage biohydrogenation of these FA increased as dietary forage increased as 

well. Similarly, Lascano et al. (2016a) and Koch (2017) reported an increase in the 

outflows of C18:2 and C18:3 from the fermenters fed high starch and resulting in lower 

extents of biohydrogenation. In addition, biohydrogenation of unsaturated FA in the 

ruminal fluid of lactating dairy cows was reduced when they switched their diets from 

high to a low forage diet, and they related that to a low rumen pH (Latham et al., 1972). 

Cultures under low pH conditions showed less disappearance of C18 unsaturated FA 

(AbuGhazaleh and Jacobson, 2007). Martin et al. (2002) and Jenkins et al. (2008) stated 

that most rumen microbial growth and enzyme activities could be impacted under low 

rumen pH conditions. In the current study, the lower pH in LF-fed fermenters (Table 5.6) 

may have impacted culture bacteria and reduced the biohydrogenation rates.  

Poultry Fat Effect 

The inclusion of PF showed a linear increase in the overflows of saturated FA 

C14, C16, C18, and C22. That is mainly due to the gradual increase of PF inclusion in 

both LF and HF diets resulted in a higher overflow of these saturated FA, also due to the 

lower passage rate as PF inclusion increased in the diets (Appendix B). Lascano et al. 

(2016a) reported increased daily outflows of individual saturated and total fatty acids 

when fermenters fed high-fat diets compared to low-fat diets. Similarly, in a study 

conducted on feeding two levels of fat to continuous culture fermenters, the high fat-fed 
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fermenters showed a higher outflow of C:16, C20, C22, and C24 compared to low fat-fed 

fermenters (Jenkins et al., 2014). Additionally, the PF inclusion showed a linear and 

quadratic effect on C18:1 overflow. The inclusion of PF showed an opposite effect on 

individual unsaturated FA C18:2 overflow with a linear decrease for LF-fed fermenters. 

The linear decrease in C18:2 overflow as PF inclusion increase is partially related to the 

replacement of ground corn by PF as well as to the high biohydrogenation efficiency of 

high-fat diets (Schmidely et al., 2008). That is in agreement with a study on dry dairy 

cows fed two levels of crude fat (2.9% and 7.6%) and showed a decrease in C18:2 FA 

(Zened et al., 2013). Based on PF's effect on unsaturated FA C18, the PF showed a linear 

increase in the biohydrogenation of C18:2 and C18:3. These results agree with several in-

vivo and in-vitro studies as fat increases in the diets (Zened et al., 2014; Jenkins et al., 

2014; Lascano et al., 2016a). In the current study, the biohydrogenation of C18:2 and 

C18:3 showed a quadratic interaction with a lower biohydrogenation rate increase for 

HF-fed fermenters as PF inclusion increase compared to the LF-fed fermenters. These 

results could explain a better combination between forage and PF than for concentrate 

diet, taking into account a higher PF inclusion in HF diets even though the 

biohydrogenation rate for HF diets was higher than the LF diets as well as the stearic acid 

overflow. 

Nitrogen Flows and Metabolism 

Forage to Concentrate Effect 

Nitrogen flows, N dC, and bacteria efficiency are shown in Table 5.5. Total N 

flows did not differ by F:C ratio (P = 0.73), and because of the little differences in N 
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inputs between the F:C ratio, the N dC was higher for LF-fed fermenter compared to HF-

fed fermenter (P = 0.01). The N dC in our study agrees with previous studies (Hill et al., 

2007; Zanton and Heinrichs, 2009), where the N dC was higher at lower F:C. They 

attributed the improvement in N dC of LF diets to a lower N excreted level in feces. In 

contrast, Suarez-Mena et al. (2015), Lascano et al. (2016b), and Koch et al. (2017) did 

not find an effect of F:C on N dC in heifers precision fed low and high forage diets. The 

NH3-N concentration, ammonia flows, bacteria N flows, and bacteria efficiency were all 

lower for LF-fed fermenter than for HF-fed fermenter, whereas the non-ammonia N 

flows, dietary N flows, RUP N and RDP N were higher for LF-fed fermenter compared to 

HF-fed fermenter. These findings agree with several studies used different F:C ratio in 

continuous culture fermenter (Calsamiglia et al., 2008; Fuentes et al., 2009; Martinez et 

al., 2010). The lower NH3-N and ammonia flow in LF-fed fermenter compared to HF-fed 

fermenter could be due to the use of ammonia for the de novo synthesis of AA, which 

agrees with the higher non-ammonia N flows observed in the LF-fed fermenter, or to the 

lower protein degradability in forage relative to concentrate. However, the bacteria 

efficiency was lower in LF-fed fermenter, and that is because of the higher OM dC 

compared to the HF-fed fermenter (Table 5.3). In addition, pH has an impact on bacteria 

N flow; bacteria tend to spend part of the available energy on maintaining the proton 

motive force across the cell membrane more than on their growth at lower pH (Wallace 

and Cotta, 1989), which is the case with LF-fed fermenter (Table 5.6). Calsamiglia et al. 

(2008) reported a lower bacteria efficiency in concentrate diet than in forage diet, and 

they attributed that to the decreased synthesis of microbial protein, which is confirmed by 
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the lower bacteria N flow in LF-fed fermenter in the current study. Also, the lower 

passage rate with higher retention time in LF-fed fermenter could be the reason behind 

the lower bacteria N flow. 

Poultry Fat Effect 

The inclusion of PF in the diets decreased the total N flows linearly (P < 0.01), 

which reflected in increasing the N dC linearly (P < 0.01). Several studies had reported 

increased total tract N dC when fat was supplemented (Palmquist and Conrad, 1978; 

Klusmeyer et al., 1991; Ohajuruka et al., 1991; Pantoja et al., 1994). Anderson et al. 

(2015) reported a higher N dC when heifers limit-fed a high-fat DDGS compared to a 

low-fat DDGS and control diet (73.1% vs. 70.1 and 69.8, respectively). In contrast, 

Suarez-Mena et al. (2015) did not observe any effect on N dC as DDGS increased in the 

diets. It was suggested that the high-fat DDGS diet contains a lower starch content than 

the control and low-fat DDGS resulted in higher efficiency of N and improved total-tract 

digestion. Ammonia concentration was linearly increased as the PF inclusion increased in 

the diets (P < 0.01). Suarez-Mena et al. (2015) and Manthey et al. (2016) observed 

similar results, and they attributed that to the lower ME intake with the addition of 

DDGS; therefore, the microbial capacity to assimilate amino acids and ammonia was 

negatively affected and NH3 accumulated in the rumen (NRC, 2001). Additionally, Elliott 

et al. (1997) reported a linear increase in ammonia concentrations as the degree of 

saturation increased. They suggested that the dietary triglycerides became more 

unsaturated, and the ruminal protein digestion inhibited. Ammonia N, non-ammonia N, 

dietary N flows, bacteria efficiency, and RUP N were all decreased linearly as PF 
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inclusion increased in the diets and tended to decrease bacteria N flow (P = 0.06) while 

increased RDP N. When steers were fed fat supplemented diets the microbial N flow 

tended to decrease, which corresponds to the decreased OM dC, whereas the total N and 

non-ammonia N flows did not differ (Elliott et al., 1997). Several studies reported that 

feeding fat did not affect bacteria efficiency (Elliott et al., 1997; Oldich and Firkins, 

2000; Vargas et al., 2020). The linear decrease in bacteria efficiency in the current study 

is mainly due to the increase of OM dC as PF inclusion increased. In the present study, 

the bacteria N flow and bacteria efficiency showed a quadratic effect as PF included in 

the diets (P = 0.01) with a higher bacteria N flow and bacteria efficiency at 5% added fat. 

These results could be related to better synchrony between N and energy availability for 

microorganism’s activity. Also, as DM inputs decrease with the increase of PF inclusion, 

the passage rate decreases, and the retention time increases in the continuous culture 

fermenter as planned in the current study. That could be the reason behind the lower 

bacteria N flow and bacteria efficiency as PF increased in the diets. 

Culture Fermentation and Protozoa Population 

Forage to Concentrate Effect 

Culture VFA profile, methane, pH, reduction potential (Eh), relative hydrogen 

score (rH), and total protozoa counts are shown in Table 5.6. The total VFA 

concentration was higher for LF-fed fermenter than for HF-fed fermenter (P = 0.01). 

Acetate molar proportion was lower for LF-fed fermenter than for HF-fed fermenter (P = 

0.04). Whereas propionate, butyrate molar proportions, and A:P ratio were not affected 

by F:C (Figure 5.1). Valerate molar proportion was higher, but isobutyrate molar 
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proportion was lower for LF-fed fermenter. Even though A:P ratio was not affected 

significantly by F:C, LF-fed fermenters were numerally lower than those of the HF-fed 

fermenter (1.41 vs. 1.47). The higher total VFA concentration for LF-fed fermenters 

agrees with in-vitro and in-vivo studies (Fuentes et al., 2009; Lascano et al., 2016b). 

Calsamiglia et al. (2008) concluded that the main factor influencing VFA concentration is 

the interaction between pH and F:C in the diets. In addition, Moody et al. (2007) stated 

that the VFA concentrations were higher in LF than HF when pH was affected by F:C. In 

the current study, the pH was decreased as the concentrate increased in the diet (P < 

0.01), which is consistent with the higher OM dC in LF-fed fermenter than in HF-fed 

fermenter. The greater acetate molar proportion for HF-fed fermenter is consistent with 

previous studies (Rodriguez-Prado et al., 2004; Fuentes et al., 2009; Martinez et al., 2010; 

Gudla et al., 2012; Suarez-Mena et al., 2015; Lascano et al., 2016b). Acetate results of 

structural carbohydrate fermentation by cellulolytic bacteria and these bacteria can be 

inhibited by lower pH as in the present study along with lower NDF inputs, which may 

explain the lower acetate proportion for LF-fed fermenter (Martin et al., 2002). The no-

effect on propionate and butyrate by F:C is similar to other studies by (Rodriguez-Prado 

et al., 2004; Gudla et al., 2012; Suarez-Mena et al., 2015). In the present study, the LF-

fed fermenter showed a lower NH3N concentration and flow (Table 5.5). If energy is 

available, the AA can be incorporated into bacteria without deamination (Russell et al., 

1991). That would explain the lower isobutyrate concentration as lower deamination in 

the LF-fed fermenter than the HF-fed fermenter. The reduction in valerate concentration 
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with HF-fed fermenter could be related to the increase in liquid fraction kp accompanied 

with lower retention time for HF-fed fermenter (Eun et al., 2004; Fuentes et al., 2009).  

Poultry Fat Effect 

The inclusion of PF in the diets decreased the total VFA concentrations linearly (P 

= 0.01), and this is mainly because of the linear reduction in acetate molar proportion as 

the PF level increased in the diets (Figure 5.1; P < 0.01). However, the propionate, 

butyrate, and isobutyrate molar proportions increased linearly with PF inclusion (P < 

0.01). That resulted in a linear reduction in A:P ratio (Figure 5.2 and 5.3; P = 0.04). 

These results are comparable to those reported by several studies conducted on dairy 

heifer limit-fed DDGS (Suarez-Mena et al., 2015; Manthey et al., 2016; Manthey and 

Anderson, 2018). These findings could be due to the decline in the culture bacteria 

population as suggested by (Suarez-Mena et al., 2015), and this is supported by the 

bacteria efficiency (Table 5.5) and total protozoa counts in the current study. Manthey 

and Anderson (2018) suggested that the differences in starch contents and intake are the 

reason behind the shift in VFA concentrations and the decrease in acetate and increase in 

propionate. Also, they suggested the higher propionate is related to more energy-efficient 

and rumen fermentation in heifers fed DDGS diets (Manthey et al., 2016).  

Methane production was lower for HF-fed fermenter than LF-fed fermenter, 

which could be related to the higher dilution rate with HF-fed fermenter than for LF-fed 

fermenter. Isaacson et al. (1975) observed a lower methane formation as the dilution rate 

increased. Additionally, since methanogens' growth rate is relatively slow, the higher 

dilution rate could result in a reduction in methanogenic archaea numbers (Eun et al., 
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2004). Martinez et al. (2009) did not report any effect on methane production when 

different dilution rates were used in Rusitec fermenters. The inclusion of PF in the diets 

did not affect methane production (P = 0.52). Cultural pH was lower for LF-fed 

fermenter compared to the HF-fed fermenter (P < 0.01). Chibisa et al. (2015) stated that 

the drop in pH with high starch diets is common in the literature. Also, the higher 

retention time in LF-fed fermenter could explain the reduction in pH as the bacteria had 

more time for fermentation, reflecting higher total VFA concentration. The pH values 

agree with a study conducted using Rusitec fermenters; they reported a higher pH was 

observed in HF-fed fermenter than LF-fed fermenter (Martinez et al., 2010). The 

inclusion of PF in the diets increased the cultural pH quadratically (P = 0.02), with the 

highest pH values were observed at 7% fat inclusion in LF-fed fermenter and 5% fat 

inclusion in HF-fed fermenters. Suarez-Mena et al. (2013) reported a similar rumen pH 

between treatments as DDGS increased in the diets. In contrast, Manthey et al. (2016) 

observed a linear decrease in rumen pH as DDGS increased in the diets, and they 

attributed that to the F:C ratio. The Eh was higher for LF-fed fermenter than for HF-fed 

fermenter (P = 0.02). These are in agreement with the observation of several studies in 

sheep (Marounek et al., 1982), goats (Giger-Reverdin et al., 2006), dairy cows (Julien et 

al., 2010; Michelland et al., 2011; Friedman et al., 2017) and dairy heifers (Monteils et 

al., 2009). They all showed that the ruminal environment tended to be less reducing in 

animals fed a concentrate diet than those fed a forage diet. Julien et al. (2010) stated that 

there is a relationship between pH and Eh, and it seemed that the ruminal Eh moved 

toward higher Eh when pH dropped, which is exactly the case in the present study. We 
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found that the lowest reducing Eh (-262.49) was observed when pH was the highest 

(6.47) with 5% fat inclusion for HF-fed fermenter. In contrast, the higher Eh (-222.27) 

was recorded when pH was the lowest (5.80) with 3% fat for LF-fed fermenter. These 

findings could be related to the higher NDF inputs for HF-fed fermenter or rapidly 

fermentable carbohydrates for LF-fed fermenter (Huang et al., 2018). Total protozoa 

counts were lower for LF-fed fermenter compared to the HF-fed fermenter (P < 0.01), 

and this is mainly attributed to the higher concentrate diets up to 65% incorporated in LF-

fed fermenter (Table 5.1). High concentrate diets provide a source of rapidly fermentable 

carbohydrates for microorganisms, produce more VFA, and reduce the pH (Abe et al., 

1973; Mackie et al., 1978; Wedekind et al., 1986; Franzolin and Dehority, 1996). Mackie 

et al. (1978) stated that protozoa concentrations decrease when the concentrate diets 

exceed 60%. Also, the low pH in some cases can lead to a complete disappearance of the 

protozoa (Latham et al., 1971; Vance et al., 1972; Abe et al., 1973; Mackie et al., 1978; 

Lyle et., 1981). The total protozoa count decreased linearly with PF inclusion in the diets 

(P < 0.01). Oldick and Firkins (2000) reported a decrease in total rumen protozoa when 

fat was supplemented, whereas Karnati et al. (2009) observed that total protozoa count 

was higher with high-fat diets. Jouany et al. (1988) stated that protozoa defaunation is 

usually related to the increase in propionate and the decrease in butyrate with fat-feeding. 

Even though that was the case with propionate in the current study, it wasn’t with 

butyrate. Also, as Jenkins (1993) suggested, the effect of fatty acids on bacteria can be as 

direct disruption of the microbial cell membrane, lipid coating of bacteria and feed 

particle, and as antimicrobial effects on bacterial population. Yang et al. (2009) reported 
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a decrease in protozoa when Holstein dairy cows fed 4% supplemental soybean and 

linseed oil in diets and observed a lower number of cellulolytic bacteria and a higher 

proteolytic bacteria number. They attributed the higher protein degradation, and a higher 

NH3N concentration as fat included in the diets is due to the greater proteolytic bacteria. 

Also, the decrease in microbial protein synthesis could be associated with high ruminal 

NH3N concentration. 
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CONCLUSIONS 

Simulating precision feeding dietary poultry fat in continuous culture fermenter in 

both low and high forage diets affected ruminal fermentation by decreasing acetate molar 

proportion and reducing the A:P ratio. Results from this study demonstrate that the 

dietary poultry fat inclusion improved apparent digestibility while increased the 

biohydrogenation rate and decreased bacterial efficiency. In the present results, the LF-

fed fermenter consistently resulted in higher nutrient utilization and apparent digestibility 

of most nutrients, but the HF-fed fermenter showed a higher fiber apparent digestibility 

and protozoa population. Therefore, we can conclude that by-products of dietary poultry 

fat can be successfully included in rations for precision-fed dairy heifers and further 

reduce dry matter intake. 
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Table 5.1. Ingredient and chemical composition of low (LF) and high (HF) forage diets 

containing 4 different levels of fat (3, 5, 7, 9% DM) as a gradual increase of dietary 

poultry fat (PF) in the diets fed to continuous culture fermenters. 
                    

 LF  HF 

Ingredient,1 % 3% 5% 7% 9%   3% 5% 7% 9% 

   Coastal hay 5.00 5.00 5.00 5.00  20.00 20.00 20.00 20.00 

   Corn silage 30.0 30.0 30.0 30.0  50.0 50.0 50.0 50.0 

   Ground corn 51.8 48.5 44.4 40.8  24.4 20.6 16.6 12.6 

   Soybean meal (SBM) 11.2 12.7 14.7 16.4  3.60 5.40 7.25 9.20 

   Mineral mix 2.00 2.00 2.00 2.00  2.00 2.00 2.00 2.00 

   Poultry fat (PF) 0.00 1.74 3.85 5.79  0.00 1.98 4.09 6.19 

Chemical composition          

   DM % 88.8 89.0 89.2 89.4  90.3 90.5 90.7 90.9 

   OM, % 94.6 95.1 95.4 95.5  94.8 94.1 93.6 93.4 

   CP, % 12.2 12.7 13.3 13.8  9.90 10.3 10.9 11.6 

   Soluble P, % CP 23.6 22.2 21.8 20.4  37.5 36.4 35.5 34.5 

   NDF, % 20.1 20.7 21.3 21.8  33.2 33.8 35.1 35.7 

   ADF, % 9.18 10.3 10.6 11.1  18.4 18.7 19.6 19.9 

   Hemicellulose,2 % 10.9 10.4 10.7 10.7  14.8 15.1 15.4 15.8 

   Starch, % 40.1 37.9 35.1 32.9  27.3 24.9 22.3 20.1 

   Ether extract, % 3.24 4.78 6.77 8.34  3.08 5.14 6.82 8.77 

   NFC,3 % 59.1 56.9 53.9 51.6  48.7 44.9 40.9 37.2 

   TDN 76.3 78.8 81.0 83.2  69.7 72.1 73.9 75.6 

   ME,4 Mcal/Kg 2.78 2.87 2.95 3.03  2.54 2.63 2.69 2.76 

   Ash, % 5.38 4.87 4.63 4.52  5.19 5.93 6.36 6.59 
1All diets were ground to 2 mm 
2Hemicellulose = NDF - ADF 
3NFC: non-fiber carbohydrates = 100 - (CP + ether extract + NDF + Ash) 
4ME calculated using TDN values as reported by Cumberland Valley Analytical Services, Inc., Waynesboro, PA. ME = 

(TDN × 4.409 × 1.01 – 0.45) × 0.82. To represent the increase in energy as fat increased in the diets, ME = (TDN × 

4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 (Modified from NRC, 2001) 
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Table 5.2. Fatty acid profile of low (LF) and high (HF) forage diets containing 4 different 

levels of fat (3, 5, 7, 9% DM) as a gradual increase of dietary poultry fat (PF) in the diets 

fed to continuous culture fermenters. 
                    
 LF  HF 

Fatty Acid, % 3% 5% 7% 9%   3% 5% 7% 9% 

   C12:0 0.12 0.08 0.09 0.08  0.28 0.20 0.14 0.11 

   C14:0 0.29 0.39 0.59 0.62  0.44 0.57 0.64 0.78 

   C14:1T 0.19 0.15 0.09 0.08  0.04 0.03 0.02 0.13 

   C14:1 0.05 0.05 0.09 0.07  0.25 0.13 0.17 0.14 

   C16:0 15.8 20.2 24.5 25.6  18.6 21.8 23.7 25.6 

   C16:1T 0.12 0.17 0.25 0.23  0.20 0.25 0.35 0.31 

   C18:0 2.42 4.20 5.94 6.06  3.49 5.30 6.08 7.75 

   C18:1 22.4 26.5 28.6 29.3  19.9 26.4 28.1 29.8 

   C18:1-11C 2.62 2.54 2.54 2.87  2.12 2.65 2.45 2.39 

   C18:2 50.2 39.8 31.2 28.2  46.5 35.8 31.91 27.3 

   C20:2 0.18 0.26 0.28 0.34  0.24 0.31 0.30 0.30 

   C18:3 2.61 2.10 1.84 1.80  5.32 3.97 3.09 1.93 

   C22:0 0.28 0.35 0.37 0.43  0.31 0.36 0.41 0.44 

   C22:1 0.29 0.33 0.32 0.33  0.06 0.09 0.12 0.17 

   C20:4 0.88 0.43 0.18 0.20  1.47 1.52 1.74 1.83 

   C24:0 0.22 0.27 0.27 0.31  0.24 0.28 0.32 0.47 

   C22:2 1.16 1.92 2.57 2.76  0.13 0.11 0.25 0.40 

   C22:6 0.24 0.30 0.33 0.69  0.27 0.24 0.19 0.17 
 

Total, mg/g 
 

25.8 
 

40.7 
 

60.6 
 

76.3   
 

24.9 
 

45.1 
 

61.3 
 

80.7 
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Table 5.3. Nutrient apparent digestibility of continuous culture fermenters fed low (LF) 

and high (HF) forage diets containing 4 different levels of fat (3, 5, 7, 9% DM) as a 

gradual increase of dietary poultry fat (PF) in the diets. 
                          

       Contrast, P-value 
  Fat % in the diet   Fat  Interaction 

Digestibility, % Forage 3% 5% 7% 9% SE F:C Linear Quadratic   Linear Quadratic 

   DM LF 66.2 68.7 76.9 82.7 1.16 <0.01 <0.01 0.19  0.21 0.85 
 HF 59.8 63.0 66.8 73.5        

   OM LF 70.2 73.1 80.2 85.9 0.88 <0.01 <0.01 0.12  0.76 0.89 
 HF 61.6 65.8 70.3 77.7        

   N LF 54.1 55.0 61.1 68.4 1.15 0.01 <0.01 0.15  0.04 0.77 
 HF 53.3 53.4 55.5 61.0        

   EE LF 59.0 61.2 70.1 78.7 2.00 0.62 <0.01 0.17  0.02 0.71 
 HF 65.2 66.5 67.3 72.9        

   NDF LF 35.9 39.8 54.3 66.0 1.71 0.01 <0.01 0.13  0.02 0.60 
 HF 46.2 50.2 54.5 63.8        

   ADF LF 26.7 33.1 47.8 59.6 1.93 0.51 <0.01 0.15  0.04 0.92 
 HF 34.8 38.4 44.0 53.6        

   Hemicellulose LF 43.7 46.4 60.8 72.7 1.67 <0.01 <0.01 0.11  0.01 0.32 
 HF 60.5 64.8 67.9 76.6        

   Starch LF 98.7 98.7 98.8 98.9 0.01 <0.01 <0.01 0.67  0.34 0.89 
 HF 97.7 97.7 97.8 97.8        

   NFC LF 78.2 82.0 89.9 93.7 1.17 <0.01 <0.01 0.66  0.51 0.67 
 HF 66.6 72.1 77.7 84.6        
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Table 5.4. Daily fatty acids flow and biohydrogenation of continuous culture fermenters 

fed low (LF) and high (HF) forage diets containing 4 different levels of fat (3, 5, 7, 9% 

DM) as a gradual increase of dietary poultry fat (PF) in the diets. 
                          

       Contrast, P-value 
  Fat % in the diet   Fat  Interaction 

FA flow, mg/d Forage 3% 5% 7% 9% SE F:C Linear Quadratic   Linear Quadratic 

Saturated             

   C12:0 LF 4.84 4.78 4.47 4.28 0.58 0.53 0.67 0.24  0.51 0.29 
 HF 4.21 5.64 5.00 4.56        

   C14:0 LF 10.8 13.2 15.8 18.9 1.32 0.01 <0.01 0.45  0.72 0.23 
 HF 15.6 22.2 21.0 24.2        

   C16:0 LF 187 306 372 464 25.5 0.01 <0.01 0.07  0.01 0.22 
 HF 192 393 506 599        

   C18:0 LF 169 239 286 335 32.4 0.04 <0.01 0.78  0.02 0.41 
 HF 336 415 513 636        

   C22:0 LF 4.43 4.59 5.59 4.18 1.30 0.06 0.05 0.62  0.06 0.18 
 HF 6.76 8.81 7.34 12.7        

   C24:0 LF 4.40 5.19 4.70 3.93 0.61 0.02 0.35 0.19  0.97 0.64 
 HF 6.26 6.08 6.46 5.54        

Unsaturated             

   C18:1 LF 198 368 399 419 25.8 0.01 <0.01 0.04  0.94 0.14 
 HF 127 212 258 339        

   C18:2 LF 1337 342 323 237 20.9 <0.01 0.03 0.12  0.02 0.16 
 HF 160 157 169 161        

   C18:3 LF 12.4 14.3 14.2 12.7 1.25 0.89 0.99 0.29  0.83 0.41 
 HF 13.4 13.1 13.6 12.9        

Total LF 1014 1601 2194 2202 119 0.01 <0.01 0.19  0.07 0.16 
 HF 1026 1690 2207 2987        

Biohydrogenation,1 %             

   C18:2 LF 43.1 46.7 48.9 63.9 3.32 <0.01 <0.01 0.73  0.54 0.01 
 HF 59.7 75.6 82.1 83.3        

   C18:3 LF 59.9 65.6 64.0 69.6 2.30 <0.01 0.01 0.07  0.37 0.05 

  HF 70.6 82.2 84.9 83.2               
1Expressed as milligrams of input - milligrams of outflow/milligrams of input for 18:2 and 18:3 
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Table 5.5. Daily nitrogen flow and bacteria efficiency of continuous culture fermenters 

fed low (LF) and high (HF) forage diets containing 4 different levels of fat (3, 5, 7, 9% 

DM) as a gradual increase of dietary poultry fat (PF) in the diets. 
                          

       Contrast, P-value 
  Fat % in the diet   Fat  Interaction 

N flow, g/d Forage 3% 5% 7% 9% SE F:C Linear Quadratic   Linear Quadratic 

   Total N LF 0.43 0.42 0.37 0.30 0.01 0.73 <0.01 0.16  0.07 0.50 
 HF 0.40 0.39 0.38 0.35        

   NH3N LF 0.02 0.02 0.02 0.02 0.01 <0.01 0.01 0.57  0.07 0.40 
 HF 0.05 0.05 0.05 0.04        

   NAN LF 0.41 0.40 0.35 0.30 0.01 0.01 <0.01 0.13  0.06 0.28 
 HF 0.35 0.34 0.34 0.24        

   Bacteria N LF 0.20 0.23 0.18 0.19 0.01 0.03 0.06 0.01  0.93 0.31 
 HF 0.23 0.27 0.24 0.21        

   Dietary N LF 0.21 0.17 0.17 0.10 0.01 <0.01 0.04 0.82  0.07 0.21 
 HF 0.12 0.09 0.10 0.09        

   RUP N LF 0.23 0.19 0.18 0.11 0.02 0.05 0.03 0.82  0.06 0.19 
 HF 0.17 0.13 0.14 0.13        

   RDP N LF 0.70 0.75 0.76 0.83 0.02 0.02 <0.01 0.60  0.07 0.39 
 HF 0.69 0.72 0.72 0.75        

NH3-N, mg/dL     LF 4.78 4.98 5.36 5.82 0.09 <0.01 <0.01 0.17  <0.01 0.32 
 HF 5.02 5.57 6.80 7.82        

Digestibility, % LF 54.1 55.0 61.1 68.5 1.15 0.01 <0.01 0.15  0.04 0.77 
 HF 53.4 53.5 55.5 61.1        

Bacteria efficiency1 LF 18.7 20.0 13.9 12.0 1.36 <0.01 <0.01 0.01  0.99 0.34 

  HF 23.8 25.6 21.6 16.5               
1Calculated as g of bacteria N / kg of OM truly digested 
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Table 5.6. Volatile fatty acids, methane, pH, Eh, and protozoa population of continuous 

culture fermenters fed low (LF) and high (HF) forage diets containing 4 different levels 

of fat (3, 5, 7, 9% DM) as a gradual increase of dietary poultry fat (PF) in the diets. 
                          

       Contrast, P-value 
  Fat % in the diet   Fat  Interaction 

Culture fermentation Forage 3% 5% 7% 9% SE F:C Linear Quadratic   Linear Quadratic 

Total VFA, mM LF 100 96.2 92.9 95.8 3.35 0.01 0.01 0.08  0.86 0.09 
 HF 76.9 73.2 72.4 68.8        

Individual VFA, mol/100 mol             

   Acetate LF 47.4 47.8 46.5 45.9 0.99 0.04 0.04 0.09  0.82 0.42 
 HF 52.0 50.9 51.0 49.0        

   Propionate LF 33.5 34.7 34.4 36.5 1.06 0.54 0.01 0.09  0.32 0.82 
 HF 33.8 35.0 34.0 35.7        

   Butyrate LF 10.4 10.6 12.4 11.2 0.88 0.29 0.02 0.96  0.38 0.63 
 HF 9.24 9.89 9.68 10.2        

   Valerate LF 8.20 7.35 6.28 5.83 0.39 0.01 <0.01 0.75  0.08 0.07 
 HF 4.52 4.16 4.46 4.46        

   Isobutyrate LF 0.34 0.34 0.41 0.48 0.02 0.01 <0.01 0.13  0.42 0.15 
 HF 0.43 0.44 0.44 0.54        

Methane, mmol/d LF 30.5 30.6 30.4 30.5 0.11 <0.01 0.52 0.51  0.29 0.10 
 HF 29.9 29.7 30.2 29.8        

pH  LF 5.80 5.93 6.11 5.94 0.03 <0.01 0.18 <0.01  <0.01 0.19 
 HF 6.20 6.47 6.26 6.13        

Eh,1 mV  LF -222 -238 -229 -224 6.93 0.02 0.34 0.01  0.73 0.69 
 HF -242 -262 -244 -243        

rH2 LF 10.8 10.5 11.2 11.1 0.21 0.79 0.20 0.91  0.17 0.46 
 HF 10.9 10.8 11.0 10.8        

Protozoa, 103/mL  LF 22.2 20.0 17.9 16.2 0.66 <0.01 <0.01 0.15  0.11 0.37 

  HF 27.8 24.2 20.9 17.5               
1Eh = Redox potential 
2rH, Clark’s exponent = ((Eh + 200) / 30) + (2 × pH) 
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Figure 5.1. Acetate:propionate ratio of continuous culture fermenters fed low (LF) and 

high (HF) forage diets containing 4 different levels of fat (3, 5, 7, 9% DM) as a gradual 

increase of dietary poultry fat (PF) in the diets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F:C P = 0.18 

Linear P = 0.04  
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CHAPTER SIX 

 

EFFECTS OF PRECISION FEEDING HOLSTEIN AND JERSEY DAIRY 

HEIFERS A GRADUAL INCREASE OF DIETARY POULTRY FAT ON TOTAL-

TRACT NUTRIENT DIGESTIBILITY AND RUMEN FERMENTATION 

PARAMETERS 

 

ABSTRACT 

Fat inclusion can increase the energy density of diets fed to ruminants, reducing 

dry matter intake (DMI) required to meet caloric demands. Diets used for precision-

feeding are more nutrient-dense, allowing an increase in energy and nutrient utilization 

efficiency while decreasing nutrient loss. Also, there are indications that Jerseys have 

higher digestibility than the Holstein. Therefore, the objective of this study was to 

evaluate the effects on nutrient digestion and rumen fermentation of including different 

levels of poultry fat (PF) in precision fed Holstein and Jersey dairy heifers. We 

hypothesized that including PF would reduce intake without compromising digestibility 

and rumen fermentation in dairy heifers. Four Holstein and four Jersey cannulated heifers 

were randomly assigned to 4 treatments, included a 55% forage diet with 4 increasing PF 

inclusion starting with a basal concentration of fat in the diet [3% fat (0% PF); 5% fat 

(2% PF); 7% fat (4% PF); and 9% fat (6% PF)]. Treatments were administered according 

to a split-plot, 4×4 Latin square design for 4 periods of 21 d. Data were analyzed using 

the MIXED procedure of SAS. Holsteins had a lower apparent digestibility (AD) than 

Jerseys. The inclusion of PF did not affect most of AD. The PF inclusion showed a linear 

decrease in manure output. Estimated microbial CP flow was higher for Holstein, 

whereas the PF inclusion did not affect microbial CP. Total VFA, acetate decreased 

linearly as PF increased; concurrently, there was a linear increase in propionate resulting 
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in a linear reduction on A:P ratio. These results suggest that Jerseys utilized nutrients 

more efficiently than Holsteins. Also, increasing PF inclusion up to 6% in the rations can 

reduce DMI further in precision-fed heifer without negatively affecting digestibility. 
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INTRODUCTION 

Wild ruminants have the capacity to select a diet that is appropriate to their 

nutrient requirements. As an innate antipredator behavior, they have adapted to 

intermittent feeding cycles to avoid grazing at night; therefore, forages consumed result 

in slower passage rate and more efficient digestion (Jensen, 2017). This eating habit 

results in restricted feeding. On the other hand, cost-effective by-products from other 

agricultural industries can be utilized as sources of energy. Ruminants can utilize by-

products from numerous industries, such as the poultry industry. Poultry fat (PF) is a by-

product of poultry processing and extensively produced world-wide and a potential 

source of energy (Swisher, 2015). Using PF in dairy diets can be an economical energy 

source and can benefit the poultry industries by providing a market for their by-products 

(Hutchison et al., 2006). The use of fat in dairy diets increases due to higher energy 

demands of dairy cows and higher availability of fat supplements (NRC, 2001). Several 

studies have explored different strategies for feeding fat to dairy cows (Rabiee et al., 

2012); however, there is limited research regarding the effects of feeding fat to the 

growing dairy heifer. 

In a study conducted by Anderson et al. (2015), the dietary fat reached 7% DM by 

using dried distillers grains (DDGS) at the highest dietary incorporation fed to dairy 

heifers. They reported an increase in CP and NDF digestibility with the high-fat diets 

with no effect on DM and OM digestibility. Limit-fed animals are given energy and 

nutrients adjusted to allow the animal to reach a targeted ADG (Zanton and Heinrichs, 

2005). The inclusion of more energy-dense ingredients results in lower DMI while higher 
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nutrient (starch, protein, fiber) digestibility (Lascano and Heinrichs, 2011). However, fat 

added to rations can reduce feed intake, inhibit microbial activity in the rumen, and 

reduced nutrient digestibility (Palmquist and Jenkins, 1980), but to what extent dietary fat 

can be strategically incorporated into precision feeding is not known. 

On the other hand, due to the lack of research, the current guidelines for feeding 

dairy cows in the U.S. (NRC, 2001) do not make a specific recommendation for feeding 

growing Jersey heifer. Based on the Council of Dairy Cattle Breeding (CDCB; 2015), 

Jersey is the second most popular breed in the U.S., and its percentage of the cow 

population increased from 4.9 to 6.4 % from 2009 to 2014, while Holstein population 

decreased from 89.6 to 83.9% because of milk fat level. Also, there are indications that 

Jerseys have higher digestibility than Holsteins. Olijhoek et al. (2018) reported that 

Jersey had a higher DM and OM digestibility than Holstein cows fed two F:C ratio diets. 

Based on the previous in-vitro studies results, DMI can potentially be reduced further by 

using fat as an energy source in the precision feeding program as long as other nutrients 

are adjusted to provide the required amounts. To our knowledge, to what extent this 

happens in either Jersey or Holstein heifer is not known. Therefore, the objective of this 

study was to evaluate the effects of including a gradual increase of PF inclusion in 

precision feeding dairy heifers on breed, nutrient digestibility, and rumen fermentation. 

We hypothesized that including PF would further reduce intake and improve nutrients 

digestibility in dairy heifers. 
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MATERIALS AND METHODS 

Animals and Experimental Design 

All procedures involving animals' use were approved by the Clemson University 

Institutional Animal Care and Use Committee (AUP Protocol #: 2019-007). Four 

Holstein heifers (16.7 ± 0.5 mo of age and 453.3 ± 9.4 kg of BW at the start of the 

experiment) and four Jersey heifers (18.08 ± 0.4 mo of age and 343.2 ± 7.5 kg of BW at 

the start of the experiment) were surgically fitted with 7.62 cm ruminal cannulas (Bar 

Diamond, Parma, ID) under local anesthesia 5 mo before the start of the study and 

replaced later with 10.16 cm cannulas (Bar Diamond, Parma, ID). Heifers were randomly 

assigned to four treatments, that included 55% forage diet with four increasing levels of 

dietary PF inclusion [3% fat (0% PF); 5% fat (2% PF); 7% fat (4% PF); and 9% fat (6% 

PF)]. Treatments were administered according to a split-plot, 4×4 Latin square design for 

four periods of 21 d. The whole plot factor in this study was the breed (Holstein and 

Jersey; H:and J), whereas the subplot factors were the different levels of dietary PF 

inclusion. All diets were offered as total mixed rations (TMR) and predicted nutrient 

composition determined using NRC (2001). Diets were formulated to restrict intake and 

provide equal amounts of ME and adjusted weekly to allow for 800 g/d of ADG (Zanton 

and Heinrichs, 2009; Lascano and Heinrichs, 2011). A similar N intake was provided to 

supply 1.70 g N/kg BW 0.75 for Holstein heifers, which has been observed to maximize 

N utilization in dairy heifers (Zanton and Heinrichs, 2009). Also, 1.30 g N/kg BW 0.75 

for Jersey heifers, which is relatively based on the ADG recommendation for Jersey 

heifers (600 g/d; Heinrichs and Jones, 2017). Adaptation to treatment rations (PF) was 
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made over the first 15 d of each period and 5 d for sampling collection starting from d 16. 

Heifers were weighed weekly 2 h before feeding time, and the amount of feed offered for 

the next 7-d interval was adjusted based on the weighted averages. No refusals were 

observed in the present experiment. Rations were mixed daily at 0900 h by preparing 

each diet individually with dietary PF (Stabilized poultry fat; Valley proteins, Inc., Ward, 

SC) mixed with a portion of the TMR and were offered to heifers daily at 1000 h. Heifers 

were housed in individual stalls (150 × 300 cm) in a naturally ventilated tie-stall barn 

with rubber mattress bedding. They were allowed access to an exercise lot for 2 h before 

the 1000 h feeding on non-sampling days. Total time (min.) required to complete the 

daily amount of feed offered was recorded, and water was available at all times.  

Sample Collection and Analyses 

Feces and urine were totally collected from d 16 to 20 immediately after feeding 

for 4 d. Urine was collected using a modified non-invasive urine device (Lascano et al., 

2010), connected to a container containing acidified distilled water (To avoid the 

formation of precipitates). The pH of collected urine was checked hourly and 12 N HCl 

was added to acidify the urine pH to less than 2 if needed, to minimize NH3N 

volatilization (Zanton and Heinrichs, 2009). Urine was weighed and sub-sampled daily 

before feeding. Approximately 250-mL urine subsample was frozen immediately at -20ºC 

for later analyses. Feces were collected whenever the heifers were dropping dung and 

stored in airtight containers. Every 24 h, the total collection of feces was mixed, weighed, 

and sub-sampled. Feedstuffs, TMR, fecal, and urine, were composited by each period as a 

proportion of the daily amount excreted during the sampling days. 
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Feces, urine N, TMR, and diet ingredients were sent to a commercial lab for 

analyses (Cumberland Valley Analytical Services, Inc., Waynesboro, PA) and analyzed 

for dry matter (DM, method 930.15, AOAC, 2000), and N (method 984.13, ACOC, 

2000). Also, for crude fat (EE, method 2003.05, 18th edition, AOAC, 2006) using Tecator 

Soxtec System HT 14043 Extraction unit and modified to use anhydrous ether. Samples 

shipped back from Cumberland Valley Analytical Services were analyzed for OM (OM, 

DM-ash) and ash (method 942.05, AOAC, 2000). Also, neutral detergent fiber (NDF) and 

acid detergent fiber (ADF; Van Soest et al., 1991) using an ANKOM200 Fiber Analyzer 

(ANKOM Technology Corporation, Fairport, NY) with heat resistant α-amylase and 

sodium sulfite utilized in the NDF procedure and corrected for ash content. Starch was 

analyzed on reground samples (< 0.5-mm screen) using an enzymatic procedure (Bach 

Knudson, 1997). The thawed urine samples were diluted with distilled water (1:10) and 

analyzed for uric acid (Cat No. 1045-225, Stanbio Laboratory, Boerne, TX) and allantoin 

(Chen and Gomes, 1992). Urinary purine derivative (PD; allantoin and uric acid) 

excretion was used to estimate duodenal microbial N flow (Chen and Gomes, 1992). 

Metabolizable energy intake (Mcal/d) was calculated for each heifer within each period 

using [(digested OM intake × 4.409 (Mcal/Kg) × 1.01 – 0.45) × 0.82], assuming that 

digestible OM intake and total digestible nutrient intake were equal. That equation was 

used for the control diet, which was modified from NRC (2001). In addition to that 

equation, another equation was modified from NRC (2001) to represent better the 

increase in energy as fat increased in the diets [(digested OM intake × 4.409 (Mcal/Kg) × 

1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82]. 
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Rumen contents were obtained from 5 places in the rumen (dorsal, ventral, 

anterior, caudal, and central) at -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h after 

the 1000-h feeding on d 20 to 21. Rumen contents were mixed and strained through 2 

layers of cheesecloth, pH of rumen fluid was immediately recorded using a pH-specific 

electrode meter (Hanna Instruments, Woonsocket, RI). A 4 mL was pipetted from the 

strained fluid and added to 15 mL centrifuge tubes containing 1 mL of metaphosphoric 

acid (25%; w/v). These tubes were stored at -20°C until VFA and NH3N analysis. Rumen 

samples were thawed and centrifuged at 40,000 × g for 30 min at 4°C. After 

centrifugation, 1 mL of the supernatant was placed in a 2-mL Eppendorf microcentrifuge 

tube and used for the analysis of NH3N according to the methods of Chaney and Marbach 

(1962). Another 0.5 mL of the supernatant was combined with 0.5 mL distilled water and 

100 μL of internal standard (86 μmol of 2-ethylbutyric acid/mL) in a GC vial. Samples 

for VFA were then analyzed by GC–flame-ionization detection according to the methods 

of Yang and Varga (1989) and injected into a Hewlett-Packard 6890 gas chromatograph 

(San Jose, CA) equipped with a custom packed column (2 m × 0.32 cm × 2.1 mm ss; 

10% SP-1200/1% H3PO4 on 80/100 Chromosorb WAW). At the end of each 21-d period, 

rumen contents were evacuated 3 h after the 1000-h feeding, and mass and volume of the 

total contents were recorded. 

Statistical Analyses 

All statistical analyses were conducted in SAS version 9.2 for Windows (SAS 

Institute Inc., Cary, NC) using the MIXED procedure. Data were analyzed as a split-plot, 

4×4 Latin square design, breed as the whole plot and PF level as the subplot with fixed 



248 

 

effects of period, breed, PF inclusion, and breed × PF interaction, and a random effect of 

heifer (breed) and repeated measures as nedded for the following model: 

Yijklm = μ + Bi + Hm(i) + Fj + BFij + Pk + eijklm, 

where Yijklm = the dependent variable, μ = the overall mean, Bi = the fixed effect 

of breed H:J, Hm(i) = the random effect of heifer within breed H:J, Fj = the fixed effect 

of PF sequence, BFij = the interaction between H:J and PF, Pk = the fixed effect of 

period, and, eijklm = the residual error. Linear and quadratic polynomial contrasts were 

utilized to analyze the PF main effects and interactions further. Because animals were 

observed for four periods, the PF inclusion was randomized across periods consistent 

with a Latin Square design to allow for the period to be included in the model and 

evaluate the carryover effect with respect to previous PF inclusion. The previous 

treatment's fixed effect was initially included in the model but was found to be non-

significant and removed from the final model.   

For observations where repeated measures occurred in a period, the fixed effects 

of time and its interaction with breed and PF were included in the model based on a 

repeated measures analysis (Littell et al., 1998) or a split-split plot design with time as the 

sub-sub-plot factor. The covariance structures of simple, autoregressive, or compound 

symmetry were chosen for use in the repeated measures analysis based on the lowest 

values of Akaike's Information Criterion and Schwartz's Bayesian Criterion. Residuals 

for all models were found to be normally distributed (Shapiro-Wilk test for normality). 

Least square means are presented in tables, and evidence for statistical significance was 
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declared at P ≤ 0.05, while trends for main effects and interactions are discussed at 0.10 ≥ 

P > 0.05. 
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RESULTS AND DISCUSSION 

Diet Composition and Nutrient Intakes 

Diet ingredients and chemical composition values are shown in Table 6.1. Diets 

were formulated and resulted in isoenergetic and isonitrogenous intakes. Diets were 

planned to differ mainly in dietary fat by adding different levels of PF. Intake was greater 

for the basal diet group than the other groups because we restricted intake as the energy 

from PF's inclusion increased. The PF addition resulted in 4 different proportions of EE 

concentrations in the diets, and fat intake increased linearly (Tables 6.1 and 6.2). Per 

design, PF replaced the ground corn in the diets, resulting in a gradual decrease in starch 

and NFC in treatments. All other components of the rations were formulated to be similar 

between treatments.  

Breed Effect 

Heifers were fed diets that provided 16.84 and 10.74 ± 0.44 Mcal of ME/d for 

Holstein and Jersey, respectively. Mean heifer BW in the treatment groups differed 

between breed (P < 0.01) but did not differ by the addition of PF throughout the 

experiment (P = 0.64; Table 6.2). The time required to consume the daily amount of diet 

offered to the heifers differed between the H:J (P = 0.05) with longer time needed to 

finish the meal for H-group than the J-group (65.3 vs. 59.9 ± 1.64 min) and that is related 

to the higher DMI based on the breed BW size (492.63 vs. 373.27 ± 3.88 kg). These 

results did not agree with a study conducted on Holstein and Jersey cows, where the daily 

eating time did not differ between breeds, but Jerseys spent more time eating per unit of 

ingested feed (Aikman et al., 2008). They attributed that to Jersey’s small mouth 
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compared to Holstein, so they require several mouthfuls to process an equal volume of 

feed. The present study scenario is different because of the precision feeding program 

that provides the heifers a limited intake, whereas the study mentioned above used ad 

libitum feeding. Dry matter intake was higher for H-group than J-group because of the 

BW differences between the two breeds and intake requirements. Consequently, there 

was a significant intake effect of H:J and PF inclusion on OM, Ash, NDF, ADF, starch, 

and NFC to maintain the isoenergetic and isonitrogenous design of the treatments. The 

ADG for H-group (753 ± 43.6 g/d; data not shown) were close to the recommendation by 

(Zanton and Heinrichs, 2009; Lascano and Heinrichs, 2011). Also, J-group was close to 

achieving a targeted ADG 600 g/d (580 ± 47.9 g/d; data not shown) as a prediction to 

reach the optimum BW at first calve (Heinrichs and Jones, 2017).  In the present study, a 

linear interaction was observed for EE and NFC intake. As planned, EE intakes were 

increased linearly in both Holstein and Jersey heifers while the NFC intakes were 

decreased linearly in both breeds. 

Poultry Fat Effect 

Daily DM, starch, and NFC intakes were decreased linearly with the planned PF 

inclusion to maintain isoenergetic intakes and was the opposite with EE intake, which 

increased linearly to achieve the planned diets. That is mainly related to the higher PF 

inclusion, and the replacement with ground corn as PF increased in the diet. The time 

required to finish the meal decreased linearly with increased PF inclusion in the diets (P = 

0.01). 
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Apparent Digestibility of Nutrients 

Breed Effect 

Apparent total-tract nutrient digestibility (AD) are shown in Table 6.3. The total-

tract AD of DM, OM, NDF, ADF, and NFC was greater for J-group than H-group, but 

not for starch (P = 0.01). These observations are consistent with results reported in a 

study conducted on Holstein and Jersey dairy cows fed 2 levels of F:C diets (Olijhoek et 

al., 2018). Similarly, higher OM and NDF dC for Jersey compared to Holstein-Friesian 

cows were observed by (Beecher et al., 2014). Greater digestibility of J-group can be 

attributed to a higher digestion rate through the rumen and total tract, as Ingvartsen and 

Weisbjerg (1993) stated. These results did not agree with a study conducted on Holstein 

and Jersey cows fed ad libitum TMR during 3 periods, far-off, close up, and lactation. 

They reported that DM, OM, ADF, and starch AD did not differ between breeds; 

however, NDF AD was higher in Jersey compared to Holstein cows, and the DM and OM 

AD were numerically higher in Jerseys as well (Aikman et al., 2008). Nitrogen AD did 

not differ between H:J (P = 0.44), and this is in agreement with several studies conducted 

on Holstein and Jersey cows where the N AD did not differ between the two breeds 

(Kauffman and St-Pierre, 2001; Aikman et al., 2008; Knowlton et al., 2010; Olijhoek et 

al., 2018). When external markers were used, Jersey cows showed a higher digestion rate 

and efficient in utilizing the diet because of a larger gastrointestinal tract weight relative 

to BW or a higher chewing rate per unit of meal consumed, suggesting particle 

breakdown and rumen outflow were faster in Jersey compared to Holstein (Aikman et al., 

2008; Beecher et al., 2014). Some other studies reported that Jerseys have a higher feed 
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utilization efficiency than large breeds such as Holstein (Oldenbroek, 1988; Grainger and 

Golddard, 2004). According to Van Soest (1994), a relatively large gastrointestinal tract 

as a proportion of the BW in Jerseys would indicate a larger area available for nutrient 

absorption; therefore, higher AD would be expected.  

Poultry Fat Effect 

The PF inclusion did not show any linear or quadratic effects on DM, OM, NDF, 

and ADF AD, but we noticed a numerical increase in N AD as the PF level increased in 

the diets. The EE (not presented) and starch AD increased linearly with increased levels 

of PF inclusion, and the effect was the opposite with NFC AD. However, EE AD is not a 

good indication of total-tract fat digestibility because fecal fat is mostly FFA and calcium 

salts. The increase in starch AD could be mainly related to the linear decrease in starch 

intake as corn was replaced with PF in the diets, resulting in more efficient starch 

utilization in the rumen and total-tract digestive system. The passage rates of diets can be 

slower when intake is limited (Eng et al., 1964; Owens and Isaacson, 1977; Colucci et al., 

1990), and we expected to be even slower as fat was added to the diets and the intake 

reduced further. The AD for N and hemicellulose did not differ with PF inclusion, but N 

AD tended to increase linearly with PF inclusion (P = 0.06). Anderson et al. (2015) 

reported a higher AD of N when heifers limit-fed a high-fat DDGS compared to a low-fat 

DDGS and control diet (73.1 vs. 70.1 and 69.8 ± 0.88%, respectively). It was speculated 

that is because of the higher efficiency of N utilization when the starch content decreased 

in the high-fat DDGS diets compared to the control; therefore, that improved the total-

tract digestion. However, further research would be necessary to test this hypothesis. The 
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AD of EE showed a linear interaction with an increase in the EE AD as PF inclusion 

increased in the diets and in both Holstein and Jersey heifers. That could be related to the 

lower DMI as PF increased in the diets, which reduced the passage rate and resulted in 

more efficient fat utilization in the total-tract digestive system.  

Nitrogen Intake and Dynamics 

Breed Effect 

Nitrogen intake, AD, and dynamics are shown in Table 6.4. Daily N intakes 

differed by breed, and that is mainly because of the BW sizes and to maintain the planned 

isonitrogenous diets. Fecal, urine and total excreted N were higher for H-group than the 

J-group (P <0.01). That is related to the higher amount of N intakes based on BW size 

and requirements; however, the N retention (% of intake and % of digested) was higher in 

H-group compared to the J-group. In the study of Knowlton et al. (2010), Jersey cows 

were observed to have lower N in feces and urine with 33, and 24% reduced compared to 

Holstein cows. Also, Blake et al. (1986) observed a 30% reduction while Kauffman and 

St-Pierre (2001) reported a 27% reduction in fecal N for Jerseys compared to Holsteins. 

They attributed that to the differences in digestion rate and the breed response to type and 

concentration of protein in the diet.  

Poultry Fat Effect 

As the PF inclusion increased in the diets, the fecal and total excreted N decreased 

linearly (P = 0.01), and the retention of N increased numerically, specifically in H-group. 

The fecal N excretion agreed with Suarez-Mena et al. (2015), where N excretion in fecal 

was linearly decreased as DDGS levels increased, but the N retention was decreased. 



255 

 

They attributed that to the linear increase in urine N excretion, which was not the case in 

the current study. The reduction in total N excretion and the numerical improvement in N 

retention could be related to better synchrony of N and energy available for the 

microorganism in the rumen. That is consistent with the numerical improvement in 

microbial protein synthesis (Table 6.6). There was a linear interaction for urine N 

excretion with a linear decrease in Holstein heifers while a linear increase in Jersey 

heifers. Despite that, the total N excretion showed a linear decrease in both breeds, which 

is mainly related to the lower fecal N excretion as PF increased in the diets and the lower 

DMI. 

Nutrient Excretion and Estimated Microbial Protein 

Breed Effect 

Excretion parameters data are shown in Table 6.5, and estimated microbial CP 

flow to the duodenum is given in Table 6.6. Wet, dry, water fecal, and manure outputs 

were higher for H-group compares to J-group (P <0.01), and that is related to the higher 

amount of intake to meet the requirements based on BW differences between breeds. 

That could also explain the reduction in nutrient AD for H-group in the current study 

(Table 6.3). However, the urine excretion was higher for the J-group than for the H-group 

(P <0.01), which is consistent with the reduction in urine N for J-group, and because of 

that, the total water excretion did not differ between H:J (P = 0.92). Even though the 

water consumption was not measured in the current study, but from a researcher note, we 

speculated the differences in the urine outputs between the two breeds are related to water 

consumption and behavior, which was higher for J-group than for H-group. These results 
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agree with a study conducted on Holstein and Jersey cows by Knowlton et al. (2010). 

They observed a lower manure excretion for J-group than H-group with 35% less wet 

feces. 

There were higher allantoin, uric acid, and total PD concentrations for H-group 

compared to J-group heifers (P <0.01), which resulted in greater amounts of microbial CP 

flow. That is mainly related to the BW and DMI differences between the two breeds. 

However, the allantoin as a percentage of PD did not differ between H:J. 

Poultry Fat Effect 

All the excretion parameter outputs were decreased linearly as the PF inclusion 

level increased. That is mainly related to the lower amount of DMI as the PF inclusion 

increased in the diets and the lower NDF intake since the NDF helps increase water 

excretion in feces. That was also an inverse relationship to the ADs responses in the 

current results (Table 6.3). These results agreed with several studies (Leupp et al., 2009; 

Suarez-Mena et al., 2015), where they observed a linear decrease in fecal outputs as 

DDGS level increased (fat level increased). They related that to a similar trend in OM 

intake, which is the case in the current study (Table 6.2). 

The inclusion of PF did not show any effects on microbial CP flow, and this 

agrees with a study conducted by Suarez-Mena et al. (2015) on dairy heifers fed different 

levels of DDGS. However, we noticed a numerical but not significant quadratic effect on 

total PD and microbial CP flow. The greatest microbial CP flow was observed at the 9% 

fat in the diets compared to the other fat concentrations. These observations could be 

related to the passage rates of diets, which can be slower when intake is limited (Eng et 



257 

 

al., 1964; Owens and Isaacson, 1977; Colucci et al., 1990). Also, we expected to be even 

slower as fat was added to the diets, which give more time for microbial CP synthesis. 

Also, the reduction in NDF intakes in the 9% fat in the diets, as high NDF intakes has 

been linked to show a reduction in microbial CP flow (Valadares et al., 1999; Pina et al., 

2009; Lascano et al., 2016). 

Rumen Fermentation, Contents, and Volume 

Breed Effect 

Rumen VFA profile, NH3N, pH, and rumen pool sizes are shown in Table 6.7. 

There were no differences between H:J for total ruminal VFA, acetate, propionate, 

butyrate, valerate, and isobutyrate molar proportions. The lack of differences in acetate 

and propionate were reflected in acetate to propionate ratio, which also did not differ 

between H:J. Rodriguez et al. (1997) observed no differences in A:P ratio when Holstein 

and Jersey cows fed diets differing in fat and rumen undegradable protein content, which 

agrees with the current study. Even though the current results were not significant, but H-

group numerically tended to be lower in acetate (65.65 vs. 66.90 ± 0.68), higher in 

propionate (22.54 vs. 21.77 ± 0.41), and lower in A:P ratio (3.04 vs. 3.16 ± 0.12) than J-

group. Similar results with significant effects were observed by (Olijhoek et al., 2018) on 

VFA parameters. They attributed the differences between the two breeds in rumen 

fermentation to the rumen's microbial community structure. 

Mean ruminal NH3N concentration did not differ between H:J (P = 0.38). 

Ruminal pH did not differ between the two breeds (P = 0.12). These results agree with 

Rodriguez et al. (1997), where they observed no differences in ruminal NH3N and pH 
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between Holstein and Jersey cows fed diets differing in fat and rumen undegradable 

protein content. We observed differences in rumen mass, volume and tended to have a 

higher density for the H-group than the J-group. That is due to the differences in BW 

sizes and the amount of DMI. 

Poultry Fat Effect 

The inclusion of PF in the diets decreased the total VFA concentrations linearly (P 

= 0.03), and this is mainly because of the linear reduction in acetate molar proportion as 

the PF level increased in the diets (P <0.01). Even though the AD of NDF and ADF were 

not affected by PF inclusion, the linear reduction in fiber intake and the starch intake 

could be the reason behind the reduction in acetate concentration (Manthey and 

Anderson, 2018). Acetate production within the rumen results from the fermentation of 

structural carbohydrates by cellulolytic bacteria (Enjalbert et al., 1999). Also, the higher 

total VFA concentration for the CON diet could be related to the pH (Calsamiglia et al., 

2008). In the current study, the pH was the lowest with the CON-fed group than for other 

treatments. In addition, as DM intakes decrease with PF inclusion, the passage rate 

decrease and the retention time increase in the rumen, and that could be the reason behind 

the lower total VFA as PF increased in the diets. However, the propionate, valerate, and 

isobutyrate molar proportions increased linearly with PF inclusion (P <0.01). Therefore, 

the propionate increasing as PF inclusion increased in the diets resulted in a linear 

reduction in A:P ratio (Figure 6.1 and 6.2; P <0.01). These results are comparable to 

those reported by several studies conducted on dairy heifer limit-fed DDGS (Suarez-

Mena et al., 2015; Manthey et al., 2016; Manthey and Anderson, 2018). These 
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observations could be due to the decline in the rumen bacteria population, as suggested 

by (Suarez-Mena et al., 2015); however, this is not supported by the estimated microbial 

CP flow in the current study (Table 6.6). Manthey and Anderson (2018) suggested that 

the differences in starch contents and intake are the reason behind the shift in VFA and 

the decrease in acetate and increase in propionate. Also, they suggested the higher 

propionate is related to more energy-efficient, and rumen fermentation in heifers fed 

DDGS diets (Manthey et al., 2016) because there are less methane and carbon dioxide 

production in propionate as compared with acetate (Fahey and Berger, 1988). Jenkins 

(1993) stated that there is a lower A:P ratio at a greater fat intake to the reduction in 

nonlipid energy sources AD, as we observed in NFC AD in the current study (Table 6.3). 

Ammonia concentration linearly increased as the PF inclusion increased in the 

diets (P = 0.05). Suarez-Mena et al. (2015) and Manthey et al. (2016) observed similar 

results, and they attributed that to the lower ME intake with the addition of DDGS, which 

is numerically decreased in the current study as PF inclusion increased in the diets (Table 

6.2). Also, Suarez-Mena et al. (2015) stated that the effect of lower ME intake could have 

been aggravated as DDGS increased by greater energy coming from fat and providing 

lower carbohydrates to the bacteria. Therefore, the microbial capacity to assimilate amino 

acids and ammonia was negatively affected and NH3 accumulated in the rumen (NRC, 

2001). Additionally, the bacterial growth is generally affected negatively by fat by 

disrupting the integrity of the membrane of the bacteria (Doreau and Ferlay, 1995; Maia 

et al., 2010); however, this is not supported by the estimated microbial CP flow in the 

current study (Table 6.6). 



260 

 

The inclusion of PF in the diets increased the ruminal pH linearly (Figure 6.3 and 

6.4; P = 0.02). That is mainly because of the reduction in DMI as planned in the current 

study and the reduction in starch intake as corn was replaced with PF in the diets. Suarez-

Mena et al. (2013) reported a similar rumen pH between treatments as DDGS increased 

in the diets, whereas Manthey et al. (2016) observed a linear decrease in rumen pH as 

DDGS increased in the diets, and they attributed that to the F:C ratio. Chibisa et al. 

(2015) stated that the drop in pH with high starch diets is common in the literature as in 

the control diet in the current study. Also, Elliott et al. (1997) reported an increase in 

ruminal pH as different saturated fat were fed, and they attributed that to the lower 

fermentable carbohydrate content in these diets. 

The inclusion of PF in the diets showed a linear decrease in the rumen mass, 

volume, and density, which is related to the reduction in DMI as PF inclusion increased. 

These results did not agree with (Suarez-Mena et al., 2015) as they did not find any 

effects on rumen contents and volume as DDGS increased in the diets. Overall, 

increasing PF inclusion in the diets did not appear to negatively affect rumen 

fermentation to change growth performance and may have shifted fermentation towards 

more efficient energy utilization in the current study. In the current study, there was a 

tendency for a linear interaction in propionate concentration. Propionate concentration 

tended to increase linearly in both Holstein and Jersey heifers, and this could be related to 

the more energy-efficient in heifers fed a decreased amount of DMI. 
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CONCLUSIONS 

Increasing dietary poultry fat in precision-fed Holstein and Jersey dairy heifer 

diets had some effects on ruminal fermentation, as evidenced by the decrease in acetate 

and increase in propionate. That might shift the rumen fermentation towards more 

efficient energy utilization by reducing the A:P ratio. This study demonstrates that the 

dietary poultry fat inclusion up to 6% does not impact apparent total tract digestibility, N 

dynamics, and microbial protein synthesis. In addition, the poultry fat inclusion in 

precision feeding dairy heifers decreased intake and manure excretion. The present 

results followed the same pattern in both Holstein and Jersey dairy heifers. However, 

Jersey heifers consistently resulted in higher nutrient utilization and apparent total tract 

digestibility of most nutrients, but Holstein heifers showed higher nitrogen retention. 

Therefore, we can conclude that dietary poultry fat can be successfully included in rations 

up to 6% DM in Holstein and Jersey heifers when precision-feeding is utilized and might 

help dairy farmers economically.  
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Table 6.1. Ingredient and chemical composition of 4 different levels of fat (3, 5, 7, 9% 

DM) containing a gradual increase of dietary poultry fat (PF) in Holstein and Jersey dairy 

heifers' diets. 

          

 Fat % in the diet 

Item 3% 5% 7% 9% 

Ingredient, %     

  Coastal bermudagrass hay 5.00 5.00 5.00 5.00 

  Corn silage 50.0 50.0 50.0 50.0 

  Ground corn 33.7 30.4 26.5 22.6 

  Soybean meal (SBM) 10.1 11.6 13.4 15.2 

  Mineral mix1 1.10 1.10 1.10 1.10 

  Poultry fat  0.00 1.78 3.91 6.04 

Chemical composition 
    

  DM % 49.1 48.1 48.8 48.9 

  OM, % of DM 94.7 94.7 94.5 94.4 

  CP, % of DM 13.1 13.2 13.3 13.8 

  Soluble P, % of CP 34.1 28.9 31.5 32.9 

  NDF, % of DM 27.7 28.6 29.0 28.4 

  ADF, % of DM 16.6 17.5 17.8 17.4 

  Hemicellulose,1 % of DM 11.1 11.0 11.2 11.0 

  Lignin, % of DM 2.35 2.71 2.89 2.37 

  Starch, % of DM 32.6 30.6 29.4 28.0 

  Ether extract, % of DM 3.38 5.05 7.09 8.92 

  NFC,2 % of DM 50.4 47.8 45.0 43.2 

  TDN 75.6 77.7 79.3 83.5 

  ME,3 Mcal/Kg 2.76 2.83 2.89 3.05 

  Ash, % of DM 5.30 5.29 5.45 5.57 
1Hemicellulose = NDF - ADF 
2NFC: non-fiber carbohydrates = 100 - (CP + ether extract + NDF + Ash) 
3ME calculated using TDN values as reported by Cumberland Valley Analytical Services, Inc., Waynesboro, PA. ME = 

(TDN × 4.409 × 1.01 – 0.45) × 0.82. To represent the increase in energy as fat increased in the diets, ME = (TDN × 

4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 (Modified from NRC, 2001) 
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Table 6.2. Feed intake of Holsten and Jersey dairy heifers fed 4 different levels of fat (3, 

5, 7, 9% DM) containing a gradual increase of dietary poultry fat (PF). 

       Contrast, P-value 

  Fat % in the diet   Fat  Interaction 

  Item Breed 3% 5% 7% 9% SE H:J1 Linear Quadratic   Linear Quadratic 

  BW, Kg H 491 492 492 493 4.12 <0.01 0.64 0.82  0.69 0.75  

J 373 372 374 372        
  Time to finish a meal,2 min H 70.9 63.6 63.4 63.3 2.33 0.05 0.01 0.04  0.92 0.91  

J 66.3 57.0 58.8 57.5        
  Intake, % of BW H 1.63 1.58 1.50 1.46 0.02 <0.01 <0.01 0.20  0.38 0.27  

J 1.34 1.25 1.20 1.19        
  Intake, Kg/d 

            
     As fed H 17.0 16.9 15.8 15.4 0.23 <0.01 <0.01 0.60  0.15 0.15  

J 10.6 10.01 9.57 9.52        
     DM H 8.02 7.78 7.40 7.20 0.13 <0.01 <0.01 0.24  0.18 0.33  

J 5.01 4.63 4.46 4.45        
     OM H 7.59 7.37 6.99 6.81 0.12 <0.01 <0.01 0.26  0.17 0.35  

J 4.74 4.39 4.22 4.20        
     CP H 1.05 1.03 0.99 1.00 0.02 <0.01 0.07 0.19  0.49 0.82  

J 0.65 0.62 0.61 0.62        
     EE H 0.27 0.39 0.53 0.65 0.01 <0.01 <0.01 0.35  <0.01 0.25  

J 0.18 0.22 0.33 0.41        
     NDF H 2.22 2.22 2.15 2.04 0.04 <0.01 0.01 0.59  0.54 0.16  

J 1.40 1.32 1.29 1.25        
     ADF H 1.33 1.38 1.32 1.26 0.02 <0.01 0.02 0.05  0.41 0.27  

J 0.83 0.82 0.82 0.78        
     Hemicellulose H 0.89 0.85 0.82 0.78 0.02 <0.01 0.03 0.34  0.93 0.29  

J 0.58 0.51 0.47 0.47        
     Starch H 2.62 2.40 2.19 2.02 0.05 <0.01 <0.01 0.21  0.05 0.52  

J 1.65 1.41 1.33 1.24        
     NFC H 4.04 3.73 3.33 3.12 0.06 <0.01 <0.01 0.05  0.02 0.47  

J 2.52 2.23 2.00 1.92        
     Ash H 0.43 0.41 0.40 0.40 0.01 <0.01 0.05 0.05  0.47 0.30  

J 0.27 0.24 0.24 0.25        
  TDN H 5.09 5.25 5.10 5.09 0.13 <0.01 0.51 0.56  0.67 0.17  

J 3.47 3.27 3.11 3.34        
  ME,3 Mcal/d H 17.6 17.6 16.5 16.2 0.44 <0.01 0.07 0.59  0.75 0.19 

  J 11.6 11.0 10.1 10.5               
1 Breed effect Holstein:Jersey (H:J). 
2 Eating time calculated from feeding to completion of the meal. 
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3ME (Mcal/d) calculated as ME = (digested OM × 4.409 × 1.01 – 0.45) × 0.82. To represent the increase in energy as 

fat increased in the diets, ME = (digested OM × 4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 (Modified from NRC, 

2001) 
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Table 6.3. Nutrient apparent digestibility of Holsten and Jersey dairy heifers fed 4 

different levels of fat (3, 5, 7, 9% DM) containing a gradual increase of dietary poultry fat 

(PF). 

                          

       Contrast, P-value 

  Fat % in the diet   Fat  Interaction 

Item Breed 3% 5% 7% 9% SE H:J1 Linear Quadratic   Linear Quadratic 

Digestibility, %             
  DM H 62.0 64.2 63.0 62.8 1.54 0.01 0.99 0.73  0.78 0.56  

J 67.3 67.7 66.3 67.3        
  OM H 63.6 65.8 64.6 64.5 1.60 0.02 0.97 0.73  0.84 0.59  

J 68.9 69.3 68.2 69.0        
  N H 61.1 65.7 64.0 67.9 2.22 0.44 0.06 0.96  0.86 0.81  

J 63.5 65.7 65.6 68.8        
  NDF H 43.1 51.0 49.9 49.0 2.44 0.01 0.21 0.24  0.63 0.34  

J 55.7 55.2 58.6 57.3        
  ADF H 37.6 41.8 41.2 39.8 2.82 0.01 0.34 0.28  0.62 0.93  

J 44.8 47.3 51.0 48.8        
  Hemicellulose H 66.6 67.5 71.7 69.7 2.77 0.46 0.65 0.38  0.36 0.80  

J 69.8 71.2 72.2 68.2        
  Starch H 94.6 95.3 95.8 95.8 0.45 <0.01 0.01 0.98  0.39 0.46  

J 92.3 92.9 93.2 94.4        
  NFC H 74.7 72.8 70.5 68.2 1.85 0.04 0.01 0.91  0.81 0.99  

J 76.9 77.3 72.3 72.3        
1 Breed effect Holstein:Jersey (H:J). 
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Table 6.4. Nitrogen intake, apparent digestibility, and dynamics of Holsten and Jersey 

dairy heifers fed 4 different levels of fat (3, 5, 7, 9% DM) containing a gradual increase 

of dietary poultry fat (PF). 

                          

       Contrast, P-value 

  Fat % in the diet   Fat  Interaction 

Item Breed 3% 5% 7% 9% SE H:J1 Linear Quadratic   Linear Quadratic 

Intake, g/d H 168 164 158 160 3.75 <0.01 0.07 0.15  0.41 0.85  

J 103 98.4 96.5 99.5        
Digestibility, % H 61.1 65.7 64.0 67.9 2.22 0.44 0.06 0.96  0.86 0.81  

J 63.5 65.7 65.6 68.8        
Fecal N, g/d H 65.2 56.1 56.7 50.4 2.72 <0.01 0.01 0.60  0.33 0.92  

J 38.8 33.1 33.9 30.3        
Urine N, g/d H 61.8 51.7 57.1 49.8 2.19 <0.01 0.70 0.13  0.02 0.45  

J 41.8 35.6 44.6 46.8        
Total excreted N, g/d H 127 107 113 100 3.55 <0.01 0.01 0.18  0.01 0.69  

J 80.6 68.8 78.4 77.1        
Retained N, g/d H 41.5 56.1 44.0 58.7 5.23 <0.01 0.68 0.91  0.10 0.91  

J 24.8 28.6 15.9 21.6        
Retained N, % of intake H 24.3 34.2 27.3 36.1 3.61 0.01 0.73 0.67  0.07 0.81  

J 23.7 29.2 19.3 20.8        
Retained N, % of digested H 39.4 52.0 42.3 52.8 4.43 0.02 0.84 0.53  0.04 0.72 

  J 36.9 44.4 29.3 29.4               
1 Breed effect Holstein:Jersey (H:J). 
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Table 6.5. Excretion parameters of Holsten and Jersey dairy heifers fed 4 different levels 

of fat (3, 5, 7, 9% DM) containing a gradual increase of dietary poultry fat (PF). 

                          

                     Contrast, P-value                                              

  Fat % in the diet   Fat  

Item Breed 3% 5% 7% 9% SE H:J1 Linear Quadratic   

Wet feces, Kg/d H 13.1 12.1 12.0 11.6 0.31 <0.01 0.05 0.31   

J 8.50 7.55 7.85 7.39      
Dry feces, Kg/d H 3.16 2.89 2.82 2.78 0.11 <0.01 0.03 0.43   

J 1.69 1.55 1.63 1.49      
Fecal water,2 Kg/d H 9.97 9.24 9.25 8.82 0.26 <0.01 0.01 0.37   

J 6.79 6.01 6.20 5.90      
Urine, Kg/d H 7.28 6.59 5.77 5.52 0.28 <0.01 <0.01 0.30   

J 10.5 9.13 9.42 8.59      
Manure, Kg/d H 20.4 18.7 17.8 17.1 0.38 0.01 <0.01 0.11   

J 19.0 16.6 17.2 15.9      
Total water excreted, Kg/d H 17.2 15.8 15.0 14.3 0.33 0.92 <0.01 0.12  
  J 17.3 15.1 15.6 14.4           

1 Breed effect Holstein:Jersey (H:J). 
2Weight lost on drying at 60ºC. 
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Table 6.6. Urinary excretion of purine derivatives and estimated microbial CP of Holsten 

and Jersey dairy heifers fed 4 different levels of fat (3, 5, 7, 9% DM) containing a gradual 

increase of dietary poultry fat (PF). 

                          

                     Contrast, P-value 

  Fat % in the diet   Fat  

Item Breed 3% 5% 7% 9% SE H:J1 Linear Quadratic   

Allantoin, mmol H 102 97.0 100 100 4.22 <0.01 0.66 0.26   

J 66.5 56.7 60.1 60.9      
Uric acid, mmol H 13.3 9.98 10.2 12.5 1.39 <0.01 0.21 0.12   

J 8.39 8.07 4.19 5.67      
Total PD, mmol H 115 107 110 113 3.94 <0.01 0.38 0.09   

J 75.0 64.6 64.3 66.6      
Allantoin, % of PD H 88.3 90.6 91.0 88.8 1.53 0.74 0.24 0.45   

J 88.9 87.3 92.4 91.4      
Microbial CP,2 g/d H 402 357 374 391 20.9 <0.01 0.38 0.09  
  J 225 171 170 181           

1 Breed effect Holstein:Jersey (H:J). 
2 Estimated according to the methods and equations of Chen and Gomes (1992). 
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Table 6.7. Rumen fermentation parameters and rumen pools sizes of Holsten and Jersey 

dairy heifers fed 4 different levels of fat (3, 5, 7, 9% DM) containing a gradual increase 

of dietary poultry fat (PF). 

                          

       Contrast, P-value 

  Fat % in the diet   Fat  Interaction 

Item Breed 3% 5% 7% 9% SE H:J1 Linear Quadratic   Linear Quadratic 

Total VFA, mM H 109 109 103 101 3.34 0.90 0.03 0.27  0.58 0.61  

J 109 111 103 97.9        
Individual VFA, mol/100 mol 

            
Acetate (A) H 69.0 66.0 64.2 63.3 1.24 0.17 <0.01 0.90  0.31 0.36  

J 70.5 69.1 65.4 62.4        
Propionate (P) H 20.2 21.4 23.8 24.6 0.62 0.21 <0.01 0.97  0.07 0.80  

J 18.3 20.7 22.7 25.3        
Butyrate H 9.44 11.1 10.4 9.94 0.69 0.24 0.80 0.82  0.97 0.09  

J 10.1 8.89 9.59 10.0        
Valerate H 0.54 0.50 0.54 0.71 0.08 0.89 <0.01 0.43  0.03 0.36  

J 0.28 0.35 0.82 0.87        
Isobutyrate H 0.72 0.91 0.96 1.37 0.09 0.13 <0.01 0.13  0.69 0.04  

J 0.68 1.08 1.43 1.15        
A:P H 3.47 3.09 2.99 2.61 0.17 0.48 <0.01 0.79  0.11 0.79  

J 3.82 3.41 2.84 2.57        
NH3-N, mg/dL     H 4.37 4.89 5.26 5.13 0.32 0.38 0.05 0.57  0.32 0.22  

J 4.04 4.52 4.87 4.41        
pH  H 6.81 6.83 6.93 6.93 0.05 0.12 0.02 0.41  0.80 0.60  

J 6.68 6.82 6.84 6.86        
Rumen pool sizes2 

            
Mass, Kg H 80.7 78.2 73.3 69.6 1.00 <0.01 <0.01 0.33  0.67 0.09  

J 55.8 50.3 46.7 45.2        
Volume,3 L H 91.3 86.6 85.1 81.5 1.67 <0.01 <0.01 0.09  0.81 0.19  

J 64.9 56.5 55.2 54.3        
Density, Kg/L H 0.89 0.90 0.86 0.85 0.01 0.06 0.03 0.23  0.69 0.94 

  J 0.86 0.88 0.85 0.84               
1 Breed effect Holstein:Jersey (H:J). 
2 Determined by whole rumen contents evacuation. 
3 Rumen volume was measured by marking the level of rumen contents on a plastic container. 
 

 

 

 



270 

 

 
Figure 6.1. Diurnal acetate:propionate ratio of Holstein (H) heifers fed 4 different levels 

of fat (F; 3, 5, 7, 9% DM) containing a gradual increase of dietary poultry fat (PF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear P < 0.01  
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Figure 6.2. Diurnal acetate:propionate ratio of Jersey (J) heifers fed 4 different levels of 

fat (F; 3, 5, 7, 9% DM) containing a gradual increase of dietary poultry fat (PF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear P < 0.01  
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Figure 6.3. Diurnal pH of Holstein (H) heifers fed 4 different levels of fat (F; 3, 5, 7, 9% 

DM) containing a gradual increase of dietary poultry fat (PF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear P = 0.02  
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Figure 6.4. Diurnal pH of Jersey (J) heifers fed 4 different levels of fat (F; 3, 5, 7, 9% 

DM) containing a gradual increase of dietary poultry fat (PF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear P = 0.02  
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CHAPTER SEVEN 

 

CONCLUSIONS AND IMPLICATIONS 

 

These experiments and the literature review presented in this dissertation 

increased our knowledge regarding our overall objective, to determine the optimal F:C 

ratio and the extent of fat inclusion in the diets of precision-fed dairy heifers. Precision 

feeding fat to dairy heifers is a potential tool for reducing feed intake and improving 

nutrient efficiency with optimal performance on total-tract nutrient digestibility or rumen 

fermentation. 

The study outlined in Chapter 3 exhibited that screening different types of fat with 

different extent of inclusion in both low and high forage diets using a gas production 

system showed some effects on culture fermentation. As evidenced by the decrease in 

acetate and might shift the rumen fermentation towards more efficient energy utilization 

by reducing A:P ratio. Results from this study demonstrate that the PF inclusion, along 

with CO inclusion, improved IVTDMD significantly in comparison to SOY and CON 

diet, while the level of fat inclusion had no detrimental impact on nutrients digestibility. 

The present results showed that the LF diet consistently resulted in higher nutrient 

utilization and most nutrients' digestibility. Also, not all fat sources are the same in how 

they ferment, depending on the extent of saturated and unsaturated fatty acids in these fat 

sources. We can conclude that the high concentrate diet with high-fat inclusion can be 

successfully included in rations for precision-fed dairy heifers. 

In Chapter 4, it was demonstrated that increasing the fat inclusion up to 6% in 

stimulated precision feeding high concentrate diet in continuous culture fermenter had 
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some effects on ruminal fermentation, as evidenced by the decrease in total VFA and 

protozoa population. At the same time, maintain higher pH and ammonia concentration in 

PF and CO than in SO and CON treatments. Results from this study showed that the 

dietary PF inclusion along with CO inclusion improved digestibility significantly in 

comparison to SO and CON diet while increased the BH rate. In conclusion, the high 

concentrate diet with dietary PF can be a potential source of fat to be included in rations 

for precision-fed dairy heifers and reduce the dry matter intake further. 

The study presented in Chapter 5 was aimed to find the optimal modification 

between F:C ratio in simulated precision feeding different extent of dietary PF in 

continuous culture fermenter. Both low and high forage diets had some effects on ruminal 

fermentation, as evidenced by the decrease in acetate and shift the rumen fermentation 

towards more efficient energy utilization by reducing A:P ratio. Results from this study 

demonstrate that PF inclusion improved digestibility while increased BH rate and 

decreased bacterial efficiency. The present results followed the same pattern in both LF 

and HF. However, LF consistently resulted in higher nutrient utilization and digestibility 

of most nutrients, but HF showed a higher fiber digestibility and protozoa population. 

Therefore, by-products PF is a fat source worth being included in rations for precision-

fed dairy heifers in a moderate balance between F:C ratio. 

Finally, Chapter 6 aimed to apply dietary PF inclusion to a different extent in 

precision-fed Holstein and Jersey dairy heifer diets. As expected, PF had some effects on 

ruminal fermentation, as evidenced by the decrease in acetate and increase in propionate 

and shift the rumen fermentation towards more efficient energy utilization by reducing 
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A:P ratio. Results from this study showed that PF inclusion does not impact apparent 

total-tract digestibility, N dynamics, and MCP synthesis. In addition, PF inclusion in 

precision feeding dairy heifers could help reduce the negative impact on the environment 

by decrease the manure excretion outputs. The present results followed the same pattern 

in both Holstein and Jersey dairy heifers. However, Jersey heifers consistently resulted in 

higher nutrient utilization and apparent total tract digestibility of most nutrients. 

Overall, the results from these studies indicate that poultry fat can be used as a 

replacement for corn in precision-fed Holstein and Jersey dairy heifer diets up to 6% DM 

with varying forage to concentrate rations to improve efficiency. Other fat sources with 

different characteristics can be utilized with relative success, but further research is 

needed. Incorporation of supplemental fat to controlled intake strategies such as 

precision-feeding can lead to a reduction in feed intake for optimal growth with 

promising impacts on costs. Furthermore, nutrient digestibility, rumen fermentation, and 

animal performance can be enhanced with positive effects on environmental impact. 

Future directions related to this research area should continue and focus on the 

effects of fat inclusion under a precision feeding system on dairy heifers after calving and 

specifically during the transition period since dairy cows require high energy diets during 

this period. Also, conducting a study on the mammary of dairy heifers, such as taking 

biopsy samples in order to study the effects of high-fat inclusion under precision feeding 

system on the mammary development. Furthermore, applying high-fat inclusion with 

high forage diets to dairy heifers under precision feeding program since high forage diets 

were showing less detrimental effects in our in-vitro studies. Finally, economic research 
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could be conducted studying the impact of using different fat sources with high inclusion 

under precision feeding programs and compared to the typical dairy heifers feeding 

program in the U.S. on dairy farmers. 
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APPENDICES 

 

Appendix A 

Nutrient input of high concentrate diets with high fat inclusion and different lipid sources 

(CON 3%, PF 9%, SO 9%, CO 9% DM) fed to continuous culture fermenters. 

          
 Fat type, % in the diet 

Nutrient input, g/d CON 3% PF 9% SO 9% CO 9% 

   As fed 53.4 47.7 47.7 47.7 

   DM 48.3 43.2 43.2 42.9 

   OM 46.1 41.1 41.0 41.0 

   N 0.99 0.97 0.98 0.98 

   EE 1.70 3.70 3.76 3.57 

   NDF 10.0 8.57 8.74 8.74 

   ADF 4.76 3.98 4.15 4.15 

   Hemicellulose 5.29 4.59 4.59 4.60 

   Starch 18.9 13.8 13.7 13.6 

   NFC 28.2 22.8 22.3 22.5 

   Ash 2.13 2.09 2.24 1.96 

   ME,1 Mcal/d 0.12 0.12 0.12 0.12 

FA input, mg/d     

   Total 1401 3465 3563 3360 

   C8:0 0.72 2.45 0.95 1.95 

   C10:0 0.14 0.86 0.13 1.45 

   C12:0 0.72 2.18 0.71 1157 

   C14:0 1.57 15.34 2.53 951 

   C16:0 196 811.2 408 191 

   C18:0 0.55 158.8 0.96 33.2 

   C22:0 3.30 10.52 6.84 2.24 

   C24:0 6.92 43.25 34.3 12.3 

   C18:1 359 1046 617 255 

   C18:2 728 1077 1600 637 

   C18:3 61.6 78.36 148 52.6 

Fractional passage rate     

   Liquid fraction, %/h 8.60 7.76 7.76 7.76 

   Solid fraction, %/h 3.84 3.22 3.22 3.22 
1ME (Mcal/d) calculated as ME = (digested OM × 4.409 × 1.01 – 0.45) × 0.82. To represent the increase in energy as 

fat increased in the diets, ME = (digested OM × 4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 (Modified from NRC, 

2001) 
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Appendix B 

Nutrient input of low (LF) and high (HF) forage diets containing 4 different levels of fat 

(3, 5, 7, 9% DM) as gradual increase of dietary poultry fat (PF) in the diets fed to 

continuous culture fermenters. 

                    
 LF  HF 

Nutrient input, g/d 3% 5% 7% 9%   3% 5% 7% 9% 

   As fed 53.4 51.6 49.5 47.7  60.0 57.4 54.9 52.6 

   DM 47.4 45.9 44.2 42.6  54.1 51.9 49.8 47.8 

   OM 44.9 43.7 42.2 40.7  51.3 48.8 46.6 44.7 

   N 0.93 0.93 0.94 0.94  0.87 0.87 0.87 0.89 

   EE 1.54 2.20 3.00 3.56  1.67 2.67 3.40 4.20 

   NDF 9.54 9.50 9.43 9.28  17.9 17.5 17.4 17.1 

   ADF 4.36 4.72 4.70 4.72  9.99 9.72 9.78 9.54 

   Hemicellulose 5.18 4.78 4.73 4.56  8.00 7.85 7.69 7.58 

   Starch 19.0 17.4 15.5 14.0  14.7 12.9 11.1 9.64 

   NFC 28.0 26.1 23.8 22.0  26.4 23.3 20.3 17.8 

   Ash 2.55 2.24 2.05 1.93  2.81 3.08 3.17 3.16 

   ME,1 Mcal/d 0.12 0.12 0.12 0.13  0.11 0.12 0.12 0.13 

FA input, mg/d          

   Total 1224 1870 2680 3257  1351 2342 3056 3863 

   C12:0 1.39 1.64 1.93 1.94  2.37 3.73 4.11 4.47 

   C14:0 2.22 7.70 12.3 14.3  2.94 10.9 18.7 31.0 

   C16:0 186 378 470 525  159 406 691 1022 

   C18:0 28.6 83.2 124 140  26.4 101 151 309 

   C22:0 2.16 5.16 5.80 7.79  2.06 5.88 8.96 12.0 

   C24:0 10.4 12.5 13.7 14.5  5.74 28.9 50.6 72.9 

   C18:1 264 524 598 676  170 499 909 1187 

   C18:2 593 642 632 656  398 644 943 962 

   C18:3 30.9 41.5 41.5 41.8  45.5 73.8 90.1 77.1 

Fractional passage rate          

   Liquid fraction, %/h 8.60 8.34 8.04 7.76  9.75 9.36 8.98 8.64 

   Solid fraction, %/h 3.84 3.63 3.38 3.22   4.68 4.37 4.06 3.70 
1ME (Mcal/d) calculated as ME = (digested OM × 4.409 × 1.01 – 0.45) × 0.82. To represent the increase in energy as 

fat increased in the diets, ME = (digested OM × 4.409 × 1.01 – 0.45) + (0.0046 × (EE - 3) × 0.82 (Modified from NRC, 

2001) 
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