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ABSTRACT 

Ovarian cancer (OC) is characterized by late stage discovery and low 

survivability. However, when diagnosed early (Stages I or II) the 5-year survival rate is 

92% up from 29%.5 The extreme dichotomy in survivability is what makes OC a prime 

candidate for early diagnosis techniques. Exosomes, a subtype of extracellular vesicles, 

may bridge the gap between early and late diagnosis, but are lacking consistent isolation 

and detection technologies. Here poly(ethylene terephthalate) (PET) capillary channeled 

polymer (C-CP) fibers employing an HIC protocol are investigated as a novel exosome 

isolation method and a quick, inexpensive, and easy-to-use platform for OC diagnosis. 

The cell model system, immunoaffinity protocols, and biomarker identification tools 

developed here will aid in the refinement of a selective PET C-CP exosome isolation. 

The exosome isolation and diagnostic technique developed as a result of these 

investigations will allow for earlier and routine diagnosis of OC and save many women 

from one of the deadliest cancers. 
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CHAPTER 1 

LITERATURE REVIEW 
 

Introduction 

Cell signaling is an encompassing term that covers a variety of complex processes 

in which biological systems, collections of cells, and individual cells communicate 

information, directives, and functions. Most methods of cellular communication involve 

transmission of soluble molecules, neurotransmitters, hormones, or ligands followed by 

signal reception, signal transduction, and cellular response. However, more recently, 

exosomes have emerged as an accompanying and complex means of cell signaling.6 

Exosomes are a class of lipid bilayer membrane vesicles, approximately 30-150 nm in 

diameter, that play a variety of roles in autocrine and paracrine signaling. Prior to 

investigation into exosomes’ role in cellular communication, the vesicles were assumed 

to play a role in dissemination and disposal of intracellular waste.1, 7  

 Over the last several years, exosomes have generated immense excitement within 

the biotech and scientific communities. As such, there has been an explosion of research, 

with exponential growth in the number of articles published over the last 10 years. 

Remarkably, exosomes may be involved in a variety of processes including stem cell 

renewal, cancer metastasis, inflammation, coagulation, and chemotaxis.6-12 As more 

information about the complex role of exosomes is discovered, further potential medical 

and research applications are being examined. Exosome applications may include 
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biomarker disease diagnostics, drug delivery, gene therapy, cancer therapy, and tissue 

regeneration.1, 7, 10, 13-15 

Exosomes contain transmembrane, cytosolic, intracellular proteins, and several 

types of RNA that may be used as biomarkers for cancers and various disease states.13, 16-

18 Furthermore, since exosomes are derived directly from cells, there is little immune 

response associated with inserting autologous exosomes back into the same human 

system.19-22 Remarkably, Alvarez et al.23 have been able to manipulate the lipid bilayer 

membrane content of exosomes to include a peptide that specifically targets neurons, 

microglia, and oligodendrocytes in the brain. The versatility and applications of 

exosomes seem endless and will surely impact the field of medicine in the future. Their 

potential for disease diagnostics could alone eliminate the need for biopsies and more 

invasive procedures. Simply put, with exosome biomarkers, a urine, blood, or 

cerebrospinal sample may be used for early detection of diseases.  

Despite the emerging popularity of exosome research, very little is known about 

what happens to an exosome once it reaches and enters a target cell. There is an extensive 

understanding of how an exosome is manufactured and released in the original cell, but 

the mechanisms of transport in the target cell still remain in the dark.24 In the original 

cell, exosomes do not simply bud off from the plasma membrane. In the 1980s, Harding 

et al.25 and Pan et al.26 revealed a slightly more complex mechanism of exosome 

formation and secretion. They showed that exosomes are formed by inward budding of 

intracellular endosomes. The intracellular endosomes containing the exosomes then fuse 

with the plasma membrane, thus releasing the exosomes outside of the cell. There are a 
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number of theorized mechanisms for exosome uptake, transport, and dissemination into 

the target cell, none of which have gained widespread backing. In particular, 

understanding of these mechanisms is crucial for developing the proper drugs for 

exosome loading, determining how to manipulate exosome drug vector targeting 

properly, and increasing the efficacy of loaded drugs. For instance, if the exosomes were 

to follow the endocytic pathway and eventually come in contact with a lysosome, the 

loaded drug could become deactivated or degraded. Greater understanding of the 

biochemical makeup, biogenesis, transport, uptake, and dissemination mechanisms will 

enhance our ability to capitalize on the natural properties of exosomes. 

One of the largest problems preventing exosome technology from advancing into 

the clinical setting is the lack of a quick, efficient, and reliable exosome isolation method. 

Current exosome isolation techniques can be crude, often producing small yields and 

damaging the exosomes. Before any potential applications of exosomes can be realized, 

we need to learn how to better isolate exosomes. Furthermore, current methods of 

studying exosomes can be expensive due to the cost of mammalian cells lines, cell media, 

and equipment. The burgeoning amount of research being conducted on exosomes and 

related vesicles calls for the development of new exosome isolation techniques that may 

result in clinical translation. Our research group has proposed using hydrophobic 

interaction chromatography and Polyethylene terephthalate (PET) Capillary-Channeled 

Polymer (C-CP) fibers in order to achieve a lower cost, faster, and more effective 

exosome isolation and ultimately develop an all-in-one exosome isolation and disease 

diagnostic test for ovarian cancer.  However, the testing of such a diagnostic technique 
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will require expensive and time consuming marker detection. In this study, we detail the 

development of two new cell lines, one cancerous and one normal, which express 

fluorescent tags on exosome and extracellular vesicle-enriched proteins and demonstrate 

the ability to differentiate between these two populations of vesicles using antibody 

capture.  

Our research has resulted in three primary outcomes. First, we have developed 

and tested a poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fiber 

EV isolation method employing a hydrophobic interaction chromatography (HIC) 

protocol. This new method will allow for faster, cheaper, and easier EV isolation for 

diagnostic and therapeutic applications. Second we have developed and tested a model 

system of cell lines, one normal ovarian cell line with green fluorescent protein (GFP)-

tagged CD81 and one ovarian cancer cell line with red fluorescent protein (RFP)-tagged 

CD9. This model system will be used to investigate and refine a selective PET C-CP EV 

isolation method. We have demonstrated that EV populations from these two cell lines 

can be differentiated using antibody capture on nitrocellulose membranes and 

fluorescence microscopy. The ability to differentiate cancerous and non-cancerous 

vesicle populations is an important step in the development of a selective diagnostic test. 

Third, we have shown the importance of sample selection for downstream analysis of 

EVs through comparison of urine and cervical mucus and demonstrated the diagnostic 

potential of miRNA expression patterns to compare ovarian cancer and non-cancerous 

clinical samples. Continued analysis of the miRNA expression data and ongoing 

proteomics will reveal biological pathways and connections that will identify novel 
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biomarkers for OC. These biomarkers can be applied to a PET C-CP EV isolation method 

for further refinement of EV selective capture. The achievements of these investigations 

will ultimately aid in the development of a tool for earlier, routine OC diagnosis that will 

save the lives of many women. 

The following review covers the different topics investigated by this research 

including the current understanding of exosome and extracellular vesicle mechanisms, 

physiological responsibilities, techniques, and medical applications, the potential of 

liquid chromatography to separate and isolate extracellular vesicles, an overview of 

ovarian cancer and exosome involvement in tumorigenesis, and the use of antibody 

capture to identify extracellular vesicles.  

 

Exosome Biogenesis, Sorting, and Release 

 Exosome are a class of extracellular vesicles (EVs), approximately 30-150 nm in 

diameter.8 Typically, the varying categories of extracellular vesicles are classified based 

on size and method of biogenesis. Exosomes are formed by inward budding of 

multivesicular bodies (MVBs, or multivesicular endosomes; MVEs) followed by 

extracellular release by MVB fusion with the cell membrane (see Figure 1.1).2 The 

membrane contents and interior contents are determined by a number of factors unique to 

individual cell types and the function of the exosome being produced. 
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Initially, intraluminal vesicles (ILVs) are formed by inward budding of the 

endosomal membrane into MVBs. After maturing from late stage endosomes, MVBs 

then either fuse with a lysosome to degrade any internal contents or fuse with the cell 

membrane to release any contents into the extracellular environment. ILVs are referred to 

as exosomes only after extracellular release. During the formation process, specific 

proteins and RNAs are sorted into the cytosol and membranes of the ILVs.27 The very 

complex protein sorting process, although still not fully understood, is thought to be 

primarily guided by the endosomal sorting protein complexes required for transport 

(ESCRTs).28 As such, most ILV sorting mechanisms are categorized as ESCRT-

dependent or ESCRT-independent mechanisms. During the sorting process, ILVs are 

typically enriched in specific proteins including tetraspanins CD63, CD81, and CD9, 

Figure 1.1. Diagram of exosome and microvesicle biogenesis. Adapted from 
Raposo et al.2  
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cytosolic protein tumor susceptibility gene 101 (TSG101) and programmed cell death 6-

interacting protein (ALIX).28-33 Although not nearly as well understood as the protein 

sorting mechanisms, RNA sorting mechanisms are now being discovered. RNA sorting is 

often thought to be associated with special 4 nucleotide motifs. Specifically, the 

nucleotide sequence GGAG may be involved in the sorting and management of 

miRNA.32, 33 The proteins and RNAs enriched in exosomes are distinctive from the 

original cell membrane and cytosolic RNAs, suggesting an advanced preferential means 

of determining exosome content exists.34 However, despite the knowledge surrounding 

the mechanisms, proteins, and RNAs involved in ILV formation and sorting, the means 

of determining vesicle content and production are still shrouded in mystery.  

 

 Exosome release into the extracellular environment is mediated by fusion of 

MVBs with the plasma membrane of the cell. However, depending on the cell type and 

physiological state of the cell, the mechanisms by which the MVB fuses with the plasma 

membrane can vary. Much like other endosomal and endocytic vesicles, the mechanisms 

of MVB plasma membrane fusion are facilitated by a variety of membrane-trafficking 

Rab GTPase or SNARE proteins including RAB7, RAB11, RAB27a, RAB31, RAB35, 

YKT6, and VAMP7.1, 11, 28, 35-37 Often, each mechanism of MVB plasma membrane 

fusion is associated with enrichment of certain proteins in the exosomes.  
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Exosome Uptake and Dissemination 

 

There are several known mechanisms that are likely involved in exosome target 

cell uptake including clathrin-mediated endocytosis, caveolin-dependent endocytosis, 

micropinocytosis, phagocytosis, lipid rafts, and cell surface membrane fusion.3, 38, 39 

Mulcahy et al.3 describe the range of possibilities for each of these uptake mechanisms 

Figure 1.2. Possible mechanisms of extracellular vesicle uptake in the recipient 
cell. Adapted from Mulcahy et al.3 
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and suggest that certain mechanisms have greater involvement in extracellular vesicle 

uptake than others depending on the cell type.  

 Exosomes are initially taken into the target cell by either plasma membrane fusion 

or endocytosis. If the exosome fuses directly with the plasma membrane of the target cell, 

then its contents are presumably delivered directly into the cytoplasm, but very little is 

known of the whereabouts of the contents after entry into the cell. If the exosome is taken 

up by endocytosis, the exosome would likely fuse with the endosomal plasma membrane 

and release its contents into the cytoplasm (see Figure 1.2). However, it is unknown 

where along the endocytic pathway the exosomes may fuse with the endosome. As the 

endocytic pathway is designed to digest incoming material, there is the potential that 

incoming exosomes will be destroyed by lysosome fusion as well. As exosomes are, by 

nature, vehicles of transportation, it is important to understand the mode of transport and 

location of delivery. Knowledge of the uptake and dissemination mechanisms of 

exosomes could have large impacts on the development of many medical applications. 

 

Division of Extracellular Vesicles 

Exosomes 

 Exosomes are one of several types of EVs. There is some debate regarding the 

actual divisions of EVs based on size, but by defining the vesicles based on size, 

function, content, and mode of biogenesis, general divisions can be created.40, 41 

However, when the vesicles cannot be identified as a specific division of extracellular 
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vesicle, it is more appropriate to label samples as small EVs (sEVs), large EVs (lEVs), 

or, more generally, EVs, based on the isolation method. Exosomes are generally accepted 

to be approximately 30-150 nm in diameter, with wide ranging functions within cell 

signaling including inflammation mediation, antigen presentation, coagulation, and 

angiogenesis among others.14, 18, 42, 43 Furthermore, exosomes are formed through inward 

budding of the endosomal membrane of MVBs and released into the extracellular 

environment (see Figure 1.1).27  

Microvesicles 

Perhaps most often confused for exosomes, microvesicles are a distinct class of 

EVs with vastly different size, function, content, and biogenesis than exosomes. With a 

size range of 100-1000 nm 24, 34, microvesicles can be easily confused as exosomes when 

solely looking at vesicle diameter, especially if larger microvesicles have been 

eliminated. When defining and characterizing vesicles after EV isolation, it is important 

to distinguish between these two EVs. Furthermore, when microvesicle roles are 

compared to exosome roles, the functions look very similar. Microvesicles are involved 

in a variety of processes including inflammation, coagulation, and stem cell renewal, but 

are capable of carrying much larger cargo like circular DNA and loaded reporter 

molecules.34, 44 The biogenesis of microvesicles involves outward budding and fission 

from the plasma membrane of the cell (see Figure 1.1). Therefore, the membrane and 

internal content composition tends to be very different than exosomes.  

Apoptotic Bodies 
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Lastly, apoptotic bodies, EVs approximately 500-4000 nm in diameter, only 

appear when a cell begins undergoing apoptosis.24 Apoptotic bodies are not usually 

confused with exosomes or microvesicles since their diameter, functions, content, and 

biogenesis are distinct from smaller EVs. The formation of apoptotic bodies is likely a 

means for dividing cell components for easier digestion by phagocytes. 

Characteristically, apoptotic bodies will contain organelles, large cell components, and 

genetic information. Most findings suggest that apoptotic bodies are used for cell 

disposal, but some studies have found that they may be able to pass genetic information 

upon uptake.45, 46 

Physiological Roles of Exosomes 

Exosomes are released by many cells in vivo and in vitro and have been found in 

every biological fluid tested thus far, including urine, blood, saliva, breast milk, cervical 

mucus, amniotic fluid, cerebrospinal fluid, and ascitic fluid.13, 27, 47 With such a large 

presence in biological fluids, it makes sense that exosomes would have a variety of 

important physiological roles. As carriers for cell communication, exosomes may play a 

diverse regulatory role depending on the vesicle contents including, but not limited to, 

immunomodulation and antigen presentation, wound healing and angiogenesis, 

inflammation, drug resistance, disease propagation, regulation of the central nervous 

system, synaptic plasticity, reproduction and embryonic development, and homeostasis.1, 

7, 8, 14, 43, 48 

 Several aspects of exosomes have been extensively studied, but perhaps the most 

well-characterized is their role in immunomodulation and antigen presentation. The 
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adaptive immune response is an incredibly complex system in which exosomes may play 

a regulatory role. In particular, exosomes derived from immune cells have demonstrated 

antitumor effects and have been found to display class I and II major histocompatibility 

complex (MHC) molecules involved in antigen presentation.49 However, tumor cells have 

benefited from the same immunomodulatory properties of exosomes. Tumor cell-derived 

exosomes have been shown to promote tumor development through a variety of 

mechanisms.43, 50 These contradictory functions further demonstrate the versatility of 

exosome communication and function under both normal and pathological physiological 

conditions. 

Immunomodulation and Antigen Presentation 

 Exosomes that contain MHC class I and II molecules play an important antigen 

presentation role in the adaptive immune system.51 Dendritic cells and macrophages, two 

types of antigen presenting cells, release exosomes with these MHC-peptide complexes, 

which can have both stimulatory and suppressive effects on the immune system.52-54 

Exosomes released by these cells can form an antigen-MHC complex which can be used 

to directly present the antigen to T-cells, thereby leading to T-cell activation. 

Additionally, exosomes containing this antigen-MHC complex can present the antigen to 

other antigen presenting cells resulting in processing of the antigen and cross-

presentation to T-cells.43, 54, 55  Pregnancy immune regulation presents a unique 

immunomodulatory situation in which the fetus must be protected from the allogenic 

immune response of the mother. The immunomodulatory effects of exosomes released by 
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the placenta may play a role in this regulation.11, 56 In fact, exosome concentration in the 

amniotic fluid increases over each pregnancy trimester.56 

Wound Healing and Angiogenesis 

 Wound healing is a remarkable process that is regulated and controlled by a 

complex network and cascade of growth factors, cytokines, and proteins. Through 

homeostasis, inflammation, proliferation, and remodeling, damaged tissue is repaired and 

reconstructed to restore tissue function.57-59 Exosomes may play a significant role in 

regulating the intricate interactions of chronic and acute would healing developments. By 

carrying gene influencing material, exosomes can initiate wound healing pathways 

(PI3K/Akt, ERK, STAT3)57, 60, promote expression of growth factors (hepatocyte growth 

factor, insulin-like growth factor-1, nerve growth factor, stromal-derived growth factor-

1), heat shock proteins, and other signaling molecules.57, 61, 62 Specifically, mesenchymal 

stem cells (MSCs) and adipose tissue-derived stem cells (ADSCs) play an important role 

in modifying and controlling wound healing. Likewise, exosomes derived from MSCs 

and ADSCs play a significant role in communicating to fibroblasts, promoting cell 

migration and proliferation, and promoting angiogenesis.60, 61 Exosomes may allow for 

further paracrine signaling to aid in faster wound healing and angiogenesis. Furthermore, 

several cell types have been revealed to release pro-angiogenic exosomes, including 

endothelial cells, tumor-derived cells, hematopoietic stem cells, mesenchymal stem cells, 

and cardiomyocyte- and myocardial progenitor cells.14, 63-67 
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Inflammation 

Inflammation is a normal physiological process that is used to defend against 

generic foreign material and infection and to remove damaged tissue. It is characterized 

by a large increase in inflammatory cell migration to the injury site.68 Although the 

inflammatory process is closely tied to the adaptive and innate immune response, the 

control mechanisms and processes are quite different. Depending on the type of injury or 

reaction, inflammation is typically mediated by neutrophils, basophils, eosinophils, 

macrophages, lymphocytes, and monocytes.69, 70 Exosomes, as mediators of 

communication, are particularly involved in controlling the inflammatory response 

through the use of miRNA and protein genetic modulatory molecules.18 Specifically, 

exosomes released by lipopolysaccharide-injected macrophages have demonstrated 

inflammatory modulating abilities, including NF-kappaB activation.53 Furthermore, 

dendritic cell-derived exosomes have been shown to suppress inflammation in murine 

collagen-induced arthritis.71, 72 However, other dendritic cell-derived exosomes have 

shown the ability to induce inflammation in the spleen.73 Such vast and varying 

responsibilities within inflammation alone suggest that exosome-mediated responses 

depend heavily on the exosome content and the type and physiological state of the target 

cell. As such, exosome makeup and content are determined by the original cell type and 

its current physiological state.  
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Drug Resistance 

Drug resistance is a major combatant of many newly developed cancer drug 

therapies and chemotherapies. Cancer cells, either by acquired or de novo mutations, can 

obtain means to defend against drugs and promote cancer growth. Mutations in the 

genome and epigenome ultimately result in a series of changes that may confer drug 

resistance by drug metabolism, inactivation, efflux, or DNA damage repair.74, 75 Much 

like other pathogens or microbes, cancer cells mutate quickly and thus may develop these 

genetic and epigenetic changes quickly. As exosomes are mediators of genetic 

expression, it makes sense that they may be involved in the complex network of changes 

required to develop drug resistance. Specifically, exosomes may play a role in multiple 

myeloma development of bortezomib resistance.74, 76 Exosomes may be able to aid in the 

expulsion of drugs, counteract immunotherapy drugs, and aid in the spread of 

resistance.77 Drug resistance is a developing problem for current and future cancer 

therapies and requires further investigation. Although exosomes may only play a small 

role in development of drug resistance, understanding the mechanisms behind exosome 

dissemination, transport, and loading may prove useful in the effort to develop effective 

cancer therapies and combat against drug resistance. 
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Exosome Medical Applications 

 More and more frequently, studies are revealing the ever expansive roles that 

exosomes may play in cell communication. Since cell communication is a universal 

necessity for development of complex multicellular life, there is much speculation that 

exosomes are involved in many more processes than currently known. Consequently, 

exosomes have been given a great deal of contemplation with regards to potential 

medical applications and functional biological understanding. As of now, many exosome 

applications are being investigated including disease diagnostics, drug delivery, immune 

system modulation, and other therapeutics. The theranostic potential for exosomes is 

seemingly boundless, with patient-specific and personalized medicine at the core of these 

applications. 

Disease Diagnostics 

 Exosomes appear to be packaged in a very uniform and controlled manner so as to 

preserve the accuracy and precision of the message to be delivered. However, the 

exosome contents can actually vary greatly depending on the cell of origin and the 

physiological state of the cell of origin. Fortunately, the consistency among identical cell 

types and the variation of exosome components between distinct cell types may allow for 

tracing of the cellular origins of exosomes. In other words, the lipid, protein, and RNA 

signature of an exosome may provide enough clues to determine what type of cell 

released the exosome. This unique feature of exosomes may allow for downstream 

identification of abnormal cell types using only a body fluid sample. Specifically, several 

types of cancer exosome markers, including ovarian, breast, prostate, pancreatic, 
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glioblastoma, and colorectal, have been identified and may potentially be used for early 

cancer diagnosis.78 Furthermore, exosome markers have been found for other 

pathologies, including acute kidney injury, renal ischemia reperfusion, alcoholic liver 

disease, and nephrotic syndrome.79 Cancer exosome marker identification is occurring at 

a rapid pace and markers are quickly being translated into multiplexed marker diagnosis 

protocols. For example, Zhao et al.80 have developed a microfluidics device that captures 

and identifies ovarian cancer exosomes using the multiplexed ovarian cancer exosome 

markers, epithelium cell adhesion molecule (EpCAM) and cancer antigen 125 (CA-125). 

Although most other types of cancers are awaiting exosome marker identification and 

cataloging, circulating exosomes have been identified in lung, ovary, and gastric cancer 

patients, which bodes well for potential marker identification.37 New biochemical 

exosome RNA, protein, and lipid information is being discovered and amassed, on such 

online databases as ExoCarta, EVpedia, Vesiclepedia, and exoRBase, so as to aid in the 

creation of diagnostic profiles and the advancement of exosome knowledge. Furthermore, 

several groups are working on developing devices that will simultaneously isolate 

exosomes and provide a diagnosis.80 For these reasons, exosome biomarker disease 

diagnosis is perhaps the most promising and likely first attainable application of 

exosomes.  

Drug Delivery 

 When developing any pharmaceutical drug, it is important to keep in mind the 

pathway that the designed drug will follow. The four processes of pharmacokinetics 

(absorption, distribution, metabolism, and elimination) are critical to understand when 
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developing any drug. Particularly, the drug must be able to reach the intended target in 

the correct formation and concentration and must be capable of being eliminated or 

excreted after achieving its intended function. One strategy to combat potential drug 

degradation is to develop a drug delivery system (DDS) to deliver the drug to a location 

where it can function appropriately. Many DDSs have been developed and implemented 

in modern pharmaceuticals, including polymeric dendrimers and micelles, stimuli-

responsive carriers, nanoparticles, and biological materials.81 Exosomes are being 

investigated as a potential DDS due to their size, histocompatibility, natural targeting 

ability, and ability to cross unique barriers, such as the placenta or blood brain barrier.82-

84 Although exosomes contain major histocompatibility complex (MHC) molecules, there 

is very little immune reaction to the vesicles.54, 85, 86 However, to date, any exosome 

clinical trials have been performed using autologous exosomes to avoid greater immune 

reaction.87 Additionally, exosomes are very similar in basic composition to liposomes, 

which have been used in various DDS applications. Liposomes and exosomes are made 

up of a lipid bilayer enclosing internal media, however, exosomes are much smaller and 

have a much more complex makeup of proteins, lipids, and RNAs.88 Several investigators 

have explored different possibilities for loading drugs into exosomes, including 

exogenous and endogenous techniques with varying success.33, 83, 89-91 Another important 

factor in drug delivery, besides protecting the drug, is targeting the drug to a particular 

location to increase drug bioavailability to a subset of cells. Natural exosomes, depending 

on the source, may already target specific cell types, but may also be engineered to target 

a number of desired cell types. For instance, Alvarez et al.23 have loaded exosomes with 
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siRNA and inserted a rabies-virus glycoprotein (RVG) peptide into the surface membrane 

of the exosomes that successfully targeted the exosomes to the central nervous system in 

mice. In order to further engineer and manipulate exosomes for drug delivery purposes 

and other applications, several groups are now working on developing synthetic and 

semi-synthetic exosomes.91, 92 Given the unique exosome features, exosome drug delivery 

is a real possibility that may provide a useful DDS for treatment or therapies for 

cardiovascular diseases, neurodegenerative diseases, cancers, and countless ailments.  

Immunotherapy 

 As discussed previously, exosomes are heavily involved in immune system 

modulation, antigen presentation, and T-cell activation. Their involvement within the 

immune system offers extensive opportunities and advantages for immunotherapy 

applications. Engineering and manipulation of exosome contents and membranes may 

allow for consistent activation or suppression of the immune system.93 In particular, 

exosome cancer immunotherapy is being investigated as an alternative therapy for cancer 

treatment. By artificially activating or suppressing the immune system, immune cells may 

be specifically activated to target and destroy cancer cells. Similar to drug delivery 

applications, liposomes, artificial lipid-membrane nanocarriers, have already been used in 

cancer immunotherapy applications.88, 91 However, as immunotherapy nanocarriers, 

exosomes may provide many advantages over liposomes including natural 

histocompatibility, biocompatibility, targeting, and ability to cross biological barriers.23, 

55, 94, 95 Among the most promising exosome-based immunotherapy applications is their 

use in the generation of vaccines against diseased cells through immunization and antigen 
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presentation and immune system stimulation.19, 86, 96 However, the natural exosome 

immune system suppressive properties may be particularly useful for avoiding transplant 

rejection and treating autoimmune disorders such as rheumatoid arthritis, inflammatory 

bowel disease, and multiple sclerosis.93, 97, 98 Exosome immunotherapy is an exciting 

prospect, offering a strong alternative to artificial drug delivery for disease treatment. 

Although in the early stages of research, exosome immunotherapy treatments may be 

able to take advantage of the body’s natural defense system to combat internal disease.  

Regenerative Medicine and Other Therapeutics 

 Given the extensive number of biological processes that may involve exosome 

communication, therapeutics may be developed through manipulation of exosome 

presence and content. In recent years, regenerative medicine has focused on development 

of stem cell therapies to help regenerate or reform tissue. Stem cells are capable of 

reproducing indefinitely and differentiating into other cell types, which makes them ideal 

candidates for aiding in regeneration of tissues. Furthermore, in recent years, stem cell 

research has overcome many controversial hurdles through development of induced 

pluripotent stem cells (IPSCs) and use of adult stem cells like mesenchymal stem cells 

(MSCs) and adipose tissue-derived stem cells (ADSCs). However, cell-based therapies 

are often expensive and run into biocompatibility, histocompatibility, teratoma, and 

ectopic tissue formation issues when introducing allogeneic or autologous cells as 

therapeutic agents.97, 99 Exosomes derived from stem cells may offer an alternative 

therapy to direct stem cell therapy, but without many of the concerns associated with 

stem cell therapy. As much of the cellular changes that occur during tissue regeneration 
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and reformation are enacted by stem cell-derived exosomes, standalone stem cell-derived 

exosomes may be used to induce tissue regeneration instead.99 Thus far, exosome driven 

tissue regeneration has been investigated in many tissues including, neural, myocardial, 

hepatic, renal, cutaneous, skeletal, chondral, and muscular.99 However, despite the recent 

advances in exosome understanding, particularly within tissue regeneration, it is still 

uncertain whether exosomes will ultimately evolve into a reliable therapy for 

regenerative medicine.  

 Several maladies, including cancers and neurodegenerative diseases, have been 

found to be associated with an increased release of exosomes or exosome involvement in 

disease progression.100-105 Therefore, several groups have theorized that inhibition of 

exosome formation, release, or uptake or removal of particular exosomes or miRNAs 

found in exosomes may help prevent or slow disease progression.1 Specifically, 

exosomes have been found to aid in environmental preparation for cancer metastasis and 

acquisition of cancer cell chemoresistance.77, 103 Filtration or elimination of cancer 

exosomes may potentially slow progression of epithelial-mesenchymal transition (EMT) 

in tumor cells and aid in chemotherapy of tumors.100, 102, 106, 107 Furthermore, exosomes 

have been implicated in the prion-like propagation of neurodegenerative diseases 

including Alzheimer’s disease, Parkinson’s disease, multiple system atrophy (MSA), 

amyotrophic lateral sclerosis (ALS), Huntington’s disease, and multiple sclerosis (MS) 

through transfer of toxic proteins or miRNA.108 Similarly, filtration or elimination of 

exosomes involved in the spread of neurodegenerative diseases may slow the progression 

of their pathology. To this end, further understanding of pathology and the role of 
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exosomes in cancer metastasis, cancer cell acquisition of chemoresistance, and 

propagation of neurodegenerative diseases may ultimately aid in the development of 

treatments for these maladies. 

Exosome Characterization and Biochemical Profile 

As exosomes are approximately 30-150 nm, it is often difficult to characterize 

their defining properties. Furthermore, being derived from cellular components, 

exosomes can be difficult to differentiate from other cellular debris and nanoparticles. 

Therefore, the International Society for Extracellular Vesicles (ISEV) has defined several 

basic requirements for defining and differentiating types of EVs.40, 41 The requirements 

for EV definition primarily focus on two categories of characterization: Physical and 

Chemical. 

Physical Characterization 

 Physical characterization is used to evaluate individual vesicles based on size, 

diameter, concentration, and morphology. ISEV recommends that at least two single-

vesicle technologies be used to characterize EVs. Nanoparticle tracking analysis (NTA) 

and dynamic light scattering (DLS) can be used to obtain vesicle size distributions and 

vesicle concentrations. However, both NTA and DLS can be unreliable as no distinction 

is made between vesicles and other particulate nanoparticles present in the sample. 

Likewise, the limit of resolution of NTA and DLS (approximately 30 nm)109 may hinder 

the ability to identify smaller vesicles and may lead to misidentification of other non-

vesicle particles. Thus, sample purity can affect the dependability of both NTA and DLS. 
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Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) can 

be used to characterize size, diameter, and morphology of vesicles in solution or on a 

surface. Both TEM and SEM have been used extensively to study biologics, materials, 

and processes at a nanoscale level. However, the sample preparation process can be very 

harsh and damaging, particularly toward biological samples and EVs. Despite these 

challenges the morphology and structure of EVs viewed under TEM and SEM are 

credible when consistently prepared, but the sample preparation methods employed 

should be taken into account when making conclusions. Finally, several other techniques, 

including atomic force microscopy (AFM) and super-resolution microscopy techniques, 

such as stimulated emission depletion (STED) or photoactivated localization microscopy 

(PALM), have been used to generate EV size distributions and morphology 

characterizations.110-112 Although no single-vesicle technique can perfectly qualitatively 

or quantitatively characterize EVs, when used in tandem, they can provide useful and 

reliable information to study EVs. 

Chemical Characterization and Profile 

 Chemical characterization of EVs involves identification of protein, RNA, and 

lipid markers that are typically enriched in EVs. ISEV has laid out particular guidelines 

for identification of EVs using typical EV-enriched proteins.40, 41 Membrane associated, 

cytosolic, intracellular, and extracellular proteins have all been used to identify and 

differentiate subtypes of EVs. Accordingly, ISEV recommends using at least 3 protein 

markers to identify and characterize EVs. Proteins typically used to identify and 

differentiate EVs include CD9, CD81, CD63, ALIX, TSG101, Grp94, Calnexin, and 
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many disease specific markers (See Table 1.1).16, 18, 113-116 Protein analysis can be 

completed using Western blot analysis, enzyme-linked immunosorbent assay (ELISA), 

flow cytometry (FACS), or mass spectrometry. As with any method of chemical 

profiling, positive and negative controls of cell lysate and culture medium should be 

compared to the EV samples. Extensive sequencing and compilation of data has 

identified different types of RNAs within EVs, including miRNA, mRNA, tRNA, rRNA, 

piRNA, snRNA, snoRNA, and scaRNA.13 However, miRNA is perhaps the most 

commonly used RNA for EV identification and study due to its function in gene 

regulation.32 There is likely no single exosome marker that will provide an outright 

positive or negative diagnosis for any disease. Therefore, many groups have focused on 

developing a multiplexed diagnostic approach using miRNA or protein identification (see 

Tables 1.1). Specifically, for ovarian cancer, Yokoi et al.117 developed an early stage 

diagnosis technique using expression levels of 8 different miRNAs with an area under the 

curve of 0.97. Furthermore, Zhao et al.80 have used 3 exosome ovarian cancer markers, 

EpCAM, CA-125, and CD24, in conjunction to capture and identify ovarian cancer-

specific exosomes. Lipids, which have been less frequently used to identify and 

differentiate EVs, offer an alternative method to EV biomarker detection. In particular, 

exosomes have been found to be enriched in particular lipids as compared to the parent 

cell.118 For example, Skotland et al.118, 119 have identified 9 different lipids that were 

differentially expressed in exosome membranes of prostate cancer patients. Chemical 

characterization of EVs may reveal important data about the composition and origins of 
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vesicles. Ultimately, a combination of exosome miRNA, protein, and lipid composition 

may provide a characterizing profile to identify many maladies. 

 
 

  

Exosome Isolation Techniques 

In order to take advantage of any of the potential benefits of exosomes, they must 

first be isolated from cell growth media or bodily fluids. Given that exosomes are 

approximately 30 to 150 nanometers in size, this is no easy task. Current techniques for 

isolating exosomes often involve a number of sequential centrifugation steps to eliminate 

larger materials from the media. Many isolation strategies follow the protocol laid out by 

Thery et al. that involves sequentially increasing ultracentrifugation of the media 

containing the exosomes.134 Others elect to use filters to eliminate larger materials and 

Associated 
Disease 

Potential Exosome miRNA 
Markers 

Potential Exosome 
Protein Markers 

Ovarian Cancer miR-16, -21, -26a-5p, -93, -100, -
126, -130b-3p -141, -142-3p, -
200a-3p, -200b, -200c, -203, -
205, -214, -223 -320, -328-3p, -
374a-5p, -766-3p117, 120, 121 

EpCAM, CA-125, CD24, 
L1CAM, ADAM10, 
EMMPRIN, TGFβ1, 
MAGE3/6, Claudin-412, 

80, 101, 122 

Lung Cancer miR-17, -3p, -21, -20b, -223, -
301, -486, -181-5p, -30a-5p, -30e-
3p, -361-5p, -10b-5p, -15b-5p, -
320b, let-7d-5p, let-7f123-125 

CD91, CD317, EGFR, 
LRG1, NY-ESO-130, 126-

128 

Breast Cancer miR-338-3p, -340-5p, and -124-
3p, -29b-3p, -20b-5p, -17-5p, -
130a-3p, -18a-5p, -195-5p, -486-
5p, -93-5p, -1246, -373129-131 

PKG1, RALGAPA2, 
NFX1, TJP2, Glypican-1, 
Her29, 132, 133 

Table 1.1. Potential exosome miRNA and protein markers for different types of 
ovarian, lung, and breast cancer. 
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then pellet the exosomes using ultracentrifugation. Both of these current techniques for 

exosome isolation and other variations require the use of ultracentrifugation, which may 

not always be available in medical settings. There are a number of exosome isolation kits 

available commercially that have produced varying results. Importantly, the type of 

exosome isolation can impact protein and RNA downstream analysis. As it stands now, 

given the difficulty and varying effectiveness of these isolation techniques, it seems 

unlikely that any of them will perform effectively, efficiently, and consistently in a 

clinical setting. For these reasons, there is a need to refine or develop new techniques of 

exosome isolation that may be more suitable for medical environments.  

 

Differential Centrifugation 

 Differential Centrifugation exosome isolation takes advantage of the ability of a 

centrifuge to separate out materials in solution based on the density and size of the 

material. Higher weight objects will move faster through the solvent and will thus 

sediment quicker from solution at lower centrifugation speeds. Lower weight objects will 

begin to sediment faster from solution at much higher centrifugation speeds.135 Therefore, 

the heavier objects in the cell growth media (e.g. cells, apoptotic bodies, and debris) will 

sediment from solution and be removed in a primary centrifugation. A faster secondary 

centrifugation will pull down lighter objects, including larger EVs and microvesicles, to 

be removed, and finally a third and fastest centrifugation will sediment the desired 

exosomes.136 Typical ultracentrifugation exosome isolations often require a final 

centrifugation speed greater than 100,000Xg. The ultracentrifugation process requires 
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upwards of 3 hours to complete depending on the number of centrifugation steps included 

and experience level of the personnel performing the isolation. Furthermore, the 

centrifuges and ultracentrifuges required for this method can very expensive (low speed 

centrifuges – several thousand dollars; high speed centrifuges - $15,000-$100,000) and 

may not be suitable for smaller labs and organizations. This exosome isolation method is 

crude, results in highly variant samples, and can potentially damage the exosomes due to 

the high speeds of centrifugation and the resuspension of the vesicles.136 By nature of 

centrifugation, the final isolated exosome sample will contain anything from the original 

cell growth media of similar or lighter weight than an exosome (for example, lipoproteins 

and proteins)137 and may contain aggregate vesicles and proteins. Furthermore, any larger 

particles that were not eliminated from the solvent may sediment along with the 

exosomes. Differential centrifugation is relatively easy to perform with the proper 

equipment and training, but often results in low purity samples with fairly low efficiency. 

However, due to the relative ease with which this method can be performed, it is one of 

the most common exosome isolation techniques used today. 

Density Gradient Centrifugation 

 Density gradient centrifugation is very similar to differential centrifugation but 

includes an extra medium that increases the viscosity of the solution. There are two types 

of gradients, isopycnic and rate zonal, that have been used to isolate exosomes.137 During 

isopycnic gradient centrifugation, samples are dispersed within the gradient medium and 

separate components based on density, whereas during zonal gradient centrifugation 

samples are layered as a narrow band at the top of the gradient medium and separate 
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components based on size (Figure 1.3).135 Exosome density gradient centrifugation 

typically uses a sucrose or iodixanol solution that is compatible with the lipid bilayer of 

the exosomes and vesicles. By increasing the viscosity of the solution, objects of very 

similar density can be differentiated and separated more easily. Therefore, this method of 

exosome isolation can result in purer exosome samples with less debris. However, even 

though the final sample can be purer than differential centrifugation, the range of 

centrifugation speeds and range of centrifuge times must be more accurate to be in the 

proper density range for exosomes. Monitoring the centrifugation times and speeds 

makes this method more difficult than differential centrifugation alone due to the 

increased density sensitivity of the solution. Variations of density gradient centrifugation 

have been used to develop exosomes samples for use in clinical trials.21, 22, 138 

 

Figure 1.3. Diagram of Isopycnic and Rate zonal density centrifugation. 
Adapted from Sigma-Aldrich (St, Louis, MO). 
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Size Exclusion Chromatography 

Size exclusion chromatography (SEC) is used to separate molecules within a 

solution based on the size of the molecule rather than the density or weight of the 

molecule. The solution flows through a size exclusion column containing small stationary 

phase beads with nanometer–sized pores. Smaller molecules in the solution will enter and 

adsorb in the pores, thus slowing their rate of flow through the column and delaying the 

time of elution. Larger molecules will flow through the column without entering the 

adsorbent material pores and elute quicker. The same principle can be applied to isolate 

exosomes from other components of the solution. Böing et al.139 use sepharose CL-2B 

beads with 75 nm pores to separate out exosomes from solution. Furthermore, several 

groups have used SEC in conjunction with other exosome purification or enrichment 

techniques, such as ultrafiltration or ultracentrifugation, to achieve higher purity 

samples.140-142 Size exclusion chromatography can very accurately separate exosomes 

from solution based on size, but the final exosome eluate may also contain other 

materials of similar size. Additionally, size exclusion chromatography limits any shear 

force damage to the exosomes and prevents protein and vesicle aggregation. Despite its 

efficiency and accuracy, size exclusion chromatography may be severely limited by the 

amount of eluate obtained and the time it takes to flow through the column.140, 143, 144 

However, recent improvements in this technique have led to faster and cheaper separation 

of molecules. Böing et al.139 demonstrate that this technique can be used to isolate a 

sample of exosomes in as little as 20 minutes.  

Ultrafiltration 
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Much like SEC, ultrafiltration isolates exosomes based on size or molecular 

weight using pore sizes ranging from 0.8 to 0.1µm.145 Ultrafiltration is much faster and 

cheaper than ultracentrifugation, and does not require large, specialized machinery.146 

Similar to SEC, ultrafiltration has been used in tandem with ultracentrifugation or SEC to 

isolate exosomes.147, 148 Fluorescent imaging has revealed that ultrafiltration results in a 

higher RNA yield compared to ultracentrifugation.149 Unfortunately, by the nature of 

filtration, any molecules that are smaller than the pore size will pass through into the final 

sample, resulting in particle contamination.145 In order to alleviate protein contamination 

and remove molecules smaller than exosomes, a sequential ultrafiltration has been used 

to purify the exosomes further. Sequential ultrafiltration of exosomes consists of an initial 

“dead-end” filtration to remove cells and debris. A secondary tangential flow filtration is 

used to remove proteins and molecules with a 500kDa filter. Finally, a filter with a pore 

size of 100 nm is used to isolate the exosomes.137 Ultrafiltration has been used to isolate 

exosomes from a variety of cell types and biological fluids, and has been used to isolate 

exosomes from as little as 0.5 mL of urine.137, 145, 147, 150 

Polymer-based Precipitation 

Exosomes can be precipitated out of solution by manipulating the content of the 

solvent. In phosphate buffered saline, exosomes will remain in solution, but altering the 

solvent can change the solubility of the exosomes. By adding a polymer, such as 

polyethylene glycol (PEG), exosomes will precipitate out of solution at low speed 

centrifugation.146 This method requires either pre-centrifugation or pre-filtration to 

remove cells and larger debris from solution. Polymer-based precipitation can be 
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performed easily, inexpensively, effectively, and can be completed on a large scale. 

However, the precipitate may contain polymers and other undesired molecules of similar 

solubility.137, 151, 152 Further steps must be taken to fully purify the exosome sample 

including pre-isolation of lipoproteins and post-isolation of polymeric materials.137 

Several commercially available polymer-based precipitation EV isolation kits that 

operate with minimal sample exist, including Total Exosome Isolation (Invitrogen, 

Carlsbad, CA)), ExoQuick exosome precipitation solution (System Biosciences, Palo 

Alto, CA).151 The availability and ease of use of polymer-based precipitation kits makes 

them promising and convenient techniques for research and clinical purposes. 

Immunological Separation 

Immunoaffinity capture of exosomes is a promising exosome isolation technique 

with high specificity.153 Since exosome lipid membranes are composed of proteins, 

receptors, and transmembrane proteins, antibodies can be developed to specifically target, 

capture, and isolate exosomes. Immunological separation requires understanding the 

membrane content of exosomes from all sources and requires discovering a protein or 

receptor that is common to all exosomes. However, a protein or receptor common to all 

exosomes must not be common to other biological components of the cellular media. Due 

to the high specificity of antibodies in immunological separation, exosomes can be 

isolated at similar efficiency to ultracentrifugation, but with much smaller samples.113, 137, 

154 Several variations of immunoaffinity capture, including modified ELISA exosome 

isolation and magneto-immunocapture, have had success isolating exosomes with high 

efficiency.29, 155-157 Despite the efficiency, effectiveness, quality, and speed of 
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immunological separation of exosomes, there is still an incomplete understanding of 

exosome membrane content. It is difficult to differentiate proteins specific to exosomes 

when much of the content of the exosomal membrane is derived from the cellular 

membrane. Currently, a common protein targeted is CD63, a tetraspanin membrane 

protein common to many human exosomes. However, CD63, and other similar 

tetraspanin proteins can also be found in apoptotic bodies and other extracellular 

vesicles.30, 158, 159 Immunoaffinity-based separations using specific antibodies are 

excellent techniques for isolating exosomes, especially for high quantity and quality RNA 

extraction from exosomes. Even with a poor understanding of exosome membrane 

composition, immunoseparation may produce high yields and generate subpopulations of 

isolated exosomes and extracellular vesicles.137  

Microfluidics Isolation techniques 

 Newer strategies involving microfluidics devices have begun to permeate the 

realm of exosome isolation, as advancing fabrication processes have allowed for easier 

manufacturing of microfluidics devices. Many of these new techniques use a device that 

operate on one or more of the principle isolation strategies discussed above. For instance, 

Lee et al.160 have developed an acoustic nanofilter that uses ultrasound to isolate 

microvesicles based on size and density, while Wang161 et al. have developed ciliated 

micropillars for selectively capturing lipid vesicles of 40-100nm in size. According to 

Yang et al.162, microfluidic device exosome isolation techniques have the potential to be 

faster and more effective than the current standard exosome isolation techniques. 
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However, each individual microfluidics technique has drawbacks and many of the 

devices are still early in development.  

 Although there are many strategies for isolating exosomes, there is no clear 

method that stands above the rest. Each technique has its own benefits and downfalls 

whether it be isolation efficiency, exosome purity, exosome integrity, RNA extraction, 

cost, scalability or ease of use (see separation strategies summary in Table 1.2). With the 

realization of the possibilities of exosome technology, there is clearly a need for a 

solution to exosome isolation. 
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Table 1.2. A brief summary of extracellular vesicle separation strategies 
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Exosome Loading Techniques 

There are a number of different ways to load exosomes with drugs or other 

markers including electroporation, sonication, saponin incubation, extrusion, transfection, 

and drug incubation.83, 89, 91, 94 In general, these and other exosome loading techniques can 

be categorized as exogenous loading or endogenous loading. Exogenous loading 

techniques are methods of loading exosomes after the exosomes have been isolated. 

Conversely, endogenous loading techniques are methods of loading exosomes before the 

exosomes have been released from the cell. 

Exogenous loading 

Separated exosomes can be prone to further damage after isolation that may limit 

their viability and capability to perform functions. In order to load material into the 

exosomes, exogenous techniques often employ potentially destructive and damaging 

stimuli to open temporary holes in the exosomal membranes. These techniques, including 

electroporation, saponin permeabilization, sonication, extrusion, transfection, and drug 

incubation, while effective, destroy many vesicles in the process.23, 83, 89 Electroporation 

is a method of shocking the plasma membrane with a relatively low voltage. The electric 

shock temporarily makes the plasma membrane of the exosome more permeable and 

allows for contents in the surrounding solution to enter the exosome. Alvarez et al.23 have 

employed this technique to load siRNA into exosomes for drug delivery and treatment of 

Alzheimer’s disease. Typical applications of electroporation involve transfecting genetic 

material into cells of various types. Sonication, another potential exosome loading 
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technique, also disrupts the stability of the plasma membrane, thus making the plasma 

membrane more permeable to loading. According to Haney et al.83, saponin is a 

surfactant that is thought to remove plasma membrane cholesterol, temporarily creating 

holes in the plasma membrane allowing surrounding solution content to load into the 

exosome. Much like sonication, extrusion and freeze/thaw methods disrupt the integrity 

of the lipid bilayer and increase the permeability of the plasma membrane. All of these 

methods have been shown to enable loading of exosomes, but with varying effectiveness 

and stability. There are many advantages and disadvantages to these approaches, but 

Haney et al. and Alvarez et al. have shown that exosomes loaded with these methods are 

still effective for drug delivery.23, 83 

Endogenous loading 

Endogenous loading techniques are significantly less destructive to exosomes, but 

can be significantly more difficult to accomplish. Loading of an exosome in this manner 

could mean either modifying the membrane content of the vesicle or having the exosome-

producing cell automatically load the vesicles with the appropriate proteins or nucleic 

acids for drug delivery. In exosomes, modifying membrane protein content is primarily 

accomplished using genetically engineered plasmid vectors. The plasmids are encoded 

with particular targeting proteins or peptides that will then be expressed in the cell and 

inserted into the plasma membrane. Specifically, Alvarez et al.23, 163 inserted a modified 

targeting peptide plasmid for Lamp2b, a known exosome membrane protein. They 

verified the successful expression of the modified Lamp2b peptide using an exosome 

protein pulldown assay. The modified Lamp2b exosomes primarily targeted neurons, 
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microglia, and oligodendrocytes, as planned. Furthermore, the Lamp2b exosomes 

successfully targeted and knocked down BACE1 expression in neurons, microglia and 

oligodendrocytes by 60% and 62% using mRNA and protein respectively. BACE1 is a 

gene involved in Alzheimer’s pathogenesis that could be knocked out for potential 

therapy. Similarly, Monfared et al.164 have engineered exosomes to express membrane 

miR-21 sponges in order to induce apoptosis in tumor cells. The ability to modify 

exosome plasma membrane content is a vital step in targeted drug delivery and evidence 

has thus far shown that specific targeting with exosomes is possible and effective. One 

strategy for loading proteins or nucleic acids into the cytosol of exosomes is to engineer 

the exosome-releasing cells to overexpress the molecule to be loaded.165 Alternatively, 

Yim et al.165 have developed a more advanced method of selective drug loading during 

biogenesis using exosomes for protein loading via optically reversible protein-protein 

interaction (EXPLORs). EXPLORs uses engineered cell lines that express selective 

membrane docking proteins that are photo-activated using blue light. This technique has 

demonstrated very high loading efficiency in comparison to other loading techniques. 

Endogenous engineering of vesicle membrane proteins and protein cargo may be used to 

create a drug delivery system requiring only exosome isolation and administering to 

patients.  

Liquid Chromatography 

 Although most liquid chromatography (LC) techniques have been used to separate 

proteins and other macromolecules, there is potential for LC isolation of more complex 

bio-molecules, including extracellular vesicles and exosomes. LC is a chemical technique 
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that allows for separation of molecules from solution. Modern LC, referred to as high 

performance liquid chromatography (HPLC), can be used to separate, detect, and 

quantify molecules and can isolate molecules based on hydrophobicity, charge, or size.166  

Choice of solid and liquid phase components can determine which molecules can be 

separated from solution and often vary depending on the specific application. HPLC has 

been used to separate a variety of types of molecules including amino acids, 

carbohydrates, lipids, nucleic acids, proteins, steroids, and biological substances.144 

Depending on the physical properties being used, HPLC can be generally subdivided into 

several categories including normal-phase, reversed-phase, ion-exchange, and size-

exclusion. Normal-phase describes liquid chromatography that uses a polar stationary 

phase and hydrophobic mobile phase, whereas reversed-phase describes liquid 

chromatography that uses a hydrophobic stationary phase and polar mobile phase.166 

Furthermore, ion-exchange separates molecules based on charge properties and size-

exclusion typically uses columns packed with microbeads that slow down the flow of 

molecules based on size.139, 144, 167 Although HPLC has typically been used to isolate 

small or individual molecules, larger more complex biological components have been 

separated as well. For example, Kasanović et al.167 have used ion-exchange 

chromatography to separate EVs from amniotic fluid and An et al.142 have used size-

exclusion chromatography to separate exosomes from human serum. To this end, a 

variety of combinations and expansive methods of HPLC exist beyond the standard 

classification that have a diverse set of applications across chemical, material, and 

biological fields.  
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One particular type of LC, known as hydrophobic interaction chromatography 

(HIC), is a variant of reversed-phase LC. HIC, like reversed-phase, uses a stationary 

phase that is more hydrophobic than the mobile phase. Reversed-phase LC relies on 

adjusting the polarity of the mobile phase using an organic solvent until the mobile phase 

is more hydrophobic than the stationary phase.144 HIC, on the other hand, relies on 

adjusting the salt concentration of the mobile phase from high concentration to low 

concentration to change the polarity (see Figure 1.4).168, 169 Increased concentrations of 

chaotropic ions can influence the solubility of hydrophobic molecules and cause 

hydrophobic molecules to adsorb to the stationary phase. Molecule adherence to the 

stationary phase can be explained by the “salting-out” phenomena, thermodynamics, and 

van der Waals forces.4, 144, 168-171 In order to optimize the HIC separation gradient 

steepness, salt concentration, volume of sample, pH, type of matrix, and flow rates can be 

varied.172 HIC may be less damaging than reversed-phase LC and, thus, is often used to 

separate more sensitive bio-molecules.168, 173 Most commonly, HIC is used to separate 

proteins and large polypeptides, but many groups have used HIC for a variety of 

applications including the separation and isolation of monoclonal antibodies.168, 169, 174 

With this in mind, HIC may provide a method to isolate more complex and larger bio-

molecules under the appropriate conditions. In this case, our research group is 

investigating whether HIC combined with poly(ethylene terephthalate) Capillary-

Channeled fibers may be a suitable isolation method for exosomes and extracellular 

vesicles.175 
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Figure 1.4. Demonstration of hydrophobic interaction chromatography 
separation theory using a salt concentration gradient. Adapted from McCue et 
al.4 
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Ovarian Cancer Detection, Diagnosis, and Treatment 

Ovarian cancer (OC) is the 7th most diagnosed cancer in women and generally 

reflects a very poor 5-year prognosis.5 OC consists of several different histological 

subtypes that vary in genetic expression, origin, pathogenesis, prognosis, and treatments. 

Of these subtypes, epithelial ovarian cancer accounts for about 90% of all diagnosed 

benign and malignant tumors. Malignant epithelial OC can be further subdivided into 

histotypes including high-grade serous, endometrioid, clear cell, mucinous, and low-

grade serous.5 The pathogenesis and development of OC is still very unclear, but many 

types may originate from the fallopian tubes or peritoneum.176, 177 OC is typically 

detected in late stage, with a 5-year relative survival rate of 29% with early stage 1 

detection only occurring about 15% of the time. However, if OC is detected in stage 1, 

the 5-year relative survival rate is 92%.5 Early detection of OC is very difficult and 

effective means for early detection do not currently exist. However, genetic sequencing 

now allows for detection of particular gene alleles that are correlated with a higher risk of 

developing OC, including BRCA1/2, MMR, TP53, CHEK2, RAD51, BRIP1, and 

PALB2 genes.178 Even with genetic marker testing and screening available, the hallmark 

of OC remains late stage diagnosis and the corresponding stark prognosis and mortality 

rates.179, 180 

 The most common methods for OC detection include a transvaginal ultrasound 

and screening for CA-125 in serum.181 Combined, these methods are capable of detecting 

OC and differentiating malignant and benign tumors in low-risk postmenopausal women, 

but are not highly sensitive in many cases.182 Once a tumor is detected, biopsy and 
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histopathological assessment can determine the type, stage, severity, prognosis, and 

treatment options. New biomarkers in conjunction with CA-125 have been used to 

increase screening sensitivity and specificity including HE4, CEA, VCAM-1, 

transthyretin, apolipoprotein A1, β2-microglobulin, and transferrin. However, 

multiplexed biomarker testing is not prevalent or proven yet.181 Earlier detection of OC, 

once achieved, would likely improve prognosis and mortality rates, but current general 

population screens are not standard.183  

 Regardless of the type and stage, OC, once diagnosed, is typically treated by 

surgical removal of the tumor often combined with intraperitoneal and intravenous 

chemotherapy.184, 185  Interval cytoreduction combined with chemotherapy has remained 

the standard treatment for late stage treatment of OC, but has only seen a small reduction 

in mortality over the last 25 years, likely due to preventative measures and accuracy of 

surgical techniques. More recently, cytoreduction has been paired with neoadjuvant 

chemotherapy and hyperthermic intraperitoneal chemotherapy, but there is some debate 

whether or not these techniques are more effective.185 Indeed, there is a clear need for 

new strategies and therapies to treat and eradicate OC growth, metastasis, and recurrence. 

High-grade serous OC is associated with hypoxic angiogenesis, over-production 

of vascular endothelial growth factor (VEGF), and the subsequent development of 

ascites.186 Therefore, one new therapy strategy is to use anti-angiogenic drugs to combat 

OC growth and recurrence. Bevacizumab, a VEGF antagonist, has shown promise in 

reducing recurrence, but its use is controversial due to differences in regulatory approval, 

varying strategies of use, and lack of improvement over other therapies.185, 186 Other anti-
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angiogenic drugs under investigation include cediranib, pazopanib, nintedanib, and 

angiopoietin inhibitor.185 Treatment with Poly(ADP-ribose) Polymerase (PARP) 

inhibitors are also being investigated as inducers of synthetic lethality in OC and other 

cancers through disruption of DNA repair.187 PARP inhibitors, including olaparib, 

niraparib, rucaparib, have shown promise as primary and post primary treatment, 

particularly in OC patients with BRCA mutations.185 Other therapies for OC under 

investigation include epidermal growth factor receptor tyrosine kinase inhibitors, folate 

receptor α inhibitors, and immunotherapy.185 Treatment options for OC are quickly 

advancing and have demonstrated improvement in survival rates and reduction of 

recurrence. Even so, OC remains one of the most lethal gynecological maladies, likely 

due to the asymptomatic nature of early stages leading to late stage detection.186  

Role of Exosomes in Cancer Metastasis 

 Tumor invasion, metastasis, and the formation of secondary tumors is the primary 

reason for high mortality in most cancers.188 Metastatic tumors are characterized by 

invasion, intravasation and extravasation into distant tissues, often having very poor 

outcomes.189 The stages of tumor epithelial-mesenchymal transition and eventual tumor 

metastasis are controlled by a number of cascading biological pathways involving many 

cell types, cytokines, growth factors, chemokines, and small molecule mediators 

delivered by exosomes.77, 190, 191 In fact, tumors have been found to release a higher 

number of exosomes into the microenvironment compared to healthy cells.192 Typically, 

exosomes involved in tumor metastasis will influence the microenvironment and 

surrounding cells to prepare the area for tumor growth and create a pre-metastatic 
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niche.193 Such preparations may include promotion of angiogenesis, adaptation to 

hypoxic environments, immune evasion, and promotion of inflammation (see Figure 

1.5).1, 104, 105, 194-199 Specifically, exosomes can recruit bone-marrow derived cells to 

mediate vascular permissiveness and inflammation, ultimately leading to pre-metastatic 

preparation of the extracellular matrix.50, 77, 200  Additionally, pro-angiogenic factors 

transmitted by tumor-derived exosomes can boost vascular development which may aid 

in the development of the pre-metastatic niche and minimize the lethal effects of a 

hypoxic environment. Furthermore, tumor-derived exosomes may escape immune 

surveillance by inducing cytotoxic T-cell apoptosis, decreasing natural killer cell activity, 

and pushing T-helper cells to differentiate into T-regulatory cells that promote 

inflammation.1, 197, 198, 201 In short, exosomes are intricately involved in the growth and 

spread of tumors and new pathways and functions are frequently being unveiled. Greater 

understanding of the role of exosomes in tumor metastasis and any corresponding 

pathways will enhance the ability to develop therapies or treatments to prevent or stop 

tumor proliferation. 
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Role of Exosomes in Ovarian Cancer Diagnosis 

As they are carriers of proteins and nucleic acids and are heavily involved in 

tumor metastasis, exosomes are thought to be potential biomarkers for cancerous cells 

and tumor progression. By capturing exosomes from circulating fluids, the signal-to-

noise ratio of cancer-related molecules can be greatly improved when screening for tumor 

markers. In recent years, exosome marker identification has yielded an array of common 

exosome markers that may be useful for capturing and identifying specific types of 

exosomes and their origins. Identification of an exosome’s cell of origin, the molecular 

cargo carried inside, and potential target cell reveals valuable information about 

Figure 1.5. Various roles of exosomes released from primary cancer cells. 
Adapted from Rashed et al.1  
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objectives of the exosomes, the physiological state of the original cell, and potential 

diagnostic information from diseased cells. Particularly, exosomes are being investigated 

as potential early stage biomarkers for OC as a remedy for late stage diagnosis. Both 

protein and miRNA exosome marker profiles are being developed to aid in the diagnosis 

of OC. Zhao et al.80 have developed a microfluidics device that captures and identifies 

OC-specific exosomes using CA-125, EpCAM, and CD24 markers with potential 

diagnostic ability. Further advances in protein marker profiles for OC will likely enhance 

diagnostic sensitivity and specificity using multiplexed protein approaches. Similarly, 

Yokoi et al.117 have used a combination of 8 different OC-associated exosome miRNA 

molecules to achieve an area under the curve of 0.97, a sensitivity of 0.92 and a 

specificity of 0.91 for OC diagnosis. Interestingly, when capturing EpCAM positive 

exosomes, Taylor et al.120 found that exosome miRNA profiles had a high correlation 

with miRNA profiles from the associated biopsy and that miRNA profiles tended to 

differ between benign and cancerous tumors. This suggests that exosome miRNA profiles 

may vary enough to differentiate between tumor types and physiological states. 

Multiplexed exosome biomarker approaches offer promising early diagnostic capabilities 

for OC and other cancers. In particular, OC stands to benefit greatly from early stage 

diagnosis as stage 1 detection results in a 92% 5-year relative survival rate.5 

SKOV-3 and Immortalized Human Ovarian Epithelial Cells 

 Cell lines are important tools that can be used as models to be able to study 

biological phenomena. Several cell lines, including SKOV-3, OVCAR-2, OVCAR-3, 

OVCAR-433, OVCAR-5, IGROV1, and BG-1 have all been used for exosome research 
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in relation to ovarian cancer.38, 122, 202, 203 In particular, the SKOV-3 line, a high-grade 

adenocarcinoma cell line, is among the most popular and commonly used cell lines in 

publications reporting on OC. It is one of two cell lines that make up 60% of publications 

relating to OC and one of five cell lines that make up 90% of publications relating to 

OC.204 Their popularity and high-grade serous derivations, fast growth rate, and abundant 

production of extracellular vesicles are some of the main reasons SKOV-3 cells have 

emerged as popular cells for exosome study. Despite their popularity, many cells lines, 

including SKOV-3 cells, have come under scrutiny over representative accuracy or how 

well the cell line genetically and physically represents the original parent carcinoma.204, 

205 Even so, with little in the way of other available options (primary cells are not feasible 

in most research settings), cell lines remain very popular and widespread and, for the 

most part, still provide insightful and accurate results.  

 Most cell lines, by their very nature, are derived from diseased primary cells. 

Often, the disease is the purveyor of the immortality required to become an endlessly 

replicating cell line. As with any experiment, it is important to maintain a control, but 

control cells lines of normal, non-diseased cells, can be difficult to find and maintain. 

Primary cell lines, which can be used as controls, do not replicate indefinitely invitro and 

are considerably less hardy. Fortunately, immortalized primary cells have emerged as 

viable alternatives to normal primary cells.206-208 Through genetic modification of tumor 

suppressor and cell cycle controller genes, more genetic variance is introduced into the 

cell environment. Although these are major changes to the cell cycle, immortalized cells 

are considered more genetically and physically similar to primary cells than carcinoma-
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derived cell lines and thus have been used as control cell lines in research.209 In the case 

of OC, Immortalized Human Ovarian Epithelial cells, created through simian virus 

transduction, can be used as a viable control cell line in extracellular vesicle and exosome 

research 

Summary 

The mechanisms and roles of exosomes are incredibly complex and evidence thus 

far has demonstrated the intricate involvement of exosomes in a number of processes, 

including cell-cell communication and tumorigenesis.8, 104, 210 Increased understanding of 

exosomes and their roles in the body will undoubtedly result in fundamental insights that 

may lead to breakthroughs in such areas as liquid biopsy-based diagnostics, 

understanding of disease progression and development of new medical treatments. 

However, to date, exosome isolation presents a number of fundamental challenges that 

must be overcome before academic research can progress to the point of translational 

medical applications. An exosome isolation methodology that is practical for use in a 

clinical setting is greatly needed.  

In the following research, we have a developed an EV isolation method and 

model systems that will support earlier and routine OC diagnosis. The three specific aims 

of this project are: 
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1. To develop and investigate a novel poly(ethylene terephthalate)(PET) capillary-

channeled polymer (C-CP) fiber-based extracellular vesicle isolation method using 

Dictyostelium discoideum as a model organism. 

2.  To create fluorescent Immortalized Human Ovarian Epithelial (IHOE)-CD81-

GFP (non-cancerous) and SKOV-3-CD9-RFP (cancerous) cell lines to produce green 

and red small extracellular vesicles, respectively, for use as model sEVs to investigate 

PET C-CP fiber-based selective EV capture. 

3.  To investigate urine and cervical mucus as EV sample sources and explore EV 

miRNA expression data as a tool for distinguishing between ovarian cancer and non-

cancer patient samples and discovering novel ovarian cancer biomarkers for use in 

diagnostics.   



50 
 

References 

1. Rashed M, Bayraktar E, Helal G, et al. Exosomes: From Garbage Bins to 
Promising Therapeutic Targets. Review. International Journal of Molecular Sciences. 
MAR 2017 2017;18(3)ARTN 538. doi:10.3390/ijms18030538 

2. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and 
friends. J Cell Biol. Feb 2013;200(4):373-83. doi:10.1083/jcb.201211138 

3. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular 
vesicle uptake. J Extracell Vesicles. 2014;3doi:10.3402/jev.v3.24641 

4. McCue JT. Theory and use of hydrophobic interaction chromatography in protein 
purification applications. Methods Enzymol. 2009;463:405-14. doi:10.1016/S0076-
6879(09)63025-1 

5. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. 
Cancer Biol Med. Feb 2017;14(1):9-32. doi:10.20892/j.issn.2095-3941.2016.0084 

6. Urbanelli L, Magini A, Buratta S, et al. Signaling pathways in exosomes 
biogenesis, secretion and fate. Genes (Basel). Mar 2013;4(2):152-70. 
doi:10.3390/genes4020152 

7. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current 
knowledge of their composition, biological functions, and diagnostic and therapeutic 
potentials. Biochim Biophys Acta. Jul 2012;1820(7):940-8. 
doi:10.1016/j.bbagen.2012.03.017 

8. Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular 
vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.  

9. Fang S, Tian H, Li X, et al. Clinical application of a microfluidic chip for 
immunocapture and quantification of circulating exosomes to assist breast cancer 
diagnosis and molecular classification. PLoS One. 2017;12(4):e0175050. 
doi:10.1371/journal.pone.0175050 

10. Cheng L, Wu S, Zhang K, Qing Y, Xu T. A comprehensive overview of 
exosomes in ovarian cancer: emerging biomarkers and therapeutic strategies. J Ovarian 
Res. Nov 2017;10(1):73. doi:10.1186/s13048-017-0368-6 

11. Beach A, Zhang H, Ratajczak M, Kakar S. Exosomes: an overview of biogenesis, 
composition and role in ovarian cancer. Review. Journal of Ovarian Research. JAN 25 
2014 2014;7ARTN 14. doi:10.1186/1757-2215-7-14 

12. Li W, Li C, Zhou T, Liu X, Li X, Chen D. Role of exosomal proteins in cancer 
diagnosis. Mol Cancer. 08 2017;16(1):145. doi:10.1186/s12943-017-0706-8 

13. Li M, Zeringer E, Barta T, Schageman J, Cheng A, Vlassov AV. Analysis of the 
RNA content of the exosomes derived from blood serum and urine and its potential as 
biomarkers. Philos Trans R Soc Lond B Biol Sci. Sep 
2014;369(1652)doi:10.1098/rstb.2013.0502 



51 
 

14. Su S, Xie Y, Fu Z, Wang Y, Wang J, Xiang M. Emerging role of exosome-
mediated intercellular communication in vascular remodeling. Review. Oncotarget. APR 
11 2017 2017;8(15):25700-25712. doi:10.18632/oncotarget.14878 

15. Lu M, Xing H, Xun Z, et al. Exosome-based small RNA delivery: Progress and 
prospects. Review. Asian Journal of Pharmaceutical Sciences. JAN 2018 2018;13(1):1-
11. doi:10.1016/j.ajps.2017.07.008 

16. Li A, Zhang T, Zheng M, Liu Y, Chen Z. Exosomal proteins as potential markers 
of tumor diagnosis. J Hematol Oncol. 12 2017;10(1):175. doi:10.1186/s13045-017-0542-
8 

17. Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable 
resource of disease biomarkers. Proteomics Clin Appl. Apr 2015;9(3-4):358-67. 
doi:10.1002/prca.201400114 

18. Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as 
biomarkers. Clin Chim Acta. Jan 2019;488:165-171. doi:10.1016/j.cca.2018.11.009 

19. Li Y, Liu M, Yang ST. Dendritic cells derived from pluripotent stem cells: 
Potential of large scale production. World J Stem Cells. Jan 2014;6(1):1-10. 
doi:10.4252/wjsc.v6.i1.1 

20. Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived 
exosomes combined with GM-CSF for colorectal cancer. Mol Ther. Apr 2008;16(4):782-
90. doi:10.1038/mt.2008.1 

21. Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy 
in patients with advanced non-small cell lung cancer. J Transl Med. Feb 2005;3(1):9. 
doi:10.1186/1479-5876-3-9 

22. Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma 
patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I 
clinical trial. J Transl Med. Mar 2005;3(1):10. doi:10.1186/1479-5876-3-10 

23. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of 
siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 
Apr 2011;29(4):341-5. doi:10.1038/nbt.1807 

24. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular 
vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J 
Neurooncol. May 2013;113(1):1-11. doi:10.1007/s11060-013-1084-8 

25. Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of 
transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway 
for receptor shedding. Eur J Cell Biol. Nov 1984;35(2):256-63.  

26. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence 
for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J 
Cell Biol. Sep 1985;101(3):942-8.  



52 
 

27. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. 
Cell Mol Life Sci. 01 2018;75(2):193-208. doi:10.1007/s00018-017-2595-9 

28. Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome 
biogenesis, composition and secretion highlights the heterogeneity of extracellular 
vesicles. J Cell Sci. Dec 2013;126(Pt 24):5553-65. doi:10.1242/jcs.128868 

29. Oksvold MP, Neurauter A, Pedersen KW. Magnetic bead-based isolation of 
exosomes. Methods Mol Biol. 2015;1218:465-81. doi:10.1007/978-1-4939-1538-5_27 

30. Sandfeld-Paulsen B, Aggerholm-Pedersen N, Bæk R, et al. Exosomal proteins as 
prognostic biomarkers in non-small cell lung cancer. Mol Oncol. 12 2016;10(10):1595-
1602. doi:10.1016/j.molonc.2016.10.003 

31. Street JM, Barran PE, Mackay CL, et al. Identification and proteomic profiling of 
exosomes in human cerebrospinal fluid. J Transl Med. Jan 2012;10:5. doi:10.1186/1479-
5876-10-5 

32. Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, 
and function. Genomics Proteomics Bioinformatics. Feb 2015;13(1):17-24. 
doi:10.1016/j.gpb.2015.02.001 

33. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, 
Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. Oct 
2014;28:3-13. doi:10.1016/j.semcancer.2014.04.009 

34. Tricarico C, Clancy J, D'Souza-Schorey C. Biology and biogenesis of shed 
microvesicles. Small GTPases. 10 2017;8(4):220-232. 
doi:10.1080/21541248.2016.1215283 

35. Huang T, Deng CX. Current Progresses of Exosomes as Cancer Diagnostic and 
Prognostic Biomarkers. Int J Biol Sci. 2019;15(1):1-11. doi:10.7150/ijbs.27796 

36. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, 
RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. Apr 
2016;36(3):301-12. doi:10.1007/s10571-016-0366-z 

37. D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on 
novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. Jun 
2012;26(12):1287-99. doi:10.1101/gad.192351.112 

38. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes 
by ovarian cancer cells. BMC Cancer. Mar 2011;11:108. doi:10.1186/1471-2407-11-108 

39. Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and 
function. Front Immunol. 2014;5:442. doi:10.3389/fimmu.2014.00442 

40. Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for 
definition of extracellular vesicles and their functions: a position statement from the 
International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.  



53 
 

41. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of 
extracellular vesicles 2018 (MISEV2018): a position statement of the International 
Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell 
Vesicles. 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750 

42. Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial 
ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int J 
Oncol. May 2019;54(5):1719-1733. doi:10.3892/ijo.2019.4742 

43. Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles 
in immune regulation and cancer. Semin Cell Dev Biol. Apr 2015;40:72-81. 
doi:10.1016/j.semcdb.2015.02.009 

44. Evans-Osses I, Reichembach LH, Ramirez MI. Exosomes or microvesicles? Two 
kinds of extracellular vesicles with different routes to modify protozoan-host cell 
interaction. Parasitol Res. Oct 2015;114(10):3567-75. doi:10.1007/s00436-015-4659-9 

45. Samos J, García-Olmo DC, Picazo MG, Rubio-Vitaller A, García-Olmo D. 
Circulating nucleic acids in plasma/serum and tumor progression: are apoptotic bodies 
involved? An experimental study in a rat cancer model. Ann N Y Acad Sci. Sep 
2006;1075:165-73. doi:10.1196/annals.1368.022 

46. Bergsmedh A, Szeles A, Henriksson M, et al. Horizontal transfer of oncogenes by 
uptake of apoptotic bodies. Proc Natl Acad Sci U S A. May 2001;98(11):6407-11. 
doi:10.1073/pnas.101129998 

47. Flori F, Secciani F, Capone A, et al. Menstrual cycle-related sialidase activity of 
the female cervical mucus is associated with exosome-like vesicles. Fertil Steril. Oct 
2007;88(4 Suppl):1212-9. doi:10.1016/j.fertnstert.2007.01.209 

48. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular 
Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane 
Vesicles. Int J Mol Sci. Feb 2016;17(2):171. doi:10.3390/ijms17020171 

49. Kurywchak P, Tavormina J, Kalluri R. The emerging roles of exosomes in the 
modulation of immune responses in cancer. Genome Med. 03 2018;10(1):23. 
doi:10.1186/s13073-018-0535-4 

50. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated 
communication within the tumor microenvironment. J Control Release. Dec 
2015;219:278-294. doi:10.1016/j.jconrel.2015.06.029 

51. Théry C, Amigorena S. The cell biology of antigen presentation in dendritic cells. 
Curr Opin Immunol. Feb 2001;13(1):45-51.  

52. Pitt JM, André F, Amigorena S, et al. Dendritic cell-derived exosomes for cancer 
therapy. J Clin Invest. Apr 2016;126(4):1224-32. doi:10.1172/JCI81137 

53. McDonald MK, Tian Y, Qureshi RA, et al. Functional significance of 
macrophage-derived exosomes in inflammation and pain. Pain. Aug 2014;155(8):1527-
39. doi:10.1016/j.pain.2014.04.029 



54 
 

54. Robbins PD, Morelli AE. Regulation of immune responses by extracellular 
vesicles. Nat Rev Immunol. Mar 2014;14(3):195-208. doi:10.1038/nri3622 

55. Shenoda BB, Ajit SK. Modulation of Immune Responses by Exosomes Derived 
from Antigen-Presenting Cells. Clin Med Insights Pathol. 2016;9(Suppl 1):1-8. 
doi:10.4137/CPath.S39925 

56. Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and 
complicated pregnancy. Am J Obstet Gynecol. Oct 2015;213(4 Suppl):S173-81. 
doi:10.1016/j.ajog.2015.07.001 

57. Golchin A, Hosseinzadeh S, Ardeshirylajimi A. The exosomes released from 
different cell types and their effects in wound healing. J Cell Biochem. Jul 
2018;119(7):5043-5052. doi:10.1002/jcb.26706 

58. Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management 
and Treatments. Adv Ther. 03 2017;34(3):599-610. doi:10.1007/s12325-017-0478-y 

59. Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harb 
Perspect Med. Jan 2015;5(1):a023267. doi:10.1101/cshperspect.a023267 

60. Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem 
cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp 
Cell Res. Sep 2018;370(2):333-342. doi:10.1016/j.yexcr.2018.06.035 

61. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. 
Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and 
Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells Dev. Jul 
2015;24(14):1635-47. doi:10.1089/scd.2014.0316 

62. Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock 
proteins in diabetes and wound healing. Curr Protein Pept Sci. Feb 2009;10(1):85-95.  

63. Mineo M, Garfield SH, Taverna S, et al. Exosomes released by K562 chronic 
myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 
Mar 2012;15(1):33-45. doi:10.1007/s10456-011-9241-1 

64. Ribeiro MF, Zhu H, Millard RW, Fan GC. Exosomes Function in Pro- and Anti-
Angiogenesis. Curr Angiogenes. 2013;2(1):54-59. doi:10.2174/22115528113020020001 

65. Sahoo S, Klychko E, Thorne T, et al. Exosomes from human CD34(+) stem cells 
mediate their proangiogenic paracrine activity. Circ Res. Sep 2011;109(7):724-8. 
doi:10.1161/CIRCRESAHA.111.253286 

66. Sheldon H, Heikamp E, Turley H, et al. New mechanism for Notch signaling to 
endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. Sep 
2010;116(13):2385-94. doi:10.1182/blood-2009-08-239228 

67. Taverna S, Flugy A, Saieva L, et al. Role of exosomes released by chronic 
myelogenous leukemia cells in angiogenesis. Int J Cancer. May 2012;130(9):2033-43. 
doi:10.1002/ijc.26217 



55 
 

68. Medzhitov R. Origin and physiological roles of inflammation. Nature. Jul 
2008;454(7203):428-35. doi:10.1038/nature07201 

69. Geering B, Stoeckle C, Conus S, Simon HU. Living and dying for inflammation: 
neutrophils, eosinophils, basophils. Trends Immunol. Aug 2013;34(8):398-409. 
doi:10.1016/j.it.2013.04.002 

70. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and 
Fibrosis. Immunity. Mar 2016;44(3):450-462. doi:10.1016/j.immuni.2016.02.015 

71. Kim SH, Lechman ER, Bianco N, et al. Exosomes derived from IL-10-treated 
dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol. May 
2005;174(10):6440-8.  

72. Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes 
from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis 
and delayed-type hypersensitivity disease models. Arthritis Rheum. Feb 2009;60(2):380-
9. doi:10.1002/art.24229 

73. Wei G, Jie Y, Haibo L, et al. Dendritic cells derived exosomes migration to spleen 
and induction of inflammation are regulated by CCR7. Sci Rep. 02 2017;7:42996. 
doi:10.1038/srep42996 

74. Di Marzo L, Desantis V, Solimando AG, et al. Microenvironment drug resistance 
in multiple myeloma: emerging new players. Oncotarget. 09 2016;7(37):60698-60711. 
doi:10.18632/oncotarget.10849 

75. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 
2002;53:615-27. doi:10.1146/annurev.med.53.082901.103929 

76. Wang J, Hendrix A, Hernot S, et al. Bone marrow stromal cell-derived exosomes 
as communicators in drug resistance in multiple myeloma cells. Blood. Jul 
2014;124(4):555-66. doi:10.1182/blood-2014-03-562439 

77. Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome: Function and Role in Cancer 
Metastasis and Drug Resistance. Technol Cancer Res Treat. 01 
2018;17:1533033818763450. doi:10.1177/1533033818763450 

78. Soung YH, Ford S, Zhang V, Chung J. Exosomes in Cancer Diagnostics. Cancers 
(Basel). Jan 2017;9(1)doi:10.3390/cancers9010008 

79. Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. 
Biomark Med. Oct 2013;7(5):769-78. doi:10.2217/bmm.13.63 

80. Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed 
exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. Feb 
2016;16(3):489-96. doi:10.1039/c5lc01117e 

81. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A 
review of drug delivery systems based on nanotechnology and green chemistry: green 
nanomedicine. Int J Nanomedicine. 2017;12:2957-2978. doi:10.2147/IJN.S127683 



56 
 

82. Yang T, Martin P, Fogarty B, et al. Exosome Delivered Anticancer Drugs Across 
the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio. Article. 
Pharmaceutical Research. JUN 2015 2015;32(6):2003-2014. doi:10.1007/s11095-014-
1593-y 

83. Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for 
Parkinson's disease therapy. J Control Release. Jun 2015;207:18-30. 
doi:10.1016/j.jconrel.2015.03.033 

84. Saadeldin IM, Oh HJ, Lee BC. Embryonic-maternal cross-talk via exosomes: 
potential implications. Stem Cells Cloning. 2015;8:103-7. doi:10.2147/SCCAA.S84991 

85. Zhao Z, McGill J, Gamero-Kubota P, He M. Microfluidic on-demand engineering 
of exosomes towards cancer immunotherapy. Lab Chip. 05 2019;19(10):1877-1886. 
doi:10.1039/c8lc01279b 

86. Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-
derived exosomes: the next generation of promising cell-free vaccines in cancer 
immunotherapy. Oncoimmunology. Jun 2020;9(1):1779991. 
doi:10.1080/2162402X.2020.1779991 

87. Chen YS, Lin EY, Chiou TW, Harn HJ. Exosomes in clinical trial and their 
production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi. 2019 
Apr-Jun 2019;32(2):113-120. doi:10.4103/tcmj.tcmj_182_19 

88. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and 
Challenges of Liposome Assisted Drug Delivery. Front Pharmacol. 2015;6:286. 
doi:10.3389/fphar.2015.00286 

89. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into 
extracellular vesicles significantly improves the cellular uptake and photodynamic effect 
of porphyrins. J Control Release. May 2015;205:35-44. 
doi:10.1016/j.jconrel.2014.11.029 

90. Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes 
for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. 
Nanomedicine. Jan 2018;14(1):195-204. doi:10.1016/j.nano.2017.09.011 

91. Kim SM, Kim HS. Engineering of extracellular vesicles as drug delivery vehicles. 
Stem Cell Investig. 2017;4:74. doi:10.21037/sci.2017.08.07 

92. García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. 
Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering 
and mimetic preparation routes. J Extracell Vesicles. 2018;7(1):1422676. 
doi:10.1080/20013078.2017.1422676 

93. Tran TH, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for 
immunotherapy of cancer and inflammatory diseases. Clin Immunol. Sep 
2015;160(1):46-58. doi:10.1016/j.clim.2015.03.021 



57 
 

94. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A 
comprehensive overview of exosomes as drug delivery vehicles - endogenous 
nanocarriers for targeted cancer therapy. Biochim Biophys Acta. Aug 2014;1846(1):75-
87. doi:10.1016/j.bbcan.2014.04.005 

95. Sancho-Albero M, Navascués N, Mendoza G, et al. Exosome origin determines 
cell targeting and the transfer of therapeutic nanoparticles towards target cells. J 
Nanobiotechnology. Jan 2019;17(1):16. doi:10.1186/s12951-018-0437-z 

96. Besse B, Charrier M, Lapierre V, et al. Dendritic cell-derived exosomes as 
maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 
Apr 2016;5(4):e1071008. doi:10.1080/2162402X.2015.1071008 

97. Urbanelli L, Buratta S, Sagini K, Ferrara G, Lanni M, Emiliani C. Exosome-based 
strategies for Diagnosis and Therapy. Recent Pat CNS Drug Discov. 2015;10(1):10-27.  

98. Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery. Int 
J Pharm. Apr 2017;521(1-2):167-175. doi:10.1016/j.ijpharm.2017.02.038 

99. Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and 
perspectives. Transl Res. 06 2018;196:1-16. doi:10.1016/j.trsl.2018.01.005 

100. Conigliaro A, Cicchini C. Exosome-Mediated Signaling in Epithelial to 
Mesenchymal Transition and Tumor Progression. J Clin Med. Dec 
2018;8(1)doi:10.3390/jcm8010026 

101. Szajnik M, Derbis M, Lach M, et al. Exosomes in Plasma of Patients with 
Ovarian Carcinoma: Potential Biomarkers of Tumor Progression and Response to 
Therapy. Gynecol Obstet (Sunnyvale). Apr 2013;Suppl 4:3. doi:10.4172/2161-0932.S4-
003 

102. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: 
composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol 
Cancer. 04 2019;18(1):75. doi:10.1186/s12943-019-0991-5 

103. Qiu J, Yang G, Feng M, et al. Extracellular vesicles as mediators of the 
progression and chemoresistance of pancreatic cancer and their potential clinical 
applications. Mol Cancer. 01 2018;17(1):2. doi:10.1186/s12943-017-0755-z 

104. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and 
metastasis. Nat Med. Nov 2013;19(11):1423-37. doi:10.1038/nm.3394 

105. Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role 
of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 
Aug 2012;22(4):342-9. doi:10.1016/j.semcancer.2012.02.005 

106. Zhang HG, Grizzle WE. Exosomes and cancer: a newly described pathway of 
immune suppression. Clin Cancer Res. Mar 2011;17(5):959-64. doi:10.1158/1078-
0432.CCR-10-1489 



58 
 

107. Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic 
adjuvant in cancer. J Transl Med. Jun 2012;10:134. doi:10.1186/1479-5876-10-134 

108. Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B. 
Exosomes, an Unmasked Culprit in Neurodegenerative Diseases. Front Neurosci. 
2017;11:26. doi:10.3389/fnins.2017.00026 

109. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking 
Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein 
aggregates. Pharm Res. May 2010;27(5):796-810. doi:10.1007/s11095-010-0073-2 

110. Parisse P, Rago I, Ulloa Severino L, et al. Atomic force microscopy analysis of 
extracellular vesicles. Eur Biophys J. Dec 2017;46(8):813-820. doi:10.1007/s00249-017-
1252-4 

111. Chen C, Zong S, Wang Z, et al. Imaging and Intracellular Tracking of Cancer-
Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution 
Microscope. ACS Appl Mater Interfaces. Oct 2016;8(39):25825-25833. 
doi:10.1021/acsami.6b09442 

112. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The 
Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int J Mol Sci. May 
2017;18(6)doi:10.3390/ijms18061153 

113. de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T, Kussmann M. 
"Exosomics"-A Review of Biophysics, Biology and Biochemistry of Exosomes With a 
Focus on Human Breast Milk. Front Genet. 2018;9:92. doi:10.3389/fgene.2018.00092 

114. Li X, Wang X. The emerging roles and therapeutic potential of exosomes in 
epithelial ovarian cancer. Review. Molecular Cancer. MAY 15 2017 2017;16ARTN 92. 
doi:10.1186/s12943-017-0659-y 

115. Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of 
urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol. 
Dec 2017;13(12):731-749. doi:10.1038/nrneph.2017.148 

116. Di Meo A, Bartlett J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step 
forward towards precision medicine in urologic malignancies. Mol Cancer. 04 
2017;16(1):80. doi:10.1186/s12943-017-0644-5 

117. Yokoi A, Yoshioka Y, Hirakawa A, et al. A combination of circulating miRNAs 
for the early detection of ovarian cancer. Oncotarget. Oct 2017;8(52):89811-89823. 
doi:10.18632/oncotarget.20688 

118. Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and 
the way forward. Prog Lipid Res. 04 2017;66:30-41. doi:10.1016/j.plipres.2017.03.001 

119. Skotland T, Ekroos K, Kauhanen D, et al. Molecular lipid species in urinary 
exosomes as potential prostate cancer biomarkers. Eur J Cancer. 01 2017;70:122-132. 
doi:10.1016/j.ejca.2016.10.011 



59 
 

120. Taylor D, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as 
diagnostic biomarkers of ovarian cancer. Article. Gynecologic Oncology. JUL 2008 
2008;110(1):13-21. doi:10.1016/j.ygyno.2008.04.033 

121. Pan C, Stevic I, Müller V, et al. Exosomal microRNAs as tumor markers in 
epithelial ovarian cancer. Mol Oncol. Nov 2018;12(11):1935-1948. doi:10.1002/1878-
0261.12371 

122. Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB, Morin PJ. 
Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. 
BMC Cancer. Jul 2009;9:244. doi:10.1186/1471-2407-9-244 

123. Rabinowits G, Gercel-Taylor C, Day J, Taylor D, Kloecker G. Exosomal 
MicroRNA: A Diagnostic Marker for Lung Cancer. Article. Clinical Lung Cancer. JAN 
2009 2009;10(1):42-46. doi:10.3816/CLC.2009.n.006 

124. Silva J, García V, Zaballos Á, et al. Vesicle-related microRNAs in plasma of 
nonsmall cell lung cancer patients and correlation with survival. Eur Respir J. Mar 
2011;37(3):617-23. doi:10.1183/09031936.00029610 

125. Jin X, Chen Y, Chen H, et al. Evaluation of Tumor-Derived Exosomal miRNA as 
Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using 
Next-Generation Sequencing. Clin Cancer Res. Sep 2017;23(17):5311-5319. 
doi:10.1158/1078-0432.CCR-17-0577 

126. Reclusa P, Taverna S, Pucci M, et al. Exosomes as diagnostic and predictive 
biomarkers in lung cancer. J Thorac Dis. Oct 2017;9(Suppl 13):S1373-S1382. 
doi:10.21037/jtd.2017.10.67 

127. Li Y, Zhang Y, Qiu F, Qiu Z. Proteomic identification of exosomal LRG1: a 
potential urinary biomarker for detecting NSCLC. Electrophoresis. Aug 
2011;32(15):1976-83. doi:10.1002/elps.201000598 

128. Yamashita T, Kamada H, Kanasaki S, et al. Epidermal growth factor receptor 
localized to exosome membranes as a possible biomarker for lung cancer diagnosis. 
Pharmazie. Dec 2013;68(12):969-73.  

129. Hannafon BN, Trigoso YD, Calloway CL, et al. Plasma exosome microRNAs are 
indicative of breast cancer. Breast Cancer Res. 09 2016;18(1):90. doi:10.1186/s13058-
016-0753-x 

130. Eichelser C, Stückrath I, Müller V, et al. Increased serum levels of circulating 
exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. Oct 
2014;5(20):9650-63. doi:10.18632/oncotarget.2520 

131. Sueta A, Yamamoto Y, Tomiguchi M, Takeshita T, Yamamoto-Ibusuki M, Iwase 
H. Differential expression of exosomal miRNAs between breast cancer patients with and 
without recurrence. Oncotarget. Sep 2017;8(41):69934-69944. 
doi:10.18632/oncotarget.19482 



60 
 

132. Chen IH, Xue L, Hsu CC, et al. Phosphoproteins in extracellular vesicles as 
candidate markers for breast cancer. Proc Natl Acad Sci U S A. 03 2017;114(12):3175-
3180. doi:10.1073/pnas.1618088114 

133. Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and 
detects early pancreatic cancer. Nature. Jul 2015;523(7559):177-82. 
doi:10.1038/nature14581 

134. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of 
exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Apr 
2006;Chapter 3:Unit 3.22. doi:10.1002/0471143030.cb0322s30 

135. Livshits MA, Livshts MA, Khomyakova E, et al. Isolation of exosomes by 
differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep. 
Nov 2015;5:17319. doi:10.1038/srep17319 

136. Jeppesen DK, Hvam ML, Primdahl-Bengtson B, et al. Comparative analysis of 
discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 
2014;3:25011.  

137. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in Exosome Isolation 
Techniques. Theranostics. 2017;7(3):789-804. doi:10.7150/thno.18133 

138. Lamparski HG, Metha-Damani A, Yao JY, et al. Production and characterization 
of clinical grade exosomes derived from dendritic cells. J Immunol Methods. Dec 
2002;270(2):211-26.  

139. Böing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R. 
Single-step isolation of extracellular vesicles by size-exclusion chromatography. J 
Extracell Vesicles. 2014;3doi:10.3402/jev.v3.23430 

140. Koh YQ, Almughlliq FB, Vaswani K, Peiris HN, Mitchell MD. Exosome 
enrichment by ultracentrifugation and size exclusion chromatography. Front Biosci 
(Landmark Ed). Jan 2018;23:865-874.  

141. Benedikter BJ, Bouwman FG, Vajen T, et al. Ultrafiltration combined with size 
exclusion chromatography efficiently isolates extracellular vesicles from cell culture 
media for compositional and functional studies. Sci Rep. Nov 2017;7(1):15297. 
doi:10.1038/s41598-017-15717-7 

142. An M, Wu J, Zhu J, Lubman DM. Comparison of an Optimized 
Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of 
Exosomes from Human Serum. J Proteome Res. Oct 2018;17(10):3599-3605. 
doi:10.1021/acs.jproteome.8b00479 

143. Baranyai T, Herczeg K, Onódi Z, et al. Isolation of Exosomes from Blood 
Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size 
Exclusion Chromatography Methods. PLoS One. 2015;10(12):e0145686. 
doi:10.1371/journal.pone.0145686 



61 
 

144. Coskun O. Separation techniques: Chromatography. North Clin Istanb. 
2016;3(2):156-160. doi:10.14744/nci.2016.32757 

145. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of 
Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int. 
2018;2018:8545347. doi:10.1155/2018/8545347 

146. Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. 
Cold Spring Harb Protoc. Apr 2015;2015(4):319-23. doi:10.1101/pdb.top074476 

147. Xu R, Simpson RJ, Greening DW. A Protocol for Isolation and Proteomic 
Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal 
Ultrafiltration. Methods Mol Biol. 2017;1545:91-116. doi:10.1007/978-1-4939-6728-5_7 

148. Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid 
chromatography for high yield isolation of extracellular vesicles preserving intact 
biophysical and functional properties. Nanomedicine. May 2015;11(4):879-83. 
doi:10.1016/j.nano.2015.01.003 

149. Channavajjhala SK, Rossato M, Morandini F, et al. Optimizing the purification 
and analysis of miRNAs from urinary exosomes. Clin Chem Lab Med. Mar 
2014;52(3):345-54. doi:10.1515/cclm-2013-0562 

150. Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal 
biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal 
Physiol. May 2007;292(5):F1657-61. doi:10.1152/ajprenal.00434.2006 

151. Soares Martins T, Catita J, Martins Rosa I, A B da Cruz E Silva O, Henriques 
AG. Exosome isolation from distinct biofluids using precipitation and column-based 
approaches. PLoS One. 2018;13(6):e0198820. doi:10.1371/journal.pone.0198820 

152. Niu Z, Pang RTK, Liu W, Li Q, Cheng R, Yeung WSB. Polymer-based 
precipitation preserves biological activities of extracellular vesicles from an endometrial 
cell line. PLoS One. 2017;12(10):e0186534. doi:10.1371/journal.pone.0186534 

153. Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, 
density gradient separation, and immunoaffinity capture methods for isolating human 
colon cancer cell line LIM1863-derived exosomes. Methods. Feb 2012;56(2):293-304. 
doi:10.1016/j.ymeth.2012.01.002 

154. Sharma P, Ludwig S, Muller L, et al. Immunoaffinity-based isolation of 
melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell 
Vesicles. 2018;7(1):1435138. doi:10.1080/20013078.2018.1435138 

155. Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Antibody-
coupled monolithic silica microtips for highthroughput molecular profiling of circulating 
exosomes. Sci Rep. Aug 2014;4:6232. doi:10.1038/srep06232 

 



62 
 

156. Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, et al. Development of a rapid 
lateral flow immunoassay test for detection of exosomes previously enriched from cell 
culture medium and body fluids. J Extracell Vesicles. 2016;5:31803. 
doi:10.3402/jev.v5.31803 

157. Momen-Heravi F, Balaj L, Alian S, et al. Current methods for the isolation of 
extracellular vesicles. Biol Chem. Oct 2013;394(10):1253-62. doi:10.1515/hsz-2013-0141 

158. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel 
markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc 
Natl Acad Sci U S A. Feb 2016;113(8):E968-77. doi:10.1073/pnas.1521230113 

159. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. 
Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular 
endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. Aug 
1998;273(32):20121-7. doi:10.1074/jbc.273.32.20121 

160. Lee K, Shao H, Weissleder R, Lee H. Acoustic purification of extracellular 
microvesicles. ACS Nano. Mar 2015;9(3):2321-7. doi:10.1021/nn506538f 

161. Wang Z, Wu HJ, Fine D, et al. Ciliated micropillars for the microfluidic-based 
isolation of nanoscale lipid vesicles. Lab Chip. Aug 2013;13(15):2879-82. 
doi:10.1039/c3lc41343h 

162. Yang F, Liao X, Tian Y, Li G. Exosome separation using microfluidic systems: 
size-based, immunoaffinity-based and dynamic methodologies. Biotechnol J. Apr 
2017;12(4)doi:10.1002/biot.201600699 

163. El-Andaloussi S, Lee Y, Lakhal-Littleton S, et al. Exosome-mediated delivery of 
siRNA in vitro and in vivo. Article. Nature Protocols. DEC 2012 2012;7(12):2112-2126. 
doi:10.1038/nprot.2012.131 

164. Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential 
Therapeutic Effects of Exosomes Packed With a miR-21-Sponge Construct in a Rat 
Model of Glioblastoma. Front Oncol. 2019;9:782. doi:10.3389/fonc.2019.00782 

165. Yim N, Choi C. Extracellular vesicles as novel carriers for therapeutic molecules. 
BMB Rep. Nov 2016;49(11):585-586.  

166. Bird IM. High performance liquid chromatography: principles and clinical 
applications. BMJ. Sep 1989;299(6702):783-7.  

167. Kosanović M, Milutinović B, Goč S, Mitić N, Janković M. Ion-exchange 
chromatography purification of extracellular vesicles. Biotechniques. 08 2017;63(2):65-
71. doi:10.2144/000114575 

168. Fekete S, Veuthey J, Beck A, Guillarme D. Hydrophobic interaction 
chromatography for the characterization of monoclonal antibodies and related products. 
Article. Journal of Pharmaceutical and Biomedical Analysis. OCT 25 2016 2016;130:3-
18. doi:10.1016/j.jpba.2016.04.004 



63 
 

169. O'Connor BF, Cummins PM. Hydrophobic Interaction Chromatography. Methods 
Mol Biol. 2017;1485:355-363. doi:10.1007/978-1-4939-6412-3_18 

170. Li JJ, Liu YD, Wang FW, Ma GH, Su ZG. Hydrophobic interaction 
chromatography correctly refolding proteins assisted by glycerol and urea gradients. J 
Chromatogr A. Dec 2004;1061(2):193-9. doi:10.1016/j.chroma.2004.11.002 

171. Fekete S, Veuthey JL, Beck A, Guillarme D. Hydrophobic interaction 
chromatography for the characterization of monoclonal antibodies and related products. J 
Pharm Biomed Anal. Oct 2016;130:3-18. doi:10.1016/j.jpba.2016.04.004 

172. Lienqueo ME, Shene C, Asenjo J. Optimization of hydrophobic interaction 
chromatography using a mathematical model of elution curves of a protein mixture. J 
Mol Recognit. 2009 Mar-Apr 2009;22(2):110-20. doi:10.1002/jmr.927 

173. Stanelle R, Marcus R. Nylon-6 capillary-channeled polymer (C-CP) fibers as a 
hydrophobic interaction chromatography stationary phase for the separation of proteins. 
Article. Analytical and Bioanalytical Chemistry. JAN 2009 2009;393(1):273-281. 
doi:10.1007/s00216-008-2457-2 

174. Rodriguez-Aller M, Guillarme D, Beck A, Fekete S. Practical method 
development for the separation of monoclonal antibodies and antibody-drug-conjugate 
species in hydrophobic interaction chromatography, part 1: optimization of the mobile 
phase. Article. Journal of Pharmaceutical and Biomedical Analysis. JAN 25 2016 
2016;118:393-403. doi:10.1016/j.jpba.2015.11.011 

175. Bruce TF, Slonecki TJ, Wang L, Huang S, Powell RR, Marcus RK. Exosome 
isolation and purification via hydrophobic interaction chromatography using a polyester, 
capillary‐channeled polymer fiber phase. Electrophoresis. 2018;40(4):571-581.  

176. Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria 
and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol. Feb 
2007;31(2):161-9. doi:10.1097/01.pas.0000213335.40358.47 

177. Pentheroudakis G, Pavlidis N. Serous papillary peritoneal carcinoma: unknown 
primary tumour, ovarian cancer counterpart or a distinct entity? A systematic review. Crit 
Rev Oncol Hematol. Jul 2010;75(1):27-42. doi:10.1016/j.critrevonc.2009.10.003 

178. Toss A, Tomasello C, Razzaboni E, et al. Hereditary ovarian cancer: not only 
BRCA 1 and 2 genes. Biomed Res Int. 2015;2015:341723. doi:10.1155/2015/341723 

179. Jacobs IJ, Menon U, Ryan A, et al. Ovarian cancer screening and mortality in the 
UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised 
controlled trial. Lancet. Mar 2016;387(10022):945-956. doi:10.1016/S0140-
6736(15)01224-6 

180. Menon U, Ryan A, Kalsi J, et al. Risk Algorithm Using Serial Biomarker 
Measurements Doubles the Number of Screen-Detected Cancers Compared With a 
Single-Threshold Rule in the United Kingdom Collaborative Trial of Ovarian Cancer 
Screening. J Clin Oncol. Jun 2015;33(18):2062-71. doi:10.1200/JCO.2014.59.4945 



64 
 

181. Carter JS, Downs LS. Ovarian Cancer Tests and Treatment. Female Patient 
(Parsippany). 2011;36(4):30-35.  

182. Menon U, Gentry-Maharaj A, Hallett R, et al. Sensitivity and specificity of 
multimodal and ultrasound screening for ovarian cancer, and stage distribution of 
detected cancers: results of the prevalence screen of the UK Collaborative Trial of 
Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. Apr 2009;10(4):327-40. 
doi:10.1016/S1470-2045(09)70026-9 

183. Gynecologists ACoOa. ACOG Committee Opinion: number 280, December 
2002. The role of the generalist obstetrician-gynecologist in the early detection of ovarian 
cancer. Obstet Gynecol. Dec 2002;100(6):1413-6.  

184. Doubeni CA, Doubeni AR, Myers AE. Diagnosis and Management of Ovarian 
Cancer. Am Fam Physician. Jun 2016;93(11):937-44.  

185. Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer 
therapy. Cancer Chemother Pharmacol. 01 2018;81(1):17-38. doi:10.1007/s00280-017-
3501-8 

186. Bookman MA. Optimal primary therapy of ovarian cancer. Ann Oncol. 04 
2016;27 Suppl 1:i58-i62. doi:10.1093/annonc/mdw088 

187. Yap TA, Sandhu SK, Carden CP, de Bono JS. Poly(ADP-ribose) polymerase 
(PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin. 
2011 Jan-Feb 2011;61(1):31-49. doi:10.3322/caac.20095 

188. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-
specific colonization. Nat Rev Cancer. Apr 2009;9(4):274-84. doi:10.1038/nrc2622 

189. Jiang WG, Sanders AJ, Katoh M, et al. Tissue invasion and metastasis: 
Molecular, biological and clinical perspectives. Semin Cancer Biol. Dec 2015;35 
Suppl:S244-S275. doi:10.1016/j.semcancer.2015.03.008 

190. Garnier D, Magnus N, Lee TH, et al. Cancer cells induced to express 
mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue 
factor. J Biol Chem. Dec 2012;287(52):43565-72. doi:10.1074/jbc.M112.401760 

191. Weidle UH, Birzele F, Kollmorgen G, Rüger R. The Multiple Roles of Exosomes 
in Metastasis. Cancer Genomics Proteomics. 01 2017;14(1):1-15. 
doi:10.21873/cgp.20015 

192. Sharma S, Zuñiga F, Rice GE, Perrin LC, Hooper JD, Salomon C. Tumor-derived 
exosomes in ovarian cancer - liquid biopsies for early detection and real-time monitoring 
of cancer progression. Oncotarget. Nov 2017;8(61):104687-104703. 
doi:10.18632/oncotarget.22191 

193. Jung T, Castellana D, Klingbeil P, et al. CD44v6 dependence of premetastatic 
niche preparation by exosomes. Neoplasia. Oct 2009;11(10):1093-105.  



65 
 

194. Hood JL, Pan H, Lanza GM, Wickline SA, (C-TRAIN) CfTRiAIaN. Paracrine 
induction of endothelium by tumor exosomes. Lab Invest. Nov 2009;89(11):1317-28. 
doi:10.1038/labinvest.2009.94 

195. Hegmans JP, Bard MP, Hemmes A, et al. Proteomic analysis of exosomes 
secreted by human mesothelioma cells. Am J Pathol. May 2004;164(5):1807-15. 
doi:10.1016/S0002-9440(10)63739-X 

196. Park JE, Tan HS, Datta A, et al. Hypoxic tumor cell modulates its 
microenvironment to enhance angiogenic and metastatic potential by secretion of proteins 
and exosomes. Mol Cell Proteomics. Jun 2010;9(6):1085-99. doi:10.1074/mcp.M900381-
MCP200 

197. Andreola G, Rivoltini L, Castelli C, et al. Induction of lymphocyte apoptosis by 
tumor cell secretion of FasL-bearing microvesicles. J Exp Med. May 2002;195(10):1303-
16.  

198. Huber V, Fais S, Iero M, et al. Human colorectal cancer cells induce T-cell death 
through release of proapoptotic microvesicles: role in immune escape. Gastroenterology. 
Jun 2005;128(7):1796-804.  

199. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside 
TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce 
apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. Sep 
2009;183(6):3720-30. doi:10.4049/jimmunol.0900970 

200. Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone 
marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. Jun 
2012;18(6):883-91. doi:10.1038/nm.2753 

201. Liu C, Yu S, Zinn K, et al. Murine mammary carcinoma exosomes promote tumor 
growth by suppression of NK cell function. J Immunol. Feb 2006;176(3):1375-85.  

202. Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD, Rice GE. Ovarian 
cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 
miRNA and miR-200. J Transl Med. Jan 2014;12:4. doi:10.1186/1479-5876-12-4 

203. Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. In-depth 
proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment 
of functional categories compared to the NCI 60 proteome. Biochem Biophys Res 
Commun. Mar 2014;445(4):694-701. doi:10.1016/j.bbrc.2013.12.070 

204. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as 
tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126. 
doi:10.1038/ncomms3126 

205. Ince TA, Sousa AD, Jones MA, et al. Characterization of twenty-five ovarian 
tumour cell lines that phenocopy primary tumours. Nat Commun. Jun 2015;6:7419. 
doi:10.1038/ncomms8419 



66 
 

206. Bouïs D, Hospers GA, Meijer C, Molema G, Mulder NH. Endothelium in vitro: a 
review of human vascular endothelial cell lines for blood vessel-related research. 
Angiogenesis. 2001;4(2):91-102.  

207. Lehman TA, Modali R, Boukamp P, et al. p53 mutations in human immortalized 
epithelial cell lines. Carcinogenesis. May 1993;14(5):833-9. doi:10.1093/carcin/14.5.833 

208. Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA. The 
establishment of telomerase-immortalized cell lines representing human chromosome 
instability syndromes. Hum Mol Genet. Feb 2000;9(3):403-11. doi:10.1093/hmg/9.3.403 

209. Obinata M. The immortalized cell lines with differentiation potentials: their 
establishment and possible application. Cancer Sci. Mar 2007;98(3):275-83. 
doi:10.1111/j.1349-7006.2007.00399.x 

210. Shen J, Zhu X, Fei J, Shi P, Yu S, Zhou J. Advances of exosome in the 
development of ovarian cancer and its diagnostic and therapeutic prospect. Onco Targets 
Ther. 2018;11:2831-2841. doi:10.2147/OTT.S159829 

 



67 
 

CHAPTER 2 

EXOSOME ISOLATION AND PURIFICATION VIA HYDROPHOBIC 

INTERACTION CHROMATOGRAPHY USING A POLYESTER, 

CAPILLARY-CHANNELED POLYMER FIBER PHASE  

 

Abstract 

Extracellular vesicles, including microvesicles and exosomes, are lipidic 

membrane-derived vesicles that are secreted by most cell types. Exosomes, one class of 

these vesicles that are 30-100 nm in diameter, hold a great deal of promise in disease 

diagnostics, as they display the same protein biomarkers as their originating cell.  For 

exosomes to become useful in disease diagnostics, and as burgeoning drug delivery 

platforms, they must be isolated efficiently and effectively without compromising their 

structure.  Most current exosome isolation methods have practical problems including 

being too time-consuming and labor intensive, destructive to the exosomes, or too costly 

for use in clinical settings.  To this end, this study examines the use of poly(ethylene 

terephthalate) (PET) capillary-channeled polymer (C-CP) fibers in a hydrophobic 

interaction chromatography (HIC) protocol to isolate exosomes from diverse matrices of 

practical concern.  Results demonstrate the ability to isolate extracellular vesicles 

enriched in exosomes with comparable yields and size distributions on a much faster time 

scale when compared to traditional isolation methods.  As a demonstration of the 

potential analytical utility of the approach, extracellular vesicle recoveries from cell 
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culture milieu and a mock urine matrix are presented.  Scalable separations covering sub-

milliliter spin-down columns to the preparative scale are projected.  

It should be noted that this is collaborative work that has been published as a 

peer-reviewed article and was performed with Dr. Ken Marcus of the Clemson University 

Chemistry Department. Of note, the hydrophobic interaction chromatography work 

outlined in this chapter was primarily performed by Dr. Lei Wang and Ms. Sisi Huang. 

This chapter appears here directly as published (with minimal additions) for 

completeness.  

Terri F. Bruce, Tyler J. Slonecki, Lei Wang, Sisi Huang, Rhonda P. Powell, R. 

Kenneth Marcus, Exosome isolation and purification via hydrophobic interaction 

chromatography using a polyester, capillary‐channeled polymer fiber phase. 

Electrophoresis 2019, 40 (4), 571-581. 
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Introduction 

Exosomes are tiny lipid-bound vesicles, approximately 30-100 nm in diameter, 

that are secreted by most types of cells, including both normal and disease-state cells. 

They carry internal “cargo” molecules, such as nucleic acids and proteins, which are 

derived from their cell of origin. These biomarkers make exosomes a promising means of 

minimally-invasive early disease diagnosis 1-4.  Once considered cellular debris, research 

has demonstrated that exosomes have multiple biological roles.  Exosomes may be 

involved in a myriad of normal physiological processes including cross-placental 

communication between the mother and fetus, fetal development, and bone calcification, 

as well as disease processes including metastasis, pathogenesis of thrombosis, diabetes, 

atherosclerosis, tumor growth, arthritis, and progression of neurodegenerative diseases 4, 

5.  Exosomes  can be found in most body fluids, including urine, saliva, amniotic fluid, 

semen, breast milk, plasma, and blood, making them a promising basis for the 

development of liquid biopsies 6, 7.  Exosomes have been shown to have unique 

microRNA (miRNA) signatures that could soon open the door for clinical and therapeutic 

applications 8.  Exosomes are being exploited for disease diagnostics 7, 9, 10, including 

cancer 11, 12, with potential biomarkers identified relative to a number of different types of 

cancers, including ovarian, lung, breast, prostate, and pancreatic cancer 11-14.  

Despite these promising attributes, the analysis of exosomes is currently limited 

by the processes required to isolate them from body fluids 15-17.  In most cases, exosomes 

are isolated by differential centrifugation (DC), requiring the use of a high-speed 

centrifuge over several hours, including the sedimentation of other particulate debris and 
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potentially impacting the integrity of the lipid bilayer membrane of the exosome.  Other 

emerging exosome isolation techniques include density gradient centrifugation, size 

exclusion chromatography, ultrafiltration, polymer-based precipitation, immunological 

separation, and microfluidics techniques 13, 18-23.  Some of these methods are generic with 

respect to the specific types of exosomes which can be isolated, while others solely 

capture vesicles originating from specific cell types.  Each of these exosome isolation 

techniques has benefits, but the aforementioned shortcomings are fairly universal 17, 18, 24.  

Thus, none are currently sufficient for use in clinical diagnostics or for isolation of larger 

lots from cell culture media as would be required for drug delivery applications. 

 Exosome isolation methods are generally based on the size/hydrodynamic radii of 

the vesicles, i.e, centrifugation, filtration, and sieve-based approaches, or their affinity 

towards capture surfaces used in spin-down formats.  However, methods relying on 

chemical separation and processing platforms, such as those employed in HPLC, have not 

been fully explored; yet, they may have many attractive features.  Most of the common 

LC stationary phases used for chemical separations, such as porous silica beads, would 

not be practical, as exosomes would likely be excluded from the internal pore structures, 

and clogging would be a major operational problem. This study describes the use of 

capillary-channeled polymer (C-CP) fibers as stationary phases for the isolation and 

recovery of exosome-enriched populations of extracellular vesicles (referred to as 

“exosomes” from here forward) from culture media, buffer, and urine.  C-CP fibers have 

been employed by Marcus and co-workers as stationary phases for protein separations via 

reversed phase, ion exchange, hydrophobic interaction, and affinity chromatographies 25-
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31.  These fibers are melt-extruded from commodity polymers (nylon 6, polypropylene, 

and poly(ethylene terephthalate) (polyester,PET)), having  a unique cross-sectional 

profile consisting of eight “legs” on the periphery.  When packed in column formats, the 

fibers inter-digitate to create massive numbers of 1-4 µm-wide channels that provide high 

permeability to fluid flow.  The non-porous nature of the fiber surfaces (at least on the 

size scale of proteins) means that intra-phase diffusion of solutes is prohibited.  This 

combination of macro and micro characteristics results in the ability to affect protein 

separations at exceedingly high linear velocities (>50 mm sec-1) without the mass transfer 

limitations common to porous phases.  These hydrodynamic advantages are 

complemented by a high degree of chemical separation diversity.  In addition to the range 

modalities of separation that can be affected using different base polymers, an extensive 

tool box of simple surface modification approaches has also been developed.  The fiber 

surfaces may be modified to affect high ligand densities for ion exchange (cationic and 

anionic) and affinity chromatography 30-32.   Affinity separations include the use of 

protein A for IgG purification and quantification, biotin-streptavidin interactions, and 

chelates for immobilized metal affinity chromatography (IMAC) 33-35.  In total, these 

attributes make the utilization of the C-CP fibers for exosome isolation a promising 

alternative to traditional isolation methodologies. 

This study describes the first successful use of the PET C-CP fibers to isolate and 

elute exosomes via a hydrophobic interaction chromatography (HIC) protocol.  The 

procedure, first developed for protein separations 27, is readily implemented to isolate 

exosomes from from host cell proteins and concomitant components present in cell 
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culture media, phosphate buffer, and urine.  The hydrophobic exosome surfaces adhere to 

the weakly-ionized surfaces of the PET fibers, making HIC a selective method of 

exosome isolation.  Use of an HIC approach, involving an inverse salt gradient for 

elution, is much preferred over a common reversed-phase (RP) method as organic 

solvents employed in RP might result in the loss of important species (e.g. proteins) 

adhered to the exosome surfaces.  It is important to note that while hydrophobic 

substrates have been used in previous exosome assay methods such as the Qiagen 

exoEasy Kit, use of a truly chromatographic method holds the promise for higher 

throughput and sampling/analysis of other matrix components such as host cell proteins 

as retentates can be selectively eluted.  Such advantages would be the same as argued in 

any case of solid phase extraction versus liquid chromatography.  

In order to investigate the ability of the C-CP fibers to isolate exosomes, 

Dictyostelium discoideum cells were used to generate generic exosomes. D.discoideum is 

not only simple and inexpensive to culture in the lab, but it is also a model organism used 

for studying cell signaling, the endocytic pathway, and generation of extracellular 

vesicles and exosomes 36, 37.  Under normal conditions, it is a common single-cell, soil-

dwelling amoeba; however, under environmental stress, such as lack of water and 

nutrients, its cells can form multi-cellular aggregates, the formation of which require 

direct cell-to-cell communication 37.  The ease with which Dictyostelium discoideum can 

be cultured, the prominent role of cellular communication in its life cycle, and its use as a 

model organism for exosome research, make it a useful organism for generating 

exosomes needed to investigate isolation techniques.  
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  In this demonstration study, the efficacy and efficiency of the new HIC C-CP 

fiber exosome isolation methodology are compared to two commonly utilized exosome 

isolation methods, standard differential centrifugation (DC), as it is the most widely used 

isolation method, and the exoEasy Maxi Kit (QIAGEN), as it is the most similar 

commercially-available method to the proposed HIC C-CP fiber approach 38.  The kit 

method uses post-centrifugation, spin-down processing and a membrane-based stationary 

phase to affect an “affinity” (presumably a hydrophobic interaction) binding step to 

isolate exosomes and other EVs from serum and plasma, or cell culture supernatants.  

There is no selectivity with regards to size or cellular origin of the EVs.  It relies on 

generic characterstics of the vesicle surfaces to capture all forms of EVs in the sample.  

The implementation of a chromatographic (flow through) approach versus the spin-down, 

solid phase extraction (SPE) approach, would seem to present a number of potential 

advantages.  These attributes are highlighted herein.  The utility of the C-CP fiber HPLC 

separation is further demonstrated by investigation of recovery of exosomes from 

simulated urine and standard cell culture media.   

 

Materials and methods 

Exosome Expression by Dictyostelium discoideum 

 Dictyostelium discoideum AX2 cells (provided by L. Temesvari, Clemson 

University) were grown and maintained axenically in HL5 medium supplemented with 

100 µg mL-1 ampicillin at room temperature in 25 mL culture flasks 39.  Cells were 

passaged at 70-90% confluency.   
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 For exosome expression, AX2 cells were used to inoculate 50 mL of HL5 media 

supplemented with 100 µg mL-1 ampicillin at a starting cell concentration of 5 – 10 x 105 

cells mL-1 in a 250 mL Erlenmeyer flask. After inoculation, the flask was covered in 

aluminum foil to block out light and placed on a shaker (150 RPM, 22˚C) for 48 hours 37.  

Isolation of exosomes via differential centrifugation and Qiagen exoEasy Kit 

Two widely accepted methods of exosome isolation, differential centrifugation and 

the Qiagen exoEasy Maxi Kit, were chosen as benchmarks for comparison to the 

proposed PET C-CP HIC isolation method. These specific methods were chosen because 

differential centrifugation is one of the most widely used methods for exosome isolation 

and the exoEasy Maxi Kit is most like the PET C-CP HIC isolation method in terms of 

being an exosome/surface adhesion process. While differential centrifugation is the most 

utilized method of exosome isolation, it can sediment host cell proteins along with 

exosomes. The process is also time consuming, and requires expensive equipment 18-20, 24.  

The Qiagen exoEasy Maxi kit uses a membrane-based affinity column to separate 

exosomes and other extracellular vesicles from solutions, in much less time in 

comparison to differential centrifugation; however, the process still takes up to 30 

minutes to complete and costs approximately $32 per sample 40.  Another shortcoming of 

the exoEasy method is the high carryover of host cell proteins along with the derived 

exosomes. 

 All resulting differential centrifugation and exoEasy kit exosome isolations were 

resuspended in either PBS or Qiagen elution buffer and subsequently divided into two 

aliquots. One aliquot of each sample was used for nanoparticle tracking  analysis (NTA) 
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for the determination of exosome concentration and size distribution, while the other was 

used as a concentrated exosome sample during the initial testing of the HIC C-CP fiber 

isolation method.  

Differential centrifugation  

Differential centrifugation retrieval of D. discoideum derived exosomes was 

conducted as previously described by Tatischeff et al., with slight modifications 41.  Due 

to the novelty of D. discoideum in exosome research, all centrifugation steps followed 

previous research completed by Tatischeff et al., rather than standard mammalian cell 

exosome isolation ultracentrifugation protocols.  All centrifugation steps performed 

below 12,000Xg were performed using an Eppendorf Centrifuge 5430R (Eppendorf, 

Hamburg, Germany).  Centrifugations of 12,000Xg or more were performed using a 

Beckman Coulter Avanti J-26S XPI Centrifuge with a JA-25.50 rotor (Beckman Coulter, 

Brea, CA). The first centrifugation step was performed at 700Xg (5 min., 22˚C) in a 50 

mL conical centrifuge tube.  After centrifugation, 45 mL of the supernatant was 

transferred to a new 50 mL conical centrifuge tube for further centrifugation, with the 

remaining 5 mL of supernatant saved for exosome isolation via the C-CP HIC method. 

The second centrifugation was performed at 2,000Xg (10 min., 22oC.) The final 

centrifugation step was performed at 12,000Xg (30 min., 4oC.)  The supernatant was 

carefully removed and the final pellet was re-suspended in 400 µL of PBS and stored at 

4oC.  
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Qiagen exoEasy Maxi Kit  

The QIAGEN exoEasy Maxi kit (QIAGEN, Hilden, Germany) isolations were 

accomplished per the manufacturer’s instructions. All of the centrifugation steps required 

by the kit were performed using an Eppendorf Centrifuge 5430R.  Briefly, 10 mL of the 

D. discoideum cell growth media prepared for exosome isolation were filtered using a 0.8 

µm syringe filter.  An additional 1 mL of the remaining media was filtered using a 0.8 

µm syringe filter and set aside for exosome isolation via the C-CP HIC method. The 

resulting exosomes were eluted using 400 µL of the Qiagen XE elution buffer and stored 

at 4oC. 

Hydrophobic interaction chromatography (HIC) method 

The poly(ethylene terephthalate) (PET) C-CP fibers were produced by the 

Materials Science and Engineering Department, Clemson University. All solvents were 

purchased from EMD (EMD Millipore, Billerica, MA).  Ammonium sulfate ((NH4)2SO4) 

and all other chemicals and proteins were purchased from Sigma-Aldrich (St. Louis, 

MO). Deionized water (DI-H2O) was secured from a Milli-Q water system. The 

chromatographic exosome separations were performed on a Dionex Ultimate 3000 HPLC 

system, LPG-3400SD Quaternary pump, and MWD-3000 UV–vis absorbance detector 

(Thermo Fisher Scientific, Waltham, MA).  A Rheodyne model 8125 low dispersion 

injector with 20 and 60 μL injection loops was used for exosome sample injections.  

The PET C-CP fiber microbore columns (column length: 200 mm, i.d., 0.762 mm 

PEEK, 450 fibers) prepared as described previously 28, were used for the exosome 

separations.  After flushing the column with Buffer C (10 mM potassium phosphate 
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buffer; pH = 7.4), it was equilibrated with Buffer A (1.8 M (NH4)2SO4 solution dissolved 

in PBS; pH = 7.4). As previously described in research regarding antibody purification 

using HIC, appropriate amounts of organic additives (such as methanol and acetonitrile) 

in the elution buffer demonstrate improved protein recovery 42-44.  As such, 30% 

acetonitrile (v/v) dissolved in PBS was employed as buffer B.  A mobile phase flow rate 

of 0.5 mL min-1 and a 20 min gradient from 100% buffer A to 100% buffer B was used 

for exosome separation. Briefly, exosome samples were injected onto the column during 

the high-salt (buffer A) mobile phase. Under these conditions, latent HCPs and exosomes 

are adsorbed to the PET fiber media, with the gradient subsequently eluting species of 

increasingly greater hydrophobicity.  UV absorbance at 216 nm was monitored as a 

means of detecting the eluting species (proteins and exosomes).  Based on the detector 

response reflecting their elution, purified exosomes were collected post-column.    

HIC elution and isolation of exosomes from simulated urine and standard cell culture 

media 

In order to demonstrate the HIC C-CP column isolation of exosomes from body 

fluids, and to assess the potential quantitative aspects of the exosome isolation method, 

previously isolated exosomes were spiked into a simulated urine matrix (194 g urea, 6 g 

CaCl2, 11 g Mg2SO4, and 80 g NaCl in 1 L of DI-H2O), spiked with myoglobin (Myo), α-

chymotrypsinogen A (Chymo), ribonuclease A (Ribo), bovine serum albumin (BSA), and 

lysozyme (Lyso) (0.1 mg mL-1 each), as simple representatives of the variety of proteins 

present in urine. HIC isolation of the vesicles from the simulated urine was followed by 

quantification based on the integrated peak areas of the eluted exosomes.  The gradient 
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baseline absorbance, obtained by running the gradient with no exosomes injected, was 

subtracted from the exosome-spiked separation chromatograms.     

Exosome characterization via Nanoparticle Tracking Analysis (NTA) 

Nanoparticle tracking analysis (NTA) was performed using a Nanosight 

(Malvern, Worcestershire, UK) NS500 with a 532 nm laser and 565 nm long pass cut off 

fluorescent filter (Center for Nanotechnology in Drug Delivery, UNC Eshelman School 

of Pharmacy). Samples were diluted to a concentration between 1x108 and 5x108 

particles mL-1 with 20 nm filtered PBS.  For each sample, particles moving under 

Brownian motion were recorded on video five times for 40 seconds each.  Hydrodynamic 

diameters were calculated using the Stokes-Einstein equation. 

Transmission Electron Microscopy Fixation, Staining, and Imaging 

Transmission electron microscopy (TEM) imaging was used to verify the physical 

size of single vesicles. D. discoideum differential centrifugation extracellular vesicles and 

human urine standard exosomes (Galan Laboratory Supplies, North Haven, CT) were 

fixed in 4% paraformaldehyde for 1 hour. Immediately following fixation, 5 µl of each 

sample was applied to 200 mesh formvar carbon coated copper grids (Electron 

Microscopy Sciences, Hatfield, PA) and allowed to adsorb for 5 minutes. Each sample 

grid was negatively stained with 5 µl of 2% Uranyl Acetate for 5 minutes. Grids were 

then washed 3 times in 10 µl of distilled water for 5 minutes each and allowed to dry for 

imaging. All TEM images were obtained using a Hitachi H-7600 TEM (Hitachi, Tokyo, 

Japan) in the Clemson Electron Microscopy Lab. 
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Scanning Electron Microscope Fixation and Imaging 

 The capture of intact exosomes onto the C-CP fiber surfaces was confirmed by 

scanning electron microscopy (SEM) imaging. Proprietary PET C-CP fiber-packed tips 

were produced according to a previously described method 45.  The fiber surfaces were 

wetted by flushing with 1 mL of H2O, and then rinsed in 2M (NH4)2SO4 in PBS.  100 µL 

of each sample (DC-derived exosomes, milieu or 2M (NH4)2SO4) were mixed with 2M 

(NH4)2SO4, followed by flushing through the tip (300Xg for 5 min). The prepared fibers 

were fixed in 1% osmium tetroxide for 1 hour and washed 3 times for 3 minutes each in 

distilled water to remove any excess osmium tetroxide. Next, each sample was washed in 

a 6 step gradient of ethanol-distilled water solutions starting at 50% ethanol and ending at 

100% ethanol for 3 minutes each. An additional 100% ethanol wash step was performed 

to ensure that all water had been removed from the sample. Finally, each sample was 

washed in a 50-50 hexamethyldisilazane (HMDS)-ethanol solution for 3 minutes and 

dried in 100% HMDS overnight. Samples were sputter-coated with platinum at 70 

millitorr argon for 2 minutes using a Hummer 6.2 Sputtering system (Anatech USA, 

Union City, CA).  SEM imaging was performed on a Hitachi S-4800 at 5.0 kV (Hitachi, 

Tokyo, Japan). 
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Results and Discussion 

HIC isolation of exosomes 

In order to determine whether or not exosomes could be isolated via HIC using the 

PET C-CP fibers, aliquots of the D. discoideum-derived exosomes that had been 

previously isolated using the benchmark techniques were run on the PET C-CP columns 

with a mobile phase flow rate of 0.5 mL min-1 and a 20 minute gradient from 100% 

buffer A (1.8 M (NH4)2SO4 in PBS) to 100% buffer B (30% v/v acetonitrile in PBS).  

Figure 2.1 shows the resulting chromatograms derived from pristine HL5 media and four 

different exosome isolation lots.  In Fig. 2.1a, pristine HL5 was injected in order to 

establish a baseline chromatogram of the media components.  The detector response 

shows a broadly eluting peak from ~2 – 10 minutes, composed of a myriad of proteins 

derived from yeast extract and peptone, various salts, and sugars.  In Fig. 2.1b, exosomes 

previously isolated via differential centrifugation were injected onto the fiber column. 

The resulting HIC chromatogram displays two major peaks, a very broad band between 2 

– 11 minutes, and a fairly sharp feature reflecting more strongly retained (hydrophobic) 

species with an elution time of ~13 – 13.5 mins.  In Fig. 2.1c, exosomes previously 

isolated via the exoEasy kit were injected for HIC separation. The resulting 

chromatogram displays four prominent peaks. In this case, the first three broad peaks 

eluting within the same same time frame of 2 – 11 minutes bands in Figs. 2.1a and b.  As 

in Fig. 2.1b, a discrete feature eluting in the ~13 – 13.5 min window is seen.  Based on 

the structure of the respective chromatograms (Figs. 2.1a-c), it is not unreasonable to 

suggest that the peaks eluting between 2 – 11 minutes represent remaining HL5 media 
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components, host cell (D. discoideum) proteinaceous and genetic material, salts, and 

other small molecules left behind during the previous isolation procedures, with the later 

eluting (13 – 13.5 min) smaller, sharper peak representing exosomes.   One cannot rule 

out that there may be some EV-related material in the broad elution band, but one would 

expect that such species would be very hydrophobic in comparison to other media and 

cellular byproducts.   
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Figure 2.1.  Representative HIC chromatograms of exosome isolation using 
using PET C-CP fibers.  Separations were performed with a mobile phase flow 
rate of 0.5 mL min-1, 60 µL aliquot injections, and a 20 min gradient from 100% 
buffer A (1.8 M (NH4)2SO4 solution dissolved in PBS; pH = 7.4) to 100% buffer 
B (30% acetonitrile (v/v) dissolved in PBS).  a) Baseline chromatogram of pristine 
HL5 media.  b) D. discoideum-derived exosomes previously isolated via 
differential centrifugation.  c) D. discoideum-derived exosomes previously 
isolated via the Qiagen exoEasy Maxi Kit.  d) D. discoideum-derived exosomes 
following centrifugation to remove cells and large debris.  e) D. discoideum-
derived exosomes following filtration through a 0.8 µm filter to remove cells 
and large debris. f) Abbreviated gradient program (injection at A (0.8 M 
(NH4)2SO4 solution dissolved in PBS; pH = 7.4), gradient initiated at t= 2 min., 
gradient to 100% buffer B (30% acetonitrile (v/v) dissolved in PBS) in 10 min. 
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Indeed, simple Bradford assays revealed very high protein/amino acid content in 

these bands.  Further confirmation of the latter assignment is presented in particle 

tracking data and SEM images presented in subsequent sections.  These results suggest 

that the PET C-CP HIC method is effective at separating the population of exosomes 

from other chemical species inherent in the spent cell media.  Indeed, the presence of the 

broad concomitant elution bands in the HIC chromatograms reflects the non-specificity 

and carryover towards proteins, etc. that exists in the DC and exoEasy isolates.  It is 

believed that the far greater abundance of such species (based on the integrated 

absorbance of the bands) for the exoEasy case versus the DC is due to non-specific 

binding to the hydrophobic matrix versus the differential centrifugation where proteins 

and exosomes are more discretely segregated.   HIC results prove that the exosome 

fractions can indeed be readily isolated from those otherwise undesirable components, as 

in the protein carryover in the exoEasy.  Removal of such proteins would require further 

processing for both the DC and exoEasy isolation methods.  The eluted exosome 

fractions from these isolations were collected and saved for NTA.  

 To more realistically compare the efficiencies of the C-CP fiber method with the 

benchmark methods, D. discoideum cell cultures were processed in similar fashions in 

terms of removing whole cells and cellular debris.  In the case of DC,  simple 

centrifugation is the first step, while macroscale debris is filter-removed prior to exoEasy 

Kit isolation.  The resulting culture milieu solutions, having the exosomes in their native 

(relatively dilute) concentrations, were then subjected to HIC on the PET C-CP fiber 

columns using the previous gradient.  The chromatogram of the centrifuged D. 
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discoideum cell culture milieu (Fig. 2.1d), displays two prominent peaks at elution times 

of 2 - 11 and approximately 13 minutes, respectively.   The differences in retention time 

(<5 % relative) and shapes among the exosome eluents may be due to slight differences 

in the surface chemistries of the exosomes based on how they were processed prior to the 

HIC separation, especially solvent composition.  This is certainly a point for further 

investigation.   As before, the broader peak is attributed to various media components and 

cellular metabolites and debris, with the smaller second peak attributed to more 

hydrophobic species, likely exosomes.  The relative responses for the concomitant 

species and the exosomes make sense as there is apt to be more debris and proteinaceous 

material, and lower exosome concentrations, in the milieu sample than the DC isolate 

suspended in PBS.  The exosome peak from the milieu reflects their more dilute 

concentration in this stage of media processing.  The corresponding HIC chromatogram 

taken of the filtered cell culture media is structurally the same as those seen in Figs. 2.1b-

d, though with a lower relative exosome yield versus the other media components.  This 

suggests that there may be some exosome loss in the initial filtration process in the 

exoEasy kit protocol, which is not unreasonable as the filter material itself is composed 

of both hydrophobic and hydrophilic layers.   

 As in any new chromatographic method, there are many aspects of the separation 

that can be optimized.  The ability to improve the HIC method throughput is illustrated in 

Fig. 2.1f, where the initial DC milieu sample was injected at a reduced salt concentration 

of 0.8 M ammonium sulfate.  In this way, the components making up the broad elution 

peak are not retained on the column.  Following passage of the injection peak, the reverse 
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salt gradient was then initiated, with clean elution of the exosomes.  A  simple 

comparison to the analogous full gradient (Fig. 2.1b) reveals that there is little or no 

difference in the exosome recovery for the abbreviated gradient method.  Thus, there is 

an expectation  that further improvements in throughput may be realized.  Certainly, 

larger column formats would also improve processing speeds. 

Comparison of exosome recoveries for the different isolation methodologies 

 NTA is a widely-accepted method for the evaluation of exosome concentration 

and size distribution, and so was used to characterize the exosome isolation from the DC 

and exoEasy kit procedures and those of the exosome fractions from the HIC isolations.  

Figure 2.2 provides a graphic overview of the procedural steps and NTA-determined 

exosome concentrations for each exosome isolation protocol.  The initial entrees into the 

flow charts (starting milieu volumes) were chosen based on previous experience in the 

use of DC and exoEasy methods, with the ultimate particle densities normalized to a 

common 50 mL volume sample. 

Since all particles counted during the NTA may not be exosomes (protein 

aggregates, other classes of extracellular vesicles, including microvesicles, and other 

cellular debris would also be counted), the resulting values (presented as particles-per-

mL) in Fig. 2.2 should be compared to one another on an order-of-magnitude basis as 

opposed to absolute values.  When compared in this manner, it can be seen that the 

differential centrifugation (Fig. 2.2a) and exoEasy kit (Fig. 2.2b) yield comparable 

exosome/particle recoveries.  Figure 2.2 also shows that the PET C-CP HIC exosome 

isolation method, regardless of whether the cell culture was first centrifuged (Fig. 2.2c) or 
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filtered (Fig. 2.2d) to remove cells and large debris, yields the same order of magnitude 

values as the benchmark methods following the initial debris removal steps.  

The particle size distributions, as measured by NTA, were also very similar across 

all of the isolated exosome samples, regardless of the isolation method (Table 2.1).  In 

general, the D. discoideum exosome size distributions were very similar to those 

previously reported by Tatischeff et al.41   Histograms of the NTA size distributions (Fig. 

2.3) each contained a prominant high concentration peak on the lower range of the size 
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Figure 2.2. Comparison of NTA-determined particle population 
characteristics following the various exosome isolation methodologies.  All 
values were normalized to number of particles (exosomes) derived from 50 mL 
of starting cell culture. Reported values are averages from triplicate isolations. 
a) Exosomes isolated via differential centrifugation. b) Exosomes isolated via 
Qiagen exoEasy Maxi Kit. c) Cell culture media cleared of cells and large 
debris via centrifugation, followed by exosome isolation via PET C-CP HIC. d) 
Cell culture media cleared of cells and large debris via filtration, followed by 
exosome isolation via PET C-CP HIC.  
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distribution scale ranging from  ~90  to  160 nm, typically representing ~70 % of the total 

population.  Beyond this, a minor, larger-sized fraction is also seen in each distribution, 

most prominently in the DC-generated populations.  These populations reflect protein and 

exosome agglomerates, as well as other classes of extracellular vesicles, including 

microvesicles, which would be most expected in the case of differential centrifugation.  

  
 Such populations would also reflect the time-lag associated with sampling, packaging, 

and shipping of the materials for NTA characterization.  Performing NTA/SEM/TEM 

measurements immediately following exosome isolation may help remediate the level of 

potential exosome or protein aggregation. Collectively, the NTA results demonstrate that 

the PET C-CP fiber exosome isolation method does not adversely bias exosome 

population recoveries (density or sizing) versus the benchmark isolation methods.    

As a final point of comparison, Fig. 2.2 also demonstrates the isolation time 

Table 1.  Comparison of exosome size population characteristics for the different isolation 
procedures as determined by NTA.  Values represent averages for triplicate isolations. 
 

 

Exosome Isolation Method Mean 

(nm) 

Mode 

(nm) 

Standard 

Deviation 
(nm) 

10th 

Percentile 
(nm) 

  90th             

Percentile  
(nm) 

Differential centrifugation 183 143 66.3 119              257 

Qiagen exoEasy Maxi kit 154 97.1 80.2 87.6              263 

Centrifuged milieu +  
          PET C-CP fibers  

155 121 60.1 106             228 

Filtered milieu +  
          PET C-CP fibers  

142 108 60.4 87.6             206 

Table 2.1 Comparison of EV size population characteristics for the different 
isolation procedures as determined by NTA 
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required for each of the processes.  Differential centrifugation is the most time-

consuming method, requiring more than 2 hours to perform (Figs. 2.2a).  In comparison, 

the exoEasy kit requires approximately 30 minutes (Figs. 2.2b), while the PET C-CP HIC 

method can be affected in only 8 minutes (Figs. 2.2 c,d).  The C-CP fiber-based method 

is appreciably faster than either benchmark method, a major asset with regards to its 

potential usefulness for exosome isolation in a clinical setting.   Indeed, the HIC method 

could be easilly affected in less than 3 minutes with the use of a step-gradient program as 

suggested in simple terms in Fig. 2.1f. 
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Imaging of exosomes adsorbed onto C-CP fibers 

While the size distributions of the D. discoideum EVs were very similar to those 

previously reported by Tatischeff et al. 38, the standard method of verifying the presence 

of EVs or exosomes generally includes NTA size distribution results in conjunction with 

Western Blot verification of the presence of known exosomal protein markers, and a 

TEM micrograph to visualize and verify sizes of individual vesicles. However, this trio of 

a b

c d

Figure 2.3. Representative nanoparticle tracking analysis (NTA) size 
distributions. a) differential centrifugation, b) Qiagen exoEasy Maxi kit, c) 
centrifuged milieu + PET C-CP fibers, and d) filtered Milieu + PET C-CP 
fibers. 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/elps.201800417#elps6829-bib-0038
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verification methodologies is for mammalian cell‐derived exosomes, where exosomal 

marker proteins have been verified and antibodies to these proteins are commercially 

available. To this end, no commercial antibodies exist for D. discoideum EV surface 

proteins. Therefore, we rely herein upon the resultant NTA data in combination with 

TEM micrographs of the commercially available exosome standards as compared to D. 

discoideum EVs resulting from the differential centrifugation method employed for 

isolation throughout this study (Fig. 2.4).  

The resulting micrographs show that the sizes and general morphology of the 

standard exosomes and those exosomes derived from D. discoideum are very similar. 

Figure 2.4. TEM images of exosomes immobilized on copper grids. (Left) 
Standard exosomes derived from human urine (Right)  D. discoideum-derived 
exosomes previously isolated via differential centrifugation.  
 

https://onlinelibrary.wiley.com/doi/full/10.1002/elps.201800417#elps6829-fig-0003
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Therefore, we contend that the differential centrifugation method employed resulted in 

the isolation of D. discoideum exosomes. These purified exosomes were subsequently 

utilized to produce SEM images of the exosomes on the experimental columns as 

outlined below. 

 SEM images were collected to verify the presence and integrity of the exosomes 

and to investigate how they interact with the PET C-CP fiber channels.  Exosomes that 

had been isolated from D. discoideum cell culture media via differential centrifugation 

a b

c

Figure 2.5. SEM images of exosomes immobilized on PET C-CP fibers. a) 2M 
ammonium sulfate control (no exosomes exposed).  b)  D. discoideum-derived 
exosomes previously isolated via differential centrifugation. c)  Higher 
magnification image of exosomes depicted in micrograph b, showing detail of 
exosome interactions with each other and the fiber surface.     
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and re-suspended in PBS were added to 2M ammonium sulfate chromatographic mobile 

phase and then each spun through PET C-CP fiber micropipette tips using the described 

solid phase extraction technique.33, 45  In addition, 2M ammonium sulfate was spun 

through a separate tip as a non-exosome control.   

In each case, an aqueous wash step was employed following exposure to remove 

any accumulated media particulates.  As seen in Fig. 2.5a, the fibers exposed only to the 

salt media show a very smooth surface, with multiple channels of the same fiber seen at 

this 10 µm-scale micrograph.  Passage of the DC–derived media through the fibers 

results in the adsorption of vesicle material as seen in Fig. 2.5b (2.0 µm-scale).  A large 

number of vesicles are present as individual entities, but some appear as aggregates.  It 

remains to be confirmed whether or not the agglomerates were formed on the fiber 

surface or originated in the milieu.  Further magnification of the DC-derived aliquot (Fig. 

2.5c, 500 nm scale) shows exquisite detail of individual exosomes, with diameters of 100 

nm or less, on the PET fiber surfaces with some neighboring exosomes touching one 

another, perhaps stretching or elongating as they adhere to the fiber.  This morphology 

could be early signs of aggregation or exosome fusion.  While the SEM imaging 

demonstrates the phenomenon of the immobilization of the exosomes on the fiber 

surfaces, it also suggests that the fiber platform might be a valuable means of studying 

exosome agglomeration or other phenomena. 

Isolation of exosomes via HIC from a simulated urine matrix 

Following verification that exosomes could be isolated directly from D. discoideum 

culture milieu, the ability to isolate exosomes from synthetic urine (an ability needed for 
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diagnostic applications) was investigated.  For this experiment, exosomes that had been 

previously isolated via differential centrifugation were spiked into a simulated urine 

matrix which was also spiked with the model proteins Myo, Chymo, Ribo, BSA and 

Lyso, each at a concentration of 0.1 mg mL-1.  In this way, isolation from both urine 

matrix components and concomitant proteins is demonstrated using the same HIC 

gradient as employed in the Fig. 2.1 separations.  Figure 2.6 shows the HIC 

chromatogram of the simulated urine matrix to establish baseline elution times for the 

matrix components and the spiked proteins.  The five proteins are very well resolved in 

this case, with the other matrix species eluting as a band over the 8 – 10 min elution 

window.  As seen in Fig. 2.6, when the simulated urine was spiked 50:50 with DC-

isolated exosomes and subsequently run on the C-CP columns, HIC revealed the 

expected peaks for the spiked proteins along with an additional, later-eluting prominent 

peak attributed to the exosomes.  Importantly, the added proteins appear as discrete peaks 

superimposed on a broader peak previously attributed to remnant proteins and debris 

associated with the spiked exosomes following their DC-isolation (Fig. 2.1b).   (The 0.1 

mg mL-1 concentrations spiked here are clearly higher than those present from the spiked, 

equal-volume, milieu isolate.)  The ability to cleanly separate exosomes from other 

species in a urine matrix suggests that C-CP fiber HIC (or simple solid phase 

extraction45) may be a promising method of isolation in a clinical setting.  
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Figure 2.6.  PET C-CP fiber HIC chromatograms of simulated urine matrix 
spiked at 0.1 mg ml-1 concentration of model proteins and 50:50 mixture of 
simulated urine and DC-isolated exosomes. Separations were performed with 
a mobile phase flow rate of 0.5 mL min-1, 20 µL aliquot injections, and a 20 min 
gradient from 100% buffer A (1.8 M (NH4)2SO4 solution dissolved in PBS; pH = 
7.4) to 100% buffer B (30% acetonitrile (v/v) dissolved in PBS).   
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Potential for Exosome Quantification 

In order to make exosome retrieval easier to verify and potentially quantify, a 

simple measure of recovery is needed.  In the context of the HPLC isolation step, UV-vis 

absorbance at 216 nm is a viable approach.  This is a common wavelength used in protein 

chromatography, and fortuitously, the exosomes absorb at this wavelength.  It is most 

common to quantify exosomes based on lysing the vesicles and quantifying the total 

protein content via Western blot separations or a Bradford-type assay, or counting/sizing 

particles via NTA.  Of course, this assumes no protein carryover in the isolation step, the 

protein content in each exosome is the same, and no extraneous cellular debris is present.  

Hook and co-workers have employed a surface plasmon resonance (SPR) approach to 

quantification 46, wherein target proteins are captured onto a gold substrate through a 

surface immobilized antibody.  Solution concentrations were extrapolated from first 

principles relationships, but not verified by any external standards.  To establish a 

quantitative relationship between exosome concentration and absorbance, increasingly 

larger aliquots of exosomes (previously isolated via DC) were added to 100 µL aliquots 

of the simulated urine and the culture milieu (HL5) matrices, and the integrated 

absorbance values for the peaks eluting between 13 - 14 minutes were recorded.  As 

shown in Fig. 2.7, a direct proportionality exists, suggesting quantitative recovery of 

exosomes from the C-CP fiber separation method.  While the robustness of the method as 

employed here requires far greater evaluation, the results plotted in Fig. 2.7 represent a 

total of 24 and 15 injections of the respective samples (urine and media), each on a single 

column, without showing deleterious effects 
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regarding the analytical precision.  This suggests insignificant carryover or irreversible 

binding of the exosome solutes.  The number of cycles that milieu-derived samples might 

be run is a more stringent and practical metric which is currently under review.   

Importantly, the slopes of the two response curves are virtually identical, 

implying that the purity of the isolated fractions is very consistent between the two matrix 

forms.  Note, we are in no position to place firm concentration values on the results of 

these experiments, as no appropriate certified reference materials (CRMs) exists.  

Sources of quantified exosomes will be investigated to provide more definitive figures of 

Figure 2.7.  Analytical response curves for separations of mixtures of 100 
µL of the test matrices (simulated urine and HL5 media) and the 
designated volumes of DC-isolated exosomes.  Separations were performed 
with a mobile phase flow rate of 0.5 mL min-1, 20 µL aliquot injections, and a 
20 min gradient from 100% buffer A to 100% buffer B.  Error bars reflect the 
standard deviation across n=3 injections. 
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metrics.  Based on the NTA values presented in Table 2.1, the working range presented in 

Fig. 2.7 is ~0.1 – 7 X109 particles for the 20 µL injections.  Accordingly, it is not difficult 

to imagine limits of detection for this method to be approximately 5 X107 particles.  Of 

course, UV-vis absorbance post-column quantification could also be applied for 

preparative purposes.  One could also envision other LC-compatible detection methods, 

for example, multi-angle light scatter (MALS), which would also provide size 

information for the eluting particles. 

Conclusions 

In order for  basic research and potential application of exosomes to continue to 

grow, lower cost, more time-efficient methods of exosome isolation are needed.  This 

report introduces a promising new isolation platform using PET C-CP fibers as stationary 

phases for HIC isolation of exosomes.  The method isolates exosome populations of 

similar number density and size distribution as currently accepted isolation methods 

involving advanced centrifugation or solid phase extraction.  The fiber platform is 

inexpensive ($5 USD per column which can be used >20 times on the analytical scale), 

while providing comparatively high throughput.  Additionally, the versatility of the C-CP 

fibers will allow for the addition of antibodies, surface chemistries, and other isolation 

modalities to transform the generic (hydrophobic interaction) exosome isolation method 

demonstrated here into a type-specific method.  In an alternative approach, the fibers may 

be used in spin-down column format (i.e., micropipette tips) to isolate exosomes from 

body fluids such as urine 47, providing high purity, high throughput, and cost-effective 

exosome isolation for potential clinical use.   Selective capture can be augmented with 



98 
 

spectroscopic or visual imaging as means of verifying the presence of target exosome 

species on the fiber surfaces.   

Much fundamental work remains towards realizing the practical utility of the 

method on the clinical, analytical, and preparative scales.  Each of these areas will pose 

challenges and require evaluation regarding selectivity, robustness, loading capacity, 

throughput, and column structure/operation parameters.  Many basic challenges towards 

this end remain.  For example, there exist no reference materials which contain 

quantitative amounts (either mass or number) of exosomes in defined media.  Ultimately, 

the potential impact of exosomes in modern medicine is a tremendous driving force for 

these continued efforts.  
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CHAPTER 3 

A MODEL SYSTEM TO INVESTIGATE SELECTIVE 

EXTRACELLULAR VESICLE CAPTURE  

Abstract 

Ovarian cancer (OC) is one of the deadliest cancers for women, in part due to its 

often late stage discovery. Given current advanced treatment options, earlier diagnosis of 

OC could greatly improve overall survival rates. Presently, there are no routinely 

administered early OC screening techniques for non-symptomatic women. This is crucial, 

as there is no symptomology associated with early stage, and late stage OC 

symptomology is generally vague, including abdominal bloating, gastrointestinal upset, 

nausea and fatigue. Exosomes are a subpopulation of extracellular vesicles (EVs) 

approximately 30-150 nm in diameter that may hold promise for the development of 

early OC diagnostics. However, despite promising studies, exosome diagnosis has been 

mainly limited to research laboratories primarily due to inconsistencies in isolation and 

characterization methodologies. The poly(ethylene terephthalate) (PET) capillary‐

channeled polymer (C‐CP) fiber-based EV isolation platform, discussed in Chapter 2, 

may result in quicker, cheaper, and easier exosome isolations, but requires refinement to 

improve the selectivity, specificity, and diagnostic accuracy required for clinical OC 

diagnostics. The model system of cancerous and non-cancerous fluorescent EVs and the 

immunoaffinity capture protocol developed and analyzed here will allow for quicker and 
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easier development and optimization of a selective PET C-CP EV isolation platform for 

use in OC diagnostics.  

These investigations include collaborative work with Dr. Ken Marcus of the 

Clemson University Chemistry Department. 
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Introduction 

Late stage diagnosis of severe maladies, particularly cancers, has led to poor 

outcomes and high mortality among patients.1-3 Early diagnosis of these diseases, 

regardless of treatment strategies, can greatly increase survival and outcome for patients. 

For example, patients with melanomas, if diagnosed early, have an average 5-year 

survival rate of 98%. However, when the patient is diagnosed late and melanoma reaches 

the lymph nodes or metastasizes to other organs during later stages, the 5-year survival 

rate drops to 64% and 23%, respectively.4 Likewise, pancreas, lung, ovarian, and breast 

cancer, among others, demonstrate similar 5-year survival patterns.3, 5-13 Improvements in 

early diagnosis and standardization of preventative screening are crucial components in 

improving cancer survival rates.  

Exosomes, a type of extracellular vesicle (EV), have recently garnered attention 

as diagnostic tools and have several unique properties that make them ideal candidates as 

biomarkers for early cancer diagnostics. First, as exosomes appear to be selectively 

packaged with particular contents, including exosomal protein, lipid, and RNA markers, 

they may be identified and traced back to the originating cell.14, 15 In particular, protein 

marker identification and miRNA expression pattern recognition through advanced data 

analysis may help develop exosome marker profiles for particular diseased cell-derived 

exosomes.5, 16, 17 Second, exosomes are released by nearly all types of cells and are found 

in nearly all types of body fluids.18 The ability to identify the same category of biomarker 

from nearly all cell types may allow for development of a universal test to screen for a 

multitude of diseases. Furthermore, a wide variety of body fluids from which to isolate 
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EVs provides flexibility with regards to the types of exosome isolation methods that may 

be utilized. Finally, exosomes are very stable and can protect protein and RNA contents 

from protease and RNase degradation.19-21 This high exosome stability may allow for the 

use of more severe isolation methods to enhance the speed and lower the cost of exosome 

isolations. In addition, this quality makes them a more reliable species for use in liquid 

biopsies than free DNA and RNA species that may be easily degraded.22  

To date, the full potential of exosome-based diagnostics has yet to be realized in 

clinical trials. However, several groups have developed promising exosome-based 

diagnostic platforms using protein and miRNA markers. For example, Zhao et al. have 

developed a microfluidics device that uses microbeads to capture and identify ovarian 

cancer (OC) exosomal protein markers.23 Similarly, Yokoi et al. have developed an 

analytical method to better diagnose OC using a combination of 8 exosome miRNAs with 

a sensitivity of 0.92 and a specificity of 0.91.16 As evidenced by these studies, OC has 

emerged as a desirable exosome diagnostic target due to its morbidity and the diagnostic 

difficulties associated with the disease. OC, when diagnosed in stage 3 or 4, has a 5 year 

survival rate of 29%. However, when OC is diagnosed and treated in stage 1, the 5 year 

survival rate is 92%.24 Unfortunately, due to lack of effective diagnostic technologies and 

indistinct early symptomology, most OC cases are diagnosed in stage 3 or 4.25, 26 

Exosome-based diagnostics may provide an opportunity for early stage OC detection, 

allowing treatments to be started earlier and potentially increasing the overall survival 

rate of OC patients. 
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There is now an ongoing effort to identify the patterns of protein and miRNA 

expression within malignant tumor-derived exosomes to establish biological pathways 

and discover new potential cancer biomarkers. By utilizing mass spectroscopy-based 

proteomics and miRNA sequencing analysis in conjunction with machine learning and 

pattern recognition algorithms, exosome expression patterns are being identified and 

categorized by cancer type, stage, malignancy, origin, and pathology.5, 27-39 As the 

available data continues to amass, more patterns that can be used for diagnosis will 

emerge. However, the quickly changing classifications, isolations, and terminologies 

surrounding exosomes and EVs may require that these analyses be revisited. Despite 

these early challenges, it is anticipated that the differentiation of cancerous and non-

cancerous exosome expression patterns from this data will ultimately be an important 

step in the development of quick, easy, and non-invasive exosome-based cancer 

diagnostics.  

Complete exosome proteomes and miRNA profiles are excellent for identification 

of proteins and miRNAs enriched in cancerous exosomes, but not realistic for affordable 

and efficient clinical diagnostics. Development of comprehensive proteomes and miRNA 

profiles is expensive, time consuming, and would require extensive data analysis 

amounting to long time periods passing between sample collection and diagnosis. A 

much simpler, cheaper, and faster strategy has been to utilize identified enriched protein 

and miRNA exosomal biomarkers to capture subpopulations to determine the origins of 

the exosomes.18, 22, 36, 37, 40-43 Through these kinds of  efforts, OC tumor cells have been 

found to release exosomes enriched in protein biomarkers including, EpCAM (epithelial 
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adhesion molecule), CA-125 (cancer antigen 125), CD24 (cluster of differentiation 24), 

HER-2 (human epidermal growth factor receptor 2), CLDN3 (claudin 3), CLDN4 

(claudin 4), L1CAM (L1 cell adhesion molecule), EGFR (epidermal growth factor 

receptor), PCNA (proliferating cell nuclear antigen), TGF-β1 (transforming growth factor 

- β1) , MAGE3/6 (melanoma antigen gene 3/6), FASN (fatty acid synthase), ERBB2 

(receptor tyrosine-protein kinase), and APOE (apolipoprotein E).43-47 Furthermore, 

antibodies to these biomarker proteins have demonstrated the ability to specifically 

capture and/or identify subpopulations of exosomes for potential disease diagnostics. 

Despite the promising medical applications and biomarker discovery underway, 

reliable exosome isolation remains a large hurdle for their use in diagnostics.18, 48-52 Slight 

variations in exosome isolation methods can greatly alter both the exosome proteome and 

miRNA profile40, 52-54, making comparisons across datasets difficult. Additionally, 

different exosome isolations may alter the integrity of the vesicles and their contents, 

further contributing to alterations in proteome and miRNA signatures.22, 36, 55 Although 

the EV community is working to create standards to increase consistency across the field, 

there remains a need for an improved exosome isolation method that can become a 

dominant protocol within the field. Current standards and commercially available 

isolation methods are often expensive, slow, inefficient, or retain non-exosomal 

impurities, making them unreliable in a clinical setting. A diagnostic test for early OC 

needs to be quick, easy, and cost effective so that it can be performed routinely as a 

preventative screening tool for women. Additionally, diagnostic accuracy has yet to be 

verified for each type of exosome isolation. Developing an improved exosome isolation 
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method that preserves exosome stability and integrity for downstream analysis is not only 

critical for clinical translation but will also improve the accuracy, speed, and cost of 

research laboratory protocols. 

To increase the signal to noise ratio inherent in discovery of exosomal markers 

and further improve diagnostic accuracy, it will be essential to efficiently separate 

exosomes from healthy and diseased sources. Immunoaffinity capture will almost 

certainly play a large role in this; however, differentiating capture of healthy and diseased 

exosome populations may prove difficult. The separation will likely require time 

consuming, costly protein assays to verify the results of each test and involve variable 

and costly patient samples. Alternatively, model systems are frequently used to speed up 

the protocol optimization process and reduce costs for early research. In this case, a 

model system of cancerous and non-cancerous cell lines capable of producing 

fluorescently-labeled exosomes would enable efficient optimization of the poly(ethylene 

terephthalate)(PET) capillary-channeled polymer (C-CP) fiber-based EV isolation 

platform, developed by Bruce et al.56, for use in OC diagnostics. This study details the 

development and analysis of two new cells lines, one cancerous and one non-cancerous, 

that constitutively express fluorescently-tagged exosomal marker proteins that allow for 

simple, colorimetric-based differentiation between their individually released exosomes. 

As there are several known exosomal OC protein biomarkers and OC is a prime 

target for exosome-based diagnostics, cancerous (SKOV-3) and non-cancerous (IHOE) 

ovarian cell lines were selected for the development of a model system for the production 

of fluorescently-labeled exosomes. Each cell line was genetically transduced to express 
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known exosomal markers, CD81 and CD9, with fluorescent tags of different excitation 

and emission wavelengths (GFP and RFP, respectively). Exosomes isolated from each of 

the resulting cell lines, IHOE-CD81-GFP and SKOV-3-CD9-RFP, express fluorescent 

markers that allow for easier differentiation, separation, and detection of cancerous and 

non-cancerous ovarian cell-derived exosome populations. To test the ability of PET C-CP 

fibers to capture the model vesicles and to check for any potential adverse effects of the 

fluorescent tags on the binding of the exosomes to the fibers, IHOE-CD81-GFP and 

SKOV-3-CD9-RFP exosomes were used to evaluate adherence to the surface of the PET 

C-CP fibers and fluorescence images were collected. Finally, in a proof-of-concept 

investigation aimed at future efforts for the direct translation to OC diagnostics based 

upon the new PET C-CP fiber-based EV isolation platform, antibodies to known 

universal exosomal biomarkers and exosomal OC biomarkers were used to capture pre-

enriched IHOE-CD81-GFP and SKOV-3-CD9-RFP exosomes on nitrocellulose 

membranes to demonstrate the specific capture of the cancerous and non-cancerous 

fluorescent exosomes. By utilizing these model cancer and non-cancer cell-derived 

exosomes, the accuracy, selectivity, and specificity of the new PET C-CP EV isolation 

platform may be studied without the need for more costly and difficult to obtain patient 

samples. With improvements as a result of the fluorescent exosome model system 

developed here, this diagnostic platform may be optimized for the identification of early 

stage ovarian cancer and hopefully provide a quick, easy-to-use, and inexpensive tool for 

routine and early ovarian cancer screening in the future. 
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As the EV research field expands, experts have expressed a growing concern that 

vesicles referred to generically as exosomes may actually be a mix of EV subtypes. Due 

to the complex debate surrounding EV classification and nomenclature currently 

underway, all EVs discussed herein will be referred to as small EVs (sEVs) rather than 

exosomes specifically. 

 

Materials and Methods 

Cell and culture conditions 

 Immortalized Human Ovarian Epithelial (IHOE) cells (Applied Biological 

Materials, Richmond, BC, Canada) were maintained in Prigrow I medium (Applied 

Biological Materials, Richmond, BC, Canada) supplemented with 10% exosome-depleted 

fetal bovine serum (FBS) (A2720801, Thermo Fisher Scientific, Waltham, MA), 100 

IU/mL penicillin and 100 µg/mL streptomycin at 37˚C and 5% CO2. Human ovarian 

adenocarcinoma epithelial SKOV-3 cells (ATCC, Manassas, VA) were maintained in 

McCoy’s 5a Medium Modified supplemented with 10% exosome-depleted fetal bovine 

serum (FBS), 100 IU/mL penicillin and 100 µg/mL streptomycin at 37˚C and 5% CO2. 

Additionally, IHOE-CD81-GFP and SKOV-3-CD9-RFP cells were supplemented with 

puromycin at a concentration of 2.5 µg/mL to maintain selection. All cells were passaged 

at 70-90% confluency.  

SKOV-3 and IHOE plasmid transduction and clone development 
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 Approximately 9x104 SKOV-3 and IHOE cells were seeded in each well of a 96 

well plate and incubated in media supplemented with 10% exosome-depleted FBS for 10-

18 hours before transduction. IHOE cells were transduced using an HIV lentivector 

system pre-packaged with either pCT-CD81-GFP or pCT-Cyto-GFP plasmid (CYTO124-

VA-1, CYTO118-VA-1, System Biosciences, Palo Alto, CA). SKOV-3 cells were 

transduced using an HIV lentivector system pre-packaged with either pCT-CD9-RFP or 

pCT-Cyto-RFP plasmid (CYTO123-VA-1, CYTO119-VA-1, System Biosciences, Palo 

Alto, CA). Both cell lines were transduced at a multiplicity of infections (MOI) of 1, 2, 5, 

and 10 using the TransDux MAX Lentivirus Transduction Reagent (LV860A-1, System 

Biosciences, Palo Alto, CA). After 72 hours of incubation at 37˚C and 5% CO2, cells 

were screened for fluorescence using a GE INCell Analyzer 2500HS (General Electric, 

Boston, MA), and cell culture media was replaced and supplemented with 2.5 µg/mL 

puromycin for selection. All cells were incubated for 7-14 days until stable transduction 

produced confluent polyclonal cultures. Afterward, dilution cloning was used to obtain 

single cells for the development of monoclonal stable cell lines. 

Small extracellular vesicle isolation using ultracentrifugation 

 All SKOV-3 and IHOE cells were cultured in Falcon 75 cm2 cell culture flasks 

with vented caps (Corning, Corning, NY) to approximately 80% confluency and 

replenished with fresh media. Cultures were incubated for 3 days and then conditioned 

media was collected for sEV isolation. sEV isolation was performed in a series of 

differential centrifugation steps starting with 45 mL of conditioned cell culture media. 

Using an Eppendorf Centrifuge 5430R (Eppendorf, Hamburg, Germany), the conditioned 
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media was centrifuged at 700 x g for 5 minutes at 22˚C. The resulting supernatant was 

then centrifuged at 2,000 x g for 10 minutes at 22˚C. Next, the resulting supernatant was 

centrifuged at 10,000 x g for 30 minutes at 4˚C using a Beckman Coulter Avanti J-26S 

XPI Centrifuge equipped with a JA-25.50 rotor (Beckman Coulter, Brea, CA) and the 

supernatant was collected. Finally, the collected supernatant was centrifuged at 120,000 x 

g for 60 minutes at 4˚C using a Beckman Coulter Optima XPN-80 Ultracentrifuge 

equipped with a Type 45 Ti rotor (Beckman Coulter, Brea, CA) and the supernatant was 

discarded. The final pellet was then resuspended in 400 µL of phosphate buffered saline 

(PBS). 

Fixation and staining of samples for transmission electron microscopy 

 Samples being prepared for transmission electron microscopy (TEM) were first 

fixed in 4% paraformaldehyde for 30 minutes on ice. Grid adhesion, staining, and 

washing steps were performed on parafilm by moving 200 mesh copper formvar grids 

(Electron Microscopy Sciences, Hatfield, PA) from drop to drop. Following fixation, 

grids were placed on 5 µL drops of each sample for 5 minutes. Grids were washed 3 

times with DI water for 4 minutes each, stained with 2% Uranyl Acetate for 5 minutes, 

and then washed 3 times with DI water for 4 minutes each. Grids were air dried in a low-

humidity environment and then imaged using a Hitachi H7600 TEM  (Hitachi, Tokyo, 

Japan). 

Production of cell lysate 
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Approximately 2.5 – 5 x 105 cells were resuspended in 1 mL of ice-cold 1X 

radioimmunoprecipitation assay (RIPA) lysis buffer (50672585, Thermo Fisher 

Scientific, Waltham, MA) and incubated with agitation for 30 minutes. Samples were 

then centrifuged at 13,000 x g for 20 minutes at 22˚C using an Eppendorf Centrifuge 

5424 (Eppendorf, Hamburg, Germany). The resulting supernatant (lysate) was collected 

and saved for subsequent analysis. 

Protein Quantification 

All sEV and cell lysate samples were quantified using a NanoVue Plus UV-Vis 

spectrophotometer (GE Healthcare, Chicago, IL). The spectrophotometer was blanked 

between each sample using phosphate buffered saline and samples were quantified at 280 

nm absorbance according to the manufacturer’s instructions. 

SDS-PAGE and western blot analysis of extracellular vesicles and cell lysates 

All samples were separated using a 12% gel and NuPAGE XCell SureLock Mini-

Cell electrophoresis system (Thermo Fisher Scientific, Waltham, MA) under reduced or 

non-reduced conditions. Cell lysate, recombinant TurboGFP protein (EVN-FP552, 

Axxora, Farmingdale, NY), and purified RFP protein (NBP199583, Fisher Scientific, 

Hampton, NH) were used as positive controls. All gels were run at 170 mV for 

approximately 45 minutes. Wet transfer was performed using a Genie Electrophoretic 

transfer system (Idea Scientific Co, Minneapolis, MN) with a polyvinylidene difluoride 

(PVDF) membrane in 1X Towbin buffer run at 12 V for approximately 90 minutes. 

PVDF membranes were blocked in 5% non-fat milk in 1X Tris buffered saline 
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supplemented with 0.5% Tween 20 (TBS-Tween) for 40 minutes at 37°C. Blocked 

membranes were rinsed with 0.5%Tween 20/TBS, and incubated overnight at 4oC with 

primary antibody (1:2000 rabbit anti-TurboGFP (PIPA522688, Fisher Scientific, 

Hampton, NH) or 1:1000 rabbit anti-RFP (600-401-379, Rockland Immunochemicals, 

Inc., Pottstown, PA)). After washing in TBS-Tween for 1 hour at 22°C with 6 buffer 

changes, membranes were incubated with secondary 1:5000 goat anti-mouse IgG 

horseradish peroxidase (1:5000; GTXMU004DHRPX, Immunoreagents, Inc., Raleigh, 

NC) or 1:10,000 goat anti-rabbit IgG horseradish peroxidase (GTXRB003FHRPX, 

Immunoreagents, Inc., Raleigh, NC) antibody for 1 hour at room temperature. Probed 

membranes were then washed in high salt tris buffered saline supplemented with 0.05% 

Tween (TS-Tween) for 1 hour at 22°C with 6 buffer changes. Finally, protein was 

detected using the Pierce ECL Western blotting substrate kit (32106, Thermo Fisher 

Scientific, Waltham, MA) following the manufacturer’s instructions. Western blot gels 

were loaded according to the following scheme. IHOE-CD81-GFP, SKOV-3-CD9-RFP, 

IHOE, and SKOV-3 cell lysate lanes were loaded with 150 µg of protein each. IHOE-

CD81-GFP, SKOV-3-CD9-RFP, IHOE, and SKOV-3 sEV lanes were loaded with 10 µg 

of protein each. Differences in cell lysate and sEV loading amounts are to account for 

differences in concentration of the protein of interest. Finally, the purified, control tGFP 

protein lane was loaded with 50 ng of protein and the purified, control RFP protein lane 

was loaded with 40 ng of protein.   
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C-CP fiber tip assembly 

 Polymer extruded polyethylene terephthalate capillary-channeled fibers (C-CP), 

produced by the Material Science and Engineering Department at Clemson University, 

were wound on a circular frame 8 times (450 fibers) then rinsed with hot water, 

acetonitrile, isopropanol, and ultra-pure water. Wound fibers were pulled through a 30 

cm length, 0.762 mm internal diameter polyether ether ketone (PEEK)(IDEX Health & 

Science LLC, Oak Harbor, WA) tubing using a plastic monofilament. Packed tubing 

sections were attached to the end of 200 µl micropipette tips and subsequently inserted 

through pierced centrifuge tube caps for sample spin-down and wash collection. 

sEV capture and isolation on C-CP tips 

 Following C-CP tip assembly, sEV or PBS samples of 100 µl were loaded into 

the tips and spun down at 300 x g for 1 minute using an Eppendorf Centrifuge 5430R 

(Eppendorf, Hamburg, Germany). Afterward, the loaded tubing was prepared for either 

SEM or fluorescence imaging.  

C-CP Fiber sample preparation for scanning electron microscopy 

 C-CP fiber samples being prepared for SEM were fixed in 1% osmium tetroxide 

for 1 hour with shaking. After removing the osmium tetroxide, samples were washed in 

deionized water 3 times for 3-5 minutes. Next, the samples were washed in an ethanol-

water mixture of the following ethanol percentages for 3 minutes each: 50%, 70%, 80%, 

90%, 95%, 100%, 100%. The samples were then washed in a 50:50 

hexamethyldisilazane(HMDS) –ethanol mixture for 3 minutes and then washed in 100% 
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HMDS and left to dry for 2-3 days. After drying, samples were attached to a metal stage 

using adhesive and platinum coated using the Hummer 6.2 Sputtering system (Anatech, 

Battle Creek, MI) at 70 millitorr for 2 minutes. A Hitachi SU5000 Field Emission 

Scanning Electron Microscope (FE-SEM) (Hitachi, Tokyo, Japan) was used to capture 

SEM images. 

Immunoaffinity blot capture technique 

 Antibodies for turboGFP, RFP, CD63, CD24, Her2, L1CAM, and EGFR (Table 

3.1) were used to capture sEVs on nitrocellulose membranes (See Figure 3.1 for visual 

experimental setup). To prepare the membranes, 0.25 µL of each primary antibody at a 

concentration of 1 mg/mL was applied to the nitrocellulose membrane and allowed to dry 

for 1 hour. Prepared membranes were blocked with 0.5% bovine serum albumin (BSA) in 

tris buffered saline supplemented with 0.5% Tween (TBS-Tween) for 30 minutes at 37˚ C 

to prevent non-specific binding. Blocked membranes were then exposed to IHOE-CD81-

GFP and/or SKOV-3-CD9-RFP sEVs in TBS-Tween at a concentration of 125 µg/mL for 

2 hours at room temperature with shaking. Finally, membranes were washed in TBS-

Tween for 1 hour with 6 buffer changes to remove any excess sample and decrease 

background signal. Fluorescent images of membranes were captured immediately while 

wetted with TBS-Tween to minimize variation in background signal.  
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Figure 3.1. Diagram of sEV immunoaffinity blot capture experimental setup. 
IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs were incubated in solution with 
antibody-dotted nitrocellulose membranes. Capture studies were performed with 
IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV samples in a) independent 
experiments and b) mixed sample experiments. Capture antibodies used in the 
complete experiment are detailed in Table 3.1. 
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Fluorescence Intensity, Super-Resolution Confocal Imaging, and Image Analysis 

 Confocal fluorescent and differential interference contrast (DIC) images 

were captured using a Leica SP8 confocal microscope with Hyvolution super-resolution 

(Leica, Wetzlar, Germany). IHOE, IHOE-Cyto-GFP, IHOE-CD81-GFP, SKOV-3, 

SKOV-3-cyto-RFP, and SKOV-3-CD9-RFP cells were seeded in 8-well, coverslip 

bottom imaging plates at a concentration of 1 – 5  x 104 cells/mL. Cells were fixed in 4% 

paraformaldehyde (EMS, Hatfield, PA) for 15 minutes at 22˚C and washed 3 times in 1X 

PBS. Cells were then stained with 300 nM DAPI (4',6-Diamidino-2-Phenylindole, 

Dihydrochloride) for 5 minutes at 22˚C and washed 3 times in PBS prior to imaging. All 

images were captured using an HC PL APO CS2 63x/1.40 oil immersion objective. DAPI 

images were obtained using 405 nm excitation (15% power; gain=50), and a gateable 

HyD detector (411-449 nm detection; time gate = 8.5-12 ns). GFP images were obtained 

using 488 nm excitation (15% power; gain=100), and a gateable HyD detector (512-564 

nm detection, time gate = 0.01-6 ns).  RFP images were obtained using 558 nm excitation 

(25% power; gain=300), and a gateable HyD detector (575-650 nm detection, timegate = 

0.08-3.58 ns).  

Relative fluorescence intensity measurements of IHOE-CD81-GFP and SKOV-3-

CD9-RFP sEVs isolated by UC and resuspended in PBS were obtained using a Biotek 

Synergy H1 Hybrid Reader (Biotek, Winooski, VT) with a 100 ms exposure time for all 

samples. The suspended IHOE-CD81-GFP sEVs were excited at 488 nm with 

fluorescence measured at 525 nm and suspended SKOV-3-CD9-RFP sEVs were excited 

at 550 nm with fluorescence measured at 590 nm. 
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All fluorescent C-CP fiber images were captured using a Leica SP8 HyVolution 

confocal microscope (Leica, Wetzlar, Germany). PET C-CP fibers prepared with samples 

were removed from the packed columns and spread evenly across a slide prior to 

imaging. All green fluorescent protein (GFP) images were obtained using a 488 nm 

excitation laser line at 25% intensity, an emission detection range from 500-541 nm, with 

a detector gain of 300, and a time gate from 0.08-3.58 ns. All red fluorescent protein 

(RFP) images were obtained using a 558 nm excitation laser line at 25% intensity, an 

emission detection range from 564-628 nm, with a detector gain of 300, and a time gate 

from 0.3-6 ns. 

Relative fluorescence intensity measurements of the dot blots on nitrocellulose 

membranes, prepared as described in the immunoaffinity blot capture technique above, 

were obtained using a Leica Thunder- Model Organism imaging system (Leica, Wetzlar, 

Germany). Single-channel images for GFP and RFP were captured using a Plan APO 

1.0X objective (0.09 numeral aperture, no immersion) with a 5x zoom for a total of 50x 

magnification (GFP - 100 ms exposure; ET GFP filter set (450-490 nm excitation/500-

550 nm detection); RFP- 2s exposure; ET mCherry filter set (540-580 nm excitation/592-

667 nm detection).  Following image capture, average relative fluorescence intensity was 

measured using ImageJ version 1.48 software (NIH, Bethesda, MD). Relative 

fluorescence intensity values were normalized to the average intensities of UC isolated 

sEVs from IHOE CD81-GFP and SKOV-3-CD9-RFP cells dotted (3 µl) on a 

nitrocellulose membrane at a protein concentration of 2,500 µg/mL and imaged under the 
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same conditions. All intensity values were adjusted using appropriate background 

subtractions.  

Statistical Analysis 

 All numeric values are presented as sample means ± 1 standard deviation. Data 

were analyzed using a one-tailed t-test (α=0.05) in Microsoft Excel’s data analysis 

software (Microsoft, Redmond, WA). All tests with p<0.05 were considered statistically 

significant. 
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Antibody Antigen Description Catalog Number 
Rabbit anti-
TurboGFP 

Brighter variant of the traditional green 
fluorescent protein – a commonly used 
fluorescent marker. 

AB513 (Evrogen, 
Moscow, Russia) 

Rabbit anti-
RFP 

Red fluorescent protein – a commonly 
used fluorescent marker. 

600-401-379 (Rockland 
Immunochemicals Inc., 
Limerick, PA) 

Mouse anti-
CD81 

Tetraspanin involved in signal 
transduction and trafficking. Common 
sEV marker.89 

sc-166029 (Santa Cruz 
Biotechnology, Dallas, 
TX) 

Mouse anti-
CD9 

Tetraspanin involved in cell adhesion and 
migration. Common sEV marker.89 

sc-13118 (Santa Cruz 
Biotechnology, Dallas, 
TX) 

Rabbit anti-
CD63 

Tetraspanin involved in cell signaling 
cascades. Common sEV marker.89 

11271-r142 (Sino 
Biological Inc., 
Beijing, China) 

Mouse anti-
CD24 

Sialoglycoprotein associated with 
development, invasion, and metastasis of 
cancer cells. Overexpressed in ovarian 
cancer sEVs.90 

14-0247-82 (Thermo 
Fisher Scientific, 
Waltham, MA) 

Mouse anti-
HER-2 

Human Epidermal Growth Factor 
Receptor 2 - Tyrosine kinase receptor 
involved in cell proliferation and tumor 
cell metastasis. Associated with poor 
outcomes in ovarian cancer.65 

BMS120 
(ThermoFisher 
Scientific, Waltham, 
MA) 

Mouse anti-
L1CAM 

Cell adhesion molecule involved in cell 
proliferation, adhesion, migration, and 
chemoresistance. Associated with poor 
prognosis in various carcinomas and 
ovarian cancer.91 

L4543 (Sigma-Aldrich, 
St. Louis, MO) 

Mouse anti-
EGFR 

Epidermal Growth Factor Receptor – 
Tyrosine kinase receptor involved in cell 
proliferation, migration, and invasion. 
Highly expressed in ovarian tumors.92 

555996 (BD 
Biosciences, San Jose, 
CA) 

Table 3.1. Description and catalog number of antibodies used in western 
blot and immuno-affinity blot capture experiments. 
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Results 

Establishment and verification of IHOE-CD81-GFP and SKOV-3-CD9-RFP model 

system 

Initial lentiviral-mediated transduction of IHOE and SKOV-3 cells with pCT-

Cyto-GFP (CYTO118-VA-1, SBI, Palo Alto, CA) and pCT-Cyto-RFP (CYTO119-VA-1, 

SBI, Palo Alto, CA), respectively, revealed an optimal transduction efficiency of 10 pCT-

Cyto-GFP virus particles per IHOE cell and 5 pCT-Cyto-RFP virus particles per SKOV-3 

cell. Transduction of IHOE cells with pCT-CD81-GFP or the pCT-Cyto-GFP control 

plasmid resulted in production of IHOE-CD81-GFP and IHOE-Cyto-GFP control cells, 

respectively. Transduction of SKOV-3 cells resulted in production of SKOV-3-CD9-RFP 

and SKOV-3-Cyto-RFP control cells, respectively. Confocal imaging of IHOE-CD81-

GFP cells, stained with DAPI (see Figure 3.2), revealed punctate expression of GFP 

throughout the cytoplasm of the cell. Under the same imaging conditions, IHOE-Cyto-

GFP control cells (see Figure 3.2) demonstrated even GFP distribution throughout the 

entire cell, including potential expression within the nucleus. Non-transduced control 

IHOE cells (see Figure 3.2) demonstrated no GFP expression while none of the samples 

demonstrated RFP expression (see Figure 3.2)   
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Figure 3.2.  Confocal Fluorescence and DIC Images of transduced cells fixed 
and stained with DAPI. Fluorescence and DIC images of IHOE-CD81-GFP; 
IHOE-Cyto-GFP; and IHOE cells. Blue emission spectra (425-500 nm), green 
emission spectra (510-590 nm), and red emission spectra (575-650 nm) were 
captured in single channels and overlaid in confocal images.  
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Similarly, confocal imaging of SKOV-3-CD9-RFP cells, stained with DAPI (see 

Figure 3.3), showed punctate expression of RFP throughout the cytoplasm with little 

evidence of RFP expression in the nucleus. Imaging of the SKOV-3-Cyto-RFP control 

cells (see Figure 3.3) revealed even RFP expression throughout the entire cell, including 

strong expression overlapping the nucleus. Non-transduced control SKOV-3 cells 

displayed no evidence of RFP expression under the same imaging conditions (Figure 

3.3). Additionally, none of the samples demonstrated GFP expression (see Figure 3.3) 
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Figure 3.3.  Confocal Fluorescence and DIC Images of transduced cells 
fixed and stained with DAPI. Fluorescence and DIC images of SKOV-3-
CD9-RFP; SKOV-3-Cyto-RFP; and SKOV-3 cells. Blue emission spectra 
(425-500 nm), green emission spectra (510-590 nm), and red emission spectra 
(575-650 nm) were captured in single channels and overlaid in confocal 
images. 
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TEM of sEV samples isolated from IHOE-CD81-GFP and SKOV-3-CD9-RFP 

cells revealed the presence of single vesicles of approximately 80-140 nm in diameter 

(see Figure 3.4). Observed vesicles from both IHOE-CD81-GFP and SKOV-3-CD9-RFP 

cells demonstrated a slight “dimpled” morphology as well as darker staining around the 

exterior of the vesicle. The vesicles appeared intact and demonstrated no signs of damage 

such as deformation, cracks, or debris. 

 

 

 

  

Figure 3.4. Transmission electron microscopy of small extracellular 
vesicles. TEM of sEVs isolated from (a) IHOE-CD81-GFP and (b) SKOV-
3-RFP cells by ultracentrifugation.  
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Upon western blot analysis, GFP normally expresses a protein band size of ~26 

kDa57, 58, as does CD8159, while RFP normally expresses a protein band size of ~ 27 

kDa60 and CD9 a protein band size of ~ 25 kDa.61 As such, CD81-GFP should express a 

protein band size of ~ 52 kDa, as should CD9-RFP. Western blot analysis of IHOE-

CD81-GFP sEVs and cell lysate using rabbit anti-turboGFP (tGFP) (see Figure 3.5a) 

revealed multiple bands at approximately 24 kDa (Band I), 41 kDa (Band II), 55 kDa 

(Band III), and > 62 kDa (Band IV), while non-transduced control IHOE sEVs and cell 

lysate showed no bands. Purified, control tGFP protein displayed bands at approximately 

26 kDa and 43 kDa. SKOV-3-CD9-RFP sEVs and cell lysate probed with rabbit anti-RFP 

showed bands at ~ 45 kDa (Band V) and  ~54 kDa (Band VI) (see Figure 3.5b), while 

non-transduced control SKOV-3 sEVs and cell lysate showed no bands. Purified, control 

RFP protein displayed a single band at ~28 kDa. 
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Figure 3.5.  GFP and RFP western blots of IHOE-CD81-GFP sEVs and cell 
lysate and SKOV-3-CD9-RFP sEVs and cell lysate. a) Rabbit anti-tGFP and b) 
rabbit anti-RFP primary antibody probing. Arrows and Roman numeral indicate 
regions of interest. 
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The dotting of isolated, enriched IHOE-CD81-GFP sEVs and SKOV-3-CD9-RFP 

sEVs on a nitrocellulose membrane with protein concentrations of 2500 µg/mL revealed 

visibly greater relative fluorescence intensity for both sEV samples compared to the 

vesicle-free PBS controls (see Figure 3.6). The sample images (Figures 3.6a,c) also 

demonstrated distinct puncta. Average fluorescence intensities of these images (Figures 

3.6a,c) were subsequently used for normalization of further nitrocellulose dotting and 

capture experiments. 
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Figure 3.6.  Fluorescence images of GFP and RFP tagged vesicles dotted on 
nitrocellulose membrane. (a) Immortalized Human Ovarian Epithelial (IHOE)-
derived CD81-GFP tagged, (b) IHOE-derived, (d) SKOV-3-derived CD9-RFP 
tagged, and (d) SKOV-3-derived sEVs were isolated by ultracentrifugation and 
dotted on a nitrocellulose membrane. Extracellular vesicle isolations were dotted 
at a concentration of 2500 µg/mL of protein. (e, f) PBS controls dotted on 
nitrocellulose. Images were obtained using both a GFP filter with a 100 ms 
exposure (a,b,c) and an mCherry filter with a 2 s exposure (d,e,f).  
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Following imaging of the IHOE-CD81-GFP and SKOV-3-CD81-RFP sEVs on 

nitrocellulose (see Figure 3.7), average relative fluorescence intensity per µg of total 

protein of the IHOE-CD81-GFP and SKOV-3-CD81-RFP sEVs was compared to normal 

IHOE and SKOV-3 sEVs as well as to IHOE-CD81-GFP, SKOV-3-CD9-RFP, IHOE, 

and SKOV-3 cell lysates. Relative fluorescence intensities per µg of protein of IHOE-

CD81-GFP and SKOV-3-CD9-RFP sEVs (see Figure 3.7) were significantly higher than 

those of their respective cell lysates and non-transduced control cell sEVs. Additionally, 

relative fluorescence intensities of IHOE-CD81-GFP and SKOV-3-CD9-RFP cell lysates 

were significantly higher than non-transduced IHOE and SKOV-3 cell lysates. It should 

be noted that while the relative fluorescence intensities of the fluorescent cell lysate 

samples were much higher than the corresponding fluorescent sEV samples, the total 

protein in the fluorescent cell lysate samples were much higher. Thus, relative 

fluorescence per g of protein was much higher in the fluorescent sEV samples. 
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Figure 3.7.  Relative fluorescence intensity per µg of protein of sEVs and cell 
lysate imaged on nitrocellulose membranes. Green bars represent samples derived 
from IHOE cells and red bars represent samples derived from SKOV-3 cells. 
Fluorescent sEVs and cell lysate were derived from IHOE-CD81-GFP and SKOV-3-
CD9-RFP cells. Normal sEVs and cell lysate were derived from non-transduced 
IHOE and SKOV-3 control cells. Corresponding samples were subjected to a 
student’s t-test ( ** - significantly different from corresponding sample and control, 
p<0.05) ( * - significantly different from control alone, p<0.05); error bars 
demonstrate one standard deviation, n=3. 
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 The relative fluorescence intensity of IHOE-CD81-GFP sEVs in solution 

measured at 525 nm over varied protein concentrations (see Figure 3.8a) demonstrated 

consistent intensities and a coefficient of determination (R2) of 0.9805. Similarly, the 

relative fluorescence intensity of SKOV-3-CD9-RFP sEVs in solution measured at 590 

nm over varied protein concentrations (see Figure 8b) demonstrated consistent intensities 

and a coefficient of determination (R2) of 0.9190. 

 

  

Figure 3.8.  Relative fluorescence intensity per µg of suspended protein.  a) 
IHOE-CD81-GFP sEVs excited at 488 nm with fluorescence measured at 525 
nm and b) SKOV-3-CD9-RFP sEVs excited at 550 nm with fluorescence 
measured at 590 nm. Relative fluorescence intensity was measured with a 100 
ms exposure time for all samples. Calculated coefficient of determination (R2) 
represents the level of explained variability within the sample group. Coefficient 
of determination values: a) 0.9805 and b) 0.919. 
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PET C-CP fiber sEV capture 

Following cell line establishment and verification, IHOE-CD81-GFP and SKOV-

3-CD9-RFP sEVs, initially isolated and concentrated via UC, were spun down onto C-CP 

fibers in a micropipette tip format. Observation of the fibers under SEM revealed 

significant vesicle capture along the surfaces of the PET C-CP fibers loaded with the 

IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV samples, while no vesicles were seen on 

the PET C-CP fiber surfaces exposed to the sEV-free PBS control (see Figure 3.9). 

IHOE-CD81-GFP vesicles on the fiber surface appeared more evenly distributed, while 

SKOV-3-CD9-RFP vesicles on the fiber surface appeared to have greater amounts of 

vesicle aggregation. Neither sample demonstrated significant vesicle damage.  

  

Figure 3.9. Scanning electron microscopy of small extracellular vesicles on 
PET C-CP fibers. SEM of sEVs isolated from (a) IHOE-CD81-GFP and (b) 
SKOV-3-CD9-RFP cells by ultracentrifugation and (c) an sEV-free PBS control 
spun down onto PET C-CP fibers in a micropipette tip format. 
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Super-resolution confocal microscopy of IHOE-CD81-GFP sEVs (see Figure 

3.10a) revealed small fluorescent particles, approximately 0.2-1 µm in diameter, scattered 

across the surface of the PET C-CP fibers. While the fibers emitted significant 

autofluorescence in the observed GFP emission range (500-541 nm; see PBS control in 

Figure 3.10c), fluorescent puncta remained observable in micrographs of the IHOE-

CD81-GFP samples. Non-transduced IHOE sEVs (non-fluorescent) captured on the fiber 

surfaces appeared no different than the PBS control-treated fibers (see Figure 3.10b). 

Similarly, super-resolution confocal microscopy of SKOV-3-CD9-RFP sEVs (see Figure 

3.10d) revealed small fluorescent particles, approximately 0.2-1 µm in diameter, 

scattered across the surface of the PET C-CP fibers. While the fibers emitted significant 

autofluorescence in the observed RFP emission range (564-628 nm; see PBS control in 

Figure 13f), additional fluorescent puncta were visible in the micrographs of the SKOV-

3-CD9-RFP samples. Non-transduced SKOV-3 sEVs (non-fluorescent) captured on the 

fiber surfaces appeared no different than the PBS control-treated fiber (see Figure 3.10e). 
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Figure 3.10. Super-resolution confocal fluorescence microscopy of 
IHOE-CD81-GFP and SKOV-3-CD9-RFP-expressing small extracellular 
vesicles on PET C-CP fibers. Super-resolution confocal fluorescence 
microscopy of (a) IHOE-CD81-GFP sEVs, (b) non-transduced IHOE sEVs 
(non-fluorescent), (c) PBS (d) SKOV-3-CD9-RFP sEVs, (e) non-transduced 
SKOV-3 sEVs (non-fluorescent) and (f) PBS spun down onto PET C-CP 
fibers in a micropipette tip format. Images a, b, and c were captured under 
GFP imaging conditions (see Materials and Methods) and images d, e, and f 
were captured under RFP imaging conditions. Arrows indicate distinct 
exosomal adherence regions along the fibers. 



138 
 

 

IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV mixed samples spun onto PET C-

CP fibers demonstrated similar patterns to the IHOE-CD81-GFP and SKOV-3-CD9-RFP 

samples alone (see Figure 3.11). The mixed samples demonstrated fluorescent particles 

within both the green emission range (500-541 nm, see Figure 3.11a) and red emission 

range (564-628 nm, see Figure 3.11b). An overlaid image of the green and red emission 

channels (see Figure 3.11c), revealed the presence of green and red fluorescent particles 

in both overlapping and distinct locations along the fibers (see arrows on Figure 3.11).  
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Figure 3.11. Super-resolution confocal fluorescence microscopy of IHOE-
CD81-GFP and SKOV-3-CD9-RFP small extracellular vesicles on PET C-CP 
fibers. Super-resolution confocal fluorescence microscopy of IHOE-CD81-GFP 
and SKOV-3-CD9-RFP sEVs mixed prior to being spun down onto PET C-CP 
fibers in a micropipette format. Observations in (a) green and (b) red channels were 
(c) overlaid showing distinct exosomal adherence locations along the fibers 
(arrows) 
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Selective immunoaffinity capture of sEVs 

 Following determination of average fluorescence values for the sample area of the 

controls for normalization (Figure 3.6), immunoaffinity capture experiments were set up 

as described in Figure 3.1 using nitrocellulose strips dotted with the antibodies listed in 

Table 3.1. IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV samples were added to 

separate nitrocellulose antibody-dotted capture strips (see Figure 3.1a and Table 3.1) and 

imaged with multichannel widefield fluorescence microscopy (see Figures 3.12-3.16, 

Table 3.2). In a separate experiment, IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs 

were mixed prior to addition to a single nitrocellulose antibody-dotted capture strip (see 

Figure 3.1b and Table 3.1) and imaged with multichannel widefield fluorescence 

microscopy (see Figures 3.17-3.18, Table 3.2). The positive control capture antibody 

against tGFP (rabbit anti-tGFP) demonstrated significant GFP fluorescence intensity 

when incubated with IHOE-CD81-GFP sEVs alone (see Figure 3.12a) or with a sample 

containing both IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs (see Figure 3.12c), as 

compared to the negative PBS controls (no antibody, IHOE-CD81-GFP or SKOV-3-

CD9-RFP sEV samples; see Figure 3.12e,f). Similarly, the positive control capture 

antibody against RFP (rabbit anti-RFP) demonstrated significant mCherry fluorescence 

intensity when incubated with SKOV-3-CD9-RFP sEVs alone (see Figure 3.12h) or with 

a sample containing both IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs(see Figure 

3.12j), as compared to the negative PBS controls (no antibody, IHOE-CD81-GFP or 

SKOV-3-CD9-RFP sEV samples; see Figure 3.12k,l). No spectral crossover was 

observed between the red and green channels (see Figure 3.12g,i,b,d) Fluorescence of the 
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captured IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs appeared to be more 

homogeneous as opposed to punctate in nature as compared to IHOE-CD81-GFP and 

SKOV-3-CD9-RFP sEV samples dotted directly onto a nitrocellulose surface without 

specific capture antibodies (Figure 3.6). 
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Figure 3.12. Immunoaffinity blot capture using rabbit anti-tGFP and 
rabbit anti-RFP antibodies. IHOE-CD81-GFP and/or SKOV-3-CD9-RFP 
sEVs were isolated by UC and captured on a nitrocellulose membrane using 
rabbit anti-tGFP or rabbit anti-RFP antibodies. Each type of sEV was exposed 
to antibody-dotted nitrocellulose for 2 hours at a protein concentration of 125 
µg/mL followed by a 1 hour wash in TBS-Tween. GFP images were obtained 
using a 100 ms exposure and mCherry images were obtained using a 2 s 
exposure. 
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 CD63 is a generic exosomal marker protein. When rabbit anti-CD63 antibodies 

were used to capture IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs, there was 

significant relative fluorescence intensity for IHOE-CD81-GFP sEVs (Figures 3.13-3.14, 

Table 3.2) and mixed IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs (Figures 3.17-

3.18, Table 3.2) in the green channel. Rabbit anti-CD63 dots also demonstrated 

significant relative fluorescence intensity for SKOV-3-CD9-RFP sEVs (Figures 3.15-

3.16, Table 3.2) and mixed IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs (Figures 

3.17-3.18, Table 3.2) in the red channel. The rabbit anti-CD63 normalized relative 

fluorescence intensity for IHOE-CD81-GFP sEVs in the green channel and the 

normalized relative fluorescence intensity for SKOV-3-CD9-RFP sEVs in the red 

channel were not significantly different (see Figures 3.13-3.16). Likewise, the rabbit anti-

CD63 normalized relative fluorescence intensities in both the green and red channels for 

mixed IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs were not significantly different 

(see Figures 3.17-3.18).  
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Figure 3.13. IHOE-CD81-GFP sEVs immuno-captured on a nitrocellulose 
membrane and imaged with multichannel microscopy. IHOE-CD81-GFP 
sEVs were exposed to antibody-dotted nitrocellulose for 2 hours at a protein 
concentration of 125 µg/mL followed by a 1 hour wash in TBS-Tween. GFP 
images were obtained using a 100 ms exposure and mCherry images were 
obtained using a 2 s exposure. 
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Figure 3.14. Normalized relative fluorescence intensities of IHOE-CD81-GFP 
immuno-captured on a nitrocellulose membrane and imaged with multichannel 
microscopy. IHOE-CD81-GFP sEVs were captured and imaged on a nitrocellulose 
test strips. sEVs were exposed to the multiple antibody-dotted nitrocellulose test 
strip for 2 hours at a protein concentration of 125 µg/mL followed by a 1 hour wash 
in TBS-Tween. GFP (green bar) images were obtained using a 100 ms exposure and 
mCherry (red bar) images were obtained using a 2 s exposure. (* - Significantly 
different from PBS control and corresponding fluorescence channel data based on a 
one-tailed t-test) 
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Figure 3.15. SKOV-3-CD9-RFP sEVs immuno-captured on a nitrocellulose 
membrane and imaged with multichannel microscopy. SKOV-3-CD9-RFP 
sEVs were exposed to antibody-dotted nitrocellulose for 2 hours at a protein 
concentration of 125 µg/mL followed by a 1 hour wash in TBS-Tween. GFP 
images were obtained using a 100 ms exposure and mCherry images were 
obtained using a 2 s exposure. 
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Figure 3.16. Normalized relative fluorescence intensities of SKOV-3-CD9-
RFP sEVs immuno-captured on a nitrocellulose membrane and imaged with 
multichannel microscopy. SKOV-3-CD9-RFP sEVs were captured and imaged 
on nitrocellulose test strips. sEVs were exposed to multiple antibody-dotted 
nitrocellulose test strips for 2 hours at a protein concentration of 125 µg/mL 
followed by a 1 hour wash in TBS-Tween. GFP (green bar) images were obtained 
using a 100 ms exposure and mCherry (red bar) images were obtained using a 2 s 
exposure. (* - Significantly different from the PBS control, based on a one-tailed 
t-test; **- Significantly different from PBS control and corresponding 
fluorescence channel data based on a one-tailed t-test) 
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Dot blots with antibodies against the ovarian cancer sEV marker proteins, CD24, 

Her2, L1CAM, and EGFR, demonstrated significantly greater red relative fluorescence 

intensities when incubated with the SKOV-3-CD9-RFP sEVs than green relative 

fluorescence intensity when incubated with IHOE-CD81-GFP sEVs (see Figures 3.13-

3.16, Table 3.2). Similarly, the dot blots demonstrated significantly greater red relative 

fluorescence intensity than green relative fluorescence intensities when incubated with 

mixed IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs (see Figures 3.17-3.18, Table 

3.2). Dot blots with mouse anti-L1CAM antibody did not show significantly greater red 

relative fluorescence intensity than green fluorescent intensity when incubated with 

mixed IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs. However, the mouse anti-

L1CAM dot blots did show slightly lower mean red relative fluorescence intensity with 

higher variance when incubated with mixed IHOE-CD81-GFP and SKOV-3-CD9-RFP 

sEVs compared to dot blots with mouse anti-Her2 and mouse anti-EGFR (see Figure 

3.17-3.18, Table 3.2). Dot blots using ovarian cancer sEV marker antibodies 

demonstrating significant relative fluorescence intensities following sEV incubations had 

normalized relative fluorescence intensities ranging from approximately 0.10 to 0.24 

(a.u.) (see Figures 3.15-3.18, Table 3.2). 
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Figure 3.17. IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs immuno-
captured on a nitrocellulose membrane and imaged with multichannel 
widefield fluorescence microscopy. IHOE-CD81-GFP and SKOV-3-CD9-RFP 
sEVs were mixed prior to capture on a single test strip. Mixed sEVs were exposed 
to multiple antibody-dotted nitrocellulose for 2 hours at a protein concentration of 
125 µg/mL followed by a 1 hour wash in TBS-Tween. GFP images were obtained 
using a 100 ms exposure and mCherry images were obtained using a 2 s exposure. 
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Figure 3.18. Normalized relative fluorescence intensities of mixed IHOE-CD81-
GFP and SKOV-3-CD9-RFP sEVs captured by ovarian cancer EV marker 
antibodies. IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs were mixed prior to 
capture on a single test strip. Mixed sEVs were exposed to antibody-dotted 
nitrocellulose for 2 hours at a protein concentration of 125 µg/mL followed by a 1 
hour wash in TBS-Tween and then imaged using multichannel widefield 
fluorescence microscopy. GFP (green bar) images were obtained using a 100 ms 
exposure and mCherry (red bar)  images were obtained using a 2 s exposure. (* - 
Significantly different from the PBS control, based on a one-tailed t-test; **- 
Significantly different from PBS control and corresponding fluorescence channel 
data based on a one-tailed t-test) 
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 Sample Type 

 GFP Filter Set mCherry Filter Set 

Capture Antibody IHOE-CD81-
GFP 

IHOE-CD81-
GFP 

+ 
SKOV-3-
CD9-RFP 

SKOV-3-
CD9-RFP 

IHOE-CD81-
GFP 

+ 
SKOV-3-
CD9-RFP 

Rabbit anti-tGFP 1.082 1.592 0.001 0.007 

Rabbit anti-RFP -0.005 -0.002 0.843 1.109 

Rabbit anti-CD63 0.061 0.075 0.119 0.101 

Mouse anti-CD24 0.012 0.020 0.174 0.241 

Mouse anti-Her2 0.009 0.011 0.125 0.139 

Mouse anti-L1CAM 0.003 -0.004 0.154 0.100 

Mouse anti-EGFR 0.006 0.010 0.108 0.144 

PBS 0.004 0.004 0.009 -0.002 

Table 3.2. Relative fluorescence intensities (a.u.) of captured IHOE-CD81-GFP 
and SKOV-3-CD9-RFP sEVS using multichannel widefield fluorescence 
imaging with GFP filter set (450-490 nm excitation/500-550 nm detection) and 
mCherry filter set (540-580 nm excitation/592-667 nm detection) 
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Discussion 

Although there is currently no agreement or official guidelines on the 

classification of EV populations, there is consensus on the need for new EV isolation 

methods, particularly those with greater specificity, selectivity, purity, and yield. In 

response, immunoaffinity sEV isolation techniques have emerged as promising methods 

with respect to sEV specificity and selectivity and have demonstrated results similar to or 

better than those of ultracentrifugation.50 Thus far, immunoaffinity capture techniques 

have largely been dominated by magnetic bead and microfluidics approaches. Magnetic 

bead approaches have demonstrated high capture efficiency and sensitivity due the to 

enhanced surface area available for capture and mixture homogeneity.62 Microfluidics 

devices employing immunoaffinity approaches in tandem with other separation factors, 

including size, density, hydrophobicity, and biochemical profile, may allow for the 

greatest specificity and selectivity and may prove ideal for diagnostic purposes. Strategies 

employed in these methods include generic capture of sEVs using tetraspanin marker 

antibodies followed by tumor-specific marker identification, as well as sEV capture using 

tetraspanin and tumor-specific markers simultaneously. While both strategies have 

certain advantages, recent studies appear to primarily focus on tetraspanin capture alone 

prior to tumor-specific sEV marker identification. This workflow is likely due to low 

overall sEV yield values. 

As new EV isolation and quantification methods are designed, they will require 

more systematic comparison protocols for overall efficacy evaluation. The overall goal of 

this study was to develop a model system (IHOE-CD81-GFP- and SKOV-3-CD9-RFP-
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expressing cells) to produce fluorescent sEVs for use in optimization of the newly 

developed PET C-CP EV isolation platform. Specifically, this model system, by 

distinguishing between cancerous and non-cancerous cell-derived sEVs via fluorescence, 

will be used to develop the selective capture component of the PET C-CP EV isolation 

platform in a quick and cost-effective manner prior to patient sample investigation. Once 

refined, selective OC-specific capture antibodies coupled to the isolation platform may be 

able to streamline EV capture and be employed for early OC diagnosis. The aims of this 

work included establishment and verification of the IHOE-CD81-GFP- and SKOV-3-

CD9-RFP-expressing cell lines for production of fluorescently-labelled sEVs, 

demonstration of the ability of PET C-CP fibers to capture IHOE-CD81-GFP and SKOV-

3-CD9-RFP sEVs effectively, and demonstration of OC-specific antibody capture and 

discrimination of IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs, thus demonstrating 

the ability to distinguish between non-cancerous and cancerous cell-derived sEVs. This 

study details the development of a model system that can be used to further develop the 

PET C-CP EV isolation platform by improving selectivity and specificity and allowing 

for its optimization prior to testing with highly variable and costly patient samples.  

Development and analysis of the cell line model system 

In order to engineer non-cancerous (IHOE) and cancerous (SKOV-3) cell lines to 

release fluorescent sEVs for downstream selective capture, generic endosomal proteins 

were identified as candidates for addition of fluorescent tags. Both CD81 and CD9 are 

tetraspanin proteins that, due to their involvement in endosomal vesicle transport, are 

expressed on plasma membrane components of cells. They are both reported sEV 
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markers, are typically highly expressed in populations of sEVs, and are often used as 

protein controls in sEV experiments.63, 64 Specifically, IHOE cell sEVs contain high 

amounts of CD81 and SKOV-3 cell sEVs are highly enriched in CD9.65 Therefore, to 

create fluorescent sEVs from IHOE and SKOV-3 cells, IHOE and SKOV-3 cells were 

transduced with commercially obtained pCT-CD81-GFP (CYTO124-VA-1, System 

Biosciences, Palo Alto, CA) or pCT-CD9-RFP (CYTO125-VA-1, System Biosciences, 

Palo Alto, CA) plasmids, respectively. The plasmids were designed by System 

Biosciences to add fluorescent tags to the C-terminus, intracellular domains of the 

specific tetraspanin proteins (CD81 and CD9).66 Each plasmid was independently 

prepackaged into an HIV lentiviral construct purchased from System Biosciences to be 

used for transduction of the appropriate cell line. To assess the optimal multiplicity of 

infection (MOI, the ratio of virus particles to cells) required, transduction efficiency was 

calculated using the pre-packaged control plasmids, pCT-Cyto-GFP (CYTO118-VA-1, 

SBI, Palo Alto, CA) and pCT-Cyto-RFP (CYTO119-VA-1, SBI, Palo Alto, CA) for the 

IHOE and SKOV-3 cells, respectively. pCT-Cyto-GFP showed an optimal transduction 

efficiency at an MOI of 5 and pCT-Cyto-RFP showed optimal and maximum 

transduction efficiency at an MOI of 10. Given these results, an MOI of 5 for pCT-CD81-

GFP and IHOE cells and a MOI of 10 for pCT-CD9-RFP and SKOV-3 cells were chosen 

for future experiments.  

IHOE cells and SKOV-3 cells were successfully transduced with either pCT-

CD81-GFP or pCT-CD9-RFP, respectively, selected for plasmid expression with 

puromycin, and subjected to limited dilution cloning. Clones with the highest cell lysate 
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fluorescence intensities, as measured using a Biotek Synergy H1 Hybrid Reader (Biotek, 

Winooski, VT), from identical cell densities were chosen for use in subsequent 

experiments. Laser scanning confocal images of IHOE-CD81-GFP and SKOV-3-CD9-

RFP cells, as seen in Figures 3.2 and 3.3, demonstrate the successful cell transductions 

and expression patterns of fluorescently-labelled CD81 and CD9 in the IHOE and 

SKOV-3 cell lines. As the CD81 and CD9 transmembrane proteins are typically enriched 

in extracellular vesicles, they would be expected to be expressed in many small, punctate 

transport vesicles across the cell, resulting in scattered, intense fluorescence spots as 

opposed to uniform fluorescence expression throughout the cytoplasm. The micrographs 

of the IHOE-CD81-GFP and SKOV-3-CD9-RFP expressing cells (see Figures 3.2 and 

3.3) as compared to the micrographs of the IHOE-Cyto-GFP and SKOV-3-Cyto-RFP 

expressing control cells (general cytoplasm expression; see Figures 3.2 and 3.3) 

demonstrate these expected localization patterns. TEM imaging (see Figure 3.4) of sEVs 

isolated from IHOE-CD81-GFP and SKOV-3-CD9-RFP cells demonstrated typical 

“dimpled” EV morphology and maintenance of EV structure. Additionally, IHOE-CD81-

GFP and SKOV-3-CD9-RFP sEV samples demonstrated higher relative fluorescence 

intensity per µg of protein than cell lysates from the corresponding cell types (see Figure 

3.7), further indicating that the expressed CD81-GFP and CD9-RFP proteins are 

localized to extracellular vesicles, rather than generically expressed throughout the 

cytoplasm.  

An important step in the development of a new cell line is to verify that the 

engineered cell line expresses the correct recombinant proteins using semi-quantitative 



156 
 

methods. However, there are several factors that make this challenging for sEV specific 

recombinant proteins. First, sEVs can be difficult to quantify due to their size and 

heterogeneous makeup and, to date, there is no reliable method for accurate 

quantification.67 Thus, obtaining a correct measure of protein concentration per vesicle is 

difficult. Furthermore, it can be problematic to normalize protein data against standard 

loading controls when dealing with sEVs, as there is significant variation in sEV protein 

expression and enrichment, which can also be influenced by different sEV isolation 

methods.68 Even when populations of sEVs are isolated from the same cell type, there can 

be considerable variation between resulting isolate densities due to the crude, and 

sometimes difficult, isolation processes often employed. While antibodies against 

standard loading control proteins, such as IgG or GAPDH, can be used in certain 

situations, the replication of samples is not always reliable or trustworthy for semi-

quantification via western blot analysis.40, 64, 69-71 Despite these issues, in an effort to 

move forward with fundamental research, the EV community has deemed certain sEV 

markers, such as CD81 and CD9, as suitable loading controls for sEV research.72 

However, when using these loading controls, it is important to understand that they are 

quite limited as they are only reliable when comparing sEVs from the same source or cell 

type. With this in mind, any attempt to normalize or quantify this data based on western 

blot band intensity would be unreliable. Therefore, there was no attempt to quantify or 

statistically compare intensity values among western blot results. All western blot results 

were evaluated only for specific protein presence or absence with limited relative 

comparison based on amount of total protein loaded in each well. 
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To verify the recombinant protein expression of CD81-GFP and CD9-RFP in the 

IHOE-CD81-GFP and SKOV-3-CD9-RFP cells and sEVs, western blots using primary 

antibodies against tGFP or RFP (see Figure 3.5) were performed. As seen in Figure 3.5a, 

probing IHOE-CD81-GFP sEVs with rabbit anti-tGFP reveals bands at approximately 24 

kDa, 41 kDa, 55 kDa, and > 62 kDa as compared to the non-transduced control IHOE 

sEVs and cell lysate controls. The copGFP tag is a monomer with a molecular weight of 

26 kDa and the CD81 protein has a molecular weight of 26 kDa.57, 59 Thus, CD81 with 

the addition of a GFP molecule should have a molecular weight of ~52 kDa. According 

to the manufacturer’s instructions, rabbit anti-tGFP antibody only detects copGFP under 

non-reduced conditions. During western blots, reduced conditions are used to break the 

disulfide bridges that maintain protein tertiary structure73 but, in some cases, they may 

restrict antibody access to the protein epitope. Therefore, the western blot was run under 

non-reduced conditions to preserve protein disulfide bridges and maintain antibody 

access to the epitope. This can change the migration properties of the recombinant CD81-

GFP protein as the two disulfide bonds of the CD81 portion do not unfold properly, 

causing an uneven charge distribution across the entire molecule.59 A change in the 

migration properties can lead to a slightly higher indicated size than expected (~55kDa), 

as was observed. The IHOE-CD81-GFP cell lysate sample displayed a similar, albeit less 

intense band at ~55 kDa, representative of CD81-GFP as well. As non-transduced control 

IHOE sEVs and cell lysate did not display any bands, western blot evidence suggests that 

the CD81-GFP recombinant protein is being successfully expressed in the IHOE-CD81-

GFP cells. Furthermore, GFP fluorescence is detected in the IHOE-CD81-GFP cell 
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micrographs (see Figure 3.2) and IHOE-CD81-GFP sEVs and cell lysate dotted on 

nitrocellulose (see Figure 3.6 and 3.7), suggesting CD81-GFP is being expressed in the 

IHOE-CD81-GFP cells.  

The RFP tag used in this experiment has a molecular weight of approximately 27 

kDa and CD9 molecules have a molecular weight of approximately 25 kDa.17, 60, 61 

Therefore, CD9-RFP molecules should have a theoretical molecular weight of ~52 kDa. 

SKOV-3-CD9-RFP sEVs and cell lysate probed with rabbit anti-RFP show a band at 

approximately 54 kDa (see Figure 3.5b, band VI), suggesting that CD9-RFP molecules 

are present in the sEV and cell lysate samples. Moreover, RFP fluorescence is also 

detected in SKOV-3-CD9-RFP cell images (see Figure 3.3) and in micrographs of 

SKOV-3-CD9-RFP sEVs and cell lysate (see Figure 3.6 and 3.7) dotted on nitrocellulose, 

further suggesting that CD9-RFP is being expressed in the SKOV-3-CD9-RFP cells.  

To investigate the potential additional feature of using IHOE-CD81-GFP and 

SKOV-3-CD9-RFP sEVs for testing the PET C-CP EV isolation platform, protein 

concentrations were compared to relative fluorescence intensities as a means for simple 

sEV quantification. The fluorescently-labeled IHOE-CD81-GFP and SKOV-3-CD9-RFP 

sEVs demonstrated a high correlation between protein content and relative fluorescence 

compared to non-fluorescent IHOE and SKOV-3 sEV controls (see Figure 3.8), 

suggesting that the relative fluorescence of IHOE-CD81-GFP and SKOV-3-CD9-RFP 

sEVs may be an alternative means of sEV quantification. Although protein concentration 

is by no means considered an accurate method of sEV quantification, it does provide an 

sEV concentration approximation and is widely reported in literature. With the use of 
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fluorescence detectors (which are already incorporated into the PET C-CP fiber HIC 

isolation platform reported in Chapter 2), sEV fluorescence protein correlation may hold 

value as a simple method of sEV quantification approximation during PET C-CP fiber-

based EV isolation. 

Taken together, these results demonstrate that IHOE-CD81-GFP and SKOV-3-

CD9-RFP cells were successfully established and verified to express the fluorescent tags 

on the appropriate proteins (CD81-GFP and CD9-RFP). Therefore, IHOE-CD81-GFP 

and SKOV-3-CD9-RFP cells may assist in the development of the PET C-CP EV 

isolation platform through EV binding verification via fluorescence imaging and EV 

quantitative analysis through fluorescence detection. However, in order for the sEVs 

derived from the IHOE-CD81-GFP and SKOV-3-CD9-RFP cells to be utilized for 

evaluation of PET C-CP fibers, they must first be captured on the fiber surfaces.  

PET C-CP fiber-based sEV capture 

To evaluate the PET C-CP fiber utility for EV separation of and compatibility 

with IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs, IHOE-CD81-GFP and SKOV-3-

CD9-RFP sEVs were isolated by UC and spun down through PET C-CP fibers in a 

micropipette tip format (see Materials and Methods). Under SEM observation, IHOE-

CD81-GFP (see Figure 3.9a) and SKOV-3-CD9-RFP (see Figure 3.9b) sEVs demonstrate 

capture without significant morphological damage. Some vesicle aggregation on the 

fibers is observed but is likely due to the tendency for UC to cause vesicles to aggregate 

prior to spinning through the C-CP fibers. 
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While this study did observe GFP and RFP extracellular vesicle aggregates and 

vesicles in close proximity through fluorescent microscopy, it is important to note that 

single vesicle observation is not possible with a limit of resolution of approximately 150 

nm using the Leica SP8 Hyvolution super-resolution imaging system and software. 

However, in future studies, the addition of stimulated emission depletion (STED) super-

resolution to the existing Leica SP8, with resolutions down to 50 nm, may make 

individual vesicle imaging of fluorescent sEVs possible and allow samples to be more 

easily distinguishable.74, 75 With this in mind, IHOE-CD81-GFP and SKOV-3-CD9-RFP 

vesicles, again collected by UC and spun down through PET C-CP fibers, were observed 

using super-resolution (~150 nm) fluorescence confocal microscopy. Initial observation 

of PBS controls revealed significant autofluorescence from the PET fibers in both the 

green (see Figure 3.10c) and red (see Figure 3.10f) channels with RFP emission 

wavelengths displaying greater intensity than GFP emission wavelengths. However, after 

application of the IHOE-CD81-GFP (see Figure 3.10a) and SKOV-3-CD9-RFP (see 

Figure 3.10a) sEVs, groups of fluorescent particles could be observed beyond the fiber 

autofluorescence. To verify that the IHOE-CD81-GFP and SKOV-3-CD9-RFP samples 

were not emitting significant autofluorescence, non-transduced IHOE (see Figure 3.10b) 

and SKOV-3 (see Figure 3.10e) sEVs, collected by UC and spun down through PET C-

CP fibers were observed under the same fluorescence imaging conditions. Non-

transduced IHOE and SKOV-3 sEVs did not display any evidence of additional 

fluorescence as compared to the PBS controls. This further demonstrates that the 

fluorescent particles observed in the IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV 
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sample micrographs are fluorescently-labelled sEVs captured on the PET C-CP fiber 

surfaces (Figures 3.10a,c). This observation is further confirmed by SEM images (see 

Figure 3.9) and the previous protein and fluorescence analyses of the IHOE-CD81-GFP 

and SKOV-3-CD9-RFP sEVs (see Figures 3.2, 3.3, 3.5-3.7). In addition, mixed IHOE-

CD81-GFP and SKOV-3-CD9-RFP sEV samples were spun down on PET C-CP fibers 

and imaged under the same conditions as the IHOE-CD81-GFP and SKOV-3-CD9-RFP 

samples alone (see Figure 3.11). After overlaying the channels, both GFP and RFP sEVs 

can be observed in separate and coinciding locations, suggesting that, while there is 

significant overlap, IHOE-CD81-GFP and SKOV-3-CD9-RFP vesicle groupings may be 

distinguished from each other on fiber surfaces using super-resolution confocal 

microscopy.  

As these results show, IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs are 

captured on the surface of PET C-CP fibers and can be detected and distinguished using 

fluorescence microscopy. The addition of the fluorescent labels do not appear to impede 

the adherence of the tagged sEVs to the PET C-CP fiber surfaces, therefore, the model 

fluorescent sEVs provide a useful tool for validation and optimization of the PET C-CP 

fiber-based EV isolation platform. Additionally, the ability to readily distinguish between 

non-cancerous and cancerous cell-derived sEVs via green and red fluorescence provides 

a means of evaluating the specificity of exosomal biomarker antibodies for use in lateral 

flow assay-based ovarian cancer diagnostics. 
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Selective immunoaffinity capture of sEVs 

 Like any complex system, access to a complete dataset would be ideal 

when observing the properties of a population. However, as sampling can rarely, if ever, 

include every member of a population, statistical analysis is used to look for patterns and 

correlations that may explain or predict characteristics and sub-populations based on a 

few variables. In lieu of technology capable of selectively identifying the proteome of 

individual sEVs and for clinical practicality, only a few parameters are employed to 

distinguish cancerous and non-cancerous sEVs. Although the number of parameters is 

limited, as OC is a heterogeneous disease with many subtypes and origins, multiple 

markers would be more effective for early screening. Here, selective immunoaffinity 

capture provides a means to identify sEV sub-populations via multiple biomarker 

antibodies with the goal of distinguishing between cancerous and non-cancerous ovarian 

cell-derived sEVs and translating that technology to the PET C-CP EV isolation platform. 

As only a fraction of an sEV population may express a specific OC tumor-specific 

sEV marker, such as CD24 or Her246, 76, sEV capture using only one of these sEV OC 

markers may lead to lower numbers of captured sEVs, resulting in low signal and 

decreased disease screening success. Generic sEV markers, such as CD9, CD81, and 

CD63 are present in a higher proportion of sEVs31, 64, 77 and would likely lead to higher 

capture yields. However, ovarian cancer tumor-specific sEV marker capture may allow 

for greater sEV population selectivity. The immunocapture experiment described here 
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employs strategies from other sEV lateral flow and immunoaffinity blot techniques and 

provides a means for validating the model sEV system for use in the development of 

immunoaffinity capture and isolation techniques for ovarian cancer diagnostics.78, 79  

 To provide a means of appropriate comparison and normalization of sEV 

immunocapture, dotting of concentrated IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs 

on nitrocellulose was used to set a threshold of maximum fluorescence intensity (Figure 

3.6). (Of note, IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV samples captured on 

nitrocellulose were imaged with exposure times of 100 ms and 2 s, respectively. The 

discrepancy in these exposure times was appropriated to account for the differences in 

documented brightness between copGFP (42 cm-1 M-1)57, 58 and mRFP (12.5 cm-1 M-1)60 

molecules and any potential quenching due to the molecular environment in vitro). The 

ability to selectively capture GFP- or RFP-expressing sEVs from independent and mixed 

IHOE-CD81-GFP and SKOV-3-CD9-RFP sEV (see Figure 3.1 for experimental setup) 

samples via a dot blot immunoaffinity assay using rabbit anti-tGFP and rabbit anti-RFP 

antibodies was successfully demonstrated These positive controls show that the dot blot 

technique can be used to visually confirm the capture of specific sEVs based on their 

protein expression.  

 Once it was demonstrated that selective capture of IHOE-CD81-GFP and SKOV-

3-CD9-RFP sEVs  was possible via rabbit anti-tGFP and rabbit anti-RFP antibodies (see 

Figure 3.12, Table 3.2) the next step was to show that specific capture of the cancer and 

non-cancer cell-derived sEVs could be performed using antibodies to known ovarian 

cancer exosomal biomarkers. In addition to using specific ovarian cancer biomarkers, a 
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known universal exosomal biomarker was also investigated as a capture antibody. In this 

manner, the capture results from mixed cancer and non-cancer cell-derived sEV samples 

may be interpreted in terms of capture specificity. The universal exosomal biomarker, 

CD63, was selected as a positive control for the validation of the study dot blot assays. 

For the control assays, IHOE-CD81-GFP and SKOV-3-CD9-RFP sEVs were 

immunocaptured from both independent (see Figures 3.13-3.16, Table 3.2) and mixed 

(see Figures 3.17-3.18 , Table 3.2) samples on dot blots with rabbit anti-CD63 antibody.64 

When imaged, the dot blots displayed similar fluorescence intensities for all of the 

samples. Although CD63 expression likely differs somewhat between the IHOE-CD81-

GFP and SKOV-3-CD9-RFP cells, positive fluorescence in both the red and green 

channels for the mixed samples indicates that CD-63 can be used as a positive control for 

the immunocapture assays. This positive control antibody may be used to show that sEVs 

are present and that the capture assay is working properly, just as the positive control line 

functions in a lateral flow immunoassay. 

The potential to differentiate between IHOE-CD81-GFP and SKOV-3-CD9-RFP 

sEVs was assessed using antibodies to various known ovarian cancer tumor-specific 

exosomal marker proteins.  CD24, Her2, EGFR, and L1CAM molecular markers have all 

been identified in previous studies as candidate biomarkers for the diagnosis and 

prognosis of ovarian cancer.17, 23, 46, 76, 80-82 Therefore, dot blots using antibodies to these 

ovarian cancer exosomal marker proteins were designed to test whether or not 

immunoaffinity assays could be used to specifically capture cancer-cell derived sEVs 

(see Figures 3.13-3.18, Table 3.2). For these assays, individual and mixed samples of 
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IHOE-CD81-GFP (non-cancerous cell-derived) and SKOV-3-CD9-RFP (cancerous cell-

derived) sEVs were added to the dot blots. Dot blot results for the non-cancer cell-

derived (IHOE-CD81-GFP) sEVs alone showed no red fluorescence and significant green 

fluorescence only for dots containing antibodies to CD63 (control). This indicates that 

these non-cancer cell-derived sEVs were captured by the antibody to the generic 

exosomal marker tetraspanin protein, CD63, but were not captured by antibodies to any 

of the ovarian cancer exosomal marker proteins (CD24, Her2, EGFR, L1CAM). 

Conversely, the dot blot results for the cancer cell-derived (SKOV-3-CD9-RFP) sEVs 

alone showed no green fluorescence and significant red fluorescence for the dots 

containing antibodies to the CD63 control and for all of the dots containing antibodies to 

the ovarian cancer exosomal marker proteins (CD24, Her2, EGFR, LICAM). Finally, the 

dot blot results of a mixture of the non-cancer and cancer cell-derived sEVs showed 

significant green and red fluorescence for the dots containing antibody to CD63, while 

significant fluorescence was only seen in the red channel for the dots containing 

antibodies to the ovarian cancer marker proteins. These results indicate that sEVs from 

the model cell lines may be employed in the future development and optimization of 

lateral flow immunocapture assays for rapid, early ovarian cancer diagnostics. 

Compared to the utilization of single markers, use of a multiplexed approach to 

identify multiple exosomal biomarkers at once may diagnose a greater proportion of 

ovarian cancers.16 In this case, a panel of tumor-specific protein markers was successfully 

used to differentiate between cancerous and non-cancerous sEVs. Multiple marker “hits” 

provides greater assurance that less false negative test results will occur. As cells in the 
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tumor environment may undergo changes that can lead to differences in exosomal 

biomarker expression83-85, screening for a panel of biomarkers can increase the overall 

robustness of an exosomal liquid biopsy-based diagnostic test.9, 22, 38, 40  

The impact of IHOE-CD81-GFP and SKOV-3-CD9-RFP cell lines and immunoaffinity 

capture on development of a PET C-CP fiber-based EV isolation platform 

The IHOE-CD81-GFP and SKOV-3-CD9-RFP cell lines developed in this study 

provide an extremely valuable tool for the development, optimization, and proof of 

concept testing of the PET C-CP EV isolation platform, and its potential use in a simple, 

cost effective, early ovarian cancer diagnostics test. As the Marcus group has previously 

shown, antibodies may be grafted onto the surfaces of the PET C-CP fibers or 

alternatively to channeled films for selective protein capture.86-90 This study shows that 

sEVs expressing biomarker proteins may be selectively captured using immobilized 

antibodies. The model system may be used to produce sEVs for laboratory use instead of 

having to rely on expensive, limited availability human patient samples. Specifically, the 

incorporation of fluorescent markers into sEVs and the proven utility of the tagged sEVs 

for self-reporting immunocapture characterization studies provide a framework to further 

investigate selective sEV capture parameters, PET C-CP fiber and film-based sEV 

selective capture and separation, diagnostic accuracy, and clinical replication. Moreover, 

multiplexed immunoaffinity capture using OC tumor-specific EV markers has 

demonstrated the potential for these methods to distinguish between malignant and 

benign tumor cell-derived sEVs. The IHOE-CD81-GFP and SKOV-3-CD9-RFP cell 

model system may also allow for advancement of EV imaging and quantification via 
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efficient sample prep, easier live cell imaging, and quantitative fluorescence correlations. 

The versatility of the sEVs generated by these cell lines will prove useful as new 

applications come to light and the EV community begins to focus more on selective EV 

capture and super-resolution microscopy.  
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CHAPTER 4 

POTENTIAL IMPACTS OF ISOLATION METHOD AND SAMPLE SOURCE ON 

SMALL EXTRACELLULAR VESICLE MORPHOLOGY AND BIOMARKER 

PROFILING 

 

Abstract 

 Extracellular vesicles (EVs) have emerged as promising diagnostic, drug delivery, 

and therapeutic agents, particularly with regards to cancer. Although research is 

progressing quickly, progression of EV applications is hindered by the limitations of EV 

isolation and separation technologies. Current EV isolation techniques are in need of 

standardization across the industry for translational progression to continue. In particular, 

sample source is an important factor that may influence EV isolation choice and outcome. 

In this research, urine and cervical mucus are compared as potential sources for EV 

isolation and downstream EV analysis for potential ovarian cancer diagnostic and 

treatment applications. In addition, a larger study of microRNA (miRNA) content of EVs 

isolated from cervical mucus samples from patients with and without ovarian cancer 

revealed several potential miRNA biomarkers. In-depth analysis of this miRNA data, 

along with corresponding proteomic data, is ongoing in an attempt to reveal pathology 

and characteristic-specific miRNA and protein biomarkers for early ovarian cancer 

detection. Together, these studies demonstrate that cervical mucus may be useful for 

ovarian cancer-specific EV diagnostics. Ultimately, investigations of sample source-
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specific applications, such as this, may lead to more accurate and specific EV diagnostics 

and therapeutic outcomes, as well as greater standardization across the EV field. 

It should be noted that this is collaborative work and was performed with Dr. Brian Dean 

of the Clemson University Biomedical Data Science and Informatics Program. The 

bioinformatics work outlined in this chapter was primarily performed by Ms. Paritra 

Mandal. All patient samples used in this work were provided by Dr. Larry Puls, who 

serves as the Head of Gynecological Oncology at Prisma Health Systems in Greenville, 

SC.  

 

Introduction 

Extracellular vesicle (EV) and exosome research has quickly developed into an 

expansive area of study focusing on vesicle biogenesis, classification, transport, uptake, 

dissemination, isolation and separation, biomarker discovery, drug delivery, and 

therapeutics.2-6 Broadly, these areas of focus can be divided into basic research and 

knowledge discovery and medical application development. Both sides of EV research 

are making significant progress but lack a strong base to make definitive and repeatable 

claims. Every discovery and development is highly dependent on the source of the 

vesicles, the method of separation, and the micro- and macro-environments from which 

the vesicles originate. With so many sources and methods of isolating EVs, paired with 

the diverse subcategories of EVs, it is both remarkable and encouraging that such 

significant progress has been made in the understanding of these bio-nanoparticles. 
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However, with each new discovery, the complexities surrounding EVs grow ever more 

intricate. 

 Before investigating either basic research or medical application development, it 

is important for the EV community to come to agreement by setting standards in 

classification and isolation methods. While Thery et al. and the International Society for 

Extracellular Vesicles (ISEV) have made significant progress toward formulating vesicle 

classifications and benchmarks of identification, the standards are still continually 

debated and evolving.7, 8 There are many commonly used isolation techniques, including 

ultracentrifugation (UC), ultrafiltration (UF), chromatography, precipitation, and 

immunocapture, but very little agreement upon which technique should be used for 

principal comparison.9-11 Perhaps the best way to develop greater consistency and 

experimental reproducibility is to develop standards for EV separation and isolation. 

Classification of EV isolation strategies into methods better suited for particular 

applications may be a good place to start.  

Of the most common EV isolation methods, ultracentrifugation is perhaps the 

most readily available technique, requiring equipment that is already found at most 

biology research institutions.12-14 Although UC output can vary greatly depending on 

sample viscosity, sample source, pellet disturbance, and rotor characteristics,15-17 UC has 

proven to be a useful starting point for EV research and applications.14 Furthermore, 

although other EV separation methods have shown greater promise, UC still holds value 

as a tool of comparison when developing new EV isolation methods.12, 16, 18, 19 UC has 

demonstrated the ability to isolate EVs from conditioned cell media and most body fluids 
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including urine, blood plasma, cerebrospinal fluid, amniotic fluid, saliva, and cervical 

mucus.11, 16, 17, 20-25 The flexibility and ease with which UC can be performed make it an 

excellent tool for comparison as it serves as an acceptable standard across the industry. 

Unlike UC, which relies on vesicle density and molecular weight to separate cell 

components and EVs, UF and size exclusion chromatography (SEC) rely on vesicle 

diameter.26-28 Stratification based on size allows for greater control of EV sub-

populations compared to UC, but struggles to classify larger vesicles. Vesicle size 

provides a general picture of vesicle classification, but discounts many key characteristics 

including biogenesis, protein, RNA, lipid profiles, density, zeta potential, and 

morphology. That said, any EV isolation technique using only one metric of comparison 

will likely struggle with classification. Size exclusion EV separation techniques have 

demonstrated high throughput, fast isolation, and high yield26-29, but, due to the use of 

force, have struggled to limit vesicle deformation and may cause damage to larger 

vesicles.9 The use of size limit thresholds and multiple filtration or exclusion steps has 

greatly improved the purity and population selection of these techniques.27, 28, 30 With 

increased EV purity and population selection, size exclusion techniques may serve best in 

applications requiring high through-put and large samples. 

Due to the presence and diversity of proteins in EV membranes, immunoaffinity 

capture techniques have emerged as popular methods for increasing EV population 

specificity and purity. Immunoaffinity steps have been incorporated into microfluidics 

devices and combined with other effective EV isolation methods with great success.31-35 

For example, Mathivanan et al. identified several colon cancer-related proteins and 
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potential EV diagnostic markers using a combination of UC, UF, and immune-affinity 

approaches35, while Ueda et al. coupled antibodies to mass spectroscopy to create an 

immuno-assay useful for increasing specificity and quickly identifying proteins for 

biomarker discovery.36 With the ability to increase specificity and purity, immunoaffinity 

methods are continually being incorporated into EV diagnostic techniques and will likely 

play an important role in developing EV isolation methods for specific and unique 

applications, particularly disease diagnostics. 

From diagnosis of cancer, neurodegenerative diseases, and cardiovascular disease 

to treatment of Parkinson’s Disease through drug delivery, EV applications can vary 

widely.3, 37-39 In particular, ovarian cancer is a prime candidate for EV-based early 

diagnostics due to its propensity for late stage diagnosis and poor 5-year survival rate.40 

Each application may require vastly different EV population purity, consistency, 

specificity, proteomics, transcriptomics, lipidomics, and morphology. Ideally, different 

EV separation methods may be able to control these characteristics with limited vesicle 

damage. Additionally, sample source (urine, plasma, etc.) may influence the 

effectiveness, efficiency, practicality, and accuracy of EV separation. While consistency 

across samples is always important, it is unclear whether it is necessary to calibrate each 

EV population characteristic for each application or sample source and whether an EV 

separation dominant design will emerge as the most practical method. 

While developing individualized EV separation methods for each application may 

prove useful, practicality, speed, and ease of use are important considerations that may 

push EV isolation research in a different direction. A single consistent isolation, while 
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less individualized for applications or sample sources, may ultimately be the most useful 

in clinical settings and for vesicle comparison in the EV community. However, just as 

immunocapture EV isolation may separate sub-populations of EVs, it is hypothesized that 

body fluid samples originating from or near a region of interest may contain more 

relevant EV information for specific conditions. For instance, urinary EVs have been 

frequently investigated as biomarkers for prostate cancer and kidney diseases as a means 

of improving the accuracy and sensitivity of diagnostics.20, 41-46 Additionally, breast milk-

derived EVs have been shown to directly promote the epithelial-mesenchymal transition 

in breast cancer tumor cells and breast milk-derived EVs with high expression of TGFβ2 

may be associated with a higher risk of breast cancer.47, 48 Diagnosis via EVs isolated 

from plasma may use a more generic EV population and demonstrate lower specific 

disease detection accuracy due to low signal to noise ratios. Therefore, establishing a 

consistent dominant design for EV isolation, while easier to study and evaluate, may 

prove impractical for many applications. Finding a balance between consistency in EV 

separation and customization for a given EV application will be required to advance EV 

understanding and achieve clinical translation. 

Much of the EV community has focused on improving or comparing isolation and 

diagnostic methods and has focused very little on comparing EV sample sources.49 While 

several studies have compared urine and plasma EV diagnostic potential10, 25, 50, 51, 

comparison of region-specific sources, such as cervical mucus, breast milk, amniotic 

fluid, tears, semen, and cerebrospinal fluid, is uncommon. The size distributions and 

RNA makeup of urine and blood plasma EVs have been shown to vary significantly 
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when isolated via ultracentrifugation52 potentially due to the presence of Tamm–Horsfall 

protein (THP, one of the most common glycoproteins in urine), albumin, and other 

protein contaminants in urine and blood.14, 53 Removal or reduction of THP and other 

contaminating agents may decrease the variance in size distribution and biomarker 

detection from urine and blood EV samples.54 However, if elimination of contamination 

proves difficult, other sample sources may allow EV isolation with reduced or 

manageable contaminants. Although no individual study has compared the characteristics 

of EVs from different sources (other than urine and blood plasma) under controlled 

conditions, sample source comparison across studies reveals variance in EV size 

distribution and RNA makeup.24, 52, 55-68 

With such variation in EV characteristics and transcriptomics, it is difficult to 

determine which body fluid matrix is optimal for each isolation method and downstream 

application. Furthermore, it is unclear whether sample proximity to a region of interest 

may improve diagnostic accuracy. More analysis and comparison across studies is needed 

before any conclusions can be drawn. However, this study aims to compare the 

morphology and miRNA content of EVs isolated from urine and cervical mucus samples 

of patients with benign or malignant ovarian tumors. In doing so, this study highlights the 

differences in morphology and miRNA content between urine and cervical mucus EVs 

and may provide evidence for increased use of sample sources near regions of interest 

with regard to diagnostic accuracy. Furthermore, this study contributes ovarian cancer 

EV miRNA differential expression analysis that can be used to develop more accurate 

and potentially earlier EV-based diagnoses for ovarian cancer. Notably, early diagnosis 
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(stage 1 or 2) of ovarian cancer, may increase the 5-year survival rate of the disease to 

92% from 29% when discovered in stage 3 or 4.40 

Due to concerns over the classification and nomenclature of EVs among the EV 

community, all EVs discussed in this study will be referred to as small extracellular 

vesicles (sEVs) rather than exosomes specifically. 

 

 Materials and Methods 

Urine, cervical mucus, and plasma collection and storage 

Urine, cervical mucus (CM), and blood plasma samples were obtained from 

patients through the Prisma Health System (Greenville Campus, Institute for 

Translational Oncology Research (ITOR) biorepository responsible for sample 

processing and storage). All procedures were approved and performed with adherence to 

the Prisma Health Institutional Review Board and Clemson University Institutional 

Biosafety Committee safety guidelines. Upon collection, 50 mL urine samples were 

supplemented with 1.67 mL of 100 mM sodium azide, 2.5 mL of 2 mg/mL 

phenylmethylsulfonyl fluoride (PMSF), and 50 µL of 1 mg/mL Leupeptin. After 

supplementation, urine samples were frozen and stored at -80˚C until further processing. 

To collect CM samples, the cervical mucus plug and a swab of cervical mucus were 

placed in 10 mL of phosphate buffered saline (PBS) supplemented with 334 µL of 100 

mM sodium azide, 500 µL of 2 mg/mL PMSF, and 10 µL of 1 mg/mL Leupeptin. After 

supplementation, CM samples were placed on ice for 30 minutes, vortexed for 30 
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seconds, frozen and stored at -80˚C until further processing. Blood samples were 

collected via standard phlebotomy procedures in an ethylenediaminetetraacetic acid 

(EDTA) coated tube. Within 30 minutes of sample collection, blood samples were 

inverted 8 to 10 times and centrifuged at 1500 x g at 22˚C for at least 15 minutes. 

Supernatant of centrifuged blood samples were aliquoted into 1.5 mL cryovials, frozen 

and stored at -80˚C. 

sEV isolation via ultracentrifugation 

 Patient urine and cervical mucus were thawed at 22°C prior to sEV isolation. 

After thawing completely, urine samples were vortexed for 30 seconds while CM 

samples were vortexed for 3 minutes to ensure even mixing, breakup of mucus, and 

removal of mucus from the collection swab. After being vortexed, collection swabs were 

removed from the CM and scraped into the tube to retain any excess mucus still on the 

swab. Briefly, 8 mL of urine or CM was centrifuged at 2,000 x g for 20 minutes at 22˚C 

using an Eppendorf Centrifuge 5430R (Eppendorf, Hamburg, Germany). The resultant 

supernatant was centrifuged at 10,000 x g for 30 minutes at 4˚C using a Beckman Coulter 

Avanti J-26S XPI Centrifuge with a JA-25.50 rotor (Beckman Coulter, Brea, CA). The 

resultant supernatant was filtered using a 0.2 µm sterile syringe filter (Thermo Fisher 

Scientific, Waltham, MA). After filtration, the supernatant was transferred to a 

compatible ultracentrifuge tube (Beckman Coulter, Brea, CA) and centrifuged at 120,000 

x g for 60 minutes at 4˚C using a Beckman Coulter Optima XPN-80 Ultracentrifuge and 

a Type 45 Ti rotor (Beckman Coulter, Brea, CA). Finally, the resultant pellet was 

resuspended in 400 µL of 1x PBS and stored at -80oC for downstream analysis. 
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C-CP fiber sEV isolation method 

 Chemicals used during sEV separation include ammonium sulfate ((NH4)2 SO4) 

(VWR, Radnor, PA), 10x PBS (Hyclone Laboratories Inc., Logan, UT), acetonitrile 

(ACN) (EMD Millipore, Burlington, MA), glycerol (Fisher Scientific, Waltham, MA), 

and ultra-pure water (obtained using a Milli-Q water system, Millipore, Burlington, MA). 

Extruded polyethylene terephthalate (PET) capillary-channeled polymer (C-CP) fibers, 

produced by the Material Science and Engineering Department at Clemson University, 

were wound on a circular frame 8 times (450 fibers) then rinsed with hot water, 

acetonitrile, isopropanol, and ultra-pure water. Wound fibers were pulled through a 30 

cm length, 0.762 mm internal diameter polyether ether ketone (PEEK)(IDEX Health & 

Science LLC, Oak Harbor, WA) tubing using a plastic monofilament. Using a Dionex 

Ultimate 3000 HPLC system (LPG-3400SD quaternary pump and MWD-3000 UV–Vis 

absorbance detector; Thermo Fisher Scientific, Sunnyvale, CA, USA), packed columns 

were washed using ultra-pure water, acetonitrile, and then ultra-pure water at 0.5 mL min-

1. Chromatography was performed using the Dionex Ultimate 3000 HPLC system and 

controlled by the Chromeleon 7 software system. Samples were injected using a 

Rheodyne model 8125 low dispersion injector with a 60 μL injection loop (Rheodyne, 

Rohnert Park, CA). The baseline case (no sample, step gradient mobile phase) was 

performed with mobile phase flow rate of 0.5 mL min-1 and subtracted from sample 

chromatograms. After being flushed with 1X PBS, the column was equilibrated with 2 M 

ammonium sulfate solution dissolved in 1X PBS, pH = 7.4. A step gradient mobile phase 

of 25% glycerol with 1M (NH4)2 SO4 (0.5 mL min-1) was introduced 3 minutes following 



186 
 

sample injection. Column elution was initiated by a second step gradient of 50% glycerol 

in 1X PBS (0.5 mL min-1) 5 minutes after sample injection. Eluting species (proteins and 

sEVs) were detected at 216 nm and recovered using an R1 fraction collector (Teledyne 

Isco, Lincoln, NE, USA) based on detector absorbance response. 

C-CP Fiber-based film wicking sample preparation 

 Samples used in the film wicking experiments included patient urine and blood 

plasma, obtained through Prisma Health and standard exosomes (HBM-PEU-100, 

HansaBioMed, Tallinn, Estonia) diluted in mock urine, reconstituted milk, and mock 

saliva to a concentration of 9.3 x 105 particles/mL. Mock urine and saliva were prepared 

according to recipes from previous studies69, 70, while reconstituted milk was prepared as 

2% non-fat dry milk (Bio-Rad, Hercules, CA) dissolved in DI water. All samples were 

supplemented with 1% red food coloring (McCormick, Baltimore, MD) by volume.  

C-CP channeled film wicking studies 

 C-CP channeled films, produced by the Material Science and Engineering 

Department at Clemson University, were cut into 5 cm strips and taped down to 1 x 3 

inch glass microscope slides, ridges face-up. A micropipette was used to apply 10 µl of 

patient urine, patient plasma, 1X PBS diluted standard exosomes, or 1X PBS directly to 

the center of the film. The applied drop was allowed to wick along the film for 20 

minutes at 22˚C while exposed to air. Following wicking, the films were removed from 

the glass slides and the film regions where sample visibly wicked were clipped off using 

scissors and prepared for scanning electron microscopy (SEM).  
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 In a separate experiment, 3 µl of 1X PBS, patient urine, patient plasma, or 

standard exosomes diluted in mock urine, mock saliva, reconstituted milk, or 1X PBS 

were applied directly to the center of the C-CP films via micropipette and allowed to 

wick for 15 minutes at 22˚C while exposed to air and under 5X magnification (Plan APO 

1.0X objective, 0.09 numeral aperture, no immersion) stereoscopic observation using a 

Leica Thunder Model Organism Imaging System (Leica, Wetzlar, Germany). Images 

were captured at a rate of one frame per second and compiled into time-lapse movies. 

Tracker Video Analysis and Modeling Tool, available through Open Source Physics 

(https://www.compadre.org), was used to track the fluid front in order to determine the 

velocity of sample wicking on the films. Any velocities below 2x10-7 m/s (periods of 

little to no movement) were not included in the average (n=8) calculations (see Figure 

4.4a). Flow rate was calculated as velocity multiplied by the C-CP film cross-sectional 

area as measured by SEM.  

Sample preparation for scanning electron microscopy 

 C-CP films being prepared for SEM were fixed in 1% osmium tetroxide for 1 

hour with shaking immediately after sample wicking. After removing the osmium 

tetroxide, samples were washed in deionized water 3 times for 3-5 minutes per wash. 

Next, the samples were washed in an ethanol-water mixture of the following ethanol 

percentages for 3 minutes each: 50%, 70%, 80%, 90%, 95%, 100%, 100%. The samples 

were then washed in a 50:50 hexamethyldisilazane(HMDS) –ethanol mixture for 3 

minutes and then finally washed in 100% HMDS and left to dry at 20˚C in a chemical 

fume hood for 2-3 days. After drying was complete, samples were attached to a metal 
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stage using adhesive and platinum coated using the Hummer 6.2 Sputtering system 

(Anatech, Battle Creek, MI) at 70 millitorr for 2 minutes. Images were captured using a 

Hitachi SU5000 Field Emission Scanning Electron Microscope (FE-SEM) (Hitachi, 

Tokyo, Japan). 

Sample preparation for transmission electron microscopy 

 To prepare for transmission electron microscopy (TEM), 40 µL of urine or CM 

sEVs isolated by UC or C-CP fiber separation were fixed in 4% paraformaldehyde for 30 

minutes on ice. All grid adhesion and staining steps were performed by pipetting drops of 

sample, stain, or wash onto parafilm and moving 200 mesh copper formvar coated grids 

(Electron Microscopy Sciences, Hatfield, PA) from one drop to the next. After sample 

fixation, grids were placed coated side down on 5 µL drops of each sample for 5 minutes. 

Grids were washed 3 times with DI water for 4 minutes each, stained with 2% uranyl 

acetate for 5 minutes, and then washed 3 times with DI water for 4 minutes each. Grids 

were air dried in a low-humidity environment and then imaged using a Hitachi H7600 

TEM (Hitachi, Tokyo, Japan). SEM measurements were made using ImageJ version 1.48 

software (NIH, Bethesda, MD) 

RNA sequencing 

 After isolation via ultracentrifugation, 4 patient urine sEV samples of 200 µL (2 

cancerous and 2 non-cancerous) and 4 patient cervical mucus sEV samples of 200 µL (2 

cancerous and 2 non-cancerous) were sent to Qiagen (Hilden, Germany) for RNA 

isolation, quality control, and differential expression analysis.  



189 
 

 In a second study, 42 patient cervical mucus-derived sEV samples (26 cancerous 

and 16 non-cancerous), isolated by ultracentrifugation were sent to Qiagen (Hilden, 

Germany) for RNA isolation, quality control, and differential expression analysis. In both 

studies, sample quality was assessed via average read quality and average base quality, 

prior to next generation sequencing.  

miRNA analysis 

 Analysis, (completed by Qiagen) included adaptor trimming, sequence mapping, 

principal component analysis, and miRNA differential expression analysis. 

Statistical Analysis 

 C-CP film sample flow velocity means were presented with ± 1 standard 

deviation. A one-tailed t-test with α=0.05, using Microsoft Excel’s data analysis software 

(Microsoft, Redmond, WA), was used to analyze film flow velocity numeric values. 

Tests with p<0.05 were considered statistically significant. RNAseq data, analyzed using 

the EdgeR package in R statistical software (r-project.org), was evaluated using a 

statistical test analogous to Fisher’s exact test following a negative binomial 

distribution.71 
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Results 

SEM imaging was performed on the C-CP films following wicking of 1X PBS-

diluted standard exosomes, patient urine, and patient plasma (Figure 4.1). The 1X PBS-

diluted standard exosomes demonstrated adherence along the length of the films while 

wicking and displayed typical vesicular morphology when adhered to the film surface 

(Figure 4.1a,b). The patient urine sample, much like the standard exosome sample, 

demonstrated sEV adherence along the length of the film surface and demonstrated sEV 

morphology similar to the standard exosome sample (Figure 4.1c,d). Finally, the patient 

plasma sample, while containing vesicular structures similar in morphology to the 

standard exosome sample, also included other plasma components, which were 

potentially a mixture of cellular debris and blood clotting proteins (Figure 4.1e,f). 
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Figure 4.1. Scanning electron microscopy of C-CP films after wicking of 
various media. Film wicking of (a,b) 1X PBS-diluted standard exosomes, (c,d) 
patient urine, (e,f) patient plasma, and (g,h) 1X PBS, no sEV control. Images 
were captured at 70x magnification (a, c, e, g) and 7,000x magnification (b, d, f, 
h). 
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 Next, the flow rates of patient urine, patient plasma, and standard exosomes 

diluted in PBS, mock urine, reconstituted milk, or mock saliva on the films were 

measured and calculated using videos of sample wicking under stereoscopic observation. 

The average and maximum volumetric flow rates were calculated by multiplying the 

velocity of each sample observed during sample movement (see Figure 4.2)(Table 4.1) 

and the cross-sectional area of the film as measured from SEM images (see Figure 4.3, 

cross-section area: 9,310 µm2). Velocities during periods of minimal movement (velocity 

< 2x10-7 m/s)(see Figure 4.4a and Materials and Methods for explanation) were not 

included in the average flow calculations. Halting of fluid flow was due to the limited 

source pool and uneven sample distribution. PBS control samples demonstrated a 

significantly higher flow rate than all other samples. Patient urine average volumetric 

flow was significantly higher than mock urine + Std Exo, patient plasma, reconstituted 

milk + Std Exo, and mock saliva + Std Exo. Although PBS + Std Exo demonstrated a 

significantly lower average volumetric flow rate as compared to PBS, its average 

volumetric flow rate was significantly higher than those of patient plasma, mock urine + 

Std Exo, reconstituted milk + Std Exo, and mock saliva + Std Exo. Patient urine and PBS 

+ Std Exo flow rates were not significantly different. Additionally, the maximum 

volumetric flow rates for less viscous samples (PBS, patient urine, PBS + Std Exo, mock 

urine + Std Exo, and reconstituted milk + Std Exo) were generally higher than more 

viscous matrices (patient plasma and mock saliva + Std Exo)(Table 4.1).  
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Figure 4.2. Average volumetric flow rates of C-CP film wicking. Results 
demonstrating the average volumetric flow rates for various matrices, including 
phosphate buffered saline (PBS), patient urine, patient plasma, PBS + standard 
exosomes (Std Exo), mock urine + Std Exo, reconstituted milk + Std Exo, and 
mock saliva + Std Exo (* - PBS; significantly different from all samples, p<0.05) 
(** - patient urine; significantly different from mock urine +Std Exo, p<0.05, n=8). 
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film wicking. Matrices wicked on C-CP fiber-based films include phosphate 
buffered saline (PBS), patient urine, patient plasma, PBS + standard exosomes (Std 
Exo), mock urine + Std Exo, reconstituted (Reconst) milk + Std Exo, and mock 
saliva + Std Exo. Error is represented by 1 standard deviation from the mean. 

Table 4.1. Average and maximum volumetric flow rates of C-CP film wicking. 
Matrices wicked on C-CP films include phosphate buffered saline (PBS), patient 
urine, patient plasma, PBS + standard exosomes (Std Exo), mock urine + Std Exo, 
reconstituted (Reconst) milk + Std Exo, and mock saliva + Std Exo. Error is 
represented by 1 standard deviation from the mean, n=8. 

Figure 4.3. SEM of C-CP film cross-section. A cross-sectional image was 
captured of a C-CP film using SEM at 315x magnification. Area measurements 
(made using ImageJ 1.48) were used to calculate flow rate in the C-CP film 
wicking experiments. 
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Figure 4.4. Patient urine C-CP fiber-based film wicking velocity and 
stereoscopic image. (a) Change in distance over time of patient urine 
wicking on C-CP film. Time points with a velocity below 2x10-7 m/s 
(periods of little movement, marked by red arrows) were removed from 
average velocity and flow calculations. (b) C-CP film stereoscopic image 
(5x magnification) of patient urine wicking experiment measured using 
Tracker video analysis software. 
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When imaged via TEM, patient urine and CM sEVs isolated using a C-CP fiber 

column and the glycerol stepwise elution protocol (see Materials & Methods; Figure 4.5) 

revealed similar morphologies to those isolated from the same sample type by UC. 

Patient urine sEVs isolated by UC (Figure 4.5a) ranged in size from approximately 50-

200 nm, while the patient urine sEVs isolated by C-CP fiber-based HIC (Figure 4.5b) 

were approximately 200 nm in diameter. CM sEVs isolated by UC (Figure 4.5c) ranged 

in size from approximately 30-70 nm, while CM sEVs isolated by C-CP fiber-based HIC 

(Figure 4.5d) ranged in size from 60-100 nm. Samples derived from patient urine retained 

similar staining characteristics regardless of isolation protocol (Figure 4.5a,b), but CM 

sEVs isolated by C-CP fiber-based HIC appeared much darker than CM sEVs isolated by 

UC. 

 

  



197 
 

  
Figure 4.5. Transmission electron microscopy of small extracellular 
vesicles derived from urine and cervical mucus via UC or C-CP fiber 
HIC. Samples include sEVs from a) patient urine, isolated by UC, b) 
patient urine, isolated by C-CP fibers using HIC with glycerol elution, c) 
cervical mucus, isolated by UC, and d) cervical mucus, isolated by C-CP 
fibers using HIC with glycerol elution. 
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 Initial pilot study sEVs (2 CM-derived – cancerous, 2 CM-derived – benign, 2 

urine-derived – cancerous, 2 urine-derived – benign) were run through quality control, 

library prepped, sequenced for miRNA, and analyzed for miRNA expression patterns. 

Principal component analysis (PCA), which dimensionally reduces and clusters samples 

based on the most influential variables (largest coefficient of variation), was used to look 

at similarities between samples (Figure 4.6). Principal component 1 is weighed more 

heavily than principal component 2, meaning sample proximity within principal 

component 1 indicates higher sample similarity than comparable sample proximity within 

principal component 2. Cancerous CM-derived sEV miRNA appeared to be grouping 

together with cancerous urine-derived sEV miRNA. Benign urine-derived sEV miRNA 

appeared to be comparable to cancerous CM- and urine-derived sEV miRNA in one 

sample, but not similar in the other sample. Both benign CM-derived sEV miRNA 

samples did not appear to group well together, but also differed significantly from 

cancerous CM-derived sEV miRNA. 
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Figure 4.6. Principal Component Analysis (PCA) plot of benign and 
cancerous cervical mucus- or urine-derived sEV miRNA expression (Pilot 
Study). Cancerous CM- (n=2), benign CM- (n=2), cancerous urine- (n=2), and 
benign urine- (n=2) derived sEV miRNAs were dimensionally reduced and 
clustered for easier interpretation. Data was normalized using the weighted 
trimmed mean of M-values (TMM) method.1 PCA completed using 50 miRNAs 
with the largest coefficient of variation based on TMM. Principal component 1 is 
the largest component in the variation and principal component 2 is the second 
largest component in the variation.  
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Differential expression analysis between pilot study benign (n=2) and cancerous 

(n=2) urine-derived sEV miRNA revealed numerous miRNAs that were highly 

differentially expressed and statistically different (Figure 4.7). Several cancerous urine-

derived sEV miRNAs appeared significantly upregulated or downregulated in 

comparison to benign counterparts. Specifically, 2 cancerous urine-derived miRNAs 

were highly downregulated and statistically significant (log10(p-value)>1.301) and 5 

cancerous urine-derived miRNAs were highly upregulated and statistically significant 

when compared to benign miRNA counterparts. The maximum log2 fold change 

magnitude between benign and cancerous urine-derived sEV miRNA was 3.85. Of those 

miRNAs that were highly differentially expressed and statistically significant in the 

cancerous urine-derived sEV samples, highly expressed miRNAs (high log of counts per 

million – logCPM) with tumor-related published literature were identified as potential 

indicators of pathogenesis (Table 4.2).  
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Figure 4.7. Volcano plot of miRNA differential expression of benign vs 
cancerous urine-derived sEVs (Pilot Study). Benign urine-derived sEV samples 
(n = 2) serve as the basis of comparison against cancerous urine-derived sEV 
samples (n=2). A log2 fold change > 0 indicates miRNA expression upregulation 
while a log2 fold change < 0 indicates miRNA expression downregulation. 
Differential expression and statistical significance (p<0.05 or –log10(p-
value)>1.301) determined using the EdgeR package for R and statistical test 
analogous to Fisher’s exact test that follows a negative binomial distribution. 
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Differential expression analysis of pilot study benign (n=2) and cancerous (n=2) 

CM-derived sEV miRNAs primarily demonstrated high upregulation of miRNAs (Figure 

4.8). In the cancerous CM-derived sEV samples, 4 miRNAs were downregulated and 

statistically significant and 72 miRNAs were upregulated and statistically significant 

compared to benign CM-derived miRNAs. The maximum log2 fold change magnitude 

between benign and cancerous CM-derived sEV miRNA observed was 7.34 (Figure 4.8). 

Several miRNAs were identified as being highly expressed (high log CPM), highly 

differentially expressed (log2 fold change) and statistically significant (p-value <0.05) 

(Table 4.3) between benign and cancerous CM-derived sEVs. 

  

miRNA Name Log2 FC LogCPM p-value Direction 

hsa-mir-299-5p -3.842 4.161 0.0081 Downregulated 

hsa-mir-205-5p 3.687 10.807 0.0095 Upregulated 

hsa-mir-320d 2.597 4.281 0.018 Upregulated 

Table 4.2. Differentially expressed miRNAs of interest from benign (n=2) vs 
cancerous (n=2) urine-derived sEVs (Pilot Study). Significantly different miRNAs 
of interest were selected by looking for a high absolute value log2 fold change (Log2 
FC), a high log of counts per million (logCPM), a p-value<0.05, and tumor-related 
literature. 
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Figure 4.8. Volcano plot of miRNA differential expression of benign vs 
cancerous cervical mucus-derived sEVs (Pilot Study). Benign CM-derived sEV 
samples (n=2) serve as the basis of comparison against cancerous CM-derived 
sEV samples (n=2). Upregulation of miRNA expression (log2 fold change >0), 
downregulation of miRNA expression (log2 fold change <0), and statistical 
significance (p<0.05 or –log10(p-value)>1.301) determined using the EdgeR 
package for R and statistical test analogous to Fisher’s exact test that follows a 
negative binomial distribution. 
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As part of a larger study, 42 CM-derived sEV (16 benign, 26 cancerous) samples 

were sequenced and analyzed (by Qiagen) for miRNA expression. After quality control, 

library prep, and sequencing, sample miRNA expression levels were analyzed using 

principal component analysis (PCA) to more easily understand clustering and similarities 

in expression between samples (Figure 4.9).Visually, cancerous CM-derived sEV 

miRNA profiles appeared to cluster closer along the first principal component compared 

to benign CM-derived sEV miRNAs. Overall, much of the variance in expression for all 

43 miRNAs appear very similar for both cancerous and benign CM-derived sEVs, as 

indicated by PCA overlap and close proximity. 

miRNA Name Log2 FC LogCPM p-value Direction 

hsa-mir-95-3p 5.274 5.877 1.53E-17 Upregulated 

hsa-mir-184 6.320 
 

7.528 
 

8.01E-14 
 

Upregulated 

hsa-mir-429 4.617 
 

9.056 
 

4.88E-16 
 

Upregulated 

Table 4.3. Differentially expressed miRNAs of interest from benign (n=2) vs 
cancerous (n=2) cervical mucus-derived sEVs (Pilot Study). Significantly different 
miRNAs of interest were selected by looking for a high absolute value log2 fold 
change (Log2 FC), a high log of counts per million (logCPM), a p-value<0.05, and 
tumor-related literature. 
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Figure 4.9. Principal Component Analysis (PCA) plot of benign and 
cancerous CM-derived sEV miRNA expression. Dimensional reduction and 
clustering was used to analyze miRNA expression similarities between benign 
CM-derived sEV samples (n=16) and cancerous CM-derived sEV samples (n=26). 
Data was normalized using the weighted trimmed mean of M-values (TMM) 
method.1 PCA completed using 43 miRNAs with the largest coefficient of 
variation based on TMM. Principal component 1 is the largest component in the 
variation and principal component 2 is the second largest component in the 
variation.  
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In a larger analysis, benign (n=16) and cancerous (n=26) CM-derived sEV 

miRNAs were analyzed for differential expression based on benign CM-derived sEV 

miRNAs (Figure 4.10). Of the miRNAs analyzed, 18 were downregulated and 

statistically significant (log10(p-value) >1.301) and 4 were upregulated and statistically 

significant in the cancerous CM-derived sEVs. Additionally, the maximum log2 fold 

change magnitude observed between benign and cancerous CM-derived sEV miRNA 

expression was 3.14. By filtering miRNA expression by high fold change (log2 FC), high 

log of counts per million (logCPM), and statistical significance (p-value<0.05) as well as 

looking for cancer-related published literature, several potential biomarker candidates 

were identified (Table 4.4). Notably, hsa-mir-184 was identified with these qualifications 

in both the pilot study (2 benign, 2 cancerous, Figure 4.8, Table 4.3) and larger study (16 

benign, 26 cancerous, Figures 4.10, 4.11 Table 4.4) of CM-derived sEV miRNAs.  
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Figure 4.10. Volcano plot of miRNA differential expression of benign vs 
cancerous cervical mucus-derived sEVs. Benign CM-derived sEV samples 
(n=16) serve as the basis of comparison against cancerous CM-derived sEV 
samples (n=26). MicroRNA expression upregulation (log2 fold change >0), 
downregulation (log2 fold change <0), and statistical significance (p<0.05 or –
log10(p-value)>1.301) determined using the EdgeR package for R and statistical 
test analogous to Fisher’s exact test that follows a negative binomial distribution. 
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miRNA Name Log2 FC LogCPM p-value Direction 

hsa-mir-142-3p -1.500 
 

12.628 
 

0.0013 
 

Downregulated 

hsa-mir-34c-3p -1.718 
 

8.530 
 

0.0154 
 

Downregulated 

hsa-mir-184 1.694 
 

10.170 
 

0.0191 
 

Upregulated 

hsa-mir-223-3p -1.288 15.523 0.0500 
 

Downregulated 

Table 4.4. Differentially expressed miRNAs of interest from benign vs cancerous 
cervical mucus-derived sEVs. Differential expression determined using 16 benign 
and 26 cancerous CM-derived sEV samples. Significantly different miRNAs of 
interest were selected by looking for a high absolute value log2 fold change (Log2 
FC), a high log of counts per million (logCPM), a p-value<0.05, and tumor-related 
literature. 

Figure 4.11. Re-clustering of cervical mucus miRNA expression data. Ongoing 
research has observed clustering of samples into high-grade (G1) and low-
grade/benign (G2) rather than cancerous and non-cancerous. Top differentially 
expressed miRNAs between correctly grouping samples (n=42). 
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Discussion 

 The impact that EVs may have on disease diagnostics and therapies is becoming 

more apparent. As EV biogenesis and classifications become clearer, more efficient, and 

effective EV isolations emerge, and EV technology moves closer to clinical translation.2, 

72 Specifically, EV isolation maintains a great deal of promise for early cancer 

detection.46 Due to frequent late stage discovery and severity, ovarian cancer (OC) is a 

prime candidate for EV-based diagnostics. According to a recent epidemiology review, 

patients diagnosed with OC at stages 3 or 4 have a 5-year survival rate of 29% and a 5-

year survival rate of 92% when diagnosed at stages 1 or 2.40, 73 As most OC patients are 

diagnosed in stages 3 or 474, early stage discovery via EV-based diagnosis may be used to 

greatly improve OC survival rates. Clinical routine screening for cancer cell-derived EVs 

is plausible, practical, inexpensive, and could substantially reduce instances of cancer-

related deaths. 

Although EVs have demonstrated promising and powerful therapeutic and 

diagnostic abilities in vitro, only a handful of clinical trials have reported results from 

phase 1-3 (dosage, safety, and efficacy)75-79 studies. The trials reporting results have 

demonstrated that therapeutic EV dosing has been well-tolerated in most instances with 

only a few cases of moderate adverse events.80 To date, no clinical trials regarding EV 

diagnostic ability have reported results. While these trials are promising, the number of 

trial applications has been limited primarily due to EV isolation inconsistencies, changing 

EV characterization definitions, and mutable good manufacturing practices (GMP). For 

EV technology to be translated to the clinic, it is vitally important that the EV community 
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establish greater consistency within EV isolation, classification, characterization, and 

sample source selection. The International Society of Extracellular Vesicles (ISEV) has 

thus far done an excellent job establishing standards of classification and 

characterization8, but much more research and discussion will be required to fully 

understand the complexities surrounding EV biogenesis and classification.  

 A large hurdle impeding consistency across EV research is choice of EV source. 

The majority of EVs used in clinical trials come from either autologous or allogeneic 

dendritic cells (DCs), mesenchymal stem cells (MSCs) or patient body fluids.80 Sources 

of EVs investigated in vitro may include human, plant, or other eukaryotic cell lines and 

numerous human body fluids.2, 3, 52, 80-89 Sample source can greatly impact the results of a 

study and should be carefully chosen for each application. By defining isolation strategies 

starting with sample source, the EV community may be able to improve EV diagnostic 

consistency, precision, and accuracy needed to progress toward clinical translation. While 

several studies have demonstrated diagnostic correlations using urine or plasma, more 

body fluids are worth investigating for region-specific diagnostic potential. For instance, 

hypothetically speaking, urine may provide the most accurate diagnosis for renal cell or 

bladder carcinomas, while breast milk may provide the most accurate diagnosis for breast 

cancer. Moreover, the strategies employed to isolate EVs should largely depend on the 

sample source and application desired. By investigating how EV separation techniques 

using various sample sources impacts downstream EV applications, the EV community 

may find correlations that help develop improved guidelines and standards for EV 

isolation and diagnostics. 
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 When choosing an EV isolation design, both physical characteristics and potential 

application should be considered. Vesicle properties including size, morphology, 

concentration, and protein, nucleotide, and lipid content can influence EV separation 

parameters.12, 15, 30, 48, 90, 91 Furthermore, the EV source fluid viscosity, protein profile, 

volume, and contaminants can affect process efficiency or resulting sample purity. For 

instance, a highly viscous source, such as blood plasma or cervical mucus, may not flow 

through microfluidics devices under the same conditions as urine, thus potentially 

influencing capture efficiency. As applications are considered, it is important to 

understand the EV sub-populations and contaminants present in each EV source. For 

instance, blood sample EV separations have demonstrated the highest level of 

contamination (proteins, non-vesicular membranous species, lipoproteins), which may 

influence downstream proteomics, lipidomics, or therapies.92, 93 Even while considering 

the EV physical characteristics, source, and application, with the lack of comparison of 

EV isolation techniques and sources, it can be difficult to ascertain the optimal approach. 

This study aims to compare the effects of separation method and sEV source (urine or 

cervical mucus), on recovered sEV morphology, and RNA sequencing (miRNA) results. 

In particular, this study provides important preliminary data for the study of ovarian 

cancer diagnostic potential of urine- and cervical mucus-derived sEV miRNA. The 

ultimate aim of these investigations and those of the cohort is to determine which EV 

source is optimal for downstream predictive ovarian cancer diagnostics and to optimize 

EV separation for that source.  
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The Case for Urine-derived EVs 

Urine was chosen first for EV investigation as it has become a popular choice for 

EV study due to its availability and ease of collection. Urine-derived EVs have been 

characterized by morphology, proteome, and miRNA content numerous times, providing 

an abundance of information for comparison.42, 52, 94 Furthermore, ultracentrifugation, 

size exclusion, microfluidics, polymer precipitation, and immunoaffinity separation 

approaches have been used to isolate urine-derived EVs.20, 52, 56, 95, 96 Given the lack of 

standards within the EV community, size characterization and quantification of urinary 

EVs appears heavily dependent on isolation protocol, purification steps, sample 

preparation, and characterization method. However, when developed under identical 

protocols, different size distribution and concentrations of urinary EVs could indicate 

underlying disease states.42 Urinary EVs may be particularly useful for downstream 

miRNA analysis as the abundant protein content in urine does not prohibit RNA 

extraction43 and extravesicular RNA does not tend to co-precipitate with urinary EVs.43, 97 

Moreover, publications have identified more than 5,000 urinary EV proteins (many of 

which can be analyzed online at EVpedia and Vesiclepedia) that researchers can 

investigate further as potential biomarkers.42 Compared to other body fluids, urine and 

blood have amassed the most EV-related literature and, given the large amount of data 

available and ease of access, may be ideal for biomarker discovery and disease 

diagnostics.  

Since plasma EVs cannot easily cross the glomerular filtration apparatus, the 

majority of urinary EVs are derived from the kidneys.58 Based on the premise that EV 
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sources in close proximity to diseased tissue may allow for better diagnostic accuracy, 

most studies of urinary EV diagnostic potential have focused on urinary tract diseases.20, 

44, 45, 55, 97, 98 However, proteomics analysis of urinary EVs has demonstrated significant 

diagnostic potential for urogenital tract diseases, metastatic cancers, and non-urologic 

diseases. For instance, Wang et al found that SNAP23 and calbindin were elevated in 

Parkinson’s Disease urinary EVs and predicted disease 86% of the time.57 The suggestion 

that urinary EVs can be used to diagnose urogenital tract diseases is valid, but, likely due 

to glomerular filtration of proteins, urinary EVs may also have the potential to diagnose 

distant diseases or injuries, such as neurodegenerative diseases, cardiovascular diseases, 

liver injury, and cancers.35, 57, 92, 95, 99, 100  

The early results of this study suggest that urine may be an excellent EV source 

for isolation techniques involving wicking or capillary movement. Initial TEM images of 

sample wicking on C-CP fiber-based films (Figure 4.1) demonstrated high similarity in 

EV capture and morphology between PBS-diluted standard exosomes (Figure 4.1a,b) and 

patient urine (Figure 4.1c,d) samples. Vesicles in both PBS-diluted standard exosomes 

and patient urine samples appeared to adhere to the film surface in large aggregates. 

Although, it remains to be seen if capturing vesicles in aggregates or with even surface 

distribution is more or less beneficial for easy vesicle detection. When compared to 

patient plasma wicked on C-CP films (Figure 4.1e,f), urine presented clearer and cleaner 

capture of EVs, suggesting that urine may be more compatible with wicking-based EV 

separation and capture. Plasma samples may require further purification or 

supplementation (to reduce protein contamination or viscosity) in this format in order to 



214 
 

wick and separate plasma sEVs. Analysis of the flow rates of the various matrices on C-

CP films (see Figure 4.2) revealed that PBS-diluted standard exosomes and urine flow at 

significantly lower rates than PBS, but significantly higher rates than patient plasma and 

standard exosomes diluted in mock urine, reconstituted milk, or mock saliva. The 

presence of standard exosomes in PBS appeared to decrease the sample flow rate 

compared to PBS alone. The significant difference in flow rates of patient urine and 

mock urine suggests that the samples have significantly different composition. As the 

mock urine is not capable of representing the large range and variation of patient urine 

(especially in regard to water content and solute concentrations), the difference in flow 

rates is not surprising. Additionally, it seems unlikely that the urine collection 

preservatives (protease inhibitors and a bacteriostatic) may be altering the sample surface 

tension, viscosity, or interaction with the fiber surface. However, as urine samples can 

vary widely from patient to patient, more sample replicates would be required to make 

substantial claims.  

Due to its widespread use, availability of proteomic information , compatibility 

with wicking and capillary flow applications, and diverse EV population, urine may act 

as an optimal EV source in most situations. However, as one of the primary goals of these 

investigations is to determine which EV source is optimal for downstream predictive 

ovarian cancer diagnosis, body fluids more closely associated with the female 

reproductive tract needed to be explored. While urine may provide heterogenous EV 

populations useful for a variety of applications, greater homogeneity in EV population 
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may provide enhanced diagnostic sensitivity for certain diseases. Hence, the next logical 

step was to investigate a body fluid with greater proximity to the ovaries. 

The Case for Cervical Mucus-derived EVs 

Recently, cervical mucus (CM) has generated interest as an EV source for 

diagnosis of diseases or injury in the female reproductive tract. Like urine, CM proximity 

to potential diseased areas (cervix, endometrial lining, ovaries, fallopian tubes, etc.) may 

allow for greater diagnostic specificity. While blood-derived EV disease diagnosis is 

promising, low specificity, heterogeneous EV populations, and EV sub-population 

masking by other EV populations may affect diagnostic accuracy in certain applications. 

In the case of ovarian cancer, the potential of CM specificity may outweigh diagnostic 

potential of more heterogenous EV population sources, such as blood and urine.  

Although CM may be an appealing source of EVs for diagnosis, there has been 

very little investigation into CM-derived EVs by researchers. Since EVs are found in 

most body fluids6, 101, are heavily involved in placental barrier communication during 

pregnancy102, 103, and Flori et al. found that cervical mucus from pregnant and non-

pregnant women contain membranous vesicles having exosome-like structure,24 there is 

reasonable evidence that CM contains EVs. However, the CM-derived vesicle 

concentrations and characteristics are not well documented. With so little available 

information, it can be challenging to develop new protocols that produce consistent EV 

populations and downstream results from CM. However, the lack of CM-derived EV 

research offers an opportunity to expand understanding of EV separation, morphology, 



216 
 

and downstream analysis of CM. The practicality or ease of collection of CM may also 

generate concern, especially compared to urine; however, CM can be easily obtained 

during routine gynecological examinations. 

In this study, initial analysis suggests that sEVs may be separated from CM in a 

similar fashion to urine. TEM imaging of urine and CM samples subjected to UC and 

glycerol elution (see Figure 4.5) all revealed small dimpled vesicles meeting the 

description of sEVs. The similarity in morphology between UC and glycerol elution 

samples for each sample type suggests that the glycerol elution method may provide an 

alternative to UC isolation. Furthermore, the similarity in morphology across CM UC and 

glycerol elution samples suggests that CM may be compatible with chromatography 

techniques despite high sample viscosity.  

After literature investigation and experimental demonstration of CM sEV 

separation, the potential of CM sEV downstream analysis needed to be investigated. With 

an eye toward comparison of urine and CM downstream analyses and ensuing OC 

diagnostics investigations, an sEV miRNA sequencing pilot study was designed to 

examine miRNA differential expression of cancerous and benign urine and CM sEV 

samples.  

Comparison of urine- and CM-derived EV miRNA sequencing 

 Urine and CM-derived EV samples were prepared via UC prior to miRNA 

isolation, sequencing, and analysis. The pilot study consisted of 2 cancerous urine-

derived, 2 non-cancerous urine-derived, 2 cancerous CM-derived, and 2 non-cancerous 
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CM-derived EV samples with all 4 urine-derived and 4 CM-derived EV samples sourced 

from the same 4 patients (one urine and one CM sample from each patient). Although the 

sample sizes were not large enough to make conclusive statements, the pilot study 

allowed for assessment of sample source compatibility with the given protocol and 

provided small insights into the miRNA differential expression of urine- and CM-derived 

EVs. 

 Initial completion of quality control and observation of the PCA (see Figure 4.6) 

suggests that the UC method used here can produce viable urine- and CM-derived EVs 

for downstream miRNA analysis. A more thorough analysis of the quality and 

differential expression of miRNA may be required when developing or comparing new 

isolation methods. In this case, UC is already a well-established EV isolation protocol 

with many studies demonstrating viable miRNA analysis.16, 19, 59, 65, 104 For this study, as 

CM-derived EVs have never been sequenced for miRNA, it was very important to verify 

miRNA quality in the CM-derived EV samples. 

 The pilot study PCA of benign and cancerous cervical mucus- or urine-derived 

sEV miRNA expression (see Figure 4.6), although based on small sample size, suggested 

that CM-derived EV miRNAs may cluster better into benign and cancerous groups than 

urine-derived EV miRNAs. Both urine- (Figure 4.7) and CM-derived (Figure 4.8) sEV 

miRNA profiles demonstrated several miRNAs that were highly differentially expressed 

and statistically different; however, the number of miRNAs meeting this criteria was 

much greater for CM-derived sEVs than urine-derived sEVs (CM-derived: 4 

downregulated, 72 upregulated; Urine-derived: 2 downregulated, 5 upregulated). 
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Moreover, the maximum log2 fold change for CM-derived sEV miRNAs was 7.34 while 

the maximum log2 fold change for urine-derived sEV miRNAs was 3.85. It is unclear 

why the differentially expressed CM-derived sEV miRNAs are skewed toward 

upregulation, but a larger sample size would provide more extensive data and possible 

insights. It is notable that several of the miRNAs identified as highly expressed and 

highly differentially expressed in urine- and CM-derived sEVs were found in tumor-

related literature (see Table 4.2 and Table 4.3). This suggests that both urine- and CM-

derived sEVs may facilitate diagnosis of cancerous tumors using specific miRNA 

markers. However, the greater number of differentially expressed and statistically 

different miRNAs, and the greater maximum log2 fold change suggests that CM-derived 

sEVs may provide clearer demonstrations of benign and cancerous sEV miRNA 

differential expression. Thus, CM-derived sEV-identified miRNA markers may enable 

more accurate and specific downstream OC diagnoses than urine-derived sEV miRNA 

markers. 

 After discussion and comparison of urine- and CM-derived sEVs, CM-derived 

sEVs were chosen for a subsequent, more comprehensive miRNA study. The larger study 

group was comprised of 16 benign CM-derived sEV and 26 cancerous CM-derived sEV 

samples. Ideally, the control benign patient samples would comprise half of the group; 

however, the total number of potential benign CM samples were difficult to predict ahead 

of time as patients who were asked to supply samples were undergoing hysterectomies 

because they had ovarian tumors were not biopsied until after surgery. PCA of all 42 

samples (see Figure 4.9) did not reveal distinct groupings between benign and cancerous. 
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Although this is concerning, especially regarding differential expression, more in-depth 

analysis of groupings based on cancer type, stage, and physical characteristics revealed 

more representative clustering. Early bioinformatics indicates that high-grade tumor 

sample cluster together, while low-grade tumor and benign samples are more similar in 

expression (see Figure 4.11). This may be an indication that low-grade tumors and benign 

samples may be more difficult to distinguish based on these parameters. As ovarian 

cancer is a highly heterogeneous disease, this is not surprising, and additional 

categorization beyond these simplistic cancerous and non-cancerous groupings will likely 

be required to fully characterize the complexities of the data. Concerning this 

observation, more research is ongoing to classify and discriminate characteristics 

between these groups to better analyze biomarker candidates. However, differential 

expression analysis of the 42 samples (see Figure 4.10) based on simple benign and 

cancerous groupings still provided insightful patterns and demonstrated significant 

miRNA upregulation (4 miRNAs) and downregulation (18 miRNAs). Significant 

differential expression, even with simple benign and cancerous groupings, is evidence 

that specific miRNA markers may be used either in single or multiplexed formats to 

identify ovarian cancer CM-derived sEVs. Similar to the pilot study, these 22 

significantly differentially expressed miRNAs were cross-referenced with tumor-related 

literature and the markers that were highly differentially expressed and relevant to 

ovarian cancer were identified (see Table 4.4).  

Of the markers identified, hsa-miR-184 was of particular interest as it was highly 

upregulated in both the pilot and 42-sample miRNA studies and early indications from 
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ongoing research suggest that it is also highly upregulated in the clustered high-grade 

tumor samples as compared to the low-grade tumor and benign samples. Further 

investigation into published research revealed that hsa-miR-184 has been identified as a 

potential prognostic marker in epithelial ovarian cancer.105 Functionally, hsa-miR-184 

has been categorized as a tumor suppressor for renal cell carcinoma, colorectal cancer, 

retinoblastoma, and epithelial ovarian cancer and, accordingly, is typically downregulated 

in these tumor environments.105-107 While the exact mechanism is unclear, hsa-miR-184 

appears to regulate cell proliferation, apoptosis, and inflammation.105 However, this study 

suggests that hsa-miR-184 is highly upregulated in ovarian tumor sEVs, a marked 

difference from most investigations. This appears puzzling at first, but there are several 

rationales that may explain the disparity. First, no study has used sEV-derived miRNA to 

link hsa-miR-184 to a tumor environment. While sEV contents are derived from the cell 

cytoplasm, specific molecules are often selectively packaged into sEVs to direct exact 

cell communication.4, 108, 109 Second, while most investigations have found that hsa-miR-

184 is downregulated in tumor tissues, Chen et al.106 found that tongue squamous cell 

carcinoma had upregulated levels of hsa-miR-184 compared to corresponding non-

tumorous tissue and that upregulation of hsa-miR-184 may promote tongue squamous 

cell carcinoma migration and metastasis. Therefore, since sEVs are a mode of 

microenvironmental communication and are known to be involved in tumor 

microenvironment progression and metastasis, it is possible that hsa-miR-184, a potential 

promoter of cell migration and metastasis, may be released into the microenvironment 

where it could serve to promote disease spread.  Lastly, the variety of types and stages of 



221 
 

ovarian cancer involved in this study may influence hsa-miR-184 expression. For 

instance, late stage (III/IV) epithelial ovarian cancer tissues have demonstrated lower hsa-

miR-184 expression,105 which may skew the differential expression results if samples are 

not more specifically categorized for analysis. While the intracellular mechanisms of hsa-

miR-184 require further investigation, especially for therapeutic applications, hsa-miR-

184 differential expression and its known involvement in ovarian cancer mechanisms 

may prove to be a useful biomarker for diagnostic or disease progression monitoring 

applications. It is hoped that more insight into this possible biomarker and the discovery 

of others may be realized during an ongoing Phase II patient study that focuses on 

patients who have identified BRCA1 mutations.  

Frequently denoted as BRCA1 “positive,” a mutation in the BRCA1 tumor 

suppressor gene is associated with a much higher risk of developing ovarian, breast, 

fallopian tube, peritoneal, and pancreatic cancer.110 As a result of a BRCA1 mutation, the 

homologous recombination system responsible for repairing double strand DNA breaks 

may fail and cell cycle arrest may be impaired with consequence of a higher risk of tumor 

development.111 For women with a BRCA1 mutation, the lifetime risk of developing OC 

is 40% and late stage OC discovery survival rates remain low.110 In the currently ongoing 

study, cervical mucus samples from patients undergoing prophylactic surgery as well as 

those with tumors, both cancerous and non-cancerous, will be processed for EV isolation 

for subsequent characterization via RNA sequencing and proteomics. The resulting 

miRNA expression and protein data from these samples will be used to identify novel 

protein biomarkers for early stage OC. Moreover, machine learning algorithms are being 
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constructed that will be used to correlate miRNA and protein expression data to uncover 

specific biological pathways involved in tumor initiation and progression. In this manner, 

intermediary proteins may be identified that may prove to be diagnostically useful 

biomarkers or potential cancer therapy targets.  

Sample source selection and OC sEV diagnostic potential  

These investigations have compared the resultant sEV morphology and miRNA 

profiles for different sEV separation methodologies and sample sources (urine and 

cervical mucus). The apparent distinctions between urine and CM-derived sEVs, 

particularly concerning miRNA expression, highlight the need to consider sample source 

when selecting sEV separation method, downstream analysis, and biomarker discovery. 

Both urine- and CM-based diagnostic approaches have great potential and are worthy of 

consideration for downstream sEV analysis. However, for these investigations, CM was 

chosen based on proximity to the cancer origin and preliminary results. Resulting sEV 

miRNA data suggests that CM-derived sEV miRNA sequencing can be used to construct 

a panel of OC diagnostic biomarkers. With the correct sEV isolation methods, CM-

derived sEV miRNA may deliver a simple test that could be seamlessly integrated into 

routine gynecological examinations. Such a test would greatly increase the number of 

early-stage OC diagnoses and potentially increase the average 5-year survival rate of OC 

patients. While the lofty aims of this assay are still far from accomplished, future 

investigations are being designed to address the diagnostic accuracy of specific 

biomarkers. These investigations should include more CM-derived sEV miRNA 

sequencing and analysis, CM-derived sEV proteomics analysis, CM-derived sEV C-CP 
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film-based separation, and colorimetric assay development. Continued development of C-

CP film-based sEV isolation could benefit from even sample application and increased 

wicking capacity using sample and absorption pads (similar to standard lateral flow 

assays, e.g. pregnancy test strips). Uniform sample application and wicking would 

improve the consistency of C-CP film-based sEV separation and elucidate the prospects 

of the sEV isolation strategy for use in diagnostics.   Further transcriptomics and 

proteomics investigations should focus on clustering patients based on carcinoma subtype 

or underlying pathophysiology and analyzing data using bioinformatic machine learning 

algorithms to reveal expression patterns. These expression patterns may then be used to 

develop a panel of diagnostic biomarkers to predict OC occurrence. Paired with the 

appropriate sEV isolation, predictive OC biomarkers could lead to more accurate, easier 

to perform, and inexpensive OC detection assays. Clinical translation of this technology 

has the potential to reach clinical or home settings and would truly revolutionize early 

cancer detection and improve cancer survival rates for one of the deadliest cancers for 

women.  
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CHAPTER 5: 

CONCLUSIONS 

 

The primary goal of these studies is to ultimately create a “liquid biopsy” system 

for exosome-based diagnosis of ovarian cancer. Exosomes are an excellent “liquid 

biopsy” candidate species as they are found in a variety of body fluids, making invasive 

or surgical diagnostic procedures unnecessary. In addition, they are inherently more 

stable than other liquid biopsy targets, such as free DNA, RNA, and proteins. While 

promising, exosome applications have been limited by inconsistent, expensive and time-

consuming isolation techniques. To alleviate this problem, we have developed a PET C-

CP fiber-based EV isolation method that is quick and inexpensive and have compared it 

to standard EV isolation protocols.  

For ovarian cancer diagnostics to be possible using this new isolation platform, 

we must devise methods of selective EV isolation based on specific EV-associated 

ovarian cancer biomarkers. These efforts will require the use of model sEVs derived from 

normal and malignant ovarian cells. To this end, we have engineered a model system 

consisting of two ovarian cell lines, one normal and one cancerous, to produce green and 

red fluorescent sEVs, respectively, that may be employed in the testing and optimization 

of the PET C-CP EV isolation platform for specific sEV capture. The model sEVs can be 

easily visualized via fluorescence microscopy and provide a simple, cost-effective, 

consistent system to verify specificity and sensitivity of antibodies to OC biomarker 

proteins grafted to the PET C-CP fiber surfaces for use in lateral flow-based diagnostics 
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for OC. In order to ensure selective capture potential and imaging compatibility, the 

model EVs were generically captured on the PET C-CP fibers and selectively captured on 

nitrocellulose using ovarian cancer marker-specific antibodies.  

With future experiments in mind, we demonstrated that urine or cervical mucus 

can be used as a sample source for EV isolation and for EV miRNA differential 

expression analysis. The miRNA data collected during these investigations and in 

ongoing proteomics investigation will be used to identify novel ovarian cancer EV 

biomarkers. Additionally, a new clinical investigation of BRCA1 mutation patients with 

or without ovarian cancer of varying stages will continue to bolster biomarker discovery. 

Newly discovered ovarian cancer biomarkers will be incorporated into the new PET C-

CP platform selective EV capture method to improve early ovarian cancer detection. To 

support clinical translation of the PET C-CP fiber technology, a PET C-CP fiber-based 

film is being refined to capture and detect ovarian cancer EVs as a colorimetric lateral 

flow assay, similar to a pregnancy test. With a new EV isolation method, model sEVs 

designed to test it, a protocol for ovarian cancer biomarker identification and 

incorporation, we have a clear path toward clinical translation. Future work will focus on 

the development of a prototype for a quick, inexpensive, and easy-to-use colorimetric 

ovarian cancer diagnostic test that can be routinely performed in the clinical or home 

setting. 
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APPENDIX A: 

EXTRACELLULAR VESICLE CHARACTERIZATION IN BUFFERS 

 

Materials and Methods 

Extracellular Vesicles (EV) isolation 

 Caov-3 cells were grown to 80% confluency, refreshed with new media, and 

incubated for 3 days. Conditioned media was then aspirated from the culture flask and 

processed using an ultracentrifugation protocol. Briefly, conditioned culture media was 

centrifuged at 700 x g for 5 minutes at 22˚C using an Eppendorf Centrifuge 5430R 

(Eppendorf, Hamburg, Germany). The resulting supernatant was centrifuged at 2,000 x g 

for 10 minutes at 22˚C using an Eppendorf Centrifuge 5430R (Eppendorf, Hamburg, 

Germany). Again, the resultant supernatant was centrifuged at 10,000 x g for 30 minutes 

at 4˚C using a Beckman Coulter Avanti J-26S XPI Centrifuge with a JA-25.50 rotor 

(Beckman Coulter, Brea, CA). Lastly, the supernatant resulting after centrifugation at 

10,000 x g was centrifuged at 120,000 x g for 60 minutes at 4˚C using a Beckman 

Coulter Optima XPN-80 Ultracentrifuge and a Type 45 Ti rotor (Beckman Coulter, Brea, 

CA). Finally, 400 µL of 1x PBS was used to resuspend and store the resultant pellet for 

downstream analysis. 

  



237 
 

EV buffer characterization 

Caov-3 ultracentrifugation EV samples in PBS were mixed with several buffers at 

a ratio of 1:1. Mixing buffer working concentrstions included 1X PBS, 5%,10%, 20%, 

and 30% glycerol, 25 mM trehalose, 20% acetonitrile, mixed 20% acetonitrile and 25 

mM trehalose,, 1 M ammonium sulfate, and mixed 1 M ammonium sulfate and 20% 

acetonitrile diluted in PBS. EVs were mixed with each buffer and stored briefly on ice 

prior to fixation and staining for transmission electron microscopy (TEM) imaging. 

Sample preparation for transmission electron microscopycaov-3 EVs isolated by UC 

were fixed in 4% paraformaldehyde for 30 minutes on ice. All grid adhesion and staining 

steps were performed by pipetting drops of sample, stain, or wash onto parafilm and 

moving 200 mesh copper formvar coated grids (Electron Microscopy Sciences, Hatfield, 

PA) from one drop to the next. After sample fixation, grids were placed coated side down 

on 5 µL drops of each sample for 5 minutes. Grids were washed 3 times with DI water 

for 4 minutes each, stained with 2% uranyl acetate for 5 minutes, and then washed 3 

times with DI water for 4 minutes each. Grids were air dried in a low-humidity 

environment and then imaged using a Hitachi H7600 TEM (Hitachi, Tokyo, Japan). 
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Results 

 Caov-3 small EVs (sEVs) isolated by UC were subjected to a various buffers and 

imaged using TEM to assess morphological structure and damage. Caov-3 sEVs in PBS 

(see Figure A1b) demonstrated sEV characteristics under this staining methodology. 

Caov-3 sEVs in PBS maintain a “dimpled” structure with a slight shadow surrounding 

the vesicle and are within 30-150 nm in diameter as compared to the negative control. 

Caov-3 sEVs diluted in 5%, 10%, 20%, and 30% glycerol (see Figure A1c-f) 

demonstrated similar morphology to Caov-3 sEVs in PBS and displayed no evidence of 

structural damage. Glycerol samples demonstrated significant non-vesicular imaging 

artifacts compared to the positive and negative controls. Next, Caov-3 sEVs diluted in 25 

mM trehalose (see Figure A1g) demonstrated morphology similar to Caov-3 sEVs in 

PBS, but appeared in a smaller size range and stained much darker. Samples diluted in 25 

mM trehalose also displayed significant non-vesicular imaging artifacts compared to the 

positive and negative controls. Caov-3 sEVs diluted in 20% acetonitrile (see Figure A1h) 

demonstrated very little morphological similarities to Caov-3 sEVs in PBS and contained 

large amounts of organic debris while Caov-3 sEVs diluted in 20% acetonitrile with 

addition of 25 mM trehalose (see Figure A1i) saw some retention of sEV morphological 

structure in addition to altered staining and organic debris. Addition of 1M ammonium 

sulfate to Caov-3 UC samples (see Figure A1j) resulted in morphological change and 

possible crenation of vesicles as well as altered staining and non-vesicular artifacts. 

Finally, addition of 1M ammonium sulfate and 20% acetonitrile to Caov-3 UC samples 

(see Figure A1k) resulted in morphological change, possible crenation or vesicles, altered 
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Figure A1. Scanning electron microscopy of Caov-3 small extracellular 
vesicles isolated by UC and diluted in various buffers. PBS negative control 
containing a) no sEVs and Caov-3 sEVs diluted in b) PBS, c) 5% glycerol, d) 
10% glycerol, e) 20% glycerol, f) 30% glycerol, g) 25 mM trehalose, h) 20% 
acetonitrile, i) 20% acetonitrile and 25 mM trehalose, j) 1 M ammonium sulfate, 
and k) 1 M ammonium sulfate and 20% acetonitrile. 
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staining, and non-vesicular imaging artifacts, similar to Caov-3 vesicles subjected to 1M 
ammonium sulfate alone. 

Discussion 

As the parameters surrounding binding affinity of sEVs to poly(ethylene 

terephthalate) capillary-channeled polymer (C-CP) fibers are being further investigated, it 

is important to determine which media components may work best for eventual elution 

and separation of sEVs from the PET C-CP fibers. Ideally, all reagents used during the 

separation process should be compatible with the technical aspects of the 

chromatography process, while also retaining the morphology, structure, and informatic 

components of the sEVs. Damage to the vesicles could result in misinterpretation of 

downstream results. Therefore, TEM imaging was used to look at morphology and 

potential damage to vesicles in various buffers. As discussed before, intact sEVs 

observed under TEM tend to flatten out slightly, showing a circular structure with a 

“dimpled” interior.1, 2 Additionally, vesicles in this format tend to show a darker ring or 

shadow around the circular structure due to the uranyl acetate employed while staining.3 

Of note, observed differences in the intensity of staining may be due in part to slight 

variation within the staining process. Any significant structural variation or lack thereof 

may indicate significant damage to or lysing of the vesicles. 

Caov-3 sEVs collected via UC and diluted in 5%, 10%, 20%, and 30% glycerol 

(see Figure A1c-f) appeared to maintain normal sEV morphology within this description 

when compared to Caov-3 sEVs diluted in PBS. Glycerol, frequently used as a cryo-

protectant in biological laboratories4, is an organic osmolyte that helps maintain cell 

integrity and protein structure through reduction of intracellular non-organic ions.5-7 
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Furthermore, because it is a highly polar protic solvent, glycerol has been used as a 

solvent in hydrophobic interaction chromatography.8, 9 Dilution of sEVs in 5-30% 

glycerol revealed conserved sEV morphology under TEM (see Figure A1c-f). Small EV 

protectant and organic solvent properties make glycerol an ideal candidate for further 

biological liquid chromatography investigations.  

Caov-3 sEVs diluted in 25 mM trehalose showed limited damage based on 

morphology but appeared in much lower concentrations and smaller vesicle diameters, 

suggesting that damage or vesicle lysing may be occurring (see Figure A1g). Small EVs 

in 20% acetonitrile alone appeared to be severely damaged, lysed, and fragmented (see 

Figure A1h). While addition of 25 mM trehalose to 20% acetonitrile appeared to protect 

sEVs from some of the effects of 20% acetonitrile, there remained significant changes in 

vesicle staining and morphology among most vesicles (see Figure A1i). Addition of 25 

mM trehalose to storage buffers has been shown to prevent aggregation and cryodamage 

in exosomes while narrowing the size distribution of the vesicles.10 In this study, sEVs 

diluted in or supplemented with 25 mM trehalose demonstrated conserved morphology 

and structure (see Figure A1g,i). Therefore, 25 mM trehalose may be worth further 

investigation as a stabilizing agent for downstream sEV analysis and sEVs undergoing 

liquid chromatography separation. 

As sEVs are comprised of a semi-permeable phospholipid bilayer, they are 

susceptible to disruption with organic solvents and small changes to osmotic pressure. 

Acetonitrile is a polar aprotic organic solvent that is particularly useful for 

chromatographic separations. However, its organic dissolution properties may severely 
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disrupt the phospholipid bilayer of sEVs, even in low concentrations.11 This is clearly 

demonstrated in Figure A1h, where only organic fragments remain after application of 

20% acetonitrile to sEVs and in Figure A1i where the vesicles are disfigured. Dilution of 

Caov-3 sEVs in 1 M ammonium sulfate demonstrated significant changes in vesicle 

shape and staining, but did not fragment the vesicles to the same degree as 20% 

acetonitrile (see Figure A1j). Finally, sEVs diluted in a solution of 20% acetonitrile and 1 

M ammonium sulfate demonstrated significant changes in vesicle shape and staining, but, 

again, did not fragment the vesicles to the same degree as 20% acetonitrile alone (see 

Figure A1k). Ammonium sulfate is an inorganic salt commonly used in chromatographic 

separations that reduces protein solubility without denaturing the proteins.12, 13 However, 

semipermeable phospholipid bilayers are highly susceptible to variations in salt 

concentrations in solution. For example, human osmoregulation maintains NaCl in the 

blood at 0.9 % w/v and any variations can lead to changes in osmotic pressure and 

crenation or lysing of cells.14 Ammonium sulfate, while not frequently tested with living 

cells due to toxicity concerns, has demonstrated inhibitory effects toward C. Albicans 

with a concentration greater than 0.3 g/L.15 In perspective, 1 M ammonium sulfate is 

equivalent to 132.14 g/L and, for these reasons, will likely affect the stability of the 

phospholipid bilayer of sEVs. 

 Together, these results indicate that glycerol in moderate concentrations ranging 

from 5-30% may help protect sEV morphology if used as a diluting reagent. Furthermore, 

addition of 25 mM trehalose, while results are not as conclusive, may help retain EV 

morphology as well. However, 20% acetonitrile and 1 M ammonium sulfate, when 



243 
 

applied separately and in conjunction may severely alter sEV structure and would likely 

influence potential downstream sEV analysis. 
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APPENDIX B: 

EXOSOME UPTAKE EXPERIMENT 
 

Materials and Methods 

 

Passage of Dictyostelium discoideum 

Dictyostelium discoideum AX2 cell culture flasks were passaged when cells 

reached at least 70-90% confluency. Media from the old 25 cm2 flask was replaced with 7 

mL of fresh HL5 (Recipe on DictyBase.org) and the flask was vigorously beaten against 

the palm 5-7 times to detach the amoeba in solution. Next, 7 mL of fresh HL5 was added 

to each new culture flask and supplemented with 7 µL of 1000X Ampicillin (or 

appropriate selection). Finally, 0.1- 0.3 mL of the cell culture media from the old flask 

was added to any new flasks. Passage of cells into 75 cm2 culture flasks follows the same 

protocol with exception of using 15 mL of fresh HL5 and 15 µL of 1000x Ampicillin (or 

appropriate selection) instead. 

Exosome isolation 

All centrifugation steps performed below 12,000Xg were performed using an 

Eppendorf Centrifuge 5430R (Eppendorf, Hamburg, Germany). Centrifugations of 

12,000Xg or more were performed using a Beckman Coulter Avanti J-26S XPI 

Centrifuge with a JA-25.50 rotor (Beckman Coulter, Brea, CA). The first centrifugation 

step was performed at 700Xg (5 min., 22˚C) in a full 50 mL conical centrifuge tube. 

After centrifugation, 45 mL of the supernatant was transferred to a new 50 mL conical 

centrifuge tube for further centrifugation, with the remaining 5 mL of supernatant saved 
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for exosome isolation via the C-CP HIC method. The second centrifugation was 

performed at 2,000Xg (10 min., 22oC.) The final centrifugation step was performed at 

12,000Xg (30 min., 4oC.) The supernatant was carefully removed and the final pellet was 

re-suspended in 400 µL of PBS and stored at 4oC.  

GFP-Vacuolin-β AX2 transfection  

 Escherichia coli containing GFP-Vacuolin-β plasmid were obtained from Dr. 

Marcus Maniak, University of Kassel, Germany. GFP-Vacuolin-β presence in E. coli was 

verified via Polymerase Chain Reaction (PCR) with primers matching the GFP-Vacuolin- 

β nucleotide sequence. A Plasmid Maxi Kit (QIAGEN, Hilden, Germany) was used to 

isolate the GFP-Vacuolin-β plasmid followed by gel electrophoresis and PCR to verify 

the presence of the plasmid. AX2 Dictyostelium discoideum cells were transfected with 

the GFP-Vacuolin- β plasmid by electroporation. D. discoideum cells were centrifuged 

for 5 minutes at 500Xg and 4˚C, washed in 1 mL of H50 solution (Recipe on 

DictyBase.org) twice and resuspended to a concentration of 2x107 cells/mL. After 

washing, 100µl of the cells in H50 were added to a pre-chilled 1 mm gap cuvette. Next, 2 

µg of GFP-Vacuolin-β plasmid DNA was added to the cuvette and allowed to incubate 

on ice for 5 minutes. The cuvette underwent two consecutive pulses of 0.85 kV and 

capacitance 25 µF with 5 seconds recovery between pulses. Electroporated cells sat on 

ice for 5 minutes before being transferred to culture flasks with 7 mL of HL5 media. 

G418 selection was added to the culture flask the next day. Upon sufficient growth, GFP-

Vacuolin-β AX2 cells were sorted using a BIORAD S3e cell sorter to obtain a higher 

percentage of high intensity fluorescent cells. 
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Exosome uptake experiment 

GFP-Vacuolin- β AX2 cells were centrifuged for 5 minutes at 500Xg and 22˚C 

and then resuspended in HL5 media to a concentration of 1x106 cells/mL. Next, 400 µL 

of the cell solution was added to live cell imaging well plates and cells attached to the 

dish for 1 hour. Exosomes isolated from normal AX2 cells were stained for 90 minutes at 

37 ˚C using Cell Mask Orange (Thermo Fisher Scientific Inc, Waltham, MA) at a 

concentration of 5 µg/mL. Following staining, exosomes were filtered using a 30 kDa 

cutoff (Amicon Ultra-0.5 Centrifugal Filter unit, MilliporeSigma, Burlington, MA) to 

remove excess stain following manufacturer instructions. Prior to imaging, GFP-

Vacuolin-β AX2 cell nuclei were stained with Hoechst 33342 at a concentration of 5 

µg/mL for 5 minutes followed by washing and covering cells with PBS. Stained AX2 

exosomes were added to the GFP-Vacuolin-β AX2 cell wells (5, 10, or 20 µL) and 

imaged every 60 seconds for 30 minutes. 

Imaging conditions 

Confocal fluorescent images were captured using a Leica SP8 confocal 

microscope with Hyvolution super-resolution (Leica, Wetzlar, Germany). All images 

were captured using an HC PL APO CS2 63x/1.40 oil immersion objective. Hoechst 

images were obtained using 405 nm excitation (15% power; gain=50), and a HyD 

detector (411-449 nm detection;). GFP images were obtained using 488 nm excitation 

(15% power; gain=100), and a HyD detector (512-564 nm detection).  RFP images were 

obtained using 558 nm excitation (25% power; gain=300), and a HyD detector (575-650 

nm detection). Images were captured every 60 seconds for a total of 30 minutes. 
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Results 

 

  
Figure B1. Exosome uptake experiment. GFP-Vacuolin Dictyostelium discoideum 
cells (Green) with Hoechst stain (cyan) exposed to cellMask Orange stained D. 
discoideum exosomes (Red) time lapse, Leica SP8 confocal microscope 63x 
magnification over a 30-minute period. 
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Discussion 

 The purpose of this experiment was to investigate exosome uptake mechanisms 

within a recipient cell using fluorescence microscopy. With little knowledge of the 

uptake and dissemination mechanisms surrounding exosomes in recipient cells, further 

investigation is required. Knowledge of these mechanisms will be particularly important 

for future exosome drug delivery investigations. The recipient cells used during the 

uptake experiment were engineered to express a GFP tag on Vacuolin-β, a protein 

expressed within the endocytic pathway of D. discoideum. Any overlap of fluorescent 

exosomes and GFP-Vacuolin-β expression may suggest that exosome dissemination is 

occurring throughout the endocytic pathway. Although this experiment likely needs 

refinement to obtain clearer results, exosomes (red, Figure B1) were observed entering 

the GFP-Vacuolin-β AX2 cells (green, Figure B1). Further investigation may be required 

to determine if the cellMask orange stain is remaining adhered to the exosome surface 

and whether the exosome lipid bilayer is mixing with the cell plasma membrane.  It is 

unclear why the GFP expression disappeared around 8-12 minutes during exosome 

incubation. Furthermore, Hoechst staining of the GFP-Vacuolin-β AX2 cell was 

inconsistent likely due to D. discoideum tendency to expel foreign stains. Although this 

experiment produced very interesting images, it should be performed again with adjusted 

staining and uptake parameters. Investigators revisiting this experiment may look to 

adjust the live/dead cell imaging choice, resolution of the microscope used, stain 

concentrations, Hoechst and cellMask Orange stain choices, incubation time, cell 

concentrations, or exosome isolation technique. Alternatively, a similar experiment can 
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be performed using the IHOE-CD81-GFP or SKOV-3-CD9-RFP cells developed in 

chapter 2.  
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APPENDIX C: 

EXTRACELLULAR VESICLE DRUG DELIVERY PROPOSAL 

 

Hypothesis and Specific Aims 

 Exosomes are a class of extracellular vesicles, typically 30-100 nm in diameter, 

that facilitate cell-to-cell communication via paracrine and autocrine signal transduction.1, 

2 Exosome research has quickly developed into a flourishing research topic over the last 

15 years and we are only now discovering the numerous roles of exosomes within regular 

homeostasis and the metastasis of cancers. To date, the scientific community has 

envisioned multitudes of exosome applications from cancer diagnosis to treatment of 

neurodegenerative diseases, some of which are coming to fruition.3-5 

Exosomes are emerging as a potential Drug Delivery System (DDS) due to their 

size, encapsulating ability, natural biocompatibility, and potential for membranous 

marker manipulation.6-8 Specifically, exosomes have been shown to cross the blood-brain 

barrier (BBB), which may allow for drug delivery to specific portions of the brain, a 

significant advantage over many other DDSs.9 Our long term goal is to continue 

examining the potential for an exosome DDS that will deliver pharmaceutical or gene 

modifying agents past the BBB to specific regions of the brain for treatment of 

neurodegenerative diseases. 

However, as exosome research is still in its early stages, there is a significant 

problem with isolating exosomes quickly, efficiently, and with sufficient purity in order 

to implement effective down-stream analysis and applications.10 In previous research, our 
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cohort has developed a method of exosome isolation via Capillary-Channeled Polymer 

(C-CP) fibers using Hydrophobic Interaction Chromatography (HIC) for small-scale 

disease diagnostic purposes.11-20 We plan to convert to and test this method of exosome 

isolation on a larger scale using batches of allogeneic cells grown in a bioreactor and 

modified to contain specific targeting moieties.  

Specifically, our research group has imagined mass-producing exosomes to be 

used for drug delivery of catalase as a treatment for Parkinson’s disease. We hypothesize 

that exosomes isolated via Capillary-Channeled Polymer fibers using Hydrophobic 

Interaction Chromatography, modified to express a rabies virus glycoprotein (RVG)-

targeting peptide, and loaded with catalase will decrease brain inflammation in 

Parkinson’s disease model mice. In order to assess this hypothesis, we will investigate 

these three specific aims. 
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Specific Aims: 

Aim 1: 

Investigate the capability of Capillary-Channeled Polymer fibers using 

Hydrophobic Interaction Chromatography to isolate exosomes from mammalian cell 

culture grown on large scales. 

Aim 2: 

Genetically modify mammalian cells to include modified exosomal membrane 

protein RVG-targeting peptides and investigate the loading capacity of catalase into 

RVG-targeted exosomes.  

Aim 3: 

Evaluate the effects of RVG-targeted and catalase loaded exosomes on cell 

cytotoxicity and brain inflammation in Parkinson’s disease model mice using Intravenous 

injection. 
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Research Strategy 

A. Significance 

Parkinson’s disease (PD) is among the most common neurodegenerative disease 

affecting adults worldwide. In the United States, 680,000 adults of over the age of 45 

have developed this physically and mentally debilitating disorder and an increasingly 

older population and increased lifespan will likely escalate the number of 

neurodegenerative cases seen every year.21 PD is characterized by degeneration of the 

dopaminergic neurons of the substantia nigra region of the brain. The degeneration of 

these neurons leads to decreased downstream production of dopamine, a neurotransmitter 

involved in significant pathways controlling reward-motivated behavior and motor 

function. As a result, patients with PD exhibit symptoms including loss or disruption of 

motor control and mental cognition.22, 23 Most clinical treatments for PD still focus on 

replacement of the missing dopamine by administering pharmaceutical precursors that 

can be converted into dopamine. For example, levodopa is a precursor to dopamine that 

can cross the BBB, where it is converted to dopamine by DOPA decarboxylase.24 Despite 

the alleviation of symptoms, dopamine replacement therapies do not significantly slow 

the degeneration of dopaminergic neurons or the development of PD.25 

The pathology and development of PD is still a topic that is poorly understood, 

but evidence suggests that a variety of pathways may lead to a final common pathway of 

neuronal cell death. Altered mitochondrial activity, inflammatory changes, proteolysis 

modifications, and the formation of reactive oxygen species (ROS) have all been 
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implicated in the pathogenesis of neuronal cell death. Specifically, oxidative stress due to 

the formation of ROS is considered a cornerstone of the ideas surrounding dopaminergic 

cell death and has been implicated to contribute to a variety of neurodegenerative 

diseases. As such, PD has been associated with a reduction of redox enzymes including 

catalase, glutathione, superoxide dismutase, and others.23, 26 Therefore, replacement or 

supplementation of redox enzymes has been theorized to slow the pathogenesis of 

dopaminergic cell death.27 Furthermore, catalase, a powerful antioxidant capable of 

eliminating 1 million ROS per second per molecule, has been implicated as a potential 

treatment for PD.6  

Unfortunately, 98% of drugs suspected to remedy various disease states of the 

central nervous system (CNS) cannot cross the BBB efficiently, catalase included.6 

Therefore, a DDS capable of crossing the BBB may be required to deliver catalase to the 

CNS for treatment of PD. Exosomes, a class of extracellular vesicles involved in cell-to-

cell communication, have demonstrated drug delivery capabilities with increased 

biocompatibility and are able to cross the BBB.6-9 Furthermore, Haney et al.6 have 

specifically demonstrated the ability of exosomes to deliver catalase to the CNS. Taken a 

step further, to improve the capacity of exosomes targeting the CNS, several research 

groups have engineered cell cultures to secrete exosomes that express RVG peptide on 

their surface.8, 28, 29 RVG peptide targeting has shown to improve CNS drug uptake and 

delivery across many DDSs, including exosomes.30 

Previously, we have developed a method of exosome isolation using C-CP fibers 

and HIC that is quicker, more efficient, and cheaper than conventional methods. 
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Furthermore, HIC can be scaled up to process much larger volumes of cell culture media 

that may prove ideal for downstream analysis.14 The major goals of this proposal are to 

investigate the ability of C-CP fibers and HIC to isolate exosomes on a large scale and 

investigate the ability of RVG-peptide expressing exosomes loaded with catalase to target 

the CNS and affect brain inflammation in Parkinson’s disease model mice. We believe 

that this proposed research is significant because it will help develop a promising 

exosome isolation method capable for use in clinical settings and investigate the 

capability of exosomes as a DDS and the ability of catalase to treat Parkinson’s disease. 

A1) Our proposal investigates a method of exosome isolation via C-CP fibers and 

HIC on large scales:  We have shown previously that C-CP fibers and HIC can be used to 

isolate exosomes on small scales for diagnostic purposes. Conventional methods of 

exosome isolation, ultracentrifugation, ultrafiltration, and others, have been proven to 

isolate exosomes, but with high inefficiency, cost, and time requirements. Furthermore, 

current methods of exosome isolation do not always produce high purity exosomes that 

are viable and consistent enough for clinical use.10, 31, 32 Our technology, which we 

believe is capable of processing large volumes of media, provides a faster, cheaper, and 

more efficient method of isolating exosomes in clinical settings. 

A2) Our proposal aims to create an allogeneic dendritic cell line engineered to 

express RVG-peptide targeted exosomes:  A considerable hurdle to employing 

engineered exosomes in a clinic is the need to use autologous cells. Exosomes must be 

isolated after autologous cells are harvested, engineered, and grown from each individual 

patient. Exosomes derived from autologous sources are likely to produce a smaller 
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immune reaction. However, evidence suggests that allogeneic exosomes may avoid 

significant detection by the innate and adaptive immune systems due to the size of the 

vesicles.33-36 An allogeneic exosome source could allow for pre-production, 

concentration, and lyophilization of exosomes for faster clinical application and more 

consistent drug development. 

A3) Our proposal investigates the ability of catalase to treat Parkinson’s disease 

with an enhanced RVG-peptide targeted exosome DDS:  The absence or reduction of 

redox enzymes in PD is a potential target point for drug therapeutics. Catalase, a 

powerful antioxidant, could potentially mitigate or slow down the effects that ROS have 

on degeneration of dopaminergic neurons and reduce inflammation in the brain.6 An 

RVG-targeted exosome DDS could allow for enhanced delivery of catalase across the 

BBB into the central and peripheral nervous systems for treatment and prevention of 

various neurodegenerative disorders.8, 29, 30, 37 

 

B) Innovation 

B1) Our method of exosome isolation is unique and may contribute to 

translational exosome research:  Standard methods of exosome isolation lack the qualities 

to be consistently used in small clinical settings and on large scales for drug 

development. Ultracentrifugation, perhaps the most common method of exosome 

isolation, is too costly, time consuming, and difficult for most translational applications.4, 

10, 32, 38-40 Our method of exosome isolation using C-CP fibers and HIC is extremely cost 
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effective, quick, and easy to use. These C-CP fibers, developed by the Marcus research 

group at Clemson University, has been previously used to isolate other small molecules 

and proteins from solution.13-16 Our exosome isolation method has the potential to 

transform exosome translational applications and galvanize clinical exosome research. 

B2) Allogeneic, engineered exosomes will allow for more consistency and quality 

control in drug development:  Consistency and quality control in regards to DDS 

development and drug treatment are essential for pharmaceutical approval and 

advancement to clinical trials. Autologous exosomes have been used in clinical trials due 

to identical DNA expression and histocompatibility.7, 41, 42 However, allogeneic 

exosomes, if shown to be hypo-immunogenic or engineered to have reduced 

immunogenicity, could allow for greater, more specific manipulation and mass-

production for pharmaceutical DDS development. We will engineer and modify a cell 

line that produces biocompatible allogeneic exosomes ideal for immune system 

avoidance and eventual clinical approval. 

B3) Our methodology integrates an innovative exosome isolation technique with a 

unique targeted DDS to realize a translational treatment:  We have partnered with experts 

in high performance liquid chromatography and bioengineering to implement techniques 

suitable for our goals including HIC, mass-production of cell lines in bioreactors, and 

DDS development. A multidisciplinary approach encompassing innovative strategies and 

complementary experts will allow us to investigate the feasibility of our technology and 

push it toward clinical application and relevance. 
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C) Approach 

Our cohort has previously demonstrated the capability of C-CP fibers and HIC to 

isolate exosomes on small scales for diagnostic purposes (Figure C1). As it has been done 

previously with protein isolation, we believe that we can scale up our exosome isolation 

procedure using C-CP fibers and HIC to separate exosomes from larger volumes of 

milieu. Furthermore, based on previous experiments performed by other research 

groups43-45, we believe we can engineer a cell line appropriate for allogeneic exosome 

separation and subsequently develop an exosome DDS for alleviation of Parkinson’s 

disease degeneration and symptoms. Specifically, we hope to: (Aim 1) evaluate the 

ability of C-CP fibers and HIC to isolate exosomes from large volumes of human induced 

pluripotent stem cell (HiPSC)-derived dendritic cell (DC) culture milieu; (Aim 2) 

engineer and modify HiPSC-derived DCs to release RVG-peptide targeted exosomes and 

investigate the loading capacity of catalase into RVG-targeted exosomes; (Aim 3) 

investigate the effects of RVG-peptide targeted exosomes loaded with catalase on 

Parkinson’s disease brain inflammation. 

C1) Introduction 

 Exosomes are extracellular vesicles, approximately 30-100 nm in diameter, 

involved in various methods of autocrine and paracrine cell communication. Fortuitously, 

the messages carried by exosomes can potentially be traced back to the originating cell, 

allowing for many biomedical applications, such as disease diagnostics. Furthermore, the 
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ability of exosomes to load and pass cargo to many portions of the body, including the 

central nervous system, has led to investigation into exosome drug delivery applications.1, 

4, 10, 32, 46, 47 With so many potential applications and encouraging studies, exosome 

research has exploded onto the scene and has become a hot topic over the past 5 years. As 

a result, early progress has made toward developing exosomes as potential disease 

diagnostic biomarkers. Ideally, by identifying either the internal or external makeup of 

patient exosomes, clinicians may be able to provide a cancer diagnosis without the need 

to perform an invasive biopsy. Investigation into exosome origins has revealed several 

proteins and steps involved in the biogenesis of exosomes, but exosome uptake 

mechanisms, despite several investigations, still remain elusive.1, 47, 48 Remarkably, 

Alvarez et al.8 have demonstrated the ability of exosomes to perform as an efficient DDS 

for neurodegenerative diseases using modified RVG peptide exosomes, which may 

further the development of a translatable exosome DDS.  

However, despite the promising advancements, the methods with which most 

investigators isolate exosomes are inefficient, time consuming, and costly. The “gold-

standard” of exosome isolation, ultracentrifugation, is a proven method, but is expensive, 

time-consuming, results in low purity samples, and most importantly, is not easily 

translatable to the clinic.31, 32, 38, 49, 50 With greater development of these exosome 

applications comes a greater need to improve exosome isolation methods. Using HIC in 

conjunction with C-CP fibers provides a promising alternative to standard exosome 

isolation procedures. Hydrophobic interaction chromatography and packed C-CP 

columns use innate hydrophobicity properties to isolate exosomes from the surrounding 
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environment. Particles of varying hydrophobicity will attach to and elute from the 

column at different salt concentrations, allowing for easy separation. This technique, 

especially when using solid phase extraction spin down columns, is extremely quick, 

cheap, easy, and suitable for clinical translation. Modification and scaling of this 

procedure could potentially result in a process that could mass-produce exosomes for 

other down-stream applications, including drug delivery. 

Several clinical trials have used exosomes derived from dendritic cells for 

immunostimulatory purposes to prime the host immune system to target cancer cells 

producing neoantigens.36 Down the line, dendritic-derived exosomes could be loaded 

with cancer therapeutics and be used to stimulate the immune system to target cancer 

cells and, in conjunction, deliver cancer drugs to the desired target.  However, most 

exosome trials involve exosomes derived from autologous sources, which limits the 

replicability and quality control of the biological treatment.41, 42 Allogeneic-derived 

exosomes have demonstrated hypo-immunogenic properties and could increase the 

quality, consistency, and replicability of an exosome biological treatment.34, 51 

Development of exosomes from an allogeneic dendritic cell line could result in a DDS 

that can be used to treat any number of cancers and neurological disorders and stimulate 

the immune system for enhanced outcomes. 

Specifically, PD, which results in dopaminergic neurodegeneration in the 

subtantia nigra, has been pinned as a potential target for an exosome DDS. Although the 

pathology of PD is poorly understood, several factors, including excess ROS, have been 

implicated in the disease development. Therefore, treatment with powerful antioxidants 
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may help remediate or slow down the neurodegeneration associated with PD.22, 23 

Specifically, catalase, a powerful antioxidant, has shown promise in alleviation of PD, 

but, like most drugs, cannot cross the BBB.6 An exosome DDS, capable of crossing the 

BBB and targeting the CNS, may allow for specific delivery of catalase to the CNS. 

Furthermore, exosomes engineered to contain an RVG-peptide targeting system may 

allow for increased efficiency and efficacy of delivery to the CNS. 

C2) Preliminary Studies 

 Previously, Marcus et al.52 have demonstrated the potential for fast protein 

separation using C-CP fibers. Using C-CP fibers developed by the Marcus lab, we have 

used hydrophobic interaction chromatography to separate cell culture media components 

from dictyostelium Discoideum and Caov-3 cell lines. Specifically, we have demonstrated 

the ability to separate extracellular vesicles from cell culture after cells have been 

removed by either centrifugation or filtration. Nanoparticle Tracking Analysis (NTA) 

Figure C1. Average exosome concentration and particle size 
distribution measured by NTA.  Exosomes isolated sequentially by 
differential centrifugation and HIC with Poly(ethylene terephthalate) 
C-CP fibers. 
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allows for characterization of nanoparticle size distributions and concentrations using 

light scattering and Brownian motion properties. Using NTA (Figure C1), we have shown 

that the separation technique we have developed isolates extracellular vesicles of 

approximately 100-200 nm. Furthermore, we have demonstrated that the extracellular 

vesicles are adhering to the solid-phase component of the HIC method via scanning 

electron microscopy (SEM) and fluorescent microscopy (Figure C2).  

C3) Research Plan 

Aim 1: Investigate the capability of Capillary-Channeled Polymer fibers using 

Hydrophobic Interaction Chromatography to isolate exosomes from mammalian cell 

culture grown on large scales. The goal of this aim is to determine whether scaled up C-

CP fiber columns using HIC can isolate exosomes of high purity, quality, and quantity. 

To do this we will perform a number of chemical and physical verification steps to ensure 

effective total quality management of the separation method. 

Figure C2. SEM and Fluorescent images of extracellular vesicles adhered 
to C-CP fiber surfaces. (a) SEM image of Caov-3 ultracentrifuge derived 
extracellular vesicles and (b) fluorescent image of Caov-3 cellMask orange 
stained ultracentrifuge derived extracellular vesicles. 
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Aim 1.1: Verify the presence of exosome-associated markers in the C-CP fiber 

and HIC elution. Rationale: Although there is no “gold standard” to characterize 

exosomes, according to the International Society of Extracellular Vesicles, extracellular 

vesicles must be characterized by both protein composition and physical traits.53 Samples 

must be characterized not only to determine the presence of exosomes, but also to 

determine the quality, quantity, and purity of the exosome samples. Our method of 

exosome isolation has demonstrated the ability to isolate well-characterized exosomes for 

diagnostic purposes. Therefore, we hypothesize that large-scale exosome isolation via C-

CP fibers and HIC will produce high purity exosome samples with typical exosome-

enriched proteins.  

Experimental Design: In order to investigate the protein composition of C-CP 

fiber and HIC isolated exosomes, we will perform standard protein Bradford assays and 

western blots of exosome-enriched proteins. Specifically, using a western blot, we will 

look for the presence of CD9, CD81, CD63, TSG101, calnexin, and Grp94 to 

characterize the presence and purity of exosomes. 

Expected Outcomes: As there are many types of extracellular vesicles, exosomes 

included, it is important for us to be able to first, verify the presence of extracellular 

vesicles and then second, verify that the sample is exosome-enriched. Since extracellular 

vesicles are derived from the phospholipid bilayer membrane of cells, transmembrane 

proteins are typically used to characterize their presence. Therefore, we would expect 

samples to contain the transmembrane proteins CD9, CD81, and CD63, all of which are 

typically used to characterize extracellular vesicles. Furthermore, cytosolic proteins that 
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are involved in extracellular vesicle biogenesis can be used to identify exosomes. In this 

instance, we will use TSG101, which is involved in the development of multivesicular 

bodies that generate exosomes, as a positive marker. A positive appearance of TSG101 

further verifies the existence of extracellular vesicles and further suggests that the sample 

may be exosome-enriched. Additionally, to further characterize our samples as exosome-

enriched, we will look for microvesicle markers calnexin and Grp94. These two markers 

are typically found enriched in the endoplasmic reticulum, a common place of origin for 

microvesicles. Therefore, we would expect our isolated exosome samples to contain little 

to no amounts of calnexin and Grp94. Lower amounts of calnexin and Grp94 would 

indicate that our exosome samples do not contain other types of extracellular vesicles 

including microvesicles, ectosomes, and apoptotic bodies.53 If we can detect at least one 

transmembrane protein marker, one cytosolic protein marker and minimize the amount of 

negative exosome marker detected for each sample, we will have found chemical 

evidence that our sample contains exosomes and not another type of extracellular vesicle. 

Furthermore, we would expect a Bradford assay to find higher amounts of protein in each 

sample as compared to our previous research of exosome isolation on a small scale. 

Potential Pitfalls and Alternatives: We do not expect to encounter significant difficulties 

with the western blot process as it is a very well developed technology and commonplace 

procedure in our lab. Furthermore, we have previously found that C-CP fiber and HIC 

exosome isolation produces samples with exosome-enriched markers, so we would 

anticipate to find these markers again. However, upon scaling up the procedure and using 

larger chromatography columns we may not encounter exosome isolation using the same 
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properties and framework. Mass isolation of exosomes may shift the expected adsorption 

and elution values of the columns due to oversaturation or vesicle aggregation. Although, 

with some adjustment and saturation analysis we should be able to overcome any 

alteration to the HIC procedure. Additionally, with a larger column, we might expect the 

concentration of exosomes isolated to scale linearly based on the size of the column or 

the amount of media injected through the column. We will test many column sizes and 

injection volumes to find the most efficient and effective procedure for producing pure, 

high concentration exosomes for down-stream analysis. 

 It is well known that western blot analysis is not a terribly quick procedure and 

performing protein analysis with this method on many samples may require a significant 

amount of resources and time. Furthermore, western blot analysis only detects the 

proteins of interest and ignores the presence of any other potentially important proteins. 

Therefore, we may consider using protein mass-spectrometry to identify the entire protein 

spectrum of each sample. Complete protein analysis would allow us to further analyze 

each sample and potentially differentiate between different types of exosomes for down-

stream application. 

Aim 1.2: Further characterize the presence, quality, and quantity of exosomes in 

the C-CP and HIC elution by physical properties. Rationale: As mentioned in aim 1.1, 

although there is no perfect process, exosomes can be reasonably characterized and 

identified using both protein composition and physical traits. Physical trait analysis can 

be used to further investigate the quality, quantity, and purity of the samples. Therefore, 

we hypothesize that large-scale exosome isolation via C-CP fibers and HIC will produce 
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exosomes with uniform size and density, high and consistent concentration, and sufficient 

purity. 

Experimental Design: In order to investigate this aim we will inject cellular milieu 

samples into the scaled up C-CP fiber columns, perform HIC, and analyze the elution 

using nanoparticle tracking analysis (NTA), scanning electron microscope (SEM) 

imaging, transmission electron microscope (TEM) imaging and fluorescent imaging. 

Performing each of these techniques will allow us to verify the presence, quality, purity, 

and concentration of exosomes in each eluted sample. Furthermore, these techniques will 

also allow us to analyze the solid-phase surface interactions of the exosomes and C-CP 

fibers. 

Expected Outcomes: By using several techniques to characterize the physical 

traits of our samples, we would expect a complete and replicated profile for each sample. 

Each of these procedures unveils information about the sample from a slightly different 

perspective. Specifically, from NTA, we would expect a size distribution similar to our 

previous research with the highest concentration of nanoparticles at approximately 100 

nm. As we will be working with much larger volumes of media, we would also expect a 

nanoparticle concentration much higher than our previous research and on par with other 

standard exosome isolation methods. SEM imaging of the vesicles attached to the C-CP 

fibers pre- and post-elution will reveal information about the surface interactions between 

the vesicles and solid-phase C-CP fibers. We would expect similar images as compared 

to our previous research (Figure C2). Specifically, vesicles should be evenly distributed 

across the surface of the fiber with little aggregation, should be free of any visible 
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damage or deformity, and should no longer be present after elution from the fiber. TEM 

imaging will be used to further characterize the general shape, size, and structure of the 

eluted vesicles post-elution. We would expect TEM imaging to display highly 

concentrated vesicles of approximately 30-100 nm in diameter with the highly 

characteristic ‘dimple’ or ‘cupped’ appearance of exosomes. We would not expect to see 

broken, damaged, or deformed vesicles with TEM imaging due to the moderate nature of 

our exosome isolation. Finally, fluorescent imaging will be used to further verify vesicle 

and C-CP fiber interaction. Cellular stains CellMask and CellTracker will be used to 

fluorescently stain exosome samples prior to incubation with C-CP fibers and imaging. 

Similar to SEM, we would expect fluorescent images obtained using Leica SP8 with 

HyVolution, a super resolution software enhancement, to show vesicles evenly 

distributed across the fiber with little aggregation and the absence of vesicles post-

elution. 

Potential Pitfalls and Alternatives: As we have performed all of these techniques 

in previous research with C-CP fibers, we would expect fewer hurdles in collecting this 

information. NTA is commonly used to quantitatively and qualitatively assess exosome 

properties, but admittedly is not a perfect method. Many articles have addressed this 

issue54, 55, but few better quantitative methods have emerged. Alternatively, to quantify 

exosome samples, we could use dynamic light scattering (DLS) or a newer technique 

such as tunable resistive pulse sensing (TRPS). Both DLS and TRPS have advantages 

and disadvantages, but the main point is that there is no perfect single method to analyze 

exosome properties. Therefore, it is best to assess the quality and quantity of our samples 
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using several techniques. SEM and TEM are very robust and informative techniques that 

will help assess the size and deformity of vesicles, but are limited to single vesicle 

analysis and do not incorporate the entire sample. As SEM and TEM imaging quality is 

almost entirely dependent on sample preparation, poor fixation and staining protocols 

may need to be adjusted based on the needs of the sample. If required, we may consider 

using cryogenic electron microscopy if TEM and SEM imaging do not produce adequate 

or quality results. Fluorescent imaging using Leica SP8 with HyVolution has a limit a 

resolution of approximately 140 nm, which is larger than the diameter of exosomes. 

Therefore, collecting images of individual vesicles via this method is very difficult, but 

possible when observing juxtaposed or collections of vesicles. Alternatively, as our lab is 

highly ingrained in the light microscopy community, we could send fiber and elution 

samples for super resolution imaging with a lower limit of resolution.  

Aim 2: Genetically modify mammalian cells to include modified exosomal 

membrane protein RVG-targeting peptides and investigate the loading capacity of 

catalase into RVG-targeted exosomes. The goal of this aim is to generate a modified 

HiPSC-derived dendritic cell line to further investigate exosomes as a DDS. Specifically, 

we will modify the targeting moiety of the exosomes and investigate the loading capacity 

of catalase into exosomes. 

Aim 2.1: Manipulate HiPSCs to differentiate into dendritic cells. Rationale: Production of 

an allogeneic cell line will allow for down-stream production of allogeneic exosomes. 

Presently, several clinical exosome studies have used exosomes derived from autologous 

dendritic cells, but allogeneic exosomes have demonstrated hypo-immunogenic 
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properties.34, 41, 42, 51 Therefore, we are aiming to develop an allogeneic dendritic cell line 

for exosome production. We hypothesize that HiPSC expression manipulation will result 

in fully functional allogeneic dendritic cells capable of producing allogeneic exosomes. 

Experimental Design: Specifically, we will follow previously well-developed 

protocols to differentiate HiPSCs into DCs similar to the CD141+ subtype.45 Doing so 

involves a number of additions and removals of specific growth factors at certain time 

points. Formation of embryoid bodies (EBs) through differentiation of HiPSCs, as a first 

step toward differentiation of HiPSCs into DCs, has been demonstrated using several 

types of bioreactors with reduced mixing.56 In this instance, we will use structured and 

scheduled treatments of HiPSCs with pre-determined growth and differentiation factors 

using a high throughput bioreactor to initiate and complete the differentiation process of 

HiPSCs into DCs. Specifically, cells will be cultured over a 30 day period with gradual 

removal of growth factors including Bone Morphogenetic Protein 4 (BMP4), Vascular 

Endothelial Growth Factor (VEGF),  Stem Cell Factor (SCF), and Granulocyte 

Macrophage Colony-Stimulating Factor (GM-CSF). Finally, the culture will be 

supplemented with Interleukin 4 to support final differentiation.45 

Expected Outcomes: Forced differentiation is a highly controlled and structured 

process that is more easily accomplished using a high throughput bioreactor. Several well 

developed published protocols have demonstrated the expected outcomes of each 

differentiation step during the process that we will follow. We would expect to observe a 

step-wise transformation of HiPSCs into hematopoietic stem cells, common myeloid 

progenitors, DC precursors, immature DCs, and finally mature DCs. Quality management 
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along each step of the differentiation process will be critical to achieve the expected 

outcomes. The final outcome should be a variety of DCs presenting qualities similar to 

the CD141+ subtype as detailed in published protocols.43, 45, 57   

Potential Pitfalls and Alternatives: Forcing differentiation of stem cells is a very 

structured and difficult process and meticulous monitoring will be required to complete 

an accurate differentiation into DCs. Therefore, there may be certain difficulties in 

finding the exact environmental variables, growth factors, and timing for the process. We 

would expect that if the initial HiPSCs are slightly different than in previous studies that 

the differentiation process may vary slightly. By using a high throughput bioreactor we 

will be able monitor the environmental variables and test several cell culture preparations 

at one time to ensure an adequate final product of suitable quality and expression. If the 

differentiation procedure from HiPSCs to DCs is not fully accomplished with satisfactory 

expression and quality we could consider completing the remaining goals using 

allogeneic HiPSCs. As exosomes have demonstrated hypo-immunogenic properties, a 

different source of allogeneic exosomes may be worth investigating. Furthermore, since 

even allogeneic cells may contain epigenetic variation depending on the source, we could 

investigate the epigenetic expression of the cells and the impact of epigenetic expression 

on exosome variation. 

Aim 2.2: Engineer HiPSC-derived dendritic cells to display RVG-targeting 

peptide on exosome surface membranes. Rationale: Exosomes are capable of crossing the 

BBB, but are not specifically targeted to remain in the brain and could disperse 

throughout the remaining blood. Ideally, exosomes engineered to target the brain 
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specifically will increase the fraction of injected exosomes in the central nervous system 

and are more likely to meet the designed target. We aim to create a DDS that is more 

accurate for drugs being delivered to the central nervous system via exosome transport. 

Therefore, we hypothesize that HiPSC-derived dendritic cell exosomes can be engineered 

to display RVG-targeting peptides on the outside phospholipid bilayer surface. 

Experimental Design: RVG-peptide targeted exosomes have been engineered 

from murine cells, but have yet to be developed in human cells.8 We will clone the RVG 

peptide into the human Lamp2b gene, an exosome-enriched transmembrane protein, 

using plasmid cDNA. Specifically, Lamp2b plasmid cDNA will be isolated from storage 

Escherichia coli and engineered to contain the RVG codon sequence using DNA 

fragments, restriction sites, and restriction and ligation enzymes. The resulting RVG-

Lamp2b plasmid will be transformed into E. coli for plasmid verification and storage. 

After isolating the engineered plasmid from E. coli, RVG-Lamp2b cDNA will be 

transfected into HiPSC-derived DCs and cultured using the Lipofectamine 3000 

transfection kit. Subsequently, we will verify the presence of RVG-peptide in both the 

DCs and DC exosomes via anti-RVG western blot. 

Expected Outcomes: The HiPSC-derived cell line that we are developing will be 

stably transfected with a human cDNA plasmid. As part of cloning procedure, we will 

verify that RVG is inserted into the Lamp2b cDNA in the correct location using selection 

agents. After isolation of the cDNA and transfection into HiPSC-derived DCs, we would 

expect successfully transfected cells to express the positive selection trait (gaining 

resistance to a drug) inserted into the plasmid cDNA. An anti-RVG western blot of the 
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transfected DCs and subsequent exosomes will further verify the expression of RVG-

Lamp2b in the transfected cells and exosomes. 

Potential Pitfalls and Alternatives: Stable plasmid cDNA transfection in 

mammalian cells is not a terribly efficient process and as such, we may run into 

difficulties while performing the transfection. Furthermore, transfection with RVG-

Lamp2b cDNA is no guarantee that the transfected DC exosomes will contain RVG-

Lamp2b protein. Transient plasmid transfection is much more efficient and easier than 

stable transfection and has previously been used for mass production of proteins in 

mammalian cells.58 Thus, as an alternative, we could transiently transfect the DCs to 

express RVG-Lamp2b and then isolate the exosomes within 24-48 hours post-

transfection. Furthermore, as there are many transmembrane proteins typically enriched 

on the surface of exosomes, we could use other peptides such as CD9, CD81, or CD63 to 

develop an RVG-targeted exosome. 

Aim 2.3: Investigate loading capacity of catalase into various modified exosomes. 

Rationale: Catalase is a powerful antioxidant that may help mitigate neuronal degradation 

in PD and other neurodegenerative diseases by limiting ROS. Like many drugs, catalase 

cannot cross the BBB and requires transport to reach the central nervous system.6 We 

believe that exosomes can be used as an efficient DDS for catalase due to their natural 

ability to cross the BBB and hypo-immunogenicity.7, 9 Therefore, we hypothesize that 

catalase can be loaded into RVG-targeted and normal exosomes with high efficiency for 

downstream drug delivery. 
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Experimental Design: There are a number of different approaches to loading 

enzymes, RNAs, and other pharmaceuticals into exosomes, yet no one technique has 

emerged as the standard option.59 Therefore, we will investigate several exosome loading 

techniques with our specific cell line and exosomes. Specifically, we will investigate the 

loading efficiency of electroporation, sonication, saponin permeabilization, and room 

temperature incubation of exosomes with catalase. NTA, DLS, and TEM will be used to 

examine the physical structure and integrity of the vesicles after loading. To effectively 

measure the amount of catalase or antioxidant in a sample, we will measure the rate at 

which hydrogen peroxide decomposes. Hydrogen peroxide decomposes at a very slow 

rate when no antioxidants are present. This hydrogen peroxide decomposition assay and 

western blot will be used to demonstrate the loading capacity and stability of exosomes 

loaded with catalase. 

Expected Outcomes: Exosome properties can vary based on cell type origin, 

environmental factors, and biochemical purpose. As such, we would expect exosomes 

derived from HiPSC-derived DCs to have different size, integrity, loading capacity, 

proteins, makeup, and internal content than any exosomes studied previously. Therefore, 

it is difficult to predict which method of exosome loading will ultimately demonstrate the 

most efficient loading. Electroporation, sonication, saponin permeabilization, and room 

temperature incubation have all demonstrated loading capability in exosomes from 

multiple sources.6, 8, 59, 60 However, sonication has demonstrated high loading efficiency 

and sustained release with exosome and catalase formulations, so we would expect the 

highest efficiency with sonication.6 Each loading procedure applies very different 
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physical stresses to the exosomes and therefore, will likely cause disruption, collapse, or 

deformation of the vesicles in varying amounts. NTA, DLS, and TEM will clarify the 

physical exosome disturbances of each loading technique. Furthermore, we would expect 

the hydrogen peroxide decomposition assay and western blot to reveal a high loading 

capacity and retention time for each of the techniques with room temperature incubation 

likely having the lowest efficiency.  

Potential Pitfalls and Alternatives: Since each of the exosome loading techniques 

can potentially damage or deform the exosome membrane, we may run into problems 

with catalase loaded exosome downstream applications. To help mitigate these potential 

problems we will assess the physical quality, loading capacity, and retention time of each 

of the loading techniques. With the most promising loading techniques, we can further 

assess the uptake and delivery of the exosome-catalase formulations in cell culture. If 

none of the proposed techniques offer an appropriate efficiency we could also investigate 

exosome extrusion, freeze/thaw, and optically reversible protein-protein interactions as 

potential alternative methods for loading. 

Aim 3: Evaluate the effects of RVG-targeted and catalase loaded exosomes on 

cell cytotoxicity and brain inflammation in Parkinson’s disease model mice using 

Intravenous injection. The goal of this aim is to measure brain inflammation in 

Parkinson’s disease model mice after treatment with catalase loaded and RVG-targeted 

exosomes. We will use various histological techniques and fluorescent techniques to 

evaluate the level of inflammation in the mice brain samples. 
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Aim 3.1: Evaluate the cytotoxicity of RVG-targeted exosomes loaded with 

catalase using cell cytotoxicity and proliferation assays. Rationale: Exosomes have not 

typically been found to have cytotoxic properties, but any material introduced into a cell 

environment, especially with engineered modifications, could potentially introduce some 

form of toxicity. Therefore, especially with RVG modification, it is important to assess 

the cytotoxicity and proliferation of cell lines in vitro prior to performing any animal 

studies. We hypothesize that RVG-targeted exosomes from HiPSC-derived DCs will not 

be toxic to or alter the proliferation of in vitro cell cultures. 

Experimental Design: Using Neuro2a (murine neuronal cells) and C2C12 (murine 

muscle cells) cell lines, we will perform a Trypan Blue exclusion viability assay and an 

MTT cell toxicity and proliferation assay to determine the cytotoxicity of catalase alone 

and RVG-targeted and normal exosomes loaded with catalase. Furthermore, we will use 

the same two cell lines to perform a mixed lymphocyte reaction using CD3+ T cell 

proliferation to determine the immunogenicity of catalase alone and the RVG-targeted 

and normal exosomes loaded with catalase. 

Expected Outcomes: As previously mentioned, exosomes have demonstrated 

hypo-immunogenic qualities and specifically, RVG-targeted exosomes have shown low 

immunogenicity in mice.8, 51 Specifically, Trypan Blue exclusion can be used to 

determine cell viability and an MTT assay measures the level of cell metabolic activity, 

which can be used to quantify cell viability and proliferation. From these two assays, we 

would expect high viability and proliferation of cells treated with RVG-targeted 

exosomes loaded with catalase. Furthermore, to assess the immunogenicity of the 
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produced catalase loaded exosomes, we will use a mixed lymphocyte reaction using 

CD3+ T cell proliferation. After treatment with RVG-targeted exosomes loaded with 

catalase, we would expect low T cell proliferation, indicating low immunogenicity. 

Potential Pitfalls and Alternatives: Cell viability, proliferation, and 

immunogenicity assays are standard and custom procedures for any substance being 

introduced as a novel drug or pharmaceutical agent. An exosome DDS, as an engineered 

pharmaceutical component, will require cell viability, proliferation, and immunogenicity 

assessment. We would not expect significant difficulties performing the assays, as they 

are very standard practice and well developed. However, if we find that any assay does 

not produce appropriate or sufficient results, we will perform subsequent additional 

experiments such as colorimetric tetrazolium assays, luminogenic ATP assays, or DNA 

synthesis assays. If we find that RVG-targeted exosomes loaded with catalase generate 

unacceptable levels of cell viability, proliferation, or immunogenicity, we will readdress 

the engineering and source of the exosomes. We could potentially engineer the exosomes 

to be less immunogenic by disrupting beta-2-microglobulin and C2TA genes, which have 

been shown to affect MHC-I and MHC-II generation and immunogenicity, using 

CRISPR/cas9.57 Cells modified to not express MHC-I and MHC-II molecules will in turn 

release exosomes without MHC-I and MHC-II molecules. Both MHC-I and MHC-II are 

involved in histocompatibility and immune response of foreign materials. If the MHC 

molecule does not match the unique MHC molecules of the host, then an immune 

response will be triggered. Removal of the MHC molecules will help increase 

histocompatibility and decrease immune response in the host.  
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Aim 3.2: Use histology and fluorescence techniques to stain and quantify 

inflammation and evaluate biodistribution in Parkinson’s disease model mice brain 

sections treated with RVG-targeted exosomes loaded with catalase. Rationale: 

Parkinson’s disease and other neurodegenerative diseases are often associated with brain 

inflammation in addition to physical and cognitive degeneration.22, 23 Histological and 

fluorescent imaging techniques can be used to quantify the amount of inflammation in 

brain sections and help determine the level of neurodegeneration in the affected subject. 

Treatment with RVG-targeted exosomes loaded with catalase, which aims to eliminate or 

reduce ROS in the central nervous system, could reduce the downstream effects of 

Parkinson’s disease, including inflammation. Therefore, we hypothesize that RVG-

targeted exosomes loaded with catalase will reduce inflammation in Parkinson’s disease 

model mice.  

Experimental Design: We will use both intranasal (i.n.) and intravenous (i.v.) 

injection to assess the effects of RVG-targeted exosomes loaded with catalase on 

Parkinson’s disease model mice. All exosome samples will be stained with fluorescent 

dye prior to injection to help assess biodistribution using fluorescent microscopy. After 

injection with either RVG-targeted catalase exosomes, normal catalase exosomes, 

unloaded exosomes, or catalase alone, mice will be sacrificed and perfused at several 

time points ranging from 4 to 48 hours. After fixation, mice brains will be sectioned and 

prepared for staining. To assess the general cell composition and level of inflammation 

we will stain the sections with hematoxylin and eosin (H&E) and observe the tissue using 

standard wide-field light microscopy. Additionally, we will perform anti-CD11b 
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immunohistochemistry (IHC) to further assess the level of inflammation in the brain 

sections. 

Expected Outcomes: Given that catalase has previously been shown to reduce 

brain inflammation when loaded into exosomes, we would expect the RVG-targeted 

exosomes loaded with catalase to achieve similar or better reduction in inflammation and 

targeting.6 With H&E staining, we would expect to observe an array of neuronal and 

microglial cells in addition to other immune cells. In general, higher concentrations of 

immune cells in the tissue indicate greater levels of inflammation. Various amounts of 

neutrophils, basophils, eosinophils, monocytes, lymphocytes, or macrophages could help 

determine the stage of inflammation, type of inflammation, or other potential causes of 

inflammation. For instance, a high level of eosinophils and basophils is typically 

associated with anaphylactic reaction.61 CD11b antibody is typically used as a marker for 

microglial cells, macrophages, and other granulocytes within nervous tissue.6 We would 

expect Immunohistochemistry using CD11b to show moderate, but reduced 

concentrations of immune cells and activated microglial cells in mice brain sections with 

RVG-targeted catalase exosomes as compared to normal catalase exosomes and untreated 

mice.  

Potential Pitfalls and Alternatives: H&E and IHC are very common and 

established staining techniques, so we don’t expect any significant hurdles. Furthermore, 

we work with cell staining and imaging experts that will help improve and expedite the 

process. With both imaging techniques, we would expect to see inflammation in the brain 

sections. Furthermore, we would expect to see targeted biodistribution of exosomes. 
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However, the inflammation may vary depending on the region of the brain that is imaged. 

We must be careful to identify and document each region of the brain and compare and 

contrast the inflammation. As Parkinson’s disease develops in the substantia nigra, we 

may expect higher levels of inflammation in the areas surrounding the substantia nigra. If 

H&E or IHC fail to produce accurate or consistent images, then we may consider 

immunophenotyping spleen tissue derived from the subject mice to get a sense of the 

overall immune reaction to the treatments. 

Conclusion 

We believe that with further development of exosome isolation via C-CP fibers and HIC 

we will be able to create a clinically translatable technique that can be applied to any 

number of exosome applications. Further development of this technique, coupled with 

development of an allogeneic cell line for exosome isolation, could have a large impact 

on the development of an exosome DDS. Many ailments, including cancers and 

neurodegenerative diseases, could benefit from more specific and capable drug delivery 

system. With the methods we have outlined here, we hope to achieve our goal of 

contributing to exosome research and the development of an exosome DDS. 
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Timeline 

Aims Year 1 Year 2 Year 3 Year 4 Year 5 

1      

2      

3      
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Vertebrate Animals 

The animals and protocols used in this study will be approved by the Clemson University 

Institutional Animal Care and Use Committee (IACUC). Clemson University follows 

strict guidelines to maintain adherence to the protocols and procedures laid out by the 

IACUC. Specific designated areas within the Godley-Snell Research Center will be used 

to maintain and treat the mice used in this proposal. 

This study will require the use of mice in Aim 3. Both Parkinson’s disease model mice 

(Nrf2-) and wild type mice (C57BL) will be used to assess the effects of the developed 

DDS. A total of 160 Nrf2- and 160 C57LB mice will be required for completion of this 

portion of the study. 

 

Aim 3: Evaluate the effects of RVG-targeted and catalase loaded exosomes on cell 

cytotoxicity and brain inflammation in Parkinson’s disease model mice using Intravenous 

injection. 

Aim 3.2: Use histology and fluorescence techniques to stain and quantify 

inflammation and evaluate biodistribution in Parkinson’s disease model mice brain 

sections treated with RVG-targeted exosomes loaded with catalase 

80 Nrf2- mice for dose inflammation quantification = 5 mice per group x 4 groups 

(PBS injection, no treatment, RVG-exosome dose, and RVG-exosome w/ catalase 

dose) x 4 dosages. 
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80 C57LB mice for dose inflammation quantification = 5 mice per group x 4 

groups (PBS injection, no treatment, RVG-exosome dose, and RVG-exosome w/ 

catalase dose) x 4 dosages. 

80 Nrf2- mice for time point inflammation quantification = 5 mice per group x 4 

groups (PBS injection, no treatment, RVG-exosome dose, and RVG-exosome w/ 

catalase dose) x 4 time points. 

80 C57LB mice for time point inflammation quantification = 5 mice per group x 4 

groups (PBS injection, no treatment, RVG-exosome dose, and RVG-exosome w/ 

catalase dose) x 4 time points. 

Use of a mouse model in exosome research is essential prior to human clinical 

trials due to the young age of the potential therapies. Particularly, testing treatment of 

RVG-exosomes loaded with catalase will require investigation in a mouse model. Nrf2- 

mice are useful for studying oxidative stress in the pathogenesis of Parkinson’s disease.  

All mice will be housed at the Godley-Snell Research Center and handled and cared for 

by experienced technicians and veterinarians. 

All procedures and experiments on mice will be performed in a manner such as to 

minimize discomfort, distress, pain, and injury. All mice exhibiting excessive pain or 

discomfort will be euthanized. Euthanasia will be performed by CO2 asphyxiation.  
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Biohazards 

Engineered or innate exosomes are not known to be infections to humans or 

animals. Direct exposure or ingestion of exosome samples may cause mild cellular level 

inflammation. All experiments will be performed in a laboratory meeting the biosafety 

level 2 requirements. 
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Resources and Environment 

All fluorescent microscopy equipment and BSL2 lab space will be provided by 

the Clemson Light Imaging Facility. Procedures requiring the use of bioreactors and 

BSL2 lab space is available through the Clemson department of Bioengineering. The 

Clemson Electron Microscopy facility will assist in the staining and gathering of SEM 

and TEM images. Finally, all procedures requiring the use of mice will be performed at 

the Godley Snell Research Center, which is a Clemson University approved location for 

research using vertebrate animals. 
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(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).
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Terms and Conditions 

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license.
The first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission. 

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person. 

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto 

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
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QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU.  

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you. 

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you. 

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.  

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby.  

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.  

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent. 

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC. 

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
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and authorized assigns.  

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail. 

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions. 

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process. 

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party. 

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below) 

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit" organizations

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


11/25/2020 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=4b152d58-1434-46d4-ab89-a2ea44c4790c 6/6

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions: 

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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