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ABSTRACT 

Substantial fuel economy improvements for light-duty automotive engines demand novel 

combustion strategies. Low temperature combustion (LTC) demonstrates potential for significant 

fuel efficiency improvement; however, control complexity is an impediment for real-world 

transient operation. Spark-assisted compression ignition (SACI) is an LTC strategy that applies a 

deflagration flame to generate sufficient energy to trigger autoignition in the remaining charge. For 

other LTC strategies, control of autoignition timing is difficult as there is no direct actuator for 

combustion phasing. SACI addresses this challenge by using a spark plug to initiate a flame that 

then triggers autoignition in a significant portion of the charge. The flame propagation phase limits 

the rate of cylinder pressure increase, while autoignition rapidly completes combustion. High 

dilution is generally required to maintain production-feasible reaction rates. This high dilution, 

however, increases the likelihood of flame quench, and therefore potential misfires. Mitigating 

these competing constraints requires careful mixture preparation strategies for SACI to be feasible 

in production. Operating a practical engine within this restrictive regime is a key modeling and 

control challenge. Current models are not sufficient for control-oriented work such as calibration 

optimization, transient control strategy development, and real-time control. To resolve the 

modeling challenge, a fast-running cylinder model is developed and presented in this work. It 

comprises of five bulk gas states and a fuel stratification model comprising of ten equal-mass zones 

within the cylinder. The zones are quasi-dimensional, and their state varies with crank angle to 

capture the effect of fuel spray and mixing. For each zone, combustion submodels predict flame 

propagation burn duration, autoignition phasing, and the concentration of oxides of nitrogen. 

During the development of the combustion submodels, both physics-based and data-driven 

techniques are considered. However, the best balance between accuracy and computational expense 

leads to the nearly exclusive selection of data-driven techniques. The data-driven models are 
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artificial neural networks (ANNs), trained to an experimentally-validated one-dimensional (1D) 

engine reference model. The simplified model matches the reference 1D engine model with an R2 

value of 70‒96% for key combustion parameters. The model requires 0.8 seconds to perform a 

single case, a 99.6% reduction from the reference 1D engine model. The reduced model simulation 

time enables rapid exploration of the control space. Over 250,000 cases are evaluated across the 

entire range of actuator positions. From these results, a transient-capable calibration is formulated. 

To evaluate the strength of the steady-state calibration, it is operated over a tip-in and tip-out. The 

response to the transients required little adjustment, suggesting the steady-state calibration is 

robust. The model also demonstrates the capability to adapt in-cylinder state and spark timing to 

offset combustion phasing disturbances. This positive performance suggests the candidate model 

developed in this work retains sufficient accuracy to be beneficial for control-oriented objectives. 

There are four contributions of this research: 1) a demonstration of the impact of combustion 

fundamentals on SACI combustion, 2) an identification of suitable techniques for data-driven 

modeling, 3) a quasi-dimensional fuel stratification model for radially-stratified engines, and 4) a 

comprehensive cylinder model that maintains high accuracy despite substantially reduced 

computational expense. 
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I. INTRODUCTION 

 

Substantial fuel economy improvements for light-duty automotive engines demand novel 

combustion strategies. Examining ideal thermodynamic cycles has been a catalyst for the 

development of new combustion strategies. Maximizing the net work of the cycle therefore focuses 

on raising compression ratio, increasing the ratio of specific heats, and reducing pumping work [1]. 

Achieving constant volume combustion is one key to improving engine efficiency, but realization 

of this concept is hindered by several practical obstacles. The high temperature from the rapid 

combustion drives significant heat transfer losses, decreases the ratio of specific heats, and causes 

CO2 dissociation to CO and O2 [1-3]. Furthermore, the high peak pressure and rate of pressure rise 

poses significant structural challenges and generate excessive combustion noise [4].  

Resolving the challenges resulting from high temperature combustion is one pathway to 

improving engine efficiency. Low-temperature combustion (LTC) strategies have shown promise 

in achieving rapid combustion without excessive temperatures and have been thoroughly studied 

for over four decades. LTC strategies use high dilution to keep combustion temperatures below 

~2000 K. This dilution can be from excess air (i.e., lean operation), exhaust gas recirculation 

(EGR), or a combination of the two. The reduced cylinder temperatures and high dilution have 

several additional benefits. The ratio of specific heats increases, yielding a higher thermal 

efficiency. Heat transfer and pumping work are also reduced, maximizing net work. Knock is also 

mitigated, enabling a higher compression ratio to further increase efficiency. Additionally, the 

dilution can be utilized to partially control rate of heat release and moderate combustion noise 

issues. 
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The LTC concept has enabled improvements to stratified charge compression ignition and 

homogeneous charge spark ignition strategies [5-9], as well as offering entirely new combustion 

strategies. Early research into novel LTC strategies considered lean-homogeneous mixtures driven 

by chemical kinetics. Onishi et al. (1979) first examined LTC on a two-stroke engine [10]. 

Following this work, several research groups including Noguchi et al., Najt et al., and Thring et al., 

demonstrated significant emissions and efficiency improvements compared to spark-ignited (SI) or 

compression ignited (CI) combustion for both two-stroke and four-stroke LTC variants [11-14]. 

Though different terms have been used, homogeneous charge compression ignition (HCCI) is the 

widely accepted term for this type of combustion.  

Although the potential efficiency benefit of HCCI is high, there are several challenges. 

HCCI combustion phasing is sensitive to intake temperature, intake humidity, dilution level, type 

of dilution, equivalence ratio, fuel composition, combustion chamber deposits, charge mixing, 

among others [15-22]. The combination of these sensitivities often only allows for a narrow range 

of engine actuator positions that can achieve an autoignition event that satisfies all combustion 

constraints. Additional engine actuators, e.g., intake heaters, have been introduced to expand the 

control authority over HCCI combustion. The limited range of operation has also been a consistent 

obstacle. Typically, naturally-aspirated HCCI operation is limited to about 1–4 bar IMEP from 

about 1000–4000 RPM. The high load limit occurs because faster burn rate generates exceedingly 

high cylinder pressure rise rates. Low ignition energy is a challenge at low speeds and low loads, 

but the means of increasing ignition energy (e.g., increased compression ratio, thermal barrier 

coatings [17]) can have a detrimental effect on peak pressure rise rates at higher loads. Christensen 

et al. and Dec et al. expanded the high-load limit of HCCI through boosting, high dilution, and late 

combustion phasing [20,23,24]. Loads of up to 20 bar IMEP are achieved under steady-state 

conditions, however, transient operation remains a challenge. 
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Several strategies have emerged that at least partially mitigate many of the obstacles facing 

HCCI. Aiming to improve the low load limit of HCCI, researchers have investigated the use of a 

spark discharge to increase ignition energy. Urushihara et al. successfully extended the low-load 

limit of HCCI with a spark shortly before autoignition [25]. At these conditions, the mixture 

composition and temperature are too lean to support a flame, but the spark generates combustion 

radicals that help trigger the autoignition event. Zigler performed optical studies on this type of 

spark-assisted HCCI and demonstrated a radial reaction front that accelerated autoignition in 

regions of the combustion chamber [26]. No clear flame developed at these conditions, though the 

autoignition event timing is clearly linked to the use of the spark. 

Alternatively, the in-cylinder conditions can be tuned such that the spark produces a flame 

kernel and a propagating flame. The additional energy from the deflagration flame then triggers 

autoignition in a significant portion of the charge, rapidly consuming the remaining charge. This 

two-stage combustion—spark-initiated flame propagation, then compression ignition—is spark-

assisted compression ignition (SACI). This strategy leverages the slow burning of the flame to 

reduce peak pressure rise rates, enabling a wide range of operation. Control of combustion phasing 

is done using a spark plug, allowing the engine controller to achieve transient operation and quickly 

respond to transient in-cylinder conditions. SACI mitigates or resolves the production obstacles of 

HCCI, and thus has strong potential as a production-viable LTC strategy. Other terms for the same 

or similar modes of combustion include spark ignited-compression ignition (SI-CI), spark-assisted 

stratified compression ignition (SSCI), spark-induced compression ignition (SICI), spark-

controlled compression ignition (SPCCI), and hybrid combustion. 
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SACI Combustion Description and Terms 

SACI combustion is characterized by a flame propagation phase that triggers autoignition 

of the remaining charge. The spark event generates a flame kernel typical of SI combustion. The 

kernel develops into a propagating flame, increasing in-cylinder temperature and pressure. The 

elevated temperature and pressure from the flame are therefore a controllable source of ignition 

energy. Numerous optical studies have confirmed flame propagation and autoignition each 

consume a significant portion of the charge [26-28]. Zigler [26] performed optical studies focusing 

on a wide range of SACI operation, capturing conditions with and without a flame. The propagating 

flame triggers autoignition which rapidly consumes the remaining charge. 

The typical SACI heat release rate depicts this dual-stage character (Figure I-1). The initial 

combustion phase exhibits a much slower rate of heat release than the later stage. A useful metric 

in understanding SACI combustion is the SI portion, defined as the proportion of deflagration flame 

heat released compared to the total heat released, (1). An SI percent of 0% is HCCI, and an SI 

percent of 100% is SI combustion (Figure I-2). Another synonymous term is initial slow heat 

release (ISHR), and the inverse of SI portion is the autoignition fraction (AIfrac).  

 
SI Portion [%] = 100 ×  

𝑆𝐼 𝐻𝑒𝑎𝑡 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐻𝑒𝑎𝑡 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑
  (1) 
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Figure I-1: SACI heat release rate (HRR) shown as a composition of SI and AI components. Both 

the flame propagation and autoignition consume significant portions of the charge. 

 
Figure I-2: Comparison of SI portion from 0% (i.e., HCCI) to 100% (i.e., SI). The SI portion = 
50% has a clear dual-stage character that demonstrates the two different combustion regimes. 

 

The optimal SI portion is anticipated to be the SI portion that achieves the maximum 

efficiency within noise, controllability, emissions, and drivability constraints. The relative 

dominance of each constraint varies considerably with load. A production-intent control strategy 

considers two SI portion strategies in their implementation of SACI [29]. At low loads, the SI 

portion will increase from ~30% to ~75%. This is achieved by maintaining the total EGR rate 

constant but shifting the balance of EGR towards high levels of external EGR as load increases. As 

the cooled EGR lowers cylinder temperatures, the SI portion must increase to maintain the same 
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autoignition phasing. Under high-load boosted conditions, however, the SI portion target remains 

constant at ~75% (Figure I-3). 

As a function of load, there are multiple factors that combine to produce alternative SI 

portion responses. Olesky et al. found that for fixed in-cylinder composition, autoignition occurred 

at ~1040 K regardless of spark timing [30], which is consistent with [29]. The SI portion decreases 

as spark timing is retarded, as more ignition energy is being provided by compression from the 

piston. However, dilution level, temperature at the start of compression, and injection strategy can 

vary significantly as load increases. Therefore, there is no general trend for SI percent as a function 

of load. 

 
Figure I-3: Depiction of SI portion as a function of load for two different regimes. In the 

unboosted regime (top left), SI portion increases with load. In the supercharged regime (top 
right), SI portion remains constant with load. The variation of the SI portion over the entire 

engine load is shown in the bottom plot. Adapted from [29]. 
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Autoignition events can produce high levels of combustion noise. The ringing intensity 

(RI) metric quantifies this fast heat release typical in LTC combustion. It is defined in (2), where 

typical limits are approximately 5 MW/m2 [4].  

 

 
(2) 

The majority of SACI engine research has focused on stoichiometric conditions to enable 

a three-way catalyst. To aid in comparing lean burn to stoichiometric conditions and understand 

the impact of dilution, additional metrics have been introduced to reflect both air and EGR dilution. 

One of these terms is the gas/fuel ratio (G/F) [1] and is defined in (3). The other term is 𝜙′ [31], 

and is defined in (4).  BGF in this equation is the burned gas fraction. 

 
𝐺/𝐹 =  

𝐴𝑖𝑟 +  𝐸𝐺𝑅 𝑀𝑎𝑠𝑠

𝐹𝑢𝑒𝑙 𝑀𝑎𝑠𝑠
 

 
 

(3) 
 
 

 
𝜙′ =  

(
𝐹𝑢𝑒𝑙 𝑀𝑎𝑠𝑠

𝐴𝑖𝑟 +  𝐸𝐺𝑅 𝑀𝑎𝑠𝑠)
𝑎𝑐𝑡𝑢𝑎𝑙

(
𝐹𝑢𝑒𝑙 𝑀𝑎𝑠𝑠
𝐴𝑖𝑟 𝑀𝑎𝑠𝑠 )

𝑠𝑡𝑜𝑖𝑐ℎ

 ≈ 𝜙(1 − 𝐵𝐺𝐹) (4) 

 

Motivation for SACI 

SACI does not significantly sacrifice the efficiency potential of HCCI in achieving a 

practical solution to the challenges facing LTC. Fuel conversion efficiency has widely been 

reported to be improved by 10% (~3 percentage points) over spark ignition engines with values 

near 38% fuel conversion efficiency [32-37]. Several studies directly compared SACI with SI on 

the same engine with no change in compression ratio [32-34]. The compression ratios for these 

three studies are 10.7:1–11.9:1. Each confirms a 10% improvement with broad agreement on the 

sources of improvement. Pumping work is measurably lower with SACI. Reduced heat transfer and 
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combustion duration is also indicated as potential source of improvement. Combustion efficiency 

is studied in [34], with the authors noting similar or improved combustion efficiency compared to 

SI. High-speed high-load SACI operation is only examined for a lean-burn performance engine by 

Chiodi et al. and Koch et al., where engine speeds of up to 8500 RPM are considered [38,39]. 

A production-intent SACI engine suggests 20% improvement compared to the a 

conventional gasoline engine, which implies a SACI brake efficiency of about 44% [40-43]. Chiodi 

et al. demonstrated an efficiency improvement of 25% at high load [38], although these results are 

under lean conditions compared to SI operation for rich mixtures. Additionally, Chiodi et al. do not 

consider emissions or noise constraints. Specific data is limited, but the efficiency improvements 

are generally attributed to pumping work reduction, reduced combustion duration, high 

compression ratio, and similar or increased combustion efficiency. The efficiency benefits derive 

from high compression ratio, high ratio of specific heats, reduced pumping work, lower heat 

transfer, and shortened burn duration. Stoichiometric operation is feasible, enabling a three-way 

catalyst. Alternatively, if the efficiency benefits of lean operation are sufficient, development of 

lean aftertreatment systems may be a preferential pathway to stoichiometric operation. Table I-1 

lists key SACI configuration and performance parameters.  
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Table I-1: Key SACI performance and configuration parameters. 
Parameter Value 

Compression Ratio 11:1–16.5:1 

Overall Dilution 
Air (1 ≤ λ < 2) 
EGR: 20–35% 

Efficiency Improvement1 10–25% 

Peak Load (nIMEP) 
Naturally-aspirated: 10 bar 

Boosted: 27 bar2 

1 Compared to SI under various conditions. 
2 Achieved with ~3 bar boost pressure in [39]. 

A final advantage of SACI combustion compared to HCCI is the relative ease in 

transitioning from SACI to SI. The use of SACI during a transition from HCCI to SI has been 

successfully demonstrated by Zhang et al. and Yang et al. [44,45]. The need for SACI combustion 

in their transition highlights the potential transient benefits of SACI. The Zhang et al study is 

performed on a single cylinder pent-roof port-fueled engine with a compression ratio of 10.7:1 and 

a fully-flexible valvetrain. The fuel is 93 RON gasoline in a stoichiometric mixture for HCCI, 

SACI, and SI. The transition is performed at 1500 RPM, 3 bar IMEP and 3000 RPM, 2 bar IMEP. 

The HCCI-SACI-SI transition took about 10 cycles where SI portion gradually shifted from 0% to 

100% as the residual gas fraction transitioned from 40% to less than 10%. The Yang et al. study is 

performed on a similar engine, although the valvetrain is a two-stage lift design, as opposed to a 

fully-flexible valvetrain. 

SACI Challenges 

Though there are potential efficiency benefits, SACI combustion magnifies the controls 

complexity of conventional engines. Additional actuators are required, the degrees of freedom are 

expanded, and the engine may need to transition between different combustion modes. Mode 
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switching is likely required, which increases the controls complexity as the charge preparation 

requirements (e.g., EGR, air-fuel ratio, effective compression ratio) can vary significantly between 

modes. Furthermore, the charge composition requirements for the SI and AI combustion phases are 

different and often competing. These competing constraints lead to a potentially narrow operating 

range and charge preparation challenges.  

The precise phasing of autoignition is critical to controlled SACI combustion, and 

consideration of fuel properties is necessary. The chemical reactions that lead to autoignition occur 

over a finite time called the ignition delay. For typical engine conditions, autoignition is triggered 

by self-heating or chain-branching reactions [1,2]. Ignition delay and the mechanism of 

autoignition are both nonlinear and highly sensitive to several parameters. Combinations of 

pressures, temperatures, and dilution highlight different reaction pathways with a given chemical 

mechanism. Furthermore, as the unburned gas temperature approaches autoignition during 

compression and flame propagation, the chemical kinetics pass through a region with a negative 

temperature coefficient (NTC) region. Within this region, additional temperature produces an 

increase in ignition delay. While the detailed study of chemical mechanisms is outside of the scope 

of this study, it is important to note that fuel composition has a strong influence on autoignition 

timing for a given set of conditions [1-3]. This behavior creates a major obstacle to production since 

fuel blends are somewhat unregulated and variable from pump to pump [46,47]. This variation in 

fuels must be considered as part of a production control algorithm for SACI engines.   

Few studies have performed a thorough evaluation of the fuel sensitivity on SACI 

combustion specifically. One study, performed by Weall and Szybist, compared the combustion 

performance of SACI on a wide range of fuels on a highly modified pent-roof direct injection spark 

ignited (DISI) engine [33]. The test fuels include 91 RON E0 gasoline, E85, and a 50% mix of 

gasoline and isobutanol (IB50). E85 has the lowest propensity for autoignition, and thus requires a 
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greater SI portion and early spark timing to generate sufficient pressure and temperature to trigger 

autoignition. The sensitivity to autoignition phasing is similar for gasoline and IB50 at the points 

tested. E85, however requires an advance of 10–20 CAD spark timing to achieve a similar CA50. 

This difference decreased with load. Using a coarse assumption of a linear relationship between 

ethanol content and required spark advance, the data suggests a ~0.2 CAD advance of spark timing 

required per 1.0 percentage point change in ethanol content. If the linear assumption is valid, spark 

timing differences from E0 to E10 could be in the range of 2 CAD. This change in spark timing is 

significant enough that it needs consideration in control algorithms.     

The impact of low-temperature heat release (LTHR) may be critical to consider for SACI. 

The effect on end-gas autoignition has been thoroughly assessed for SI combustion. Szybist and 

Splitter evaluated the impact that fuel types and the unburned gas state had on SI knock [48]. Unlike 

the study performed by Weall and Szybist, the SI knock study used no external EGR and is 

performed at a lower compression ratio, limiting the application of their study to SACI. However, 

they note that under these conditions, LTHR is a significant factor that affected end-gas 

autoignition. Consistent with the sensitive nature of autoignition, the precise trend varies with fuel 

type and load. These results further suggest a method of fuel property identification is needed when 

a significant number of fuels are available to the consumer.  For production purposes, it is likely 

that accurate feedback of heat release is required to characterize LTHR behavior of a given fuel. In 

this case algorithms and/or models are also required to translate the feedback information and 

correct feed-forward spark timing values.   

Most studies considered stoichiometric combustion with high amounts of EGR, with some 

studies reporting over 30% total EGR. This dilution level is high for a deflagration flame and 

requires high charge motion, charge stratification, and/or low SI portion to achieve. Typically, as 

load increase, EGR shifts from internal to external EGR [29,35,49]. At low loads, the higher 
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temperature from internal residuals increases flame speeds and accelerates autoignition. At higher 

loads, the increased charge density reduces the need for hot internal residuals, so the EGR balance 

shifts to cooled external EGR. Additionally, ringing and knocking limits become relevant at high 

loads. The cooler external EGR lowers the autoignition reaction rates and the propensity to knock. 

Yun et al., Manofsky et al., and Matsumoto et al. all transitioned to a higher proportion of external 

EGR as load increased [29,35,49]. All three studies are performed on a pent-roof combustion 

chamber research engine with a similar gasoline composition. The total EGR rate for Yun et al. and 

Manofsky et al. decreases with increasing load to increase volumetric efficiency. The decrease in 

total EGR is greater in the study by Yun et al., and Matsumoto et al. suggests a constant 30% total 

EGR level for all SACI operation. At low loads, where the engine transitions from low-load SI to 

low-load SACI, all EGR is internal. This fraction decreases to near-zero throughout the naturally 

aspirated load range. Under boosted operation, internal EGR is minimized.  

Internal EGR control is often achieved with negative valve overlap (NVO), 

[29,34,35,37,50]. NVO is common for HCCI as it enables a high quantity of residual fraction with 

a relatively straightforward implementation [14]. NVO is also less sensitive to the pressure ratio 

between the intake and exhaust manifolds, providing less complex residual gas fraction estimation. 

Two studies examine the differences between NVO and PVO in a SACI engine. Both sources report 

an increase in thermal and volumetric efficiency with PVO as compared to NVO. Yun et al. 

examine internal EGR on a pent-roof combustion chamber research engine with a fully flexible 

valvetrain and 87 AKI gasoline fuel [49]. They find that for a given fuel mass under stoichiometric 

conditions, the internal residual fraction is lower with PVO. The cooler temperatures enabled earlier 

combustion phasing, which coupled with pumping work reduction, yielded higher efficiencies. Li 

et al. also evaluate NVO and PVO on a single cylinder research engine with a pent-roof combustion 

chamber and a fully-flexible valvetrain [32]. 93 RON gasoline is used for this study. They consider 
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two PVO strategies: early intake valve opening and late exhaust valve closing. The authors propose 

a combination of the two PVO strategies to suit the advantages of each strategy as a function of 

load. Compared to NVO, the improved pumping work of either PVO strategy leads to a greater 

efficiency gain compared to stoichiometric SI flame propagation. Matsumoto et al. depict NVO as 

the strategy to achieve internal EGR at low loads, but mention that PVO may be used instead [29]. 

Consistent with the findings from the other studies, the EGR balance shifts towards external EGR 

as load increases.  

Particular attention must be paid to how the EGR concentration varies with transients, and 

this is a significant research gap for SACI. In-cylinder residual fraction under transient conditions 

can vary greatly as external EGR transport delay is generally several engine cycles. Rapid tip-outs 

can result in high EGR fractions which is detrimental to flame propagation. Conversely, tip-ins 

may decrease EGR levels and produce excessive ringing intensity. For these reasons, transient 

operation has been a significant obstacle to high-EGR strategies. Mixture stratification is likely to 

evolve quickly within a cycle so there may only be small range where combustion can occur. At 

later combustion phasing, the combustion chamber has been shown to be more homogenous, and 

therefore ignition or robust control may not be possible [51]. 

Several studies are successful in achieving a wide range of SACI operation with a single 

early injection or made no mention of injection strategy [34,35,50]. Despite a single early injection, 

Olesky et al. demonstrate in simulation that significant fuel stratification is present. The start of 

injection for their study is fixed at 330° bTDC, and the earliest spark timing of their spark sweep is 

210 CAD later. The local equivalence ratio at the spark plug is richer than the global equivalence 

ratio by up to 0.6 [51]. The local mixture composition approaches the global composition as spark 

timing is delayed, reaching mixture homogeneity at around 40° bTDC. The control authority of the 

flame to control autoignition strongly correlates with mixture heterogeneity. As the flame 
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propagates through richer local mixtures, laminar flame speed increases which improves the flame 

stability.  

The fuel mixture can be stratified to add another degree of combustion control. As the 

volume surrounding the spark plug is relatively small, large changes in fuel composition near the 

plug have a small impact on overall air-fuel ratio (AFR). Early research on spark-assisted HCCI by 

Urushihara et al. [25] uses a small bowl near the spark plug to geometrically define this region, and 

work by Chiodi et al. utilizes a pre-chamber spark plug design [38]. An alternative fuel-

stratification strategy is a central injector with a late injection. This strategy has been used in 

stratified-charge lean-burn gasoline engines to achieve the same effect [52]. A small amount of fuel 

is injected immediately before spark to produce a relatively rich zone near the spark plug. Flame 

speeds increase as equivalence ratio increases from lean, peaking at an equivalence ratio of about 

1.2 [1]. Higher flame speeds push the flame operation away from the flame quench limit, which 

helps to improve the sensitivity of the spark timing on autoignition. Fuel stratification as a SACI 

combustion control method has been suggested by Olesky et al. [51] and implemented by 

Urushihara et al. [25], Matsumoto [29], and Chiodi et al. [38]. Charge mixing, fuel injection 

strategies, and specialized combustion chamber designs have all shown promise in achieving 

sufficient fuel stratification for control.  

SACI Modeling 

Spark-ignited (SI) and stratified charge compression ignition engines already have a 

significant calibration burden [53]. The industry has already responded with expanded use of 

model-based control and optimization methods, with promising success [54-56]. For SACI, the 

complexity of the two-regime combustion adds further control and calibration complexity. 

Recognizing these modeling challenges, Yang and Zhu developed a control-oriented model 
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specifically for SACI [57]. Their model is crank-angle resolved, two-zone, and leverages physics-

based submodels. Their results show excellent agreement, but the model is limited to two zones, 

which precludes fuel stratification. Expanding on previous work, Ortis-Soto also developed a 

simplified model for SACI [58]. This work, as well, is two-zone and crank-angle resolved. 

Additionally, control-oriented models that consider only a subset of in-cylinder state and 

combustion are not found in the literature. For example, as previously mentioned, fuel stratification 

is likely a key enabling strategy for practical SACI applications. One technique for evaluating fuel 

stratification is three-dimensional computational fluid dynamics (CFD) modeling. However, this 

approach is computationally intensive, thus eliminating it from consideration for real-time control 

and calibration optimization. Grenda developed a radially-focused charge stratification model for 

HCCI [59] using about 100 zones and several partial differential equations to solve temperature 

and fuel distribution. While certainly less computationally expensive than CFD, it is unlikely that 

this level of complexity is tractable for some control-oriented models.  

Research Objectives 

• Objective: develop a model with sufficient accuracy for control-oriented tasks with a low 

computational expense. This will consist of the following tasks: 

o Model bulk gas states and a spatial and temporal fuel stratification based on actuator 

position. The in-cylinder states consist of pressure, temperature, equivalence ratio, 

mass, and burned gas fraction. (CHAPTER THREE) 

o Model combustion by using the in-cylinder state submodel results to predict 

combustion phasing, duration, and other quantities. (CHAPTER FOUR) 

o Compile the individual submodels together to form the complete cylinder model, 

compare to the reference model, and explore the model response (CHAPTER FIVE) 
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o Map the input space of the model to evaluate potential control strategies and produce 

a steady-state calibration. (CHAPTER SIX) 

o Evaluate the model against a 1D engine model under transient schedules and input 

disturbances to demonstrate the capability of this model. (CHAPTER SIX) 

o Consider the balance between computational expense and accuracy for several 

candidate combustion model structures. (APPENDIX A) 

o Investigate potential synergies with mild-hybridization to ease the challenge of mode-

switching. (APPENDIX B) 
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II. CONTROL-ORIENTED MODEL FRAMEWORK 

 

The primary experimental test platform is a BMW B38A15 from a 2015 Mini Cooper F55. 

This engine is representative of a modern, high-feature SI engine. The SACI reference engine 

model is developed from this experimental platform in GT-Power, a one-dimensional (1D) engine 

simulation software. The base engine specifications are in Table II-1, and a picture of the 

combustion chamber and installed engine are in Figure II-1.  

Table II-1: Experimental platform engine specifications. 
Parameter Value 

Engine Displacement and Type 1.5 L, inline 3-cylinder 

Peak Torque and Power 
220 Nm @ 1250–4300 RPM 
100 kW @ 4400 RPM 

Bore x Stroke 82 mm x 94.6 mm 

Compression Ratio 11.0:1 (stock) 

Other features 
Dual cam phasers 
Intake continuously variable valve lift  
245 bar central GDI injection 
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Figure II-1: Experimental platform combustion chamber (top left), piston top (bottom left), and 

installation (right). 

 

The engine control module (ECM) for this engine is Pi Innovo OpenECU M670B. The 

programming of the ECM is conducted in MATLAB Simulink, a control-focused programming 

environment platform that is representative of a production ECM. The ECM has a single-core 

267 MHz processor and 128 kB RAM. Figure II-2 depicts an image of the installed controller. A 

selection of control actuators available on this engine is listed in Table II-2. 

Table II-2: Control actuators for experimental engine (baseline configuration). 
Air/Exhaust Path Camshafts and Valves Combustion 

Electronic Wastegate 
Electronic Throttle 

Dual cam phasing 
Continuously variable intake valve lift 

Direct Injector 
Spark Plug 
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Figure II-2: Pi Innovo OpenECU M670B installed in the test cell. 

 

Experimentally Validated Simulation Model 

Experimental results are processed and used to develop a model in a 1D engine simulation 

software. This 1D engine model provides noise-free computation of all relevant system states 

including those that are challenging to measure, critical for accurate in-cylinder submodels. It is 

configured to match the experimental setup, Figure II-3. Validation against experimental data is 

performed with the agreement between the 1D engine model and experimental data depicted later 

in this chapter. 

Where possible, direct engine measurements are used. Valve lifts are measured on the 

engine at several intake valve lift positions. Figure II-4 depicts the valves lifts for both valves 

including the progression of intake valve lift as the variable valve lift actuator moves from one 

extreme to the other. Where direct engine measurements are not possible, engineering judgment or 

sample data from GT-Power examples are used. 
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Figure II-3: 1D engine model of the 1.5 L turbocharged engine. 

 

 
Figure II-4: Valve lift profiles for the intake and exhaust valves. 
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The combustion chamber is modeled and reproduced in computer-aided design software. 

This is a useful input for predictive SI combustion modeling and is depicted in Figure II-5. 

 

           
Figure II-5: CAD model of the B38 engine combustion chamber. 

 

Further tuning of flow and combustion parameters to match experimental results yields a 

validated base 1D engine model. A sample comparison of pressure-volume diagrams at several 

points is illustrated in Figure II-6. Though there are some discrepancies at specific operating 

conditions, overall, the trends in the pumping loop and valve events match well.  
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Figure II-6: Comparison of pressure-volume diagrams between GT-Power and experimental 

results. 

This model is adapted to a design more suitable to a production SACI engine. The engine 

specifications used for both engine models are described in Table II-3, and the BSFC map of each 

engine is pictured in Figure II-7. The BSFC maps are generated using anticipated HRR curves for 

both SI and SACI. The SACI engine displacement is increased to produce the same peak torque 

and peak power as the stock engine, as the power density of the SACI engine is expected to be 

reduced because of high dilution. The 1D engine model of the stock B38 engine is modified to 

account for these engine platform changes. The geometric compression ratio is also increased, 

consistent with [60], where the production-intent engine compression ratio is 16:1. This model is 

presented in Figure II-8, and serves as the reference engine model for the control-oriented cylinder 

model discussed in the next section. 
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Table II-3: Engine configuration for the test engine and the SACI engine. The SACI engine is 
derived from the test engine with minimal configuration changes. 

 Test Engine SACI Engine Variant 

Type I-3 four-stroke spark-ignited 
I-4 four-stroke 
Multi-Mode: Spark-ignited / Lean SACI 
/ Stoichiometric SACI 

Displacement 1.5 L 2.2 L 

Compression Ratio 11.0:1 18:1 

Nominal Operating 
Equivalence ratio 

1.0 
>1.0 at high power for exhaust 
component protection 

SACI: 0.5 / 1.0 
SI: 1.0 

Boost Device Turbocharger Supercharger 

Peak Torque 
Peak BMEP 
Peak Power 

220 Nm @ 1250-4000 RPM 
18 bar @ 1250-4000 RPM 
100 kW @ 4000 RPM 

220 Nm @ 2000-3500 RPM 
13 bar @ 2500-3500 RPM 
100 kW @ 5000 RPM 

 

 
Figure II-7: BSFC maps for the conventional engine and the multi-mode SACI engine. SACI is 

limited to low engine speeds except for very low or very high loads. 
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Figure II-8: 1D simulation model of the dual mode SACI engine. 

 

Control-Oriented Model 

While the previously mentioned 1D engine model possesses high accuracy, the 

computational expense is not suitable for SACI calibration optimization or real-time control. 

Resolving the calibration and control hurdles for SACI is achieved through the development of a 

fast-running model. This model will target similar accuracy as a 1D engine model at a fraction of 

the computational expense. In-cylinder state and combustion submodels are the focus of this work. 

Each state requires an appropriate submodel, which will be described in following chapter. Figure 

II-9 depicts the flow of data from measured engine states and current actuator positions through 

state and combustion models to the updated actuator positions.  
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Figure II-9: Schematic of modeling framework demonstrating the data flow from actuator 

positions, sensor measurements, and engine geometry to combustion metrics. 

 

The in-cylinder state and combustion models include models for in-cylinder mass, 

temperature at cycle start, pressure at cycle start, and burned gas fraction (BGF). Cycle start is 

defined at a particular crank angle (e.g., -70° aTDC), and is used instead of IVC or BDC as it is a 

fixed crank angle, corresponds well with simulation outputs, and can be easily converted to other 
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crank angle locations assuming a polytropic process. The burned gas fraction (BGF) is the total 

amount of combustion products during the cycle. It does not include any air if the engine is operated 

lean. Figure II-10 depicts the schematic for the overall cylinder model.  

  
Figure II-10: Schematic for in-cylinder model used for control and optimization. 

 

Figure II-10 also depicts the model used for the equivalence ratio distribution. Though the 

zones are modeled as concentric cylindrical regions, their geometry is largely arbitrary. There are 

only two constraints on the zone geometry. First, all zones have the same mass. Second, the model 

assumes the injector and spark plug in zone 1. The fuel concentration and mass of fuel burned by 

the flame monotonically increase from zone 1 to the last zone. A production SACI combustion 

chamber is anticipated to have a central injector and spark plug with a spray design to radially 

stratify the combustion chamber [60]. Additionally, combustion occurs near top-dead center 

(TDC), where the distance between the piston top and combustion chamber is small. Therefore, the 
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axial distribution of fuel is assumed to be negligible. Consequently, the model form is depicted as 

annular rings concentric with a central circle (zone 1).  

Though a uniform BGF and pressure is assumed throughout the cylinder, temperature at 

cycle start will vary zonally as a function of equivalence ratio. This captures the impact of charge 

cooling from fuel evaporation. 

Model Structure 

Two major classes of model structure are physics-based and data-driven. As the name 

suggests, physics-based models aim to replicate the physical relationships between inputs and 

outputs with the most appropriate mathematic functions. While a physics-based model is desirable, 

the model complexity must expand to account for higher complexity. At some point, however, the 

computational expense will exceed hardware and time constraints, limiting the minimum 

achievable error.  

Physics-based models have been augmented or replaced with data-driven models such as 

machine learning to achieve accurate performance where an appropriate physical model exceeds 

complexity constraints. Artificial neural networks (ANNs), a machine learning technique, are a set 

of mathematical equations that self-learn through an optimization process. Figure II-11 depicts an 

ANN in graph form, where each circle is a node or neuron and represents a particular value. ANNs 

aim to map inputs to outputs, for example, temperature and pressure to autoignition phasing. Rather 

than do this directly, several hidden neurons are added to improve the predictive capability. Each 

node is connected to all nodes to its right via weights or coefficients multiplied to the output of the 

previous layer (represented by arrows). The weights in Figure II-11 are labeled according to the 

layer they feed (in parentheses), and the node of the previous and next layer in the subscript. The 

previous node outputs are multiplied by the corresponding weight values, then added together along 
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with a constant term called the bias (b). An example computation for the first (and only) hidden 

layer node (𝐻𝐿1𝑖) is illustrated in (5).  The result of this computation is passed to a sigmoidal 

function (also called a squashing function) to bound the node outputs. An example sigmoidal 

function is the logistic function shown in Figure II-12. The learning element comes from the 

selection of the weights and biases, which is performed though an optimization process called 

backpropagation. Backpropagation aims to minimize the error of the ANN compared to the target 

values. 

 
Figure II-11: Artificial neural network structure and sample computation. 

 

 𝐻𝐿1𝑖 = 𝑠𝑖𝑔(𝐼1 ∙ 𝑤1𝑖
(1)

+ 𝐼2 ∙ 𝑤2𝑖
(1)

+ 𝑏𝑖
(1)

) (5) 
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Figure II-12. The logistic curve, an example sigmoidal function. 

The training algorithm in this work is the Levenberg-Marquardt backpropagation algorithm 

which interpolates between the Gauss-Newton method and gradient descent [61,62]. Both Gauss-

Newton and gradient descent aim to progress to lower objective function (i.e., error) values by 

following the shape of the function. Gradient descent uses only the local gradient (i.e., the first 

derivative), while the Gauss-Newton method uses both the gradient and the curvature (the second 

derivative). The Gauss-Newton method is faster but can be more complicated to compute than 

gradient descent. The Levenberg-Marquardt algorithm enables an interpolated combination of the 

two methods that can be updated during optimization to ensure robustness and speed.  

The challenge for machine learning is an appropriate fit to the underlying phenomenon 

while maintaining good prediction capability to unforeseen cases. Maximizing both the fit to in-

sample data and minimizing out of sample error (generalizability) is the key machine learning 

objective. Maximizing generalizability consists of two components: a properly selected model 

structure that can capture enough of the complexity of the underlying phenomenon, and not fitting 

to the noise in the training data (“overfitting”). The noise may be stochastic or deterministic. 

Stochastic noise is random, and the source of noise is not part of the model. Deterministic noise, 

on the other hand, occurs when the complexity of the target function is greater than the model. Both 

present similar challenges, and techniques to mitigate overfitting are similar for both. As the name 
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suggests, overfitting occurs when the training process has progressed too far (by fitting noise), 

leading to an overall worse out-of-sample performance. 

For ANNs, there are several techniques to avoid overfitting. These techniques are called 

“regularization,” and there are several strategies to implement regularization [63]. Early-stopping 

is the primary technique used. Once the test dataset error stabilizes, the network training ceases. As 

a test of model generalizability, “hold-out” is used to test the regression against data for which the 

model has not seen. Another means of regularization used in this work is weight decay Bayesian 

regularization [64]. Non-regularized training targets the minimum of the sum of squared errors (6), 

weight decay regularization also includes the sum of the squares of the weights in the network (7). 

In these equations, F is the objective function, n is the number of training points, 𝑎𝑖 is the ANN 

result, 𝑡𝑖 is the target result, N is the number of parameters in the network, 𝑤𝑗
2 is each weight value, 

and 𝜆 is the scaling coefficient to select the importance of the weight decay term. Therefore, the 

optimal solution for weight decay regularization is the solution that minimizes both error and 

weights. In Bayesian regularization, Bayes’ rule is used to compute 𝜆. This is in opposed to non-

Bayesian weight decay regularization where the user selects 𝜆. An additional advantage of Bayesian 

weight decay is the potential to have relatively accurate extrapolation performance.  

 𝐹 = ∑(𝑎𝑖 − 𝑡𝑖)
2

𝑛

𝑖=1

 (6) 

 𝐹 = ∑(𝑎𝑖 − 𝑡𝑖)
2

𝑛

𝑖=1

+ 𝜆 ∑ 𝑤𝑗
2

𝑁

𝑗=1

 (7) 
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III. IN-CYLINDER STATE SUBMODELS 

 

Combustion control and calibration demands a strong understanding of the in-cylinder 

state. This is not unique to SACI, and most of the models discussed in this chapter have been 

developed for SI engines in alternate forms. The reference 1D engine model is exercised to obtain 

the residual fraction for a wide range of conditions. Each submodel is validated to this reference 

model. In total, 6000 test points are simulated. Table III-1 lists the input variables and the ranges 

for the dataset and depicts the distribution of a selection of inputs. The first 2000 points are selected 

by the Latin hypercube method to provide one point for every region in the seven-dimensional 

space [65]. The next 3000 points are a full-factorial design of experiments (DOE) to achieve a set 

of spark timings for the same condition. The final 1000 points are to ensure that rich operation is 

sufficiently covered. The selected ranges are determined based on three justifications: 1) typical 

operating range for most drive-cycles, 2) actuator limits, and 3) conditions anticipated to be 

favorable to SACI combustion. Several (e.g., cam phasers) are extended beyond typical constraints, 

to evaluate potential benefits for wider-range actuators. 
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Table III-1: Input ranges for submodel development. 
Input Range 

Engine Speed1 1000 RPM–3000 RPM 

Intake Manifold Pressure1,2 30 kPa–140 kPa 

Spark Timing2 -70‒0° aTDC3 

Equivalence Ratio2 0.5–1.4 

External EGR2 0%–30% 

Intake Cam Location3, 4 0–100 CAD 

Exhaust Cam Location3, 4 0–100 CAD 
1 Typical operating range for most drive cycles. 

2 Conditions anticipated to be feasible for SACI combustion. 

3 Actuator constraints. 

4 Crank degrees from parked position. 

 

 
Figure III-1: Values for a selection of inputs used in the design of experiments. 
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Neural Network Modeling Techniques 

Each cylinder state neural network model uses the same process to reach the final network 

structure and size. These models generally have fewer inputs and are much less sensitive to inputs 

than the combustion submodels. For example, from a thermodynamic assessment, pressure at cycle 

start is largely a function of starting pressure (i.e., MAP) and how much compression occurs (a 

function of only intake phasing for a fixed geometric compression ratio).  Therefore, it is expected 

that a small network can accurately capture the relationship between these inputs and the desired 

output. Consequently, single-layer networks are used exclusively, varying in size only to 

accommodate the anticipated model complexity. A sweep of hidden neurons identifies the 

minimum size required to capture sufficient accuracy, without overfitting. An example hidden 

neuron sweep is shown in Figure III-2 for the pressure at cycle start network. Starting from a low 

number of hidden neurons, once the test error stabilized, the model size is fixed. The other 

regularization technique used is early stopping during the training process. 

 
Figure III-2: RMSE from a sweep of hidden neurons for the pressure at cycle start network. Note 
that for 5 neurons and above, the error stabilizes. On this basis, five hidden neurons are selected 

for this network, and a similar process is followed for other in-cylinder state networks. 
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Cylinder Volume at IVC Model 

The model for volume at intake valve closing is based on a crank-slider cylinder volume 

at the crank angle at IVC. The crank angle at IVC is determined by a measurement of the intake 

valve lift of the B38 engine (Figure II-4). Equation (8) is the relationship between engine geometry 

and volume at a particular crank angle 𝜃. The total cylinder volume 𝑉 is computed relative to the 

clearance volume 𝑉𝑐. Compression ratio 𝑟𝑐 and the ratio of stroke to connecting rod length R are the 

relevant engine geometric parameters. 

 𝑉

𝑉𝑐
= 1 +

1

2
(𝑟𝑐 − 1) [𝑅 + 1 − cos 𝜃 − √𝑅2 − sin2 𝜃]  (8) 

Cylinder Pressure at Cycle Start Submodel 

The submodel for pressure at cycle start is an artificial neural network. It is validated 

against the results from the reference 1D engine model and is of the form depicted in Figure III-3. 

The neural network inputs are selected based on the independent variables that have a strong 

influence on in-cylinder pressure. The network structure is chosen based on an investigation of the 

tradeoff between overfitting and accuracy. A single layer of 5 hidden neurons is trained to 70% of 

the data points using the Levenberg-Marquardt backpropagation algorithm. The remaining 30% of 

the data is split evenly between the validation and test datasets. The resulting ANN demonstrated 

a root mean square error (RMSE) of 0.1 bar. Figure III-4 illustrates the comparison between the 

reference and ANN models for each data subset: training data, validation data, and test data.  
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Figure III-3: Neural network structure used for cylinder pressure at cycle start. 

 
Figure III-4: Comparison between the 1D engine model (Reference Model) and the artificial 

neural network (ANN) for the pressure at cycle start submodel. 
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Residual Fraction Submodel 

The submodel for residual fraction is an artificial neural network. It is validated against the 

results from the reference 1D engine model and is of the form depicted in Figure III-3. The neural 

network inputs are selected based on the independent variables that have a strong influence on in-

cylinder pressure. The network structure is chosen based on an investigation of the tradeoff between 

overfitting and accuracy. A single layer of 15 hidden neurons is trained to 70% of the data points 

using the Levenberg-Marquardt backpropagation algorithm. The remaining 30% of the data is split 

evenly between the validation and test datasets. The resulting ANN demonstrated good accuracy, 

with a root mean square error (RMSE) of 4.0 percentage points. Figure III-4 illustrates the 

comparison between the reference and ANN models for each data subset: training data, validation 

data, and test data.  

 
Figure III-5: Neural network structure used for residual fraction. 
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Figure III-6: Comparison between the 1D engine model (Reference Model) and the artificial 

neural network (ANN) for the burned gas fraction (BGF) submodel. 

 

Temperature at Cycle Start Submodel 

The submodel for temperature at cycle start is an artificial neural network (ANN). It is 

validated against the results from the reference 1D engine model and is of the form depicted in 

Figure III-3. The neural network inputs are selected based on the independent variables that have a 

strong influence on in-cylinder temperature. The network structure is chosen based on an 

investigation of the tradeoff between overfitting and accuracy. A single layer of 15 hidden neurons 

is trained to 70% of the data points using the Levenberg-Marquardt backpropagation algorithm. 

The remaining 30% of the data is split evenly between the validation and test datasets. The resulting 

ANN demonstrated good accuracy, with a root mean square error (RMSE) of 8.8 K. Figure III-4 

illustrates the comparison between the reference and ANN models for each data subset: training 
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data, validation data, and test data. This submodel is evaluated for each zone, based on the zonal 

equivalence ratio. 

 
Figure III-7: Neural network structure used for cylinder temperature at cycle start. 

 
Figure III-8: Comparison between the 1D engine model (Reference Model) and the artificial 

neural network (ANN) for the temperature at cycle start submodel. 

 



 

39  

In-Cylinder Mass Submodel 

The in-cylinder mass m submodel leverages the ideal gas law to compute the trapped mass 

(9). In this equation, pressure P, volume V, and temperature T, are all evaluated at the cycle start 

crank angle (-70° aTDC). The gas constant Rair is assumed to be constant and equal to 287 J/kg·K. 

 𝑚 =
𝑃𝑐𝑦𝑐𝑉𝑐𝑦𝑐

𝑅𝑎𝑖𝑟𝑇𝑐𝑦𝑐
 (9) 

 

Fuel Distribution Submodel 

A control-oriented model of radial fuel stratification throughout the engine cycle is critical 

for engine calibration and control. Both phases of combustion are often operated near their limits 

(flammability limit for flame propagation, and pressure rise rate limit for autoignition). Careful 

tuning of injection strategy can enable a wider range of operation by allowing each phase to operate 

further from the limits, as these limits are a strong function of fuel-air equivalence ratio. One 

technique for evaluating fuel stratification is three-dimensional computational fluid dynamics 

(CFD) modeling. However, this approach is computationally intensive, thus eliminating it from 

consideration for real-time control and rapid iteration during the calibration process. Grenda 

developed a radially focused charge stratification model for HCCI [59], however, this model is 

likely too computationally expensive for a control-oriented model. 

There are limited models available to represent in-cylinder fuel distribution for radially 

stratified engines without high computational load. However, simplified models have been 

successfully developed for other purposes. Nishida and Hiroyaso developed a spray model for 

diesel engines which focuses on the spray penetration and mixing with air [66]. A set of concentric 

packets represent a discretized zone for fuel concentration for both liquid and vapor independently. 



 

40  

Sjöberg et al. demonstrated a five-zone temperature distribution model is capable of matching 

experimental HCCI data for in-cylinder pressure during combustion [67]. Several other groups have 

applied this approach for HCCI. Babajimopoulos et al. leverage a ~100 zone model to accurately 

predict HCCI burn rates on a crank-angle basis [68]. Aceves et al. and Fiveland et al. demonstrate 

a 10-zone model again to predict HCCI burn rates [69,70]. These zonal breakdown in these articles 

is not spatial, rather the charge is divided into similar temperature zones. These concepts are 

synthesized and extended to establish a spatial radial stratification model suitable for SACI.  

The distribution of fuel within the cylinder will influence flame propagation, autoignition, 

zone temperature from evaporative cooling, and NOx formation. The model must address both 

spatial and temporal distribution, and therefore must have an appropriate model of the injection 

event and fuel and air mixing.  

Reference Model 

A three-dimensional computational fluid dynamics (CFD) model is used as a high-fidelity 

reference model. This model aids in physical understanding of important model features and to 

determine the magnitudes of features for calibration. The model is tuned to match a Cummins ISB 

engine, and the spray simulations use a six-component E10 gasoline surrogate. The details of the 

engine geometry, injector geometry, and several test conditions used in the CFD simulation are in 

Table III-2 and Table III-3. Three test points are considered that examine the response at different 

fueling amounts. Late injection (near firing top-dead center) strategies are selected as it would most 

likely be used to introduce charge stratification for SACI. 
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Table III-2: Engine geometry and injector parameters used for the reference model. 

Parameter Value 

Type 5.9 L inline six-cylinder 

Bore x Stroke 102 mm x 120 mm 

Compression Ratio 15:1 

Injector  Eight-hole, 30° spray cone 

Fuel 

E10 Gasoline surrogate: 

- n-pentane (16.5% mol) 
- iso-octane (23.8 % mol) 
- 1-hexene (5.9 % mol) 
- Cyclo-pentane (12.4 % mol) 
- Toluene (21.3 % mol) 
- Ethanol (20.1 % mol) 

 

 

Table III-3: Test point parameters used for the reference model. 

 Test Pt. 1 Test Pt. 2 Test Pt. 3 

Engine Speed 1200 RPM 1200 RPM 1200 RPM 

Overall Equivalence Ratio 0.12 0.20 0.35 

Start of Injection [°aTDC] -15 -32 -45 

Injection Duration [CAD] 4.8 7.9 13 

 

The CFD model is adapted from a model referenced in [71] to study late compression 

stroke injections of gasoline for stratified LTC. A one-equation Large Eddy Simulation (LES) 

turbulence model is used which includes a transport equation to model the sub-grid scale kinetic 

energy [72]. Converge CFD is used to perform this simulation, using about 9,000,000 cells at 

bottom-dead center with adaptive mesh refinement [73]. Additionally, fixed embedding refines the 
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mesh further near the combustion chamber walls to resolve the near-wall boundary layer. The 

boundary conditions are set according to experiments performed on the medium-duty engine.  

The liquid fuel injection model is a Lagrangian-based approach using liquid parcels that 

are introduced at the location of the injector. The behavior of the liquid spray is governed by various 

sub-models that are identical to those referenced in [71]. The injector used for the experiment is 

Bosch HDEV 1.2 GDI injector. Validation of this injector is performed by Priyadarshini et al. 

against Spray G experiments from the engine combustion network (ECN) [71]. The average of five 

cycles using this CFD model shows that the mean penetration length over time sufficiently agrees 

with these experiments [71]. 

Figure III-9 illustrates the equivalence ratio distribution at four crank angles for a vertical 

plane that crosses through the center of the chamber for the high load Test Point 3. The first plot 

occurs during the spray, which has a start of injection (SOI) of -45 degrees after firing top-dead 

center (aTDC), and an end of injection (EOI) of -32° aTDC and the remaining three occur in 

succession for a total of 47 crank angle degrees (CAD) after the end of injection.   
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Figure III-9: Equivalence ratio distribution along a vertical plane for select crank angles. 

 

Spray Penetration 

The first step in the fuel distribution model is the introduction of the fuel into the chamber. 

An estimate of spray penetration is based on Desantes et al. and Tetrault et al. which includes the 

effects of injector geometry, in-cylinder conditions, and empirical coefficients [74,75]. As the 

precise penetration length is not required, reasonable assumptions are made for each factor. The 

spray penetration (S) equation is developed based first on the momentum flux (�̇�) computation 
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along the spray axis. Assuming a gaussian distribution of flow velocity perpendicular to the main 

spray axis (with shape factor α), the flow velocity in the spray can be computed. The spray tip 

penetration is assumed to proportional to the spray flow velocity with a proportionality constant of 

K. Further assumptions of quiescent conditions and constant air density yield (10) and (11). Table 

III-4 lists the parameters used in computing the penetration length. 

S(t) =  (
2α

π
)

0.25 2

𝐾
(1 − exp(−2𝛼)) −0.25 �̇�0.25𝜌𝑎𝑖𝑟

−0.25𝑡0.5 tan (
ψ

2
)

−0.5

 (10) 

 
�̇� =

�̇�𝑓𝑢𝑒𝑙

𝜌𝑓 (
𝜋𝑑0

2

4
)

 (11) 

Table III-4: Parameters used to determine penetration length. 
Parameter Value Justification 

α   Gaussian shape factor for fuel 
velocity distribution 4.605 Reference [75] 

K Ratio of fluid velocity to spray 
penetration 7.2 Reference [75] 

�̇�𝑓𝑢𝑒𝑙  Fuel mass flow 6.9 mg/ms  Engine data 

d0 Injector hole diameter 100 μm Reference [75] 

ρfuel Fuel density 0.740 g/m3 Assumed value 

ρair Air density ‒ kg/m3  Computed at injection timing 

ψ  Spray cone angle 30° Injector documentation 

�̇� Momentum flux Computed 

 

A key factor in the determination of spray length is the effect of short injection durations, 

as would be common for a second injection to induce stratification for SACI operation. During 

short injections, the injector is in the so-called “ballistic” region, where the injector valve is moving 

and has a nonlinear impact on fuel quantity injected [76,77]. To account for this, the injector fuel 
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mass is adapted below injection durations of 0.4 ms to be consistent with the literature on the 

behavior of solenoid injectors in the ballistic region [77] (Figure III-10). The overall spray 

penetration is computed and illustrated in Figure III-11, is consistent with the results in [74,75].  

 
Figure III-10: Injector mass flow rate as a function of injector pulse width duration. 

 

 
Figure III-11: Spray penetration versus time and injector pulse widths based on (10). 
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Fuel Distribution Along Spray 

While a uniform distribution of fuel vapor may be a suitable assumption, a careful analysis 

of the literature indicates that equivalence ratio may not be uniformly distributed along the spray. 

Perini et al., for example, perform a simulation study on mixture preparation for a light-duty diesel 

engine [78]. Though the combustion chamber geometry is different from a SACI engine, the nature 

of fuel distribution along the spray length is still applicable. Their work indicates a peak fuel 

distribution just beyond halfway along the spray, with the lowest fuel concentration at the end of 

the spray. Zhang et al. also perform a simulation study on a similar combustion chamber, however, 

their focus is gasoline compression ignition [79]. Much like SACI, gasoline compression ignition 

requires more homogenously distributed fuel than a diesel engine. Examining the reported fuel 

distribution along the spray axis indicates a similar distribution as Perini et al.  

Though a literature review can provide a qualitative view of the fuel distribution, a 

quantitative representation is necessary for model calibration. The results from the CFD study are 

synthesized to produce an estimated distribution of fuel along the spray axis. The two lower load 

test points produced a nearly uniform distribution along the spray axis. However, as Figure III-12 

illustrates, the distribution for the longest duration produced a peak fuel concentration just beyond 

halfway along the spray. It is anticipated that as the plume slows from interacting with the quiescent 

air, the continued spray into the plume will increase the equivalence ratio towards the tip of the 

plume. This is consistent with the literature, and results from the spray penetration velocity slowing 

as time increases.  The complex mixing of the fuel and air due to air entrainment is evident from 

the non-continuous nature of the CFD results. For the purposes of the fuel distribution submodel, 

precise spray mixing is of low importance as there will be some time between the conclusion of the 

spray and spark timing. Thus, a relatively simple equivalence ratio distribution along the spray axis 

is sufficient to ensure that the appropriate mean in-cylinder fuel distribution is achieved. A cubic 
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fit to the data is performed, as indicated in Figure III-12. This fit is only used for longer injections. 

A uniform distribution is more suitable for shorter durations, where the impact of continued spray 

from the injector into a slowing plume is negligible. 

 
Figure III-12: Fuel distribution along spray length for long injections. 

 

The spray penetration (and therefore fuel distribution along the spray) must be transformed 

to the radial dimension. In the CFD simulation, the spray angle within the cylinder is about 45° 

downward from the head surface. Therefore, the radial component of the spray axis must be reduced 

by cosine (45°) ≈ 0.7. The fuel distribution along the spray axis must be compensated by dividing 

by the same factor. 

Fuel and Air Mixing Post Injection 

After the injection event is complete, some mixing will occur as the cycle progresses. 

Several research groups have identified significant stratification for the start of combustion. Sellnau 

et al. depict an equivalence ratio range of about +/- 0.25 near the start of combustion for their 



 

48  

gasoline direct injection compression ignition engine [80]. Giovannoni et al., Buri et al., Chen et 

al., and Dong et al. all demonstrate a similar equivalence ratio distributions for direct-injected 

spark-ignited engines [81-84]. As the simplified cylinder model does not allow for high-fidelity 

stratification, mixing across zones is determined based on the difference in equivalence ratio among 

neighboring zones. Figure III-13 depicts the zonal relationship used to evolve the equivalence ratio 

after injection for each zone.  

 
Figure III-13: Schematic describing the post-injection mixing of fuel across zones. 

 

The equivalence ratio for a particular zone i at crank angle θ is given by 𝜙(i, θ). The zones 

interact with neighboring zones with a mixing strength coefficient 𝜇. Equation (12) depicts the 

relationship between neighboring zones. When 𝜇 = 0, the mixing submodel is disabled, and the 

spatial distribution of fuel is based on the spray model alone.  

𝜙(𝑖, 𝜃 + 1) = 𝜙(𝑖, 𝜃) + 𝜇[𝜙(𝑖, 𝜃) − 𝜙(𝑖 − 1, 𝜃)] + 𝜇[𝜙(𝑖 + 1, 𝜃) − 𝜙(𝑖, 𝜃)] (12) 

To tune the coefficient 𝜇, the previously described CFD results are leveraged. Using the 

same computation method for the fuel distribution submodel, the CFD results are divided into 50 

hollow cylindrical zones each of equal volume accounting for actual cylinder geometry. For the 
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crank angles following the end of the spray, the phi distribution versus the radial distance from the 

center of the combustion chamber is computed. The 𝜇 coefficient is swept from 0.0 to 1.2 in 0.01 

increments. Values above 1.2 produced numerical instability. The high resolution CFD results are 

transformed to a 10-zone model equivalent and compared to the candidate 10 zone model. The root 

mean square error (RMSE) is computed for all available crank angles for each of the three test 

points. In total 18 cases are evaluated for each value of 𝜇. For each of the three test points, the mean 

RMSE of all crank angles is used to evaluate the performance for each value of 𝜇. The minimum 

of the mean of the three test points is the optimum 𝜇. This occurs at 𝜇 = 0.76 and is depicted in 

Figure III-14. Above a 𝜇 of about 0.6, there is little sensitivity to the coefficient. 

 
Figure III-14: Evaluation of the mixing strength coefficient (μ). The optimum coefficient value of 

0.76 is indicated in the figure. 
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Figure III-15: Comparison of CFD results and the simplified 10-zone fuel distribution model. 

 

A sample comparison between the CFD results and the quasi-dimensional model is 

presented in Figure III-15. A more complete comparison can be found in the Appendix.  Three 

results are included in Figure III-15: the full resolution CFD (50 cylindrical sections of equal mass), 

the full-resolution CFD results transformed to an equivalent 10-zone model, and the 10-zone quasi-
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dimensional model results. Overall, there is good agreement. The earliest crank angle shows the 

greatest error, though this is expected as the simplified model cannot capture the complex mixing 

during and immediately after injection. The quasi-dimensional model matched the CFD results with 

a root mean square error (RMSE) for equivalence ratio of 0.08‒0.11. This is a ~50% improvement 

over the 0.16‒0.20 RMSE for a model that assumes a uniform fuel distribution immediately after 

injection. 

Selection of Number of Zones 

A sweep of the number of zones is performed to identify the sensitivity of model results to 

the selected number of zones. Figure III-16 depicts the results from the sweep, comparing two 

conditions: a highly stratified condition and a minimally stratified condition. The highly stratified 

condition is about 6 CAD after the end of injection, and the minimally stratified condition is 

47 CAD beyond the end of injection, both for Test Point 3. If the spray is nearly homogenous, then 

there is little sensitivity to the number of zones, as expected. It is important to note that while the 

slope of the trendline is slightly positive, this is not statistically significant. A zero slope is within 

a 95% confidence interval. When stratified, there is a significant error associated with a small 

number of zones. Therefore, if there is stratification, a multi-zonal model is required. In this work, 

10 zones are selected as at least 5 or 6 are required to minimize error, and 10 zones divides the 

mass of the charge evenly for computational convenience. 
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Figure III-16: Results from a sweep of zones for highly-stratified and minimally stratified 
conditions. When stratification is present, at least five zones are needed to minimize error. 

 

Summary 

In-cylinder state submodels for temperature, pressure, burned gas fraction, mass, and 

volume are developed. The temperature, pressure, and burned gas fraction models are artificial 

neural networks with one hidden layer with a varying number of hidden neurons. The ANN is 

trained to results from the 1D reference model. The in-cylinder volume model is geometric and 

based on the slider-crank mechanism. Finally, the in-cylinder mass model is derived from the ideal 

gas law. 

Additionally, a simplified model for radial fuel stratification is developed to achieve a 

control-oriented injection strategy model. The modeling objective is to reproduce radial 

stratification with a computational expense suitable for real-time control or calibration 

optimization. The model consists of three submodels: spray penetration, fuel distribution along the 
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spray, and post-injection mixing. Each submodel is tuned to injection spray results from a CFD 

model. The submodels matched well across three different test points. The quasi-dimensional 

model matched the CFD results with a root mean square error (RMSE) for equivalence ratio of 

0.08‒0.11. This is a ~50% improvement over the 0.16‒0.20 RMSE for a model that assumes a 

uniform fuel distribution immediately after injection. 
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IV. COMBUSTION SUBMODELS 

 

The high dilution typical of SACI improves efficiency by lowering heat transfer and 

pumping work, as well as increasing the ratio of specific heats. Though these are significant 

improvements, the high dilution has a negative impact on deflagration flame propagation and raises 

the ignition energy required for autoignition. The unique controls challenge for SACI is resolving 

the competing demands of the two combustion regimes. Identifying key parameters and their 

influence for each mode can aid in developing real-time control strategies.  

This chapter thoroughly investigates model type and structure for the combustion 

submodels. An independent evaluation of neural networks versus physics-based model structures 

is performed for autoignition and can be found in Appendix A. However, these specific submodels 

are not considered in the final cylinder model and are therefore excluded from this chapter. Instead, 

new models are developed in this chapter based on the findings in Appendix A. 

Combustion Fundamentals: Spark Ignited Flame Propagation 

For SI combustion, dilution is limited to maintain appropriate flame speeds and cycle-to-

cycle variation (CCV). SACI, however, must balance ringing intensity during autoignition and 

flame propagation constraints, which drives dilution levels near the flame stability limit. A detailed 

understanding of turbulent flame propagation can be used to optimize the combustion chamber, 

flow field, and control actuator strategies.  

The nature of turbulent flame propagation is strongly dependent on the flame structure, 

which is itself a function of chemical and fluid flow behavior. Two non-dimensional numbers aid 

in translating these behaviors to quantifiable metrics: the Damköhler number, Da, and the Karlovitz 
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number, Ka. Da is the ratio of characteristic flow time to characteristic chemical reaction time and 

is defined in (13).  Ka is the ratio of flame stretch rate to characteristic chemical reaction rate and 

is defined in (14). In these equations, 𝑙𝐼 is the integral length scale, 𝛿𝐿 is the flame thickness, 𝑆𝐿 is 

the laminar flame speed, 𝑢′ is the turbulence intensity, and 𝑅𝑒𝑇 is the turbulent Reynolds number 

(15) [1,3]. 

 
𝐷𝑎 =  (

𝑙𝐼

𝛿𝐿
) (

𝑆𝐿

𝑢′
)       (13) 

 
𝐾𝑎 =  0.157 (

𝑢′

𝑆𝐿
)

2

 ReT
−1/2

       (14) 

 
𝑅𝑒𝑇 =  

𝑢′𝑙𝐼

ν
 (15) 

 

There are limited ranges for Da and Ka that are suitable to flame propagation in an engine. 

Abdel-Gayed and Bradley conducted thorough constant-volume combustion vessel experiments 

that identified various flame regimes, including flame quench [85]. Their analysis is summarized 

on the Leeds diagram (Figure IV-1). The regions where the Da is less than about 1.0 or Ka is greater 

than about 1.5 represent the region of flame quench. In this region, the chemical reaction rates 

within the flame are not sufficient to overcome the strain induced by in-cylinder charge motion. 

Dai et al. [86] and Lewis et al. [87] both demonstrated that this turbulent flame model satisfactorily 

predicted misfire in SI engines. Both engine models are representative of modern light-duty 

stoichiometric gasoline engines with high levels of cooled external EGR (~25%). The prediction 

of misfire is considered at either the Ka > 1.5 or Da < 1 flame quench boundary. Their simulation 

results correlated well with experimental data. However, several sources suggest EGR levels for 

SACI are beyond 25% [35,37,49], and Matsumoto et al. suggests up to 40% EGR [29]. Though 
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production EGR levels may not be this high after considering transients, the nature of SACI likely 

requires higher dilution than has been used for deflagration flames. This higher dilution translates 

to SACI operation closer to the flame quench boundary than traditional SI engines.  

An additional application of Da is identifying the transition from flame propagation to 

autoignition. As Da decreases, the flame structure transitions to distributed reactions as opposed to 

a localized flame. Yang et al. [88] and Martz [89] evaluate this criterion in 3D simulation, where a 

particular Da is considered the threshold for autoignition of a computational cell. Both demonstrate 

a high sensitivity of overall combustion performance to the selected Da threshold. Martz 

specifically considers this a weakness of this criteria for high-fidelity simulation.  The application 

of this criteria for a reduced-order real-time engine control is not considered in their work. 

Olesky et al. evaluate the in-cylinder conditions at spark onset for experimental SACI 

combustion results [51]. Their simulation is performed in KIVA without combustion. The in-

cylinder conditions at spark onset are placed on the Leeds diagram, Figure IV-1. The SACI points 

are consistently closer to the flame quench boundary than SI, as expected. Those conditions 

predicted by simulation to occur in the flame quench region correlate to misfires in experimental 

results found in [35].  
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Figure IV-1: Leeds diagram depicting regions of different flame regimes and typical conditions at 
spark onset for SI and SACI. SACI operation is expected to trend closer to the flame quench limit 

from the high dilution. The diagram is adapted from [86], the SI operating region is adapted 
from [51,86,87], and the SACI spark onset region is adapted from [51]. 

 

This result highlights the fundamental challenge in achieving reliable SACI combustion: 

an appropriate dilution level for autoignition can result in flame quench for the flame propagation 

regime. EGR stratification and tuned charge motion is a potential solution that provides suitable 

conditions for both flame propagation and autoignition. Understanding the influence of dilution 

and charge motion on the flame propagation phase of SACI combustion is therefore critical for a 

robust production solution. Empirically-based tables and correlations have been developed, but 

they may require a substantial calibration effort and be limited in their predictive capability 

[57,90,91]. The flame model presented here may be a suitable basis for robust real-time predictive 

control.  

Combustion Fundamentals: Autoignition 

In the context of engines, autoignition (AI) is a rapid combustion event that occurs without 

a spark. The chemical reactions that lead to autoignition occur over a finite time called the ignition 
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delay. For typical engine conditions, autoignition is triggered by self-heating or chain-branching 

reactions [1,2]. Ignition delay and the mechanism of autoignition are both nonlinear and highly 

sensitive to several parameters. Combinations of pressures, temperatures, and dilution highlight 

different reaction pathways with a given chemical mechanism. To clarify the impact on control, it 

is important to study the sensitivity of autoignition timing to temperature, pressure, and fuel type. 

Figure IV-2 depicts characteristic ignition regimes for isooctane across a range of temperatures and 

pressures. These regimes include cool flames, hot flames, and low-temperature reactions. A cool 

flame is a slightly exothermic, but incomplete reaction [1,2]. Isooctane strongly exhibits the cool 

flame phenomenon under certain conditions [1,92]. For other conditions, the cool flame may be 

followed by a hot flame. This two-step ignition process is characteristic of low-temperature heat 

release (LTHR). Each of these regimes can be encountered for several gasoline combustion 

strategies.  

 
Figure IV-2: Different flame regimes for isooctane. The nature of isooctane combustion varies 

nonlinearly with both pressure and temperature. Adapted from [92]. 
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In addition to distinct flame regimes, some fuels exhibit a negative temperature coefficient 

(NTC) region under certain conditions. NTC behavior occurs as the competition for radicals 

between reaction pathways shifts from chain-branching to non-chain branching. The chain-

branching pathway does not require self-heating to autoignite, while the non-chain branching 

pathway does. The non-branching reactions become dominant at conditions where the reaction rate 

does not produce sufficient self-heating. This results in the NTC region, where ignition delay 

increases despite rising temperatures. Raising temperature further increases the reaction rate to the 

point that the reaction becomes self-heating and autoignition occurs more readily. Understanding 

the impact of the NTC is critical for SACI combustion phasing control.   

The NTC behavior is sensitive to several parameters including fuel type, pressure, dilution, 

and air-fuel ratio [1,2,93]. Figure IV-3 and Figure IV-4 depict comparisons of ignition delay for 

multiple fuel chemistries and several pressures for isooctane, respectively. The analysis shown is 

performed by the author using Cantera, MATLAB-based chemical kinetics software. The chemical 

kinetics mechanism used is the gasoline surrogate mechanism developed by Lawrence Livermore 

National Laboratories (LLNL) [94]. The fuel-type comparison clearly illustrates the strong 

variation in ignition delay behavior among automotive fuels. Aromatic and alcohol fuels, such as 

toluene and ethanol, do not exhibit the NTC phenomenon. Furthermore, for isooctane, the influence 

of pressure affects both the location and strength of the NTC region. These factors create control 

and calibration problems that likely require a feed-forward sensing strategy or a feedback 

mechanism. 
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Figure IV-3: Ignition delay curves comparison between alkane fuels (n-heptane and isooctane), 

an alcohol fuel (ethanol), and an aromatic fuel (toluene). The variation in the presence and 
location of the NTC region possess an obstacle to production SACI control. Results generated by 

the author in Cantera using the LLNL detailed chemical mechanism [94]. 

 

 
Figure IV-4: Ignition delay curves for isooctane at several pressures. The substantial changes in 

the NTC region strength and location for these conditions possess an obstacle to production 
SACI control. Results generated by the author in Cantera using the LLNL detailed chemical 

mechanism [94]. 

 

 The mixture states and composition in an engine may encompass multiple flame regimes 

and can also include the NTC regime if present. Automotive fuels are blends which contain several 
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components that have significantly different autoignition responses. In an SI engine, autoignition 

can occur in the unburned region (“end-gas”) and is commonly referred to as “knock.” It is 

analogous to the autoignition phase of SACI, though SI knock has much higher rates of heat release 

that can cause engine damage. Though not strongly considered in the pioneering SI knock research 

[95,96], fuel chemistry sensitivity has been more recently evaluated for SI engines. Kim et al. and 

Szybist et al. both investigated the effect of fuel type on knock in SI engines [48,93]. Between the 

two studies, four fuel types are evaluated: two alkylate fuels, one high-aromatic fuel, one gasoline 

surrogate, and two high-ethanol fuels. Both studies are controlled for Research Octane Number 

(RON), but there are clear variations in autoignition behavior attributed to specific fuel chemistry. 

The differences in autoignition timing and/or knock-limited spark advance among the fuels in 

several instances is about 10 CAD. The relative performance among the fuels varies with load and 

dilution, further complicating the controls challenge.  

For SACI, the challenge is predicting the timing of the autoignition event under widely 

varying conditions and different fuel compositions. Computationally-efficient autoignition models 

or empirical calibrations may not be sufficiently accurate. Calibrating for variations in fuel 

composition prior to combustion is particularly challenging, as high-fidelity fuel sensors are 

required to sufficiently characterize fuel chemistry. Considering these challenges, the use of 

cylinder-pressure based feedback in production may be unavoidable. 

Experimental Reference 

A single-cylinder SACI engine dataset is used to validate both the SI burn durations and 

AI phasing. The dataset is provided by Oakridge National Labs (ORNL) and was funded by the 

United States Department of Energy (DOE). The engine is a research-focused single cylinder 

engine based on the GM 2.0 L Ecotec engine. Table IV-1 lists key engine geometry and Figure 
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IV-5 depicts a sample pressure trace along with the valve lift profiles. The engine has a 

hydraulically actuated fully flexible valvetrain. It is configured in either exhaust rebreathe (where 

the intake valve opens again during the exhaust stroke) or a high negative valve overlap (NVO). 

Both strategies aim to increase the amount of in-cylinder hot residual. 

Table IV-1: Experimental SACI engine parameters for combustion model validation. 

 SACI Engine 

Bore x Stroke [mm] 86 x 86 

Compression Ratio 11.85:1 

Valvetrain Fully flexible (hydraulically actuated), configured for 
both exhaust rebreathe or negative valve overlap 

Valves Per Cylinder 4 

Fueling Direct Injection 

Equivalence Ratio 1.0 
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Figure IV-5: Sample pressure trace and valve lift from the experimental SACI engine data. 

 

A separate 1D engine model is developed to match the breathing characteristics of the 

experimental SACI engine dataset (Figure IV-6). The tuned model is only a simulation platform to 

tune the combustion submodels that are then transferred to the reference 1D SACI engine model. 

A total of 210 experimental runs are included in the dataset, with 181 runs being stable, firing runs 

suitable for a model validation. The experimental SACI engine model is configured to match the 

experimental setup, including the measured valve lifts for each case. The intake and exhaust 

manifold conditions are specified via end environments.  
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Figure IV-6: Experimental SACI 1D engine model for combustion submodel tuning. 

 

After minor tuning of the engine model, a good match on engine state is produced. Figure 

IV-7 depicts the comparison between airflow and fuel flow, suggesting the in-cylinder state is 

matched well. Figure IV-8 illustrates a comparison of pressure-volume diagrams for two cases. 

One case is the exhaust rebreathe case, the other is a high NVO case. The valve events, pumping 

loop, and much of the compression and expansion strokes match well. The only major discrepancy 

is during combustion, where GT-Power underpredicts pressure. However, in these cases, 

autoignition does not produce any heat release, so this behavior is expected.  
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Figure IV-7: Airflow and fuel flow comparison between GT-Power results and experimental data. 

Overall, the 1D engine model matches the experimental results well. 

 

  
Figure IV-8: Pressure volume diagram comparison. Exhaust rebreathe (left) and long NVO 
(right) phasing are both represented. The overall good match indicates valve events and in-

cylinder state match well. The deviation near the end of combustion is expected, as the GT-Power 
model does not model heat release from autoignition. 

 

The next step is to identify the SI burn duration and autoignition phasing. To accomplish 

this, the AI phasing must first be identified to separate the two combustion phases. The heat release 

rate curve is twice differentiated to compute the curvature. With careful windowing, the peak 
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positive curvature identifies the transition point between SI and AI. Figure IV-9 depicts the process 

for a sample run. The crank angle where the high-curvature region begins is defined as the 

autoignition phasing. 

 
Figure IV-9: Process for determining AI phasing from experimental results. The peak positive 

curvature of the heat release rate curve indicates the transition from SI to AI. 

 

From this point, the AI phasing model within GT-Power is validated. For the reference 

SACI 1D engine model, the built-in kinetics fit gasoline (KFG) ignition delay model is selected 

and tuned to the experimental SACI engine dataset. The relevant KFG model tuning coefficients 

are the octane number (set to 87 AKI), and the ignition delay multiplier (set to 1.05). This produced 

the best response, however, the KFG model has a greater spread than the experimental data (Figure 
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IV-10). To identify if a chemical kinetics model would perform better, a reduced mechanism is 

configured in GT-Power. The mechanism is a 165-species tuned for toluene primary reference fuel 

with ethanol [97]. This model had a similar performance to the KFG, suggesting the autoignition 

model structure is not the primary driver for this response.  A thorough analysis comparing the 

error to 21 other independent and dependent variables did not identify any trend in the error. As 

autoignition phasing is highly sensitive to several parameters, and the rest of the 1D engine model 

matches well, the KFG model is accepted despite the relatively poor performance. One 

compounding factor may be that GT-Power does not model the autoignition event. This results in 

a different temperature profile throughout the cycle than if autoignition is modeled. This is 

especially important during compression, where the previous cycles temperature through the 

expansion stroke impacts the following cycles compression stroke due to residual composition. 

Though not a perfect match to the experimental data, it is representative of a SACI engine, which 

is the primary objective of the reference SACI 1D engine model. 
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Figure IV-10: AI phasing comparison demonstrating a much greater sensitivity than 

experimental results. 

 

Finally, the SI burn duration can be validated. Two burn durations will be considered: spark 

to CA10, and MFB10‒90. The GT-Power combustion model used for this analysis is the 

EngCylCombSITurb predictive turbulent combustion model. This model has several tuning 

variables, but two key ones are the flame kernel growth multiplier (FKGM) and turbulent flame 

speed multiplier (TFSM). The FKGM impacts the spark to CA10, and the TFSM impacts both burn 

durations. 

As it represents the earliest stage of flame propagation, tuning the FKGM is performed 

first. The tuned model requires only a constant value to match the nearly 200 points well. 

Computing the experimental spark to CA10 duration is straightforward. The spark timing is 

measured, and an assumption is made that the overall CA10 point is sufficiently close enough to 
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the SI CA10 for the computation. The final tuning value for the FKGM is 5.0, and the comparison 

can be found in Figure IV-11.  

 
Figure IV-11: Comparison between GT-Power and experimental data of spark to CA10 duration. 

 

The MFB10‒90 duration, however, must be computed in a more indirect way. Because of 

the influence of autoignition, only cases with an SI portion above 10% are considered. For each of 

these points, the HRR from the 1D engine model and experimental results are truncated at the point 

of autoignition. The 1D engine model heat release rate is then shifted to eliminate error from the 

spark to 10% point from negatively impacting the calculation of the SI MFB10‒90. Finally, the 

error between these two curves is computed and integrated. The TFSM is varied until the mean 

error is near zero without a wide variance. A constant TFSM of 0.65 is sufficient to achieve this. 

The final reference combustion model is illustrated in Figure IV-12. Autoignition is 

modeled, but only the crank angle at autoignition onset is reported. No heat release from 
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autoignition is modeled for clarity. Overall, all phases of combustion match well: spark to 10%, SI 

MFB10‒90, and autoignition phasing. With the combustion model tuned, it is transferred to the 

reference SACI 1D engine model to be exercised over a wide range of conditions and used to tune 

the combustion submodels used in the simplified cylinder model. 

 
Figure IV-12: Comparison of experimental data and 1D engine simulation results. No 

autoignition heat release is modeled, the dotted vertical line indicates the crank angle of 
autoignition onset. 

 

Flame Propagation Physics-Based Submodel 

Rather than compute the physics-based model on a crank-angle basis, the model will be 

evaluated for the engine operating point. The model focuses on laminar flame speed (𝑆𝐿) as well as 

the previously described dimensionless numbers: Ka, Da, and ReT. Determining these values from 

non-crank-angle resolved inputs requires a series of submodels, as indicated in, as indicated in 

Figure IV-13.  



 

71  

 
Figure IV-13: Model structure and data flow for burn duration model. Values at the target crank 

angle are indicated with a “CAt” subscript. 

Submodel Description 

The turbulence model is a proportionality constant related to mean piston speed (16). Wang 

et al. are successful in their application of this relationship between mean piston speed (MPS) and 

turbulence intensity (𝑢′) [98]. This relationship is based on prior work [99], where the typical value 

of coefficient c1 range from 0.5 to 1.5. The results from the 1D engine model suggests 0.4 is 

appropriate, and this value of c1 is selected for this model, though it is just outside the typical range. 

 𝑢′ =  c1 ∙ MPS (16) 

The thermodynamic models are derived from the assumption of an ideal gas and a 

polytropic compression process. The pressure, temperature, and density at the target crank angle 

(e.g., TDC) are computed using the following equations. Equations (17) and (18) are derived from 

the polytropic relationship as the gasses are compressed from IVC to the target crank angle. The 

volume at a particular crank angle is computed using the volume submodel previously described. 

The ratio of specific heats (γ) is assumed to be 1.32. The ideal gas law is used to compute the 

density of the gas ρ, (19). The universal gas constant R is set equal to 287 J/kg·K. 
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𝑇𝐶𝐴𝑡 =  TIVC (

𝑉𝐼𝑉𝐶

𝑉𝐶𝐴𝑡
)

𝛾−1

 (17) 

 
𝑃𝐶𝐴𝑡 =  PIVC (

𝑉𝐼𝑉𝐶

𝑉𝐶𝐴𝑡
)

𝛾

 (18) 

 
𝜌𝐶𝐴𝑡 =

𝑃𝐶𝐴𝑡

𝑅 ∙ 𝑇𝐶𝐴𝑡
 (19) 

The integral length scale 𝑙𝐼  is another key input for the dimensionless parameters (20). It is 

assumed to be proportional to the instantaneous cylinder height (h)  [99]. Liu et al. recommend a 

value of c2 between 0.2‒0.4. This is consistent with an analysis performed by Lewis et al., where a 

detailed study of SI flame structure for high-dilution engines indicates c2 = 0.2 as a reasonable 

value [87]. For this study, a value of c2 = 0.2 is selected. 

 𝑙𝐼 =  c2 ∙ ℎ (20) 

Kinematic viscosity ν is necessary for the computation of the dimensionless parameters. It 

is calculated by dividing the dynamic viscosity (𝜇) by density (ρ). Assuming the dynamic viscosity 

is a function of temperature and equal to air [1], the kinematic viscosity can be computed as shown 

in (21).  

 
𝜈 =

𝜇𝑎𝑖𝑟(𝑇)

𝜌
=  

(3.3 ×  10−7) ∙ 𝑇0.7

𝜌
  (21) 

 The first critical flame model is the laminar burning velocity, 𝑆𝐿. Heywood describes a 

relationship between 𝑆𝐿 and temperature, pressure, and equivalence ratio (𝜙) [1]. For gasoline, the 

laminar flame speed (in cm/s) at 1 atm and 298 K with zero residual 𝑆𝐿,0 is computed in (22). This 
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can be extended for non-zero burned gas fractions (BGF) using (23). Finally, at elevated 

temperatures and pressures, the laminar burning velocity can be further extended using (24), where 

α and β are defined in (25) and (26). 

 𝑆𝐿,0  =  30.5 − 54.9(𝜙 − 1.21)2 (22) 

 𝑆𝐿,𝑅𝐺𝐹 =  𝑆𝐿,0(1 − 2.06 ∙ 𝐵𝐺𝐹0.77) (23) 

 
𝑆𝐿 =  𝑆𝐿,𝑅𝐺𝐹 (

T

298 K
)

𝛼

(
𝑝

1 atm
)

𝛽

 (24) 

 𝛼 = 2.18 − 0.8(𝜙 − 1) 

 

𝛽 = −0.16 + 0.22(𝜙 − 1) 

(25) 

 
(26) 

 Though these are widely accepted relationships, infeasible results from these equations 

emerge near SACI conditions. For example, 𝑆𝐿,0 is less than zero below a 𝜙 of ~0.46. While flame 

speeds are low under lean conditions, the second-order polynomial nature of the fit does not capture 

a gradual decrease to zero at these conditions.  A similar phenomenon occurs as BGF increases 

beyond 39%. While both conditions are challenging for flame propagation, either will produce a 

(slowly) propagating flame. For example, Gukelberger et al. demonstrated about 30% external EGR 

(stoichiometric) on a gasoline spark-ignited engine [100]. Some internal residual would also be 

present, indicating a total residual gas fraction of above 0.3 and likely close to 0.4. A high-energy 

continuous discharge ignition system is leveraged, however, the flame successfully propagated well 

after the influence of the ignition system is significant. These results are also performed within 

cycle-to-cycle variability limits. Consequently, though flame speeds will be relatively low at 
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BGF = 0.4, the second-order polynomial nature of the Heywood fit does not capture the gradual 

decrease to zero at these conditions. A slightly modified laminar flame speed model is introduced 

to address this behavior. The goal of these models is to closely match the Heywood models near 

stoichiometric, low-BGF conditions, but provide a continuous, positive output. The laminar flame 

speed function is an exponential function centered around the same point (𝜙 = 1.21), with the same 

amplitude (30.5 cm/s). A single tuning parameter is tuned to -2.14 to minimize the error at 𝜙 = 0.8 

(27). A similar process is followed for the 𝑆𝐿,𝑅𝐺𝐹. An exponential decay function from 1.0 to 0.0 is 

selected, and a single tuned parameter is found to be -4.93 to minimize error at BGF = 0.25 (28). 

 SL,mod =  30.5 ∙ exp (−2.14 ∙ [ϕ − 1.21]2) (27) 

 SL,RGF =  exp (−4.93 ∙ BGF) (28) 

 A comparison between the original functions defined by Heywood and the modified 

versions is illustrated in Figure IV-14. For the range around stoichiometric, the two functions 

produce similar values. However, at equivalence ratios lower than 0.8, the modified laminar flame 

speed function gradually approaches zero, while the original function approaches negative infinity.  

 These modifications are critical because the SACI engine will operate either at low-BGF 

around 𝜙 = 0.5, or stoichiometric with high BGF (0.3‒0.4). At 𝜙 = 0, for example, the actual 

laminar flame speed should be zero, as there is no fuel. The modified laminar flame speed function 

suggests 1.3 cm/s, while the original Heywood function reports ‑50 cm/s. Several laminar flame 

speed studies are investigated to justify this model; however, none could be found that considered 

equivalence ratios below 0.6. 
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Figure IV-14: Comparison between the Heywood functions for laminar flame speed and the 

modified versions. 

 

 The final submodel is the flame thickness model. According to Abdel-Gayed et al. [85] 

and Dai et al. [86], the flame thickness δL (determined by thermal diffusion) can be expressed as 

the ratio of kinematic viscosity and laminar flame speed, (29). 

 δL =  
𝜈

SL
 (29) 

Physics-Based Burn Duration Model Results 

Prior to computing the burn duration, the models are evaluated to determine if the predicted 

SI flame parameters were reasonable. Laminar flame speed, Da, and Ka are plotted as a function 

of the reference model MFB10‒90 burn durations (Figure IV-15). The in-cylinder parameters are 

computed at a single point during the cycle. After several trials, the best results are obtained by 

computing parameters for MFB10‒90 at the target CA50 location.  
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 Each parameter in Figure IV-15 demonstrates a trend with the reference burn duration, and 

substantial noise is present. This noise is deterministic and likely the result of the reduced fidelity 

of the model. Eliminating this noise will likely require a dramatic increase in computational 

expense as these calculations would be performed within each cycle as a function of crank angle. 

 
Figure IV-15: Laminar flame speed, Da, and Ka results as a function of reference model burn 

durations. 

 

Each of the previously described submodels contributes to the final determination of the 

burn rate. To determine the numerical value for a particular burn duration, the method used by 

Chen et al. is selected [82]. In their work, they consider the ratio of turbulent flame speed 

proportional to the ratio of burn durations for two cases. However, as the turbulence intensity is a 

single value for each case dependent on only engine speed, turbulence is largely constant for all 

cases. Instead, laminar flame speed forms the basis of this model. In-cylinder conditions and 

composition greatly affect the laminar flame speed. This relationship can be leveraged to produce 

a fitted equation based on laminar flame speed alone to predict burn durations.  The relationship is 
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presented in (30), where 𝑆𝐿 is the laminar flame speed in m/s evaluated at the target CA50. The 

relatively imprecise coefficients result from the poor model accuracy. 

 
𝜃𝐵𝐷(𝑆𝐿, N) = 10 (

1

𝑆𝐿
) + 10 (30) 

The overall results are presented in Figure IV-16. The data is divided into three sets of 

MFB10‒90 values for later investigations. The physics-based submodel showed poor sensitivity to 

spark timing relative to the reference 1D engine model. Additionally, the deterministic noise 

evident on each of the key parameters (Figure IV-15) has translated to significant noise for the burn 

duration model. 

  
Figure IV-16: Results comparing the physics-based burn duration models to the results from the 

reference model. 
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The model error is evaluated as a function of the input parameters. Figure IV-17 depicts a 

selection of parameters for the MFB10‒90 burn duration model. Several trends are apparent, 

including most notably the poor performance of the model as phi prime 𝜙′ decreases below 0.5. 

Low speeds and low loads (examine air mass in Figure IV-17) also illustrate greater noise and error, 

though some of this may be due to the low charge equivalence ratio 𝜙′. No significant trend with 

Ka or Da (not shown) is observed.  

 
Figure IV-17: Model error for MFB10‒90 physics-based model for select parameters. No trend is 

observed that could be corrected with inclusion of additional parameters in the model. 

 

As indicated in the earlier section, the flame structure suggested by the Leeds diagram may 

provide insight into flammability limits. The results of the physics-based models for MFB10‒90 

are plotted on the Leeds diagram and divided into three groups (Figure IV-18). The groups are 

isolated by burn duration: MFB10‒90 < 40 CAD, 40 CAD < MFB10‒90 < 50 CAD, and MFB10‒

90 > 50 CAD. These represent acceptable, borderline, and unacceptable burn durations, 



 

79  

respectively. The trend is clear, as burn durations lengthen, they approach or enter the flame quench 

area above the Ka = 1.5 line. Though there is significant noise in these results, the trend is 

encouraging considering the limited fidelity of the model. However, since a data-driven approach 

(discussed in the following section) produces a lower error, the physics-based burn duration model 

is not selected. However, the key result from this investigation is that burn duration is a suitable 

analogue for flame structure. This enables a data-driven model to imply that a condition will 

produce poor flame propagation. 

 
Figure IV-18: Leeds diagram with physics-based model results plotted and grouped by reference 

model burn duration. 
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Flame Propagation Neural Network Submodel 

Based on the success of the artificial neural network for autoignition (Appendix A) and in-

cylinder state models (Chapter III), it is considered for the models for flame propagation. An 

appropriate model must estimate both the spark timing and the overall burn duration. The spark to 

50% burn point is critical as the overall combustion phasing target (CA50) to the control input 

(spark timing). The overall burn duration (MFB10‒90) determines how fast heat is released and 

how quickly the charge mass is consumed. Both are critical for autoignition performance.  

Burn Duration Submodel Structure 

To begin the ANN tuning, the independent variables are identified. The 1D engine model 

results include a wealth of results, some of which are unlikely to be feasible for a control-oriented 

model. A subset of parameters is down selected from all available parameters. Each parameter in 

the subset is first evaluated independently to identify the strength of each parameter in explaining 

the observation. A network of 15 neurons in a single hidden layer is used for this preliminary study. 

The parameters are then ranked in order from highest strength to lowest strength. Redundant 

parameters are removed (e.g., total mass, if burned mass and air mass are ranked higher).  For the 

next step, the network inputs are expanded to include the next ranked parameter cumulatively. In 

other words, the highest ranked parameter if first evaluated alone, then the highest two ranked 

parameters, then the highest three ranked parameters, etc. At each step, the model results improved 

as the network is provided with more input data. Figure IV-19 depicts the progression of reducing 

root mean square error (RMSE) as more input parameters are included. Based on the results, once 

the input parameters include external EGR, burned mass, target CA50, air mass, equivalence ratio 

𝜙, engine speed, and intake manifold pressure, no further error benefit is observed. These inputs, 

therefore, are the inputs used for the model formulation.  
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Figure IV-19: The progression of root mean square error (RMSE) as more parameters are 

included. 

 

With the model inputs selected, the next step is to identify the network structure. A sweep 

of hidden neurons and hidden layers is performed. The results are plotted against both the total 

number of tuning parameters and total number of neurons. The number of tunable parameters in a 

network is computed using (31), where mh the total number of hidden layers, and ni are the number 

of neurons in layer i. Layer 1 is the input layer, and last layer is the output layer. 

 
𝑇𝑢𝑛𝑎𝑏𝑙𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =  ∑ 𝑛𝑖𝑛𝑖+1 + 𝑛𝑖+1 

𝑚ℎ+1

𝑖=1

 (31) 

Figure IV-20 illustrates the results. As model complexity increases, model error decreases. 

However, the performance of the multilayer networks is significantly better than a single hidden 

layer network for the same number of tunable parameters or neurons. There is no significant 

improvement for three hidden layers versus two. Based on these results, a two-layer network with 
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about 300 tunable parameters and 25 total neurons is selected. There are several network 

architectures that can achieve this. To evaluate the effect of the network architecture, the results 

that satisfied the specified network size are plotted against the network reduction factor. This factor 

is computed by dividing the number of second hidden layer by the number of first hidden layer 

neurons. A value less than one indicates the second layer is smaller than the first. Figure IV-21 

illustrates the findings, which suggest that the optimal performance occurs when the second layer 

is slightly smaller than the first, though the sensitivity is weak. 

 This is one of the several methods used to prevent overfitting and maximize 

generalizability.  A more complex model (i.e., a model with a high number of parameters) can more 

easily fit noise, both stochastic and deterministic. Stochastic noise is random noise outside of the 

domain of the target function (e.g., electrical interference on a measurement). Deterministic noise 

is the result of reducing highly complex models to simpler ones. Both types of noise are 

characterized by high frequencies relative to the underlying behavior. By constraining the model 

complexity, the ability to fit to noise is also limited. The smallest model size that is 

indistinguishable from a higher-order model is selected (including the impact of noise). The noise 

present in the error response occurs because the starting point for the weights is selected at random. 

Early stopping is also implemented, which reduces the potential for the training from overfitting 

the noise. Generalizability is achieved by the same regularization techniques and is evaluated using 

a hold-out of 15% of data, called the test data. This test data is not part of the training process in 

any way and therefore illustrates model behavior outside of the training set.  
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Figure IV-20: RMSE results of a sweep of network size. 

 

The final structure of the network is pictured in Figure IV-22. It consists of the seven 

previously described inputs, and 27 total hidden neurons in two hidden layers. The first layer has 

15 hidden neurons, the second has 12, and these produce a total of 340 tunable parameters. The 

training process took 50 epochs to identify optimal performance as indicated in Figure IV-22. 

 
Figure IV-21: RMSE results of a sweep of network structure. 
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Figure IV-22: Neural network architecture for all SI burn duration networks. 

 

 
Figure IV-23: Training performance of the spark to CA50 duration neural network. 

 

Burn Duration Submodel Performance 

Three burn durations are evaluated: Spark to CA10, Spark to CA50, and MFB10‒90. The 

Spark to CA10 duration encompasses the flame kernel development period and is therefore critical 

for determining spark timing. Figure IV-24 depicts the comparison between the ANN and the 

reference 1D engine model. Most results are less than about 50 CAD, which is consistent with 
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feasible burn rates for SI combustion. Within this range, there is good agreement between the 

candidate model (ANN) and the reference model. The overwhelming majority of points are within 

5 CAD of the reference model, and the overall RMSE (for all points) is 2.4 CAD. Above a duration 

of 50 CAD, the spread is larger. However, these points represent sufficiently long durations that 

will likely be excluded based on one or more combustion constraints. The data is broken down into 

three groups: training dataset, validation dataset, and test dataset. The training dataset is the dataset 

the optimization algorithm uses to compute the objective function, the validation dataset is used by 

the training algorithm to determine when to stop training, and the test dataset is not used at all 

during the training process. The test dataset represents the best evaluation of the ANN performance. 

The result indicates that there is no significant difference between the three datasets, especially 

below 50 CAD. This suggests the model has not been overfit and the results can be accepted with 

high confidence. 

 
Figure IV-24: Spark to CA10 duration ANN submodel evaluation. 
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The Spark to CA50 duration is a key metric as it identifies the duration between the control 

input (spark timing) and the target output (CA50) directly. Figure IV-25 depicts the comparison 

between the ANN and the reference 1D engine model. Most results are less than about 60 CAD, 

which is consistent with feasible burn rates for SI combustion. Within this range, there is good 

agreement between the candidate model (ANN) and the reference model. The overwhelming 

majority of points are within 5 CAD of the reference model, and the overall RMSE (for all points) 

is 2.4 CAD. Above a duration of 60 CAD, the spread is larger. However, these points represent 

sufficiently long durations that will likely be excluded based on one or more constraints. The result 

also indicates that there is no significant difference between the three datasets, especially below 60 

CAD. This suggests the model has not been overfit and the results can be accepted with high 

confidence. 

 
Figure IV-25: Spark to CA50 duration ANN submodel evaluation. 
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The MFB10‒90 duration is the bulk burn duration for SI and is important to accurately 

predict as it can be used as an analogue for potential misfires. A MFB10‒90 of 45 CAD is selected 

as the threshold for unacceptable cycle-to-cycle-variation (CCV). While this value is above the 

typical limit for SI combustion, SACI combustion can tolerate longer SI burn durations than only 

SI [35] and a higher limit is more challenging for the model. Figure IV-26 depicts the comparison 

between the ANN and the reference 1D engine model. Most results are less than about 50 CAD, 

which is again consistent with feasible burn rates for SI combustion. Within this range, most points 

are within 5 CAD of the reference model, and the overall RMSE (for all points) is 3.0 CAD. Below 

45 CAD, the RMSE is 1.4 CAD. Above a duration of 45 CAD, the spread is larger. However, these 

points represent long durations that will be excluded based on the CCV constraint.  The result also 

indicates that there is no significant difference between the three datasets, especially below 50 

CAD. This suggests the model has not been overfit. 

 
Figure IV-26: MFB10‒90 duration ANN submodel evaluation. 
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The results above 45 CAD are potentially problem as significant burn duration errors can 

be compounded throughout the simplified cylinder model and yield poor overall results. However, 

at these long burn durations, the cylinder model will consider the burn duration to be infeasible and 

reject these conditions. At this point, the model must only accurately predict that the burn duration 

is above the threshold. Below the 45 CAD threshold, the network is a regression network and must 

accurately predict MFB10‒90. Above this threshold, the ANN must only correctly indicate the burn 

duration is above the threshold, and is essentially a classification network. Figure IV-27 depicts 

this dual-mode operation. Note that there are only two points in the “false negative” region. While 

these points may have been misclassified, the effect is minor. A negative classification for MFB10‒

90 above the threshold means that the regression result is used. These two points are still relatively 

close to the reference model, with errors of 8 and 13 CAD (20% and 22%, respectively). Though 

not ideal, this is reasonable, as the RMSE of the regression region is 1.4 CAD and the classification 

error for the higher burn duration points is 99.5%. 

 
Figure IV-27: MFB10‒90 ANN serving as both a regression and classification network. 
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Autoignition Submodel 

A data-driven submodel is selected for autoignition based on the success of the ANN for 

SI burn duration and an independent investigation presented in Appendix A. The timing of 

autoignition plays a major role in both combustion phasing and combustion constraints. Prior to 

tuning the model, a clear understanding an acceptable accuracy is defined. Three approaches are 

combined to determine a reasonable model accuracy: the variability in CA50 for acceptable SACI 

combustion, the sensitivity of ringing in HCCI to autoignition phasing, and example results for a 

production SACI engine autoignition model. 

First, the SACI combustion data is analyzed to identify the standard deviation for overall 

CA50 under stable SACI combustion. For the 210 runs, the median standard deviation of SACI 

CA50 is 2.52 CAD. To help illustrate this, a run with a similar standard deviation of CA50 is 

examined (Figure IV-28). This run is 4.1 bar nIMEP at 2500 RPM and stoichiometric. The standard 

deviation of CA50 is also 2.52 CAD and the COV of nIMEP is 2.1%. This illustrates that a point 

well within a typical COV of IMEP limit of 3% can still have over 2 CAD of CA50 variation. 

 
Figure IV-28: CA50 variation of 2.5 CAD for a SACI operating point with a COV of IMEP of 

2.1%. 
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Additionally, the sensitivity of ringing intensity for HCCI is evaluated. In pivotal research 

by Eng, the response to CA50 for HCCI combustion is quantified [4]. Eng demonstrates that the 

increase of ringing intensity (RI) is gradual with combustion phasing and displays no inflection 

point as SI knock does with respect to combustion phasing. From the data, the inference is made 

that to reduce RI from the limit to 50% of the limit requires 4 CAD later combustion phasing. The 

response is depicted in Figure IV-29. As there is no production HCCI engine, no practical RI margin 

is established. However, from this result, it can be reasonably inferred that if autoignition accuracy 

is on the order of ~1 CAD, the RI limit can be avoided or quickly mitigated. 

 
Figure IV-29: Ringing intensity response to combustion phasing for HCCI. 

 

Finally, an example of a SACI autoignition model response is evaluated. Work by Nakai 

et al. briefly describe their model-based approach to production autoignition control [60]. Their 

work presents a redacted plot which suggests the typical model error is 1‒3 CAD. 

Synthesizing these results is particularly straightforward as each individually suggests 

about a 2 CAD error is tolerable. Therefore, for the autoignition submodel in this work considers a 
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2 CAD error as suitable evaluation criteria. As previously described, the high sensitivity of 

autoignition to external factors such as fuel composition will likely demand combustion feedback 

sensors. If these sensors are in place, the requirements on the autoignition model can be relaxed as 

the model results are not the sole identifier of AI phasing. 

To tune the network structure, the same method describe for the flame propagation model 

is used. The same eight inputs are found to have the most sensitivity, and a sweep of network size 

and number of hidden layers suggests the error approaches the minimum around 35 hidden neurons 

for two or three hidden layers (Figure IV-30). Consequently, a two hidden layer network with 20 

hidden neurons in the first layer and 16 in the second is selected. This network, depicted in Figure 

IV-31, has 36 neurons arranged in two layers. 

 
Figure IV-30: RMSE of neural network as a function of network size and structure for the 

autoignition submodel. 
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Figure IV-31: Autoignition regression model neural network structure. 

 

Because of the high sensitivity of autoignition, an investigation is performed to identify if 

additional regularization techniques would benefit the accuracy. Bayesian regularization (BR) is 

compared to the non-regularized Levenberg-Marquardt (LM) method. Figure IV-32 depicts 11 

randomly selected spark sweeps from the reference 1D engine model. Both performed similarly, 

with only slight deviation at very late spark timings, where CA50 is unlikely to be feasible for 

SACI. Both methods matched the reference data well, with no significant overfitting. Extrapolation 

to later spark timing is improved with Bayesian regularization.  
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Figure IV-32: Comparison of Levenberg-Marquardt and Bayesian Regularization training 

methods for a two-layer network. 
 

Some conditions indicate noise for the reference data. As these results are derived from 

simulation, no stochastic noise is present. However, there are other potential explanations for these 

results. First, the engine modeled is a full-engine simulation, including appropriate engine 

controllers. These may resolve to a different value for similar input conditions. The sensitive nature 

of autoignition may demonstrate an otherwise unexplained variation from these small differences 

in, say, intake manifold pressure. Additionally, deterministic noise is likely present. For example, 
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consider a case where autoignition phasing is inexplicably earlier than its neighboring points. An 

investigation into these points indicates that late combustion from the previous cycle resulted in the 

highest temperature at cycle start for a middle point in the spark sweep. This occurs because earlier 

spark timings burn completely and release a considerable amount of heat. But this heat is turned 

into useful work when spark timing is early, lowering the in-cylinder temperature at the end of the 

cycle. As spark timing retards, combustion occurs later in the cycle, resulting in less expansion 

work and higher in-cylinder temperatures for the following cycle. Eventually, however, there is so 

little heat released at late spark timings (because of low combustion efficiency) that the temperature 

at cycle start for the following cycle decreases again. Figure IV-33 depicts this condition. Note that 

the earliest spark timing has the second-lowest compression temperature, and the highest 

temperature during compression is when spark is -5° aTDC. 

  
Figure IV-33: Example point with non-monotonic autoignition. The late burn from the previous 

cycle drives compression temperatures higher, resulting in a slightly elevated induction time 
integral value during compression.  

 

This regression model is only tuned on points where autoignition occurred. To account for 

non-autoignition cases, a separate classification network is also developed.  This network will only 

determine if autoignition occurs. If the model predicts autoignition, the regression network will 
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provide the expected autoignition phasing. This network uses the scaled conjugate gradient training 

method and evaluates the optimization performance based on the cross-entropy. A network 

structure sweep is also performed (Figure IV-34). Based on these results, a single layer of 20 hidden 

neurons is sufficient to accurately predict autoignition with about 1% error (Figure IV-35). 

 
Figure IV-34: Parameter sweep for autoignition classification neural network. 
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Figure IV-35: Autoignition classification submodel structure. 

 

Autoignition Submodel Performance 

The regression and classification networks are evaluated separately. The regression model 

is evaluated using the root mean square error (RMSE) metric. The data is broken down into three 

groups: training dataset, validation dataset, and test dataset. The training dataset is what the 

optimization algorithm uses to compute the objective function, the validation dataset is used by the 

training algorithm to determine when to stop, and the test dataset is not used at all during the 

training process. The test dataset represents the best evaluation of the performance of the ANN. 

Most points occurred before 20° aTDC, which is consistent with a significant AI event. 

Late autoignition is more likely to occur after a significant portion of the fuel is burned by the 

flame. In these cases, variation in AI phasing will not produce a significant change in SI portion, 

as much of the fuel is already consumed by the flame. If autoignition occurred prior to TDC, the 

error is within 2 CAD. There is a single outlier in the test dataset that has a reference AI phasing of 

about 0° aTDC, but the ANN predicts about a 25° aTDC phasing. However, this point represents a 
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significant misfire, and would therefore be outside of the reasonable range of operation for the 

engine. 

 
Figure IV-36: Autoignition phasing ANN submodel evaluation. 

 

A selection of responses from the regression ANN is presented in Figure IV-37 to Figure 

IV-40. In each of these figures, the x and y axes represent the pressure and temperature at TDC 

without combustion, respectively. The models for pressure and temperature at cycle start are used, 

and their results are translated to TDC by assuming a polytropic process. All other ANN inputs are 

held constant. Four sample conditions are considered: the cams phased at 10 CAD and 50 CAD 

from parked position each for two equivalence ratios: 0.5 and 1.0. An appropriate burned gas 

fraction is selected for each equivalence ratio and held constant. These plots illustrate a few key 

points. First, the response is generally smooth, which indicates that the regularization techniques 

used in the training process are working. The training data for all points is contained in a region 
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bounded by 15‒50 bar PTDC and 850-1200 K TTDC. The pressure and temperature limits in the plots 

exceed these values sufficiently to demonstrate that extrapolation performance is encouraging. 

Additionally, the effect of NTC region is evident in each of the plots, though some are much more 

pronounced. Thus, despite the ANN being a data-driven model, it can capture physical behavior 

and extrapolate to beyond the training data region. It is important to note that these plots are not 

ignition delay response plots. The pressure and temperatures are dynamic (not constant like ignition 

delay response plots), and the autoignition phasing is different that ignition delay. Ignition delay is 

an instantaneous metric, with no impact from a flame. Autoignition phasing in these figures is a 

result of the cumulative impact of pressure, temperature, and to some degree the flame. Spark 

timing at TDC is selected to minimize this impact.  

 
Figure IV-37: ANN response for a sweep of temperature and pressure at cycle start for fuel-lean 

SACI with ICL at 10 CAD from parked position. The conditions at cycle start are adapted to 
conditions at TDC by assuming polytropic compression. 
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Figure IV-38: ANN response for a sweep of temperature and pressure at cycle start for 

stoichiometric SACI with ICL at 10 CAD from parked position. The conditions at cycle start are 
adapted to conditions at TDC by assuming polytropic compression. 

 
Figure IV-39: ANN response for a sweep of temperature and pressure at cycle start for fuel-lean 

SACI with ICL at 50 CAD from parked position. The conditions at cycle start are adapted to 
conditions at TDC by assuming polytropic compression. 
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Figure IV-40: ANN response for a sweep of temperature and pressure at cycle start for 

stoichiometric SACI with ICL at 50 CAD from parked position. The conditions at cycle start are 
adapted to conditions at TDC by assuming polytropic compression. 

 

The classification network is evaluated by comparing the target result to the network 

output. A “confusion matrix” identifies the errors by type and dataset (Figure IV-41). Ideally, the 

error is small and distributed relatively evenly across all datasets and the two types of error. In the 

case of this network, the error is about 1% and is consistent from one dataset to the next. The “false 

positive” type of error is slightly higher than “false negative,” however, this is acceptable. If a false 

positive occurs, the simulation will query the regression model for the AI phasing. As the regression 

model is well-tuned, it should predict a late AI phasing. As late autoignition has little influence on 

overall combustion metrics, the impact of a false positive is minimal. Considering this, the 

classification network has about a 1% error, which is sufficiently high enough to proceed. 
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Figure IV-41: Confusion matrices for autoignition classification ANN for each data subset as 

well as the overall confusion matrix. 

 

Autoignition Burn Duration Submodel 

The single-zone model is augmented with a burn duration correlation. Three correlations 

are compared. Two are tuned for HCCI combustion and one for both HCCI and SACI. 

Babajimopoulos et al. [101] developed their correlation based on HCCI simulation results, while 

Zhou et al. [102] considers HCCI engine data. Both are a function of 𝜙′ and autoignition timing, 

among other variables. Ortiz-Soto developed an HCCI and SACI autoignition burn duration model 

[58]. 
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The two HCCI correlations produce similar burn durations for autoignition near top-dead 

center (TDC). However, as AI phasing is retarded, the burn duration increases significantly for the 

Babajimopoulos et al. model. This likely represents a cycle-cycle variation (CCV) limit for HCCI. 

Unlike HCCI, SACI can sustain later AI timings because the flame continues to release heat after 

TDC. Experimental results by Manofsky et al. [35], Nakai et al. [60], and Triantopoulos et al. [103] 

all demonstrated the CA50 up to ~15° aTDC within CCV limits. To achieve the wider range of 

operation for SACI combustion, Ortiz-Soto adds several additional parameters, including the 

temperature at pressure at autoignition and the fraction of charge remaining at autoignition. 

However, as intra-cycle pressure and temperature data is not available for this model, the Zhou et 

al. model is selected. This model is compared to the SACI burn duration extracted from the ORNL 

engine data (Figure IV-42). For test points with a COV of IMEP at or below 3% and a phasing 

between 0 and 15° aTDC, the trend matches with an RMSE of 2.7 CAD. Lean operation is not 

evaluated as the engine dataset consists of exclusively stoichiometric. However, the selected model 

is tuned for lean HCCI operation. Acceptable performance for lean SACI operation is assumed. 

 
Figure IV-42: Autoignition burn duration comparison between ORNL engine data and the AI 

burn duration model. 
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Nitrogen Oxide Emissions Submodel 

Oxides of nitrogen (NOx) are one of several regulated combustion products. Stoichiometric 

or rich operation enables a three-way catalyst that passively perform a reduction reaction to convert 

NOx to form N2 and H2O. Lean operation, however, cannot take advantage of a three-way catalyst 

an either requires engine-out NOx emissions to be below the regulatory threshold, or use lean 

aftertreatment. Lean-aftertreatment requires a separate chemical to perform the reduction in a high-

oxygen environment and adds cost to the aftertreatment system. The reduction chemical can be fuel 

or a separate chemical such as diesel exhaust fluid, a urea solution. Using fuel as the reductant 

harms fuel efficiency, and the separate chemical imposes a cost and convenience challenge upon 

the customer. 

A data-driven NOx model is selected that enables a prediction of NOx emissions based 

solely on air-fuel ratio and total residual for SI combustion.  The data is generated using the 

EngCylCombSITurb model along with a EngCylNOx submodel. The default options are selected 

for all NOx model parameters. Both internal and external EGR is varied, though, the model 

performs well based on the total burned gas fraction. The input range is plotted in Figure IV-43 

illustrating the spread of points well beyond the anticipated range of the model when in use. 



 

104  

 
Figure IV-43: Input range for NOx model. 

 

The model is constructed as a two-layer neural network (Figure IV-44). A two-layer 

network has sufficient complexity to match the nonlinear NOx output over a wide range of points. 

Only 5 (five) and 2 (two) neurons are selected for the first and second hidden layer, respectively. 

A larger number of hidden neurons increases overfitting as indicated by the application of the model 

over an even wider range of inputs than the model training input range. 

 
Figure IV-44: NOx model neural network structure. Total residual and equivalence ratio are the 

only two inputs. 
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The result of the model is illustrated in Figure IV-45. Nearly all points are within 200 ppm. 

While there is some spread, this is likely a result of the combination of internal and external EGR 

into total burned gas fraction. Since this model is only used for an approximate guideline for 

emissions constraints, this deterministic noise is acceptable. The model is exercised over a wide 

range of input conditions to evaluate performance outside of the training range (Figure IV-46). 

Peak NOx occurs near 𝜙 = 0.9 and zero residual, and there is no sign of overfitting. Preliminary 

models that are overfit are observed to have additional peaks in regions that should have near-zero 

NOx, e.g. 𝜙 = 2. The model also indicates that around stoichiometric fueling, about 20% burned 

gas significantly reduces NOx emissions. 

 
Figure IV-45: NOx model comparison to the reference model. 
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Figure IV-46: NOx model as a function of equivalence ratio and burned mass portion for zero 

external EGR. 

 

The NOx submodel is coupled with the SI burn duration model and the fuel stratification 

model to identify the overall NOx produced. As the flame progresses into a particular zone 

(determined by burn duration), the equivalence ratio will be fixed for that zone. This equivalence 

ratio value along with the global BGF value produce the NOx concentration for that zone. Since all 

zones are equal volume, the average NOx concentration for all zones burned by the flame represents 

the global concentration of NOx. For simplicity, the NOx produced by an autoignition zone is 

assumed to be zero. While the actual NOx value will be non-zero, for autoignition to occur within 

practical constraints, the in-cylinder conditions are assumed to produce sufficiently low NOx. In 

order words, the NOx produced by the flame dominates NOx production. Therefore, the overall NOx 

concentration of the cylinder can be described with the following expression (32). For the i-th zone 

from zone 1 to the highest zone with SI combustion, zone k, compute the sum of the NOx 

concentration and divide by the total number of zones n. 
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𝑁𝑂𝑥  [𝑝𝑝𝑚] =

1

n
∑ 𝑁𝑂𝑥(𝑖)

𝑘

𝑖=1

 (32) 

Net IMEP Submodel 

The submodel for net IMEP is an artificial neural network. It is validated against the results 

from the reference 1D engine model and is of the form depicted in Figure III-3. The neural network 

inputs are selected based on the independent variables that have a strong influence on in-cylinder 

pressure. The network structure is chosen based on an investigation of the tradeoff between 

overfitting and accuracy. A single layer of 15 hidden neurons is trained to 70% of the data points 

using the Levenberg-Marquardt backpropagation algorithm. The remaining 30% of the data is split 

evenly between the validation and test datasets. The resulting ANN demonstrated good accuracy, 

with a root mean square error (RMSE) of 0.1 bar. Figure III-4 illustrates the comparison between 

the reference and ANN models for each data subset: training data, validation data, and test data.  

 
Figure IV-47: Neural network structure used for net IMEP. 
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Figure IV-48: Comparison between the GT-Power engine model (Reference Model) and the 

artificial neural network (ANN) for the net IMEP submodel. 

 

ISFC Submodel 

The submodel for ISFC is an artificial neural network. It is validated against the results 

from the reference 1D engine model and is of the form depicted in Figure III-3. The neural network 

inputs are selected based on the independent variables that have a strong influence on in-cylinder 

pressure. The network structure is chosen based on an investigation of the tradeoff between 

overfitting and accuracy. A single layer of 15 hidden neurons is trained to 70% of the data points 

using the Levenberg-Marquardt backpropagation algorithm. The remaining 30% of the data is split 

evenly between the validation and test datasets. The resulting ANN demonstrated good accuracy, 

with a root mean square error (RMSE) of 3.4 g/kWh. Figure III-4 illustrates the comparison 

between the reference and ANN models for each data subset: training data, validation data, and test 

data.  
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Figure IV-49: Neural network structure used for indicates specific fuel consumption (ISFC). 

 

 
Figure IV-50: Comparison between the GT-Power engine model (Reference Model) and the 

artificial neural network (ANN) for the ISFC submodel. 
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Summary and Conclusions 

A 1D engine model is validated to data from a stoichiometric SACI engine. This 1D 

reference model is exercised over a wide range of simulated actuator positions and ambient 

conditions. These results are used to develop combustion submodels. Both physics-based and data-

driven modeling techniques are considered. Data-driven models in the form of an artificial neural 

network (ANN) are selected for all models. The accuracy of the ANNs are superior to physics-

based models. Careful neural network modeling techniques are used to prevent overfitting, 

including early-stopping and Bayesian regularization. 
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V. CANDIDATE CYLINDER MODEL 

 

The suite of submodels is combined to produce a single model of the cylinder, with a focus 

on combustion response. The candidate cylinder model is structured to take control inputs, sensor 

measurements, and engine geometry and produce predicted values for the in-cylinder state. The 

combustion submodels use this data to anticipate SI and AI performance and constraints. Figure 

V-1 depicts the flow of data from the inputs through the submodels and to the final outputs for the 

in-cylinder state. The experimental dataset and source for each submodel is indicated to the left of 

each submodel. The output of the in-cylinder state submodels is input to the combustion submodels 

(Figure V-2). As with the in-cylinder state submodels, the experimental dataset and source for each 

submodel is indicated to the left of each submodel. 
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Figure V-1: In-cylinder state submodel data flow. The rectangular boxes represent submodels 
and computations, the rounded boxes represent the basis for the models, and the black-filled 

parallelograms indicate the experimental source for submodel validation. 
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Figure V-2: Combustion submodel data flow. The rectangular boxes represent submodels and 

computations, the rounded boxes represent the basis for the models, and the black-filled 
parallelograms indicate the experimental source for submodel validation. 

 

Candidate Cylinder Model Compared to Reference 1D Engine Model 

Evaluating the candidate cylinder model begins by inputting the same actuator positions as 

the reference 1D engine model. The reference 1D engine model is simulated in GT-Power using an 

Intel Xeon E5-1630 v3 (3.50 GHz) processor and takes about 183 seconds (3 minutes, 3 seconds) 

per case. Solving all 6000 cases requires 12 days and 17 hours with no parallelization. The 

candidate cylinder model, however, simulates the same 6000 cases in 1.4 hours on the same 
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machine without parallelization. This equates to 0.82 seconds per case, which is a 2230% 

improvement over the reference 1D engine model.  

Rapid model execution is not helpful if the model accuracy degrades significantly. For the 

purposes of evaluating the relative accuracy of this model, the R-squared value of autoignition 

phasing of the simplified model versus that predicted by the reference 1D engine model is 

examined. The R-squared value, known as the Coefficient of Determination, quantifies the degree 

that a dependent variable is explained by a set of independent variables. Autoignition and SI burn 

durations are selected for evaluation as these are critical component of SACI combustion and can 

be difficult to model accurately. The model is evaluated over feasible conditions, to illustrate the 

practical usefulness of the model. A subset of 689 points that represents nIMEP above zero with 

combustion phasing between MBT and about 25 °aTDC is selected. The R-squared value for each 

combustion metric is noted in Figure V-3. Despite a 99.6% reduction in computational time, the 

accuracy only reduced by 4‒25%. A thorough discussion on the model accuracy is presented the 

following sections. 

 
Figure V-3: Comparison between the reference 1D engine model and the fast-running cylinder 

model. 
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Submodel Evaluation 

Accurate in-cylinder state submodels are the first step in an accurate cylinder model. There 

is potential error stack up as several submodels use the output of other submodels as inputs. 

Therefore, the results presented in Chapter III represent the upper limit of model accuracy. The 

submodels matched the reference model with the RMSE indicated for each submodel (Figure V-4). 

 
Figure V-4: Comparison of in-cylinder state between the fast-running cylinder model and the 

reference 1D engine model (GT-Power). 

 

The combustion submodels are the key component of this model. The difficulty in 

modeling each mode of combustion is further compounded by the error in the in-cylinder state used 

as the input. Figure V-5 depicts the comparison between the simplified cylinder model and the 

reference 1D engine model. Despite the potential error stack up present, the RMSE for each is 

acceptable. Additionally, the error increases as combustion phasing becomes later or combustion 
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duration lengthens. These conditions represent the limit or outside of the limit of feasible 

combustion. Error for these points is less significant.  

 
Figure V-5: Comparison of combustion metrics between the fast-running cylinder model and the 

reference 1D engine model (GT-Power). 

 

Combining the SI and AI models yields the metric for SI portion. This computation adds 

one more layer of error stack up, resulting in degraded accuracy. However, the simplified model 

predicts SI portion with an RMSE of 9.4 percentage points. Below an SI portion of 40%, the RMSE 

improves to 6.6 percentage points. Figure V-6 depicts the comparison between the simplified model 

and GT-Power results. 
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Figure V-6: Comparison of SI portion between the fast-running cylinder model and the reference 

1D engine model (GT-Power). 

 

Finally, IMEP and ISFC are critical to evaluating a point. Both models will struggle to 

produce accurate results at low SI portions, as the autoignition component of combustion is not 

modeled in GT-Power. Overall, though, the simplified model captures the trend of both IMEP and 

ISFC. The RMSE for IMEP is 0.8 bar, and the RMSE is 60.3 g/kWh for ISFC (Figure V-7). 

 
Figure V-7: Comparison of nIMEP and ISFC between the fast-running cylinder model and the 

reference 1D engine model (GT-Power). 
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Calibration Exploration 

A sweep of a wide range of inputs identifies potential calibration solutions and control 

strategies. As seen in the previous section, the candidate model matches the trends of the 1D engine 

simulation and can produce absolute values with acceptable accuracy.  

A set of actuator positions that demonstrate a range of SI portion is selected to illustrate 

the deeper understanding of the control and calibration techniques that can be achieved. Figure V-8 

depicts the combustion response for a sweep of spark timing at a particular location. Noted on the 

subplots are three constraints: 1) constraint A is the minimum burn duration for autoignition (used 

as an analogue for ringing intensity or knock), 2) constraint B is the maximum burn duration for 

flame propagation (used as an analogue for cycle-to-cycle variation), and 3) constraint C is where 

the overall CA50 timing is near MBT. Clearly, an MBT point is not feasible at this condition 

without violating constraint B. 

 
Figure V-8: Key combustion parameters for a sweep of spark timing. 

 

Because of the wealth of data, several control strategies can be evaluated. The first strategy 

to consider is reducing the burned gas fraction within the cylinder to strengthen flame propagation. 
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The cams are phased to reduce negative valve overlap, by setting both intake and exhaust to 

50 crank degrees from parked position. Figure V-9 depicts this response, and indeed, flame 

propagation is strengthened, and the limit of SI combustion is retarded by 5 CAD, enough to operate 

at MBT timing. However, the margin for this operation is effectively zero.  

 
Figure V-9: Combustion response for reducing negative valve overlap. 

 

Instead of an adjustment to the cam positions, fuel stratification is introduced (Figure 

V-10). Of the total quantity of fuel, 75% is injected during the first injection, which mixes roughly 

homogeneously. The remaining 25% is injected 30° before TDC to produce a relatively rich zone 

near the spark plug. This significantly improves the SI burn duration and pushes the burn duration 

limit (constraint C) later by 20 CAD. The autoignition constraint also occurs closer to TDC, despite 

the end-gas region having a reduced equivalence ratio. However, there are regions towards the 

middle of the cylinder that the flame had not yet consumed but has a relatively rich composition. 

This results in earlier autoignition phasing overall. Note that, as SOI for the second injection is held 

constant, spark timings before this second injection are ignored. 
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Figure V-10: Combustion response to increased charge stratification. Spark timing prior to 

‑30° aTDC not shown as they are prior to the second injection. 

 

The split fraction is swept from 0.75 to 1.0 to illustrate the calibration sensitivity of this 

parameter. The only factor that is changed is that the second injection timing is phased to be 

10 CAD prior to spark. Figure V-11 depicts the results of this sweep. A split ratio of less than 0.95 

is required to achieve stable SI combustion, and a split ratio of less than 0.9 has a significant margin 

to both constraints A and B, each about 10 CAD of spark timing. 

 
Figure V-11: Combustion constraints as a function of split ratio. Increasing charge stratification 

improves the margin to both AI and SI constraints. 
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A similar investigation is performed for the stoichiometric condition. The base case 

demonstrates a margin for MBT between to each of the AI and SI burn rate limits (Figure V-12). 

Increasing the external EGR from 10% to 20%, increases the total burned gas portion from 32% to 

44% (Figure V-13). Over 40% total burned fraction is towards the upper limit of SI flame 

propagation. The high dilution does slow SI burn rates, especially for spark timing between -20° 

and ‑40° aTDC. SI portion increases from about 20% at MBT to about 40%, with a slight increase 

in margin to the autoignition burn rate limit. Though the model predicts SI combustion within 

limits, the proximity to this limit should be treated with caution. 

 
Figure V-12: Key combustion parameters for a sweep of spark timing for stoichiometric 

conditions. 
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Figure V-13: Combustion response to increased EGR for stoichiometric conditions. 

 

Summary 

In this chapter, the complete simplified cylinder model is introduced. The model results 

are compared to the reference 1D engine simulation, which suggested that despite a reduction in 

computation expense by over 99%, the model predicted key combustion parameters with an R2 of 

about 75-96%. From these results, several investigations are performed which suggest potential 

calibration and control strategies. In particular, the ability of fuel stratification to expand feasible 

operating conditions is demonstrated. 

  



 

123  

VI. CANDIDATE MODEL APPLICATIONS 

 

Engine control and calibration often feature some form of optimization, be it off-line or 

online and real-time. Optimization aims to identify the suite of ideal actuator positions to achieve 

a specified target with minimal error. Many optimization algorithms begin at a specified starting 

point and reduce the error in the function output by progressing towards the negative derivative of 

error. This process, often performed locally, can only find the local minimum, rather than the global 

minimum. Furthermore, if the starting point exists in a space where constraints are not satisfied, 

the algorithm may not have a means to leave the region to find a region that meets the specified 

constraints. 

A potential solution to this problem is to perform a full-factorial design of experiments 

(DOE). This strategy evaluates all possible actuator position combinations. Table VI-1 lists the 

range and interval for each of the nine actuators. Note that the total number of cases is just under 

700 million. To evaluate even the fast-running cylinder model (~0.8 seconds per case) over this 

many cases would take 16 years. The 1D reference engine model requires about 3 minutes to 

perform a single case, which would take almost 40 centuries for the entire DOE.  

Table VI-1: Actuator positions for a full-factorial design of experiments. 

Control Actuator Minimum Maximum Interval 
Spark Timing [°aTDC] -50 0 2 CAD 
Intake Manifold Pressure [bar] 0.4 1.2 0.1 bar 
Intake Cam Location [Deg. Cr. From Park] 0 50 5 CAD 
Exhaust Cam Location [Deg. Cr. From Park] 0 50 5 CAD 
Equivalence Ratio  0.5 1.0 0.5 
External EGR [%] 0 30 5% 
First Injection SOI [° aTDCf] -360 -90 30 CAD 
Second Injection SOI [° aTDCf] -180 0 10 CAD 
Injection Split Fraction 0.2 1.0 0.1 

Full Factorial Number of Cases: 6.78 x 108 



 

124  

The final challenge for optimization is the finite actuator rate of change and transport 

delays. If a steady-state optimization were performed as a function of speed and load, for example, 

there is no guarantee that the actuators can move from the optimal position at one condition to the 

optimal position for the next condition within the transient time constraints. Furthermore, a high 

degree of actuator movement is undesirable, even if it is within actuator rate constraints. 

Solution to the Optimization Problem 

The solution to the first problem, several local minima, is resolved with a multi-search 

strategy. The objective of this strategy is to explore the model in several locations to identify 

potential regions of actuator inputs that are within their bounds, produce the desired response, and 

do so within the specified constraints. Given the complexity of the model and high degree of 

freedom, a full-factorial DOE is ideal, however, it is not feasible. Several solutions to this issue for 

optimization have been developed. Simulated annealing, for example, is an optimization algorithm 

that varies the probability of the algorithm moving to another region, even if it is worse [104]. This 

probability deceases as the optimization continues, resulting in the global optimum. MATLAB’s 

global optimization toolbox includes a function called “MultiStart” which randomly selects several  

start points for the optimization.  

Rather than use these methods, a reasonable subset of all possible actuator positions is 

carefully selected. One possibility is to use a Latin hypercube selection method, rather than a purely 

random selection. While Latin hypercube sampling may be valuable for exploring all regions of 

model input, post-processing is more challenging as the actuator positions will all vary. Instead, a 

carefully reduced subset is evaluated based on only the most well-established constraints. 

Parameters that are expected to have a minimal affect have a reduced fidelity, and pre-determined 
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restrictions (such as no boosting or external EGR for lean operation) are leveraged to reduce the 

total case count. Table VI-2 lists the reduced full-factorial design of experiments. 

Table VI-2: Actuator positions for a reduced full-factorial design of experiments. 

Control Actuator Minimum Maximum Interval 
Spark Timing [°aTDC] -50 0 5 CAD 
Intake Manifold Pressure [bar] 0.8 1.2 0.05 bar 
Intake Cam Location [Deg. Cr. From Park] 0 50 10 CAD 
Exhaust Cam Location [Deg. Cr. From Park] 0 50 10 CAD 
Equivalence Ratio  0.5 1.0 0.5 
External EGR [%] 0 30 10% 
First Injection SOI [° aTDCf] -300 -300 ‒ 
Second Injection SOI [° aTDCf] -60 -30 30 CAD 
Injection Split Fraction 0.25 1.0 0.25 
Engine Speed [RPM] 1000 3000 500 RPM 

Full Factorial Number of Cases: ~250,000 
 

This reduced DOE enables a suitable broad exploration of the design space within 

reasonable computation constraints. Of the 250,000 results, only 17,000 (~7%) demonstrate SACI 

combustion within constraints at MBT. This small fraction of suitable points further emphasizes 

the optimization challenge. A random or pseudo-random multi-start global optimization strategy 

may not find enough of these suitable points within a reasonable time to be useful. The model is 

exercised over these 250,000 test points, requiring only 62 hours to run on an Intel Xeon E5-1620 

v3. The reference 1D engine model would require 1 year and 165 days to model the same number 

of points (without parallelization). 

Calibration Selection from Cylinder Model Results 

From model results, suitable actuator positions are filtered to produce the first step in 

calibration determination. For a given engine speed and equivalence ratio, all results that are near 

MBT without violating constraints are selected. This resulted in a few hundred results per split 



 

126  

fraction. A process to select the most feasible calibration is developed and illustrated in Figure 

VI-1. The results are sorted by IMEP, and of the low IMEP results, one is selected as a starting 

point for the low-load limit for calibration. From this starting point, an algorithm is developed to 

generate a suitable calibration for the specified engine speed and equivalence ratio. The algorithm 

selects the result that produced the minimum actuator change from a grouping of results for every 

0.5 bar IMEP increment. The actuator change is computed as the sum of the squared normalized 

difference from the previously selected actuator positions. The normalization is achieved by 

dividing the absolute difference by the range of that actuator. For example, a 0.05 bar change in 

MAP would be divided by the 0.4 bar range to arrive at a change of 12.5%. A sample result for 

2000 RPM, stoichiometric operation with a split fraction equal to 1.0 is presented in Table VI-3. 

 
Figure VI-1: Illustration of the process for finding the optimal calibration from the down selected 

fast-running model results. 
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Table VI-3: Sample calibration for 2000 RPM and stoichiometric operation. Split fraction is 
selected to be 1.0 for all points. 

nIMEP [bar] 
Spark Timing 

[°aTDC] MAP [bar] ICL (Cr. Deg) ECL (Cr. Deg) eEGR [%] 

3.5 -25 0.80 10 10 15 

4.4 -25 0.80 30 15 10 

4.8 -25 0.90 25 10 15 

5.3 -20 0.85 30 20 10 

5.8 -20 0.85 35 25 10 

6.3 -15 0.85 15 65 15 

6.8 -15 0.90 20 50 15 

7.3 -15 0.85 30 60 10 

7.8 -15 1.00 30 55 20 

8.3 -15 0.95 40 65 15 

8.8 -15 0.90 60 65 10 

9.3 -15 1.00 60 45 10 

9.8 -15 1.00 60 55 10 

 

Several observations can be gleaned from this result. First, the IMEP range for 

stoichiometric SACI at 2000 RPM appears to be ~4‒10 bar IMEP. If the model overestimates the 

ability of the flame to propagate in these conditions, then the realized load range will be reduced. 

Secondly, though there are several apparent trends, occasionally, there are unreasonable shifts in 

calibration. For example, from 7.3 bar to 8.3 bar, the MAP increases from 0.85 bar to 1.00 bar, then 

down to 0.95 bar. Certain actuators are likely to require a monotonicity constraint during a load 

sweep, or at least partially monotonic. As far as the calibration, generally, spark advance decreases 

as load increases as the higher energy charge enables faster flame propagation. SI portion is about 

20‒30% for all these points. Manifold pressure generally increases with IMEP to enable a higher 

fuel mass in-cylinder. Phasing for both intake and exhaust cams tended towards more positive 

overlap with IMEP. At low IMEPs, NVO is leveraged to both provide a high residual fraction to 

maintain a low load and to retain hot residual to increase charge energy.  
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Calibration Optimization in GT-Power 

While the cylinder model is fully capable of being optimized within MATLAB, the final 

optimization of this calibration is performed in the 1D engine simulation software, GT-Power. The 

software has several optimization algorithms and optimization in the native 1D reference engine 

environment will be necessary to eliminate any discrepancies between the candidate cylinder model 

and the reference model.  

Prior to running any optimization, the calibration is evaluated in the 1D reference engine 

model to identify the error in model prediction. If the error is large, then the optimization will likely 

be unproductive since the cylinder model is unable to accurately represent the reference model. 

Since the focus of this work is combustion control, SI portion and AI phasing will be compared. In 

this comparison, depicted in Figure VI-2, SI portion matches well, though AI phasing is often about 

5 CAD earlier than the GT-Power model. Though burned gas fraction matches well, the cylinder 

model slightly overpredicts in-cylinder temperature (10 K or less). This, along with the high 

sensitivity of autoignition leads to the slight error for several of the points. Since the cylinder model 

matches the GT-Power model well, there is good reason to have high confidence that the starting 

point for the calibration optimization should be close to the constrained global minimum and 

optimization can proceed. 
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Figure VI-2: Autoignition phasing and SI portion comparison between the cylinder model and 

GT-Power. 

 

GT-Power has several optimization algorithms to choose from. Some, such as a genetic 

algorithm (GA), are unsuitable for this application [105]. A genetic algorithm will initially vary the 

inputs widely to map out the design space. This is entirely unnecessary as the fast running cylinder 

model has already performed this task. Instead, the single-objective “Advanced Direct Optimizer” 

is selected using the Simplex search algorithm [106].  

Only actuator limit constraints are applied, as GT-Power lacks the capability to accurately 

measure NOx for SACI and does not model burn duration for autoignition. The optimized variables 

and constrained ranges are: intake cam location [0‒70 crank degrees from park], exhaust cam 

location [0‒70 crank degrees from park], intake manifold pressure [0.6‒1.2 bar], and spark timing 

[-50‒0 °aTDC]. 

The objective function considered errors in SI portion, AI phasing, and IMEP. SI portion 

is selected as part of the cost function for two reasons. First, the overall CA50 is not computed in 

GT-Power, so combining SI portion and AI phasing provide some measure of overall combustion 

phasing. Additionally, SI portion may be a target if ringing intensity is a concern, as the slow burn 
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rate of SI can lower ringing. Fuel efficiency is not possible in version v2019 of GT-Power as 

autoignition is not fully modeled. The combustion efficiency is limited by the maximum 

combustion efficiency of the SI phase alone. Thus, even if autoignition can consume the entire 

charge, if the flame cannot propagate through the chamber, a combustion efficiency of much less 

than 100% will be reported for the overall combustion efficiency. This negatively impacts overall 

fuel efficiency. The errors in SI portion and AI phasing are based on a constant target for each. A 

constant SI portion of 30% and an AI phasing of 4° aTDC are selected for simplicity. These are 

selected based on the typical SI portion and AI phasing from the candidate cylinder model, as well 

as several sources in the literate that suggest a constant SI portion may be desirable [29,49]. The 

computed error in SI portion, IMEP, and AI phasing are scaled so that the error is equal to one at 

an error threshold within which, a reduction of error is not significant. For autoignition phasing, 

this error is 2 CAD, for SI portion, it is 10%, and for IMEP it is 0.5 bar. The scaled errors are 

squared and then summed. The final cost function F for optimization is depicted in (33), where 𝐸𝐴𝐼 

is autoignition phasing error, 𝐸𝑆𝐼  is SI portion error, and 𝐸𝐼𝑀𝐸𝑃 is net IMEP error. 

 𝐹 =  (
𝐸𝐴𝐼

2 𝐶𝐴𝐷
)

2

+ (
𝐸𝑆𝐼

10%
 )

2

+  (
𝐸𝐼𝑀𝐸𝑃

0.5 𝑏𝑎𝑟
)

2

 (33) 

 

The optimization progressed without error, and significantly reduced the cost function 

within about 50 iterations. Figure VI-3 depicts the median cost function value for the set of IMEPs 

as a function of iteration count. 
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Figure VI-3: GT-Power optimization progress. The median cost function for the set of IMEP 

cases is plotted against the iteration count. 

 

As each case is optimized individually, the result of the initial optimization does not have 

the monotonicity and “smoothness” of a production steady-state calibration. The results are 

evaluated and the final calibration for all actuators except for spark timing is determined by fitting 

smooth curves to the optimization result. Figure VI-4 depicts a sample of this for exhaust cam 

location (ECL) and intake manifold absolute pressure. There is a clear linear trend for ECL, though 

MAP varies much more. Finally, spark timing only is optimized again to produce the final 

optimized calibration. 

 
Figure VI-4: Optimization results (data point) and final calibration (solid line) for exhaust cam 

location (ECL) and manifold absolute pressure (MAP). 
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The resulting calibration performs well for steady-state testing. Some discrepancy for 

IMEP is observed, which resulted in a restricted operating range from about 4‒9 bar, instead of 

3.5‒9.5 bar. Figure VI-5 depicts the control actuator locations for the load sweep under 

stoichiometric conditions at 2000 RPM. Figure VI-6 depicts the combustion response for the 

optimized result. Note that both the SI portion and autoignition phasing match the target value well 

(30% and 4° aTDC, respectively). 

 
Figure VI-5: Key control actuator calibration for 2000 RPM, stoichiometric operation. 
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Figure VI-6: Optimized calibration results for SI portion and autoignition phasing. The target SI 

portion is 30%, and the target AI phasing is 4° aTDC. 

 

Transient Simulation and Control 

In addition to calibration optimization, one advantage of a fast and accurate model is the 

potential to be used for real-time control. The fast-running cylinder model is leveraged to adapt the 

steady-state calibration during transients. Initially, the plan included a Simulink model that linked 

to GT-Power. Figure VI-7 depicts the top-level of the Simulink model, and Figure VI-8 illustrates 

the connection to the GT-Power model using library block provided as part of the GT-Power 

software package. Though this method has significant potential, the control elements of a model 

such as this require an applications-focused controller formulation. Simulink lacks an optimizer 

such as fmincon, and MATLAB scripts have limited capability in the Simulink environment. To 

use the cylinder model, it would ideally be restructured in state-space form, which would 

significantly alter the function of the model. For example, SI portion is computed based on the 

zonal structure, which would have to be re-computed some other way. As the objective of this 

research is to develop and demonstrate the potential control applications, rather than an application-
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specific control model, Simulink is not used. Instead, the model is run with only the steady-state 

calibration in GT-Power. Then the results are saved and passed to the MATLAB model after 

completion of the simulation. From the error in AI phasing and SI portion, the MATLAB model 

decides an adjustment to the steady-state calibration to improve the result. These adjustments are 

then applied on top of the steady-state calibration and the simulation is re-run in GT-Power. This 

approach still demonstrates the control potential of the model, without requiring a restructuring of 

the model. 

 
Figure VI-7: Simulink model top-level view. 

 

 
Figure VI-8: Simulink connection to GT-Power model within the Simulink “Run Model” 

subsystem. 
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For the transient response, a tip-in and tip-out at 2000 RPM is first evaluated. A tip-in 

allows a clear understanding of the transient response as it only varies load in a simple way, unlike 

a drive-cycle, where both speed and load change and the rate of change varies over the cycle. A 

tip-in or tip-out is also a higher rate of load change than a drive cycle, and therefore stresses the 

model to a greater degree than a drive cycle. For this case study, a 4.5 to 8.5 bar nIMEP tip-in is 

performed at 2000 RPM with stoichiometric fueling. 

Executing the tip-in and tip-out reveals excellent performance for the steady-state 

calibration (Figure VI-9). The response of the engine load lags the target by only 0.1 seconds. The 

steady-state IMEP error is minimal, and deviations during the transitions are at most 0.25 bar IMEP. 

No misfires are observed. Combustion performance is near the target, with only a slight 2 CAD 

deviation in autoignition phasing (Figure VI-10). These results are passed back to the model. The 

tip-in portion, having a greater than 1 CAD deviation in AI phasing is the focus for the optimization. 

The model is optimized to advance autoignition phasing by two degrees adjusting only the spark 

timing. The output is then used in place of the steady-state spark timing calibration, and the model 

is re-run with this updated spark timing. Although the model improved the phasing error to about 

1.5 CAD, it is not able to bring it to zero based solely on the model. No gain is applied on this error. 

Since the model is designed to have low computational expense, some error is anticipated. 

Furthermore, the model is developed using steady-state results, and therefore, discrepancies during 

transient maneuvers are not surprising. Overall, the strong performance of the steady-state map 

limits the opportunity to demonstrate the model capability. 
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Figure VI-9: Tip-in and tip-out response in GT-Power for the steady-state calibration. 

 

 
Figure VI-10: Combustion response to tip-in and tip-out for the steady-state calibration and the 

updated calibration. 

 

Instead of relying on a transient to capture the cylinder model capability, a step-change 

disturbance is considered. In this case, a step change in intake temperature is performed under 

otherwise steady conditions. The temperature shift can represent a literal change in temperature (as 

if the EGR cooler or charge-air cooler malfunctions), or it can represent another change to the 

engine system the controller could not anticipate, such as a change in fuel composition. The model 
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will be evaluated in two ways: 1) with knowledge that the manifold temperature has changed, and 

2) without knowledge that the manifold temperature has changed. In other words, for 1), the model 

will recognize intake temperature has increased and using all available actuators, adjust the in-

cylinder state to achieve the target response. In the case of 2), the model does not have knowledge 

of why AI phasing changed, and only adjusts spark timing to correct autoignition phasing. 

First the 1D reference engine model is exercised with the disturbance to identify the error 

in AI phasing. Since AI phasing is exponentially sensitive to temperature, this is the response that 

will be focused on in this section. Figure VI-11 illustrates the ~25 K increase in intake manifold 

temperature and the corresponding ~2 CAD advance of autoignition. This is consistent with 

Mendrea et al., who identified a 4 CAD advance in CA50 for a 20 K increase in intake temperature 

[107]. Though the 2 CAD presented here is not as large, the Mendrea et al. study is limited. The 

study only examines two temperatures at one operating point. The autoignition phasing is also not 

reported, only overall CA50. 

 
Figure VI-11: Intake manifold temperature disturbance and corresponding AI phasing response 

with no control adjustment. 
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The measured temperature increase is input into the MATLAB-based model, and for each 

time-step, the model is optimized. The fmincon function is used, with the target AI phasing and SI 

portion being those at t = 0 seconds. The optimizer has the flexibility to adapt intake cam phaser, 

exhaust cam phaser, intake manifold pressure, external EGR, and spark timing. The bounds of each 

actuator are computed from the previous time-step value and the anticipated maximum slew rate 

of the actuator. The cam phasers are limited to a slew rate of 50 crank degrees per second, EGR is 

limited to a change of 15% per second, intake manifold pressure is limited to a 1 bar per second 

rate, and spark timing is limited to a 20 CAD change per time-step (for optimizer stability). 

The actuator response is depicted in Figure VI-12. The model optimization adapts the cams 

and external EGR to reduce the proportion of hot internal residual, and instead favor cooler external 

EGR to help bring the in-cylinder state to a lower-energy level. Spark timing retards as the in-

cylinder state is still relatively high compared to the starting time. This is confirmed by examining 

the temperature at cycle start and total burned gas fraction (Figure VI-13). Despite the shift towards 

external cooled EGR, the in-cylinder temperature is still ~ 4 K hotter than at t = 0 seconds. Along 

with a slightly reduced burned gas fraction, the higher energy state and lower dilution require a 

~2 CAD later spark timing to maintain autoignition phasing. 
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Figure VI-12: Actuator response after optimization to maintain AI phasing during an intake 

temperature disturbance of +25 K. 

 

 
Figure VI-13: Burned gas fraction temperature at cycle start during the optimized temperature 
disturbance. The in-cylinder state is at a higher level with less dilution than at the start of the 

transient, necessitating spark retard. 
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In addition to this strategy, the optimization is also performed using with only the spark as 

the available actuator. No constraints are applied for this optimization. This simulates a condition 

where a disturbance occurs outside of the scope of the model or engine sensors. Both results are 

evaluated in GT-Power and compared to the case where no controller action is taken. Figure VI-14 

depicts the response for both cases. Both can reduce the AI phasing error to about 1 CAD, though 

each achieve this result in different ways. Despite the higher in-cylinder temperature, the spark-

only response required more advanced spark timing than the full model response. The reduced 

dilution for the full model response appears to be the differentiating factor. There is still an error, 

however, the error is ~1 CAD, which is well within expectation for the fast-running cylinder model. 

This is also consistent with work by Nakai et al., where their production-intent autoignition model 

error is up to 3 CAD  [60]. 

 
Figure VI-14: Model response for two conditions, one where the model can account for the 

disturbance, and one where it only has a measure of AI phasing error. 
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Mode-Switching 

The relatively limited range of operation for a given SACI mode suggests the need for 

mode-switching. The reduced-order cylinder model again can provide use by identifying regions 

in other combustion modes that can readily be switched to within all actuator slew rate limits and 

combustion constraints. 

To illustrate this, consider a transition from lean to stoichiometric. To perform an 

instantaneous transition, several actuators will not have sufficient time to move. To resolve this 

challenge, the candidate model can be leveraged to compute the combustion response for a sweep 

of the actuators that can rapidly change, namely, spark timing and injection strategy (Figure VI-15). 

The split ratio is maintained at 1.0 for this sweep for consistency with the results from GT-Power. 

Only the equivalence ratio and spark timing are adjusted. To maintain the same nIMEP with double 

the fuel energy, the spark timing is retarded to 16° aTDC. The model adapts accordingly for 

changing cylinder conditions. At the zeroth cycle, for example, though there will be a 

stoichiometric mixture of fuel and air, the residual fraction is from the previous cycle which is 

much leaner than stoichiometric. The candidate cylinder model therefore maintains the previous 

cycles residual fraction through to the next cycle. Once the first cycle finishes, the burned gas 

fraction increases and spark advances to 12° aTDC to account for the increase of the BGF.  

This late spark timing yielded a combustion phasing of CA50 = 56° aTDC, which is 

borderline unacceptably late for production constraints, even for just one cycle. The SI burn 

duration is also near the flammability limit at about 39 CAD MFB10‒90. There are two conclusions 

from this observation. First, a mode switch using just spark timing and equivalence ratio at this 

condition may not be possible. The candidate model can only describe what the aggregate 

submodels predict will occur based on their tuning. It is the responsibility of the calibrator to 
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determine if these are production feasible. The objective of the candidate cylinder model is to 

provide maximum information to the calibrator during their investigation. The other conclusion is 

that the borderline nature of this particular mode switch can be mitigated by coupling a SACI engine 

with mild hybridization. In this case, the mild hybrid system can absorb torque, allowing the 

stoichiometric SACI engine to operate closer to MBT without affecting driveline torque. A detailed 

independent discussion of this topic can be found in Appendix B.  

 
Figure VI-15: Mode switch example from lean to stoichiometric. Only fueling rate and spark 

timing is altered, while maintaining the same nIMEP. 

 

Summary 

The simplified cylinder model can represent the complex in-cylinder picture and make 

appropriate changes within constraints to achieve the target objective. That objective may be 

calibration optimization, transient control, disturbance response, or mode-switching. All are briefly 

demonstrated as case studies in this work. Though there are some non-zero error in several 

combustion metrics (especially AI phasing), these are within expectation and consistent with other 

production intent models.  
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VII. SUMMARY AND CONCLUSIONS 

 

SACI is an advanced combustion strategy that offers emissions and fuel economy potential. 

SACI combines flame propagation with controlled autoignition, which requires high dilution to 

avoid excessive ringing or knock. The high dilution drives flame propagation towards flame 

quench, which can result in partial or complete misfires. Of the few control-oriented models for 

SACI combustion in the literature, all are two-zone and compute combustion metrics on a crank-

angle basis. The two-zone model structure the modeling of fuel stratification, and the focus on the 

crank angle domain increases computational expense. 

To resolve the modeling challenge, a fast-running cylinder model is developed and 

presented in this work. It comprises of five bulk gas states and a fuel stratification model consisting 

of ten (10) zones within the cylinder. The zones are quasi-dimensional, and their state varies with 

crank angle. In this model, the crank-angle domain is limited to equivalence ratio and temperature; 

combustion models are computed based on a single crank angle. Each of the bulk gas state models 

is an artificial neural network (ANN) tuned to experimentally-validated 1D engine reference 

simulation results. The fuel stratification model is physics-based and tuned to experimentally-

validated 3D computational fluid dynamics (CFD) results. 

The combustion submodels predict flame propagation burn rates, autoignition phasing, and 

NOx concentration for each zone. During the development of the combustion submodels, both 

physics-based and data-driven techniques are considered. However, an examination of the balance 

between accuracy and computational expense indicates data-driven techniques are superior. All 

combustion submodels are artificial neural networks (ANNs). The networks are trained to an 

experimentally-validated 1D engine reference model. 
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The fast-running model matches the reference 1D engine model well, with an R2 value of 

70‒96% for the most important combustion parameters. The model requires 0.8 seconds to perform 

a single case, a 99.6% reduction from the reference 1D engine model. The reduced model 

simulation time enables rapid exploration of the operating space. Over 250,000 cases are evaluated 

across the entire range of actuator positions. The exploration of the input space indicates valuable 

control strategies, such as the increased margin to flame quench by leveraging radial fuel 

stratification. 

A transient-capable calibration is also formulated. This preliminary calibration is 

optimized using the 1D reference simulation to produce the final steady-state calibration. To 

evaluate the strength of this calibration, it is operated over a tip-in and tip-out. The response to the 

transients requires little adjustment, suggesting the steady-state calibration is robust. The model 

also demonstrates the capability to adapt in-cylinder state and spark timing to offset disturbances 

to combustion phasing consistent with fundamentals. For example, during a 25 K step increase in 

intake temperature, the model adjusts the balance of hot internal EGR and cooled external EGR to 

reduce overall in-cylinder temperature despite the increased intake temperature. The positive model 

performance during transients and input disturbances indicates that the candidate cylinder model 

maintains sufficient accuracy, despite its significantly reduced computational expense. 

Research Contributions 

This research provides a comprehensive control-oriented model of an advanced 

combustion strategy called spark-assisted compression ignition (SACI). The following 

contributions are achieved as part of this work: 

1. A demonstration of the impact of combustion fundamentals on SACI combustion. 

Sensitivity to intake conditions, in-cylinder composition, spark timing and how they 
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translate to ignition energy are comprehensively explored. For example, under certain 

low-load conditions, throttling can effectively enable a lower load with little impact on 

ignition delay, potentially eliminating a switch to another combustion mode. Another 

example is the capability of the burn rate of flame propagation to accurately reflect 

flame structure for the purposes of defining the flame quench constraint. 

 

2. A comparison of model structures for combustion models and an identification of 

suitable techniques for data-driven modeling.  For both flame propagation and 

autoignition, a detailed study of physics-based and data-driven models is performed. 

Ultimately, the data-driven techniques are found to be most suitable for control-

oriented models as their computation expense does not scale with model accuracy as 

strongly as physics-based models. Artificial neural networks are leveraged as the 

model structure for all combustion models. Overfitting techniques such as Bayesian 

regularization and early-stopping are implemented. A hybrid regression-classification 

network approach for SI burn duration and AI phasing models is demonstrated. The 

AI phasing ANN has encouraging extrapolation performance while being sufficiently 

detailed to capture the NTC region. 

 

3. A quasi-dimensional fuel stratification model for radially-stratified engines. One 

control strategy for SACI is the use of late injection to increase equivalence ratio near 

the center of the combustion chamber. The relatively rich region improves conditions 

for flame propagation. No suitable control-oriented stratification model is found in the 

literature or in the 1D engine simulation package selected for this work. Consequently, 

a physics-based stratification model is developed. It is validated to CFD results and 
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demonstrates a 50% improved root mean square error compared to a model that 

assumes a uniform fuel distribution. 

 

4. A comprehensive cylinder model that maintains high accuracy despite 

substantially reduced computational expense. The final cylinder model matches the 

reference 1D engine model to 70‒96% (based on R2
 of key combustion metrics). The 

simplified model, however, requires less than 1 second to produce this result, as 

opposed to three minutes per case for the reference 1D engine model. Rapid calibration 

optimization and exploration is therefore enabled and demonstrated. 

 

Future Work 

This research focused primarily on model development, though calibration and controls 

are included. Based on this study, the following future work is recommended: 

1. Develop a production-intent SACI engine test stand to further refine the cylinder 

model. Expand on the number of test points and operating regimes to aid in model 

development. One particular area to focus on is the impact of fuel stratification on 

combustion. 

2. Consider augmenting GT-Power with improved models to aid in controller 

development for SACI combustion. As future releases of GT-Power may include some 

of this necessary functionality, a discussion with the makers of GT-Power is 

recommended as the first step. 
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3. Using the knowledge gleaned from this work, begin development on an applications-

focused SACI controller. This controller can be developed in simulation in parallel 

with the experimental setup using the already developed Simulink control platform. 
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A. AUTOIGNITION MODEL STRUCTURE 

 

There are several approaches to modeling autoignition, each varying in computational 

expense and accuracy. Careful selection of an autoignition model is critical for SACI control to be 

effective. Three types of models are included in this work: chemical kinetics, ignition delay, and 

regression. A thorough comparison of several models is best achieved if noise and other stochastic 

processes are minimized and the maximum amount of data is available for an in-depth analysis. 

Therefore, a detailed simulation model is exercised to isolate the autoignition process from 

confounding effects and provide data that is difficult or measure experimentally. While a chemical 

kinetics mechanism potentially introduces errors compared to experimental data, the objective of 

this work is a relative comparison of different model types. The assumption underlying this work 

is that a detailed kinetics model is sufficiently complex to reproduce real engine phenomenon such 

that the performance of the production-feasible models is effectively the same as if it is based on 

experimental data. The regression and ignition delay models are evaluated as candidate models for 

production control. 

Figure A-1 illustrates the modeling process for each of the three types of models. Though 

all three have the same input and output, there are significant differences among the three types. 

The kinetics model is part of an engine cycle simulation, where the cycle composition and state are 

computed at each time step. The ignition delay model is evaluated over predefined pressure and 

temperature profiles based on the inputs. Both types of models have an autoignition phasing 

criteria. Autoignition occurs in the autoignition model when the rate of change of temperature in 

the unburned gas is 50 K/CAD. This threshold is selected after careful examination of several cases 
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to identify a representative start of autoignition. The ignition delay models use the induction time 

integral criterion [96]. The regression models directly map the inputs to the outputs.  

 
Figure A-1: Schematic describing the simulation and analysis process. Note that the ignition 

delay candidate models require additional pre-processing, and the detailed kinetics and ignition 
delay models require some evaluation criteria to determine autoignition timing. The regression 

model has the simplest application. 

 

Reference Model 

The reference model is a detailed chemical kinetics model coupled to a 1D engine model. 

The kinetics model simulates an engine cycle from intake valve closing (IVC) to the end of 

combustion and applies the pressure and temperature history to the kinetics mechanism. The 

kinetics model is first swept over a wide set of conditions. The results are analyzed and used to 

guide a 1D simulation effort. Two engine datasets contribute to the two parts of the model. An 

experimental homogeneous charge compression ignition (HCCI) engine dataset is used to calibrate 

autoignition in the kinetics model, and the 1D engine model is tuned to measured data from a 

baseline SI engine. From this baseline configuration, several engine parameters are adapted to 

produce the final SACI engine configuration. Table A-1 lists key engine parameters for these two 

engines. 



 

151  

Table A-1: Specifications of the engines used for simulation validation. 

 HCCI Engine Baseline Engine 
Bore x Stroke [mm] 86 x 94.5 82 x 94.6 
Compression Ratio 12.5:1 11.0:1 

Valvetrain Exhaust 
Rebreathe 

Intake and Exhaust  
Cam Phasers 

Relative AFR (λ) 1.4 – 2.0 1.0 
 

The SI phase of SACI combustion is modeled with a Wiebe function. The burn duration is 

tuned based on the calibrated predictive combustion model in [108] and from data presented in 

[109,110]. A regression is performed on the results to generate a second-order burn duration model. 

The model is a function of relative air-fuel ratio (𝜆), total burned gas, intake manifold pressure, and 

combustion phasing. A sample of MFB10–90 is shown in Figure A-2, across a range of air-fuel 

ratio (AFR) and exhaust gas recirculation (EGR) levels at a fixed combustion phasing and manifold 

pressure. SACI is tolerant of slow burn durations, so an upper limit of 45 CAD MFB10–90 is 

selected as the SI phase flammability constraint.  

Fuel stratification is an enabling strategy for SACI. Nakai et al. leveraged stratification to 

increase SI flame stability in fuel-lean operation and suppress ringing under high load [60]. Olesky 

et al. noted that charge stratification is a key factor in the cycle-to-cycle variation of SACI 

combustion [51]. Capturing charge stratification in a two-zone model is achieved by assuming the 

combustion chamber has two regions: the SI region and the AI region. The anticipated AFR for the 

SI region is input to the SI burn duration model to generate the appropriate SI Wiebe curve. This 

simulates the impact of a late direct injection strategy within the constraints of the model 

architecture. The kinetics model used the AI region AFR. This two-zone stratification model does 

not fully represent the in-cylinder fuel distribution, so it may not appropriately capture certain 

effects, such as the variation of SI flame speeds when the flame consumes most of the charge.  
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Figure A-2: SI phase combustion duration model. The fuel-lean SACI conditions for the SI 

portion are slightly richer than the overall AFR to account for fuel stratification.  

 

The unburned zone is modeled using detailed chemical kinetics. The kinetics mechanism 

targets RD3-87 over a wide range of conditions [94]. The fuel selected for this study is a four-

component E10 87 AKI gasoline surrogate. It is based on a ternary RD3-87 blend with the addition 

of ethanol [111]. Details of the fuel composition can be found in Table A-2. Autoignition occurs 

when the combined effect of the piston motion and SI Wiebe-modeled combustion produce 

sufficient temperature and pressure for the unburned zone to ignite as determined by the kinetics 

mechanism.  

Table A-2: Fuel specifications for the chemical kinetics model. The reference model only 
considered TRF-E, though a later sensitivity study uses all three fuels. 

 TRF-E PRF-E PRF87 
Ethanol 10% 10% – 
Toluene 26% – – 
Isooctane 47% 76% 87% 
n-Heptane 17% 14% 13% 
RON 89.2 87.3 87.0 
MON 84.9 86.8 87.0 
AKI 87.0 87.0 87.0 
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Though kinetics mechanisms capture the behavior of chemical reactions well, translating 

these results between the kinetics model and 1D simulation requires additional tuning. In addition 

to error in the kinetics model, the simplified cylinder model may not represent the hottest gas 

regions. To resolve these discrepancies, a temperature offset is applied to the temperature at intake 

valve closing (TIVC).  

To tune the autoignition phase, the chemical kinetics model is configured to match engine 

and fuel data from the HCCI engine in Table A-1. A direct comparison between measured engine 

and the chemical kinetics model cannot be performed. In-cylinder composition and bulk gas 

temperature at IVC are critical parameters for the kinetics model, however, these are challenging 

to measure on a firing engine. Instead, a 1D simulation is experimentally validated to the HCCI 

engine data set, Figure A-3.  

  
Figure A-3: Sample comparison of the validation of the 1D model to engine data for HCCI 

combustion. The validated 1D model is used for calibration of the single-zone kinetics model, as 
it includes temperature and composition throughout the cycle. 
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The temperature at IVC of the kinetics model is calibrated to the experimentally-validated 

1D simulation results to match the CA01 phasing. A sample comparison of the calibration process 

is presented in Figure A-4. Across a range of speeds and intake temperatures, the kinetics model 

TIVC must be 45 K above the 1D model TIVC to match the AI phasing. This 45 K offset is applied 

when translating between the kinetics and 1D models. The engine data, 1D simulation, and 

chemical kinetics configuration of the HCCI engine is only used for the kinetics model validation. 

 
Figure A-4: Sample calibration process of the autoignition kinetics model at a single condition. 
The temperature at IVC is increased to match the CA01 of the single zone kinetics model to the 

1D model. In this case, the TIVC of the kinetics model must be ~50 K higher than the 1D 
simulation TIVC. 

 

A single-zone autoignition model is not sufficiently resolved to capture thermal 

stratification. Without this stratification, the model alone cannot accurately predict the burn 

durations of the AI phase. The duration of the AI event will strongly affect the rate of pressure rise, 

which is an important constraint for autoignition-based combustion strategies. Ringing intensity 

(RI) relates the rate of pressure rise to noise and is described in (2). For this analysis, a RI limit of 

5 MW/m2 is selected. 

The single-zone model is augmented with a burn duration correlation. Three correlations 

are compared; two are tuned for HCCI combustion and one for both HCCI and SACI. 
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Babajimopoulos et al. [101] developed their correlation based on HCCI simulation results, while 

Zhou et al. [102] considered HCCI engine data. Both are a function of ϕ’ and autoignition timing, 

among other variables.  

Both HCCI correlations produce similar burn durations for autoignition near top-dead 

center (TDC). However, as AI phasing is retarded, the burn duration increases significantly for the 

Babajimopoulos et al. model. This likely represents a cycle-cycle variation (CCV) limit for HCCI. 

Unlike HCCI, SACI can sustain later AI timings because the flame continues to release heat after 

TDC. Experimental results by Manofsky et al. [35], Nakai et al. [60], and Triantopoulos et al. [103] 

all demonstrated the CA50 up to ~15° aTDC within CCV limits.  

Ortiz-Soto developed an HCCI and SACI autoignition burn duration model [58]. To 

achieve the wider range of operation, several additional parameters are required, including the 

temperature at pressure at autoignition and the fraction of charge remaining at autoignition. The 

Ortiz-Soto model is selected for this study as it is the most-appropriate fit for SACI combustion. 

Identifying end-gas knock is difficult to quantify, especially for a single-zone autoignition 

model. Rapid burn rate indicates a high rate of energy release, which is consistent with knock and 

will produce a higher RI. However, identifying a knock limit based solely on burn rate or RI is 

challenging. Alternatively, the following three bounds are imposed to appropriately limit the model 

results under stoichiometric conditions. 

• The relative charge energy content (𝜙′) must be below 0.75. Early SACI 

experimental work by Manofsky et al. used a 𝜙′ of 0.7 at high loads [35]. More 

recent work by Triantopoulos et al. varied 𝜙′ from 0.57 – 0.72 [103]. Patent 

information from Mazda suggest the low-dilution limit is 𝜙′ = 0.8, and test data 
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show a modest 9% external EGR at stoichiometric high-load conditions [29,60]. 

Internal residual fraction is not mentioned in that study.  

• Autoignition must occur after TDC. For a given 𝜙′ and autoignition burn duration, 

phasing AI after TDC reduces the rate of pressure rise. The increasing cylinder 

volume partially offsets the pressure rise from autoignition.  

• SI portion must be above 25%. SI portion is a key metric for SACI combustion. It 

describes the relative portion of the fuel energy burned by the flame.  

Flame propagation has a lower heat release rate, and therefore a lower peak pressure rise 

rate. Additionally, as SI portion increases, there is a lower quantity of energy available for 

autoignition. The lower bound of SI portion is determined by examining heat release rates from 

experimental datasets for high-load operation [60,103]. 

Chemical Kinetics Parameter Sweep 

The objective of the kinetics study is to identify trends, limits, and potential production 

challenges by mapping out the space of operation. This model is exercised with the following 

parameters sweep: 

• Effective compression ratio CReff (10:1 – 18:1) 

• Total Residual (0% – 30%) 

• TIVC (350 – 500 K) 

• Relative AFR (𝜆 = 1, 2) 

• SI Combustion Phasing (SOC = -30° – 0° aTDC) 

• Pressure at IVC (1.0 – 1.4 bar) 

• Engine Speed (1000 – 3500 RPM) 
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The sweep points are correlated to controls-specific actuator positions. Effective CR can 

be achieved by early or late intake valve closing (EIVC, LIVC). Air-fuel ratio is the local AFR of 

the end-gas area. SI combustion phasing is directly linked to spark timing. For these analyses, start 

of combustion is defined by CA01 of the SI Wiebe heat release profile. Total residual is a 

combination of internal and external EGR, and both are assumed to have the same chemical 

composition. The temperature at IVC can be regulated by both hot internal residual and intake 

manifold temperature. Four factors combine to control load: AFR, residual fraction, effective CR, 

and intake manifold pressure.  

The results of the sweeps identify potential load limits, and possible strategies to resolve 

these limits. The analysis of the results is divided into subsections that each focus on combustion 

fundamentals. The conclusion of each subsection identifies the implication for production controls.  

Combustion Phasing 

The critical feature of SACI is the direct control of the start of the autoignition process. 

However, the coupling of the AI event to the SI heat release adds a significant degree of complexity. 

The simulation results help to clarify the control authority SI phasing has on autoignition. For this 

model, spark timing is not explicitly specified. As the SI portion is a Wiebe function, a combustion 

model for flame kernel development would need to be introduced. The added uncertainty is 

considered detrimental, and instead CA01 is used as an analogue for spark timing. 
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Figure A-5: Heat release rate (HRR) curves for a CA01 sweep at 16:1 effective compression 

ratio. The SI portion increases and CA50 advances as the start of combustion advances. 

 

A sample set of heat release curves is presented in Figure A-5. The curves are generated in 

two steps. The SI component is a Wiebe function based on the specified start of combustion and 

burn duration from the SI MFB10–90 model. The AI part is phased based on the kinetics-predicted 

autoignition timing. A Wiebe curve is then generated based on the autoignition burn duration 

correlation. These two curves are combined to produce the curves in Figure A-5. The solid black 

line (SI portion = 22%) indicates MBT timing. Early combustion phasing increase SI portion, and 

the peak heat release rate of autoignition increases as 𝜃𝐴𝐼 approaches TDC. While this may be 

counter to the response that SI knock has to spark timing, the range of autoignition timing is much 

earlier than that for SI knock. As autoignition phasing advances beyond TDC, lower temperature 

and pressure during the compression stroke result in the autoignition event occurring later relative 

to the SI phase. The latest combustion phasing, SI = 2%, shows a nearly HCCI HRR curve. If 

combustion phasing is retarded much beyond this point, however, autoignition will not occur.  

Figure A-6 depicts the SI portion and autoignition phasing 𝜃𝐴𝐼 as a function of the CA01 

for three select CReff. Autoignition timing responds linearly with CA01, and with a roughly constant 
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slope regardless of effective CR. The value found for the change in 𝜃𝐴𝐼 per unit change in 

combustion phasing is about 0.5, consistent with results found in the literature [29,112]. 

The change in SI portion appears linear in the region of high sensitivity. For combustion 

phasing later than this region, the delayed heat release from SI does not provide sufficient energy 

to autoignite the charge before pressure and temperature decreases during expansion. Conversely, 

if combustion is phased early, the flame consumes the charge before autoignition occurs.  

 
Figure A-6: Autoignition characteristics as a function of the SI heat release phasing. The range 

of feasible SACI conditions occupies a ~20 CAD range. 

 

The controls implications are that there is a narrow range where SACI is feasible and each 

combustion phasing produces one particular SI portion. Though the results suggest that SI portion 
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will equal 100% outside of this region, the prescribed Wiebe function does not consider misfire. 

The highly dilute charge makes the potential for complete SI combustion unlikely. 

Combustion Response to Partial SI Burn 

Radial fuel stratification of the charge may make it unlikely for the flame to consume the 

full charge if autoignition does not occur. An investigation is performed for the 14:1 CReff at the 

same conditions in Figure A-6. The maximum fraction of fuel burned by the SI phase is limited to 

simulate the effect of the flame quenching as it progressed into leaner regions of the chamber. 

Figure A-6 depicts the autoignition timing and SI Portion as the SI burn limit is varied from 0.25 

to 1.0. As the SI burn fraction approaches zero, the SI portion reduces and autoignition is delayed 

(Figure A-7). A low SI burn fraction limit still produces an increased temperature and pressure 

relative to no flame. However, a limited SI Portion does not consume the charge prior to 

autoignition. Therefore, a partial SI burn can produce SACI combustion, and may enable a wider 

range of SI Portion for a particular condition. 

Charge stratification may be capable of extending the operating range of SACI, though it 

adds controls complexity. Furthermore, a partial SI burn still enables an AI event and may not 

necessarily lead to an overall misfire. This is consistent with the literature demonstrating a greater 

tolerance for slow SI combustion [51]. 
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Figure A-7: SACI combustion metrics versus the maximum fuel fraction burned by the SI phase. 

This simulation replicates the impact of a partial SI burn. The SI portion is reduced and θAI 
delays as the SI burn fraction limit decreases.  

 

Load Limits 

Identifying the limits for SACI is critical for achieving a viable production control strategy. 

To consolidate the impacts of overlapping control inputs, certain results will be presented as TTDC 

(No Flame) versus volumetric efficiency (VE). TTDC (No Flame) is determined by the intake 

temperature, effective compression ratio, and ratio of specific heats. The VE term is calculated as 

follows, where BGF is the fraction of total residual (34). 

 
𝑉𝐸 = (

𝑃𝑖𝑛𝑡𝑎𝑘𝑒

𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡
) (

𝐶𝑅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝐶𝑅𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐
) (1 − 𝐵𝐺𝐹) (34) 

The translation from a particular location in this space to control actuator positions is 

presented in Figure A-8. From the results in the subsequent sections, the subset of feasible control 

actuator movements and positions can be deduced. 
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Figure A-8: Diagram translating actuator adjustments to temperature at TDC versus VE. 

Internal EGR and CReff strongly effect both TTDC and VE, while the others predominantly impact 
one or the other. 

 

The relationship between SI portion and TTDC and VE is presented in Figure A-9 for fuel-

lean operation. Since MBT phasing is maintained, the SI portion indicates the extent that the flame 

is involved in the overall combustion process. High SI portions reduce ringing, but also increase 

the peak burned gas temperature. Higher temperatures under lean conditions will produce higher 

NOx emissions, though NOx is modeled in this study. The region of high TTDC and low VE indicates 

intake heating may be required, a potential limit for production. Towards high VE and high TTDC, 

autoignition occurs without the flame (SI portion << 25%). This condition may be undesirable in 

SACI as the control authority from the flame is lost. The region of low TTDC (SI portion >> 75%) 

indicates little-to-no autoignition. This region is nominally SI combustion. However, since the 

conditions are potentially unsuitable for complete SI combustion, this region may be undesirable. 

Lowering VE is the primary load-control strategy in this study. To lower VE, either EGR dilution 

must increase or compression ratio must decrease. Achieving enough ignition energy requires an 
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increase in the temperature at TDC. A 10% reduction in VE using these methods requires about a 

30 K increase in TTDC to maintain the same SI portion.  

 
Figure A-9: Regions of feasible SACI combustion as a function of cylinder charge (VE) and state 
ignition energy (TTDC). There is a relatively narrow range of operation. The low load is limited by 
ignition energy and the high load by the maximum air mass that can be trapped while naturally 

aspirated (NA). 

 

Extending the high load limit of fuel-lean SACI can be achieved with boosting, however, 

two key constraints are present. The RI constraint demands an increased SI portion. The high SI 

portion, however, increases the mass of fuel burned by the flame. The higher temperatures during 

combustion likely increase the concentration of NOx, the second constraint. NOx is not modeled in 

this study. 

The low-load limit for fuel-lean SACI is determined by ignition energy. An analysis of 

ignition delay indicates potential strategies to minimize ignition delay as ignition energy becomes 

constrained. Figure A-10 depicts the pressure-temperature trajectory overlaid onto an ignition delay 
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contour plot for a point near the low-load limit. The negative temperature coefficient (NTC) region 

is clear, and the MON test trajectory is included for reference. 

The three SACI traces indicate the pressure-trajectory up to TDC for three cases: no 

combustion, -10° aTDC CA01, and -20° aTDC CA01. The heat released from combustion phasing 

at -20° aTDC CA01 provides sufficient ignition energy to achieve autoignition for this case. These 

trajectories indicate that the SI phase has a similar effect as higher compression ratio.  

 
Figure A-10: Pressure-temperature trajectory for three SACI cases overlaid onto the ignition 
delay plot. At this low-load point, there is a greater sensitivity to temperature than pressure. 

 

In Figure A-10, the steepest downward gradient from the no combustion case is towards 

higher temperature. Reaching the 2 ms contour line via pressure alone requires more than a two-

fold increase in PIVC, while only a 6% increase in TIVC (e.g., 400 K to 425 K) yields the same ignition 
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delay. High temperatures at low loads also keeps the trajectory away from the NTC region, where 

ignition delay is nonlinear and relatively insensitive. 

The relevence for a controls strategy is two-fold. First, throttling the intake charge helps to 

maintain the ignition delay while reducing VE. Reducing the effective compression ratio to reduce 

effective displacement lowers both pressure and temperature. Reducing the intake pressure will 

shift the curve down, but throttling will only have a small effect on temperature. Since ignition 

delay is a much stronger function of temperature, the autoignition event can therefore be maintained 

at lower loads with throttling (Figure A-11). Pumping work will increase, so throttling may be 

undesirable unless the intake temperature demand is not feasible. Reducing intake pressure will 

also have a significant negative effect on the SI flame propagation. The pumping work, intake 

temperature demands, and SI flammability limits combine to determine the low-load limit. 

  
Figure A-11: Comparison between reducing in-cylinder mass via throttling or reducing CReff via 
LIVC. The higher sensitivity of autoignition to temperature rather than pressure yields greater 

controllability for throttling than CReff. The impact on pumping is studied in a later section. 

 

The other controls factor is the relative sensitivity of ignition delay to pressure and 

temperature. A real-time model that can capture the NTC region of autoignition can guide the 
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engine controller to adjust the actuators that produce the highest sensitivity. Additionally, market 

gasoline blends vary, so under certain operating conditions, a sensitivity to the precise fuel blend 

is anticipated. 

The NOx emissions of fuel-lean SACI at high load can be resolved by switching to 

stoichiometric operation. To study the effects of stoichiometric SACI, the model is also exercised 

at 𝜆 = 1. Figure A-12 depicts feasible SI portion as a function of TTDC and VE. A greater SI portion 

is required at high loads to alleviate ringing. Unlike fuel-lean SACI, the VE only extends to 0.85 

(with boosting), as a minimum of 25% EGR is specified to avoid knock. The TTDC required to 

achieve a particular SI portion at a given VE is lower for stoichiometric SACI, owing to the higher 

fuel content in the charge. The 𝜙′ of the stoichiometric SACI is between 0.65 – 0.80, while the 𝜙′ 

for fuel-lean SACI never exceeds 0.50.  

At high load, ringing intensity is the key limit. The data indicate that the peak VE within 

constraints is just below 0.9. Improving the high-load limit can be achieved by increasing the SI 

portion through lowering the end-gas temperature. To achieve 950 K at TTDC at high loads with a 

relatively high 14:1 CR, TIVC must be about 350 K. This TIVC requires an intake temperature below 

25 °C. Intake temperatures can be lowered by active cooling; however, a careful fuel injection 

strategy may achieve the same effect. This strategy is successfully implemented in [60], where 

charge cooling from late injection of fuel enabled knock mitigation. The overall 𝜆 is 0.87, so the 

aftertreatment will be unable to oxidize hydrocarbons and carbon monoxide. 
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Figure A-12: Regions of feasible SACI combustion as a function of cylinder charge (VE) and 

state ignition energy (TTDC). There is a relatively narrow range of operation, bound at low and 
high VE by intake temperature. 

 

The impact of boosting is evaluated at a common VE for three conditions: 20% EGR at 

1 bar intake pressure, 30% EGR also at 1 bar intake pressure, and 30% at 1.2 bar intake pressure. 

For these three cases, the VE is ~0.65, and the effective compression ratio is varied accordingly to 

offset the VE increase from boosting. Figure A-13 compares the SI portion of three strategies for 

increasing EGR at high loads. Increasing EGR by 10% while holding intake pressure constant 

requires a two-point higher CReff to maintain the same charge mass. The higher pressure and 

temperature from compression more than offset the effect on ignition delay from dilution. When 

boosted, the CReff must drop by two points to maintain VE. The reduced temperature and pressure 

at TDC lower the propensity to autoignite, and the SI portion increases. Overall, for a fixed CReff, 

increased EGR while simultaneously boosting to maintain VE (i.e., load) has a small impact on SI 

portion. 
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Figure A-13: Comparison between three points with the same VE and increasing EGR level. The 
effective compression ratio has the strongest impact and boosting while maintaining CReff has a 

small impact on SI portion. 

 

While the low temperature requirement indicates potential for low-load performance, the 

stoichiometric constraint requires very high residual fractions. To achieve the same low loads as 

the lean-burn case, the required 𝜙′ is about 0.45, i.e., the charge is diluted with 55% residuals. 

Achieving SACI combustion at this load is possible, as indicated in [103], however, 45 ℃ intake 

temperatures and a high negative valve overlap (NVO) valve strategy are used to achieve the high 

TTDC.  

Engine Speed 

Recognizing the sensitivity of autoignition to residence time, a sweep of engine speed is 

performed. A subset of the speed sweep is presented in Figure A-14 for two CReff. Both cases 

approach near-HCCI combustion at 1000 RPM. At low engine speeds, residence time increases 

which advances the timing of the autoignition event. The 14:1 CReff has a stronger relationship to 
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engine speed than the higher CR. Though heat transfer increases at lower speeds, the data suggest 

that above 1000 RPM, time is the dominant factor. 

 
Figure A-14: Impact of engine speed on SI portion for two CReff at the same conditions. Near-

HCCI combustion is reached near 1000 RPM. SI portion increases with engine speed as the time 
for autoignition decreases. The higher compression ratio is much less sensitive to engine speed.  

 

 
Figure A-15: SACI operating range for 1500 RPM and 3000 RPM. As engine speed increases, 

SACI operation narrows and is driven to higher TTDC. 
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The range of feasible SACI combustion is evaluated for several speeds and conditions by 

examining the SI portion. Figure A-15 summarizes the general trend with a comparison of 1500 

RPM to 3000 RPM. The SACI operating range narrows and shifts towards higher TTDC as engine 

speed increases.  Increased engine speed will also intensify the RI constraint challenge. RI is 

defined by a time-rate of change of pressure, and thus, at higher speeds, a certain pressure rise rate 

per crank angle yields a higher RI. These three factors combine to set the high-speed limit of SACI 

combustion. No clear low-speed limit is identified. 

Induction Time Integral Models 

A widely used physics-based autoignition model computes the integral of the inverse of 

ignition delay τ at each time step (35) [96]. The ignition delay can be modeled with a correlation 

or tabulated from measured or simulated values. Autoignition occurs when the integral reaches 

unity. 

 
∫

𝑑𝑡

𝜏

𝑡

𝑡0

= 1.0 (35) 

 The induction time integral is evaluated from intake valve closing (IVC) until a point late 

enough in the cycle to capture any potential autoignition events. Though each ignition delay models 

have a unique set of inputs, pressure and temperature are common to all models evaluated. The 

pressure and temperature are computed by considering the initial state, heat transfer, heat release 

from the flame, and a model for the ratio of specific heats. The Woschni heat transfer model is 

selected, a Wiebe function modeled SI heat release, and the function for gamma is linear with 

respect to temperature and composition. The Wiebe function parameters for the ignition delay 

model are identical to the candidate model. 
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Figure A-16: Comparison between two-zone detailed reference model and the pressure and 
temperature computed as an input to candidate induction time models. Autoignition target is 

identified in each plot and is tuned to a rate of change of the unburned temperature greater than 
50 K/deg.  

 

A sample comparison between the generated pressure and temperature and the result from 

the reference model is presented in Figure A-16. The crank angle where the rate of change in 

unburned temperature exceeds 50 K/deg is noted. This point is computed for all test runs and serves 

as the reference autoignition phasing for the candidate models. There is good agreement up to just 

before autoignition occurs in the reference model. Figure A-17 depicts the unburned zone 

temperature and pressure at the onset of autoignition for all test points. These results include the 

impact of SI combustion and a roughly even distribution of burned gas fractions from 0 to 0.3.  
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Figure A-17: Unburned zone temperature as a function of pressure at the onset of autoignition.  

 

However, immediately prior to autoignition, the detailed chemical kinetics reference model 

predicts a slight heat release from cool flame reactions. This low-temperature heat release (LTHR) 

is not included in the specified in-cylinder temperature and pressure profile and will lead to error 

in the candidate models. Furthermore, the pressure and temperature must be generated sequentially 

at each time step as the current state depends on the previous state. This adds computational load. 

Any measure to reduce this computational expense may lead to an increase in model error. The 

autoignition phasing is identified in Figure A-16 and is consistent with the start of the autoignition 

process. 

Ignition Delay Lookup Table 

The first ignition delay model considers ignition delay results tabulated from a constant 

volume vessel simulation with the same mechanism and fuel as the reference model.  For each of 

eight combinations of equivalence ratio and residual fraction, ~1000 datapoints are compiled across 
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a range of 0.5–150 atm pressure and 550–1500 K temperature. The ignition delay is linearly 

interpolated between points to replicate a table used in a production engine controller.  

A comparison of the ignition delay lookup model with the reference model is presented in 

Figure A-18. The best agreement occurs when the reference model predicts early autoignition 

phasing. However, a significant portion of the ignition delay lookup results under predict 

autoignition phasing.  

 
Figure A-18: Comparison between the ignition delay lookup model and the reference model. No 

corrections are applied to these results.  

 

The error in the autoignition phasing is significant, and an in-depth analysis identified a 

fundamental gap in ignition-delay based models. The ignition delay at a particular temperature and 

pressure is computed using a constant volume combustion chamber model. The specified starting 

composition for all conditions is air, fuel, and EGR only. No partially oxidized products are 

included, as that is specific to the temperature and pressure history of the mixture. However, the 

reference model (as well as the engine), the ignition delay at a particular point is path dependent. 
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The composition can vary significantly throughout the cycle, and the early reactions increase 

temperature and pressure. This influence cannot be directly accounted for in the ignition delay 

models. Instead, this gap in the model is corrected by adjusting the ignition delay multiplier to 

minimize the root mean square error (RMSE). 

Ignition Delay Correlations 

Several ignition delay correlations are considered. The objective is to identify trends and 

potential challenges with this structure of autoignition model, rather than select the optimal model 

calibration. The previously described ignition delay lookup model represents the minimum error 

that an ignition delay correlation can achieve (unless a LTHR model is also included). 

Consequently, a representative sample of ignition delay correlations is selected and evaluated.  

The most widely used correlation for autoignition is developed by Douaud and Eyzat [95] 

for SI knock, (36). It is a function of octane number (ON), pressure (p) in atm, and temperature (T) 

in Kelvin. For this model, the multiplier M is selected to be 1.2 to minimize RMSE. This widely 

used correlation is based on data from a cooperative fuels research (CFR) engine and rapid-

compression machine (RCM) data for no EGR cases typical of SI knock. Typical end-gas 

temperatures and pressures are 1000–1200 K and 20–30 atm, respectively. 

 
𝜏 = 𝑀 ∙ 17.68 (

𝑂𝑁

100
)

3.402

𝑝−1.7 exp (
3800

𝑇
)    (36) 

Recognizing the influence of composition, a correlation by He et al. [113] for isooctane is 

included, (37). In addition to pressure (atm) and temperature (K), equivalence ratio (𝜙) and the 

percent of fresh O2 (χO2) in the charge. R is the universal gas constant (1.987 cal/K⸱mol). For this 

model, the multiplier M is selected to be 0.53 to minimize RMSE. This correlation is based on a 

wide range of test data, except for temperature. This model is validated and tuned to temperatures 
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between 943 K and 1027 K, as these are typical conditions for HCCI autoignition. As will be shown 

later in this work, the narrow range of temperature data introduces significant error for temperature 

and pressures during compression. 

 
𝜏 = 𝑀 ∙ (1.3 𝑥 10−7)𝑝−1.7 φ−0.77χ𝑂2

−1.41exp (
33700

𝑅𝑇
) (37) 

A correlation for gasoline that is based on a kinetics mechanism [114] and includes the 

impact of low, intermediate, and high temperature heat release is also included, (38). The quantities 

in brackets are the concentrations of fuel, O2, and total diluent (CO2, H2O, N2, etc.) expressed in 

mol/m3. Three ignition delays are combined as indicated in (39) [115]. The six coefficients (ai to 

fi) are fit to a kinetics mechanism and are unique for each ignition delay term. For this model, the 

multiplier M is selected to be 1.4 to minimize RMSE across all three ignition delay terms. 

 𝜏𝑖  = 𝑀 ∙ 𝑎𝑖 (
𝑂𝑁

100
)

𝑏𝑖

[Fuel]ci[O2]di[Diluent]eiexp (
𝑓𝑖

𝑇
) 

𝑖 = 1, 2, 3 

(38) 

 1

𝜏
 =

1

𝜏1 +  𝜏2
+

1

𝜏3
 (39) 

In addition to the NTC region and composition, the correlation presented by Khaled et al. 

included the temperature and pressure rise from LTHR [116]. The modeling of the LTHR may aid 

in improving the error associated with ignition delay correlations in general. Equations (40) to (42) 

describe the computation for the overall ignition delay, τ, as a function of the first stage ignition 

delay, τ1, and high temperature ignition delay τh. The exponential constants (n, m, and β) are 

specific to each ignition delay and fuel. The temperature and pressure changes from the cool flame 

are ΔTCF and ΔPCF. These are computed separately at each timestep. There is a notable absence of 
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the influence of burned gas, as 𝜙 is the fuel-air equivalence ratio. This does not include the impact 

of EGR, though the charge-fuel equivalence ratio, 𝜙′  ≈ 𝜙(1 − 𝐸𝐺𝑅) is used in place of 𝜙 . 

 
𝜏(𝑇, 𝑃) =  𝜏1 +  𝜏ℎ(𝑇 + Δ𝑇𝐶𝐹, 𝑃 + ΔPCF) (1 −

𝜏1(𝑇, 𝑃)

𝜏ℎ(𝑇, 𝑃)
) (40) 

 
𝜏1 = 𝐴1𝑃𝑛1𝑇𝑚1𝜙𝛽1 exp (

𝐵1

𝑇
) (41) 

 
𝜏ℎ = 𝐴ℎ𝑃𝑛ℎ𝜙𝛽ℎ exp (

𝐵ℎ

𝑇
) (42) 

An examination of the ignition delay curves for a fixed pressure uncovers several 

interesting observations. Figure A-19 depicts the ignition delay curves for all three correlations and 

the ignition delay lookup table. Only the kinetics fit model and the Khaled et al. model capture the 

NTC region and the general trend well. The He et al. model matches at high temperatures, however, 

without the capability to capture the NTC region, the ignition delay is significantly overestimated 

below 850 K. To compensate for this, the multiplier is set to 0.53 to minimize error over the test 

points, which results in an underprediction of ignition delay above 950 K. The Douaud & Eyzat 

model is interesting in that it effectively averages ignition delay through the NTC region.  
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Figure A-19: Comparison of ignition delay among relevant models at a representative point. 
Each model has the final induction time multiplier M applied indicated in the figure legend.  

 

Throughout the cycle, ignition delay among the candidate models varies both in magnitude 

and topography, Figure A-20. The induction time integral value begins to increase from ‑20° aTDC, 

where ignition delay begins to drop below 10 ms. As indicated in Figure A-20, the combined 

ignition delay error for all models is a minimum at just below 10 ms ignition delay. As in-cylinder 

conditions vary from this point, however, the character of each correlation becomes clear. The He 

et al. model has the simplest character as it does not account for the NTC region. The Douaud & 

Eyzat model also does not model the NTC, but it is relatively sensitive to pressure so as the heat 

release from SI heat release raises pressure after TDC, the ignition delay remains relatively low.  

The varying character and magnitude will yield a wide array of results, and this is evident 

in the results compared to the reference model (Figure A-21). All models perform better as 

autoignition phasing (θAI) advances. However, there remains a relative insensitivity to combustion 

phasing relative to the reference model. Early AI phasing is underpredicted, and later AI phasing 
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is overpredicted. Also indicated in Figure A-21, the percent of the total test runs which do not 

predict autoignition are listed in the legend. The He et al. model predicts no autoignition for 24% 

of all cases (autoignition occurred for all reference model cases). This can be linked to the 

significant under representation of ignition delay at low temperatures. The other two correlations 

have less than 1% of cases which did not predict AI.  

 
Figure A-20: Ignition delay (top) and induction time integral value (bottom) throughout the cycle. 

Each of the models has a slightly different ignition delay character which can impact the 
resulting induction time integral. 
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Figure A-21: Comparison of ignition delay correlation models. The ignition delay correlations 
demonstrated reduced sensitivity to AI phasing, and the He et al. model predicted 24% of cases 
would not autoignite (non-AI cases are not shown), despite all reference model cases producing 

autoignition. 

 

The Khaled et al. model produces an increased temperature profile from low-temperature 

heat release, however, it is often significantly lower than the LTHR predicted by the reference 

model with full chemical kinetics (Figure A-22). This resulted in model performance that is 

consistent with the best-performing ignition delay correlations, but not significantly improved. 

 



 

180  

 
Figure A-22: Comparison of unburned gas temperature for the reference model (showing the 

autoignition event) and the cylinder model (with influence of SI heat release). The cylinder model 
also includes the modeled LTHR and the two ignition points of the Khaled et al. model for this 

operating point. 

 

Regression Models 

Several challenges associated with modeling the engine cycle after IVC are eliminated by 

selecting a regression model. Choi et al. noted that an empirically-based model does not produce a 

suitably low error over the range of conditions for HCCI, and subsequently elected to apply an 

ANN to ignition delay prediction [117]. In this work, three linear regression fits are considered in 

addition to an artificial neural network. All strategies have the same input dataset: 520 runs that 

covered a wide range of SACI operation. The output of these models is the AI phasing, while the 

inputs are control parameters or closely related to control parameters. More specifically, the inputs 

are engine speed, pIVC, burned gas fraction, TIVC, equivalence ratio, effective compression ratio, 

and the start of combustion (CA01%) for the SI phase. 
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Table A-3: Input parameters and ranges for linear regressions and ANN. 
Input Parameter Range for Regression Fit 
Engine Speed 1000 – 3500 RPM 
Equivalence Ratio 0.5 – 1.0 
Burned Gas Fraction 0 – 40% 
TIVC 350 – 500 K 
PIVC 0.5 – 1.4 atm 
Effective CR 10:1 – 18:1 
SI SOC (CA01%) -40 – 10 °aTDC 

 

The linear regressions are performed using the MATLAB function lsqnonlin, where the 

objective function to minimize is the squared error of autoignition phasing. The input range is 

indicated in Table A-3. To test the predictive capability of the model and prevent overfitting, the 

regressions are fit to a randomly selected 70% of the observations. Though a p-value analysis of 

each coefficient tends to push the model towards a linear fit, all coefficients are included for the 

quadratic and cubic regressions to identify the potential error reduction and computational expense. 

All linear model coefficients are statistically significant with a p-value of 0.05 or lower. 

The ANN is configured to train on the same 70% of the data used to fit the linear regression. 

The remaining 30% is split evenly between the test and validation datasets. A sweep of training 

data size indicates a relative intensity of the training dataset portion between 40–80% of the input 

data. The Levenberg-Marquart backpropagation algorithm is selected as computation speed and 

memory usage during training is inconsequential. Mean-squared error is selected as the 

optimization function to significantly penalize large errors in autoignition phasing. A higher error 

weight for autoignition phasing at MBT and later is evaluated to bias the model accuracy towards 

typical combustion phasing. However, this does not significantly improve the performance of the 

model, and therefore the error waiting is reconfigured to a uniform weighting. To prevent 

overfitting, the number of hidden layers neurons is swept to determine the appropriate model size. 

Ten (10) hidden neurons in one hidden layer are chosen as the test error stabilized at this point. A 
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further increase in the number of hidden layers or the number of hidden neurons does not improve 

model accuracy and increases overfitting. 

The ANN model demonstrates the best accuracy for any model (Figure A-23). The linear, 

quadratic, and cubic regression are similar to each other, the error is slightly higher than the ANN. 

This is consistent with several other sources which found that the performance difference between 

linear regressions and ANNs are relatively small [55,118,119]. All regression models have superior 

performance than any ignition delay model (compare to Figure A-21). All cases for all regression 

models predict autoignition, the sensitivity with autoignition phasing is strong, and late combustion 

phasing accuracy is significantly improved. The relatively high accuracy associated with the linear-

fit regression model suggests that SACI occurs over a relatively narrow range of operation points 

that a linear model reasonably captures the response. 

 
Figure A-23: Comparison of regression models to the reference case. All cases for all regression 

models predicted autoignition, the sensitivity with autoignition phasing is strong, and late 
combustion phasing accuracy is significantly improved compared to all ignition delay models.  
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Comparison of All Models 

Examining all models together identifies some key trends. All models and types of models 

are better at predicting early autoignition than later ignition timing. Early autoignition timing occurs 

when compression from SI heat release and the piston are phased together and pressure and 

temperature both increase significantly. Later SI phasing are more troublesome for two reasons. 

First, the downward moving piston and SI flame propagation have roughly equal and opposite 

effects. As the in-cylinder temperature and pressure steady, if there is an error in the ignition delay 

at or around this condition, the predictively capability is diminished. The other potential challenge 

is the transition from SACI to SI at later combustion phasing. If the added heat from the flame, if 

it occurs late enough, the total pressure and temperature history is not sufficient for AI to occur. 

This condition is exemplified in Figure A-24. All models suffered in accurately predicting 

autoignition time at this sharp transition point. It is important to note, however, that this effect only 

becomes significant when the start of autoignition occurs after about 10° aTDC. The CA50 of the 

autoignition phase would be sufficiently late for this high-error region to be insignificant for MBT 

operation. Later combustion phasing to avoid knock, however, may enter this high-error region.  
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Figure A-24: The transition points from SACI combustion to non-SACI combustion (i.e., no 
autoignition). The shaded regions indicate no autoignition and towards later combustion 

phasing, the transition is relatively sharp.  

 

Table A-4: Root mean square error (RMSE) and execution time for each candidate model. The 
accuracy of the regression models outperformed the physics-based models, and the 

computational expense is similar or better.  

Model RMSE 
[CAD] 

Mean 
Error 
[CAD] 

Minimum 
Error 
[CAD] 

Maximum 
Error 
[CAD] 

No AI 
Predicted 

Estimated 
Execution [s] 

ANN  1.3 -0.1 -6.7 5.6 0.0% 1.45 x 10-6 

Cubic Fit 3.4 0.1 -15.5 9.9 0.0% 3.64 x 10-6 

Quadratic Fit 3.8 0.0 -16.5 11.4 0.0% 6.95 x 10-7 

Linear Fit 3.8 0.0 -16.4 12.0 0.0% 1.69 x 10-8 

Lookup (ID) 5.0 0.1 -18.3 16.0 1.7% 4.13 x 10-5 

Kinetics Fit (ID) 4.9 0.0 -21.0 11.5 0.0% 3.76 x 10-6 

Douaud & Eyzat (ID) 5.5 -0.1 -25.5 21.0 0.6% 3.72 x 10-6 

He et al. (ID) 5.6 1.5 -19.5 18.8 24% 3.73 x 10-6 

Khaled et al. (ID) 4.9 -0.4 -23.8 22.3 0.0% 3.97 x 10-6 

Note: The pressure and temperature computation used as the input for ignition delay models had an estimated time of 

3.02 x 10-6 s. 

Table A-4 and Figure A-25 present the RMSE and execution time for the eight candidate 

models. The ANN is the most accurate and the only model with an RMSE below 2 CAD. Also 

included in Figure A-25 are typical standard deviations of CA05 (σCA05) for HCCI and conventional 
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SI for context. The RMSE of AI models and σCA05 are not directly comparable as σCA05 is 

representative of a particular operating point, while the RMSE of an autoignition model is a 

statistical assessment of the mean error over the 520 data points. Nonetheless, this comparison 

illustrates that the regression models’ accuracy is similar to or better than the typical variation of 

the SI combustion process, and the ANN is roughly as accurate as the cycle-to-cycle variation of 

HCCI.  

The linear regression has the lowest computational expense with an execution time of 10-8 

seconds. No attempt is made to optimize performance of any model as this would result in a loss 

of accuracy, and the selection of the optimal balance between speed and accuracy for a particular 

model is outside the scope of this work. All the ignition delay correlations have similar execution 

times. Considering their simplicity, the relatively long execution time requires some elaboration. 

These models require a computation of the pressure and temperature throughout the cycle, and the 

non-linear dependent relationship of pressure, heat release, heat transfer, and temperature must be 

computed crank angle by crank angle. The computational expense of this step alone is 3 x 10-6 

seconds, setting the lower bound of any ignition delay correlation. If this step is somehow 

eliminated, the resulting execution time estimate is 7–10 x 10-7 seconds, about equal to the quadratic 

fit linear regression. The ignition delay lookup model, though relatively accurate, is also the most 

resource intensive as frequent table look-ups and interpolations are required. The linear regression 

is the fastest as it did not rely on resource intensive operations such as exponential functions or 

non-linear relationships. 
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Figure A-25: Comparison of accuracy and execution time for the eight candidate models. 

standard deviation of CA05 (σCA05) for both HCCI and SI combustion are included for 
comparison. 

 
Figure A-26: Performance of each ignition delay model compared to the reference model. 
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Figure A-27: Performance of each regression model compared to the reference model. 

 

Reduced Chemical Kinetics Mechanisms 

Three reduced chemical kinetics mechanisms are compared to aid in illustrating the 

modeling challenge. The detailed mechanism is the reference model and the sole difference in this 

comparison is the mechanism. If the reduced mechanism did not include components of the base 

four-component gasoline surrogate, then the fuel is also modified accordingly (see Figure A-28). 

Each of these mechanisms are, of course, physics based. However, as the model complexity 

decreases, the ability to capture the highly complex physics diminishes. Consequently, the root 

mean square error (RMSE) increases. The simplest mechanism, a 33-species PRF mechanism 

[120], approaches the same error as much simpler physics-based models and exceeds the error of 

all regression models. Other mechanisms included are a 165 species model [97] and an 80 species 
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PRF-E mechanism [121]. The execution time of these models is several orders of magnitude slower 

than the regression and simplified physics-based models. 

 
Figure A-28: Comparison of accuracy and execution time for the reduced kinetics models. 

Execution time is measured in real time using Chemkin solver on an Intel Xeon E5-1620 v3. The 
reference model (1389 species) has an error of zero by definition.  

 

To recover accuracy, either complexity must be reintroduced, or non-physics-based 

corrections must be applied. If a significant quantity of model corrections is applied, the value of 

the physics-based model is lost. The progressively increasing error as execution time decreases 

illustrates the modeling challenge for physics-based models. Regression-based models resolve this 

challenge, however their performance in untested regions has higher risk than a physics-based 

model.  

Sensitivity of the Regression Model Structure to Engine Phenomenon 

While the ignition delay models are structured to match the underlying physics and 

chemistry, the regression models identify the best fit to the data. Through previously described 
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regularization techniques should maintain generalizability beyond the test points, a critical 

assessment may cast doubt on the trends presented in this work. 

To enhance the confidence in the findings of this work, an investigation of the fit and 

predictive capability of the regression models for engine data is performed. Though a SACI dataset 

may provide unique insight, the potentially confounding influence of cycle-by-cycle variability of 

flame propagation can potentially mask autoignition model performance. As this work focuses on 

autoignition, the experimental analysis will examine autoignition-dominant combustion. Therefore, 

an HCCI engine is selected as the next step in model evaluation. Furthermore, HCCI is a bounding 

condition for SACI, and the boundary where accurate autoignition phasing prediction is most 

critical. The objective of this experimental evaluation is to identify the relative importance of 

engine phenomenon not included in the analysis on the selection of model structure. It is not 

intended to be a validation of a particular model calibration. 

The same process and parameters for the regression models is performed as previously 

described, though each model is refit to HCCI data. Despite an attempt to achieve a broad range of 

experimental points the hardware and combustion strategy constraints limits the range of points 

within misfire and noise limits. Of the seven degrees of freedom of the SACI model, two are 

eliminated for HCCI. The cams and geometric compression ratio are fixed, so the effective 

compression ratio is constant. There is also no SI flame, so the SOC of SI is irrelevant. While the 

influence of CReff and SOC are significant for SACI, the impact of engine phenomenon such as 

thermal and fuel stratification on model selection can still be evaluated. Of the remaining five 

degrees of freedom, HCCI combustion cannot operate over a wide range of combustion phasing 

and compositions. Thus, there is a limited range of TIVC, 𝜙, residual fraction, and engine speed that 

are experimentally feasible. Intake pressure varied only slightly around ambient pressure. 

Nonetheless, a total of 161 data points is selected for this evaluation. The HCCI engine parameters 
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are listed in Table A-5. The internal residual fraction is determined from the state estimation method 

outlined by Ortiz-Soto et al., and subsequently used to determine the total trapped mass at intake 

valve closing [122]. The ideal gas law is used with the measured in-cylinder pressure, cylinder 

volume, and trapped mass to determine the temperature at IVC.  

Table A-5: HCCI engine parameters for regression model evaluation. 

 HCCI Engine 

Bore x Stroke [mm] 86 x 94.5 

Compression Ratio 12.5:1 

Valvetrain Exhaust Rebreathe 

Engine Speed 1200 – 2000 RPM 

Relative AFR (λ) 1.37 – 1.58 

Intake Pressure  1.03 – 1.06 atm 

Intake Temperature 
65 – 95 °C 

(Intake Heating Required) 

 Temperature at IVC 475 – 525 K 

Burned Gas Fraction 30 – 35% 

 

The resulting comparison can be found in Figure A-29. As the HCCI datapoints are limited 

in range, the resulting RMSE has improved relative to the SACI dataset. This suggests that 

variations in charge stratification, thermal stratification, etc. may be relatively insignificant relative 

to autoignition phasing prediction. The trend among the models remains the same. The regression 

models increase in accuracy as model complexity increases. This comparison illustrates that for 

these two independent applications, the ANN demonstrates the lowest error, and all polynomial 

regressions have similar error that is only slightly worse than the ANN. 
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Figure A-29: Comparison among regression models for SACI simulation results and HCCI 

engine data. The trends are consistent with the model performance for SACI simulation results. 
The overall reduction in RMSE for the HCCI engine data cases provide confidence that engine 

phenomenon such as stratification may not confound the regression model approach. 
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B. VEHICLE SIMULATION AND MODE SWITCHING 

 

Though there are potential efficiency benefits, SACI combustion magnifies the control 

complexity of conventional engines. The charge composition requirements for the SI and AI 

combustion phases are different and often competing. These competing constraints lead to a 

potentially narrow operating range and charge preparation challenges. Consequently, additional 

actuators are required, the degrees of freedom are expanded, and the engine may need to transition 

between different combustion modes. Hybrid LTC strategies has been shown to have a uniquely 

synergistic impact on improving efficiency beyond either hybridization or advanced combustion 

modes alone, though this has not been established for SACI specifically [123]. 

There are several hybrid electric vehicle (HEV) architectures. For this work, only a P0 

hybrid and a P2 hybrid are considered. For a P0 hybrid, the electric machine is coupled to the engine 

through the accessory belt. A P2 hybrid is connected to the transmission input shaft. In the case of 

the P2 hybrid, a clutch between the engine and the transmission enables the vehicle propulsion by 

the electric motor only without any parasitic losses from spinning the engine. Electric-only drive is 

not possible in a P0 configuration as the torque output is limited by the belt drive. Since a SACI 

engine is likely to be more expensive than a conventional engine, low-cost hybrid architectures are 

selected. The P0 configuration is the lowest cost architecture, and a P2 hybrid configuration is the 

lowest cost architecture that enables engine de-clutching.  

Recognizing the transient challenges with advanced combustion modes, the first part of 

this work evaluates a tip-in on a 1D engine model. This engine model is exercised to evaluate the 

impact of transport delays and finite actuator movement rates on transient torque output and mode 

switching. The findings from the 1D simulation add the necessary context for the next part of the 
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work, a vehicle simulation. Two HEV configurations and a non-HEV configuration are simulated 

over four drive cycles. A control strategy to minimize the mode switching for the SACI engine is 

introduced and the results compared among the SI engine and the SACI engine without the mode-

switch minimization strategy. 

Vehicle Model 

The vehicle model is configured to run over a prescribed drive cycle and switch between 

several hybrid modes as appropriate. The vehicle and engine parameters are listed in Table B-1. 

Vehicle parameters are held constant for simplicity, as automakers invest in light-weighting, 

aerodynamic improvements, and rolling resistance reduction to different degrees.  

Table B-1: Vehicle Configurations. 

 Conventional 
Vehicle 

P0 Hybrid 
Vehicle 

P2 Hybrid 
Vehicle 

Configuration Front-engine, front-wheel drive 
Total Vehicle Mass 1200 kg 
Vehicle Aerodynamics 3.5 m2 Area / Cd = 0.32 
Rolling Resistance 
Coefficient 0.01 

Battery Size – 0.55 kWh 1.1 kWh 
Electric Machine Power – 5 kW 10 kW 

 

The control strategy for managing the hybrid vehicle is rule-based and summarized in 

Table B-2. A charge sustaining strategy is implemented in the battery management system (BMS). 

Therefore, a balance of electric assist and electric absorption is required for each HEV 

configuration. Regenerative braking is the desirable means of generating electricity, however, the 

BMS can direct the electric machine (EM) to absorb torque from the engine based on the current 

and desired state of charge (SOC). EM output occurs under two conditions. Electric-only drive is 

available for the P2 HEV configuration only, as electric-only operation is not possible for the P0 

HEV. Both HEV configurations have EM-assist available, where the electric machine adds 
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additional torque beyond the output of the engine. This mode is limited to when the SOC is above 

50% to prevent the use of this mode from depleting the battery only to then require recharging.  

Table B-2: HEV control strategy. 
Condition Description Engine Torque Electric Motor 

If Tdemand < 0 Braking event: Regen  Fuel Cut Tdemand 
If Tdemand > 0 and 
Tdemand < Tmax,EM 

Electric only drive possible 
(P2 HEV case only) Fuel Cut Tdemand 

Tmax,Eng < Tdemand < 
Tmax,Eng 

Charge sustain, charging power 
determined by BMS Tdemand - Tcharge Tcharge 

Tdemand > Tmax,Eng - 
Tmax,EM  and 
SOC > 50% 

High torque demand with excess 
electrical energy available Tdemand - Tmax,EM Tmax,EM 

 

The SACI engine comprises three different modes of operation. SI at low loads, high loads, 

and engine speeds above 2500 RPM. SACI combustion is split between two regions. At low to 

medium loads below 2500 RPM, SACI is operated lean (𝜙 = 0.5), at medium to high loads below 

2500 RPM, stoichiometric SACI is used as NOx production is likely above regulatory thresholds. 

Lean-NOx aftertreatment is not considered, therefore the engine-out NOx must be minimized when 

running lean. The conventional engine data is computed with an experimental dataset (Figure II-7). 

The SACI combustion model is determined through extensive kinetics simulations and a review of 

autoignition burn duration models [124]. The high compression ratio is required to obtain sufficient 

ignition energy, and is consistent with a production SACI engine [60]. Operating in SI mode at 

high loads with this high of a compression ratio is challenging. Extensive use of Millerization via 

late intake valve closing is required, consistent with similar high compression ratio gasoline engines 

[42]. A kinetics-fit knock model is leveraged to ascertain knock propensity. Across the entire 

operating range, the Multi-Mode SI-SACI engine shows about a 5% improvement, with the lean 

SACI region having the highest improvement at 9% improvement relative to the SI engine. The 

high compression ratio and low brake mean effective pressure (BMEP) keeps exhaust temperatures 

just below the threshold for component protection enrichment at high power. Despite the late 
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combustion phasing, the SACI engine has lower BSFC at peak power compared to the conventional 

engine. The configurations for both models are illustrated in Figure II-3 and Figure II-8. The boost 

device and intake, exhaust, and EGR pathways for both models are explicitly modeled to capture 

the relevant transient dynamics. 

Mode Switching During Tip-In 

The challenge of a multi-mode SACI engine is the requirement to switch operating modes. 

Unlike the vehicle model, the engine model considers the detailed control of the engine actuators. 

The actuators have realistic movement constraints and must respond accordingly to transport 

delays. The combustion model for both is a Wiebe function, and both boost devices are explicitly 

modeled. The supercharger is clutched by setting the pulley ratio to 0.001 and opening a 

supercharge bypass valve.  

The evaluation of an electrified SACI powertrain is performed via a tip-in from 20 Nm to 

200 Nm at 2000 RPM over about 2 seconds. The speed of this transient is carefully selected to 

maximize the control challenge. This tip-in is slow enough to require a progression through all 

modes of operation, but fast enough for actuator movement constraints and transport delays to be 

significant. A faster tip-in can exclude all SACI operation, and the control burden is lessened if the 

tip-in is slowed. Figure B-1 illustrates the progression of target states throughout the tip-in. There 

are several step-changes in actuator output, e.g., equivalence ratio, external EGR (eEGR), and cam 

phaser position. These represent the target actuator position and finite actuator movement rates 

must be accounted for. Even for actuators that can respond near instantaneously, there can be a 

significant control challenge as well. Consider the shift in equivalence ratio from one cycle to the 

next. A change in equivalence ratio from 0.5 to 1.0 will roughly double the torque output, which is 

not acceptable. The model must be adjusted to account for each of these constraints. 
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Figure B-1: SACI actuator set points during transient maneuver. These values represent the 

stead-state targets and do not account for finite actuator speed or transport delays. The engine 
controller and supervisory vehicle controller will have to adapt to these dramatic differences in 

in-cylinder state. 

 

Feasible actuator speeds are achieved by either explicitly limiting the rate of change in the 

controller, or by filtering the target signal to eliminate rapid changes in actuator position. Figure 

B-2 illustrates the impact of the actuator constraints. For the EGR valve, an imposed limit of 

200 deg/s slows the drop in EGR at the 1.4 second mark as the engine transitions to high-load SI 

operation. Also shown in Figure B-2 is the target and actual intake cam phaser position expressed 

as degrees from the parked position. The actual intake cam phaser location is achieved by filtering 
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the target rate to produce a reasonable phase rate. The exhaust cam phaser (not shown) has a similar 

response. The peak phase rate of the filtered command is 95 crank degrees per second. 

 
Figure B-2: Illustration of modification to steady-state control strategy to achieve feasible 

combustion. 

 

Actuator movement constraints and transport delays combine to prevent the target 

combustion mode from being feasible. When transitioning from lean SACI to stoichiometric SACI, 

for example, the in-cylinder state must change drastically. Low EGR dilution is ideal for lean SACI 

as the air dilution is sufficient and flame propagation would suffer with increased EGR levels. The 

opposite is true of stoichiometric SACI, where relatively high amounts of EGR dilution is needed 

to slow autoignition reaction rates and reduce load. The dramatic change in in-cylinder composition 

requires several cycles to complete. During this time, the very lean (𝜙 = 0.5) operation is no longer 

feasible as dilution levels increase. Increasing the equivalence ratio is required, however, at higher 

loads the NOx produced by the flame may exceed regulatory limits. Thus, a step change to 

stoichiometric operation is required, however, for a short time, there is still insufficient EGR for 

stoichiometric SACI within noise constraints. Therefore, SI combustion is selected until conditions 
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are feasible for SACI. As previously mentioned, the torque output when transitioning from lean to 

stoichiometric can be substantial. SI enables late combustion phasing to keep the change engine 

load appropriate. Late combustion phasing also permits controlled torque increase as the target load 

increases. When the high dilution levels required for SACI are achieved, stoichiometric SACI is 

viable and this mode is engaged. As load increases, the high dilution reduces volumetric efficiency 

which prevent the engine output from reaching the target torque. Consequently, the EGR valve is 

closed and high-load SI mode is selected. However, SACI operation must be held until the EGR 

levels drop sufficiently for late combustion phasing of the high-load SI to be feasible. Figure B-3 

illustrates this process. 

 
Figure B-3: Detailed examination of SACI tip in. Each combustion mode is encountered, 

including SI mode during the lean to stoichiometric SACI transition. The largest error from 
target is about 23 Nm, which is less than 5 kW at 2000 RPM. A 5 kW electric machine therefore 

has the capability to smooth the torque fluctuations. 
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Engine transitions between modes and variations in cylinder composition within a 

particular mode generate substantial torque fluctuations. These fluctuations are an excellent 

opportunity for a P0 or P2 hybrid powertrain to work synergistically with a SACI powertrain to 

smooth the torque fluctuations. As indicated in Figure B-3, the maximum torque fluctuations are 

within 23 Nm, which equates to 5 kW at 2000 RPM. A 5 kW electric machine therefore has the 

capability to absorb or augment engine torque and minimize the torque error. 

The result of the tip-in for both engines can be seen in Figure B-4. Two SACI variations 

are compared to a conventional turbocharged SI engine. One SACI variation is the multi-mode 

transient previously described. A 5 kW electric machine (EM) to eliminate the torque variations 

during the transient as included in this result. The other SACI variation uses only SI combustion to 

illustrate the maximum transient performance. This variation demonstrated a significant 

improvement in transient performance compared to the conventional engine. The elimination of 

turbocharger lag by using a supercharger reduces the time to 90% torque (180 Nm) by almost a full 

second. The SACI with both combustion modes and a 5 kW electric machine had similar 

performance to the conventional SI engine, though the initial torque increase is relatively slow. A 

larger EM may further reduce the controls burden for mode-switching. The 10 kW EM used for the 

P2 HEV, for example, enables 50 Nm of torque authority. In this case, the need to switch to 

transitional modes may be eliminated entirely while still maintaining the same brake torque output. 

The EM can supplement engine torque for a short time to achieve a torque target. This strategy can 

eliminate the mode transition entirely if the torque demand remains just above the peak torque of 

that particular combustion mode. Otherwise, the transport delay and actuator movement constraints 

can be lessened.  
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Figure B-4: Tip-in and tip-out for conventional SI and multi-mode SACI. Note the clear 
turbocharger lag which slows the rate of increase in torque. The larger displacement 

supercharged SACI engine can increase the trapped mass much quicker, but the complex controls 
slows the rate of change of engine load. 

 

Vehicle Model Results 

The vehicle model is exercised over four drive cycles: US06, FTP-75, HWFET, and the 

NEDC. The miles per gallon (MPG) relative to a non-HEV conventional engine for each 

configuration and each drive cycle is plotted in Figure B-5. For both engines, greater electrification 

improves fuel economy by eliminating low-efficiency operation and recovering braking energy. 

The SACI powertrain demonstrates a 4–5% improvement over the conventional SI engine in all 

cases. The improvement is not as strong as shown by HCCI with Lawler et al. [123], however, the 

type of reference engine is different. In their work, a naturally aspirated 2.5 L SI engine is the 

baseline. In this work, a modern downsized 1.5 L turbocharged engine serves as the benchmark. 

This degree of downsizing alone is expected to achieve 6–15% improvement depending on the 

drive cycle (excluding hybridization) [125]. Thus, despite the loss of drive cycle fuel economy due 

to upsizing and with both engines having the same HEV configuration and control strategy, the 
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SACI engine still offers a net fuel economy benefit. Furthermore, a SACI P0 hybrid engine has a 

similar fuel economy as a P2 hybrid with a conventional powertrain. A cost analysis is outside the 

scope of this work, but it is plausible that a P0 SACI hybrid is preferable to a P2 SI hybrid after 

considering the relative cost, packaging, and complexity. There is a significant improvement from 

a P0 hybrid as engine stopping during the FTP-75 and NEDC cycles saves fuel. The HWFET cycle 

has little opportunity for regenerative braking, thus there is limited recuperated energy to be used 

to offset fuel consumption. Further electrification continues to improve fuel economy; however, 

the gains are incremental.  

 
Figure B-5: (left) MPG improvement relative to conventional SI engine for all drive cycles and 
HEV configurations. (right) Relative MPG improvement for the P0 HEV for each drive cycle. 

 

The SACI engine frequently switched combustion modes over a drive cycle. While there 

may also be a fuel economy impact of these transitions, the control implications are substantial. 

The previous section described the cycle-by-cycle charge preparation challenge that must be 

overcome to switch between SACI and SI and between lean and stoichiometric SACI. 

Electrification is helpful in easing the control burden of the mode transition, but it can also eliminate 

mode transitions by extending each mode to higher and lower torque boundaries. In the P0 HEV 

configuration, the electric machine can add or absorb up to 5 kW to the engine power, while the 
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engine can remain in the current mode. For example, consider a portion of the US06 cycle, Figure 

B-6. The base strategy, which makes no attempt to maintain the current combustion mode, switches 

among four combustion modes ten times over the course of 35 seconds. Leveraging the modest 

5 kW electric machine eliminates one combustion mode (high-load SI) and reduces the number of 

mode switches to six. Mode switches that are not eliminated are delayed by about 1 second, 

extending the time for the engine controller to manage the mode transition. 

 
Figure B-6: Combustion mode strategy comparison. The strategy that leverages the electric 

machine to minimize mode switching delays or eliminates mode switches. 

 

Mode switches that are eliminated require the engine controller to hold engine torque at 

the transition point, while the electric machine absorbs or augments driveline torque to achieve the 

desired traction power (Figure B-7). For this example, the 5 kW electric machine has about 25 Nm 

of torque capability at this speed (~2000 RPM). For the cases where the mode switch is delayed, 

the rapid engine torque change when the mode-switch does occur is not feasible. The production 
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controller would instead leverage this time to begin the mode transition so that it is completed by 

the time the electric motor capacity is reached.  

 
Figure B-7: Total torque demand and engine torque over a portion of the US06. The combustion 

strategies are indicated on the right side of the figure. The 5-kW electric machine absorbs or 
assists in regions where a mode-shift has been eliminated or delayed. 

 

Evaluation the performance of this control strategy over the four drive cycles can be 

challenging, as there may be an imbalance in the absorption and assisting by the electric machine. 

For example, over the NEDC cycle the controller spends about 30% of the time absorbing engine 

torque, mostly while the engine is operating in the lean SACI mode. Conversely, less than 3% of 

the time is spent using the stored electrical energy to augment the engine torque either to maintain 

the current mode or for extra peak power. A charge sustaining strategy would either need to reduce 

the energy absorbed or find a suitable alternative use for this energy. The development of the 

control strategy to achieve charge sustaining and mode-switch-minimization is outside the scope 

of this work, however, a valuable comparison can still be made. Rather than comparing drive cycle 

fuel economy, three results will be examined. First, the percent reduction in mode switches offers 

a quantifiable metric for the simplification of the controls challenge. Second, the portion of time 



 

204  

spent in either the lean or stoichiometric SACI mode provides an indication of potential fuel 

economy improvements. Finally, the average BSFC over the drive cycle quantifies this potential 

fuel economy improvement.  

Table B-3 lists the reduction in mode switches and the time in either SACI mode for each 

drive cycle. The minimization of mode-switching (MMS) strategy reduces mode switches by 15–

40% depending on the cycle, with the HWFET cycle benefiting the most. The other three cycles 

have a significant number of times where the vehicle must come to a complete stop. Mode-

switching during a complete stop cannot be avoided. However, these conditions may enable 

alternatives to progressing through all the combustion modes. For example, a fuel-cut during the 

deceleration or SI only during the acceleration from a stop are relatively straightforward from a 

control perspective. The time in SACI mode is most improved for the low-power drive cycles (FTP-

75 and NEDC), as the typical engine torque is below the minimum SACI torque. These cycles 

improve mostly from the extension of the lean SACI mode to lower loads. 

Table B-3. Drive cycle analysis of the minimization of mode-switching (MMS) strategy. 

Drive Cycle 
Reduction in Mode 
Switches with MMS 

Time in SACI Mode 
Base 

Strategy 
MMS 

Strategy 
Change 

(MMS/Base) 
US06 20.9% 56.9% 60.3% 106% 
FTP-75 15.4% 25.4% 36.2% 143% 
HWFET 39.7% 77.1% 84.5% 110% 
NEDC 20.3% 27.2% 48.8% 179% 

 

Based on the substantial increase in SACI operation for the FTP-75 and NEDC, the average 

engine BSFC over these drive cycles improves the most. The other two cycles do show an 

improvement; however, it is only slight. Figure B-8 and Table B-3 compares the base and MMS 

SACI strategies to each other and the conventional SI engine for reference. Both SACI control 

strategies improve upon the conventional SI engine, though the MMS strategy has the strongest 
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improvement. Avoiding the low-load SI operation is the most significant source of improvement 

for the two low-power cycles (FTP-75 and NEDC). 

 
Figure B-8: Average BSFC over four drive cycles for three engine configurations. The SACI 

powertrain shows improvement for both control strategies, however, the minimization of mode-
switching strategy has the strongest advantage. 

 

Summary 

A simulation is performed to demonstrate the fuel economy improvement potential of 

SACI compared to a modern downsized turbocharged engine for an electrified powertrain.  The 

objective is to illustrate the potential synergy between SACI and electrification, specifically as it 

relates to the control challenge of mode-switching. A tip-in at 2000 RPM is simulated, which 

demonstrates the capability for a 5-kW electric machine to aid in eliminating torque disturbances 

during mode transitions. These torque disturbances arise from transport delays (e.g., external EGR), 

finite actuator movement rates, and cycle-by-cycle variation in in-cylinder composition, among 

others. 
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The two engines are evaluated over four drive cycles in non-HEV, P0 HEV, and P2 HEV 

configurations. For all architectures, the SACI powertrain demonstrates a 4–5% improvement in 

fuel economy, with greater electrification slightly reducing the SACI advantage. A minimization 

of mode-switching (MMS) strategy is introduced to reduce the control burden of mode switching. 

The load limits of both SACI modes are extended by using the electric machine to absorb or 

augment driveline torque as needed to maintain the current combustion mode. Over the four drive 

cycles, 15–40% of mode-switches are eliminated, mostly during continuous engine operation. The 

portion of time in SACI mode is significantly increased for low-power drive cycles (FTP-75 and 

NEDC) from the extending the lean SACI mode to lower driveline. 

The following conclusion are drawn as it relates to the production control of an electrified 

SACI engine: 

1. The efficiency benefit of a SACI engine is largely additive to powertrain electrification. 

2. A 5 kW electric machine can eliminate torque disturbances as the engine transitions from 

one combustion mode to another. The impact of transport delays and finite actuator 

movement rates are effectively mitigated. 

3. A 5 kW electric machine can eliminate or delay mode-switches during drive cycle 

operation. 

4. More electrification further reduces the control complexity as a greater tolerance to torque 

error is acceptable. Thus, increased powertrain electrification is an enabling technology for 

SACI as it reduces the controls burden of mode switching.  
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