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ABSTRACT 

Biological soil amendments of animal origin (BSAAO), such as animal waste or 

animal waste-based composts, commonly used as organic fertilizer, may contain human 

pathogens such as Salmonella and Listeria monocytogenes. To reduce harmful 

microorganisms, animal waste can be treated by composting or other validated scientific 

methods. But insufficient treatment may introduce pathogens into agricultural fields. As a 

nutrient-rich fertilizer, poultry litter may also contain human pathogens with Salmonella 

spp. as a primary focus. Physical heat treatments can kill Salmonella in poultry litter with 

or without the composting process, but validation studies or guidelines are still needed for 

the litter processing industry to ensure the microbial safety of their products. Further, due 

to the ubiquitous nature of L. monocytogenes, it is essential to understand the ecology of 

this pathogen where it inhabits and then develop strategies to reduce Listeria 

contamination. We hypothesized that compost-adapted competitive exclusion (CE) 

microorganisms against L. monocytogenes exist in animal waste-based compost. In 

combination with the culturing method, the use of next-generation sequencing approaches 

is expected to speed up the discovery of those compost-borne CE microorganisms for 

controlling L. monocytogenes in pre-harvest environments. Therefore, the objectives of this 

study were to 1) test a nonpathogenic surrogate microorganism for validating desiccation-

adapted Salmonella inactivation in physically heat-treated broiler litter, 2) validate the 

physical heat treatment of poultry litter composts using surrogate and indicator 

microorganisms for Salmonella in industrial settings, 3) use next-generation sequencing 

approaches to understand the microbial community profile and functions in animal waste-
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based compost in the presence and absence of L. monocytogenes, and 4) isolate and identify 

the competitive exclusion microorganisms against L. monocytogenes in biological soil 

amendments. 

In order to test a non-pathogenic surrogate for validating desiccation-adapted 

Salmonella inactivation in physically heat-treated broiler litter, thermal resistance of 

desiccation-adapted S. ser. Senftenberg 775/W was compared with that of Enterococcus 

faecium NRRL B-2354 in aged broiler litter. Samples of aged broiler litter with 20, 30, and 

40% moisture content were inoculated separately with desiccation-adapted S. Senftenberg 

775/W and E. faecium NRRL B-2354 at ca. 5 to 6 log CFU/g, and then heat-treated at 75, 

85, and 150°C. At all tested temperatures, desiccation-adapted E. faecium NRRL B-2354 

was more heat-resistant than desiccation-adapted S. Senftenberg 775/W (P < 0.05). During 

the treatments at 75 and 85°C, E. faecium NRRL B-2354 in aged broiler litter with all 

moisture contents was reduced by 2.9- to 4.1-log, and was above the detection limit of 

direct plating (1.3 log CFU/g), whereas S. Senftenberg 775/W could not be detected by 

enrichment (> 5-log reductions) during holding time at these temperatures. At 150°C, E. 

faecium NRRL B-2354 in aged broiler litter with 20 and 30% moisture contents was still 

detectable by enrichment after heat exposure for up to 15 min, whereas S. Senftenberg 

775/W in aged broiler litter with all moisture contents could not be detected throughout the 

entire treatment. Our results revealed that E. faecium NRRL B-2354 can be used as a 

surrogate for Salmonella to validate the thermal processing of poultry litter by providing a 

sufficient safety margin. This study provides a practical tool for poultry litter processors to 

evaluate the effectiveness of their thermal processing.  
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Next, we used indicator and surrogate microorganisms for Salmonella to validate 

the processes for physically heat-treated poultry litter compost in both lab settings and 

commercial plants. Initial lab validation studies indicated that 1.2- to 2.7-log or more 

reductions of desiccation-adapted E. faecium NRRL B-2354 were equivalent to > 5-log 

reductions of desiccation-adapted Salmonella Senftenberg 775/W in poultry litter compost, 

depending on treatment conditions and compost types. Industrial plant validation studies 

were performed in one turkey litter processor and one laying hen litter processor. E. 

faecium was inoculated at ca.7-log CFU/g into the composted turkey litter and at ca. 5 log 

CFU/g into laying hen litter compost with respectively targeted moisture contents. The 

thermal processes in the two plants yielded reductions in E. faecium of 2.8 - > 6.4 log 

CFU/g (> 99.86%) of the inoculated. Similarly, for the processing control samples, 

reductions of presumptive indigenous enterococci were in the order of 1.8-3.7 log CFU/g 

(98.22% to 99.98 %) of the total naturally present. In contrast, there was less reduction of 

indigenous mesophiles (1.7-2.9 log CFU) and thermophiles (0.4-3.2 log CFU/g). Statistical 

analysis indicated that more indigenous enterococci were inactivated in the presence of 

higher moisture in the poultry litter compost. In conclusion, based on the data collected 

under the laboratory conditions, the processing conditions in both plants were adequate to 

reduce any potential Salmonella contamination of processed poultry litter material by at 

least 5-log, even though the processing conditions varied among trials and plants. 

Further, to understand the complex interactions between native compost 

microorganisms and L. monocytogenes, compost samples collected across the US were 

subjected to the inoculation of L. monocytogenes, and then systematically analyzed using 
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16S rRNA gene, shotgun-metagenomic, and metatranscriptomic sequencing approaches 

along with culturing methods. The reductions of L. monocytogenes in dairy and poultry 

compost with 40 or 80% moisture content at room temperature after 72 h of incubation 

ranged from 0.1 to 1.1 log CFU/g. Regrowth of L. monocytogenes occurred in some 

compost samples after 72 h of incubation, ranging from 0.1 to 1.5 log CFU/g. The major 

bacterial phyla identified in all farms are Firmicutes (23%), Proteobacteria (23%), 

Actinobacteria (19%), Chloroflexi (13%), Bacteroidetes (12%), Gemmatimonadetes (2%), 

and Acidobacteria (2%). The statistical analysis of sequencing data revealed that microbial 

interactions were affected by environmental factors such as compost types and location, 

moisture levels and incubation length, rather than the inoculation of L. monocytogenes. 

Although the similarities percentage (SIMPER) results are not significant for all samples, 

some specific genera (Bacillus, Sphaerobacter, Filomicrobium, Paucisalibacillus, 

Brumimicrobium, Steroidobacter Flavobacterium, or Chryseolinea) were identified as 

discriminant microorganisms contributing to the variation in community composition due 

to the presence of L. monocytogenes on multiple farms. After 72 h of incubation, changes 

in the metabolic pathways and the increased abundance of the bacteriocins category in the 

compost samples containing L. monocytogenes suggest that the interactions between L. 

monocytogenes and compost microbiome may include competition for compost nutrients 

and the presence of antimicrobials produced by the compost microbiome. Findings from 

this study clearly indicated that microbial diversity and functional profiles were 

significantly (P < 0.05) affected by the compost source, compost stage, and collection farm.  

Furthermore, the presence of specific discriminant microbial species may suggest certain 
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compost samples as the potential sources for isolating CE microorganisms against L. 

monocytogenes.  

Competitive exclusion (CE) microorganisms have shown great potential as 

environmentally friendly tools to control harmful microorganisms. In consideration of 

dairy and poultry compost containing a diversity of microbial species, it was hypothesized 

that the compost may be a good source for isolating compost-borne CE microorganisms, 

which can inhibit the growth of Listeria monocytogenes. In this study, CE strains were 

screened and isolated from compost using double- or triple-agar-layer methods. The 

addition of resuscitation promoting factor (Rpf) produced by Micrococcus luteus promoted 

the growth of slow-growing/viable but non-culturable species from compost. A total of 40 

bacterial isolates were confirmed with anti-L. monocytogenes activities, and then tested for 

Gram-reaction, motility, biofilm-forming ability, and inhibitory spectra against produce 

outbreak-associated L. monocytogenes and surrogate strains, followed by identification via 

16S rRNA gene sequencing. About 50% of the isolated CE strains were identified as 

Bacillus spp., and 17 of 40 isolates can inhibit more than 10 produce outbreak-associated 

L. monocytogenes strains, while 9 CE strains isolated from poultry litter compost were 

confirmed as motile and competitive biofilm formers. Those 40 CE isolates based on the 

origin of isolation were separated into two groups, i.e. poultry and dairy CE groups, and 

then tested for anti-L. monocytogenes activity in both compost extracts and the compost. 

After 168 h incubation, the growth potentials of L. monocytogenes were reduced by co-

culturing with CE strains in compost extracts under all conditions by 0.1- to 1.9- log 

depending on incubation temperature, types, and ratio of the compost extracts. Results 
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showed that the inhibition effect from CE strains was higher in more concentrated compost 

extract (1:5) at 35°C or room temperature. In compost samples, the addition of CE strains 

can reduce L. monocytogenes population by ca. 1.2 log CFU/g at room temperature after 

24 to 168 h incubation. The efficacy of CE strains was greater in the dairy compost as 

compared to that in the poultry litter compost. Findings from this study suggested that 

compost-adapted CE microorganisms have the potential as a biological control agent to 

control L. monocytogenes in agricultural environments.  

In summary, current processes for physically heat-treated poultry litter in industrial 

settings have been validated,  In addition, this study provided tools (surrogate and/or 

indicator microorganism for Salmonella, and custom-designed sampler) for litter 

processors to modify their existing process parameters to produce Salmonella-free 

physically heat-treated poultry litter, which can be used by the produce industry to grow 

microbiologically safe products. Both compositional and functional changes in microbial 

communities of compost samples were studied, and the CE microorganisms with 

antagonistic activities against L. monocytogenes were identified. Based on metagenomics 

and culturing approaches, we have demonstrated that composts can be a rich source of CE 

microorganisms as potential biological control agents, which can be used for foodborne 

pathogen control in both preharvest and postharvest environments. Results generated from 

this study have provided both validation and biological control tools for ensuring 

microbiological safety of animal waste-based biological soil amendments.  
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CHAPTER ONE 

LITERATURE REVIEW 

Biological soil amendments of animal origin  

According to the U.S. Food & Drug administration Produce Safety Rule 21 CFR 

112 (FDA, 2018); biological soil amendments of animal origin (BSAAO) contain materials 

in whole or partially from animal origin, such as animal by-products, manure, bone meal, 

feather meal and so on. In general, BSAAO can be treated by composting or some other 

validated scientific methods to reduce harmful microorganisms (Clements et al., 2019).  

In 2017, there were 4,713 composting facilities in the U.S. Among those facilities, 

ca. 620 process multiple organics, which include feedstocks such as yard trimmings, food 

scraps, livestock manure, and industrial organics (BioCycle, 2017). It was estimated that 

81.5% of the total number of organic produce farms use composted animal wastes (USDA, 

2018). The total amount of animal manure produced in the U.S. was ca. 1.29 billion tons 

per year, including waste from poultry, swine, beef cattle, and dairy cattle (Gurtler et al., 

2018). Owing to the high nutritional value for supporting plant growth, the treated or 

untreated animal waste can be used as organic fertilizer to enhance crop production and 

increase the soil fertility (Gascho et al., 2006). But the insufficient treatment or improper 

use of raw animal wastes or animal waste-based compost may introduce foodborne 

pathogens to produce production. 

Prevalence of Salmonella spp. and Listeria monocytogenes in BSAAO 

The list of human pathogens found in animal wastes or animal waste-based compost 

includes Actinobacillus, Campylobacter, Clostridium, Shiga toxin-producing Escherichia 
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coli (STEC), Globicatella, Listeria monocytogenes, Mycobacterium, Salmonella spp., 

Staphylococcus, Streptococcus, and so on (Larney et al., 2003b, Franke-Whittle et al., 

2005, Grewal et al., 2006, Slana et al., 2011, Khan et al., 2016). From 2010 - 2017, 85 

multistate outbreaks associated with fresh produce in the U.S. were attributed to STEC, 

Salmonella spp., and L. monocytogenes. S. enterica was linked to 67 % of these outbreaks, 

and L. monocytogenes was responsible for the most known deaths (67.3%) (Carstens et al., 

2019). In fact, Salmonella spp. and L. monocytogenes are particularly important because 

of their low infectious dose and pathogenesis. Therefore, it is imperative to develop 

effective strategies to control Salmonella spp. and L. monocytogenes in animal waste or 

animal waste-based compost.  

Salmonella spp. in BSAAO. Salmonella are a group of Gram-negative, and non-

spore forming rod-shaped bacteria. The genus Salmonella consists of two species, S. 

enterica and S. bongori, with the fact that S. enterica itself has over 2,500 serovars (Eng et 

al., 2015). According to the estimate by Centers for Disease Control and Prevention (CDC), 

Salmonella causes approximately 1.2 million illnesses and 450 deaths every year in the 

U.S. (CDC, 2016). Previous studies have reported that the Salmonella level ranged from 3 

to 5 log/g in fresh livestock manure, including cattle, pig, poultry, and sheep (Hutchison et 

al., 2004ab). As compared to other pathogens, Salmonella is more frequently isolated from 

poultry litter or fecal samples and its prevalence level can range widely from 0 to 100% 

(Chinivasagam et al., 2010). As shown in Table 1.1, the prevalence of Salmonella in animal 

waste varies with the geographic location of the farms or types of animal waste. The 

contamination level of Salmonella varied among different animal waste, even on the same 
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farm. For example, Salmonella was most frequently isolated in broiler litter (55%), less 

frequently in swine manure (30%) and least frequently in dairy (13%) and beef (10%) 

manure, based on analysis of 2,523 manure samples collected in Canada (Flockhart et al., 

2017). Effective composting practices can result in the elimination of Salmonella in poultry 

litter compost (Shepherd et al., 2010); however, the incidence of Salmonella was still 

observed after composting process due to the improper composting process or post-

composting contaminations (Trimble et al., 2013). 
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Table 1.1 Prevalence of Salmonella and L. monocytogenes in animal waste or associated produce fields from 2000 to 2020. 

Pathogens Year/Location Sample type Sample size Prevalence References 
Salmonella  2000-2001/Germany Compost sample 

without indicating the 
animal type  

24 20.8% Hoszowski et 
al., 2001 

 2002/ Republic of 
Ireland 

Pig slurry  43  58.1%  Watabe et al., 
2003 

 2000-2002/UK Cattle, pigs, poultry 
and sheep manure 

1549 5.2% - 17.9 %  Hutchison et 
al., 2004b 

 2002/Nigeria Poultry fecal samples 120 38% Orji et al., 
2005 

 2006-2007/Hungary Broiler fecal samples 60 35%-43% Nógrády et 
al., 2008 

 N.A./US Hen fecal samples 78 17%-56% Li et al., 2007 
 N.A./Nigeria Layer litter samples N.A.a +b Ngodigha et 

al., 2009 
 2003-2005/US Composted dairy 

manure 
67 Culture negative for 

Salmonella 
Edrington et 
al., 2009 

 N.A./US Broiler fecal samples 420 6%-39% Alali et al., 
2010 

 N.A./Australia Broiler litter samples 60  71% Chinivasagam 
et al., 2010 

 2004-2007/US Samples of compost 
heaps with chicken 
litter or chicken 
carcasses 

N.A. 26% surface and 6.1% internal 
samples (1st composting 
phase); absent in all samples  
(2nd composting phase) 

Shepherd et 
al., 2010 

 2008-2010/US Chicken fecal samples 315  Salmonella was isolated from 
29 farms (41.4%) with 65% 
prevalence in the 315 houses 
samples. 

Donado-
Godoy et al., 
2012 
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 2007/US Cow fecal samples 265  Salmonella isolate was 
recovered on 124 farms 
(46.8%) 

Habing et al., 
2012 

 2013/US Broiler compost 39  64% Trimble et al., 
2013 

 2010-2011/US Clinical and 
environmental 
samples from farm 

204 Manure storage pile 
composites: 45% 
Wide turkey feces: 22.5% 
Soil: 10.3% 
 

Jay-Russell et 
al., 2014 

 N.A./ Brazil  Pig fecal sample 200 48.2% Albino et al., 
2014 

 2016/US Swine manure 
samples 

130  Salmonella prevalence was 
38.46% prevalence in swine 
manure, 

Pornsukarom 
et al., 2016 

 N.A./ Nigerian Litter (n = 67) and 
feces sample (n = 75) 

142   12.8% for litter sample, and 
14.3 for feces sample 

Fagbamila et 
al., 2017 

 2006-2011/Canada  Fecal samples  2523 Salmonella prevalence: broiler 
manure (55%), swine manure 
(30%), dairy (13%) and beef 
(10%) manure.  

Flockhart et 
al., 2017 

 2017/ Burkina Faso Poultry feces  103 52.42% Kagambèga 
et al., 2018 

 2013-2014/ Ethiopia Poultry feces  549 4.7% Eguale et al., 
2018 

 2016-2017/US Solid bovine manure 91  15·4% for surface samples and 
13·8% subsurface samples 

Chen et al., 
2019 

      
L. 
monocytogenes 

1999-2000/ US Cabbage (n = 425), 
water (n = 205), and 
environmental sponge 
samples (n = 225)  

855 3% Prazak et al., 
2002 
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 N.A./ US Field and potato 
samples 

19 31.58% Thunberg et 
al., 2002 

 UK/2000-2002 Livestock manure 1,549 29.8% and 30%, 19.0% and 
19.8%, 29.2% and 44.4%, in 
fresh and stored cattle, pig, 
poultry, sheep manure, 
respectively. 

Hutchison et 
al., 2005b 

 Ontario,Canada/2005-
2007 

Swine fecal samples 359  L. monocytogenes was only 
recovered from faces of 
weanling pigs and finisher pigs 
(3.3%)  

Farzan et al., 
2010 

 2009-2011/ US Produce field  588 15% Strawn et al., 
2013a 

 2009-2011/ US Fecal sample 61 15% Strawn et al., 
2013b 

 2010 / US Terrestrial, water, and 
fecal samples in 
produce farm 

124 42% Weller et al., 
2015 

 2010-2012/Canada  Hog manure (n = 9), 
irrigation water (n = 
27), and muck soil (n 
= 288) 

324 Not found in manure or soil, 
one positive from manure-
contaminated irrigation water, 
and one positive from lettuce.  

Guévremont 
et al., 2017 

 2014/ Malaysia Composted animal 
manure and plant 
waste 

60 8.3 – 16.70% from three 
different farms 

Maurice et 
al., 2018 

 2016/ Jordan  Cattle feces  610 1.5% Obaidat et al., 
2019 

 2016-2017/ Iran Wastewater effluent, 
sewage sludge and 
livestock manure 

126 50% in sewage sludge, and 8% 
in manure sample  

Gholipour et 
al., 2020 

a N.A., not applicable;  
b +, pathogen or selected microorganism was isolated. 
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Listeria monocytogenes in BSAAO. L. monocytogenes is a Gram-positive, 

ubiquitous, and intracellular bacterial pathogen. L. monocytogenes has a multifactorial 

virulence system, with the thiol-activated hemolysin, listeriolysin O, which plays a crucial 

role in the organism's ability to multiply within host phagocytic cells and to spread from 

cell to cell (Farber et al., 1991). L. monocytogenes can cause listeriosis infections, which 

have a higher risk among certain groups of people, including elderly (> 65 years), pregnant 

women, and immune-compromised populations (Okike et al., 2013, Simon et al., 2018). In 

the U.S., L. monocytogenes is responsible for 19% of the total deaths due to the 

consumption of contaminated food, with fresh produce as an important source of 

contamination at both farm and processing environments (Scallan et al., 2011).  

The occurrence of L. monocytogenes has been reported in both pre- and post-

harvest environments, including fresh vegetables, soil, animal feces, and irrigation water 

(Guerra et al., 2001, Strawn et al., 2013ab, Gholipour et al., 2020). As shown in Table 1.1, 

the prevalence of L. monocytogenes in animal waste or associated produce fields in the last 

20 years, from 2000 to 2020, ranged from 0 to 50%. The high level of L. monocytogenes 

was found in livestock manure and the manure-contaminated water, indicating that cross- 

contamination may occur. Strawn et al. (2013a) reported that runoff water from livestock 

farm was a contamination source for L. monocytogenes in irrigation water. Listeria spp. 

were more likely to be isolated from March to June according to Hutchison et al. (2005a), 

which revealed significant seasonal influences on the occurrence of L. monocytogenes. 

However, there were no confirmed correlations between the prevalence of L. 

monocytogenes and livestock diet (Hutchison et al., 2005ab).  
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L. monocytogenes is routinely isolated from both farm and processing 

environments, because it can follow and mediate a saprophyte-to-cytosolic-parasite 

transition by modulating the activity of a virulence regulatory protein called PrfA, using 

available carbon source (Freitag et al., 2009, de las Heras et al., 2011). Thus, L. 

monocytogenes can transit among animal waste, soil, water, fresh produce, and humans 

owing to this special life cycle (Zhu et al., 2017). The wide distribution of L. 

monocytogenes is also because of its ability to withstand extreme environmental 

conditions. The stress resistance mechanisms identified in L. monocytogenes are regulated 

by the alternative sigma factor (Chaturongakul et al., 2008). The ability of this pathogen to 

form biofilms can allow it to establish and persist for a long time in various environments. 

Therefore, fully understanding the survival characteristics of L. monocytogenes is essential 

to reducing food contamination with this pathogen.  

 

The fate of Salmonella spp. and L. monocytogenes in animal waste or animal waste-

based composts 

In order to develop science-based control methods, it is important to identify factors 

that can significantly increase or decrease the likelihood of Salmonella spp. and L. 

monocytogenes survival in animal waste or animal waste-based composts. Thus, a 

systematic literature search was performed to identify the fate of Salmonella and L. 

monocytogenes in animal waste or animal waste-based compost. EBSCO (Academic 

Search Complete) and Web of Science were searched for peer-reviewed articles published 

between 2000-2020. The searching strings and study selection procedure were listed in 
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Table A1 and Figure A1, respectively (Appendix A). A total of 843 records were identified. 

After selection and quality assessment, 27 eligible studies were summarized in Table 1.2.  

As shown in Table 1.2, the initial level of spiked pathogens ranged from 2 to 8 log 

cfu/g or ml, depending on the research purpose. Overall, factors that influenced the fate of 

Salmonella and L. monocytogenes in animal waste or animal waste-based compos can be 

grouped into following categories: i) Types and physical-chemical characteristics of animal 

waste; ii) Storage temperature; and iii) Background microbial community. Depending on 

these factors and experimental design, pathogens can survive < 1 to 405 days. Pathogens 

in animal waste or animal waste-amended soil can survive better in dairy manure, at a lower 

temperature, and with reduced background microbial load. Notably, most of the studies 

were carried out for evaluation of several factors together.  
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Table 1.2 Summary of reported studies on the factors affecting survival of Salmonella spp. and L. monocytogenes in animal 

waste and animal waste-based compost a 

Pathogens  Matrix used Initial levels Treatment  Significant findings   Reference 
Salmonella  Cow manure 6 log cfu/g  PA: Salmonella and E. coli; 

Temp: 4, 20, or 37°C; 
AWT: cow manure or cow 
manure slurry  
 
 

The resulting decimal reduction 
times ranged from 6 days to 3 
weeks in manure and from 2 
days to 5 weeks in manure 
slurry; 
Decimal reduction times 
decreased with increasing in 
temperature.  

Himathon
gkham et 
al., 1999a 

 Chicken 
manure 

6 log cfu/g  Water activity: 0.89–0.75  Highest death rate was found at 
intermediate aw (0.89).  

Himathon
gkham et 
al., 1999b 

 Dairy 
manure 
compost 

5 and 7 log 
cfu/g 

AWT: soil amended with dairy 
cattle manure, poultry manure, or 
alkaline-pH stabilized manure, 
and using contaminated or not 
irrigation water. 

Both contaminated manure 
compost and irrigation water can 
play an important role in 
contaminating soil and root 
vegetables with Salmonella for 
several months. 

Islam et 
al., 
2004a&b 

 Hog manure 
slurry  

4.5 log cfu/ml  Temp: 4, 25 or 37 °C; 
TD: 16 months: 
SE: fall, winter, spring  

The decimal reduction time 
(DRT) of Salmonella in slurry 
stored at 37, 25 and 4°C ranged 
from 0.9 to 1.4 days, 8 to 19 
days, and 22 to 60 days, 
respectively. Manure should be 
held for 60 days without 
commingling with fresh manure 
in reservoirs before application 
to fields, esp. for during winter. 

Arrus et 
al., 2006 
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 Cow manure 7 log cfu/g  AWT: cow manure and cow 
manure-amended soil;  
BMC: sterilized or non-sterilized 
soil.  

Salmonella can survive in the 
manure-amended with sterilized 
soil for 405 days. 

You et al., 
2006 

 Bovine 
manure 

Salmonella: 7.8 
log cfu/g E. 
coli: 8.1 log 
cfu/g 
 

PA: Salmonella and E. coli; 
Temp: 30 to 40°C; 
AWT: manure or manure slurry 
with different sampling depth.  
 

Survival time of Salmonella 
reduced with increasing 
temperatures and amplitude in 
daily temperature oscillations. 

Semenov 
et al., 
2009 

 Pig manure 5 log cfu/g or 
ml 

ST: solid and liquid fractions 
during storage  

Salmonella can survive up to 
112 days in pig manure under 
controlled storage conditions at 
10.5°C.  

McCarthy 
et al., 
2015  

 Flushed 
dairy 
manure 

4-5 log cfu/ml  PA: E. coli O157 and Salmonella  Aerobic system to be more 
effective than anaerobic system 
in terms of pathogen 
inactivation. 

Pandey et 
al., 2016 

 Heat-treated 
poultry 
pellet 
amended 
soil extract 

3 log cfu/g BMC: unamended, nonsterile 
(UNS); unamended, sterile (US); 
amended, nonsterile (ANS); and 
amended, sterile (AS)  
TD: 96 h.  

The regrowth of pathogen level 
order was:  
AS > ANS > US > UNS 

Shah et 
al., 2019  

 Manure-
amended 
soils  

5 log cfu/g Temp: 5, 21 or 37°C; 
AWT: poultry manure-amended 
clay loam or sand soil.  
TD: 6 weeks.  
 

Salmonella reduced faster in 
sand soil.  
Salmonella reduced faster with 
higher temperature.  

Phan-
Thien et 
al., 2020 

. Fresh hog 
manure 
slurry 

5 log cfu/g MC: 60 – 80% 
SE: winter to summer (−18, 4, 
10, 25°C), spring to summer (4, 

Higher soil moisture, manure 
addition, and storage in the clay 
soil during winter increased 
Salmonella survival.  

Holley et 
al., 2006 
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10, 25, 30°C), or summer to 
winter (25, 10, 4, −18°C); 
TD: 180 days; 
ST: With or without clay soil.  

 Dairy 
lagoon and 
compost pile 

7 log cfu/g AWT: dairy lagoon, compost 
pile, and soil of a grass field. 
TD: year-round.  
  

S. Newport survived in the static 
compost pile at 64°C for 18 h, 
whereas in the dairy effluent 
lagoon, the pathogen survived 
for >137 d.   

Toth et al., 
2011 

 Dairy 
manure and 
poultry 
litter-based 
compost 

5 or 2 log cfu/g MC: 60 – 80% 
PA: Salmonella and E. coli.   
Temp: 5 and 22°C; 
AWT: dairy and poultry manure 
compost;  
ST: greenhouse condition.  

Regardless of inoculum levels, 
S. enterica survived longer in 
hen manure-based compost 
compared with heat-treated 
poultry litter compost and low 
temperature can promote the 
extended survival of S. enterica.  

Chen et al. 
2018 

 Cattle and 
wild animal 
feces 

4 to 6 log cfu/g AWT: wild animals (feral pigs, 
waterfowl, deer, and raccoons), 
from different states;  
TD: one year  

Salmonella spp. can survive in 
the tested samples for up to 1 
year, except in the sample 
collected from Ohio, in which 
Salmonella spp. was not 
detected after 120 days.  

Topalceng
iz et al., 
2020 

L. 
monocytogenes 

Bovine 
manure-
amended 
soil 

5 to 6 log cfu/g Temp: 5, 15 or 21°C; 
BMC: manure-amended 
autoclaved soil.  

L. monocytogenes survived 
longer at lower temperature in 
the manure-amended autoclaved 
soil.  

Jiang et 
al., 2004 

 Pig manure  N.A. Temp: 8 and 20°C;  
AWT: raw and biological treated 
manure; 
BMC: 81.5 – 94.8% and 67.8 – 
79.2% VBNC cells.  

L. monocytogenes increased 
more at 20°C.   

L. monocytogenes can enter 
VBNC state in the pig manure 
during storage. And the 
behavior of L. monocytogenes 

Desneux 
et al., 
2016 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/effluents
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 was not influenced by the 
taxonomic composition of pig 
manure.  

 Dairy 
manure 
compost 

7.4 log cfu/g PA; L. monocytogenes, and E. 
coli.   
ST: Solid or liquid manure with 
different compost pile size.  
 

L. monocytogenes can survive in 
solid manure pile for at least 29 
weeks, compost pile size and 
temperature affect the pathogen 
survival.  

Biswas et 
al., 2018 

Salmonella and  

L. 
monocytogenes 

Composted 
livestock 
manure or 
sewage 
sludge 

5-6 log cfu/g Temp: 50 °C; 

TD: 3 months; 

PA: L. monocytogenes, 
Salmonella; 

AWT: dairy cattle, beef cattle, 
pig, poultry layer, and sheep.  

Pathogen survival time order 
(shorter to longer): 

Salmonella: dairy cattle < pig < 
poultry layer = sheep < beef 
cattle 

L. monocytogenes: dairy cattle = 
pig < poultry layer = sheep < 
beef cattle 

Hutchison 
et al., 
2004 & 
2005 

 Farmyard 
manure 
(FYD) 

E. coli O157: 
2.7-5.2 log 
cfu/ml, 
Salmonella: 3.2-
4.5 log cfu/ml 

L. 
monocytogenes: 
2.1-4.9 log 
cfu/ml 
Campylobacter: 
2.1-4.2 log 
cfu/ml 

 

PA: E. coli O157, Salmonella, L. 
monocytogenes, and 
Campylobacter 

AWT: dairy FYD, pig FYD, 
broiler liter, dairy slurry, and 
dirty water 

Maximum pathogens survival 
period during storage 
(Salmonella and L. 
monocytogenes only). 

Salmonella: dairy FYD = pig 
FYD unturned = broiler litter < 
pig FYD turned < dairy slurry 
with 7% dry matter < dairy 
slurry with 2% dry matter.  

L. monocytogenes: dairy FYD = 
pig FYD (regardless turned or 
unturned) < broiler litter < dairy 

Nicholson 
et al., 
2005
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slurry with 7% dry matter < 
dairy slurry with 2% dry matter.  

 Liquid 
swine 
manure and 
sawdust 
manure mix 
and dairy 
manure 
compost 

6 log cfu/g  PA: E. coli O157, Salmonella, L. 
monocytogenes, and 
Campylobacte; 

ST: sawdust manure mix or 
untreated swine manure or pack 
storage;  

Temp: 25 to 55°C. 

Both pathogens were unchanged 
in the sawdust manure mix and 
untreated liquid swine manure 
for up to 28 days at 25°C.  

For Salmonella and L. 
monocytogenes, both pathogens 
were destroyed most rapidly 
under thermophilic composting 
and persisted the longest in pack 
storage or low temperature 
composting. 

Grewal et 
al., 2006 
& 2007 

 Dairy 
compost 
extract 

3 log cfu/ml  Temp: 22 to 35°C; 
PA: L. monocytogenes, 
Salmonella, E. coli; 
AWT: water extract of dairy 
compost of different ratios 
(1:2,1:5, and 1:10, w/v)  

Indigenous microflora 
suppressed the pathogen 
regrowth in compost extract, 
especially at 35°C 

Kim et al., 
2009 

 Animal 
manure-
based 
compost. 

7 log cfu/g  Temp: 20 to 40°C; 
MC: 30 to 60%; 
PA: Salmonella, L. 
monocytogenes, and E. coli; 
AWT: dairy, chicken, and swine 
compost mixed with 
supplements.  

Volatile acids promoted 
pathogen inactivation when 
temperatures are too low or 
quick heat lost at the surface of 
compost piles.  
Suboptimal MC (30-40%) were 
less effective for pathogen 
inactivation.  

Erickson 
et al., 
2014 & 
2015 

 Dairy 
manure 

7 log cfu/ml Temp: 30, 35, 42, and 50 °C; 

ST: anaerobic (AN) and limited 
aerobic (LA); 

Temp: Reduction of PA 
increased with higher 
temperature.  

Biswas et 
al., 2016 
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PA: L. monocytogenes, 
Salmonella, E. coli. 

ST: Effects of both LA and AN 
condition in pathogen reductions 
were similar.  

PA: pathogen survival time 
order (shorter to longer) was: L. 
monocytogenes < Salmonella < 
E. coli 

a Temp, Temperature; MC, Moisture content level; ST, Storage condition; PA, Pathogens; BMC, Background microbial 
community. SE, Season; TD, Testing duration. AWT, Animal waste types.  
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Types and physical-chemical characteristics of animal waste. The survival of 

pathogenic bacteria in different types of untreated animal waste or their amended soil has 

been studied under several factors such as moisture content (20 to 80%), water activity 

(0.89 to 0.75), and extra organic matter (2 to 7%) (Grewal et al., 2007, Wang et al., 2018, 

Phan-Thien et al., 2020). In general, the survival of Salmonella and L. monocytogenes 

varied considerably in different types of animal waste with different moisture contents, 

which was due to the microbial growth and metabolic processes which are determined by 

the moisture contents of animal waste. As revealed by multiple studies, Salmonella and L. 

monocytogenes can survive longer in dairy slurries, as compared to the other animal waste, 

such as pig, poultry, or sheep. Also, the addition of 2% dry matter (hay, straw or other 

bedding materials) can enhance the survival of these two pathogens (Hutchison et al., 

2004&2005, Nicholson et al., 2005). As for the effects from physical-chemical 

characteristics of animal waste, survival time of pathogens was extended in the animal 

waste with suboptimal moisture contents (30% to 40% moisture contents). However, the 

death rate of S. enterica in animal manure had been restricted in a narrow range of water 

activity, in which the highest death rate was found in chicken manure with intermediate aw 

(0.89) (Himathongkham et al., 1999a). Note that the types and characteristics of animal 

waste were not the only factors that affected the pathogens survival, as the storage 

conditions of animal waste also can affect the survival of both pathogens.  

Storage conditions. Storage conditions can affect both biological and physio-

chemical properties of animal manure, and therefore influence the survival of pathogens. 

Such conditions include surrounding temperature, storage format, aeration of compost and 
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the addition of dry matters during storage. In a study conducted by Biswas et al. (2018), L. 

monocytogenes survived in both the solid manure piles with periodic turning and in the 

slurry stored in small tanks for 29 weeks, whereas E. coli O157: H7 survived in the slurry 

sample for only 14 weeks. Survival time of pathogens was generally reduced with higher 

temperature. Arrus et al. (2006) reported that the decimal reduction time (DRT) of 

Salmonella in the slurry stored at 37, 25, and 4°C ranged from 0.9 to 1.4 days, 8 to 19 days, 

and 22 to 60 days, respectively, suggesting manure should be held for at least 60 days 

without adding fresh manure in reservoirs before application to fields, especially during 

winter. Pathogens in animal waste are exposed to the various environmental conditions, 

which affected the survival with some extends. Phan-Thien et al. (2020) reported that the 

persistence of Salmonella in poultry manure-amended soil was significantly affected by 

several factors, including temperature, soil type, types of poultry manure, and the 

interactions of these factors. Specifically, the addition of untreated poultry manure and 

lower temperature (5°C) can enhance the persistence of S. enterica in soil.  

Background microbial community. The typical microorganisms presented in 

compost include Alcaligenes faecalis, Arthrobacter, Brevibacillus, Enterobactericae, 

Bacillus species, Thermus spp., Streptomyces, Aspergillus fumigatus, and Basidiomyces 

spp., which are bacteria, actinomycetes, or fungi (Rynk et al., 1992). Many studies reported 

that the fate of Salmonella and L. monocytogenes in animal manure and manure-amended 

soil ecosystem was affected by the composition of background microbial communities 

(Himathongkham et al., 1999b, Jiang et al., 2004, Desneux et al., 2016, Shah et al., 2019). 

In most cases, the reduced indigenous microbial load favored persistence of pathogens in 
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animal manure or manure-amended soil. For example, You et al. (2006) demonstrated that 

both multi-drug-resistant and drug-sensitive Salmonella had the longest survival (405 days) 

with the manure-amended sterilized soil, as compared to 184 and 332 days in manure and 

manure-amended nonsterile soil, respectively. The quick die-off of pathogens in nonsterile 

soil was mostly due to the antagonistic effects against either Salmonella or L. 

monocytogenes by the indigenous microflora. In contrast, Desneus et al. (2016) found that 

the behavior of L. monocytogenes was not influenced by the taxonomic composition of pig 

manure. The authors suspected that the L. monocytogenes had entered viable but non-

culturable stage in the pig manure during storage. However, the modification on the 

indigenous microbial community, such as autoclaving or diluting, had omitted effects from 

the natural microbiota. As such, the complex interactions between the invasion pathogens 

and indigenous microflora still require further research.  

Application of untreated animal waste may introduce potential microbial hazards 

to crop fields, thereby the NOP requires that raw animal manure should be incorporated 

into the soil more than 90 days prior to harvest for crops that have no direct contact with 

soil, and 120 days if the produce has direct contact with soil (FDA CFR, 2019). According 

to the Food Safety and Modernization Act (FSMA) Produce Safety Rule, raw manure must 

not contact produce during application and the potential for raw manure contact with 

produce after application should be minimized (FDA-FSMA, 2019). Sheng et al. (2019) 

conducted a 2-year field study to evaluate the impacts of dairy manure fertilizer application 

on the microbial safety of red raspberry. No Shiga toxin-producing E. coli (STEC) or L. 

monocytogenes was detected from fertilizer, soil, foliar, or raspberry fruit samples 
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throughout the sampling period for 2 years, whereas Salmonella in soil amended with 

contaminated fertilizer was reduced to undetectable level after 2 or 4 months of application. 

Because of amending agriculture soil with treated animal manure instead of fresh manure 

released less potential Salmonella and Listeria to the environment (Goberna et al., 2011), 

biological treatment options including composting (aerobic) and biogas (anaerobic) 

process can be used as pathogen control treatments to recycle animal waste back into the 

soil for crop use.  

Composting process. Composting is a controlled biological process that broadly 

consists of four typical phases based on the temperature generated and active microbial 

community: mesophilic, thermophilic, cooling, and maturation phases (Figure 1.2). 

Normally, the composting process proceeds with solid or liquid materials within a moisture 

level range of 40 - 50% or 90 - 98%, respectively (USEPA, 2018). A variety of 

microorganisms, mesophilic, thermophilic, and thermo-tolerant bacteria, actinomycetes 

and fungi are actively involved in different phases to reach a satisfactory composting 

process (Hassen et al., 2001). As revealed in most composting studies, pathogens are killed 

primarily from the accumulation of heat (45 to 75 °C) generated by indigenous 
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microorganisms during the early phases of aerobic composting of animal manure (Lung et 

al., 2001, Larney et al., 2003a, Ceustermans et al., 2007).  

Figure 1.1 Composting process (Sánchez et al., 2017) 

The finished compost should be thoroughly decomposed and pathogen-free. 

However, sporadic cases have reported the presence of foodborne pathogens in finished 

compost, indicating that finished compost made from animal waste are potential sources 

for pathogens (Miller et al., 2013, Dharmasena and Jiang 2018). These pathogens either 

survived the composting process or were cross-contaminated from raw manure and have 

potential for growth during the storage of compost. As specified by the FSMA produce 

safety rule, microbial standards for biological soil amendments of animal origin included 

less than 0.3 most probable number (MPN) per gram or milliliter of analytical portion for 

E. coli O157:H7, less than 3 MPN per 4 g or ml of total solids for Salmonella spp., and less 

than 1 cfu per 5 g or ml of analytical portion for L. monocytogenes (FDA, 2018). To achieve 

these standards, the FSMA Produce safety rule mandates the incorporation of alternative 
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treatments for reducing or eliminating human pathogens in raw animal waste before land 

application (Clements et al., 2019). 

 

Physical heat-treatment strategies to inactivate pathogens in animal waste or animal 

waste-based compost  

Physical heat-treatment of animal waste, such as pasteurization, and dry heating, 

can stabilize organic matter by reducing the moisture content of animal waste significantly 

after or without composting. In order to produce a pathogen-free final product, some 

critical factors, including time-temperature, moisture content of animal waste, heat sources, 

and monitoring/validation procedure, are needed to be controlled. Several organizations 

have provided time-temperature criteria on how to perform an effective heat treatment of 

animal waste (NOP, 2006, BioCycle, 2017). The minimal requirement for time-

temperature is > 65°C for > 60 min to decontaminate fecal coliforms, Salmonella, and E. 

coli O157:H7 (NOP 2006). However, there is very limited research on the microbiological 

safety of these physically heat-treated animal waste products. 

Table 1.3 summarizes laboratory-scale studies for evaluating the physical heat-

treatment required to kill pathogens in animal waste or animal waste-based compost. The 

initial level of targeted microorganisms ranged from 2 to 10 log cfu/g, which represented 

a broad spectrum of pathogens existing in animal waste with various levels of heat 

resistance. Some key factors affecting the physically heat-treatment of animal waste are 

discussed below.
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Table 1.3 Lab-scale physical heat treatments of animal waste with or without composting for pathogenic bacteria inactivation 

(Partially adapted from Zhen et al., 2017) 

Animal waste 

Tested 
microorganis
ms 

Initial 
populations Thermal-study set-up Significant results Reference 

Dairy compost Clostridium 
difficile 
endospores 

5.5 log 
cfu/g 

Samples were placed in enclosed 
Tyvek pouches and heated in an 
environmental chamber for dry heating 
source, and a water bath for moist 
heating source.  

During holding time for 3 – 5 days, 
endospore counts reduced by < 68% at 
55 and 65°C of dry heat treatment, 
whereas 80% - 84% and 75% – 99.9% 
reductions were observed at 55 and 
65°C in wet heat treatment 
respectively. 

Dharmasena 
et al., 2019 

      
Aged chicken 
litter 

Desiccation-
adapted 
Salmonella 
spp. 
 
 
  

7 log cfu/g Samples were placed in an aluminum 
pan (i.d., 10 cm) and heated in an oven.  

Desiccation-adapted Salmonella spp. 
reduced by 5-log in aged chicken litter 
with 20% moisture content required > 
6 h of exposure at 70°C; and the 
exposure time required to achieve a 5 -
log reduction in the number of cells 
gradually became shorter as 
temperature and moisture were 
increased.  
At 150°C, desiccation-adapted 
Salmonella spp. inactivated after 50 
min in chicken litter with 20% 
moisture content.  

Chen et al., 
2013 

      
Broiler chicken 
litter with 
different storage 
period  

Desiccation-
adapted 
Salmonella 
spp. 

7 log cfu/g Samples were placed in an aluminum 
pan (i.d., 10 cm) and heated in an oven.  

At 150°C, desiccation-adapted 
Salmonella spp. inactivated after 45 
min of heat treatment in 0-month litter, 
whereas for 3-, 6-, and 9-month litter 

Chen et al., 
2015 



 23 

samples, they could still be detected by 
enrichment for at least 1 h. 

      
Cow manure 
compost 

E. coli and 
Salmonella  

6 log cfu/g Compost materials were placed into the 
drum rotation heat-treatment machine. 

Both E. coli and Salmonella were not 
detected at 54–68°C for 6–24 h heat 
treatment.  

Gong et al., 
2007 

      
Dairy compost 
(fresh and 
finished) 

Acid-adapted 
E. coli 
O157:H7 

7 log cfu/g Samples were placed in enclosed 
Tyvek pouches and heated on the shelf 
of an environmental chamber with 70% 
humidity.  

In fresh compost, acid-adapted and 
control E. coli O157:H7 survived for 
19 and 17 days at 50°C, respectively, 
and 6 and 4 days for both types culture 
at 55°C and 60°C, respectively. 
Whereas the duration of survival for 
both cultures was shorter as compared 
to that in fresh compost.  

Singh and 
Jiang 2012 

      
Woodchip 
poultry litter, 
corncob poultry 
litter with Co60 

woodchip or 
Co60  

E. coli, S. 
Pullorum, and 
Arizona sp. 

4-5 log 
cfu/g 

Samples were placed in a test thermal 
death tube (13×17 mm) and heated in a 
water bath. 

E. coli inactivated at 68.3°C after 30 
min in woodchip poultry litter with 
18% moisture content. 

S. Pullorum inactivated at 62.8°C for 
30 min and Arizona sp. inactivated at 
57.2°C after 30 min in corncob poultry 
litter with 17% moisture content. 

E. coli inactivated at 57.2°C after 30 
min in woodchip poultry litter with 
39% moisture content. 

E. coli inactivated at 68.3°C after 30 
min in both Co60 woodchip poultry 
litter with 29% moisture content and 
Co60 corncob poultry litter with 17% 
moisture content. 

Messer et al., 
1971 
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Broiler litter Indigenous 

coliforms and 
total aerobic 
bacteria 

>4.5 log 
cfu/g 

Samples were heated in an oven or 
autoclave at 150°C for 10, 15, and 20 
min at litter depth of 0.6 cm or at 
121°C and steam pressure of 1.05 
kg/cm2 in the autoclave for 5, 10, 15, 
and 30 min at litter depth of 5.0 cm; at 
150°C in the oven for 15 min at litter 
depth of 0.6 and 2.5 cm. 

Coliforms were inactivated under all 
conditions. 

At 150°C, total aerobic bacteria were 
reduced to an undetected count in the 
oven after >20 min at litter depth of 0.6 
cm. 

At 121°C in the autoclave for 10, 15, 
and 30 min at litter depth of 5.0 cm, 
and at 150°C in the oven for 15 min at 
litter depth of 0.6 and 2.5 cm.  

Caswell et 
al., 1975 

      
Dairy compost Heat-shocked 

E. coli 
O157:H7, 
Salmonella, 
and L. 
monocytogene
s.  

6.81 – 7.33 
log cfu/g 

Samples were placed in enclosed 
Tyvek pouches and heated on the shelf 
of an environmental chamber.  

At 50°C, it took 4 h for heat-shocked 
pathogens and control cultures to 
achieved 99% and 99.9% reduction.  

The heat-shocked pathogens have 
extended survival at lethal 
temperatures.  

Singh et al., 
2010 

      
Broiler litter 
with pine 
shavings 

S. 
Typhimurium 

5 log cfu/g Samples were placed in a perforated 
nursery flat (41.91 × 33.0 cm) and 
heated in a soil steamer cart for 5, 30, 
and 120 min. 

S. Typhimurium was inactivated with 
steaming in 30 or 120 min. 

Stringfellow 
et al., 2010 

      
Broiler litter E. coli and S. 

Typhimurium 
8-9 log 
cfu/g 

Samples were placed in a 50-ml plastic 
tube in a 100-mm diameter plastic 
container and heated in a water bath. 

>99% inactivation was achieved for 
both pathogens at 55 and 65°C in 1 h. 

Wilkinson et 
al., 2011 
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Aged broiler 
litter and fresh 
layer litter 

S. Enteritidis, 
S. Heidelberg, 
and S. 
Typhimurium 

7 log cfu/g Samples were placed in an aluminum 
pan (i.d., 10 cm) and heated in an oven. 

Salmonella was inactivated in aged 
boiler litter with 30% moisture content 
at 70, 75, or 80°C after 300, 165, and 
75 min, respectively. 

Salmonella was inactivated in fresh 
layer litter with 30% moisture content 
at 70, 75, or 80°C after 105, 90, and 60 
min, respectively. 

Kim et al., 
2012 

      
Poultry sludge Fecal 

coliforms, 
Salmonella 
spp. 

10.5 log 
MPN/g of 
total solids, 
4.5 log 
MPN/g of 
total solids 

Samples were heated in a 1.5-l 
hermetically closed thermal reactor. 

Fecal coliforms and Salmonella spp. 
were both inactivated at 70°C in 120 
min. 

 

Ruiz-
Espinoza et 
al., 2012 

      
Layer manure Total aerobic 

bacteria, yeast 
and mold, 
indigenous E. 
coli, and 
Salmonella 

9.7, 3.4, and 
7.4 log 
cfu/g, 
respectively 

Samples were placed in a drying tray 
(1, 2, or 3 cm×10 cm×10 cm) and 
heated in an oven. 

65.6-99.8% inactivation was achieved 
for total aerobic bacteria. 

74.1-99.6% inactivation was achieved 
for both yeast and mold. 

99.97% inactivation was achieved for 
E. coli.  

100% inactivation was achieved for 
Salmonella. 

Ghaly and 
Alhattab, 
2013 
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Anaerobically 
digested dairy 
manure 

Indigenous E. 
coli, 
Salmonella, 
and fecal 
coliforms 

3.9, 3.8, and 
2.2 log 
MPN/g, 
respectively 

Samples were placed in a test tube and 
heated in a digestion unit with an 
aluminum block. 

85 to 95% inactivation was achieved 
for fecal coliforms 

87 to 96% inactivation was achieved 
for E. coli.  

100% inactivation was achieved for 
Salmonella. 

Collins et al., 
2013 

      
Dairy manure S. 

Senftenberg, 
Enterococcus 
faecalis 

6-7 log 
cfu/g, 6-7 
log cfu/g,  

Samples were placed in a tube and 
heated in a block thermostat. 

D-values: 0.37 h at 55°C to 22.52 h at 
46.0°C and 0.45 h at 55.0°C to 14.50 h 
at 47.5°C for S. Senftenberg and E. 
faecalis, respectively. 

Elving et al., 
2014 

      
Ovine and 
bovine waste 

E. coli 
O157:H7 

6.5-7.0 log 
cfu/ml 

Samples were placed in a sterile 
microcentrifuge tube and heated in a 
water bath at 50, 60, and 72°C for 10 
min. 

E. coli O157:H7 was inactivated at 
60°C after 10 min. 

Avery et al., 
2009 
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Physiological status of pathogenic bacterial cells. Singh and Jiang (2012) 

reported the thermal resistance of pathogens in animal waste or animal waste compost was 

increased significantly if the cells were pre-adapted to stresses, such as heat-shock, acid-

adaptation, or desiccation adaptation. Heat-shock can occur when the pathogenic cells are 

exposed to the sub-lethal temperature, i.e. during the mesophilic phase of the composting 

(Singh and Jiang, 2012). The stress response in the heat-adapted pathogens can promote 

the extended survival of pathogens in subsequent heat-treatment. For example, at 55°C, the 

heat-shocked cultures of E. coli O157:H7, Salmonella, and L. monocytogenes are reduced 

for 1.2-, 1.9-, and 2.3-log within 1 h, respectively, whereas the corresponding control 

cultures had 4-, 5.6-, and 4.8-log reductions, respectively (Singh et al., 2010). The 

importance and frequency of desiccation stress requires special attention for the safety-

production of heat-treated animal waste, as the moisture level can be reduced during the 

storage of raw animal waste, and at the surface of the compost pile, due to the evaporation 

or heating from a thermophilic process (Chen and Jiang 2017a). Studies have already 

demonstrated that desiccation-adapted Salmonella cells were more heat resistant than non-

adapted cells in animal waste during physical heat treatment (Erickson et al., 2014, Chen 

et al., 2013), suggesting the need to use desiccation-adapted surrogate cells to validate the 

heat treatment conditions of animal waste to ensure a safety margin.   

Types of animal waste Animal waste types and properties affect the survival 

profiles of microorganisms. As the chemical, physical, and microbiological properties 

changed along during the storage of poultry litter compost, the effectiveness of heat-

treatment differed between fresh and aged chicken litters. Depending on initial moisture 
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contents of fresh chicken litter, a 7- log reduction of desiccation-adapted Salmonella 

required the heat-exposure of fresh chicken litter for 80.5 - 100.8, 78.4 - 93.1, and 44.1 - 

63 min at 70, 75, and 80°C, respectively (Kim et al., 2012). As a comparison, in aged 

chicken litter with a 20% moisture content, a 5-log reduction of the desiccation-adapted 

Salmonella required > 360, > 360, and 240 to 300 min of exposure at 70, 75, and 80°C, 

respectively (Chen et al., 2013). Chen et al. (2015) further investigated the impact of 

chicken litter storage time and ammonia content on the thermal resistance of desiccation-

adapted Salmonella spp., and reported that the thermal inactivation rates became lower in 

the chicken litter with extended storage time (6 months). Results from this study reported 

a significant (P < 0.05) loss of ammonia level in the chicken litter with longer storage time, 

indicating that the ammonia could be one significant factor influencing the thermal 

resistance of Salmonella cells in chicken litter.  
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Taken together, physical heat-treatment is a feasible and preferred strategy for 

inactivating pathogens in animal waste or animal waste-based compost. As a popular 

organic fertilizer, poultry litter is rich in nutrients and organic matter. But it is also a source 

of human pathogens with Salmonella spp. as the primary focus. To produce Salmonella-

free products, validation studies on the Salmonella inactivation during physical heat 

treatment in industrial settings are urgently needed. However, the introduction of pathogens 

into the industrial setting is not recommended for plant validation studies. Hence, surrogate 

and indicator microorganisms should be used to understand the growth/survival behaviors 

of pathogens in industrial environments (Harris et al., 2013).  

Surrogate microorganisms. Surrogate microorganism is a non-pathogenic strain 

that can respond to a specific treatment in a manner equivalent to a pathogenic strain (Hu 

et al., 2017). It can be used in validation studies in some industry settings. The systematic 

searching strings and selection procedure for studies that evaluated surrogate 

microorganisms for Salmonella spp. in physical heat-treatment processes were listed in 

Table A2 and Figure A2, respectively (Appendix A). A total of 232 records were identified, 

after selection and quality assessment, 33 eligible studies were summarized in Table 1.4. 
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Table 1.4 Surrogate bacteria evaluated for Salmonella spp. in physically heat-treatment studies since 2000. 

Pathogens Surrogates 
Study 
matrix 

Initial 
populations Heat-treatment conditions Suggestion on surrogate 

Reference
s 

S. Heidelberg, 
S. 
Typhimurium, 
S. Enteritidis, 
S. Infantis, and 
S. Hadar 

Commercial 
P. acidilactici 
starter culture 

Beef 
jerky 

8 log cfu / strip 
for Salmonella, 
and 3.3 – 4.7 
log cfu / strip 
for surrogate. 

A wet-bulb spikes of 51.7°C 
for 60 min, 54.4°C for 60 
min, 57.2°C for 60 min, 
57.2°C for 30 min, and 60°C 
for 10 min., followed by 
drying at 48.9, 54.4, 60, and 
76.7°C with hourly intervals. 

Commercial P. acidilactici 
starter culture can be a 
potential surrogate.  

Buege et 
al., 2006  

S. Poona and S. 
Montevideo  

15 
nonpathogenic 
E. coli 

Diluted 
bacteri
al 
suspen
sion 

Not describe   Samples with similar cell 
densities were heat treated at 
60°C using a Techne 
submerged-coil heating 
apparatus.   

5 out of 15 tested E. coli 
strains with less heat-
resistance were 
recommended as 
Salmonella surrogates.  

Eblen et 
al., 2005 

S. Senftenberg 
775W and L. 
monocytogenes 

E. faecium 
NRRL B-
2354, P. 
parvulus HP, 
and P. 
acidilactici LP 

Ground 
beef 

7.5 log cfu/g Samples were heated in a 
circulating water bath at 58, 
62, 65, or 68°C. 

S. Senftenberg 775W was 
the most heat-resistant 
pathogens, however, 
thermal treatments 
conditions that can kill E. 
faecium NRRL B-2354 
will also kill both 
Salmonella and L. 
monocytogenes.  

Ma et al., 
2007 

S. Enteritidis E. coli K12 Liquid 
egg 

7.5 log cfu/ml Samples were placed inside 
a sealed aluminum thermal-
death-time disk and heat-
treated in a water bath at 52 
to 60°C.  

Non-pathogenic E. coli 
K12 may serve as a 
surrogate for pathogenic S. 
Enteritidis in liquid egg 

Jin et al., 
2008 
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during thermal 
pasteurization.  

S. Enteritidis Commercial 
lactic acid 
bacteria 

Ground
-and-
formed 
beef 
jerky 

8 log cfu per 
beef strip  

Samples were run in a 
dehydrator at 68.3°C for 0, 
3.5, and 7 h.  

Commercial lactic acid 
bacteria (LAB) can be 
used as Salmonella 
surrogate for validating 
beef jerky process.  

Borowski 
et al., 
2009 

S. Enteritidis 
PT 30 

E. faecium 
NRRL B-2354 

Almon
ds 

Not describe   Samples were heat treated in 
a custom built, computer-
controlled, laboratory-scale, 
moist-air convection oven at 
121 to 204°C for targeting 5-
log reduction.  

E. faecium NRRL B-2354 
can be used as a 
conservative surrogate for 
SE PT30 during moist-air 
heating, and this organism 
is also likely to be an 
acceptable surrogate for 
steam heating. 

Jeong et 
al., 2011 

Salmonella A surrogate 
cocktail 
combination 
of E. faecium 
ATCC 8459 
and E. faecium 
ATCC 35667 

Peanut  6.5 to 7.7-log 
cfu/g 

Peanut dry roasting process 
was performed in industrial 
setting, with temperatures 
(149, 163, 177, and 191°C). 

Roasted peanut process 
has been validated using 
surrogate microorganisms.  

Poirier et 
al., 2014 

S. 
Typhimurium, 
S. Infantis, and 
S. Hadar 

P. acidilactici 
and S. 
carnosus 

Frankf
urter 
batter 
and 
ground 
beef 

7 log cfu/g Samples were placed into 
bags inside a wire-mesh 
basket and were heated in a 
preheated circulating water 
bath at 55°C for up to 120 
min.  

Due to the less heat 
resistance of surrogates as 
compared to the targeted 
pathogens, the use of P. 
acidilactici and S. 
carnosus as Salmonella 
surrogate to validate 
thermal processing 

Vasan et 
al., 2014 
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interventions in ground 
beef and frankfurter batter 
is not recommended.  

S. enterica E. faecium 
NRRL B-2354 

Carboh
ydrate-
protein 
meal 

6 log cfu/g Samples were extruded in a 
model 2003 GR-8 single-
screw extruder at 50 – 
100°C for 5- log reduction.  

E. faecium can provide 
enough safety margin of 
error for eliminating 
Salmonella.  

Bianchini 
et al., 
2014 

S. Tennessee E. faecium 
NRRL B-2354 

Talc 
powder  

8 – 9 log cfu/g; 
using dry 
inoculum 

Samples were sealed into a 
vacuum bag, and heat treated 
in a controlled water bath at 
85°C.  

E. faecium can be a 
conservative surrogate for 
S. Tennessee.  

Enache et 
al., 2015 

Salmonella 
serovars 

P. acidilactici 
ATCC 8042 
and E. faecium 
NRRL B-2354 

Dry pet 
foods 

Not describe   Samples were heated in a 
circulating water bath 
between 76.7 and 87.8°C. 

P. acidilactici ATCC 8042 
can be utilized as a 
surrogate for Salmonella 
in dry pet food at < 90°C. 

Ceylan et 
al., 2015 

S. Senftenberg, 
S. 
Typhimurium, 
and S. Newport 

E. faecium 
NRRL B-2354 
and 
Saccharomyce
s cerevisiae 

Hambu
rger 
buns 

8 log cfu/g Samples were baked for 13 
min in a conventional oven 
(218.3°C), with internal 
crumb temperature 
increasing to ~100°C in 8 
min of baking until removal 
from the oven. 

E. faecium demonstrated 
greater thermal resistance 
compared with 
Salmonella, not S. 
cerevisiae.  

Channaiah 
et al., 
2016 

S. 
Typhimurium 
PT 42 

E. coli 3A-I, 
E. faecium 
2B-I, and ten 
different 
isolates from 
flour.  

Flour  5 log cfu/g Samples were placed into 2 
ml screw top glass vials, and 
heat treated in agitation 
water bath at (70, 75, and 
80°C) for 12 to 60 min. 

Pantoea dispersa strain 
JFS isolated from flour 
was suggested as a 
surrogate for S. 
Typhimurium PT 42.  

Fudge et 
al., 2016 
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S. 
Typhimurium 

Avirulent 
strain of S. 
Typhimurium 

Diluted 
bacteri
al 
suspen
sion   

~ 7 log cfu/ml Bacterial cultures were heat-
treated on a water batch at 
50°C for up to 10 min.  

The avirulent strain of S. 
Typhimurium contains no 
pathogenicity islands, and 
shared similar thermal 
resistance with that of the 
wild type.  

de Moraes 
et al., 
2016 

S. Senftenberg 
775W, S. 
Typhimurium, 
S. Anatum, S. 
Montevideo, S. 
Tennessee, and 
L. 
monocytogenes 

E. faecium 
NRRL B-2354 

Low 
moistur
e foods 

7 – 8 log cfu/g Samples were placed into 
thermal cells and heat-
treated in an oil bath. 

 at four temperatures 
between 70 and 140°C. 

E. faecium NRRL B-2354 
can be a suitable surrogate 
for Salmonella for low 
moisture foods, but not for 
the sugar containing 
confectionery formulation 

Rachon et 
al., 2016 

Salmonella Cronobacter 
sakazakii, and 
Pediococcus 
acidilactici 

Galact
ooligos
acchari
de 

Salmonella (5.1 
to 5.8 log 
cfu/g) or C. 
sakazakii (5.3 
to 5.9 log 
cfu/g) and P. 
acidilactici (6.1 
to 6.5 log 
cfu/g) 

Samples were heat treated at 
70 – 85°C to determine D- 
and Z- values.  

P. acidilactici had higher 
D-values than did 
Salmonella and C. 
sakazakii, which can be 
used as conserved 
surrogate for Salmonella.  

Bang et 
al., 2017 

S. enteritidis 
PT 30 

E. coli ATCC 
25922 

Almon
d 
powder 

~ 3 log cfu/g Samples were treated by a 
controlled 
atmosphere/heating block 
system at four temperatures 
between 65 and 80°C under 
different gas concentrations 
and heating rates. 

No directly comparison of 
thermal resistance between 
Salmonella and E. coli was 
provided in this study.  

Cheng et 
al., 2017 
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S. Enteritidis 
PT30 

E. faecium 
NRRL B-2354 

Almon
d 
kernels 

~ 8 log cfu/g Samples were heated in a 
pilot-scale, moist-air 
impingement oven at 121, 
149, or 177°C. 

The surrogate yielded 
lethality prediction that 
were statistically like 
Salmonella.  

Jeong et 
al., 2017 

S. Enteritidis 
PT30 

E. faecium 
NRRL B-2354 

Flaxsee
d, 
sunflo
wer 
seeds, 
and 
pepper
corn 

~ 7 - 8 log 
cfu/g 

Samples were heat treated 
with vacuum steam 75, 85, 
95, and 105°C.  

E. faecium can be used as 
surrogate for Salmonella 
PT 30 for vacuum steam 
pasteurization.  

Shah et 
al., 2017 

S. Enteritidis E. faecium 
NRRL B-2354 

Wheat 
flour 

~ 8 log cfu/g Samples were heated treated 
at 75, 80, and 85°C in sealed 
aluminum-test-cells.  

E. faecium can be a 
conservative surrogate for 
Salmonella in thermal 
processing of wheat flour. 

Liu et al., 
2018a 

S. Enteritidis E. faecium 
NRRL B-2354 

SiO2 

particle
s 

7.8 log cfu/g Samples were heated in 
ethylene glycol oil bath at 
80°C. 

The thermal resistance of 
both S. Enteritidis and its 
surrogate increased with 
decreasing relative 
humidity in the testing 
environments.  

Liu et al., 
2018b 

Salmonella E. faecium 
NRRL B-2354 

Oat 
flour  

7 - 8 log cfu/g Samples were heat treated in 
a lab‐scale single‐screw 
extruder running at different 
screw speeds (75 to 225 
rpm) and different 
temperatures (75, 85, and 
95°C). 

Effect of different product 
and process parameters on 
inactivation of E. faecium 
NRRL B‐2354 was 
different from that of 
Salmonella, suggesting 
another surrogate may be 

Verma et 
al., 2018 
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preferred and needs to be 
identified.  

S. Enteritidis, 
S. 
Typhimurium, 
S. Heidelberg, 
S. Newport, 
and S. 
Choleraesuis. 

Non-
pathogenic E. 
coli surrogates 
from ATCC  

Ground 
beef 

6 log cfu/g Samples were plated into 
sample bags and heat-treated 
in a water bath at 54, 57, 60, 
and 63°C. 

E. coli surrogates can be 
used as Salmonella 
surrogate in ground beef.  

Redemann 
et al., 
2018 

S. enterica and 
L. 
monocytogenes 

E. faecium In-shell 
pecans 

7.88, 7.58, and 
6.53 cfu/g for 
Salmonella, 
L.monocytogen
es, and E. 
faecium, 
respectively.  

In-shell pecans were 
subjected to hot water at 70, 
80 or 90°C for 1, 2, 3, 4 or 5 
min. 

Non-pathogenic E. 
faecium showed similar 
resistance to hot water as 
S. enterica. L. 
monocytogenes was the 
least heat resistant 
pathogen to hot water 
treatment.  

Kharel et 
al., 2018 

Salmonella E. faecium 
NRRL-B2354 

Almon
d meal 

~ 8 log cfu/g Samples were kept in 
aluminum test cells and 
submerged into a water bath 
for heat treatment at 80°C.  

E. faecium NRRL-B2354 
was more heat resistant in 
dry inoculation methods, 
as compared to the wet 
inoculation.  

Ahmad et 
al., 2019 

S. Enteritidis 
PT30 

E. faecium 
NRRL-B2354 

Peanut
s and 
pecans. 

7.5 to 8.7 log 
cfu/g 

Peanut kernels were heat 
treated by dry air heating 
conditions, (120°C (20, 30, 
40 min), 130°C (10, 20, 30 
min), 140°C (10, 20, 30 
min)); Pecan kernels were 
heat treated by  Oil heating 
conditions (116°C, 121°C, 

E. faecium is a valid 
surrogate for peanut 
stagnant dry heat and 
pecan conditioning and oil 
heating treatments, but not 
for dry air heating of 
peanuts.  

Brar et al., 
2019 
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and 127°C for 0.5, 1.0, 1.5, 
2.0, 2.5 min).  Water heating 
conditions (75°C (20, 40, 80, 
120 s), 80°C (20, 40, 80, 120 
s), 85°C (20, 40, 80, 120 s), 
90°C (20, 40, 60, 80 s), and 
95°C (20, 40, 60, 80 s) were 
evaluated for inshell pecans. 

Salmonella 
serovars 
(Enteritidis, 
Agona, 
Typhimurium, 
Tennessee, and 
Newport) 

P. acidilactici 
ATCC 8042 
and E. faecium 
NRRL-B2354 

Toaste
d oats 
cereal 
and 
peanut 
butter  

6 log cfu/g Samples were put into 
stomacher bags, and treated 
in a water bath at 80, 85, 90, 
and 95°C for toasted oats 
cereal, and 63, 68, 73, and 
77°C for peanut butter.  

P. acidilactici had the 
similar heat tolerant as E. 
faecium, however, P. 
acidilactici can only be 
used as Salmonella 
surrogate in toasted oats 
cereal when heat treated at 
> 85°C.  

Deen et 
al., 2019 

S. 
Typhimurium 

E. faecium 
NRRL-B2354 

Cocoa 
powder
/  

~ 8 log cfu/g Cocoa powder (aw = 0.3 or 
0.4) was heat treated in an 
ethylene glycol bath at 70–
80°C.  

The suitability of E. 
faecium as a surrogate for 
Salmonella varies as a 
result of aw of cocoa 
powder. 

Tsai et al., 
2019  

S. Senftenberg 
775W, S. 
Enteritidis PT 
30, S. 
Montevideo 
and L. 
monocytogenes 

4 non-
pathogenic 
surrogates E. 
faecium, E. 
coli P1, E. coli 
K12 and L. 
innocua 

Black 
pepper
corns 

~ 8 log cfu/g Samples were subjected to 
steam treatment at 70 and 
75°C for 5 min.  

E. faecium was the most 
suitable surrogate to 
validate mild steaming 
processes.  

Zhou et 
al., 2019 
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S. enterica and 
L. 
monocytogenes 

L. innocua and 
E. faecium 

Frozen 
blueber
ry 

8.6 log cfu/g Osmotically dehydrated and 
air-dried processes were 
carried out.  

After osmotic dehydration 
of blueberries, only E. 
faecium was detected.  

Bai et al., 
2020 

S. Senftenberg 
775W, S. 
Enteritidis PT 
30, & S. 
Thompson 

E. coli P1, E. 
faecium 

Basil 
leaves 

~ 6 log cfu/g Samples were dried at 60°C 
and 69°C for 90 min or at 
100°C for 70 min using hot-
air drying in the pilot scale 
dryer. 

E. coli P1 was more 
suitable surrogate to 
validate hot-air drying 
processes compared to E. 
faecium 

Zhou et 
al., 2020 

S. Enteritidis 
PT 30 

E. faecium 
NRRL B-2354 

Pistach
ios 

7.43 – 7.70 log 
cfu/g 

Samples were heat treated in 
hot oil (121°C) or hot water 
(80°C) for 6 min. OR 
Samples were heat treated at 
104.4 – 118.3°C with 30% 
or no humidity for 5 – 60 
min.  

E. faecium NRRL B-2354 
is a good potential 
thermal-treatment 
surrogate for pistachios.  

Moussavi 
et al., 
2020 

S. 
Typhimurium 

 
 
 

 

E. coli 
AW1.7, 
Pediococcus 
acidilactici, E. 
faecium 
NRRL B-2354 
and 
S.carnosus  

Beef 
jerky 

~ 8 log cfu/g Samples were exposed to 
60°C for 1, 4 or 15 min 
using a water bath. 

E. faecium NRRL B-2354 
and S. carnosus were 
validated as surrogate 
organisms for Salmonella 
after desiccation 
adaptation. 

Schultze 
et al., 
2020 
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Based on the studies summarized here, surrogate microorganisms can be obtained 

by genetic modification on the pathogens, isolating from original tested products, or 

adapting the surrogate already used to a new study matrix. Several studies used non-

pathogenic E. coli or an avirulent strain of S. Typhimurium which contains no 

pathogenicity islands (Eblen et al., 2005, Jin et al., 2008, de Moraes et al., 2016) as 

surrogate microorganisms in lab-scale studies. This approach can surely mimic most 

characteristics of targeted pathogens except for pathogenicity. However, such selection is 

not recommended in an industry setting, because of the chance of reversion in 

pathogenicity or the occurrence of false-positive in the final products (Hu et al., 2017). 

Another method is to isolate surrogates from the original study matrix. Fudge et al. (2016) 

tested ten isolates from flour samples and suggested that one of these isolates, P. dispersa 

JFS, can work as a suitable surrogate for Salmonella in wheat flour during heat-treatment. 

Similarly, some commercial lactic acid bacterial cultures that have been used in making 

beef jerky or sausages can also be considered as a surrogate for Salmonella spp. in the 

respective products (Buege et al., 2006, Borowski et al., 2009). As listed in Table 1.4, 

several bacterial species have been recommended as Salmonella surrogates in different 

matrices. Among them, Enterococcus faecium NRRL B-2354 has been widely used as a 

surrogate for S. enterica for validating thermal processing of nuts and carbohydrate-protein 

meal (Jeong et al., 2011, Bianchini et al., 2014). Most importantly, the genetic safety of E. 

faecium NRRL B2354 as a surrogate has been thoroughly studied by Kopit et al. (2014) by 

sequencing, confirming that this strain lacks the genomic and phenotypic characteristics 

linked to nosocomial infections.  
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After selection, the surrogate microorganisms should be tested against targeted 

pathogens in a controlled lab study before conducting the validation study in a commercial 

setting or an open environment. Salmonella is considered as the most resistant non-spore 

forming bacterial pathogen to physical heat-treatment in various study matrices, such as in 

ground beef and pecans (Ma et al., 2007, Kharel et al., 2018). Heat resistance of bacterial 

cells can be affected by numerous factors, including the age of culture, the physiological 

status of culture (stress adapted or not) and inoculation methods (wet or dry) (O'Bryan et 

al., 2006). When evaluating the surrogate microorganism with a targeted pathogen in a 

validation study, all the aforementioned factors should be considered for both the surrogate 

and pathogenic microorganism (Ahmad et al., 2019, Schultze et al., 2020). According to 

these eligible studies, surrogate microorganisms should be selected with caution before 

testing against the target pathogen. Moreover, a relatively high inoculation level (6 to 8 log 

cfu/g or ml) was used in most validation studies to provide a sufficient log reduction for 

heat treatment.  

Indicator microorganisms. The survival of pathogens in animal waste can also be 

predicted by monitoring indigenous bacterial species as indicator microorganisms. Studies 

suggested that indigenous enterococci or non-pathogenic E. coli could be a choice of 

indicator to validate the effectiveness of thermal processing for biosolid or animal waste 

(Côté et al., 2006, Graham et al., 2009, Chen et al., 2015). Côté et al. (2006) reported that 

97.94-100% reduction of total coliforms and 99.67-100% reduction of indigenous E. coli 

resulted in undetectable levels of indigenous Salmonella during anaerobic digestion in 

swine slurries. The populations of indigenous enterococci and mesophiles ranged from 3.0-



 40 

7.5 log and 6.6-8.9 log cfu/g, respectively, in poultry litter during composting or stockpiling 

(Graham et al., 2009, Chen et al., 2015). These data suggested the raw poultry litter before 

physical heat treatment contained at least 3-log of naturally occurring enterococci, which 

can provide enough log-reduction for predicting the survival behaviors of Salmonella in 

poultry litter compost during thermal treatment.  

As discussed above, except for the lab-scale validation studies, only pilot-scale 

models using pig slurry as matrix and indigenous microorganisms as indicators have been 

reported for animal waste treatment process validation (Cunault et al., 2011 & 2013). No 

validation study with representative test organisms (surrogate or indicator 

microorganisms) for heat-treated animal manure have been reported in the commercial 

industry settings in the U.S.  

 

Competitive exclusion (CE) strategies to control pathogens 

In addition to physical heat-treatment, other control strategies have also been 

developed to kill pathogens to ensure microbiological safety. Competitive exclusion (CE), 

also has been described as “bacterial antagonism” or “bacterial interference”, which is 

based on the involvement of non-pathogenic microorganisms to enhance the microbial 

competition in order to reduce pathogens in a certain environment (Nurmi et al., 1992). 

Traditionally, CE cultures isolated from animals have been added to the animal feed for 

synergistic interaction with the animal gut microbiota to reduce the pathogens in animal 

gut (La Ragione et al., 2003, Schneitz et al., 2005). When applied to the agriculture field 
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or food industry, CE cultures can be an excellent biological control tool that provides an 

environmentally friendly method to control foodborne or plant pathogens. 

Isolation methods for CE microorganism. Culture-based methods are essential 

for isolating microorganisms, including CE microorganisms from numerous environments. 

The candidate CE strains can be isolated from environments where they have adapted. As 

shown in Table 1.5, CE microorganisms have been isolated from processing facilities or 

fecal samples that have no target pathogen contamination (Zhao et al., 2014, Danyluk et 

al., 2007) by directly culturing with nutrient media. After isolation, antagonistic activities 

of CE strains against pathogens can be quickly confirmed by spot-on-lawn for the isolates, 

patch plate or agar cylinder for cultured plates, and disc diffusion or agar-well diffusion 

methods for cell-free supernatant fluids. It is noteworthy that the spot-on-lawn is a 

preferred method if the CE microorganism is suspected to produce bacteriocin-like anti-

bacterial compounds. This is because the bacteriocin-like compounds may be attached to 

the cell wall and thus the inhibition can only be effective when the cell is directly in contact 

with the pathogenic cell on agar surface (Ammor et al., 2006ab). However, the candidate 

CE species can be non-culturable or hard-to-culture microorganisms in natural 

environments, such as in soil or animal-waste. To the best of our knowledge, no published 

studies have been attempted to isolate such CE species from animal waste samples. Most 

CE microorganisms were isolated by plating target samples onto nutrient plates followed 

by confirmation of antagonistic activities against pathogens (Table 1.5). Therefore, special 

stimuli such as adding specific growth nutrients or growth promoting factors, modification 

of isolation agar preparation, using extended incubation time or reduced-strength nutrient 
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cultures, should be taken into account for CE isolation or resuscitation of viable but non-

culturable or hard-to-culture microorganisms from environmental samples (Pulschen et al., 

2017, Zhao et al., 2017). 
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Table 1.5 Methods for isolating CE microorganisms to control major foodborne pathogens since 2000.  

Isolation matrix  Isolation or screening methods  Comments  Reference  
Biofilm samples 
collected from floor 
drains at food 
processing plants  

Spot-on-lawn: Samples were plated onto 
nutrient agar, followed by spot-on-lawn 
inoculation using double-layer assay. 

Bacterial isolates were identified as lactic acid 
bacteria. 

Zhao et al., 
2004 

Dry sausages 
processing facility 

Agar well diffusion and overlay agar 
assay: The bacterial culture or cell-free 
culture supernatant was inoculated into 
agar well.  

The production of bacteriocins only on agar plated in 
overlay assays, not in cell-free culture supernatant.  

Ammor et 
al., 2006 

Fresh peeled baby 
carrots 

Spot-on-lawn and growth on pepper 
disk. 

Pseudomonas fluorescens 2-79 or BacillusYD1 at 5 
to 6 log CFU/g as used in this study can provide 3.8-
4.0 log reduction of foodborne pathogens. 

Liao et al., 
2009 

Raw milk sample 
and feces sample  

Spot-on-lawn using double-layer assay. Lactic acid bacteria isolated from raw milk had a low 
antagonistic activity against E. coli. 
25 CE strains were isolated from feces samples.  

Danyluk et 
al., 2007; 
Tamanini et 
al., 2012 

Fern plant Patch plate method: Bacterial isolates 
were patched inoculated onto plates. 

Endophytic bacteria a can produce antibiotic 
substances that were capable of controlling L. 
monocytogenes, B. ce-reus, S. aureus, E. coli, and S. 
Typhimurium.  

Das et al., 
2017 

Soil samples Agar cylinder diffusion assay: agar 
cylinder was cut and removed from the 
agar plates inoculated with diluted soil 
sample after 2-days growth.  

The purified isolates of actinomycetes belonged to 
Streptomyces spp. But some inhibition was not so 
clear due to the cell morphology.  

Benreguieg 
et al., 2017 

Dairy products Involved enrichment step: Samples were 
enriched first in MRS broth, then spread 
plated onto MRS agar, followed by 
confirmation using spot-on-lawn. 

The enrichment step can promote the isolation of 
Lactobacillus from dairy product.   

Karami et 
al., 2017 

Kefir and kefir 
grains 

Triple-agar-layer. The second layer of agar supplemented with 
Natamycin can promote the fungal growth.  

Powell et 
al., 2007  

a Endophytic bacteria: Bacillus sp. cryopeg, Paenibacillus Staphylococcus warneri, and Bacillus psychrodurans  
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Mechanisms of competitive exclusion (CE) strategies. The mechanisms of CE 

microorganisms inhibiting human pathogens in the natural environment include the 

production of antibacterial substances and competition for limiting nutrient sources or 

attachment sites on the favorable surface. For some situations, a synergistic interaction of 

two or more of these activities can occur. When the antimicrobial compounds are produced 

by CE microorganisms, the antibiotics should be produced at a sufficient level to 

effectively suppress the growth of pathogens. According to the literature, the antibiotic 

production is regulated by the quorum-sensing mechanism (Moslehi-Jenabian et al., 2011). 

When different species of bacteria co-exist in one environment, the higher growth rate and 

the ability of up-taking the limited amount of essential nutrients from the growth 

environment are key factors for establishing the dominance by the CE strains (Hibbing et 

al., 2010). For example, the siderophore production for acquiring iron and the competitive 

uptake of glucose have been proved as key mechanisms of inhibiting the growth of fish 

pathogen (Aeromonas hydrophila) by Bacillus cereus (Lalloo et al., 2010).  

The competition for the attached site occurs between CE microorganisms and 

pathogens can be either the co-attachment on the same surface or the displacement of the 

existing pathogen colonization by CE. The capability of the selected Lactobacillus strain 

to displace pathogen colonization on the mucosal surface was confirmed by Gueimonde et 

al. (2006). As highly motile cells can access more nutrients, the motility can contribute to 

the dispersal and affect the competitive activity of bacteria (Hibbing et al., 2010). 

Therefore, the use of high-motile microorganisms as CE candidates should be taken into 

further consideration.  
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Application of CE strategies to control plant pathogens in the agricultural field 

as biological control agents. CE microorganism can be applied to suppress plant/soilborne 

pathogens (Köhl et al., 2019), which have been known as biological control agents. In fact, 

although crop losses caused by plant pathogens alone are hard to estimate, plant disease 

caused by plant pathogens is a major contributor to the crop yield loss (ca. $60 billion 

worldwide) (Loebenstein et al., 2009), posing an economic benefit of using biological 

control to defeat plant disease.  

Plant pathogens can induce plant diseases, such as Rhizoctonia solani (the cause of 

damping-off and loss of crop yield) (Qian et al., 2009, Liu et al., 2018c), Fusarium 

oxysporum (the cause of vascular wilts) (Qiu et al., 2012, Xue et al., 2015), and Erwinia 

amylovora (the cause of fire blight disease of pear) (Sharifazizi et al., 2017). Numerous 

beneficial microorganisms, such as Bacillus subtilis or Bacillus spp., Lactobacillus 

plantarum, Pseudomonas spp., Pantoea agglomerans, Rahnella aquatilis, Trichoderma 

asperellum, or other yeasts have been used as biocontrol agents against plant pathogens 

(Zeller et al., 2006, Fira et al., 2018, Postma et al., 2019, Al-Ghafri et al., 2020). Some of 

these organisms have become commercially available for treating plant diseases (Pastrana 

et al., 2016, Smolińska et al., 2018). There are growing interests and opportunities in using 

microbial biological control agents against plant diseases. Note that the biological control 

agents should be added accordingly with the pathogen development such asin the early 

stages in order to reach a stable beneficial microbial community prior to the invasion of 

pathogens (Postma et al., 2008).  
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Applications of CE strategies to control foodborne pathogens. In addition to 

plant pathogens, research on CE has been traditionally focused on controlling the 

colonization of Salmonella in gastrointestinal tracts of chickens (Vandeplas et al., 2008). 

When CE cultures are used in animal feed, CE cultures can promote the heathy host 

immune system. These kinds of microorganisms can work as probiotics for farm animals 

(Callaway et al., 2008). Promising results have been reported for lactic acid bacteria (LAB) 

culture controlling of E. coli, Yersinia pseudotuberculosis, and S. enterica in chicken, 

cattle, and pig (Anderson et al., 1999, Brashears et al., 2003). Essentially, the most common 

microbial genera used as probiotics in different studies are Enterococcus, Bifidobacterium, 

nonpathogenic Escherichia, Lactobacillus and Saccharomyces (Wan et al., 2019). These 

probiotics have been used as an alternative to antimicrobials in animal feeds, and conferred 

benefits to the host gut. Specifically, the use of these CE cultures in animal feed not only 

serves as a competitive function against pathogens but can also enhance the yield of 

vitamins and antioxidants produced in the host animals (Amaretti et al., 2013).  

Published literature reviews have focused primarily on using CE as probiotics for 

farm animals (Callaway et al., 2008, Wan et al., 2019), and the potential use of CE cultures 

in the food industry in recent years has not been reviewed in detail. Therefore, a systematic 

literature search was performed to identify competitive exclusion strategies used to control 

major foodborne pathogens from farm to food processing plants. As stated in previous 

sections, EBSCO (Academic Search Complete) and Web of Science, were searched for 

peer-reviewed articles published from 2000 to 2020. The search strings and study selection 
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procedure are listed in Table A3 and Figure A3, respectively (Appendix A). After selection 

and quality assessment, 32 eligible studies were summarized in Table 1.6. 
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Table 1.6 Summary of application of CE strategies to control major foodborne pathogens since 2000 as indicating by major CE 

species, inoculation used, target pathogens and study matrix. 

CE species 

CE 
Inoculation 
level  Targeting foodborne pathogens/level 

Study matrix and test 
methods  Reference  

Lactic acid bacteria 
including 
Lactobacillus spp., 
Enterococcus durans  

7 log cfu/g  E. coli O157: H7 and L. monocytogenes / 
5.5 log cfu /g 

Cut cabbage  Harp et al, 
2003  

 5 log cfu/ml L. monocytogenes / 3 log cfu/ml  Co-culture in TSB-YE and 
biofilms formation on 
stainless steel coupons  

Zhao et al., 
2004 

 9 log cfu/ml L. monocytogenes / 3.6 – 7.5 log cfu/ 100 
cm2 

Floor drains of a poultry 
processing plant 

Zhao et al., 
2006 

 7 log cfu/ml L. innocua, S. aureus or Hafnia alvei / 5 
log cfu/ml 

Biofilm growth model Ammor et al., 
2006 

 3-4 log cfu/g L. monocytogenes / 3-4 log cfu/g Co-culture in sliced 
sausage with different 
packaging types  

Kaban et al., 
2010 

 N.A. L. monocytogenes and E. coli / 8 log cfu/ml Raw milk sample with 
spot-on-lawn 

Tamanini et 
al., 2012 

 8 log cfu/ml Salmonella /8 log cfu/ml Co-culture in mixed 
culture 

Szala et al., 
2012 

 5 log cfu/ml L. monocytogenes / 5.5 log cfu/ml Cheese and biofilm  Ben et al., 
2013 

 6 log cfu/ml L. monocytogenes / 3 log cfu/g Co-culture in cheese Samelis et al., 
2017 

 Biofilm 
formed by CE 

L. monocytogenes / 8.01 log cfu/ml biofilm  Biofilm formed by CE  Turhan et al., 
2017 
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with 9.46 and 
9.66 log 
cfu/ml CE load 

 N.A. S. aureus, B. subtilis, and P. aeruginosa 
/overnight culture 

Spot-on-lawn Karami et al., 
2017 

 9 log cfu/ml L. monocytogenes / at 4°C: 7.1-7.7 log 
cfu/cm2 

at 8°C: 7.5-8.3 log cfu/cm2 

Biofilms on coupons 
composed of different 
materials (stainless steel, 
plastic, rubber, glass, and 
silicone) 

Zhao et al., 
2013 

 2% LAB 
culture  

L. monocytogenes / 4-6 log cfu/ml Co-culture in cheese Kondrotiene et 
al., 2018  

 8 log cfu/ml L. monocytogenes / 4-5 log cfu/ml Biofilm on stainless steel  Dygico et al., 
2019  

 7 log cfu/ml  E. coli O157: H7, B. cereus, and S. aureus 
/ 6 log cfu/ml 

Agar well diffusion Hafez et al., 
2019  

 7 log cfu/ml Salmonella /7 log cfu/ml Co-culture in mixed 
culture 

Shi et al., 2019 

 Ca. 6 log 
cfu/ml 

L. monocytogenes, E. faecalis, and S. 
aureus / 4-5 cfu/ml 

Fresh pork sausage Gelinski et al., 
2019 

Pseudomonas spp. 5 log cfu/ml Salmonella / 3 log cfu/ml Co-culture in TSB and 
alfalfa seed soak water  

Fett et al., 
2006 

 Ca. 7 log 
cfu/ml 

L. monocytogenes and Salmonella /5 log 
cfu/ml 

Fresh-cut pear  Iglesias et al., 
2018 

 7 log cfu/ml L. monocytogenes/5 log cfu/ml Spot-on-lawn, and co-
culture in melon plugs, 
and melon juice  

Collazo et al. 
2017  

Pseudomonas 
fluorescens AG3A (Pf 
AG3A) and Pf 2-79, 
and Bacillus YD1 

5 -8 log cfu/ml E. coli O157: H7, L. monocytogenes, 
Salmonella, and Yersinia enterocolitica / 5 
log cfu/ml 

Co-culture in TSB Liao et al., 
2009 
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Streptomyces 
spororaveus, Bacillus 
safensis, and 
Pseudomonas 
azotoformans  
 

Biofilm 
formed by CE 
with 7.9-8.5 
log cfu/coupon 
CE load 

S. aureus / 4.2 log cfu/ coupon  Biofilm formed by CE on 
stainless steel  

Son et al., 
2016 

Pseudomonas 
extremorientalis, 
Paenibacillus peoriae, 
and Streptomyces 
cirratus 

8.6, 8.8, and 
6.4 log 
cfu/coupon 

Salmonella / 4.1 log cfu/coupon Biofilm formation on 
stainless steel surface 

Kim et al., 
2018 
 
 
  

Bacillus Cell-free 
supernatants 

B. cereus, E. coli O157: H7, L. 
monocytogenes, Salmonella, S. aureus, P. 
aeruginosa 

Disc diffusion assay  Avci et al., 
2016 

Endophytic bacteria: 
Bacillus sp. cryopeg, 
Paenibacillus 
Staphylococcus 
warneri, and Bacillus 
psychrodurans 

N.A. B. cereus, E. coli O157: H7, L. 
monocytogenes, Salmonella, S. aureus 

Spot-on-lawn Das et al., 
2017 

Paenibacillus 
polymyxa 

6 log cfu/ml E. coli O157: H7 / 2, 3, 4, or 5 log cfu/ml Biofilm formed by CE Kim et al., 
2013  

Leuconostoc 5-9 log cfu/g L. monocytogenes / 3-4 log cfu/g Co-culture on wounds of 
fruit and vegetable  

Trias et al., 
2008 

Streptomyces 2-day old 
culture  

L. monocytogenes / 24 h – culture  Agar cylinder diffusion 
assay 

Benreguieg et 
al., 2017 

Phyllosphere-
associated lactic acid 
bacteria 
 

 4 log cfu/ 5 
cm2 

Salmonella / 3 log cfu/ 5 cm2 Co-culture on the surfaces 
of cantaloupes  

McGarvey et 
al., 2019 
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Erwinia persicina 5-8 log cfu/ml Salmonella / 3 log cfu/ml Spot-on-lawn and co-
culture in alfalfa seed soak 
water 

Kim et al., 
2020  

Comme Competitive 
Inhibition Bacteria of 
Bovine Origin against 
Salmonella 
Serovarsrcial probiotic 
supplement 
Lactobacillus 
rhamnosus GG (LGG) 
(Culturelle®) 
 

9 log cfu/g for 
coculture  

Salmonella, and L. monocytogenes / 3-4 
log cfu/g for co-culture  

Spot-on-lawn and co-
culture in cook-chill cream 
of potato soup  

Muñoz et al., 
2019  

Commercially 
protective bacterial 
cultures a 

9 log cfu/ml L. monocytogenes, Salmonella, and STEC / 
7 log cfu/ml 

Spot-on-lawn Gensler et al., 
2020 

     
a Commercially produced PCs used were Lactococcus lactis subsp. lactis BS-10 (LLN), Pediococcus acidilactici B-LC-20 (PA), 
Lactobacillus curvatus B-LC-48 (LC) (Chr. Hansen Inc., Milwaukee, WI), Lactobacillus plantarum (LPP) Holdbac Listeria (DuPont 
Danisco USA Inc., New Century, KS), Lactobacillus rhamnosus Lyofast LRB (LR), Lactobacillus plantarum Lyofast LPAL (LP), 
Carnobacterium spp. Lyofast CNBAL (CS) (Sacco Srl, Amerilac, Miami, FL), LALCULT Protect Hafnia alvei B16 (HA), LALCULT 
Protect Staphylococcus xylosus XF01 (SX) (Lallemand Specialty Cultures, Blagnac, France), and Enterococcus faecium SF68 (EF) 
(NCIMB 10415, Cerbios-Pharma SA, Barbengo, Switzerland) 
 



52 
 

Table 1.6 lists the CE cultures that have been widely used in controlling foodborne 

pathogens, including lactic acid bacteria, Enterococcus, Pseudomonas, Paenibacillus, 

Streptomyces, Bacillus, and some commercially protected bacterial cultures. Major 

foodborne pathogens have been targeted, including L. monocytogenes, Shiga toxin 

producing E. coli (STEC), Salmonella, B. cereus, and S. aureus at a level of 3 to 8 log cfu/g 

or ml. The application of defined or undefined CE cultures at the levels of 3 to 9 log cfu/g 

or ml has been used to decrease pathogen populations and avoid cross-contamination in 

various study matrix, like in co-culture, biofilm, fresh produce, packaged food, dairy 

products, and food processing facilities. Different methods for testing the antagonistic 

activities have been used. The inhibition effects from CE on foodborne pathogens as 

pathogen reductions (no reduction to > 7 log-reduction) or zone of inhibitions (2 mm to 3 

cm) differed among studies. In general, reduction of pathogen increased with the increasing 

CE concentration due to more antimicrobial compounds produced or the effect from 

population competition (Liao et al., 2009, Kim et al., 2020).  

The CE isolates can be applied to control foodborne pathogens in different 

environments. CE cultures can inhibit the growth potential of pathogenic bacteria, when 

CE cultures were directly applied to decompose the pathogenic biofilms. Likewise, studies 

have reported that the growth potentials of L. monocytogenes, Salmonella, L. innocua, S. 

aureus, and H. alvei can be reduced by CE culture treatment by 2- to 6-log (Zhao et al., 

2004, 2006 & 2013, Ammor et al. 2006). The biofilm formed by CE strains also can emerge 

as a protective barrier to reduce the pathogen contamination. For example, populations of 

E. coli O157:H7, S. aureus, L. monocytogenes, and Salmonella, decreased by 0.4 – 2 log 
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cfu/coupon after inoculation on the stainless-steel coupon contains preformed biofilm by 

CE (Kim et al., 2013, Son et al., 2016, Kim et al., 2018). When CE treatment was applied 

to fresh produce and packaged foods, the efficacy of CE treatment was affected by the 

vegetable type and packaging materials. For example, Harp et al. (2003) found there was 

no noticeable antagonistic action against E. coli O157: H7 and L. monocytogenes induced 

by Lactobacillus, probably due to the catalase activity in the cut cabbage. In contrast, the 

use of L. sakei with modified atmosphere packaged sausage has a synergistic inhibitory 

effect on controlling the post-processing contamination in cooked meat products with L. 

monocytogenes (Kaban et al., 2010). Clearly, the findings from published studies have 

provided novel insights into practical use of CE microorganisms to control foodborne 

pathogens in different environmental niches.   

Suppression of pathogens by CE isolated from compost. As a nutrient-rich 

ecosystem, the rhizosphere is known to contain highly competitive activities among 

microbial communities. Studies also revealed that the application of organic compost as 

fertilizer to soil can suppress soilborne pathogens by regulating microbial community in 

rhizosphere (Nega 2014). Several beneficial microorganisms with antagonistic activities 

against soilborne pathogens were identified from compost (Ren et al., 2012, Mulero-

Aparicio et al., 2020, Al-Ghafri et al., 2020). For example, in a recent study, several 

bacterial strains isolated by Al-Ghafri et al. (2020) from compost were screened for their 

inhibition ability against plant pathogens. As a result, the antagonistic activity of 

Pseudomonas aeruginosa against Pythium aphanidermatum and Fusarium solani was 

confirmed by the observation of the morphological change of the pathogen under electron 
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microscope. Furthermore, some beneficial microorganisms have been added to 

thermophilic composting stage to increase the soilborne pathogen suppression in the 

compost (Mulero-Aparicio et al., 2020, Al-Ghafri et al., 2020). Nonetheless, there are very 

limited studies documenting the isolation and use of CE as a biological control agent to 

eliminate human pathogens in animal waste or other soil amendments. Only Puri et al. 

(2010) performed a lab-scale study of investigating the survival of E. coli O157: H7 in 

compost slurry and reported the presence of cycloheximide-sensitive eukaryotic species 

can reduce the growth of spiked E. coli O157: H7 by ca. 4-log in the compost.  

Although competitive exclusion of pathogens in different environments has been 

reported, studies between foodborne pathogens and CE strains have yielded no effective 

CE microorganisms from animal waste or animal waste-based compost to inhibit 

foodborne pathogens such as L. monocytogenes. Many studies have concluded that 

microbial diversity is a key barrier against pathogen contamination in a various matrix, 

such as rhizosphere, mouse gut, and soil (De Brito et al., 1995, Vivant et al., 2013, Gurtler 

et al., 2017, Ji et al. 2017). Hence, it is important to further study the microbial community 

in animal waste or animal waste-based compost to determine if beneficial CE cultures can 

be isolated 

 

Microbial community in animal waste  

Animal waste-based compost is rich in numbers and variety of microorganisms, 

especially those beneficial microorganisms, which may mediate suppression of foodborne 

pathogens even in the finished compost. Microbial communities in animal waste 
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ecosystems can influence a range of complex interactions among microorganisms, 

including interactions with other microbes in the shared environment and competitive 

exclusion among others. Like in most environments, such as soil or animal waste, more 

than 90% of microorganisms cannot be cultured (Cytryn et al., 2013). Therefore, it is 

essential to shift the emphasis from traditional culturing method to the culture-independent 

techniques (Riesenfeld et al., 2004).  

Traditional approaches on characterizing a microbial community. The 

compost microbiome plays important roles in cthe ompost ecosystem, ranging from 

regulating the composting process, providing fertility to crops, and serving as a source of 

beneficial bacteria (Autunes et al., 2016, Agrillo et al., 2019). Therefore, it is essential to 

characterize the microbial communities found in compost. A number of techniques have 

been involved in studying the microbiota, which can be divided into the following groups: 

1) community-level physiological profiling or metabolic potential analysis (e.g. Ecoplates, 

MicroPlates from Biolog) (Hueso et al., 2012, Liu et al., 2014); 2) DNA-based 

fingerprinting methods including cloning and sequencing, restriction fragment length 

polymorphism,  automated ribosomal intergenic spacer analysis, terminal restriction 

fragment length polymorphism, and denaturing/temperature gradient gel electrophoresis, 

(Ercolini et al., 2004, Nocker et al., 2007, Xiao et al., 2011). Polymerase chain reaction 

denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting was widely used to 

analyze the microbial community in compost. However, the potential bias includes PCR 

product purification and the final resolution of the gel image. In recent decades, the in-



56 
 

depth screening of microbial community in environmental samples was achieved by next-

generation sequencing (NGS).  

Next-generation sequencing approach. The sequencing methods frequently used 

in microbial community analysis include the targeted 18S/16S rRNA gene sequencing 

(rDNA sequencing), shotgun metagenomics sequencing, microbial transcriptome analysis, 

and whole-genome microbial sequencing. Following sequencing, bioinformatics and 

multivariate statistical analyses can provide a detailed assessment of microbial composition 

and functions from the complex compost-microbial communities (Paliy et al., 2016). 

General workflow and differences among these sequencing approaches are shown in Figure 

1.3 (Morgan et al., 2012, Bikel et al., 2015). 

Figure 1.2 Workflow for targeted, metagenomic, and metatranscriptomic sequencing 

approaches (Bikel et al., 2015, Aguilar et al., 2016)  
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Targeted sequencing (amplicon sequencing). The16S/18S rRNA gene 

sequencing is commonly used to identify and compare microbial community within a 

sample (Klindworth et al., 2013). Total genomic DNA extracted from samples is subjected 

to phylogenetic marker analysis based on the sequencing of 16S rRNA gene for bacteria 

and 18S rRNA gene for eukaryotes to profile the microbial communities of study samples 

(Klindworth et al., 2013). In general, there are three reasons to use 16S rRNA gene 

sequencing to study bacterial community, including: 1) the length of the 16S rRNA gene 

(~1,500 bp) is capable of providing enough genetic information; 2) the wide presence of 

this genetic marker in almost all bacteria; 3) the stable function of 16S rRNA gene over 

time. To date, there are 3,340 bacterial and archaea bacterial genera recognized and 

published (ICNP, 2020).  

Sequences generated from the targeted sequencing are clustered into Operational 

Taxonomic Units (OTU), followed by comparing against databases to identify the 

microbial members present in the ecosystem. Several bioinformatics tools can be used for 

16S/18S rRNA gene sequencing data analysis, including Mothur, Quantitative Insights Into 

Microbial Ecology (QIIME), and QIIME2 (Caporaso et al., 2010, Schloss et al., 2009, 

Bolyen et al., 2019). López-García et al. (2018) compared the outputs from Mothur and 

QIIME using data generated from rumen content of dairy cows, and found that except for 

some uncommon microorganisms, both Mothur and QIIME can reveal comparable 

richness and diversity for microbial ecology datasets they have used. However, this 

conclusion should be interpreted with caution, because workflows including DNA 

extraction from the study matrix, library construction, and sequencing platform, can affect 
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the sequencing data quality, thus bioinformatics pipeline should be optimized according to 

a specific project (Allali et al., 2017). Community data, including taxonomic distribution, 

alpha diversity, and beta diversity, are used to show the characteristics of microbial 

compositions, species richness/diversity detected in a microbial ecosystem, and differences 

among microbial communities from different environments, respectively (Hugerth et al., 

2017).  

The use of 16S/18S rRNA gene sequencing analysis has been widely used to 

characterize the microbial community structure in animal waste (Neher et al., 2013, Pandey 

et al., 2018, Ma et al., 2018, Zhong et al., 2018). As reported by Neher et al. (2013), both 

bacterial and fungal communities responded to the change in compost recipe and methods.  

Abundances of Firmicutes, Actinobacteria, Gemmatimonadetes, and Chloroflexi were 

found to be significantly different between hay and hardwood recipes for compost. Some 

fungi associated with tree bark, like Sordariomycetes and Agaricomycetes, were 

predominant in the hardwood recipe. In the same study, microbial communities observed 

in vermicompost differed from those in windrow compost, which can be explained by 

differences in composting temperature. Using 16S rRNA gene sequencing, the 

predominant bacterial members in animal waste-based compost have been identified, such 

as Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi, as these phyla contain 

species that are actively involving in decomposition of lignocellulose and complex organic 

compounds in animal manure (Zhong et al., 2018, Pandey et al., 2018).  

Shotgun metagenomics sequencing. To target all the microbes in the study matrix, 

shotgun metagenomics/metatranscriptomic sequencing should be used to sequence the 
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entire DNA/RNA from a sample (Cao et al., 2017). Unlike targeted sequencing, 

metagenomic data not only provides the taxonomic information of bacteria/fungi but can 

also identify the relative abundance of all organisms and provide comprehensive 

information on microbial community structure and functional potential (Shah et al., 2011). 

Meneghine et al. (2017) used the metagenomic approach to study microbial interactions, 

in terms of taxonomic and functional profiles of microbiomes in irrigation water, organic 

fertilizer and soil. Results from that study indicated that nitrogen fixation plays a crucial 

role in the reported ecosystem. However, one of the limitations of genomic DNA 

sequencing analysis is the inability to differentiate live (dormant cells as well as growing 

or non-growing metabolically active cells) and dead cells.  

To avoid the extraction of DNA from dead microorganisms, a viability assay with 

propidium monoazide (PMA) has been widely used for pretreatment of complex samples 

prior to microbial total DNA extraction (Li et al., 2017). The pre-treatment step using PMA 

inhibits the PCR-amplification DNA from dead cells and has been used in combination 

with end-point PCR, gene enumeration, and microbial community analysis (Carini et al., 

2016, Heise et al., 2016). Despite promising results, several factors should be considered 

for a successful experiment design, including concentration of PMA dye, incubation time 

that allows the chemical to enter the cells and contact its DNA, the light source used to 

make reaction happens, the proper preparation of samples, and how to completely remove 

the PMA from treated samples (Fittipaldi et al., 2012). To resolve these challenges, 

treatment procedures can be optimized using qPCR prior to sequencing analysis.  
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Shotgun metatranscriptomic sequencing. Alternatively, by investigating genes 

that are expressed by the entire microbial community, metatranscriptomic sequencing can 

provide the active functional profile in an ecology system (Gilbert et al., 2011). In recent 

years, metatranscriptomic sequencing is a valuable approach to learn the active functional 

metabolic profiles during composting process in compost ecosystems. Through 

metatranscriptomic study on thermophilic composting, Autunes et al. (2016) reported that 

lignocellulose degradation in a thermophilic composting process is exclusively the result 

of bacterial enzymatic activities, and proposed microbial members, like Actinomycetales, 

Bacillales, Clostridiales, and Enterobacteriales are primarily responsible for 

lignocellulosic biomass degradation. In another study using metatranscriptomic 

sequencing, Wang et al. (2017) identified a core resistome during composting process. 

However, it is not surprising that the difficulty in obtaining enough high-quality mRNA 

with complex environmental samples, such as animal waste or animal waste-based 

compost. As a result, studies on the microbial communities from such a matrix have often 

been used DNA rather than RNA sequencing (Moran et al., 2009).  

Available workflows for metagenomic/metatranscriptomic pipelines. For the 

downstream analyses of metagenomic data, the richness and diversity measurements of 

taxa information were like those of targeted sequencing analysis. The most essential data 

obtained from metagenomic sequencing is the functional potentials mapped with the 

sequencing reads. Several useful annotation resources include gene ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Groups 

(COG) are available for functional annotation. These sources are generally incorporated 
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with the analysis tools. For metatranscriptomic sequencing, reads are mapped into 

databases using alignment tools before annotation using the aforementioned resources. 

Currently, metagenomic/metatranscriptomic analysis pipelines are available as web-based 

user interfaces for performing these steps (Aguiar-Pulido et al., 2016, Shakya et al., 2019).  

Because of the broad information including both microbiome abundance and gene 

expression profiles, both metagenomics and metatranscriptomic sequencing techniques can 

generate many data reads, and any form of sequencing data analysis is still of great focus 

for future efforts. Nonetheless, the pre-quality control of metagenome data should be 

performed prior to the bioinformatics analysis.  

Application of NGS on the interaction between human pathogens and 

background microorganisms. As alluded to above, the involvement of technologies such 

as high-throughput sequencing may allow us to understand microbial interactions at the 

community level in greater depth. In food processing facilities, the microbiome of Listeria-

colonized and Listeria-free drains and apple washing conveyor belt were characterized as 

different, indicating the occurrence of Listeria was closely associated with the background 

microbiota in these built environments (Fox et al., 2014, Tan et al., 2019). In the animal 

intestinal ecosystem, the host-pathogen interactions have been extensively reported (De 

Jong et al., 2012, Ji et al., 2017). However, there are few published studies focused on how 

the indigenous microflora respond to the invasive pathogenic bacteria in soil (Vivant et al., 

2013, Falardeau et al., 2018, Schierstaedt et al., 2020). By building up the constructed 

microcosms using serially diluted soil samples (108 – 102 cfu/ml), Vivant et al. (2013) 

found that there was a negative correlation between the level of diversity and the survival 
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rate of spiked L. monocytogenes. Similarly, Schierstaedt et al. (2020) demonstrated the 

abundance of inoculated Salmonella decreased in soil with higher diverse indigenous 

microbial communities. Although these two studies have been performed using a dilution-

to extinction approach with few samples, high species diversity of animal waste or animal 

waste-based compost can be an effective biological barrier that eliminates the invading 

pathogens.  

In short, despite a few metagenomics/metatranscriptomic sequencing studies of the 

thermophilic composting process (Antunes et al., 2016), no studies have been carried out 

on the functional metatranscriptomics of human pathogen interactions with indigenous 

microorganisms in animal waste-based biological soil amendments, albeit there are no 

published studies about comparing microbial communities in commercial animal waste-

based composts. In considering of compost as a rich source of microorganisms with a 

diversity of microbial species, the large NGS sequencing datasets generated from animal 

waste-based composts can surely be a great source to identify unique microbial members 

for controlling pathogens in various environments.   

 

Summary 

Animal waste or animal waste-based compost, commonly used as organic fertilizer, 

may contain human pathogens such as Salmonella and L. monocytogenes. Salmonella is 

more frequently isolated from poultry litter or poultry litter compost. Physical heat 

treatments are commonly used to inactivate Salmonella in poultry litter with or without 

composting process, but the validation study or guidelines are still needed for the litter 
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processing industry to ensure microbial safety of their products. On the other hand, due to 

the ubiquitous nature of L. monocytogenes, it is essential to understand the ecology of this 

pathogen where it inhabits and then develops strategies to reduce Listeria contamination. 

We hypothesized that the compost-adapted competitive exclusion (CE) microorganisms 

against L. monocytogenes exist in animal waste-based compost. In combination with the 

culturing method, the use of NGS sequencing approaches is expected to guide us for 

discovering those highly adapted CE microorganisms in composts for controlling L. 

monocytogenes in produce growing and processing environments. 

Therefore, the objectives of this work were to:  

1). Test a nonpathogenic surrogate microorganism for validating desiccation-adapted 

Salmonella inactivation in physically heat-treated broiler litter. 

2). Validate the physical heat treatment of poultry litter composts using surrogate and 

indicator microorganisms for Salmonella in industrial settings. 

3). Use sequencing approaches to understand the microbial community profile and 

functions in compost in the presence and absence of L. monocytogenes. 

4). Isolate and identify the competitive exclusion microorganisms against L. 

monocytogenes in biological soil amendments. 
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CHAPTER TWO   
 

TESTING A NON-PATHOGENIC SURROGATE MICROORGANISM FOR 
VALIDATING DESICCATION-ADAPTED SALMONELLA INACTIVATION IN 

PHYSICALLY HEAT-TREATED BROILER LITTER 
 

ABSTRACT 

Thermal resistance of desiccation-adapted Salmonella Senftenberg 775/W was 

compared with that of Enterococcus faecium NRRL B-2354 in aged broiler litter. Aged 

broiler litter with 20, 30, and 40% moisture contents were inoculated separately with 

desiccation-adapted S. Senftenberg 775/W and E. faecium NRRL B-2354 at ca. 5~6 log 

CFU/g, and then heat-treated at 75, 85, and 150°C. At all tested temperatures, 

desiccation-adapted E. faecium NRRL B-2354 was more heat-resistant than desiccation-

adapted S. Senftenberg 775/W (P<0.05). During the treatments at 75 and 85°C, E. 

faecium NRRL B-2354 in aged broiler litter with all moisture contents was reduced by 

2.9- to 4.1- log, and was above the detection limit of direct plating (1.3 log CFU/g), 

whereas S. Senftenberg 775/W could not be detected by enrichment (> 5- log reductions) 

during holding time at these temperatures. At 150°C, E. faecium NRRL B-2354 in aged 

broiler litter with 20 and 30% moisture contents was still detectable by enrichment after 

heat exposure for up to 15 min, whereas S. Senftenberg 775/W in aged broiler litter with 

all moisture contents could not be detected throughout the entire treatment. Our results 

revealed that E. faecium NRRL B-2354 can be used as a surrogate for Salmonella to 

validate the thermal processing of poultry litter by providing a sufficient safety margin. 

This study provides a practical tool for poultry litter processors to evaluate the 

effectiveness of their thermal processing. 
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INTRODUCTION 

Poultry litter is a mixture of poultry excreta, feathers, spilled feed, and bedding 

materials. Approximately 10.2 million tons of poultry litter are generated annually on 

U.S. poultry farms (13). Since poultry litter contains nitrogen, phosphorus, and potassium 

which can be used as nutrients for plants, it has great value to serve as a biological soil 

amendment for crop production (24). However, poultry litter may harbor a variety of 

human pathogens that can contaminate fresh produce and cause foodborne illnesses (7). 

Salmonella spp., an important foodborne pathogen, is the most frequently isolated 

pathogen from poultry litter (21). Therefore, direct application of raw poultry litter to 

agricultural land for growing fresh produce should be avoided or closely monitored.  

As recommended by the U.S. Food Safety and Modernization Act (FSMA) 

Produce Safety Rule, animal manure can be physically heat-treated to create a dried, 

pelleted material that is low in microbial populations (25). Physical heat treatment after 

or without composting has been used to reduce or kill pathogens in poultry litter (8, 9, 

15). However, some pathogenic bacterial cells may become acclimatized to desiccation 

under the dry environment in poultry litter. The induced desiccation stress response 

makes those bacterial cells more heat-resistant to the subsequent high temperature (5). If 

the heat-resistant, desiccation-adapted Salmonella cells survive thermal processing of 

poultry litter, or the heat treatment is not uniform, use of this heat-treated litter as 

fertilizer on food crops can pose a potential threat to fresh produce safety. Therefore, it is 

warranted to evaluate the effectiveness of different treatment conditions during 

commercial thermal processing of poultry litter. 
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Due to biosafety concerns, pathogens cannot be tested directly in commercial 

manure processing environments. Hence, a non-pathogenic surrogate microorganism that 

behaves similar to the pathogen when exposed to the same treatment conditions is needed 

(19). In order to conduct any challenge studies in industrial settings, a lab-scale validation 

study comparing the surrogate and the pathogen under the same conditions should be 

performed (22).   

The effectiveness of using avirulent Salmonella, Escherichia coli, or enterococci 

as surrogates for Salmonella during food processing, produce contamination, and animal 

waste- related research has been extensively evaluated (2, 18). For example, 

Enterococcus faecium NRRL B-2354, a widely used surrogate microorganism for human 

pathogens, is genetically and phenotypically distinct from clinical strains of E. faecium, 

and lacks functional copies of enterococcal virulence genes (16). E. faecium NRRL B-

2354 has been used in thermal process validation of various food products, such as 

almonds, pistachios, and cereals (12). Previous research also demonstrated that 

indigenous enterococci can be used to validate the thermal processing of poultry litter, as 

it can predict the survival behaviors of Salmonella under various heat treatment 

conditions (6). Nonetheless, one limitation of using indigenous enterococci as indicator 

microorganisms is the uncertainty of species and population level of enterococci in each 

batch of poultry litter. Currently, there are no available published studies on the use of E. 

faecium NRRL B-2354 as a surrogate for Salmonella during thermal processing of animal 

waste products. Therefore, the objective of this study was to evaluate E. faecium NRRL 
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B-2354 as a surrogate for desiccation-adapted Salmonella inactivation in physically heat-

treated poultry litter. 

 

MATERIALS AND METHODS 

Sample preparation. Aged broiler litter was collected from Cobb broiler 

chickens (Organic Farms, Livingston, CA). Litter from chicken houses was removed 

annually, followed by partial windrow composting for 7~10 days. After composting, the 

litter was then screened to remove rice hulls. Broiler litter samples used for the following 

experiments were dried under a chemical fume hood until moisture content was reduced 

to < 20%, and then screened to a particle size of < 3 mm using a sieve (sieve pore size, 3 

by 3 mm) to reduce the sample heterogeneity. Sufficient samples were prepared for the 

entire study and stored in a sealed container at 4°C until use. Moisture content was 

measured with a moisture analyzer (Model IR-35, Denver Instrument, Denver, CO). 

Bacterial strains and culture conditions. S. enterica Senftenberg ATCC 43845 

(775/W), as S. Senftenberg 775/W, was identified as the most heat resistant among four 

Salmonella serotypes tested during thermal processing of aged broiler litter in a previous 

study (5). E. faecium NRRL B2354 (ATCC 8459) was evaluated as a potential 

Salmonella surrogate for thermal process validation of broiler litter. Both S. Senftenberg 

775/W and E. faecium NRRL B-2354 were induced to rifampin resistance (100 μg/ml) 

using the gradient plate method (23), the rifampin resistant mutant was selected for each 

strain. Each strain was grown overnight at 37°C in tryptic soy broth (TSB; 

Becton, Dickinson and company, Sparks, MD) containing 100 μg rifampin/ml (TSB-R). 
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The overnight cultures were then washed three times with sterile 0.85% saline. For S. 

Senftenberg 775/W, the final pelleted cells were resuspended in 0.85% saline to the 

desired cell concentration (ca. 109 CFU/ml) by adjusting the optical density at 600 nm to 

ca. 0.7. Afterwards, the re-suspended S. Senftenberg 775/W culture was further 

concentrated 100 times (ca. 1011 CFU/ml) by centrifugation. As for E. faecium NRRL B-

2354, the desired cell concentration was ca. 108 CFU/ml (OD600=0.5). Enumeration of S. 

Senftenberg 775/W and E. faecium NRRL B-2354 was performed on Xylose-Lysine-

Tergitol 4 agar (XLT-4; Becton, Dickinson and company) and enterococcosel agar (EA; 

Becton, Dickinson and company), respectively, and those two agars were supplemented 

with 100 μg rifampin/ml. 

Desiccation adaptation. The aged broiler litter used for desiccation adaptation 

was first exposed to greenhouse conditions for 15 days to lower the ammonia contents, in 

order to minimize the population reduction during desiccation adaptation (8). The broiler 

litter was then adjusted to the desired moisture contents of 20, 30, and 40% with sterile 

tap water. The washed S. Senftenberg 775/W and E. faecium NRRL B-2354 cells were 

added (1:10, v/w) separately into 100 g of broiler litter with reduced ammonia content, 

mixed well using a sterile blender (Professional 600 Series, KitchenAid, Inc., St. Joseph, 

MI) at a final concentration of ca. 1010 and 107 CFU/g, respectively, and then held in a 

sterile tray (8.8 × 6.3 × 6.1 inches) covered loosely by sterile aluminum foil. After 24-h 

desiccation adaptation at room temperature, the inoculated aged broiler litter was further 

mixed (1:100, w/w) with 500 g of regular broiler litter with the same moisture content 

using the sterile blender. This thoroughly blended sample was used for subsequent heat 
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treatment. The initial populations of S. Senftenberg 775/W and E. faecium NRRL B-2354 

in broiler litter were enumerated immediately before thermal treatments. 

Thermal inactivation. Twenty-gram samples in duplicate were distributed 

evenly inside sterile aluminum pans (I.D. 10 cm). A temperature-controlled convectional 

oven (Binder Inc., Bohemia, NY) was initially set 5°C higher than the target temperature. 

Aluminum pans with the inoculated samples were quickly placed at two different 

locations on the oven shelf, and then exposed to 75, 85, and 150°C, separately. 

Temperature was monitored using T-type thermocouples (DCC Corp., Pennsauken, NJ), 

with one thermocouple monitoring the oven chamber temperature and the others being 

inserted into litter samples at two different locations. When the interior temperature of the 

litter samples reached the target temperature (0 h), the oven temperature setting was 

readjusted to the target temperature. Broiler litter samples in duplicate were withdrawn 

quickly from the oven at 0 h and every 0.5 h during the holding time up to 3 h for 

determination of microbial populations. For heat treatments at 75 and 85°C, broiler litter 

samples were also collected every 0.5 h during the come-up times. Samples were 

transferred into a Whirl-Pak bag (Nasco, Fort Atkinson, WI), and placed immediately in 

an ice-water bath to cool the samples and minimize further cell death. For heat treatment 

at 150°C, duplicate samples were withdrawn every 15 min up to 60 min and enriched 

directly to test if S. Senftenberg 775/W and E. faecium NRRL B-2354 survived the 

treatment.  

Bacterial enumeration. The surviving populations of S. Senftenberg 775/W and 

E. faecium NRRL B-2354 were enumerated, using a modified two-step overlay method to 
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allow heat-injured cells to resuscitate (5). Both XLT-4 and EA were supplemented with 

100 μg rifampin/ml as the selective media, and tryptic soy agar (TSA; Becton, Dickinson 

and company) was used as the nonselective media. Samples which were negative for S. 

Senftenberg 775/W by direct plating method were pre-enriched in universal pre-

enrichment broth (UPB; Neogen Corp., Lansing, MI) followed by a secondary 

enrichment in Rappaport-Vassiliadis broth (RV; Becton, Dickinson and company) 

supplemented with 100 μg rifampin/ml. After 24-h incubation at 42°C, enriched cultures 

were then plated onto XLT-4 supplemented with 100 μg rifampin/ml. Samples negative 

for E. faecium NRRL B-2354 by the direct plating method were pre-enriched in UPB 

supplemented with 100 μg rifampin/ml. After 24-h incubation at 37°C, enriched cultures 

were then plated onto EA supplemented with 100 μg rifampin/ml. 

Thermal inactivation kinetics. Mathematical models, including Weibull, 

modified Gompertz, and log-logistic models, were applied to fit the thermal inactivation 

curves (10). For all the following models, N0 = initial population of bacterial cells 

(CFU/g in dry weight); N= population of survivors after a treatment time t (CFU/g in dry 

weight). An adjusted regression coefficient R2 was used to evaluate and compare the 

goodness-of-fit of the proposed models.  

The Weibull model describes the phenomenon that bacterial cells in a population 

experience different resistances (20): 

log
𝑁

𝑁𝑜
= −𝑏𝑡𝑛 

where b and n are scale and shape factors, respectively.  
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The modified Gompertz model was designed primarily to model the asymmetrical 

sigmoidal shape of a growth curve and was later developed to fit inactivation kinetics 

(14): 

log
𝑁

𝑁𝑜
= 𝐶𝑒−𝑒

𝐵𝑀
− 𝐶𝑒−𝑒

−𝐵(𝑡−𝑀) 

where M = time (min) at which the absolute death rate is maximum; B = relative 

death rate (CFU/g per min) at M; C = difference in value of the upper and lower 

asymptotes (CFU/g).  

The log-logistic model was proposed to describe the non-linear thermal 

inactivation of microorganisms (11): 

log
𝑁

𝑁𝑜
=

𝐴

1 + 𝑒4𝜎(𝜏−𝑙𝑜𝑔𝑡)/𝐴
−

𝐴

1 + 𝑒4𝜎(𝜏−𝑙𝑜𝑔𝑡0)/𝐴
 

Where A= difference in value of the lower and upper asymptotes; ϭ = maximum 

rate (log CFU/g) of inactivation; τ = log time (log min) to the maximum rate of 

inactivation. 

Statistical analysis. All experiments were conducted in two separate trials. Plate 

count data were converted to log CFU/g in dry weight. Differences among treatments 

were analyzed by Analysis of Variance (ANOVA) followed by least significant 

differences (LSD) and were considered to be significant when P < 0.05. SigmaPlot 12.3 

(Systat Software Inc., San Jose, CA) was used for data analysis and curve fitting. 
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RESULTS 

The come-up times for heating aged broiler litter with different moisture contents 

at 75 and 85°C ranged from 90 to 150 min (data not shown). After come-up time at 75 

and 85°C, the populations of desiccation-adapted S. Senftenberg 775/W and E. faecium 

NRRL B-2354 in aged broiler litter decreased in all samples. Specifically, at 75°C, after 

come-up time, ca. 4- to 5.5-log of Salmonella were inactivated, whereas reductions of E. 

faecium NRRL B-2354 were 2.5, 2.7, and 3.0 log CFU/g for 20, 30, and 40% moisture 

contents, respectively (Figure 2.1). After come-up time at 85°C, regardless the moisture 

contents, more than 5- log reductions of S. Senftenberg 775/W was observed as compared 

with 2.8-, 3.8-, and 3.5- log reductions in the E. faecium NRRL B-2354 population for 

20, 30, and 40% moisture contents, respectively (Figure 2.2).  

Both S. Senftenberg 775/W and E. faecium NRRL B-2354 were inactivated much 

faster when temperature and moisture content of aged broiler litter were increased 

(Figures 2.1 and 2.2). For example, for the entire heat treatment including come-up and 

holing times, the log reductions of desiccation-adapted E. faecium NRRL B-2354 in aged 

broiler litter with 30% moisture content were 2.9 and 4.0 log CFU/g at 75 and 85°C 

(Figures 2.1B and 2.2B), respectively, as compared to 3.4 and 4.1 log CFU/g in broiler 

litter with 40% moisture content, respectively (Figures 2.1C and 2.2C). At 75°C, 

desiccation-adapted S. Senftenberg 775/W in aged broiler litter with 20% moisture 

content (Figures 2.1A) was detectable by enrichment during come-up time (90 min), 

whereas it could not be detected after 60 min in aged broiler litter with 40% moisture 

content (Figures 2.1C). After come-up time, the population of E. faecium NRRL B-2354 
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stabilized around 1.5 to 2.5 log CFU/g at both 75 and 85°C, indicating no further 

reduction for all treatments during the rest of heat treatment.  

As shown in Figure 2.3, E. faecium NRRL B-2354 yielded a significantly 

(P<0.05) lower average log reduction (24 of the 24 data points) as compared with S. 

Senftenberg 775/W, indicating a conservative response for E. faecium NRRL B-2354 

during heat treatment. For the linear regression results between the mean log reductions 

of S. Senftenberg 775/W and E. faecium NRRL B-2354 in broiler litter with various 

moisture contents at 75°C (data not shown), the log reductions for E. faecium NRRL B-

2354 were below those for S. Senftenberg 775/W. By summarizing all thermal 

inactivation data under different combinations of temperature and moisture, our results 

clearly demonstrated that a >1.2 ~ 2.7- log reductions of E. faecium NRRL B-2354 can 

predict >5-log reductions of Salmonella depending on heating temperature and poultry 

litter moisture combinations (Table 2.1). 

At 150°C, desiccation-adapted E. faecium NRRL B-2354 also displayed extended 

survival compared to desiccation-adapted S. Senftenberg 775/W. Desiccation-adapted S. 

Senftenberg 775/W in aged broiler litter with all moisture levels could not be detected 

throughout the entire treatment. However, desiccation-adapted E. faecium NRRL B-2354 

in aged broiler litter with 20 and 30% moisture contents was still detectable by 

enrichment for up to 15 min heat treatment, while the same culture in aged broiler litter at 

40% moisture content could not be detected throughout the entire treatment (60 min) 

(data not shown). 
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Due to the lack of sufficient data points for modeling, inactivation curves of 

desiccation-adapted S. Senftenberg 775/W were not fitted into mathematical models. The 

Weibull, modified Gompertz, and log-logistic models were fitted into the survival curves 

of desiccation-adapted E. faecium NRRL B-2354 in aged broiler litter with 20, 30, and 

40% moisture contents at 75 and 85°C. For fitting the inactivation data of desiccation-

adapted E. faecium NRRL B-2354, the modified Gompertz model produced the best 

description, with mean adjusted R2 values of 0.97 and 0.99 at 75 and 85°C, respectively 

(Table 2.2). The “B” values (relative death rate in CFU/g per min) in the Gompertz model 

were lower at 75°C than at 85°C in aged broiler litter with the same moisture content, 

which suggested a slower population decrease at a lower temperature (Table 2.3). The 

“C” value (difference in value of the upper and lower asymptopes in CFU/g) became 

higher as moisture content increased from 20 to 40%. This indicated a higher population 

reduction at a higher moisture content, except at 75°C where no difference was found for 

“C” values between broiler litter with 20 and 30% moisture contents. The “M” value 

(time at which the absolute death rate is maximum) obtained from the Modified 

Gompertz model displayed no dependencies on either temperature or moisture content, 

and it is therefore difficult to draw a definite conclusion from this parameter. 

 

DISCUSSION 

In the present study, microbial populations in aged broiler litter decreased during 

exposure to tested temperatures, with shorter survival at 85°C than at 75°C. Our data also 

clearly revealed that bacterial cells became less heat-resistant to heat when the moisture 
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content of aged broiler litter was increased from 20 to 40%, which are in agreement with 

previously published data of the thermal inactivation of S. enterica in poultry litter (5, 6, 

8, 9). Modeling of the survival data of desiccation-adapted E. faecium NRRL B-2354 

using the modified Gompertz model also supported above findings.  

S. Senftenberg 775/W has been used extensively for thermal validation studies as 

this Salmonella strain has high heat tolerance as reported in previous studies. In 

considering that the thermal processing should be adequate to kill the most heat-resistant 

harmful microorganism that may occur in ground beef, Ma et al. (17) used S. Senftenberg 

775/W for an in-plant critical control point validation study on ground beef. Cuervo et al. 

(12) investigated the thermal resistance of S. Senftenberg 775/W during blanching with 

the organism inoculated onto almond surfaces. Their results suggested that the almond 

should be blanched at 88°C for a minimum of 63 s to achieve a 4-log reductions in the S. 

Senftenberg 775/W population. Ceustermans et al. (3) also used S. Senftenberg 775/W to 

determine the hygienic safety of biowastes and garden wastes during composting. They 

concluded that S. Senftenberg 775/W can be inactivated within 10 h of composting, when 

the temperature of the compost heap with 60~65% moisture contents was 60°C. 

However, as S. Senftenberg 775/W is not considered as biosafety level 1 (BSL-1), an 

appropriate, non-pathogenic surrogate microorganism is needed for validation studies. 

Attenuated pathogens or non-pathogenic surrogate microorganisms have been 

used in a variety of validation studies in place of foodborne pathogens to avoid 

introducing pathogens into commercial processing environments (22). Ease of use is a 

necessary attribute where “ease” refers to the ability to produce the microorganism in 
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high populations, the simplicity in detection, and the lack of adverse effects on industrial 

processing environment and workers. Moreover, to be considered as appropriate 

surrogates for use in validation studies, the microorganisms must possess similar key 

characteristics to adequately represent the target pathogenic microorganism. 

Theoretically, surrogate microorganism(s) for validating thermal processing should be 

non-pathogenic microorganism(s) that provides a similar response as the target 

microorganism(s) when subjected to the same treatment conditions (1). To avoid false 

negative results, another critical criterion in selecting a surrogate microorganism is the 

confirmation that the surrogate is more heat-resistant than the pathogen of concern (17). 

E. faecium NRRL B-2354, classified in the BSL-1 category, is genetically stable, 

can be easily cultivated and enumerated using standard microbiological methodology, 

does not form biofilms, and does not produce undesirable odor (4). Due to these 

properties, E. faecium NRRL B-2354 has been used as a surrogate for Salmonella in 

validating thermal processing in the food industry (16). A recent study by Villa-Rojas et 

al. (26) demonstrated that E. faecium NRRL B-2354 was a suitable surrogate for S. 

Enteritidis PT 30 during heat processing of organic wheat flour, with results indicating a 

2-log greater reductions of S. Enteritidis PT 30 than E. faecium NRRL B-2354 when 

subjected to an equivalent treatment (75°C and aw = 0.25). Ma et al. (17) reported D-

values of E. faecium NRRL B-2354 in ground beef with 4 and 12% fat contents at 

58~68°C were 4.4 to 17.7 and 3.6 to 14.6 times greater, respectively, than those of S. 

Senftenberg 775/W. They thus concluded that depending on the margin of safety desired, 
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processors could use E. faecium NRRL B-2354 as a surrogate for Salmonella for 

validation studies of thermal processes. 

In the present study, data indicated that E. faecium NRRL B-2354 had higher 

thermal resistance as compared to S. Senftenberg 775/W under the same treatment 

conditions. Due to the relatively longer come-up time to heat the complex compost 

matrix to the desired tested temperatures, it is difficult to compare D-values between 

these two microorganisms. However, the plate count data revealed that the heat treatment 

resulting in a 1~3-log reductions of E. faecium NRRL B-2354 can yield to a ca. 5.5- log 

reductions of S. Senftenberg 775/W (Table 2.1). Overall, the thermal inactivation data 

obtained in our study were consistent with the above published studies.  

Our results demonstrated that desiccation-adapted E. faecium NRRL B-2354 was 

more heat-resistant at 75, 85, and 150°C as compared to desiccation-adapted S. 

Senftenberg 775/W in poultry litter. In conclusion, our findings indicated that E. faecium 

NRRL B-2354 can be used as a surrogate for S. enterica to provide a sufficient safety 

margin when validating the thermal processing of poultry litter. The thermal inactivation 

data obtained from this study may assist poultry litter processors in validating their 

processes to ensure the microbiological safety of physically heat-treated poultry litter. 

However, due to the controlled experimental conditions used in our study, the results 

could differ from those generated under the commercial plant conditions. Further study 

using E. faecium NRRL B-2354 as a surrogate in validating a commercial poultry litter 

heat processing plant is currently underway. 
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Table 2.1 Relationships between Salmonella and surrogate reductions during heat 

treatment at 75 and 85oC in aged broiler litter a 

Temperature (°C) Moisture 
content (%) 

Salmonella 
reduction  

(log CFU/g) 

E. faecium NRRL B-
2354 reduction (log 

CFU/g) 
75 20 5.55±0.12a 2.59±0.28a 
 30 5.27±0.65a 2.52±0.55ab 
 40 5.44±0.20a 1.95±0.34abc 
    

85 20 5.62±0.10a 1.23±0.72c 
 30 5.79±0.00a 1.27±0.55bc 
 40 5.71±0.43a 1.18±0.52c 

a Data were expressed as means ± standard deviations. Levels not connected by 
the same lowercase letter within the column are significant different (P < 0.05). 
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Table 2.2 Goodness-of-fit of the Weibull, modified Gompertz, and log-logistic models 

for the survival curves of desiccation-adapted E. faecium NRRL B-2354 in aged broiler 

litter with 20, 30, and 40% moisture contents at 75 and 85°C 

Temperature 
(°C) 

Moisture 
content (%) 

Adjusted R2 with the following models 
Weibull Modified 

Gompertz 
Log-logistic 

75 20 0.911 0.992 0.991 
30 0.911 0.964 0.960 
40 0.924 0.954 0.948 

     
85 20 0.931 0.983 0.872 

30 0.870 0.997 0.998 
40 0.928 0.992 0.987 
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Table 2.3 Parameters of the Weibull, modified Gompertz, and log-logistic models for the 

survival curves of desiccation-adapted E. faecium NRRL B-2354 in aged broiler litter 

with 20, 30, and 40% moisture contents at 75 and 85°C 

Temperature 
(°C) 

Moisture 
content (%) 

Parameters associated with following models 
Weibull Modified 

Gompertz 
Log-logistic 

75 20 b=0.501, 
n=0.326 

M=28.358, 
B=0.035, C=3.009 

A=2.887, σ=-3.739, 
τ=1.615 

30 b=0.246, 
n=0.439 

M=39.471, 
B=0.024, C=3.005 

A=2.947, σ=-3.245, 
τ=1.792 

40 b=0.333, 
n=0.396 

M=-27.8891, 
B=0.015, C=6.375 

A=3.404, σ=-2.768, 
τ=1.809 

     
85 20 b=0.646, 

n=0.299 
M=23.127, 
B=0.037, C=3.465 

A=6.955, σ=-1.453, 
τ=2.672 

30 b=0.929, 
n=0.275 

M=32.035, 
B=0.054, C=3.977 

A=4.009, σ=-7.044, 
τ=1.584 

40 b=0.479, 
n=0.385 

M=26.223, 
B=0.021, C=4.954 

A=4.337, σ=-4.352, 
τ=1.773 
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Figure 2.1 Survival of desiccation-adapted S. Senftenberg 775/W and E. faecium NRRL 

B-2354 in aged broiler litter with 20 (A), 30 (B), and 40% (C) moisture contents at 75°C. 

Inactivation curves during come-up times (on the left of the vertical dotted line) and 

during holding times (on the right of the vertical dotted line) are shown. The horizontal 

dotted line indicates that Salmonella was detectable only by enrichment (detection limit 

by direct plating: 1.30 log CFU/g). 
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Figure 2.2 Survival of desiccation-adapted S. Senftenberg 775/W and E. faecium NRRL 

B-2354 in aged broiler litter with 20 (A), 30 (B), and 40% (C) moisture contents at 85°C. 

Inactivation curves during come-up times (on the left of the vertical dotted line) and 

during holding times (on the right of the vertical dotted line) are shown. The horizontal 

dotted line indicates that Salmonella was detectable only by enrichment (detection limit 

by direct plating: 1.3 log CFU/g). 
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Figure 2.3 Direct comparison between the mean log reductions for desiccation-adapted S. 

Senftenberg 775/W and E. faecium NRRL B-2354 in aged broiler litter with 20, 30, 40% 

moisture contents at 75°C (solid circle data points outside the circle) and 85°C (solid 

triangle data points inside the circle) (n=24). Each treatment was conducted with two 

separate trials. 
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CHAPTER THREE 

 
PLANT-SCALE VALIDATION OF PHYSICAL HEAT TREATMENT OF POULTRY 

LITTER COMPOSTS USING SURROGATE AND INDICATOR MICROORGANISMS 
FOR SALMONELLA 

 
ABSTRACT 

This study selected and used indicator and surrogate microorganisms for Salmonella to 

validate the processes for physically heat-treated poultry litter compost in litter 

processing plants. Initially laboratory validation studies indicated that 1.2- to 2.7-log or 

more reductions of desiccation-adapted Enterococcus faecium NRRL B-2354 were 

equivalent to > 5-log reductions of desiccation-adapted Salmonella Senftenberg 775/W in 

poultry litter compost, depending on treatment conditions and compost types. Plant 

validation studies were performed in one turkey litter compost processor and one laying 

hen litter compost processor. E. faecium was inoculated at ca.7 log CFU g-1 into the 

turkey litter compost and at ca. 5 log CFU g-1 into laying hen litter compost with 

respectively targeted moisture contents. The thermal processes in the two plants yielded 

2.8 - > 6.4 log CFU g-1 (> 99.86%) reductions E. faecium of the inoculated. Similarly, for 

the processing control samples, reductions of presumptive indigenous enterococci were in 

the order of 1.8-3.7 log CFU g-1 (98.22 % to 99.98 %) of the total naturally present. In 

contrast, there were less reductions of indigenous mesophiles (1.7-2.9 log CFU) and 

thermophiles (0.4-3.2 log CFU g-1). More indigenous enterococci were inactivated in the 

presence of higher moisture in the poultry litter compost. Based on the data collected 

under the laboratory conditions, the processing conditions in both plants were adequate to 
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reduce any potential Salmonella contamination of processed poultry litter compost by at 

least 5-log, even though the processing conditions varied among trials and plants. 

 
INTRODUCTION 

Poultry litter contains essential nutrients for crop growth (1) and is often used in organic 

farming as biological soil amendments of animal origin (BSAAO). Based on the Organic 

Materials Review Institute (OMRI)/USDA National Organic Program (NOP) and 

California Leafy Green Marketing Agreement rules, the use of raw manure on fresh 

produce for human consumption is discouraged due to the possible presence of human 

pathogens such as Salmonella spp. (2, 3). Either composting or physical heat is used to 

reduce pathogens in poultry litter used as organic fertilizer for growing fresh produce (4). 

According to the FDA Food Safety Modernization Act (FSMA) produce safety rule (5), 

the thermal process for animal manure or other biological soil amendments should be 

scientifically validated to satisfy the microbial standard requirement for Salmonella 

species, i.e. < 3 MPN per 4 grams. Unfortunately, there is very limited research on the 

microbiological safety of physically heat-treated poultry litter or poultry litter compost. 

Therefore, scientific data and practical validation methods for thermal inactivation of 

Salmonella are urgently needed for the industry. 

The introduction of pathogenic strains of microorganisms into the industrial environment 

is not recommended for plant validation studies. Hence, indigenous or non-pathogenic 

bacteria with similar growth/survival characteristics to pathogens should be used as 

indicator or surrogate microorganisms to understand the growth/survival behaviors of 
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pathogens in industrial environments (6). Côté et al. (7) reported that a reduction of 1.6-

4.2 log CFU ml-1 total coliforms and a reduction of 2.5-4.2 log CFU ml-1 indigenous 

Escherichia coli resulted in undetectable levels of indigenous Salmonella in swine 

slurries during anaerobic digestion. Besides, Qi et al. (8) also reported that a reduction of 

91.1% enterococci and a reduction of 99.7% indigenous E. coli resulted in 99.3% of 

indigenous Salmonella in dairy manure during thermal anaerobic digestion. During 

composting or stockpiling, the counts of presumptive indigenous enterococci and 

mesophiles in poultry litter ranged from 3.0-7.5 log and 6.6-8.9 log CFU g-1, respectively, 

which can provide sufficient populations for predicting the survival behaviors of 

Salmonella in poultry litter during subsequent thermal treatment (9, 10, 11). Likewise, 

our previous study (12) reported a correlation (R2 > 0.88) between the mean log 

reductions of Salmonella Senftenberg 775/W with those of presumptive indigenous 

enterococci in turkey litter compost samples with 20-50% moisture contents at 75ºC as 

compared to total aerobic bacteria. This previous work indicated that presumptive 

indigenous enterococci could be an indicator for validating the effectiveness of thermal 

processing. Several bacterial species have been recommended as Salmonella surrogates 

in different matrices, such as Pediococcus acidilactici ATCC 8042 and Enterococcus 

faecium NRRL B-2354 in dry pet food (13), E. faecium NRRL B-2354 and Pantoea 

agglomerans SPS2F1 in almonds (14), and Pediococcus spp. in beef or turkey jerky (15, 

16). Among those surrogates, E. faecium NRRL B-2354 has been widely used as a 

surrogate for S. enterica for validating the thermal processing of nuts and carbohydrate-

protein meal (17, 18). The safety of E. faecium NRRL B-2354 as a surrogate has been 
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thoroughly studied by Kopit et al. (19) by sequencing, confirming that this strain lacks of 

genomic and phenotypic characteristics linked to nosocomial infections. 

Our previous laboratory-based studies on the thermal inactivation of Salmonella in 

poultry litter compost have revealed that Salmonella cells were killed at 70 - 150ºC 

within 30 min to 6 h, depending on the bacterial physiological status (desiccation-adapted 

or not), moisture level, experimental design, and heat sources (moist heat or dry heat) (4, 

10). Although these laboratory-based studies indicated that the thermal treatment 

conditions completely inactivated Salmonella, the conclusions could differ from those in 

the industrial settings, in which the processing capacity is scaled-up, and heterogeneity of 

poultry litter compost or treatments may exist. During a processing plant validation study, 

the effects of other operational factors, such as dryer construction and temperature, 

residence time, and characteristics of processing products, on microbial inactivation 

should also be evaluated (20). To date, there is no published study on validating the 

thermal processing of BSAAO in thermal processing plant settings. 

The objectives of this study were to i) compare the thermal resistance of S. Senftenberg 

775/W and its surrogate E. faecium NRRL B-2354 in poultry litter compost under 

laboratory conditions; ii) validate the thermal processing conditions for poultry litter 

compost in two litter compost processing plants using Salmonella surrogate and indicator 

microorganisms; and iii) determine the factors affecting the thermal inactivation of 

Salmonella surrogate and indicator microorganisms in industry settings. 
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MATERIALS AND METHODS 

Bacterial strains. Salmonella enterica Senftenberg 775/W (ATCC 43845) was used as a 

reference strain in the laboratory validation study, as it was identified as the most heat-

resistant among four Salmonella strains tested during thermal processing of aged broiler 

litter in our previous laboratory-scale study (4). E. faecium NRRL B-2354 (ATCC 8459) 

was evaluated as a potential Salmonella surrogate for both laboratory and plant validation 

studies. Both strains were induced to rifampin resistance (100 μg ml-1) using the gradient 

plate method (21). Each strain was grown overnight at 37°C in tryptic soy broth (TSB; 

Becton, Dickinson and Company, Sparks, MD) containing 100 μg rifampin ml-1 (TSB-R). 

The overnight cultures were then washed three times and resuspended with sterile 0.85% 

saline to the desired cell concentrations by measuring the optical density at 600 nm. S. 

Senftenberg 775/W and E. faecium were enumerated using Xylose-Lysine-Tergitol-4 agar 

(XLT-4; Becton, Dickinson and company, Sparks, MD) and enterococcosel agar (EA; 

Becton, Dickinson and Company, Sparks, MD), respectively, supplemented with 100 μg 

rifampin ml-1 (XLT-4-R and EA-R). 

Selection of the recovery media for heat-injured E. faecium and presumptive 

indigenous enterococci using turkey litter compost. The turkey litter compost adjusted 

with 30% moisture content (aw = 0.925) was inoculated with overnight grown E. faecium 

cells at a ratio of 1:100. The temperature of a controlled convection oven (Binder Inc., 

Bohemia, NY) was initially set at 80ºC. When the oven temperature reached 80ºC, 

sealed-Tyvek pouches (12.7 × 12.7 cm) containing 50 g turkey litter compost samples 

with or without E. faecium were placed on the oven shelf at the middle location, and then 
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exposed to the heat treatment for 60 min. The temperature was monitored constantly 

using T type thermocouples (DCC Corporation, Pennsauken, NJ), with one cord kept 

inside the oven chamber and other cords kept into the compost samples. When the 

interior of the compost reached the desired temperature (75ºC), the temperature setting of 

the oven was readjusted to maintain at this designated temperature. Samples were taken 

out at 30 and 60 min of heat exposure and were transferred into a sterile Whirl-Pak™ bag 

(700 ml; Nasco, Inc., Madison, WI) and placed immediately in an ice water bath to stop 

further cell death. Samples were then serially diluted with 0.85% saline and plated in 

duplicate on the following plates to evaluate the recovery efficiency with these media.  

Tryptic soy agar (TSA; Becton, Dickinson and Company) was used as a nonselective 

medium, whereas EA and bile esculin azide agar (BEA; Becton, Dickinson and 

Company) were used as selective media for enterococci. EA and BEA supplemented with 

rifampin (100 µg ml-1) were used for E. faecium. EA or BEA, EA or BEA alone, modified 

two-step overlay (OV) method with heat-injured cells were plated directly onto TSA and 

modified thin agar layer (TAL) method were compared for the recovery of heat-injured 

presumptive indigenous enterococci cells and E. faecium. For OV methods, after 

incubation at 37°C for 2 h to allow the recovery of injured cells, 7 ml of BEA or EA was 

overlaid onto TSA (OV/BEA and OV/EA). Plates were incubated at 37°C for another 22 

h, whereas for TAL methods, 14 ml of melted TSA (48°C) was overlaid (TAL/BEA and 

TAL/EA). Heat-injured cells were plated onto TAL media and then incubated at 37°C for 

24 h. 
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Thermal inactivation study under laboratory conditions. The turkey litter compost 

with six months of aerobic thermophilic stabilization (plant A) and laying hen litter 

compost (plant B) were used to evaluate the E. faecium as a surrogate for validating 

thermal processes under laboratory conditions. All the composts were dried under the 

fume hood until moisture content was reduced to less than 20%, and then screened to the 

particle size of less than 3 mm using a sieve. Sufficient compost samples were collected 

for all laboratory experiments and stored in a sealed container at 4°C until use. 

The moisture contents of different poultry litter composts were adjusted based on the 

moisture range of incoming poultry litter compost processed in both plants, i.e. 30-50% 

for the turkey litter compost received from plant A, and 15% for the laying hen litter 

compost from plant B. Desiccation-adapted S. Senftenberg 775/W or E. faecium cultures 

were prepared as described previously by Wang et al. (22). Following the 24-h 

desiccation adaptation, the compost with desiccation-adapted cells was further mixed 

with compost with the same moisture content at a ratio of 1:100 using a sterile blender 

(KitchenAid Inc., St. Joseph, MI) to the target final concentration of desiccation-adapted 

cells. In brief, both desiccation-adapted S. Senftenberg 775/W and E. faecium were 

inoculated into the turkey litter compost adjusted to 20, 30, or 40% moisture content, and 

into the laying hen litter compost with 15% moisture content, respectively, at a final 

concentration of ca. 5 log CFU g-1. Twenty grams of compost in duplicate were 

distributed evenly inside a sterile aluminum pan (I.D. 10 cm). When the oven temperature 

reached the set temperature (5°C higher than the target temperature), the aluminum pans 

with inoculated samples were placed on the oven shelf at two different locations. 
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According to treatment temperatures in each plant, temperatures used were 75 and 150°C 

for turkey litter compost and 75°C for laying hen litter compost. Thermal inactivation 

experiments were performed as described above. For heat treatments at 75°C, compost 

samples were withdrawn from the oven at 0 min and every 30 min during the come-up 

time and holding time (up to 180 min) for determining microbial populations. For heat 

treatment at 150°C, duplicate samples were withdrawn every 15 min up to 60 min. 

Specifications of industrial dryers. Two poultry litter compost processors were 

involved in the plant validation studies: one turkey litter compost processor (plant A) in 

the midwestern United States, and one laying hen litter compost processor (plant B) in 

the southwestern United States. Specifically, plant A processes the turkey litter compost 

with six months of aerobic thermophilic stabilization, whereas plant B process the 

composted chicken manure mixed with the bone meal (laying hen litter compost). 

Although the dryers in both plants can bring the treatment temperature to > 65°C, and 

operated at a 13-22 rpm rotation rate, the dryer in plant A was operated continuously, and 

the dryer in plant B was batch-operated. The detailed specifications of industrial dryers 

are listed in Table 1. 

Sampler design. Based on our previous composting-related studies and heat tolerance 

tests, a Tyvek bag was used to hold the poultry litter compost which allowed the moisture 

transfer but no sample leakage. To protect the Tyvek bag from breaking up by stones and 

other sharp objects mixed in compost during drying inside the dryer, sampler systems 

were designed and tested in plant A (Figure 1). Initially, three sampler prototypes (tea 
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infuser, mesh cylinder, and suet wire basket) were tested in plant A. All prototypes were 

retrieved immediately from the knockout unit (for trapping the stones) after the dryer. 

Both the tea infuser and mesh cylinder were torn apart, whereas the suet wire basket 

(C&S Products Co. Inc., Fort Dodge, Iowa; 14.22 x 12.19 x 4.57 cm) remained intact. By 

adding stainless steel mesh (2 mm hole; 13.97 x 15.24 x 2.54 cm) as the liner inside the 

basket, the Tyvek bag remained intact after passing through the dryer at least twice. 

Sample preparation for plant validation. One week before each plant trial, poultry 

litter compost samples were obtained from each processor. The rifampin-resistant E. 

faecium was used as the surrogate microorganism for the plant validation study. The 

washed overnight culture was added to the turkey litter compost (plant A) or laying hen 

litter compost (plants B), at a rate of 1:100 vol wt-1 to a final concentration of ca. 7 log or 

ca. 9 log CFU g-1, respectively, and both adjusted to the desired moisture content (within 

the moisture range of compost from each plant). For plant A, about 50 g of inoculated 

turkey litter compost was packed into each Tyvek pouch (12.7 × 12.7 cm) with all sides 

reinforced with heat-tolerant tape. Two Tyvek pouches, one inoculated and one 

uninoculated, were placed into one customized sampler as described above. For plant 

trials conducted at plant B, instead of using a sampler, sterilized polyester kitchen cloth 

swatches (2.54 × 2.54 cm, ca. 80 pieces for each trial, with ca. 20% moisture content) 

were mixed with ca. 2.46 kg of inoculated laying hen litter compost (ca. 15% moisture 

content, each trial) to serve as indicators for the mixing and progression through the 

cooker (residence time) in plant B (Figure 1). Afterward, all the prepared samplers for 

plant A and the inoculated laying hen litter compost for plant B were shipped overnight at 
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room temperature to plants A and B, respectively, allowing bacterial cells to be 

desiccation-adapted in the compost during shipping. Tyvek bags containing poultry litter 

compost with or without being inoculated with E. faecium, in duplicate, served as 

shipment controls for each trial. 

Sample collection and analysis. For trials in plant A, samplers were retrieved at the exit 

end of the dryer after being dropped into the entry of the dryer. The residence time for 

each sampler was recorded. Compost samples before and after heat treatment were also 

collected from the processing line to serve as process controls. For each trial performed 

in plant B, process control samples were taken from the dryer before the addition of 

inoculated samples. About 2.46 kg of laying hen litter compost (ca. 15% moisture 

content) with desiccation-adapted E. faecium were mixed with the bulk of compost (ca. 

680 kg per run) in the dryer before heat treatment. After each test run, the distribution of 

the kitchen cloth swatches from the catch bin was observed to determine if the inoculated 

sample was sufficiently mixed. Meanwhile, 12 samples from different representative 

locations of the catch bin were collected for sample analysis. Two separate test runs were 

conducted sequentially for each trial. All collected samples including the shipment 

controls were shipped overnight with cold packs back to Clemson University, SC, and 

analyzed immediately. 

Bacterial enumeration. The surviving S. Senftenberg 775/W cells were enumerated 

using a modified two-step overlay method (OV/XLT-4-R) to allow heat-injured cells to 

resuscitate (Chen et al. 2013). The surviving E. faecium cells were enumerated using the 
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recovery media (EA-R). The samples that were presumptively negative for S. Senftenberg 

775/W by the direct plating method (detection limit: 1.3 log CFU g-1) were screened for 

Salmonella by following the microbiological detection method described by the U.S. 

FDA Bacteriological Analytical Manual (22). The samples that were presumptively 

negative for E. faecium by the direct plating method were pre-enriched in brain heart 

infusion broth (BHI) supplemented with 100 μg rifampin ml-1 at 37°C for 24 h, followed 

by plating onto EA-R. Besides, both the turkey litter compost and laying hen litter 

compost samples were analyzed for indigenous microorganisms, including presumptive 

enterococci, mesophiles, and thermophiles, and screened for Salmonella based on the 

methods described in the U.S. FDA Bacteriological Analytical Manual (23). For plant A, 

the indigenous microorganisms were enumerated from both compost sample without 

inoculation of E. faecium in the sampler and the compost sample collected from the 

processing line. For plant B, the inoculated compost was added on-site prior to the 

thermal process, and, therefore, to exclude the interference from the inoculated E. 

faecium, the indigenous microorganisms were enumerated from the sample collected 

from the processing line only (prior to the inoculation of E. faecium).  

Chemical and physical characteristics analysis. Moisture content was measured with a 

moisture analyzer (Model IR-35, Denver Instrument, Denver, CO). Water activity (aw) 

was measured with a dew-point aw meter (Aqualab Series 3TE, Decagon Devices, 

Pullman, WA). The pH and electrical conductivity values of poultry litter compost were 

measured by a multi-parameter benchtop meter (Orion VERSA Star meter, Thermo 

Fisher Scientific Inc., Fort Collins, CO, USA) according to the test methods described by 
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the U.S. Composting Council (24). Duplicate samples were analyzed by the Clemson 

University Agricultural Service Lab for chemical characteristics, including nutrients and 

heavy metals (total concentrations, including water-soluble and water-insoluble 

concentrations). 

Statistical analysis. Plate counts were converted to log CFU g-1 in dry weight. SigmaPlot 

12.3 (Systat Software Inc., San Jose, CA, USA) was used for data analysis. Analysis of 

variance (ANOVA), followed by the least significant differences (LSD) test, was carried 

out to determine whether significant differences (P < 0.05) existed among different 

treatments. In this study, P-value < 0.05 was used to indicate a strong evidence against 

the null hypothesis or a statistically significant result. The Spearman’s rank-order 

correlation was calculated using RStudio 1.1.463 (RStudio, Inc., Boston, MA, USA) to 

determine the strength of association between changes in chemical-physical properties 

and microbial reductions in poultry litter compost during plant validation studies. 

 

RESULTS AND DISCUSSION 

Comparing heat resistance between desiccation-adapted E. faecium and S. 

Senftenberg 775/W under laboratory conditions. In order to accurately enumerate 

heat-injured E. faecium and presumptive indigenous enterococci from turkey litter 

compost, six culturing methods were compared for recovering heat-injured cells of 

enterococci. Due to the interference from background microorganisms with the similar 

morphology showing on plates (data not shown), overlay methods (OV/EA, OV/BEA, 

TAL/EA, and TAL/BEA) were not selected for enumeration of presumptive indigenous 
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enterococci from heat-treated turkey litter compost. As shown in Table 2, EA and 

OV/EA-R were selected to enumerate the heat-injured presumptive indigenous 

enterococci and E. faecium, respectively.  

To reduce the uncertainty during processing plant-scale studies, laboratory-based studies 

were performed first to compare the thermal resistance of desiccation-adapted E. faecium 

and desiccation-adapted S. Senftenberg 775/W in both turkey litter and laying hen litter 

composts. No Salmonella was detected from the received compost samples. For the 

laboratory-based study, the come-up times for heating turkey litter compost with 20, 30, 

and 40% moisture content, and laying hen litter compost with 15% moisture content at 

75ºC were 75, 92, 142, and 60 min, respectively. The population reductions of 

desiccation-adapted E. faecium were significantly (P < 0.05) lower than those of 

desiccation-adapted S. Senftenberg 775/W under all the tested conditions (Figure 2). At 

75ºC, the log reductions of desiccation-adapted E. faecium in the turkey litter compost 

with 20, 30, and 40% moisture content were 1.4, 2.1, and 2.9 log CFU g-1, respectively, 

after come-up times and holding for 180 min, whereas desiccation-adapted S. Senftenberg 

775/W was detected by enrichment only (with a 4.2-log reduction) in the turkey litter 

compost with 20% moisture content during holding times (Figure 2A). More than a 5-log 

reduction of desiccation-adapted S. Senftenberg 775/W was achieved during come-up 

times of 90 and 120 min in the samples with 30 and 40% moisture contents, respectively 

(Figures 2B and C). At 150°C, desiccation-adapted E. faecium survived for up to 15 min 

in the turkey litter compost with 20% moisture content, whereas it was not detectable for 

other moisture contents (data not shown). However, desiccation-adapted S. Senftenberg 
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775/W could not be detected in the turkey litter compost with all moisture contents 

exposed to 150°C within 15 min (data not shown). In the laying hen litter compost with 

ca. 15% moisture content (Figure 3), a 1.5-log reduction of desiccation-adapted E. 

faecium was detected after a come-up time of 60 min at 75°C, as compared with > 5-log 

reduction of desiccation-adapted S. Senftenberg 775/W. During the holding time, cell 

counts of desiccation-adapted E. faecium were still more than 4 log CFU g-1 in the laying 

hen litter compost after exposure to 75°C for 180 min, whereas Salmonella cells were not 

detected by enrichment after 90 min.  

Taken together, the thermal inactivation effect on both desiccation-adapted S. Senftenberg 

775/W and E. faecium was found to be enhanced with the increase in moisture content of 

poultry litter compost in the laboratory validation study. This finding was in line with our 

previously published laboratory-scale studies on the physical heat-treatment of 

Salmonella spp. and its surrogate microorganism in broiler chicken litter compost (4, 22). 

Based on the laboratory validation studies, reductions of 1.2- to 2.7- log or more of E. 

faecium can predict > 5-log reductions of S. Senftenberg 775/W in poultry litter compost, 

depending on heating temperature, moisture content, and types of poultry litter compost. 

In short, findings from laboratory studies indicated that E. faecium can be used as a 

surrogate for Salmonella to provide a sufficient safety margin when validating the 

thermal processing in industrial settings. 

Sampler design and residence time determination. To ensure the inoculated compost 

samples could be processed through the industrial dryer in plant A and subsequently 
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collected post-drying, a sampler was designed to hold the turkey litter compost. To secure 

the sampler, the suet-wire basket was held tightly with heat-tolerant cable ties (Figure 1). 

The sampler is easy to assemble on site and thus can be used as a suitable validation tool 

in industrial settings. For plant A, the residence times for the winter trial (44% moisture 

content), spring trial (36% moisture content), and summer trial (36 and 44% moisture 

contents) were 28-198, 23-72, 26-60, and 25-59 min, with the median resident time as 51, 

45, 43, and 35 min, respectively, as measured by running the sampler though the dryer.  

To our knowledge, only pilot-scale models have been reported so far for animal wastes 

process validation (26, 27). And for all previous pilot-scale studies on physical heat 

treatment of animal wastes, only pig slurry with a maximum capacity of 220 liters/h was 

studied using indigenous microorganisms (28). As compared to those pilot-scale studies, 

both heat transfer and compost flow are difficult to control in an industrial processing 

line. As such, the custom-designed samplers were used as validation tools by holding 

compost samples intact during thermal processing in the industrial dryer for the 

subsequent plant validation studies. 

Plant-scale validation of physical heat-treatment of poultry litter compost using 

indicator microorganisms. The thermal inactivation rate of presumptive indigenous 

enterococci was found to have a correlation with that of desiccation-adapted S. 

Senftenberg 775/W in broiler litter with different moisture contents when subjected to 

heat treatment under laboratory conditions (29). Our intent in this study was therefore to 

use enterococci, mesophiles, and thermophiles as potential indicator microorganisms to 
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determine the thermal inactivation rates of indigenous microorganisms in industrial 

settings. Reductions of indicator microorganisms in plant A are presented in Table 3. An 

average of > 3-log reduction of presumptive indigenous enterococci from four trials were 

found in both uninoculated samples in Tyvek bags and the turkey litter compost collected 

from the processing line. Average population reductions of indigenous mesophiles and 

thermophiles in processing control samples were 2.2 and 1.1, 2.5 and 1.5, 1.7 and 0.4, 

and 2.2 and 1.1 log CFU g-1 for the winter trial (44% moisture content), the spring trial 

(36% moisture content), the summer trial 1 (36% moisture content), and the summer trial 

2 (44% moisture content), respectively (Figure 4).  

For plant B, the initial population level of presumptive indigenous enterococci in the 

laying hen litter compost was lower than that in the turkey litter compost of plant A. After 

physical heat treatment of laying hen litter compost in plant B, the population of 

presumptive indigenous enterococci was reduced > 1.8 log CFU g-1 in the processing 

control samples (Table 4), whereas mesophiles and thermophiles were reduced by 2.6 and 

2.5, 2.9 and 3.2 log CFU g-1 for trial 1 and 2, respectively (Figure 4). Variations in the 

initial populations of indigenous microorganisms in incoming poultry litter compost were 

observed among trials in both plants.  

Due to the variable populations of indigenous microflora and heterogeneous compost 

ingredient in poultry litter compost, multiple microbial indicators, such as enterococci, 

mesophiles, or thermophiles, could be potentially used to represent a wide spectrum of 

pathogens existing in compost that have different levels of heat resistance. In agreement 
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with this suggestion, Cunault et al. (26) used a set of indigenous microorganisms, 

including naturally occurring E. coli, enterococci, spore-forming sulfite-reducing 

Clostridia (SRC), and indigenous mesophiles (MCB), as indicators to assess the 

effectiveness of the thermal treatment of pig slurry. They reported that a continuous heat 

treatment at 55 or 60°C for 10 min can reduce 4- or 5- log of indigenous E. coli, whereas 

a longer heat treatment at these temperatures was needed to kill enterococci, and 

indigenous SRC was more heat-resistant as compared to enterococci in pig slurry treated 

at 96°C for 10 min. Although there are limited studies on plant-scale validation studies, 

many lab-based studies have also reported the use of different indigenous microflora, 

including fecal Streptococcus, Enterococcus spp., and E. coli, as indicator 

microorganisms to determine the survival behaviors of bacterial pathogens during animal 

wastes composting or wastewater treatment (30, 31, 32). In the present study, thermal 

inactivation of indigenous microorganisms depended on the time-temperature 

combinations and types of poultry litter compost. In consideration of the low cost to 

enumerate presumptive indigenous enterococci, the processors could do routine 

monitoring of their thermal process by using indigenous microorganisms as indicators. 

Plant-scale validation of physical heat treatment of poultry litter compost using 

surrogate microorganism. In addition to indicator microorganisms, surrogates could 

also be an alternative for predicting the survival characteristics of pathogens in plant-

scale studies. Due to the fluctuation of presumptive indigenous enterococci populations in 

animal wastes, the use of spiked E. faecium should be considered for validation purpose. 

As shown in Table 3, only two samples were found positive for E. faecium after 
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enrichment, which were obtained from the samplers exiting from the dryer with the 

shortest residence times (36 and 28 min, respectively) for the winter trial with 44% 

moisture content and the summer trial with 36% moisture content, respectively. During 

the second summer trial with 36% moisture content, there was an 8-min shut-down of the 

drying process due to a power outage, which might have interfered with the normal 

movement of samplers inside the dryer and heat treatment.  

In plant B, the initial moisture content of the laying hen litter compost was ca. 17% and 

the initial inoculum level of E. faecium was 8.9 log CFU g-1. The E. faecium population 

decreased by ca. 2 log CFU g-1 during the 48-h desiccation adaptation at room 

temperature. For plant B validation, ca. 2.46 kg compost spiked with desiccation-adapted 

E. faecium was mixed with one batch of compost (ca. 680 kg) resulting in an approximate 

1:280 ratio (Figure 1). Two separate trials were performed with 4.5 log CFU g-1 as the 

average target population of desiccation-adapted E. faecium in laying hen litter compost 

before heat treatment. After heat processing (ca. 99.4°C for 7 min), the cloth swatches 

(mixing indicators) were found to be well-distributed, indicating a homogeneous mixing 

of laying hen litter compost mixing during the drying process. E. faecium was detected by 

direct plating in 3 out of 20 samples, and by enrichment in 14 out of 20 samples. In 

summary, our data showed that an average > 2.8-3.1-log reduction in surrogate 

microorganism was achieved after heat treatment in plant B in both trials (Table 4). 

Based on the results from the plant validation studies, we confirmed the suitability of 

using desiccation-adapted E. faecium as a surrogate for desiccation-adapted S. 
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Senftenberg 775/W when validating physical heat treatment of poultry litter compost. 

After a slight decrease in the populations of E. faecium in poultry litter compost during 

shipping, the desiccation-adapted E. faecium populations were found to maintain at a 

stable level before heat treatment, which was in agreement with the requirements that the 

ideal surrogate should be easy to yield a high-density level with constant population until 

utilized (33, 20). After physical heat treatment in the plants, the log-reduction of 

desiccation-adaptation E. faecium can predict a > 5-log reduction of desiccation-adapted 

S. Senftenberg 775/W in poultry litter compost sources from two plants based on the 

results produced from lab validation studies.  

Correlation between physicochemical changes and microbial reductions after 

industrial heat treatments. In our previous lab-based study, E. faecium was found more 

sensitive to high temperature in a relatively wet environment, as indicated by its declining 

heat resistance with increased moisture content of broiler litter during thermal processing 

(22). Heat transfer could be more efficient in the poultry litter compost with lower 

moisture content (10), suggesting that other physicochemical characteristics of poultry 

litter compost might also affect the heat resistance of bacteria during heat treatment. For 

example, during chicken manure composting, the inactivation rates of Salmonella and L. 

monocytogenes in the compost with 20:1 C:N formulations were higher than in 30:1 and 

40:1 formulations (34). As afore-mentioned, in addition to moisture level in compost and 

processing temperature, the physicochemical characteristics of poultry litter compost 

could be another important factor affecting the population reductions of indicator and 

surrogate microorganisms during heat treatments. 
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In this study, the physicochemical characteristics of turkey litter compost from plant A 

were significantly different (P < 0.05) from those of plant B, except for the carbon value 

(Table 5). Based on the correlation analysis for the compost samples collected from two 

plants, there were no noticeable correlations between most of the nutrient content (total 

nitrogen, carbon, C:N, and organic matter) of poultry litter compost and microbial 

population reduction due to heat exposure in two industrial dryers. The changes in pH of 

poultry litter compost were strongly correlated with the reductions in indigenous 

mesophiles, thermophiles, and enterococci, with correlation coefficients values (ρ) 

greater than 0.7 (Supplement Table S1). Most importantly, pH changes were significantly 

(P = 0.049) negatively correlated with thermophiles reduction, whereas positively 

correlated with enterococci reduction (P = 0.017), indicating thermophiles were 

inactivated more at lower pH, and enterococci were inactivated more at higher pH. 

Unexpectedly, in plant A, the moisture content of turkey litter compost had no significant 

effect (P > 0.05) on the reductions of the surrogate microorganism. It should be noted that 

processing plants only process poultry litter compost with a narrow range of moisture 

content. According to the information provided by plant A, the moisture content of turkey 

litter compost averaged at 36% with a range of 30-50%. For plant B, the E. faecium 

population in the laying hen litter compost with 15% moisture content was less reduced 

after heat treatment compared to the higher moisture turkey litter compost with 36 and 

44% moisture contents from plant A. This can be explained by the increased heat 

resistance of microorganisms in the dry matrix (35). As such, the slight difference 

between the two moisture contents used in plant A trials would not allow the surrogate 
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microorganism to produce a significant change in heat resistance. Further, although the 

design of the Tyvek bags allowed the free movement of moisture during heat processing, 

there was less moisture reduction when compost samples were contained inside the 

sealed Tyvek bags. Nonetheless, in the processing control samples, the reductions of 

indicator microorganisms were significantly (P < 0.05) affected by the moisture content, 

as the highest enterococci cell reduction (3.7 log CFU g-1) was achieved in the processing 

control compost samples with the highest moisture content (51.2%). Therefore, the use of 

indicator microorganisms may have the added advantage of reflecting changes in the 

properties of litter compost during heat-processing as compared to surrogate 

microorganisms. 

As discussed above, although a laboratory-based study on the same source compost 

samples was performed before the plant validation studies, the environment in a plant 

certainly cannot be controlled as ideally as under laboratory conditions. Therefore, it is 

important to apply the laboratory findings to real-world use by thoroughly assessing the 

effectiveness of physical heat-treatment process in an industry setting. When scaling up a 

physical heat-treatment to a processing plant, the homogeneity and the flow of poultry 

litter compost in the larger industry dryer should be controlled to ensure a uniform 

heating of litter compost. The custom-designed sampler was thus able to hold compost 

samples and surrogate microorganisms intact during the heating processing in the rotary 

dryer. When designing the plant validation studies, it is important to take into 

consideration the industrial settings, such as dryer specifications, type of heat treatment, 

and incoming poultry litter compost handling. For example, different methods were used 
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to prepare the inoculum of surrogate microorganisms for the two processing plants. 

Moving from laboratory to plant validation study, physical heat treatments in both 

processing plants have been scientifically validated as an effective way to reduce 

potential Salmonella contamination in poultry litter compost, which is in line of the 

FSMA’s recommendation of using alternative treatments for reducing or eliminating 

human pathogens in untreated BSAAO before land application (5). As indicated in 

Biosolids technology fact sheet published by US Environmental protection agency (US 

EPA), the dryers used in the participating plants were the most important and common 

types used for drying biosolid waste in US (36). The validation methods optimized in our 

research can be applied to other animal wastes-processing plants and provide scientific 

evidence for the complying to FSMA requirements to produce biological soil 

amendments safety. 

Limitations of this study. There are some limitations to our plant validation studies. Due 

to the dryer structures of the plants, only end-point samples could be collected. Although 

many specifications of the dryers were known, some real-time processing data, including 

come-up times and internal temperatures profile and movement of samples, were not 

available. Therefore, future studies on the validation of thermal processing using poultry 

litter compost with various physicochemical properties under industrial settings are 

necessary. 

Conclusions. In summary, for the first time, the thermal processes of two poultry litter 

compost processing plants under different processing conditions were successfully 
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validated using E. faecium and presumptive indigenous enterococci. Even though the 

processing conditions in these processing plants varied greatly, the validation results 

indicated that Salmonella levels, if present, could be reduced by at least 5-log based on the 

reductions of surrogate and indicator microorganisms. The designed sampler could 

withstand the harsh environments created by high temperatures and strong tumbling 

movement inside the industrial dryers and served as a carrier for the inoculated poultry 

litter or poultry litter compost samples exposed to the thermal process in the industry setting. 

Therefore, both indicator and surrogate microorganisms along with the sampler can serve 

as practical tools for poultry litter or poultry litter compost processors to routinely monitor 

and validate their thermal processes without introducing pathogens into the industrial 

environments. 
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Table 3.1 Summary table for each plant trial 

Planta Dryer specification Target Moisture 
content of 
compost (%) 

Performed date Total samples 
analyzed after 
heat treatment 

Processing 
controls 
collected Size (m) Temperature Process capacity 

Plant A 3.7 Inlet: 593ºC 4082.3 kg/h 44 Nov. 16, 2016 22 4 
 Diameter/ 

15.2 length 
Outlet: 65-
82ºC 

  July 19 & Aug 8, 2017 24 4 

    36 April 28, 2017 30 4 
     June 29, 2017 24 4 
        
        
Plant B 0.9 

diameter/ca. 
2.3 length 
 
 

65-104ºC 604.8-642.6 kg/h 15 Dec. 13, 2017 24 2 

a PlantA, processes the turkey litter compost with six months of aerobic thermophilic stabilization. 

Plant B, processes the composted chicken manure mixed with bone meal (laying hen litter compost).  
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Table 3.2 Comparing media for recovering heat-injured E. faecium NRRL B-2354 in the 

composted turkey litter under laboratory condition 

Recovery media E. faecium NRRL B-2354 population (log CFU g-1) after exposure to 
75ºC for (min) 

 0 30 60 

EA-R 8.2±0.1Aa 4.0±0.3C < 2b 

BEA-R 7.3±0.8B 3.3±0.2D < 2 

OV/EA-R -c 5.1±0.3A < 2 

OV/BEA-R - 4.7±0.5B < 2 

TAL/EA-R - 4.8±0.2B < 2 

TAL/BEA-R - 4.2±0.8C < 2 

a Data are expressed as means±SD of three trials. Means with different letters in the same 

column are significantly different (P < 0.05). 

b Detection limit as < 2 log CFU g-1.  

c -, not tested.
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Table 3.3 Inactivation of desiccation-adapted E. faecium NRRL B-2354 and presumptive indigenous enterococci in the 

composted turkey litter after processing through industrial dryer in plant A a 

   Before dryer  After dryer 
Season 
(Date) 

Target 
Moisture 
content 

(%) 

n b Moisture 
content 

(%) 

E. faecium 
(log CFU 

g-1) 

Presumptive 
indigenous 

enterococcid (log 
CFU g-1) 

 Moisture 
content 

(%) 

E. 
faecium 

(log CFU 
g-1) 

Presumptive 
indigenous 

enterococci (log 
CFU g-1) 

Winter 
(Nov/16) 

44 11 43.8±0.6 7.4±0.1 5.5±0.2  32.3±12.
1 

+/- (1/11) 

e 
2.2±0.1 

Process control   51.2±2.3 N.A. c 6.0±0.1  3.1±0.6 N.A. 2.3±0.1 
Spring 
(Apr/17) 

36 10 36.4±1.0 7.5±0.1 5.4±0.0  14.8±2.7 -f 1.9±0.3 

Process control   28.7±4.0 N.A. 4.8±0.2  2.8±0.1 N.A. 1.8±0.2 
Summer 1 
(Jun/17) 

36 12 35.2±1.1 7.7±0.0 5.7±0.0  20.5±0.6 +/- (1/12) 1.8±0.0 

Process control   29.9±6.2 N.A. 5.2±0.4  4.8±2.0 N.A. 1.8±0.0 
Summer 2 
(Jul, Aug/17) 

44 12 41.8±1.4 7.5±0.0 6.0±0.1  21.9±0.4 - 1.7±0.0 

Process control   36.1±3.6 N.A. 4.8±0.9  2.3±0.9 N.A. 1.6±0.0 
a Two runs were conducted for each plant trial, and the data were expressed as means± SD.   
b Number of samplers collected from the dryer. 
c NA, not applicable. 
d Enterococci counts enumerated on EA plates. 
e+, Detected by enrichment. The detection limit of directly plating was 1.3 log CFU/g by dry weight. 
f -, not detected by enrichment.  
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Table 3.4 Inactivation of desiccation-adapted E. faecium NRRL B-2354 and presumptive indigenous enterococci in laying hen 

litter compost after processing through industrial dryer in plant B 

Plant 
run 

Before dryer  After dryer 

 Moisture 
content (%) 

n 
a 

E. faecium 
b 

(log CFU 
g-1) 

Presumptive 
indigenous 

enterococci (log 
CFU g-1) d 

 Moisture 
content 

(%) 

n f E. faecium 
(log CFU g-

1) g 

Presumptive 
indigenous 

enterococci (log 
CFU g-1) h 

Trial 1 6.4±0.0 2 4.5±0.0 
 

N.C. e  5.2±0.1 10 < 1.4±0.3 N.C. 

Process 
control 

6.3±0.0 2 N.A.c 3.6±0.1  2.2±0.0 2 N.A. < 1.3 
 

Trial 2 6.2±0.0 2 4.5±0.1 N.C.  4.8±0.0 10 < 1.7±0.3 N.C. 
Process 
control 

6.3±0.0 2 N.A. 3.1±0.1  2.2±0.0 2 N.A. < 1.3 
 

a The number of samples shipped/collected before each plant trial run. 
b Expected initial surrogate population prior to dryer, calculated based on mixing-ratio before dryer in plant B.  
c N.A., not applicable. 
d Enterococci counts enumerated on EA plates. 
e N.C. no data collected. 
f Number of samplers collected from the dryer. 
g From two trials, 3 out of 20 samples were positive for E. faecium NRRL B-2354 by direct plating. Whereas other samples 
were detected only by enrichment.  
h Presumptive indigenous enterococci were not detected by directly plating after heat treatment, and the detection limit of direct 
plating was 1.3 log CFU g-1 by dry weight. 
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Table 3.5 Chemical-physical characteristics of poultry litter compost of two plants 

Sample (Season, Mon/Year) Before heat treatment 
Total Nitrogen 
(%) 

Carbon 
(%) 

C:N ratio 
(%) 

Organic matter 
(%) 

ECb 
(mmhos cm-1) 

pH 

Plant A (Winter Nov/16) 3.2±0.1a 30.4±0.4 9.4±0.2 58.0±0.3 29.7±1.0 8.5±0.0 
Plant A (Spring Apr/17) 4.0±0.0 34.0±0.0 8.4±0.0 63.5±0.4 21.4±0.8 7.6±0.0 
Plant A (Summer 1 Jun/17) 2.7±0.1 25.8±0.5 9.4±0.5 48.6±5.3 12.4±1.7 8.8±0.3 
Plant A (Summer 2 July, Aug/17) 2.9±0.2 26.8±1.8 9.2±0.0 54.5±4.6 12.5±0.5 8.7±0.0 
Average for Plant A 3.2±0.6A 29.2±3.7A 9.1±0.5A 55.4±6.7A 19.0±8.3A 8.4±0.5A 
Plant B (Dec/17) 6.0±0.9B 28.9±0.7A 5.2±0.1B 50.4±1.2B 11.9±0.4B 6.1±0.0B 

Sample (Season, Mon/Year) After heat treatment 
 Total Nitrogen 

(%) 
Carbon 
(%) 

C:N ratio 
(%) 

Organic matter 
(%) 

EC 
(mmhos cm-1) 

pH 

Plant A (Winter Nov/16) 4.7±0.1 37.4±0.7 7.6±0.0 61.9±2.4 35.3±0.2 7.0±0.0 
Plant A (Spring Apr/17) 3.9±0.0 34.8±0.2 8.9±0.1 64.6±0.6 20.7±1.2 6.8±0.0 
Plant A (Summer 1 Jun/17) 2.8±0.0 25.3±1.4 9.1±0.5 47.8±0.5 13.6±0.9 7.4±0.2 
Plant A (Summer 2 July, Aug/17) 2.8±0.2 23.6±1.8 8.4±0.0 44.4±1.7 11.6±1.0 8.2±0.5 
Average for Plant A 3.6±1.0A 30.3±6.8A 8.5±0.7A 54.7±10.0A 20.3±10.7A 7.3±0.6A 
Plant B (Dec/17) 5.7±0.1B 28.5±5.0A 5.000.1A 47.8±1.4B 11.8±0.4B 6.1±0.0B 

a Data are expressed as means±SD of two samples. Means with different letters in the same column are significantly 

different (P < 0.05). The values of nutrients and metals are all calculated based on dry weight. 

b EC, electrical conductivity. 
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Figure 3.1 Custom-design multiple component sampler (top), and the inoculation 

procedure for plant B (bottom). 
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Figure 3.2 Survival of desiccation-adapted S. Senftenberg 775/W and E. faecium NRRL 

B-2354 in the composted turkey litter with 20% (A), 30% (B), and 40% (C) moisture 

content at 75°C. Inactivation curves during come-up times (to the left of the vertical 

dotted line) and during holding times (to the right of the vertical dotted line) are shown. 

The horizontal dotted line indicates that Salmonella was detectable only by enrichment 

(detection limit by direct plating: 1.3 log CFU g-1). Data were expressed from the average 

of two trials.  
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Figure 3.3 Survival of desiccation-adapted S. Senftenberg 775/W and E. faecium NRRL 

B-2354 in laying hen litter compost with 15% moisture content at 75°C. Inactivation 

curves during come-up times (to the left of the vertical dotted line) and during holding 

times (to the right of the vertical dotted line) are shown. The horizontal dotted line 

indicates that Salmonella was detectable only by enrichment (detection limit by direct 

plating: 1.3 log CFU g-1). Data were expressed from the average of two trials. 
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Figure 3.4 The average log reduction of mesophiles and thermophiles in the processing 

control samples during heat treatment in plants A and B. Means with different letters in the 

same trial are significantly different (P < 0.05) in the reductions between mesophiles and 

thermophiles.  
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CHAPTER FOUR 

COMPOSITIONAL AND FUNCTIONAL CHANGES IN MICROBIAL 
COMMUNITIES OF COMPOST DUE TO THE PRESENCE OF LISTERIA 

MONOCYTOGENES 
 

ABSTRACT 

In order to understand the complexed interactions between native compost 

microorganisms and Listeria monocytogenes, compost samples collected across the US 

were subjected to the inoculation of L. monocytogenes (ca. 107 CFU/g), and then 

systematically analyzed by 16S rRNA gene, shotgun-metagenomic, and 

metatranscriptomic sequencing approaches along with culturing methods. The reductions 

of L. monocytogenes in dairy and poultry compost with 40 or 80% moisture content at 

room temperature after 72 h of incubation ranged from 0.1 to 1.1 log CFU/g, but the 

regrowth of L. monocytogenes occurred in some compost samples after 72 h of incubation, 

ranging from 0.1 to 1.5 log CFU/g. The major bacterial phyla identified in all farms are 

Firmicutes (23%), Proteobacteria (23%), Actinobacteria (19%), Chloroflexi (13%), 

Bacteroidetes (12%), Gemmatimonadetes (2%), and Acidobacteria (2%). The statistical 

analysis of sequencing data revealed that microbial composition and interactions were 

affected by the environmental factors such as compost types and location, moisture levels 

and incubation length, rather than the inoculation of L. monocytogenes. Although the 

similarities percentage (SIMPER) results were not significant for all samples, some 

specific genera (Bacillus, Sphaerobacter, Filomicrobium, Paucisalibacillus, 

Brumimicrobium, Steroidobacter Flavobacterium, or Chryseolinea) were identified as 

discriminant microorganisms contributing to the variation in community composition due 
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to the inoculation of L. monocytogenes on multiple farms. Besides, after 72 h of incubation, 

changes in the metabolic pathways and the increased abundance of the bacteriocins 

category in the compost samples containing L. monocytogenes suggest that the interactions 

between L. monocytogenes and compost microbiome may include competition for compost 

nutrients and the presence of antimicrobials produced by compost microbiome. Findings 

from this study clearly indicated that microbial diversity and functional profiles were 

significantly (P < 0.05) affected by the compost source, composting stage, and collection 

farm. Furthermore, the presence of specific discriminant microbial species may suggest 

certain compost samples as the potential sources for isolating CE microorganisms against 

L. monocytogenes.  

 

INTRODUCTION 

Listeria monocytogenes, a leading foodborne pathogen, is ubiquitous in nature, 

including soils and animal wastes, which makes source control difficult to achieve. 

Importantly L. monocytogenes poses a major public health risk due to its ability to thrive 

in both farming and food processing environments (Guerra et al., 2001, Gholipour et al., 

2020). A key to develop mitigation strategies against this pathogen is to understand its 

ecology. Animal wastes used in compost production is considered as a nutrient-rich and 

complex ecosystem that contains diverse groups of microorganisms. During composting, 

the microbial activities in this ecosystem can generate moderate levels of heat to achieve 

pathogen reduction (Gurtler et al., 2017). Compost microbial community may also carry 

out suppressive activities that affect a variety of plant and human pathogens (Sidhu et al., 
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2001, Mulero-Aparicio et al., 2020). Therefore, the complex interactions among enteric 

human pathogen and the indigenous microbiome may determine the fate of enteric 

pathogen in pre- or post-harvest environments. 

One of the most effective and environmental friendly biological control methods is 

competitive exclusion (CE) (Mead et al., 2000, Hibbing et al., 2010). The host-pathogen 

interactions have been extensively reported in the animal intestinal ecosystem (De Jong et 

al., 2012, Ji et al., 2017) and many studies have concluded that microbial diversity is a key 

factor in reducing pathogen outbreaks (Vivant et al., 2013, Tan et al., 2019). Several 

beneficial microorganisms with antagonistic activities against soilborne pathogens were 

identified from compost (Ren et al., 2012, Al-Ghafri et al., 2020). For example, Al-Ghafri 

et al. (2020) demonstrated that Pythium aphanidermatum and Fusarium solani, originally 

isolated from horse litter-based compost, possessed antagonistic activity against 

Pseudomonas aeruginosa during co-culturing studies. However, the ecology and 

functionality of naturally occurring antagonistic microorganisms found in biological soil 

amendments is less studied. 

Next-generation sequencing approaches have become a powerful tool for 

characterizing the structure, functional capabilities, and activities of complex microbial 

communities. In general, 16S rRNA gene (or rDNA) sequencing has enabled us to 

understand the taxonomic composition of a microbiome, whereas the shotgun-

metagenomic sequencing can provide more comprehensive information because it 

sequences genes from all microorganisms presented in a sample (Cao et al., 2017). The 

microbial composition and the functional capacity of microbial communities during the 
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composting process has been documented in several studies using DNA-based sequencing 

approaches (Wei et al., 2018, Wang et al., 2018, Liu et al., 2020). However, a major 

limitation of genomic DNA sequencing analysis is the inability to differentiate live 

(dormant cells as well as growing or non-growing metabolically active cells) and dead 

cells. To avoid the extraction of DNA from dead cells, investigators used a pre-treatment 

viability assay with propidium monoazide (PMA) before DNA extraction (Li et al., 2017). 

Therefore, DNA-based sequencing combined with PMA treatment can theoretically 

analyze DNA from living cells only.  

Metatranscriptome profiling, the deep sequencing of the mRNAs derived from 

complex microbial communities, allows for characterization of the genes under 

expression within a complex and diverse population. Analyzing the metagenome adds an 

additional taxonomic signature to amplicon-based community profiling. 

Metatranscriptomic sequencing has been previously used by Antunes et al. (2016) to 

characterize the dynamics of microbial interactions and the role of microbial enzymes in 

degradation of biomass in compost samples. Their results demonstrated that biomass 

degradation during composting is fully performed by bacterial enzymes, possibly derived 

from Clostridiales and Actinomycetales. To date, there is a paucity of data and in-depth 

investigations that use high throughput-sequencing to examine the microbiota of 

commercial animal waste-based compost products (Neher et al., 2013, Pandey et al., 

2018). In addition, there is a lack of information on how the compost microbiota responds 

to the intrusion of pathogens of public health concern, such as L. monocytogenes.  
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To fill these research gaps, the microbial community of commercial compost 

products was analyzed with and without L. monocytogenes using next-generation 

sequencing approaches. The objective of this chapter was to reveal the composition and 

functional capabilities of compost microbiome in a variety of composts in the presence 

and absence of L. monocytogenes. Ultimately, findings from this study may assist with 

discovering and isolating compost-adapted competitive exclusion (CE) microorganisms 

that could be applied to other environments, such as produce growing and processing 

environments, to control L. monocytogenes.  

 

MATERIALS AND METHODS 

Compost sample collection. A total of 12 biological soil amendments (6 dairy- 

and 6 poultry waste-based composts) were collected from 6 different facilities. Those 

facilities were located in Arizona, California, Michigan, South Carolina (n=2), and 

Wisconsin, United States. Each facility provided composting samples at two stages within 

the composting process: thermophilic composting stage (active compost, > 55°C /131°F, 

within 1 month of composting) and finished stage (finished compost, 3 to 6 months of 

composting). Major compost ingredients included green waste, organic animal manure, 

dairy sawdust, or cow paunch. Following the sampling protocol recommended by the 

California Leafy Greens Marketing Agreement (LGMA, 2010), samples were collected in 

Ziploc bags, shipped under the ambient condition to our lab, and stored at refrigeration 

conditions (4°C) once received. Importantly, as a precaution against potential freeze-

damage to cell membranes, compost samples were deliberately not frozen. To reduce the 
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DNA degradation and microbial population change, the sample preparation and 

microbiological analysis for most samples were performed within 10 days after the samples 

were received.  

Physicochemical and microbiological analyses of biological soil amendments. 

Compost samples were analyzed for total aerobic bacteria, actinomyces, yeast/mold, 

Enterobacteriaceae, thermophilic and heterotrophic bacteria by plating serial dilutions 

onto 3M™ Petrifilm™ aerobic count plates (3M, USA), Actinomycete Isolation Agar 

(AIA; Becton Dickinson and Company; NJ, USA), Rose Bengal Agar (RBA; Hardy 

Diagnostic; CA), Violet Red Bile Glucose Agar (VRBG; Hardy Diagnostic), tryptic soy 

agar (TSA; BD) and Reasoner's 2A agar (R2A; BD), respectively, followed by incubation 

at 35°C for 24 h, 25°C for 48 h, 25°C for 5 days, 35°C for 24 h, 55°C for 24 h and 25°C 

for 5 – 7 days, respectively. Samples were also examined for the presence of background 

L. monocytogenes by following Food and Drug Administration’s Bacteriological 

Analytical Manual (Hitchins et al., FDA-BAM) procedure and enumerated onto Oxford 

agar (Hardy Diagnostic). DNA was extracted from the black colonies grown on Oxford 

agar (Difco, BD, Sparks, MD) and confirmed by polymerase chain reaction assay that 

targeted the hlyA gene (Soni et al., 2014).  

 Moisture contents of compost samples were measured with a moisture analyzer 

(model IR-35, Denver Instrument, Denver, CO), whereas pH values were measured based 

on the methods described by U.S. Composting Council (2002). Additionally, compost 

samples in duplicate were analyzed by Clemson Agricultural Service Laboratory for 
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chemical characterisation, including total nitrogen, carbon, organic matter, and soluble 

salts. 

Compost inoculation and L. monocytogenes enumeration. The experimental 

designs for compost inoculation and sequencing analysis are shown in Figure 4.1. Each 

composite compost sample was divided into three portions to serve as technical replicates 

for the subsequent experiments. The compost samples were thoroughly mixed and adjusted 

to 40 or 80% moisture contents with autoclaved tap water and half of the samples were 

artificially inoculated with L. monocytogenes strain FSL R9-5506 (a pathogenic strain 

isolated from the packaged salad, kindly provided by Dr. Martin Wiedmann at Cornell 

University). To prepare for the inoculum, the L. monocytogenes culture was streaked twice 

onto TSA, and then grown overnight in tryptic soy broth (TSB) at 35°C, followed by 

washing and resuspending in 0.85% saline to ca. 109 CFU/ml. Afterwards, the culture was 

inoculated into the compost samples with the target moisture contents (40 or 80%) at a 

final inoculation level of ca. 7 log CFU/g. At 0 and 72 h post inoculation, L. monocytogenes 

population in each compost sample was enumerated by plating 10-fold serial dilutions, in 

duplicate, onto Oxford media plates, followed by incubation at 35°C for 24 h.  

DNA and RNA extraction. Although there was regrowth of L. monocytogenes 

occurred in compost samples collected from dairy farm #1, the discriminant microbial 

genera (potential CE) were more abundant in this compost sample. Besides, the dairy farm 

#1 was able to provide the compost samples from two collections with the same ingredients 

and composting length (active compost), which could be considered as biological 

replicates. Therefore, the fresh compost samples from dairy farm #1 were collected for the 
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shotgun-metagenomic and metatranscriptomic sequencing studies. As shown in Figure 4.1, 

DNA was extracted from all samples and used for 16S rRNA gene sequencing, whereas 

fresh active compost samples were requested from dairy farm #1 prior to shotgun-

metagenomic and metatranscriptomic sequencing. The total DNA and RNA were extracted 

using the ZymoBIOMICS DNA and DNA/RNA miniprep extraction kits (Zymo Research, 

Irvine, CA, USA), respectively, according to manufacturer’s instructions. DNase I 

treatment step was included during RNA extraction for DNA removal. For PMA treatment 

(Fittipaldi et al., 2012, Li et al., 2017), the compost slurry (1:4 w/v) was transferred to a 

transparent 2-ml microcentrifuge tube and mixed with propidium monoazide (PMA dye, 

Biotium, Inc. CA, USA) at a final concentration of 50 µM in a dark room and incubated 

for 5 min on a rotating mixer at room temperature. Next, the microcentrifuge tube was 

subsequently placed on ice horizontally and exposed to 650 W halogen light source at 20 

cm distance for 20 min. Afterwards, PMA was removed by centrifugation at 12,000 × g 

for 5 min and DNA was extracted immediately from the compost samples.  

RNA was further purified using the RNA Clean & Concentrator kit (Zymo 

Research, Irvine, CA). The purity and concentration of both DNA and RNA were evaluated 

on a NanoDrop -2000 spectrophotometer (NanoDrop Technologies, DE, USA) at 260, 280, 

and 230 nm. Further quantification of DNA and RNA was performed using Qubit 

fluorometer (Thermo Fisher, MA, USA). RNA integrity number (RIN) was determined 

using an RNA 6000 Nano kit in the 2100 Bioanalyzer (Agilent Technologies, USA). Upon 

completion of extraction, samples were submitted to the respective sequencing facilities 

for 16S rRNA gene, shotgun-metagenomic, or metatranscriptomic sequencing analysis.  
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16S rRNA gene sequencing and sequencing data processing. In total, 288 gDNA 

samples were submitted to ZymoBIOMICS Services (Zymo Research, Irvine, CA) for 

library preparation and bacterial 16S rRNA gene sequencing. Bacterial 16S rRNA gene 

targeted sequencing was prepared using the Quick-16S NGS library prep kit. The bacterial 

16S primers were used to amplify the V3-V4 region of the 16S rRNA gene. These primers 

were custom-designed by Zymo Research to provide the best coverage of the 16S gene 

while maintaining high sensitivity. The final pooled library was cleaned up with the Select-

a-Size DNA Clean & Concentrator (Zymo Research, Irvine, CA), then quantified with 

TapeStation (Agilent Technologies, Santa Clara, CA) and Qubit. The final library was 

sequenced on Illumina MiSeq with a Version 3 reagent kit (600 cycles). The sequencing 

was performed with >10% PhiX spike-in.  

After high-throughput 16S rRNA gene sequencing, paired-end sequence reads were 

joined together. Unique amplicon sequences were inferred from raw reads and chimeric 

sequences were removed using the DADA2 pipeline (Callahan et al., 2016). Following 

further size filtration, the chimera-free sequences for each sample were analyzed through 

Qiime default pipeline (Kuczynski et al., 2011). After further fragment size filtration, the 

average number of chimera-free sequences for each sample was 55,420 ± 18,610 for further 

analysis (Table 4.1). Taxonomy annotation was performed using Uclust from Qiime 

V.1.9.1 with the Zymo Research database (Caporaso et al., 2010), a 16S database that is 

internally designed and curated, as reference. Before further analysis, the raw counts of 

each taxonomy were adjusted for sequencing depth by even sampling and for 16S copy 

number variation in order to represent true relative abundances (Kembel et al., 2012). The 
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16S copy number adjustment was performed using copy number estimates from the 

Ribosomal RNA Database (rrnDB) v5.4.  

Shotgun-metagenomic and metatranscriptomic sequencing. In total, 24 DNA 

and 8 RNA samples were submitted to Novogene Inc. (Sacramento, CA) for shotgun-

metagenomic and metatranscriptomic sequencing, respectively. Sequencing libraries were 

generated using NEBNext DNA Library Prep Kit (New England Biolabs, Ipswich, MA) 

following the manufacturer's recommendations, and indices were added to each sample. 

For the metatranscriptomic sequencing, after the initial QC procedure, mRNA from 

eukaryotic organisms was enriched using oligo (dT) beads. Simultaneously, rRNA was 

removed using the Ribo-Zero kit (Illumina, San Diego, CA) and the mRNA was 

concentrated. Following the QC steps, the qualified libraries from DNA and RNA were fed 

into Illumina sequencers (PE 150) after pooling according to its effective concentration 

and expected data volume, respectively.  

To get clean reads for both shotgun-metagenomic and metatranscriptomic 

sequencing, reads containing adapter and low-quality base (Q-score ≤ 5) were removed 

from the raw reads. Afterwards, reads were further filtered and trimmed with AfterQC (a 

tool for automatic filtering, trimming, error removing, and quality control for fastq data) 

(Chen et al., 2017). All the shotgun-metagenomic and metatranscriptomic sequencing data 

had a > 99% “good reads” after filtering. Afterwards, all reads were uploaded into the MG-

RAST analysis sever (https://www.mg-rast.org/), which provides an open source server 

made up of a high-throughput pipeline built for high-performance computing of 

metagenomes (Keegan et al., 2016). Paired reads were combined and subjected to quality 
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filtering, and host sequences were depleted. The default parameters of the MG-RAST were 

used for the taxonomic and functional assignation of the sequences. All the Illumina reads 

that were shorter than 75 bases or had a median quality score below 20 were removed. The 

functional annotation was based on the SEED hierarchical system or KEGG database.  

Statistical analyses. Plate count data were converted to log CFU/g in dry weight. 

The Shapiro-Wilk test of normality was run to test for normalcy statistically prior to 

sequencing data analysis. The non-parametric analysis methods were used for the non-

normal distribution data set. For the 16S rRNA gene sequencing data analysis, within-

community diversity (alpha diversity) was calculated by Chao richness and Shannon index 

of species using Qiime V.1.9.1, followed by Kruskal-Wallis and Wilcoxon singed-rank 

tests. Beta (β)-diversity, variation of microbial communities between environmental 

samples, was measured with ecological phylogenetic Unifrac distances (Lozupone et al., 

2011). Prior to the analysis, the relative abundance data set at the genus level was subjected 

to chord transformation to account for many zero values (Legendre et al., 2018). Linear 

discriminant analysis (LDA) effect size (LEfSe) was applied to search for biomarkers 

between different compost types (Segata et al., 2011). Principle-coordinate analysis 

(PCoA) was performed to determine whether samples associated with the same groups 

(compost type or composting stage, experimental moisture, incubation time, presence or 

absence of L. monocytogenes) clustered close to one another in multivariate space. 

Permutational multivariate analysis of variance (PERMANOVA) was used to test the 

statistical significance of group separation in PCoA with Benjamini–Hochberg False 

Discovery Rate adjusted P value (BH-FDR). Canonical correspondence analysis (CCA) 
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was used to explicitly test whether the different experimental factors explained a significant 

fraction of the variation within the distance matrix. Lastly, the similarity percentage 

(SIMPER) was used to find key taxa contributing to the variation in community 

composition due to the presence of L. monocytogenes. These analyses were run in R with 

packages including vegan and phyloseq (Dixon et al., 2003, McMurdie et al., 2015).   

For shotgun-metagenomic and metatranscriptomic sequencing data analysis, 

statistical comparisons of the proportions of functions among treatment groups of samples 

were conducted using STAMP software (Statistical Analysis of Shotgun-metagenomic 

Profiles; Parks et al., 2014). Briefly, an ANOVA test was used to compare among multiple 

groups, followed by Tukey–Kramer post hoc tests. White’s non-parametric t-test with 

Benjamini–Hochberg FDR correction for multiple tests were used for comparing two 

groups of data, and Welch’s inverted method was used to calculate 95% confidence 

intervals. ROTS was used to provide a rank of the functional gene expression based on 

their differential change due to the presence of L. monocytogenes after 72 h of incubation. 

Then, the expression of functional genes with significant fold changes (FDR P-value < 

0.05) in each sample was visualized by a heatmap (Suomi et al., 2017).  

 

RESULTS 

Survival of L. monocytogenes and cultivable microorganisms in compost 

samples. The population of total cultivable aerobic bacteria, heterotrophs, thermophiles, 

Enterobacteriaceae, yeast/mold, and actinomycetes in the collected compost samples 

ranged from approximately 6.8 to 9.7, 5.6 to 8.9, 3.3 to 8.6, < 2.1 to 6.1, < 2.1 to 6.3, and 
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5.7 to 8.7 log CFU/g, respectively (Table 4.2). For all categories, relatively higher levels 

of total aerobic bacteria, heterotrophs (except for poultry farm #3), and thermophiles were 

observed for the active compost as compared to the finished compost collected from the 

same farm. The population level of yeast/mold was found to be significantly (P < 0.05) 

lower than the population of cultivable bacterial species. After selective enrichment, there 

were some black colonies observed on Oxford agar, but those black colonies were then 

confirmed as non-L. monocytogenes with PCR targeting the hlyA gene.  

The reductions of L. monocytogenes in compost at room temperature after 72 h of 

incubation ranged from 0.1 to 1.1 log CFU/g (Table 4.3), whereas there was regrowth of 

L. monocytogenes of 0.1 to 1.5 log CFU/g occurred in the compost samples mainly with 

80% moisture content from poultry farm #2 and dairy farm #1 regardless of composting 

stage.  

Taxonomic distributions of compost microbial communities in different 

compost types. To further explain the differential clustering of microbial communities 

from compost samples, the taxonomic composition of four types (active dairy, finished 

dairy, active poultry, and finished poultry) of compost samples were examined without L. 

monocytogenes inoculation. Overall, the major bacterial phyla observed in all farms were 

Firmicutes (23%), Proteobacteria (23%), Actinobacteria (19%), Chloroflexi (13%), 

Bacteroidetes (12%), Gemmatimonadetes (2%), and Acidobacteria (2%), accounting for 

94% of sequences in all compost samples. At phyla level, the relative abundance of each 

phylum representing >1% of the total taxonomy, and Chloroflexi represented a 

significantly greater proportion of reads in finished dairy compost, followed by 
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Proteobacteria and Firmicutes in finished poultry compost, Actinobacteria in active 

poultry compost, Firmicutes and Proteobacteria in active dairy compost  (Figure 4.2A). 

At the genus level, LEfSe was used to detect microbial genera that differed significantly 

between each compost type and different genera for which the LDA score was > 2 were 

considered significant biomarkers for that group. As indicated by LEfSe’s output (Figure 

4.2B), the top 3 indicator genera (biomarkers) enriched in finished poultry, active poultry, 

finished dairy, and active dairy composts were Chryseolinea, Hyphomicrobium and 

Planctomyces; Brachybacterium, Salinicoccus and Brevibacterium; Aerolinea, 

Altererythrobacter and Thioalkalispira; and Ureibacillus, Cellvibrio and Idiomari, 

respectively. While for the experimental factors, clear distinction between the compost 

samples with 40 and 80% moisture contents was visible, and this difference was more 

pronounced after 72 h incubation (Figure 4.3). There was no direct evidence that taxonomic 

compositions in each farm were affected by the inoculation of L. monocytogenes.  

Microbial diversity in compost samples (α-diversity). Chao richness and 

Shannon indices were used to show microbial species richness and diversity in compost 

samples. The diversity and richness differed significantly (BH-FDR adjusted P-values < 

0.05) among the compost types as indicated by the non-parametric Kruskal-Wallis test 

(Figure 4.4). Regardless of composting stages, dairy farm #1 and poultry farm #2 had the 

lowest microbial diversity based on Chao richness index, for both L. monocytogenes 

inoculated and uninoculated samples. Among the experimental variables, α-diversity 

indices were significantly affected by moisture content and incubation time, but not by 

Listeria inoculation according to Wilcoxon signed-rank test (Table 4.4). The farms that 
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have the lowest diversities (Figure 4.4) also had the greater proliferation (> 0.5 log CFU/g) 

of spiked L monocytogenes at higher moisture content (Table 4.3).  

Variation in microbial compositions of composts (β-diversity). The distances 

from the β-diversity of microbial communities among farms were visualized in the 

exploratory principle-coordinate analysis (PCoA) plot (Figure 4.5). Clustering was 

analyzed using a weighted UniFrac distance matrix, which incorporates phylogenetic 

relatedness among 16S rRNA gene sequences when calculating distance. The variances of 

61.1% and 19.9% in the β-diversity were explained by the PC1 and PC2 for microbial 

composition in dairy compost, respectively, whereas the variances of 57.3% and 14.5% in 

the β-diversity were explained by the PC1 and PC2 for microbial composition in poultry 

compost, respectively. The PCoA plots showed that the microbial composition of compost 

samples collected from each farm formed a distinct cluster, while for each farm, microbial 

composition of active compost samples appeared to be more distinct from those of finished 

compost. Overall, for all farms, the microbial compositions of compost samples were not 

separated by the experimental factors (moisture contents, incubation length, and the 

presence of L. monocytogenes; Figures 4.5 B, C, D, F, G, H). This observation was 

consistent among dairy (Figures 4.5A) and poultry farms (Figures 4.5E).  

In line with the PCoA ordination, PERMANOVA showed that the composition of 

the microbiota varied significantly by composting farm with BH-FDR adjusted P-values < 

0.05 (Figures 4.5A and E). However, all the experimental factors had no significant effects 

on the compositions of microbiota with BH-FDR adjusted P-values > 0.05. In addition, the 

effects of experimental variables on microbial composition in each farm were studied by 
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canonical correspondence analysis (CCA) with the three experimental conditions 

(moisture, incubation length, and presence of L. monocytogenes) as constraining variables. 

The variation in microbial compositions of compost samples from dairy farms #1 and #3, 

and poultry farm #2 were significantly associated with both incubation time and 

experimental moisture (BH-FDR adjusted P < 0.05), whereas the microbial composition 

of compost samples from poultry farm #3 was only affected by incubation time (BH-FDR 

adjusted P < 0.05) (Table 4.5). It is noteworthy that the total dissimilarity due to L. 

monocytogenes was a small percentage of the overall variations, which could be inferred 

from χ2 residual that was calculated from the CCA model.  

SIMPER analysis. SIMPER was used to identify the microbial members that 

separate L. monocytogenes-inoculated and uninoculated communities in different 

composts. As shown in Figure 4.6, the top 20 discriminant microbial members (Bray-Curtis 

dissimilarity, contribution to dissimilarity percentage ranged from 1 - 10%, not significant) 

were identified. However, the discriminatory genera identified by SIMPER did not 

significantly (P > 0.05) contribute to the differences in compost microbial communities in 

the presence or absence of L. monocytogenes. As indicated from the results of PCoA and 

CCA analysis, the total dissimilarity due to the introduction of L. monocytogenes has a 

very small percentage of the overall variations. It needs to point out that the responses 

(increase or decrease) from these dissimilarity genera and L. monocytogenes varied in 

different compost samples, as indicated by the different color codes in bubble plots. When 

applying SIMPER to samples collected from each farm, Bacillus, Sphaerobacter, 

Filomicrobium, Paucisalibacillus, Brumimicrobium, Steroidobacter Flavobacterium, or 
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Chryseolinea were separately identified as microbial members that contributed to a small 

percentage (Bray-Curtis dissimilarity, 1 - 10%) of the variations that separate L. 

monocytogenes-inoculated and uninoculated communities on multiple farms. Moreover, 

those discriminant microorganisms were highly abundant in compost samples collected 

from dairy farm #1 (Figure 4.7). Therefore, fresh compost samples were requested from 

dairy farm #1 for the subsequent shotgun-metagenomics and metatranscriptomic 

sequencing.  

Microbial community composition and functional capacities of compost 

without L. monocytogenes as revealed by shotgun-metagenomic sequencing analysis. 

As revealed by shotgun-metagenomic sequencing, active dairy compost was dominated by 

bacteria (98.14%), followed by archaea (0.97%), eukaryote (0.53%), virus (0.01%), and 

other unassigned sequences (< 0.01%). For the taxonomic results of bacteria, shotgun-

metagenomic and 16S rRNA gene sequencing results agree with each other. The five most 

abundant phyla in active dairy compost collected from dairy farm #1 are Firmicutes, 

Actinobacteria, Proteobacteria, Chloroflexi, and Bacteroidetes, and these five phyla 

account for at least 91% of all classified reads in active dairy compost samples (data not 

shown).  

The shotgun-metagenomic sequencing also provided insights into the metabolic 

potential of organisms inhabiting in the collected compost sample. The predicted proteins 

were annotated using the SEED subsystems (Level 1). Clustering-based subsystems and 

carbohydrate metabolism had the largest quantity of annotated reads assigned in the active 

dairy compost samples, representing 15 and 13%, respectively (Figure 4.8). To gain a 
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comprehensive understanding of the functional capacities of active dairy compost from 

farm #1, two separated collections were performed from two composting rows with the 

same ingredients and composting length. Based on SEED subsystem level 1, 8 of the 28 

functional profiles were found to be significantly different (BH-FDR adjusted P < 0.05) 

between two collections (Figure 4.9). The function profiles associated with DNA 

metabolism and motility and chemotaxis were found to be higher in relative proportions in 

collection A as compared to collection B, whereas fatty acids, lipids, and isoprenoids were 

higher in relative proportions in the collection B.  

Comparison of the microbial functional capacities with and without L. 

monocytogenes by shotgun-metagenomic sequencing analysis. After 72 h of incubation, 

there was ca. 0.5 log CFU/g regrowth of L. monocytogenes in the compost samples freshly 

collected from dairy farm #1 with 80% moisture content. The microbial functional profiles 

of composts, with and without inoculation of L. monocytogenes as classified at SEED 

functional gene entries, were further analyzed separately for the two collections at 72 h 

incubation. For collection B, genes that are assigned to different functional roles including 

controlling pyoverdine biosynthesis, anaerobic sulfite reductase subunit, L-ascorbate 

utilization, and divergent RNA modification related cluster (HD family hydrolase) were 

significantly (BH-FDR adjusted P < 0.05) enriched in compost samples inoculated with L. 

monocytogenes, whereas meiosis-specific DNA cleavage protein was found to be more 

abundant in proportions in the compost samples without L. monocytogenes. These 

observations were consistent among the technical replicates in collection B (Figure 4.10). 

Overall, for collection B, the core functional capacities at subsystem level 2 of compost 
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microorganisms changed due to L. monocytogenes inoculation belong to different 

subsystem level 1 categories, including iron acquisition and metabolism, DNA 

metabolism, respiration, and carbohydrate metabolism. However, there was no such trend 

observed in collection A. The inoculation of L. monocytogenes did not induce the change 

in the aforementioned functional capacities of compost microbiome from collection A. 

These results were not surprising because the functional profiles of compost samples from 

these two collections were statistically different. 

Microbial gene expression patterns in compost with and without L. 

monocytogenes as revealed by metatranscriptomic sequencing analysis. A multiple-

group comparison was used to identify the pathways whose gene expression was not equal 

across all treatment groups (compost sample inoculated with or without L. monocytogenes 

at 0 or 72 h incubation periods). Overall, 75 of 196 pathways of active functional categories 

were found at the SEED subsystem level 2 from multiple-group comparison. This suggests 

the means of proportions of these pathways from all treatment groups were not equal. Next, 

we used a post-hoc test to identify which pairs of groups differ from each other and found 

that the mean proportions in some pathways significantly increased due to inoculation of 

L. monocytogenes after 72 h incubation (P < 0.05). Only selected categories with BH-FDR 

adjusted P < 0.001 are presented in Table 4.6. In contrast, at 0 h post inoculation, the mean 

proportions of the above pathways in compost samples with or without L. monocytogenes 

did not differ significantly (P ≥ 0.05).  

After 72 h incubation, in total, 43 genes significantly associated with the 

inoculation of L. monocytogenes were expressed (Figure 4.11A) [BH-FDR corrected P-
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value < 0.05, ROTS test with rare categories (n < 5 genes) were removed from the analysis]. 

SEED-annotated genes were later clustered into 23 SEED subsystems level 2 and 17 SEED 

subsystem level 1, based on SEED hierarchical clustering. Gene expression associated with 

virulence, disease and defense (SEED level 1) such as bacteriocins, ribosomally 

synthesized antibacterial peptides, and resistance to antibiotics and toxic compounds were 

expressed relatively higher in the compost sample inoculated with L. monocytogenes as 

compared to the sample without L. monocytogenes. NADH dehydrogenase subunit 4 

(EC:1.6.99.3) and negative regulator of genetic competence were the most strongly 

expressed genes in compost samples with L. monocytogenes. The actively expressed genes 

related to ABC transporter ATP-binding protein (bacteriocins, ribosomally synthesized 

antibacterial peptides), arsenic efflux pump protein (resistance to antibiotics and toxic 

compounds), and negative regulator of genetic competence (DNA uptake, competence) 

were mapped to Bacillus spp., Staphylococcus haemolyticus, and Geobacillus spp., 

respectively. And the NADH dehydrogenase subunit 4 function was mapped into multiple 

species of bacteria (Figure 4.11B).  

Based on the pairwise testing of the total functional genes annotated with the KEGG 

database, 117 of the 4414 functional genes expressed were significantly different between 

compost samples, with and without L. monocytogenes inoculation, given a sufficiently 

small P-value  (BH-FDR adjusted P < 0.05). Among the 117 genes, 56 were associated 

with metabolism at level 1, including amino acid metabolism; biosynthesis of other 

secondary metabolites; carbohydrate metabolism, energy metabolism, lipid metabolism, 
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metabolism of cofactors and vitamins, metabolism of terpenoids and polyketides, etc. 

(Figure 4.11C).  

 

DISCUSSION 

Considering the diversity of the compost microbiomes, one can assume that many 

indigenous species likely interact with L. monocytogenes to some extents. However, very 

little is known about composting ecology and there is no concrete conclusion on how the 

indigenous microbial community responds to the introduction of L. monocytogenes in dairy 

or poultry composts. In this study, microbial community structures and functions of 12 

animal waste-based compost samples were analyzed using high-throughput sequencing 

approaches. Additionally, the compositional and functional changes of microbial 

communities in compost due to the environmental factors (composting length/types, 

compost farms, and moisture contents) and the presence of L. monocytogenes were also 

analyzed at a whole community level.  

Impact of cultivable compost microorganisms on the survival of L. 

monocytogenes. In this study, a high-level of L. monocytogenes (ca. 7 log CFU/g) was 

inoculated into the compost samples in order to understand the changes in L. 

monocytogenes populations in different compost samples. L. monocytogenes was reduced 

in most compost samples, but the regrowth of this pathogen occurred in both dairy farm #1 

and poultry farm #2 samples. For the finished compost sample collected from poultry farm 

#2, the pathogen regrowth might be due to the much lower populations in total bacterial 

counts, heterotrophs, thermophiles, and actinomyces. As for compost samples collected 



 

188 
 

from dairy farm #1, the low counts of heterotrophs and actinomyces were also observed. 

In addition to the culturable microorganisms, the interactions from the microbiome with 

invading pathogens could come from those uncultured compost microorganisms, which 

account for > 90% of total microorganisms in the ecosystem (Ramamurthy et al., 2014). 

Studies have been conducted to elucidate that the role of indigenous compost 

microorganisms in suppression of human pathogens including L. monocytogenes, 

Salmonella, and E. coli O157: H7 (Zaleski et al., 2005, Kim et al., 2009 & 2010). Kim et 

al. (2010) reported that the regrowth of E. coli O157: H7, Salmonella spp., and L. 

monocytogenes was suppressed in dairy manure compost (40% moisture content) by an 

indigenous microbiota of 6.5 log CFU/g, as compared with the regrowth of 2.1- to 3.9- log 

in the autoclaved compost. In food processing facilities, the microbiota of Listeria-

colonized and Listeria-free drains and apple washing conveyor belt were characterized as 

different, indicating the occurrence of Listeria was closely associated with the total 

background microbiota in these built environments at a whole community level (Fox et al., 

2014; Tan et al., 2019).  

The variance in microbial communities and function profiles of animal waste-

based composts. Overall, the most abundant phyla and orders of compost microbes agreed 

with those found in previous studies (Ryckeboer et al., 2003, Storey et al., 2015, Antunes 

et al., 2016). Both 16S rRNA gene and shotgun-metagenomic sequencing analysis were 

revealed that the dominant abundances of Firmicutes and Actinobacteria were observed in 

active dairy compost. Significant differences in microbial communities exist among 

compost types due to the ingredients, composting stage, and the environments of 



 

189 
 

composting. In active dairy and poultry composts, the primary indicator genera were 

assigned as Salinicoccus and Ureibacillus, respectively, which belong to Firmicutes. As 

most species in Firmicutes are more adapted to the thermophilic conditions (Wang et al., 

2018, Li et al., 2019), there was higher relative abundance of Firmicutes observed in active 

compost as compared to those in finished compost in most compost samples collected in 

this study. However, Firmicutes was the most abundant phylum in the finished compost 

collected from poultry farm #2. This inconsistent observation in poultry farm #2 was likely 

due to the fact that the temperature of the finished compost pile in this farm was still very 

higher (53.3°C) compared to the temperature of the finished compost samples collected 

from other farms, highlighting the variation in composting practice in the real world. 

In the finished compost, the primary indicator genera belong to Bacteroidetes, 

Planctomycetes, Chloroflexi, and Proteobacteria phyla, with Chloroflexi representing a 

significantly greater proportion of sequence reads in finished dairy compost compared with 

other types. It was consistent in other studies that the abundance of Chloroflexi increased 

during the maturation phase (Zhong et al., 2018, Li et al., 2019). The increase in abundance 

of Chloroflexi and Proteobacteria in the finished dairy compost may also be attributed to 

their ability to decompose lignocellulose, cellulose, lignin, and other complex organic 

compounds in dairy manure (Antunes et al., 2016, Ren et al., 2016). Furthermore, the 

indicator genera Chryseolinea, Hyphomicrobium, and Planctomyces, were found in 

finished poultry compost. These genera were identified previously in composted chicken 

manure (Ye et al., 2016, Song et al., 2020), which are known to be involved in N cycling 

or positively correlated with the presence of NO3
−. Additionally, it is not surprising that 
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the microbial composition was unique to each compost farm (Figure 4.3), given that the 

compost ingredients and composting practice used on each farm were different (Cai et al., 

2018). Knowing the fact that the compost-related factors are the major drivers that affected 

the microbial compositions in compost, presumably, the variance in microbial communities 

and function profiles of animal waste-based compost was due to the heterogeneous nature 

of compost samples. 

Interactions between L. monocytogenes and compost microbiota composition.  

The sequence reads of L. monocytogenes generated by the 16S rRNA gene sequencing 

were well correlated (R2 = 0.69) with the number of inoculated L. monocytogenes (ca. 7 

log CFU/g), which provided the confidence when analyzing the effect of L. monocytogenes 

on the compost microbial composition by sequencing methods. The influence on the 

transformation of the compost microbial composition from the spiked L. monocytogenes 

was not as strong as that from moisture content or incubation length. Based on these results, 

we hypothesized that the stability of highly complex microbial communities in compost 

ecosystem resisted the microbial compositional change for the intrusion of L. 

monocytogenes. In support of this statement, Falardeau et al. (2018) found that native 

bacterial communities in soil were not driven by the inoculation of L. monocytogenes but 

by differences in pH and moisture contents of natural soil samples. In other studies, effects 

from inoculated Salmonella (ca. 7 log CFU/g) and E. coli O157: H7 (ca. 8 log CFU/g) on 

the composition of the prokaryotic communities were not visible in the untreated-sandy, 

clay, or regular soil samples (Xing et al., 2020, Schierstaedt et al., 2020). As expected, 

Schierstaedt et al. (2020) and Xing et al. (2020) reported that the effect of Salmonella on 
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the microbial community was observed only in the autoclaved soils, and phylogenetic 

diversity decreased by 43.6% due to the inoculated E. coli O157:H7 inoculation in 

irradiated soils. Schierstaedt et al. (2020) also found that the changes in abundance of 

Proteobacteria in autoclaved soil due to Salmonella inoculation were decreased over 

incubation time. Manipulating an environmental microcosm (e.g. irrigation, dilution to 

extinct, or autoclaving) causes a severe reduction on the microbial diversity and the 

interactions with invading pathogens. Moreover, the native community was markedly 

reduced and simplified due to these manipulations. In our study, compost microbial 

composition without any manipulation was not perturbed by the spiked L. monocytogenes, 

implying that the microbial ecology with complex microbial compositions such as animal 

waste-based compost, cannot be easily changed by one species of invading pathogen. And 

the indigenous compost microorganisms also can work against the changes in microbial 

structures caused by inoculated pathogenic bacteria (Partanen et al., 2010, Zhong et al., 

2020). Due to influences from the heterogeneous mixtures of compost samples on the 

native microbiome, the next reasonable assumption is that the response from compost 

native microbiome to the introduction of L. monocytogenes could be specific to their 

habitable environments.  

Although the presence of L. monocytogenes has very limited impact on compost 

microbiome, the compost diversity showed significant effect on the fate of this pathogen.  

Based on data collected in the present study, the lower microbial diversities in dairy farm 

#1 and poultry #2 possible led to the increase in the population of L. monocytogenes after 

72 h incubation, especially in the compost with higher moisture content, despite the 
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different sources and collect locations for the samples. Studies have shown that the high 

species diversity of a mice’s gut, fruit processing facilities, and rhizosphere communities 

was a powerful biological regulator that decreased infectious pathogens (Hu et al., 2016, Ji 

et al., 2017, Tan et al., 2019). Similarly, Tan et al. (2019) investigated the link between the 

occurrence of L. monocytogenes and the built environment microbiota in three tree fruit 

processing facilities and reported that a notable higher L. monocytogenes was found in one 

facility with lower microbial diversity. Taken together, these observations suggest that the 

microbial diversity is a major biological huddle for environmental ecosystems against 

pathogenic microorganisms (Hu et al., 2003, Tan et al., 2019). As illustrated above, high 

microbial diversity in compost can prevent the proliferation of L. monocytogenes. The low 

diversity results in low stability of the community composition and increases the 

probability of perturbation by many stimuli, including the invasion of pathogens. 

Nonetheless, for all compost samples used in this study, both high levels of compost 

microorganisms and an adequate inoculation of L. monocytogenes can promote the 

possibility of microbial interaction, shared nutrient and joint secretions in the compost 

ecosystem (Bauer et al., 2018). Thus, even in the compost sample with relative lower 

microbial diversity, the competition between native compost microbiome and invading L. 

monocytogenes can be expected. Surely, a better understanding is needed on how the 

compost microbial communities changed by different factors, such as composting farms, 

compost types, and experimental factors.  

Response from compost microbiome to the presence of L. monocytogenes as 

affected by the environmental factors. According to the stress-gradient hypothesis, 
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microbial interactions shifted from cooperation to competition as in the nutrients decreased 

environments (Velez et al., 2018, Hammarlund et al., 2019). We therefore expected the 

metabolic activities changed between invading L. monocytogenes and indigenous 

microbial members in the compost ecosystems. It could be inferred from the bubble plot 

(Fig. 4.6) that the response from the native microbiome to L. monocytogenes was 

influenced by the composts’ environmental variables. This scenario was primarily due to 

the variance in nutrients provided by different composts, resulting in a difference in the 

physiological status of the native microbial members and L. monocytogenes. Similar to our 

findings, Gulis et al. (2003) reported that microbial isolates with antagonistic activity 

against fungi exhibited a difference in response to the changes in microcosm containing 

higher level of inorganic nutrients. In a study conducted by Sharma et al. (2020), a 

bioinoculant containing Azotobacter chroococcum, Bacillus megaterium, and 

Pseudomonas fluorescens was created to inhibit the survivability of L. monocytogenes in 

vitro in Hoagland’s medium with the presence of Cajanus cajan or Festuca arundinacea 

as plant rhizosphere models. It was observed that the impact of this bioinoculant on the 

populations of L. monocytogenes was highly dependent on the conditions of the 

rhizosphere model created in the Hoagland’s medium. In our study, due to this farm-

specific response from the native compost microbiome, L. monocytogenes could not have 

a significant role in shaping the structure of compost community. However, some 

discriminant microbial members identified by SIMPER analysis like Bacillus contain 

competitive exclusion species reported previously for controlling L. monocytogenes in 

TSB broth, soft agar plates and fresh-cut melon. These CE species included Bacillus YD1, 
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Bacillus sp. cryopeg, and Bacillus psychrodurans (Liao et al., 2009, Collazo et al., 2017, 

Das et al., 2017). Considering of the highly abundant of these discriminant members in 

dairy farm #1, we therefore have focused on this sample as potential source of CE isolation 

in Chapter V.  

Functional potentials and gene expression associated with bacteriocin 

synthesized and various metabolic pathways changed due to the presence of L. 

monocytogenes. As revealed by metatranscriptomic sequencing, the most strongly 

enriched gene category in the compost samples inoculated with L. monocytogenes was 

NADH dehydrogenase subunit 4 (EC:1.6.99.3), which is a critical regulator to maintain 

homeostasis in most bacteria (Ruhland et al., 2019). Although the expression of NADH 

dehydrogenase was not mapped specific to L. monocytogenes, we hypothesized that this 

gene expression may respond to the pathogen intrusion as the expression of NADH 

dehydrogenase is one of the important redox-responsive regulators in L. monocytogenes or 

other Gram-positive bacteria to survive in the stressed environment (Ruhland et al., 2019). 

And negative regulator of genetic competence was another strongly expressed gene in 

compost sample spiked with L. monocytogenes. Based on the mapping results, the negative 

regulator of genetic competence was associated with Geobacillus spp, which suggests a 

potential competitive activity from Geobacillus spp. against L. monocytogenes. Consistent 

with this observation, Ottesen et al. (2016) reported that Geobacillus spp. outcompeted 

with L. monocytogenes in ice cream during 4 – 12 h of enrichment. Moreover, in agreement 

with the results from 16S rRNA genes sequencing, the increased gene abundance in 

bacteriocins upon the introduction of L. monocytogenes suggests that Bacillus spp. or other 
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species from active compost might have antagonistic activity against the invading pathogen 

by producing antimicrobial peptides. However, a regrowth of L. monocytogenes was 

observed in the compost sample used for metagenomic sequencing after 72 h of incubation. 

Competitive exclusion by Geobacillus spp. against L. monocytogenes might only be strong 

enough to suppress the growth of L. monocytogenes initially. Indeed, a similar observation 

of L. monocytogenes overgrowth in ice cream was also seen by Ottesen et al. (2016) after 

the initial inhibitory period.   

According to shotgun-metagenomic sequencing results, different functional roles 

responsible for the nutrient uptake and carbohydrate utilization (Kentache et al., 2016) 

were enriched in compost samples inoculated with L. monocytogenes. For instance, the 

dissimilatory sulfite reductase may be related to the environmental variables (Leavitt et al., 

2015). In brief, the observations from shotgun-metagenomic sequencing and the changes 

in the metabolic pathways in compost samples containing L. monocytogenes have 

confirmed that the microbial interactions were potentially affected by the competition for 

nutrients within the compost environment. 

 

LIMITATIONS 

While comprehensive, our research has some limitations. In light of the sample size 

used for high-throughput sequencing analysis, the experimental design varied among three 

approaches. Specifically, the extracted RNA was pooled from multiple extractions in order 

to reach the required concentration. Therefore, the results from metatranscriptomic 

sequencing should be interpreted with caution due to the insufficient biological replicates. 
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In general, shotgun metagenomic sequencing is preferred if the research is focused on both 

taxonomic and functional information. On the other hand, the targeted sequencing would 

be a more cost-efficient choice for profiling the microbial community in a large-scale 

project. Further, metatranscriptomic sequencing is used to learn how a microbial 

community responds to their changing environmental conditions. However, considering 

the challenges in extraction of high-quality RNA from complex matrix, the large-scale 

application of metatranscriptomic sequencing of compost samples is currently limited. For 

a further study, more biological replicates and deeper sequencing should be incorporated 

in the experimental design as the ability of NGS techniques to detect the minor changes of 

key microbial species or functional genes in a complex ecosystem is directly dependent on 

the depth of sequencing and consistent response.   

 

CONCLUSION 

The microbial diversity, structure and functions varied among compost samples and 

were significantly affected by the composting-related factors. To our knowledge, this is the 

first study that provided a comprehensive analysis of compost microbiome at both 

composition and function levels. Besides, the interactions between L. monocytogenes and 

indigenous compost microbiome was studied for the first time by high-throughput 

sequencing approaches. Our study illustrated that the interactions between L. 

monocytogenes and the native microbial members were generally limited and did not affect 

the dominant members of the microbial community in the compost ecosystem, but some 

discriminatory species were identified. Metatranscriptomic sequencing has provided the 
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active gene expression levels associated with bacteriocin production, and therefore can be 

used to monitor how these levels change when L. monocytogenes presented in the compost. 

Findings from this study can be useful for the composting industry to understand the 

composition and functionality of microbial community in their products better, and to 

isolate those discriminatory microbial members as potential competitive exclusion 

microorganisms from compost samples, and some of which could be leveraged as natural 

deterrents in the organic fertilizer or produce industry.   

 

ACKNOWLEDGMENT 

We thank our industry collaborators for providing the compost samples used in this 

study. This research was financially supported by the Center for Produce Safety, University 

of California at Davis, and Specialty Crop Block Grant Program (SCBGP) of California 

Department of Food and Agriculture (CDFA–SCBGP) through a grant 1#8-0001-075-SC. 

We also acknowledge the assistance of Ms. Jaime Randise from the Clemson University 

Genomics and Bioinformatics Facility for services and facilities provided. This facility is 

supported by Grant P20GM109094 an Institutional Development Award (IDeA) from the 

National Institute of General Medical Sciences of the National Institutes of Health.   

 

REFERENCES 

1. Al-Ghafri HM, Velazhahan R, Shahid MS, Al-Sadi AM. Antagonistic activity of 

Pseudomonas aeruginosa from compost against Pythium aphanidermatum and 

Fusarium solani. Biocontrol Science and Technology. 2020 Apr 11:1-7. 



 

198 
 

2. Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva 

GM, Moura LM, Epamino GW, Digiampietri LA, Lombardi KC. Microbial 

community structure and dynamics in thermophilic composting viewed through 

metagenomics and metatranscriptomics. Scientific Reports. 2016 Dec 12;6:38915. 

3. Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. Microbial wars: competition 

in ecological niches and within the microbiome. Microbial cell. 2018 May 

7;5(5):215. 

4. Cai L, Gong X, Sun X, Li S, Yu X. Comparison of chemical and microbiological 

changes during the aerobic composting and vermicomposting of green waste. PloS 

one. 2018 Nov 26;13(11):e0207494. 

5. California leafy greens marketing agreement 2010. Accessed on Mar. 2020 

https://lgma-assets.sfo2.digitaloceanspaces.com/downloads/Appendix_E.pdf  

6. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 

DADA2: high-resolution sample inference from Illumina amplicon data. Nature 

Methods. 2016 Jul;13(7):581. 

7. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of 

next generation sequencing technologies as applied to food-related microbiome 

studies. Frontiers in Microbiology. 2017 Sep 21;8:1829. 

8. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, 

Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA. QIIME allows analysis 

of high-throughput community sequencing data. Nature Methods. 2010 

May;7(5):335. 

https://lgma-assets.sfo2.digitaloceanspaces.com/downloads/Appendix_E.pdf


 

199 
 

9. Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J. AfterQC: automatic filtering, 

trimming, error removing and quality control for fastq data. BMC Bioinformatics. 

2017 Mar;18(3):91-100. 

10. Collazo C, Abadias M, Aguiló-Aguayo I, Alegre I, Chenoll E, Viñas I. Studies on 

the biocontrol mechanisms of Pseudomonas graminis strain CPA-7 against food-

borne pathogens in vitro and on fresh-cut melon. LWT-Food Science and 

Technology. 2017 Nov 1;85:301-8. 

11. Das G, Park S, Baek KH. Diversity of endophytic bacteria in a fern species 

Dryopteris uniformis (Makino) Makino and evaluation of their antibacterial 

potential against five foodborne pathogenic bacteria. Foodborne Pathogens and 

Disease. 2017 May 1;14(5):260-8. 

12. De Jong HK, Parry CM, van der Poll T, Wiersinga WJ. Host–pathogen interaction 

in invasive salmonellosis. PLOS Pathog. 2012 Oct 4;8(10):e1002933. 

13. Dixon P. VEGAN, a package of R functions for community ecology. Journal of 

Vegetation Science. 2003 Dec;14(6):927-30. 

14. Falardeau J, Walji K, Haure M, Fong K, Taylor G, Ma Y, Smukler S, Wang S. 

Native bacterial communities and Listeria monocytogenes survival in soils 

collected from the Lower Mainland of British Columbia, Canada. Canadian 

Journal of Microbiology. 2018;64(10):695-705. 

15. Fittipaldi M, Nocker A, Codony F. Progress in understanding preferential detection 

of live cells using viability dyes in combination with DNA amplification. Journal 

of Microbiological Methods. 2012 Nov 1;91(2):276-89. 



 

200 
 

16. Fox EM, Solomon K, Moore JE, Wall PG, Fanning S. Phylogenetic profiles of in-

house microflora in drains at a food production facility: comparison and biocontrol 

implications of Listeria-positive and-negative bacterial populations. Applied and 

Environmental Microbiology. 2014 Jun 1;80(11):3369-74. 

17. Gholipour S, Nikaeen M, Farhadkhani M, Nikmanesh B. Survey of Listeria 

monocytogenes contamination of various environmental samples and associated 

health risks. Food Control. 2020 Feb 1;108:106843. 

18. Guerra MM, McLauchlin J, Bernardo FA. Listeria in ready-to-eat and unprocessed 

foods produced in Portugal. Food Microbiology. 2001 Aug 1;18(4):423-9. 

19. Gulis V, Suberkropp K. Interactions between stream fungi and bacteria associated 

with decomposing leaf litter at different levels of nutrient availability. Aquatic 

Microbial Ecology. 2003 Jan 7;30(2):149-57. 

20. Gurtler JB. Pathogen decontamination of food crop soil: a review. Journal of Food 

Protection. 2017 Sep;80(9):1461-70. 

21. Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a 

microbial community. Proceedings of the National Academy of Sciences. 2019 

Aug 6;116(32):15760-2. 

22. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving 

and thriving in the microbial jungle. Nature Reviews Microbiology. 2010 

Jan;8(1):15-25. 



 

201 
 

23. Hitchins AD, Jinneman K, Chen Y. FDA BAM Chapter 10: Detection of Listeria 

monocytogenes in foods and environmental samples, and enumeration of Listeria 

monocytogenes in foods.  

24. Hu J, Wei Z, Friman VP, Gu SH, Wang XF, Eisenhauer N, Yang TJ, Ma J, Shen 

QR, Xu YC, Jousset A. Probiotic diversity enhances rhizosphere microbiome 

function and plant disease suppression. MBio. 2016 Dec 30;7(6). 

25. Hu JY, Fan Y, Lin YH, Zhang HB, Ong SL, Dong N, Xu JL, Ng WJ, Zhang LH. 

Microbial diversity and prevalence of virulent pathogens in biofilms developed in 

a water reclamation system. Research in Microbiology. 2003 Nov 1;154(9):623-9. 

26. Ji ZH, Ren WZ, Gao W, Hao Y, Gao W, Chen J, Quan FS, Hu JP, Yuan B. 

Analyzing the innate immunity of NIH hairless mice and the impact of gut 

microbial polymorphisms on Listeria monocytogenes infection. Oncotarget. 2017 

Dec 5;8(63):106222. 

27. Keegan KP, Glass EM, Meyer F. MG-RAST, a metagenomics service for analysis 

of microbial community structure and function. In Microbial environmental 

genomics (MEG) 2016 (pp. 207-233). Humana Press, New York, NY. 

28. Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S gene copy number 

information improves estimates of microbial diversity and abundance. PLoS 

Computational Biology. 2012 Oct;8(10). 

29. Kentache T, Milohanic E, Cao TN, Mokhtari A, Aké FM, Pham QM, Joyet P, 

Deutscher J. Transport and catabolism of pentitols by Listeria monocytogenes. 

Journal of Molecular Microbiology and Biotechnology. 2016;26(6):369-80. 



 

202 
 

30. Kim J, Jiang X. The growth potential of Escherichia coli O157: H7, Salmonella 

spp. and Listeria monocytogenes in dairy manure‐based compost in a greenhouse 

setting under different seasons. Journal of Applied Microbiology. 2010 

Dec;109(6):2095-104. 

31. Kim J, Luo F, Jiang X. Factors impacting the regrowth of Escherichia coli O157: 

H7 in dairy manure compost. Journal of Food Protection. 2009 Jul;72(7):1576-84. 

32. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. 

Using QIIME to analyze 16S rRNA gene sequences from microbial communities. 

Current Protocols in Bioinformatics. 2011 Dec;36(1):10-7. 

33. Leavitt WD, Bradley AS, Santos AA, Pereira IA, Johnston DT. Sulfur isotope 

effects of dissimilatory sulfite reductase. Frontiers in Microbiology. 2015 Dec 

24;6:1392. 

34. Legendre P, Borcard D. Box–Cox‐chord transformations for community 

composition data prior to beta diversity analysis. Ecography. 2018 

Nov;41(11):1820-4. 

35. Li R, Tun HM, Jahan M, Zhang Z, Kumar A, Fernando WD, Farenhorst A, 

Khafipour E. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina 

sequencing for detection of live bacteria in water. Scientific Reports. 2017 Jul 

18;7(1):1-1. 

36. Li X, Shi XS, Lu MY, Zhao YZ, Li X, Peng H, Guo RB. Succession of the 

bacterial community and functional characteristics during continuous thermophilic 



 

203 
 

composting of dairy manure amended with recycled ceramsite. Bioresource 

Technology. 2019 Dec 1;294:122044. 

37. Liao CH. Control of foodborne pathogens and soft-rot bacteria on bell pepper by 

three strains of bacterial antagonists. Journal of Food Protection. 2009 

Jan;72(1):85-92. 

38. Liu H, Huang Y, Duan W, Qiao C, Shen Q, Li R. Microbial community 

composition turnover and function in the mesophilic phase predetermine chicken 

manure composting efficiency. Bioresource Technology. 2020 Jun 10:123658. 

39. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an 

effective distance metric for microbial community comparison. The ISME journal. 

2011 Feb;5(2):169-72. 

40. McMurdie PJ, Holmes S. Shiny-phyloseq: Web application for interactive 

microbiome analysis with provenance tracking. Bioinformatics. 2015 Jan 

15;31(2):282-3. 

41. Mead GC. Prospects for ‘competitive exclusion’treatment to control Salmonellas 

and other foodborne pathogens in poultry. The Veterinary Journal. 2000 Mar 

1;159(2):111-23. 

42. Mulero-Aparicio A, Trapero A, López-escudero FJ. A non-pathogenic strain of 

Fusarium oxysporum and grape marc compost control Verticillium wilt of olive. 

Phytopathologia Mediterranea. 2020 Mar 14;59(1):159-67. 



 

204 
 

43. Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N. Changes in bacterial and 

fungal communities across compost recipes, preparation methods, and composting 

times. PloS one. 2013 Nov 21;8(11):e79512. 

44. Ottesen A, Ramachandran P, Reed E, White JR, Hasan N, Subramanian P, Ryan 

G, Jarvis K, Grim C, Daquiqan N, Hanes D. Enrichment dynamics of Listeria 

monocytogenes and the associated microbiome from naturally contaminated ice 

cream linked to a listeriosis outbreak. BMC microbiology. 2016 Dec;16(1):1-1. 

45. Pandey P, Chiu C, Miao M, Wang Y, Settles M, Del Rio NS, Castillo A, Souza A, 

Pereira R, Jeannotte R. 16S rRNA analysis of diversity of manure microbial 

community in dairy farm environment. PloS one. 2018 Jan 5;13(1):e0190126. 

46. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of 

taxonomic and functional profiles. Bioinformatics. 2014 Nov 1;30(21):3123-4. 

47. Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M. Bacterial diversity 

at different stages of the composting process. BMC microbiology. 2010 Dec 

1;10(1):94. 

48. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current perspectives on viable 

but non-culturable (VBNC) pathogenic bacteria. Frontiers in Public Health. 2014 

Jul 31;2:103. 

49. Ren G, Xu X, Qu J, Zhu L, Wang T. Evaluation of microbial population dynamics 

in the co-composting of cow manure and rice straw using high throughput 

sequencing analysis. World Journal of Microbiology and Biotechnology. 2016 Jun 

1;32(6):101. 



 

205 
 

50. Ren X, Zhang N, Cao M, Wu K, Shen Q, Huang Q. Biological control of tobacco 

black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain 

C5. Biology and Fertility of Soils. 2012 Aug 1;48(6):613-20. 

51. Ruhland BR, Reniere ML. Sense and sensor ability: redox-responsive regulators in 

Listeria monocytogenes. Current Opinion in Microbiology. 2019 Feb 1;47:20-5. 

52. Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam 

H, Swings J. A survey of bacteria and fungi occurring during composting and self-

heating processes. Annals of Microbiology. 2003 Jan 1;53(4):349-410. 

53. Schierstaedt J, Jechalke S, Nesme J, Neuhaus K, Sørensen SJ, Grosch R, Smalla K, 

Schikora A. Salmonella persistence in soil depends on reciprocal interactions with 

indigenous microorganisms. Environmental Microbiology. 2020 Mar 3. 

54. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower 

C. Metagenomic biomarker discovery and explanation. Genome biology. 2011 

Jun;12(6):1-8. 

55. Sharma R, Gal L, Garmyn D, Bisaria VS, Sharma S, Piveteau P. Evidence of 

biocontrol activity of bioinoculants against a human pathogen, Listeria 

monocytogenes. Frontiers in Microbiology. 2020 Mar 11;11:350. 

56. Sidhu J, Gibbs RA, Ho GE, Unkovich I. The role of indigenous microorganisms in 

suppression of Salmonella regrowth in composted biosolids. Water Research. 2001 

Mar 1;35(4):913-20. 

57. Song Z, Massart S, Yan D, Cheng H, Eck M, Berhal C, Ouyang C, Li Y, Wang Q, 

Cao A. Composted chicken manure for anaerobic soil disinfestation increased the 



 

206 
 

strawberry yield and shifted the soil microbial communities. Sustainability. 2020 

Jan;12(16):6313. 

58. Soni DK, Singh M, Singh DV, Dubey SK. Virulence and genotypic 

characterization of Listeria monocytogenes isolated from vegetable and soil 

samples. BMC microbiology. 2014 Dec 1;14(1):241. 

59. Storey S, Chualain DN, Doyle O, Clipson N, Doyle E. Comparison of bacterial 

succession in green waste composts amended with inorganic fertilizer and 

wastewater treatment plant sludge. Bioresource Technology. 2015 Mar 1;179:71-7. 

60. Suomi T, Seyednasrollah F, Jaakkola MK, Faux T, Elo LL. ROTS: An R package 

for reproducibility-optimized statistical testing. PLoS Computational Biology. 

2017 May 25;13(5):e1005562. 

61. Tan X, Chung T, Chen Y, Macarisin D, LaBorde L, Kovac J. The occurrence of 

Listeria monocytogenes is associated with built environment microbiota in three 

tree fruit processing facilities. Microbiome. 2019 Dec 1;7(1):115. 

62. U.S. Composting Council. (2002) The test method for the examination of 

composting and compost (TMECC). Bethesda, MD. 

https://www.compostingcouncil.org/page/tmecc Accessed on June. 2020.  

63. Velez P, Espinosa-Asuar L, Figueroa M, Gasca-Pineda J, Aguirre-von-Wobeser E, 

Eguiarte LE, Hernandez-Monroy A, Souza V. Nutrient dependent cross-kingdom 

interactions: fungi and bacteria from an oligotrophic desert oasis. Frontiers in 

Microbiology. 2018 Aug 6;9:1755. 

https://www.compostingcouncil.org/page/tmecc%20Accessed%20on%20June.%202020


 

207 
 

64. Vivant AL, Garmyn D, Maron PA, Nowak V, Piveteau P. Microbial diversity and 

structure are drivers of the biological barrier effect against Listeria monocytogenes 

in soil. PLoS One. 2013a Oct 8;8(10):e76991. 

65. Wang K, Yin X, Mao H, Chu C, Tian Y. Changes in structure and function of 

fungal community in cow manure composting. Bioresource Technology. 2018 

May 1;255:123-30. 

66. Wei H, Wang L, Hassan M, Xie B. Succession of the functional microbial 

communities and the metabolic functions in maize straw composting process. 

Bioresource Technology. 2018 May 1;256:333-41. 

67. Xing J, Sun S, Wang H, Brookes PC, Xu J. Response of soil native microbial 

community to Escherichia coli O157: H7 invasion. Environmental Pollution. 2020 

Jun 1;261:114225. 

68. Ye J, Zhang R, Nielsen S, Joseph SD, Huang D, Thomas T. A combination of 

biochar–mineral complexes and compost improves soil bacterial processes, soil 

quality, and plant properties. Frontiers in Microbiology. 2016 Apr 8;7:372. 

69. Zaleski KJ, Josephson KL, Gerba CP, Pepper IL. Survival, growth, and regrowth 

of enteric indicator and pathogenic bacteria in biosolids, compost, soil, and land 

applied biosolids. J. Residuals Sci. Technol. 2005 Jan 1;2(1):49-63. 

70. Zhong XZ, Li XX, Zeng Y, Wang SP, Sun ZY, Tang YQ. Dynamic change of 

bacterial community during dairy manure composting process revealed by high-

throughput sequencing and advanced bioinformatics tools. Bioresource 

Technology. 2020 Mar 3:123091. 



 

208 
 

71. Zhong XZ, Ma SC, Wang SP, Wang TT, Sun ZY, Tang YQ, Deng Y, Kida K. A 

comparative study of composting the solid fraction of dairy manure with or 

without bulking material: performance and microbial community dynamics. 

Bioresource technology. 2018 Jan 1;247:443-52.



209 
 

Table 4.1 16S rRNA gene sequencing read processing table for each compost type 

Compost 
source 

Composting 
stage 

Rawseqs 
(R1+R2) 

Trimmed_seqs 
(R1+R2) Chimera_free_seqs Unique_seqs 

Seqs 
(after_size_filtration) 

Dairy Active 152352 145697 64500 566 63806 
 Finished 123430 117070 52887 701 51765 

Poultry Active 148585 142117 64378 568 63701 
 Finished 104849 100250 43543 658 42410 
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Table 4.2 Microbiological analysis of poultry and dairy compost samples collected from 6 farms  

Farms Compost type Plate count (log CFU/g) a 

  
Total aerobic 
bacteria Heterotrophs Thermophiles Enterobacteriaceae Yeast/Mold Actinomycetes 

Dairy #1 Active 9.7±0.1ab 7.4±0.1d 8.3±0.1ab 4.3±0.0d 3.1±0.1c 7.5±0.1b 
 Finished  7.8±0.1d 7.0±0d 7.7±0.1b < 2.1±0e c < 2.1±0d 6.7±0d 
        
Dairy #2  Active  9.5±0a 8.9±0a 7.2±0.1bc 2.3±0e 3.1±0.1c 8.7±0a 
 Finished  8.7±0c 8.6±0.1ab 6.6±0.0d 5.1±0c < 2.3±0d 7.6±0.1b 
        
Dairy #3 Active  9.2±0ab 8.3±0b 8.6±0.0a 6.1±0a < 2.2±0d 7.7±0.1b 
 Finished  8.5±0c 7.9±0c 7.4±0.1b 6.1±0.1a < 2.2±0d 7.6±0.1b 
        
Poultry 
#1 Active  9.0±0b 8.4±0.1b 7.5±0.1b 5.7±0.1b 5.6±0b 6.9±0.1d 
 Finished  7.8±0.1d 7.7±0.1c 7.1±0.1c 5.7±0b 6.3±0.1a 7.2±0.1c 
        
Poultry 
#2 Active  8.3±0.1c 7.1±0d 5.4±0.0e < 2.1±0e 3.3±0.1c 8.3±0.1ab 
 Finished  6.8±0.1e 5.6±0e 3.3±0.0f 2.2±0.1e < 2.1±0 5.7±0.1e 
        
Poultry 
#3 Active  8.1±0.1c 7.2±0d 7.4±0.0b 4.9±0.0c < 2.5±0.1d 7.4±0.1b 
 Finished  7.6±0d 7.7±0.2c 6.5±0.2d 4.9±0.1c 4.3±0c 7.3±0bc 

a Bacterial population was calculated to log CFU/g based on dry weight of compost. 
b Data were expressed as means ± standard deviations of triplicates samples. Means with the different lower letters in the same 
column are significantly different (P < 0.05).  
c Detection limit for direct plating count was calculated based on the moisture content of each compost sample.      
.      
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Table 4.3 Population change of L. monocytogenes in biological soil amendments after 72 

h incubation at room temperature 

Farms Compost type Population change of L. monocytogenes (log 
CFU/g) in the compost with different MC  

  40% MC  80% MC  
Dairy farm #1 Active  0.1±0 0.7±0.2 
 Finished  0.1±0.2 0.5±0.4 
Dairy farm #2  Active  -0.3±0.3 -0.4±0.2 
 Finished  -0.6±0.2 -0.7±0.1 
Dairy farm #3 Active  0.3±0.1 -0.3±0.3 
 Finished  -1.1±0.2 -0.8±0.2 
Poultry farm #1 Active -0.4±0.1 -0.1±0.2 
 Finished  -0.5±0.2 -0.8±0.1 
Poultry farm #2 Active  -0.1±0.3 0.5±0.1 
 Finished -0.6±0.3 1.5±0.2 
Poultry farm #3 Active  -0.3±0.2 -0.4±0.1 
 Finished 0.1±0 -0.8±0.3 
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Table 4.4 Wilcoxon signed-rank test for experimental variables that affects the alpha 

diversities a 

Experimental variables Chao_richness Shannon 
Listeria inoculation 0.612 0.8385 
Moisture contents  0.015* 0.0034** 
Incubation time 0.000006*** 0.000000576*** 

a Paired test for incubation time, unpaired for other two factors; Significant level was 
indicated by Benjamini-Hochberg FDR adjusted P- value, with * P < 0.05, ** P < 0.01, 
*** P < 0.001.  
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Table 4.5 Canonical correspondence analysis outputs for each farm 

Farms Experimental factors F P-values a χ2 
Dairy farm #1 Experimental moisture 4.8637 0.005** 0.16077 
 Incubation time 6.2962 0.005** 0.20812 
 L. monocytogenes 

inoculation 
0.6487 0.917 0.02144 

 Residual     1.45439 
Dairy farm #2 Experimental moisture 1.1631 0.363 0.04667 
 Incubation time 1.8146 0.169 0.07282 
 L. monocytogenes 

inoculation 
0.6486 0.917 0.02603 

 Residual     1.76564 
Dairy farm #3 Experimental moisture 2.8826 0.033* 0.11812 
 Incubation time 2.9677 0.041* 0.12161 
 L. monocytogenes 

inoculation 
0.5889 0.917 0.02413 

 Residual     1.80296 
Poultry farm #1 Experimental moisture 1.2030 0.345 0.06119 
 Incubation time 2.3772 0.113 0.12091 
 L. monocytogenes 

inoculation 
0.5597 0.917 0.02847 

 Residual     2.23804 
Poultry farm #2 Experimental moisture 6.3641 0.005** 0.23171 
 Incubation time 9.1743 0.005** 0.33403 
 L. monocytogenes 

inoculation 
0.5080 0.917 0.01850 

 Residual     1.60201 
Poultry farm #3 Experimental moisture 1.5417 0.169 0.13613  
 Incubation time 2.7471 0.022* 0.13613  
 L. monocytogenes 

inoculation 
0.6603 0.917 0.03272 

 Residual     2.18045 
a Significant level was indicated by Benjamini-Hochberg FDR adjusted P- value, with * P 
< 0.05, ** P < 0.01, *** P < 0.001.



 

214 
 

Table 4.6 Relative proportions of selected functional categories found in active dairy compost samples that significantly 

changed among different treatments annotated by SEED subsystem level 1 and level 2 as revealed by metatranscriptomic 

sequencing 

Functional categories  No LM  With LM 
Level 1 Level 2  0h (%) 72h (%)  0h (%) 72h (%) 

Amino Acids and 
Derivatives 

Arginine; urea cycle, 
polyamines 

 8.02±0.02 9.65±0.34  7.85±0.12 11.7±0.18 

Cell Wall and 
Capsule 

Gram-Positive cell wall 
components 

 1.17±0.03 2.2±0.01  1.06±0.17 3.3±0.11 

Clustering-based 
subsystems 

Hypothetical Related to 
Dihydroorate 

Dehydrogenase 

 Low in 
proportions 

Low in 
proportions 

 Low in 
proportions 

Low in 
proportions 

Clustering-based 
subsystems 

Two related proteases  0.73±0.01 0.92±0.02  0.69±0.02 0.76±0.01 

DNA Metabolism DNA repair  62.35±0.05 61.11±0.4  62.98±0.16 56.84±0.12 
DNA Metabolism Unclassified   4.87±0.07 6.73±0  4.79±0.12 9.07±0.44 

Phages, Prophages, 
Transposable 

elements, Plasmids 

Phages, Prophages  17.69±2 48.57±3.2  15.11±0.18 78.81±1.21 

Phages, Prophages, 
Transposable 

elements, Plasmids 

Pathogenicity islands  78.97±2.1 48.21±3.97  82.23±0.52 17.76±0.6 

Virulence, Disease 
and Defense 

Resistance to antibiotics and 
toxic compounds 

 79.55±0.94 84.09±0.35  87.89±0.24 88.2±0.13 

a Significant at P-value < 0.001, and numbers highlighted in bold indicate a significant increase in the presence of L. 
monocytogenes after 72h. 
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Figure 4.1 Experimental design for 16S rRNA gene, metagenomic, and metatranscriptomic sequencing.  
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Figure 4.2 Relative abundance of the most common phyla (i.e., representing > 1% of total 

reads) present in four different compost types (dairy active compost, dairy finished 

compost, poultry active compost, and poultry finished compost) (A); LEfSe’s output of 

differentially abundant bacterial taxa among four compost types (B). Significant bacterial 

genera were determined by Kruskal-Wallis test (P < 0.05) with LDA score greater than 2 

(B). 
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Figure 4.3 Bacterial community composition in dairy (A, B) and poultry (C, D) compost 

at phylum level, with X-axis represents different samples, and Y- axis stands for relative 

percentage of each bacterial phylum. Left 12 lanes for active compost samples, and right 

12 lanes for the finished compost samples with different experimental treatments, 

respectively, in terms of L. monocytogenes inoculation (N for not inoculation, Y for with 

inoculation), moisture contents (40 and 80%), and incubation period of 0 h (A, C) and 72 

h (B, D) 

A 

B
 

C
 

D
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Figure 4.4 Effect of compost type on alpha diversity, chao richness (A) and Shannon_index (B), was tested using Kruskal-

Wallis analysis, and the significant levels with Benjamini–Hochberg FDR adjusted P-value were added on the plots. The blue 

arrows indicate that the cultivated L. monocytogenes increased in these compost samples with 40 (light green) or 80% (green) 

moisture contents after 72 h of incubation. The effect from moisture contents on alpha diversity were tested using Wilcoxon 

signed-rank test, and the significant levels were added on the boxplot (ns; not significant difference with P-value > 0.05; *; 

significant difference with P-value < 0.05). 
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Figure 4.5 Weighted UniFrac distance-based principal-coordinate analysis (PCoA) plots for dairy (A, B, C, D) and poultry 

compost (E, F, G, H). Shaded polygons were applied to compost samples collected from the same stage (A and E), transparent 

polygons were applied to the compost samples with different treatments, including L. monocytogenes inoculation (B and F); 

experimental moisture contents (C and G), and incubation time (D and H).  
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Figure 4.6 Similarities percentage (SIMPER) analysis screening top taxa driving 

variation in community composition due to the presence of L. monocytogenes in dairy 

(A) and poultry (B) compost samples, at 0 and 72 h incubation periods. The size of 

circles is indicating the percentages of decrease (blue) or increase (orange) in relative 

abundance of microbial member. 

  

A 
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Figure 4.7 The relative abundance of discriminant microorganisms in compost samples 

collected from different farms.    
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Figure 4.8 Functional profiles detected in active dairy compost microbiome annotated 

with SEED subsystem (level 1). 
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Figure 4.9 Functional profiles for the microbial metagenomes of active dairy compost 

from two separate collections (A and B). Extended error bar plot compared the functional 

profiles for the microbial metagenomes in active dairy compost from two separate 

collections based on the SEED subsystem level 1. Points and bars indicate the differences 

between collections A and B (blue and red, respectively), and the values at the right show 

the P-values were derived from a White’s non-parametric t-test with Benjamini–

Hochberg FDR correction.  
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Figure 4.10 Extended error bar plot indicating the microbial functional potentials changed 

in active dairy compost from collection B due to the inoculation of L. monocytogenes 

after 72 h incubation based on the SEED subsystem function genes entries. Points and 

bars indicate the differences between L. monocytogenes inoculated- and uninoculated- 

compost (light blue and light orange, respectively), and the values at the right show the 

P-values were derived from a White’s non-parametric t-test with Benjamini–Hochberg 

FDR correction.
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Figure 4.11 Genetic profile of the 43 significantly differentially abundant microbial genes expression between L. 

monocytogenes inoculated and uninoculated group as shown in heatmap (A), the gene list was clustered to hierarchy SEED 

subsystem level 2 as well (left column, A), with the gene induced in specific bacterial species (B), and changes in gene 

expression associated with selected microbial metabolisms in compost with and without the inoculation of L. monocytogenes 

as determined using KEEG database (C).  
A B

C
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CHAPTER FIVE 

ISOLATION AND CHARACTERIZATION OF COMPETITIVE EXCLUSION 
MICROORGANISMS FROM ANIMAL WASTE-BASED COMPOST  

 
ABSTRACT 

Competitive exclusion (CE) microorganisms have shown great potentials as 

environmental-friendly tools to control harmful microorganisms. Considering of dairy and 

poultry composts containing a diversity of microbial species, we hypothesized that the 

compost may be a good source for isolating compost-borne CE microorganisms, which can 

inhibit the growth of Listeria monocytogenes. In this study, CE strains were screened and 

isolated from composts using double- or triple-agar-layer methods. The addition of 

resuscitation promoting factor (Rpf) produced by Micrococcus luteus promoted the growth 

of slow-growing/viable but non-culturable species from composts. A total of 40 bacterial 

isolates were confirmed with anti-L. monocytogenes activities, and then tested for Gram-

reaction, motility, biofilm-forming ability, and inhibitory spectra against produce outbreak-

associated L. monocytogenes strains, followed by identification by 16S rRNA gene 

sequencing. About 50% of the isolated CE strains were identified as Bacillus spp., and 17 

of 40 isolates can inhibit more than 10 produce outbreak-associated L. monocytogenes 

strains, while 9 CE strains isolated from poultry litter compost were confirmed as motile 

and competitive biofilm formers. Those 40 CE isolates based on the origin of isolation 

were separated into two groups, i.e. poultry and dairy CE groups, and then tested for anti-

L. monocytogenes activity in both compost extracts and compost. After 168 h incubation 

with CE strains in compost extracts under all conditions, the growth potentials of L. 

monocytogenes were reduced by co-culturing by 0.1- to 1.9-log depending on incubation 
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temperature, types, and ratio of the compost extracts. Results showed that the inhibition 

effect from CE strains was higher in more concentrated compost extract (1:5) at 35°C. In 

compost samples, the addition of CE strains reduced L. monocytogenes population by ca. 

1.2 log CFU/g at room temperature after 24 to 168 h incubation. The efficacy of CE strains 

against L. monocytogenes was stronger in the dairy compost as compared to that in the 

poultry litter compost. Findings from this study suggested that compost-adapted CE 

microorganisms have the potentials as a biological control agent to control L. 

monocytogenes in agricultural environments.  

 

INTRODUCTION 

Listeria monocytogenes is widespread in the environment and can survive well in 

sewage-sludge, plants and decaying vegetation, soil, animal hives, and feces (Weis and 

Seeliger, 1975). In the U.S., L. monocytogenes is responsible for 19% of the total deaths 

due to the consumption of contaminated food, with fresh produce as an important source 

of contamination at both farm and processing environments (Scallan et al., 2011). Oliveira 

et al. (2011) reported that L. monocytogenes was transferred from soil amended with 

contaminated organic compost to lettuce leaves, indicating that contaminated biological 

soil amendments can transmit this pathogen to fresh produce.    

One of the most environmental-friendly methods available to control pathogens is 

the use of competitive exclusion (CE) microorganisms. CE microorganism also has been 

described as “bacterial antagonism” or “bacterial interference”, which is based on the 

involvement of non-pathogenic microorganisms to enhance the microbial competition in 
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order to reduce pathogens in a certain environment (Nurmi et al., 1992). Traditionally, 

lactic acid bacteria and their associated commercial products have been well-documented 

for their antimicrobial activities against the growth of Salmonella, L. monocytogenes, and 

other pathogens (Muñoz et al., 2019; Gensler et al., 2020). For example, Zhao et al. (2006) 

successfully used two lactic acid bacteria to inhibit L. monocytogenes in floor drains of a 

poultry processing plant at 3 to 26°C. But, the wide application of these lactic acid bacteria 

in agriculture fields has been limited due to the high cost and special growth requirement 

of lactic acid bacteria. Thereby, more cost-effective applications of CE for pathogen 

control in agriculture field need further study.  

As microbial diversity is a key factor in avoiding pathogen outbreaks, it becomes 

urgent to search for effective CE microorganisms from environmental sources where 

Listeria reside and adapt. According to Jiang et al. (2009), indigenous microorganisms in 

compost can possess the suppressive activities against foodborne pathogens. Kim and Jiang 

(2010) showed that the regrowth of Salmonella, Escherichia coli O157:H7, and L. 

monocytogenes in dairy compost or physically heat-treated poultry litter occurred only 

when there was a lack of competitive indigenous microorganisms. As indicated from these 

studies, bacterial competition in the complex compost ecosystem is surely expected. Some 

microorganisms likely possess competitive features such as the secretion of biocidal 

compounds and fast growth rate. Therefore, further investigation on isolating CE 

microorganisms from compost is needed for pathogen control.  

Culture-based methods are essential for isolating microorganisms. Due to the 

presence of a significant large population of non-culturable microorganisms in the natural 
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environment and our limited knowledge on indigenous microbial species, only less than 

1% of the microorganisms present in the environment have been cultivated with currently 

culture-based methods (Ramamurthy et al., 2014). Recent attempts such as adding specific 

nutrients and substrates or resuscitation promoting factors, supernatants of growing cells, 

and modifying incubation conditions have been investigated to resuscitate or recover those 

not previously cultivated microorganisms (Pinto et al., 2011; Chen et al., 2012). For 

example, Jin et al. (2017) successfully isolated viable but non-culturable (VBNC) bacteria 

from printing and dyeing waste-water bioreactor with the culture media containing 

resuscitation promoting factor (Rpf) protein secreted by Micrococcus luteus. Moreover, it 

is not surprising that CE microorganism can be a slower grower, hard to culture, or even 

enter VBNC stage in compost (Su et al., 2018). However, to date, no such efforts have been 

attempted to isolate CE microorganisms from animal wastes or other soil amendments, 

albeit there are very limited studies documenting the use of CE microorganisms as a 

biological control against to reduce L. monocytogenes in compost.  

Therefore, the objectives of this study were to isolate compost-borne CE 

microorganisms with anti-L. monocytogenes activities and then verify antagonistic 

activities of those CE cultures against L. monocytogenes in both compost extract and 

compost models. Ultimately, these compost-borne CE microorganisms isolated from this 

study with anti-Listeria activity could be used to control L. monocytogenes contamination 

in biological soil amendments to ensure the safe production of fresh produce. 
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MATERIALS AND METHODS 

Compost sample collection. A total of 12 compost samples (6 dairy and 6 poultry 

wastes–based composts) were collected from six different facilities located in multiple 

states in the US, including Arizona, California, Michigan, South Carolina (n=2), and 

Wisconsin. From each facility, samples of both active compost (collected from the 

thermophilic composting stage [ > 55°C /131°F] within 1 month of composting) and 

finished compost (3 to 6 months of composting), with the same ingredients were requested. 

In accordance with the sampling protocol recommended by the California Leafy Greens 

Marketing Agreement (LGMA, 2010), the composite compost samples were collected in 

Ziploc bags, shipped under the ambient conditions to our lab, and stored at refrigeration 

conditions (4°C) once received.  

Preparation of L. monocytogenes cultures. L. monocytogenes strains, including 

101M, LCDC 81-861, and Scott A, were obtained from the culture collection by Dr. Mike 

Doyle at the Center for Food Safety, University of Georgia. Other produce outbreak-

associated L. monocytogenes strains (FSL R2-0503, J1-0107, J1-0101, R9-0506, R9-5507, 

J1-0031, J1-0158, S10-2161, and R9-5506) and one surrogate strain L. innocua FSL-C2-

0008 (Table 5.1) were kindly provided by Dr. Martin Wiedmann at Cornell University. L. 

monocytogenes strains, including 101M, LCDC 81-861 and Scott A, all serotype 4b, were 

used for screening CE candidate strains from compost samples. Besides, produce outbreak-

associated L. monocytogenes strains and the surrogate strain, L. innocua, were also tested 

for the anti-Listeria spectrum of candidate CE strains and biofilm-forming abilities. Each 

strain was individually grown in tryptic soy broth with 0.6% yeast extract (TSBYE; Becton 
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Dickinson, Sparks, MD) at 37°C for 16 h. The cultures were collected by centrifugation at 

3,000x g for 15 min and resuspended in sterile saline (0.85%, w/v NaCl). The optical 

density at 600 nm of each strain was adjusted with sterile saline to the desired 

concentration. 

Screening potential CE strains from compost for anti-L. monocytogenes 

activities using the double-agar-layer method. Compost samples collected from 

different farms were used for the initial screening of CE candidate strains by the double-

agar-layer method. Briefly, serial dilutions of the compost samples were made with sterile 

saline, and the proper dilutions were plated onto tryptic soy agar (TSA; Becton Dickinson, 

Sparks, MD) and incubated at 37°C for 24 h. Following incubation, the plates with less 

than 30 colonies were overlaid with a second layer of 2% (w/v) TSA soft agar spiked with 

ca.107 CFU/ml of L. monocytogenes strains 101M, LCDC 81-861, or Scott A, respectively. 

After incubation, colonies with the growth inhibition zone were picked up using a pre-

sterilized tooth stick to break the top layer of soft agar, followed by further purification on 

TSA plates with several transfers. The total numbers of colonies picked up from the 

original plates depended on the observation of inhibition zones.  

Screening potential CE strains from compost for anti-L. monocytogenes 

activities by the modified triple-agar-layer method. Two types of modified agar plates, 

i.e. most probable number (MPN) agar + resuscitation promoting factor (Rpf) (Jin et al., 

2017) and proteose-yeast-glucose (PYG) agar (Kato et al., 2018), were used in an effort to 

grow the viable but hard-to-culture bacteria from active compost samples. The MPN 

medium consisted of 0.05% (w/v) yeast extract, 0.5% (w/v) peptone, 0.25% (w/v) NaCl, 
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0.5% (w/v) glucose, 15% (w/v) agarose, and 10% prepared Rpf (MPN + Rpf). Briefly, 

Micrococcus luteus ATCC 4698 was used to prepare Rpf. M. luteus was inoculated to the 

lactate minimal medium (LMM; containing 5 g peptone, 3 g yeast extract, and 1 g 

MgSO4•7H2O, pH 7.0 per liter). Based on procedures described by Jin et al. (2017), the 

fermentation broth containing Rpf was prepared, centrifuged, and then filtered through a 

0.22 μm filter (VWR International, Radnor, PA) to remove cells. Finally, the supernatant 

containing Rpf was obtained, stored at −20°C, and used as supplemental material for MPN 

+ Rpf agar media preparation. Besides, in order to improve the cultivability of previously 

uncultured slow-growing bacteria, PYG agar was prepared by autoclaving the phosphate 

and agar separately according to Kato et al. (2018).  

Serial dilutions of the compost samples were made with sterile saline, and the 

proper dilutions were plated onto PYG and MPN + Rpf agar plates. The second layer of 

agar (2%, w/v) was supplemented with nystatin (100 μg/ml) to prevent fungal growth 

during the extended incubation time (Powell et al., 2007). PYG and MPN + Rpf plates 

were incubated at 25°C in the dark for 3 weeks, and at 25°C for 7 days, respectively. For 

PYG agar plates, new colonies that appeared after 7 days of incubation were marked on 

days 14 and 21. Following incubation, colonies on both PYG and MPN + Rpf agar were 

then overlaid with a third layer of 2% (w/v) TSA soft agar spiked with ca. 107 CFU/ml of 

L. monocytogenes strains 101M, LCDC 81-861 or Scott A, respectively. After incubation 

for 24 h at 37°C, colonies with inhibition zone were picked up as described above, followed 

by transferring to fresh TSA for purification.  
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Confirmation and characterization of CE isolates and metabolites. The 

antagonistic activity against L. monocytogenes by the CE candidate strains was further 

confirmed by the spot-on-lawn method (Zhao et al., 2006). Briefly, the CE isolates were 

spot-inoculated onto the TSA plates. After overnight incubation at 37°C, the colonies on 

the plates were first treated by exposure to chloroform vapor for 15 min and then overlaid 

by different L. monocytogenes strains in soft agar (2%, w/v), respectively. The zone of 

inhibition was observed after overnight incubation at 35°C.  

All the candidate CE strains confirmed by spot-on-lawn method were tested for 

anti-Listeria activities against those produce outbreak-associated L. monocytogenes and 

surrogate strains by both spot-on-lawn for colonies, and agar-well diffusion methods were 

for testing metabolites from CE isolates. The positive and negative isolates were isolated 

in this work and confirmed to produce or not to produce extracellular antimicrobials to L. 

monocytogenes, respectively. To prepare for the cell-free supernatant for the agar-well 

diffusion method, individual CE strain was grown overnight at 35°C for 18 h, and then 

transferred twice in brain heart infusion broth (BHI, Becton Dickinson, Sparks, MD) to 

accumulate more metabolic substances in the stationary stage. After 36 h of incubation at 

35°C, the cell-free supernatant containing the metabolic substances of these enrichment 

cultures were collected by filter sterilization using a 0.22 μm filter (VWR International, 

Radnor, PA). Then, the thick TSA plates (ca. 1 – 1.2 cm in depth) with Listeria lawn were 

prepared by spread-plating ca. 107 CFU/ml of individually tested Listeria strain using a 

sterilized cotton swab for an even distribution of inoculum. The cylinders of 6.0 mm 

diameter were cut and removed by a sterilized glass tube with a sharp edge from these pre-
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inoculated TSA agar plates. Next, 25 μl of soft agar were deposited to each well bottom, 

in order to seal the well bottom. About 100 μl of cell-free supernatant were added into each 

well. The zone of inhibition was observed after overnight incubation at 37°C.  

The candidate CE strains were also characterized by Gram-staining followed by the 

motility test using wet mount or sulfide-indole-motility (SIM) medium (Shields et al., 

2011). Moreover, as a potential application of CE strains for the composting process, all 

the candidate CE strains were tested for the ability of growth at 55°C.  

Identification of candidate CE strains by Sanger sequencing. Primers 8F (5′-

AGA GTT TGA TCC TGG CTC AG-3′) and 1492R (5′-TAC GGC TAC CTT GTT ACG 

ACT T-3’) were used for amplifying 16S rRNA gene (Kim et al., 2011). DNAs from CE 

isolates were extracted by Promega Wizard® genomic DNA purification kit (Promega, 

Madison, WI). The final reaction mixture included 20 ng of template DNA, 2.5 μl 10X 

PCR buffer, 50 mM MgCl2, 20 mM dNTP’s, 10 μM of each primer, and 1 U of Taq DNA 

polymerase in a final reaction volume of 25 μl. Initial DNA denaturation was performed at 

96°C for 2 min in a Mastercycler ep® gradient S thermal cycler (Eppendorf, Hamburg, 

Germany), followed by 28 cycles of denaturation at 94°C for 1 min, annealing at 40°C for 

30 s, and then elongation at 68°C for 1.5 min, which was followed by a final elongation at 

72°C for 10 min. The amplified PCR products were purified with the Wizard® genomic 

DNA purification kit (Promega, Madison, WI). Sequencing reactions of the amplified PCR 

products were performed by Eurofins Genomics (Louisville, KY). Sequences obtained 

were blasted with the GenBank database [http://www.ncbi.nlm.nih.gov/. 16S Ribosomal 
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RNA Sequences (Bacteria and Archaea)] for species or genus assignment. The highest 

identity (> 95%) was selected as the identified species or genus. 

Biofilm-forming abilities of produce-associated L. monocytogenes strains and 

CE isolates. Each L. monocytogenes and candidate CE strain was cultured separately in a 

15-ml centrifuge tube containing TSBYE broth at 37°C. After incubation, each overnight 

culture was diluted to ca. 104 CFU/ml in TSBYE. Next, 20 μl of diluted culture were 

transferred to 190 μl of fresh TSBYE medium in a 96-well plate using four wells per strain 

and incubated at 37°C for 3 days. Sterile TSBYE was used as the negative control. To 

avoid the “edge effect” primarily caused by evaporation during incubation, 200 μl of 

autoclaved distilled water was added in peripheral wells to reduce the water loss as 

suggested by Shukla et al. (2017). After 3 days of incubation, biofilm formation was 

quantified using crystal violet at OD570 nm according to the method described by O'Toole et 

al. (2011). L. monocytogenes strain with the strongest biofilm formation was selected as 

the control for comparing with the biofilm-forming ability with each candidate CE strain. 

A standard was then made for these candidate CE strains after compared with L. 

monocytogenes control, i.e. OD570 nm (CE) ≤ OD570 nm (control)  classified as non-

competitive biofilm former, whereas OD570 nm (CE) > OD570 nm (control) classified as 

competitive biofilm former (Stepanović et al., 2000).  

Application of CE microorganisms to inhibit the growth of L. monocytogenes 

in compost extracts and commercial composts. Two types of L. monocytogenes-free 

compost, including finished poultry and dairy composts, were used for inhibition test 

directly or preparing compost extracts first, and then used for growth inhibition study. For 
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compost extract preparation, each compost was extracted with sterile tap water at two ratios 

(1:5 and 1:10, w/v) in a shaking incubator (100 rpm), at 22°C for 24 h, followed by 

centrifugation at 5,000 x g for 20 min. The supernatant was filtered through a 0.22 μm 

filter, stored at -20°C until used. Next, candidate CE strains originally isolated from poultry 

and dairy composts were tested in poultry and dairy compost extracts or compost samples, 

accordingly (Figure 5.1). The compost extract or compost samples with a cocktail of the 

rifampicin-resistant L. monocytogenes strains (R9-5506, Scott A, and 101M) (ca. 3- or 5-

log CFU/ml or g in compost extract or compost sample, respectively) was inoculated with 

or without CE strains (ca. 7 log CFU/ml or g), and then incubated for up to 7 days. The 

inhibition study in compost extracts was performed at both 37°C and room temperature, 

whereas the inhibition study in solid compost was only performed at room temperature. At 

selected intervals (0, 1, 3, 5, and 7 days), the samples were serially diluted, and the proper 

dilutions were plated onto TSA plates supplemented with rifampicin (100 µg/ml) for 

enumeration of L. monocytogenes (Figure 5.1).  

Statistical analysis. Data analysis was performed using JMP 11.2.1 (SAS Institute 

Inc., Atlanta, GA). Analysis of variance, followed by the least significant differences test, 

was carried out to determine whether significant differences (P < 0.05) existed among 

different treatments. 

 

RESULTS 

Isolation and characterization of CE strains from compost samples. No 

significant differences were found in the population levels of total compost bacteria as 
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enumerated by MPN + Rpf or TSA agar plates (Data not shown). However, colonies with 

different morphologies were observed on both PYG and MPN + Rpf as compared to the 

colonies grown on the regular TSA plates. After 14 and 21 days of incubation, the number 

of new colonies on PYG agar plates ranged from 8.4 to 156.3%, and 3.7 to 43.8%, 

respectively, as compared to the number of colonies that appeared on PYG agar plates from 

the highest countable dilution on Day 7 (Table 5.2). However, none of isolates grown on 

PYG agar plates (on day 7, 14, and 21 days) showed the anti-listeria activity. A total of 40 

isolates (15 from poultry compost and 25 from dairy compost) were isolated from either 

TSA or MPN + Rpf plates and confirmed with anti-L. monocytogenes activities with the 

zone of inhibition ranging from 0.8- to 12-mm diameter (Figures 5.2 A and B).  

Characterization and inhibitory spectra of candidate CE strains. The candidate 

CE strains were further characterized. Of these 40 CE isolates, 38 CE isolates were G+ (23 

rods and 15 cocci), 2 isolates were identified as Gram-variable rods, 19 isolates were 

motile, 13 isolates grew at 55°C, whereas 3 of these 13 isolates were identified as having 

weak growth (Table 5.3).  

Next, all isolates from the initial screening were evaluated individually for their 

abilities to inhibit the growth of produce outbreak-associated Listeria strains. As a result, 

17 of 40 isolates can inhibit the growth of more than 10 L. monocytogenes or surrogate 

strains. However, only 5 of 17 isolates showed the inhibition to selected L. monocytogenes 

when cell-free supernatants were tested (Figure 5.2 C). Further, all CE candidate strains 

were identified by 16S rRNA gene sequencing, and these CE isolates were confirmed as 
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Bacillus spp. (n=20), Kocuria spp. (n=12), Paenibacillus spp. (n=4), Brevibacillus spp. 

(n=1), and Planococcus spp. (n=3).  

Biofilm-forming abilities of candidate CE strains. L. monocytogenes is well-

documented in forming biofilm by self or with other species in the environment (Van et 

al., 2010). To evaluate the biofilm-forming abilities of CE isolates, we first selected a 

control strain with the strongest biofilm-forming ability from produce outbreak-associated 

L. monocytogenes strains and then evaluated the biofilm-forming abilities of CE isolates 

by comparing to this control strain. After 72 h of incubation, biofilm-forming ability varied 

significantly among different strains of L. monocytogenes, ranging from OD570nm of 0.12 

to 0.58 (P < 0.05; Figure 5.3 A). Based on the OD570nm value, strain L9 (serotype 1/2a, 

denoted as lineage II), was selected as a positive control strain for further testing. As shown 

in Figure 5.3 B, candidate CE strains, including two isolates (D4 and D7) from dairy 

compost and 9 isolates (P3, P5-P10, P13, and P15) from poultry compost, formed 

significantly more biofilm (P < 0.05) than L. monocytogenes control strain did as indicated 

by the higher absorbance values, therefore were designated as competitive biofilm formers. 

Taking consideration of mobility and strain-identification results, above 9 CE strains 

isolated from poultry litter compost, which belong to Bacillus spp., Paenibacillus spp., or 

Brevibacillus spp., were characterized as motile and competitive biofilm formers as 

compared to L9 strain. However, dairy isolates (D4 and D7) were not motile.  

Application of CE microorganisms to inhibit the growth of L. monocytogenes 

in compost extracts and solid compost samples. Water extracts of two types of compost, 

including finished poultry and dairy composts with two extraction ratios (1:5 and 1:10) 
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were used to evaluate the effect of temperature and nutrient availability on the efficacy of 

CE isolates against L. monocytogenes. During the growth inhibition study, CE populations 

increased by 0.3 to 0.6 log in the dairy compost extracts (Figure 5.4), but no change (P > 

0.05) was observed for CE populations in poultry compost extracts (Figure 5.5). After 24 

h incubation, the growth potentials of L. monocytogenes in dairy compost extracts with 

extraction ratios of 1:5 and 1:10 were reduced by 2.2 and 1.7 log at 35°C or 1.6 and 1.5 log 

at room temperature, respectively, whereas the growth potentials of L. monocytogenes in 

poultry compost extracts with extraction ratios of 1:5 and 1:10 were reduced by 0.7 and 0.5 

log at 35°C or 0.2 and 0.3 log at room temperature, respectively. After 168 h incubation, 

the growth potentials of L. monocytogenes in dairy compost extracts with extraction ratios 

of 1:5 and 1:10 were reduced by 0.5 and 0.1 log at 35°C or 1.9 and 0.7 log at room 

temperature, respectively, whereas the growth potentials of L. monocytogenes in poultry 

compost extracts with extraction ratios of 1:5 and 1:10 were reduced by 1.1 and 1.0 log at 

35°C or 0.9 and 0.7 log at room temperature, respectively. Clearly, the growth potentials 

of L. monocytogenes were reduced by co-culturing with CE strains in both dairy and 

poultry compost extracts at all incubation conditions, but the inhibition effect from CE 

strains was more pronounced (P < 0.05) in the more concentrated dairy compost extracts 

(1:5) at 35°C followed by room temperature, especially after 24 h of incubation.  

In order to test the efficacy of CE strains on controlling L. monocytogenes in 

commercial compost during storage, the survival of L. monocytogenes inoculated in dairy 

or poultry wastes-based compost in the presence of CE strains was determined at room 

temperature. As shown in Figure 5.6, no significant change (P > 0.05) was observed for 
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the total bacterial population in both dairy and poultry composts. In dairy compost (Figure 

5.6 A), the population of L. monocytogenes increased by 0.4 log CFU/g after 24 h in the 

absence of CE strains, however, no regrowth was detected for L. monocytogenes when co-

culturing with ca. 7-log of CE strains. In poultry compost (Figure 5.6 B), the regrowth 

potential of L. monocytogenes was slightly (P > 0.05) reduced in the presence of CE strains 

after 24 h. Overall, after 168 h incubation, the addition of CE cultures reduced L. 

monocytogenes population by 1.3 and 1.1 log CFU/g in dairy and poultry compost, 

respectively, with the efficacy of CE strains was slightly stronger (P > 0.05) in the dairy 

compost as compared to that in the poultry compost.  

To find out the impact of compost types on the growth of CE strains and L. 

monocytogenes, the growth curves were generated for both CE and L. monocytogenes 

strains in dairy or poultry compost extracts (1:5). As shown in Figure 5.7, the population 

of CE strains increased by ca. 2-log in both extracts, as compared to ca 1-log growth of L. 

monocytogenes in both extracts.  Clearly, a faster growth rate was observed for CE strains 

as compared to that of L. monocytogenes under the same incubation conditions.  

 

DISCUSSION 

Animal waste-based compost is rich in microbial species, and the compost 

microbial members thereby live in highly competitive environment. Thus, our initial goal 

was to isolate CE strains native to the compost environment that would compete-well 

against L. monocytogenes. Some special stimuli such as adding growth promoting factor 

(Rpf) or modification of preparation protocol (PYG agar), with extended incubation period 
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(7 – 21 days) were attempted to isolate compost-borne CE strains. Significant numbers of 

new colonies were grown on PYG agars after incubation for 14 days and 21 days, indicating 

the presence of slow-growing or potentially non-culturable bacteria in compost samples. 

Evidently, in dairy compost, some CE strains (n=12) were isolated only in the agar plates 

with Rpf, which was in line with the study reported by Su et al. (2018). According to Su et 

al. (2018), unique bacterial species belonged to genera Bacillus, Arthrobacter, 

Nocardiopsis, and Mycobacterium were isolated from agro-industrial compost only after 

Rpf addition because Rpf promoted the isolation of slow-growing bacteria from compost 

materials by significantly improving the cellulose-producing capability of bacterial 

community as well as facilitating the cell division. As a secretory protein of M. luteus, the 

mechanisms of Rpf involved in the resuscitation of VBNC bacterial cells is presumably 

initiated by lysis of cell wall, followed by releasing the peptidoglycan that can work as 

signaling molecules for the resuscitation of VBNC cells (Ramamurthy et al., 2014). 

Through the optimized culturing methods involving the use of Rpf with an extended 

incubation time, our results clearly demonstrated that animal-wastes-based compost is a 

promising source for isolating CE strains against L. monocytogenes.  

In general, antagonistic activities of CE strains against pathogens can be quickly 

confirmed by spot-on-lawn for the isolates, disc diffusion, or agar-well diffusion methods 

for cell-free supernatant fluids (Ammor et al., 2006a). In this study, only 5 of 17 CE isolates 

showed the inhibition to selected L. monocytogenes when cell-free supernatants were 

tested. This discrepancy between isolates and supernatant testing results can be explained 

by the following reasons: 1) the antimicrobial compounds produced by CE strains may not 
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be accumulated to an adequate amount to induce the inhibition (Baindara et al., 2016); 2) 

the inhibition can only be effective when the cell is directly in contact with the pathogenic 

cell on agar surface but fail to release into the cell-free supernatant (Ammor et al., 2006ab). 

In this regard, the spot-on-lawn is a preferred method for quickly confirming the inhibitory 

activities caused by CE strains. 

One of the selective criteria for CE cultures is the mobility, as the motility can 

contribute to the dispersal and afford the competitive advantage for bacteria when 

microbial members need to compete for limiting nutrient sources or attachment sites on the 

favorable surface (Hibbing et al., 2010). Microorganisms can compete passively by easy 

access to an attached space, and this “passive competition” can be achieved by the 

microbial motility (Bauer et al. 2018). For example, An et al. (2006) revealed that quorum-

sensing-regulated functions and surface motility are important factors to enhance the 

microbial competition of Pseudomonas aeruginosa against Agrobacterium tumefaciens in 

biofilm cocultures. As such, it was not surprising that most motile CE isolates (all CE 

isolated from poultry compost) were classified as competitive biofilm former.  

As the ability of L. monocytogenes to form biofilms can allow it to establish and 

persist for a long time in various environments, for a reasonable assumption, the CE strains 

with stronger biofilm-forming abilities might have advantage to prevent further biofilm 

formation by L. monocytogenes. On one hand, CE cultures may be directly applied to 

disrupt the pathogenic adhesion. In support to this assumption, Gueimonde et al. (2006) 

reported that the adhesion of L. monocytogenes on the mucosal surface was reduced by 

19.1 to 25.9% by selected Lactobacillus strain. On the other hand, biofilms formed by CE 
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strains that already presented on a surface can potentially reduce the further colonization 

of L. monocytogenes. For example, populations of E. coli O157:H7, S. aureus, L. 

monocytogenes, and Salmonella, decreased by 0.4 – 2 log CFU/coupon after inoculation 

on the stainless-steel coupon contained the biofilm pre-formed by CE strains (Kim et al., 

2013, Son et al., 2016, Turhan et al., 2017, Kim et al., 2018). Son et al. (2016) reported 

that the biofilm formed by CE cultures including Streptomyces spororaveus, Bacillus 

safensis, and Pseudomonas azotoforman on stainless steel with 7.9 to 8.5 log CFU/coupon 

of CE cultures reduced 1.8-1.9 log CFU/coupon of S. aureus depending on the CE strain 

used. Likewise, biofilms formed by Lactobacillus exhibited anti-L. monocytogenes 

activities, and caused a reduction of 0.7 to 2.0 log CFU/ml for planktonic L. monocytogenes 

and 0.4-1.7 log CFU/ml for L. monocytogenes biofilm. Most importantly, a broad spectrum 

of anti-L. monocytogenes activities from candidate CE strains isolated in this study was 

observed, suggesting these CE strains, after further characterization, can be a powerful tool 

for controlling L. monocytogenes in the preharvest environment.    

Competitive exclusion microorganisms including most species identified in this 

study have been reported as possessing the inhibitory activities against foodborne 

pathogens. Some species belonging to Bacillus spp. can reduce the pathogen levels through 

the accumulation of several bacteriocins. As reported by Sabaté et al. (2013), surfactins 

produced by Bacillus subtilis C4, M1 and G2III were effective in the inhibition of L. 

monocytogenes by the well-diffusion method. Avci et al. (2016) reported that cell-free 

supernatants from Bacillus had a broad spectrum of antibacterial activity against E. coli 

O157: H7, L. monocytogenes, Salmonella, and P. aeruginosa. Besides, one species from 
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Bacillus spp., i.e. Bacillus psychrodurans, can inhibit the growth of B. cereus, E. coli O157: 

H7, L. monocytogenes, Salmonella, and S. aureus on agar plates, as determined by the spot-

on-lawn method with diameter ranging from 9.58 ± 0.66 to 21.47 ± 0.27 mm for the 

inhibition zones (Das et al. 2017). In another study, Watabe et al. (2003) found that the 

growth of Listeria ivanovii was inhibited by Paenibacillus lentimorbus isolated from phase 

II mushroom compost, however, no quantity data was reported in that study. Additionally, 

Planococcus spp., which produces rhamnolipid biosurfactant, exhibited bactericidal 

activity against L. monocytogenes (Magalhães et al., 2013, Gaur et al., 2020). Although, 

the production of bacteriocin from Brevibacillus spp. and the probiotic properties of 

Kocuria spp. have been well-described in published studies (Baindara et al., 2016, 

Sharifuzzaman et al., 2018), to the best of our knowledge, this is the first time to report the 

inhibition of L. monocytogenes by both Brevibacillus spp. and Kocuria spp. In addition to 

have strong inhibitory activities against foodborne pathogens, CE strains identified in this 

study have been previously reported in numerous studies for controlling plant pathogens, 

including Fusarium wilt, Aeromonas, phytopathogenic fungi, and Botrytis cinereal in 

tomato or potato (Lee et al., 2006, Slimene et al., 2015, Lapidot et al., 2015, Li et al., 2019). 

Taken together, our results indicated that there was a prospective to use these CE strains as 

biological control agents for both plant and foodborne pathogens, like L. monocytogenes 

in the agricultural field. But it is noteworthy that the interactions between L. 

monocytogenes and CE microorganisms can be affected by their residential environments 

due to the variation in nutrient availabilities in these environments (Buchanan et al., 1999).  
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In order to simulate the nutrient conditions in the compost environment, CE and the 

tested L. monocytogenes strains were inoculated into the water extract of composts with 

different ratios. The efficacy of CE strains’ antagonistic activity against L. monocytogenes 

increased with increasing nutrients at mesophilic temperature. As the CE strains were 

isolated and adapted from compost, they have higher growth rates than L. monocytogenes 

in compost extract (Figure 5.7), then out-compete the pathogen. Besides, the survival of L. 

monocytogenes inoculated in dairy or poultry wastes-based compost was significantly 

reduced in the presence of CE strains, implying the CE strains can effectively control L. 

monocytogenes during the storage of compost. The more reduction of L. monocytogenes in 

compost samples when co-culturing with CE strains may be due to the competition for the 

nutrients in compost and the release of antimicrobial compounds by CE strains. This 

conclusion can be supported by results from Chapter 4 of sequencing analysis that the 

microbial interactions were potentially due to the competition for nutrients within the 

compost environment, and the increased gene abundance in bacteriocins upon the 

introduction of L. monocytogenes.  

 Based on the findings from the co-culture study, there are several ways to apply 

the CE strains to the composts in order to provide another hurdle for reducing the level of 

L. monocytogenes. Firstly, the thermophilic CE strains may be added during the active 

composting process to work as probiotic-bioinoculant. Secondly, CE strains may be added 

during the curing phase, in order to prevent pathogen regrowth. Finally, CE inoculum can 

be added directly into the finished compost product just before land application, in order 
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to avoid the cross-contamination of L. monocytogenes and to enhance the biological control 

values to the final compost products.  

 

LIMITATION 

In the current study, the modified culture methods with extended incubation time 

were attempted to isolate compost-borne CE strains from different samples. However, 

some special incubation conditions, such as anaerobic or facultative anaerobic conditions 

were not included in this study. Therefore, one can assume that more CE strains may be 

isolated if these special conditions were used. Nevertheless, the isolation and screening 

methods used in this study can be more rapid and easily applied for isolating slow-grower 

CE strains from complex compost samples.  

 

CONCLUSION 

Our research demonstrated that the modified double/triple-agar-layer procedure 

coupled with spot-on-lawn testing can be a quick and efficient method for screening CE 

candidates from different compost samples, and that the addition of Rpf promotes the 

growth of slow-grower and potential viable but non-culturable species. The inhibition of 

L. monocytogenes by CE strains in both compost extracts and compost samples were 

observed at all incubation conditions and effected by compost types, nutrient levels, and 

incubation temperature. Findings from this chapter suggested the that animal waste-based 

compost is a promising and reliable source for isolating of CE microorganisms and adding 

specific CE microorganisms into composts is a practical approach to control L. 
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monocytogenes. For real-world applications, a cocktail of CE microorganisms might be 

applied to the compost during thermophilic or curing phases or a few days prior to 

agricultural land application of the finished compost. Furthermore, we believe that those 

identified CE microorganisms can be used in biological control of L. monocytogenes in 

various ecosystems.   

 

ACKNOWLEDGMENT 

We thank our industry collaborators for providing the compost samples used in this 

study. This research was financially supported by the Center for Produce Safety, University 

of California at Davis, and Specialty Crop Block Grant Program (SCBGP) of California 

Department of Food and Agriculture (CDFA–SCBGP) through a grant 1#8-0001-075-SC.  

 

REFERENCES 

1. Ammor S, Tauveron G, Dufour E, Chevallier I. 2006a. Antibacterial activity of lactic 

acid bacteria against spoilage and pathogenic bacteria isolated from the same meat 

small-scale facility: 1—Screening and characterization of the antibacterial 

compounds. Food Control 17:454-461.  

2. Ammor S, Tauveron G, Dufour E, Chevallier I. 2006b. Antibacterial activity of lactic 

acid bacteria against spoilage and pathogenic bacteria isolated from the same meat 

small-scale facility: 2—Behaviour of pathogenic and spoilage bacteria in dual species 

biofilms including a bacteriocin-like-producing lactic acid bacteria. Food Control 17: 

462-68. 



 

248 
 

3. An D, Danhorn T, Fuqua C, Parsek MR. 2006. Quorum sensing and motility mediate 

interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in 

biofilm cocultures. Proc Natl Acad Sci U S A 103:3828-3833.  

4. Avci A, Üzmez S, Alkan FB, Bagana İ, Nurçeli E, Çiftçi E. 2016. Antimicrobial 

activity spectrums of some Bacillus strains from various sources. GIDA/The Journal 

of food 41:5.  

5. Baindara P, Singh N, Ranjan M, Nallabelli N, Chaudhry V, Pathania GL, Sharma N, 

Kumar A, Patil PB, Korpole S. 2016. Laterosporulin10: a novel defensin like class IId 

bacteriocin from Brevibacillus sp. strain SKDU10 with inhibitory activity against 

microbial pathogens. Microbiology 162:1286-1299.  

6. Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. 2018. Microbial wars: 

Competition in ecological niches and within the microbiome. Microb Cell 5:215-219.  

7. Buchanan R, Bagi L. 1999. Microbial competition: effect of Pseudomonas 

fluorescens on the growth of Listeria monocytogenes. Food Microbiol 16:523-529.  

8. California leafy greens marketing agreement 2010. https://lgma-

assets.sfo2.digitaloceanspaces.com/downloads/Appendix_E.pdf Accessed on Mar. 

2020 

9. Chen H, Fu L, Luo L, Lu J, White WL, Hu Z. 2012. Induction and resuscitation of the 

viable but nonculturable state in a cyanobacteria-lysing bacterium isolated from 

cyanobacterial bloom. Microb Ecol 63:64-73.  

https://lgma-assets.sfo2.digitaloceanspaces.com/downloads/Appendix_E.pdf
https://lgma-assets.sfo2.digitaloceanspaces.com/downloads/Appendix_E.pdf


 

249 
 

10. Das G, Park S, Baek K. 2017. Diversity of endophytic bacteria in a fern species 

Dryopteris uniformis (Makino) Makino and evaluation of their antibacterial potential 

against five foodborne pathogenic bacteria. Foodborne Pathog. Dis. 14:260-268.  

11. Gaur VK, Tripathi V, Gupta P, Dhiman N, Regar RK, Gautam K, Srivastava JK, 

Patnaik S, Patel DK, Manickam N. 2020. Rhamnolipids from Planococcus spp. and 

their mechanism of action against pathogenic bacteria. Bioresour Technol 123206.  

12. Gensler CA, Brown SR, Aljasir SF, D'amico DJ. 2020. Compatibility of 

commercially produced protective cultures with common cheesemaking cultures and 

their antagonistic effect on foodborne pathogens. J Food Prot 83:1010-1019.  

13. Gueimonde M, Jalonen L, He F, Hiramatsu M, Salminen S. 2006. Adhesion and 

competitive inhibition and displacement of human enteropathogens by selected 

lactobacilli. Food Res Int 39:467-471.  

14. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: 

surviving and thriving in the microbial jungle. Nature Reviews Microbiology 8:15-25.  

15. Jiang X, Shepherd M. Fan X, Niemira B.A, Doona C.J, Feeherry F.E, Gravani R.B 

(Eds.). 2009. Microbial Safety of Fresh Produce, Blackwell Publishing p. 143  

16. Jin Y, Gan G, Yu X, Wu D, Zhang L, Yang N, Hu J, Liu Z, Zhang L, Hong H. 2017. 

Isolation of viable but non-culturable bacteria from printing and dyeing wastewater 

bioreactor based on resuscitation promoting factor. Curr Microbiol 74:787-797.  

17. Kato S, Yamagishi A, Daimon S, Kawasaki K, Tamaki H, Kitagawa W, Abe A, 

Tanaka M, Sone T, Asano K, Kamagata Y. 2018. Isolation of previously uncultured 



 

250 
 

slow-growing bacteria by using a simple modification in the preparation of agar 

media. Appl Environ Microbiol 84:10.  

18. Kim J, Jiang X. 2010. The growth potential of Escherichia coli O157: H7, Salmonella 

spp. and Listeria monocytogenes in dairy manure‐based compost in a greenhouse 

setting under different seasons. J Appl Microbiol 109:2095-2104.  

19. Kim M, Morrison M, Yu Z. Evaluation of different partial 16S rRNA gene sequence 

regions for phylogenetic analysis of microbiomes. 2011. J. Microbiol. Methods. 

84(1):81-7. 

20. Kim S, Bang J, Kim H, Beuchat LR, Ryu J. 2013. Inactivation of Escherichia coli 

O157: H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms. Int J 

Food Microbiol 167:328-336.  

21. Kim Y, Kim H, Beuchat LR, Ryu J. 2018. Development of non-pathogenic bacterial 

biofilms on the surface of stainless steel which are inhibitory to Salmonella enterica. 

Food Microbiol 69:136-142.  

22. Lapidot D, Dror R, Vered E, Mishli O, Levy D, Helman Y. 2015. Disease protection 

and growth promotion of potatoes (S olanum tuberosum L.) by Paenibacillus 

dendritiformis. Plant Pathol 64:545-551.  

23. Lee JP, Lee S, Kim CS, Son JH, Song JH, Lee KY, Kim HJ, Jung SJ, Moon BJ. 2006. 

Evaluation of formulations of Bacillus licheniformis for the biological control of 

tomato gray mold caused by Botrytis cinerea. Biol. Control 37:329-337.  



 

251 
 

24. Li B, Wang B, Pan P, Li P, Qi Z, Zhang Q, Shi C, Hao W, Zhou B, Lin R. 2019. 

Bacillus altitudinis strain AMCC 101304: a novel potential biocontrol agent for 

potato common scab. Biocontrol Sci Technol 29:1009-1022.  

25. Magalhães L, Nitschke M. 2013. Antimicrobial activity of rhamnolipids against 

Listeria monocytogenes and their synergistic interaction with nisin. Food Control 

29:138-142.  

26. Muñoz N, Sonar CR, Bhunia K, Tang J, Barbosa-Cánovas GV, Sablani SS. 2019. Use 

of protective culture to control the growth of Listeria monocytogenes and Salmonella 

typhimurium in ready-to-eat cook-chill products. Food Control 102:81-86.  

27. Nurmi E, Nuotio L, Schneitz C. 1992. The competitive exclusion concept: 

development and future. Int J Food Microbiol 15:237-240.  

28. Oliveira M, Usall J, Viñas I, Solsona C, Abadias M. 2011. Transfer of Listeria 

innocua from contaminated compost and irrigation water to lettuce leaves. Food 

Microbiol 28:590-596.  

29. O'Toole GA. 2011. Microtiter dish biofilm formation assay. JoVE (Journal of 

Visualized Experiments) e2437.  

30. Pinto D, Almeida V, Almeida Santos M, Chambel L. 2011. Resuscitation of 

Escherichia coli VBNC cells depends on a variety of environmental or chemical 

stimuli. J Appl Microbiol 110:1601-1611.  

31. Powell J, Witthuhn R, Todorov S, Dicks L. 2007. Characterization of bacteriocin 

ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int Dairy J 

17:190-198.  



 

252 
 

32. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. 2014. Current perspectives on 

viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health. 2:103.  

33. Sabaté DC, Audisio MC. 2013. Inhibitory activity of surfactin, produced by different 

Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and 

bacteriocin-resistant strains. Microbiol Res 168:125-129.  

34. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, 

Griffin PM. 2011. Foodborne illness acquired in the United States--major pathogens. 

Emerg Infect Dis 17:7-15.  

35. Sharifuzzaman S, Rahman H, Austin DA, Austin B. 2018. Properties of probiotics 

Kocuria SM1 and Rhodococcus SM2 isolated from fish guts. Probiotics Antimicrob. 

Proteins 10:534-542.  

36. Shields P, Cathcart L. 2011. Motility test medium protocol. ASM 

https://www.asmscience.org/content/education/protocol/protocol.3658?crawler=redir

ect&mimetype=application/pdf. Accessed on Aug. 2020.   

37. Shukla SK, Rao TS. 2017. An improved crystal violet assay for biofilm quantification 

in 96-well microtitre plate. Biorxiv 100214.  

38. Slimene IB, Tabbene O, Gharbi D, Mnasri B, Schmitter JM, Urdaci M, Limam F. 

2015. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a 

biological control against Phoma medicaginis infection. Appl Biochem Biotechnol 

175:3494-3506.  

https://www.asmscience.org/content/education/protocol/protocol.3658?crawler=redirect&mimetype=application/pdf
https://www.asmscience.org/content/education/protocol/protocol.3658?crawler=redirect&mimetype=application/pdf


 

253 
 

39. Son H, Park S, Beuchat LR, Kim H, Ryu J. 2016. Inhibition of Staphylococcus aureus 

by antimicrobial biofilms formed by competitive exclusion microorganisms on 

stainless steel. Int J Food Microbiol 238:165-171.  

40. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. 2000. A modified 

microtiter-plate test for quantification of staphylococcal biofilm formation. J 

Microbiol Methods 40:175-179.  

41. Su X, Zhang S, Mei R, Zhang Y, Hashmi MZ, Liu J, Lin H, Ding L, Sun F. 2018. 

Resuscitation of viable but non‐culturable bacteria to enhance the cellulose‐degrading 

capability of bacterial community in composting. Microbial biotechnology 11:527-

536.  

42. Turhan EU, Erginkaya Z, Uney MH, Ozer EA. 2017. Inactivation effect of probiotic 

biofilms on growth of Listeria monocytogenes. Kafkas Üniversitesi Veteriner 

Fakültesi Dergisi 23:.  

43. Van Houdt R, Michiels C. 2010. Biofilm formation and the food industry, a focus on 

the bacterial outer surface. J Appl Microbiol 109:1117-1131.  

44. Watabe M, Rao JR, Murphy AR, Moore JE. 2003. Inhibition of Listeria ivanovii by 

Paenibacillus lentimorbus isolated from phase II mushroom compost. World J. 

Microbiol. Biotechnol. 19:875.  

45. Weis J, Seeliger HP. 1975. Incidence of Listeria monocytogenes in nature. Appl 

Microbiol 30:29-32.  



 

254 
 

46. Zhao T, Podtburg TC, Zhao P, Schmidt BE, Baker DA, Cords B, Doyle MP. 2006. 

Control of Listeria spp. by competitive-exclusion bacteria in floor drains of a poultry 

processing plant. Appl Environ Microbiol 72:3314-3320.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

255 
 

Table 5.1 L. monocytogenes and surrogate strains used in this study 

Label  FSL-ID 
Serotype (lineage, 
clonal complex) 

Previous strain 
ID (provided by) Isolate source b 

L1 L.monocytogenes 
R2-0503 

1/2b (I, CC3) (ILSI collection) Human, 1994  

L2 L.monocytogenes 
J1-0107 

4d (I, CC1) N. A Coleslaw 

L3 L.monocytogenes 
J1-0101 

1/2a (II, CC11) (ILSI collection) Hot dog 

L4 L.monocytogenes 
R9-0506 

1/2a (II, CC29) L25265 (CDC) Cantaloupe, 2011 

L5 L.monocytogenes 
R9-5506 

4b (I, ST382) PNUSAL001751 
(CDC) 

Packaged salad, 2016 

L6 L.monocytogenes 
R9-5507 

4b (I, CC554) PNUSAL000954 
(CDC) 

Sprouts, 2014 

L7 L.monocytogenes 
J1-0031 

4a (II, CC396) (ILSI collection) Human 

L8 L.monocytogenes 
J1-0158 

4b (IV, ST382) (ILSI collection) Goat 

L9 L.monocytogenes 
S10-2161 

1/2a (II, ST364) N. A Soil spinach field 

L10 L. innocua  
C2-0008 

N. Aa N. A Fish processing plant, 
2000 

a Not available.  
b Indicates outbreak-associated sources. 
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Table 5.2 New bacterial colonies counted on PYG agar plates from the highest countable 

dilution on days 14 and 21  

 New colonies (CFU/plate) 
Collection farm Day 14 (% of increased) a Day 21(% of increased) 
Poultry farm #1 17 (9.5%) 10 (5.6%) 
Poultry farm #2 42 (22.1%) 31 (30.0%) 
Poultry farm #3 25 (156.3%) 7 (43.8%) 
Dairy farm #1 9 (8.4%) 4 (3.7%) 
Dairy farm #2  16 (11.0%) 21 (14.5%) 
Dairy farm #3 43 (31.6%) 57 (41.9%) 

a % of increase as compared to the colonies appeared on Day 7 of highest countable 
dilution plate.  
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Table 5.3 Characteristics of candidate CE strains isolated from animal waste-based composts  

Isolat
es # 

Compo
st  Agar L. monocytogenes or surrogate strains 

Moti
le 

Gram- 
staining 

Growt
h at 
55°C    

101
M 

LCD
C 81-
861 

Scott
A 1 2 3 4 5 6 7 8 9 

L.inno
cua    

P1 Poultry 
farm 3 

TSA + + + + + + + + + + + + + Yes Variable/
rod 

No 

P2 Poultry 
farm 3 

TSA + + + + + + + + + + + + + Yes Variable/
rod 

No 

P3 Poultry 
farm 3 

TSA + + + + + + + + + + + + + Yes G+, rod Yes 

P4 Poultry 
farm 3 

TSA + + + + + + + + + + + + + Yes G+, rod Yes 

P5 Poultry 
farm 3 

TSA + + + + + + + + + + + + + Yes G+, rod No 

P6 Poultry 
farm 3 

TSA + - + + + + + + + + + + + Yes G+, rod Yes 
(Weak 
growth 

b) 
P7 Poultry 

farm 1 
TSA - + - + + + + + + + + + + Yes G+, rod No 

P8 Poultry 
farm 1 

TSA + - - - - - - - - - - - - Yes G+, rod Yes 

P9 Poultry 
farm 1 

TSA + - - - - - - - - - - - - Yes G+, rod Yes 

P10 Poultry 
farm 1 

TSA + - - - - - - - - - - - - Yes G+, rod Yes 
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P11 Poultry 
farm 1 

TSA + - - + +/- 

a 
+
/- 

+/
- 

- +/
- 

- - +/
- 

- No G+, rod Yes 

P12 Poultry 
farm 1 

TSA + - - + + + + - + - - + - No G+, rod Yes 

P13 Poultry 
farm 1 

TSA + - - + + + + - + - - + - Yes G+, rod Yes 

P14 Poultry 
farm 1 

TSA - + + - - - - - - - - - - Yes G+, rod Yes 

P15 Poultry 
farm 2 

TSA + + + - - - - - - - - - - Yes G+, rod Yes 

D1 Dairy 
farm 3 

TSA + + + - - - - - - - - - - Yes G+, 
coccus 

Yes 
(Weak 
growth) 

D2 Dairy 
farm 1 

TSA + + + - - - - - - - - - - Yes G+, rod No 

D3 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, 
coccus 

No 

D4 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, rod No 

D5 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + + + + + - + + + + + Yes G+, rod No 

D6 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + - - - - - - - - + - Yes G+, rod No 

D7 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, rod No 
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D8 Dairy 
farm 1 

TSA - + + - +/- - + +/
- 

+ - - +/
- 

+ No G+, 
coccus 

No 

D9 Dairy 
farm 1 

MPN 
+ 
Rpf 

- + + - +/- - + +/
- 

+ - - +/
- 

+ No G+, 
coccus 

No 

D10 Dairy 
farm 1 

TSA + + + + + + + + + + + + + No G+, rod No 

D11 Dairy 
farm 1 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, 
coccus 

No 

D12 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D13 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D14 Dairy 
farm 1 

TSA - + + - - - - - - - - - - Yes G+, rod No 

D15 Dairy 
farm 1 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - Yes G+, rod Yes 
(Weak 
growth) 

D16 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D17 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, 
coccus 

No 

D18 Dairy 
farm 3 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, 
coccus 

No 
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D19 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D20 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D21 Dairy 
farm 1 

TSA + + + + + + + + + + + + + No G+, rod No 

D22 Dairy 
farm 1 

MPN 
+ 
Rpf 

+ + + + + + + + + + + + + No G+, rod No 

D23 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D24 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

D25 Dairy 
farm 3 

MPN 
+ 
Rpf 

- + + - - - - - - - - - - No G+, 
coccus 

No 

a +/- indicated that the zone-of- inhibition was not very clear.  
b weak growth was defined as very little biomass was shown on the plates.  
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Figure 5.1 Flow-chart for testing candidate CE strains co-culturing with L. 

monocytogenes in sterile compost extracts and solid compost samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

262 
 

Figure 5.2 Selection of competitive exclusion microorganisms from compost samples 

against L. monocytogenes. The isolates showed no inhibition zone on Listeria lawn (A), 

and with various sizes of inhibition zones (B). And, the selected plate showed results 

from well-diffusion results (C); well-1 showed clear zone of inhibition, whereas wells 2-5 

showed very light zones of inhibition. The negative control with sterile 0.85% saline 

didn’t have a zone of inhibition.  
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Figure 5.3 Biofilm-forming ability of L. monocytogenes strains (L1 – L10) (A) and L. monocytogenes strain control L9 and CE 

strains (D1-P15) (B) as determined by crystal violet assay. Strains labeled with square formed significantly (P < 0.05) more 

biofilm than L. monocytogenes control strain L9 did.  
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Figure 5.4 Inhibition of 3 L. monocytogenes strains at the presence of CE in 1:5 and 1:10 dairy compost extracts at 35°C and 

room temperature (RT), respectively. Data are expressed as average log CFU/ml from two separate trials. 

 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 



 

265 
 

Figure 5.5 Inhibition of 3 L. monocytogenes strains at the presence of CE in 1:5 and 1:10 poultry compost extracts at 35°C and 

room temperature (RT), respectively. Data are expressed as average log CFU/ml from two separate trials. 
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Figure 5.6 Inhibition of 3 L. monocytogenes strains at the presence of CE in dairy (A) and poultry compost (B) at room 

temperature, respectively. Data are expressed as average log CFU/g in dry weight from two separate trials. 
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 Figure 5.7 Growth rates of three-strain cocktail of L. monocytogenes strains, poultry or 

dairy CE in compost extracts. 
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CONCLUSIONS 
 

Animal waste or animal waste-based compost are commonly used as organic 

fertilizer to grow fresh-produce. To reduce harmful microorganisms, animal wastes can be 

treated by composting or other validated scientific methods. But the insufficient treatment 

may introduce pathogens, such as Salmonella spp. or L. monocytogenes to produce 

production. Physical heat treatments are commonly used to kill Salmonella in poultry litter 

with or without composting process, but the validation study is still needed for the litter 

processing industry to ensure microbial safety of their products. Further, due to the 

ubiquitous nature of L. monocytogenes, it is essential to understand the ecology of this 

pathogen where it inhabits and then develops strategies to reduce Listeria contamination. 

We thus hypothesized that the compost-adapted competitive exclusion (CE) 

microorganisms against L. monocytogenes exist in animal waste-based compost. In 

combination with the culturing method, the use of next-generation sequencing approaches 

is expected to speed up the discovery of those compost-borne CE microorganisms for 

controlling L. monocytogenes in pre-harvest environments. 

Our lab-based study revealed that that 1.2- to 2.7-log or more reductions of 

desiccation-adapted E. faecium NRRL B-2354 were equivalent to > 5-log reductions of 

desiccation-adapted Salmonella Senftenberg 775/W in poultry litter compost, depending 

on treatment conditions and compost types. The thermal processes of two poultry litter 

processing plants have been successfully validated using E. faecium NRRL B-2354 and 

presumptive indigenous enterococci. The validation results showed that Salmonella levels 
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could be reduced by at least 5-log according to the reductions of surrogate and indicator 

microorganisms.  

Based on the NGS results, the microbial compositions ad functions in compost were 

affected by the compost-related factors, but not by the introduction of L. monocytogenes. 

The interactions between L. monocytogenes and the native microbial members were 

generally limited and did not affect the dominant members of the microbial community in 

the compost ecosystem, but some discriminatory species were identified.  Additionally, we 

have demonstrated that animal waste-based compost is a promising and reliable source for 

isolation of CE microorganisms. A cocktail of CE microorganisms might be applied to the 

compost during composting or a few days prior to agricultural land application of the 

finished compost.  

In summary, we have validated current processes for physically heat-treated poultry 

litter in industry settings, and provided tools (surrogate and/or indicator microorganism for 

Salmonella, and custom-designed sampler) for litter processors to modify their existing 

process parameters to reduce the Salmonella level in physically heat-treated poultry litter 

compost, which can be used by the produce industry to grow microbiologically safe 

products. Besides, findings from NGS research confirmed that commercial compost 

products contain a diversity of microbial species including CE species. The compost-

adapted CE microorganisms can be used as biological tools to control L. monocytogenes 

contamination in produce growing and processing environments. Further studies related to 

the applications of CE strains on controlling foodborne pathogens on farm or processing 

environments are needed. The compositional and functional changes in microbial 
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communities of compost spiked with CE strains could also be investigated by metagenomic 

sequencing analysis in a field study.  
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APPENDICES 
Appendix A 

Search strings and preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) for systematic literature search 

 
Table A1 Search strings for factors influencing the survival of Salmonella or L. 

monocytogenes in animal wastes or animal waste-based compost 

PATHOGENS 

AND 

ANIMAL WASTES TYPE 

AND 

ROLE 
 Salmonella OR Animal waste OR Persistence OR 

 Listeria monocytogenes Animal manure OR Survival OR 
  Animal litter OR Growth OR 
 Animal waste-based compost  Fate OR 

 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A1 PRISMA flow diagram.  
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Additional records identified 
through other sources 

(n = 12) 

Records after duplicates removed 
(n = 617) 

Records screened 
(n = 617) 

Records excluded 
(n = 528) 

Full-text articles assessed 
for eligibility 

(n = 89) 

Full-text articles excluded, 
with reasons 

(n = 62) 

• Studies involved other 
treatments (n = 45) 

• No challenge study was 
performed directly in 
animal waste or animal 
waste based-compost (n= 
5) 

• Using surrogate or 
indicator m/o instead of 
targeted pathogens (n= 4) 

• Review articles (n= 4) 

• No quantities data on 
bacterial counts reported 
(n= 4) 

 
 
 

Studies included in 
qualitative synthesis 

(n = 27) 

Summarized in Table 1.2 
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Table A2 Search strings for the efficacy of using surrogate microorganisms to validate 

thermal inactivation of Salmonella spp. in different study matrix  

PATHOGENS 

AND 

MICROORGANISMS 

AND 

TREATMENT 
Salmonella Surrogate Thermal inactivation OR 

  Thermal treatment OR 
  Heat inactivation OR 
  Heat treatment 

 
Figure A2 PRISMA flow diagram. 
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Additional records identified 
through other sources 

(n = 3) 

Records after duplicates removed 
(n = 200) 

Records screened 
(n = 200) 

Records excluded 
(n = 133) 

Full-text articles assessed 
for eligibility 

(n = 67) 

Full-text articles excluded, with 
reasons 
(n = 35) 

• Treatment was not focused 
on physically heat (n = 16) 

• The target pathogens were 
not Salmonella (n = 4) 

• Review or Case study (n = 8) 

• Thermal inactivation data 
of Salmonella and surrogate 
were not compared in the 
same study (n = 6) 

• Only inoculation method 
was studied (n = 1) 

 
 
 

Studies included in 
qualitative synthesis 

(n = 32) 

Summarized in Table 1.4 
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Table A3 Search strings for identifying competitive exclusion strategies used to control 

major foodborne pathogens from farm to food processing plants 

PATHOGENS 

AND 

STRATEGIES 

AND 

APPLICATION FIELD 

Salmonella OR Competitive exclusion 
OR Fresh produce OR 

Listeria OR Biological control OR Crops OR 
Pathogenic E. coli Antagonistic Plant OR 
  Soil OR 

    Rhizosphere OR 
    Food processing OR 
    Food facility OR 
    Meat plant OR 
    Biofilm 

 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure A3 PRISMA flow diagram  

 

PRISMA 2009 Flow Diagram 
 

Records identified through 
database searching 

(n = 1192) 

Sc
re

en
in

g 
In

cl
u

d
ed

 
El

ig
ib

ili
ty

 
Id

en
ti

fi
ca

ti
o

n
 

Additional records identified 
through other sources 

(n = 5) 

Records after duplicates removed 
(n = 1172) 

Records screened 
(n = 1172) 

Records excluded 
(n = 1072) 

Full-text articles assessed 
for eligibility 

(n = 100) 

Full-text articles excluded, with 
reasons 
(n=68) 

• Another screen with abstract 
(n = 45) 

• CE species was not specific (n = 
3) 

• The start pathogen level was 
not provided or not enough 
control group (n = 4) 

• Bacteriocin or other extracts 
were used not specific using CE 
strains; Or the CE was not the 
major function treatment (n = 
6) 

• Full text is not in English (n = 4) 

• Only initial screen was 
performed or only provide the 
characteristics methods (n=3) 

• Isolate was sequenced only 
(n=2) 

• Patent, duplicate research 
from the published article 
(n=1) 

 

Studies included in 
qualitative synthesis 

(n = 32) 

Summarized in Table 1.5 
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