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ABSTRACT 

Nanomaterials have been used in diverse biosensing applications over the years for their 

unique properties compared to their ‘bulk’ counterparts. The quantum effects observed in 

nanomaterials of different dimensions have been exploited, in particular, for fluorescence 

sensing using surface plasmons. The present work is directed towards the understanding of 

these effects and the physics behind such plasmons and its application. 

In the first chapter (Chapter 1), a succinct introduction to quantum confinement and 

fluorescence biosensors has been presented, followed by a brief overview of the applications 

of nanomaterials in biosensing. Chapter 2 focuses on the various analytical and 

characterization techniques used in this work. Chapter 3 describes the effects of shape on the 

plasmonic enhancement in silver nanoparticles. In chapter 4, the work on the development 

of a novel bio-sensing platform (AIDLuQ) has been outlined along with its use in ultra-

sensitive detection of biomolecules. Building on chapter 4, the AIDLuQ platform was used 

for a real-life application in the detection of a cancer biomarker. This was supported with 

DFT simulations providing an insight into the electronic interactions between graphene and 

the quantum dots at the nano-scale. This has been described in chapter 5. 

These findings lay the groundwork for further in-depth research to study the linear as well as 

non-linear optical interactions in nanoparticles in the vicinity of other nanoparticles, as 

elucidated in chapter 6. 
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CHAPTER ONE 

NANOMATERIALS FOR BIOSENSING 

Nanomaterials are materials with at least one of the dimensions of the order of 1-100 nm. 

When one dimension of a ‘bulk’ material (say, thickness) is reduced to the nanoscale, the 

materials are called quantum wells. Similarly, if the materials are confined in two dimensions 

(say height and width), they resemble a wire and are hence named as quantum wires. When 

confined in all three dimensions, the nanomaterials are termed as quantum dots. The 

difference between the materials of different dimensions is depicted in Fig. 1.1. Depending 

on their chemical composition, these materials may or may not exhibit vastly different 

characteristics compared to their ‘bulk’ counterparts. For example, crystals in the nanometer 

regime may exhibit up to a 1000 °C difference in melting point compared to their bulk 

Fig. 1.1. (a) Bulk (3D) material. (b) When one dimension of this bulk material is reduced to 

the nanometer scale, it is called a Quantum Well (2D). (c) When two dimensions are reduced 

to nanometer scale, it is called a Quantum Wire (1D). (d) When all the dimensions are 

reduced to the nanometer regime, the material is now termed as a Quantum Dot (0D). 
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counterparts – a phenomenon directly related to drastic increase in surface area to volume 

ratio observed when transitioning from micro/macro-scale to nanoscale [1]. 

 

The main attraction of this field of nanotechnology is the flexibility and the potential to 

control the properties of nanomaterials (through the control of the size, shape, and 

morphology). This allows for a gamut of possibilities of applications in various fields. A 

more detailed introduction to nanomaterials can be found in Refs. [2], [3]. Some 

nanomaterials such as carbon nanotubes (CNTs), graphene, nanosized gold and silver have 

emerged as the panacea for addressing challenges in renewable energy, catalysis, lightweight 

composites etc.  

 

In this work, as described in the following chapters, I leveraged unique properties of some 

nanomaterials (specifically, CNTs, graphene, Au and Ag NPs) for developing biosensors that 

are capable of detecting a wide range of biomarkers relevant for diseases such as cancer.  

 

1.1 Fluorescence-based Biosensors 

 

Biosensors are analytical devices that quantitatively detect the presence of specific 

analytes/biomolecules. The wide use of biosensors is attributed to the fact that they can 

convert biochemical processes into a measurable signal, thus enabling the use of such 

knowledge in clinical diagnostics, agriculture etc.[4]–[6]. The field of biosensor research has 

been rapidly growing with an approximate annual growth rate of 60% [7]. The major 

contributing field to biosensor research is the healthcare industry. The classification of 
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biosensors is depicted in Fig. 1.2 [7]. Biosensors are mainly composed of two components – 

a biocomponent part and a transducer part. 

• The biocomponent part of a biosensor usually consists of a bioreceptor (e.g. an 

antibody) and a corresponding analyte (antigen that is to be detected) which is 

specific to the bioreceptor. 

• The second and very important part of a biosensor is a transducer. A transducer is a 

device that converts a physical quality, or a change thereof, to an electrical/optical 

signal. In the case of a biosensor, the transducer part coverts the biochemical signal 

arising from the interaction of the analyte with the bioreceptor into an 

electrical/optical signal. This signal is then received by a detector which gives a 

readable/quantifiable output. 

 

 

Fig. 1.2. Schematic of the classification of biosensors (DNA: Deoxyribonucleic Acid; 

SPR: Surface Plasmon Resonance; EC: Electrochemical) 
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Over the years, optical biosensors have gained immense popularity due to their small size, 

cost effectiveness and high sensitivity [7]. A large variety of optical biosensors have been 

used over this period of time including ellipsometry, spectroscopy (fluorescence, 

photoluminescence, etc.), optical waveguide structures and surface plasmon resonance 

(SPR) [8]–[10]. Chapter 2 discusses fluorescence, which is a phenomenon where a substance 

absorbs light of a particular wavelength and emits light of a different wavelength. 

Fluorescence–based biosensors are probes for the detection (or sensing) of specific bio-

analytes where the transducer converts the interaction between analyte and antibody into an 

optical signal. Most of the work in this field is focused on fluorescent probes that exhibit a 

change in their fluorescence upon binding with the target molecule.  

 

 One field of application which has benefited heavily through the use of nanomaterials is 

biosensing [11]–[14]. Nano-biosensors use unique properties of nanomaterials to facilitate 

the detection of target molecules. Nanomaterials have been used to improve 

optical/electrochemical/mechanical properties of biosensors, thus making them more 

efficient and sensitive [15], [16].  

 

1.2 Nanomaterials in Biosensors 

 

Nanomaterials exhibit unique physical, chemical and biological properties and have been 

found to result in the enhancement of mechanical, electrochemical and optical properties of 

biosensors [15]. Nanomaterials exhibit a discrete electronic band structure due to their 
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quantum size effect, which is similar to that of biomolecules [17], [18]. This similarity 

facilitates a seamless conjugation of the biomolecular systems with the nanomaterials, which 

in turn allows for the fabrication of ultrasensitive biosensors. The challenge is thus to develop 

nano-biosensors that exhibit high selectivity coupled with high sensitivity leading to highly 

efficient biomolecular sensing [19], [20]. 

 

Nanomaterials have been used in biosensors in different capacities over the years. The choice 

of nanomaterials is generally dependent on the biosensor application. Metal nanoparticles, 

carbon nanostructures (including graphene, carbon nanotubes (CNTs), etc.), magnetic 

nanoparticles, as well as other forms of nanomaterials find their use in biosensors [7]. Metal 

nanoparticles are often used for their plasmonic enhancement properties while oxide and 

semiconducting nanoparticles are used for immobilization, labeling, and tracing of 

biomolecules [21]–[23].  

 

1.2.1 Metal Nanoparticle based biosensors:  

Metal nanoparticles, mainly noble metal nanoparticles, including gold (Au), silver (Ag), 

platinum (Pt) and palladium (Pd) have been widely explored for cellular imaging, molecular 

diagnostics and therapeutics [24]–[26]. One of the main features of noble metallic 

nanoparticles is surface plasmon resonance (SPR). SPR (or localized SPR) is the 

enhancement of the local electric field by the collective oscillations of the conduction band 

electrons on the surface of metal nanoparticles. SPR enhances the electromagnetic field 

(light/fluorescence) and thus makes the optical biosensors more sensitive. This phenomenon 

has been further discussed in section 1.3. Gold nanoparticles (AuNPs) have received much 
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attention among metal nanoparticles mainly because they have high surface energy, which 

can be used to immobilize biomolecules on their surface [27]. Additionally, silver 

nanoparticles (AgNPs) have been found to increase electrochemical activity, performance 

and mass transport and exhibit excellent biocompatibility [28], [29].   

 

 

1.2.2. Nano metal-oxide based biosensors: 

The applications of nanostructured metal oxides for biosensing applications are summarized 

in Fig. 1.3. Different nano-oxides of zinc (Zn), iron (Fe), tin (Sn), magnesium (Mg), 

zirconium (Zr), titanium (Ti), etc. have been used for their different properties such as 

biocompatibility, fast electron transfer, morphology, adsorption efficiency and so on [7]. 

 

 

Fig. 1.3. Representation of different types of nanostructured metal oxides and their uses in 

biosensing applications (ChOx: cholesterol oxidase; CNT: carbon nanotube; CS: chitosan; 

HRP: horseradish peroxide; IEP: isoelectric point; IgG: Immunoglobulin G; Urs: urease) [7]. 
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For the fabrication of an efficient biosensor, a suitable nanostructured metal oxide must be 

chosen as the binding of the biomolecule on the surface of the metal oxide nanoparticle has 

been known to affect the performance of the biosensor [30].  

 

 

1.2.3. Carbon nanotube (CNT) based biosensors: 

Ever since the discovery of carbon nanotubes (CNTs) in 1991 [31], [32], CNTs have been 

studied extensively for innumerable applications [32]. Fig. 1.4(a) shows the different forms 

of carbon nanostructures. Carbon has many allotropes and exhibits different nanoscale forms 

such as zero-dimensional (carbon dots, carbon onion, fullerene C60, nanodiamonds), one-

dimensional (carbon nanotubes – single-walled nanotube (SWNT), multi-walled nanotubes 

(MWNT)) and two-dimensional (graphene, nanohorns) structures [33]. Fig. 1.4(b) shows 

how CNTs can be visualized as a rolled sheet of graphene, the two-dimensional nanostructure 

of carbon. 

 

 

 



8 
 

 

Fig. 1.4. (a) The nanostructures of carbon consisting of the well-known fullerenes (0D), 

carbon nanotubes (1D) and graphene (2D), among others [33]. (b) A simple schematic 

exhibiting the formation of a CNT from graphene. 

 

In essence, a CNT is a single molecular nanomaterial formed by the seamless rolling of a 

single layer of carbon atoms into a ‘molecular cylinder’ [34]. SWNTs exhibit either semi-

conducting or metallic nature depending upon their chirality (i.e., the direction in which a 

graphene sheet is rolled). Metallic SWNTs display extremely high electronic conductivity. 

Any change in their surface or environment can result in a drastic change in the conductivity 

– a prerequisite for any highly sensitive biosensor. CNTs are also easily functionalized with 

(or immobilization of) biomolecules, thereby providing a favorable substrate for biosensing. 

In fact, most of the work in biosensing using CNTs has been done using CNTs conjugated 

with other functional materials. Electrochemical (EC) CNT based biosensors and field-effect 

transistor (FET)-CNT biosensors are two of the most popular uses of functionalized CNTs 

for biosensing applications and have been used for the detection and quantification of cancer 

biomarkers, DNA, RNA, proteins and enzymes [35]–[41]. 
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1.2.4. Graphene based biosensors: 

Graphene, as discussed in the preceding subsection 1.2.3, is a two dimensional, one-atom-

thick layer of carbon atoms derived from graphite, the bulk (macro) form. It is the thinnest 

material known to date [42], [43]. Since it is comprised of just the one layer of carbon atoms, 

the surface area of the material available is much higher because the monolayer can be 

accessed from both the top and the bottom. This available surface area is much higher in 

graphene (>2,600 m2g-1) compared to that of a CNT (~1,315 mg-1) made up from rolling a 

graphene sheet of similar dimensions, since the inside (hollow part) of the CNT is partially 

unavailable [7]. 

 

Graphene has excellent thermal and electrical conductivity [44], [45], which is also evident 

in its exceptional promotion of electron transfer. It has been known to enhance direct electron 

transfer between enzymes and the electrodes/substrates. Graphene has also been previously 

used as a substrate in fluorescence quenching for ultrasensitive detection of aptamers [46], 

[47]. In these systems, graphene quenched the fluorescence signal due to the fluorescence 

resonance energy transfer from the fluorophore (dye) to the graphene substrate and the 

fluorescence quenching changed according to the change in the system’s conformation [48], 

[49]. A more detailed description of quenching is presented in Ch. 4. 

 

1.2.5 Quantum Dot based biosensors: 

A quantum dot (QD) is a quasi-zero-dimensional material with all three dimensions (length, 

width, and thickness) confined to nanometer size. In a macroscopic or bulk semiconductor, 

excited with light, an electron-hole pair exists with a characteristic distance of an exciton 
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Bohr radius between them. In the nano-regime, if the size of the crystals of this 

semiconductor approaches the exciton Bohr radius, then the energy levels of the electrons 

are considered to be discrete. This phenomenon of size reduction of size is ‘quantum 

confinement’ which leads to zero dimensional materials (QDs) [50], [51]. QDs primarily find 

their use in biosensors as the fluorescing molecules (fluorophores), mainly because the 

absorption spectrum of a QD is dependent on its size.  

 

QDs have numerous advantages over traditional fluorophores in that they show broad 

excitation, negligible photobleaching and high photochemical stability. In addition, the 

excitation spectrum for QDs is very broad while the emission wavelength is tunable via 

control over the size [50], [52], [53]. QDs also do not hinder Forster Resonance Energy 

Transfer (FRET). FRET is the radiationless transfer of energy from an excited fluorophore 

(donor) to another molecule (acceptor) through dipole-dipole coupling [54]. The most 

widespread of the biosensors using QDs are bioassays and bioprobes that use QDs as donors 

in FRET [54], [55]. The biorecognition agents that can be readily coupled to QDs for their 

use in biosensing are enzymes, antibodies, proteins, DNA, RNA, to name a few [56], [57]. 

 

 

1.3 Surface Plasmon Resonance (SPR) in Fluorescence Biosensors 

 

1.3.1 Fluorescence biosensors: 

Fluorescence is the emission of electromagnetic radiation (visible/invisible) of a certain 

wavelength by a molecule on excitation with a radiation of a shorter wavelength (higher 
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energy). Therefore, fluorescence is quintessentially an optical phenomenon and a 

fluorescence-based biosensor an optical biosensor. Fluorescence will be discussed in further 

detail in Chapter 2, section 2.1 of this thesis. Despite being slightly more complex and more 

expensive, optical biosensors are better suited than EC biosensors for repetitive analysis, 

real-time monitoring and for continuous measurements of molecular binding events [58]. 

The two main types of biosensors are depicted in Fig. 1.5. 

 

 

Fig. 1.5. The two main types of optical biosensors and their general mechanisms of operation. 

 

Fluorescence is one of the most popular analytical approaches often applied in medical 

testing, biotechnology and drug discovery [8], [10], [59]. One of the major reasons for this 

popularity is the fact that many chemically synthesized fluorescent probes became available 

as early as the 1980s [10], [59]. These probes are molecules that specifically bind with the 

ligand while changing their fluorescent property in the process of binding. This provided 

ease and simplicity in biosensing, which is highly desirable [60].  
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Fluorescence biosensors can be classified into label-free or label-bound sensors [61]. Fig. 

1.6 discusses the basic differences between the two types. 

 

 

Fig. 1.6. Classification of fluorescence biosensors based on the dependence on a label 

(fluorescent or otherwise) (UV: ultraviolet). 

 

Label-free fluorescence biosensors are mainly dependent on changes in optical properties of 

proteins upon binding the bioreceptor. This change is normally observed in absorbance, 

polarization, emission or luminescence decay time [60]. Label-bound fluorescence 

biosensors utilize derivatization of the proteins with a high quantum-yield fluorophore [59]. 

Quantum Yield (QY) of a fluorophore may be understood as the ratio of number of photons 

emitted by the fluorophore to the number of photons absorbed.  

 

𝑄𝑄𝑄𝑄 =  
𝑛𝑛𝑛𝑛. 𝑛𝑛𝑜𝑜 𝑝𝑝ℎ𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒
𝑛𝑛𝑛𝑛. 𝑛𝑛𝑜𝑜 𝑝𝑝ℎ𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒

(1) 
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A detailed description of QY in terms of decay rates is presented later in this section. 

Essentially, a ‘high quantum-yield’ fluorophore will have a high number of photons emitted 

per absorbed photon. These fluorophores can thus be excited with a lower energy (higher 

wavelength) light. This, in turn, allows for the control of the analytical wavelength which 

needs to be monitored for biosensing [8], [61].  

 

1.3.2 Surface Plasmon Resonance: 

Surface Plasmon Resonance (SPR) is a phenomenon of the collective oscillations of the 

valence electrons on the surface of the metal (plasmon – a quantum of plasma oscillation) 

upon excitation by an incident electromagnetic radiation [62]. In thin (~50 nm) metal films, 

the plasmons are of the propagating kind and are thus termed as surface plasmon polaritons 

[63]–[65]. However, in metallic nanostructures, where the electron clouds are bound to each 

individual particle, we observe something called localized surface plasmon resonance 

(LSPR) [66]–[68]. A schematic illustration is presented in Fig. 1.7. 



14 
 

 

Fig. 1.7. Schematic representations of (a) surface plasmon polaritons (propagating); and (b) 

a localized surface plasmon (LSPR) showing the oscillation of the electron cloud localized 

around a spherical nanoparticle [69]. 

 

1.3.2.1. A brief overview of SPR: 

The details of the derivations of the equations used in this section can be found in the work 

by Willets et al. [69]. Consider a spherical metal nanoparticle of radius ‘a’ that is exposed to 

a z-polarized light of wavelength ‘λ’ where a is significantly smaller than the incident 

wavelength, i.e., (a/λ) < 0.1 (Fig. 1.8).  
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Fig. 1.8. Schematic illustration of the case of a z-polarized light wave incident on a metal 

nanoparticle experiencing a localized surface plasmon resonance (𝐸𝐸�⃗ : electric field; 𝐵𝐵�⃗ : 

magnetic field). 

 

In this limit, the electric field around the nanoparticle appears static, thus allowing us to solve 

for the electric field using Maxell’s equations via the application of a quasi-static 

approximation [70], [71] to be: 

 

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =  𝐸𝐸0𝒛𝒛� − �
𝜀𝜀𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜
𝜀𝜀𝑖𝑖𝑖𝑖 + 2𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜

�  𝑎𝑎3 𝐸𝐸0  �
�̂�𝑧
𝑎𝑎3
−

3𝑧𝑧
𝑎𝑎5

(𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚� + 𝑧𝑧𝒛𝒛�)� (2) 

 

Here, 𝜀𝜀𝑖𝑖𝑖𝑖 is the dielectric constant of the metal nanoparticle, 𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜 is the dielectric constant of 

the outside (external environment) of the metal nanoparticle, 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 is the electric field outside 
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the nanoparticle, 𝑎𝑎 is the magnitude of the vector from the center of the nanoparticle to the 

point of observation (𝑎𝑎 < 𝑎𝑎: inside the nanoparticle; 𝑎𝑎 > 𝑎𝑎: outside the nanoparticle).  

 

The term � 𝜀𝜀𝑖𝑖𝑖𝑖−𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜
𝜀𝜀𝑖𝑖𝑖𝑖+2𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜

� determines the plasmon resonance condition for the nanoparticle as 𝜀𝜀𝑖𝑖𝑖𝑖 

is strongly dependent on the excitation wavelength. When 𝜀𝜀𝑖𝑖𝑖𝑖 ≈ −2𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜, the electric field is 

enhanced relative to the incident field [69]. Incidentally, for nanoparticles of noble metals 

such as gold (Au) and silver (Ag), this condition is easily satisfied in the visible spectrum, 

thus enabling their use in surface-enhanced spectroscopic systems. It must be noted that 

Equation (2) above also highlights the field enhancement by the nanoparticle is inversely 

related to the distance (r) from the nanoparticle. Thus, localized surface plasmon resonance 

is essentially low-dimensional phenomenon (usually, 𝑎𝑎 < 20 𝑛𝑛𝑒𝑒). In addition, the second 

term in Equation (2) is strongly dependent on the size of the nanoparticle (a) – larger the 

size, larger is the second term, thus smaller the 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜.  

 

Extinction spectrum of an object is defined as the addition of absorption spectrum of the 

object to its elastic light-scattering spectrum [69]. The extinction spectrum of a metal sphere 

is calculated using the following relation [72], [73]: 

 

𝐸𝐸(𝜆𝜆) =  
24 𝜋𝜋2𝑁𝑁𝑎𝑎3𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜

3
2

𝜆𝜆 ln(10) �
𝜀𝜀𝑖𝑖(𝜆𝜆)

(𝜀𝜀𝑟𝑟(𝜆𝜆)  +  𝜒𝜒𝜀𝜀𝑜𝑜𝑜𝑜𝑜𝑜)2 +  𝜀𝜀𝑖𝑖(𝜆𝜆)2�  (3) 

 

Here, 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑟𝑟 are the imaginary and the real part of the dielectric constant. Needless to say, 

both 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑟𝑟 are invariantly part of the term 𝜀𝜀𝑖𝑖𝑖𝑖 described earlier. Also, quite evidently, 
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both these terms are also strongly dependent on the incident wavelength of light (λ). N in the 

Equation (3) is an approximation of the number of finite polarizable elements that the 

particle in question is made of that are capable of interacting with the applied electric field E 

and χ is the extinction coefficient. 

 

The localized SPR (LSPR) extinction (or scattering) wavelength maximum, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is affected 

by the refractive index of the material (n) and its immediate surroundings. This means that if 

there is a change in the local environment which leads to a change in the refractive index of 

the metal nanoparticle, it causes a shift in 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 as well. This change, which can be in the 

form of adsorption of some species on to the surface of the material, results in a changed 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 expressed using the following relationship [74], [75]: 

 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒∆𝑛𝑛 �1 − exp �
−2𝑒𝑒
𝑙𝑙𝑑𝑑

�� (4) 

 

Here, 𝑒𝑒 is the ‘bulk’ refractive index of the nanoparticle; ∆𝑛𝑛 is the change in the refractive 

index induced by the change in the surroundings of the nanoparticles; d is the thickness of 

the adsorbed layer and 𝑙𝑙𝑑𝑑 is the exponential decay constant of the electromagnetic field [69]. 

This is the basis of the sensing experiments using LSPR which utilize the shift in the 

wavelength on the introduction of the target species. 

 

In addition to the above stipulations for the observation of SPR in nanoparticles, there are 

other conditions that need to be satisfied in order to observe SPR in thin films (or nano films) 

of metals. As discussed earlier, the real and imaginary parts of the refractive index (𝑛𝑛�) of the 
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metal plays an important part in the calculation of surface plasmons [76], [77], which are 

dependent on the extinction coefficient (χ), the dielectric constant (ε), the conductivity (σ), 

and the permeability (µ). This co-dependence can be seen through the following relations 

[78]: 

 

𝑛𝑛� = 𝑛𝑛 + 𝑒𝑒𝑖𝑖 = 𝑛𝑛(1 + 𝑒𝑒𝑖𝑖) =  �𝜇𝜇𝜀𝜀̂ (5) 

𝜀𝜀̂ =  𝜀𝜀𝑟𝑟 + 𝑒𝑒𝜀𝜀𝑖𝑖  (6) 

𝜀𝜀𝑖𝑖 =
4𝜋𝜋𝜋𝜋
𝜔𝜔

 (7) 

𝜒𝜒 =
4𝜋𝜋𝑖𝑖
𝜆𝜆

 (8) 

 

Here, 𝑛𝑛 is the real part of the refractive index, 𝑖𝑖 the imaginary part; and  𝑖𝑖 is a derivative 

form of the imaginary part of the refractive index and is called the attenuation index. The 

common configurations for the excitation of surface plasmons are shown in Fig. 1.9. In the 

Kretschman configuration [79], the incident p-polarized light passes through a prism (a dense 

dielectric medium) of refractive index 𝑛𝑛1 which is followed by generation of surface plasmon 

in a thin metal layer of thickness 𝑒𝑒 with a complex refractive index of (𝑛𝑛2 + 𝑒𝑒𝑖𝑖2). The outer 

medium is a dielectric with a refractive index 𝑛𝑛3. 
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Fig. 1.9. The common surface plasmon excitation configurations: (a) Kretschman 

configuration, in which the metal film lies between two dielectrics of refractive indices 𝑛𝑛1 

and 𝑛𝑛3; (b) Otto configuration, in which the metal film is on the ‘outside’ of two adjacent 

dielectrics of refractive indices 𝑛𝑛1 and 𝑛𝑛2; (c) a plot of intensity of reflectivity (R) with 

respect to the angle of incidence. A strong decrease in the intensity occurs at an angle called 

the critical angle (𝜽𝜽𝒄𝒄), which is due to SPR [78]. 

 

 

In the Otto configuration [80], a metal layer with a complex refractive index (𝑛𝑛3 + 𝑒𝑒𝑖𝑖3) is 

present on the ‘outside’ of two adjacent dielectrics of different refractive indices 𝑛𝑛1 and 𝑛𝑛2, 

where 𝑛𝑛2 < 𝑛𝑛1 and the thickness of the dielectric with refractive index of 𝑛𝑛2 is 𝑒𝑒. Since 𝑛𝑛2 <

𝑛𝑛1, total internal reflection (TIR) takes place at a critical angle (𝜃𝜃𝑐𝑐) and the evanescent field 
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of the incident light is absorbed by the metal layer on the outside, which excites the surface 

plasmons [78]. 

 

1.3.3 Applications of SPR in fluorescence biosensors: 

An ideal fluorophore is a molecule that absorbs a photon of a certain wavelength 𝜆𝜆1 and 

emits another photon of a higher wavelength 𝜆𝜆2, such that 𝜆𝜆1 < 𝜆𝜆2, exhibiting a high 

quantum yield (QY) while doing so. The fluorescence emission rate 𝛤𝛤𝑒𝑒𝑚𝑚 is dependent on the 

rate of excitation 𝛤𝛤𝑒𝑒𝑚𝑚𝑐𝑐, the radiative decay rate 𝛤𝛤 and the intrinsic non-radiative decay rate 

𝑖𝑖𝑖𝑖𝑟𝑟, and can be expressed as [81]: 

 

𝛤𝛤𝑒𝑒𝑚𝑚  ∝  𝛤𝛤𝑒𝑒𝑚𝑚𝑐𝑐
𝛤𝛤

𝛤𝛤 + 𝑖𝑖𝑖𝑖𝑟𝑟
 (9) 

 

It is vital to note that QY can be defined in terms of the radiative and non-radiative decay 

rates as: 

 

𝑄𝑄𝑄𝑄 =  
𝛤𝛤

𝛤𝛤 + 𝑖𝑖𝑖𝑖𝑟𝑟
 (10) 

 

QY is usually in the range of 0.5 – 0.9 the lifetime (𝜏𝜏), which is expressed as 𝜏𝜏 =  1
𝛤𝛤+𝑘𝑘𝑖𝑖𝑛𝑛

, 

generally lies in between 1 – 10 ns for the most commonly used organic chromophores [81]. 

 

As is evident from Equation (9), the rate of emission of the fluorophore is directly 

proportional to the excitation rate. This rate of excitation 𝛤𝛤𝑒𝑒𝑚𝑚𝑐𝑐 is, in turn, proportional to the 
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intensity of the electromagnetic field used for excitation of the fluorophore. By placing the 

fluorophore within the limits of surface plasmon enhanced field, 𝛤𝛤𝑒𝑒𝑚𝑚𝑐𝑐 can be increased 

significantly, which leads to the enhancement of the emission rate 𝛤𝛤𝑒𝑒𝑚𝑚, and thus, the emission 

intensity of the fluorophore [81]. 

 

On placement of a fluorophore in close proximity to a plasmonic thin film, a strong coupling 

of the emitted light from the fluorophore to the surface plasmons is observed for distances 

up to a few hundred nanometers from the metal surface [82]. The advantage of such a 

coupling of fluorescence emission surface plasmon is that it provides a highly directional 

fluorescence emission [81]. In addition, this coupling allows for orders of magnitude of 

increase in the fluorescence signal [83]. Thus, SPR has been found to be immensely useful 

in fluorescence biosensing for ultrasensitive detection of biomolecules and other biological 

entities. 
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CHAPTER TWO 

CHARACTERIZATION AND ANALYTICAL METHODS 

‘Characterization’ is a broad term referred to the analysis and quantification of the physical 

and chemical properties of materials. Characterization of materials can involve either of the 

macroscopic or microscopic properties and is a powerful tool in understanding the science 

behind processes in these domains. Characterization techniques can usually be divided into 

three major categories as highlighted by Fig. 2.1: (i) Microscopic techniques, (ii) 

Spectroscopic techniques, and (iii) Macroscopic analysis techniques. 

 

 

Fig. 2.1. The most popular forms of materials characterization and analysis tools and 

techniques. 
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Microscopic techniques are generally centered around the ‘visual’ characterization of 

materials. Optical microscopy techniques use light-based microscopes to get microscopic 

images of the size and shape of materials in the microscopic domain. The most common 

example is the imaging/visualization of stained and unstained cells and cell organelles. 

Electron microscopy techniques (scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), scanning tunneling microscopy (STM)) use the diffraction, 

scattering and tunneling of electrons to provide information about the size, shape and 

morphology of nanomaterials. Similarly, atomic probe microscopy (APM) and atomic force 

microscopy (AFM) probe the surface features of materials at the nano scale. 

 

Spectroscopy is associated with light-matter interaction, i.e., absorption, scattering or 

emission (spontaneous or induced) of electromagnetic radiation by matter (atoms or 

molecules) [84]. This electromagnetic radiation can be of different wavelengths including 

infrared (IR), ultraviolet (UV), visible range, X-rays, gamma radiation, etc. The output from 

the detector after any event of light-matter interaction is known as the spectrum and this 

spectrum helps in understanding the physical and chemical components (and/or reactions) of 

a system. A spectrum is generally specific to a certain element/compound and is thus useful 

for elemental and chemical composition analysis. For example, the Raman spectrum has 

specific peaks for specific types of phonons – which in turn are specific to an element or a 

compound. Thus, the peaks of the Raman spectrum of an unknown sample can be analyzed 

to discover its identity. 
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In addition to the microscopic and spectroscopic methods of analysis, we also use the 

macroscopic forms of analysis. It must be noted that these macroscopic forms of analysis are 

not size-dependent – they apply to microscopic and macroscopic (or bulk) materials alike. 

These techniques have more to deal with the macroscopic properties of substances, for 

example, differential scanning calorimetry (DSC) is used for the determination of heat 

capacity of an unknown (or known) sample, regardless of whether the substance is in bulk 

form of nano. 

 

This chapter will mainly focus on some spectroscopic and microscopic techniques that were 

used in the chapters to follow. A brief overview is provided of the physical principles of each 

of the methods/techniques used followed by their instrumentation. In section 2.1, 

Fluorescence spectroscopy is discussed, followed by Raman spectroscopy in 2.2, Scanning 

Electron Microscopy (SEM) in 2.3 and Transmission Electron Microscopy (TEM) in 2.4. 

 

2.1 Fluorescence Spectroscopy 

 

The phenomenon of fluorescence is schematically demonstrated using a simple Jablonski 

diagram in Fig. 2.2. A Jablonski diagram is a form of representation of electronic transitions, 

first developed by A. Jablonski [85]. The diagram demonstrates the pathway of a ground-

state electron as it absorbs a photon, goes to an excited electronic state and then returns back 

to the ground state as it releases energy in emissive and/or non-emissive processes. 
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Fig. 2.2. A Jablonski diagram featuring the electronic transitions in fluorescence. 

 

The phenomenon may be described as follows: 

• An electron in the S0 ground singlet electronic level absorbs the energy (𝐸𝐸 = ℎ𝜗𝜗) 

from a photon of wavelength 𝜆𝜆 (and frequency 𝜗𝜗; 𝜗𝜗 = 𝑐𝑐/𝜆𝜆, where 𝑐𝑐 is the speed of 

light in  vacuum). A singlet state is the electronic state of a molecule wherein all the 

electrons are paired, thus leaving the net angular momentum to be zero. 

 

• This absorption of energy takes the electron to a higher (excited) energy state S1. This 

excited molecule then dissipates part of its energy to return to the lowest energy state 

of the excited state S1. This transition happens via the release of energy through non-

radiative means such as lattice vibrations, heat dissipation, etc.  
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• The molecule then undergoes emissive transition, wherein it emits a photon and 

‘relaxes’ back to the ground state S0. Since some of the energy was lost in the non-

radiative processes, the energy (ℎ𝜗𝜗′) of this emitted photon is lesser than the energy 

of the excitation (incident) photon (ℎ𝜗𝜗). This also means that the wavelength (𝜆𝜆) of 

the emission is longer than the wavelength (𝜆𝜆′) of excitation.  

 

The excited molecule can also transfer some of its energy to the molecules nearby (called 

collisional quenching) or to molecules at some distance (energy transfer) thereby exhibiting 

no fluorescence at all. Another common scenario is for molecules to jump from the lowest 

energy state of the excited state S1 to an excited triplet state T1, with energy lower than S1. 

This phenomenon is called inter-system crossing. A triplet state is one in which there are 

two unpaired electrons – an excited triplet state is extremely unstable energetically. In the 

case that the molecule goes to this unstable triplet state, it will de-excite through the 

following mechanisms to get to the ground state: 

• Emission of a photon of an even smaller frequency (𝜗𝜗′′;  𝜗𝜗′′ < 𝜗𝜗′ < 𝜗𝜗) through a 

process known as phosphorescence. 

 

• Non-radiative dissipation of energy in the form of heat, lattice vibrations, etc. 

 
• Transfer of energy through quenching or energy transfer. 
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In both these processes, the common factor is that both emission wavelengths seem to have 

‘shifted’ to the right, i.e., the emission wavelengths are longer than the excitation wavelength. 

This shift of emission with respect to the excitation wavelength is called a red shift or, more 

formally, a Stokes shift. A typical fluorescence spectrum in comparison to the incident 

radiation is shown in Fig. 2.3. 

 

Fig. 2.3. A normalized spectrum of (a) excitation and (b) emission fluorescence of 7-amino-

4-methylcoumarin-DEVD complex (DEVD: Aspartic Acid – Glutamic Acid – Valine – 

Aspartic Acid) [86].  
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2.1.1. Instrumentation (Spectrofluorometer): 

 

Fig. 2.4. A schematic diagram of the instrumentation of a spectrofluorometer [87]. (EX: 

excitation spectrum; EM: emission spectrum). 

 

The schematic illustration of a typical spectrofluorometer is shown in Fig. 2.4. The light 

source (a Xenon arc lamp in this example) is used such that it acts as a source with high 

intensity light over a range of wavelengths. This light then passes through an ‘excitation 
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monochromator’ which helps in resolution of wavelengths. The light then passes through a 

shutter, which helps in reduction of stray light entering the chamber with the sample in it. 

The beam splitter reflects ~ 4% of the incident light on to a reference cell which contains a 

stable reference fluorophore. The emission from this reference cell is measured using a 

photomultiplier tube (PMT) detector. 

 

The light that passes through (without reflection) the beam splitter then goes through a 

polarizer (optional; used in specific cases) before impinging on the sample in the sample 

chamber. The emitted photons from the sample go through a filter (for removal of the 

excitation wavelength from the collected light), followed by an ‘emission monochromator’ 

and are finally detected by another PMT. 

 

Recent trends are based on movement towards a more compact form of spectrofluorometers. 

For example, the Xenon arc lamp and the ‘excitation monochromator’ can both be replaced 

with a laser which ensures wavelength control and polarized, coherent light with high 

intensity. The ‘emission monochromator’ can also be removed from the system and just 

filters (band pass, high/low pass, etc.) are used to remove the unwanted wavelengths, 

including the excitation laser wavelength. This allows for a much simpler form of 

instrumentation, which can be visualized as shown in Fig. 2.5. 
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Fig. 2.5. Simplified schematic illustration of the a spectrofluorometer that uses a laser as the 

light source. The filter weeds out the elastically (Rayleigh) scattered radiation, which is of 

the same wavelength as the incident radiation (blue color waves in the figure) and allows 

only higher wavelengths (red) to pass through, which are picked up by the detector. 

 

2.2 Raman Spectroscopy 

 

Raman effect is the phenomenon of inelastic scattering of light by matter. This effect was 

discovered by Sir C. V. Raman in 1928 [88], [89], at a time when limited instrumentation 

was available. He used sunlight as the light source, a telescope as the collector and his eyes 

as the detector [90]. What makes this discovery ever so remarkable is that it is an extremely 

feeble phenomenon to detect – one in every ~ 105 photons undergo Raman scattering [90]. 
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Fig. 2.6 shows the energy levels of the simple example of a diatomic molecule including the 

transitions it undergoes upon absorption of energy. 

 

 

Fig. 2.6. Energy levels and transitions of a diatomic molecule (the spacings between the 

levels may have been modified for better visualization) [90]. 
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In a molecule with two or more atoms, there is splitting of the energy levels and thus we end 

up with each electronic state having several vibrational states associated with it and each 

vibrational state having a few rotational states associated with it. As discussed in section 2.1, 

a purely electronic transition on the absorption of a photon is responsible for fluorescence 

and phosphorescence. A molecule may also absorb some energy from a photon and undergo 

a purely vibrational or a purely rotational transition. The energy (wavenumber) range 

associated with different types of spectroscopies and the types of energy transitions are listed 

in Table 2.1. Wavenumber (�̅�𝜗) is a quantity associated with electromagnetic radiation and is 

defined mathematically as 

 

�̅�𝜗 =  
1
𝜆𝜆

 (11) 

 

Here, 𝜆𝜆 is the wavelength of the electromagnetic radiation in question. But, the quantity 𝜆𝜆 is 

related with the frequency (𝜗𝜗) of the radiation via the expression 𝜆𝜆 = 𝑐𝑐/𝜗𝜗 (or, 𝜗𝜗 = 𝑐𝑐/𝜆𝜆). 

Thus, we can relate the frequency to the wavenumber as follows: 

 

𝜗𝜗 =
𝑐𝑐
𝜆𝜆

= 𝑐𝑐�̅�𝜗 (12) 
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The quantity �̅�𝜗 (= 1/𝜆𝜆) has the units of cm-1. From the Equation 12, it can be seen that a 

simple constant of proportionality (𝑐𝑐) relates the wavenumber and the frequency. Hence, 

frequency and wavenumber are generally used interchangeably.  

 

 

Table 2.1. Spectral techniques, their frequency (wavenumber) ranges and their origins [90]. 

 

Both Raman and infrared (IR) spectroscopy are associated with the vibrational level 

transitions, although IR spectroscopy also allows for the study of rotational transitions. If the 

frequency of the laser beam incident on the sample is 𝜗𝜗0, we observe frequencies 𝜗𝜗0 ± 𝜗𝜗𝑚𝑚 

as the Raman-scattered radiation, where 𝜗𝜗𝑚𝑚 is the molecular vibrational frequency. This 

vibrational frequency (𝜗𝜗𝑚𝑚) is measured in Raman spectroscopy as a shift from the incident 
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laser frequency (𝜗𝜗0). For general applications, this excitation frequency 𝜗𝜗0 is chosen such 

that its energy is significantly lower than the electronic excited state. 

 

It must be noted that not all materials exhibit the Raman effect. Classical theory offers an 

explanation as to what materials are Raman active. Essentially, all materials that are not 

Raman active are Raman inactive. The electric field (𝐸𝐸) of the laser beam as a function of 

time (𝑜𝑜) is expressed as [90] 

 

𝐸𝐸 =  𝐸𝐸0 cos 2𝜋𝜋𝜗𝜗0𝑜𝑜  (13) 

 

Here, 𝐸𝐸0 is the amplitude of the electric field and 𝜗𝜗0 is the incident laser frequency. For a 

diatomic molecule, this electric field induces an electric dipole moment (𝑃𝑃), which is 

proportional to the applied electric field such that 

 

𝑃𝑃 =  𝛼𝛼𝐸𝐸 =  𝛼𝛼𝐸𝐸0 cos 2𝜋𝜋𝜗𝜗0𝑜𝑜  (14) 

 

where 𝛼𝛼 is the constant of proportionality between 𝑃𝑃 and 𝐸𝐸, and is called the polarizability 

of the molecule. The molecule vibrates on exposure to this time-dependent electric field. Let 

the frequency of the molecular vibration be 𝜗𝜗𝑚𝑚. The vibration also causes a small 

displacement (𝑞𝑞) of the nucleus, which is written as 
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𝑞𝑞 = 𝑞𝑞0 cos 2𝜋𝜋𝜗𝜗𝑚𝑚𝑜𝑜  (15) 

 

Here, 𝑞𝑞0 is the amplitude of vibration of the nucleus. For a relatively small vibrational 

amplitude, 𝛼𝛼 is a linear function of 𝑞𝑞 and is expressed as 

 

𝛼𝛼 =  𝛼𝛼0 + �
𝑒𝑒𝛼𝛼
𝑒𝑒𝑞𝑞�0

+  .  .  .  (16) 

 

where 𝛼𝛼0 is the polarizability at equilibrium and �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0
is the rate of change of polarizability 

with respect to the nuclear displacement at equilibrium. Combining Equations 14, 15 and 

16 and solving for 𝑃𝑃, we get the following expression: 

 

𝑃𝑃 = 𝛼𝛼0𝐸𝐸0 cos 2𝜋𝜋𝜗𝜗0𝑜𝑜 +
1
2

 �
𝑒𝑒𝛼𝛼
𝑒𝑒𝑞𝑞�0

𝑞𝑞0𝐸𝐸0[cos{2𝜋𝜋(𝜗𝜗0 + 𝜗𝜗𝑚𝑚)𝑜𝑜} + cos{2𝜋𝜋(𝜗𝜗0 − 𝜗𝜗𝑚𝑚)𝑜𝑜}] (17) 

 

The first term in the above expression is an oscillating dipole radiating light of frequency 𝜗𝜗0 

(elastic scattering). The second and third terms are the inelastic (Raman) scattering of light 

with frequencies 𝜗𝜗0 + 𝜗𝜗𝑚𝑚 (anti-Stokes) and 𝜗𝜗0 − 𝜗𝜗𝑚𝑚 (Stokes), respectively. For a molecule 
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(or material) to be Raman active, the term  �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
0
must be a non-zero number, thus leading to 

inelastic scattering of light. 

 

2.2.1 Instrumentation (Raman Spectrometer): 

In Raman Spectroscopy, a sample is usually exposed to a laser beam and the Raman spectrum 

is either obtained at a 90° angle or a 180° angle. A schematic representation of a typical 180° 

collection angle Raman spectrometer is shown in Fig. 2.7. 

 

 

Fig. 2.7. A schematic representation of a Raman spectrometer. 

 

The sample is irradiated with a laser beam usually in the UV/Vis (ultraviolet/visible) 

wavelength region after the beam is reflected by the beam splitter on to a lens which focuses 



37 
 

it on the sample. The configuration depicted in Fig. 2.7 involves collection of the scattered 

radiation at an angle of 180° with respect to the incident radiation – this is equivalent to 

collection of photons reflected from the sample. This reflected beam, which mainly consists 

of Rayleigh scattered radiation, then passes through the beam splitter and then a notch filter. 

A notch filter blocks a narrow range of frequencies while allowing all others to pass through. 

For application in a Raman spectrometer, the notch filter is normally chosen so as to block 

the wavelength of the laser beam used. The filtered radiation containing only the Stokes and 

anti-Stokes wavelengths is wavelength resolved using a grating and collected by a CCD 

detector. 

 

A typical Raman spectrum of carbon tetrachloride (CCl4) is shown below in Fig. 2.8. There 

are some general rules that apply to relative Raman band intensities [91]: 

• The intensity of a Raman band is more for a stretching mode as compared to one 

which is mainly an angular deformation mode. 

 

• In a stretching mode, higher the bond order, higher the intensity. For example, a 

double bond stretching yields higher intensity than a single bond involving the same 

constituent atoms (e.g., C = C vs. C – C). 

 
• For bond-localized modes, the intensity is directly proportional to the atomic numbers 

of the atoms involved in the bond. 
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• If two stretching modes are present, the mode in which the bonds stretch in phase 

produces a higher Raman intensity as compared to the one in which the bonds stretch 

out of phase with one another. 

 
• In cyclic molecules (for example, benzene), the ‘breathing’ modes yield the highest 

intensities. 

 

Fig. 2.8. Raman Spectrum of carbon tetrachloride (CCl4) showing the Stokes and anti-Stokes 

scattering bands along with the Rayleigh band. As expected, the Stokes (lower energy) bands 

have higher intensities (energetically more favorable). 
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Needless to say, the Raman spectrum of a particular molecule is its signature spectrum, 

meaning that the peak positions in the Raman spectrum of a molecule are specific to that 

molecule. Therefore, Raman spectroscopy is an excellent analytical tool – if we were given 

an unknown Raman active substance, a simple Raman spectrum obtained for the material 

would reveal its identity. 
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CHAPTER THREE 

SHAPE DEPENDENT FLUORESCENCE ENHANCEMENT IN SILVER 

NANOPARTICLES 

Bipin Sharma et al., “Silver Nanodiscs for Enhanced Fluorescence Emission”, Journal of 
Physical Chemistry C, 123, 49 (2019): 29811-29817. Reproduced in part with permission 
from ACS Publications. 

 

3.1 Introduction 

Fluorescence is widely used in many biosensing applications such as the quantification of 

disease markers, protein activity, cytokine and small molecule signals [92]–[101]. 

Accordingly, concerted efforts have been devoted towards achieving strong enhancements 

in fluorescence to improve the detection sensitivity of biomarkers [93], [96], [102]. The 

strong interactions between light and metallic nanostructures have been used to enhance 

fluorescence emission intensities by, increasing fluorescence absorption, raising quantum 

yield (QY), increasing the radiative decay rate to allow faster cycling, tuning the far field 

fluorescence angular distribution, and increasing the number of photons emitted before 

photobleaching. For instance, silver and gold nanoparticles (Ag and Au NPs) have been 

widely used for improving the limits of detection through surface plasmon resonance (SPR) 

and surface plasmon coupled emission (SPCE) [103]–[105]. Metallic NPs alter fluorescence 

emission by influencing: A) the incident excitation field and B) the radiative and non-

radiative decay rates of dye molecules [106]. In the case of single-molecule fluorescence 

[106], these competing effects (A and B) have been experimentally shown to result in either 

fluorescence enhancement or quenching depending on the separation distance between dye 
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molecules and NPs. Here, we posit that the NP shape can be tuned to synergistically combine 

effects A and B to achieve high fluorescence enhancements in an ensemble of dye molecules. 

Specifically, we show that the fluorescence emission from Rhodamine B (RhB) is enhanced 

by >30 fold (with respect to RhB on bare glass) in the presence of Ag nanodiscs due to a 

simultaneous increase in the excitation intensity and photonic mode density. On the other 

hand, the fluorescence emission from RhB on polyhedral Ag NPs was at least ~2 times 

weaker compared to RhB on Ag nanodiscs.  

 

As mentioned earlier, plasmonic nanostructure assemblies enable modified light-matter 

interactions for a macroscopic ensemble of emitters by altering their emission rates or 

quantum yields. Although free space electromagnetic vacuum fluctuations are only 

dependent on fundamental physical constants, their photonic mode density or the local 

density of states is influenced by the surrounding material environment [107]. The total 

Hamiltonian of a dye under an excitation may be expressed as 𝐻𝐻0 + 𝐻𝐻𝐸𝐸𝑚𝑚𝑐𝑐, where 𝐻𝐻0 is the 

unperturbed Hamiltonian of the dye and  𝐻𝐻𝐸𝐸𝑚𝑚𝑐𝑐 is a time-dependent perturbation from the 

excitation. From here, one can obtain the radiative decay rate (γ) through the Fermi golden 

rule. However, in the presence of NPs, the photonic mode density is altered and thus an extra 

term 𝐻𝐻𝑆𝑆𝑒𝑒𝑐𝑐  is necessary in the Hamiltonian. Thus, the total Hamiltonian in the presence of the 

nanoparticle becomes 𝐻𝐻0 + 𝐻𝐻𝐸𝐸𝑚𝑚𝑐𝑐 + 𝐻𝐻𝑆𝑆𝑒𝑒𝑐𝑐. While it is difficult to use a complete quantum 

electrodynamic treatment to address complex geometries of nanoparticles, other techniques 

such as local Langevin quantization [107] are often used to describe the effects of 𝐻𝐻𝑆𝑆𝑒𝑒𝑐𝑐. In 

this approach, photonic mode density is directly proportional to the imaginary part of the 

corresponding classical electromagnetic Green's function. Often, the observation of 
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fluorescence enhancement or increased quantum yield is attributed to changes in lifetime or 

radiative decay rate. However, it should be noted that QY and radiative decay rate are not a 

cause and effect pair, but both are effects caused by  𝐻𝐻𝑆𝑆𝑒𝑒𝑐𝑐. Here, by combining the Langevin 

quantization approach with detailed finite-element simulations, which account for incident, 

scattered, and dipole radiated electric fields, we show that the enhancement is strongly 

dependent on the orientation of RhB dipole relative to Ag NPs and nanodiscs. The observed 

increase in RhB emission on Ag nanodiscs is explained in terms of the nanodisc’s scattering 

spectrum red-shifting towards the RhB emission wavelength, which results in an increased 

local electric field and higher photonic mode density for Ag nanodiscs. Using atomic force 

microscopy, hyperspectral imaging, fluorescence spectroscopy, and finite-element 

simulations, we show that the photonic mode density is dependent on the NP shape.  

 

Fig 3.1. (a) and (b) show transmission electron microscopy images of (a) unpunched and (b) 

punched Ag NPs subjected to 50 N force (scale bar: 50 nm). A home-built puncher with a 

Teflon mandrel was used for mechanically deforming Ag NPs (c). Zoomed-in AFM images 
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of (d) unpunched Ag NPs and (e) punched Ag NPs (@50N) exhibiting a circular shape with 

a reduced height for the latter. The insets in panels (d) and (e) show the height profiles, which 

correspond to 114.0 and 87.7 nm.  

 

3.2 Materials and Methods 

3.2.1 Synthesis and characterization of Ag NPs: 

To evaluate the effects of nanostructure morphology on RhB emission, polyhedral Ag NPs 

were first prepared via a previously established method by Chumanov et al. [108] Briefly, a 

saturated aqueous Ag2O suspension (99.99%, Alfa-Aesar) was reduced by infusing hydrogen 

(ultrahigh purity) at ~73°C until a faint yellow color was observed indicating the formation 

of colloidal Ag NPs. The as-prepared Ag NPs were characterized using transmission electron 

microscopy (TEM, Hitachi 9500) and were found to exhibit a polyhedral single crystal 

morphology having corners, as shown in Fig. 3.1 (a). Atomic force microscope (AFM) 

imaging was performed using AIST-NT SPM Smart system. The AFM probes 

(HQ:NSC14/Al BS-50) were purchased from Micromasch, and AIST-NT image analysis and 

processing (Version 3.3.105ex1) software was used for AFM topographic image analysis. 

The Ag NPs were then coated onto microscope slides.  

 

3.2.2 Preparation of PVP- and Ag NP- coated glass slides: 

Bare glass-microscope-slides (25 𝑒𝑒𝑒𝑒 × 15 𝑒𝑒𝑒𝑒 × 1 𝑒𝑒𝑒𝑒) were functionalized with a 

polyvinyl pyrrolidone (PVP) layer (~10 nm) by submerging them in a 0.01 wt. % PVP-
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ethanol solution for 4 hours. Following rinsing and drying, PVP functionalized slides were 

immersed into the synthesized Ag NP suspension under constant agitation for ~10 hours. 

This step facilitated the chemisorption of Ag NPs that form bonds with the lone-pair electrons 

on the pyridyl ring of PVP coated on the slides.  

 

3.2.3 Preparation and characterization of Ag nanodiscs: 

Ag nanodiscs were prepared using a home-built puncher (discussed in Fig. 3.1 (c)). For the 

puncher, a 12 V DC stepper motor (Zheng motors, ZYTD520 3500 r/min) was used to deliver 

mechanical force through the puncher (Fig 3.2). The as-prepared Ag NPs were subjected to 

different punching forces (16, 33, and 50 N) using the Teflon puncher to obtain Ag nanodiscs. 

The effect of nanoparticle morphology on fluorescence emission was studied by uniformly 

spin coating (3000 rpm for 60 s to form a ~30 nm overcoat) RhB fluorophore (1 µM- 1 mM) 

on glass slides containing both punched and unpunched Ag NPs. The fluorescence spectra 

of RhB molecules were collected using a Renishaw inVia micro-Raman spectrometer with a 

532 nm laser excitation from multiple spots (n > 5) and averaged to account for possible 

heterogeneity in coating. A dark-field transmission optical microscope equipped with the 

CytoViva hyperspectral imaging system (Cytoviva HSI, Auburn, AL) was employed to 

obtain high-resolution scattering spectra from Ag NPs and 50 N punched Ag nanodiscs. 
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Fig 3.2. A schematic of the home-built Teflon puncher used in this study. 

 

3.3 Results and Discussion 

3.3.1 Experimental observations: 

Previously, Qian et al. [109] used classical Mie theory with size and strain-corrected 

dielectric functions to show that mechanical strain leads to substantial enhancements in the 

absorption and scattering maxima of Au NPs in addition to a significant shift in their plasmon 

resonance wavelength. Similarly, Ameer et al. [110] showed that surface plasmon resonance 

can be red-shifted by mechanical deformation. Building on these works, we used a new 

scalable method to create arrays of Ag nanodiscs by applying transverse force on polyhedral 

Ag NPs using a home-built Teflon puncher (see Fig. 3.1 (c)). To alter the NP shape, the 

glass-slides coated with Ag NPs were deformed through the application of a transverse 

mechanical force using a motorized Teflon coated circular puncher (automated to deliver 

force at 2 Hz) with a radius of ~1 cm. As the force was applied only over a part of the slide 
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(corresponding to the puncher area ~3.14 cm2), we were able to prepare both as-prepared Ag 

NPs (in the unpunched regions) and Ag nanodiscs (punched regions) on the same glass slide. 

The as-prepared Ag NPs were found to be mechanically deformed to nanodiscs upon 

subjecting them to a force of 50 N (Fig. 3.1 (b)). While unpunched Ag NPs displayed sharp 

edges (Fig. 3.1 (a)), punched Ag NPs subjected to 50 N force exhibited a smooth circular 

boundary (Fig. 3.1 (b)) in TEM studies. The lateral size of unpunched (105±10 nm) and 50 

N punched NPs (113±10 nm) gleaned from TEM images was consistent with the deformed 

particles exhibiting slightly larger diameters. Considering that TEM is more reliable for 

measuring the lateral size, we conducted AFM to understand the effects of applied force on 

the NP height. The unpunched Ag NPs showed an average height of ~114 nm (Fig. 3.1 (d)) 

that is very similar to their lateral size (~105 nm) suggesting that they are nearly spherical 

with an aspect ratio (diameter/height) of ~0.95. On the other hand, the 50 N punched Ag NPs 

exhibited a smooth circular boundary with a height ~88 nm (Fig. 3.1 (e)) that is significantly 

lower than their lateral size (113±9 nm). This is indicative of a flattened sphere or ‘disc’ 

shaped morphology with an increased aspect ratio of ~1.34. A schematic of the home-built 

Teflon puncher used in this study is shown in Fig. 3.2. We studied the influence of applied 

force on particle morphology, as shown in Fig. 3.3. We prepared punched Ag NPs of 

different heights (106±10, 99±12, and 88±10 nm) and different lateral sizes (106±10, 

108±10, and 113±10 nm) by subjecting as-prepared Ag NPs to different forces (16, 33, and 

50 N). The heights and lateral sizes for all punched Ag NPs are listed in Table 3.1. It should 

also be noted that we did not observe any significant changes in the interplanar spacing of 

crystal planes in unpunched and punched Ag NPs even at 50N, as shown in Fig. 3.4.  
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Fig.  3.3. AFM topographic images for (a) as-prepared Ag NPs and (b-d) Ag NPs subjected 

to a 16, 33, and 50 N force, respectively. The numbers in the inset indicate the average height. 

While Ag NPs subjected to 16 N force (106±10 nm) did not exhibit a significant change in 

their height compared to as-prepared Ag NPs (114±9 nm), Ag NPs subjected to 33 and 50 N 

displayed a height (99±12 nm and 88±10 nm) that is significantly lower than their lateral size 

(113±10 nm). The heights and lateral sizes for all punched Ag NPs are listed in Table 3.1.  

 

Table 3.1. Heights and lateral sizes for Ag NPs subjected to different forces 
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Fig. 3.4. (a, c) High-resolution TEM images of unpunched and 50 N punched Ag NPs and 

(b, d) their corresponding selected area electron diffraction pattern obtained at 300 kV with 

a camera length of 0.25 m. No significant difference was observed in the interplanar spacing 

(0.14 nm for unpunched vs. 0.15 nm for punched, which is within error limits).  
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3.3.2 Theoretical explanation of experimental results: 

It is well known that any change in the size or shape of metallic NPs drastically alters their 

optical and plasmonic properties [108]. Fig 3.5 (a) shows a dark-field image of the substrate 

containing both unpunched (i.e., as-prepared) and 50 N punched Ag NPs. While the blue-

region represents the unpunched portion of Ag NPs, the reddish tinge arises due to the 

presence of punched Ag nanodiscs. The scattering spectrum (Fig. 3.5 (b)) of deformed Ag 

nanodiscs (peak at ~600 nm with a width ~180 nm) red-shifted with respect to that of as-

synthesized polyhedral Ag NPs (peak at ~530 nm with a width ~150 nm), which is attributed 

to the increased aspect ratio from 0.95 (unpunched) to 1.34 (50 N punched Ag nanodiscs).  

 

 

Fig. 3.5. (a) A dark field image showing unpunched (blue) and punched (red) regions of the 

glass substrate; (b) corresponding red-shifted scattering spectra acquired from Cytoviva 

optical microscope; and (c) COMSOL simulations showing a red-shift in the extinction 

spectra from unpunched Ag NPs to punched Ag nanodiscs. 
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To better understand the effects of mechanical deformation, we simulated the extinction 

spectrum of Ag NPs and nanodiscs (with the observed experimental sizes) by numerically 

solving the Helmholtz wave equation for the total electric field in the full field formulation 

with a plane wave incidence using COMSOL Multiphysics finite element method (Fig. 3.5 

(c)). Permittivity values for silver were adopted from Johnson and Christy’s work [111]. The 

simulations confirmed that the higher aspect ratio of Ag nanodiscs changes the frequency 

dependence of the scattered E-field leading to an upshifted peak in their extinction spectrum.  

 

The effect of nanoparticle morphology on fluorescence emission was studied by uniformly 

spin coating (3000 rpm for 60 s to form a ~30 nm overcoat) RhB fluorophore (1 µM- 1 mM) 

on glass slides containing both unpunched and punched Ag NPs (obtained using 16, 33, and 

50 N punching force). Fig. 3.6 shows the fluorescence intensity of RhB (1 mM) on 

unpunched Ag NPs, 50 N punched Ag nanodiscs, and a plain glass-slide. The emission from 

RhB coated on a plain glass-slide served as the control. Clearly, RhB emission on both 50 N 

punched Ag nanodiscs and unpunched Ag NPs produced high signal enhancements over the 

control. While unpunched Ag NPs exhibited ~15-fold enhancement, 50 N punched Ag 

nanodiscs showed even higher enhancements ~33-fold with respect to the control and ~2.2-

fold with respect to unpunched Ag NPs. 
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Fig. 3.6. Fluorescence spectrum of Rhodamine B (1 mM) on a plain glass slide, unpunched 

Ag NPs, and 50 N punched Ag nanodiscs. The RhB fluorescence spectrum on unpunched 

Ag NPs and punched Ag nanodiscs was found to exhibit 15-fold and 33-fold enhancement 

relative to the control spectrum on a plain glass slide.  

 

Similar enhancements were observed at different RhB concentrations ranging from 1 µM-1 

mM for 50 N punched Ag nanodiscs (Fig. 3.7 (a)). We performed similar studies on 16 and 

33 N punched Ag nanodiscs. Not surprisingly, as shown in Fig. 3.7 (b), the enhancement for 

16 and 33 N punched Ag nanodiscs with respect to unpunched Ag NPs was lower compared 

to 50 N punched Ag nanodiscs because they were not completely deformed.  Indeed, there 

was no discernible difference between RhB intensity on unpunched Ag NPs and 16 N 

punched Ag NPs (Fig. 3.7(b); enhancement factor for 16 N force is 1.0). Such a result is 

attributed to the lack of any significant change in the aspect ratio of Ag NPs upon punching 
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at 16 N (cf. Fig. 3.3 and Table 3.1). On the other hand, the higher enhancements observed 

for 33 and 50 N Ag nanodiscs may be rationalized through the following analysis.  

 

 

 

Fig. 3.7. (a) Fluorescence spectrum of RhB on 50 N punched Ag nanodiscs at different 

concentrations; (b) Enhancement factor (defined as the enhancement in the intensity of RhB 

fluorescence with respect to unpunched Ag NP at 1 mM) for different punched Ag nanodiscs. 

While Ag NPs subjected to 16 N force did not show any change compared to unpunched Ag 

NPs, 33 and 50 N punched Ag NPs showed ~2.0 and 2.2-fold enhancement relative to 

unpunched Ag NPs. The x-axis label shows the heights in parentheses for each force.  

 

In a simplified NP-dye model, the presence of NPs in the vicinity of dyes is known to change 

the frequency (𝜔𝜔) dependent radiation field 𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑐𝑐(𝜔𝜔) due to the addition of scattered field 

(𝐸𝐸�⃗ 𝑠𝑠𝑐𝑐𝑚𝑚(𝜔𝜔)) leading to a new excitation field given by 𝐸𝐸�⃗ 𝑒𝑒𝑚𝑚𝑐𝑐(𝜔𝜔) =  𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑐𝑐(𝜔𝜔) + 𝐸𝐸�⃗ 𝑠𝑠𝑐𝑐𝑚𝑚(𝜔𝜔). While 

this simplification is apt for some cases such as the single-molecule case, the true excitation 



53 
 

field must include an additional secondary field (𝐸𝐸�⃗ 𝑠𝑠𝑒𝑒𝑐𝑐(𝜔𝜔)) arising from the spontaneous 

emission of the dye. Each dye molecule acts as an emitting dipole whose field interacts with 

the NP to in turn backscatter 𝐸𝐸�⃗ 𝑠𝑠𝑒𝑒𝑐𝑐(𝜔𝜔) as a part of the excitation field. Beyond the single-

molecule fluorescence case [106], the backscattered 𝐸𝐸�⃗ 𝑠𝑠𝑒𝑒𝑐𝑐(𝜔𝜔) may play more significant role 

in an ensemble of dyes due to a higher number of dye molecules associated with each NP. 

Thus, the true total excitation field (𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡) for dye ensemble is given by 𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡(𝜔𝜔) =

𝐸𝐸�⃗ 𝑒𝑒𝑚𝑚𝑐𝑐(𝜔𝜔) + 𝐸𝐸�⃗ 𝑠𝑠𝑒𝑒𝑐𝑐(𝜔𝜔). Based on Maxwell’s equations, the secondary field may be expressed 

as 𝐸𝐸�⃗ 𝑠𝑠𝑒𝑒𝑐𝑐(𝜔𝜔) = 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔). �⃗�𝑝(𝜔𝜔), where 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔) is the dyadic Green’s function connecting 

the E-field at a position r due to a dipole at r’ while �⃗�𝑝(𝜔𝜔) is the dipole moment of RhB [102], 

[106], [112], [113]. Thus, a self-consistent expression for the frequency-dependent dipole 

moment may be obtained from 

 

�⃗�𝑝(𝜔𝜔) =  𝛼𝛼(𝜔𝜔)𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡(𝜔𝜔) =  𝛼𝛼(𝜔𝜔)�𝐸𝐸�⃗ 𝑒𝑒𝑚𝑚𝑐𝑐 + 𝐸𝐸�⃗ 𝑠𝑠𝑒𝑒𝑐𝑐� =  𝛼𝛼(𝜔𝜔)𝐸𝐸�⃗ 𝑒𝑒𝑚𝑚𝑐𝑐 +  𝛼𝛼(𝜔𝜔)𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔). �⃗�𝑝(𝜔𝜔)  (12) 

 

where 𝛼𝛼(𝜔𝜔) is the polarizability of the dye. Considering the dipole moment to be aligned 

along a direction �̂�𝑒𝑑𝑑 yields the magnitude of 𝑝𝑝(𝜔𝜔) given by �⃗�𝑝(𝜔𝜔) =  𝑑𝑑(𝜔𝜔)��̂�𝑒𝑑𝑑•𝐸𝐸�⃗𝑒𝑒𝑒𝑒𝑒𝑒�
1−𝑑𝑑(𝜔𝜔)��̂�𝑒𝑑𝑑•𝐺𝐺(𝑟𝑟,𝑟𝑟′,𝜔𝜔)•�̂�𝑒𝑑𝑑�

. 

If the backscattered field from the radiating dipoles is ignored, then the second term in the 

denominator becomes zero resulting in the standard form of the dipole moment. As 

mentioned earlier, the presence of NPs influences the excitation (effect A) due to changes in 

the local field. The NP-induced excitation enhancement is proportional to the ratio of square 

of the local electric field with and without NPs. Given that �⃗�𝑝(𝜔𝜔) =  𝛼𝛼(𝜔𝜔)𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡(𝜔𝜔), the 
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excitation enhancement factor (EEF) is equivalent to the ratio of square of the dipole moment 

strengths in the presence/absence of the NP. 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = �
�̂�𝑒𝑑𝑑 • 𝐸𝐸�⃗ 𝑒𝑒𝑚𝑚𝑐𝑐
�̂�𝑒𝑑𝑑 • 𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑐𝑐

�
2

1

�1 − 𝛼𝛼(𝜔𝜔)��̂�𝑒𝑑𝑑 • 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔) • �̂�𝑒𝑑𝑑��
2   (13) 

 

While the traditional excitation enhancement occurs solely due to the scattered field, the 

above expression for EEF combines the effects of secondary field dependent on an extra 

“field term” ��̂�𝑒𝑑𝑑 • 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔) • �̂�𝑒𝑑𝑑� related to the dipole field. Similar to the enhancement of 

excitement intensity, the presence of NPs also alters the radiative decay rate (effect B). The 

radiative decay rate (𝛾𝛾) of a dye molecule, from an excited state |𝑖𝑖⟩ of energy Ek to a lower 

state |𝑛𝑛⟩ of energy En, through the emission of a photon of energy ℏ𝜔𝜔 may be understood in 

terms of the Fermi golden rule given by  

 

𝛾𝛾 =
2𝜋𝜋
ℏ

 ���𝑛𝑛��⃗�𝑝 • 𝐸𝐸�⃗ 𝑜𝑜𝑜𝑜𝑜𝑜�𝑖𝑖��
2
𝛿𝛿(𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑖𝑖 − ℏ𝜔𝜔)
 𝑖𝑖≠𝑘𝑘

  (14) 

 

The Fermi golden rule can also be expressed in terms of photonic mode density or 𝜌𝜌(𝑎𝑎,𝜔𝜔) 

within the vicinity of the dye, which is defined by the ratio of photon flow per unit area per 

second (i.e., power flow per photon) to the velocity of photons  
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𝛾𝛾 =
2𝜔𝜔
3ℏ𝜀𝜀0

〈𝑝𝑝〉2𝜌𝜌(𝑎𝑎,𝜔𝜔) (15) 

 

where 𝜌𝜌(𝑎𝑎,𝜔𝜔) = 6𝜔𝜔
𝜋𝜋𝑐𝑐2

��̂�𝑒𝑑𝑑 • 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔) • �̂�𝑒𝑑𝑑�. The photonic mode density, and thus the decay 

rate of a dye, is determined by the field term ��̂�𝑒𝑑𝑑 • 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔) • �̂�𝑒𝑑𝑑� containing the dyadic 

Green’s function of the system in which the dye is embedded. The field term 

��̂�𝑒𝑑𝑑 • 𝐺𝐺(𝑎𝑎, 𝑎𝑎′,𝜔𝜔) • �̂�𝑒𝑑𝑑� is frequency dependent and is sensitive to the changes in the scattering 

spectrum of the surrounding NPs. 

 

 

 

Fig. 3.8. COMSOL simulation showing time-averaged Poynting vector for a point dipole 

located at the center of a disc in the y-z plane (a); a dipole positioned at a distance of 10 nm 

perpendicular (b) or parallel (c) to the nanodisc. Each of these configurations influenced the 

symmetry of the radiated field.   
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Given that the punched Ag NPs or nanodiscs show a red-shift in their scattering, which is 

closer to the emission wavelength of RhB, it may be rationalized that the field term at the 

emission frequency of RhB is higher for Ag nanodiscs compared to polyhedral Ag NPs due 

to increased local field from scattering. This increase in the field term is expected to 

simultaneously enhance both the excitation intensity (Equation 13) and the decay rate 

(Equation 15) leading to a higher enhancement.  

 

We validated the observed enhancements by simulating the emission of an electric dipole 

(mimicking RhB molecule with dipole moment 9.78 D) 10 nm above spherical and punched 

Ag NP surface using the RF module in COMSOL Multiphysics v5.1. This full field model, 

which includes the effects of scattered and secondary fields, was used to compute both 

normalized electric field (normE) and time-average Poynting vector (Pav) (see Fig. 3.8 (a-

c)). Our simulations evidenced that the electric field of the radiating dipole changed from a 

spherically symmetric shape to a dumbbell shape in the presence of both Ag NPs and 

nanodiscs. Furthermore, the simulations showed that the total enhancement factor is 

dependent on the orientation of the dipole. The dipole showed a higher enhancement when 

it is oriented parallel to the NPs. In our experiments, the orientation of RhB in the dye 

ensemble relative to Ag NPs or nanodiscs is random. Thus, we obtained the overall 

enhancement factor from simulations by weighing 2/3 parallel versus 1/3 perpendicular 

direction. The Pav for Ag nanodiscs showed a higher enhancement factor ~10 times over free 

space and ~4 times relative to Ag NPs concurring with our experimental results.  
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3.4 Conclusions 

In summary, we experimentally showed that the RhB emission can be increased up to ~33 

folds by flattening AgNPs. We produced Ag nanodiscs through mechanical deformation of 

polyhedral Ag NPs coated on a glass slide. The higher enhancement factors in the presence 

of Ag nanodiscs (~33 fold) compared to Ag NPs (~15 folds) are rationalized in terms of the 

higher contribution from secondary E-field comprised of dipole radiation of RhB. Ag 

nanodiscs exhibited a red-shift in their scattering spectrum due to a higher aspect ratio with 

a peak (~600 nm) closer to the RhB emission peak (~580 nm). Such a red-shift resulted in a 

better enhancement of both the excitation intensity and the radiative decay rate of RhB in the 

presence of Ag nanodiscs relative to Ag NPs. The experimentally observed upshift in 

scattering and the higher enhancement factors for Ag nanodiscs were validated by a 

COMSOL finite element model, which considered the effects of both incident and scattered 

electric fields.  
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CHAPTER FOUR 

ULTRASENSITIVE PLATFORM FOR FEMTOMOLAR DETECTION OF 

BIOMARKERS 

Bipin Sharma et al., “Analyte-induced disruption of luminescence quenching (AIDLuQ) for 
femtomolar detection of biomarkers”, Nanoscale, 11 (2019): 14010-14015. Reproduced with 
permission from RSC. 

 

4.1 Introduction 

Graphene, a sheet of sp2 hybridized carbon atoms, has received much attention due to its 

unique physicochemical properties. It is ideally suited for the realization of biosensors in 

various transduction modes ranging from electrical/electrochemical transduction to optical 

detection [114]–[117]. Specifically, graphene presents an excellent platform for fluorescence 

energy transfer or quenching [118], [119] due to its linear electronic energy bands with high 

optical absorption (~2.3% per layer [120]–[124]). Others and we have previously shown that 

emission from traditional dyes and quantum dots [118] can be quenched by resonant energy 

transfer via the excitation of electron-hole pairs in graphene. This ability of graphene has 

also been utilized in suppressing background fluorescence and enhancing Raman signals in 

graphene-enhanced Raman spectroscopy or GERS [125]. Building on fluorescence 

quenching properties of graphene, this article presents a novel flexible immunosensor for 

highly sensitive and rapid detection of proteins and biomarkers.  

Traditionally, antibody-based immunoassays have been extensively used for the detection of 

proteins due to their high sensitivity and specificity. Despite these advantages, conventional 

immunoassays (e.g., lateral flow, microarray, enzyme-linked immunosorbent assay) [126] 
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require long incubation times, multiple washing steps, and are unsuitable for point-of-care 

(POC) testing [127]. Over the past two decades, there has been a steady increase in the 

availability and use of flexible and inexpensive POC sensors for disease diagnosis and 

monitoring [128]–[130]. Previously, we used surface plasmon (SP) coupled emission [131] 

to develop highly sensitive fluorescent POC platforms for pathogen detection. Although such 

SP platforms improve the sensitivity and flexibility needed for POC testing, they do not 

alleviate long incubation and multiple washing steps. In this regard, there is a great need for 

rapid, highly sensitive (up to femto-molar concentrations), flexible, and inexpensive optical 

POC sensors for detection of specific biomarkers. Here, we used the fluorescence quenching 

properties of graphene to build a rapid, flexible, cost-effective, extremely sensitive and 

highly efficient immunosensing platform. 

 

 

Fig. 4.1. (a) The sensing platform consists of receptor (e.g. streptavidin or IgG antibody) 

functionalized CdSe quantum dots (QDs) deposited on a flexible graphene paper. The 

fluorescence emission from CdSe QDs is quenched when they are spatially close to graphene. 
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Upon the addition of analyte (e.g. biotin or IgG), some CdSe QDs are lifted off from the 

graphene surface due to binding with receptors on the surface of CdSe QDs. The binding 

increases the spatial gap between CdSe QDs and graphene, which disrupts quenching and 

results in an increased emission from QDs. The number of CdSe QDs lifted off from 

graphene surface is proportional to the analyte concentration. Thus, the increase in the 

emission of CdSe QDs could be used as a tool to detect different analytes; (b) A platform 

similar to the one presented in (a) with the extra addition of gold nanoparticle (Au NPs) is 

shown. In this case, the binding of analyte disrupts quenching caused by graphene while 

plasmonic Au NPs enhance the emission of CdSe QDs to enable highly sensitive detection 

of low analyte concentrations. 

 

 

In many conventional immunoassays, at least two antibodies are necessary for detecting an 

analyte. While the primary antibody captures the analyte, a labelled secondary antibody 

(often labelled with a dye or an optically active molecule) is used to obtain a measurable 

optical signal to quantify the analyte [132]. Some immunoassays (such as the capture 

sandwich assay) necessitate the use of three antibodies. Unlike these methods where the 

detection antibody is added at the end, our graphene sensing platform is pre-coated with 

detection antibodies (see Fig. 4.1) labelled highly luminescent quantum dots (QDs). 

However, the luminescence of QDs on the platform is almost completely quenched due to 

the presence of graphene. Upon the addition of analyte, the analyte binds with the detection 

antibody and raises QDs away from graphene leading to reappearance of QD emission (Fig. 

4.1 (a)). Thus, in a single step, the analyte can be detected. While this simple platform allows 



61 
 

for rapid detection of analytes, its sensitivity is limited by the emission intensity and quantum 

yield of QDs. To improve the sensitivity, we incorporated gold nanoparticles (Au NPs) into 

graphene platform (Fig. 4.1 (b)). In the graphene-Au platform, the analyte raises QDs away 

from the surface similar to graphene platform leading to recovery in QD emission. The 

analyte-antibody pair acts as a spacer between Au NPs embedded in graphene and QDs, 

which leads to surface plasmon-induced increase in emission and consequently higher 

sensitivity.  

In other words, as described in Fig. 4.1, this process relies on analyte induced disruption of 

luminesce quenching (AIDLuQ). The AIDLuQ platform has multiple advantages such as: i) 

easy scalability in manufacturing, ii) flexibility, iii) inexpensive, iv) alleviation of the use of 

a second antibody as is the case in most of traditional antigen-antibody immunosensing 

techniques, and v) shorter incubation time (15-30 min). We demonstrated two model assays 

using biotin-streptavidin and human immunoglobulin assay to illustrate the practical 

applications of AIDLuQ sensors. Our results show clear evidence that AIDLuQ sensors are 

successfully able to achieve selective and specific detection up to 10 fM on graphene-Au 

platform. The limit of detection observed in our graphene-Au platform is at superior to other 

similar IgG sensing platforms (Table 4.1). 

 

Reference Sensitivity (fM) 
This work 10 
Human IgG ELISA Kit (Abcam) 1500 
NPG Asia Materials vol. 6, 112 (2014) 20 

Biosensors and Bioelectronics, 31(1), 233-239 1100 

Nano Research 4, no. 10 (2011) 1000 - 10000 
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Biosensors and Bioelectronics, 26(7), 3297-3302. 20000 
Talanta, 83(1), 42-47. 20000 
International Journal of Biological 
Macromolecules, 43(2), 165-169. 

105 - 107 

Sensors and Actuators B: Chemical, 74(1-3), 106-
111. 

2x105 - 2.7x106 

Journal of Biophotonics, 9(3), 218-223. 5x106 – 2x108 
Microchimica Acta 183, no. 7 (2016): 2177-2184. 5x105 
Sensors, 17(4), 898. 105 - 106 

 

Table 4.1. A comparison of the reported sensitivities of platforms/kits for the detection of 

Immunoglobulin G (IgG).  

 

4.2 Materials and Methods 

4.2.1 Synthesis of graphene/graphene-AuNP paper: 

Exfoliated graphene nanoplatelets (Grade M) were obtained from XG Science (Mason, MI). 

Detailed atomic force microscopy images of graphene platelets are provided in Fig. 4.2. A 5 

mg/ml suspension of exfoliated graphene nanoplatelets was prepared in 75 ml acetone via 

tip sonication for 30 minutes (Branson 250W, 1/8” tip sonicator). This solution was then 

spray-coated thrice using an industrial spray gun (Iwata 5095 WS400; 1.3 mm nozzle, 29 psi 

ambient air pressure) to coat a layer of graphene on a standard copier paper (21 x 29.7 cm). 

A representative scanning electron micrograph (obtained using Hitachi S-4800) of graphene 

coated paper is shown in Fig. 4.3 (a). For preparing graphene-Au NP platform, 7.5 ml of 1.5 

mg/ml ~10 nm Au NPs (Vive Nano, Inc.) was added to the 5 mg/ml graphene suspension 

before the third coat. This corresponds to a net areal Au NP density of ~18 µg/cm2, which 
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was found to be optimal for sensing. The paper was dried for 15 min in air after each coating. 

The dried graphene/graphene-Au NP papers were stored in dark and dry conditions. 

 

 

Fig. 4.2. Atomic Force Microscopy (AFM) images (left panel) and corresponding line scans 

(right panel) of graphene show that the flakes have an average thickness of ~ 5±1.5 nm. 
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Fig. 4.3. (a) A representative scanning electron micrograph of graphene coated paper. The 

graphene flakes are ~ 5 nm thick with lateral dimensions in the range of a few microns (the 

scale bar is 20 µm). (b) The emission of CdSe QDs on graphene is strongly quenched due to 

the interactions between the pi-electron clouds of graphene and d-orbitals of CdSe QDs. The 

inset shows a very weak quenched emission peak for the CdSe QDs on graphene. 

 

4.2.2 Preparation of standard buffer: 

A standard buffer was prepared by mixing 0.5% (v/v) Tween-20 and 1% (w/v) of BSA in 

0.01 M phosphate buffer saline (PBS). This standard buffer was used as a solvent for all the 

further studies. 
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4.2.3 Conjugation of CdSe QDs with antibodies: 

CdSe QDs were purchased from Thermo Fisher Scientific (Invitrogen, Cat. # Q10123MP). 

QDs were mixed with anti-human IgG antibody (Ab) (Abcam, Cat. # ab109489) in the 

standard buffer to attain a final concentration of 100 nM for QDs and 200 µg ml-1 for Ab. 

These optimal concentrations for QDs and Ab was chosen based on previous studies [133]. 

The conjugation was carried out by continuous shaking at 650 rpm and 4°C for 30 min. 

 

4.2.4 Preparation of graphene/graphene-AuNP sensing platforms: 

For sensing experiments, graphene or graphene-Au NP coated paper was cut ~1 x 1cm 

pieces. 2 µl of the QD-Ab conjugate was drop cast on to each piece and left to dry at room 

temperature for 1 hour. Detailed electron microscopy images of graphene/graphene-Au NP 

sensing platform and the nanoparticles are provided below in Fig. 4.4 and Fig. 4.5. Upon 

drying, the fluorescence intensity of QDs was measured for at least three spots on each piece 

with the excitation of 532 nm using Renishaw InVia micro-spectrometer. The average (n=3) 

spectrum was considered as the background fluorescence. 
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Fig. 4.4. (a) A representative of the scanning electron micrograph of graphene-AuNP paper; 

(b) Transmission electron microscopy (TEM) images of the graphene-AuNP flakes; (c) 

High-resolution images of the AuNPs. 

 

 

Fig. 4.5. (a) Transmission electron microscopy (TEM) images of graphene-AuNP-CdSe-Ab; 

(b) High-resolution transmission electron microscopy (TEM) images of CdSe quantum dots. 
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4.2.5 Using the sensing platform for IgG detection: 

Human IgG (Abcam, Cat. # ab91102) solutions were prepared in different concentrations 

(10 fM – 1 nM) in the standard buffer and stored at 4°C. 20 µl of the analyte solutions were 

then added to the spots where the QD-Ab was drop cast. The solution was immediately 

absorbed by the paper and took around 15 min of incubation at room temperature for drying. 

Once dried, the fluorescence was recorded from at least three spots for each concentration 

with a 532 nm excitation using Renishaw InVia micro-spectrometer. For evaluating the 

specificity of our sensors (discussed later in Fig. 5), human IgG solution was prepared in 

10% fetal bovine serum (FBS). The data shown is the average fluorescence collected from 

multiple spots to avoid artefacts arising from inhomogeneous spatial distribution of the 

antibody/antigen. 

 

4.3 Results and Discussion 

As shown in Fig. 4.1 (a), AIDLuQ works in the following manner on graphene paper. 

Initially, antibody-coated CdSe QDs (QD-Ab) are adsorbed on the surface of graphene paper. 

The interaction between CdSe QDs and graphene results in the quenching of the emission 

from the CdSe QDs (see Fig. 4.3 (b)). Upon the addition of antigen, some CdSe QDs are 

raised from the surface, which disrupts quenching from graphene and leads to increased 

emission of CdSe QDs. In the case of graphene-Au paper (Fig. 4.1 (b)), the emission from 

CdSe QDs is further enhanced due to the presence of surface plasmons of Au NPs. 
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To test the quenching efficiency of graphene, we dropcasted ~2 µl of 100 nM QD-Abs on 

both a plain paper and a graphene-coated paper. As seen in Fig. 4.3 (b), there is a significant 

decrease in the fluorescence intensity in the case of the graphene-coated paper due to 

fluorescence quenching. This observation concurs with previous studies on highly efficient 

fluorescence quenching of CdSe/ZnS QDs on few-layer graphene [118]. To validate our 

hypothesis of AIDLuQ, we recorded emission from streptavidin-coated CdSe QDs on 

graphene paper in the presence of different biotin concentrations. The complex of biotin and 

streptavidin is the strongest known non-covalent interaction with an extremely low 

dissociation constant of 10-15 M [134]. We performed a concentration study for the increasing 

concentrations of biotin and recorded the corresponding fluorescence intensities. As evident 

from Fig. 4.6 (a) below, there is a steady increase in the recorded fluorescence intensity with 

the increase in the concentration of biotin added to the graphene paper. While we were able 

to observe significant recovery in emission of CdSe QDs at >1 nM biotin, no discernible 

changes in the emission of CdSe QDs were observable at lower concentrations. 
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Fig. 4.6. (a) Graphene paper with streptavidin coated CdSe QDs is used for detecting biotin. 

Upon the addition of biotin, CdSe QDs are lifted off from the surface leading to increase in 

emission. In this case, a concentration as low as ~1 nM was able to disrupt the quenching. 

No discernable changes were observed for biotin concentrations below 1 nM; (b) A similar 

experiment of graphene-Au paper with streptavidin-coated QDs demonstrated increased 

sensitivity due to the presence of Au NPs, which enhance emission by increasing the local 

electric field; (c) A plot showing the background corrected intensity of CdSe QDs emission 

as a function of biotin concentration. Clearly, graphene-Au provides better sensitivity 

compared to graphene paper alone. 

 

As mentioned earlier, the graphene paper provides a rapid sensing platform but lacks 

sensitivity to detect lower concentrations. To achieve better sensitivity, we embedded Au 

NPs into the graphene platform in order to increase local electric field around CdSe QDs 

through surface plasmons. The graphene-Au paper exhibited much higher sensitivity even at 

lower concentrations (~10 fM) of biotin (see Fig. 4.6 (b)). As shown in Fig. 4.6 (c), the 
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graphene-Au paper is effective in sensing a wider concentration range from 10 fM-1µM due 

to the increase in the emission intensity of CdSe QDs. This increase in sensitivity can be 

rationalized as follows. The quantum yield (QY) of CdSe QDs in the presence of graphene 

can be expressed as [134] 

 

𝑄𝑄𝑄𝑄 =  
𝛤𝛤

𝛤𝛤 + 𝛤𝛤𝑄𝑄𝑜𝑜 + 𝑖𝑖𝑖𝑖𝑟𝑟
  (16) 

 

where, 𝛤𝛤 is the radiative decay rate, 𝛤𝛤𝑄𝑄𝑜𝑜 is the non-radiative decay rate arising from the 

quencher or graphene, 𝑖𝑖𝑖𝑖𝑟𝑟 is the inherent non-radiative decay rate of CdSe QDs. In the case 

of graphene paper, the analyte binds the detection antibody and raises CdSe QDs from the 

surface resulting in a situation where the effects of 𝛤𝛤𝑄𝑄𝑜𝑜 can be ignored. It is worth noting that 

the quenching in graphene occurs through resonant energy transfer, which decreases very 

rapidly with distance d as d-6 [118]. Thus, the original QY and the emission of CdSe QDs is 

recovered. In the presence of Au NPs, the QY of CdSe QDs is altered and may be expressed 

as 

 

𝑄𝑄𝑄𝑄 =  
𝛤𝛤 + 𝛤𝛤𝑚𝑚

𝛤𝛤 + 𝛤𝛤𝑚𝑚 + 𝛤𝛤𝑄𝑄𝑜𝑜 + 𝑖𝑖𝑖𝑖𝑟𝑟
  (17) 

 

where, 𝛤𝛤𝑚𝑚 is the change in the radiative decay rate due to the presence of metallic NPs. When 

the analyte binds the detection antibody on graphene-Au paper, the quenching effects are 
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removed and the radiative decay rate is increased leading to an increase in QY. While the 

presence of metallic Au NPs has an oscillatory effect on radiative decay rates, it results in a 

positive 𝛤𝛤𝑚𝑚 when the fluorophore is 5-20 nm away from it [135]–[138]. Given that ~20 nm 

is the typical dimensions for antigen-antibody pairs that are sensed, the presence of Au NP 

increases the emission of CdSe QDs even at low concentrations of biotin (Fig. 4.6 (b)). 

 

To validate the sensitivity of AIDLuQ platform for specific biomarkers, we evaluated the 

performance of graphene and graphene-Au papers for detecting human IgG. IgG is an 

important antibody, which is found in all body fluids and protects against bacterial and viral 

infections. IgG levels are often measured to diagnose immunodeficiencies, infections, and 

detect auto-immune diseases.  

 

 

 

Fig. 4.7. (a) Graphene and (b) graphene-AuNP papers with IgG antibody-coated CdSe QDs 

are used for detecting IgG. Similar to the case of biotin, an increase in the emission of CdSe 

QDs was observed for both graphene and graphene-Au papers; (c) A plot showing the 
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background corrected intensity of CdSe QDs emission as a function of IgG concentration 

reveals that it is possible to sense up to ~10 fM of IgG using the graphene-Au platform. 

 

As shown in Fig. 4.7, the graphene/graphene-Au platforms performed similar to the case of 

biotin. While graphene platform was able to sense up to ~10 pM, graphene-Au platform 

could distinguish up to ~10 fM of IgG (see Fig. 4.7 (c) and Fig. 4.8). To further test the 

specificity of our assay, we evaluated the performance of graphene-Au NP platform for 

sensing IgG in the presence of fetal bovine serum (FBS), which is a complex mixture of 

several gamma globulins (i.e., antibodies similar to IgG), proteins, amino acids, sugars, 

lipids, and hormones. Despite the presence of several interfering molecules, we observed that 

the PL intensity increased with increasing IgG concentration similar to Fig. 4.7 (c) (see Fig. 

4.8). A clear difference could be observed even at IgG concentrations as low as 10 fM.  

 

4.4 Conclusions 

In this study, we fabricated a facile single-step immunoassay sensing platform based on 

graphene’s fluorescence quenching ability. Antibody-conjugated CdSe QDs deposited on 

graphene paper showed low emission due to resonance energy transfer. We hypothesized 

that the addition of appropriate analyte will bind antibody, raise CdSe QDs from the surface, 

and consequently help recover its emission. We validated this “analyte-induced disruption in 

luminescence quenching or AIDLuQ” scheme using two model assays: biotin and IgG. On 

graphene coated with CdSe-Streptavidin, we were able to discernibly sense up to 1 nM biotin. 

Similarly, using graphene coated with CdSe-anti-IgG antibodies, we were able to detect up 
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to ~10 pM IgG. To increase the sensitivity of this platform, we embedded Au NPs (~10 nm) 

into the graphene paper. The graphene-Au paper outperformed the graphene paper and 

showed ~10 fM sensitivity for biotin and IgG. In summary, spray coated graphene/graphene-

Au provides a rapid, specific, and highly sensitive platform for biosensing. 
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CHAPTER FIVE 

A FLEXIBLE PLATFORM FOR RAPID DETECTION OF UROKINASE 

PLASMINOGEN ACTIVATOR (uPA) 

Bipin Sharma et al., “Rapid Detection of Urokinase Plasminogen Activator using Flexible 
Paper-based Graphene-gold Platform”, Biointerphases, 15 (2020): 011004. Reproduced with 
permission from AVS. 

 

5.1 Introduction 

The majority of the cancer-related (> 90%) deaths are usually caused due to the metastatic 

spread of tumor cells [139]–[141]. Despite the emergence of efficient therapeutic strategies 

to treat primary tumors in recent years, targeting tumor metastasis has not been very 

successful. A major event in metastasis is the proteolytic degradation of the extracellular 

matrix that leads to tumor cell invasion, migration, and homing to other organs. Although 

many protease systems are suspected to be involved in metastasis, several studies have shown 

that urokinase plasminogen activator (uPA) is causally involved in promoting cancer 

invasion and metastasis. Particularly, elevated expression of the components of the uPA 

system has been correlated with adverse patient outcomes in multiple types of cancer (e.g., 

breast, prostate, colorectal etc.) [141]–[146]. In case of prostate cancer cells, Bekes et al. 

[147] found that uPA participates at an early phase in the initial escape of tumor cells from 

the primary site. Duffy et al. [142] suggested that monitoring uPA levels could very helpful 

in determining the course of treatment in breast cancer patients. Similarly, uPA also been 

proposed for monitoring multiple cancer types including prostate cancer [139]–[147].  
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According to the World Health Organization (WHO), cancer is the second leading cause of 

death globally, and is responsible for an estimated 9.6 million deaths in 2018 alone [148].  

Among 9.6 million deaths, ~70% occurred in low- and middle-income countries due to the 

lack of access to rapid, inexpensive, and point-of-care diagnostic sensors that could be used 

in a resource limited setting. According to WHO, in 2017, only 26% of low-income countries 

reported having pathology services generally available in the public sector. In this regard, 

there is a great need to develop novel inexpensive sensors that could rapidly diagnose 

biomarkers such as uPA to improve cancer treatment globally.  

 

Graphene is an ideal platform for biosensing due to its high surface area and unique 

physicochemical properties. Indeed, graphene biosensors have been used in various modes 

ranging from electrical/electrochemical to optical detection for sensing a variety of analytes 

[36], [114]–[117], [149]–[152]. Graphene-based materials (e.g., graphene, graphene oxide, 

carbon nanotubes etc.) exhibit excellent fluorescence quenching [118], [119] due to non-

radiative resonant energy transfer associated with the π-electron cloud. Similarly, noble 

metal nanoparticles exhibit surface plasmon resonance (SPR) in the visible spectrum [153], 

[154]. SPR enhances the local electric field, which can induce an increase in quantum yield 

of fluorescent dyes and quantum dots within its vicinity. Building on SPR and fluorescence 

quenching of graphene, we fabricated a novel graphene-Au nanoparticle (NP) sensing 

platform on cellulose-based paper for highly selective sensing of uPA. Using this platform, 

we achieved a sensitivity as low as 100 pM for uPA even in the presence of complex fluids 

such as fetal bovine serum. Unlike many existing carbon nanomaterial assays with low 
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sensitivity (~50 nM [155]) or long incubation times, uPA sensing using graphene-Au NP 

platform is very rapid (<1 hr), highly reliable, inexpensive, and easily scalable. 

 

5.2 Materials and Methods 

5.2.1 Fabrication of graphene-Au NP paper: 

Exfoliated graphene nanoplatelets (Grade M) were obtained from XG Science (Mason, MI). 

Detailed atomic force and scanning electron microscopy images of graphene platelets can be 

referred to in Chapter 4, Fig. 4.2. A 5 mg/ml suspension of exfoliated graphene nanoplatelets 

was prepared in 75 ml acetone via tip sonication for 30 minutes (Branson 250W, 1/8” tip 

sonicator). This solution was then spray-coated onto a A4 printer paper thrice using an 

industrial spray gun (Iwata 5095 WS400; 1.3 mm nozzle, 29 psi ambient air pressure). 

During the last coat, 7.5 ml of 1.5 mg/ml ~10 nm Au NPs (Vive Nano, Inc.) was added to 

obtain a uniform layer of graphene-Au NPs on a standard copier paper. This corresponds to 

a net areal Au NP density of ~18 µg/cm2, which was found to be optimal for sensing based 

on our previous studies [156]. The paper was dried for 15 min in air after each coating. The 

dried graphene-Au NP papers were stored in dark and dry conditions. 

 

5.2.2 Preparation of standard buffer: 

The standard buffer to be used as the solvent for all the experimental studies was prepared 

by mixing 0.5% (v/v) Tween-20 and 1% (w/v) of BSA in 0.01 M phosphate buffer saline 

(PBS). 
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5.2.3 Conjugation of CdSe quantum dots (QDs) with uPA antibodies (Ab): 

A mixture was prepared with a final concentration of 100 nM for CdSe QDs (Thermo Fisher 

Scientific – Invitrogen, Cat #Q10123MP) and 200 µg/ml for uPA Ab (Abcam, Lot # 

GR131433) in the standard buffer. This mixture was then placed on a shaker at 650 rpm at 

4°C for 60 min to ensure the conjugation of antibodies to QDs. These optimal concentrations 

for QDs and Ab were chosen based on previous studies with other analytes similar to uPA 

[133], [156]. In this case, the binding of Ab on CdSe QDs is non-specific and is primarily 

governed by ionic, van der Waals, and hydrophobic forces [133], [157], [158]. 

 

5.2.4 Preparation of graphene-Au NP sensing platform: 

The graphene-Au NP paper was cut into ~1 cm2 pieces for sensing experiments and 2 µl of 

the uPA Ab-conjugated QDs was drop casted on to 1 cm2 graphene-Au NP paper and left for 

drying under ambient conditions for around 1 hr. Upon drying, the fluorescence intensity of 

QDs was measured using a Renishaw InVia micro-spectrometer equipped with a 532 nm 

laser. The fluorescence intensity was collected from multiple spots per sample (at least 3 

different spots) with at least three different replicates (n = 3). A comparison of QD 

fluorescence on papers with and without graphene is shown in Chapter 4, Fig. 4.3 (b). 

 

 

 



78 
 

5.2.5 Using the sensing platform for uPA antigen detection: 

Recombinant human uPA protein (Abcam, Lot # GR314499) solution in different 

concentrations (100 pM – 1 µM) was prepared by dissolving the uPA protein in the standard 

buffer. Another set of concentrations (100 pM – 100 nM) was prepared in fetal bovine serum 

(FBS) for the interference study to investigate the selectivity of our assay. All the solutions 

were stored at 4°C. For sensing experiments, 20 µl of uPA solution of different 

concentrations (in either standard buffer or FBS) was added to the QD-Ab coated on 

graphene-Au NP paper. The solutions made in the standard buffer took around 20 min to dry 

while those made in FBS took around 60 min. Once dry, the fluorescence emission was 

measured for at least three separate spots using a Renishaw InVia micro-spectrometer at 532 

nm. All the data shown hereafter in this chapter are the average fluorescence collected from 

multiple spots (at least three) to avoid artefacts arising from inhomogeneous distribution of 

the antibody/antigen. 

 

5.3 Computational Modeling: 

5.3.1 Density Functional Theory (DFT): 

A DFT calculation with DFT- D2 approach was used to calculate charge transfer between 

graphene and CdSe QDs. DFT-D2 is a first-principles calculation based on DFT with van 

der Waals corrections, which is explained in detail in Refs. [159]–[161]. The calculations 

were performed using the Quantum ESPRESSO code with ultrasoft pseudopotentials for 

plane wave basis set within generalized gradient approximation (GGA) with the Perdew 

Burke-Ernzerhof (PBE) exchange correlation functional including London dispersion. 
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Before stacking up two systems to calculate the charge transfer, each system (viz., graphene 

and CdSe) was individually optimized to obtain correct parameters such as cell dimensions, 

k-mesh, and energy cut-off for the plane wave basis. After obtaining the right parameters, 

the two systems were stacked over one another with a 7 x 7 supercell size (98 Carbon atoms) 

for graphene matching 4 x 4 supercell size (16 Cd atoms and 16 Se atoms) for the CdSe 

system. The energy expense of matching two supercells together was within the optimization 

threshold for energy of 10-4 Rydberg. Due to high computational cost, the CdSe bulk 

structure was approximated to a single layer to be stacked over the graphene layer and relaxed 

for optimization. 

 

5.4 Results and Discussion 

The operation mechanism of our graphene-Au NP platform is described in Fig. 5.1. The 

original fluorescence of CdSe QDs in the QD-antibody (QD-Ab) complex is quenched by 

graphene due to the interaction between the π-electron cloud of graphene and CdSe QDs. 

Upon the addition of an analyte (i.e., uPA in this case), the analyte binds with an antibody 

(Ab) on QDs raising QDs above graphene paper. In other words, as shown in Fig. 5.1 (d), 

antigen-Ab acts as a spacer between graphene and the QD-Abs ensuing in the reappearance 

of the fluorescence of QDs. The fluorescence of QDs lifted off the surface by the analyte is 

further enhanced by the presence of the Au NPs leading to high sensitivity. 
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Fig. 5.1. (a) The sensing platform consists of a receptor (uPA antibody) functionalized CdSe 

quantum dots (QDs) deposited on a cellulose paper coated with graphene. The fluorescence 

emission from CdSe QDs is quenched when QDs are spatially close to graphene, (b) Upon 

the addition of an analyte (e.g., uPA protein), some CdSe QDs are lifted off from the graphene 

surface due to binding with the antibodies on the surface of CdSe QDs. The binding increases 

the spatial gap between CdSe QDs and graphene, which disrupts the quenching and thereby 

results in an increased emission from QDs, (c, d) The number of CdSe QDs lifted off from 

graphene surface is proportional to the analyte concentration. The plasmonic Au NPs 

enhance the emission of CdSe QDs. Thus, the increase in the emission of CdSe QDs could 

be used as a tool to enable highly sensitive detection of low analyte concentrations. 

(b) (a
 

(c
 

(d
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Our DFT calculations showed that graphene-CdSe form a charge transfer complex when they 

are in close vicinity, which leads to non-radiative fluorescence quenching.  The charge 

transfer profile is shown in Fig. 5.2 (a) – Fig. 5.2 (c). While blue regions show the area from 

where charge is removed, red color represents regions of charge accumulation. The charge 

transfer profile along the z-axis (perpendicular to graphene and CdSe system plane) is shown 

in Fig. 2d with graphene at z = 0 plane. The shaded area was integrated to obtain the total 

amount of charge transfer from graphene to CdSe layer, which was about 0.18e. This charge 

transfer complex between graphene-CdSe plausibly results in the quenching of CdSe 

fluorescence. 

 

 

(d) 

(b) 

(c) 

(a) 
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Fig. 5.2. A DFT calculation to evaluate the charge transfer between graphene and CdSe (a) 

Top view with CdSe on top; (b) Top view with graphene on top; (c) side view for 3D charge 

transfer pattern. Blue (/red) regions represent areas with charge depletion (/accumulation); 

(d) The charge transfer profile along the z-axis. The area under the shade was integrated to 

get the total amount of charge transfer from graphene to CdSe layer and was around 0.18e. 

 

The quantum yield (Q) of a fluorophore (CdSe in this case) in the presence of a quencher 

(graphene in this case) can be expressed as [136] 

 

𝑄𝑄 =  
𝛤𝛤

𝛤𝛤 + 𝛤𝛤𝑄𝑄𝑜𝑜 + 𝑖𝑖𝑖𝑖𝑟𝑟
  (16) 

 

where, 𝛤𝛤 is the radiative decay rate, 𝛤𝛤𝑄𝑄𝑜𝑜 is the non-radiative decay rate arising due to the 

charge transfer complex between graphene and QDs, and 𝑖𝑖𝑖𝑖𝑟𝑟 is the inherent non-radiative 

decay rate of CdSe QDs. Upon raising QDs from the surface of graphene, the effects of 𝛤𝛤𝑄𝑄𝑜𝑜 

become weaker. This leads to an overall increase in the quantum yield. Furthermore, in the 

presence of Au NPs, the quantum yield of the QDs can be expressed as 

 

𝑄𝑄𝑄𝑄 =  
𝛤𝛤 + 𝛤𝛤𝑚𝑚

𝛤𝛤 + 𝛤𝛤𝑚𝑚 + 𝛤𝛤𝑄𝑄𝑜𝑜 + 𝑖𝑖𝑖𝑖𝑟𝑟
  (17) 
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where 𝛤𝛤𝑚𝑚 is the change in the radiative decay rate due to the presence of Au NPs. When the 

QDs are raised from the graphene surface in the presence of Au NPs, a positive 𝛤𝛤𝑚𝑚 further 

increases fluorescence when the fluorophore in 5-20 nm away from the Au NPs [135]–[138]. 

When uPA is added to QD-Ab complex on graphene-Au NP paper, it binds with the uPA 

antibody on QDs to form a graphene-QD-Ab-uPA complex, which raises QDs above the 

graphene surface. To test the quenching efficiency of graphene, we drop casted 2 µl of the 

QD-Ab simultaneously on a normal paper and on the graphene-Au NP paper. As expected, 

a significant decrease was observed in the emission intensity of QDs on graphene-Au NP 

paper (see Chapter 4, Fig. 4.3 (b)). This fluorescence intensity of the graphene-QD-Ab was 

used as the control intensity.  

 

A concentration study was performed with different concentrations of uPA protein ranging 

from 100 pM to 1 µM in the standard buffer solution. As shown in Fig. 5.3 (a), a gradual 

increase is evident in the fluorescence intensity with the increasing concentration of the uPA 

protein. These intensities are plotted in Fig. 5.3 (b), which displays experimentally recorded 

average fluorescence intensities (recorded from at least three sampling spots) for different 

concentrations of uPA. As it can be deduced from Fig. 5.3 (b), concentrations as low as 100 

pM of uPA can be detected using this method. The selectivity of our assay was evaluated 

using proteins other than uPA such as apolipoprotein A-1 (Apo A-1) and immunoglobulin G 

(IgG) (Fig. 5.3 (c) and Fig. 5.3(d)). For the selectivity study, 1 nM (which is an order of 

magnitude above our detection limit of 100 pM for uPA) solutions of IgG and Apo A-1 

proteins were prepared in the standard buffer. Fig. 5.3 (c) shows the average fluorescence 

intensities recorded after the addition of the IgG and Apo A-1 solutions respectively. As 
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evident from these results, there was no increase in the emission upon the addition of the IgG 

or Apo A-1 proteins even at a concentration as high as 1 nM. The uPA antibody is highly 

selective and thus it does not bind with these proteins (IgG and Apo A-1) and thus eliminates 

the possibility of formation of a spacer between the QDs and graphene. 

 

Fig. 5.3. (a) Emission intensities of uPA antibody coated CdSe QDs on graphene-Au NP 

paper. The emission intensity before the addition of uPA protein is labeled as the control. The 

addition of uPA protein leads to the raising of the QDs from the surface of graphene, leading 
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to an increase in the fluorescence intensity; (b) A plot showing the dependence of 

fluorescence intensity on the concentration of uPA. Both these measurements were 

performed with the standard buffer as the solvent for the uPA antigen. (c) Fluorescence 

intensities obtained by addition of 1 nM of different biomolecules in standard buffer to CdSe 

QDs coated with uPA antibody. The emission intensity before the addition of any 

biomolecule is labeled as the control. The addition of uPA protein causes increase in 

fluorescence intensity while there is almost no significant change in the fluorescence 

intensity upon addition of non-specific proteins; (d) Fluorescence intensities of different 

concentrations of uPA in FBS. There is a clear trend of increasing fluorescence with 

increasing uPA concentrations suggesting that our platform can sense uPA even in the 

presence of a complex milieu containing a wide variety of proteins and lipids. 

 

In order to further evaluate the selectivity of our sensing platforms, solutions of different 

concentrations of uPA protein were prepared in FBS instead of the standard buffer.  FBS is 

a complex mixture of many proteins, lipids, and is often used as a serum supplement for in 

vitro culturing of eukaryotic cells. Accordingly, detection in FBS is more complex due to the 

presence of a variety of other proteins and molecules that are similar to uPA in size and 

structure. Given that our sensing platform is based on the binding of the analyte with the uPA 

antibodies, we expected that the sensitivity of our platform to not change significantly even 

in the presence of any interfering molecules. Indeed, as shown in Fig. 5.3 (d), a steady 

increase in the fluorescence intensity was observed with increasing concentration of uPA in 

FBS similar to the case of standard buffer confirming the selectivity of our platform. 
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Lastly, it should be mentioned that our platforms are at least an order of magnitude cheaper 

than existing ELISA platforms for uPA. Considering that we use ~1.25 mg/cm2 of Au NPs 

and ~1-5 mg/cm2 of graphene (~$450/kg for graphene and $384,000/kg for Au), the price of 

a 1 cm2 sensing platform coupon is ~$0.5. Thus, one can fabricate 100 such platforms for 

$50, which is significantly inexpensive (by an order of magnitude) compared to a standard 

uncoated 96-well plate uPA ELISA kit (~$539). 

 

5.5 Conclusions 

Graphene-Au NP paper was used as a sensing platform for the detection of uPA protein. 

CdSe QDs coated with uPA antibody showed extremely low fluorescence emission when 

deposited on the graphene-Au NP paper due to fluorescence quenching. Our DFT 

calculations suggested that such quenching plausibly arises from charge transfer between 

graphene and CdSe QDs. The graphene-Au NP platform was able to achieve up to 100 pM 

uPA sensitivity in the standard buffer. The selectivity of the sensing platform was also 

evaluated using Apo A-I, IgG, and FBS. No discernible effects of the interfering proteins 

were observed on the detection of uPA. Although other platforms such as ELISA may 

provide similar sensitivities, graphene-Au NP platform is inexpensive, flexible, and rapid (~ 

1 hr). A main advantage of a flexible sensor is that it can be wrapped or pressed more easily 

against the patients’ fingers to absorb the blood from a simple needle prick similar to existing 

glucose sensors available in the market. This opens up the possibility of creation of hand-

held and point-of-care sensors for low- and middle-income countries. 
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CHAPTER SIX 

SUMMARY AND FUTURE WORK 

Most health conditions in humans are accompanied by corresponding biomarkers. The 

detection of these biomarkers facilitates an early diagnosis and thus have the potential to 

drastically boost the healthcare industry and the public health in general. Early diagnosis of 

diseases are known to significantly boost the patient survival rate in life – threatening 

diseases [162]. Over the years, nanoparticles of various morphologies have been used to 

improve the performance of biosensors. One of the widely used physical phenomenon in 

fluorescence-based biosensors is surface plasmon resonance (SPR). Even though SPR has 

shaped the field of research in ultrasensitive bioassays, the fundamental physical processes 

behind the effects of size and shape of the nanoparticles on SPR have been largely 

overlooked.  

 

In our work, we first studied the effects of the shape of Ag nanoparticles in plasmon 

resonance. Here, we delved into the fundamental physics behind the enhancement (and shift) 

in emission wavelength corresponding to the shape of the Ag nanoparticles. We then moved 

on to develop an inexpensive, ultrasensitive biosensing platform that employs nanomaterials 

to achieve femtomolar detection of biomarkers. These results provide encouragement for 

future point-of-care devices utilizing the economical nature of our platform for fast and 

sensitive diagnosis of diseases. 
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6.1 Point-of-care biomarker detection using AIDLuQ platform 

 

The importance of point-of-care diagnostics is highlighted by the fact that there are many 

countries with regions completely inaccessible to medical care. In addition, the people in 

these regions do not have the facilities to get an early diagnosis and might have to wait for a 

few days to a week and travel afar to get their results. These inconveniences are overcome 

by the use of mobile health clinics. If these mobile clinics could be equipped with an 

ultrasensitive diagnosis platform like AIDLuQ, the patients could be tested and the results 

obtained within the space of an hour or so. This would drastically improve the efficacy of 

the mobile clinics along with adding to their value and making them more multifunctional. 

In this setup (Fig. 6.1), a simple green pointer laser could be used as the incident light source. 

We have developed a grating which can be used with a cell phone and the captured light is 

recorded in the form of a spectrum using an application readily available.  

 

 

Fig. 6.1 A schematic illustration of the setup for point-of-care diagnostics using AIDLuQ. 
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6.2 Non – Linear Optics (NLO) in graphene 

 

Optical properties of graphene at the quantum level haven’t been fully explored. The next 

part of future work is aimed at furthering our understanding of the non – linear optical 

properties of 3-5 layers of graphene. This work will shed light on the type of interactions of 

graphene with light at the quantum scale. The information obtained can be used to improve 

the performance or tune the optical side of graphene-light interaction to suit our needs. The 

NLO in graphene can be studied using a Z-scan setup as shown in Fig. 6.2. 

 

 

Fig. 6.2. The setup for Z-scan. Z-scan can be used to study the non – linear optical properties 

of transparent or semi-transparent solids and liquids. 
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Our previous work has utilized the quenching effects of graphene when a fluorophore is near 

it. We propose to study the non-linear interactions of graphene with light in the presence of 

metal nanoparticles in its vicinity. To this end, we have started off with some preliminary 

experiments in studying the non-linear optical effects in graphene as well as graphene – gold 

and graphene – silver systems with one coat of gold/silver on graphene. This was followed 

by a second coating. The results are shown in Fig. 6.3. 

 

 

 

Fig. 6.3. (a)  The NLO effects observed in a few-layered graphene (GR), graphene-silver (1 

coating) (GR-Ag) and graphene-silver (2 coatings) (GR-Ag-Ag); (b) The NLO effects in GR, 

GR-Au and GR-Au-Au. 

 

A clear trend is observed in the reduction of the normalized transmittance with addition of 

more layers of gold/graphene. This is due to the simple fact that the light has to now pass 
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through more layers of material and therefore the decrease in transmittance. However, more 

study into the details of interactions is needed and more data needs to be obtained to study 

the effect of the size of the coated nanoparticles. 
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APPENDIX 

Glossary of acronyms used in the dissertation 

1. CNTs: Carbon Nanotubes 

2. SWNTs: Single Walled Nanotubes 

3. MWNTs: Multi Walled Nanotubes 

4. NPs: Nanoparticles 

5. DNA: Deoxyribonucleic Acid 

6. RNA: Ribonucleic Acid 

7. SPR: Surface Plasmon Resonance 

8. LSPR: Localized Surface Plasmon Resonance 

9. SPCE: Surface Plasmon Coupled Emission 

10. QDs: Quantum Dots 

11. EC: Electrochemical 

12. UV: Ultraviolet 

13. QY: Quantum Yield 

14. IR: Infrared 

15. SPM: Scanning Probe Microscopy 

16. STM: Scanning Tunneling Microscopy 

17. SEM: Scanning Electron Microscopy 

18. TEM: Transmission Electron Microscopy 

19. AFM: Atomic Force Microscopy 

20. DSC: Differential Scanning Calorimetry 

21. PMT: Photomultiplier Tube 

22. RhB: Rhodamine B 

23. EEF: Excitation Enhancement Factor 

24. AIDLuQ: Analyte Induced Disruption of Luminescence Quenching 

25. GERS: Graphene Enhanced Raman Spectroscopy 

26. POC: Point-of-care 
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27. BSA: Bovine Serum Albumin 

28. PBS: Phosphate Buffer Saline 

29. Ab: Antibody 

30. IgG: Immunoglobulin G 

31. FBS: Fetal Bovine Serum 

32. WHO: World Health Organization 

33. DFT: Density Functional Theory 

34. uPA: Urokinase Plasminogen Activator 

35. ELISA: Enzyme-Linked Immunosorbent Assay 
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