
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

December 2020

Accelerated Molecular Dynamics for the Exascale Accelerated Molecular Dynamics for the Exascale

Andrew Garmon
Clemson University, agarmon@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Recommended Citation Recommended Citation
Garmon, Andrew, "Accelerated Molecular Dynamics for the Exascale" (2020). All Dissertations. 2716.
https://tigerprints.clemson.edu/all_dissertations/2716

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2716?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Accelerated Molecular Dynamics for the Exascale

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Physics

by

Andrew Garmon

December 2020

Accepted by:

Dr. Murray Daw, Committee Chair

Dr. Jian He

Dr. Brad Meyer

Dr. Jens Oberheide

Abstract

A range of specialized Molecular Dynamics (MD) methods have been developed in order

to overcome the challenge of reaching longer timescales in systems that evolve through sequences

of rare events. In this talk, we consider Parallel Trajectory Splicing (ParSplice) which works by

generating large number of MD trajectory segments in parallel in such a way that they can later

be assembled into a single statistically correct state-to-state trajectory, enabling parallel speedups

up to N, the number of parallel workers. The prospect of strong-scaling MD is extremely enticing

given the continuously increasing scale of available computational resources: on current peta-scale

platforms N can be in the hundreds of thousands, which opens the door to MD-accurate millisecond-

long atomistic simulations; extending such a capability into the exascale era could be transformative.

In practice, however, the ability for ParSplice to scale increasingly relies on predicting where the

trajectory will be found in the future. With this insight in mind, we develop a maximum likelihood

transition model that is updated on the fly and make use of an uncertainty-driven estimator to

approximate the optimal distribution of trajectory segments to be generated next. In addition, we

investigate resource optimization schemes designed to fully utilize computational resources in order

to generate the maximum expected throughput.

ii

Table of Contents

Title Page . i

Abstract . ii

List of Figures . iv

Glossary . vii

Introduction . ix

Improving the statistical Model .xviii
0.1 Introduction . xviii
0.2 ParSplice Review . xx
0.3 Methods . xxiv
0.4 Results .xxviii
0.5 Conclusion .xxxvi

Improving the scheduling procedure .xxxvii
0.6 Introduction .xxxvii
0.7 Previous work .xxxviii
0.8 Methods .xxxix
0.9 Application . xliii
0.10 Conclusion . liv

Decision theoretic approach to optimal scheduling .lviii

Potential applications & future work .lxiii

Bibliography .lxvii

iii

List of Figures

1 Illustration of achievable MD length and time scales provided one day of compute time.
Dashed lines represent theoretical performance achievable if MD were to strong-scale
on those platforms. Image courtesy of Danny Perez x

2 Illustration of the concept of spliceable segment taken from original manuscript [1].
The red star marks the beginning of an MD run in state 1. The dashed lines represent
state boundaries. Any section of this trajectory that begins and ends in blue regions
is a spliceable segment. Such segments however cannot contain any portion of the red
section or begin or end in yellow sections. xiv

3 Illustration of the concept of segment splicing courtesy of Danny Perez. Each producer
works in parallel to generate segments of trajectory which are then consumed into the
single long-time trajectory. xv

4 On left, illustration of the Ag/Ag(100) trimer system taken from original manuscript
[1]. Atoms are colored by their position in the z direction. Red: trimer atoms;
green:surface layer; blue: subsurface layer. Arrows show the possible displacements of
trimer atoms during the two possible “spinning” transitions. On right, corresponding
potential energy surface illustrating the four state super-basin with arrows indicating
transitions . xvi

5 Illustration of the concept of a spliceable segment. The red star marks the beginning
of an MD run in the triangle state. The horizontal line represents a state boundary
between the triangle and square states. Any section of this trajectory that begins
and ends in blue regions (meaning the trajectory has spent at least τc in the state it
is currently in) is a spliceable segment. In practice, segments are ended at the first
opportunity after reaching some minimum length[1]. xix

6 Conceptual illustration of ParSplice: (a) The Scheduler (red) assigns each Worker
(blue) the task of generating a segment that begins in a particular state. (b) The
Workers independently run MD in their assigned state, creating a segment which
they return to the database. (c) and (d) The Splicer (yellow) extracts segments from
the database and splices them onto the end of the long-time trajectory. In practice,
all of these operations occur concurrently and asynchronously. xxi

7 Illustration of Virtual End (VE) scheduling: (a) Endpoints of pending segments are
virtually sampled using a statistical model. (b) Segments from this database are then
virtually spliced onto the end of the long-time trajectory to predict where this virtual
trajectory will run out of segments. (c) A segment is scheduled in the virtual end state
and the process is repeated; sampling endpoints for all pending segments, but now
including the one just scheduled. We stress the word virtual to differentiate from the
actual segment generation and splicing done by the Workers and Splicer, respectively.
The virtual process can be seen as a thought experiment conducted by the Scheduler
as a means of forecasting ahead of the long-time trajectory. xxiii

iv

8 Conceptual view of optimal scheduling within the known state-space (blue/bold) given
the underlying complete model (grey). When the segments currently scheduled are
likely to yield an escape outside of the known state-space (marked by dashed blue
line), it is then optimal to continue allocating the remaining resources according to
where the trajectory is likely to return to the known state-space. xxvii

9 Parallel efficiency on the 3D model for varying N , as a function of the length of the
trajectory. The different methods are shown: MLE in red, DB in green, DB+W in
blue, and PI in cyan. When DB results are not visible, they overlap with DB+W. . xxix

10 Proportion of states discovered as a function of pseudo WCT (where each unit is
the amount of time for each worker to generate a segment). From bottom to top:
N = 103, 104, 105. The different methods are shown: MLE in red, DB in green,
DB+W in blue, and PI in cyan. The yellow line gives the N →∞ limit. xxx

11 Performance of a pure exploration strategy (magenta) on the 3D model for N = 104

in contrast to the MLE, DB, and DB+W methods (red, green, and blue, respec-
tively). Such a strategy has the largest state discovery rate, but nonetheless yields
poor parallel efficiency, especially early in the trajectory. See text for details. xxxi

12 Parallel efficiency on the 1D model for varying N , as a function of the length of the
trajectory. The different methods are shown: MLE in red, DB in green, DB+W in
blue, and PI in cyan. When DB results are not visible, they overlap with DB+W. . xxxii

13 Parallel efficiency on the fully-connected model for varying N , as a function of the
length of the trajectory. The different methods are shown: MLE in red, DB in green,
DB+W in blue, and PI in cyan. xxxii

14 State-space exploration statistics gathered from 1600 independent samples of each
method on the fully connected model with 104 workers. The different methods are
shown: MLE in red, DB in green, and DB+W in blue. Where MLE/DB results are not
visible, they overlap with DB+W. Top: fraction of states discovered. Middle: fraction
of transitions discovered. Bottom: number of segments allocated to the current state
of the trajectory (as compared to PI in yellow). .xxxiv

15 Frequency distribution of single-state escape times for the V19 W system. xxxv
16 ParSplice parallel efficiency on the V19 W system for 1,800, 3,600, and 10,800 workers,

respectively (from left to right). On each panel, MLE (red), DB (green), and DB+W
(blue) are shown. Error bars denote the standard error of the mean over multiple
simulations. xxxv

17 Benchmark analysis of the molecular dynamics code LAMMPS [2]. Run times in
red were measured for an identical task executed over a varying number of cores.
Fractional core counts were obtained via oversubscribing the hardware slots. In blue,
a functional form a + b/x + d log(gx) + h/x2 was fit to the data to produce the
invertible function T (w) with coefficients a = −2.38, b = 481.42, d = 2.32, g = 21.76,
and h = 7.10 . xl

18 Conceptual illustration of segment generation: An MD trajectory is initialized in some
assigned “circle” state and then dynamically evolved forward in time through MD.
After some stopping criteria is met, the final state of the MD trajectory is noted and
used to produce a ParSplice “segment”. xlii

19 Conceptual illustration of segment splicing: Left panel, only segments which start in
the same state that the previous spliced segment ended (here the “diamond” state) can
be spliced. Right panel, splicing a segment involves extracting it from the database
and appending it to the state-to-state trajectory. xlii

v

20 Virtual End (VE) scheduling of segments: Top panel, the statistical Markov Model
(in green) is used to sample “virtual” end states (also green) for all pending-segments,
speculating on what the database might look like once these pending-segments are
completed. Bottom-left panel, segments are then “virtually” spliced from the spec-
ulative database, extending the “virtual” trajectory as far as possible. Bottom-right
panel, a new segment (outlined in yellow) is scheduled to begin in the state where
the “virtual” trajectory ended. We stress the word “virtual” here to differentiate
from anything actual. All segment manipulation is only carried out as a thought
experiment for determining where to generate the next segment. xliv

21 Synthetic task probability distributions sampled from different B(α, β) distributions
as depicted in the legend. xlv

22 Boost in performance as a function of resources N , where Boost is defined as the ratio
of expected throughput provided the optimal allocation to the expected throughput
provided the naive allocation. Results shown for synthetic distributions sampled from
both the delta distributions (a) and the beta distributions (b). xlvi

23 Top: Task probability distribution sampled from B(0.1, 1) distribution. Bottom: Al-
location of N = 10, 000 resources among tasks. xlvii

24 On left, fraction of optimal throughput which can be achieved with a constant al-
location for the Delta sampled distributions (24a) and Beta sampled distributions
(24c). On right, the corresponding value of w required to obtain this fraction of
optimal throughput for the respective Delta sampled (24b) and Beta sampled (24d)
distributions. xlix

25 ParSpliceSIM results for the 1D, 3D, and fully-connected toy models showing pseudo-
MD spliced as a function of WCT. Each panel displays performance of VE in blue,
MaxP in red, MaxP(wconst) in green, MaxP(wmax) in maroon, and MaxP(w∗) in yel-
low. The results shown represent an average of roughly 500 independent simulations
conducted for each method on each model. lii

26 Initial task probability distributions taken from simulations on the 1D (blue), 3D
(red), and fully-connected (orange) toy models. These task probability distributions
were constructed at the start of the simulation; having no contribution from the
then-empty database of stored segments, and are therefore a reflection of the state
connectivity. liii

27 All task probability distributions generated during a single simulation on the 1D
(blue), 3D (red), and fully-connected (orange) toy models. liii

28 This figure was taken from [3] and is shown to illustrate the three separate regimes
of gas diffusion . lxvi

vi

Glossary

boost multiplicative factor of increased performance or ratio of AMD-time:MD-time. xii

decorrelation time (τc) the required time spent within a state before accumulating MD-time; the
time required for the trajectory to relax toward the state’s QSD and become memory-less. xiii

optimal policy the policy corresponding to the maximum cumulative expected utility. lviii

policy a rule by which actions are taken. lviii

regret the difference between the expected cumulative utility of the optimal policy and that of a
given policy. lix

residence time the expected time to spend within an absorbing Markov Model before absorb-
ing/escaping from the model. lx

scheduling the process of assigning workers to the states where they will begin their MD trajectory;
submitting a request for segments to be generated. xvi

segment an initial state and a final state, separated by some amount of MD-time. xiv

state a predefined region of configuration space, typically denoted by a single basin of attraction.
xi

super-basin a group of states that are highly connected within the group, but weakly connected
to states outside of the group. xiv

utility measure of the desirability or value pending the consequence of an action. lviii

worker component of ParSplice that runs MD and is responsible for generating segments of tra-
jectory. xiv

vii

Acronyms

AKMC Adaptive Kinetic Monte Carlo. xi

AMD Accelerated Molecular Dynamics. xii

EVSI Expected Value of Sample Information. lx

hTST harmonic Transition State Theory. xii

KMC Kinetic Monte Carlo. xi

MD Molecular Dynamics. ix

MDP Markov Decision Process. lxii

ParSplice Parallel Trajectory Splicing. xiv

PRD Parallel Replica Dynamics. xiii

QSD Quasi-Stationary Distribution. xiii

RL Reinforcement Learning. lxii

TAD Temperature Accelerated Dynamics. xii

TST Transition State Theory. xi

VE Virtual End. xvii

WCT Wall Clock Time. x

viii

Introduction

Over the past 50 years modern science has become increasingly reliant on computer simula-
tion as the premier tool for understanding nature; particularly for studying phenomena that evolves
over length and/or time scales which are not directly accessible to us through our senses. It has
become essential to our ability as scientists to motivate theories and make predictions. In fact, a
modern theorist who does not frequently make use of computer simulation is about as common as
hens teeth.

Since the advent of computers, scientists have been inputting what they believe to be the
meaningful physics into simulations and computing the output, which they can compare to exper-
iments to gain an understanding. As time has passed, models have been refined and developed to
better represent reality, resulting in simulations which are incredibly accurate. Many scientists will
think of their simulations as “numerical experiments” and trust them as though they carry the same
validity as experiment. This is, however, a great confusion. Just as with any powerful tool one must
fully understand the tool if they are to truly understand the result.

Knowing the extent to which our simulations are valid is of upmost importance when in-
terpreting the results. There is an aphorism which is commonly used within the modeling and
simulation community: All models are wrong, but some are useful. It is our role as scientists to
endow our simulations with as much of the meaningful physics as possible such that we can produce
results that are in accordance with reality. Oftentimes, however, sacrifices in accuracy are made in
order to reach length and/or time domains which are otherwise not directly accessible. This is often
the case in atomistic simulations of thermally activated processes. To better understand why we
must first understand the simulation tool itself.

The state of the art in atomistic simulation, Molecular Dynamics (MD), provides a means of
peering deep down to the level of molecules to gain an understanding of the atomic behavior. It works
by numerically integrating the classical equations of motion for a system of particles. The forces at
each timestep are derived from interatomic potentials which are provided by the user. The resulting
simulation produces a collection of “snapshots” characterizing the dynamics as the positions and
velocities of each atom are evolved forward in time. Crucial to the validity of the simulation is a
numerical timestep small enough to resolve the thermal vibrations. Unfortunately, this constrained
timestep in turn restricts the times which we are able to reach through direct simulation. This
MD timescale problem defines a barrier in time (sub-microseconds for general purpose hardware)
past which MD simulations cannot access, thus leaving many rich physical processes significantly
out of reach. Take for example film or crystal growth. Each deposition event takes on the order of
picoseconds, which is no problem for MD. The time between deposition events however is on the order
of seconds, meaning the diffusion events that occur on the surface (which affect the film morphology
and can be extremely complex) are significantly far out of reach of MD. There is an entire world of
example problems like these: grain boundary or dislocation dynamics, radiation damage annealing,
contact damage during nanoindentation, slow chemical reactions, etcetera, etcetera. Slow processes
like these could be better understood by scientists if only MD simulation could be used to inform
our understanding.

One may assume that the ever increasing availability of massively-parallel computers could

ix

Figure 1: Illustration of achievable MD length and time scales provided one day of compute time.
Dashed lines represent theoretical performance achievable if MD were to strong-scale on those plat-
forms. Image courtesy of Danny Perez

be leveraged in order to overcome this timescale barrier, however this is not the case. Parallel
MD typically involves some form of spatial decomposition, where the system domain is divided
into subdomains that are then run on separate processors, communicating between processors when
necessary. Unfortunately, MD only weak-scales with spatial decomposition. As seen in Figure 1,
parallel MD is able to utilize more cores in running larger systems. It does not however enable
us to reach longer timescales. This is because as the system is divided into smaller and smaller
subdomains the simulation finds itself communication-bound; where it is primarily communicating
between processors and running very little MD.

This leads to the question: How we are to extract accurate long-time atomistic dynamics in
the presence of this MD timescale problem?

Seeing that the fixed timestep requires a certain number of numerical integration steps in
order to reach a certain simulation time, the naive solution would be to somehow accelerate the
process of the numerical integration thereby decreasing the Wall Clock Time (WCT) required to
reach that simulation time. As the most computationally expensive part of MD is the force calls
required at each timestep this would involve developing faster potentials and/or designing specialized
hardware for running MD. While this solution is well founded in principle it’s scope is generally
limited as the desired simulation timescales are often many orders of magnitude past the accessible
timescale barrier and would thus require speedups of the same proportion. Therefore, accelerating
the numerical integration of MD alone will not be enough to reach the desired long-time results.

A more fruitful strategy is to exploit the separation of timescales that is often present within
the dynamics of a slow, thermally-activated process. Typically, the dynamics of these systems can
be characterized in a coarser sense by a series of quick transitions between long-lived, meta-stable

x

regions of configuration space or what we refer to as states. The exact intrastate dynamics are
usually of little interest as they to not qualitatively contribute to the overall long-time dynamics of
the system. It is the interstate dynamics that are of interest as the meaningful long-time behavior
of a system can be completely described in the form of a state-to-state trajectory. Note, if the
intrastate dynamics for a particular state were of interest they could be obtained through direct MD
simulation as the lifetime of the meta-stable state is likely well within the accessible timescales of
MD.

Provided that the state-to-state trajectory encapsulates all of the meaningful information on
long timescales, a common approach is to utilize Transition State Theory (TST) to compute the rate
constants for transitions between states via the energy barrier at the dividing surface [4]. In practice,
there are methods for obtaining the saddle point energy [5, 6] which can be employed en route of
the rate calculation. If needed, dynamical corrections to the TST rate can even be computed for an
increased level of accuracy. Once obtained, a list of states and transition rates can be used to generate
a long-time state-to-state trajectory using a stochastic method like Kinetic Monte Carlo (KMC)[7].
KMC samples transitions and times according to the TST rate constants in order to dynamically
evolve the system from state to state. In contrast to true-MD which numerically integrates the
equations of motion and thus is limited the timescale problem, these stochastic dynamics can be
sampled rapidly, generating long-time dynamics without any hesitation. When done correctly, and
with a complete list of states and transition rates, one will obtain statistically-correct state-to-state
trajectories.

However, acquiring a complete list of all of the states and transition rates is oftentimes very
difficult, if not impossible. The complexity of many systems can result in an unfathomable number
of reaction pathways. In such systems, having a complete list of all of the states and all of the
transition rates a priori is simply not possible. Instead, scientists can try to account for all of the
pathways which they believe to be relevant, constructing the list on-the-fly through a very clever
Adaptive Kinetic Monte Carlo (AKMC) method [8]. This method constructs a list of escapes and
TST rates from the current state through a series of saddle point searches until a confidence level
criteria for the completeness of the list is met, at which point it samples a transition and time in
the KMC-fashion, and proceeds to the next state where the process repeats [9].

A matter of particular interest, as it motivates the work of this thesis, is the confidence
level criteria use for determining the rate list completeness. This is a very important concept as the
dynamics produced by an AKMC simulation are purely stochastic, and thus their ability to describe
reality are directly dependent on the completeness of the TST rate list. As the original AKMC
procedure searches for transitions, each successive saddle point search that returns a transition
already accounted for on the list is denoted as “relevant but redundant” and is accounted for in a
parameter Nr. The confidence parameter, C, indicating that the rate list is complete and a relevant
saddle will not be missed can be expressed as C = (1− 1

Nr
) [9]. Inherent in this confidence parameter

is the understanding that the AKMC rate list will never truly be complete, and if it were there would
be no way of knowing it. This is an important point to make as any omitted pathway from the rate
list could potentially have severe consequences on the long-time dynamics.

While more sophisticated uncertainty quantification methods have been developed for esti-
mating the unknown-rates and enhancing the completeness criteria [10], the fundamental issue still
remains. A purely stochastic method for generating dynamics will be susceptible to the incomplete-
ness of the TST rate list and will only contain those transitions which are known to exist. This
is dangerous as a very rare, perhaps coordinated atomistic event which would naturally occur in a
long-time trajectory might not be present in the AKMC result. The dangerous part here is that
the scientist would have no idea about the lapse present in their simulated trajectory, they would
only know that their trajectory was generated using a confidence level of 99.99%. The intrinsic
lack of knowledge present in this type of simulation is very non-scientific. The pursuit of truth and
understanding becomes murky when the tool used produces a result that may or may not conform
to reality. Therefore, while stochastic methods like AKMC are a very powerful tool for developing

xi

long-time trajectories of atomistic systems, their Achilles-heel of uncertain-accuracy leaves room for
the development of better techniques.

Over the past 30 years, the scientists at Los Alamos National Lab (LANL) have been devel-
oping specialized MD-techniques that are designed for reaching long timescales while maintaining
the accuracy of MD. This field of work, pioneered by Art Voter in the late 1990’s, has come to
be known as Accelerated Molecular Dynamics (AMD). Similar to KMC, AMD methods utilize the
separation of timescales to produce long-time state-to-state trajectories rather than trajectories that
are continuous in phase space. Again, this comes at little to no cost as the long-time behavior of a
system is completely described by state-to-state trajectory.

The philosophy behind AMD is to leverage the most powerful component of MD, that is,
the ability to find an appropriate escape in statistically correct time without any knowledge of the
system a priori. Although direct MD is not capable of generating long-time dynamics past the
timescale barrier, the mechanism of MD can be exploited to generate statistically correct escapes.
The general idea is to coax the system into finding the appropriate escape faster by running MD in
a setting where transitions happen more quickly, and then carefully accounting for the correction
in time. Each AMD method is specially designed to accelerate the generation of a state-to-state
trajectory without biasing the result in any way. The most impressive feature of AMD is the
incredibly general statements that can be made regarding the accuracy of it’s trajectories. When
executed correctly, each AMD method is capable of producing arbitrarily-accurate, statistically
correct state-to-state dynamics that push timescales far beyond the MD timescale barrier.

The original work done by Voter in the late 90’s, which spawned the entire field of AMD,
was devising three distinct “flavors” of acceleration techniques. Each flavor works by utilizing
it’s own unique mechanism to accelerate the finding of the next escape. These mechanisms are
completely independent, meaning they can potentially be layered on one another or combined to
further accelerate the dynamics - a concept which has been explored as each method continues to
develop. Although the work in this thesis emerges from one of the three AMD techniques devised
by Voter, I will briefly summarize each method as they have each played a foundational role in the
field of AMD.

The first method designed by Voter is called hyperdynamics [11]. This method works by
adding a bias potential to the underlying system in order to accelerate the escape to the next state.
The bias potential must be carefully designed to be zero at the TST dividing surfaces in order to
not bias the selection of the next state. The time it takes to find the escape with this added bias
potential is referred to as the hyper-time, which can then be related back to the unbiased time of the
target system through harmonic Transition State Theory (hTST). The boost in performance, i.e. the
increased rate at which a state-to-state trajectory can be generated relative to direct MD, increases
exponentially with the bias potential. This implies that systems with very deep states (for which a
large bias potential can be applied) are able to obtain dramatic boosts in performance, pushing the
accessible timescales by orders of magnitude. The drawback with hypedynamics is the requirement
that the bias potential must be zero on all dividing surfaces. This constraint becomes limiting
when very large systems are considered; as systems scale to large sizes the number of transition
pathways increase, meaning it becomes more and more likely that a local distortion brings the
system close to a dividing surface. Therefore, as systems scale to larger and larger sizes the bias
potential must be smaller and smaller, resulting in a boost which decays to unity. Recent work
developing hyperdynamics has led to a version where the bias potential is only applied locally, called
local-hyperdynamics, which allows the method to scale to larger systems [12]. This advancement
has enabled MD-accurate simulations of one million atoms to timescales on the order of a hundred
microseconds [13], far beyond anything achievable with direct MD.

Another one of Voter’s AMD methods is Temperature Accelerated Dynamics (TAD)[14].
This method considers the naive idea that increasing the temperature (of a low-temperature simula-
tion) will increase the rate of reaction and thus produce transitions quicker. While this is true, the
high-temperature transitions will be biased toward escapes with higher barriers, producing faster

xii

(but incorrect) transitions. In order to account for this effect TAD runs basin constrained dynamics
(where MD is run within a single state and escapes from the state are noted but blocked) at a higher
temperature, recording all of the attempted transitions and their corresponding high-temperature
time. Then, using TST, TAD is able to correlate each high-temperature time back down to the low-
temperature time, i.e the time it would have taken for the transition to occur at low-temperature.
TAD can then accept the first transition that would have occurred at low-temperature, extending
the state-to-state trajectory by the low-temperature time to the accepted transition state. From the
new state the procedure repeats, running basin constrained dynamics with high-temperature MD.
Using TAD, scientists are able to obtain incredible boosts, particularly when gap between Thigh to
Tlow is large. The original paper showcased results of film ripening on a CU(111) surface [14]. The
high energy barriers allowed the 150K simulation to use a Thigh of 1000K, generating a state-to-
state trajectory reaching timescales of hours. For comparison, direct MD would achieve roughly
0.4 microseconds for the same WCT, thus TAD provided a staggering boost of roughly 109. Note,
however, that the boost obtained using TAD is highly dependent on temperature. TAD accelerating
the dynamics of an identical simulation run at 300K (rather than 150K) only achieved a boost of
roughly 250. Recent developments of TAD include a speculatively parallel version which is able to
utilize multiple cores and start running basin constrained dynamics on transitions as they are dis-
covered (i.e, before they are accepted) in order to further accelerate the state-to-state dynamics [15].
Research into TAD also led to the use an AMD simulator designed to explore potential algorithmic
developments without the unnecessary expense required to generate true atomistic dynamics [16]; a
research approach which was used in the development of this thesis work.

The last of Voter’s original three AMD methods is Parallel Replica Dynamics (PRD) [17].
This method leverages the use of parallel computing to run unbiased dynamics on several independent
replicas in order to find the next escape from a state sooner. It begins by broadcasting a single
state to each replica where it will begin running MD. Since each replica is running MD at the target
dynamics (i.e, unbiased MD) the escape which is found by a replica will be an appropriate transition.
Moreover, the appropriate MD-time required for finding said transition is simply the “parallel-time”
or the sum of MD-time accrued by each replica. As a result, the WCT time invested in finding the
escape from a state is reduced by a factor of N , the number of parallel replicas. Once a transition
is found, each replica process is terminated and the newly transitioned state is broadcast to each
replica, where the process repeats again.

In practice, each replica must first undergo some decorrelation time (τc) in a state before
that replica begins to accrue MD-time. This decorrelation time is required to initialize a replica in
a particular state and ensure that it’s trajectory is statistically independent from the other replicas.
Formally, it is the time required for the process to relax toward the state’s so-called Quasi-Stationary
Distribution (QSD). This is the self-similar distribution that results in the limit of dynamics confined
to a single state with absorbing boundaries, and pertains to exponentially distributed first escape
statistics. Once an appropriate decorrelation time has elapsed the replica can be viewed as a random
sample from the state’s QSD, meaning first-escapes have become completely Markovian, i.e the
trajectory has become memory-less. It is only once this decorrelation cost is paid that a replica
will start producing meaningful work towards the state-to-state trajectory. Therefore, while PRD is
capable of accelerating the discovery of transitions by a factor of N , it comes at a cost of Nτc. This
implies PRD is best suited for processes where the average time needed to escape a state, 〈τesc〉, is
such that 〈τesc〉 /N � Nτc; outside of this domain the overhead cost begins to compete with the
performance. Provided the 〈τesc〉 of a given process, this sets an upper-bound on the number of
replicas which can be efficiently utilized, thus placing a scaling limit on the achievable boost.

The Mathematical underpinnings of PRD, as well as hyperdynamics and TAD, have been
rigorously proven to produce arbitrarily-accurate, statistically-correct state-to-state trajectories [18].
The accuracy of PRD is dependent on the chosen decorrelation time τc spent relaxing toward the
QSD. Formally, the dynamics produced are only exact in the limit τc →∞, but the error produced
decreases exponentially with increasing τc. This remarkable fact distinguishes PRD from the other

xiii

Figure 2: Illustration of the concept of spliceable segment taken from original manuscript [1]. The
red star marks the beginning of an MD run in state 1. The dashed lines represent state boundaries.
Any section of this trajectory that begins and ends in blue regions is a spliceable segment. Such
segments however cannot contain any portion of the red section or begin or end in yellow sections.

two methods in that a linear cost in τc will produce an exponential payoff in accuracy. For most
practical applications, a τc of a few picoseconds is sufficient for establishing a replica in a given
state. Another factor that sets PRD apart is the incredibly general nature of the method. Since
each replica is running unbiased MD there is no reliance on TST or hTST to convert the accelerated
dynamics back to target dynamics of interest. Moreover, the concept of a QSD allows for more
creative state definitions that can be employed; i.e not just a single potential basin.

Enabled by the notion of a QSD, a development was made to PRD that really transformed
it into something new. The big idea was to assign replicas to generate trajectory in different states,
and store the work done until it was needed by the state-to-state trajectory. Each replica or worker
as they are referred to in this new method (since they are no longer all copies running MD in
the same state) is assigned to a particular state and (after running MD for τc without an escape)
generates a trajectory for some short predefined period of time, after which it attempts to end the
trajectory at the first possible instance - conditional on having spent τc in the present state (see
Fig 2). The result is a segment of trajectory; an initial state and a final state, separated by some
MD-time. (Note: the initial and final state of a segment need not be different - They will only
differ if the segment contains a transition). It is a requirement in the prescription of generating a
segment that the trajectory spend at least τc in the initial state before starting and the final state
before ending. Therefore, the endpoints of each segment can be considered random samples from
their respective QSDs. Exploiting the fact that any two random samples from the same QSD are
statistically equivalent (in regards to first escapes) then we can append or “splice” one segment
onto the end of another if the one segment starts where the other segment ended. Utilizing this
concept, segments of trajectory can be generated in parallel and then spliced together to create a
single long-time trajectory (see Fig 3). Due to this distinctive feature the new method, born out of
PRD, came to be called Parallel Trajectory Splicing (ParSplice) [1].

The developments which led to ParSplice enabled tremendous improvements in performance,
primarily of which was the ability to handle super-basins: groups of states that are highly con-
nected within the group, but weakly connected to states outside of the group. In the presence of a
super-basin a trajectory will likely visit and revisit each state in the super-basin many times before
eventually escaping the super-basin. A classic example is a trimer diffusing on a surface. The lowest
energy barrier is the “spin” transition where one atom from the trimer hops to a neighboring lattice
site (see Fig 4). As this is the lowest barrier event it occurs many times before the trimer diffuses
elsewhere, thus creating a four state super-basin.

In practice, it is quite common for systems to contain super-basins of states (or even super-
basins of super-basins, e.g glasses). This posed problematic for PRD, especially when the intra-
super-basin transition rates were fast, i.e states within a super-basin were separated by low barriers.
PRD is only able to accelerate the discovery of an escape from the current state. As previously
mentioned, when a state is shallow (meaning escapes from that state are relatively quick) the boost
provided by PRD will be minimal. Thus, PRD is unable to accelerate the dynamics of a process

xiv

Figure 3: Illustration of the concept of segment splicing courtesy of Danny Perez. Each producer
works in parallel to generate segments of trajectory which are then consumed into the single long-
time trajectory.

xv

Figure 4: On left, illustration of the Ag/Ag(100) trimer system taken from original manuscript [1].
Atoms are colored by their position in the z direction. Red: trimer atoms; green:surface layer; blue:
subsurface layer. Arrows show the possible displacements of trimer atoms during the two possible
“spinning” transitions. On right, corresponding potential energy surface illustrating the four state
super-basin with arrows indicating transitions

that is trapped within a super-basin of shallow states.
ParSplice, on the other hand, can assign workers to different states and save the work done,

i.e segments generated, until they are needed by the state-to-state trajectory. When a state is
relatively shallow and ParSplice assigns many workers to that state, generating more segments than
were needed to escape from the state, all excess segments (that are not used in finding the first
escape) are stored in a database where they can later be extracted and consumed into the trajectory
if trajectory ever revisits that state. That is, ParSplice is able to capitalize on revisits to states and
can oftentimes immediately escape from the state (again) due to the unused segments that were
generated previously. As a result of these features, ParSplice is uniquely well-suited for handling
super-basins of states.

Another advantage ParSplice has over PRD is the improved ability to scale. Recall, PRD
was scale-limited by the constraint of needing very deep states in order to efficiently utilize very
many cores, thereby satisfying 〈τesc〉 /N � Nτc. This served problematic as the greatest potential
of parallel methods lies in their ability to scale. Both ParSplice and PRD possess ideal scaling
in the presence of very deep states. In fact, ParSplice and PRD become identical in the limit
of infinitely deep states. ParSplice, however, maintains ideal scaling in the presence of very deep
super-basins (provided long enough simulation time) even if the constituent states are themselves
very shallow. The ability of ParSplice to tackle super-basins through the amortization of previously
generated (unconsumed) segments is quite profound, particularly with the realization that the depth
of individual states composing the super-basin are completely irrelevant so long as the super-basin
itself is sufficiently deep.

The ability of ParSplice to scale is unique in that it is not entirely dependent on the depths
of states or super-basins. In principle, ParSplice can assign workers to states arbitrarily (a process
often referred to as scheduling segments), producing any arbitrary distribution of segments. This
implies that, in theory, workers could be assigned not only to the current state, but to whatever
state the trajectory is going to escape to next, as well as the state after that, and so on. Scheduling
segments ahead of the trajectory allows for the utilization of very many resources. In fact, ParSplice

xvi

has the potential ability to strong-scale to arbitrarily large resources provided an accurate means of
forecasting where the trajectory will be into the future.

Unfortunately, this dream of perfect strong-scaling requires perfect clairvoyance, which is
often not attainable. We can, however, attempt to mimic the predictive behavior and employ some
speculative scheduling; attempting to generate the number of segments that are expected to be
needed to escape from a state, and continuing to do so where ever the trajectory is likely to go
next. Doing this effectively requires an oracle capable of making predictions about the state-to-state
dynamics. In this effort, ParSplice develops a statistical Markov model on-the-fly from generated
segments and uses it to speculate on the trajectory’s future. It does so by sampling “virtual”
endpoints for “pending” segments (those segments which have been scheduled but have not yet
been generated and returned to the database). This provides a potential future image of what
the database might look like once all pending segments are completed. Using this future image,
ParSplice can “virtually” splice segments to determine where the long-time trajectory would be if
this potential future was realized. It then schedules the next segment to be generated at the end
of this “virtual” trajectory, in what is referred to as Virtual End (VE) scheduling. Note: the word
“virtual” is stressed to make the distinction that nothing actual is happening; no segments are being
manipulated nor is anything spliced. The VE procedure can be interpreted as a thought experiment
used to speculatively schedule ahead of the long-time trajectory. As a ParSplice simulation runs
segments are constantly being generated and observed, thus improving the statistical Markov model
which in turn improves the quality of the VE scheduling decisions.

In summary, ParSplice is an incredibly powerful AMD method which enables the generation
of long-time, MD-accurate state-to-state trajectories. It accelerates the construction of trajectories
via a time-wise parallel technique that does not bias the dynamics in any way. Through the use of
ParSplice scientists can reach simulation times up to N times longer than direct-MD. This prospect
of strong-scaling MD is extremely enticing given the continuously increasing scale of available com-
putational resources: on current petascale platforms N can be in the hundreds of thousands, which
opens the door to MD-accurate millisecond-long atomistic simulations; extending such a capability
into the exascale era would be transformative. It is for this reason that ParSplice was chosen to be
part of the Exascale Computing Project (ECP), a large DOE-funded collaborative project aimed at
developing exascale-ready applications and solutions that address currently intractable problems of
strategic importance and national interest. More specifically, ParSplice is the T in the EXAALT
portion of the project, which aims fully utilizing the power of the EXAscale for MD simulations of
increased Accuracy, Length, and Time.

The work detailed in this thesis is to further develop a method for extracting accurate long-
time atomistic dynamics in a way that remains faithful to the true underlying physics. It was done
inline with the ECP mission, and to enable new science that will only be made possible through the
next generation of computing. It is my hope that the work done will one day contribute toward the
greater goal of bringing us closer to a deeper understanding of the physical world.

The work of this thesis is organized as follows: Motivated by the fact that the ability of
ParSplice to scale is only limited by the ability to speculate, Chapter 1 details the work done to
improve the statistical model that is used in the VE scheduling procedure. The work detailed in
Chapter 2 describes a new scheduling procedure and optimization paradigm designed for employ-
ing and fully utilizing massively-parallel platforms. This is followed by some unpublished work in
Chapter 3 which investigates a decision theoretic approach to optimal scheduling and calls into ques-
tion the metric used for evaluating a scheduling decision. Lastly, Chapter 4 briefly outlines some
potential applications and future work.

xvii

Improving the statistical Model

0.1 Introduction

Molecular Dynamics (MD) is a widely used computational workhorse that provides funda-
mental insights into the nanoscale behavior of materials. Crucial to the stability of the simulation
is a numerical timestep small enough to resolve even the fastest thermal vibrations, i.e., a few fem-
toseconds. Unfortunately, this strongly limits MD-accessible timescales (to sub-microseconds on
general purpose hardware) and hence the insights that can be obtained from MD. This limitation
is especially problematic for systems that evolve through rare events, a very common situation in a
range of materials, as it often precludes the observation of the mechanism that controls the behavior
of the system over long times.

One might expect that each successive generation of massively-parallel computers would
extend the reach of MD simulations to larger systems and longer times, but this is only partially
true. Conventional parallel MD involves some form of spatial decomposition [19], allowing the
utilization of large numbers of processors to simulate very large systems. Such strategy does not
however significantly affect the accessible timescales because efficiency requires a sufficiently large
number of atoms per processor in order to amortize communication and synchronization overhead.
This requires that the system size scales proportionally with the number of computing units on the
machine that is used, and hence does little to increase the simulation timescales. This limitation is
especially problematic given that many material properties depend on thermally activated processes,
such as defect nucleation, diffusion, and annihilation, that occur on long timescales. Therefore, if we
are to fully harness the computational capabilities provided by these increasingly large computers
and extend the accessible timescales of MD simulation, we must consider alternative parallelization
approaches [20], or abandon direct MD simulations in favor of higher-level models, such as Kinetic
Monte Carlo (KMC)-based techniques [8, 21].

One such alternative approach is Parallel Trajectory Splicing (ParSplice), which leverages
parallel computing to parallelize the simulation in the time domain. It does so by concurrently
and independently generating many short segments of MD trajectory in such a way that segments
can later be spliced together to form a very-long state-to-state trajectory [1] that is statistically
valid. States are usually defined as basins of attraction on the energy landscape, i.e., all points in
configuration space that converge to the same minimum upon gradient descent belong to the same
state. This is a good definition when all saddle points surrounding such basin are sufficiently high
compared to the thermal energy scale kBT . While this choice is very computationally convenient,
more general definitions are also possible [22]. ParSplice can be seen as a generalization of the
Parallel Replica Dynamics method (ParRep) introduced by Voter [17, 22] and it is related to the
Distributed Replica Dynamics method of Henkelman et al.[23]. The code is open source and is freely
available for download [24].

It can be shown that the distribution of any system that spends a sufficiently long time
trapped within a state without escaping relaxes towards the state’s unique quasi-stationary distri-
bution (QSD). Once the QSD is reached, the first escape statistics out of the state become Markovian,
i.e., memoryless [18]. In this context, the correlation time τc is defined as the characteristic time

xviii

Figure 5: Illustration of the concept of a spliceable segment. The red star marks the beginning of an
MD run in the triangle state. The horizontal line represents a state boundary between the triangle
and square states. Any section of this trajectory that begins and ends in blue regions (meaning the
trajectory has spent at least τc in the state it is currently in) is a spliceable segment. In practice,
segments are ended at the first opportunity after reaching some minimum length[1].

needed to approach the QSD from any initial condition in the state. The choice of correlation time
is in general not a simple question [22]. However, in the case where states are defined as individual
basins of attraction of the energy landscape, it can be shown that de-correlation occurs on vibrational
timescales, so a typical value of τc for hard solids is a few picoseconds.

ParSplice takes advantage of this notion to produce segments of MD trajectory whose end-
points are such that the trajectory spent at least (τc) in both the starting and end states (which
might or might not be the same), before the beginning and end of the segment, respectively. These
end points are therefore (approximately) samples from the respective QSD of the starting and end
states (c.f., Fig. 5). As two endpoints sampled from the same QSD are statistically equivalent with
respect to predicting the next escape from the state (due to the Markovian nature of the first escape
statistics), splicing a segment that begins in a given state at the end of an independently gener-
ated segment that ends in the same state therefore preserves the proper state-to-state transition
statistics. This approach has been proven exact in the limit τc → ∞; at finite τc, the errors vanish
exponentially with increasing τc [18]. As a result, ParSplice can yield essentially MD-accurate state-
to-state dynamics. Note that typically, segments are stopped at the first opportunity (according to
the conditions described above) after they reach a minimum length, which is typically itself on the
order of τc. In principle, shorter segments lead to high efficiency by allowing for segments generated
by multiple workers to contribute to a single escape. Consider a situation where the states are very
deep, so that each escape requires nanoseconds. A segment that runs until the first escape to a
new state could require hours of wall-clock time to generate, while this time could be compressed
down to seconds by splicing short segments independently generated by thousands of workers. Short
segments also minimize waste, avoiding the generation of extremely large amounts of MD time in the
same states, which would require a very large number of revisits to amortize. However, in practice,
very short segments segments entail communication overhead; length of order τc usually strike a
reasonable tradeoff.

The practical interest of ParSplice is that its simulation rate can exceed that of standard
MD by up to a factor of N , the number of MD instances concurrently generating segments. This
prospect is extremely enticing, given the continuously increasing scale of available computational
resources: on current peta-scale platforms, N can be in the hundreds of thousands, which opens
the door to MD-accurate millisecond-long atomistic simulations; extending such a capability into
the exascale era [25] could be transformative. Maintaining efficiency at large computational scales
is however contingent on the state-to-state transitions being sufficiently rare. In its most stringent

xix

form, this condition requires that the escape times of out each state be long compared to Nτc [22].
In practice, this conditions can be relaxed for energy landscapes that contain so-called super-states,
i.e., groups of states that are highly connected within the group, but weakly connected to states
outside of the group. In this case, high efficiency is maintained so long as the escape time out of each
super-state is long compared to Nτc [26]. While the common occurrence of super-states in many
systems somewhat alleviates this concern (super-states are so common that specialized Monte Carlo
techniques specifically capitalize on their presence [27, 28, 29, 30]), theses requirements nonetheless
restrict the range of systems that can be efficiently simulated as N increases: the larger the computer
on which ParSplice is deployed, the rarer the events have to be in order to maintain a given parallel
efficiency.

The scaling of ParSplice can however be further improved by accurately forecasting the
future evolution of the trajectory. Consider a thought experiment where a perfect oracle predicts
the exact state-to-state trajectory ahead of time. ParSplice could then concurrently generate exactly
the right number of segments in each state without any waste, leading to perfect scalability even
if state-to-state transitions are not rare. While such a perfect oracle of course does not exist in
practice, this observation motivates the need to create practical approximations to such an oracle.
In its original implementation, ParSplice develops an approximate representation of the state-to-
state dynamics in terms of a discrete-time Markov Chain using a maximum likelihood estimator
(MLE) of the transition probabilities estimated from previously completed segments. The future
evolution of the trajectory is then forecasted using the MLE model, and the segments which are the
most likely to be needed next by the state-to-state trajectory are scheduled for execution. In the
present study, we show that the MLE estimator is sub-optimal in practice because i) it does not fully
exploit the physical structure of the actual underlying Markov model, and ii) it does not take into
account the incompleteness of the model. In the following, we show that significant performance
improvements can be expected by addressing these two issues, thereby significantly improving the
scalability of ParSplice.

The manuscript is organized as follows: Sec. 0.2 first reviews the basics of ParSplice and its
use of Markov models for predictions; Sec. 0.3 then introduces improved statistical prediction models;
the performance of these models is assessed on both simulated and actual ParSplice simulations in
Sec. 0.4, before concluding.

0.2 ParSplice Review

ParSplice is best understood in terms of a Scheduler-Workers-Splicer paradigm (see Fig.
6). The role of the Scheduler is to assign segments to be completed by Workers. Each Worker
receives a state from the Scheduler, generates a segment of MD trajectory beginning in the assigned
state according to the prescription given above, returns that segment to a database, and repeats.
The Splicer extracts segments from the database and splices them onto the end of the generated
state-to-state trajectory. The goal of the Scheduler is to ensure that the segments needed to extend
the state-to-state trajectory are available to the Splicer as quickly as possible, while simultaneously
avoiding generating segments that won’t be spliced into the trajectory.

With this conceptual picture of ParSplice in mind, we can clearly distinguish the respec-
tive sources of accuracy and efficiency. The ParSplice formalism guarantees that splicing any
independently-generated set of segments produces a statistically correct state-to-state trajectory
so long as τc is chosen properly and that the order in which segments are spliced is proper [31].
Many different segment orderings are possible in practice, as discussed in Ref [31]. In short, the
order can be arbitrary so long as it is independent of the content of the segment (e.g., of its length, of
whether or not it contains a transition, etc.). In the current implementation of ParSplice, segments
can only be spliced in the order in which their generation was initiated (in wall-clock time). The
accuracy of the trajectory is therefore completely unaffected by the Scheduler’s decisions. However,

xx

(a) (b)

(c) (d)

Figure 6: Conceptual illustration of ParSplice: (a) The Scheduler (red) assigns each Worker (blue)
the task of generating a segment that begins in a particular state. (b) The Workers independently
run MD in their assigned state, creating a segment which they return to the database. (c) and
(d) The Splicer (yellow) extracts segments from the database and splices them onto the end of the
long-time trajectory. In practice, all of these operations occur concurrently and asynchronously.

xxi

the parallel efficiency of ParSplice, which is measured by the proportion of the segments generated
that are actually spliced into the long-time trajectory, is directly determined by the Scheduler’s abil-
ity to properly allocate resources (i.e, Workers) to those states where segments will be needed. Only
segments that are eventually extracted from the database and spliced into the trajectory provide
direct utility; segments that are left in the database at the end of the simulation provide no direct
utility (beyond contributing to the statistical model). To summarize, the efficiency of ParSplice
therefore relies on making wise segment-generation decisions, but its accuracy does not. This opens
the door to heuristic scheduling approaches without sacrificing accuracy, a fact that is exploited
below.

A naive scheduling approach would be to simply instruct all available Workers to generate
their segments beginning in the current end-state of the state-to-state trajectory, in what is referred
to as Actual End (AE) scheduling [1]. This approach guarantees finding an escape from the current-
state as quickly as possible, and excess segments not utilized in this escape would remain in the
database for future use. The problem is that any excess segments remaining in the database after
the first escape will only be utilized in the event that the trajectory revisits this same state again.
If N is much greater than the number of segments needed for a single escape, the trajectory will
need to revisit the state a proportional number of times in order to amortize the excess number of
segments that are generated at the first visit. This problem becomes increasingly likely and severe
as N increases.

One may note that, in an infinitely long trajectory, each state will be visited infinitely many
times, and since the database will only contain a finite number of unused segments in each state, they
will make up a vanishing proportion of the total segments produced and thus the parallel efficiency
of AE scheduling will approach unity. Indeed, AE will generate new segments in a state only if the
database does not already contain a segment that transitions from this state to another. Therefore,
at worst, the database will contain only N segments in each state at any point in time. This may
lead to the belief that being patient enough will allow any reasonable scheduling technique to suffice
as the simulation will eventually reach ideal efficiency. While this is true in theory, it would involve
running for a very long time. In practice, a simulation typically only visits a very small portion
of the whole state-space of the system. Therefore, our focus in the present study is on achieving
high parallel efficiency in this finite-time regime in which the need to intelligently schedule segments
becomes essential.

A better scheduling approach is to only schedule in the current-state what is needed to
escape, and with the remaining resources, schedule in those states which are likely to be visited
next. Doing this requires an oracle capable of accurately forecasting the state-to-state dynamics
produced by splicing segments. ParSplice builds this oracle on-the-fly by constructing a statistical
model from the segments generated in the form of a discrete-time Markov Chain (which is provably
the right class of statistical model in this case, as the end points of independently generated segments
are by construction uncorrelated). The focus of the current work is to improve upon this statistical
model as its accuracy directly pertains to the parallel efficiency achieved, as described below.

The original implementation of ParSplice relies on a maximum likelihood estimate (MLE)
of the transition probabilities, where the probability pij that a segment starting in statei will end in
statej is approximated by pij =

cij∑
k cik

, where cij is the number of observed segments that started

in statei and ended in statej . The process of scheduling segments makes use of a statistical model
to sample virtual endpoints for pending segments; those which are presently being generated and
for which the end point is not currently known. This is done in a Monte Carlo fashion where the
virtual endpoint for a pending segment is selected according to the transition probabilities present
in the model, i.e., a pending segment being generated in statei will have a virtual endpoint statej
sampled from the model according to the probability pij . This is done for each pending segment in
order to construct a potential future of what the database might look like once those segments have
completed. Using this projected future of the database, a virtual trajectory can be spliced together
in order to determine where the next segment will be needed. This virtual trajectory will only be so

xxii

(a)

(b) (c)

Figure 7: Illustration of Virtual End (VE) scheduling: (a) Endpoints of pending segments are
virtually sampled using a statistical model. (b) Segments from this database are then virtually
spliced onto the end of the long-time trajectory to predict where this virtual trajectory will run out
of segments. (c) A segment is scheduled in the virtual end state and the process is repeated; sampling
endpoints for all pending segments, but now including the one just scheduled. We stress the word
virtual to differentiate from the actual segment generation and splicing done by the Workers and
Splicer, respectively. The virtual process can be seen as a thought experiment conducted by the
Scheduler as a means of forecasting ahead of the long-time trajectory.

long as the projected future database permits, and will end as soon as there are no more segments
in the projected database which can be spliced onto the virtual trajectory. The state upon which
this virtual trajectory ends is denoted as the virtual end state and is where the next segment will
be scheduled. Scheduling another segment involves repeating the same procedure again: sampling
(new) virtual endpoints for all pending segments, including the one just scheduled. This produces
a (new) projected future database from which a virtual trajectory can be spliced together in order
to determine the virtual end state where the next segment will be scheduled. This procedure for
scheduling segments is thereby referred to as Virtual End (VE) scheduling (see Fig. 7).

In practice, ParSplice obtains transition statistics from the generated segments and uses
this information to construct a model which is continually updated as soon as completed segments
are returned to the database. Doing so on-the-fly means initially scheduling with a poor model
that gradually improves as the simulation proceeds and further statistics are gathered. The cost
of learning the model has a significant impact on parallel efficiency, as will be shown below. The
compounding utility that is gained by having a good model earlier in a simulation cannot be under-
stated, and is the motivation for the present work. It is important to note that the VE procedure for
scheduling segments remains unchanged and is implemented as described throughout the entirety
of this manuscript. The developments of our work are instead focused on enhancing the statistical
model from which virtual endpoints of pending segments are sampled.

xxiii

0.3 Methods

As described above, having an accurate statistical model from which trajectories can be
sampled is crucial to reaching peak parallel efficiency. A key observation that motivated the present
work is that the MLE model described above does not fully leverage the available information.
Consider the following scenario: after splicing a segment from statei to statej , the trajectory is
now in statej . If no segment has yet been generated in statej , the MLE model has no information
about transitions out of statej and cannot sample virtual outgoing transitions. The result is that all
workers are scheduled in statej . As discussed previously, this is usually not optimal, and becomes
especially problematic at large N , where it reduces to AE. This type of suboptimal scheduling will
occur every time the trajectory first discovers a new state.

0.3.1 The known-unknown

The statistical fallacy here is that nothing is known about statej . Inherent in a segment
that shows a transition from statei to statej is the information that a transition from statej to statei,
traversing along the same pathway, is also possible. Including this information in our model would
mean that trajectories could escape from statej back to statei, and from there, to the rest of the
known state space. However, this involves estimating the probability to jump back, pji, without yet
having generated any segments in statej . While Bayesian priors could be introduced, we find that
setting these in practice is difficult as poor priors can lead to lower efficiency than with the standard
VE scheme.

Instead, pij and pji can be related to one another if one assumes that the underlying
dynamics obeys detailed balance (DB), i.e., that

πipij = πjpji (1)

for every i and j, where the π’s are the stationary occupation probabilities of each state. The
DB assumption is commonly invoked in continuous-time/discrete-state representations of materials
kinetics using Kinetic Monte Carlo [7]. When Transition State Theory (TST) [32] is used to compute
state-to-state transition rates, the resulting continuous-time Markov chain naturally obeys detailed
balance. Assuming that such a representation holds, it can be shown that the discrete-time/discrete-
state Markov model of segment statistics used internally in ParSplice also inherits from DB [33].
Whether DB is strictly obeyed in general is not crucial, as this assumption does not affect the
accuracy of the generated trajectory, but only the parallel efficiency with which it is generated. As
demonstrated below, even an approximate model that is forced to obey detailed balance clearly
improves predictions of the future evolution, and hence the parallel efficiency, compared to the
original MLE model.

We therefore wish to construct a statistical model from the segments generated in such a
way that DB is obeyed globally. To do this, we solve the optimization problem of finding the model
P which maximizes the log-likelihood given the observed segments counts cij , but constrain our
optimization to only include those models which obey DB. More formally, max

P

∑
i,j cij log pij now

subject to constraints

∑
j

pij = 1 (2)

πipij = πjpji (3)

pij ≥ 0 (4)

We assume that the stationary probability in each state is proportional to the Boltzmann

xxiv

factor πi ∝ e−
Ei

kBT where Ei is the minimum energy in statei, T is the thermodynamic temperature,
and kB is the Boltzmann constant. This assumption is reasonable when states are defined as deep
basins of attraction on the energy landscape and when the vibrational contribution to the partition
function does not significantly change from state to state. As metastable states will have a pii that
is typically close to 1, meaning most segments will not contain any transition and hence will have
exactly the same length, the equilibrium probability of the discrete process will be proportional
to that of the continuous process. This roughly corresponds to a “constant prefactor” assumption
that is widely used in the Kinetic Monte Carlo community. Recall, even if the approximations
are not fully upheld, the introduction of a DB-based model in practice significantly improves the
performance as compared to MLE, which is the key factor since accuracy of the spliced trajectory
is unaffected by the assumptions used in building the statistical model. Note that it is also possible
to enforce DB without specifying the π [34], but providing them speeds up convergence.

DB-obeying models are obtained following the prescription detailed in section 3 of Trendelkamp-
Schroer et al. [34], reproduced here for completeness. The first constraint is enforced by introducing
Lagrange multipliers λi and associated terms λi(

∑
j pij − 1) to the objective function. The second

constraint is explicitly accounted for into the likelihood expression by the change of variables

p
′

ij =

{
pij i < j
πj

πi
pji otherwise

(5)

This produces a Lagrangian which, upon extremization and reversal of the change of vari-
ables, leads to

pij = πj
cij + cji

λiπj + λjπi
(6)

Summing over j and enforcing that the transition probabilities sum up to unity yields∑
j

πj
cij + cji

λiπj + λjπi
= 1 (7)

Lagrange multipliers λi are then obtained by a fixed-point iteration:

λ
(n+1)
i =

∑
j,cij+cji>0

(cij + cji)λ
(n)
i πj

λ
(n)
i πj + λ

(n)
j πi

(8)

Using the converged values of λi, the reversible model is finally obtained as:

pDBij = πj
cij + cji

λiπj + λjπi
i 6= j, λi + λj 6= 0 (9)

pDBii = 1−
∑
k

pik i = j (10)

By enforcing DB, this model accounts for the known-unknown transitions which are known
to exist, but have not yet been observed. A model that embodies this information is able to sample
virtual escapes from newly discovered states, avoiding the trap of having to over-build segments. In
addition, enforcing detailed balance greatly reduces the statistical error present within the model by
reducing the number of independent variables by about half. A more accurate model can therefore
be obtained using the same amount of segment information, allowing better scheduling decisions to
be made sooner.

xxv

0.3.2 The unknown-unknown

Further improvement on this model involves accounting for the unknown-unknown transi-
tions which have never been observed in either the forward or backward direction due to the limited
number of segments generated. Given the limited amount of segments generated in each state, such
transitions are virtually guaranteed to exist [35, 36, 10]. However, both MLE and DB models assign
zero probability to such a transition. Rigorously accounting for the impact transitions of this nature
is inherently difficult. We therefore again employ on a pragmatic ad hoc approach where success is
measured by improved efficiency.

We first note that the MLE and DB estimators discussed above will lump the probability
pi? (that a segment built in statei will contain a transition that has never been observed before) into
the self-transition probability pii. Indeed, the transition probabilities pij are constructed from the
number of observed segments through detailed balance (Eq. 9); the remaining probability is then
assigned to pii to ensure row-stochasticity (Eq. 10). As a result, the estimator for pii is inflated (up
to statistical errors) by the unknown-transition probability, pi?, i.e.,

pDBii = 1−
∑
j

pij = pii +
∑
?

pi?, (11)

where pDBii denotes the value of pii obtained by the DB procedure.
In order to disentangle these two contributions, we introduce pseudo-counts αi? and αii.

Together, these encode our a priori belief in the relative probability of a segment ending in the
original state versus containing a transition to another state.

MLE estimators for pii and pi? can then be written as:

pi? =
αi?

cii + αi? + αii
pDBii (12)

pii =
cii + αii

cii + αi? + αii
pDBii (13)

Constraining the pseudo-counts such that αi? + αii = 1, we obtain

pi? =
αi?

cii + 1
pDBii (14)

pTrueii =
cii + 1− αi?
cii + 1

pDBii . (15)

pii and pi? are now expressed in terms of a single pseudo-count, αi?. Setting αi? a priori is
again difficult for the reasons discussed previously, but it is rather easy to assign one in retrospect:
αi? can be chosen such that pii remains unchanged as more segments are generated and observed.
To do so, the initial value of pDBii is recorded as soon as a state is discovered and compared to the
current estimated value; αi? is then set such that the estimate of pii remains unchanged.

This procedure allows us to learn a good value of αi? for each state as segments are generated
and statistics accumulate. For newly discovered states, we use the average αi? over all states. Using
these learned values of αi? allows the Scheduler to scale pDBii appropriately, separating pii from
pi?. It can then sample virtual trajectories from this more accurate model which accounts for the
unknown-transition probability pi?. This continuous adjustment of the “prior” pseudo-counts clearly
deviates from Bayesian orthodoxy, but yields good results in practice. Again, in the current context,
the statistical purity of the model is less important than the improved efficiency it delivers.

This naturally leads to the question of what should be done when the Scheduler samples a

xxvi

Figure 8: Conceptual view of optimal scheduling within the known state-space (blue/bold) given
the underlying complete model (grey). When the segments currently scheduled are likely to yield an
escape outside of the known state-space (marked by dashed blue line), it is then optimal to continue
allocating the remaining resources according to where the trajectory is likely to return to the known
state-space.

pi? virtual transition that is outside the current model. The Scheduler cannot schedule segments in
states that are unknown, nor can it continue to virtually splice from unknown states.

To explore this question, consider optimal scheduling provided complete information (knowl-
edge of all the states, transitions and probabilities), but where scheduling was confined to be only
in those known states discovered from generated segments. Under this constraint, the optimal
policy upon VE sampling an escape to an unknown state would be to continue sampling the trajec-
tory throughout the unknown state-space until it returns to the known state-space, where segment
scheduling would resume. Therefore, upon absorbing from the model, the Scheduler should continue
to schedule segments conditional on the trajectory returning into the known state-space and should
do so from the state in which it returns (c.f. Fig. 8).

In practice, the distribution of return probabilities into the known state-space upon exit
are not known, so we resort to a simple heuristic rule. The rule is motivated by considering what
this procedure would look like if it were contained in a blackbox and viewed from the perspective
of the known state-space. It would seem that a virtual trajectory is sampled from the model just
as before, but with probability pi? the trajectory suddenly disappears and reappears (i.e., warps) in
some perhaps distant state. Following this depiction, we introduce a warp move designed to emulate
optimal scheduling in the presence of complete information. We augment our model as described
previously to account for the unknown-transition probability, and with that probability warp to
a random state sampled uniformly over those states which can be reached in less than M jumps
(according to the current model). The optimal value of M in principle depends on the connectivity
of the system, but is here heuristically set to allow warping to “nearby” states and prevent warping
to states which are “far” from the trajectory and are unlikely to be visited. This locality accounts
for the fact that a trajectory is more likely to reenter the model close to where it left than from
a completely random location. This assumption is reasonable in practice given the prevalence of
super-state structures, but it is ultimately ad hoc, as counter-examples can be constructed.

xxvii

0.4 Results

0.4.1 ParSplice Simulator

In order to test these ideas, we created a ParSplice simulator (ParSpliceSIM) where the
computationally expensive MD force calls are abstracted out and replaced with stochastic dynamics
via a pre-specified Markov chain defined in state-space rather than a physical configuration space.
The ParSpliceSIM otherwise directly mirrors the actual ParSplice implementation. This allows for
fast and systematic testing without consuming valuable computational resources. This approach has
been successfully used [16, 15] to efficiently explore the design space of other Accelerated Molecular
Dynamics [37] methods, to which ParSplice belongs.

ParSpliceSIM was used with toy models of varying topology. To highlight the factors that
contribute to the efficiency of the proposed schemes, we consider three such models where states
are arranged into a 3D lattice, a 1D lattice, and a fully connected network, respectively. These
models are designed such that segments generated in a given state will remain in that state with
probability pii or will transition to one of its K neighbors with equal probability (1 − pii)/K.
Each state-space consists of 729 states and is closed with periodic boundary conditions so that
all states within a model have identical connectivities, and hence identical transition probabilities.
In the following pii is set to 0.99, which corresponds to a mildly meta-stable state where escapes
occur on a 100 ps timescale. This value was chosen to avoid the deeply metastable regime where
speculation is not essential to achieve good performance. In practice, actual physical systems will be
far more complex than these simplistic models, often exhibiting hierarchical structures of individual
states, super-states, super-super-states, etc. In addition, they often contain a multitude of states
such that the entire state-space is never fully discovered. These small toy models should then be
thought of as a simplified representation of a single super-state that lies within a more complicated
landscape. Therefore, while the most relevant regime in practice is when the state-space is only
partially explored, these ParSpliceSIM results which show full state-discovery should be thought of
as corresponding to a thorough exploration of a local super-state within a realistic system.

We report results from each of the three methods: VE scheduling with standard MLE
model (corresponding to the original ParSplice method), VE scheduling with detailed balance (DB)
model, and VE scheduling with detailed balance model and warp transitions (DB+W). Because
these results are generated via ParSpliceSIM, we can also estimate the performance given perfect
information (PI), i.e. VE scheduling using the actual Markov chain. While the underlying chain is
not known in practice, this gives an upper bound on the possible performance. We simulate the use of
a varying number of workers (N = 103, 104, 105) and measure the corresponding parallel efficiency
(segments spliced/segments generated) throughout the generation of a trajectory containing 105

segments.

0.4.1.1 3D Model

Fig. 9 shows the expected decrease of the parallel efficiency with increasing N . However,
the results also show that scalability is greatly improved by the use of DB and DB+W over the
conventional MLE model: at 103 workers, the improved methods yield about a two-fold increase in
performance over MLE, approaching the efficiency of perfect scheduling. This relative improvement
further magnifies at 104 workers where DB and DB+W are providing nearly ten and fifteen times
improvement in parallel efficiency over MLE (respectively) by the end of the run. The trend continues
at 105 workers, where both DB and DB+W deliver a nearly thirty-five-fold improvement in efficiency
compared to MLE. These results reflect the fact that the 3D connectivity provides a large enough
number of potential paths that the trajectory is not very likely to revisit a particular state in a
short amount of time, thus making the cost of overbuilding more and more severe. The improved
methods are able to avoid this overbuilding through the use of DB to account for known-unknown
escapes out of newly discovered states. DB+W is able to gain a further advantage by accounting

xxviii

Figure 9: Parallel efficiency on the 3D model for varying N , as a function of the length of the
trajectory. The different methods are shown: MLE in red, DB in green, DB+W in blue, and PI in
cyan. When DB results are not visible, they overlap with DB+W.

for unknown-unknown transitions and effectively spreading out excess resources via warp transition.
As resources are increased to N = 104 this slight edge becomes more pronounced, with DB+W
splicing the 100,000 segment trajectory at a 50% improvement in efficiency over DB. But this edge
seemingly vanishes as resources are further increased to 105 workers. In this case, the large surplus
of resources results in DB being able to schedule far away from the current state, in those states
that where previously only accessible through warp moves. In other words, at large enough N , both
methods are scheduling in all known states, and efficiency is hence limited by the rate at which new
states are discovered. As shown in Fig. 10, at N = 105 both DB and DB+W actually explore state
space as fast as the topology of the transition network allows, while VE lags far behind.

It is important to note that while the rate of state discovery and parallel efficiency are often
positively correlated, they can also be in opposition. Consider a Scheduler that aims at maximizing
exploration by scheduling segments in those states which are least well sampled. As shown in Fig.
11, this strategy produces a higher rate of state discovery compared to DB and DB+W, but it would
do so at a cost to the parallel efficiency, as the likelihood that the generated segments will be spliced
into the trajectory is not be taken into account in the scheduling decision. Exploration in states that
are far from the current end of the trajectory may yield the most information, but this information
is of little utility if these states are not likely to be visited in the near future.

0.4.1.2 1D Model

Fig. 12 shows that the topology of the reaction network plays an important role in the
performance of the different models. Now, the parallel efficiency achieved on the 1D system with
103 workers is only slightly improved by the use of our information-centric methods. At this N , MLE
is able to amortize its overbuilding because the 1D topology naturally favors frequent revisits. In
this case, all three methods approach the efficiency of PI. As more resources are utilized, the overall
performance decreases rapidly while the relative difference between the three methods remain roughly
unchanged. In this case, the rate at which information is acquired is strongly limited by the topology
of the system. The addition of DB allows the scheduler to spread resources and expand at both

xxix

Figure 10: Proportion of states discovered as a function of pseudo WCT (where each unit is the
amount of time for each worker to generate a segment). From bottom to top: N = 103, 104, 105.
The different methods are shown: MLE in red, DB in green, DB+W in blue, and PI in cyan. The
yellow line gives the N →∞ limit.

ends of the known state-space simultaneously, in contrast to MLE which will tend to concentrate
on only one newly discovered state. This provides a slight gain in parallel efficiency. The addition
of warp moves provides no significant benefit. At the highest N , the gain from DB is masked by
the low parallel efficiency. DB still yields a 20% increase over MLE, but only improves the parallel
efficiency from 2.5% to 3%.

0.4.1.3 Fully Connected Model

At the other end of the spectrum, we now consider a fully connected topology. As in the
3D case, Fig. 14 shows a significant improvement in the parallel efficiency by using DB and DB+W
over MLE: at 103 workers, DB and DB+W produce a two and a half to nearly three-fold increase
in performance over MLE, trailing just behind the efficiency of perfect scheduling. This relative
improvement is further amplified at 104 workers where DB and DB+W are providing nearly fifteen
and twenty times improvement in parallel efficiency over MLE (respectively) by the end of the run.
The effects are even more dramatic at 105 workers, where DB and DB+W are delivering a fifty-fold
and ninety-fold improvement in efficiency compared to MLE.

The fully-connected model now has the highest possible state-discovery rate, as each state
is able to transition to any other state, and hence the entire state-space can be discovered from
generating segments within a single state. In fact, on this system, all methods explore state-space
at the same rate (Fig. 13 top). However, once the entire state-space is discovered, the model
still must obtain accurate state-to-state transition statistics in order to properly estimate transition
probabilities. This put MLE at a disadvantage as it must observe both forward and backward
transition before it is able to construct accurate predictors. Meanwhile DB and DB+W are able to
account for new transitions at twice the rate (Fig. 13 middle). The fully connected model, having
maximal connectivity, will also present the maximal unknown-unknown transition probability in

xxx

Figure 11: Performance of a pure exploration strategy (magenta) on the 3D model for N = 104 in
contrast to the MLE, DB, and DB+W methods (red, green, and blue, respectively). Such a strategy
has the largest state discovery rate, but nonetheless yields poor parallel efficiency, especially early
in the trajectory. See text for details.

xxxi

Figure 12: Parallel efficiency on the 1D model for varying N , as a function of the length of the
trajectory. The different methods are shown: MLE in red, DB in green, DB+W in blue, and PI in
cyan. When DB results are not visible, they overlap with DB+W.

Figure 13: Parallel efficiency on the fully-connected model for varying N , as a function of the length
of the trajectory. The different methods are shown: MLE in red, DB in green, DB+W in blue, and
PI in cyan.

xxxii

newly discovered states. Accounting for this unknown-unknown probability allows the warp-move
to allocate excess resources in other states, resulting in more efficient utilization of its resources.
Not accounting for this uncertainty leads DB to overestimates pii, and thus to over-schedule in the
current state (Fig. 13 bottom). While the DB model gradually adjusts its prediction, DB+W does
so almost instantaneously.

It is this advantage that allows DB+W to do so well (Fig. 14), tracking PI very closely, an
effect that continues to holds at large N . In fact, a highly connected system is the ideal environment
for DB+W; with so many transitions to be discovered, the unknown-unknown transition probability
in each state will be quite significant. Conversely, this is the worst possible environment for AE
scheduling; with the plethora of potential futures, the expected number of revisits to a single state
over a short horizon is minimal, and thus the cost of overbuilding in a single state is maximal. Since
the MLE model must resort to AE scheduling upon each first visit to a state, it struggles to deliver
performance throughout the entire run as it is unable to amortize the cost of overbuilding.

0.4.2 Physical Application

We now demonstrate the improvements provided by the new statistical models with simu-
lations of an actual physical system. We consider the evolution of a cluster of 19 vacancies in bulk
Tungsten (W) at a temperature of 1400K. The simulations were carried out with the interatomic
potential of Juslin and Wirth [38]. This system is relevant to the evolution of first-wall materials in
upcoming fusion reactors, where tungsten is a primary candidate for the construction of so-called
“divertors”. The conditions in this application are extremely harsh, with the materials being ex-
posed to high thermal loads (5–20 MW/m2), high fluxes of He and H ions, and of fusion neutrons
[39]. These neutrons can create collision cascades deep in the material, leading to the creation of
point defects, which can subsequently cluster. Interstitial defects tend to be more mobile, allowing
them to be absorbed at sinks such as grain boundaries or free surfaces. In comparison, clusters of
vacancies are often much less mobile and tend to be left behind. Accumulation of vacancy clusters
can lead to void swelling [40, 41], which is detrimental to engineering applications. Understanding
the evolution of small vacancy clusters is therefore critical in order to predict micro-structural evolu-
tion of materials under irradiation [39]. ParSplice has been previously used to predict the diffusivity
of small VmHen complexes which are commonly found close to the surface of the divertor where
He is abundant [42]; deeper down into the material, bare vacancy clusters are more common. In
the present context, we use this system as a example of a typical application in order to quantify
potential gains stemming from the use of improved statistical model. The physics of this particular
system will be discussed in an upcoming publication.

All simulations were conducted using a cubic cell containing 10x10x10 unit cells (corre-
sponding to a total of 1981 atoms). Periodic boundary conditions were applied in all directions.
States were defined in terms of potential energy basins, as decribed in the Introduction. In prac-
tice, configurations extracted from MD are periodically minimized and labeled using connectivity
graph techniques to identify and distinguish each state, as described in the original paper [1]. Each
simulation used a correlation time of 2 picoseconds. The MD calculations were performed in the
canonical ensemble using a Langevin thermostat with a friction coefficient of 1 ps−1. Simulations
were carried out for a fixed wall-clock-time (WCT) of 3 hour using 1,800, 3,600, or 10,800 workers.
Results are averaged over between 5 and 10 independent realizations.

The landscape of states for this system is significantly more complex than the simple models
discussed above. For example, Fig. 15 shows that the distribution of residence times in individual
states spans about four orders of magnitude, in contrast with the model systems considered earlier
where all states were identical. In this new context, naive scheduling will be adequate for some
states, but will dramatically overbuild in some others. Over all the simulations, about 11,000 states
and 24,000 (undirected) transitions were observed, or about 4 transitions pathways out of each state,
making the topology roughly 2D-like.

xxxiii

Figure 14: State-space exploration statistics gathered from 1600 independent samples of each method
on the fully connected model with 104 workers. The different methods are shown: MLE in red, DB
in green, and DB+W in blue. Where MLE/DB results are not visible, they overlap with DB+W.
Top: fraction of states discovered. Middle: fraction of transitions discovered. Bottom: number of
segments allocated to the current state of the trajectory (as compared to PI in yellow).

xxxiv

Figure 15: Frequency distribution of single-state escape times for the V19 W system.

Figure 16: ParSplice parallel efficiency on the V19 W system for 1,800, 3,600, and 10,800 workers,
respectively (from left to right). On each panel, MLE (red), DB (green), and DB+W (blue) are
shown. Error bars denote the standard error of the mean over multiple simulations.

xxxv

The results, shown in Fig. 16, follow the broad trends obtained from ParSpliceSIM: the par-
allel efficiency tends to decrease with increasing number of Workers, but the decrease is much more
pronounced for MLE than for DB and DB+W. Again, DB+W provides the greatest speedup over
DB at the smaller (1,800) worker count, where the contribution from the warp moves is dominant.
As N increases further, the bulk of the performance improvement stems from the DB’s ability to
avoid over-building segments in newly discovered states. At 10,800 workers, the efficiency improve-
ment compared MLE grows to about 2, following the steady decrease of the MLE performance. The
performance of DB and DB+W is in contrast much less sensitive to the number of workers, which
translates to high parallel efficiency even as the number of workers is increased past 10,000. The re-
sults are consistent with the system being an intermediate between the 1D and 3D models considered
with ParSpliceSIM. Even larger improvements can therefore be expected for more inter-connected
landscapes.

0.5 Conclusion

The short timescale amenable to conventional molecular dynamics are extremely crippling
to many important applications in material sciences where the relevant micro-structure evolution
mechanisms are thermally activated, and hence very slow. By employing a time-wise parallelization
strategy, ParSplice is a promising approach to alleviate this restriction. However, ensuring the scal-
ability of ParSplice often relies on the accurate forecasting of the future evolution of the simulation,
especially as the number of workers increases. In this work, we show that the statistical models used
in ParSplice can be improved by accounting for known features of the actual underlying physical
model. First, we accounted for reversibility of atomistic transitions by imposing detailed balance,
thereby decreasing the number of free parameters to learn by a factor of two and avoiding the serious
issue of over-building segments in newly discovered states. Second, we accounted for the known pres-
ence of unobserved transitions and introduced a non-local “warp-move” that heuristically mimics
excursions out of the known state-space. Our results demonstrate that significant improvement in
the performance of ParSplice can result from these modifications, but that the magnitude of these
improvements depends on the topology of the reaction network. These results are a promising step
towards efficiently leveraging massively-parallel computational resources to extend MD simulation
timescales.

xxxvi

Improving the scheduling
procedure

0.6 Introduction

As the scale of parallel computers constantly grows, it becomes increasingly difficult for
application developers to maintain strong-scalability. For example, on the Summit supercomputer
at Oak Ridge National Laboratory, on the order of 100 million operations need to be executed
simultaneously in order to fully utilize all processing elements. As the number of processing elements
is expected to steeply increase as we approach the exascale era [25], it is paramount to develop novel
strategies to maximize the amount of parallelism exposed by the applications. A now common
programming model in scientific applications is task-based programming, where the execution of
the application is factored into tasks of varying granularity that are then scheduled for execution
using a runtime system [43, 44]. This model has proved to be powerful in a range of contexts,
and his now deployed in production scientific applications [45, 46, 47, 48]. A potentially promising
generalization of task-based programming to further performance at very large scales is task-level
speculative execution, akin to a distributed-memory version of Thread Level Speculation [49, 50].
In our approach, (coarse) computational tasks are made available for execution before it can be
established that they will definitely be used as part of the calculation. If speculations can be made
accurately so that the results of most executed tasks are eventually used, this strategy has the
potential to enable higher concurrency, and hence to improve scalability.

This manuscript considers the problem of optimal resource allocation in a speculative task-
execution setting where a task usefulness probability, i.e., a probability that the results of a spec-
ulatively executed task will be consumed as part of the calculation (hereby referred to as the task
probability), can be explicitly computed or estimated. This is a rich problem as, in practice, task
probabilities will often be conditioned on the current state of the application, and can therefore
dynamically change as execution proceeds. Further, the run time of individual tasks is often much
shorter than the run time of the application as a whole. As a result, as tasks complete, freeing-up
previously allocated resources, new tasks have to quickly be identified to take their place. Finally,
optimal allocation of resources to tasks (i.e., how much computing resources are dedicated to the
execution of each given task) is not only dependent on the individual task probabilities, but is also
tied to the distribution of task probabilities of all other tasks that are available for execution.

In the following, we consider such a dynamic setting where tasks are assumed to be preempt-
able and restartable with a different resource allocation. It then becomes possible to periodically
reevaluate the optimal allocation, pausing the execution of all running tasks, and reallocating re-
sources as needed. This can either be done at fixed time intervals, when tasks complete, or when a
change of context dictates. With each update, a newly derived optimal allocation can be executed,
resuming paused tasks (with a potentially different resource allocation) as well as starting new ones
if needed. This pausing and resuming of tasks allows for the optimal allocation to adapt to the
dynamic variability of the system, maintaining an optimal (expected) throughput at all times. In

xxxvii

the following, we present a generic analysis of this approach as well as a case study to a specific
scientific application called Parallel Trajectory Splicing [1], which is adapted to a setting where task
probabilities can be explicitly estimated.

0.7 Previous work

Modern parallel computing architectures have complex memory hierarchies as well as het-
erogeneous processors. In order to achieve high performance on such architectures, programming
models such as Legion [44] are organized into logical regions that expresses locality and independence
of data and tasks. The instances of these logical regions can be assigned to specific memories and
processors in the machine during run-time. Similar logical hierarchies are also introduced in OpenMP
5.0 [51], Chapel [52], Charm++ [53], etc. for task-based parallelism. These task-based systems are
capable of dynamic load balancing for scheduling and mapping tasks for optimal performance on the
underlying hardware. Locality-aware parallelism has been well studied in non-speculative systems,
and only a select few speculative systems utilizing parallelism via thread-level speculation (TLS)
[54] or hardware transactional memory (HTM) [55] can scale beyond a few nodes. One such system
that we came across is described in the work by Jeffrey et al., [56] where program knowledge is
leveraged to provide spatial hints to indicate the data that is likely to be accessed by a speculative
task. In this work, we adapt and augment this idea and speculatively schedule tasks based on their
usefulness in contributing to the overall computations in order to increase throughput.

Many resource allocation strategies have been explored in the context of load balancing
to efficiently use the existing hardware. A näıve way to allocate resources is to base it on peak
utilization. However, designing a resource allocation strategy based on worst-case needs is not a
viable approach as it results in excessive resource estimates. Many static and dynamic approaches
[57, 58, 59, 60] have been proposed to distribute the problem pieces optimally over different nodes
with an objective of balancing the execution time. However, the issue with most of these optimization
problems is the curse of dimensionality as the search space grows exponentially with the size of the
problem and the potential impact of emerging hardware, such as smart interconnects [61, 62] with
advanced traffic monitoring hardware. Static approaches distributing the load during compile time
have limitations as the performance is not only dependent on problem size but also over many
dynamic factors. Adaptive resource management techniques [63] try to overcome these limitations
by dynamically allocating resources to different processes. To provide software support, the MPI-
2 standard also introduced dynamic process creation using the MPI Comm spawn function [64].
This function enables to create new processes during the program run-time. To mitigate poor
resource allocation and load balancing in dynamic MPI spawning, fuzzy scheduling algorithms [65]
for dynamic processes have been explored.

Many control-theory based techniques are also used for adaptive resource allocation that
use standard feedback controllers with an auto-regressive prediction model to predict the resource
allocation [66]. Many resource monitoring, prediction, and allocation strategies have been explored
in cloud computing environments [67, 68, 69]. Solutions including genetic algorithms [70], neural
networks, etc. are explored for prediction and allocation of resources in cloud data centers [71]. All
of these approaches are based on learned behavior from heuristics and do not consider the inherent
probabilities of individual tasks at an application level.

In any resource allocation problem [72], limited resources are to be allocated to a set task
to maximize effectiveness. Dynamic programming has also been explored in this setting and it can
be shown [73, 74, 75] that the problem can be solved using a simple sequential multi-stage dynamic
programming algorithm in O(N2M) time. Pipeline based algorithms [76, 77] that mimics instruction
pipelines within processors have also been attempted, however, most of these approaches have a high
communication cost.

xxxviii

0.8 Methods

0.8.1 Optimal Throughput

Consider the problem of allocating resources between a (potentially infinite) number of
candidate tasks in a speculative task execution setting on a machine containing N hardware slots
on which tasks can be assigned (which can be nodes, cores, GPU, etc). Tasks can be run in parallel
over a certain number of slots wi, in which case, task completion requires an expected time T (wi).
For simplicity, it is assumed that all tasks are computationally equivalent; however, a task-specific
Tα(wi) can be introduced in the derivation below without additional complication.

Each of the candidate tasks are assigned a probability pi of ultimately being used as part of
the overall execution of the calculation, which is abstractly conceived as a workflow that progresses by
consuming completed tasks. This probability can either be a rigorously derived value or a heuristic
estimate. Note that each task can also be assigned a weight that reflects how much it would
contribute to the calculation by scaling the corresponding pi accordingly to obtain an expected
utility. In the following, however the p’s will still be referred to as probabilities, for simplicity.

To simplify and accelerate the allocation process (which is important in the context where
probabilities are adjusted and resources re-allocated at a high rate), the resource assignment problem
is solved in a continuous setting where the wi are real numbers instead of integers. This enables
an extremely efficient solution scheme. These values can then be discretized after optimization is
complete, yielding an approximate solution but at a greatly reduced computational cost. In what
follows, it is assumed that the tasks are ordered by decreasing probability. The optimal allocation
of resources consists of determining the number of tasks that should be executed, M (i.e., the M
tasks with the highest probabilities are selected for execution) as well as the resources assigned to
each task, wi.

The objective function to be optimized is the instantaneous expected throughput from the
M tasks that are selected for execution:

R(M, {wi}) =
∑M
i pi/T (wi)

where T (wi) is the expected time to complete a task when provided wi resources. R(M, {wi})
measures the expected rate at which useful results are generated for a given allocation M, {wi}.
The problem is constrained by requiring that the allocation fully utilizes available resources, so that∑M
i wi = N . In pathological cases where there are more resources available than could possibly be

used (N > M ∗wmax, where wmax is the maximum allocation which a single task can fully utilize, as
will be defined below) N is replaced with M ∗wmax. This constraint can be enforced by introducing
a Lagrange multiplier λ to the objective function.

R(M, {wi}) =
∑M
i pi/T (wi) + λ(

∑
i wi −N)

Extremizing the Lagrangian with respect to wi and λ yields

piF (wi) + λ = 0∑
i wi = N

respectively, where the function F is defined F (wi) := −T ′
(wi)/T

2(wi).
Therefore, given an explicit expression for T (wi), one can invert the function F and obtain

an explicit expression for wi: wi = F−1(−λ/pi), which depends only on the Lagrange multiplier λ
and on the task probabilities pi. At a given value of M , the allocation problem is reduced to solving
a 1D root-finding problem in λ,

∑
i wi = N , which yields the values of {wi} that maximizes the

throughput for this value of M . Note that this formulation can yield wi = 0, so that considering
the first M tasks in the optimization problem is not guaranteed to allocate resources to all of them.
Finally, the optimal number of tasks to consider, M∗, is taken to be the value which maximizes the

xxxix

Figure 17: Benchmark analysis of the molecular dynamics code LAMMPS [2]. Run times in red were
measured for an identical task executed over a varying number of cores. Fractional core counts were
obtained via oversubscribing the hardware slots. In blue, a functional form a + b/x + d log(gx) +
h/x2 was fit to the data to produce the invertible function T (w) with coefficients a = −2.38, b =
481.42, d = 2.32, g = 21.76, and h = 7.10

expected throughput over all values of M . The allocation problem is therefore reduced to solving
two embedded 1D problems, which can be done very efficiently.

In practice, an explicit expression for T (wi) is obtained by fitting to benchmark results.
Benchmarks were carried out on dual sockets Intel Broadwell E5-2695V4 nodes. In section 0.9, an
application to parallelized materials simulation is considered. For this work, a benchmark analysis of
the molecular dynamics code LAMMPS [78, 2] was conducted as shown in Figure 17. The function
T (wi) was obtained by running an identical task in parallel over a varying number of cores and
recording the time to complete said task. Fractional core counts are obtained when oversubscribing
the hardware slots. The recorded times were then fit to the functional form a+b/x+d log(gx)+h/x2

which was loosely based on Amdahl’s law [79], adding a heuristic log term to account for the cost
of synchronization and a 1/x2 term to provide an oversubscription penalty. The specific functional
form is not crucial; other smooth approximations could have been used instead.

As shown in Figure 17, T (w) possesses a minimum, after which the time to execute a task
begins to increase with increasing resources due to communication and synchronization overheads.
As no optimal resource allocation can include w’s in this regime (because a higher throughput could
always be obtained with even fewer resources) this branch of the function T (w) is ignored when

xl

obtaining F−1. The minimum of T (w) therefore defines the maximum allocation (wmax, roughly
200 cores in this case) which can be fully utilized by a task, and hence a corresponding minimum
time in which a task can be completed; here T (wmax) is roughly 19.5 seconds. This quantity becomes
important in conjunction with T (1), the time to complete a task at the maximum parallel efficiency,
as their ratio will be shown to correspond to an upper bound of achievable performance gains. In
addition to ignoring the w > wmax branch, the domain of F is restricted to those values of w where F
is monotonically decreasing, which is required for the solution to be a maximum of the throughput,
in contrast to a minimum. F is therefore invertible so that F−1 is well defined.

0.8.2 ParSplice

In the following, the potential benefits of optimal resource allocation in a speculative task
execution setting are demonstrated by studying an existing scientific application called Parallel
Trajectory Splicing, or ParSplice [1, 26]. ParSplice is a method in the family of Molecular Dynamics
(MD) simulations. MD numerically integrates the classical equations of motion of atoms using
interatomic forces derived from the gradient a user-provided potential that describes the interactions
between atoms. MD is broadly used in the computational sciences, with applications to materials
science, biology, chemistry, etc. MD is extremely powerful, but also computationally intensive. While
domain-decomposition approaches enable the use of massively-parallel computers to extend the
simulation length-scales [78], similar approaches do not allow for significant extension in timescales
except for very large systems, due to communication and synchronization overhead. Extending
timescales instead requires specialized techniques [8, 11, 14, 20, 22]. ParSplice is one such technique
where parallelization is carried out in the time domain, thereby avoiding synchronization costs
inherent to domain decomposition. It however comes with a tradeoff: instead of generating a
trajectory that is continuous in phase space, it produces a discrete state-to-state trajectory, where a
state corresponds to a finite volume in the phase space of the problem. States are usually defined to
correspond to long-lived metastable topologies of the system (such as the attraction region of deep
local energy minima), and so state-to-state trajectories are sequences of transitions between such
long-lived states.

ParSplice works by concurrently and asynchronously generating many short “segments” of
MD trajectory in such a way that they can later be spliced together to create a single state-to-state
trajectory. Generating a “segment” involves creating an independent realization of the system’s
trajectory (by solving a stochastic differential equation) that is initialized in some assigned starting
state and evolved through MD until a physics-motivated stopping condition is achieved, after which
the final state visited by the trajectory (which may or may not be the same as the starting state)
is noted. So, in short, a segment is composed of an initial and a final state, separated by some MD
time (see Figure 18). These segments are then returned to a database where they are stored until
they can be spliced. Due to the specially-designed protocol by which segments are produced and
stored [31], any segment in the database can be spliced onto any other so long as it began in the
same state that the other finished (see Figure 19). This allows for a single state-to-state trajectory
to be formed by extracting individual segments from the database and splicing them onto the end
of the trajectory. For further details on how the independent generation and splicing of segments
is guaranteed to produce statistically correct state-to-state trajectories, the reader is referred to the
original manuscript [1].

Because the individual segments are independently produced in parallel, ParSplice can offer
a potential wall-clock speedup proportional to the number of MD instances. Achieving this ideal
level of parallel efficiency however requires that every segment generated is eventually spliced into
the state-to-state trajectory. Therefore, while the accuracy of a trajectory is ensured solely by
the independent generation and splicing of segments according to the ParSplice prescriptions, the
efficiency of ParSplice is a function of its ability to forecast ahead of the trajectory and assign
segments to be generated in those states where they are most likely to be needed. As such, ParSplice

xli

Figure 18: Conceptual illustration of segment generation: An MD trajectory is initialized in some
assigned “circle” state and then dynamically evolved forward in time through MD. After some
stopping criteria is met, the final state of the MD trajectory is noted and used to produce a ParSplice
“segment”.

Figure 19: Conceptual illustration of segment splicing: Left panel, only segments which start in
the same state that the previous spliced segment ended (here the “diamond” state) can be spliced.
Right panel, splicing a segment involves extracting it from the database and appending it to the
state-to-state trajectory.

xlii

follows the speculative execution paradigm discussed above: at any point in time, only one segment
is strictly guaranteed to be spliced into the trajectory (a segment that begins in the state where
the trajectory currently ends), but one can identify a much larger number of segments that could
potentially be spliced in the future. Towards this goal, ParSplice develops a discrete time Markov
Model (MM) on-the-fly from the previously generated segments and uses this model to assign starting
states for new segments to be generated. The MM encodes the estimated probability that a segment
generated from state i will end in state j. In actual simulations, the MM is usually empty at the
beginning of the simulation and it is dynamically updated as more segments are generated.

The original ParSplice method selects segments for execution through a procedure referred
to as virtual end (VE) scheduling. VE accounts for completed but unspliced segments which are
stored in the database as well as those “pending” segments which have been assigned to some
computing resources, but have not yet been completed. The process of VE assigning the state in
which the next segment should be generated is outlined in Figure 20. 1) The MM is used to sample
“virtual” endpoints for all of the pending segments, creating a prediction of what the database
might look like once all of the pending tasks are completed. 2) It then “virtually” splices from this
database-prediction onto the end of the state-to-state trajectory until it runs out of segments to
splice. 3) It assigns the next segment to be generated starting in the state where the state-to-state
trajectory “virtually” ended. This process is then repeated for next segment state-assignment, and
so on until a segment has been assigned to any idle MD instance. The word “virtual” is used to
denote that this process is not actually manipulating segment endpoints or splicing onto the actual
physical trajectory. This process is simply used as a means of forecasting where to assign the next
segment and only segments that were actually completed can be spliced into the physical trajectory.

In the present context, an important limitation of the VE procedure is that it samples from
the ensemble of possible tasks according to their probabilities, but does not directly give access to
the individual task probabilities themselves. In order to address this limitation, a new variant of
ParSplice is proposed where instead the task probabilities are first explicitly estimated, and then
tasks with the largest probabilities are selected for execution. This new variant is referred to as
MaxP (maximum probability) scheduling. The derivation of MaxP is based on the formalism of
discrete time Markov Chains, and is detailed explicitly in Appendix A. The general concept involves
calculating the probability that particular segments will be spliced into the state-to-state trajectory
over some finite time horizon, as an average over all paths that the spliced trajectory could take.
These probabilities can be computed analytically or approximated via a computationally cheaper
Monte Carlo approach. See Appendix A for details.

The MaxP formulation provides a natural estimate of the task probabilities for each segment
that could be generated, i.e, each potential task. It is important to note that the probabilities derived
from the MaxP formalism are dependent both on the instantaneous content of the database and on
the current end point of the trajectory, as it was the case for the VE variant. The probabilities
therefore continually change as the simulation proceeds, which suggests that it might be advanta-
geous to periodically re-adjust/recalculate the probabilities and re-assign resources to tasks so as to
maintain an optimal expected throughput. Further, MD is inherently preemtable and restartable:
the only information needed to checkpoint and restart a simulation is the list of the current positions
and velocities of the atoms. Using this checkpoint, the simulation can be restarted with a different
domain decomposition, and hence with a different w. The resource allocation approach discussed
above is therefore directly applicable to ParSplice-MaxP.

0.9 Application

To gain a better intuition of the solutions resulting from different task probability distribu-
tions, and of the potential performance improvements that can be expected by allocating resources
based on task probabilities, we first discuss results on various synthetic distributions. More specifi-

xliii

Figure 20: Virtual End (VE) scheduling of segments: Top panel, the statistical Markov Model
(in green) is used to sample “virtual” end states (also green) for all pending-segments, speculating
on what the database might look like once these pending-segments are completed. Bottom-left
panel, segments are then “virtually” spliced from the speculative database, extending the “virtual”
trajectory as far as possible. Bottom-right panel, a new segment (outlined in yellow) is scheduled
to begin in the state where the “virtual” trajectory ended. We stress the word “virtual” here
to differentiate from anything actual. All segment manipulation is only carried out as a thought
experiment for determining where to generate the next segment.

xliv

Figure 21: Synthetic task probability distributions sampled from different B(α, β) distributions as
depicted in the legend.

cally, we focus on the characterization of the instantaneous throughput obtained by optimizing the
resource allocation as a function of the characteristics of the task probability distribution. Each of
the following distributions were created by drawing random pi samples from a probability density
until a given total

∑
pi = 1000 was reached. While this process resulted in each synthetic distribu-

tion containing a different number of potential tasks, the constrained value of 1000 ensures that the
maximum expected throughput given infinite resources is identical for each distribution, and hence
comparisons can be made easily.

The probability densities from which the synthetic distributions were sampled belonged to
one of two generic classes. The first was a delta distribution or composition of two delta distributions
from which only particular values of pi could be sampled. Each composition of delta distributions
contained a non-zero peak at p = 1, corresponding to having a certain number of tasks which
are known to be essential (i.e p = 1), and another non-zero peak at lower p, corresponding to a
certain number of speculative tasks which are assigned a generic probability. As one would expect
to generally have a large number of speculative opportunities, and thus of speculative tasks, the
magnitude of the peaks were weighted in favor of the lower probability by a 9:1 ratio. Sampling
from these distributions yields a task probability distribution which exhibits a “step” from the p = 1
tasks to the speculative probability. In addition to a single delta distribution at p = 1, which
generated a trivial distribution containing only p = 1 tasks, several composite distributions are
analyzed with varying values for the lower-probability speculative tasks.

The second class of probability densities were beta distributions, B(α, β). Adjusting the
shape parameters α and β allows for the creation of a wide range of different distributions, as illus-
trated in Figure 21. Sampling from the continuous probability densities produced nearly continuous
task probability distributions capable of spanning the entire [0, 1] probability domain. This assort-
ment of synthetic task probability distributions provide a reasonable collection for surveying the
performance landscape of the proposed optimal resource allocation method.

The most important question in practice is whether the effort of deriving and implementing

xlv

(a) (b)

Figure 22: Boost in performance as a function of resources N , where Boost is defined as the ratio of
expected throughput provided the optimal allocation to the expected throughput provided the naive
allocation. Results shown for synthetic distributions sampled from both the delta distributions (a)
and the beta distributions (b).

a probability-aware optimal allocation scheme is worthwhile as compared to a naive approach which
does not consider the probability of tasks. Such a naive scheme would assign resources in equal
sized chunks corresponding to the maximal parallel efficiency, so as to maximize throughput in the
non-speculative setting. It would only deviate from this chunk size if the resources available enabled
all tasks to be run at maximum parallel efficiency and excess resources remained. In such a case,
the constant chunk size allocated to each task would uniformly increase to fully utilize all available
resources. Therefore, the naive allocation is to assign each task with wconst = max(1, N/M) resources
to each task. In the following, it is shown that the increase in throughput due to optimal allocation
can in fact be quite substantial.

We first recognize from the blue curve in Figure 22a that the trivial probability distribution
where all tasks are of equal probability (pi = p), corresponding to task probabilities sampled from a
single delta distribution, obtains unit boost in performance compared to naive scheduling throughout
the entire range of N . This was expected given that when all probabilities are equal, the throughput
is maximized for a uniform allocation of resources. The natural extension to this trivial case of
uniform task-probabilities is the case of binary probability values, where tasks are assigned one
of two probabilities: pa and pb (where pa > pb). Such synthetic task probabilities are sampled
from a composition of delta distributions, e.g., constructing a list of containing certain (pa = 1)
and speculative (pb < 1) tasks. An example of a step distribution arising in practice might be an
application which identifies a certain number of tasks as provably necessary (and hence for which
pa = 1), and a certain number of speculative tasks, which are assigned a generic probability pb.
Synthetic task probability distributions were sampled for four different values of speculative task
probability (pb = {0.5, 0.1, 0.01, 10−10}). It is seen in Figure 22a that the boost obtained through
the optimal allocation varies inversely with pb and saturates as pb approaches zero.

Take for example the resource allocation of N = 10, 000 to a probability distribution char-
acterized by pa = 1, pb = 0.01. The naive allocation distributes resources evenly across all possible
tasks, producing an expected throughput of roughly 2.3. This is in stark contrast to the optimal
allocation, which concentrates resources only to pa tasks. As a result, the optimal allocation exe-
cutes fewer tasks, but does so yielding a higher expected throughput of roughly 16.8. The optimal
allocation therefore results in a substantial boost in performance, producing nearly 7.3 times the ex-
pected throughput of the naive allocation. We note that the boost also affects only an intermediate

xlvi

Figure 23: Top: Task probability distribution sampled from B(0.1, 1) distribution. Bottom: Alloca-
tion of N = 10, 000 resources among tasks.

range of values of N , as, in both the small and large N limits, the optimal and naive allocation are
identical.

The value of pb relates to the potential boost obtained as it affects the sampled task probabil-
ity distribution in two key ways: 1) The smaller values of pb present steeper decays in the probability
distributions as they cover a larger range in values. The naive allocation struggles to handle a large
range in values as its allocation is uniform, meanwhile the optimal allocation is specifically tailored
to the individual probabilities of each task. 2) Because the values (pa, pb) are sampled in a 1:9 ratio,
a smaller value of pb implies that more tasks will be sampled before reaching the

∑
pi = 1000, and

thus the distribution of tasks will have a longer tail. This, again, is not handled well by the naive
allocation as the high p = pa tasks will receive the constant wconst = 1 allocation unless N is such
that all tasks can be executed, at which point w will start to increase uniformly. The longer the
tail in the distribution, the more resources are needed before the naive allocation will increase the
uniform chunk size, and hence the throughput.

These results illustrate the intuitive idea that ignoring the task probabilities and invoking a
uniform allocation often involves running lower probability tasks with resources that could be better
spent increasing the allocation to higher probability tasks. These two key features (steep decay and
long tail) are particularly detrimental to the performance of the naive allocation scheme.

Considering the task probability distributions sampled from the Beta probability density,
one can see that this rule of thumb is upheld. Figure 23 illustrates allocation solutions forN = 10, 000
given a task probability distribution sampled from B(0.1, 1). The sampled probability distribution
consisted of 11,132 tasks and spanned a range of probabilities from p ∼ 1 to p ∼ 10−32. The naive
allocation allocated resources uniformly, executing 10, 000 tasks with w = 1. This resulted in an
expected throughput of just over 2. The optimal allocation provided resources in greater chunks to
fewer tasks. It only executed 923 tasks, but did so yielding an expected throughput of nearly 12,
providing a boost in expected throughput of nearly 6 times the naive allocation.

xlvii

We see here again how the long tail and steep decay of the task probability distribution
meant that the naive solution would allocate resources to low probability tasks that contribute little
to the expected throughput. It is instead optimal to allocate additional resources to those higher
probability tasks, running fewer tasks but generating a higher expected throughput.

The maximum attainable boost one could possibly obtain can be determined by the following
analysis. Consider a task probability distribution consisting of Na tasks of probability pa = 1 and
Nb tasks of probability pb = ε. The optimal allocation would divide resources among those Na
tasks, ignoring the Nb tasks. This would yield an expected throughput of Na/T (N/Na). The naive
allocation would spread resources among all tasks, yielding an expected throughput of Na/T (1) +
Nbε/T (1) if N was sufficiently large such that N = Na+Nb > wmaxNa. In the case where Nbε << 1
this expression would simplify and a trivial relation for the boost in expected throughput would
result as the ratio T (1)/T (N/Na). This expression is maximal when N/Na = wmax. Thus, the
maximum attainable boost one could obtain is equal to T (1)/T (wmax), which for our application
was roughly 25.

0.9.1 Constant w

The assortment of synthetic distributions surveyed above shows a diverse range of optimal
task allocations and the corresponding boost compared to the naive scheduling strategy. These task
allocations are guaranteed to provide the greatest expected throughput for a given distribution, at
the cost of increased code complexity. One may instead consider a simpler approximate solution
where each executed task is provided the same allocation, but this allocation is allowed to differ
from the naive strategy. Certainly this simplified scheme would be suboptimal, but it is unclear
by how much. In the trivial case of constant probability, for example, the optimal allocation was
a constant allocation. The same was true for the step distributions when resources are limited. In
fact, it is often the case that a constant allocation can achieve a throughput close to that of the
optimal allocation. Figures 24c and 24a show what fraction of the optimal expected throughput can
be achieved when an optimal constant allocation is provided for each of the distributions surveyed
above. For most values of N there exists a constant value of w which can provide upwards of 90%
the expected throughput that the optimal allocation would yield. This is, however, not always
the case. When the task probability distribution possesses a major discontinuity (as seen in the
step distributions), there exists a range of N values where even the best constant value is largely
suboptimal.

Furthermore, as seen in figures 24d and 24b, the value of the best constant w can greatly
vary depending on the resources available and on the specifics of the task probability distribution.
Furthermore, in a setting where the task probability distribution is dynamic and/or context depen-
dent, the precise value of the best constant allocation will change in time. This presents a major
difficulty in assigning a single constant value of w that will be allocated to each executed task; what
may be a “good” value of w at one point in time might be a poor value sometime later. To maintain
an expected throughput that is near optimal for an evolving task probability distribution, one would
have to consistently tune the constant value of w. Devoting this effort to maintain a near-optimal
solution is uneconomical as one could ensure the truly optimal solution with similar efforts.

0.9.2 ParSplice Simulator

In order to assess the potential performance gains accessible with this new approach with-
out the considerable time investment required to rewrite the ParSplice production code, we instead
chose to make use of a simulator; a strategy which has proved beneficial [15, 16] in developing
Accelerated Molecular Dynamics [37] methods, to which ParSplice belongs. The ParSplice Simu-
lator (ParSpliceSIM) was designed to directly mirror the logic of the actual ParSplice code with
the exception that dynamics are generated from a user-specified Markov Chain that can be used

xlviii

(a) (b)

(c) (d)

Figure 24: On left, fraction of optimal throughput which can be achieved with a constant allocation
for the Delta sampled distributions (24a) and Beta sampled distributions (24c). On right, the
corresponding value of w required to obtain this fraction of optimal throughput for the respective
Delta sampled (24b) and Beta sampled (24d) distributions.

xlix

to statistically sample segment endpoints, rather than using computationally expensive MD cal-
culation [80]. ParSpliceSIM is therefore computationally light, simple, and runs in serial. As the
matter of interest is measuring the potential improvements in performance, rather than obtaining
correct atomistic trajectories, the ParSpliceSIM provides an ideal framework for testing the proposed
ParSplice variant described in this work.

ParSpliceSIM was used to compare the performance of the existing VE method to the newly
developed MaxP method, which was then further enhanced to allow the periodic pausing of segments
and reallocation of resources following the optimization procedure described above. The effect of
these successive developments are shown on a range of different model systems to illustrate the
expected gains in performance. As to separate the effect of the current work from that of intrinsic
model uncertainty, it was assumed that the MM created on-the-fly by ParSplice would provide
a sufficiently accurate representation of the dynamics, and was instead replaced with the actual
underlying Markov Chain within the ParSpliceSIM. The metric of performance in evaluating the
different methods is the amount of pseudo-MD spliced for a given wall clock time (WCT), which is
a direct measure of the scientific value of a simulation.

The following ParSpliceSIM results were generated using an assortment of Markov Chains
with varying state connectivity. Each state within a particular Markov Chain was endowed with a ρii
probability of not escaping the current state, and had an equally likely probability of transitioning to
one of it’s K neighbors (ρik = (1−ρii)/K) with K defined by connectivity. Periodic boundaries were
implemented to ensure each state within a particular Markov Chain had the same state connectivity.
To mimic the environment of a true atomistic simulation, the number of states in a particular Markov
Chain was set to 8000 such that the vast majority of state-space remained un-visited by the trajectory
throughout the duration of the simulation.

In order to evaluate the true potential of the developed methods, each simulation was
provided a resource allotment N that was many times greater than the expected number of segments
needed to escape (〈nescape〉) from a state. This is the regime of greatest interest as it is where
speculation significantly affects the efficiency of ParSplice. When the resources are not greater than
〈nescape〉 all resources can be allocated to the task(s) of building in the current state and will be
amortized with high probability. Prior to the current work, ParSplice attempted to best utilize
those additional resources (those which were not likely to be needed in escaping the current state) to
speculate on where the trajectory was likely to go next. The main purpose of this section is to assess
whether further efficiency gains are possible by dynamically assigning resources based on expected
utility.

In what follows, each simulation was carried out with assigned ρii = 0.99, corresponding
to 〈nescape〉 = 100, and a resource allotment of N = 5000. With an N being 50x greater than
〈nescape〉 ParSplice can trade-off resources in order to obtain an escape from the current state faster.
This tradeoff would be beneficial in cases where speculation was futile, but could be poor in cases
where accurate speculation were possible. To illustrate this effect, results are shown for three
different Markov Chain toy models of increasing connectivity: 1D representing dynamics on a line,
3D representing dynamics on a cubic lattice, and fully-connected, where each state is connected to
every other state. The greater the connectivity, the more difficult it is to speculate on the trajectory’s
future as the possible paths exhibit exponential branching. Conversely, when the connectivity is low
speculation can be quite accurate. While these models of state connectivity are much simpler than
what would be observed in actual applications they do however provide relevant information and
general guidelines on the potential performance of the method in different scenarios.

These three toy models present a good assortment for testing the new methods. The 1D
model provides rather-predictable dynamics for which speculation will be quite fruitful. The 3D
model presents dynamics which are somewhat less predictable, and where effective forecasting will
likely be limited to within a small neighborhood from the current state. Finally, speculation is futile
for the fully-connected model where the number of branching paths is immense.

Performance results for each of the toy models are shown in Figure 25, displaying the

l

pseudo-MD spliced as a function of WCT. Each subfigure shows the results of five different methods
for its particular model. The different methods consist of the existing VE formalism, the newly
introduced MaxP formalism, and MaxP with preemption and restarts. The last method is shown
implementing three distinct allocation policies: 1) The (naive) maximum throughput allocation;
distributing resources evenly (w = wconst) to execute the most tasks at the highest throughput,
thus producing the maximum number of segments for a given N . 2) The minimum time allocation;
distributing resources evenly to execute tasks with the maximum allocation (as defined previously,
w = wmax) thus producing N/wmax segments as quickly as possible. 3) The (optimal) maximum
expected throughput allocation; distributing resources according to how likely tasks are to be spliced
onto the state-to-state trajectory, thereby balancing the tradeoff between time and throughput to
produce the most spliced segments as quickly as possible.

The first thing to note in Figure 25 is the small but appreciable increase in performance
that results from transitioning from the VE to the MaxP formalism. While MaxP was introduced
to allow for the implementation of our derived methods, it is worth noting that the transition does
not come at the cost of performance, to the contrary.

Further improvement resulting from the ability to pause and reschedule segments can be
substantial depending on the topology of the state space. As was discussed previously, the 1D
toy model presents very limited connectivity, therefore corresponding to a system which is highly
susceptible to speculation. As a result, the distribution of task probabilities will decay slowly, and
the balance between running a few tasks very quickly and maximizing the overall task-completion
throughput will be more heavily skewed toward throughput. This is seen from the 1D results in
Figure 25 as the maximum throughput allocation outperforms the minimum time allocation (which
even under-performs the standard VE and MaxP) by a factor of three. However, even in a highly
predictable system like the 1D toy model, the balance between time and throughput is not completely
one-sided. This is seen as the optimal allocation (which aims to maximize the expected throughput,
or segments spliced) is able to further improve performance by a factor of two as it strikes the
optimal balance. Overall, the implementation of our derived methods applied to the 1D model are
able to more than double the pseudo-MD spliced over the same WCT as compared to the standard
VE method.

The 3D model presents a slightly different picture as long-time speculation is somewhat
difficult due to the increased connectivity, yet short-time speculation can still be profitable, thus
this model requires a more delicate balance between throughput and execution time. This is seen
from the 3D results in Figure 25 as now the minimum time allocation outperforms the maximum
throughput allocation by over 50%. The optimal allocation adapts to the new model and achieves
the best performance, more than doubling the efficiency of the the minimum time allocation strategy
and providing nearly a six-fold improvement as compared to the standard VE method.

Lastly, the fully-connected model is considered, for which speculation is futile and escaping
from the current state as quickly as possible is the only sound strategy. As expected, the fully-
connected results in Figure 25 show how the minimum time allocation greatly outperforms the
maximum throughput allocation by nearly an order of magnitude. However, the optimal allocation
is able to further improve performance by nearly doubling the throughput achieved over the simulated
times shown here. Although the minimum time allocation utilizes resources to generate segments as
quickly as possible, it does not achieve the desired result of escaping from the current state as quickly
as possible. This is because the number of segments it produces is likely insufficient to escape the
state, i.e less than 〈nescape〉. It is actually better to generate more segments (greater throughput)
at a slightly slower rate (but higher efficiency) such that a sufficient number of segments to escape
from the current state are generated. Overall, our derived method applied to this toy model of
greater connectivity enabled nearly twenty times the pseudo-MD to be spliced over the same WCT
as compared to the standard VE method.

The resulting improvement of our derived methods, as compared to the existing VE schedul-
ing method, showed a nearly 2.5x, 6x, and 20x boost in performance for 1D, 3D, and fully connected

li

Figure 25: ParSpliceSIM results for the 1D, 3D, and fully-connected toy models showing pseudo-
MD spliced as a function of WCT. Each panel displays performance of VE in blue, MaxP in red,
MaxP(wconst) in green, MaxP(wmax) in maroon, and MaxP(w∗) in yellow. The results shown repre-
sent an average of roughly 500 independent simulations conducted for each method on each model.

toy models, respectively. These ParSpliceSIM results can be better understood by analyzing the
task probability distributions that are characteristic of each toy model. Figure 26 shows an example
initial probability distribution for each of the toy model systems as was constructed by the MCMaxP
procedure described in appendix A. One can see how the task probabilities for the 1D model exhibit
a very gradual decay over the first 5,000 tasks down to p ∼ 0.8. This reflects the limited state
connectivity which makes speculation fruitful. The 3D task probabilities exhibit a very steep decay
over the first ∼100 tasks (corresponding to an escape from the current state), followed by a more
gradual decay over the following 600 tasks (corresponding to an escape from the 6 neighbors of the
current state), followed by a more gradual decay out to 5,000 tasks. Overall, task probabilities re-
main non-negligible out to 5,000 tasks with long tail around p ∼ 0.2. Considering the fully connected
model, one can see a sharp decay in probability corresponding to the first escape from the current
state, after which the probability of tasks drops down to p < 0.1. One can see how these results in
performance generally adhere to the inference made while studying the synthetic distributions, i.e.
performance gains are largest when the probability distribution exhibits steep decays and long tails.

Figure 27 shows the evolution of task probability distributions which were sampled through-
out a simulation for each of the toy model systems. This occurs for two reasons: 1) The effect of the
database; the stored segments which have been generated but not yet consumed by the trajectory
play a role in the MCMaxP sampled trajectory and therefore affect which segments are expected to
be “needed” by a future trajectory. And 2) the time horizon over which the MCMaxP trajectory
is sampled; a greater time horizon corresponds to a higher likelihood that a particular segment will
eventually be spliced into the trajectory, thus resulting in a shallow decay of the probability dis-
tribution. The dynamic nature of the probability distributions is quite relevant as it pertains to a
changing allocation which must be maintained in order to achieve optimal performance. Recogniz-
ing this fact, one may consider the difficulties of maintaining the optimal allocation and note how

lii

Figure 26: Initial task probability distributions taken from simulations on the 1D (blue), 3D (red),
and fully-connected (orange) toy models. These task probability distributions were constructed at
the start of the simulation; having no contribution from the then-empty database of stored segments,
and are therefore a reflection of the state connectivity.

Figure 27: All task probability distributions generated during a single simulation on the 1D (blue),
3D (red), and fully-connected (orange) toy models.

liii

the frequency at which segments are paused and resources are reallocated can have a large impact
on performance. Constantly maintaining the optimal allocation involves pausing and reallocating
resources whenever any new information is available, which is not always feasible. In practice, the
user may choose to pause and update the allocation at some fixed interval, which can be tuned for
the user’s particular system. In the present study, the allocation was updated whenever a segment
was completed. This can be thought of as the most aggressive scenario that will produce the upper
bound in performance. In the ParSpliceSIM results above this condition could be relaxed to update
whenever a segment contained a transition as the true underlying Markov Chain was being used
rather than developing a model from segment data, and therefore segments which did not yield
escapes would have no effect on the current MCMaxP-constructed task probability distribution.
In a true ParSplice simulation however, each segment would contribute to the development of the
statistical Markov Model being produced on-the-fly and thereby (possibly) change the statistics of
the MCMaxP sampled trajectories, hence affecting the task probability distribution.

The question of when it is appropriate and necessary to pause and reallocate resources is not
easy to quantify. In general, the user would want to do so whenever the task probability distribution
substantially changes. In the example of ParSplice, this would certainly occur whenever the current
state of trajectory changes as all tasks and probabilities are generated from the MCMaxP procedure
and are thus conditional on starting in a particular state. The distribution could also change
without the trajectory changing state, however, when unused segments which contain transitions
are stored in the database and can contribute to the MCMaxP sampled trajectories. For this reason
the ParSpliceSIM results were aggressively updated whenever a segment yielding a transition was
returned to the database. The question becomes even more fuzzy for a real ParSplice simulation
which develops it’s statistical model on the fly. Any segment which changes the model in a substantial
way will likely change the MCMaxP sampled trajectories and thus affect the sampled probability
distribution. It is not easy to systematically catch changes of this type. A single segment will likely
have a negligible effect on the model, but cannot be ignored outright as enough of these negligible
changes can account for a significant effect. In addition, a segment which drastically changes the
model but does so far from the current state of the trajectory will have little effect on the sampled
task probability distribution and therefore does not warrant pausing and reallocating resources. In
practice, it is pragmatic to periodically pause and update the allocation at some fixed interval, which
is chosen so as to limit scheduling and pausing/restarting overhead.

0.10 Conclusion

The advent of exascale computing platforms will be accompanied by a need for specially
designed software and algorithms that are capable of utilizing the large availability of resources
simultaneously. As maintaining strong-scalability on such platforms will be quite difficult, the use of
speculative task-based paradigms are promising; enabling higher concurrency and improved scaling.
In this work, we derived the optimal allocation of resources for task execution in this speculative
setting. The utility of this approach was then assessed on assortment of synthetic task probability
distributions, comparing the expected throughput of our derived optimal allocation of resources
to more naive allocation policies. While a uniform allocation of resources can often be found to
produce a nearly optimal expected throughput, it was shown that determining the particular value
for the constant allocation size is in practice just a difficult as computing and employing the optimal
allocation.

A dynamic setting was then considered where task probabilities were influenced by some
underlying variable (state, context, time, etc.) and were therefore changing throughout the run-
time of the application. This setting was explored by examining the effect of our derived methods
applied to a specific scientific application, ParSplice, which operates in this domain. In order to
implement our methods, we first had to design a new application-specific technique for accessing

liv

the speculative probability that potential tasks would be useful. This technique not only allowed
for our derived methods to be implemented, but was also shown increase the performance of the
scientific application. The potential gains in performance resulting from our derived methods were
assessed through the use of a simulator. While the boost achieved varied with physical system
(ranging from 2.5x to 20x), it was found to be greatest when the system of study was most complex;
resulting in lower speculative task probabilities and a greater ability to leverage the trade-off between
throughput and time. By considering the speculative task probabilities, the optimal balance could
be struck to produce the maximum rate of expected throughput. This novel optimization scheme
stands to improve performance of speculative task-based applications, particularly when run at large
computational scales.

Appendix: Maximum-Probability (MaxP)

In the following, the probability that a candidate task (e.g, the generation of a segment
starting in a given state) will be consumed as part of the calculation is derived in the context of
discrete time Markov Chains, which is the natural setting for a trajectory composed of segments
generated following the ParSplice prescription. In other words, the problem at hand is to compute
the probability that a trajectory of a given length, sampled from this Markov Chain, would contain
the generated segment. As will be shown, these probabilities can be evaluated analytically from
the Markov jump process or approximated through a Monte Carlo sampling procedure. To clearly
distinguish from any variables defined in the main text, we have chosen to express this derivation
using a double-struck font.

This derivation utilizes a Markov modelM; a stochastic matrix whose elements pij represent
the probability of moving from state i to state j, thereby governing the discrete Markov process.
In the example of our scientific application (ParSplice) these are the probabilities that a segment
starting in state i will end in state j. Note that these probabilities encode the potential outcome
of the task, not the potential task’s usefulness, and are therefore distinct from task probabilities pi
defined in the main text. The work detailed herein describes our method for extracting these latter
probabilities pi from the former probabilities pij .

We define f
(n)
ij as the probability that the first passage from state i to state j takes exactly

n steps. This can be written recursively as

f
(1)
ij = p

(1)
ij = pij

f
(2)
ij =

∑
k!=j

pikf
(1)
kj

f
(n)
ij =

∑
k!=j

pikf
(n−1)
kj

We then also define f
(n)
ii to be the probability that the first return to state i upon leaving

state i takes exactly n steps, which can similarly be written recursively as

f
(n)
ii = [Mn]ii −

n−1∑
k=1

f
(k)
ii [Mn−k]ii

Where [Mn]ii represents the i, i element of the Markov Model M raised to the power n. Then,
summing over the index n allows one to write the probability of a return to state i sometime in the

lv

next N steps:

F
(n)
ii =

N∑
n

f
(n)
ii

Lastly, let vj be the number of visits to state j, and Pi(X) denote the probability of X
conditional on starting in state i. The probability of making exactly m visits to state j over the
next N steps from the current state i can then be expressed recursively as

Pi(vj = 1|N) =

N∑
k=1

f
(k)
ij [1−FN−k

jj]

Pi(vj = 2|N) =

N∑
k=1

f
(k)
ij Pj(vj = 1|N− 1)

Pi(vj = m|N) =

N∑
k=1

f
(k)
ij Pj(vj = m− 1|N−m)

Summing over the index m and subtracting from 1 yields the probability of having more
than S visits to a state over a horizon of N steps:

Pi(vj > S|N) = 1−
S∑

m=1

Pi(vj = m|N)

Therefore, given a current state of the trajectory i and the number of pending/unconsumed
segments in state j, this prescription provides a means of extracting the probability that the next
segment generated in state j will be consumed into the trajectory over the finite time horizon N.
Denoting the number of pending/unconsumed segments in state k as Sk allows the the probability
of each potential task to be written as

pk = Pi(vk > Sk|N),∀k

Having this derivation in mind, we propose a new ParSplice scheduling scheme referred to
as MaxP (maximum probability). In MaxP, the probability that each task will be spliced into the
trajectory over a given finite time horizon is calculated. While computing these probabilities can be
done analytically, it is often far more practical and efficient to do so via a Monte Carlo procedure,
especially when the number of states is large.

This can be done in a similar fashion to VE where an ensemble of future state-to-state
trajectories are sampled, accounting for the pending/unconsumed segments in the same way, but,
instead of stopping when running out of segments, each trajectory continues until the preset time
horizon, keeping track of how many segments would have to be generated in each state to reach
said horizon. This ensemble is then used to calculate the probability that particular segments built
in particular states are to be used by the state-to-state trajectory over the time horizon. ParSplice
can then assign segments to be generated in decreasing order of probability, thus generating the
segments which have the “maximum probability” of being spliced. It can actually be shown[81] that
the MaxP allocation scheme formally minimizes the expected number of database “misses”, i.e., the
number of times splicing has to be interrupted because a segment that is required to move forward
is not found in the database.

One may note that MaxP is substantially more expensive than VE for assigning an initial
state to a single segment. While this is true, the ensemble average required by MaxP can be used to
make state-assignments for a large number of segments all at once. This is compared to VE which
can make one state-assignment for each virtual-trajectory. Furthermore, the VE process for assigning

lvi

states to several segments must each be done in serial, meanwhile the ensemble trajectories used by
MaxP can be generated in parallel. These differences can become quite significant as simulations
scale to larger and larger machines, employing a greater number of MD instances.

lvii

Decision theoretic approach to
optimal scheduling

What is “optimal” scheduling? Considering that the measure of performance in a ParSplice
simulation is the boost obtained through splicing a long-time trajectory, then the optimal scheduling
policy should be to schedule the segments which are most likely to be spliced into the trajectory. As
was previously stated: segments which are generated but not spliced do not extend the long-time
trajectory and therefore do not provide any boost. While this statement is true, the issue of optimal
scheduling is a bit more subtle. To carefully investigate the subtleties herein we will employ the
framework of normative decision theory for which actions are analyzed in terms of utility and an
optimal policy can be rigorously defined.

Provided the work detailed in the previous chapter one may propose the policy which sched-
ules segments according to the maximum probability of being consumed into the state-to-state tra-
jectory within the time horizon of the simulation (MaxP). The subtly here arises from the fact that
the statistical Markov model used to derive the probabilities is imperfect as it is developed on-the-fly.
If the Markov model were perfect this would certainly be the optimal scheduling policy. However,
since the model is constructed from observing segments it will be extremely inaccurate initially and
will continue to improve throughout the runtime of the simulation as segments are generated and
observed. As the model becomes more accurate, and thus the derived probabilities become reli-
able, the MaxP policy approaches optimal. Herein lies the subtly; it will be optimal to schedule
those segments which have the highest probability of being spliced, however, these probabilities are
derived from a statistical model which improves as samples (segments) are generated in particular
states. Improving the statistical model involves generating segments in the states with the highest
uncertainty, i.e fewest number of samples.

This question of whether to utilize resources to exploit a given model, or to use those
resources to explore the problem domain and improve the model, is a longstanding question in
decision theory and is known as the exploration-exploitation dilemma. In probability theory this
type of problem is commonly referred to as a multi-armed bandit [82]. The name stems from a
conceptual view of the problem involving a row of slot machines. Due to the nature of slot machines
(being that typically money is inserted and an arm is pulled, yielding a payout with an expected
value that is less than the money inserted) they are sometimes called “one-armed bandits”. This
expression was then generalized to a row of slot machines and used describe the following conceptual
problem. Imagine having some finite allotment of resources which must be spent playing a row of
slot machines, each of which operates under some unknown probability distribution governing it’s
payout. The only way to gather information regarding a machines probability distribution is by
playing it and observing the outcome. Therefore, the question arises: How does one optimally play
in order to maximize their overall expected payout?

A strategy might be to purely exploit the machine which is believed to provided the greatest
expected payout. However, the expected payout for each particular machine is derived from the
observations made playing that machine. Is it really more wise to choose a machine with a slightly

lviii

higher expected payout but which has been played very few times, rather than a machine with a
slightly lower expected payout but which you have played very many times? How does this compare
to selecting a machine with a very low expected payout that has only been played once? Or what
about choosing a machine which has not been played at all? Clearly the variance of the estimated
payout should play a role in the decision of whether or not to play a particular machine. Depending
on the time horizon and corresponding level of risk-aversion, it may be advantageous to select
machines with higher variance. In finance, long positions in securities are commonly valued using
the Capital Asset Pricing Model (CAPM) for which the value is increased by a term proportional to
beta; the normalized co-variance between a given asset and a standard benchmark like the S&P500
[83]. In multi-armed bandit problems, a long time horizon corresponds to having a large availability
of resources. In this case, it might be wise to explore the different machines in order to find the
one which provides the highest expected payout. Once found, all remaining resources can then be
used to exploit that machine. If resources are quite limited however, it might be better to exploit
the machine which is currently believed to be best; because finding the best machine without the
resources to then exploit it is of no good. In the end, it is the overall payout obtained which stands
as the metric of performance. Hence, the balance between exploration (utilizing resources to gather
reliable statistics) and exploitation (utilizing resources to obtain the highest expected value – based
on the gathered statistics) can be quite delicate.

The objective of normative decision theory is derive the optimal policy corresponding to
the maximum expected utility obtained throughout a decision making process. It is often helpful to
introduce the concept of regret under a given policy, which is defined to be the difference between the
expected cumulative utility of the optimal policy and that of the given policy. Therefore, the optimal
policy is identically defined to be the policy of zero regret. It is important to note, however, that
both the optimal policy and the notion of regret correspond to the expected utility of a policy rather
than the utility obtained. The concept of regret is thereby congruent with the layman definition,
i.e after having employed the optimal policy the agent, despite the payout obtained, would have no
regret and given the opportunity to do it all again would not do anything differently. In this way
the optimal policy is analogous to the game theory concept of a Nash equilibrium [84], for which
nothing can be gained by invoking a different strategy.

Decision theory is used to analyze choice under uncertainty, focusing on the expectation
rather than the sample value. This distinction is made clear by considering the “all-in” policy of
choosing an initial random machine and spending all of your resources playing it, never switching
to explore other machines. This policy will provide the maximum possible payout IF you happen
to randomly select the best machine initially. However, it is equally likely that the worst machine
will be randomly selected and this policy will provide the minimal possible payout. Given that this
“all-in” policy could provide both the maximum possible payout and the minimum possible payout
it is more meaningful to evaluate the policy in terms of the expected payout. In fact, due to the
stochastic nature of the problem, two agents acting under identical policies will most likely obtain
different payouts. It is for this reason that decision theory considers choices in terms of expectation
rather than sample outcome.

There have been a plethora of methods devised for handling multi-armed bandit problems
[85], involving varying levels of complexity. The simplest strategy invokes a policy called ε-greedy,
where at each decision-step the agent chooses between the action corresponding the maximum ex-
pected payout (exploit) with probability 1 − ε, or a random action (explore) with probability ε.
Albeit remarkably simple, this strategy performs surprisingly well in practice. There are other more
complex methods which focus the exploration according to the variance of an action’s expected pay-
out and can further improve performance [86, 87]. While these methods can be quite good they are
still found to be sub-optimal. This is because they fall into a class of policies which aim to satisfy
other metrics of performance, like minimizing the maximum regret or maximizing the likelihood of
obtaining the greatest payout. Meanwhile, the optimal policy is that which maximizes the over-
all expected payout. These sub-optimal policies typically involve a much smaller/larger variance

lix

along with their slightly smaller expected values. The fact that these sub-optimal policies can often
outperform the optimal policy (by yielding a greater payout) might call into question whether the
expected value is the correct objective function to be optimizing. It will be so long as the metric of
performance is obtaining the largest cumulative payout (i.e, not outperforming some other policy).
The multi-armed bandit problem would be radically changed if you were competing against another
agent, and only the agent with the greatest payout would receive their bounty. This type of problem
however would evoke many elements of non-cooperative game theory and is well outside the scope
of this thesis. The problem we are analyzing is a single player game involving one agent whose goal
is to maximize expected utility. That being said, there has been long-standing skepticism regarding
the focus on expected value, including paradoxical questions which seem to arise [88]. The resolution
to these queries often come in the form of time-valued discounting.

When a problem involves a series of decisions, e.g multi-armed bandit problems, it becomes
necessary to discount future utility with each decision made. When done correctly, the optimal
policy for a multi-armed bandit problem can be rigorously defined and expressed in terms of dynamic
allocation indices [89, 90]. The general concept is that each action will produce some direct utility (in
the form of payout) as well as some information utility describing the particular machine (because
the payout is a sample from that machines probability distribution). While the direct utility will
be of constant value throughout the decision process, the information utility will be of greater value
earlier in the process as there are more resources available to exploit it. Consider for example the
information utility produced on the last play of the bandit process. While the resulting payout will
tell the agent more about that particular machine, there are no more resources available and thus
that information is worthless to the agent. Therefore, the information utility obtained from a given
play must be discounted based on the horizon of the decision process.

Equating the direct utility and the information utility is oftentimes difficult as it is not always
clear how the two interrelate. A technique for comparing the two is to describe the information
utility as it relates to the potential increase of direct utility cumulatively obtained. This is done
by estimating the Expected Value of Sample Information (EVSI), that is, the expected increase in
utility that could obtained from gaining access to an additional sample observation before making
a decision. Said differently, it is the expected value that the sample information will provide as it
pertains to improving the cumulative expected utility. The EVSI is thereby defined as the difference
in the expected utility of decision D and that of the decision given sample information SI.

EV SI = EU [D|SI]− EU [D]

Since EVSI attempts to estimate what this improvement would be before seeing actual
sample data it is referred to as preposterior analysis. Calculating the expectation value involves
integrating over all possible outcomes for the sample information. It is often impractical, if not
impossible, to integrate over the space of possible observations analytically. The computation there-
fore typically involves a Monte Carlo approach where samples are generated and used to extract an
EVSI.

Having this powerful technique in mind, we now turn back to the application of interest
(ParSplice) in hopes to employ the EVSI method for optimal scheduling. When a ParSplice seg-
ment is generated in a particular state it will produce a binary value of direct utility (based on
whether or not the segment generated is consumed into the long-time trajectory) as well as some
amount information utility about the particular state (via the sample segment information that is
incorporated into the Markov Model). The expected value of the direct utility of a segment can be
computed as was done in the MaxP formalism described in the previous chapter. It can be shown
that the EVSI from generating a segment in a particular state can be expressed as the increased
residence time expected in an absorbing Markov Model. Therefore, an absorbing Markov Model is
simultaneously constructed on-the-fly along with the MLE model. This absorbing model incorpo-
rates uncertainty into an absorbing state which represents the trajectory escaping from the current

lx

model. Upon discovering each new state, a Bayesian prior absorption probability of 1 is assigned to
the state, reflecting the complete uncertainty of segments generated in that new state. As segments
are generated in this new state and observed the Bayesian prior becomes diluted and in the limit of
vanishing uncertainty the two models converge.

The question then becomes: How would sample information from a segment change the
absorbing model and hence increase the residence time? It is clear that obtaining the segment
information would decrease uncertainty within the state and thus decrease the probability of ab-
sorbing from that state, hence increasing the residence time. However, given that the probabilities
are stochastic, all transition probabilities (including absorbing) must sum to 1. This implies that a
decrease in absorption must result in an increase somewhere else. Where this corresponding differ-
ential in probability should go is unclear. Intuitively, the observation a sample segment would result
in a transfer of some probability from the absorbing state to the state where the segment ended. The
preposterior analysis would require averaging over all the possible outcomes of the sample segment,
however, this is not possible when all of the possible outcomes are not known. Strictly averaging
over the known possible outcomes is a poor approximation as the greatest increase in information
utility comes from discovering a new state. This begs the question: How does one perform a model
update to include unobserved sample segment information in a way that is accurate and effective.

In our quest for an EVSI optimal ParSplice scheduling routine we have implemented many
approximations and techniques for encoding the sample information into the Markov Model. Each of
which relying on some heuristic or rule that requires a lot of hand-waving. In addition this dilemma,
we have faced several other challenges. During a ParSplice run, if Markov Model is inaccurate due to
poor statistics it might suggest an artificially high residence time. When this poor model is improved
by obtaining segment information, the resulting residence time could decrease. This would imply a
negative change in residence time and therefore a negative EVSI. Given this example, the method
would actively avoid scheduling in those states with the greatest uncertainty as it tries to “ride the
high” of a poor model.

Yet another obstacle that stood in the way of developing an EVSI optimal scheduling routine
was a means of rigorously accounting for stored segments in the database. Our analytical solution
involved diagonalizing the transition matrix to compute the difference in residence times, meanwhile
the expected value of direct utility was greatly dependent on the stored segments in the database.
We attempted to account for them in a generic way, without the consideration of where each segment
ended, but this proved futile. In some preliminary ParSpliceSIM results it was discovered that the
standard VE scheduling routine would regularly outperform our heuristically-optimal EVSI method.
Further investigation showed this was due to the way VE scheduling “virtually spliced” the exact
segments stored in the database. This small bit of information enabled massive gains over the
course of a simulation. While we could account for the exact database segments using a Monte
Carlo technique as in MCMaxP, the lack of a provably optimal analytical method seemed to defeat
the purpose of the venture.

We then moved to considering other more simple, sub-optimal policies (like ε-greedy) that
did not have as many intricacies but could still improve performance. Unfortunately, employing a
less general method would not serve the complexities of our problem. This is because the problem
of scheduling segments to explore and exploit is more complicated than a standard multi-armed
bandit problem. The likelihood that a given segment will be spliced into the long-time trajectory
is conditional on the current state of the trajectory. Throughout the runtime of a simulation these
probabilities will dynamically evolve. Fortunately, this is a type of multi-armed bandit problem
referred to as restless bandits. More so, our problem involves a constantly increasing number of
states, or lever arms to be pulled. Fortunately, this is also a type of multi-armed bandit problem
referred to as arm-acquiring bandits. Even more so, our problem involves a database of segments
which evolves throughout the runtime of the simulation, having a large effect on the probabilities.
Fortunately, you guessed it, this is also a type of multi-armed bandit problem referred to as contextual
bandits. It seemed as though mathematicians had thought of everything. With this classification,

lxi

we just needed to find a method which satisfied a relentless arm-acquiring contextual multi-armed
bandit problem. Unfortunately, our problem contains an additional complexity that not even the
mathematicians dreamed up. Our problem is inherently non-local. The information utility produced
from generating a segment in a state with high uncertainty is large, however, if that state is in a
region of state space that is very far from the current state and is not likely to ever be visited
then this information is of little value. Unlike with slot machines, where switching between any two
machines is easy, we are only interested in information utility in so far that it contributes to the
generation of direct utility further down the line by improving the model in regions of state space
which will be visited by the trajectory. Improving the model in a region which will never be visited is
of zero utility. Further complicating the situation is the fact that determining which regions of state
space will be relevant a priori is impossible as it depends on state connectivity which is inherently
unknown.

Considering the complications faced in developing an optimal scheduling method that bal-
ances the trade-off between exploration and exploitation, this research direction has been put on
hold. There are plans in place to invite some collaborating mathematicians from France to LANL
for a week long visit, but until then this work will remain shelved. We would like to note that
we remain hyper-optimistic about the potential work as it naturally presents as a Markov Decision
Process (MDP) and can be posed in the context of Reinforcement Learning (RL) where an agent
chooses an action based on the current environment. The action then produces some reward and
evolves the state of the system, which is fed back to the agent and used to inform the next deci-
sion. The field of RL is a rapidly growing research area as it has many applications from science to
industry. Although this direction did not pan out (yet), we are hopeful for the progress that can
be made as an optimal RL method for learning a statistical Markov Model from sample data would
have far-reaching applications beyond ParSplice.

lxii

Potential applications & future
work

This final chapter is dedicated to identifying the type of physical applications which stand
to benefit most as a result of the work in this thesis. Improvements in scaling will be discussed
and used to generically identify ideal candidate systems in terms of their state-space characteristics.
Future work involving applications to nuclear fuels will be investigated and discussed as it pertains
to potential post doctoral research.

The original parallel method designed by Voter in the late 90’s (ParRep) had a restriction on
the amount of resources N which could be efficiently utilized. This limitation could be characterized
by an inequality relating the cost of the method to the boost obtained: Nτc � 〈nescape〉 /N . The
constraint imposed by this inequity corresponds to an inherent scaling limitation on the method, re-
quiring proportionally deeper states in order to utilize greater resources (i.e, larger 〈nescape〉 required
to utilized greater N). As a consequence of this scaling limitation, ParRep would yield disastrous
efficiency whenever the trajectory visited shallow states. This implied that systems which evolved
through a series of quick transitions, e.g low barriers, could not be sped up, and parallel resources
could not be utilized.

This limitation was somewhat relaxed with the implementation of ParSplice where each MD
instance now created a discrete ’segment’ of trajectory which could eventually be spliced into the
long-time trajectory. Recall, those segments which were created but not immediately spliced would
be stored in a database where they could later be extracted and consumed into the trajectory. This
amortization of segments previously generated enabled greater efficiency to be achieved in shallower
states so long as the trajectory revisited the state sufficiently many times (e.g superbasin of states).
As a result, ParSplice enabled better scaling which was limited by superbasin depth rather than
state depth. However, the general scaling limitation still remained, requiring proportionally deeper
superbasins in order to utilize greater resources.

The problem here is that “depth” is relative to the number of MD instances. As we scale to
larger computing platforms, the same state (or superbasin of states) will require a smaller fraction
of the total resources in order to find an escape. This is problematic as the relates to the low-barrier
problem. As resources scale all barriers begin seem low by comparison. In the large N limit, all
states and superbasins will only require an ε-portion of the total resources in order to find an escape.

Fortunately, due to the distributed nature of the ParSplice workflow, resources do not have
to be solely utilized generating a single escape. Instead, resources can be allocated among various
states in an attempt to speculate ahead of the trajectory and generate the next several escapes
concurrently. In theory, this factor enables strong scaling, conditional on accurate speculation. This
is the ground upon which I began my thesis work. The prospect of strong scaling MD simulation with
exascale resources would be transformative, enabling scientific discoveries far beyond our current
grasp. Doing so, however, involves answering difficult questions, like addressing the low-barrier
problem.

As detailed in chapter 1, I began by working to improve the statistical model which is used

lxiii

to speculate on the long-time trajectory’s future and distribute resources. Constraining the model
to obey detailed balance is an enhancement that improves the performance of simulations where
state depth is less than the number of resources, 〈nescape〉 < N , a case that is common in practice,
particularly when N is large. In the limit of exascale resources this will become the predominant
case as all states will begin to obey this condition.

In addition to the detailed balance model, the implementation of the warp move was a
general enhancement designed to aid the model in the presence of uncertainty and help distribute
resources. The warp move has been shown to be most effective on complex systems with high state
connectivity. In low-barrier, highly connected systems the warp move tends to act as uncertainty
triggered exploration, allowing the local state-space to be surveyed in less time. In the presence of
high model uncertainty the warp move enables speculation and increases the likelihood of scheduling
ahead of the trajectory. This tends to be especially useful when the underlying state connectivity is
far more complex that the current model suggests.

Both the warp move and detailed balance model were developments designed for increasing
parallel efficiency to improve ParSplice performance at scale. Due to the relative nature of state
depth and resources, these developments also enable better performance in simulations utilizing a
smaller allocation to study systems which evolve through shallower states. Ideal candidates for study
are physical processes which contain an intermediate regime of shallow states that separate more
strongly meta-stable states. Previously these systems were out of reach for ParSplice as the parallel
efficiency would tank in the intermediate regime, causing the trajectory to get “stuck” there as the
boost within that regime would tend toward unity.

The work detailed in chapter 2 can be separated into two separate developments. The
first was the creation of the MaxP procedure for scheduling segments. This method is statistically
superior to the VE scheduling method as it schedules according to the maximum probability that a
segment will be spliced rather than the probability distribution of the next segment to be needed.
This statistical superiority is shown to produce a small but appreciable improvement in parallel
efficiency. In addition to improving the efficacy of scheduling MaxP also improves the functionality of
scheduling. This was not highlighted in chapter 2 as it was not central to the paper, but is nonetheless
an important development to note. While the VE scheduling routine is inherently serial the MaxP
method is trivially parallelizable. This fact contributed to the further developments of resource
optimization, but is a substantial improvement itself. In practice, the utilization of a massively
parallel computing resource would require a ‘batch’ approximation to VE scheduling where a batch
of segments are all assigned to a single state. This is needed because the scheduling of segments
one-by-one would create a scheduling bottleneck resulting in idle resources waiting to be assigned
to states. However, the batch approximation to VE only distances the limitation of the scheduling
bottleneck, it does not eliminate it. This due to the fact that the batch size must be less than the most
shallow state in order to not effect the efficiency. The fixed batch size means that scaling resources
to large enough N will reproduce the scheduling bottleneck. This is not the case for the MaxP
scheduling procedure since all of the work generating the ensemble of virtual trajectories (which can
be done in parallel) is done up front, thus scheduling one segment is as computationally expensive as
scheduling one million segments. Therefore, the MaxP scheduling procedure contributes generally
to simulations by providing a minor improvement in parallel efficiency due to better scheduling
decisions, as well as a major improvement in the scalability due to the distributed functionality of
the method.

The second of the two developments detailed in chapter 2 is the resource optimization
scheme, providing the ability to trad-off throughput for time in order to maximize the rate of expected
throughput. This optimization scheme is generally very powerful, and has the potential to provide
substantial improvements in parallel efficiency, particularly for difficult systems which are normally
considered outside the realm of ParSplice. Systems of this type include those with a very high state
connectivity, for which speculation ahead of the trajectory is near futile due to the overwhelming
number of potential pathways. Traditionally, ParSplice would attempt to speculate as best it could,

lxiv

and would simply suffer a poor parallel efficiency due to the unpredictable nature. However, with the
optimization scheme, ParSplice is able to trade-off throughput for time by producing fewer segments
(those which would have normally been used to speculate) and instead allocating more resources to
generating the higher probability segments faster.

The rescheduling aspect of the optimization scheme is a development which stands to have
a substantial effect in simulations where the trajectory is not likely to revisit states. During a
simulation, when the ParSplice trajectory is trapped in a very deep state all resources are allocated
to generating segments in that state in order to find an escape. Traditionally, it is only when a
segment is completed that the resource(s) assigned to generating that segment are assigned to a new
state. This implies that, upon finding an escape from the very deep state, the remaining resources
will continue generating their segments in that deep state until those segments are completed, at
which point those segments will be stored in the database until they are needed (i.e the trajectory
returns to that state). However, in the case that state revisits do not occur, those segments will not
be spliced into the trajectory and the parallel work will go unrealized. In this case, it would be more
effective to terminate those pending segments once an escape from the deep state was found, freeing
up the resources so they could be allocated to generating other (more useful) segments. Therefore,
this development is ideally suited for the study of processes which evolve through a unique series of
configurations, rarely revisiting the same configuration twice.

While the work of this thesis can be applied generally to enhance the simulations of many
systems, we now turn to discussing a particular system of interest as it pertains to future work. The
most prominent material commonly used as a fuel within nuclear reactors is Uranium dioxide (UO2)
due to its ability to endure the harsh conditions present within the reactor (e.g high temperature
gradients, irradiation damage, and chemical changes). As the fuel is burned, the U atoms fission
into lighter elements. The fission products, particularly the noble gas atoms among them, cause
concern as they relate to thermal conductivity[91, 92], fuel swelling[93, 94], and changes in the
micro-structure [95]. A more thorough understanding of the fission gas diffusion within the fuel
is desired as it has been shown to have tremendous impact on these performance metrics[96, 97].
Therefore, in order to push for higher fuel burn up, as well as maintain the safety of regular burn up,
a fundamental understanding of the physics must be obtained. Having this knowledge would enable
scientists and engineers to make informed decisions regarding the safety and operation of nuclear
reactors.

Identified by Turnbull et al. [98], there are three regimes of gas diffusion that present
within UO2: 1) the high temperature regime (>1500 K) of intrinsic diffusion, 2) the intermediate
temperature regime of radiation enhanced diffusion and 3) the low temperature regime (<1000 K) of
irradiation induced athermal contribution (See fig. 28). It is the radiation enhanced diffusion that
is of greatest interest as it is currently not well understood. It seems to be very complicated due to
the microscopic effects of irradiation damage. The high energy of fission products evolving through
collision cascades and thermal spikes give way to an abundance of Frenkel pairs. It is thought
that the atomic mixing, which results from these damage induced Frenkel pairs, is the dominant
mechanism underlying gas mobility.

Understanding the mechanisms which govern fission gas diffusion within nuclear fuels is a
meaningful pursuit, and one that many lead to discoveries of significant consequence. The ideal
tool for learning about the physical phenomena is of course atomistic simulation. However, many
complexes that contain fission gasses move very slowly, presenting a timescale problem for direct
MD simulation. Motivated by this fact, we believe ParSplice will be ideally suited for this materials
application and could provide greater insight into the nature of these fuels. The implementation
of ParSplice will not be trivial however as this system is quite complicated. The fact that the
oxygen sub-lattice within UO2 evolves much faster than the U sub-system will make simulations
very challenging. In addition, the local atomic mixing will create an ever changing topology making
it unlikely to capitalize on state revisits. This system will likely have the type of highly complicated
state space that was traditionally very difficult for ParSplice. We expect the warp move and the

lxv

Figure 28: This figure was taken from [3] and is shown to illustrate the three separate regimes of
gas diffusion

detail balance model to play substantial role in improving performance, although it is unclear by
exactly how much. If the atomic mixing is too dominant it will create a situation in which speculation
is futile and revisits rarely ever occur. In this case, it might be beneficial (and perhaps necessary)
to employ the optimization methods of chapter 3 in order to utilize resources effectively.

The ideal place to begin this work is by first studying the diffusion of vacancy clusters within
the fuel (in the absence of rare gas atoms). Using the specialized ‘canonical’ setting in ParSplice,
which recognizes states to be identical under a renumbering of the atoms, should minimize the effect
of the atomic mixing and enable high parallel efficiency. These simulations can then be used to draw
relations between cluster size and mobility. After this baseline study we can introduce single fission
gas defects and study the diffusion, working our way up in complexity. Our studies will begin by
examining the diffusion of Xe as it is the most common type of defect. Once these simulations are
underway it should be a smooth transition to studying other types of gasses (Kr, etc). Conducting
studies of varying complexes, cluster sizes, temperatures, etc should provide some much needed
insight, and could help advance the field of nuclear fuels.

lxvi

Bibliography

[1] Danny Perez, Ekin D Cubuk, Amos Waterland, Efthimios Kaxiras, and Arthur F Voter. Long-
time dynamics through parallel trajectory splicing. Journal of chemical theory and computation,
12(1):18–28, 2016.

[2] LAMMPS Website. https://lammps.sandia.gov.

[3] Christopher Matthews, Romain Perriot, WMD Cooper, Christopher R Stanek, and David A
Andersson. Cluster dynamics simulation of xenon diffusion during irradiation in uo2. Journal
of Nuclear Materials, 540:152326, 2020.

[4] Keith J Laidler and M Christine King. Development of transition-state theory. The Journal of
physical chemistry, 87(15):2657–2664, 1983.

[5] Graeme Henkelman, Blas P Uberuaga, and Hannes Jónsson. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. The Journal of chemical
physics, 113(22):9901–9904, 2000.

[6] Graeme Henkelman and Hannes Jónsson. A dimer method for finding saddle points on high
dimensional potential surfaces using only first derivatives. The Journal of chemical physics,
111(15):7010–7022, 1999.

[7] Arthur F Voter. Introduction to the kinetic monte carlo method. In Radiation effects in solids,
pages 1–23. Springer, 2007.

[8] Graeme Henkelman and Hannes Jónsson. Long time scale kinetic monte carlo simulations
without lattice approximation and predefined event table. The Journal of Chemical Physics,
115(21):9657–9666, 2001.

[9] Lijun Xu and Graeme Henkelman. Adaptive kinetic monte carlo for first-principles accelerated
dynamics. The Journal of chemical physics, 129(11):114104, 2008.

[10] Thomas D Swinburne and Danny Perez. Self-optimized construction of transition rate matri-
ces from accelerated atomistic simulations with bayesian uncertainty quantification. Physical
Review Materials, 2(5):053802, 2018.

[11] Arthur F Voter. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical
Review Letters, 78(20):3908, 1997.

[12] Soo Young Kim, Danny Perez, and Arthur F Voter. Local hyperdynamics. The Journal of
chemical physics, 139(14):144110, 2013.

[13] Steven J Plimpton, Danny Perez, and Arthur F Voter. Parallel algorithms for hyperdynamics
and local hyperdynamics. The Journal of Chemical Physics, 153(5):054116, 2020.

lxvii

https://lammps.sandia.gov

[14] Mads R So/rensen and Arthur F Voter. Temperature-accelerated dynamics for simulation of
infrequent events. The Journal of Chemical Physics, 112(21):9599–9606, 2000.

[15] Richard J Zamora, Arthur F Voter, Danny Perez, Nandakishore Santhi, Susan M Mniszewski,
Sunil Thulasidasan, and Stephan J Eidenbenz. Discrete event performance prediction of spec-
ulatively parallel temperature-accelerated dynamics. Simulation, 92(12):1065–1086, 2016.

[16] Susan M Mniszewski, Christoph Junghans, Arthur F Voter, Danny Perez, and Stephan J Ei-
denbenz. Tadsim: Discrete event-based performance prediction for temperature-accelerated
dynamics. ACM Transactions on Modeling and Computer Simulation (TOMACS), 25(3):1–26,
2015.

[17] Arthur F Voter. Parallel replica method for dynamics of infrequent events. Physical Review B,
57(22):R13985, 1998.

[18] Claude Le Bris, Tony Lelievre, Mitchell Luskin, and Danny Perez. A mathematical formalization
of the parallel replica dynamics. Monte Carlo Methods and Applications, 18(2):119–146, 2012.

[19] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Com-
putational Physics, 117(1):1–19, 1995.

[20] R. J. Zamora, Danny Perez, E. Martinez, Blas Pedro Uberuaga, and Arthur F. Voter. Accel-
erated Molecular Dynamics Methods in a Massively Parallel World, pages 745–772. Springer
International Publishing, Cham, 2020.

[21] Fedwa El-Mellouhi, Normand Mousseau, and Laurent J Lewis. Kinetic activation-relaxation
technique: An off-lattice self-learning kinetic monte carlo algorithm. Physical Review B,
78(15):153202, 2008.

[22] Danny Perez, Blas P Uberuaga, and Arthur F Voter. The parallel replica dynamics method–
coming of age. Computational Materials Science, 100:90–103, 2015.

[23] Liang Zhang, Samuel T Chill, and Graeme Henkelman. Distributed replica dynamics. The
Journal of chemical physics, 143(17):174112, 2015.

[24] ParSplice Code. http://gitlab.com/exaalt/parsplice.

[25] Francis Alexander, Ann Almgren, John Bell, Amitava Bhattacharjee, Jacqueline Chen, Phil
Colella, David Daniel, Jack DeSlippe, Lori Diachin, Erik Draeger, et al. Exascale applications:
skin in the game. Philosophical Transactions of the Royal Society A, 378(2166):20190056, 2020.

[26] Danny Perez, Rao Huang, and Arthur F Voter. Long-time molecular dynamics simulations on
massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory
splicing. Journal of Materials Research, 33(7):813–822, 2018.

[27] MA Novotny. Monte carlo algorithms with absorbing markov chains: Fast local algorithms for
slow dynamics. Physical review letters, 74(1):1, 1995.

[28] Brian Puchala, Michael L Falk, and Krishna Garikipati. An energy basin finding algorithm for
kinetic monte carlo acceleration. The Journal of chemical physics, 132(13):134104, 2010.

[29] Abhijit Chatterjee and Arthur F Voter. Accurate acceleration of kinetic monte carlo simulations
through the modification of rate constants. The Journal of chemical physics, 132(19):194101,
2010.

[30] Kristen A Fichthorn and Yangzheng Lin. A local superbasin kinetic monte carlo method. The
Journal of chemical physics, 138(16):164104, 2013.

lxviii

http://gitlab.com/exaalt/parsplice

[31] David Aristoff. Generalizing parallel replica dynamics: Trajectory fragments, asynchronous
computing, and pdmps. SIAM/ASA Journal on Uncertainty Quantification, 7(2):685–719, 2019.

[32] George H Vineyard. Frequency factors and isotope effects in solid state rate processes. Journal
of Physics and Chemistry of Solids, 3(1-2):121–127, 1957.

[33] David Aristoff. Private communication.

[34] Benjamin Trendelkamp-Schroer, Hao Wu, Fabian Paul, and Frank Noé. Estimation and un-
certainty of reversible markov models. The Journal of chemical physics, 143(17):11B601 1,
2015.

[35] Samuel T Chill and Graeme Henkelman. Molecular dynamics saddle search adaptive kinetic
monte carlo. The Journal of chemical physics, 140(21):214110, 2014.

[36] David Aristoff, Samuel Chill, and Gideon Simpson. Analysis of estimators for adaptive kinetic
monte carlo. Communications in Applied Mathematics and Computational Science, 11(2):171–
186, 2016.

[37] Danny Perez, Blas P Uberuaga, Yunsic Shim, Jacques G Amar, and Arthur F Voter. Acceler-
ated molecular dynamics methods: introduction and recent developments. Annual Reports in
computational chemistry, 5:79–98, 2009.

[38] N Juslin and BD Wirth. Interatomic potentials for simulation of he bubble formation in w.
Journal of nuclear materials, 432(1-3):61–66, 2013.

[39] Steven J Zinkle and Lance Lewis Snead. Designing radiation resistance in materials for fusion
energy. Annual Review of Materials Research, 44:241–267, 2014.

[40] LK Mansur. Theory and experimental background on dimensional changes in irradiated alloys.
Journal of Nuclear Materials, 216:97–123, 1994.

[41] SJ Zinkle. 1.03-radiation-induced effects on microstructure. Comprehensive nuclear materials,
1:65–98, 2012.

[42] Danny Perez, Luis Sandoval, Sophie Blondel, Brian D Wirth, Blas P Uberuaga, and Arthur F
Voter. The mobility of small vacancy/helium complexes in tungsten and its impact on retention
in fusion-relevant conditions. Scientific reports, 7(1):1–9, 2017.

[43] Michael P. Robson, Ronak Buch, and Laxmikant V. Kale. Runtime coordinated heterogeneous
tasks in charm++. In Proceedings of the Second Internationsl Workshop on Extreme Scale
Programming Models and Middleware, ESPM2, pages 40–43, Piscataway, NJ, USA, 2016. IEEE
Press.

[44] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality
and independence with logical regions. In SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2012.

[45] Mario Di Renzo, Lin Fu, and Javier Urzay. Htr solver: An open-source exascale-oriented
task-based multi-gpu high-order code for hypersonic aerothermodynamics. Computer Physics
Communications, page 107262, 2020.

[46] James C. Phillips, David J. Hardy, Julio D. C. Maia, John E. Stone, Joao V. Ribeiro, Rafael C.
Bernardi, Ronak Buch, Giacomo Fiorin, Jerome Henin, Wei Jiang, Ryan McGreevy, Marcelo
C. R. Melo, Brian K. Radak, Robert D. Skeel, Abhishek Singharoy, Yi Wang, Benoit Roux,
Aleksei Aksimentiev, Zaida Luthey-Schulten, Laxmikant V. Kale, Klaus Schulten, Christophe
Chipot, and Emad Tajkhorshid. Scalable molecular dynamics on cpu and gpu architectures
with namd. The Journal of Chemical Physics, 153(4):044130, 2020.

lxix

[47] Hilario Torres, Manolis Papadakis, and Llúıs Jofre Cruanyes. Soleil-x: turbulence, particles,
and radiation in the regent programming language. In SC’19: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–4,
2019.

[48] Nikhil Jain, Eric Bohm, Eric Mikida, Subhasish Mandal, Minjung Kim, Prateek Jindal, Qi Li,
Sohrab Ismail-Beigi, Glenn Martyna, and Laxmikant Kale. Openatom: Scalable ab-initio molec-
ular dynamics with diverse capabilities. In International Supercomputing Conference, ISC HPC
’16 (to appear), 2016.

[49] Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, and Mikel Luján. Optimizing software
runtime systems for speculative parallelization. 9(4), 2013.

[50] Paraskevas Yiapanis, Gavin Brown, and Mikel Luján. Compiler-driven software speculation for
thread-level parallelism. ACM Trans. Program. Lang. Syst., 38(2), December 2015.

[51] Openmp application programming interface. https://www.openmp.org/specifications/.

[52] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmability and
the chapel language. The International Journal of High Performance Computing Applications,
21(3):291–312, 2007.

[53] Laxmikant V Kale and Sanjeev Krishnan. Charm++ a portable concurrent object oriented
system based on c++. In Proceedings of the eighth annual conference on Object-oriented pro-
gramming systems, languages, and applications, pages 91–108, 1993.

[54] J Greggory Steffan, Christopher B Colohan, Antonia Zhai, and Todd C Mowry. A scalable
approach to thread-level speculation. ACM SIGARCH Computer Architecture News, 28(2):1–
12, 2000.

[55] Jayaram Bobba, Kevin E Moore, Haris Volos, Luke Yen, Mark D Hill, Michael M Swift, and
David A Wood. Performance pathologies in hardware transactional memory. ACM SIGARCH
Computer Architecture News, 35(2):81–91, 2007.

[56] Mark C Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel Sanchez.
Data-centric execution of speculative parallel programs. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[57] F Almeida, F Garcia, J Roda, D Morales, and C Rodŕıguez. A comparative study of two
distributed systems: Pvm and transputers. Transputers Applications and Systems 95, pages
244–258, 1995.

[58] Rumen Andonov, Frédéric Raimbault, and Patrice Quinton. Dynamic programming parallel
implementations for the knapsack problem. 1993.

[59] D Morales, J Roda, Francisco Almeida, Casiano Rodŕıguez, and F Garcia. Integral knapsack
problems: Parallel algorithms and their implementations on distributed systems. In Proceedings
of the 9th International Conference on Supercomputing, pages 218–226, 1995.

[60] Efficient Parallel Algorithms. A. gibbons/w, 1988.

[61] Ramakrishnan Rajamony, L Baba Arimilli, and K Gildea. Percs: The ibm power7-ih high-
performance computing system. IBM Journal of Research and Development, 55(3):3–1, 2011.

lxx

https://www.openmp.org/specifications/

[62] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob Alverson,
Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard. Cray cascade: a scalable hpc
system based on a dragonfly network. In SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, pages 1–9. IEEE, 2012.

[63] Daniela Rosu, Karsten Schwan, Sudhakar Yalamanchili, and Rakesh Jha. On adaptive resource
allocation for complex real-time applications. In Proceedings Real-Time Systems Symposium,
pages 320–329. IEEE, 1997.

[64] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten Hoefler, Sameer Kumar,
Ewing Lusk, Rajeev Thakur, and Jesper Larsson Träff. Mpi on millions of cores. Parallel
Processing Letters, 21(01):45–60, 2011.

[65] Ahmed Shawky Moussa, Sherif AbdElazim Embaby, and Ibrahim Farag. Intelligent real-time
scheduling of dynamic processes in mpi. In 2017 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pages 1–4. IEEE, 2017.

[66] Xianghua Xu, Yanna Yan, and Jian Wan. Grey prediction control of adaptive resources al-
location in virtualized computing system. In 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing, pages 109–114. IEEE, 2009.

[67] Dorian Minarolli and Bernd Freisleben. Distributed resource allocation to virtual machines
via artificial neural networks. In 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 490–499. IEEE, 2014.

[68] Lei Wei, Chuan Heng Foh, Bingsheng He, and Jianfei Cai. Towards efficient resource allocation
for heterogeneous workloads in iaas clouds. IEEE Transactions on Cloud Computing, 6(1):264–
275, 2015.

[69] Hongyi Ma, Liqiang Wang, Byung Chul Tak, Long Wang, and Chunqiang Tang. Auto-tuning
performance of mpi parallel programs using resource management in container-based virtual
cloud. In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), pages 545–
552. IEEE, 2016.

[70] Fan-Hsun Tseng, Xiaofei Wang, Li-Der Chou, Han-Chieh Chao, and Victor CM Leung. Dy-
namic resource prediction and allocation for cloud data center using the multiobjective genetic
algorithm. IEEE Systems Journal, 12(2):1688–1699, 2017.

[71] Hanxiong Chen, Xiong Fu, Zhongrui Tang, and Xinxin Zhu. Resource monitoring and prediction
in cloud computing environments. In 2015 3rd International Conference on Applied Comput-
ing and Information Technology/2nd International Conference on Computational Science and
Intelligence, pages 288–292. IEEE, 2015.

[72] Domingo Morales, Francisco Almeida, F Garcıa, Jose L Roda, and C Rodrıguez. Design of
parallel algorithms for the single resource allocation problem. European Journal of Operational
Research, 126(1):166–174, 2000.

[73] Salah E Elmaghraby. Resource allocation via dynamic programming in activity networks. Eu-
ropean Journal of Operational Research, 64(2):199–215, 1993.

[74] Warren B Powell, Joel A Shapiro, and Hugo P Simão. An adaptive dynamic programming
algorithm for the heterogeneous resource allocation problem. Transportation Science, 36(2):231–
249, 2002.

[75] Eric V Denardo. Dynamic programming: models and applications. Courier Corporation, 2012.

lxxi

[76] Daniel González, Francisco Almeida, L Moreno, and C Rodrıguez. Towards the automatic
optimal mapping of pipeline algorithms. Parallel Computing, 29(2):241–254, 2003.

[77] Janmartin Jahn, Santiago Pagani, Sebastian Kobbe, Jian-Jia Chen, and Jörg Henkel. Runtime
resource allocation for software pipelines. ACM Transactions on Parallel Computing (TOPC),
2(1):1–23, 2015.

[78] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of com-
putational physics, 117(1):1–19, 1995.

[79] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pages
483–485, 1967.

[80] Andrew Garmon and Danny Perez. Exploiting model uncertainty to improve the scalability of
long-time simulations using parallel trajectory splicing. Modelling and Simulation in Materials
Science and Engineering, 28(6):065015, 2020.

[81] Mouad Ramil. Private communication.

[82] Michael N Katehakis and Arthur F Veinott Jr. The multi-armed bandit problem: decomposition
and computation. Mathematics of Operations Research, 12(2):262–268, 1987.

[83] Eugene F Fama and Kenneth R French. The capital asset pricing model: Theory and evidence.
Journal of economic perspectives, 18(3):25–46, 2004.

[84] John F Nash Jr. The bargaining problem. Econometrica: Journal of the econometric society,
pages 155–162, 1950.

[85] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028, 2014.

[86] Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz. A finite-time analysis of multi-
armed bandits problems with kullback-leibler divergences. In Proceedings of the 24th annual
Conference On Learning Theory, pages 497–514, 2011.

[87] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6(1):4–22, 1985.

[88] Gilbert W Bassett Jr. The st. petersburg paradox and bounded utility. History of Political
Economy, 19(4):517–523, 1987.

[89] Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for markov decision
processes. Mathematics of Operations Research, 22(1):222–255, 1997.

[90] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society: Series B (Methodological), 41(2):148–164, 1979.

[91] C Ronchi, M Sheindlin, D Staicu, and M Kinoshita. Effect of burn-up on the thermal conduc-
tivity of uranium dioxide up to 100.000 mwd t- 1. Journal of Nuclear Materials, 327(1):58–76,
2004.

[92] PG Lucuta, IJ Hastings, et al. A pragmatic approach to modelling thermal conductivity of
irradiated uo2 fuel: review and recommendations. Journal of nuclear materials, 232(2-3):166–
180, 1996.

lxxii

[93] MWD Cooper, SC Middleburgh, and RW Grimes. Swelling due to the partition of soluble fission
products between the grey phase and uranium dioxide. Progress in Nuclear Energy, 72:33–37,
2014.

[94] SC Middleburgh, RW Grimes, KH Desai, PR Blair, L Hallstadius, K Backman, and P Van Uffe-
len. Swelling due to fission products and additives dissolved within the uranium dioxide lattice.
Journal of nuclear materials, 427(1-3):359–363, 2012.

[95] Heiko Kleykamp. The chemical state of the fission products in oxide fuels. Journal of Nuclear
Materials, 131(2-3):221–246, 1985.

[96] DA Andersson, P Garcia, X-Y Liu, G Pastore, M Tonks, P Millett, B Dorado, DR Gaston,
D Andrs, RL Williamson, et al. Atomistic modeling of intrinsic and radiation-enhanced fission
gas (xe) diffusion in uo2±x: Implications for nuclear fuel performance modeling. Journal of
Nuclear Materials, 451(1-3):225–242, 2014.

[97] Charles Richard Arthur Catlow. Fission gas diffusion in uranium dioxide. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 364(1719):473–497, 1978.

[98] JA Turnbull, CA Friskney, JR Findlay, FA Johnson, and AJ Walter. The diffusion coefficients
of gaseous and volatile species during the irradiation of uranium dioxide. Journal of Nuclear
Materials, 107(2-3):168–184, 1982.

lxxiii

	Accelerated Molecular Dynamics for the Exascale
	Recommended Citation

	Title Page
	Abstract
	List of Figures
	Glossary
	Introduction
	Improving the statistical Model
	Introduction
	ParSplice Review
	Methods
	Results
	Conclusion

	Improving the scheduling procedure
	Introduction
	Previous work
	Methods
	Application
	Conclusion

	Decision theoretic approach to optimal scheduling
	Potential applications & future work
	Bibliography

