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ABSTRACT 

 

A PRICKLY PUZZLE:   

PHYLOGENY AND EVOLUTION OF THE CARDUUS-CIRSIUM GROUP (CARDUEAE: 

COMPOSITAE), AND UNTANGLING THE TAXONOMY OF CIRSIUM IN NORTH 

AMERICA 

 

Generic delimitations within the cosmopolitan Carduus-Cirsium group (i.e., “thistles”) 

have a long history of taxonomic confusion and debate. We present the most comprehensive 

molecular phylogeny of the group to date to test generic limits, reconstruct the evolution of 

pappus type, and elucidate the role of chromosomal evolution. We offer two solutions for the 

recognition of monophyletic genera: (1) consolidate all taxa into one large genus (Carduus or 

Cirsium), or (2) recognize each major clade as a genus (Carduus, Cirsium, Eriolepis, Notobasis, 

Picnomon, Silybum, and Tyrimnus). Under the second proposal, the cryptic genus Eriolepis is 

segregated from Cirsium, and the African Carduus are included within Cirsium. The best 

diagnosable morphological character to delimit the genera is pollen type, which is not practical 

in field-based application. We caution that prior to implementing either solution, a thorough, 

comprehensive morphological analysis of all current members of Cirsium sect. Epitrachys (= 

genus Eriolepis) be completed. Future morphological studies may find additional achene or leaf 

surface characters that could be used for practical field identification of the segregate genera. 

The data show that the plumose pappus state is symplesiomorphic for the group, with one 

transition to barbellate pappus, likely followed by a reversal to its ancestral state as the group 

colonized Eurasia. The data are consistent with a North African origin in the region of the 
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Mediterranean and a single colonization event to North America. An ancestral chromosome state 

of n = 17 is hypothesized for the group, and a descending dysploidy series in Carduus is 

hypothesized to correspond with the aridification of the Mediterranean region. The Carduus-

Cirsium group highlights the difficulty of delimiting morphologically similar, cryptic genera. 

Cirsium is one of the most taxonomically challenging groups of Compositae in North 

America. This study represents the first attempt to infer a broadly sampled phylogeny of Cirsium 

in North America. The two main objectives are to: (1) test whether currently hypothesized 

species variety complexes (C. arizonicum, C. clavatum, C. eatonii, and C. scariosum) constitute 

monophyletic lineages, and (2) recircumscribe any taxa that are identified as problematic. 

Phylogeny reconstructions based on DNA sequence data from two nuclear ribosomal regions and 

four plastid markers were used to infer evolutionary lineages and test species’ delimitations. 

Eight species varietal complexes were resolved as polyphyletic. We recircumscribed these 

complexes and in doing so found evidence to support the recognition of six new taxa. We 

hypothesize that the extensive taxonomic difficulty within Cirsium is the result of several 

factors: 1) previously undescribed taxa, 2) inadequate representation of taxa from herbarium 

specimens, 3) phenotypic convergence, 4) hybridization, and 5) incipient speciation. While we 

can provide evidence to support the recircumscription of some taxa, others remain unresolved.  
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PREFACE 
 

 

 

I have long been fascinated by our native thistles. So much so, that when I began my 

Master’s studies in 1998, I was asked by my advisor, Dr. Jun Wen, which group I would like to 

study. I emphatically replied “thistles!” to which she adamantly replied “no!”. Although she was 

right to reject this idea at the time, I never gave up wanting to study this fascinating, yet prickly, 

group. Thus, when I returned to graduate school for my PhD in 2015, I immediately thought of 

finally studying the taxonomy and evolution of the native thistles. In particular, I was never 

satisfied with the treatment of the alpine thistles in Colorado and the southern Rocky Mountains. 

You may wonder, why the long gap between completing a Master’s and beginning a PhD? Well, 

life had other plans for me in between my studies. I was married, had twins, and even underwent 

treatment for breast cancer during those years. But, I never gave up on my pursuit of a PhD.   

In 2018, I serendipitously met Smithsonian Institute Senior Curator of Compositae, Dr. 

Vicki Funk. She was out for a workgroup at the USGS Powell Center, and asked Dr. Mark 

Simmons if he knew anyone that was familiar with the local flora, and if he knew of anyone 

studying Cirsium. Well, that person turned out to be me! Once we met, I knew immediately that I 

must ask Vicki to be on my graduate committee. Her wealth of knowledge on Compositae as 

well as her infectious enthusiasm and never-ending support were invaluable to this project. Vicki 

also introduced me to several other Compositae researchers, including Dr. Alfonso Susanna and 

Dr. David Keil, whom I worked closely with on these chapters. Vicki supported me financially 

too, even offering her own apartment for me to stay in during my visits to Washington, D.C. to 

do lab work. In 2019, I received a Smithsonian Institution Predoctoral Fellowship and lived in 

Washington, D.C. for four months. This was an amazing, educational experience for me and one 
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that I’ll never forget. Unfortunately, Vicki passed away before my PhD was officially completed. 

I would not have been able to complete this project without her. I honor her legacy by continuing 

to study Compositae and mentor the next generation of botanists. 

This thesis is comprised of three chapters: 1) generic delimitations in the Carduus-Cirsium 

group, 2) the taxonomy of Cirsium in North America, and 3) conclusions and next steps. The 

first chapter is a broad overview of the Carduus-Cirsium group. This work uncovers evidence for 

the resurrection of a cryptic genus, Eriolepis, long disguised as Cirsium.  The second chapter 

focuses on untangling the taxonomy of Cirsium in North America. Thistles are one of the most 

taxonomically difficult genera in North America. I conclude that this is due to: 1) convergence, 

2) previously undescribed species, 3) hybridization, 4) inadequate representation of taxa from 

herbarium specimens, and 5) incipient speciation. The final chapter wraps up the first two 

chapters as well as discusses next steps in sorting out thistle taxonomy.  

While I was the primary researcher and writer for each chapter, several coauthors also 

contributed: David J. Keil, Wendy C. Hodgson, Shannon D. Fehlberg, Alfonso Susanna, Dean J. 

Kelch, Daniel S. Park, Mark P. Simmons, Vicki A. Funk, Andrew H. Thornhill, Bayram Yildiz, 

Turan Arabaci, and Tuncay Dirmenci. Specific author contributions are as follows. For Chapter 

One, I conceived and designed the project. Fieldwork was conducted by myself, DSP, DK, BY, 

TA, TD, and VAF. VAF provided additional funding. DK, and BY, TA, and TD provided 

sequence data for specimens from Turkey and Europe. I performed lab work for all North 

American taxa as well as data alignment, phylogenetic inferences, and character state 

reconstruction analyses. I produced all figures with input from AS, DSP, and VAF. AHT 

performed the divergence time analysis. The manuscript was written by myself with 

contributions from AS, DSP, DK, MPS, VAF, and AHT.  
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For Chapter Two, I conceived and designed the project. Fieldwork was conducted by 

myself, DJK, WCH, and VAF. VAF provided additional funding. SDF provided sequence data 

for specimens extracted at Desert Botanical Garden. I performed lab work for all remaining 

North American taxa as well as data alignment, phylogenetic inferences, and morphological 

analyses. MPS assisted with phylogenetic inferences. I produced all figures. The manuscript was 

written by myself with contributions from DJK, MPS, WCH, and SDF. 

The work presented here represents the most comprehensive study for the evolution of 

the Carduus-Cirsium group worldwide and for Cirsium in North America to date. The resulting 

taxonomic clarity will aid in the production of dichotomous keys for Cirsium in North America. 

However, the challenges are many for thistle taxonomy in North America. Although I was able 

to provide evidence to support some taxonomic delimitations, others remain unanswered. In fact, 

each discussion section for Cirsium in North America could be another Master’s or even PhD 

project. I will pass these projects on to my future graduate students and mentees. In short, the 

thistles turned out to be a life project for me, and I am ok with that. Thistle be fixed, eventually! 
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CHAPTER ONE –  

A PRICKLY PUZZLE: GENERIC DELIMITATIONS IN THE CARDUUS-CIRSIUM GROUP 

(COMPOSITAE: CARDUEAE: CARDUINAE)1 

 

 

 

And yet it must be allowed that this very case of the Thistles is one which has given to the […] 

genus-makers one of the most difficult of problems—a problem actually no nearer its successful 

solution […] than it was two centuries ago as Tournefort [1694] left it. — Greene (1892a: 202) 

Introduction 

Cardueae is one of the largest tribes in Compositae (nom. alt.: Asteraceae), with 

approximately 74 genera and 2500 species. Members are commonly referred to as “thistles” 

because of the presence of spines on their leaves and/or involucral bracts (Funk et al., 2005; 

Susanna & Garcia-Jacas, 2007, 2009). Some members of Cardueae are cultivated (e.g., 

artichoke, Cynara cardunculus L., or safflower, Carthamus tinctorius L.), while others are 

noxious weeds (e.g., Canada thistle, Cirsium arvense (L.) Scop., or yellow star thistle, Centaurea 

solstitialis L.). Within Cardueae, the informally recognized Carduus-Cirsium group (Fig. 1.1) is 

comprised of six genera and approximately 566 species: Carduus L. (~93), Cirsium Mill. (~468), 

Notobasis (Cass.) Cass. (1), Picnomon Adans. (1), Silybum Adans. (i.e., milk thistle; 2), and 

Tyrimnus Cass. (1; retrieved 1 May 2017 from the Integrated Taxonomic Information System 

online database, http://www.itis.gov). The complex belongs to the subtribe Carduinae, which is 

currently limited to the Carduus-Cirsium group plus the genera Cynara L., Galactites Moench, 

Lamyropsis M.Dittrich, and Ptilostemon Cass. (Herrando-Moraira et al., 2019). 

 

1 Published as: Ackerfield, J., Susanna, A., Funk, V., Kelch, D., Park, D.S., Thornhill, A.H., Yildiz, B., Arabaci, T. 

and Dirmenci, T., 2020. A prickly puzzle: Generic delimitations in the Carduus‐Cirsium group (Compositae: 

Cardueae: Carduinae). Taxon 69(4), 715-738. 
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Figure 1.1. Capitula in the Carduus-Cirsium group. A, Carduus nutans L.; B, Cirsium canescens 

Nutt.; C, Notobasis syriaca Cass.; D, Picnomon acarna (L.) Cass.; E, Silybum marianum (L.) 

Gaertn.; F, Tyrimnus leucographus Cass. –– Photos A & B by Jennifer Ackerfield, C by Uriah 

Resheff, D by Hugues Tinguy, E by Nora Bales, and F by Stavros Apostolou. 

 

The Carduus-Cirsium group is monophyletic and united by several synapomorphies, including 

cylindrical basal pappus tissue and a sclerified apical pericarp epidermis (Häffner, 2000; Susanna 

& Garcia-Jacas, 2009). The majority of previous work has been completed within Cardueae to 

recognize only natural, monophyletic genera (Garcia-Jacas & al., 2000, 2002, 2008; Vilatersana 

et al., 2000; Wagenitz & Hellwig, 2000; Susanna et al., 2006; López-Vinyallonga & 

al., 2011; Barres et al., 2013; Herrando-Moraira et al., 2019), leaving the delineations within the 

Carduus-Cirsium group remaining as problematic. Indeed, a “successful solution” to the thistle 

problem, as Greene (1892a) so eloquently stated, is long overdue. 



3 

 

Taxonomic history 

There is a long history of taxonomic controversy regarding generic delimitations in the 

Carduus-Cirsium group, particularly for the genus Cirsium. Since its inception, Cirsium has been 

recognized by various authors as at least 16 different genera (Table 1.1). The name Cirsium was 

Table 1.1 Generic delimitations of the Carduus-Cirsium group in early treatments. 

 Carduus L. Cirsium Mill. 

Notobasis 

(Cass.) Cass. 

Picnomon 

Adans. 

Silybum 

Adans. Tyrimnus Cass. 

Type Carduus 
nutans L. 

Carduus heterophyllus L. Carduus 
syriacus L. 

Carduus 
acarna L. 

Carduus 
marianus L. 

Carduus  
leucographus L. 

Tournefort 

(1694) 

Carduus Cirsium Carduus Cnicus Carduus Cirsium 

Linnaeus 

(1753) 

Carduus 
 

Carduus 
Serratula L. 

Carduus  Carduus  Cnicus 
Carduus  

Carduus  

Miller (1754) Carduus Cirsium Carduus Carduus Carduus Carduus 

Adanson 

(1763) 

Carduus Cirsium Carduus Picnomon  Silybum Silybum 

Necker (1790) Carduus “Cephalonoplos Neck.” 

(not validly published) 

Cnicus L. 

Onotrophe Cass. 

Serratula 
Xylanthema Neck. 

Not listed Not listed Not listed Not listed 

Sweet (1825) Carduus Erythrolaena Sweet Not listed Not listed Not listed Not listed 

Cassini (1826) Carduus Cirsium 
Echenais Cass. 

Eriolepis Cass. 
Lophiolepis (Cass.) Cass. 

Onotrophe Cass. 

Orthocentron (Cass.) 

Cass. 

Notobasis Picnomon Silybum Tyrimnus 

Candolle & 

Duby (1828) 

Carduus Cirsium Carduus Cirsium Silybum Carduus 

Lessing (1832) Carduus Cirsium 
Breea Less. 

Spanioptilon Less. 

Notobasis Picnomon Silybum Tyrimnus 

Candolle 

(1837) 

Carduus 
Clavena DC. 

Cirsium Notobasis Picnomon Silybum Tyrimnus 

Koch (1851) Carduus Cirsium 
Echenais 
Epitrachys (DC. ex Duby) 

K.Koch 

Notobasis Picnomon Silybum Not listed 
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Fourreau 

(1869) 

Carduus Cirsium 
Cephalonoplos (Neck. ex 

DC.) Fourr. 

Eriolepis 

Not listed Picnomon Silybum Tyrimnus 

Gray (1874) Not listed Cnicus Not listed Not listed Not listed Not listed 

Greene (1892b) Carduus Carduus Not listed Not listed Not listed Not listed 

 

adopted by Andreas of Carystus as early as 230 B.C. (Dioscorides, 1554) and subsequently used 

by botanists in the pre-Linnean period (Mattioli & Du Pinet, 1572; Tournefort, 1694) to describe 

thistles traditionally used to treat diseases of the veins. In fact, Cirsium, from the Greek “kirsos”, 

means “swollen veins” and was referred to as “hemorrhoidal thistle” because the coloration and 

swelling of the stem resembled varicose veins or hemorrhoids (Cassini, 1826). Although 

Tournefort (1694) also recognized the genus Carduus, Linnaeus (1753) chose to use Carduus 

and Serratula L. to treat those species formerly called Cirsium. A year later, Miller (1754) 

validly published Cirsium but also accepted Carduus as “the true thistle”. However, in Miller’s 

1768 edition, he adopted Linnaeus’s view and merged Cirsium with Carduus. 

In his Familles des plantes, Adanson (1763) recognized four genera: Carduus, Cirsium, 

Picnomon, and Silybum. Adanson was also the first to provide morphological evidence for the 

separation of Cirsium (plumose pappus) from Carduus (barbellate pappus). Cassini (1818, 1823, 

1825a,b, 1826) was the first to delimit the genera of the group as they are currently 

circumscribed, but also described five additional genera (Echenais Cass., Eriolepis Cass., 

Lophiolepis (Cass.) Cass., Onotrophe Cass., Orthocentron (Cass.) Cass.) as distinct from 

Cirsium. Cassini first described Lophiolepis and Orthocentron as subgenera, elevating them to 

generic level in his later treatment (Cassini, 1826). Concurrently with Cassini, Sweet (1825) 

described a new genus, Erythrolaena Sweet, for a thistle from Mexico (Erythrolaena conspicua 

Sweet, now recognized as Cirsium conspicuum (Sweet) Sch.Bip.). Later, Lessing (1832), in his 
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influential treatise of Compositae (Synopsis generum Compositarum), also recognized the genera 

Breea Less. and Spanioptilon Less. apart from Cirsium. To add further confusion, subsequent 

treatments by some early North American botanists (Gray, 1874; Jones, 1895) incorrectly treated 

all thistles as Cnicus L. Other North American botanists (Greene, 1892b; Rydberg, 1900) 

recognized only the genus Carduus, regarding it as inseparable from Cirsium. 

Candolle provided the first sectional treatment for Cirsium (Candolle & Duby, 1828). In 

his Botanicon gallicum, Candolle recognized four sections: C. sect. Acarna DC. (including 

Picnomon), C. sect. Chamaeleon DC. (including Notobasis), C. sect. Erysithales DC., and 

C. sect. Epitrachys DC. ex Duby. In his second revision of the group, Candolle (1837) 

recognized the genera Picnomon and Notobasis per Cassini (Cassini, 1826). In this revision, 

Candolle (1837) also took the genera that Cassini had distinguished as distinct from Cirsium and 

subsumed these as sections of the genus: C. sect. Eriolepis (Cass.) DC., C. sect. Lophiolepis 

(Cass.) DC., C. sect. Onotrophe (Cass.) DC., and C. sect. Orthocentron (Cass.) DC. Candolle 

(1837) synonymized his earlier section Epitrachys under section Eriolepis to correspond to 

Cassini’s generic delimitations. Candolle (1837) also named two additional sections (C. sect. 

Cephalonoplos (Neck.) DC., C. sect. Corynotrichum DC.), and retained the genus Echenais. In 

addition, Candolle (1837) recognized some species of Carduus with thicker hair on the 

involucral bracts as a separate genus, Clavena DC. 

Most current treatments (Davis & Parris, 1975; Werner, 1976) recognize three sections in 

Cirsium: C. sect. Cephalonoplos, C. sect. Epitrachys, and C. sect. Cirsium. Section 

Cephalonoplos is comprised of a single species, C. arvense (L.) Scop. (i.e., Canada thistle) and is 

characterized by the presence of dioecious, although sometimes imperfectly so, heads (Werner, 

1976). Originally described by Linnaeus (1753) as Serratula arvensis L., the species was 
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removed from the genus upon separation of the type, S. tinctoria L. (Linnaeus’s “Serratula no. 

1”), and placed in Cirsium by Scopoli (1772). Occasionally, C. sect. Cephalonoplos is 

recognized at the generic rank as Breea (Lessing, 1832) or Cephalonoplos (Neck. ex DC.) Fourr. 

(Necker, 1790; Fourreau, 1869). Cassini (Cassini, 1826) placed Cirsium arvense in the genus 

Cirsium, despite previously providing a description of the dioecious heads (Cassini, 1823). 

Cirsium section Epitrachys is comprised of approximately 100 species, including 

C. cephalotes Boiss., C. italicum DC., and C. vulgare (Savi) Ten. This section is characterized 

by the presence of rigid setae (i.e., “hispid hairs”) on the adaxial leaf surface (Davis & Parris, 

1975). Included within C. sect. Epitrachys are all species previously assigned to the genera 

Lophiolepis and Eriolepis by Cassini (Cassini, 1823, 1826). All remaining thistles belong to 

section Cirsium. Kazmi (1963) provided the most recent sectional treatment for Carduus and 

subdivided the genus into two subgenera, subg. Carduus and subg. Afrocarduus Kazmi. 

Subgenus Afrocarduus contains all species found in the mountains of tropical eastern Africa, 

whereas subgenus Carduus contains all Eurasian species (Kazmi, 1963). 

Morphology  

Members of the Carduus-Cirsium group share numerous morphological affinities 

(Table 1.2). Pappus type (barbellate or plumose) is the primary character used to subdivide the 

group. Barbellate bristles are present in Carduus, Silybum, and Tyrimnus, whereas feathery, 

plumose bristles are present in Cirsium, Notobasis, and Picnomon (Werner, 1976). Carduus and 

Cirsium are usually separated by this single morphological character (Bentham, 1873; Kazmi, 

1963; Keil, 2006). One unique character is seen in Picnomon, having the terminal spine of 

involucral bracts pinnately divided as well as deflexed (Werner, 1976). Silybum has involucral 

bracts with terminal spines that are pinnately lobed at the base but not pinnately divided  
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Table 1.2. Morphological characteristics of the Carduus-Cirsium group. 

 Carduus Cirsium Notobasis Picnomon Silybum Tyrimnus 

Cauline leaves Decurrent Sessile, 

amplexicaul, or 

decurrent 

Amplexicaul Decurrent Amplexicaul Decurrent 

White-veined 

leaves 

Absent Absent Present Absent Present Present 

Involucral bract 

apex 

Entire spine Entire spine; 

sometimes 

margins erose 

Entire spine Pinnately 

divided 

throughout, 

deflexed spine 

Pinnately lobed 

at base 

Entire 

spine 

Dorsal corolla 

lobe epidermal 

cells 

Undulate 

(straight in subg. 

Afrocarduus 

Kazmi) 

Straight Straight Straight Undulate  Undulate  

Anther basal 

appendages 

Short-sagittate Short-sagittate Short-sagittate Entire Short-sagittate Entire 

Filaments Distinct Distinct Distinct Distinct Monadelphous Monadelp

hous 

Pappus Barbellate Plumose Plumose Plumose Barbellate Barbellate 

Achene pericarp 10–15 

longitudinal 

grooves (4 lines 

in subg. 

Afrocarduus) 

4 longitudinal 

lines 

4 longitudinal 

lines 

4 longitudinal 

lines 

4 longitudinal 

lines 

4 

longitudin

al lines 

Achene apical 

elaiosome 

Present Present Absent Present Present Present 

 

throughout or deflexed (Werner, 1976). All other members have an undivided or sometimes 

erose terminal spine at the apex of the involucral bracts. 

Features of the achenes and pollen provide a few unique character combinations 

(Table 1.2). Most notably, Notobasis is the only member with achenes lacking an apical 

elaiosome (a yellowish-white tissue body on the apical plate of the achene which is visible only 

after the pappus has fallen; Dittrich, 1970). The pericarp surface also differs among the genera 

(Dittrich, 1970; Häffner, 2000). In Cirsium, Notobasis, Picnomon, Silybum, and Tyrimnus, the 

pericarp surface is smooth with four vertical lines that are lighter in color but neither raised nor 

sunken. Carduus achenes are subdivided into two groups. Members of Carduus subg. Carduus 
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have vertical vessels that consist of 10–15 longitudinal grooves sunken into the pericarp, while 

members of Carduus subg. Afrocarduus have four vertical lines as in Cirsium. Members of 

Carduus subg. Afrocarduus share other morphological similarities to Cirsium including a 

persistent achene pericarp that does not disintegrate at maturity, straight versus undulate cell 

walls in the outer epidermis of the corolla lobes, and shortly pilose versus densely pilose 

filaments (Häffner, 2000). 

Pollen morphology has proven to be a useful source of taxonomic evidence in 

Compositae (Skvarla et al., 1977; Romaschenko et al., 2004; López-Vinyallonga et al., 2011). 

Punt & Hoen (2009) found that pollen of Cirsium sect. Cirsium (sexine one layer of short, simple 

columellae), Cirsium sect. Epitrachys (sexine one layer of stout columellae; echinae partially 

filled with columellae), and Carduus (Carduus subg. Carduus; sexine one layer of stout 

columellae; echinae completely filled with columellae) were unique. Furthermore, they noted 

that the pollen of Cirsium sect. Epitrachys more closely resembled the pollen of Carduus than 

Cirsium sect. Cirsium. Although Cirsium vulgare was placed in Cirsium sect. Epitrachys (Davis 

& Parris, 1975) based on the presence of rigid setae on the adaxial leaf surface, Punt & Hoen 

(2009) noted that the pollen of this species fell into the type for Cirsium sect. Cirsium. 

Carduus, Cirsium, Silybum, and Tyrimnus otherwise overlap morphologically. For 

example, Carduus are often distinguished from Cirsium by the presence of leaves decurrent as 

spiny wings on the stem, but some Cirsium (e.g., C. italicum DC., C. vulgare (Savi) Ten.) as well 

as Tyrimnus also share this character (Werner, 1976; Keil, 2006). As first noted by Cassini, both 

Tyrimnus and Silybum have filaments coherent at the margins (i.e., monadelphous), but Tyrimnus 

has peripheral sterile florets in the capitula (Cassini, 1826). Silybum has traditionally been 

separated from the other genera by the presence of white-veined leaves that produce a milky sap 
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(Werner, 1976). However, Tyrimnus and Notobasis also have white-veined leaves (Susanna & 

Garcia-Jacas, 2007). Tyrimnus and Silybum also share another feature in common with Eurasian 

Carduus—the presence of undulate versus straight cells in the walls of the dorsal corolla lobe 

epidermis (Häffner, 2000). Lastly, Picnomon and Tyrimnus both have entire anther basal 

appendages, while all other genera have short-sagittate basal appendages. 

Chromosomes  

Changes in chromosome number can play a major role in evolution (Levin, 2002; Doyle 

et al., 2004). While polyploidy events (e.g., whole-genome duplication) result in the doubling of 

chromosome sets, dysploidy events result in a reduction of chromosome number through 

chromosomal rearrangements or the loss or gain of a centromere (Lysak, 2014). Both polyploidy 

and dysploidy can have phenotypic consequences, increase reproductive isolation, and thus drive 

diversification and ultimately speciation (Husband, 2004; Yakimowski & Rieseberg, 2014; 

Winterfeld et al., 2018). 

Dysploidy is common in Compositae (Semple & Watanabe, 2009). It has been 

hypothesized that a haploid number of n = 17 (2n = 34) is the ancestral chromosome number for 

the Carduus-Cirsium group (Keil, 2006). However, this number may have arisen via dysploid 

reduction from n = 18. Within the group there are relatively few instances of polyploidy (2n = 4x 

= 68). However, there are several instances of descending dysploidy in North American Cirsium 

from n = 17 (2n = 34) to n = 16 (2n = 32) and in Eurasian Carduus from n = 11 (2n = 22) to n = 

8 (2n = 16). Reconstructing the ancestral chromosome state in the group may not provide an 

accurate number given the loss and subsequent doubling of chromosomes in ancestral species. 

Therefore, our main goals regarding chromosomal evolution are to: (1) map the changes in 

chromosome number along the branches of our phylogeny and (2) determine if dysploidy or 
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polyploidy events occurred primarily at speciation events (i.e., cladogenetic) or within lineages 

(i.e., anagenetic). 

Biogeography  

The Carduus-Cirsium group is primarily distributed in the Northern Hemisphere, with a 

few species found in the Southern Hemisphere in the mountains of tropical eastern Africa 

(Susanna & Garcia-Jacas, 2009). The largest genus, Cirsium, is found throughout Europe, 

western Asia, and eastern Asia, and is the only genus with species native to North America 

(Werner, 1976; Keil, 2006; Shi & Greuter, 2011). Carduus is also native to Eurasia and northern 

Africa, and it is the only genus with species native to the mountains of tropical eastern Africa 

(Kazmi, 1963; Jeffrey, 1968). Notobasis, Picnomon, Silybum, and Tyrimnus are primarily found 

in the Mediterranean region and northern Africa (Susanna & Garcia-Jacas, 2007). Within the two 

largest genera, Cirsium and Carduus, there are many narrowly endemic species, while relatively 

few are naturally widely distributed, despite their notoriety of comprising highly invasive taxa. 

Previous studies (Kelch & Baldwin, 2003; Barres et al., 2013) hypothesized a single 

migration of Cirsium to North America during the Pliocene, but the sister clade to New World 

Cirsium remained unresolved. Barres et al. (2013) also hypothesized that a sister group from 

Middle Asia dispersed into North America via migration across the Bering Land Bridge. 

Inferring the sister clade to North American Cirsium will aid in determining the direction of 

dispersal from Eurasia. A more comprehensive sampling will also determine if Cirsium 

dispersed to North America once as hypothesized by Kelch & Baldwin (2003), or multiple times. 

Aims  

A systematic revision of the Carduus-Cirsium group to clarify generic boundaries is long 

overdue. Preliminary research has shown conflicting results for delimiting Cirsium and Carduus 
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as monophyletic genera (Häffner & Hellwig, 1999; Kelch & Baldwin, 2003; Susanna et al., 

2006; Barres et al., 2013; Park & Potter, 2013, 2015). However, sample sizes were relatively 

small in these studies. This study represents the first attempt to reconstruct a broadly sampled 

phylogeny of the Carduus-Cirsium group to test for natural segregate genera as well as infer 

morphological evolution and migration patterns.  

The four main objectives are to: (1) delimit monophyletic genera and provide unique 

character combinations, (2) reconstruct the evolution of pappus type and assess its taxonomic 

significance, (3) elucidate the role of chromosomal evolution in thistle diversification, and (4) 

infer the dispersal route(s) to North America. 

Materials and Methods 

Sampling and outgroup selection  

A total of 173 accessions were used in phylogenetic inferences, including all genera of 

the subtribe Carduinae sensu Herrando-Moraira et al. (2019) (Appendix 1). Of these accessions, 

60 were previously published on GenBank (https://www.ncbi.nlm.nih.gov/genbank/) by Garcia-

Jacas et al. (2002), Kelch & Baldwin (2003), Robba et al. (2005), Hidalgo et al. (2006), Susanna 

et al. (2006), Wang et al. (2007), Soininen et al. (2009), Gao et al. (2010), Pelser et al. (2010), 

Barres et al. (2013), Park & Potter (2013), Galimberti et al. (2014), and Aust et al. (2015) 

(Appendix 1). Due to the taxonomic complexity of the genera and high degree of 

misidentifications in herbaria, taxa on GenBank that could not be verified with voucher 

specimens were excluded from this analysis. Accessions from Kelch & Baldwin (2003) were not 

included in this analysis, with the exception of two Carduus taxa (C. nutans L., C. tenuiflorus 

Curtis) and seven Cirsium taxa (C. discolor (Muhl. ex Willd.) Spreng., C. hydrophilum (Greene) 

Jeps., C. monspessulanum Hill., C. palustre (L.) Scop., C. quercetorum (A.Gray) Jeps., 
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C. rhothophilum S.F.Blake, C. spinosissimum (L.) Scop.), which could not be resampled and had 

verifiable identifications. Remaining accessions were obtained from herbarium specimens or 

fresh material collected in the field (see Appendix 1). 

Accessions were included in the analysis if they met the following criteria of having 

either two transcribed spacer regions of the nuclear ribosomal (ETS, ITS), or one nuclear 

ribosomal DNA region and two additional plastid markers. The exception to this was the 

inclusion of nine Carduus GenBank taxa for which only the ITS region was available. Inclusion 

of these nine taxa did not alter the tree topology. All accessions included in the analysis had the 

ITS region amplified. Nomenclature for North American taxa follows the treatment in Flora of 

North America (Keil, 2006). 

Outgroups were selected using the Cardueae phylogeny in Herrando-Moraira et al. 

(2018). Outgroups consisted of taxa from all genera sister to the Carduus-Cirsium group (Cynara 

cardunculus L., Galactites tomentosa Moench, Lamyropsis carpini Greuter, Ptilostemon afer 

Greuter), and two species from the sister subtribe Onopordinae (Onopordum tauricum Willd., 

Syreitschikovia spinulosa Pavlov). Six additional outgroups were used in the dating analysis: 

Carlina acanthifolia All. (subfam. Carduoideae, tribe Cardueae), Brachylaena discolor DC. 

(subfam. Carduoideae, tribe Tarchonantheae), Gerbera piloselloides Forssk. (subfam. 

Mutisioideae), Fulcaldea stuessyi Roque & V.A.Funk (subfam. Barnadesioideae), Chuquiraga 

avellanedae Lorentz (subfam. Barnedesioideae), and Nastanthus patagonicus Speg. 

(Calyceraceae). 

DNA extraction, amplification, and sequencing  

DNA extractions were performed using DNeasy Plant MiniKits (Qiagen, Germantown, 

Maryland, U.S.A.) following the manufacturer’s instructions. PCR products were generated for 
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two transcribed spacer regions of the nuclear ribosomal DNA (ITS, ETS) because of their known 

usefulness in Compositae studies (Baldwin, 1992), and four plastid markers (matK, ndhF, psbA-

trnH, trnL-trnF; Table 1.3). DNA extractions of 50 thistle taxa from Europe and Asia were only  

Table 1.3. Gene regions and primers used in amplification. 

Gene region Primer sequences Reference 

Approximate  

size (bp) 

ITS ITS4: TCC TCC GCT TAT TGA TAT GC 

ITS5A: GGA AGG AGA AGT CGT AAC AAG G 

ITS5_C3: GGA AGT AAA AGT CGT AAC AAG C 

White & al. (1990) 

Downie & Katz-Downie 

(1996) 

643 

ETS 18S-ETS: ACT TAC ACA TGC ATG GCT TAA 

ETS-Car-1: TTC GTA TCG TTC GGT 

Kelch & Baldwin (2003) 583 

matK trnK-710F: GTA TCG CAC TAT GT[T/A] TCA TTT GA 

AST-1R: CCG CAC ACT TGA AC[G/C] ATA ACC CAG 

Susanna & al. (2006) 980 

ndhF ndhF+607: ACC AAG TTC AAT GYT AGC GAG ATT AGT C 

ndhF1603: CCT YAT GAA TCG GAC AAT ACT ATG C 

Jansen (1992) 636 

psbA-trnH psbA3f: GTT ATG CAT GAA CGT AAT GCT C 

psbAHf: CGC GCA TGG TGG ATT CAC ATT CC 

Sang & al. (1997) 524 

trnL-trnF trnLC: CGA AAT CGG TAG ACG CTA CG 

trnLF: ATT TGA ACT GGT GAC ACG AG 

Taberlet & al. (1991) 736 

 

amplified for ETS and ITS. The sequencing of these 50 taxa was performed prior to that of the 

other 62 taxa by D. Kelch, B. Yildiz, T. Dirmenci, and T. Arabaci in 2008. I could not perform 

amplification of the cpDNA markers in these samples because of the age of the extracted DNA 

and inability to re-extract from the deposited specimens. The protocol for extraction and 

amplification for these samples was the same as for the 62 additional samples, with the exception 

of being performed at the Berkeley, California laboratory facility. Although ribosomal DNA is 

known to be affected by concerted evolution, there is a documented low occurrence of paralogs 

within Cardueae (Herrando-Moraira et al., 2019). Therefore, I did not perform cloning to 

confirm that a single repeat type was present. 

PCR reactions were performed with 25 µl of reaction containing 10.5 µl of sterile water, 

5 µl of 10× PCR reaction Buffer A (Promega, Madison, Wisconsin, U.S.A.), 2 µl of 10 mM 
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dNTPs (Pharmacia Biotech, Piscataway, New Jersey, U.S.A.), 2.5 µl of 50 mM MgCl2, 0.5 µl of 

10 mg/ml Bovine Serum Albumin (Sigma, St. Louis, Missouri, U.S.A.), 1 µl of 10 mM of each 

of the two primers, 0.1 µl Taq DNA polymerase enzyme (Bioline, Taunton, Massachusetts, 

U.S.A.), and 2.5 µl of DNA template. The amount of DNA template was adjusted to generate 

sufficient PCR products for DNA sequencing when necessary. Amplification was performed on 

a Bio-Rad thermal cycler c1000 (Bio-Rad, Hercules, California, U.S.A.). The PCR program 

consisted of an initial preheating at 95°C for 3 min; followed by 37 cycles of (94°C, 45 s; 54°C, 

45 s; 72°C, 2 min), with a final 72°C, 7 min elongation step and holding at 10°C. ExoSAP-IT 

(Affymetrix, Cleveland, Ohio, U.S.A.) was used to purify PCR products for sequencing. The 

enzymatic removal of primers and excess dNTPs involved mixing 10 µl of the PCR product with 

1 µl of ExoSAP-IT, incubating the mixture at 37°C for 30 min, and then raising the temperature 

to 80°C for 15 min to denature the ExoSAP-IT enzymes. Unincorporated dye terminators were 

removed using Sephadex gel filtration (GE Healthcare, Piscataway, New Jersey, U.S.A.) using 

MultiScreen plates (Millipore, Billerica, Massachusetts, U.S.A.). Cycle sequencing was 

performed using BigDye v.3.1 (Applied Biosystems, Foster City, California, U.S.A.) at the 

Smithsonian Institution on a Hitachi 3730xl DNA Analyzer (Applied Biosystems). Sequence 

reads of each PCR product were assembled and edited in Geneious (v.5.6.3). 

Phylogenetic analyses  

All nucleotide sequences were aligned independently using MAFFT v.7 (Katoh et al., 

2017). The iterative refinement method of Q-INS-i, which considers the secondary structure 

information of rDNA, was used for alignments of ETS and ITS. The G-INS-I algorithm was used 

for the plastid gene regions. The default gap opening penalty (1.53) was applied, and the gap 

offset value was set to 0.1 for all alignments. All nucleotide sequences were further aligned 
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manually in AliView v.3.0 (Larsson, 2014) using the procedure outlined in Simmons (2004) 

following Zurawski & Clegg (1987). Gaps were treated as missing data. 

Characters were analyzed using several alternative potential process partitions as a means 

of data exploration (Bull et al., 1993). Each of the six gene regions was analyzed independently 

to resolve their respective gene trees. Gene trees for the two nrDNA regions and the four plastid 

loci were analyzed independently to examine incongruence and evidence of potential 

introgression or lineage sorting (Doyle, 1992; Wendel et al., 1995). Regions were compared 

visually for topological heterogeneity among regions, using a 75% bootstrap cut-off value. 

Topological incongruence was not expected for the plastid regions because they are all part of 

the uniparentally inherited chloroplast genome (Gastony & Yatskievych, 1992). 

Best-fit likelihood models for each partition were selected using the Bayesian 

information criterion in the PartitionFinder (Lanfear et al., 2012) algorithm as implemented in 

IQ-TREE v.1.6.10 (option -m MFP+MERGE; Nguyen et al., 2015). This option also merges 

partitions to reduce potential model overfitting and allows concurrent searches of model space 

and tree space (Kalyaanamoorthy et al., 2017). The merge option resulted in a final partition of 

three character sets and corresponding models: ETS (TVM+F+G4), ITS (TIM3e+R3), and 

plastid (matK, ndhF, psbA-trnH, trnL-trnF; TVM+F+R2). A relaxed clustering algorithm was 

used to reduce computations by only examining the top 10% of the partitioning schemes (option 

-rcluster 10). 

Maximum likelihood (ML) analyses (Felsenstein, 1973) were performed in IQ-TREE 

v.1.6.10 (Nguyen et al., 2015) using the best partition scheme and substitution models identified 

and described above. For concatenation-based species tree inference, IQ-TREE has been shown 

to be comparable to or outperform other maximum likelihood programs (i.e., RAxML/ExaML) 
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and yield the best-observed likelihoods for matrices with 200 or less taxa (Zhou et al., 2017). In 

addition, the relatively fast computational time and ease of use allows for a thorough exploration 

of tree space in IQ-TREE. Branch lengths were linked across loci (IQ-TREE edge-proportional 

model, option -spp) to allow each partition to have its own evolution rate but share the same set 

of branch lengths (Duchene et al., 2018). Node support was determined by nonparametric 

bootstrapping using IQ-TREE’s ultrafast bootstrap approximation (option -bb; Hoang et al., 

2017) with 5000 pseudoreplicates. I also inferred the SH-like aLRT support values for each 

node. Following Simmons & Norton (2014), any clades receiving a high likelihood-based 

bootstrap support but 0% SH-like aLRT support were collapsed. 

Bayesian inference (BI) analyses (Yang & Rannala, 1997) were implemented in MrBayes 

(Huelsenbeck & Ronquist, 2001) via the Cyber Infrastructure for Phylogenetic Research online 

portal (CIPRES; http://www.phylo.org/). BI was performed using the best-fit partitioning scheme 

recommended by PartitionFinder (Lanfear et al., 2012). The “greedy” algorithm with branch 

lengths estimated as linked and the BIC were used to search for the best-fit partitioning scheme. 

This resulted in the the following partitioning scheme: GTR (General time reversible) 

substitution model (nst=6) with gamma-distributed rate variation across sites and a proportion of 

invariable sites (=invgamma) for the ETS, ITS ndhF, psbA-trnH, and trnL-trnF partitions, and 

the F81 substitution model (nst=1) for the matK partition. The concatenated dataset was 

subsequently subjected to Markov Chain Monte Carlo (MCMC) sampling using two replicates of 

four chains (one cold, three hot). Fifty million generations total were completed with a sampling 

frequency of every 1000 generations. Tracer v.1.5 (Rambaut & Drummond, 2013) was used to 

visualize and analyze the MCMC trace files using a 25% burn-in value. All tree topologies were 

viewed in FigTree v.1.4.3 (Rambaut, 2016).  
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Character state and biogeographic area reconstruction  

A character matrix was assembled based on the data matrix provided in Table 1.2. All 

characters scored were treated as discrete and unordered, with equal probability for any 

particular character change. Mesquite v.2.7.5.2011 (Maddison & Maddison, 2015) was used to 

map characters onto the ML phylogeny. The Markov k-state 1 (Mk1) parameter model of 

evolution was used for the ML reconstructions. For the biogeographic area reconstruction, 

branches and internodes of the ML phylogeny were colored according to their distribution per 

Funk et al. (2009). I also included one additional area of Asia Minor (highlighted in blue). 

Chromosomal evolution  

Chromosome count data was obtained from the Index to plant chromosome numbers 

(Goldblatt & Johnson, 1991) and Chromosome Counts Database (CCDB; Rice et al., 2015). 

Chromosome counts were recorded for a total of 137 taxa, representing 82% of the taxa in our 

phylogeny (Appendix 1). Chromosome reconstruction was performed under the ChromEvol 

v.2.0 model (Glick & Mayrose, 2014) as implemented and expanded in RevBayes v.1.0.2 

(Höhna et al., 2016; Freyman & Höhna, 2017) only on taxa with verified chromosome counts. In 

ChromEvol, the chromosomal evolution along a phylogeny is represented as a continuous-time 

Markov process (Mayrose et al., 2010). Root frequencies were treated as free parameters of the 

model and estimated from the observed data. A stochastic character map was used to visualize 

the evolution of chromosomes along the branches of the phylogeny. The R package phytools 

v.0.7-47 (Revell, 2012) was used to visualize the output from RevBayes. 

Divergence time analysis  

Divergence times were estimated using BEAST v.2.4.5 (Drummond & Rambaut, 2007; 

Bouckaert et al., 2014). Three calibration points (CP) were set up for a BEAST run using 
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BEAUti v.2.4.5 (Drummond & Rambaut, 2007). Calibration point one (CP1) was a secondary 

dated node corresponding to the origin of the Compositae family (83.5 Myr with a 95% CI) per 

Mandel et al. (2019). The two other calibration points were based on fossil records. CP2 was set 

to 47.5 Myr to constrain the node of clade Mutisioideae and subfamily Carduoideae, based on 

the macrofossil capitulescence of Raiguenrayun cura Barreda et al. (Barreda et al., 2012). CP3 

was set to 14 Myr based on achenes identified as Cirsium (Mai, 2001) and placed at the stem 

node of the Carduus-Cirsium group clade. The BEAST analysis was run for 40 million 

generations under a Yule relaxed-clock model with individual tree models applied to the nuclear 

and plastid subsets. Trees were logged every 1000 generations. The maximum clade credibility 

tree was summarized using TreeAnnotator v.2.1.2 (Rambaut & Drummond, 2014) using a 20% 

burn-in of logged trees. 

Results 

Phylogenetic analysis  

The phylogeny of the combined dataset, with node support for both the maximum 

likelihood (ML) and Bayesian inference (BI) is shown in Fig. 1.2A, B. Gene trees for the ETS, 

ITS, and each plastid region are shown in supplementary Fig. 1–6. Of the 407 parsimony-

informative sites found in the combined analysis, 349 (86%) were found in the rapidly evolving 

ETS and ITS regions (Table 1.4). 

There was no significant (BS ≥ 75 and PP ≥ 0.75) incongruence between the nuclear and 

plastid gene trees (Suppl. Fig. 1–6). This is either the result of a lack of parsimony-informative 

characters in the plastid regions, or missing sequence data for the four plastid markers. One 

weakly supported incongruence was found between the ITS and three plastid gene trees (matK, 

ndhF, trnL-trnF) for the position of the African Carduus (C. keniensis R.E.Fr., 
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Figure 1.2A, B. Maximum likelihood phylogenetic reconstruction for the Carduus-Cirsium 

group and outgroups, and distribution map. 

 

Figure 1.2B 

1.2A 
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Figure 1.2A, B. Maximum likelihood phylogenetic reconstruction for the Carduus-Cirsium 

group and outgroups, and distribution map. Circles above nodes represent ML bootstrap support 

(BS) and those below nodes represent Bayesian inference posterior probability (PP); values are: 

black circles ≥95% (BS)/0.95 (PP); grey circles ≥85% (BS)/0.85 (PP); white circles ≥75% 
(BS)/0.75 (PP). Branches shortened for fit are indicated on the phylogeny by two diagonal lines. 

Phylogeny branch colors correspond to the distribution map geographic ranges. 

 

 

Figure 1.2A 

1.2B 
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Table 1.4. Statistics for each phylogenetic analysis. 

 ETS ITS matK ndhF psbA-trnH trnL-trnF Plastid Nuclear Combined 

Accessions 137 167 83 62 77 108 111 167 167 

Characters 583 644 964 636 525 735 2860 1227 4087 

Missing data (%)       17% 8% 25% 

Parsimony-informative 

sites 

147 202 12 11 19 16 58 349 407 

Invariable sites 319 341 897 611 488 695 2691 660 3351 

 

C. nyassanus (S.Moore) R.E.Fr.). In the ITS gene tree, the African Carduus are sister to the 

remainder of the Carduus-Cirsium group (BS = 99, PP = 0.72; Suppl. Fig. 2). However, the 

African Carduus are strongly supported as included within the Carduus-Cirsium group polytomy 

in the matK (BS = 99, PP = 1.0; Suppl. Fig. 3), ndhF (BS = 93, PP = 1.0; Suppl. Fig. 4), and 

trnL-trnF gene trees (BS = 91, PP = 1.0; Suppl. Fig. 6). 

The Carduus-Cirsium group  

The Carduus-Cirsium group is resolved as monophyletic with good support (Fig. 1.2A; 

BS = 100, PP = 1.00). Within the group, a division into two main clades (hereafter referred to as 

Clade One and Clade Two) is found. Both Carduus and Cirsium as they are currently delimited 

are resolved as polyphyletic. 

Clade One  

The first main clade (BS = 98, PP = 0.83) consists of taxa currently assigned to 

Notobasis, Picnomon, and Cirsium (Fig. 1.2A). The monotypic genera Notobasis and Picnomon 

are resolved as consecutive sisters to a clade of Eurasian Cirsium belonging to Cirsium sect. 

Epitrachys (BS = 75; PP = 0.75), with the exception of C. cephalotes and C. vulgare which are 

resolved in Clade Two. 



22 

 

Clade Two  

The second main clade (BS = 98, PP = 1.00) consists of taxa currently assigned to 

Silybum, Tyrimnus, Carduus, and Cirsium (Fig. 1.2A, B). Silybum is resolved as sister to all 

other taxa in Clade Two (BS = 100, PP = 1.00). Clade Two is then subdivided into two 

subclades. Subclade one consists of Tyrimnus and Eurasian Carduus (BS = 99, PP = 0.98). 

Within subclade one, Tyrimnus is resolved as sister to Eurasian Carduus (BS = 100, PP = 1.00). 

Subclade two consists of African Carduus, Eurasian Cirsium (including C. vulgare and 

C. cephalotes from Cirsium sect. Epitrachys), and all North American Cirsium (BS = 75). At the 

backbone of subclade two, the Eurasian Cirsium and African Carduus are unresolved and only 

weakly supported in the ML phylogeny. African Carduus are nested within Cirsium in our 

Bayesian analysis (Fig. 1.3A, B). Also, in subclade two, Cirsium sect. Cephalonoplos is nested 

within Cirsium sect. Cirsium. Although not previously assigned to a section, there are three 

southeastern Asian Cirsium taxa included in our sampling (C. botryodes Petr., C. interpositum 

Petr., C. lidjiangense Petr. & Hand.-Mazz.) also reported to have rigid setae on the adaxial leaf 

surface that I am including in Cirsium sect. Epitrachys (Shi & Greuter, 2011). These taxa are 

resolved in our phylogeny as belonging to Clade Two, along with C. cephalotes and C. vulgare. 

A well-supported clade (BS = 99, PP = 1.00) of taxa exclusive to North America is resolved in 

subclade two. 

Divergence time analysis  

The divergence time estimates resolved the stem age of the Carduus-Cirsium group as 20.2 Myr 

old (Fig. 1.4). Using the generic delimitations in Solution Two (see discussion below), the 

divergences that established Notobasis, Picnomon, Cirsium sect. Epitrachys, Silybum, Tyrimnus,  

Carduus, and Cirsium are estimated to have occurred approximately 16 Myr ago (12.7–19.5 Myr  
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Figure 1.3A, B. Chromosomal evolution inferred by ChromEvol for the Carduus-Cirsium group. 

Phylogenetic tree based on a BI analysis using RevBayes. Stochastic character mapping as 

applied to chromosome number evolution is shown on each branch. Tree branches are colored 

according to the legend to show the hypothesized ancestral chromosome state and evolution to 

the current chromosome state for each taxon. Branches shortened for fit are indicated on the 

phylogeny by two diagonal lines.  
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95% CI). Clade One (Notobasis, Picnomon, Cirsium sect. Epitrachys) is estimated to have 

diverged 14.3 Myr (10.5–17.8 95% CI) at approximately the same time as Clade Two (Silybum, 

Tyrimnus, Carduus, Cirsium; 14.1 Myr; 11.0–17.6 95% CI). The Cirsium sect. Epitrachys 

lineage split from Picnomon approximately 11.9 Myr ago (8.3–15.3 95% CI) and diversified 

within the last 10.6 Myr (7.5–13.9 95% CI). 

 

 

1.3B 

Figure 1.3A 
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Figure 1.4. Time-calibrated phylogeny of the Carduus-Cirsium group within Compositae. 

Median age is shown at each node. Purple bars on nodes indicate the 95% confidence intervals 

(CI). Black circles on nodes represent the calibration points (CP) used in the dating analysis. In 

the scale axis, “P” and “Q” correspond to Pliocene and Quaternary, respectively. 

 

Subclade one (Carduus, Tyrimnus) and subclade two (Cirsium) diverged approximately 

12.6 Myr (7.3–20.0 95% CI). Within subclade one, Carduus diverged from Tyrimnus 

approximately 9.8 Myr (7.2–13.2 95% CI). Within subclade two, Eurasian and African Cirsium 

diverged from Cirsium arvense and North American Cirsium approximately 11.8 Myr (9.0–14.7 

95% CI). Cirsium arvense and North American Cirsium diverged approximately 9.9 Myr (5.2–

16.8 95% CI). The divergence that established North American Cirsium is estimated to have 

occurred 7.3 Myr (5.0–9.9 95% CI). 
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Discussion 

Generic delimitations  

Both Carduus and Cirsium as they are currently circumscribed are polyphyletic. No 

support was found for the recognition of four smaller genera—Cephalonoplos, Echenais, 

Erythrolaena, and Spanioptilon (Table 1.1). Cirsium arvense is nested within the Eurasian 

Cirsium (Clade Two, subclade two), providing no support for the recognition of Cephalonoplos. 

Although occasionally treated as a distinct genus (Koch, 1851), I found no support for the 

recognition of Echenais as the representative taxon (Cirsium echinus Hand.-Mazz.), is nested in 

the Eurasian Cirsium clade (Clade Two, subclade two). No support was also found for the 

recognition of Erythrolaena (Sweet, 1825) as the only member of the genus (Cirsium 

conspicuum) is nested within the North American Cirsium clade (Clade Two, subclade two). 

Last, the only member of Spanioptilon (S. lineare (Thunb.) Less; Cirsium lineare (Thunb.) 

Sch.Bip.) is nested within the Cirsium sect. Epitrachys clade (Clade One). I propose two 

alternative solutions for the delimitation of natural, monophyletic genera. 

Solution One  

The first solution is to combine all genera into a single genus. A current lack of unique 

character combinations to delimit among Eurasian Carduus, African Carduus, Cirsium, Silybum, 

and Tyrimnus supports this combination. It may be argued that the inclusion of 566 taxa into a 

single genus may result in a cumbersome approach. This solution also presents an interesting 

dilemma. The International Code of Nomenclature for algae, fungi, and plants’ rule of priority 

would dictate that all Cirsium, Notobasis, Picnomon, Silybum, and Tyrimnus should be subsumed 

into Carduus which was proposed in 1753, one year prior to the formal designation of Cirsium 

(Turland et al., 2018). In addition, Carduus is the type for the tribe Cardueae. However, Cirsium 



27 

 

holds significant cultural and broader public appeal. Cirsium is the symbolic flower of 

Scotland—images of thistles appear on Scotland’s coat of arms, and the order of the thistle is a 

prestigious ranking. Additionally, within North America and Asia, all Carduus are invasive 

species, while only three non-native Cirsium (C. arvense, C. palustre (L.) Scop., C. vulgare) 

occur in North America (Keil, 2006) and Asia (Shi & Greuter, 2011), and assigning all Cirsium 

to Carduus would only result in reinforcing prevailing misconceptions that all thistles are 

invasive, noxious weeds. Lastly, preserving Cirsium would result in significantly fewer 

taxonomic changes. However, a previous attempt (Briquet, 1905) to conserve Cirsium (Miller, 

1754) over Carduus (Linnaeus, 1753) failed. 

Solution Two  

An alternative solution is to recognize each major clade of the phylogeny as a genus. This 

would result in the recognition of seven genera: Carduus, Cirsium, Eriolepis, Notobasis, 

Picnomon, Silybum, and Tyrimnus (Fig. 1.5). Under this scenario, Cassini’s (1826) genus 

Eriolepis would be reinstated. Although Cassini described the conspecific Lophiolepis first 

(Cassini, 1823), he originally treated it at the subgeneric level (Cirsium subg. Lophiolepis Cass.). 

Cassini (1826) later granted Lophiolepis generic rank, but had already named Eriolepis at the 

generic level (Cassini, 1825a), thus giving priority to Eriolepis for subsequent generic 

delimitations. Koch (1851) considered the rigid setae a distinct enough character to recognize 

members of Cirsium sect. Epitrachys at the generic rank. Unfortunately, Koch incorrectly used 

Candolle’s sectional name Epitrachys instead of Cassini’s previously described Eriolepis for the 

generic name, thus making any species assignments to the genus Epitrachys (DC. ex Duby) 

K.Koch superfluous and therefore illegitimate. 
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Figure 1.5. Maximum likelihood phylogenetic reconstruction for generic delimitations of 

Solution Two. Achene photographs taken by Jennifer Ackerfield at the Smithsonian Institution, 

Washington, D.C., except for that of Tyrimnus which was taken by Alfonso Susanna. Pappus 

cylinder type is from Petit (1997). Photographs of the involucral bract apices were taken by 

Jennifer Ackerfield. 

 

There is some preliminary morphological support for this solution (Table 1.5; Fig. 1.5). 

First, Notobasis is the only genus in which the achenes lack an apical elaiosome. Second, 

Picnomon is the only genus in which the involucral bracts exhibit a pinnately divided terminal 
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spine. Third, after separating out the African Carduus taxa, Carduus is the only genus in which 

the achenes exhibit 10–15 longitudinal grooves (versus 4 longitudinal lines in all other genera). 

Fourth, Silybum and Tyrimnus both have monadelphous stamens, but Tyrimnus differs in having 

peripheral sterile florets in the capitula and achenes with a deep apical crown.  

However, the placement of Cirsium cephalotes, C. vulgare, and the three discordant 

Asian species (C. botryodes, C. interpositum, C. lidjiangense) in our phylogeny is problematic 

for the recognition of Eriolepis from Cirsium. Although C. cephalotes and C. vulgare have been 

traditionally placed in Cirsium sect. Epitrachys, in our phylogeny they are nested in Cirsium 

sect. Cirsium. Historically, the rigid setae used to delimit Cirsium sect. Epitrachys have been 

described under a variety of terms including “coarsely hispid hairs”, “scabrous-hispid hairs”, 

“setose-spinulose hairs”, and “prickly-hairy” by various authors (Keil, 2006). This warranted 

further anatomical studies to determine if these “rigid setae” were indeed homologous among 

C. vulgare and other members of Cirsium sect. Epitrachys. A previous examination of the 

cleared leaves of C. vulgare determined that the “rigid setae” were not epidermal outgrowths, but 

true spines with an enlarged base emerging from the veinlets within the leaf tissues (Keil, 2006). 

I analyzed leaves of C. vulgare and C. eriophorum, and noted that the true spines of C. vulgare 

could be distinguished from the rigid setae of Eriolepis by their stouter form and  

enlarged base. Although the true spines and rigid setae (i.e., “hispid hairs”) are superficially 

similar, they are in fact not homologous. This character must currently be used with caution, and 

sampled across a larger number of taxa prior to its utilization. 

Two additional characters can be used to discern Eriolepis from Cirsium, although these 

characters are difficult to observe and not practical in application. First, according to Punt & 

Hoen (2009), there are three main pollen types in the Carduus-Cirsium group: Carduus 
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Table 1.5. Main diagnostics characters of the genera proposed for Solution Two. 

 Carduus Cirsiuma Eriolepisb Notobasis Picnomon Silybum Tyrimnus 

Achene apical 

elaiosome 

Present Present Present Absent Present Present Present 

Achene 

pericarp 

10–15 

longitudinal 

grooves  

4 longitudinal 

lines 

4 longitudinal 

lines 

4 longitudinal 

lines 

4 longitudinal 

lines 

4 

longitudinal 

lines 

4 

longitudi

nal lines 

Achene 

terminal 

crown  

Shallow Shallow to 

moderate 

Shallow to 

moderate 

Absent Shallow Shallow Deep 

Involucral 

bract apex 

Entire spine Entire spine; 

sometimes 

margins erose 

Entire spine Entire spine Pinnately 

divided 

throughout, 

deflexed spine 

Pinnately 

lobed at base 

Entire 

spine 

Filaments Distinct Distinct Distinct Distinct Distinct Monadelpho

us 

Monadel

phous 

Outer disk 

florets 

Perfect Perfect or 

sterile 

Perfect Perfect Perfect Perfect Sterile 

Dorsal corolla 

lobe epidermal 

cells 

Undulate Straight Straight Straight Straight Undulate Undulate 

Adaxial leaf 

surface 

No rigid setae No rigid setae; 

true spines 

Rigid setae No rigid setae No rigid setae No rigid 

setae 

No rigid 

setae 

Pappus 

cylinder 

Not fimbriate Not fimbriate Fimbriate Fimbriate Not fimbriate Fimbriate Fimbriate 

Pollen type Carduus 

crispus  

Cirsium 

palustre  

Cirsium 
eriophorum  

Unknown Unknown Unknown Unknown 

a – including Carduus subg. Afrocarduus 

b – formerly Cirsium sect. Epitrachys 

 

crispus L. pollen type, Cirsium eriophorum Scop. pollen type, and Cirsium palustre (L.) Scop. 

pollen type. These types correspond exactly to the clades in our analysis: Carduus crispus type is 

limited to European Carduus, Cirsium eriophorum type is circumscribed to Cirsium sect. 

Epitrachys (i.e., Eriolepis), and Cirsium palustre type is limited to Cirsium sect. Cirsium. 

Indeed, the pollen type of C. vulgare was found to correspond to the C. sect. Cirsium type and 

not the C. sect. Epitrachys type. Additionally, Petit (1997) found that the pappus cylinder was 

fimbriate in C. sect. Epitrachys but not in C. sect. Cirsium (Fig. 1.5). Examination of a fresh 



31 

 

C. vulgare pappus cylinder found that it was smooth, fitting the C. sect. Cirsium type. The 

pappus cylinder of C. eriophorum (in C. sect. Epitrachys) had fimbriate hairs, but these were 

difficult to see. Each of these three characters must be used with caution as they have not been 

sampled widely across the two proposed genera. 

This solution leaves all African Carduus, and Eurasian and North American Cirsium to 

be designated as Cirsium. Although contained within Cirsium in this solution, the African 

Carduus are only weakly supported for inclusion. Morphologically, the African Carduus are 

intermediate between the Eurasian Carduus and Cirsium, lending support for their inclusion 

within Cirsium (Table 1.2). However, the position of the African taxa is not well-resolved in our 

concatenated phylogeny (Fig. 1.2A). The discordance between the ITS gene tree and plastid gene 

trees indicates a history of incomplete lineage sorting and/or introgression. A future 

phylogenomic study of the group will provide additional informative characters to resolve the 

position of the African taxa. This study may even provide support for recognition of the African 

taxa as a distinct genus (“Afrocarduus”). 

There are several advantages to this solution. First, this circumscription results in smaller, 

more manageable genera instead of one large, rather unwieldy genus. Second, it retains the 

generic name Cirsium for all North American and Asian taxa. Lastly, this solution would result 

in significantly fewer nomenclatural changes. However, I strongly suggest that prior to accepting 

Solution Two for generic delimitations, a thorough morphological analysis of all species with 

“rigid setae” be performed. 

Ancestral character states  

The maximum likelihood reconstruction of the ancestral pappus character state suggests 

that having a plumose pappus is the symplesiomorphic state for the Carduus-Cirsium group 
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(Fig. 1.6). The barbellate pappus type was derived once in the lineage (Clade Two: Silybum and 

subclade one), followed by a reversal back to this ancestral state (Clade Two: subclade two). The 

pappus type is thus not phylogenetically informative and cannot be used solely to distinguish 

Cirsium or Carduus species. The presence of imperfectly dioecious heads represents an 

apomorphy that has arisen once within the Cirsium arvense lineage. 

 

Figure 1.6. Maximum likelihood phylogeny with pappus type ancestral state reconstruction in the 

Carduus-Cirsium group. 

 

Chromosomal evolution  

An ancestral chromosome state of n = 17 is hypothesized for the Carduus-Cirsium group, 

although I acknowledge that this may have arisen through dysploidy reduction (Fig. 1.3A, B). 

Polyploidy events occur within lineages, and are found on a few terminal branches of our 

phylogeny. I conclude that these events are therefore not associated with increases in 

diversification. Alternatively, dysploidy events occur primarily at speciation events, and I 
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therefore surmise that these events correspond to increases in diversification. Descending 

dysploidy is common throughout the evolutionary history of Compositae (Mota et al., 2016). 

Most notably, the Eurasian Carduus clade has undergone a dramatic dysploidy reduction from n 

= 11 to n = 8. 

I hypothesize that the chromosomal reduction corresponds to the aridification of the 

Mediterranean. Dysploidy may allow for rapid radiation in novel environments (Burt, 2000) and 

is common in the Mediterranean flora (Vilatersana et al., 2000). The drying of the Mediterranean 

has been accompanied by rapid diversification mediated by dysploidy in other lineages, 

including many Compositae (Garnatje et al., 2004; Fiz-Palacios & Valcárcel, 2013; Escudero et 

al., 2018). Dysploidy may promote speciation by facilitating the accumulation of locally adaptive 

alleles via suppression of chromosomal recombination (Kirkpatrick & Barton, 2006; De Storme 

& Mason, 2014). 

In North American Cirsium, there is one series of descending dysploidy from n = 15 to n 

= 10 and one series of descending dysploidy from n = 15 to n = 9 (Fig. 1.3A, B). Most notable, 

the clade of C. altissimum (L.) Spreng., C. carolinianum (Walter) Fernald & B.G.Schub., 

C. engelmannii Rydb., C. flodmanii (Rydb.) Arthur, and C. texanum Buckley has a dysploid 

series of n = 12 to n = 9. However, in contrast to Mediterranean Carduus, the dysploid series in 

North America do not follow occupation of arid environments. Cirsium altissimum and 

C. flodmanii are often found in damp soil, while the other species in the clade are found in 

grasslands or prairie (Keil, 2006). 

Biogeographic implications  

Our phylogenetic data shows strong biogeographic structure with a pattern of dispersal 

events followed by subsequent localized radiations (Fig. 1.2A, B). Our results support a 
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hypothesis of the Mediterranean region of North Africa as the center of origin for the Carduus-

Cirsium group during the mid-Miocene. The large number of outgroups as well as the current 

distribution of the extant genera Notobasis and Picnomon in North Africa and the Mediterranean 

lends weight to this hypothesis. From North Africa, subsequent dispersal events occurred to Asia 

Minor, the Mediterranean region of southern Europe, tropical eastern Africa, Eurasia, and 

ultimately North America. 

Dispersal in Compositae is most often associated with the pappus, which allows for 

effective wind dispersal (Sheldon & Burrows, 1973). However, in Cirsium, the pappus detaches 

from mature seeds as a single unit (Susanna & Garcia-Jacas, 2009), and thus wind dispersal may 

be limited, especially if the achenes are heavy. Secondary dispersal by ants is also found in 

Cirsium, which are attracted to the apical elaiosome (Weiss, 1908; Pemberton & Irving, 1990; 

Alba-Lynn & Henk, 2010). Dispersal can also be achieved through hydrochory in some thistles 

(Craddock & Huenneke, 1997), making water-dispersal a third possible means of dispersal. 

I offer two hypotheses for dispersal of Cirsium to North America. First, the ancestor of the 

Carduus-Cirsium group dispersed from North Africa to Asia Minor, probably via stepping-

stones on the Tethyan coast (Barres et al., 2013) either by wind or ant dispersal. From here, the 

Mediterranean Basin was colonized multiple times. From the Mediterranean Basin, ancestors of 

the group simultaneously colonized Eurasia and eastern Africa, becoming isolated in the tropical 

mountains during aridification of the continent (Fig. 1.2B). Finally, a single dispersal event from 

Eurasia to North America occurred (Fig. 1.2B), supporting the original hypothesis of Kelch & 

Baldwin (2003). This migration event most likely occurred over the Bering Land Bridge, which 

was a corridor for dispersal until the Pliocene (5.3–2.5 Myr; Gladenkov et al., 2002). Our 

analysis dates the dispersal of Cirsium into North America during the Miocene (Fig. 1.4; 7.3 
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Myr), which agrees with the timing of the Bering Land Bridge as a corridor of dispersal. A 

previous study of Plectocephalus, one of only three Cardueae genera native to North America, 

also found strong evidence for the Bering Land Bridge as a corridor of dispersal from the 

Mediterranean during the Miocene (Susanna et al., 2011). The majority of extant taxa in North 

America then diversified to the present extent during the Pleistocene. 

Alternatively, a long-distance dispersal from Africa to North America is a possibility, 

albeit an unlikely one. Long-distance dispersals from Africa to Australia have been observed in 

other plant groups (Bergh & Linder, 2009; Li et al., 2009), but these typically have origins in 

South Africa and not the mountainous regions of tropical eastern Africa. Although the seeds of 

some Cirsium can float and their dispersal has been noted to be mediated by water, the distance 

from Africa to North America is approximately 12,500 km and it is unlikely that seeds would 

have maintained buoyancy for the extended period of time it would have taken to reach North 

America. 

Within Clade One, the diversification of Carduus corresponds with the onset of the 

Mediterranean climate and Quaternary glacial cycles during the Messinian Salinity Crisis 

approximately 5.6–6.0 Myr ago (Barrón et al., 2010). Although the Carduus lineage split from 

Tyrimnus approximately 9.8 Myr ago (Fig. 1.4) the majority of the extant taxa diversified to the 

present day extent within the last 2–6 Myr (Suppl. Fig. 7). Within Clade Two, Cirsium dispersed 

into Africa in the Miocene approximately 7.75 Myr ago (Fig. 1.4; 4.6–11.1 95% CI), although 

present day taxa (Carduus keniensis and Carduus nyassanus in our phylogeny) only diversified 

to the present extent within the last 1.9 Myr. Colonization of Africa was probably more 

widespread during cooler periods, with species finding refugia in the mountainous regions of 

tropical eastern Africa during periods of aridization which may have led to extinction of some 
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lineages (Barres et al., 2013). Although one of the most widespread and economically 

devastating agricultural weeds in the world (Schroeder et al., 1993), Cirsium arvense diversified 

to the present extent only within the last 1.8 Myr (Fig. 1.4; 0.5–4.0 95% CI). Within the North 

American Cirsium clade, most taxa have diversified to the present extent within the last 3 Myr 

(Suppl. Fig. 7). While Clade One in our phylogeny is relatively well-resolved, Clade Two has 

poor backbone resolution. This could be the result of insufficient sampling of informative 

regions or indicate recent radiations within the group. 

Conclusions 

A “successful solution” for delimiting generic boundaries in the Carduus-Cirsium group 

is long overdue, but a stable taxonomy for the group at the generic level is only just beginning to 

emerge. This is the first study to widely sample from Carduus and Cirsium. I provide two 

solutions to segregate the Carduus-Cirsium group into natural, monophyletic genera. Although I 

show that both Carduus and Cirsium do not form monophyletic groups, a definitive generic 

delimitation solution remains elusive at this time. However, I do offer two alternative solutions 

that may be adopted once additional sampling of both morphological and phylogenetic 

informative characters is complete. 

Prior to adopting either of the solutions presented for delimiting generic boundaries, I 

suggest waiting for the results of an upcoming study in the Carduus-Cirsium group. The authors 

are currently working on a phylogenomic study using targeted enrichment of highly informative 

nuclear regions designed specifically for Compositae by Mandel et al. (2014, 2015, 2017). The 

high-throughput sequencing techniques provided through this method will significantly increase 

the informative characters available for phylogenetic inference. In addition, this method has been 

shown to be useful at all taxonomic levels within Compositae. This will aid in resolving the 
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topology (in particular at the backbone of Clade Two) and provide additional clade support for 

the placement of the African species. In addition, this upcoming study will allow us to infer a 

more complete biogeographic history. For the present, I must be satisfied that I am much nearer a 

“successful solution” in the case of the thistles. 
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CHAPTER TWO –  

THISTLE BE A MESS: UNTANGLING THE TAXONOMY OF CIRSIUM (CARDUEAE: 

COMPOSITAE) IN NORTH AMERICA1 

 

 

 

Introduction 

Cirsium Mill. (Compositae), otherwise known as the “thistles,” is a genus of herbaceous 

biennials or perennials that are widely distributed in the temperate regions of Eurasia (~370 taxa; 

Werner, 1976; Ackerfield et al., 2020), eastern tropical Africa (~10 taxa; Beentje, 2000; 

Ackerfield et al., 2020), and North America (~118 taxa; Keil, 2006). They are referred to as 

“thistles” because of the presence of spines on the leaves and/or involucral bracts. Within North 

America, Cirsium has undergone a continental wide radiation (Kelch & Baldwin, 2003; 

Ackerfield et al., 2020), with many narrowly distributed endemics and few widespread taxa 

(Keil, 2006). The greatest taxon richness of Cirsium occurs in the western half of North America, 

particularly in the Rocky Mountains, Great Basin, desert Southwest, California-Floristic 

Province (CA-FP), and Mexico. Only two species occur in both the Old World and North 

America. Cirsium kamtschaticum Ledeb. ex DC. is found in Japan, Siberia, and the Alaskan 

Aleutian Islands (Werner, 1976; Keil, 2006). Cirsium heterophyllum (L.) Hill is found in 

Greenland and Eurasia. However, neither of these species is native to the North American 

mainland. 

Canada thistle [C. arvense (L.) Scop.] is one of the worst agricultural weeds in the world 

(Guggisberg et al., 2012). Unfortunately, the prevalence and destructive nature of Canada thistle 

has led to widespread misconceptions that all thistles are invasive plants. For example, Iowa lists  
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1 Published as: Ackerfield, J.R., Keil, D.J., Hodgson, W.C., Simmons, M.P., Fehlberg, S.D. and Funk, V.A. 2020. 

Thistle be a mess: Untangling the taxonomy of Cirsium (Cardueae: Compositae) in North America. Journal of 
Systematics and Evolution. In Press. 

all Cirsium species as noxious weeds irrespective of whether or not they are native (Eckberg et 

al., 2017). However, thistles are sources of food for bumble bees, hawk moths, flies, beetles,  

butterflies, and even hummingbirds. Thistles also provide important nesting resources for cavity 

nesting bees, and their seeds are sources of food for songbirds and small mammals (Eckberg et 

al., 2017). Thirty-five taxa in North America are considered rare or of conservation concern 

(Keil, 2006). Six of these taxa are also listed as federally threatened or endangered under the 

U.S. Fish and Wildlife Service Endangered Species Act.  

Despite its abundance and importance, Cirsium remains one of the most taxonomically 

challenging groups of Compositae in North America, particularly in the western states 

(Cronquist, 1994; Keil, 2006). These taxonomic difficulties have been hypothesized to be the 

result of limited morphological differentiation, incipient speciation, and/or hybridization among 

taxa (Ownbey et al., 1975; Cronquist, 1994; Kelch & Baldwin, 2003; Keil, 2006). Early North 

American botanists such as Asa Gray (1863) acknowledged the taxonomic problems within the 

genus. But given the lack of available current evidence for species delimitations, Gray (1863: 69) 

concluded, “I could not pretend to name the thistles of the Rocky Mountains and am not 

disposed to add to the existing confusion.” Later botanists attempted to resolve these taxonomic 

issues but were similarly frustrated. Harold Harrington, author of the Manual of the Plants of 

Colorado (1954: 625) stated that “[Cirsium] is a variable and difficult genus with numerous 

intergradations in [Colorado].” Stanley Welsh (1982: 199), co-author of the Flora of Utah 

(Welsh et al., 2003) wrote that “The thistles of Utah have long constituted one of the most 

difficult problems in the plant taxonomy of the state.” Arthur Cronquist, author of the 

Intermountain Flora treatment for Cirsium (1994: 389) wrote “I am still not satisfied with my 
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treatment of Cirsium here, but it is the best I can do in the time available for the preparation of a 

flora.” Keil (2006: 96) in his treatment for the Flora of North America stated that “many 

problems remain to be worked out in North American Cirsium… the field is open and the 

challenges are many.” Most recently, Peter Lesica, author of the Manual of Montana Vascular 

Plants (2012: 512) stated that “Cirsium gets my vote for the most confusing genus in Montana.”  

Gray (1874) completed the first North American treatment for Cirsium, recognizing 28 

species and five varieties. However, Gray incorrectly treated all Cirsium as Cnicus L. Greene 

(1892) later rectified Gray’s (1874) use of the genus Cnicus and added 10 new species and three 

varieties to North American Cirsium. However, Greene transferred all North American species to 

the genus Carduus L., which he considered conspecific with Cirsium. In Petrak’s (1917) 

comprehensive treatment of the genus for North America, he recognized 77 species. A 

comprehensive regional treatment was completed by Rydberg (1917, 1922) for the Rocky 

Mountains and adjacent plains. In his later treatment, Rydberg (1922) recognized 58 native and 

one introduced species.  

With the advent of the Flora of North America series, an effort was made yet again to 

provide a comprehensive treatment of Cirsium for North America. In this treatment, Keil (2006) 

recognized 62 species and 56 varieties. Many formerly recognized species were broadly 

circumscribed and synonymized with or placed as varieties of a more widespread species. In 

particular, the C. arizonicum (A. Gray) Petrak, C. clavatum (M.E. Jones) Rydb., C. eatonii (A. 

Gray) B.L. Rob., and C. scariosum Nutt. varietal complexes (i.e., species divided into two or 

more infraspecific varieties) underwent significant taxonomic changes (Table 2.1).   
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Previous phylogenetic work on North American Cirsium has been limited. Kelch and 

Baldwin (2003) reconstructed the only molecular phylogeny of North American Cirsium using 

characters from the external transcribed spacer (ETS) and internal transcribed spacer (ITS)  

Table 2.1. Major taxonomic treatments of the C. arizonicum (A. Gray) Petr., C. clavatum (M.E. 

Jones) Rydb., C. eatonii (A. Gray) B.L. Rob., and C. scariosum Nutt. varietal complexes. 

 
Basionym and Author 
(Year of publication 

in parentheses) 

Petrak (1917)  
Systematische 

Űberscht der 
amerikanischen 

Arten der 

Gattung Cirsium 

Rydberg 

(1922)  

Flora of the 

Rocky 

Mountains 

and Adjacent 

Plains 

Cronquist 

(1994)  

Intermountain 

Flora 

Welsh et al. 

(2003)  

Utah Flora 

Keil (2006)  
Flora of North 

America  

Ackerfield et 

al. 

(This study) 

Cirsium arizonicum (A. Gray) Petr. 

Carduus pulchellus 

Greene ex Rydb. 

(1906) 

C. pulchellum 

(Greene ex 

Rydb.) Wooton 
& Standl. 

C. pulchellum  C. calcareum 

(M.E. Jones) 

Wooton & 
Standl. 

C. calcareum 

var. pulchellum 

(Greene ex 
Rydb.) S.L. 

Welsh 

C. arizonicum 

var. bipinnatum 

(Eastw.) D.J. 
Keil 

C. pulchellum 

Carduus truncatus 

Greene 

(1906) 

C. pulchellum     C. arizonicum 
var. bipinnatum  

C. pulchellum  

Cirsium “aleatorum” 

Barlow-Irick 

 

     C. arizonicum 

var. 
tenuisectum 

Cirsium arizonicum 

var. tenuisectum D.J. 

Keil 

(2004) 

    C. arizonicum 

var. 
tenuisectum  

C. arizonicum 

var. 
tenuisectum 

Cirsium chellyense 

R.J. Moore & 

Frankton 

(1974) 

    C. arizonicum 
var. chellyense 

(R.J. Moore & 

Frankton) D.J. 
Keil 

C. chellyense  

Cirsium chuskaense 

R.J. Moore & 

Frankton 

(1974) 

    C. arizonicum 

var. chellyense  
C. chellyense  

Cirsium navajoense 

R.J. Moore & 

Frankton 

(1974) 

    C. arizonicum 

var. chellyense  
C. chellyense  

Cirsium “surrepticum” 

Barlow-Irick 

     Unresolved 

Cnicus arizonicus A. 

Gray 

(1874) 

C. arizonicum  C. arizonicum  C. arizonicum  C. arizonicum  C. arizonicum 
var. arizonicum 

C. arizonicum 
var. arizonicum 

Cnicus bipinnatus 

Eastw. 
(1898) 

C. pulchellum 

var. bipinnatum 
(Eastw.) Petr. 

C. bipinnatum 

(Eastw.) Rydb. 
C. calcareum  C. calcareum 

var. bipinnatum 
(Eastw.) S.L. 

Welsh 

C. arizonicum 

var. bipinnatum  
C. calcareum  

Cnicus calcareus M.E. 

Jones 

(1895)  

C. calcareum   C. calcareum  C. calcareum 
var. calcareum 

(Eastw.) S.L. 

Welsh 

C. arizonicum 
var. bipinnatum  

C. calcareum  
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Cnicus diffusus Eastw. 
(1898) 

C. pulchellum 
ssp. diffusum 

(Eastw.) Petr. 

   C. arizonicum 
var. bipinnatum  

C. calcareum  

Cnicus drummondii 

(Torr. & A. Gray) A. 

Gray var. bipinnatus 

Eastw. 

(1893) 

C. pulchellum 

var. bipinnatum  

C. bipinnatum  C. calcareum  C. calcareum 

var. bipinnatum  

C. arizonicum 

var. bipinnatum  

C. pulchellum  

Cnicus rothrockii A. 

Gray 

(1882) 

C. rothrockii (A. 

Gray) Petr. 
 

 C. rothrockii C. rothrockii C. arizonicum 

var. rothrockii 
(A. Gray) D.J. 

Keil 

C. arizonicum 

var. rothrockii 

Cnicus rothrockii var. 

diffusus Eastw. 

(1896) 

C. pulchellum 
ssp. diffusum  

C. diffusum 
(Eastw.) Rydb. 

C. rothrockii C. rothrockii  C. arizonicum 
var. bipinnatum  

C. arizonicum 
var. rothrockii 

Cnicus nidulus M.E. 

Jones  

(1895) 

C. nidulum (M.E. 

Jones) Petr. 

C. nidulum 

(M.E. Jones) 
Rydb. 

C. arizonicum  C. arizonicum 

var. nidulum 
(M.E. Jones) S. 

Welsh 

C. arizonicum 

var. arizonicum 

C. arizonicum 

var. arizonicum 

Cirsium clavatum (M.E. Jones) Rydb. 

Carduus araneosus 

Osterh. 

(1905) 

C. griseum x C. 
parryi 

C. araneans 

Rydb.  

  
C. clavatum 

var. osterhoutii 
(Rydb.) D.J. 
Keil 

C. griseum var. 
osterhoutii 
(Rydb.) 
Ackerfield & 

D.J. Keil, 

comb. nov. 
Carduus centaureae 

Rydb. 

(1901) 

C. americanum 
(A. Gray) K. 

Schum 

C. centaureae 
(Rydb.) K. 

Schum. 

C. centaureae  C. centaureae  C. clavatum 
var. 

americanum 

(A. Gray) D.J. 
Keil 

C. centaureae 

Carduus griseus Rydb. 

(1901) 

C. griseum 

(Rydb.) K. 
Schum. 

C. griseum  
  

C. clavatum 

var. 
americanum  

C. griseum var. 
griseum  

Carduus laterifolius 

Osterh. 

(1906) 

C. laterifolium 

(Osterh.) Petr. 

C. laterifolium 

(Osterh.) 

Rydb. 

  
C. clavatum 

var. 

americanum  

C. centaureae 

Carduus modestus 

Osterh. 

(1913) 

C. modestum 

(Osterh.) Rydb. 

C. modestum  
  

C. clavatum 

var. 

americanum  

C. griseum var. 
griseum 

Carduus oreophilus 

Rydb. 

(1901) 

 C. oreophilum 
(Rydb.) Rydb. 

  C. clavatum 
var. 

americanum 

C. griseum var. 
griseum 

Carduus osterhoutii 

Rydb. 

(1905) 

C. osterhoutii 
(Rydb.) Petr. 

C. osterhoutii    C. clavatum 
var. osterhoutii  

C. griseum var. 
osterhoutii 

Carduus spathulatus 

Osterh. 

(1905) 

C. scapanolepis 
Petr. 

C. 
spathulifolium 

Rydb. 

  
C. clavatum 
var. 

americanum  

C. scapanolepis 

Cirsium clavatum var. 

markaguntensis S.L. 

Welsh 

(2003) 

   C. clavatum var. 
markaguntensis 
S.L. Welsh 

C. clavatum 

var. clavatum 
C. 
markaguntense 
(S.L. Welsh) 

Ackerfield & 

D.J. Keil, 
comb. nov. 

Cnicus clavatus M.E. 

Jones 

(1895) 

C. clavatum 

(M.E. Jones) 
Petr. 

C. clavatum  C. clavatum  C. clavatum  C. clavatum 

var. clavatum 
C. clavatum  

Cirsium eatonii (A. Gray) B.L. Rob. 

Carduus polyphyllus 

Rydb. 

(1910) 

C. polyphyllum 

(Rydb.) Petr. 

C. polyphyllum  
  

C. eatonii var. 

murdockii S.L. 
Welsh 

C. eatonii var. 

murdockii 

Carduus tweedyi 

Rydb. 

(1900) 

C. tweedyi 
(Rydb.) Petr. 

C. tweedyi 
(Rydb.) Rydb. 

  
C. eatonii var. 

murdockii  
C. eatonii var. 

murdockii 
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Cirsium clokeyi S.F. 

Blake 

(1938) 

    C. eatonii var. 
clokeyi (S.F. 

Blake) D.J. 

Keil 

C. eatonii var. 
clokeyi 

Cirsium eatonii var. 

harrisonii S.L. Welsh 

(1982) 

   C. eatonii var. 
harrisonii S.L. 

Welsh 

C. eatonii var. 
eatonii 

C. harrisonii 
(S.L. Welsh) 

Ackerfield & 

D.J. Keil, 
comb. nov. 

Cirsium eatonii var. 

murdockii S.L. Welsh 

(1982) 

  C. murdockii 
(S.L. Welsh) 
Cronquist 

C. murdockii  C. eatonii var. 

murdockii  
C. eatonii var. 

murdockii 

Cirsium eatonii var. 

viperinum D.J. Keil 

(2004) 

    C. eatonii var. 

viperinum D.J. 
Keil 

C. viperinum 

(D.J. Keil) 
Ackerfield & 

D.J. Keil, 

comb. nov. 

Cirsium eriocephalum 

A. Gray 

(1863) 

C. scopulorum 
(Greene) 

Cockerell 

C. scopulorum  C. scopulorum  C. scopulorum  C. eatonii var. 
eriocephalum 

(A. Gray) D.J. 

Keil 

C. scopulorum  

Cirsium peckii L.F. 

Hend. 

(1939) 

  C. peckii  
 

 C. eatonii var. 

peckii (L.F. 

Hend.) D.J. 
Keil 

C. peckii  
 

Cnicus eatonii A. 

Gray 

(1884) 

C. eatonii  C. eatonii  C. eatonii  C. eatonii var. 

eatonii 
C. eatonii var. 

eatonii 
C. eatonii var. 

eatonii 

Cnicus hesperius 

Eastw. 

(1898) 

C. hesperium 

(Eastw.) Petr. 

C. hesperium 

(Eastw.) Rydb. 

  
C. eatonii var. 

hesperium 

(Eastw.) D.J. 
Keil 

C. hesperium  

Cirsium scariosum Nutt. 

Carduus butleri Rydb. 

(1910) 

C. butleri 
(Rydb.) Petr. 

C. butleri  , 
 

C. scariosum 

var. scariosum 

C. scariosum 

var. scariosum 
Carduus coloradensis 

Rydb. 

(1905) 

C. coloradense 
(Rydb.) 

Cockerell ex 

Daniels 

C. coloradense  C. scariosum  C. scariosum 
var. scariosum 

C. scariosum 
var. 

coloradense 

(Rydb.) D.J. 
Keil 

C. coloradense 

Carduus erosus Rydb. 

(1901) 

C. erosum 

(Rydb.) K. 

Schum. 

Cirisum 
centaureae × 

C. coloradense 

C. scariosum   C. scariosum 

var. 

coloradense  

C. coloradense 

Carduus lacerus Rydb. 

(1910) 

C. lacerum 

(Rydb.) Petr. 

C. lacerum  C. scariosum  C. scariosum 

var. scariosum 

C. scariosum 

var. scariosum 

C. scariosum 

var. scariosum 
Carduus magnificus A. 

Nelson 

(1912) 

C. magnificum 

(A. Nelson) 
Rydb. 

C. magnificum  C. scariosum  
 

C. scariosum 

var. scariosum 

C. scariosum 

var. scariosum 

Carduus oreophilus 

Rydb. 

(1901) 

C. oreophilum 

(Rydb.) Rydb. 
C. oreophilum     Unresolved 

Carduus validus 

Greene 

(1897) 

C. quercetorum 

(A. Gray) Jeps. 

var. citrinum 
Petr. 

   C. scariosum 

var. citrinum 

(Petr.) D.J. Keil 

C. validum 

(Greene) 

Ackerfield & 
D.J. Keil, 

comb. nov. 
Cirsium acaule (L.) 

Scop. var. 

americanum A. Gray 

(1863) 

C. coloradense 
(Rydb.) 

Cockerell ex 

Daniels ssp. 
acaulescens (A. 

Gray) Petr. 

C. acaulescens 
(A. Gray) K. 

Schum. 

C. scariosum   C. scariosum 
var. 

americanum 

(A. Gray) D.J. 
Keil 

C. tioganum  

Cirsium congdonii 

R.J. Moore & 

Frankton 

(1967) 

    C. scariosum 
var. congdonii 
(R.J. Moore & 

Frankton) D.J. 
Keil 

C. congdonii  
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Cirsium loncholepis 

Petr. 

(1917) 

C. loncholepis     C. scariosum 
var. citrinum 

(Petr.) D.J. Keil 

Unresolved 

Cirsium quercetorum 

(A. Gray) Jeps. var. 

citrinum Petr. 

(1917) 

C. quercetorum 

var. citrinum  
   C. scariosum 

var. citrinum  
C. validum  

Cirsium scariosum 

Nutt. 

(1841) 

C. scariosum  C. scariosum  C. scariosum  C. scariosum 
var. scariosum 

C. scariosum 
var. scariosum 

C. scariosum 
var. scariosum 

Cirsium scariosum 

var. robustum D.J. 

Keil 

(2004) 

    C. scariosum 

var. robustum 
D.J. Keil 

 

Unresolved 

Cirsium scariosum 

var. thorneae S.L. 

Welsh 

(1982) 

   C. scariosum 
var. thorneae 

S.L. Welsh 

 

C. scariosum 
var. thorneae 

S.L. Welsh 

 

Unresolved 

Cirsium scariosum 

var. toiyabense D.J. 

Keil 

(2004) 

    C. scariosum 
var. toiyabense 

D.J. Keil 

 

Unresolved 

Cnicus drummondii 

(Torr. & A. Gray) A. 

Gray var. acaulescens 

A. Gray 

(1874) 

C. coloradense 
ssp. acaulescens  

C. acaulescens 

(A. Gray) K. 

Schum. 

C. scariosum   C. scariosum 

var. 

americanum  

C. tioganum 

Cnicus tioganus 

Congd. 

(1899) 

C. tioganum 
(Congd.) Petr. 

 C. scariosum   C. scariosum 
var. 

americanum  

C. tioganum  

 

nuclear ribsosomal DNA (nrDNA) regions. However, this work had a small sample size (35 

North American taxa) and did not include multiple accessions from throughout species’  

geographic ranges. Kelch and Baldwin (2003) did recover a clade constituting adaptive radiation 

in the California Floristic Province. They also noted low levels of sequence divergence and 

hypothesized that Cirsium either recently radiated in North America or that rDNA is highly 

conserved in the group. 

Aims 

This study represents the first attempt to infer a broadly sampled phylogeny of nearly 

every species Cirsium in North America, in which populations of widespread species are 

sampled across their geographic and ecological range. The two main objectives of this study are 

to: (1) test whether currently hypothesized species varietal complexes (C. arizonicum, C. 

clavatum, C. eatonii, and C. scariosum) constitute monophyletic lineages, and (2) recircumscribe 
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any taxa that are identified as problematic using the general lineage (De Queiroz, 2007) and 

phenophyletic (Freudenstein et al., 2017) species concepts. 

Materials and methods 

Taxon sampling 

A total of 168 accessions were sampled. Of these accessions, 18 were previously posted 

on GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and 68 were included in a previous study 

by Ackerfield et al. (2020; Appendix 2). Because of the taxonomic complexity of the genus and 

high frequency of Cirsium specimen misidentifications in herbaria, accessions from Kelch and 

Baldwin (2003) that could not be verified with voucher specimens were excluded. Our 168 

accessions consist of 105 taxa from North America, representing 89% of the total taxa (118) 

sensu Keil (2006). Several taxa were sampled from multiple populations across their geographic 

and ecological ranges. Outgroups [Carduus nutans L., C. arvense, and 13 Eurasian Cirsium] 

were selected using the Carduus-Cirsium group phylogeny in Ackerfield et al. (2020).  

DNA extraction, amplification, and sequencing 

DNA extractions were performed using DNeasy Plant MiniKits (Qiagen, Germantown, 

Maryland, U.S.A.) following the manufacturer’s instructions. PCR products were generated for 

two transcribed spacer regions of the nuclear ribosomal DNA (ETS and ITS), and four plastid 

markers (matK, ndhF, psbA-trnH, and trnL-trnF; Table 2.2).  

Table 2.2. Gene regions and primers used in amplification. 

Gene region Primer sequences Reference 

Approximate  

size (bp) 

ITS ITS4: TCC TCC GCT TAT TGA TAT GC 

ITS5A: GGA AGG AGA AGT CGT AAC AAG G 

ITS5_C3: GGA AGT AAA AGT CGT AAC AAG C 

White & al. (1990) 

Downie & Katz-Downie 

(1996) 

643 

ETS 18S-ETS: ACT TAC ACA TGC ATG GCT TAA 

ETS-Car-1: TTC GTA TCG TTC GGT 

Kelch & Baldwin (2003) 583 

matK trnK-710F: GTA TCG CAC TAT GT[T/A] TCA TTT GA Susanna & al. (2006) 980 
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AST-1R: CCG CAC ACT TGA AC[G/C] ATA ACC CAG 

ndhF ndhF+607: ACC AAG TTC AAT GYT AGC GAG ATT AGT C 

ndhF1603: CCT YAT GAA TCG GAC AAT ACT ATG C 

Jansen (1992) 636 

psbA-trnH psbA3f: GTT ATG CAT GAA CGT AAT GCT C 

psbAHf: CGC GCA TGG TGG ATT CAC ATT CC 

Sang & al. (1997) 524 

trnL-trnF trnLC: CGA AAT CGG TAG ACG CTA CG 

trnLF: ATT TGA ACT GGT GAC ACG AG 

Taberlet & al. (1991) 736 

 

PCR reactions were performed in 25.1 µl reactions containing 10.5 µl of sterile water, 5 

µl of of 10× PCR reaction Buffer A (Promega, Madison, Wisconsin, U.S.A.), 2 µl of 10mM 

dNTPs (Pharmacia Biotech, Piscataway, New Jersey, U.S.A.), 2.5 µl of 50 mM MgCl2, 0.5 µl of 

10mg/ml Bovine Serum Albumin (Sigma, St. Louis, Missouri, U.S.A.), 1 µl of 10mM of each of 

the two primers, 0.1 µl Taq DNA polymerase enzyme (Bioline, Taunton, Massachusetts, 

U.S.A.), and 2.5 µl of DNA template. The amount of DNA template was adjusted to generate 

sufficient PCR products for DNA sequencing when necessary. Amplification was performed on 

a Bio-Rad thermal cycler c1000 (Bio-Rad, Hercules, California, U.S.A.). The PCR program 

consisted of an initial denaturation at 95ºC for 3 min; followed by 37 cycles of (94ºC, 45 s; 54ºC, 

45 s; 72ºC, 2 min), with a final 72ºC, 7 min elongation step. ExoSAP-IT (Affymetrix, Cleveland, 

Ohio, U.S.A.) was used to purify PCR products before sequencing. The enzymatic removal of 

primers and excess dNTPs involved mixing 10 µl of the PCR product with 1 µl of ExoSAP-IT, 

incubating the mixture at 37ºC for 30 min, and then raising the temperature to 80ºC for 15 min to 

denature the ExoSAP-IT enzymes. Unincorporated dye terminators were removed using 

Sephadex gel filtration (GE Healthcare, Piscataway, New Jersey, U.S.A.) using MultiScreen 

plates (Millipore, Billerica, Massachusetts, U.S.A.). Cycle sequencing was performed using 

BigDye v.3.1 (Applied Biosystems, Foster City, California) at the Smithsonian Institution on a 

Hitachi 3730xl DNA Analyzer (Applied Biosystems, Foster City, California). Sequence reads of 

each PCR product were assembled and edited in Geneious v.5.6.3. 
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Phylogenetic analyses  

All nucleotide sequences were aligned using MAFFT v.7 (Katoh et al., 2017). The 

iterative refinement method of Q-INS-i, which considers the secondary structure information of 

rDNA, was used for ITS and ETS alignments. The G-INS-I algorithm was used for the plastid 

gene regions. The default gap opening penalty (1.53) was applied and the gap offset value was 

set to 0.1 for all alignments. Nucleotide sequences were further aligned manually in AliView 

(Larsson, 2014) using the procedure outlined in Simmons (2004) following Zurawski and Clegg 

(1987). Gaps were treated as missing data. 

Characters were analyzed using several alternative potential process partitions as a means 

of data exploration (Bull et al., 1993). Each of the six gene regions was analyzed independently 

to resolve their respective gene trees. Gene trees for the two combined nrDNA regions and the 

four combined plastid loci were analyzed independently to check for mutually well-supported 

topological incongruence and hence evidence of potential introgression or lineage sorting 

(Doyle, 1992; Wendel et al., 1995). Gene trees were compared visually for topological 

incongruence, using a 75% bootstrap cut-off value. Topological incongruence was not expected 

among plastid regions because they are all part of the typically uniparentally inherited plastid 

genome (Gastony & Yatskievych, 1992). 

As implemented in IQ-TREE v.1.6.10 (Nguyen et al., 2015), PartitionFinder (Lanfear et 

al., 2012) was used to find the best-fit likelihood models for each partition. Models were selected 

using the Bayesian Information Criterion (BIC). Based on these results, the following 

substitution models were chosen for each partition: ETS (HKY+R2), ITS (TNe+I+G4), matK 

(F81+I), ndhF (F81+I+G4), psbA-trnH (TPM2u+I+G4), and trnL-trnF (TPM2u+I+G4). 
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Maximum likelihood (ML) analyses (Felsenstein, 1973) were performed in IQ-TREE v.1.6.10 

(Nguyen et al., 2015) using the substitution models described above. For concatenation-based 

species-tree inference, IQ-TREE has been shown to be comparable to or outperform other 

maximum likelihood programs (e.g. RAxML/ExaML) for matrices with 200 or fewer taxa (Zhou 

et al., 2017). Branch lengths were linked across partitions using an edge-proportional partition 

model with proportional branch lengths (IQ-TREE edge-proportional model, option -spp). This 

option accommodates different evolutionary rates between partitions (Duchene et al., 2018). 

Node support was determined by nonparametric bootstrapping using IQ-TREE’s ultrafast 

bootstrap approximation (option -bb; Hoang et al., 2018) with 5000 pseudoreplicates. Near zero-

length branches (with bootstrap support less than 50) were collapsed to polytomies in the final 

tree (option –czb).  

Bayesian inference (BI) analyses (Yang & Rannala, 1997) were implemented in MrBayes 

(Huelsenbeck & Ronquist, 2001) via the Cyber Infrastructure for Phylogenetic Research online 

portal (CIPRES; http://www.phylo.org/). BI was performed using the best-fit partitioning scheme 

recommended by PartitionFinder (Lanfear et al., 2012). The “greedy” algorithm with branch 

lengths estimated as linked and the BIC were used to search for the best-fit partitioning scheme. 

This resulted in the the following partitioning scheme: GTR (General time reversible) 

substitution model (nst=6) with gamma-distributed rate variation across sites and a proportion of 

invariable sites (=invgamma) for the ETS, ITS ndhF, psbA-trnH, and trnL-trnF partitions, and 

the F81 substitution model (nst=1) for the matK partition. The concatenated dataset was 

subsequently subjected to Markov Chain Monte Carlo (MCMC) sampling using two replicates of 

four chains (one cold, three hot). Fifty million generations total were completed with a sampling 

frequency of every 1000 generations. Tracer v.1.5 (Rambaut & Drummond, 2013) was used to 
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visualize and analyze the MCMC trace files using a 25% burn-in value. All tree topologies were 

viewed in FigTree v.1.4.3 (Rambaut, 2016).  

Taxonomic evaluations  

Approximately 2500 herbarium specimens were examined from the following herbaria: 

ALA, ARIZ, ASU, BRY, CS, DAV, DES, MEXU, MONTU, OBI, OSC, RENO, RM, RSA, 

TEX, UNM, USCH, UTC, and WTU (Thiers, 2016). Type specimens were viewed on JSTOR 

Global Plants (http://plants.jstor.org) when not available for loan. I applied the general lineage 

species concept (De Queiroz, 2007) and phenophyletic concept (Freudenstein et al., 2017) to 

provide an objective framework for species delimitations. By also applying the phenophyletic 

view of Freudenstein et al. (2017), I allowed for species resolved as paraphyletic to be treated as 

the same species (Rieseberg & Brouillet, 1994) as long as they shared the same morphological 

phenotype and thus the same inferred ecological role. I used both concepts because the general 

lineage concept does not explicitly state that species can be paraphyletic. Species resolved as 

polyphyletic are not considered to be the same species under both concepts. All accessions from 

which DNA was sampled were verified by myself and delimited sensu Keil (2006).  

Results 

Phylogenetic analysis  

The phylogenetic tree from the concatenated dataset, with node support for both the ML 

and BI is shown in Figures 1D, H, and K. Branches with less than 75 BS are collapsed to 

correspond to the discussion below. The BI tree is shown in Supplemental Figure 8. All ML trees 

for the combined plastid, combined nuclear, and individual gene regions are shown in 

Supplemental Figures 9–16. Of the 176 total parsimony-informative sites, 82% were found in the 

more rapidly evolving nrDNA ITS and ETS regions (Table 2.3). North American Cirsium taxa 
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are resolved as a clade with strong support (BS=98, PP=1.0; Fig. 2.1D, H). Cirsium arvense is 

resolved as sister to the North American clade. Neither C. kamtschaticum nor C. heterophyllum 

(the only two species occurring in both the Old and New Worlds) are resolved in the North 

American clade (Fig. 2.1K).  

 

Figure 2.1 A–D. Maximum likelihood phylogenetic reconstruction. Circles above nodes 

represent ML bootstrap support (BS) and those below nodes represent BI posterior probability 

(PP), values are: black circles ≥ 95% (BS)/0.95 (PP); dark grey circles ≥ 85% (BS)/0.85 (PP); 
white circles ≥ 75% (BS)/0.75 (PP). Branches with less than 75% BS are collapsed. If multiple 
accessions of the same taxon are present, accession number and geographic locality are indicated 

in parentheses. Nomenclature for photographs follows Keil (2006) with our proposed taxon 

name in parentheses if different. Colors around photos correspond to taxon names in the 

2.1D 
2.1A 

2.1B 

2.1C 

Figure 2.1H 
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phylogeny. Photos by J. Ackerfield except where noted. A, C. arizonicum varietal complex, top 

row: var. arizonicum, var. bipinnatum (C. pulchellum), var. bipinnatum (C. calcareum; photo by 

Al Schneider), bottom row: var. chellyense [C. chellyense; U.S.A., Arizona: Canyon de Chelly, 

I.W. Clokey 680 (DAO)], var. rothrockii (photo by Bob Nieman), and var. tenuisectum (photo by 

Lonny Holmes). B, C. clavatum varietal complex, top row: var. clavatum (C. centaureae), var. 

clavatum (C. clavatum; photo by Chuck Smith), var. clavatum (C. griseum var. griseum), bottom 

row: var. osterhoutii (C. griseum var. osterhoutii), var. clavatum [(C. markaguntense; U.S.A., 

Utah: Iron Co., N.D. Atwood & L.C. Higgins 5918 (BRY)], var. clavatum (C. scapanolepis; 

photo by Sean Mallory). C, C. cymosum varietal complex, from left to right: var. canovirens (C. 
canovirens; photo by Matt Lavin), var. canovirens (C. cymosum; photo by Morgan Stickrod), 

var. cymosum (C. cymosum; photo by Terry Gosliner).  
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Figure 2.1 E–G. E, C. eatonii varietal complex, top row from left to right: var. clokeyi (photo by 

Dr. Tom Armbruster), var. eatonii (photo by H. Tracy), var. eriocephalum (C. scopulorum), 

second row: var. eriocephalum (C. griseum var. nov.; photo by Jim Bromberg), var. 

eriocephalum (C. sp. nov.), var. eriocephalum (Pike’s Peak; C. scopulorum), third row: var.  

2.1E 

2.1F 

2.1G 

Figure 2.1D 

Outgroups 

(Figure 2.1K) 
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eriocephalum (La Sal Mts.; C. sp. nov.; photo by Hannah Wacker), var. hesperium (San Juan 

Mts.; C. hesperium), var. hesperium (Culebra Range; C. sp. nov.), bottom row: var. murdockii 
(C. eatonii var. murdockii), var. peckii (C. peckii; photo by iNaturalist user rachell1976), var. 
viperinum (C. viperinum; photo by Corey Lange). F, C. fontinale varietal complex, from left to 

right: var. campylon (photo by David Greenberger), var. fontinale (photo by Angela Pai), and 

var. obispoense (photo by Paul Excoffier). G, C. mohavense (from left to right): C. mohavense 

(San Bernardino Co.; photo by Ron Vanderhoff), C. mohavense (Nevada; photo by Lonny 

Holmes) and C. virginense (Utah). 

 

 
Figure 2.1 I–K. I, C. rydbergii, from left to right: C. rydbergii (C. rydbergii; photo by Isaac 

Marck), C. rydbergii Buck Farms population (C. sp. nov.; photos by W. Hodgson), C. rydbergii 
Cliff Springs population (C. sp. nov.; inset by W. Hodgson). J, C. scariosum varietal complex, 

top row: var. americanum (C. tioganum), var. citrinum (C. validum; photo by Alice Abela), var. 
coloradense (C. coloradense), bottom row: var. congdonii (C. congdonii; photo by iNaturalist 

user leptonia), var. scariosum, var. toiyabense (photo by iNaturalist user dawnvla). 

 

The North American clade is divided into 18 subclades (A–R; Fig. 2.1D, H). Eighteen 

accessions are resolved as part of the polytomy in the North American clade after the collapse  

branches with ≤ 75 BS. Some subclades are well-supported in the ML analysis but poorly 

supported (with posterior probabilities less than 0.75) in the BI tree. There is some biogeographic 

structure (Bailey, 1998) among subclades but no resolution at the backbone of the North  

2.1J 

2.1I 

2.1K 

North American Clade 

(Figure 2.1H) 
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Table 2.3. Statistics for each data matrix.  

 
 ETS ITS matK ndhF psbA-

trnH 

trnL-
trnF 

Plastid Nuclear Combined 

Number of  

 accessions 

164 167 146 80 152 126 125 168 168 

Number of  

 characters 

580 644 964 634 500 724 2822 1224 4046 

Missing data  

 (%) 

      16 1 17 

Number of  

 singleton sites 

61 73 26 4 12 7 49 134 183 

Number of   

 parsimony  

 informative  

 characters 

67 77 4 4 17 7 32 144 176 

 

American clade. Subclade A (BS=78, PP=0.99) is further divided into three smaller clades. The 

first smaller clade consists of taxa from the Pacific Northwest and California, the second smaller 

clade consists of taxa endemic to the California Floristic Province, and the third smaller clade 

consists of taxa from the Colorado Plateau. Subclade B (BS=88, PP=0.98) consists of taxa from 

the Rocky Mountains. Subclade C (BS=79, PP=0.97) is further divided into two smaller clades. 

The first clade consists of taxa from the Great Plains and southeast, and the second clade consists 

of taxa from the Great Plains and Rocky Mountains. Subclade D (BS=76, PP=0.84) consists of 

taxa from the desert Southwest. Subclade E (BS=85, PP=0.5) consists of taxa mostly from the 

desert Southwest and Mexico. Subclade F (BS=88, PP=0.53) consists mosly of taxa from the 

Rocky Mountains and Intermountain Region. Subclade G (BS=98, PP=0.91) consists of taxa 

from the desert Southwest and Colorado Plateau. Subclade H (BS=94, PP=0.99) consists of taxa 

from the Rocky Mountains and Colorado Plateau. Subclade I (BS=84, PP=0.64) consists of taxa 

from the southeastern U.S. Subclade J (BS=91, PP=0.86) consists of taxa from Mexico. Subclade 

K (BS=98, PP=1.0) consists of taxa from California.  

Seven small subclades of only two taxa are resolved in the ML analysis. Three of these 

subclades (O, P, and R) are not resolved in the BI. Subclade L (BS=100, PP=0.96) consists of C. 
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cymosum (Greene) J.T. Howell var. canovirens (Rydb.) D.J. Keil (accession 70) and C. 

scariosum var. scariosum (accession 164) from the Rocky Mountains. Subclade M (BS=97, 

PP=0.89) consists of C. clavatum var. clavatum (accession 104) from the Rocky Mountains and 

C. repandum Michx. from the southeast. Subclade N (BS=89, PP=0.96) consists of C. ownbeyi 

S.L. Welsh and C. eatonii var. eriocephalum (A. Gray) D.J. Keil (accession 124) from Colorado. 

In the BI, this clade also contains C. arizonicum var. tenuisectum D.J. Keil. Subclade O (BS=78, 

PP=0.58) consists of C. clavatum var. clavatum (accession 26) and C. jorullense (Kunth) Spreng. 

Subclade P (BS=77) consists of C. wheeleri (A. Gray) Petr. and C. velatum (S. Watson) Petr. 

Subclade Q (BS=98, PP=1.0) consists of C. brevifolium Nutt. and C. inamoenum (Greene) D.J. 

Keil from the Pacific Northwest and Rocky Mountains. Lastly, subclade R (BS=93) consists of 

C. mohavense (Greene) Petr. (accession 213DBG) and C. rydbergii Petr. (accession 162DBG). 

Only relationships supported by both the BI and ML analyses with bootstrap and posterior 

probability support values equal to or higher than 75 and 0.75 respectively were considered for 

the discussion below.  

Incongruence 

Six instances of strongly supported incongruence between the nuclear gene tree 

(consisting of two linked gene regions) and plastid gene tree (consisting of four linked gene 

regions) were recovered. First, the plastid gene tree shows a clade containing C. eatonii var. 

hesperium (Eastw.) D.J. Keil (accession 32), C. eatonii var. hesperium (accession 170), C. 

pulcherrimum (Rydb.) K. Schum. var. pulcherrimum, C. parryi (A. Gray) Petr., and C. grahamii 

A. Gray (BS=99, PP = 0.94; Fig. S1B). However, in the nuclear gene tree C. eatonii var. 

hesperium (accession 32) is resolved in a clade with C. eatonii var. hesperium (accessions 24, 

101) and C. rydbergii (accessions 164DBG, 165DBG; BS=95, PP=0.99; Fig. S1C). Cirsium 
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pulcherrimum var. pulcherrimum is resolved in a clade with C. canescens Nutt. in the nuclear 

gene tree (BS=99, PP=0.85; Fig. S1C). Cirsium parryi is resolved in a clade with C. eatonii var. 

hesperium (accession 90), C. eatonii var. eatonii (accession 143), and C. ochrocentrum A. Gray 

(BS=95, PP=0.89; Fig. S1C).  

Second, the plastid gene tree shows a clade containing C. crassicaule (Greene) Jeps., C. 

ownbeyi, C. eatonii var. eriocephalum (accession 124), and C. arizonicum var. tenuisectum 

(BS=96, PP=0.8; Fig. S1B). However, C. crassicaule is resolved in the CA-FP clade in the 

nuclear gene tree (BS=100, PP=1.0; Fig. S1C). Third, the plastid gene tree shows strong support 

for a clade of C. brevifolium and C. undulatum (Nutt.) Spreng. (BS=99, PP=0.94; Fig. S1B), 

while in the nuclear gene tree C. undulatum is sister to C. tracyi (Rydb.) Petr. (BS=100, PP=1.0) 

and C. brevifolium is sister to C. inamoenum (BS=100, PP=0.87; Fig. S1C). Fourth, the plastid 

gene tree recovers a clade containing C. clavatum var. clavatum (accession 26), C. velatum, and 

C. jorullense (BS=98, PP=0.99; Fig. S1B). However, the nuclear gene tree places C. clavatum 

var. clavatum (accession 26) in a clade with C. canescens (BS=99, PP=0.85; Fig. S1C). The 

hypothesized causes of the incongruence for each of the above are presented in the discussion. 

Lastly, the psbA-trnH gene tree shows a strongly supported sister-species relationship 

between Carduus nutans (outgroup) and C. discolor (Muhl. ex Willd.) Spreng. (BS=100, 

PP=1.0; Fig. S1H). However, C. discolor is resolved in the North American Cirsium clade in the 

ETS (BS=85, Fig. S1D), ITS (BS=93, PP=1.0; Fig. S1E), and trnL-trnF gene trees (BS=85, 

PP=1.0; Fig. S1I). All C. discolor sequences were obtained from GenBank. I therefore suspect 

that either contamination for the psbA-trnH locus or misidentification is the cause of 

incongruence. Cirsium discolor is resolved in the North American clade in our concatenated 

phylogeny. 
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Discussion 

Species Delimitation of North American Thistles 

Cirsium is one of the most taxonomically difficult genera of Compositae in North 

America. The molecular phylogenetic results presented here provide novel insights for species 

delimitations using the general lineage and phenophyletic species concepts. However, within 

Cirsium the taxonomic challenges are many and in some instances, additional morphological and 

molecular work must be completed prior to recircumscription. The circumscriptions of eight 

species (C. arizonicum, C. clavatum, C. cymosum, C. eatonii, C. fontinale (Greene) Jeps., C. 

mohavense, C. rydbergii, and C. scariosum) sensu Keil (2006) are resolved as polyphyletic. In 

the following discussion, the term lineage is used in reference to subclades A-R and not to 

accessions that are part of the North American clade polytomy. 

Cirsium arizonicum complex 

Cirsium arizonicum is widely distributed throughout the Colorado Plateau and deserts of 

southwestern U.S. and northern Mexico. Members of this varietal complex share unique 

morphological traits compared to other Cirsium taxa including short (1–4.5 mm long) stigmatic 

tips and corolla lobes over 10 mm long and about twice as long as the throat (i.e., the portion of 

the corolla between the base of the lobes and the level of filament attachment; Moore & 

Frankton, 1974; Barlow-Irick, 2003; Fig. 2.1A). These taxa are also primarily pollinated by 

hummingbirds (Barlow-Irick, 2003; Eckberg et al., 2017). There are currently five varieties 

recognized within this complex: arizonicum, bipinnatum (Eastw.) D.J. Keil, chellyense (R.J. 

Moore & Frankton) D.J. Keil, rothrockii (R.J. Moore & Frankton) D.J. Keil, and tenuisectum 

(Keil, 2006). These varieties are further subdivided by corolla color. Varieties arizonicum and 
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rothrockii have red corollas, whereas varieties bipinnatum, chellyense, and tenuisectum have 

pink or purple corollas (Fig. 2.1A).  

Historically, there has been much disagreement over species delimitations within this 

complex (Table 1.1). Petrak (1917) initially recognized five species: C. arizonicum, C. 

calcareum (M.E. Jones) Wooton & Standl., C. nidulum (M.E. Jones) Petr., C. pulchellum 

(Greene ex Rydb.) Wooton & Standl., and C. rothrockii (A. Gray) Petr. Moore and Frankton 

(1974) later revised the group and recognized these same species albeit they synonymized C. 

pulchellum with C. calcareum. Moore and Frankton (1974) also described three new species: C. 

chellyense R.J. Moore & Frankton, C. chuskaense R.J. Moore & Frankton, and C. navajoense 

R.J. Moore & Frankton. Barlow-Irick (2003) performed a multivariate analysis of the Cirsium 

arizonicum complex and found support for the recognition of six species: C. arizonicum, C. 

calcareum, C. chellyense, C. pulchellum, as well as two new species that were never formally 

described, “C. aleatorium” and “C. surrepticum.” Barlow-Irick (2003) synonymized C. nidulum 

and C. rothrockii with C. arizonicum, and C. chuskaense with C. chellyense. Keil (2006) 

likewise considered C. arizonicum var. nidulum (M.E. Jones) S.L. Welsh conspecific with C. 

arizonicum var. arizonicum. 

Cirsium arizonicum sensu Keil (2006) is resolved as polyphyletic in our inferred 

phylogeny, consisting of at least three distinct evolutionary lineages (i.e., mono- or paraphyletic 

groups; Fig. 2.1D, H). The first lineage consists of accession 84 of variety arizonicum. Subclade 

E (BS=85) is not strongly supported in our BI (PP=0.50), but within this subclade C. arizonicum 

var. arizonicum is well-supported as sister to C. grahamii in both analyses (BS=87, PP=0.83; 

Fig. S1A, B). All other accessions of varieties arizonicum and rothrockii are part of the North 

American clade polytomy. However, these are the only varieties that exhibit red corollas (versus 
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purple or pink; Fig. 2.1A; Keil, 2006). In addition, these two varieties are sympatric in 

distribution (Moore & Frankton, 1974; Barlow-Irick, 2003; Keil, 2006). The only phenotypic 

difference among the taxa noted by Keil (2006) is in leaf pubescence (variety rothrockii glabrous 

vs. variety arizonicum with abaxial tomentum). Therefore, for now I recommend continued use 

of the treatment proposed by Keil (2006), recognizing C. arizonicum var. arizonicum (including 

var. nidulum) and C. arizonicum var. rothrockii.  

Second, accessions corresponding to variety bipinnatum sensu Keil (2006) are resolved 

as polyphyletic in two distinct evolutionary lineages. Accession 1 from Colorado is resolved in 

subclade B (BS=88, PP=0.98). However, accessions 168DBG, 170DBG, 217DBG, and 219DBG 

from southeastern Utah are resolved in subclade A (BS=78, PP=0.99). Barlow-Irick (2003) 

separated C. calcareum from C. pulchellum based on the presence of longer corolla lobes (13–18 

mm vs. 8–13 mm) and mostly shorter style tips (1–3 mm vs. 2–4.5 mm). Accession 1 from 

Colorado corresponds phenotypically to C. pulchellum, while the accessions from southern Utah 

and northern Arizona correspond phenotypically to C. calcareum sensu Barlow-Irick (2003). 

Given the unique phenotypes and evolutionary lineages of each, I recommend recognition of 

both C. calcareum and C. pulchellum as distinct species. 

Lastly, although I only included one accession (214DBG) of variety chellyense, this 

variety is phenotypically distinct from its sister taxa in subclade A. In contrast to C. calcareum, 

C. chellyense has long-decurrent leaf bases (10–20 mm versus shortly decurrent to 8 mm) and 

multicellular hairs present on the stem (versus glabrous to tomentose; Moore & Frankton, 1974; 

Barlow-Irick, 2003). I therefore recommend recognition of C. chellyense as distinct from C. 

calcareum given the unique phenotypes of each taxon. 
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Our single accession of variety tenuisectum is resolved within subclade N in our BI with 

good support (PP=0.96; Fig. S1B) but is part of the North American-clade polytomy in our ML 

analysis (Fig. 2.1H). I hypothesize that this taxon arose by hybridization of C. arizonicum with 

C. mohavense. In our trnL-trnF gene tree, variety tenuisectum is resolved in a clade with C. 

arizonicum (BS=75, PP=0.97; Fig. S1J). However, in our ETS gene tree, variety tenuisectum is 

resolved in a clade with C. mohavense, albeit with low support (BS=67; Fig. S1E). Additional 

evidence can be found by comparing the morphologies of the three taxa. Phenotypically, variety 

tenuisectum is intermediate between C. arizonicum and C. mohavense, having dark pink corollas 

(vs. light pink in C. mohavense and red in C. arizonicum) and exserted styles (as in C. 

arizonicum; Fig. 2.1A, 2.1G). Until additional evidence suggests otherwise, I recommend 

continued use of this taxon as a variety within the C. arizonicum complex sensu Keil (2006). 

Based on the type locality and original descriptions of C. arizonicum var. tenuisectum and “C. 

aleatorium,” I believe that these binomials are referencing the same individuals.  

Cirsium clavatum complex 

Cirsium clavatum is a polymorphic complex of thistles occurring throughout montane 

forests and alpine ecosystems in Utah and Colorado. Cirsium clavatum is characterized by the 

presence of sessile to shortly decurrent leaf bases, white corollas, and lower involucral bracts 

with lateral spines (Keil, 2006; Fig. 2.1B). Rydberg (1922) initially recognized eight species that 

are now considered synonymous with C. clavatum (Keil, 2006): C. araneans Rydb., C. 

centaureae (Rydb.) K. Schum., C. griseum (Rydb.) K. Schum., C. laterifolium (Osterh.) Rydb., 

C. modestum (Osterh.) Rydb., C. oreophilum (Rydb.) Rydb., C. osterhoutii (Rydb.) Petr., and C. 

spathulifolium (Osterh.) Rydb. In his Manual of the Plants of Colorado, Harrington (1954) 

recognized only two of Rydberg’s species (C. centaureae and C. spathulifolium). Harrington 
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(1954) considered C. griseum and C. modestum as synonymous with C. spathulifolium. 

Harrington (1954) also erroneously included C. eatonii as present in Colorado. A later treatment 

by Weber & Wittmann (2011) continued to erroneously include C. eatonii for Colorado, and 

recognized only C. centaureae out of Rydberg’s original eight species. Specimens in Colorado 

that would have corresponded to C. spathulifolium were subsequently identified as C. eatonii.  

Keil (2006) attempted to rectify the resulting taxonomic confusion by recognizing C. 

clavatum as present in Colorado and restricting C. eatonii (as var. eatonii) to populations in 

Utah. Keil (2006) also recognized three varieties within C. clavatum to account for some of the 

variation in the group: clavatum, americanum (A. Gray) D.J. Keil, and osterhoutii (Rydb.) D.J. 

Keil (Keil, 2006; Table 2.1). However, Keil (2006) noted that as currently circumscribed, C. 

clavatum remained polymorphic across its range. 

Cirsium clavatum is resolved as polyphyletic in our inferred phylogeny in at least five 

distinct evolutionary lineages (Fig. 2.1D, H). Although I did not sample directly from the type 

locality of C. clavatum [U.S.A., UT: Fish Lake, Sevier Co., M.E. Jones s.n. (BRY)], I did sample 

from nearby populations in Garfield Co., UT (accessions 77 and 128) that phenotypically 

correspond to the type specimen. These accessions are resolved in subclade B (BS=88, PP=0.98). 

A second evolutionary lineage from Utah was resolved consisting of C. clavatum accessions 76 

and 129 (Subclade G, BS=98, PP=0.91). These specimens are morphologically distinct from the 

C. clavatum type specimens in with dark-infused involucral bracts (Fig. 2.1B). Specimens with 

this phenotype and from this geographic area were previously described as C. clavatum var. 

markaguntense S.L. Welsh (Welsh et al., 2003). I therefore propose making a new combination 

and recognizing this taxon at the specific rank as C. markaguntense (S.L. Welsh) Ackerfield & 

D.J. Keil, comb nov.  
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The Colorado accessions of C. clavatum are resolved in at least three distinct 

evolutionary lineages. Each of these lineages corresponds to a species previously recognized by 

Rydberg (1917, 1922). The first lineage consists of accessions 23, 38, and 39 (Subclade B, 

BS=88, PP=0.98; Fig. 2.1H). These accessions correspond to C. clavatum var. clavatum 

(accessions 23, 39) and var. americanum (accession 38) sensu Keil (2006). However, they differ 

from C. clavatum sensu stricto in having more than one head clustered at the tips of stems, and 

erose, fringed, or dilated and twisted inner involucral bract apices (Fig. 2.1B). Plants 

corresponding to this phenotype were previously described as C. centaureae (Rydberg, 1901). I 

believe that C. laterifolium is synonymous with C. centaureae based on several shared 

morphological features including involucral bracts fringed or erose and similar habit.  

Closely related to C. centaureae are accessions assigned to multiple different taxa sensu 

Keil (2006). Accessions 7, 11, and 108 correspond to C. clavatum var. osterhoutii, while 

accession 115 corresponds to C. clavatum var. clavatum. Two additional accessions correspond 

to C. eatonii var. murdockii S.L. Welsh (accession 100) and C. eatonii var. eriocephalum 

(accession 169). I propose that these accessions are all varieties of Rydberg’s (1901) C. griseum. 

Cirsium griseum is unique among the other “C. clavatum” lineages in having involucral bracts 

that are subequal (vs. imbricate) and tipped with flat, stout spines (vs. rounded, shorter spines; 

Fig. 2.1B). Our accession 115 corresponds morphologically and geographically to the type 

specimen of Carduus griseus Rydb. [(U.S.A., CO: Telluride, San Miguel Co., F. Tweedy 321 

(US)], that was later transferred to the genus Cirsium. I believe Rydberg’s C. modestum and C. 

oreophilum also correspond morphologically to and are thus conspecific with C. griseum.  

I propose that variety osterhoutii be recognized within the C. griseum varietal complex as 

C. griseum var. osterhoutii (Rydb.) Ackerfield & D.J. Keil, comb nov. Variety osterhoutii is 
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separable from the other varieties by the presence of densely pubescent involucral bracts (Keil, 

2006; Ackerfield, 2015; Fig. 2.1B). Variety osterhoutii is endemic to Colorado where it occurs at 

mostly higher elevations (10,500–13,500 ft.) than variety griseum (Ackerfield, 2015). However, 

one of us (JRA) has observed intermediate forms between variety osterhoutii and variety 

griseum where the two overlap in elevation. I believe that Rydberg’s C. araneans (G.E. 

Osterhout 2169, 26 Jun 1900, Red Cliff, Eagle Co., CO, NY) is conspecific with C. griseum var. 

osterhoutii. This specimen was is morphologically similar to and collected at the type locality for 

C. osterhoutii [U.S.A., CO: Red Cliff, Eagle Co., G.E. Osterhout 2706 (RM)]. Our sequenced 

specimen of C. eatonii var. murdockii (accession 100) from Colorado also corresponds to the 

interpretation of Rydberg’s C. griseum var. osterhoutii presented here.  

Accession 169 was originally identified as C. eatonii var. eriocephalum based on a 

shared alpine habitat and similar morphology (i.e., strongly undulate leaves and heads in a dense 

terminal cluster; Fig. 2.1E). However, upon closer inspection this specimen differs from C. 

eatonii var. eriocephalum in having pink to white corollas (vs. purple; Fig. 2.1E). This lineage is 

resolved here within the C. griseum complex. Further work is necessary to ascertain if this 

lineage constitutes part of the C. griseum complex, is a hybrid between C. griseum and C. 

scopulorum, or is a distinct (yet cryptic) species separate from either C. griseum or C. 

scopulorum. For now, I propose that this be recognized as a new variety within the C. griseum 

complex, as it may hybridize freely with other C. griseum varieties.  

The third evolutionary lineage consists of accession 104 from Grand Co., Colorado 

(Subclade M, BS=97, PP=0.89; Fig. 2.1D). This accession corresponds morphologically and 

geographically to Rydberg’s (1917, 1922) C. spathulifolium. Cirsium spathulifolium exhibits 

imbricate involucral bracts, lack lateral spines on the lower involucral bracts, and entire 
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involucral bract apices (Fig. 2.1B). This species was named from Osterhout’s type specimen of 

Carduus spathulatus Osterh. [U.S.A., CO: North Park, Saw Mill, Larimer Co., G.E. Osterhout 

2254 (RM)]. Although Rydberg used the epithet spathulifolium in his Cirsium species 

descriptions, in his key he inadvertently listed the species as C. spathulatum. However, Petrak 

(1917) transferred Osterhout’s species from Carduus to Cirsium as C. scapanolepis (Osterh.) 

Petr. just prior to Rydberg’s C. spathulifolium description, thus rendering Rydberg’s name 

invalid.  

Keil (2006) hypothesized that variety osterhoutii may share a close relationship with the 

alpine C. eatonii var. eriocephalum based on the presence of densely pubescent involucral bracts 

and strongly undulate leaves observed in both taxa. However, accessions 124 of C. eatonii var. 

eriocephalum and 108 of variety osterhoutii were both collected from the same locality. These 

accessions are not resolved in the same clade, indicating that although variety osterhoutii and C. 

eatonii var. eriocephalum are morphologically similar in having densely woolly involucral 

bracts, they are distinct evolutionary lineages. One author (JRA) also notes that variety 

osterhoutii and the yellow form of C. eatonii var. eriocephalum co-occur with no intermediates.  

Cirsium cymosum complex 

Cirsium cymosum var. cymosum, C. cymosum var. canovirens, C. brevifolium, and C. 

inamoenum are a taxonomically difficult group distributed in California, the Pacific Northwest, 

and northern Rocky Mountains (Lesica, 2012). These taxa also have several shared 

morphological features including solitary pedunculate heads, white to pale lavender corollas, and 

leaves auriculate-clasping to decurrent on the stem to 3 cm (Keil, 2006; Fig. 2.1C). The 

differences among the taxa are subtle and often not well represented on herbarium specimens. 

For instance, C. cymosum var. cymosum and C. inamoenum have an inconspicuous glutinous 
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dorsal ridge on the involucral bracts (Greene, 1897) while C. brevifolium and C. cymosum var. 

canovirens exhibit a prominent dorsal ridge (Keil, 2006). However, the glutinous dorsal ridge 

can be difficult to see on herbarium specimens and usually dries brown, making this a difficult 

criterion to use post collection. 

Cirsium cymosum and C. inamoenum were concurrently described (as Carduus) by 

Greene (1897). Greene (1897) did not list type specimens in his descriptions, but noted that 

Carduus inamoenus Greene was conspecific with his Carduus undulatus Nutt. var. nevadensis 

Greene specimen [U.S.A., CA: Truckee Valley, Greene s.n. (F)]. Additional specimens listed in 

his description [U.S.A., CA: West Humboldt, Greene s.n. (NDG); U.S.A., WA: Mill Plain, 

Howell s.n. (NDG)] were later annotated to C. neomexicanum A. Gray and C. brevifolium, 

respectively. Cirsium canovirens (Rydb.) Petr. was later described (as Carduus; Rydberg, 1900) 

from Montana [U.S.A., MT: Yellowstone Park, Jack Creek Canon, P.A. Rydberg & E.A. Bessey 

5213 (K)]. Although C. canovirens was sometimes treated at the specific level (Cronquist, 1994; 

Welsh et al., 2003), this taxon was considered a variety of C. cymosum by Keil (2006). Other 

authors have considered C. canovirens conspecific with C. inamoenum (Dorn, 2001; Lesica, 

2012). Cronquist (1994) synonymized C. inamoenum under C. subniveum Rydb. (Rydberg, 

1917).  

I recovered three distinct evolutionary lineages for these taxa in our inferred phylogeny 

(Fig. 2.1D, H). The first lineage consists of California accessions of C. cymosum var. cymosum 

and C. cymosum var. canovirens (Subclade A, BS=78, PP=0.99; Fig. 2.1H). The second lineage 

consists of accessions of C. brevifolium and C. inamoenum (Subclade Q, BS=98, PP=1.0; Fig. 

2.1D). The third lineage consists of an accession of C. cymosum var. canovirens from near the 

type locality for C. canovirens in Montana (Subclade L, BS=100, PP=0.96; Fig. 2.1D).  
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The California lineage of C. cymosum consists of accessions of varieties cymosum and 

canovirens sensu Keil (2006). Therefore, I first propose that C. cymosum be recircumscribed to 

include specimens also attributable to variety canovirens from California and Oregon. 

Additionally, I propose that C. canovirens be recognized at the specific rank but restricted in 

range to Idaho, Montana, and Nevada.   

Cirsium brevifolium and C. inamoenum are distinct evolutionary lineages from C. 

cymosum and C. canovirens despite sharing many morphological features. The type specimen of 

C. inamoenum was collected in California, whereas our sequenced accession of C. inamoenum 

was collected in Nevada. Therefore, I cannot conclusively state that this accession corresponds to 

Greene’s C. inamoenum. Alternatively, our Nevada accession may correspond to Rydberg’s C. 

subniveum [U.S.A., WY: Jackson Hole, A Nelson 1070 (US)]. Additional sampling of C. 

inamoenum from California and Wyoming are necessary to clarify species boundaries among 

these taxa.  

I hypothesize that C. brevifolium is the result of past hybridization between C. undulatum 

and C. inamoenum. Our plastid gene tree shows a well-supported clade containing C. undulatum 

and C. brevifolium (BS=99, PP=0.94; Suppl. Fig. 9). However, C. undulatum is sister to C. tracyi 

in our nuclear gene tree (BS=100, PP=0.87; Suppl. Fig. 10). Cirsium undulatum has a wide range 

throughout the Great Plains and Rocky Mountains (Keil, 2006). Therefore, it is possible that C. 

undulatum could have been sympatric with C. inamoenum in the past.  

Cirsium eatonii complex  

The C. eatonii varietal complex is a polymorphic assemblage of thistles distributed on 

mountain peaks throughout the southern Rocky Mountain and Intermountain Regions (Fig. 

2.1E). Cirsium eatonii is also one of the most problematic, taxonomically challenging complexes 
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of thistles in North America (Keil, 2006; Lesica, 2012; Ackerfield, 2015). Most recently, Keil 

(2006) divided the complex into seven varieties: clokeyi (S.F. Blake) D.J. Keil, eatonii, 

eriocephalum, hesperium, murdockii, peckii (L.F. Hend.) D.J. Keil, and viperinum D.J. Keil. 

These varieties are in part distinguished based on their involucral bract surface. Varieties eatonii, 

clokeyi, and viperinum have glabrous involucral bracts with conspicuous lateral spines present on 

the outer bracts. Alternatively, varieties eriocephalum, hesperium, murdockii, and peckii have 

tomentose involucral bracts that mostly lack lateral spines.  

Cirsium eatonii was first described as Cnicus eriocephalus A. Gray var. leiocephalus 

D.C. Eaton by Gray (1874) from a Summit Co., UT collection made by Daniel C. Eaton and 

Sereno Watson in 1869. Gray (1883) later elevated this variety to Cnicus eatonii A. Gray in 

honor of Eaton. Heller (1898) transferred the species to Carduus as Carduus leiocephalus (D.C. 

Eaton) A. Heller. However, it was Robinson (1911) who transferred the species to Cirsium 

[Cirsium eatonii (A. Gray) B.L. Rob.]. Welsh (1982) subsequently subdivided Cirsium eatonii 

into three varieties: eatonii, harrisonii S.L. Welsh, and murdockii. Although Welsh (1982) 

described variety harrisonii as distinct from variety eatonii based on the presence of dark purple 

involucral bracts, it is considered conspecific with variety eatonii by Keil (2006).  

The other two varieties with glabrous involucral bracts, clokeyi and viperinum, are each 

endemic to mountain peaks in Nevada (Keil, 2006). When Blake (1938) described C. clokeyi 

from the Charleston Mountains (Clark Co., NV), he noted the similarity of this new species to C. 

eatonii. However, Blake (1938) separated C. clokeyi from C. eatonii by the presence of larger 

heads and stouter, longer spines on the involucral bracts in C. clokeyi. Blake (1938: 10) also 

noted that C. clokeyi was “the most savagely armed of all the United States species of Cirsium.” 
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Keil (2004) more recently described variety viperinum, which is endemic to the upper elevations 

of the Snake Range (White Pine Co., NV).  

The four varieties with tomentose involucral bracts have undergone significant taxonomic 

change since their inceptions. The charismatic megaflora thistles found on mountain peaks in the 

southern Rocky Mountains are currently classified as varieties eriocephalum and hesperium 

(Keil, 2006). Variety eriocephalum was originally described as C. eriocephalum by Gray (1863) 

based on a Charles Parry collection from 1861. Unfortunately, Gray was unaware that this 

epithet had already been used to describe a species of thistle from Europe (Wallroth, 1840) thus 

rendering Gray’s C. eriocephalum invalid. Gray (1874) was still unaware of the prior use of this 

binomial when he transferred the epithet to Cnicus (as Cnicus eriocephalus A. Gray). Greene 

(1892) later transferred the species to Carduus as Carduus scopulorum Greene, using the specific 

epithet scopulorum as originally suggested by Parry (Parry & Gray, 1861). Lastly, Cockerell (in 

Daniels, 1911) placed the species back into Cirsium, transferring Greene’s scopulorum epithet 

[Cirsium scopulorum (Greene) Cockerell]. Nelson (1909) was the first to use the varietal name 

of eriocephalus, but incorrectly treated the epithet as a variety of Carduus hookerianus Nutt. 

Keil (2006) placed this taxon as variety eriocephalum within the C. eatonii complex, using 

Nelson’s validly published varietal epithet.  

There are three morphologically distinct phenotypes of variety eriocephalum (Fig. 2.1E). 

Plants growing in northern Colorado in the Front and Gore Ranges have purple anther tubes and 

white style branches, and generally have fewer terminal heads in a spreading to nodding array. 

Plants growing in middle and southern Colorado as well as outside of Santa Fe, New Mexico 

have white anther tubes and yellow style branches. This form generally has numerous terminal 

heads in a nodding array. Variety eriocephalum is also disjunct in the La Sal Mountains of Utah. 
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These plants have pinkish-purple anther tubes and white style branches, and the heads are 

arranged in a spiciform, erect arrangement. 

When Eastwood (1898) described Cnicus hesperius Eastw. from the San Juan Mountains 

of southwestern Colorado, she noted that it differed from C. eriocephalus phenotypically by the 

presence of erect heads and stamens with pubescent filaments and anthers. However, the 

pubescent filaments on the type specimen were later determined to be fungal mycelium (Moore 

& Frankton, 1965). Based on this finding, Moore and Frankton (1965) subsumed C. hesperius 

into synonymy with C. scopulorum. Keil (2006) later reinstated the taxon but placed it in the C. 

eatonii complex as variety hesperium.  

Varieties murdockii and peckii sensu Keil (2006) have tomentum on the involucral bracts, 

but it is not so dense as to obscure the bracts as in varieties eriocephalum and hesperium. 

Although described by Rydberg (1900, 1910) as separate species, C. tweedyi (Rydb.) Petr. and C. 

polyphyllum (Rydb.) Petr. were found to be conspecific by Moore and Frankton (1965). Cirsium 

murdockii (S.L. Welsh) Cronquist was first described (Welsh, 1982) as a variety of C. eatonii, 

only differing from var. eatonii by the presence of densely pubescent involucral bracts and 

ochroleucous disk florets. Keil (2006) synonymized C. murdockii, C. polyphyllum, and C. 

tweedyi with C. eatonii var. murdockii. Henderson (1939) noted the close affinity of C. peckii 

L.F. Hend. to C. scopulorum and C. clokeyi. Cirsium peckii is endemic to Steens Mountain and 

the Pueblo Mountains (Harney Co., OR) and adjacent Humboldt Co., NV.  

Not only is the C. eatonii complex sensu Keil (2006) resolved as polyphyletic, but 

varieties eatonii, eriocephalum, and hesperium are resolved as polyphyletic as well (Fig. 2.1D, 

H). I will first suggest solutions to parse out the polyphyletic variety eatonii. There are two 

distinct lineages of variety eatonii recovered: 1) accession 143 (Subclade C, BS=79, PP=0.95), 
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and 2) accession 66 (Subclade A, BS=78, PP=0.99). A third possible lineage consisting of 

accession 89 is resolved in Subclade F (BS=88, PP=0.53), but this resolution is not well-

supported in our BI. 

Of these three accessions, 143 from Duschesne Co., UT is geographically closest to the 

type locality for C. eatonii. All other accessions of varieties eatonii and murdockii from Utah are 

part of the North American clade polytomy. Morphologically, varieties eatonii and murdockii in 

Utah are nearly indistinguishable, with the only exception of variety murdockii possessing 

tomentum on the involucral bracts (Welsh, 1982; Cronquist, 1994). However, given the current 

morphological and molecular evidence, I am unable to discern if variety murdockii from Utah 

should be recognized as a distinct species or variety of C. eatonii. Therefore, I recommend 

retention of Keil’s (2006) treatment for these taxa.  

The second lineage (accession 66) of variety eatonii was collected in the Tushar 

Mountains in Piute Co., UT. This collection was originally assigned to C. eatonii var. harrisonii, 

a taxon that Keil (2006) subsumed under variety eatonii. However, this accession is a distinct 

evolutionary lineage from our other C. eatonii accessions (Fig. 2.1D). I therefore propose 

recognizing collections of variety eatonii from the Tushar Mountains under the new combination 

of C. harrisonii (S.L. Welsh) Ackerfield & Keil, comb. nov. Cirsium harrisonii exhibits marked 

morphological differences from C. eatonii in having dark purple involucral bracts and lower 

involucral bracts lacking lateral spines.  

Accession 89 of variety eatonii was collected in Elk Co., NV. This accession is supported 

in the same clade as our accession of C. eatonii var. viperinum in our ML analysis but is weakly 

supported for inclusion in our BI (Fig. 2.1H). However, both specimens are morphologically 

similar in having glabrate leaves, longer corollas (29–35 mm), and longer pappus bristles (20–25 
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mm), that are characteristic of variety viperinum sensu Keil (2006). In addition, variety 

viperinum is endemic to mountain tops in Nevada near the collection site for accession 89 of 

variety eatonii. I therefore propose recognizing Nevada collections corresponding to C. eatonii 

under the new combination of C. viperinum (D.J. Keil) Ackerfield & D.J. Keil, comb. nov. 

Therefore, C. eatonii as circumscribed here is now restricted to Utah. 

Second, I suggest solutions to parse out the polyphyletic variety eriocephalum. The 

lineage of C. eatonii var. eriocephalum consisting of accession 169 is now considered part of the 

C. griseum varietal complex (see discussion under C. clavatum). The remaining accessions 

corresponding to variety eriocephalum are resolved in three distinct evolutionary lineages (Fig. 

2.1D, H). First, accessions 97 and 168 from Colorado with purple anther tubes and white style 

branches are resolved in subclade B (BS=88, PP=0.93). Second, accession 124 from Colorado 

with white anther tubes and yellow style branches is resolved in subclade N (BS=89, PP=0.96). 

Lastly, accession 37 from the La Sal Mountains of Utah is resolved in subclade A (BS=78, 

PP=0.99). I suggest that these three phenotypes are in fact three different species that have been 

erroneously lumped under the broad umbrella of C. eatonii var. eriocephalum (i.e., C. 

scopulorum) as a result of shared morphology (densely woolly involucral bracts), similar alpine 

habitat, and/or examination of incomplete or faded herbarium specimens.  

I also find conflicting lines of evidence for which of the two Colorado lineages to 

recognize as the true C. scopulorum. The C. eriocephalum type specimens consist of mixed 

collections from both Charles Parry and Elihu Hall (Gray, 1863). These specimens have lost their 

corolla color and are thus currently unassignable to the purple or yellow form upon initial 

examination. However, the original description by Gray (1863) lists the corolla color as yellow. 

Based on this description, I could be inclined to assign the yellow form to C. scopulorum. 
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However, additional research into Parry’s collection sites reveals a stronger line of evidence for 

the purple form to be recognized as C. scopulorum. Charles Parry first visited the mountains of 

central Colorado in 1861, collecting alpine and subalpine plants for Asa Gray from what he 

labeled the “headwaters of Clear Creek and the alpine ridges lying east of Middle Park, Colorado 

Territory.” Parry returned to Colorado in 1862 with Hall and Harbour. The collection locality 

listed for all specimens from the 1862 expedition is much less informative: “Colorado Territory, 

lat. 39°–41°, alpine and subalpine.” However, through Parry’s letters to Gray I obtained a more 

accurate record of their 1862 collection destinations (Parry & Gray, 1861). Thanks to Parry’s 

notes, I found that this subsequent expedition began at the upper waters of the Platte near South 

Park (Park Co.). From there, they returned to Denver by way of Pike’s Peak (El Paso Co.), 

ascending the mountain peak on July 1st, 1862. From Denver, the expedition returned to Parry’s 

original collection site at the headwaters of Clear Creek (Clear Creek Co.) to determine the 

altitude of Torrey’s, Gray’s, and Engelmann peaks. They finished the expedition in the vicinity 

of Long’s Peak (Boulder Co.).  

Parry’s collections of C. eriocephalum include the designated lectotype specimen 

[U.S.A., CO Territory: from the headwaters of Clear Creek and the alpine ridges lying east of 

“Middle Park,” C. Parry s.n (HU)], and syntype and isosyntype specimens [U.S.A., CO 

Territory: lat. 39°–41°, alpine and subalpine, C. Parry s.n. (HU)]. Hall’s specimens include two 

collections designated as syntypes [U.S.A., CO Territory: Rocky Mountain Flora Lat 39°–41°, 

Hall & Harbour s.n. (HU)]. Hall collected specimens independently of Parry, to which Parry later 

assigned his own collection numbers. One of Hall’s specimens corresponds morphologically to 

Parry’s collections of C. eriocephalum. This specimen also contains a handwritten note from 

Hall in which he described the high alpine thistle as “dense, many headed yellow flowered 
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species but too young perhaps Parry got it in [a] better state.” Hall’s other collection is an 

atypical form and is most likely a collection of C. parryi. This specimen corresponds 

morphologically to Parry’s collection no. 340 of C. edule Nutt.? that Gray (1863) later described 

as a new species for Parry (C. parryi A. Gray; Gray, 1863). Parry may have inadvertently 

included Hall’s atypical collection in his own C. eriocephalum collections. 

Gray (1863) completed an enumeration of Parry’s collections, from which he described 

the new species C. eriocephalum for the alpine thistle. Although Gray (1863: 69) described C. 

eriocephalum as having “heads of yellow flowers…crowded into a capitate cluster as large as a 

man’s fist,” the only record from Parry or Hall of the yellow corolla color is Hall’s handwritten 

note on an immature specimen lacking visible corollas. Presumably, Hall recorded the corolla as 

yellow in reference to the yellow spines. In Parry’s letters to Gray (Parry & Gray, 1861), Parry 

noted the corolla color as “white.” Parry (Parry & Gray, 1861) further suggested “If new a very 

good name would be Cirsium scopulorum.” This reference to a “white” corolla is most likely 

referencing the white, tomentose hairs densely covering the involucral bracts. Therefore, neither 

type specimen was mature enough to determine the corolla color. The corolla color was therefore 

erroneously reported as yellow by Hall and then incorporated into the original species 

description by Gray.  

The only line of evidence strong enough to use to determine which form corresponds to 

the type of C. scopulorum is the locality of Parry’s first alpine thistle collection from Middle 

Park. The distribution of the purple form of C. eatonii var. eriocephalum lies well within the 

boundary of Middle Park (Fig. 2.2). Therefore, I propose that the binomial C. scopulorum be 

applied to the high alpine thistle of Colorado with purple anther tubes and white style branches, 

despite the original species description indicating the corolla as yellow.  
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Figure 2.2. Distribution map of alpine Cirsium taxa in the southern Rocky Mountains. C. 
griseum var. osterhoutii (X), C. griseum var. nov. (asterisk), C. hesperium (circle with X), C. 
scopulorum (circle with dot), C. scopulorum from Pike’s Peak (square with dot), C. sp. nov. 

‘Culebra range’ (star with dot), C. sp. nov. ‘La Sal Mts.’ (open diamond), and C. sp. nov. ‘yellow 

form’ (triangle with dot). 

 

Accession 124 of C. eatonii var. eriocephalum from Colorado with white anther tubes 

and yellow style branches is a distinct evolutionary lineage with a distinct geographic boundary 

separate from the purple form (now recognized as C. scopulorum; Fig. 2.2). I therefore propose 

that the yellow form be recognized as a new species. The presence of variety eriocephalum in 
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Utah has been limited to one disjunct population in the La Sal Mountains (Fig. 2.2; Welsh et al., 

2003). However, our accession from this locality is a distinct evolutionary lineage (Fig. 2.1H). 

Morphologically, specimens from this location do not correspond to any known described 

Cirsium species (Fig. 2.1E). Therefore, I propose that this population also be recognized as a 

new species. Accession 145 of variety eriocephalum from the Pike’s Peak, El Paso Co., 

Colorado population unfortunately is part of the North American-clade polytomy (Fig. 2.1H). 

These plants are markedly different morphologically from the other three phenotypes in having 

numerous heads tightly packed along the stem nearly to the ground (Fig. 2.1E). They are also 

geographically isolated from other populations (Fig. 2.2). Additional research may provide 

evidence that these represent yet another undescribed species, but for now I suggest using C. 

scopulorum for these plants.  

Lastly, I suggest solutions to resolve the polyphyletic variety hesperium. Our 

phylogenetic analysis indicates that variety hesperium as it is currently circumscribed consists of 

at least two independent evolutionary lineages (Fig. 2.1D, H). The first lineage (accessions 24, 

32, 101) is resolved in subclade H (BS=94, PP=0.99; Fig. 2.1H). These accessions were 

collected nearest to the type locality for C. hesperium (San Juan Mts., Colorado). I therefore 

propose that C. hesperium be reinstated for plants corresponding to variety hesperium from the 

San Juan Mountains of southwestern Colorado.  

The second lineage of variety hesperium (accessions 90 and 170) is resolved in subclade 

C (BS=79, PP=0.97; Fig. 2.1D). These accessions were collected in the Culebra Range of 

northern New Mexico and southern Colorado. These accessions represent yet another 

undescribed species (Fig. 2.2; C. sp. nov. ‘Culebra Range’). Upon initial examination, these 

accessions differ morphologically from C. hesperium sensu stricto in having green rather than 
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maroon-red stems (Fig. 2.1E). I will formally describe these two new species in a future 

publication. 

I also provide evidence for past and/or present hybridization of C. hesperium with C. 

parryi. Cirsium parryi is resolved in a clade with C. sp. nov. ‘Culebra Range’ (accession 170) 

and C. eatonii var. hesperium (accession 32) from the San Juan Mountains in our plastid gene 

tree (BS=99, PP=0.94; Fig. S1D). However, in our nuclear gene tree C. parryi is resolved in a 

clade with C. sp. nov. ‘Culebra Range’ (accession 90) from northern New Mexico (BS=100, 

PP=1.0; Fig. Suppl. Fig. 10). I hypothesize that C. hesperium migrated down mountain peaks 

during times of Pleistocene glaciation, hybridizing with lower elevation C. parryi prior to 

retreating back to mountain tops as glaciers receded.  

Variety peckii is a distinct evolutionary lineage from the other C. eatonii varieties sensu 

Keil (2006; Subclade A, BS=78, PP=0.99; Fig. 2.1D). I therefore propose reestablishing the 

binomial C. peckii L.F. Hend. Our single accession of variety clokeyi from Nevada is part of the 

North American-clade polytomy in our inferred phylogeny (Fig. 2.1H). Variety clokeyi does 

subtly differ morphologically from C. eatonii var. eatonii and is narrowly endemic to the Spring 

Range of Clark Co., Nevada (Fig. 2.1E; Keil, 2006). However, I do not currently have sufficient 

evidence to warrant recognition of this variety as a species (C. clokeyi S.F. Blake). I therefore 

recommend continued use of C. eatonii var. clokeyi for this taxon. Variety murdockii from 

Montana (accession 28) is also part of the North American-clade polytomy in our inferred 

phylogeny. Although separated geographically from variety murdockii in Utah, I cannot 

currently provide morphological or molecular evidence to support recognition of Montana 

accessions as a unique species. I therefore recommend continued use of Keil’s (2006) treatment 

for these taxa. 
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Keil (2006) hypothesized that the C. eatonii varietal complex constituted an alpine 

radiation. He postulated that during Pleistocene glacial episodes, the ancestor to the complex 

occupied lower elevations with a contiguous distribution. Subsequent isolation on mountain tops 

allowed them to morphologically diversify to the present extent. However, polyphyly of the C. 

eatonii varietal complex indicates that lowland congeners have undertaken multiple, independent 

dispersals to mountain tops.  

Cirsium fontinales complex and the CA-FP adaptive radiation clade 

The California Floristic Province (CA-FP) is characterized by a Mediterranean-like 

climate of cool, wet winters and hot, dry summers, and has been isolated for millions of years by 

major climatic and dispersal barriers (Ackerly, 2009; Baldwin, 2014). Coupled with the 

Mediterranean-like climate, stressful abiotic conditions such as serpentine soil, sand dunes, and 

brackish marshes are found in the CA-FP. This combination of unique climatic and abiotic 

conditions has facilitated high levels of plant endemism (Baldwin, 2014). Many groups of plants 

as well as animals have undergone recent diversification within the CA-FP (Moore et al., 2014), 

including thistles (Kelch & Baldwin, 2003). Within the CA-FP, 20 thistle taxa are endemic and 

an additional one (Cirsium praeteriens J.F. Macbr.) is presumed extinct (Keil & Turner, 1993).  

Kelch and Baldwin (2003) resolved a clade of the following seven extant taxa that they 

hypothesized underwent adaptive radiation in the CA-FP: C. andrewsii (A. Gray) Jeps., C. 

douglasii DC., C. fontinale var. fontinale, C. fontinale var. obispoense J.T. Howell, C. 

hydrophilum (Greene) Jeps., C. quercetorum (A. Gray) Jeps., and C. rhothophilum S.F. Blake. 

Most of these taxa are narrowly restricted in range and are remarkable for their ecological 

specialization in habitat use. For instance, members of the C. fontinale complex strictly occur on 

serpentine soil, a stressful ecological habitat in which plants must adapt to low levels of many 
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essential macronutrients, high levels of heavy metals, and low water-holding capacity 

(Kruckeberg, 1951; 1954; Brady et al., 2005). Cirsium fontinale is a tall (to 2.2 m), succulent 

perennial herb characterized by strongly undulate leaf margins, a mixture of non-glandular hairs 

and glandular-papillate hairs on the adaxial leaf surface, nodding heads, and greenish-purple to 

purple involucral bracts (Keil & Turner, 1992; Fig. 2.1F).  

Cirsium fontinale is currently subdivided into three varieties (Keil, 2006): campylon (H. 

Sharsm.) Pilz ex D.J. Keil & C.E. Turner, fontinale, and obispoense J.T. Howell. Each variety is 

narrowly restricted in range: variety campylon is known from the Mount Hamilton Range 

(Alameda, Santa Clara, and Stanislaus Cos.), variety fontinale is only known from the vicinity of 

Crystal Springs Reservoir (San Mateo Co.), and variety obispoense is only known from the 

southern Santa Lucia and San Luis Ranges (San Luis Obispo Co.; Keil & Turner, 1993; 

California Native Plant Society, 2019). Variety campylon was originally described as a C. 

campylon (Sharsmith, 1939) but was subsumed into C. fontinale by Keil & Turner (1992) based 

on phenotypic similarity among the three taxa and their shared affinity for serpentine soil.  

The CA-FP adaptive radiation clade is resolved in our inferred phylogeny within 

subclade A (BS=78, PP=0.99; Fig. 2.1D), but with the inclusion of four additional taxa (C. 

crassicaule, C. mohavense, C. scariosum var. citrinum (Petr.) D.J. Keil, and C. scariosum var. 

congdonii (R.J. Moore & Frankton) D.J. Keil. Also, contrary to the results of Kelch and Baldwin 

(2003), C. douglasii was not resolved in the CA-FP adaptive radiation clade in our inferred 

phylogeny. This species is not endemic to the CA-FP, so this result is not surprising. See 

discussions on the C. mohavense and C. scariosum complexes for discussion on these taxa.  

Cirsium fontinale is resolved as polyphyletic within subclade A. While varieties fontinale 

and obispoense are resolved in the CA-FP adaptive radiation clade, variety campylon is resolved 
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in a clade with other taxa from the Pacific Northwest (Fig. 2.1D). This result indicates that 

variety campylon is a distinct evolutionary lineage from the remainder of the C. fontinale 

complex. However, prior to recognizing this variety as a distinct species, I recommend waiting 

for the upcoming results of a population level study on the C. fontinale complex. 

Morphologically, variety campylon is intermediate with the other C. fontinales varieties. Because 

of the rarity of these taxa, I was only able to sample one specimen of each variety. Therefore, 

hybridization or contamination could be skewing these results. Additionally, the ETS and ITS 

gene trees conflict in the placement of variety campylon. In the ETS gene tree, variety campylon 

is resolved in a clade with the other C. fontinale varieties, albeit with low support (BS=69, 

PP=0.61; Fig. S1E). However, in the ITS gene tree, variety campylon is resolved in the same 

clade as seen in our concatenated results (BS=86, PP=0.89; Fig. S1F). I can rule out 

misidentification as a potential source of conflict, as the specimen of variety campylon used in 

our analysis was collected and verified by one of the authors (DJK).  

Cirsium occidentale (Nutt.) Jeps. is currently subdivided into seven varieties (Keil, 

2006), two of which [var. candissimum (Greene) Petr. and var. venustum (Greene) Petr.] were 

included in our phylogenetic analysis. Although some varieties are endemic to the CA-FP, C. 

occidentale is not a member of the adaptive radiation clade (Subclade K, BS=100, PP=1.0; Fig. 

2.1D). This is not surprising given that C. occidentale varieties are typically not restricted to the 

CA-FP or to specialized habitats.  

 While C. crassicaule is resolved in the CA-FP adaptive radiation clade in the nuclear 

gene tree (BS=100, PP=1.0; Fig. S1C), in the plastid gene tree it is resolved in a strongly 

supported clade with C. arizonicum var. tenuisectum, C. eatonii var. eriocephalum (accession 

124), and C. ownbeyi (BS=96, PP=0.8; Fig. S1D). I hypothesize that the discrepancy among 
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gene trees was the result of incomplete lineage sorting (ILS). The discordant geographical 

distribution and morphological dissimilarity of C. crassicaule to these other taxa make an 

alternative hypothesis of potential hybridization unlikely. 

Cirsium mohavense and C. virginense 

Cirsium mohavense and C. virginense S.L. Welsh are distributed in the southwestern U.S. 

near desert springs and seeps. These species share morphological features of a glutinous dorsal 

ridge on the involucral bracts, leaves decurrent as spiny wings, and corollas ranging from white 

to pale pink or lavender (Keil, 2006; Fig. 2.1G). There has been considerable disagreement 

among authors concerning the taxonomic treatment of C. virginense. When Welsh (1982) first 

described C. virginense, he did not attempt to distinguish C. virginense from C. mohavense 

because the latter was not known to occur in Utah. Cronquist (1994) provided the only known 

distinction between the two taxa in his treatment for the Intermountain Flora. Although 

Cronquist kept the two taxa separate, the only character he used to distinguish between them was 

life span (C. mohavense biennial vs. C. virginense perennial with creeping roots). Based on a 

lack of morphological distinction between the two taxa, Keil (2006) subsumed C. virginense 

within a broader C. mohavense. Cirsium virginense is a species of conservation concern in Utah 

(Utah Rare Plant Guide, 2003-2020). Therefore, the recognition of C. virginense apart from C. 

mohavense has land management and conservation effort implications.  

Together, C. mohavense and C. virginense are resolved in at least four distinct 

evolutionary lineages (Fig. 2.1D, H).  First, accession 43 of C. mohavense from San Bernardino 

Co., CA is geographically closest to the type locality [U.S.A., CA: Rabbit Springs, Mohave 

Desert, S.B. Parish & W.F. Parish 1834 (UC)]. This accession is resolved in the CA-FP adaptive 

radiation clade (Subclade A, BS=78, PP=0.99; Fig. 2.1D). Second, accession 97DBG of C. 
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mohavense from Death Valley, CA is resolved in subclade K (BS=100, PP=1.0; Fig. 2.1H). This 

accession is well-supported as sister to C. occidentale, but unfortunately the herbarium specimen 

is incomplete and only consists of a single head and a short stem with few leaves. Therefore, I 

cannot make any further taxonomic conclusions concerning this specimen beyond its 

determination as C. mohavense.  

Third, accessions of C. mohavense from Nevada (206DBG, 207DBG, and 209DBG) are 

resolved in subclade D (BS=76, PP=0.84) with C. virginense accessions 166DBG, 2ASDBG, 

3348DBG, 95DBG, and 96DBG from Arizona and accession 187DBG from near the type 

locality in Utah (Fig. 2.1D). Lastly, another accession of C. virginense (210DBG) from near the 

type locality is resolved in subclade G with C. rydbergii (BS=98, PP=0.91; Fig. 2.1H). All other 

C. mohavense and C. virginense accessions are either resolved in clades only supported in our 

ML analysis or part of the North American-clade polytomy (Fig. 2.1H).  

These results of four distinct evolutionary lineages indicate that C. mohavense sensu Keil 

(2006) should be restricted to southern California in distribution. However, I do not immediately 

discern any morphological differences among the C. mohavense California specimen and 

specimens from Nevada. Additionally, although accessions 187DBG and 210DBG of C. 

virginense are resolved in different subclades, both specimens were collected nearest the type 

locality for C. virginense [U.S.A., UT: St. George, Washington Co., S.L. Welsh 21234 (MO)]. I 

re-extracted DNA from both samples and re-amplified the ITS and ETS regions to eliminate 

contamination as a potential cause of this discrepancy. Given these conflicting results, I cannot 

currently discern if C. virginense should be recognized apart from C. mohavense. Therefore, I am 

working on a phylogenomic and morphometric study to clarify species boundaries in this group. 
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Cirsium rydbergii  

Hanging gardens occur on cliff faces or alcoves undercut along canyon walls, and are 

formed by perched aquifers that seep through the permeable sandstone (May et al., 1995). These 

unique environments occur throughout northwestern Colorado, northern Arizona, and southern 

Utah (Welsh, 1989; Sada & Lutz, 2016), forming a patchwork of “islands” along the canyon 

walls throughout the Colorado Plateau (Welsh, 1989). These desert oases also support many rare 

and endemic plants, including C. rydbergii (Welsh, 1989; Fig. 2.1I).  

 Cirsium rydbergii was described by Petrak (1917; C. rydbergii Petr.) and Rydberg (1917; 

as C. lactucinum Rydb.) from Rydberg’s San Juan Co., Utah collection [U.S.A., UT: Along San 

Juan River, near Bluffs, P.A. Rydberg 10001 (NY)]. Since then, the binomial C. rydbergii has 

been applied to any large-leaved thistle found in hanging gardens throughout Utah and Arizona, 

with the exception of the more recently described C. joannae S.L. Welsh, N.D. Atwood & L.C. 

Higgins (Welsh et al., 2003). However, in our inferred phylogeny, C. rydbergii is resolved as 

polyphyletic in at least three distinct evolutionary lineages (Fig. 2.1D, H).  

 The first lineage resolved consists of the two accessions (164DBG and 165DBG) that are 

geographically closest to the type locality (San Juan Co., UT). These accessions are resolved in 

subclade H with good support (BS=94, PP=0.99; Fig. 2.1H). Additionally, these specimens differ 

morphologically from the other accessions identified as C. rydbergii by having yellowish-green 

leaves, involucral bracts mostly ascending, and a flowering scape bearing long branches at the 

base (Fig. 2.1I).  

The second lineage consists of accessions DBG52, DBG58, and DBG185 from the north 

rim of the Grand Canyon, Coconino Co., Arizona at Buck Farms and Saddle Canyons. These 

accessions are resolved in our inferred phylogeny in subclade G (BS=98, PP=0.91; Fig. 2.1H). 
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They are also morphologically distinct from C. rydbergii sensu stricto in having dark green 

leaves, flowering stems unbranched, and longer involucral bract spines (Fig. 2.1I). Also in this 

lineage are accessions 196DBG, 67DBG, 1ASDBG, and 3ASDBG from Cliff Springs and Clear 

Creek Canyon also from the north rim of the Grand Canyon, Coconino Co., AZ. However, these 

plants differ markedly from the Buck Farms population in having dark green leaves that are 

densely spinose, leaves deeply pinnately dissected into narrow lobes, and involucral bract spines 

that are ascending versus spreading (Fig. 2.1I). Some of these collections have even been 

assigned to C. arizonicum var. bipinnatum because of their unique morphology and ambivalent 

identification. Although the Buck Farms and Cliff Springs populations may appear close 

geographically, they are separated by steep canyon walls and are thus reproductively isolated. 

Given the distinct phenotypes and geographic isolation of each population, I suggest that C. 

rydbergii as it is currently delimited is comprised of at least three different species. I will provide 

descriptions of the two new species from the Grand Canyon in a future publication.  

Another lineage consisting of accession 68DBG is weakly resolved in subclade D 

(BS=76, PP=0.84) with accessions of C. mohavense and C. virginense (Fig. 2.1D). This 

accession corresponds to the phenotype from Buck Farms in the Grand Canyon and was 

collected near the Buck Farms population. I hypothesize that this discrepancy is either the result 

of insufficient molecular character evidence or cryptic speciation.  

Cirsium scariosum complex 

The C. scariosum varietal complex is a polymorphic assemblage of eight infraspecific 

varieties sensu Keil (2006): americanum, citrinum, coloradense (Rydb.) D.J. Keil, congdonii, 

robustum D.J. Keil, scariosum, thorneae S.L. Welsh, and toiyabense S.L. Welsh. Taxa within 

this complex have been variously treated as species, or even erroneously treated as C. 
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drummondii Torr. & A. Gray or C. foliosum (Hook.) DC. in the past (Table 2.1; Moore & 

Frankton, 1967). In Moore and Frankton’s (1967) detailed treatment of the complex four species 

were recognized: C. acaulescens (A. Gray) K. Schum., C. coloradense (Rydb.) Cockerell ex 

Daniels, C. congdonii R.J. Moore & Frankton, and C. scariosum. However, they later revised 

this treatment to acknowledge the priorable binomial C. tioganum (Congdon) Petr. over C. 

acaulescens. Cronquist (1994) later subsumed all variation within the group within a broadly 

delimited, polymorphic C. scariosum. Keil (2006) ultimately combined both Cronquist’s (1994) 

and Moore and Frankton’s (1967) treatments by subdividing C. scariosum into the eight varieties 

listed above. 

Although polymorphic, taxa within the complex are united together morphologically by 

the presence of a dense cluster of sessile heads typically overtopped by crowded, distal leaves 

(Fig. 2.1J). The complex is subdivided by habit (acaulescent vs. caulescent). Varieties 

americanum and congdonii are acaulescent, while varieties coloradoense, thorneae, and 

toiyabense are caulescent. However, two varieties (citrinum and scariosum) may have 

acaulescent to caulescent plants within the same population (Cronquist, 1994; Keil, 2006). Five 

varieties (americanum, coloradoense, scariosum, thorneae, and toiyabense) are widespread in 

meadows and along streams throughout the Rocky Mountains and Intermountain Basin. Three 

other varieties (citrinum, congdonii, and robustum) are narrowly distributed in California and 

adjacent Oregon. 

Cirsium scariosum as delimited by Keil (2006) is resolved as polyphyletic in four distinct 

evolutionary lineages in our inferred phylogeny (Fig. 2.1D, H). First, variety scariosum is 

resolved in subclade L (BS=100, PP=0.96), sister to C. canovirens as delimited here (Fig. 2.1H). 

Second, the California endemic taxa (varieties citrinum and congdonii) are resolved in subclade 
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A (BS=78, PP=0.99) in the CA-FP adaptive radiation clade (Fig. 2.1D). Although sister in our 

inferred phylogeny, these taxa differ markedly in morphology and thus are not representative of 

the same species (Fig. 2.1J; Keil, 2006). I therefore propose recognition of each taxa as a distinct 

species: C. congdonii and a new combination of C. validum (Greene) Ackerfield & D.J. Keil, 

comb. nov. Variety citrinum was originally described as Carduus validus by Greene (1897), but 

this epithet was never transferred to Cirsium. It should be noted that I was not able to include C. 

loncholepis in our analysis because of scarcity of material available. This taxon is considered 

synonymous with C. scariosum var. citrinum by Keil (2006). It is currently listed as Threatened 

by the State of California and Endangered by the Federal Government (California Native Plant 

Society, 2019). 

Third, variety americanum is resolved in subclade H (BS=94, PP=0.99; Fig. 2.1D). 

Besides California varieties citrinum and congdonii, variety americanum is the only remaining 

member of the complex that is exclusively acaulescent. I therefore propose reinstatement of the 

binomial C. tioganum for specimens previously assigned to variety americanum. Lastly, variety 

coloradense is resolved in subclade B (BS=88, PP=0.93; Fig. 2.1D). I therefore propose 

reinstatement of the binomial C. coloradense for specimens previously assigned to variety 

coloradense. 

While I have remedied some of the varieties within the C. scariosum complex, the 

delineation of varieties robustum, thorneae, and toiyabense remains unclear. Accessions of 

variety toiyabense are resolved as part of the North American-clade polytomy (Fig. 2.1H) and I 

was unable to sample varieties robustum and thorneae. I therefore recommend continued use of 

Keil’s (2006) treatment for these varieties for the time being. I will include additional sampling 
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from this complex in a future phylogenomic study to further resolve relationships among these 

taxa as well as evaluate the status of C. loncholepis. 

Conclusions 

The assessment and ultimate preservation of biodiversity is reliant upon a well-delineated 

taxonomy based on a robust morphological and molecular systematic framework. This work is 

the first step in providing a broadly sampled systematic framework to inform species 

delimitations within North American Cirsium. I found that eight species as currently delimited 

(Keil, 2006) were resolved as polyphyletic. I have provided recircumscriptions, including 

evidence for the recognition of six new taxa, based on both morphological and molecular 

evidence. A sound taxonomy also provides a baseline for assessment of a species’ conservation 

status and helps inform protection policies. I expect to see an increase in number of species of 

conservation concern as the narrowly endemic species proposed here are described and 

population sizes quantified. Lastly, without a well-delineated taxonomy, previously undescribed 

species may be lost before they are ever recognized. This nearly occurred at the Grand Canyon 

Cliff Springs population in 2018, when a weed crew almost extirpated what is treated here as a 

newly recognized, narrowly endemic species. Increased awareness and plans to monitor and 

protect the population resulted from botanists’ collaboration with park staff, illustrating how 

important it is for botanists to work closely with land managers. 

I propose that the extensive taxonomic difficulty within Cirsium is the culmination of 

several factors. First, I suggest that some of the polymorphic variation can be attributed to 

previously undescribed taxa. Cirsium plants are extremely “prickly,” large in stature, and overall 

difficult to collect. Thus, herbarium specimens are often either few altogether or incompletely 

sampled. To counter this, I coupled our analysis of herbarium specimens and extensive field 
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work with iNaturalist (http://www.inaturalist.org) observations. These observations allowed us to 

easily discern variation in morphology across a species’ geographic range that I could not 

observe using herbarium specimens alone.  

Second, I propose that multiple lines of phenotypic convergence have complicated the 

taxonomy of the group. For example, Cirsium plants growing at high alpine elevations in the 

southern Rocky Mountains and adjacent Utah were previously identified under the broad 

umbrella of C. eatonii var. eriocephalum (i.e., C. scopulorum). However, I provide evidence that 

C. eatonii var. eriocephalum is an artificial assemblage of at least four different taxa (C. griseum, 

C. scopulorum, C. sp. nov. ‘La Sal Mts.’, and C. sp. nov. ‘Yellow Form’) that share an alpine 

distribution. I hypothesize that woolly involucral bracts evolved independently in these lineages 

in response to cold alpine conditions. Additionally, I infer a convergence of characters (narrowly 

campanulate heads, short stigmatic tips, and corolla lobes about twice as long as the throat) in 

thistles treated as C. arizonicum varieties sensu Keil (2006). I hypothesize that this convergence 

is in response to selection in favor of the hummingbird pollination syndrome.  

Third, I postulate that Cirsium has undergone a recent continental-wide radiation, and as 

such some species of Cirsium in North America may still be in the process of diversification 

(i.e., incipient speciation). Ackerfield et al. (2020) inferred that Cirsium in North America 

originated approximately 7.2 Myr, with most species diversifying within the last 2.0 –1.0 Myr. 

Here I have been able to provide molecular and morphological evidence to support some 

taxonomic delineations, but others remain unresolved. Therefore, I am working on a 

phylogenomic study of North American Cirsium, using targeted enrichment of highly 

informative nuclear regions designed specifically for Compositae (Mandel et al. 2014, 2015, 
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2017). This analysis will provide significantly more informative molecular characters available 

for phylogenetic inference and aid in resolving the remaining problematic taxa.  

Lastly, I propose that hybridization has played a role in diversification of Cirsium across 

North America. Hybridization is known to play a role in the diversification of plant lineages, 

especially in those that are younger and have had less time for establishment of reproductive 

barriers (Soltis & Soltis, 2009). While I provide some evidence for hybridization, the lack of 

resolution in the plastid region hinders identification of possible hybrids. Our phylogenomic 

study will provide additional insight into the role of hybridization in Cirsium diversification. 

This work offers important insights into the evolution of a recently radiated group in 

North America. This work also highlights the importance of observations, either through field 

studies or with the use of iNaturalist, apart from analysis of herbarium specimens. In future 

manuscripts I will formally describe the six new taxa proposed here and include dichotomous 

keys for identification. Our future phylogenomic study will further aid in resolving remaining 

taxonomic issues and elucidating evolutionary relationships. This study will also provide a 

robust framework to infer a biogeographic history of Cirsium in North America. In short, species 

delimitations in the thistles have been a mess. While I have made great strides to untangle 

delineations within Cirsium, the taxonomic challenges are many and additional questions remain 

unanswered. But, thistle be fixed! 

 

 

New combinations 
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Cirsium griseum (Rydb.) K. Schum. var. osterhoutii (Rydb.) Ackerfield & D.J. Keil, comb. nov. 

≡ Carduus osterhoutii Rydb., Bull. Torrey Bot. Club 32: 131. 1905. – Holotype: U.S.A., 

Colorado, Eagle Co., Red Cliff, 17 Jul 1902, G.E. Osterhout 2706 (NY!). 

 

Cirsium harrisonii (S.L. Welsh) Ackerfield & D.J. Keil, comb. nov. ≡ Cirsium eatonii (A. 

Gray) B.L. Rob. var. harrisonii S. L. Welsh, Great Basin Naturalist 42(2): 200. 1982. – 

Holotype: U.S.A., Utah, Piute Co., Tushar Mts., T28S R4W S8, alpine meadow, talus slope, 

3416 m elev., 16 Aug 1978, Welsh & Henroid 18084 (BRY!). 

 

Cirsium markaguntense (S.L. Welsh) Ackerfield & D.J. Keil, comb. nov. ≡ Cirsium clavatum 

(M.E. Jones) Petr. var. markaguntensis S.L. Welsh, Utah Fl. (ed. 3): 168. 2003. – Holotype: 

U.S.A., Utah, Iron Co., 10 mi up Cedar Canyon east of Cedar City, Spruce-fir community, 18 

Aug 1973, N.D. Atwood & L.C. Higgins 5918 (BRY!). 

 

Cirsium validum (Greene) Ackerfield & D.J. Keil, comb. nov. ≡ Carduus validus Greene, Flora 

Franciscana 4: 479. 1897. – Lectotype: U.S.A., California, Kern Co.: Tehachapi, 24 Jun 1889, 

E.L. Greene sn (ND!). 

 

Cirsium viperinum (D.J. Keil) Ackerfield & D.J. Keil, comb. nov. ≡ Cirsium eatonii (A. Gray) 

B.L. Rob. var. viperinum D.J. Keil, Sida 21(1): 212–213. 2004. – Holotype: U.S.A., Nevada, 

White Pine Co.: Snake Range, Humboldt National Forest, Snake Creek Canyon, above Johnson 

Lake, steep rocky slope, granite, 3353 m, 10 Aug 1964, Holmgren & Reveal 1588 (UTC!). 
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CHAPTER THREE – CONCLUSIONS AND NEXT STEPS 
 

 

 

 Since its inception, Cirsium has been a center of taxonomic confusion, both at the generic 

and species levels. These studies represent the most comprehensive systematic assessments of 

Cirsium and the Carduus-Cirsium group to date. And while great strides have been made in 

untangling the taxonomy of the Carduus-Cirsium group and Cirsium in North America, many 

questions remain unanswered. The generic study provides well-supported evidence that Cirsium, 

as it is currently delimited, does not form a natural, monophyletic group. However, before the 

Carduus-Cirisum group can be segregated into the genera proposed in solution two, additional 

morphological work must be done. First, examination of the rigid setae in additional members of 

Cirsium sect. Epitrachys must be performed. Sampling this character across a larger number of 

taxa is necessary prior to its utilization. Second, additional pollen analyses should be performed 

on the three discordant Asian species (C. botryodes, C. interpositum, and C. lidjiangense) to see 

if they have the C. palustre pollen type as well. These analyses will determine if these characters 

are stable to use for generic delimitations. The placement of the African Carduus remains 

unclear as well. Whether or not these taxa should be included within Cirsium or delimited as 

their own genus (Afrocarduus) is currently unclear. 

North American Cirsium is one of the most taxonomically confusing and challenging 

groups of Compositae, especially in the western states. Misinterpretation of faded or incomplete 

herbarium specimens, and the perpetuation of misapplied taxonomy have exacerbated this 

problem for well over 100 years. It was indeed a challenge to untangle the resulting thistle 

nomenclatural mess. The molecular phylogenetic results here provide novel, important insights 

for species delimitations. However, in Cirsium the taxonomic challenges are many. In the 

following instances, additional morphological and molecular work must be completed.  
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 First, the C. arizonicum complex needs additional work, as the species remains 

polymorphic across its range as it is delimited here. Within this varietal complex, it is still 

unclear whether variety tenuisectum should be recognized at the species rank, continue to be 

included as a variety of C. arizonicum, or is the result of hybridization between C. arizonicum 

and C. mohavense. This taxon is of conservation concern, and only known from two localities 

(New York Mts., CA and Spring Mts., NV; Keil, 2006). Thus, recognition of this taxon has land 

management implications. In addition, as it is only known from two localities, this taxon may be 

eligible for protection under the Endangered Species Act. Likewise, I was only able to sample 

one accession of C. arizonicum var. chellyense. Additional accessions of this variety must be 

included in a future phylogenetic study. Lastly, I was only able to include one accession of C. 

pulchellum. Therefore, additional samples of C. pulchellum must be carefully analyzed in a 

phylogenetic context to determine the ranges of C. pulchellum and the morphologically similar 

C. calcareum.  

 Second, great strides were made in untangling the C. clavatum taxonomic mess. Cirsium 

clavatum is now restricted to Utah in distribution, and all Colorado ‘C. clavatum’ are assigned to 

previously described taxa (C. centaureae, C. griseum, and C. scapanolepis). However, the 

lineage of C. griseum proposed as a new variety from Rocky Mountain National Park may 

represent introgression between C. scopulorum and lower elevation C. griseum. A thorough 

genetic study of the high alpine thistles of Rocky Mountain National Park is necessary to 

determine if these populations represent a cryptic species or hybrids. Questions remain such as: 

Have these thistles picked up some genes from lower down the mountain, retreated back up the 

mountain, and become genetically and/or morphologically differentiated enough to call a new 

species? A third future research project is to increase sampling of C. brevifolium, C. canovirens, 
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C. cymosum, and C. inamoenum. It is currently unclear as to the ranges of each species, as well 

as if C. subniveum should be recognized apart from C. inamoenum.  

 Fourth, the alpine thistles of the Rocky Mountains require additional systematic work. 

Again, while great strides were made to sort out the taxonomic mess of the C. eatonii varietal 

complex, some conclusions could not be made given the evidence at hand, leaving several 

questions remaining. One question that remains is: What is the common ancestor of the alpine 

thistles in Colorado? The backbone of the North American Cirsium clade was unresolved 

because of insufficient character evidence. Therefore, it is unclear how these alpine thistles are 

related to each other, only that they are distinct evolutionary lineages. Do the alpine thistles share 

a common ancestor, or do they represent independent colonization’s of mountain tops? 

Resolving the backbone of the North American clade would shed important insight onto the 

evolution of the alpine thistles. Because thistles in North America are hypothesized to have 

relatively recently radiated within the last 1–2 MYR, reconstructing the evolutionary history of 

the alpine thistles could shed important insight onto the formation of the alpine flora in the 

Rocky Mountains. Second, var. clokeyi and var. eriocephalum (i.e., C. scopulorum) restricted to 

Pike’s Peak were unresolved in this analysis. It is currently unclear whether these should be 

treated as distinct species. Each of these varieties is narrowly distributed in range, and endemic 

to a single mountain top. If they are treated as distinct species, this would have land management 

implications as they would mostly likely be considered species of conservation concern. Third, 

only one lineage of C. eatonii from Utah was resolved in this analysis. Additional accessions 

should be analyzed, including accessions of var. murdockii from throughout its geographic 

range. It is still unclear whether var. murdockii is a separate lineage from C. eatonii in Utah, or 
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whether var. murdockii in the northern part of the range (Montana, Wyoming) is distinct from 

the Utah populations. 

 Survival at high alpine altitudes is not easy, and several species have adapted to these 

harsh growing conditions in different ways. This includes cushion, low-growing, compact 

growth habits that are adapted to slow growth in nutrient-poor environments, anthocyanic leaves 

which absorb more heat, and dense coverings of hairs which protect plant reproductive structures 

from exposure to the cold (Billings, 1974). In the alpine thistles, a dense covering of hairs is 

produced on the involucral bracts, creating a warm environment for floral development. 

However, another morphological aspect that may have led to alpine thistle’s survival in these 

harsh climates is their duration as a monocarpic perennial. Monocarpic perennials persist as basal 

rosettes, and send up a flowering stalk only once prior to dying. Alpine thistles are remarkable in 

the alpine because they stand tall against a landscape of low-growing plants. Could the 

monocarpic perennial habit be an adaptation that allowed thistles to occupy and persist in the 

alpine environment, despite their height? If so, other questions remain such as how long do basal 

rosettes persist prior to flowering? Are there specific environmental conditions that plants favor 

for flowering?  

 Fifth, additional sampling of species in the CA-FP should be performed, in particular to 

include multiple accessions of all varieties of C. fontinale. Cirsium fontinale is a federally listed 

endangered species. It is so rare that I was only able to obtain material from variety campylon, 

and had to rely on previously published ETS and ITS sequences on GenBank for varieties 

fontinale and obispoense. Although C. fontinale was resolved as polyphyletic, additional samples 

of each variety must be examined prior to elevation of variety campylon as a distinct species 

from the other fontinale varieties. The three varieties are morphologically similar and all occur 
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on serpentine seeps, but in different locations within the CA-FP. Whether or not these results 

indicate convergence of variety campylon is debatable, as there is conflicting evidence among 

the gene trees as well.  

Sixth, the placement of C. mohavense in the CA-FP adaptive radiation clade needs 

careful examination and further study. It is odd that this species should be in the CA-FP clade, as 

it is the only taxon in the clade that does not occur strictly in the CA-FP. Cirsium mohavense and 

C. virginense remain taxonomical contentious given the current evidence as well. Although both 

species are resolved as polyphyletic, the support for this is not high and the morphological 

evidence does not support breaking up either respective taxon into separate species. Cirsium 

virginense is a taxon of conservation concern. Therefore it is important that I provide evidence 

for or against its recognition as a species distinct from C. mohavense.  

Seventh, there is much remaining work to be done in the C. scariosum varietal complex. I 

was not able to resolve or include all varieties within this complex in the analysis. In particular, 

varieties robustum and thorneae should be examined in a phylogenetic context to see if they are 

part of the C. scariosum varietal complex or would be better treated as distinct species. Cirsium 

loncholepis was also not included in this analysis because of its rarity. It is currently unclear if 

this taxon should be recognized as a distinct species or remain synonymous with C. validum. 

Cirsium loncholepis is listed as endangered under the Endangered Species Act, and thus 

recognition of this taxon has significant land management and conservation implications. 

Lastly, a phylogeographic analysis of hanging garden thistles (C. ownbeyi, C. rydbergii, 

and the two new species from the Grand Canyon) could aid in understanding mechanisms 

driving speciation on the Colorado Plateau. One way that I can better understand these 

mechanisms is by reconstructing the impact of historical and/or biogeographical processes 



95 

 

driving diversification in extant taxa. By incorporating phylogenetic, geologic, and paleoclimatic 

data, I can investigate the mechanisms driving present day distributions. Recently diverged sister 

taxa found in disparate habitats are of interest for examining the processes driving speciation. In 

particular, I can ask what climatic fluctuations and/or geologic events of the past shaped the 

species’ current distribution and led to the occupation of such disparate habitats.  

The Colorado Plateau of southwestern North America is a physiographic province of the 

Intermontane Plateaus region encompassing approximately 130,000 square miles of southeastern 

Utah, extreme western and southwestern Colorado, northwestern New Mexico, and the northern 

half of Arizona (Coats et al., 2008). It is bounded by the Rocky Mountains to the north and east, 

Great Basin to the west, and Sonoran Desert to the south. The Colorado Plateau ranges from 

2,000–12,700 ft. in elevation, and is comprised of high mountains deeply cut by the Colorado 

River canyon system, the most notable of which is the Grand Canyon. The origin and assembly 

of the flora of the Colorado Plateau has not been well studied despite the dynamic geologic and 

climatic history of the area and high levels (10-15%; Stohlgren et al., 2005) of plant endemism 

(Fowler et al., 2007). Thus, it is relatively unknown how the distributions of extant species on the 

Colorado Plateau have been shaped by habitat preference as well as Pleistocene glaciations and 

climatic oscillations (Talbot et al., 2013; Krause et al., 2015). Understanding the effects of 

climatic oscillations of the Last Glacial Maximum (LGM) on present day species’ and 

community distribution is also essential for predicting their future responses to global climate 

change.  

One of the most unique habitats of the Colorado Plateau is that of perennially wet 

hanging gardens. These hanging gardens are markedly different from the surrounding arid desert 

communities of the Colorado Plateau in having perennially wet rock walls or soils (Welsh, 1989; 
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Sada & Lutz, 2016). These desert oases are found in alcoves undercut along canyon walls, and 

are formed by perched aquifers that seep through the permeable sandstone (Fowler et al., 2007). 

These oases form a patchwork of “islands” along the canyon walls throughout the Colorado 

Plateau (Welsh, 1989). Much of our understanding of evolutionary processes is the result of 

island research (Santos et al., 2016). However, little research has been conducted on the origin or 

phylogeography of vegetation in hanging garden communities. In particular, these “island” 

habitats are useful for studying how the Colorado River has provided a corridor for dispersal 

from the Grand Canyon to higher-elevation regions in eastern Utah and western Colorado.  

As expected, such unique habitats also support many rare and endemic plants (Welsh, 

1989), including members of the genus Cirsium. Four species of Cirsium are endemic to hanging 

gardens of the Colorado Plateau: C. ownbeyi, C. rydbergii, and the two new species presented 

here from the north rim of the Grand Canyon. Although not previously discussed, Cirsium 

ownbeyi is found in the northern range of the Colorado Plateau in canyons in northwestern 

Colorado and adjacent Utah, while C. rydbergii and the two new hanging gardens species are 

found in the southern part of the Colorado Plateau in southeastern Utah and northcentral 

Arizona.   

Cirsium is an excellent system to study the origin and assembly of the flora of the 

Colorado Plateau, and the influence of Pleistocene glaciation and climatic fluctuations on present 

day species’ distributions for two reasons. First, although no one species occupies all hanging 

garden communities, Cirsium is found in over 75% of these unique habitats (Malanson, 1980). 

Second, the phylogeny of North American Cirsium indicates three well-supported instances of 

sister-species pairs comprised of taxa found in hanging gardens of the Colorado Plateau together 

with other species growing montane or alpine habitats of the surrounding mountains. For 
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example, C. ownbeyi is sister to a new species of thistle (Cirsium sp. nov. ‘Yellow form’), a 

common alpine species in the adjacent Colorado Rocky Mountains.  The two new species of 

hanging garden thistles from the north rim of the Grand Canyon are sister to C. clavatum from 

the mountains of southern Utah. And C. rydbergii, found in hanging gardens in southeastern 

Utah, is sister to C. hesperium from the alpine habitat of the Colorado San Juan Mountains.   

To date, no studies of species’ responses to Late Quaternary glacial cycles have been 

conducted for the Colorado Plateau. Distributional responses to past climate change of each 

species and possible Pleistocence refugia sites on the Colorado Plateau will be evaluated by 

using ecological niche models (ENMs) in conjunction with paleoclimatic reconstructions from 

the LGM (Waltari et al., 2007). ENMs take known occurrences of species in combination with 

high resolution climate and soil data to predict the species’ inferred environmental requirements 

or fundamental niches (Guisan & Zimmerman, 2000). ENMs will be generated for each of these 

species to characterize the current spatial distribution of suitable conditions for each, and to 

reconstruct their predicted distribution in the LGM.   

Two alternative hypotheses that could explain the disparate habitats of these sister taxa 

are as follows. First, vicariance, wherein a common ancestor is unable to persist in a changing, 

warming climate and its distribution becomes isolated and fragmented, separates into two 

species. Second, dispersal between geographically isolated glacial refugia followed by in situ 

diversification.  BioGeoBEARS (Matzke, 2013, 2014) can be used to test how different models 

of dispersal, vicariance, and founder event speciation may have evolved (Matzke, 2013, 2014).  

The phylogeny for Cirsium presented here has low resolution at the backbone of the 

North American clade. This is presumably because of the low DNA sequence divergence in the 

recently radiated North American thistles. Fortunately, resolution of recently evolved groups is 
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becoming more feasible with the advent of high-throughput DNA sequencing, Through high 

throughput sequencing (HTS) techniques, we are now able to analyze millions of basepairs of 

DNA characters versus the relatively few (generally 4000–10,000) available using traditional 

Sanger sequencing technology. This has resulted in a dramatic increase in character evidence 

necessary for reconstructing robust, well-resolved phylogenies. In particular, the Hyb-Seq 

approach has shown great utility in resolving recently radiated groups (Mandel et al., 2014). 

Hybridization-sequencing (Hyb-Seq) is a combination of target enrichment and genome 

skimming. Hyb-Seq uses ‘baits’ (probes) to enrich specific target loci from DNA. This method 

allows for data collection of low-copy nuclear genes and high-copy genomic targets for 

evolution and phylogenetic studies. Low-copy nuclear genes are especially important in 

phylogenetic reconstruction as they contain more informative characters than high-copy plastid 

genes, and are thus useful for studying species level relationships. Low-copy genes are also 

important for minimizing orthology issues in downstream analyses. In addition to recovery of the 

target loci, in the Hyb-Seq method off-target reads are also usually recovered. These off-target 

reads include plastid and mitochondrial DNA, repetitive DNA, and regions adjacent to the target 

loci which often include intronic regions (Mandel et al., 2017).   

Mandel et al. (2017) successfully used Hyb-Seq data to reconstruct relationships across 

major lineages of Compositae as well as among closely related species belonging to the genus 

Helianthus (sunflowers). In a future research project, I will use this established Hyb-Seq protocol 

to reconstruct a well-resolved phylogeny for Cirsium in North America. I selected this protocol 

for following three reasons. First, this method has been shown to resolve evolutionary 

relationships at all taxonomic levels within the Compositae (Mandel et al., 2017). Second, this 

protocol is amenable to sequencing DNA from herbarium specimens, because it is robust to 
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DNA degradation. This is particularly useful for studying Cirsium diversification in North 

America. For example, additional sampling of C. rydbergii from throughout its range is 

necessary to include populations from unsampled geographic areas. Because many of these 

localities are difficult to access or inaccessible other than by rafting, many samples will be taken 

from previously collected herbarium specimens. Third, the data will be readily combinable with 

other worldwide studies of Compositae using the same bait probe set. This method will allow for 

development of a phylogeny with additional resolution among North American Cirsium.  

A well-resolved phylogeny is also critical to inferring the biogeographic history of 

Cirsium in North America. A major goal of evolutionary biology is to understand the abiotic 

(e.g., climate change, mountain uplift, soil chemistry) and biotic (e.g., pollinator preference, fruit 

dispersal, growth form, chemical defenses, floral morphology) factors that facilitate and/or 

promote diversification (the rate that new species form and other species go extinct) within 

lineages and shape patterns of species’ distribution. The interplay of abiotic and biotic factors 

generates selective pressures, stimulating morphological diversity and adaptive innovations. 

Speciation occurs when sufficient ecological, functional, or reproductive differences have 

accumulated, resulting in evolutionary independence from progenitors (De Queiroz, 2007). Over 

time, species must either isolate in unaltered ecosystems, or diversify and adapt to changing 

abiotic and biotic pressures. Ultimately, failure to either isolate or adapt puts species at risk of 

extinction.  

The factors influencing diversification are often studied in lineages that have undergone 

radiations (Givnish et al., 2009). The term ‘radiation’ has several differing conceptual definitions 

(e.g., adaptive radiations, non-adaptive radiations, rapid radiations, exaptive radiations; Rundell 

& Price, 2009; Losos & Mahler, 2010), but essentially each concept incorporates two processes: 
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the adaptation of a lineage to changing biotic and/or abiotic conditions, and lineage (species) 

diversification. In particular, in an adaptive radiation, a single lineage rapidly diversifies into 

multiple lineages which are specialized to inhabit unique ecological niches (Givnish et al., 2009). 

I hypothesize that Cirsium has undergone a recent continental-wide radiation across 

North America, with most extant taxa originating 1–2 Myr. The distributions of North American 

Cirsium are undoubtedly influenced by edaphic and topographic conditions, climate and 

moisture availability, and substrate specificity. Most native thistles are restricted to specific 

ecological niches including prairies, salt marshes, sand dunes, pine barrens, shale barrens, alpine 

tundra, limestone cliffs, hanging gardens, and desert seeps (Keil, 2006). The evolutionary history 

and origin of alpine plants in NA mountain systems is in particular not well understood. It is 

unclear whether alpine species originate from multiple lowland progenitors to mountain tops, or 

constitute alpine radiations assisted by long-distance dispersal across geographic barriers. 

Within North America, numerous unique ecological niches are present, with the majority 

of ecological diversity occurring in the western states and Mexico, including the California 

Floristic Province (CA-FP), a known biodiversity hotspot (Baldwin 2014). The diversity of 

younger lineages, especially in western NA, has been hypothesized to be the result of several 

factors. First, the wide array of diverse biomes, climates, and topography across NA have 

undoubtedly contributed to the observed floristic abundance by providing ecological 

opportunities that facilitated rapid diversification. Second, aridification of the west during the 

Quaternary provided ecological opportunity for many lineages to expand and diversify. Third, 

hybridization has also long been known to play a role in the diversification of plant lineages, 

especially in those that are younger and have had less time for establishment of reproductive 

barriers (Kleinkopf et al., 2019). Evidence suggests that introgression is common in the 
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evolutionary history of many plant lineages (Mallet, 2005). However, it is often difficult to 

separate hybridization from incomplete lineage sorting (ILS), especially in recently radiated 

lineages (Kleinkopf et al., 2019). 

Despite the abundance and diversity of plant lineages throughout western NA, the factors 

influencing their diversification have been relatively unstudied. Because these regions have, at 

least in a geologic timescale, only recently been opened for occupation, lineages that have taken 

advantage of ecological opportunity are also more recently diverged. Thus, these younger 

lineages generally lack sufficient character evidence to resolve phylogenetic relationships among 

species given traditional Sanger sequencing methods. Therefore, studying the factors effecting 

the diversification and biogeography of these lineages, especially in western NA, has been 

greatly hindered.  

Use of the Hyb-Seq method will greatly enhance our understanding of thistle 

diversification and speciation in North America by providing significantly more informative 

characters with which to build a well-resolved phylogeny. This phylogeny will then be used to 

reconstruct the biogeographic history of North American thistles. The biogeographic study will 

address questions such as: Was the ancestral biome for Cirsium in North America xeric or 

mesic? Is there an association with the expansion of thistles and an increase in arid 

environments? Are there hotspots of diversity, such as the CA-FP, that have had a longer time 

for speciation? Has dispersal away from these hotspots been limited by phylogenetic niche 

conservatism and an inability to adapt to different niches? How did Quaternary glaciation cycles 

affect the distribution of modern North American Cirsium distributions?  

The future study of the hanging garden thistles will provide valuable insight into how 

hanging garden and alpine plant species are related, and serve as a predictor for other non-
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Cirsium plant lineages. Coupling high throughput sequencing with ecological-niche modeling 

will provide additional insights into the past distributions of extant plant lineages and the current 

genetic variation across the Colorado Plateau.  

A robust phylogeny is also necessary to determine if lineages may have arisen through 

hybridization. The impact of incomplete lineage sorting in the evolutionary history of the group 

can also be determined by examining discordant gene trees. In combination with additional 

morphological analyses, a robust phylogeny built from Hyb-Seq data will also aid in sorting out 

any contentious or remaining taxonomic issues, such as those mentioned above. 

In short, there are many questions remaining in the study of the thistles. These future 

studies will aid in resolving remaining taxonomic issues, inferring the biogeographic history of 

thistles in North America, and enhancing our understanding of the processes influencing 

speciation. I look forward to working on these future projects and continuing to untangle the 

taxonomy of Cirsium. 
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Appendix 1 

Voucher data, sources of material, and GenBank accession numbers for the 173 taxa included 

in this work.Voucher data are in the following format: taxon name, country, locality, collection 

and collection number, herbarium of deposition and unique specimen identifier, ITS, ETS, matK, 

ndhF, psbA-trnH, trnL-trnF GenBank accession numbers, and chromosome count (n). An “–“ 

indicates missing data; an asterisk (*) indicates new sequence data. 

Brachylaena discolor DC., AY826236, –, AY85090, AF233828, –, AY772280; Carduus  

acanthoides L., JX867641, JX867669, KT249935, –, –, KC969560, n=11; Carduus adpressus  

C.A.Meyer, KT013056, –, –, –, –, –, n=9; Carduus amanus Rech.fil., KT013057, –, –, –, –, –; 

Carduus candicans Waldst.& Kit., KT013061, –, –, –, –, –, n=8; Carduus carlinoides Gouan, 

AY826240, –, AY013527, KC589931, –, AY772284, n=9; Carduus crispus L., GU188570, –, 

JN894376, –, AY914835, AY914855, n=8; Carduus defloratus L., AY826241, –, AY785091, 

KC589932, HG800511, AY772285, n=11; Carduus keniensis R.E.Fr., KC590040, –, KC590013, 

KC589933, –, KC590047, n=17; Carduus lanuginosus Willd., KT013065, –, –, –, –, –; Carduus 

macrocephalus Desf., KY242485, –, –, –, –, –, n=8; Carduus nawaschinii Bordz., KT013069, –, 

–, –, –, –; Carduus nutans L., AF443678, JX867670, KC969472, KT176826, AF129839, 

AF129825, n=8; Carduus nyassanus R.E.Fr., KC590041, –, KC590014, KC589934, –, 

KC590048, n=17; Carduus olympicus Boiss., KT013085, –, –, –, –, –; Carduus pycnocephalus 

L., EF123105, –, AY013528, –, –, KC969561, n=31; Carduus tenuiflorus Curtis, AF443679, 

AF443731, KC969473, –, –, KC969562, n=27; Carduus tmoleus Boiss., KT013085, –, –, –, –, –, 

n=11; Carduus transcaspicus Gand. subsp macrocephalus Kazmi, KT013066, –, –, –, –, –, n=17; 
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Carlina acanthifolia All., KF301216, KF301145, AY013529, KC589935, –, KF301173; 

Chuquiraga avellanedae Lorentz, KJ789754, –, EU841333, –, EU841281, EF530276; Cirsium 

aduncum Fisch. & C.A.Meyer ex DC., Turkey: Yildiz sn (CDA Yildiz pers. herb.), MN335104*, 

MN230923*, –, –, –, MN314878*, n=17; Cirsium agregatum Ledeb., Turkey: Trabzon, Caykara, 

20 Aug 2006, Yildiz 16466 (CDA Yildiz pers. herb.), MN335058*, MN230878*, –, –, –, –; 

Cirsium alatum (S.G.Gmel.) Bobrov, Turkey: Erzurum, 3 Aug 2006, Yildiz 16280 (CDA), 

MN335057*, MN230877*, –, –, –, MN314880*; Cirsium alpis-lunae A.J.B.Brilli-Cattarini & 

L.Gubellini, KC969542, –, KC969495, –, –, KC969579, n=17; Cirsium altissimum (L.) Hill, 

U.S.A.: Kansas, Harvey Co., Corner of Rock Rd.and NE 36th St., Newton, 5 Aug 2016, 

Ackerfield 16-103 (CS Ackerfield pers. herb.), MN335120*, MN230941*, MN275358*, 

MN275377*, MN275444*, MN314901*, n=9; Cirsium amani Post, Turkey: Osmaniye, Yildiz 

16421 (CDA Yildiz pers. herb.), MN335056*, MN230876*, –, –, –, –; Cirsium anartiolepis 

Petr., Mexico: Unam, Rumbo al llano de los Tres Gobernadores, 20 Mar 2005, M.Tenorio 994 

(MEXU 1172327), MN335122*, MN230945*, MN275345*, MN275380*, MN275442*, 

MN314938*, n=17; Cirsium andersonii (A.Gray) Petr., U.S.A.: Nevada, Washoe Co., Hwy 431 

at overlook area, 28 Aug 2009, L.Rowe sn (RENO 49919), MN335131*, MN230959*, –, 

MN275370*, MN275432*, MN314910*, n=16; Cirsium andrewsii (A.Gray) Jeps., U.S.A.: 

California, Santa Clara Co., off the side of Marine Dr., 28 Apr 2012, D.Park 327-1 (DAV 

210229), MN335133*, MN230965*, MN275320*, MN275391*, MN275421*, MN314913*, 

n=16; Cirsium arizonicum (A.Gray) Petr.var.arizonicum, U.S.A.: Arizona, Coconino Co., 

Coconino National Forest N rim of West Fork Canyon, 14 Jun 2001, E.Gilbert 712 (ASU 

246878), MN335141*, MN230979*, MN275327*, MN275404*, MN275465*, MN314929*, 

n=16; Cirsium arvense (L.) Scop., AY826264, AF443734, KC969499, –, HQ596645, 
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KC969583, n=17; Cirsium arvense (L.) Scop., U.S.A.: Illinois, Cook Co., 12 Jun 1998, D.Kelch 

s.n.(UC), MN335070*, MN230890*, –, –, MN275410*, MN314882*, n=17; Cirsium arvense 

(L.) Scop., France: Montpellier, ex seed distributed ARC, MN335071*, MN230891*, –, –, 

MN275411*, MN314883*, n=17; Cirsium arvense (L.) Scop., JX867618, AF443734, –, –, –, –, 

n=17; Cirsium aytachii H.Duman & R.R.Mill, Turkey: 16 Jul 2007, Yildiz 16439 (CDA Yildiz 

pers. herb.), MN335073*, MN230893*, –, –, –, –; Cirsium baytopae Davis & Parris, KC969545, 

–, KC969500, –, –, KC969584; Cirsium bertolonii Spreng., KC969546, –, KC969501, –, –, 

KC969585, n=17; Cirsium boluense Davis & Parris, Turkey: 22 Aug 2007, Yildiz 16612 (CDA 

Yildiz pers. herb.), MN335074*, MN230894*, –, –, –, –; Cirsium botryodes Petr.ex Hand.-

Mazz., MH710807, –, –, –, –, –; Cirsium bracteosum DC., Turkey: Agri, 12 Aug 2007, 

T.Dirminci 3551 (CDA Dirminci pers. herb.), MN335076*, MN230896*, –, –, –, –, n=17; 

Cirsium brevifolium Nutt., U.S.A.: Idaho, Adams Co., Hells Canyon Rd, 26 Jun 2011, D.William 

2011-30 (SRP 191909), MN335106*, MN230925*, MN275356*, –, MN275417*, MN314887*, 

n=11; Cirsium brevistylum Cronquist, U.S.A.: Oregon, Yamhill Co., Walker Flat, 5 Jul 1995, 

R.Halse 4944 (OSC 183033), MN335132*, MN230963*, MN275335*, MN275389*, 

MN275408*, MN314912*, n=17; Cirsium bulgaricum DC., Turkey: Giresun, 22 Aug 2006, 

Yildiz 16391 (CDA), MN335077*, MN230897*, –, –, –, –, n=15; Cirsium byzantinum Steud., 

Turkey: B.Yildiz sn (CDA), MN335078*, MN230898*, –, –, –, –; Cirsium candelabrum Griseb., 

Turkey: Kirklarell, Yildiz BY16525 (CDA), MN335079*, MN230899*, –, –, –, –, n=17; Cirsium 

canescens Nutt., U.S.A.: Wyoming, Carbon Co., Muddy Gap, 7 Aug 2016, Ackerfield 16-113 

(CS Ackerfield pers. herb.), MN335146*, MN230938*, MN275350*, MN275367*, 

MN275447*, MN314898*, n=17; Cirsium canum All., AF443689, AF443740, KT250105, –, –, 

–, n=17; Cirsium canum All., France: Montpellier, ex seed distributed ARC, D.Kelch DGK 
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01.030 (UC), MN335063*, MN230883*, –, –, –, –, n=17; Cirsium carolinianum (Walter) 

Fernald & B.G.Schub., U.S.A.: South Carolina., Lancaster Co., Langley Branch, 21 May 2014, A 

Pittman sn (USCH 05211401), MN335109*, MN230928*, MN275354*, –, MN275454*, 

MN314890*, n=10; Cirsium cassium Davis & Parris, Turkey: Hatay, Yildiz 16420 (CDA Yildiz 

pers. herb.), MN335080*, MN230900*, –, –, –, –; Cirsium caucasicum (Adams) Petr., Turkey: 

Ardahan, 17 Aug 2006, Yildiz 16329 (CDA Yildiz pers. herb.), MN335059*, MN230879*, –, –, 

–, –; Cirsium cephalotes Boiss., Turkey: Giresun, 5 Jul 2007, Yildiz 16386 (CDA Yildiz pers. 

herb.), MN335060*, MN230880*, –, –, –, –; Cirsium ciliatum Moench, Turkey: Van, between 

Ercis & Patnos, 13 Aug 2017, T.Dirmenci 3564 (CDA Yildiz pers. herb.), MN335061*, 

MN230881*, –, –, –, –; Cirsium clavatum (M.E.Jones) Petr. var. clavatum, U.S.A.: Utah, 

Garfield Co., Allen Well & Pelham Draw, 21 Jul 2004, M.Madsen & H.Lovell 1853 (BRY 

472985), MN335158*, MN230975*, MN275329*, MN275401*, MN275463*, MN314930*, 

n=17; Cirsium clavatum (M.E.Jones) Petr. var. osterhoutii (Rydb.) D.J.Keil, U.S.A.: Colorado, 

Eagle Co., off Hwy 24 south of Tennessee Pass, 26 Jun 2016, Ackerfield 16-38 (CS Ackerfield 

pers. herb.), MN335139*, MN230976*, MN275328*, MN275402*, MN275464*, MN314917* 

n=17; Cirsium coahuilense G.B.Ownbey & Pinkava, Mexico: Coahuila, At Hermanas at Hot 

Springs W of Hwy 57, 9 Jun 2004, Henrickson 23575 (MEXU 1439450), MN335164*, 

MN230961*, –, –, MN275468*, –, n=15; Cirsium conspicuum (G.Don) Sch.Bip., Mexico: 

Guerrero,Taxco, 28 May 1998, R.Duran 2302 (MEXU 901981), MN335125*, MN230946*, –, –, 

MN275441*, MN314926*, n=17; Cirsium cosmelii Adams ex DC., Turkey: Yildiz sn (CDA 

Yildiz pers. herb.), MN335064*, MN230884*, –, –, –, –, n=17; Cirsium crassicaule (Greene) 

Jeps., U.S.A.: California, Kern Co., along west bank of outlet canal near Adobe, 30 May 2004, 

Moe 2591 (RSA 709002), MN335121*, MN230944*, MN275346*, MN275379*, MN275443*, 
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MN314903*, n=16; Cirsium creticum (Lam.) D'Urv., Turkey: Cannakale, 31 Jul 2007, Yildiz 

16495 (CDA Yildiz pers. herb.), MN335081*, MN230901*, –, –, –, –, n=17; Cirsium cymosum 

(Greene) T.Howell var. canovirens (Rydb.) D.J.Keil, U.S.A.: California, Kern Co., 9 May 2004, 

D.Keil 30302-8 (OBI 67343), MN335114*, MN230934*, MN275314*, –, MN275448*, 

MN314894*, n=17; Cirsium discolor (Muhl.ex Willd.) Spreng., AF443692, AF443744, 

KP643137, GU817845, GU818355, GU817988, n=10; Cirsium douglasii DC. var. breweri 

(A.Gray) D.J.Keil & C.E.Turner, U.S.A.: California, Trinity Co., 58.3 mi W of Red Bluff along 

rt 36, 25 Jun 2003, Funk 12450 (RSA 736179), MN335126*, MN230948*, –, MN275382*, 

MN275439*, MN314904*, n=15; Cirsium douglasii DC. var. douglasii, U.S.A.: Nevada, 

Ormsby Co., Kings Canyon, 15 Jul 2001, A.Tiehm 13690 (RENO 49971), MN335159*, 

MN230980*, MN275326*, MN275405*, MN275466*, MN314933*, n=17; Cirsium eatonii 

(A.Gray) B.L.Rob. var. eatonii, U.S.A.: Utah, Duchesne Co., Uinta Mountains Hades Canyon, 

19 Aug 2009, S.Goodrich 27674 (USU 478715), MN335113*, MN230933*, MN275317*, –, 

MN275449*, MN314893*, n=17; Cirsium eatonii (A.Gray) B.L.Rob. var. eriocephalum 

(A.Gray) D.J.Keil, U.S.A.: Colorado, Park Co., Mount Sherman west of Fairplay, 9 Aug 

2015,.Ackerfield 15-127 (CS Ackerfield pers. herb.), MN335108*, MN230927*, MN275321*, –, 

MN275455*, MN314889*, n=17; Cirsium eatonii (A.Gray) B.L.Rob. var. peckii (L.F.Hend.) 

D.J.Keil, U.S.A.: Oregon, Harney Co., Steen's Mountain, 20 Jul 2007, Y.Yuan 07-19 (WTU 

386209), MN335110*, MN230929*, MN275322*, –, MN275453*, MN314891*, n=16; Cirsium 

eatonii (A.Gray) B.L.Rob. var. viperinum D.J.Keil, U.S.A.: Nevada, White Pine Co., Schell 

Creek Range, 25 Aug 1998, A.Tiehm 12690 (RENO 51636), MN335137*, MN230983*, 

MN275324*, MN275369*, MN275412*, MN314919*, n=17; Cirsium echinus (M.Bieb.) Hand.-

Mazz., AY826263, –, AY013535, KC589950, –, AY772305, n=17; Cirsium edule 
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Nutt.var.edule, U.S.A.: Oregon, Lane Co., Along FS Rd 35, 29 Jul 2008, R.Halse 7484 (OSC 

219119), MN335143*, MN230964*, MN275334*, MN275390*, MN275409*, MN314922*, 

n=17; Cirsium ehrenbergii Sch.Bip., Mexico: Oaxaca: Dt.Miahuatlan, 1.4 km antes de 

Zapotitlan, 3 Aug 2011, R.Martinez 433 (MEXU 1303352), MN335157*, MN230958*, 

MN275310*, MN275372*, MN275433*, –, n=18; Cirsium ekimianum Yildiz & Dirmenci, 

Turkey: Erzurum, ca.10 km from Aşkale, 12 Aug 2007, Yildiz 16270 (CDA Yildiz pers. herb.), 

MN335082*, MN230902*, –, –, –, –; Cirsium ellenbergii Bornm., Turkey: Maraş, Göksun, 2 

Sep 2006, Yildiz 16430 (CDA), MN335083*, MN230903*, –, –, –, –; Cirsium engelmannii 

Rydb., U.S.A.: Texas, Tarrant Co.,  Tandy Hills Natural Area, 10 Jun 2016, M.B.Best 346a (CS 

Ackerfield pers. herb.), MN335148*, MN230947*, MN275344*, MN275381*, MN275440*, 

MN314925*, n=10; Cirsium eriophorum (L.) Scop., Austria: South Wien, 24 Jul 2005, Yildiz sn 

(CDA), MN335084*, MN230904*, JN895546, –, –, MN314877*, n=17; Cirsium erisithales 

(Jacq.) Scop., KC969550, –, KC969508, –, –, KC969592, n=17; Cirsium flodmanii (Rydb.) 

Arthur, U.S.A.: Colorado, Larimer Co., Soapstone Prairie Natural Area, 7 Aug 2012, J.McAleer 

430a (CS 110317), MN335107*, MN230926*, MN275357*, –, MN275456*, MN314888*, 

n=11; Cirsium fontinale (Greene) Jeps.var. campylon (H.Sharsm.) Pilz ex Keil & C.Turner, 

U.S.A.: California, Santa Clara Co., N of Morgan Hill on US 101, 11 Aug 1998, D.Keil 27922 

(OBI 57723), fontinale (Greene) Jeps. var. fontinale, AF443695, AF443747, KC969509, –, –, –, 

n=17; Cirsium fontinale (Greene) Jeps. var. obispoense T.Howell, AF443696, AF443748, –, –, –, 

–, n=17; Cirsium grahamii A.Gray, U.S.A.: New Mexico, Catron Co., Gila Cliff Dwellings, 23 

Aug 2002, E.Bennett 185 (ARIZ 364086), MN335150*, MN230971*, MN275332*, 

MN275397*, MN275413*, MN314941*, n=16; Cirsium handaniae Yildiz, Dirmenci & Arabaci, 

Turkey: Ardahan, 17 Aug 2006, B.Yildiz 16333 (CDA Yildiz pers. herb.), MN335085*, 



130 

 

MN230905*, –, –, –, –; Cirsium handelii Petr.ex Hand.-Mazz., China: Yunnan, 12 Jul 2000 

(CAS Kelch pers. herb.), MN335086*, MN230906*, –, –, –, –; Cirsium henryi (Franch.) Diels, 

AF443697, AF443749, –, –, –, –; Cirsium heterophyllum (L.) Hill, KX166058, –, JN895548, –, –

, GQ244802, n=17; Cirsium hydrophilum (Greene) Jeps., AF443698, AF443750, KC969510, –, 

–, KC969594, n=16; Cirsium hypoleucum DC., Turkey: Kastamonu, Ilgaz, 23 Aug 2006, Yildiz 

16409 (CDA Yildiz pers. herb.), MN335087*, MN230907*, –, –, –, –, n=17; Cirsium 

inamoenum (Greene) D.J.Keil, U.S.A.: Nevada, Mineral Co., Bodie Hills, 4 Jun 2013, A.Tiehm 

16540 (RENO 23124), MN335136*, MN230981*, MN275325*, MN275406*, MN275459*, 

MN314918*, n=17; Cirsium interpositum Petr., China: Yunnan, 3 Nov 1990 (CAS Kelch pers. 

herb.), MN335065*, MN230885*, –, –, –, –, n=17; Cirsium italicum DC., Italy (CAS Kelch pers. 

herb.), MN335089*, MN230909*, –, –, –, –, n=34; Cirsium japonicum Fisch.ex DC., 

KM051436, –, HM989744, –, GU724249, –, n=17; Cirsium jorullense (Kunth) Spreng., Mexico: 

Michoacan, Mun.Angangueo, 13 Aug 2014, D.Alvarez 13227 (MEXU 1417986), MN335124*, 

MN230969*, MN275313*, MN275395*, MN275419*, MN314936*, n=17; Cirsium 

kamtschaticum Ledeb.ex DC., U.S.A.: Alaska, Aleutian Islands, Oct 2000, S.Talbot 001-6 (ALA 

1010423), AB035987, MN230982*, MN275316*, MN275366*, MN275425*, MN314920*, 

n=34; Cirsium lappoides (Less.) Sch.Bip., Mexico: La Paz, Santa Rita, 28 May 2015, A.Naraez 

799 (MEXU 1423856), MN335128*, MN230950*, MN275342*, MN275384*, MN275416*, 

MN314905*; Cirsium leucopsis DC., Turkey: Asparta, 6 Sep 2006, B.Yildiz 16457 (CDA Yildiz 

pers. herb.), MN335088*, MN230908*, –, –, –, –; Cirsium lidjiangense Petr.ex Hand.-Mazz., 

AY914828, –, –, –, AY914836, AY914856; Cirsium ligulare Boiss., Turkey: Afyon, 10 Aug 

2006, Yildiz 16223 (CDA Yildiz pers. herb.), MN335090*, MN230910*, –, –, –, –, n=17; 

Cirsium lineare Sch.Bip., AF443727, AF443779, KX526545, –, –, –, n=14; Cirsium longistylum 
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W.Moore & Frankton, U.S.A.: Montana, Meagher Co., Kings Hill Pass, 12 Aug 2016, Ackerfield 

16-132 (CS Ackerfield pers. herb.), MN335119*, MN230940*, MN275348*, MN275376*, 

MN275445*, MN314900*, n=17; Cirsium macrobotrys (C.Koch) Boiss., Turkey: Sivas, İmranlı, 

11 Aug 2006, Yildiz 16237 (CDA Yildiz pers. herb.), MN335091*, MN230911*, –, –, –, –, 

n=17; Cirsium mexicanum DC., Mexico: Oaxaca, 3.5 km al N de Tamazulapan, 19 Mar 1997, 

J.Villaseñor 1399 (MEXU 1367917), MN335161*, MN230962*, JQ586816, –, MN275430*, –, 

n=11; Cirsium mohavense (Greene) Petr., U.S.A.: Nevada, Nye Co., 1.5 mi E of 376, 18 Jul 

2001, B.Niell sn.(RENO 51668), MN335149*, MN230970*, MN275319*, MN275396*, 

MN275460*, MN314915*, n=15; Cirsium monocephalum (Vaniot) H.Lev., AF443701, 

AF443753, –, –, –, KF301170; Cirsium monspessulanum (L.) Hill, AF443717, AF443769, 

KC969512, –, –, KC969597, n=17; Cirsium nipponicum (Maxim.) Mak., KC590042, –, 

KC590016, KC589951, –, KC590049, n=34; Cirsium nuttallii DC., U.S.A.: South Carolina, 

Barnwell Co., South Edisto River on E side of SC 39, 2 Jul 2011, J.Nelson 29687 (USCH 

110742), MN335123*, MN230968*, MN275362*, MN275394*, MN275407*, MN314921*, 

n=13; Cirsium obvallatum (M.Bieb.) M.Bieb., Turkey:Yildiz sn (CDA Yildiz pers. herb.), 

MN335092*, MN230912*, –, –, –, MN314885*, n=17; Cirsium occidentale (Nutt.) Jeps.var. 

candidissimum (Greene) F.Macbr., U.S.A.: Nevada, Churchill Co., Fondaway Canyon, 8 May 

2015, A.Tiehm 16913 (RENO 61409), MN335144*, MN275333*, MN275333*, MN275392*, 

MN275429*, MN314940*, n=30; Cirsium occidentale (Nutt.) Jeps.var. venustum (Greene) Jeps., 

U.S.A.: California, Solano Co., Stebbins cold canyon reserve, 18 Jun 1999, E.Dean 511 (DAV 

149192), MN335145*, MN230953*, MN275360*, MN275385*, MN275436*, MN314944*, 

n=15; Cirsium ochrocentrum A.Gray var.ochrocentrum, U.S.A.: Kansas, Logan Co., off of I-70 

at the Oakley exit, 5 Aug 2016, Ackerfield 16-104 (CS Ackerfield pers. herb.), MN335118*, 
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MN230939*, MN275349*, MN275375*, MN275446*, MN314899*, n=16; Cirsium oleraceum 

(L.) Scop., KT249784, –, KT249982, –, –, –, n=17; Cirsium osseticum (Adams) Petr., Turkey: 

NE Turkey, Yildiz sn (CDA Yildiz pers. herb.), MN335093*, MN230913*, –, –, –, –, n=17; 

Cirsium ownbeyi S.L.Welsh, U.S.A.: Colorado, Moffat Co., Hackings Draw, 29 Jun 1988, 

T.Naumann 254 (CS -33), MN335138*, MN230984*, –, –, MN275467*, MN314931*; Cirsium 

palustre (L.) Scop., AF443704, AF443756, AY013536, KC589953, –, AY772307, n=17; 

Cirsium parryi (A.Gray) Petr., U.S.A.: Colorado, Chaffee Co., East side of Cottonwood Pass, 23 

Jul 2016, Ackerfield 16-96 (CS Ackerfield pers. herb.), MN335151*, MN230942*, MN275359*, 

MN275378*, MN275415*, MN314902*, n=17; Cirsium perplexans (Rydb.) Petr., U.S.A.: 

Colorado, Montrose Co., Uncompahgre Basin hills SE of Cedar Creek, 21 Jun 2011, L.Brummer 

4320 (CS Brummer pers. herb.), MN335155*, MN230943*, MN275347*, MN275368*, 

MN275469*, MN314924*; Cirsium pitcheri (Torr. ex Eaton) Torr. & A.Gray, U.S.A.: 

Wisconsin, Door Co., South Sturgeon Bay Canal dune complex, 28 Sep 2007, S.Zager 2007-72 

(WIS v0253040WIS), MN335105*, MN230924*, –, –, MN275422*, MN314886*, n=17; 

Cirsium polycephalum DC., Turkey: Kirklarell, 2 Aug 2007, Yildiz 16530 (CDA Yildiz pers. 

herb.), MN335094*, MN230914*, –, –, –, –; Cirsium pringlei (S.Watson) Petr., Mexico: 

Coahuila, Ladera alta de la Sierra La Veleta en el Ejido Nuncio, 13 Jul 2014, J.Encina 3814 

(MEXU 141662), MN335160*, MN230974*, MN275363*, MN275400*, MN275462*, 

MN314923*; Cirsium pubigerum (Desf.) DC., Turkey: Erzurum, Tortum, 16 Aug 2006, Yildiz 

16291 (CDA Yildiz pers. herb.), MN335095*, MN230915*, –, –, –, –, n=34; Cirsium 

pulcherrimum (Rydb.) K.Schum. var. aridum (Dorn) D.J.Keil, U.S.A.: Wyoming, Carbon Co., 

Chalk Mt.NW edge of Shirley Basin, 15 Jul 2010, R.Dorn 10679 (RM 906929), MN335135*, 

MN230956*, MN275338*, MN275387*, MN275434*, MN314909*, n=17; Cirsium 
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pulcherrimum (Rydb.) K.Schum.var. pulcherrimum, U.S.A.: Wyoming, Carbon Co., Exit 267 off 

Hwy I-80 near Elk Mountain, 7 Aug 2016, Ackerfield 16-111 (CS Ackerfield pers. herb.), 

MN335115*, MN275351*, MN275351*, MN275374*, MN275414*, MN314895*, n=17; 

Cirsium pumilum (Nutt.) Spreng. var. hillii (Canby) B.Boivin, JX867632, JX867660, 

MK519920, –, –, –, n=15; Cirsium quercetorum (A.Gray) Jeps., AF443706, AF443758, 

KC969516, –, –, KC969601, n=16; Cirsium remotifolium (Hook.) DC., U.S.A.: Oregon, Polk 

Co., McTimmonds Valley about 3.5 air mi N of Pedee, 1 Jul 1995, R.Halse 4926 (WTU 

333611), MN335153*, MN230960*, MN275336*, MN275388*, MN275431*, MN314911*, 

n=16; Cirsium rhaphilepis (Hemsl.) Petr., Mexico: Oaxaca, Santiago Tilantongo, 24 Apr 2013, 

A.Piestryznska AP229 (MEXU 1415892), MN335142*, MN230967*, MN275361*, 

MN275393*, MN275428*, MN314914*, n=11; Cirsium rhizocephalum C.A.Mey., Turkey: 

Erzurum, 13 Aug 2006, Yildiz 16279 (CDA Yildiz pers. herb.), MN335055*, MN230875*, –, –, 

–, MN314879*, n=17; Cirsium rhothophilum S.F.Blake, AF443709, AF443761, KC969518, –, –

, KC969603, n=17; Cirsium rigidum DC., Turkey: 16 Aug 2006, Yildiz 16345 (CDA Yildiz pers. 

herb.), MN335096*, MN230916*, –, –, –, –, n=17; Cirsium rydbergii Petr., U.S.A.: Utah, San 

Juan Co., Rainbow Plateau, W.Hodgson 11740 (DES DES00044724), MN335054*, 

MN230874*, MN275355*, –, MN275427*, –, n=17; Cirsium scabrum (Poir.) Bonnet & 

Barratte, KC969554, –, KC969519, –, –, KC969604, n=17; Cirsium scariosum Nutt. var. 

citrinum (Petrak) D.J.Keil, U.S.A.: California, Ventura Co., Cuddy Valley, 30 Jun 2001, D.Keil 

29634F (OBI 60342), MN335162*, MN230952*, –, –, MN275437*, MN314907* n=17; 

Cirsium scariosum Nutt.var. congdonii (R.J.Moore & Frankton) D.J.Keil, U.S.A.: California, 

San Bernardino Co., Transverse Ranges, 9 Jun 2010, Fraga 3468 (RSA 60342), MN335127*, 

MN230949*, MN275343*, MN275383*, MN275458*, MN314942*, n=17; Cirsium scariosum 
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Nutt.var. scariosum, Idaho, Boise Co., Boise National Forest south of Lowman, 21 Jul 2001, 

D.Keil 29682C (OBI 60356), MN335117*, MN230937*, MN275318*, MN275457*, 

MN275457*, MN314897*, n=17; Cirsium shansiense Petr., China: Yunnan, 4 Oct 1998 (CAS 

Kelch pers. herb.), MN335097*, MN230917*, –, –, –, –, n=34; Cirsium sintenisii Freyn, Turkey: 

Kastamonu: Ilgaz, 23 Aug 2006, Yildiz 16408 (CDA Yildiz pers. herb.), MN335098*, 

MN230918*, –, –, –, –; Cirsium sorocephalum Fisch.& C.A.Mey., Turkey: Yildiz sn (CDA 

Yildiz pers. herb.), MN335099*, MN230919*, –, –, –, –, n=17; Cirsium spinosissimum (L.) 

Scop., AF443720, AF443772, KC969521, –, –, KC969606 n=17; Cirsium steirolepis Petr., 

Turkey: Cannakale, 31 Jul 2007, Yildiz 16496 (CDA Yildiz pers. herb.), MN335100*, 

MN230920*, –, –, –, –, n=17; Cirsium strigosum (M.Bieb.) M.Bieb., Turkey: Yildiz sn (CDA 

Yildiz pers. herb.), MN335101*, MN230921*, –, –, –, –, n=17; Cirsium subcoriaceum (Less.) 

Sch.Bip., Mexico: Estado de Mexico, Valle de Bravo, Cerro Gordo, 19 Mar 2011, J.Corral 1560 

(MEXU 1383975), MN335156*, MN230973*, MN275330*, MN275399*, MN275461*, 

MN314937*, n=17; Cirsium tenoreanum Petr., KC969556, –, KC969522, –, –, KC969607; 

Cirsium texanum Buckley, U.S.A.: Texas, Tarrant Co., Tandy Hills Natural Area, 10 Jun 2016, 

M.B.Best 346b (CS Best pers. herb.), MN335129*, MN230954*, MN275340*, MN275386*, 

MN275435*, MN314927*, n=11; Cirsium tracyi (Rydb.) Petr., U.S.A.: Colorado, Garfield Co., 

5 miles northwest of De Beque, 25 Jun 2016, Ackerfield 16-29 (CS Ackerfield pers. herb.), 

MN335152*, MN230931*, MN275352*, MN275373*, MN275451*, MN314892*, n=12; 

Cirsium tymphaeum Hausskn., Denmark: Seed ex Grakenland, D.Kelch DGK 01.037 (UC Kelch 

pers. herb.), MN335102*, –, –, –, –, –, n=16; Cirsium undulatum (Nutt.) Spreng., U.S.A.: 

Montana, Meagher Co., East of White Sulphur Springs, 12 Aug 2016, Ackerfield 16-125 (CS 

Ackerfield pers. herb.), MN335134*, MN230972*, MN275331*, MN275398*, MN275424*, 
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MN314916*, n=13; Cirsium velatum (S.Watson) Petr., Mexico: San Jose del Rincon, A 3.76 km 

al WSW de San Jose del Rincon, 30 Aug 2014, D.Alvarez 13787 (MEXU 1407190), 

MN335154*, MN230978*, MN275312*, MN275403*, MN275420*, MN314935*, n=16; 

Cirsium vinaceum (Woot.& Standl.) Woot.& Standl., U.S.A.: New Mexico, Otero Co., 5.5 mi E 

of Sunspot Scenic Byway, 7 Jul 2006, R.Gutiérrez 1171 (ASU 263869), MN335147*, 

MN230957*, MN275337*, –, MN275470*, MN314943*; Cirsium virginianum (L.) Michx., 

U.S.A.: South Carolina, Lee Co., Longleaf Pine Heritage Preserve, 17 Sep 2011, A.Pittman 

09171117 (USCH 112590), MN335111*, MN230930*, MN275353*, –, MN275452*, 

MN314932*, n=14; Cirsium vulgare (Savi) Ten., U.S.A.: California, Contra Costa Co., Crockett, 

21 Jun, 2001, D.Kelch DGK 01.038 (CDA Kelch pers. herb.), MN335068*, MN230888*, –, –, –, 

–, n=34; Cirsium vulgare (Savi) Ten, France: Seed ex Bas-Rhin, D.Kelch DGK 01.038 (CDA), 

MN335069*, MN230889*, –, –, –, –, n=34; Cirsium vulgare (Savi) Ten, U.S.A.: Wyoming, 

Carbon Co., Muddy Gap off Hwy 287, 7 Aug 2016, Ackerfield 16-112 (CS Ackerfield pers. 

herb.), MN335116*, MN230936*, MN275315*, MN275364*, MN275426*, MN314896*, n=34; 

Cirsium wheeleri (A.Gray) Petr., U.S.A.: New Mexico, Catron Co., E of Mogollon, 15 Aug 

2010, R.Sivinski 7733 (UNM 124841), MN335130*, MN230955*, MN275339*, MN275365*, 

MN275418*, MN314908*, n=14; Cirsium wrightii A.Gray, U.S.A.: New Mexico, Socorro Co., 

Ojo Caliente Spring, 5 Sep 2006, R.Sivinski 6132 (UNM 111590), MN335140*, MN230977*, 

MN275323*, MN275371*, MN275423*, MN314934*; Cirsium yildizianum Arabaci & 

Dirmenci, Turkey: Yildiz 16 333 (CDA Yildiz pers. herb.), MN335103*, MN230922*, –, –, –, –; 

Cynara cardunculus L., JX867643, JX867671, KC969525, –, AF129842, AF129828, n=17; 

Fulcaldea stuessyi Roque & V.A.Funk, KF989504, –, KF989831, KF989720, JF920289, 

JF920294; Galactites tomentosa Moench, AY780403, –, AY013541, –, AF129845, AY772328, 
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n=11; Gerbera piloselloides Forssk., GU126788, MG661595, EU385355, EU385163, –, 

MG661653; Lamyropsis carpini Greuter, GU907724, GU907742, KC590027, KC589978, –, 

KC590055, n=13; Nastanthus patagonicus Speg., KF989503, MH049386, KF989830, 

KF989719, KF989921, KF989611; Notobasis syriaca Cass., AY780405, –, AY013545, 

KC589981, AF129847, AY772340, n=17; Onopordum tauricum Willd., AY826309, –, 

KC969530, KC589987, –, KC969609, n=17; Picnomon acarna (L.) Cass., AY826311, –, 

AY013549, KC589989, AF129849, AY772349, n=16; Ptilostemon afer Greuter, AY780407, 

GU907746, AY013550, KC589992, AF129850, AY772354, n=16; Silybum marianum (L.) 

Gaertn., AY826329, AM267320, AY013551, KC589999, AF129851, AY772364, n=17; 

Syreitschikovia spinulosa Pavlov, AY826339, –, AY785122, KC590004, –, AY772374, n=12; 

Tyrimnus leucographus Cass., AY826343, –, AY013554, KC590007, AF129852, AY772378, 

n=17. 
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Appendix 2 

Voucher data, sources of material, and GenBank accession numbers for the 168 taxa 

included in this work. Voucher data are in the following format: taxon name (sensu Keil, 2006), 

extraction accession number (only listed if multiple accessions of the same taxa are present), 

country, state, county, locality, collection and collection number, ITS, ETS, matK, ndhF, psbA-

trnH, and trnL-trnF GenBank accession numbers. An “–“ indicates missing data; an asterisk (*) 

indicates new sequence data.  

Carduus nutans L., AF443678, JX867670, KC969472, KT176826, AF129839, 

AF129825; Cirsium altissimum (L.) Hill, MN335120, MN230941, MN275358, MN275377, 

MN275444, MN314901; Cirsium anartiolepis Petr., MN335122, MN230945, MN275345, 

MN275380, MN27544*, MN314938; Cirsium andersonii (A. Gray) Petr., MN335131, 

MN230959, –, MN275370, MN275432, MN314910; Cirsium andrewsii (A. Gray) Jeps., 

MN335133, MN230965, MN275320, MN275391, MN275421, MN314913; Cirsium arizonicum 

(A. Gray) Petr. var. arizonicum, 84, MN335141, MN230979, MN275327, MN275404, 

MN275465, MN314929; Cirsium arizonicum (A. Gray) Petr. var. arizonicum, 216DBG, U.S.A.: 

Arizona. Coconino Co.: Off the Jump-Up Nail Trail No. 8, 27 Sep 1998, Hodgson 11167 (DES), 

MN604503*, MN604527*, MN604655*, –, MN617205*, –; Cirsium arizonicum (A. Gray) Petr. 

var. arizonicum, 220DBG, U.S.A.: Utah. Beaver Co.: Wah Wah Mts., N Holmgren 3731 (DES), 

MN604506*, MN604535*, MN604656*, –, MN617212*, –; Cirsium arizonicum (A. Gray) Petr. 

var. bipinnatum (Eastw.) D.J. Keil, 1, U.S.A.: Colorado. Delta Co.: Escalante Canyon, 4 Aug 

2012, L Brummer 10952 (CS), MN604444*, MN604532*, MN604682*, MN617197*, –, 

MN617289*; Cirsium arizonicum (A. Gray) Petr. var. bipinnatum (Eastw.) D.J. Keil, 168DBG, 

U.S.A.: Utah. San Juan Co.: Glen Canyon National Recreation Area, 12 Jun 1996, Hodgson 
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9933 (DES), MN604505*, MN604529*, MN617172*, –, MN617207*, –; Cirsium arizonicum 

(A. Gray) Petr. var. bipinnatum (Eastw.) D.J. Keil, 170DBG, U.S.A.: Utah. San Juan Co.: 

Navajo Reservation, Rainbow Plateau, 19 Jul 1999, Hodgson 11748 (DES), MN604442*, 

MN604530*, MN617173*, –, MN617208*, –; Cirsium arizonicum (A. Gray) Petr. var. 

bipinnatum (Eastw.) D.J. Keil, 217DBG, U.S.A.: Utah. San Juan Co.: Along trail leading from 

Cathedral Bluff to Salt Creek, 16 Jun 2009, Hodgson 24049 (DES), MN604501*, MN604533*, 

MN604659*, –, MN617210*, –; Cirsium arizonicum (A. Gray) Petr. var. bipinnatum (Eastw.) 

D.J. Keil, 219DBG, U.S.A.: Utah. San Juan Co.: Rainbow Plateau, Navajo Nation just south of 

trail to Rainbow Bridge, 19 Jul 1999, Hodgson 11746 (DES), MN604504*, MN604528*, 

MN604611*, –, MN617206*, –; Cirsium arizonicum (A. Gray) Petr. var. chellyense (R.J. Moore 

& Frankton) D. J. Keil, 214DBG, U.S.A.: Arizona. Apache Co.: Navajo Reservation, 15 Jul 

1961, D Demaree 44628 (ASC), MN604502*, MN604534*, MN604683*, –, MN617211*, –; 

Cirsium arizonicum (A. Gray) Petr. var. rothrockii (A. Gray) D.J. Keil, 55, U.S.A.: Arizona. Gila 

Co.: Carol Site, off State Rt 77, 17 Jul 2003, D Damrel V 830 (ASU), MN604525, MN604536, 

MN604657*, MN617174*, MN617213*, MN617290*; Cirsium arizonicum (A. Gray) Petr. var. 

tenuisectum D.J. Keil, 148, U.S.A.: Nevada. Clark Co.: Toiyabe National Forest, Spring 

Mountains, 17 Aug 2002, Keil 29912C (OBI), MN604445*, MN604609*, MN604612*, –, 

MN617214*, MN617291*; Cirsium arvense (L.) Scop., AY826264, AF443734, KC969499, –, 

HQ596645, KC969583; Cirsium barnebyi S.L. Welsh & E. Neese, U.S.A.: Colorado. Garfield 

Co.: Logan Wash, 28 Jun 2016, D Malone sn (CS), MN604446*, MN604597*, MN604658*, 

MN617175*, MN617215*, MN617292*; Cirsium brevifolium Nutt., MN335106, MN230925, 

MN275356, –, MN275417, MN314887; Cirsium brevistylum Cronquist, MN335132, 

MN230963, MN275335, MN275389, MN275408, MN314912; Cirsium canescens Nutt., 5, 
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U.S.A.: Colorado. Chaffee Co.: Farish natural area, 28 Jun 2016, P Smith sn (CS), MN604448*, 

MN604598*, MN604684*, MN617199*, MN617217*, MN617294*; Cirsium canescens Nutt., 

8, U.S.A.: Wyoming. Albany Co.: West of Laramie just before mile marker 306 off of Hwy I-80, 

7 Aug 2016, Ackerfield 16-106 (CS), MN604449*, MN604538*, MN604614*, MN617176*, 

MN617218*, MN617295*; Cirsium canescens Nutt., 16, MN335146, MN230938, MN275350, 

MN275367, MN275447, MN314898; Cirsium canescens Nutt., 19, U.S.A.: Colorado. Chaffee 

Co.: Hwy 24/285 approximately 9 miles east of Buena Vista, 14 Jun 2016, Ackerfield 16-25 

(CS), MN604447*, MN604537*, MN604613*, MN617198*, MN617216*, MN617293*; 

Cirsium carolinianum (Walter) Fernald & B.G. Schub., MN335109, MN230928, MN275354, –, 

MN275454, MN314890; Cirsium ciliolatum (Henderson) J.T. Howell, U.S.A.: Oregon. Jackson 

Co.: Dead Indian Rd, 16 July 2001, Keil 29646 (OBI), MN604450*, MN604539*, MN604661*, 

–, MN617219*, MN617296*; Cirsium clavatum (M.E. Jones) Petr. var. americanum (A. Gray) 

D.J. Keil, U.S.A.: Colorado. Boulder Co.: Along the Middle St. Vrain trail by Camp Dick 

Campground, 7 Aug 2010, Ackerfield 3810 (CS), MN604451*, MN604540*, MN604664*, 

MN617177*, MN617220*, MN617297*; Cirsium clavatum (M.E. Jones) Petr. var. clavatum, 23, 

U.S.A.: Colorado. Boulder Co.: West of Ward along road to Brainard Lake recreation area off of 

the road at Red Rock Lake, 7 Jul 2016, Ackerfield 16-45 (CS), MN604456*, MN604544*, 

MN604620*, MN617200*, MN617225*, ---- 

MN617302*; Cirsium clavatum (M.E. Jones) Petr. var. clavatum, 26, U.S.A.: Colorado. Larimer 

Co.: Off of Hwy 14 just west of the Big Bend Campground near Kinikinik, 29 Jun 2016, 

Ackerfield 16-43 (CS), MN604457*, MN604545*, MN604685*, MN617201*, MN617226*, 

MN617303*; Cirsium clavatum (M.E. Jones) Petr. var. clavatum, 39, U.S.A.: Colorado. Boulder 

Co.: Along the Middle St. Vrain trail by Camp Dick Campground, 7 Aug 2010, Ackerfield 3808 
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(CS), MN604458*, MN604546*, MN604662*, MN617178*, MN617227*, MN617304*; 

Cirsium clavatum (M.E. Jones) Petr. var. clavatum, 76, U.S.A.: Utah. Iron Co.: Thunder Ridge 

Boy Scout Camp, Cedar Breaks formation, 16 Jul 2010, L Higgins 29189 (BRY), MN604459*, 

MN604608*, MN604663*, MN617179*, MN617228*, MN617339*; Cirsium clavatum (M.E. 

Jones) Petr. var. clavatum, 77, MN335158, MN230975, MN275329, MN275401, MN275463, 

MN314930; Cirsium clavatum (M.E. Jones) Petr. var. clavatum, 104, U.S.A.: Colorado. Grand 

Co.: Roosevelt National Forest, in meadows surrounding Dumont Lake, 28 June 2016, Ackerfield 

16-42 (CS), MN604452*, MN604541*, MN604616*, –, MN617221*, MN617298*; Cirsium 

clavatum (M.E. Jones) Petr. var. clavatum, 115, U.S.A.: Colorado. Gunnison Co.: Gunnison 

National Forest: trail to cement caves off of Cement Creek Rd south of Crested Butte, 10 July 

2017, Ackerfield 6005 (CS), MN604453*, MN604606*, MN604617*, –, MN617222*, 

MN617299*; Cirsium clavatum (M.E. Jones) Petr. var. clavatum, 128, U.S.A.: Utah. Garfield 

Co.: Teasdale Ranger District, Dixie National Forest, 18 July 2007, M Madsen 3670 (BRY), 

MN604454*, MN604542*, MN604618*, –, MN617223*, MN617300*; Cirsium clavatum (M.E. 

Jones) Petr. var. clavatum, 129, U.S.A.: Utah. Iron Co. 1 mi. NE of Hancock Peak on Markagunt 

Plateau, 3 Aug 2005, M Madsen 2612 (BRY), MN604455*, MN604543*, MN604619*, –, 

MN617224*, MN617301*; Cirsium clavatum (M.E. Jones) Petr. var. osterhoutii (Rydb.) D.J. 

Keil, 7, MN335139, MN230976, MN275328, MN275402, MN275464, MN314917; Cirsium 

clavatum (M.E. Jones) Petr. var. osterhoutii (Rydb.) D.J. Keil, 11, U.S.A.: Colorado. Eagle Co.: 

Off of Hwy 24 south of I-70 at Red Cliff along Shrine Pass Rd., 26 Jun 2016, Ackerfield 16-34 

(CS), MN604461*, MN604603*, MN604632*, MN617202*, MN617288*, MN617306*; 

Cirsium clavatum (M.E. Jones) Petr. var. osterhoutii (Rydb.) D.J. Keil, 108, U.S.A.: Colorado. 

Park Co.: Weston Pass west of Fairplay, 8 Aug 2015, Ackerfield 15-78 (CS), MN604460*, 
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MN604547*, MN604631*, –, MN617229*, MN617305*; Cirsium coahuilense G.B. Ownbey & 

Pinkava, MN335164, MN230961, –, –, MN275468, –; Cirsium conspicuum (G. Don) Sch. Bip., 

MN335125, MN230946, –, –, MN275441, MN314926; Cirsium crassicaule (Greene) Jeps., 

MN335121, MN230944, MN275346, MN275379, MN275443, MN314903; Cirsium cymosum 

(Greene) J.T. Howell var. canovirens (Rydb.) D.J. Keil, 70, U.S.A.: Montana. Madison Co.: 

Along Jack Creek 1.5 mi above the footbridge, 19 Jul 2011, P Lesica 10640 (MONTU), 

MN604463*, MN604548*, MN604660*, MN617203*, MN617231*,   MN617308*; Cirsium 

cymosum (Greene) J.T. Howell var. canovirens (Rydb.) D.J. Keil, 149, MN335114, MN230934, 

MN275314, –, MN275448, MN314894; Cirsium cymosum (Greene) J.T. Howell var. cymosum, 

42, U.S.A.: California. Mono Co.: Eastern Sierra Nevada Mts., E of Hwy 89 0.2 mi S of 

Mono/Alpine county line, 2 Aug 2011, Howald 2762 (RSA), MN604462*, MN604607*, 

MN604615*, MN617180*, MN617230*, MN617307*; Cirsium discolor (Muhl. ex Willd.) 

Spreng., AF443692, AF443744, KP643137, GU817845, GU818355, GU817988; Cirsium 

douglasii DC. var. breweri (A. Gray) D.J. Keil & C.E. Turner, MN335126, MN230948, –, 

MN275382, MN275439, MN314904; Cirsium douglasii DC. var. douglasii, MN335159, 

MN230980, MN275326, MN275405, MN275466, MN314933; Cirsium durangense (Greenm.) 

G.B. Ownbey, Mexico: Zacatecas: Miguel Auza, por la carretera de terraceria a Ramon Corona 

Dgo., 12 Sept 1997, J Balleza 6896 (MEXU), MN604464*, MN604593*, –, –, MN617232*, –; 

Cirsium eatonii (A. Gray) B.L. Rob. var. clokeyi (S.F.Blake) D.J. Keil, U.S.A.: Nevada. Clark 

Co.: Spring Mountains, Toiyabe National Forest, 17 Aug 2002, Keil 29915A (OBI), 

MN604465*, MN604549*, MN604665*, –, MN617233*, MN617309*; Cirsium eatonii (A. 

Gray) B.L. Rob. var. eatonii, 66, U.S.A.: Utah: Piute Co.: 1/2 mi NE of Buillion Pasture at old 

ASPE transect/plots, Tushar Mt. Range, 1 Aug 2002, M Madsen 1471 (BRY), MN604466*, 
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MN604599*, MN604667*, MN617181*, MN617235*, MN617311*; Cirsium eatonii (A. Gray) 

B.L. Rob. var. eatonii, 89, U.S.A.: Nevada. Elko Co.: Ruby Mts., cirque area NE of Pearl Peak, 

S of Harrison Pass, 6 Aug 2013, A Tiehm 16641 (RENO), MN604467*, MN604551*, 

MN604668*, MN617182*, MN617236*, MN617312*; Cirsium eatonii (A. Gray) B.L. Rob. var. 

eatonii, 143, MN335113, MN230933, MN275317, –, MN275449, MN314893; Cirsium eatonii 

(A. Gray) B.L. Rob. var. eatonii, 151, U.S.A.: Utah. Salt Lake Co.: Wasatch Mts., Snowbird 

Resort east of Salt Lake City, 31 July 2004, Keil 30328 (OBI), MN604514*, MN604550*, 

MN604666*, –, MN617234*, MN617310*; Cirsium eatonii (A. Gray) B.L. Rob. var. 

eriocephalum (A. Gray) D.J. Keil, 124, MN335108, MN230927, MN275321, –, MN275455, 

MN314889; Cirsium eatonii (A. Gray) B.L. Rob. var. eriocephalum (A. Gray) D.J. Keil, 168, 

U.S.A.: Colorado. Summit Co.: Above Georgia Pass on Continental Divide, 19 Aug 2018, L 

Yeatts sn (CS), MN604469*, MN604553*, MN604678*, –, MN617238*, MN617314*; Cirsium 

eatonii (A. Gray) B.L. Rob. var. eriocephalum (A. Gray) D.J. Keil, 169, U.S.A.: Colorado. 

Larimer Co.: Rocky Mountain National Park, J Bromberg sn (CS), MN604470*, MN604554*, 

MN604640*, –, MN617239*, MN617315*; Cirsium eatonii (A. Gray) B.L. Rob. var. 

eriocephalum (A. Gray) D.J. Keil, 37, U.S.A.: Utah. Grand Co.: LaSal mountains, 6 Aug 2009, J 

Fowler 6425 (RM), MN604471*, MN604555*, MN604641*, MN617204*, MN617240*, 

MN617316*; Cirsium eatonii (A. Gray) B.L. Rob. var. eriocephalum (A. Gray) D.J. Keil, 97, 

U.S.A.: Colorado. Clear Creek Co.: Guanella Pass south of Georgetown, 15 Jul 2017, C Jones sn 

(CS), MN604472*, MN604556*, MN604642*, –, MN617287*, MN617317*; Cirsium eatonii 

(A. Gray) B.L. Rob. var. eriocephalum (A. Gray) D.J. Keil, 145, U.S.A.: Colorado. El Paso Co.: 

Pike's Peak below summit, 18 Jul 2018, Ackerfield 6514 (CS), MN604474*, MN604557*, –, 

MN617242*, MN604622*, MN617319*; Cirsium eatonii (A. Gray) B.L. Rob. var. hesperium 
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(Eastw.) D.J. Keil, 24, U.S.A.: Colorado. Gunnison Co.: Cottonwood Pass summit, 23 Jul 2016, 

Ackerfield 16-76 (CS), MN604475*, MN604558*, MN604624*, MN617183*, MN617243*, 

MN617321*; Cirsium eatonii (A. Gray) B.L. Rob. var. hesperium (Eastw.) D.J. Keil, 32, U.S.A.: 

Colorado: Mineral Co.: Hunter Lake US Hwy 160 W 9 air mi from Beaver Creek Rd to Forest 

Rd 419, 5 Jul 2003, J Flaig 346 (RM), MN604476*, MN604559*, MN604625*, MN617184*, 

MN617283*, MN617322*; Cirsium eatonii (A. Gray) B.L. Rob. var. hesperium (Eastw.) D.J. 

Keil, 90, U.S.A.: New Mexico. Taos Co.: Sangre de Cristo Mts. trail into Serpent Lake, 31 Jul 

2013, R Sivinski 8592 (UNM), MN604477*, MN604560*, MN604669*, MN617185*, 

MN617244*, MN617323*; Cirsium eatonii (A. Gray) B.L. Rob. var. hesperium (Eastw.) D.J. 

Keil, 101, U.S.A.: Colorado. San Juan Co.: Stony Pass east of Silverthorn, 20 Jul 2017, 

Ackerfield 6010 (CS), MN604473*, MN604602*, MN604621*, –, MN617241*, MN617318*; 

Cirsium eatonii (A. Gray) B.L. Rob. var. hesperium (Eastw.) D.J. Keil, 170, U.S.A.: Colorado. 

Huerfano Co.: Trinchera Peak, 8 Aug 2018, Ackerfield 6546 (CS), MN604526*, –, MN604623*, 

–, MN617284*, MN617320*; Cirsium eatonii (A. Gray) B.L. Rob. var. murdockii S.L. Welsh, 

28, U.S.A.: Montana. Gallatin Co.: Palisade Falls, 12 Aug 2016, Ackerfield 16-123 (CS), 

MN604478*, MN604561*, MN604627*, MN617186*, MN617245*, MN617324*; Cirsium 

eatonii (A. Gray) B.L. Rob. var. murdockii S.L. Welsh, 85, U.S.A.: Utah. Uintah Co.: S slope of 

Uinta Mts., 26 Jul 2005, G Brown & S Goodrich 159 (BRY), MN604479*, MN604604*, 

MN604670*, MN617187*, MN617246*, MN617325*; Cirsium eatonii (A. Gray) B.L. Rob. var. 

murdockii S.L. Welsh, 100, U.S.A.: Colorado. Clear Creek Co.: Approximately 1 mile up the 

trail to Shelf Lake off of Guanella Pass road, 18 Jul 2017, Ackerfield 6009 (CS), MN604468*, 

MN604552*, MN604626*, –, MN617237*, MN617313*; Cirsium eatonii (A. Gray) B.L. Rob. 

var. peckii (L.F. Hend.) D.J. Keil, 92, U.S.A.: Nevada. Humboldt Co.: Jackson Mts., 2.3 rd miles 



144 

 

NE of the Jackson & Trout Creek rds junction, 16 Jun 2009, A Tiehm 15885 (RENO), 

MN604480*, MN604562*, MN604671*, MN617188*, MN617247*, MN617338*; Cirsium 

eatonii (A. Gray) B.L. Rob. var. peckii (L.F. Hend.) D.J. Keil, 130, MN335110, MN230929, 

MN275322, –, MN275453, MN314891; Cirsium eatonii (A. Gray) B.L. Rob. var. viperinum D.J. 

Keil, MN335137, MN230983, MN275324, MN275369, MN275412, MN314919; Cirsium edule 

Nutt. var. edule, MN335143, MN230964, MN275334, MN275390, MN275409, MN314922; 

Cirsium ehrenbergii Sch. Bip., MN335157, MN230958, MN275310, MN275372, MN275433, –; 

Cirsium engelmannii Rydb., MN335148, MN230947, MN275344, MN275381, MN275440, 

MN314925; Cirsium flodmanii (Rydb.) Arthur, MN335107, MN230926, MN275357, –, 

MN275456, MN314888; Cirsium fontinale (Greene) Jeps. var. campylon (H. Sharsm.) Pilz ex 

Keil & C. Turner, MN335163, MN230951, MN275341, –, MN275438, MN314906; Cirsium 

fontinale (Greene) Jeps. var. fontinale, AF443695, AF443747, KC969509, –, –, –; Cirsium 

fontinale (Greene) Jeps. var. obispoense J.T. Howell, AF443696, AF443748, –, –, –, –; Cirsium 

grahamii A. Gray, MN335150, MN230971, MN275332, MN275397, MN275413, MN314941; 

Cirsium henryi (Franch.) Diels, AF443697, AF443749, –, –, –, –; Cirsium heterophyllum (L.) 

Hill, KX166058, –, JN895548, –, –, GQ244802; Cirsium hookerianum Nutt., U.S.A.: 

Washington. Kittitas Co.: Sun East development on Robbins Rd, 26 April 2010, Knoke 2004 

(WTU), MN604481*, MN604563*, MN604628*, –, MN617248*, MN617326*; Cirsium 

horridulum Michx., U.S.A.: South Carolina. Lexington Co.: Approximately 100 m from 1021 

Indian Mound Rd. residence, Lexington, 10 Apr 2007, J Brannon 27 (USCH), MN604482*, 

MN604564*, MN604686*, MN617189*, MN617249*, MN617342*; Cirsium hydrophilum 

(Greene) Jeps., AF443698, AF443750, KC969510, –, –, KC969594; Cirsium inamoenum 

(Greene) D.J. Keil, MN335136, MN230981, MN275325, MN275406, MN275459, MN314918; 
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Cirsium japonicum Fisch. ex DC., KM051436, –, HM989744, –, GU724249, –; Cirsium joannae 

S.L. Welsh, N.D. Atwood & L.C. Higgins, U.S.A.: Utah. Washington Co.: Zion National Park, 

Iceberg Canyon NE of Kolob Arch on top second fall, 14 Aug 2002, N Atwood et al. 28867 

(BRY), MN604483*, MN604605*, MN604687*, MN617196*, MN617250*, MN617327*; 

Cirsium jorullense (Kunth) Spreng., MN335124, MN230969, MN275313, MN275395, 

MN275419, MN314936; Cirsium kamtschaticum Ledeb. ex DC., MN230982, MN275316, 

MN275366, MN275425, MN314920; Cirsium lappoides (Less.) Sch. Bip., MN335128, 

MN230950, MN275342, MN275384, MN275416, MN314905; Cirsium lecontei Torr. & A. 

Gray, U.S.A.: South Carolina. Dorchester Co.: N side of Old Pond Rd about 7 air mi ESE of 

Harleyville, 26 Aug 2006, J Nelson 26077 (USCH), MN604484*, MN604565*, –, MN617190*, 

MN617251*, MN617340*; Cirsium leucopsis DC., MN335088, MN230908, –, –, –, –; Cirsium 

lidjiangense Petr. ex Hand.-Mazz., AY914828, –, –, –, AY914836, AY914856; Cirsium lineare 

Sch. Bip., AF443727, AF443779, KX526545, –, –, –; Cirsium longistylum J.W. Moore & 

Frankton, MN335119, MN230940, MN275348, MN275376, MN275445, MN314900; Cirsium 

mexicanum DC., MN335161, MN230962, JQ586816, –, MN275430, –; Cirsium mohavense 

(Greene) Petr., 43, U.S.A.: California. San Bernardino Co.: Bighorn Mts Wilderness, unnamed 

spring WSW of Mount Spring, 30 Jul 2014, S DeGroot 7219 (RSA), MN604485*, MN604594*, 

MN604672*, MN617191*, MN617256*, MN617328*; Cirsium mohavense (Greene) Petr., 67, 

MN335149, MN230970, MN275319, MN275396, MN275460, MN314915; Cirsium mohavense 

(Greene) Petr., 97DBG, U.S.A.: California. Inyo Co.: Death Valley, 27 Sep 1979, M Kurzius 

1237 (DES), MN604516*, MN604570*, –, –, MN617257*, –; Cirsium mohavense (Greene) 

Petr., 206DBG, U.S.A.: Nevada. Lincoln Co.: Ash Springs Pahranagat Valley, Niles 5344 (DES), 

MN604512*, MN604566*, MN604645*, –, MN617252*, –; Cirsium mohavense (Greene) Petr., 
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207DBG, U.S.A.: Nevada. Clark Co.: Red Rock Springs, Niles 4707 (DES), MN604513*, 

MN604567*, MN604646*, –, MN617253*, –; Cirsium mohavense (Greene) Petr., 209DBG, 

U.S.A.: Nevada. Lyon Co.: Honey Bee Pond, Niles 4138 (DES), MN604515*, MN604568*, 

MN604629*, –, MN617254*, –; Cirsium mohavense (Greene) Petr., 213DBG, U.S.A.: Nevada. 

Clark Co.: Red Spring, Leary 4240 (DES), MN604517*, MN604569*, MN604630*, –, 

MN617255*, –; Cirsium monocephalum (Vaniot) H.Lev., AF443701, AF443753, –, –, –, 

KF301170; Cirsium monspessulanum (L.) Hill, AF443717, AF443769, KC969512, –, –, 

KC969597; Cirsium neomexicanum A. Gray, 10, U.S.A.: Colorado. Delta Co.: Grand Mesa, 

Petrie Mesa ca 7 air mi NNW of Delta, 2 Jun 2011, L Brummer 3594 (RM), MN623372*, 

MN623370*, MN629935*, MN629937*, MN629938*, MN629940*; Cirsium neomexicanum A. 

Gray, 1DBG, seed from New Mexico (DES), MN623373*, MN623371*, MN629936*, –, 

MN629939*, –; Cirsium nipponicum (Maxim.) Mak., KC590042, –, KC590016, KC589951, –, 

KC590049; Cirsium nuttallii DC., MN335123, MN230968, MN275362, MN275394, 

MN275407, MN314921; Cirsium occidentale (Nutt.) Jeps. var. candidissimum (Greene) J.F. 

Macbr., 62, MN335144, MN275333, MN275333, MN275392, MN275429, MN314940; Cirsium 

occidentale (Nutt.) Jeps. var. candidissimum (Greene) J.F. Macbr., 78, U.S.A.: Nevada. Pershing 

Co.: Humboldt Range, NW end of Spring Valley, 25 Jun 2011, A Tiehm 16386 (RENO), 

MN604486*, MN604600*, MN604673*, MN617192*, MN617258*, MN617337*; Cirsium 

occidentale (Nutt.) Jeps. var. venustum (Greene) Jeps., MN335145, MN230953, MN275360, 

MN275385, MN275436, MN314944; Cirsium ochrocentrum A. Gray var. ochrocentrum, 17, 

MN335118, MN230939, MN275349, MN275375, MN275446, MN314899; Cirsium 

ochrocentrum A. Gray var. ochrocentrum, 161, U.S.A.: New Mexico. Socorro Co.: 6 miles 

southeast of Bingham, 16 Aug 2001, Keil 29703 (OBI), MN604487*, MN604571*, 
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MN604674*, –, MN617259*, MN617341*; Cirsium ownbeyi S.L. Welsh, MN335138, 

MN230984, –, –, MN275467, MN314931; Cirsium palustre (L.) Scop., AF443704, AF443756, 

AY013536, KC589953, –, AY772307; Cirsium parryi (A. Gray) Petr., MN335151, MN230942, 

MN275359, MN275378, MN275415, MN314902; Cirsium perplexans (Rydb.) Petr., 

MN335155, MN230943, MN275347, MN275368, MN275469, MN314924; Cirsium pitcheri 

(Torr. ex Eaton) Torr. & A. Gray, MN335105, MN230924, –, –, MN275422, MN314886; 

Cirsium pringlei (S. Watson) Petr., MN335160, MN230974, MN275363, MN275400, 

MN275462, MN314923; Cirsium pulcherrimum (Rydb.) K. Schum. var. aridum (Dorn) D.J. 

Keil, MN335135, MN230956, MN275338, MN275387, MN275434, MN314909; Cirsium 

pulcherrimum (Rydb.) K. Schum. var. pulcherrimum, MN335115, MN275351, MN275351, 

MN275374, MN275414, MN314895; Cirsium pumilum (Nutt.) Spreng. var. hillii (Canby) B. 

Boivin, JX867632, JX867660, MK519920, –, –, –; Cirsium quercetorum (A. Gray) Jeps., 

AF443706, AF443758, KC969516, –, –, KC969601; Cirsium remotifolium (Hook.) DC., 

MN335153, MN230960, MN275336, MN275388, MN275431, MN314911; Cirsium repandum 

Michx., U.S.A.: South Carolina. Lee Co.: Both sides of Lynches River Rd and 0.66 air mi SW of 

jct of Sec Hwys 187 and 13, 27 Jun 2014, J Nelson 33174 (USCH), MN604488*, MN604601*, 

MN604681*, –, MN617260*, MN617329*; Cirsium rhaphilepis (Hemsl.) Petr., MN335142, 

MN230967, MN275361, MN275393, MN275428, MN314914; Cirsium rhothophilum S.F. 

Blake, AF443709, AF443761, KC969518, –, –, KC969603; Cirsium rydbergii Petr., 52DBG, 

U.S.A.: Arizona. Coconino Co.: Grand Canyon National Park, Buck Farm Canyon, 16 Sep 2009, 

Hodgson 24398 (DES), MN604519*, MN604576*, MN604649*, –, MN617265*, –; Cirsium 

rydbergii Petr., 58DBG, U.S.A.: Arizona. Coconino Co.: Grand Canyon National Park, Buck 

Farm Canyon, 27 May 2004, Hodgson 18219 (DES), MN604520*, MN604577*, MN604635*, –
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, MN617266*, –; Cirsium rydbergii Petr., 67DBG, U.S.A.: Arizona. Coconino Co.: Grand 

Canyon National Park, Clear Creek, 11 Sep 2005, G Rink 4479 (DES), MN604521*, 

MN604578*, MN604650*, –, MN617267*, –; Cirsium rydbergii Petr., 68DBG, U.S.A.: 

Arizona. Coconino Co.: Grand Canyon National Park, Bert's Canyon, 28 May 2004, K Watters 

20 (DES), MN604522*, MN604579*, –, –, MN617268*, –; Cirsium rydbergii Petr., 160DBG, 

MN335054, MN230874, MN275355, –, MN275427, –; Cirsium rydbergii Petr., 162DBG, 

U.S.A.: Utah. San Juan Co.: Dark Canyon Plateau, 11 May 2008, Hodgson 22997 (DES), 

MN604509*, MN604572*, MN604675*, –, MN617261*, –; Cirsium rydbergii Petr., 164DBG, 

U.S.A.: Utah. San Juan Co.: Sweet Alice Canyon, 7 Jul 1994, Hodgson 8432 (DES), 

MN604510*, MN604573*, MN604647*, –, MN617262*, –; Cirsium rydbergii Petr., 165DBG, 

U.S.A.: Utah. San Juan Co.: Woodenshoe Canyon, 6 Aug 1993, Hodgson 7434 (DES), 

MN604511*, MN604574*, MN604689*, –, MN617263*, –; Cirsium rydbergii Petr., 185DBG, 

U.S.A.: Arizona. Coconino Co.: Grand Canyon National Park, Kanab Canyon, 2 May 2013, M 

McMaster sn (DES), MN604518*, MN604575*, MN604648*, –, MN617264, –; Cirsium 

rydbergii Petr., 196DBG, Arizona. Coconino Co.: Grand Canyon, Cliff Spring, 21 Sep 2010, 

Hodgson 25702 (DES), MN604443*, MN604531*, MN604633*, –, MN617209*, –; Cirsium 

rydbergii Petr., 1ASDBG, U.S.A.: Arizona. Coconino Co.: Grand Canyon National Park, Cliff 

Spring, Hodgson sn (DES), MN604489*, MN604580*, MN604636*, –, MN617269*, –; Cirsium 

rydbergii Petr., 3ASDBG, U.S.A.: Arizona. Coconino Co.: North Kaibab, Hodgson sn (DES), 

MN604495*, MN604585*, MN604634*, –, MN617275*, –; Cirsium scariosum Nutt. var. 

americanum (A. Gray) D.J. Keil, U.S.A.: Colorado. Park Co.: High Creek Fen, 23 Jul 2016, 

Ackerfield 16-102 (CS), MN604490*, MN604581*, MN604637*, MN617193*, MN617270*, 

MN617330*; Cirsium scariosum Nutt. var. citrinum (Petrak) D.J. Keil, MN335162, MN230952, 
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–, –, MN275437, MN314907; Cirsium scariosum Nutt. var. coloradense (Rydb.) D.J. Keil, 

U.S.A.: Colorado. Jackson Co.: Approximately 6 mi west of Walden along Hwy 14, 28 Jun 

2016, Ackerfield 16-41 (CS), MN604491*, MN604595*, MN604676*, MN617194*, 

MN617271*, MN617331*; Cirsium scariosum Nutt. var. congdonii (R.J. Moore & Frankton) 

D.J. Keil, MN335127, MN230949, MN275343, MN275383, MN275458, MN314942; Cirsium 

scariosum Nutt. var. scariosum, U.S.A.: Idaho. Boise Co.: Boise National Forest south of 

Lowman, 21 July 2001, Keil 29682C (OBI), MN604492*, MN604582*, MN604638*, –, 

MN617272*, MN617332*; Cirsium scariosum Nutt. var. toiyabense D.J. Keil, 48, U.S.A.: 

Idaho. Custer Co.: Pioneer Mts., Fall creek trail toward Moose Lake, 11 Jul 2009, J Smith et al. 

8326 (BRY), MN604494*, MN604584*, MN604677*, MN617195*, MN617274*, MN617334*; 

Cirsium scariosum Nutt. var. toiyabense D.J. Keil, 166, U.S.A.: Oregon. Harney Co.: Vicinity of 

Malhuer Field Station, 11 Aug 2000, Keil 29092 (OBI), MN604493*, MN604583*, 

MN604639*, –, MN617273*, MN617333*; Cirsium shansiense Petr., MN335097, MN230917, 

–, –, –, –; Cirsium subcoriaceum (Less.) Sch. Bip., MN335156, MN230973, MN275330, 

MN275399, MN275461, MN314937; Cirsium texanum Buckley, MN335129, MN230954, 

MN275340, MN275386, MN275435, MN314927; Cirsium tracyi (Rydb.) Petr., MN335152, 

MN230931, MN275352, MN275373, MN275451, MN314892; Cirsium turneri Warnock, 

MN230932, MN335112, MN275311, –, MN275450, MN314939; Cirsium undulatum (Nutt.) 

Spreng., 6, MN335134, MN230972, MN275331, MN275398, MN275424, MN314916; Cirsium 

undulatum (Nutt.) Spreng., 162, U.S.A.: Oregon. Sherman Co.: Columbia River Gorge, 19 July 

2001, Keil 29662A (OBI), MN604496*, MN604610*, MN604651*, –, MN617276*, 

MN617335*; Cirsium velatum (S. Watson) Petr., MN335154, MN230978, MN275312, 

MN275403, MN275420, MN314935; Cirsium vinaceum (Woot. & Standl.) Woot. & Standl., 
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MN335147, MN230957, MN275337, –, MN275470, MN314943; Cirsium virginense S.L. 

Welsh, 2ASDBG, U.S.A.: Arizona. Mohave Co.: Three Springs, 11 Aug 2011, G Rink 10834 

(DES), MN604498*, MN604589*, MN604643*, –, MN617286*, –; Cirsium virginense S.L. 

Welsh, 79, U.S.A.: Utah. Washington Co.: northern saline seep W of Grapevine Pass Wash, 18 

May 2004, Alexander 1690 (RENO), MN604497*, MN604596*, MN604688*, –, MN617285*, 

MN617336*; Cirsium virginense S.L. Welsh, 95DBG, U.S.A.: Arizona. Mohave Co.: Hualapai 

Indian Reservation, Travertine Falls, 10 Sep 1994, Hodgson 8514 (DES), MN604499*, 

MN604591*, MN604654*, –, MN617281*, –; Cirsium virginense S.L. Welsh, 96DBG, U.S.A.: 

Arizona. Mohave Co.: Hualapai Indian Reservation, Bridge Canyon, 11 Sep 1994, Hodgson 

8517 (DES), MN604507*, MN604592*, MN604680*, –, MN617282*, –; Cirsium virginense 

S.L. Welsh, 166DBG, U.S.A.: Arizona. Coconino Co.: Grand Canyon, Hualapai Indian 

Reservation, Medicine Spring, 22 Sep 2009, Hodgson 24441 (DES), MN604524*, MN604588*, 

MN604679*, –, MN617279*, –; Cirsium virginense S.L. Welsh, 187DBG, U.S.A.: Utah. 

Washington Co.: St. George on Red Hill, 6 Oct 1984, S Welsh 23224 (BRY), MN604508*, 

MN604586*, MN604652*, –, MN617277*, –; Cirsium virginense S.L. Welsh, 210DBG, U.S.A.: 

Utah. Washington Co.: Seep along road ca 0.5 mi east of Danish Ranch, 19 Aug 1986, R Warrick 

2961 (BRY), MN604523*, MN604587*, MN604653*, –, MN617278*, –; Cirsium virginense 

S.L. Welsh, 3348DBG, U.S.A.: Arizona. Coconino Co.: Grand Canyon, Hualapai Nation, near 

Medicine Spring, 7 Jun 2015, Hodgson 30437 (DES), MN604500*, MN604590*, MN604644*, 

–, MN617280*, –; Cirsium virginianum (L.) Michx., MN335111, MN230930, MN275353, –, 

MN275452, MN314932; Cirsium vulgare (Savi) Ten, MN335116, MN230936, MN275315, 

MN275364, MN275426, MN314896; Cirsium wheeleri (A. Gray) Petr., MN335130, MN230955, 
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MN275339, MN275365, MN275418, MN314908; Cirsium wrightii A. Gray, MN335140, 

MN230977, MN275323, MN275371, MN275423, MN314934. 
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Supplemental Figure 1. ETS region 
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Supplemental Figure 2. ITS region 
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Supplemental Figure 3. matK region 
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Supplemental Figure 4. ndhF region 
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Supplemental Figure 5. psbA-trnH region 
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Supplemental Figure 6. trnL-trnF region 
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Supplemental Figure 7. Time-calibrated phylogeny of the Carduus-Cirsium group (expanded to 

show all tips) within the family Compositae. Median age is shown at each node. Purple bars on 

nodes indicate the 95% confidence intervals (CI). 
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Supplemental Figure 8. Bayesian inference. Posterior probabilities are listed above each branch. 
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Supplemental Figure 9. Combined plastid regions 
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Supplemental Figure 10. Combined nuclear regions 
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Supplemental Figure 11. ETS nuclear region 
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Supplemental Figure 12. ITS nuclear region 
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Supplemental Figure 13. matK plastid region 
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Supplemental Figure 14. ndhF plastid region 
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Supplemental Figure 15. psbA-trnH plastid region 
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Supplemental Figure 16. trnL-trnF plastid region 
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