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ABSTRACT

ARITHMETIC PROPERTIES OF CURVES AND JACOBIANS

This thesis is about algebraic curves and their Jacobians. The first chapter concerns Ab-

hyankar’s Inertia Conjecture which is about the existence of unramified covers of the affine line in

positive characteristic with prescribed ramification behavior. The second chapter demonstrates the

existence of a curve C for which a particular algebraic cycle, called the Ceresa cycle, is torsion in

the Jacobian variety of C. The final chapter is a study of supersingular Hurwitz curves in positive

characteristic.
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Chapter 1

Introduction

In this thesis I study three important topics in number theory. Each project provides evidence

for open conjectures in number theory and arithmetic geometry. The first chapter concerns Ab-

hyankar’s Inertia Conjecture which predicts which inertia groups occur for unramified covers of

the affine line in positive characteristic. The second studies algebraic constructions of certain coho-

mology classes which historically have been studied geometrically. This work has applications to

finding points on algebraic curve via Grothendieck’s Section Conjecture. The project discussed

in the final chapter finds supersingular curves of specified genera. This is data towards open

conjectures concerning the existence of supersingular curves of every genera in every non-zero

characteristic.

1.1 Abhyankar’s Inertia Conjecture for sporadic simple groups

Chapter 2 studies Abhyankar’s Inertia Conjecture in the specific case of the sporadic groups.

Abhyankar’s Inertia Conjecture predicts which inertia groups occur for unramified covers of the

affine line in positive characteristic. The sporadic groups are a family of 26 groups in the classifica-

tion of finite simple groups. We define a (G, I)-Galois cover to be a G-cover of the projective line

ramified only over infinity with inertia groups isomorphic to I . The set Ip(G) is the set of potential

inertia groups which satisfy Abhyankar’s Inertia Conjecture. The main results of Section 2.3 are

the following.

Theorem 1.1.1. Fix finite quasi-p groupsH ⊂ G. Suppose the Sylow p-subgroups ofG have order

p and fix I ∈ Ip(H). If there exists an (H, I)-Galois cover, then there exists a (G, I)-Galois cover.

Corollary 1.1.2. Suppose H ⊂ G are finite quasi-p groups, the index [G : H] is coprime to p,

and the Sylow p-subgroups of G have order p. Also suppose every I ∈ Ip(G) is a G-conjugate
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of some I ′ ∈ Ip(H). If Conjecture 2.1.2 is true for H in characteristic p, then it is true for G in

characteristic p.

Corollary 1.1.2 is applied to the 14 sporadic simple groups in Table 2.3 to verify Abhyankar’s

Inertia Conjecture in various characteristics. The final two sections of Chapter 2 study which

ramification invariants can be shown to occur of the groups studies in the previous two chapters.

The contents of Chapter 2 have been submitted for publication and can be found in [1].

1.2 Non-hyperelliptic Curves with torsion Ceresa classes

Chapter 3 is joint work with Wanlin Li, Daniel Litt, and Padmavathi Srinivasan and began at

the MRC (math research community) on explicit methods in positive characteristic organized by

the American Mathematical Society. Two questions were posed by Jordan Ellenberg. Could a

Ceresa class be computed? If so, does there exist a non-hyperelliptic curve with a trivial or finite

order Ceresa class? In Chapter 3 both questions are answered affirmatively.

The methods in Chapter 3 is unique as they apply to any pro-ℓ group with torsion-free abelian-

ization. In particular the curve C need not be proper. The outcome is two Galois cohomology

classes, MD(C, b) and J(C). We call MD(C, b) the modified diagonal class. The class MD(C, b)

corresponds to the Ceresa class. We call J(C) the Johnson class and it corresponds to a basepoint-

free Ceresa class. Both classes encode similar information to the classes studied in [2]. Several

results are proven about these Galois-theoretic cohomology classes.

Proposition 1.2.1. When C is a hyperelliptic curve, the class J(C) is 2-torsion. Moreover, if b is

a rational Weierstrass point, MD(C, b) is also 2-torsion.

Proposition 1.2.1 verifies that the purely group-theoretic constructions studied elsewhere in the

chapter are able to recover this important property of the Ceresa class.

The goal of finding a non-hyperelliptic curve with torsion Ceresa class is also accomplished.

The example identified is the Fricke-Macbeath curve FM . The Fricke-Macbeath curve is the

unique genus 7 Hurwitz curve over Q. The automorphism group of the Fricke-Macbeath curve is
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isomorphic to the simple group PSL2(8). That is, FM is the unique genus 7 curve which admits

504 automorphisms [3, pg. 541].

Proposition 1.2.2. Let C/K be a curve over a number field with C ∼= FM . The class J(C) is

torsion.

The curve FM is a reasonable candidate due to several factors. By [4, Proposition 3.1], there

are certain group cohomological restrictions which Aut(C) places on J(C). As a heuristic, studying

curves with maximal automorphism groups increases the possibility that those restrictions force

J(C) to have finite order. Chapter 3 has been submitted for publication under the title “Group-

theoretic Johnson classes and Non-Hyperelliptic Curves with Torsion Ceresa Class” with coauthors

Wanlin Li, Daniel Litt, and Padmavathi Srinivasan [4].

1.3 Supersingular Hurwitz curves

Chapter 4 is the outcome of an REU (research experience for undergraduates) run by the author

and Rachel Pries during the summer of 2018 on the CSU campus. The REU spanned 6 weeks in

which the group of Colorado State University undergraduates attended several weeks of lectures

in number theory followed by several weeks working on a research problem and learning how to

generate data using Sage and Magma. The problem posed to the REU students was to determine

when Hurwitz curves are supersingular. In particular the we proved the following results.

Theorem 1.3.1. Suppose n and l are relatively prime and m = n2 − nl + l2. The Hurwitz curve

Hn,l is supersingular over Fp if and only if pi ≡ −1 mod m for some positive integer i.

Corollary 1.3.2. If n and l are relatively prime and Hn,l is supersingular over Fp, then it is maxi-

mal over Fp2i where i is the same as in Theorem 1.3.1.

In Section 4.5 a table is provided detailing every supersingular Hurwitz curve of genus less than

5 over all fields with characteristic less than 37. The contents of Chapter 4 have been published

under the title “The Supersingularity of Hurwitz Curves” with coauthors Erin Dawson, Henry

Frauenhoff, Michael Lynch, Amethyst Price, Seamus Somerstep, Eric Work, and Rachel Pries [5].
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Chapter 2

Abhyankar’s Inertia Conjecture for Some Sporadic

Groups

2.1 Background

Following the work of Serre, [6], Raynaud, and Harbater proved Abhyankar’s Conjecture for

Galois covers of affine curves in positive characteristic. Let k be an algebraically closed field of

characteristic p. Let G be a finite group and p(G) be the normal subgroup of G generated by

elements of p-power order.

Theorem 2.1.1 (Abhyankar’s Conjecture [7–9]). Let X be a smooth projective curve of genus

g defined over k. Let B be a finite non-empty set of points of X having cardinality r and let

U = X \B. A finite group G is the Galois group of an unramified cover of U if and only if G/p(G)

has a generating set of size at most 2g + r − 1.

Call G quasi-p if G = p(G). A simple group is quasi-p for any prime dividing its order. When

X is the projective line P1
k and B = {∞}, then Theorem 2.1.1 states that a finite group G is the

Galois group of an unramified cover of A1
k if and only if a generating set ofG/p(G) has size at most

0. Thus a finite group G is the Galois group of an unramified cover of the affine line over k if and

only if G is quasi-p. Following the proof of Theorem 2.1.1, Abhyankar stated Conjecture 2.1.2.

Conjecture 2.1.2 (Abhyankar’s Inertia Conjecture [10, Section 16]). Let G be a finite quasi-p

group. Let I be a subgroup of G which is an extension of a cyclic group of order prime-to-p by a

p-group J . Then I occurs as an inertia group for a G-Galois cover of P1
k branched only at∞ if

and only if the conjugates of J generate G.

The condition on J in Conjecture 2.1.2 is necessary. SupposeG and I are as in Conjecture 2.1.2

and that I is the inertia group of some G-Galois cover of P1
k branched only at ∞. Let H be the
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normal subgroup of G generated by the conjugates of J . Then the G/H-Galois quotient cover is

tamely ramified at∞. Grothendieck showed that the tame fundamental group of the affine line is

trivial [11, Corollary XIII.2.12]. Consequently, H = G which proves the “only if” direction of

Conjecture 2.1.2.

Fix k = F p and a quasi-p group G.

Definition 2.1.3. Denote the set of potential inertia groups ofG-Galois covers of P1
k branched only

at∞ by Ip(G). Explicitly Ip(G) is defined in the following way

Ip(G) = {I ⊂ G | I satisfies the hypotheses of Conjecture 2.1.2}.

Throughout this chapter we specify a G-Galois cover of P1
k branched only at ∞ with particular

inertia group I ∈ Ip(G) at a ramified point. Such a cover is called a (G, I)-Galois cover. We say

that Conjecture 2.1.2 is true (or verified) for G in characteristic p if for every I ∈ Ip(G) there

exists a (G, I)-Galois cover.

This chapter verifies Conjecture 2.1.2 for certain sporadic groups in various characteristics. In

order to do so we prove Lemma 2.3.5, a technical lemma which allows us to construct a well-

defined thickening problem. Work of Habater and Stevenson [12] and Pries [13] determines the

existence of solutions to these thickening problems. This allows us to prove the following theorem.

Theorem 2.1.4. Suppose H ⊂ G are finite quasi-p groups, the index [G : H] is coprime to p, a

Sylow p-subgroup of G has order p, and every I ∈ Ip(G) is a G-conjugate of some I ′ ∈ Ip(H). If

Conjecture 2.1.2 is true for H in characteristic p, then it is true for G in characteristic p.

As an application of the previous theorem we consider sporadic groups with stipulated proper-

ties.

• Sylow p-subgroups of G are isomorphic to Z/p.

• The normalizer NG(S) is isomorphic to Z/p⋊ Z/((p− 1)/2).

• The group G contains a subgroup isomorphic to PSL2(p).
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These attributes are sufficient to verify Conjecture 2.1.2.

Corollary 2.1.5. Abhyankar’s Inertia Conjecture is true for the fourteen sporadic groups and

characteristics in Table 2.3.

The ramification invariant of a cover is an invariant of the filtration of higher ramification

groups in the upper numbering. The ramification invariant is necessary though not sufficient to

determine the genus of the covering curve associated to a (G, I)-Galois cover. More information

can be found in Section 2.2.1.

In Section 2.4, we study the ramification invariants that can occur for G-Galois covers of P1
k

branched only at ∞ when G contains a subgroup H ∼= PSL2(p). In Section 2.5 we verify a

refinement of Conjecture 2.1.2 for the Mathieu group M11: all but eight of the possible ramification

invariants occur for M11-Galois covers of P1
k branched only at∞ in characteristic 11. We leave it

as an open question whether these eight occur as well.

Theorem 2.1.6. Conjecture 2.1.2 is true for M11 in characteristic p = 11. Further, all possible

ramification invariants except 6/5, 7/5, 9/5, 12/5, 14/5, 17/5, 19/5, and 27/5 are verified to

occur.

We prove similar result for additional sporadic groups in Theorem 2.4.6.

Previous work has been successful when considering simple groups which are not sporadic.

In [14, Section 4.1] and [15, Theorem 2], Harbater shows that the Sylow p-subgroups of the Galois

group occur as inertia groups. Abhyankar’s Inertia Conjecture (Conjecture 2.1.2) is true for the

following groups:

a) PSL2(p) for p ≥ 5, [16, Corollary 3.3];

b) Ap for p ≥ 5, [16, Corollary 3.5];

c) Ap+2 when p is odd and p ≡ 2 mod 3 [17, Theorem 1.2].

In [18], Obus shows inertia groups isomorphic to Z/pr and Dpr are realizable for PSL2(l) in

characteristic p when pm divides |PSL2(l)|, l 6= p is an odd prime and 1 ≤ r ≤ m. Das and Kumar
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show that certain inertia groups occur for covers whose Galois group is a product of alternating

groups [19, Corollary 4.9]. Refined observations are made in both [16] and [17] beyond just the

verification of Conjecture 2.1.2. Both papers are able to determine that all but finitely many of the

possible ramification invariants occur. Further reading can be found in [17, Section 4].

2.2 Preliminaries

2.2.1 Ramification groups

Let φ : X → Y be a G-Galois cover of curves with ξ a point of Y and η a point in the fiber

over ξ. LetOη denote the discrete valuation ring ofOY given by the valuation νη at η. For i ≥ −1,

the ith ramification group is given by

Gi = {δ ∈ G : νη(δ(a)− a) ≥ i+ 1 for all a ∈ Oη}. (2.1)

The higher ramification groups form a filtration

{Gi}i≥−1 : G−1 ⊇ G0 ⊇ G1 ⊇ . . . . (2.2)

The subgroup G−1 is the decomposition group Dη at η. It is the subgroup of G of automor-

phisms that fix η. The inertia group Iη at η is G0. In general, if π is a uniformizer ofOη, then Gi is

the kernel of the action of G−1 on Oη/π
i+1. The subscript η on inertia and decomposition groups

is suppressed unless relevent.

The ordering of the ramification groups in (2.2) is called the lower numbering while the renum-

bering introduced in Definition 2.2.1 is called the upper numbering.

Definition 2.2.1 (Upper Numbering [20, Section IV.iii]). Consider the function

t = H(s) =

∫ s

0

dx

[G0 : Gx]
,
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called the Herbrand function and let ψ(t) be the inverse map of H(s). Then for any real s ≥ −1,

let Gs = G⌈s⌉ and renumber the ramification groups by Gt = Gs.

Definition 2.2.2 (Jumps). An index t such that Gt 6= Gt+ǫ for any ǫ > 0 is called an upper jump.

a) The largest upper jump σ is called the ramification invariant.

b) Let j = ψ(σ). This is called the inertia jump; it is the index of the last nontrivial ramification

group in the lower numbering.

Let φ : X → P1
k be a (G, I)-Galois cover for some I ∈ Ip(G) and η a ramified point with

inertia group I . We denote the normalizer in G of a subgroup I ⊂ G by NG(I). The inertia groups

at other ramification points are all the G-conjugates of I of which there are [G : NG(I)]. For

every G-conjugate I ′ of I , the number of ramified points with inertia group I ′ is [NG(I) : I]. If a

particular group structure is specified for I , it is meant that the inertia groups of φ are subgroups

of G isomorphic to I .

If p strictly divides |I|, then I is a semi-direct product of the form Z/p ⋊ Z/mI where p and

mI are coprime by the Schur-Zassenhaus Theorem [21, pg. 132]. In this case, there is exactly one

inertia jump j and p ∤ j. The ramification invariant is then related to the inertia jump by σ = j/mI .

The following proposition provides some restrictions on the inertia jump and possible inertia

groups.

Proposition 2.2.3 ( [20, Proposition IV.ii.9]). Suppose φ is a (G, I)-Galois cover with inertia jump

j. By [20, Corollary IV.ii.4], I is an extension of a cyclic group C of order m by a p-group P via

a group homomorphism ψ : C →֒ Aut(P ). If τ ∈ I with order p and β ∈ I with order m, then

ψ(β)τψ(β−1) = ψ(β)jτ.

2.2.2 p-Properties of Galois groups

Recall from Theorem 2.1.1 that the existence of G-Galois covers of P1 branched only at∞ in

characteristic p > 0 is detected by the quasi-p condition on G.
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Definition 2.2.4 (quasi-p). Denote by p(G) the subgroup of G generated by all p-power elements

of G. If p(G) = G, then call G quasi-p.

All pairs G and p which we study in this chapter are chosen such that G is simple and p divides

|G|.

Lemma 2.2.5. If G is simple and p divides the order of G, then G is quasi-p.

Proof. The subgroup p(G) is normal and non-trivial in G. By the hypothesis, G is simple and thus

satisfies p(G) = G.

The following condition, p-pure, on G was introduced by Raynaud. It is a geometric condition

that guarantees that the reduction of aG-Galois cover of the affine line is connected over a terminal

component. More techniques are available for p-pure groups see [8] and [22] for details.

Definition 2.2.6 (p-pure [8, pg. 426]). Let G be a finite quasi-p group and let S be a fixed Sylow

p-subgroup of G. By G(S) denote the subgroup of G generated by all proper, quasi-p subgroups

H ⊂ G having a Sylow p-subgroup contained in S. If G(S) 6= G then G is p-pure.

Definition 2.2.7 (p-weight [13, Definition 3.1.2]). Fix G and S as in Definition 2.2.6. Consider all

subgroups G′ ⊂ G such that G′ is quasi-p and p-pure such that G′ ∩ S is a Sylow p-subgroup of

G′. The p-weight ωG of G is the minimal number of such subgroups G′ of G which are needed to

generate G. Note that a group G is p-pure if ωG = 1.

2.2.3 Sporadic groups

The Mathieu groups M11, M12, M22, M23, and M24 are sporadic simple groups first described

by Émile Mathieu in the 1870s [23, pg. 389]. The group M11 has order 7920 = 24 · 32 · 5 · 11

and acts strictly 4-transitively on 11 objects. By [24, pg. 18], there are two 11-conjugacy classes

labeled 11a and 11b. Conjugate maximal subgroups of M11 are the following [24, pg. 18].

Lemma 2.2.8. The groups M11 and M22 are quasi-11 and 11-pure.
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Table 2.1: Maximal Subgroups of M11

Subgroup M10 PSL2(11) M9 : 2 S5 Q : S3

Order 720 660 144 120 48

Proof. For 11-purity, see Lemma 2.2.5.

To check 11-purity, pick G ∈ {M11,M22}. Fix a Sylow 11-subgroup S of G. The only quasi-

11 subgroups containing S are its normalizer NG(S) and a unique subgroup T isomorphic to

PSL2(11). But NG(S) ⊂ T ; thus G is 11-pure.

Remark. The groups M12, M23, and M24 are not 11-pure. For G ∼= M12 every Sylow 11-subgroup

of G is contained in both a maximal subgroup H ∼= PSL2(11) of G and a maximal K ∼= M11 of G.

The groups H and K are maximal subgroups, consequently H 6⊂ K. Hence G(S) = G and M12

is not 11-pure. This argument works similarly for M23 and M24. Likewise, M22 is not 7-pure and

M24 is not 23-pure.

Both the Higman-Sims group HS and McLaughlin group McL are stabilizers of certain planes

in the Leech Lattice. The group HS stabilizes the plane given by the 3-3-2 triangle. The group

McL stabilizes the plane given by the 3-2-2 triangle. The groups HS and McL have order strictly

divisible by 11, have Sylow 11-subgroups isomorphic to Z/11 with normalizers isomorphic to

Z/11 ⋊ Z/5, and contain a subgroup isomorphic to PSL2(11). Both HS and McL fail to be 11-

pure.

Table 2.2: References for the groups HS, McL, and Ru.

Group Order Reference
HS 293253 · 7 · 11 [25]
McL 273653 · 7 · 11 [26]
Ru 2143353 · 7 · 13 · 29 [27]

The group Ru has Sylow 29-subgroups isomorphic to Z/29 with normalizers isomorphic to

Z/29⋊ Z/14, and contains a maximal subgroup isomorphic to PSL2(29). Further, this is the only

maximal subgroup of Ru with order divisible by 29. Consequently Ru is 29-pure.
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2.3 Resolving Abhyankar’s Inertia Conjecture from Subgroups

Few techniques are known to increase the size of inertia groups. A technique we demonstrate

in this section constructs thickening problems which have solutions which are known to exist by

results of Harbater and Stevenson [12, Theorem 4]. In [13] it is shown that inertia groups and

ramification invariants behave predictably under this operation.

2.3.1 A Galois equivariant relation on ramification points

We begin by fixing some notation. Fix a (G, I)-Galois cover φ : X → P1
k. Pick a ramified

point η on X and denote the inertia group at η by Iη. The group G acts transitively on ramification

points, thus for each ramification point ǫ there exists a g ∈ G such that g ◦ η = ǫ. Let Ig denote the

inertia group at the ramified point g ◦ η, consequently Ig = gIηg
−1.

Note that g1 ◦ η = g2 ◦ η if and only if g−1
2 g1 ∈ Iη. This is because k is algebraically closed so

the decomposition group at η and Iη coincide.

We define an equivalence relation on ramification points.

Definition 2.3.1. We say g1 ◦ η ∼ g2 ◦ η if and only if g−1
2 g1 ∈ NG(Iη). In particular this identifies

η with the ramification points z ◦ η for all z ∈ NG(Iη).

Lemma 2.3.2. Suppose p divides the order of G and Iη ∈ Sylp(G). The groups

NG(Ig1) = NG(Ig2)

as subgroups of G if and only if g1 ◦ η ∼ g2 ◦ η.

Proof. First we show that NG(Ig1) = NG(Ig2) if and only if I1 = I2. Assume NG(Ig1) = NG(Ig2).

By the Sylow theorems, NG(Igi) contains a unique Sylow p-subgroup. Both Ig1 and Ig2 are the

Sylow p-subgroup of NG(Ig1). This shows that Ig1 = Ig2 as subgroups of G. Alternatively if

Ig1 = Ig2 as subgroups of G, then the normalizers NG(Ig1) and NG(Ig2) must be equal as well.

11



Consequently, we must show that g−1
2 g1 ∈ NG(Iη) if and only if I1 = I2 as subgroups of G.

We proceed by computing

g−1
2 g1 ∈ NG(Iη) ⇐⇒ Iη = g−1

2 g1Iηg
−1
1 g2

⇐⇒ g2Iηg
−1
2 = g1Iηg

−1
1

⇐⇒ Ig2 = Ig1 .

Corollary 2.3.3. The relation ∼ collects the ramification points of φ into equivalence classes of

cardinality [NG(Iη) : Iη] identified by subgroups of G isomorphic to NG(Iη).

Proof. This follows immediately from Lemma 2.3.2.

Suppose φ : X → P1
k is a (G, I)-Galois cover. The set of ramification points of φ is denoted by

Rφ and the cardinality of Rφ is [G : I]. The number of points in Rφ with inertia group precisely I

is [NG(I) : I]. The set of equivalence classes of Rφ/ ∼ is denoted by Rφ and the cardinality of Rφ

is [G : NG(I)].

2.3.2 Induced covers, patching, and deformations

For the remainder of this section fix a finite quasi-p group G1 and a quasi-p subgroup G2 with

index coprime to p. Let S be a Sylow p-subgroup of G1 and choose Ii containing S. Assume that

(Gi, Ii)-Galois covers φi : Xi → P1
k exist.

Recall the proof of [13, Corollary 2.3.1]. A similar process is implemented here. We will

induce a disconnected (G1, I2)-Galois coverϕ2 from a (G2, I2)-Galois cover. The induced coverϕ2

and a connected (G1, I1)-Galois cover are formally patched in neighborhoods of the ramification

points. This operation yields a G1-Galois thickening problem for which there is a solution V [12,

Theorem 4]. Deformations of the special fiber of V yield a smooth, connected (G1, I2)-Galois

cover.

12



We extend the notation of Section 2.3.1 to serve two covers. Fix a ramified point ηi of φi. By

Ig,i we denote the inertia group at the ramified point g ◦ ηi.

Definition 2.3.4. Suppose φ2 : X2 → P1
k is a G2-Galois cover of curves. The induced curve

X2 := IndG1

G2
(X) is defined to be the disconnected curve consisting of [G1 : G2] copies of X2,

indexed by left cosets of G2 in G1. There is an induced action of G1 on X2. The induced cover is

denoted ϕ := IndG1

G2
(φ2) : X2 → P1

k.

Lemma 2.3.5. For each i ∈ {1, 2} let φi : Xi → P1
k be a (Gi, Ii)-Galois cover. Suppose G2 ⊂ G1

and let ϕ2 = IndG1

G2
(φ2) be the induced cover. If NG1

(I1) ∼= NG1
(I2), then there is a set bijection

b : Rϕ2
→ Rφ1

. Further, there is a labeling of ramification points such that the bijection b is

G1-equivariant.

Proof. First we check that the cardinalities of Rϕ2
and Rφ1

agree:

|Rϕ2
| = [G1 : G2]|Rφ2

| = [G1 : G2][G2 : NG2
(I2)]

= [G1 : NG1
(I1)] = |Rφ1

|.

The equality of the first and second lines is justified by the hypothesis NG1
(I1) ∼= NG1

(I2).

Applying Corollary 2.3.3, define b to be the bijection sending the equivalence class of Rϕ2

identified by N to the corresponding class of Rφ1
.

We now show that that b is G1-equivariant. Let b(η) ∈ Rφ1
be a ramification point with inertia

group Iη and normalizer of inertia N . For any g ∈ G1, g ◦ η has inertia group gIηg−1. We must

show that g ◦ b(η) has inertia group gIηg−1. Recall that by definition b(η) has normalizer of inertia

N . Every ramification point with normalizer N has inertia group Iη. Consequently, g ◦ b(η) has

inertia group gIηg−1.

Lemma 2.3.6. Suppose p is prime and G is a finite quasi-p group with order strictly divisible by

p. Fix a quasi-p subgroup H ⊂ G, and I ∈ Ip(H) with I ∼= Z/p ⋊ Z/mI . If there exists an

(H, I)-Galois cover with inertia jump j, then there exists an (H, I)-Galois cover with inertia jump

j + imI and a G-Galois cover with inertia jump γ(j + imI) for some positive integers i and γ.
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Proof. Let S be a Sylow p-subgroup of H and G. There exists a (G,S)-Galois cover φ by [15,

Theorem 2]. Note that φ can be selected such that its inertia jump is γ(j + imI) for some pair of

positive integers i and γ where gcd(γ,mI) = 1; this is a consequence of [13, Theorem 3.2.4].

By assumption, there exists an (H, I)-Galois cover ψ with inertia jump j. The inertia jump of

ψ is increased to j + imI which finishes the proof [13, Theorem 2.2.2].

The proof of Theorem 2.3.7 uses formal patching to solve a particular thickening problem.

The pattern of proof follows [13, Theorem 2.3.7] which uses [12, Theorem 4] to ensure a solution

exists.

Theorem 2.3.7. Consider finite quasi-p groups G2 ⊂ G1. Suppose the Sylow p-subgroups of G1

have order p, fix I ∈ Ip(G2). If there exists a (G2, I)-Galois cover, then there exists a (G1, I)-

Galois cover.

Proof. Fix a Sylow p-subgroup S of G1 contained in I . Let φ1 : X1 → P1
k be a (G1, S)-Galois

cover which exists by [15, Theorem 2]. Let φ2 be a (G2, I)-Galois cover, and ϕ2 : X2 → P1
k denote

the induced cover. Finally, let W be a curve isomorphic to two P1
k’s intersecting transversely at∞.

Construct ϑ : V → W by patching X1 and X2 at the ramification points identified by the bijection

produced in Lemma 2.3.5.

We apply [13, Theorem 2.3.7] to φ1 and φ2. It is necessary that |S| = p as well as certain

numerical conditions are verified for the jumps of φ1 and φ2. These numerical conditions can be

satisfied by Lemma 2.3.6. See [13, Notation 2.3.2, Notation 2.3.6] for additional details.

Let R = k[[t]]. The result of applying [13, Theorem 2.3.7] is the following. A family of covers

over an R-curve PR is constructed. The generic fiber of this family is a (G, I)-Galois cover, thus

deformations of the special fiber yield the result.

Corollary 2.3.8. Suppose G2 ⊂ G1 are finite quasi-p groups, the index [G1 : G2] is coprime to p,

and the Sylow p-subgroups of G1 have order p. Also suppose every I ∈ Ip(G1) is a G1-conjugate

of some I ′ ∈ Ip(G2). If Conjecture 2.1.2 is true for G2 in characteristic p, then it is true for G1 in

characteristic p.
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Proof. Pick I ∈ Ip(G1). By assumption, every element I ∈ Ip(G1) is represented by a G1-

conjugate element I ′ ∈ Ip(G2). Because Conjecture 2.1.2 is true for G2, there exists a (G2, I
′)-

Galois cover. Applying Theorem 2.3.7 constructs a (G1, I
′)-Galois cover φ. The group G1 acts

transitively on fibers of φ. For this reason all G1-conjugates of I ′ occur as inertia groups at some

point over ∞. This enables us to conclude that I is the inertia group at some ramified point of

φ.

As an application, Conjecture 2.1.2 is verified for several sporadic groups due to Conjec-

ture 2.1.2 being known for PSL2(p) in characteristic p ≥ 5 [16, Corollary 3.3].

Corollary 2.3.9. Abhyankar’s Inertia Conjecture is true for the groups and characteristics in Ta-

ble 2.3.

Table 2.3: Groups and characteristics p for which Conjecture 2.1.2 is verified by Corollary 2.3.8.

p Groups
5,7 M22

11 M11, M12, M22, M23, HS, McL
13 F22, Suz
17, 19 J3
23 M24

29 Ru
31 ON, B
59, 71 M

Proof. Fix G isomorphic to a group in Table 2.3, p 6= 5, and set mI = (p − 1)/2. Abhyankar’s

Inertia Conjecture is known for PSL2(p) by [16, Corollary 3.3]. The group G contains a subgroup

isomorphic to PSL2(p). The normalizers of Sylow p-subgroups in G and PSL2(p) are isomorphic

to Z/p⋊ Z/mI . Consequently, the hypothesis of Corollary 2.3.8 are satisfied.

In the case G ∼= M22 and p = 5, the proof is similar. The fundamental difference is that we

consider a subgroup isomorphic to A7, for which Abhyankar’s Inertia Conjecture is known [17,

Theorem 1.2].
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Remark. This strategy of proof does not work for M24 with p = 11 because the normalizer of a

Sylow 11-subgroup of M24 has order 110. There is no proper subgroup H ⊂ M24 for which it is

known that there exists an H-Galois cover with inertia order 110. Consequently, this method does

not verify Conjecture 2.1.2. In the next section we verify the existence of M24-Galois covers of the

affine line with all but finitely many potential inertia jumps.

2.3.3 Example: The Monster group M in characteristic 71

Consider the Monster group M which is the sporadic finite simple group with maximal order.

The order of M is approximately 8× 1053. The prime 71 strictly divides the order of M, the group

M contains a subgroup H isomorphic to PSL2(71), and the normalizer of a Sylow 71-subgroup is

isomorphic to Z/71 ⋊ Z/35 [28, Theorem 1]. To verify Conjecture 2.1.2 for M in characteristic

71 we must show for every subgroup I of M isomorphic to one of {Z/71,Z/71 ⋊ Z/5,Z/71 ⋊

Z/7,Z/71⋊ Z/35} there exists an (M, I)-Galois cover.

Pick I ∈ I71(M) and denote the unique Sylow 71-subgroup of I by S. There exists a subgroup

H ∼= PSL2(71) containing I . By [16, Corollary 2.4], there exists an (H, I)-Galois cover φ. There

exists an (M, S)-Galois cover ψ [15, Theorem 2]. From φ and ψ Theorem 2.3.7 constructs an

(M, I)-Galois cover.

2.4 Occurrence of all but Finitely Many Jumps

We now put aside the question of whether there exists a (G, I)-Galois cover for every I ∈

Ip(G) and instead consider which ramification invariants occur for unramified G-Galois covers of

A1
k. Studying which ramification invariants occur loses information concerning the centralizers of

the inertia groups which occur. This is not a strict loss, as we gain information regarding which

inertia jumps occur. In particular, we realize all but finitely many of the potential ramification

invariants for the sporadic groups in Table 2.3, Table 2.4, and Table 2.5.

Fix a prime p, finite quasi-p groupG with order strictly divisible by p, and k = Fp. Recall from

Section 2.2.1 that if p strictly dividesG, then every I ∈ Ip(G) must be of the form I ∼= Z/p⋊Z/mI
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for some mI such that gcd(p,mI) = 1. For such a (G, I)-Galois cover, the ramification invariant

σ is related to the inertia jump j by σ = j
mI

.

Definition 2.4.1. With the above notation, denote the set of potential ramification invariants for a

(G, I)-Galois cover by

σp(I) =

{
j

mI

∈ Q | j > mI , p ∤ j, and gcd(j,mI) =
|Cent(I)|

p

}
.

Now let I vary through all Ip(G) and denote the set of all possible ramification invariants of

(G, I)-Galois covers in the following way

σp(G) =
⋃

I∈Ip(G)

σp(I).

Definition 2.4.2. We say “all but finitely many ramification invariants occur for G in characteristic

p” if for all but finitely many σ ∈ σp(G) there exists a (G, I)-Galois cover with ramification

invariants σ for some I ∈ Ip(G).

Lemma 2.4.3. Suppose I ∈ Ip(G). If for every j ∈ Z/mI satisfying gcd(j,mI) =
|Cent(I)|

p
there

exists a (G, I)-Galois cover with ramification invariant j
mI

for some j ≡ j mod mI , then all but

finitely many σ ∈ σp(I) occur for (G, I)-Galois covers.

Proof. In [13, Lemma 3.2.3] it is shown that if the inertia jump j occurs for a (G, I)-Galois cover,

then any j′ > j such that j′ ≡ j mod mI occurs for some (G, I)-Galois cover. Consequently,

if there exists a (G, I)-Galois cover with inertia jump j ≡ j mod mI for each equivalence class

j ∈ Z/mI satisfying gcd(j,mI) = |Cent(I)|
p

, then all but possibly a few potential inertia jumps

smaller than j occur for that equivalence class. Because I has order strictly divisible by p, the

jump j′ corresponds to the ramification invariant j′

mI
∈ σp(I).

Proposition 2.4.4. Suppose p is prime, G is a finite quasi-p group with order strictly divisible by

p, S ∈ Sylp(G), and H is a subgroup of G for which there exists an (H,NH(S))-Galois cover. If
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for all I ∈ Ip(G) there exists a finite group D such that I = I ′ ×D for some I ′ ∈ Ip(H), then all

but finitely many ramification invariants σ ∈ σp(G) occur.

Proof. Let I = NH(S) and note I ∼= Z/p ⋊ Z/mI by the Schur-Zassenhaus Theorem [21, pg.

132]. Lemma 2.3.6 and the Different Inertia case of [13, Corollary 2.3.1] show that there exists a

(G, I)-Galois cover with ramification invariant σ = γ(j+imI)
mI

where j and γ are coprime to mI .

Pick an element j ∈ Z/mI where gcd(j, p) = |Cent(I)|
p

. There exists a positive integer d ∈ N

such that dγj ≡ j mod mI and

dγ(j + imI)

gcd(mI , d)
≡ j mod mI .

Let I ′ ⊂ I be the subgroup with order pmI

gcd(mI ,d)
. Applying [16, Proposition 3.1] yields a (G, I ′)-

Galois cover with inertia jump j′ = dγ(j+imI)
gcd(mI ,d)

and ramification invariant σ = j′

mI′
.

Remark. Assume the notation of Proposition 2.4.4. If D is trivial, then all but finitely many σ ∈

σp(G) occuring is equivalent to Conjecture 2.1.2 being true for G in characteristic p.

Definition 2.4.5. By mG we will denote the smallest integer such that mG · σp(G) ⊂ Z.

Theorem 2.4.6. As a result of Proposition 2.4.4, we can verify the occurrence of all but finitely

many σ ∈ σp(G) for the groups and characteristics in Table 2.3 as well as the groups and charac-

terstics in Table 2.4 and Table 2.5.

Table 2.4: Groups in characteristics 5 and 7 for which all but finitely many jumps are verified along with
structure of the normalizer of S ∈ Sylp(G), the value of mG, and the subgroup H for which Proposi-
tion 2.4.4 is applied.

p = 5 p = 7

G NG(S) mG H G NG(S) mG H

J1 D5 × S3 2 PSL2(11) M23 (Z/7⋊ Z/3)× Z/2 3 PSL2(7)

J3 D5 × S3 2 PSL2(19) M24 (Z/7⋊ Z/3)× S3 3 PSL2(7)

McL (Z/7⋊ Z/3)× Z/2 3 PSL2(7)

Ru D7 ⋊A4 6 PSL2(13)
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Table 2.5: Groups in characteristic 11 for which all but finitely many jumps are verified along with structure
of the normalizer of S ∈ Sylp(G), the value of mG, and the subgroup H for which Proposition 2.4.4 is
applied.

p = 11

G NG(S) mG H

Co3 (Z/11⋊ Z/5)× Z/2 5 PSL2(11)

F22 (Z/11⋊ Z/5)× Z/2 5 PSL2(11)

Proof. All groups in Table 2.3, Table 2.4 and Table 2.5 satisfy the hypotheses of Proposition 2.4.4.

In the cases H ∼= PSL2(p) see [16, Corollary 3.3]. For all other cases see [16, Theorem 3.6].

2.5 A Refinement for M11 in characteristic 11

We realize improved lower bounds on the ramification invariants for (M11, I)-Galois covers

in characteristic 11. Specifically all but eight of the possible ramification invariants are shown to

occur. We prove Theorem 2.5.7 in the following way. Lemma 2.5.2 describes the possible minimal

ramification invariants for an unramified M11-Galois cover of A1
k. Lemma 2.5.4 determines the

genera of a quotient cover given a ramification invariant. Then to show that σ = 8/5 occurs with

inertia group isomorphic to Z/11 ⋊ Z/5, Proposition 2.5.5 studies a cover in characteristic 11

provided by Serre in [29]. To show that σ = 2 occurs with inertia group isomorphic to Z/11,

Proposition 2.5.6 studies the semi-stable reduction of a characteristic 0 cover to characteristic 11.

Finally, the larger ramification invariants are shown to occur via results of [30].

The techniques in this section depend on the p-purity of M11 and existence of a proper quasi-p

subgroup of sufficiently small index relative to the size of p.

2.5.1 Intermediate genus formula

Let G be a finite simple group and let C = (C1, C2, C3) be a triple of conjugacy classes in G

rational over a field L such that

{(g1, g2, g3) ∈ C : gi ∈ Ci, gi 6= 1, and g1g2g3 = 1} 6= ⊘.
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Assume char(L) ∤ |Ci|. For such a triple, there exists a tame G-Galois cover Y → P1
L branched at

three points labeled P1, P2, P3 over which an inertia group is generated by some gi ∈ Ci.

Fix a subgroup H ⊂ G and let X = Y/H . Consider the H-Galois subcover Y → X and

degree [G : H] cover X → P1. Denote the normalizer of H in G by NG(H) and the inertia group

at a point above Pi by Ii.

Lemma 2.5.1. Consider G, H , X , and Y as above. The genus g of X can be computed as follows

g = −[G : H] + 1 +
[G : H]

2

3∑

i=1

|Ii| − 1

|Ii|
− [NG(H) : H]

2

3∑

i=1

|NG(Ii)|
|NH(Ii)|

|H ∩ Ii| − 1

|H ∩ Ii|
. (2.3)

Proof. Write the Riemann-Hurwitz Formulas for the covers Y → P1
L and Y → X:

2 genus(Y )− 2 = |G|(2 genus(P1
L)− 2) + |G|

3∑

i=1

1

|Ii|
(|Ii| − 1); (2.4)

2 genus(Y )− 2 = |H|(2g − 2) + |NG(H)|
3∑

i=1

|NG(Ii)|
|NH(Ii)|

|H ∩ Ii| − 1

|H ∩ Ii|
. (2.5)

Solving this system of equations for g yields (2.3).

2.5.2 Vanishing cycles

Let φ : Y0 → (X0 = P1
K) be a G-Galois cover defined over a complete discrete valuation field

K branched at 0, 1, and∞. Assume the characteristic of the residue field k is p > 0 and p strictly

divides |G|. To force bad reduction, assume that p divides the order of the inertia group at some

ramified point. Then φ has a stable reduction φs : Ys → Zs with the following properties [31,

Theorem 2].

• The base Zs is a tree of projective lines.

• There is a unique original component, denoted Z, which each other component of Zs inter-

sects.
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The components of Zs other than Z are called tails. The restriction φα of φs to a tail Xα is a cover

of P1
k. The point on a tail Xα where it intersects the original component is called∞α. A tail cover

Xα is called a new tail if it is only ramified at∞α. Let Pi be the point of Zs to which i = 0, 1,∞

specializes. A tail Xα is called a primitive tail if one of the original branch points specializes to it.

If G is p-pure then the cover is connected over one tail [32, Proposition 3.1.7].

Let B be the index set of tails. Each α ∈ B uniquely identifies a tail cover φα and σα denotes

the ramification invariant at ∞α. Let Bnew be the index set of new tails, and B0 the index set of

primitive tails. When all inertia groups have order divisible by p, there are no primitive tails.

For |B0| = 3, the vanishing cycles formula in [32, Section 3.4.4] yields the following.

∑

α∈Bnew

(σα − 1) = 1. (2.6)

2.5.3 Realizing small jumps for M11 in characteristic 11

Recall from Section 2.2.1 that the inertia group at Q is isomorphic to Z/11 ⋊ Z/mI where

gcd(11,m) = 1. In M11 the normalizer of a subgroup isomorphic to Z/11 is of the form Z/11 ⋊

Z/5; thus mI = 5 or mI = 1.

Lemma 2.5.2. There exists an M11-Galois cover Y → P1
k, only branched at∞, with ramification

invariant σ is in the set {6
5
, 7
5
, 8
5
, 9
5
, 2}.

Proof. Recall M11 is quasi-11, and M11 is 11-pure, applying [33, Theorem 3.5] proves that a

minimal cover exists such that σ ∈ {6
5
, 7
5
, 8
5
, 9
5
, 2}.

Note that this does not solve the inertia conjecture because it does not show that all possible in-

ertia groups occur. The first four ramification invariants are associated to inertia groups isomorphic

to Z/11⋊ Z/5 while σ = 2 is associated to inertia groups isomorpic to Z/11.

To apply results of [34], it is important to know the possible degrees of non-Galois covers

dominated by an M11-Galois cover.
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Lemma 2.5.3. Let L be an algebraically closed field of any characteristic. Let X → P1
L be a

degree d non-Galois cover with M11-Galois closure Y → P1
L. If 11 ≤ d < 22, then d ∈ {11, 12}.

Proof. The possible degrees of X → P1
L correspond to indices of subgroups H ⊂ M11. The only

maximal subgroups with an index in the given range are isomorphic to M10 and PSL2(11). In

particular [M11 : M10] = 11 and [M11 : PSL2(11)] = 12. Any other possible degrees must arise

from subgroups of M10 or PSL2(11). The only other candidate subgroup is A6 E M10 which has

index 22 in G. Consequently d ∈ {11, 12}.

Lemma 2.5.4. Fix an (M11, I)-Galois cover Y → P1
k with ramification invariant σ = j

5
. Let

ϕ : X → P1
k be a degree 11 ≤ d < 22 quotient cover of Y . Let g = genus(X). If d = 11, then

g = j − 5 and if d = 12, then g = j − 6.

Proof. Pick θ ∈ I satisfying |θ| = 5. The number of orbits of θ acting on {p+1, . . . , d} is denoted

by t. By [34, Proposition 1.3], t = #ϕ−1(∞)− 1 and

genus(X) =
2j − t− d+ 1

2
. (2.7)

By Lemma 2.5.3, the two possible degrees for X → P1
k are 11 and 12. If d = 11 then t = 0.

Otherwise, 1 ≤ t ≤ d− p. Thus when d = 12 then t = 1.

Proposition 2.5.5. There exists an (M11,Z/11 ⋊ Z/5)-Galois cover with ramification invariant

σ = 8/5.

Proof. The curve C : X11 +2X9 +3X8− T 8 is an unramified cover of A1
k mapping (X, T ) 7→ T .

It is wildly ramified over ∞ with Galois closure M11 [29, pg. 43]. Note that this curve has non-

ordinary singularities. The geometric genus 3 can be computed in a computer package such as

Magma or Sage. Because C is a degree 11 cover of P1
k, wildly ramified above ∞, Lemma 2.5.4

implies σ = 8
5
. The inertia group for a wildly ramified point over∞ with σ = 8

5
is isomorphic to

Z/11⋊ Z/5.

Proposition 2.5.6. There exists an (M11,Z/11)-Galois cover with ramification invariant σ = 2.
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Proof. Let C = (C1, C2, C3) where each Ci is an 11-conjugacy class of M11 and for some i and

j, Ci 6= Cj . Each Ci is rational over Q(
√
−11); let L = Q(

√
−11). Consider an M11-Galois

cover Y0 → P1
L branched at three points P1, P2, and P3 with an inertia group over Pi generated

by some element of Ci. Also consider the degree 12 quotient cover X0 → P1
L dominated by the

PSL2(11)-Galois cover Y0 → X0. Applying (2.3) with C and d = 12 yields genus(X0) = 4.

Table 2.6: Possible genera for the reduction of X → P1 of degree 11.

|Bnew| {σα : α ∈ Bnew}
∑

α∈Bnew
genus(Xα)

1 {10
5
} 4

2 {6
5
, 9
5
} or {7

5
, 8
5
} 3

3 {6
5
, 6
5
, 8
5
} or {6

5
, 7
5
, 7
5
} 2

4 {6
5
, 6
5
, 6
5
, 7
5
} 1

5 {6
5
, 6
5
, 6
5
, 6
5
, 6
5
} 0

The vanishing cycles formula (2.6) gives a set of possibilities for {σα : α ∈ Bnew}. For the

selected ramification type, |B0| = 3. Because all Ci are conjugacy classes of order 11, none of the

tails indexed by B0 are primitive. Thus the vanishing cycles formula is

∑

α∈Bnew

(jα/5− 1) = 1. (2.8)

From [32, Proposition 3.3.5], note that 5 < jα. For each set of possible ramification invariants use

(2.7) to compute the sum of the genera of the curves Xα.

Because Y0 dominates a genus 4 cover, its reduction must as well. This only occurs in the

first row of Table 2.6 for the single new tail with ramification invariant 2. The 11-purity of M11

ensures that the cover is connected over the tail component. Thus σ = 2 occurs with inertia group

isomorphic to Z/11.

Theorem 2.5.7. Abhyankar’s Inertia Conjecture is true for M11 in characteristic p = 11. More

generally:
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a) If j ∈ {8 + i5, 16 + i5, 24 + i, 32 + i55 | i ∈ Z≥0} and p ∤ j, then σ = j/5 occurs as

a ramification invariant for an M11-Galois cover of P1
k branched at a single point and with

inertia groups isomorphic to Z/11⋊ Z/5.

b) If σ ∈ {2 + i | i ∈ Z≥0} and p ∤ σ, then σ = 2 + i occurs as a ramification invariant for

an M11-Galois cover of P1
k branched at a single point and with inertia groups isomorphic to

Z/11.

Proof. Recall that the only possible inertia groups for an M11-Galois cover of A1
k are isomorphic

to Z/11⋊ Z/5 and Z/11. By Propositions 2.5.5 and 2.5.6, each of these occurs with ramification

invariants 8/5 and 2 respectively. The other inertia jumps can be produced with applications of [13,

Corollary 2.3.1 Different Inertia Case] with r = 1. To see that j = 16 occurs, apply Theorem 2.3.7

with G1
∼= G2

∼= M11, I1 ∼= I2 ∼= Z/11 ⋊ Z/5, and j1 = j2 = 8. Theorem 2.3.7 can be reapplied

with j1 = 16 yielding j = 24. Likewise applying Theorem 2.3.7 a final time with j1 = 24 produces

j = 32.

Finally [30, Theorem 3.2] allows j to be increased by multiples of 5.

This method is not sufficient to determine whether these jumps j occur: 6, 7, 9, 12, 14, 17, 19,

and 27.
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Chapter 3

Group-theoretic Johnson classes and a

non-hyperelliptic curve with torsion Ceresa class

3.1 Background

Let X be a smooth, projective, geometrically integral curve over a field K of genus ≥ 3, and

let x ∈ X(K) be a rational point. One can embed X in its Jacobian Jac(X) via the Abel-Jacobi

map P 7→ [P −x] and letX− denote the image ofX under the negation map on the group Jac(X).

The Ceresa cycle is the homologically trivial algebraic cycleX−X− in Jac(X). A classical result

of Ceresa [35, Theorem 3.1] shows that when X is a very general curve over C of genus g ≥ 3,

the Ceresa cycle is not algebraically trivial.

Via the ℓ-adic cycle class map, the Ceresa cycle gives rise to a Galois cohomology class

µ(X, x) ∈ H1(Gal(K̄/K), H2g−3
ét (Jac(X)⊗ K̄,Zℓ(g − 1)))

which only depends on the rational equivalence class of the Ceresa cycle. Hain and Matsumoto [2]

reinterpret this class in terms of the Galois action on the pro-ℓ étale fundamental group of X , and

describe an analogous class ν(X) which is basepoint-independent.

We define two classes MD(X, x) and J(X) in Galois cohomology (the latter of which is

basepoint-independent), called the modified diagonal and Johnson classes, which capture aspects

of the action of Galois on the pro-ℓ étale fundamental group of X . Under the assumption that X

is smooth and projective, these classes are closely related to µ(X, x) and ν(X). The main nov-

elty of our construction is that it proceeds via abstract group theory. In particular, it works for

any pro-ℓ group with torsion-free abelianization — for example, we do not require our curves to

be proper, and many of our results hold for general Demuskin groups. Even in the case of pro-ℓ

surface groups, our analysis appears to refine existing results when ℓ = 2; for example, the classes
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MD(X, x) and J(X) appear to give slightly more information than the classes µ(X, x), ν(X) if

ℓ = 2 (if ℓ 6= 2, one may recover our classes from those in [2] and vice versa).

The Ceresa class is well-known to be trivial if X is hyperelliptic and x is a rational Weierstrass

point; likewise, the class ν(X) of [2] is trivial for any hyperelliptic curve. In Section 3.3.3 we use

properties of the Johnson class to give what is, to our knowledge, the first known example of a

non-hyperelliptic curve where J(X) (and hence ν(X)) is torsion. This curve is of genus 7.

Moreover, in Section 3.3.4, we show with Theorem 3.3.5 that any curve dominated by a curve

with torsion Johnson class has torsion Johnson class as well. This can be viewed as a generaliza-

tion of the fact that any curve dominated by a hyperelliptic curve is itself hyperelliptic. Use this

property, we construct a non-hyperelliptic genus 3 curve with torsion Johnson class.

Theorem 3.1.1 (Proposition 3.3.3, the Fricke-Macbeath curve, and Corollary 3.3.6). Let C be a

genus 7 curve over a field K of characteristic zero, such that CK has automorphism group iso-

morphic to PSL2(8). The Johnson class of C (that is, J(C) and hence the basepoint-independent

Ceresa class ν(C) defined in [2]) is torsion.

If ι ∈ Aut(C) is any element of order 2, then the quotient C/ι is non-hyperelliptic of genus 3

with J(C/ι) and ν(C/ι) torsion.

3.1.1 Outline of the chapter

In Section 3.2, we give a group-theoretic construction of the so-called modified diagonal and

Johnson classes associated to a finitely generated pro-ℓ group with torsion-free abelianization.

In Section 3.2.3, we specialize this construction to the pro-ℓ fundamental group of a curve and

compare it to the classes µ(X, x), ν(X) of Hain-Matsumoto [2]. In Section 3.3 we study properties

of this construction and apply them to give a proof of the fact that hyperelliptic curves have 2-

torsion Johnson class, and we show that any model of the the Fricke-Macbeath curve has torsion

Johnson/Ceresa class. We also show that any curve dominated by a curve with torsion Johnson

class has torsion Johnson class itself; hence a genus 3 non-hyperelliptic curve which is a quotient

of the Fricke-Macbeath curve has torsion Johnson class as well.
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3.2 Group-theoretic Ceresa classes

Let ℓ be a prime and G a finitely generated pro-ℓ group with torsion-free abelianization Gab.

Define the ℓ-adic group ring of G as

Zℓ[[G]] := lim←−
G։H

Zℓ[H].

Here the inverse limit is taken over all finite groups H which are continuous quotients of G. Let

I ⊂ Zℓ[[G]] be the augmentation ideal.

Proposition 3.2.1. The map φ : G→ I /I 2 given by

φ : g 7→ g − 1

is a continuous group homomorphism and induces an isomorphism

Gab ∼→ I /I 2.

Proof. This is [36, Lemma 6.8.6(b)].

Let Z(G) denote the center of G. The action of G on itself by conjugation gives a short exact

sequence

1→ G/Z(G)→ Aut(G)→ Out(G)→ 1

of continuous maps of profinite groups.

Definition 3.2.2. The modified diagonal class, denoted by

MDuniv ∈ H1(Aut(G),Hom(I /I 2,I 2/I 3))
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is the class associated to the extension of continuous Aut(G)-modules

0→ I
2/I 3 → I /I 3 → I /I 2 → 0. (3.1)

The existence of MDuniv follows from the fact that I /I 2 is a Zℓ-module (as Gab is torsion-free

by assumption). An explicit cocycle representing MDuniv will be given in Section 3.2.1.

Remark. We call this class the modified diagonal class because we expect that when G is the pro-ℓ

étale fundamental of a curve, the Galois-cohomological avatar of MDuniv (Section 3.2.3) may be

written rationally as a multiple of the image of the Gross-Kudla-Schoen [37,38] modified diagonal

cycle under an étale Abel-Jacobi map. See e.g. [39] for a Hodge-theoretic analogue of this fact.

We now proceed to find an avatar of MDuniv in the cohomology of the outer automorphism

group of G, Out(G). Geometrically this will correspond to removing the basepoint-dependence of

the class MDuniv in the case G is the pro-ℓ étale fundamental group of a curve.

3.2.1 Descending to Out(G), and the Johnson class

We first analyze the pullback of MDuniv along the canonical map G → Aut(G). We will use

this analysis to construct a quotient A(G) of Hom(I /I 2,I 2/I 3) such that MDuniv |G vanishes

in H1(G,A(G)); hence MDuniv will induce a class in H1(Out(G), A(G)), which we will term the

Johnson class. The constructions here are closely related to work of Andreadakis, Bachmuth, and

others (see e.g. [40–42]), but we include the details here as those papers deal with the discrete,

rather than profinite, situation.

Note that I /I 2 is a free Zℓ-module by Proposition 3.2.1 and our assumption that Gab is

torsion-free. Tensoring the short exact sequence (3.1) by (I /I 2)∨ yields

0→ Hom(I /I 2,I 2/I 3)→ Hom(I /I 2,I /I 3)→ Hom(I /I 2,I /I 2)→ 0.
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The last term admits a natural map Zℓ →֒ Hom(I /I 2,I /I 2) (sending 1 to the identity map),

and pulling back along this inclusion gives a G-module extension

0→ Hom(I /I 2,I 2/I 3)→ X → Zℓ → 0, (3.2)

where G acts trivially on Hom(I /I 2,I 2/I 3) and Zℓ but non-trivially on X . The extension is

characterized by a group homomorphism:

G→ Hom(Zℓ,Hom(I /I 2,I 2/I 3)) ≃ Hom(I /I 2,I 2/I 3)

g 7→ (v 7→ g(ṽ)− ṽ)

where ṽ is any lift of v ∈ Zℓ to X .

This map factors through Gab ∼= I /I 2 as Hom(I /I 2,I 2/I 3) is abelian.

Definition 3.2.3. For the rest of the chapter, let

m : Gab → Hom(I /I 2,I 2/I 3)

be the map coming from the extension class of (3.2) described in the paragraphs above.

We now give a more explicit description of the map m.

Lemma 3.2.4. Consider the commutator map

(I /I 2)⊗2 → I
2/I 3

x⊗ y 7→ xy − yx.

Then the map m in Definition 3.2.3 is the same as the map induced by adjunction:

m : I /I 2 → Hom(I /I 2,I 2/I 3) : x 7→ (y 7→ xy − yx)
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under the identification between Gab and I /I 2 from Proposition 3.2.1.

Proof. Let X be as in (3.2). Let s ∈ X ⊂ Hom(I /I 2,I /I 3) be an element reducing to the

identity modulo I 2. Then we define maps

m1,m2 : G→ I /I 2 → Hom(I /I 2,I 2/I 3)

by

m1(g) = (y 7→ gs(y)g−1 − s(y)),

m2(g) = (y 7→ (g − 1)s(y)− s(y)(g − 1) = gs(y)− s(y)g).

The map m1 is by definition the same as the map in Definition 3.2.3. The map m2 is an explicit

formula for the map in the statement of the lemma. Neither map depends on the choice of s. We

wish to show they are the same.

For any g ∈ G, we have

g−1 =
1

1 + (g − 1)
= 1− (g − 1) + (g − 1)2 mod I

3.

Hence for g ∈ G, y ∈ I /I 2 and s(y) ∈ I /I 3 being a lift of y, we have modulo I 3:

((m1 −m2)(g))(y) ≡ gs(y)g−1 − s(y)− gs(y) + s(y)g

≡ gs(y)(g−1 − 1)− s(y)(1− g)

≡ gs(y)((1− g) + (g − 1)2)− s(y)(1− g)

≡ (g − 1)s(y)(1− g) + gs(y)(g − 1)2

≡ 0,

as g − 1 ∈ I and s(y) ∈ I /I 3 above. This shows that m1 = m2 as desired.
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Definition 3.2.5. Let A(G) := coker(m : I /I 2 → Hom(I /I 2,I 2/I 3)) be the cokernel of

the commutator map defined above.

Using the quotient map Hom(I /I 2,I 2/I 3) → A(G) and inclusion G/Z(G) → Aut(G),

we get a map

H1(Aut(G),Hom(I /I 2,I 2/I 3))→ H1(Aut(G), A(G))→ H1(G/Z(G), A(G)).

Proposition 3.2.6. The image of MDuniv under the composition above is zero.

Proof. As G acts trivially by conjugation on I /I 2, I 2/I 3, and Hom(I /I 2,I 2/I 3). This

means H1(G,Hom(I /I 2,I 2/I 3)) = Hom(G,Hom(I /I 2,I 2/I 3)). By Lemma 3.2.4, the

pullback of class MDuniv in H1(G,Hom(I /I 2,I 2/I 3)) maps to the homomorphism m under

this identification. But by the definition of A(G), its restriction to G/Z(G), and hence to G, is

trivial.

We now define the universal Johnson class.

Proposition 3.2.7. There exists a unique element Juniv in H1(Out(G), A(G)) whose image in

H1(Aut(G), A(G)) under the inflation map

H1(Out(G), A(G))→ H1(Aut(G), A(G))

is the same as the image of MDuniv under the map

H1(Aut(G),Hom(I /I 2,I 2/I 3))→ H1(Aut(G), A(G))

induced by the quotient map Hom(I /I 2,I 2/I 3)→ A(G).

Proof. The definition of A(G) implies that the G/Z(G)-action on A(G) is trivial. This means we

have the following the inflation-restriction exact sequence in continuous group cohomology:

0→ H1(Out(G), A(G))→ H1(Aut(G), A(G))→ H1(G/Z(G), A(G))Out(G).
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By Proposition 3.2.6, the image of MDuniv in H1(G/Z(G), A(G))Out(G) is zero, and thus there

exists a unique element Juniv in H1(Out(G), A(G)) whose image in H1(Aut(G), A(G)) is the

same as the image of MDuniv.

Definition 3.2.8. We call the element Juniv ∈ H1(Out(G), A(G)) constructed in Proposition 3.2.7

the universal Johnson class.

Remark. We call this class the Johnson class because in the case where G is a discrete surface

group, our construction is closely related to the Johnson homomorphism studied in [43] and the

cocycle constructed by Morita in [44].

3.2.2 The coefficient groups for the Modified Diagonal and Johnson classes

The goal of this section is to identify a natural Aut(G)-submodule W of the group I 2/I 3

such that MDuniv lives in the image of the natural map

H1(Aut(G),Hom(I /I 2,W ))→ H1(Aut(G),Hom(I /I 2,I 2/I 3)),

for ℓ 6= 2. Similarly, we will find a natural submoduleAW (G) ⊂ A(G) so that Juniv is in the image

of the natural map

H1(Out(G), AW (G))→ H1(Out(G), A(G)).

For ℓ = 2, we will prove similar results for 2i MDuniv and 2iJuniv, where i = 1, 2 depending

on the group-theoretic properties of G.

Preliminaries on free pro-ℓ groups

Lemma 3.2.9. Let G be a free pro-ℓ group, freely generated by g1, g2, . . . , gr, and let I be the

augmentation ideal of the completed group ring Zℓ[[G]].

I. For each of the generators gi, let xi := gi − 1 ∈ Zℓ[[G]]. Then I /I 2 is a free Zℓ-module

of rank r generated by the images of x1, x2, . . . , xr and I 2/I 3 is free of rank r2 with basis

the images of xixj .
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II. Let H be another finitely generated free pro-ℓ group, and let f ab : Gab → Hab be an iso-

morphism. Let h1, h2, . . . , hr be any set of lifts of f ab(g1), . . . , f
ab(gr) from Hab to H . Then

f(gi) = hi defines an isomorphism f : G→ H .

III. Let G̃ be a finitely generated pro-ℓ group with torsion-free abelianization. Let π : G → G̃

be a surjection such that the induced map πab : Gab → G̃ab is an isomorphism. Then any

automorphism σG̃ : G̃→ G̃ lifts to an automorphism σG : G→ G.

Proof.

I. Since G is free and Zℓ[[G]] is complete with respect to the augmentation ideal, there is

by [45, Proposition 7, pg. I-7] an isomorphism

Zℓ[[G]]
∼−→ Zℓ〈〈x1, x2, . . . , xr〉〉nc, (3.3)

where Zℓ〈〈x1, x2, . . . , xr〉〉nc is the non-commutative power series ring in r variables, such

that gi is sent to xi + 1. The claim follows.

II. Since h1, h2, . . . , hr are elements of H whose images topologically generate Hab, by [46,

Proposition 3.9.1] it follows that h1, h2, . . . , hr also generate H . This shows that f is a

surjection. We will now show that these elements in fact freely topologically generate H ,

which proves that f is an isomorphism.

Note that f ab also induces an isomorphism

f ab : Gab/(Gab)ℓ → Hab/(Hab)ℓ.

Combining this with [46, Proposition 3.9.1] applied to G and H , we get that the cardinal-

ities of the minimal generating sets for these two groups are equal, since they are equal to

dimFℓ
Gab/(Gab)ℓ = dimFℓ

Hab/(Hab)ℓ. Since g1, g2, . . . , gr is a minimal generating set for

G, it follows that h1, h2, . . . , hr is a minimal generating set forH . By [46, Proposition 3.9.4],

there are thus no relations between the hi; hence f is injective as desired.
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III. Choose any homomorphism f : G → G lifting σG̃. That it is an isomorphism follows from

the previous part applied with G = H and f ab = (πab)−1 ◦ σab
G̃
◦ πab.

Definition 3.2.10 (Alternating tensors). Let G be a finitely generated pro-ℓ group with torsion-free

abelianization, and let V := I /I 2. Let

ι : V ⊗ V → V ⊗ V

be the natural involution of the Aut(G)-module V ⊗ V that acts on a simple tensor v1 ⊗ v2 as

ι(v1 ⊗ v2) := v2 ⊗ v1. Let Alt2 V ⊂ V ⊗ V be the Aut(G)-submodule of alternating tensors, i.e.,

the maximal submodule where ι acts as multiplication by −1.

Let W ⊂ I 2/I 3 be the image of Alt2 V under the natural surjective multiplication map

V ⊗ V → I 2/I 3, and let AW (G) := coker(m : I /I 2 → Hom(I /I 2,W )) be the cokernel

of the commutator map.

Proposition 3.2.11. Let W ⊂ I 2/I 3 be as in Definition 3.2.10. Suppose that there exists an

element σ ∈ Aut(G) which acts on Gab as multiplication by −1. Then the class 4MDuniv lies in

the image of the natural map

H1(Aut(G),Hom(I /I 2,W ))→ H1(Aut(G),Hom(I /I 2,I 2/I 3)).

If

H0(Aut(G),Hom(I /I 2,I 2/I 3)⊗ Zℓ/2) = 0,

then 2MDuniv has a unique preimage under this map.

We will prove this proposition at the end of this section. Note that if ℓ 6= 2, the proposition

implies that MDuniv itself is in the image of the map in question with a unique preimage.
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Note that by Lemma 3.2.4, since x⊗ y − y ⊗ x is skew-symmetric, the image of the map

m : I /I 2 → Hom(I /I 2,I 2/I 3)

x 7→ (y 7→ xy − yx)

in Definition 3.2.3, is contained in Hom(I /I 2,W ). The next proposition follows immediately

from this observation and Proposition 3.2.11.

Proposition 3.2.12. LetAW (G) be the cokernel of the commutator map defined in Definition 3.2.10.

Suppose that there exists an element σ ∈ Aut(G) which acts on Gab as multiplication by −1. Then

the class 4Juniv lies in the image of the natural map

H1(Out(G), AW (G))→ H1(Out(G),Hom(I /I 2, A(G))).

If H0(Out(G),Hom(I /I 2,I 2/I 3) ⊗ Zℓ/2) = 0, then the class 2Juniv has a unique preimage

under this map.

Before proving Proposition 3.2.11, we first prove a lemma.

Lemma 3.2.13. Let G be a finitely generated pro-ℓ group with torsion-free abelianization, let

V := I /I 2, and let W ⊂ I 2/I 3 be as in Definition 3.2.10. Let S be the image of the natural

map Aut(G)→ Aut(V ) and let T := ker(Aut(G)→ S). Then

I. Assume that −idV is in S. Then the group H i(S,Hom(V, U)) is 2-torsion for any Aut(G)-

submodule U of V ⊗ V and any i ∈ Z≥0.

II. Assume that −idV is in S. Then we have

H1(S,Hom(V, U)) ≃ H0(S,Hom(V, U)⊗ Zℓ/2)

for any Aut(G)-submodule U of V ⊗ V .
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III. The image of the class MDuniv under the restriction map

H1(Aut(G),Hom(V,I 2/I 3))→ H1(T,Hom(V,I 2/I 3))

lies in the image of the natural map

H1(T,Hom(V,W ))→ H1(T,Hom(V,I 2/I 3)).

Remark.

• The assumption in Lemma 3.2.13(I.) is satisfied by finitely generated free pro-ℓ groups and

pro-ℓ surface groups (i.e. the pro-ℓ completion of the fundamental group of a genus g Rie-

mann surface). Indeed, Lemma 3.2.9 (2) implies that S = Aut(V ) in the first case and [47,

Proposition 1] shows that S ∼= GSp2g(Zℓ) in the second case.

• By the above remark and direct computation, the hypothesis that

H0(Aut(G),Hom(I /I 2,I 2/I 3)⊗ Zℓ/2) = 0

in Propositions 3.2.11 and 3.2.12 are satisfied for finitely-generated free pro-ℓ groups and

for pro-ℓ surface groups.

• Note that the statement of Lemma 3.2.13(III.) is a pro-ℓ version of Johnson’s theorem [43]

on the mapping class group of a Riemann surface with a marked point.

Proof of Lemma 3.2.13.

I. The proof is the same as [2, Lemma 5.4].

II. This is again similar to [2, Lemma 5.4]; it is immediate from the Bockstein sequence asso-

ciated to the short exact sequence

0→ Hom(V, U)
·2→ Hom(V, U)→ Hom(V, U)⊗ Zℓ/2→ 0.

36



III. We first prove the result in the case that G is a finitely-generated free pro-ℓ group. Then we

will reduce to this case.

The case that G is a finitely-generated free pro-ℓ group, generated by g1, · · · , gr.

Let

∆: Zℓ[[G]]→ Zℓ[[G]]⊗ Zℓ[[G]]

denote the comultiplication map of the group ring Zℓ[[G]], i.e. the map defined by

∆ : g 7→ g ⊗ g

for g ∈ G, and extended linearly. By Lemma 3.2.9(1), the set

{x1, . . . , xr, x21, x1x2, . . . , xrxr−1, x
2
r}

is a Zℓ-basis for I /I 3. As any σ ∈ T preserves I and fixes I /I 2, there exist unique

elements bkli (σ) ∈ Zℓ such that

σ(xi) = xi +
∑

kl

bkli (σ)xkxl mod I
3. (3.4)

From the following commutative diagram:

Zℓ[[G]] Zℓ[[G]]⊗ Zℓ[[G]]

Zℓ[[G]] Zℓ[[G]]⊗ Zℓ[[G]],

∆

σ σ⊗σ

∆

for every i we have

∆(σ(xi)) = (σ ⊗ σ)(∆(xi)). (3.5)
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We now compute both sides of this equality. Since ∆(gi) = gi ⊗ gi for all the generators gi,

we can compute that

∆(xi) = ∆(gi − 1) = (xi + 1)⊗ (xi + 1)− 1 = xi ⊗ xi + 1⊗ xi + xi ⊗ 1, (3.6)

for the corresponding generators xi = gi− 1 of the augmentation ideal I . Since ∆ is a ring

homomorphism, we also have

∆(xkxl) = ∆(xk)∆(xl), (3.7)

for every pair of indices k, l. Combining (3.4), (3.6), (3.7) with (3.5) and comparing coeffi-

cients of xkxl on both sides gives

bkli (σ) + blki (σ) = 0 if k 6= l (3.8)

2bkki (σ) = 0 if k = l (3.9)

or equivalently by Definition 3.2.10 that

∑

kl

bkli (σ)xkxl ∈ W for every i. (3.10)

Finally, explicit computation gives that

MDuniv |T ∈ H1(T,Hom(I /I 2,I 2/I 3))

is represented by the cocycle

σ 7→ (xi 7→
∑

kl

bkli (σ)xkxl) mod I
3. (3.11)
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Combining this with (3.10), we get that the explicit cocycle (3.11) representing MDuniv

restricted to T is visibly in the image of the map

H1(T,Hom(V,W ))→ H1(T,Hom(V, V ⊗ V )).

Reduction to the case that G is free pro-ℓ. We now let G̃ be an arbitrary finitely-generated

pro-ℓ group with torsion-free abelianization. Let G be a free pro-ℓ group and

π : G→ G̃

as a surjection inducing an isomorphism on abelianizations. Let TG ⊂ Aut(G) be the sub-

group consisting of automorphisms of G which descend to automorphisms of G̃ and act triv-

ially on Gab. Let TG̃ ⊂ Aut(G̃) be the subgroup acting trivially on G̃ab. By Lemma 3.2.9(3),

the natural map TG → TG̃ is surjective.

Since TG̃ acts trivially on Hom(V,I 2
G̃
/I 3

G̃
), we may rewrite

H1(TG̃,Hom(V,I 2
G̃
/I 3

G̃
)) = Hom(TG̃,Hom(V,I 2

G̃
/I 3

G̃
));

we wish to show that the homomorphism in question factors through Hom(V,WG̃). But this

is immediate for the analogous fact for G, combined with the fact that WG surjects onto WG̃,

by definition.

Proof of Proposition 3.2.11. Let S, T be as in Lemma 3.2.13.

Apply the inflation-restriction sequence for the exact sequence of groups

0→ T → Aut(G)→ S → 0.
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Lemma 3.2.13(I.) shows that H i(S,Hom(V,W )T ) and H i(S,Hom(V, V ⊗ V )T ) are 2-torsion.

Moreover, if Hom(V, U)⊗ Zℓ/2 = 0, Lemma 3.2.13(II.) implies that

H1(S,Hom(V,W )T ) = H1(S,Hom(V,I 2/I 3)T ) = 0.

A diagram-chase finishes the proof.

As a consequence of Remark 3.2.2 we have the following corollary.

Corollary 3.2.14. Suppose G is a finitely-generated free pro-ℓ group or a pro-ℓ surface group.

Then 2MDuniv (resp. 2Juniv) has a unique preimage M̃D (resp. J̃) under the natural map

H1(Aut(G),Hom(I /I 2,W ))→ H1(Aut(G),Hom(I /I 2,I 2/I 3))

(resp.

H1(Out(G), AW (G))→ H1(Out(G), A(G)).)

3.2.3 Ceresa classes of curves in ℓ-adic cohomology

Let X be a curve over K, and let ℓ be a prime different from the characteristic of K. For x̄ a

geometric point of X , let

oℓ : Gal(K̄/K)→ Out(πℓ
1(XK̄ , x̄))

be the map coming from the natural outer action of Gal(K̄/K) on πét
1 (XK̄ , x̄); here πℓ

1(XK̄ , x̄) is

the pro-ℓ completion of πét
1 (XK̄ , x̄). Note that Out(πℓ

1(XK̄ , x̄)) is independent of x̄. If y ∈ X(K)

is a rational point and ȳ the geometric point obtained by some choice of algebraic closure k →֒ k,

we let

aℓ,y : Gal(K̄/K)→ Aut(πℓ
1(XK̄ , ȳ))

be the map induced by the canonical Galois action on πét
1 (XK , ȳ).
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Definition 3.2.15. The modified diagonal class MD(X, ȳ) of the pointed curve (X, ȳ) is the pull-

back a∗ℓ,y MDuniv of the group-theoretic modified diagonal class MDuniv for the group πℓ
1(XK̄ , ȳ)

defined in Definition 3.2.2; it depends on the choice of the rational base point y.

The Johnson class J(X) of the curve X is the pullback o∗ℓJuniv of the group-theoretic Johnson

class Juniv for the group πℓ
1(XK̄ , x̄) defined in Definition 3.2.8; it is by definition independent of

the choice of geometric point x̄.

Remark. Similarly, one may define classes M̃D(X, b), and J̃(X) by pulling back the classes M̃D,

and J̃ of Corollary 3.2.14. Note that in general some 2-torsion information is lost when passing

from MD to M̃D (resp. J to J̃).

Comparison to the Ceresa classes in [2]

For the rest of Section 3.2.3, we consider the case where X is a smooth, projective, and geo-

metrically integral curve of genus g over a field K, with a rational point b ∈ X(K). We let G be

the pro-ℓ étale fundamental group πℓ
1(X ⊗ K, b) and let I be the augmentation ideal in Zℓ[[G]],

as in the previous section. The purpose of this section is to compare the classes MD(X, b) and

J(X) to the classes µ(X, b) and ν(X) defined in [2] arising from the Ceresa cycle. Explicitly,

we show M̃D(X, b) = µ(X, b) and J̃(X) = ν(X). For a comparison between the extension

classes of mixed Hodge structures arising from the modified diagonal cycle and the Ceresa cycle,

see [39, Section 1].

Lemma 3.2.16. There are canonical isomorphisms of Galois-modules:

I /I 2 ≃ Gab ≃ H1
ét(XK̄ ,Zℓ)

∨. (3.12)

Proof. See Proposition 3.2.1 for the first isomorphism, [48, Example 11.3] for the second isomor-

phism.

Lemma 3.2.17. Let H := I /I 2, and let

ω : Zℓ(1)→ H⊗2
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be the map dual to the cup product

H1(XK ,Zℓ)⊗H1(XK ,Zℓ)→ H2(XK ,Zℓ) ≃ Zℓ(−1)

under the identification from Lemma 3.2.16. Then we have an exact sequence

0→ Zℓ(1)
ω→ H⊗2 → I

2/I 3 → 0,

where the rightmost map is the natural multiplication map.

Proof. This is presumably well-known; we give a sketch of how to deduce it from existing liter-

ature. The analogous theorem for compact Riemann surfaces is immediate from [49, Corollary

8.2]. Now the result follows by taking pro-ℓ completions of the sequence in [49, Corollary 8.2]

and comparing (1) the pro-ℓ completion of the group ring of a Riemann surface to Zℓ[[G]], and (2)

the singular cohomology of a compact Riemann surface to the ℓ-adic cohomology of XK . (Strictly

speaking, the comparison above goes as follows: if necessary, lift X to characteristic zero. Then

spread out, embed the ground ring in C, and analytify. These arguments are lengthy and standard,

so we omit them.)

Recall from Definition 3.2.10 that W ⊂ I 2/I 3 is the image of Alt2 H ⊂ H⊗2 under the

multiplication map H⊗2 → I 2/I 3.

Lemma 3.2.18. Restricting the multiplication map H⊗2 → I 2/I 3 to Alt2 H induces an isomor-

phism

(Alt2 H)/Im(ω)
∼→ W.

Proof. It suffices to show that the map ω of Lemma 3.2.17 factors through Alt2H . But this is

immediate from the fact that the cup product on H1(XK ,Zℓ) is alternating.

In [2, Section 5 and 10], Hain and Matsumoto define classesm(X, b), n(X) in Galois cohomol-

ogy, which control the action of the absolute Galois group ofK on the quotient of πℓ
1(XK , b) by the
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second piece of the lower central series. In [2, Theorem 3 and 10.5] they compare these classes to

classes µ(X, b), ν(X) arising from the Ceresa cycle under the cycle class map. We briefly compare

our classes to theirs, when X is smooth and proper.

Proposition 3.2.19. Recall from Remark 3.2.3 the classes M̃D(X, b), J̃(X) constructed from

2MD(X, b), 2J(X). Let µ(X, b) and ν(X) be the classes in [2, Section 4] constructed from the

image of the Ceresa cycle under a cycle class map, then M̃D(X, b) = µ(X, b) and J̃(X) = ν(X).

Proof. We give a sketch for M̃D(X, b); the case of J̃(X) is identical. Let

G = L1G ⊃ L2G ⊃ . . . , where Lk+1G = [G,LkG]

be the lower central series filtration of G. By [50, Corollary 4.2], we have the following com-

mutative diagram of exact sequences, where all maps are compatible with the induced Aut(G)

actions.

0 L2G/L3G G/L3G H 0

0 I 2/I 3 I /I 3 I /I 2 0.

≃

Here all the vertical maps are induced by sending a group element g to g− 1. Note that the middle

vertical inclusion is only a set theoretic map, not a homomorphism.

Let

s : H → G/L3G, where v 7→ s(v)

be a set-theoretic section to the quotient map G/L3G→ H , and let

s′ : I /I 2 → I
2/I 3, where v − 1 7→ s(v)− 1
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be the induced map. Let T ⊂ Aut(G) be the subgroup acting trivially on H . From the top

sequence, following [2, Section 5.1], we get the Magnus homomorphism:

ǫ̃ ∈ Hom(T,Hom(H,L2G/L3G))GSpH

ǫ̃ : g 7→ (v 7→ g(s(v))s(v)−1 mod L3G).

By [2, Proposition 5.5], there is a unique class m ∈ H1(AutG,Hom(L2G/L3G)) whose

image under

H1(AutG,Hom(L2G/L3G))→ H0(GSpH,H1(T,Hom(L2G/L3G)))

is 2ǫ̃ under the canonical identification

Hom(T,Hom(H,L2G/L3G))GSpH ≃ H0(GSpH,H1(T,Hom(L2G/L3G))).

By [2, Theorem 3], the pull-back of m by G(K̄/K)→ AutG induced by b agrees with the Ceresa

class µ(X, b).

Now let us rewrite g(s(v))s(v)−1 − 1 modulo I 3:

g(s(v))s(v)−1 − 1 = g(s(v))(s(v)−1 − 1) + g(s(v))− 1

≡ g(s(v))(1− s(v) + (1− s(v))2) + g(s(v))− 1

= g(s(v))(1− s(v)) + (g(s(v))− 1)(1− s(v))2 + (1− s(v))2 + g(s(v))− 1

≡ g(s(v))(1− s(v)) + (1− s(v))2 + g(s(v))− 1

= g(s(v))− s(v) + (g(s(v))− s(v))(1− s(v))

≡ g(s(v))− s(v).
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Here we use the substitution

s(v)−1 − 1 = 1− s(v) + (1− s(v))2 mod I
3

and the fact that

(g(s(v))− 1)(1− s(v))2, (g(s(v))− s(v))(1− s(v)) ∈ I
3

(because g(s(v))− s(v) ∈ I 2 by the definition of T ).

But the cocycle representing the MDuniv |T is

g 7→ (v − 1 7→ g(s(v)− 1)− (s(v)− 1) = g(s(v))− s(v))

which proves that the two classes are the same under restriction to T . Now comparing the diagram

chases in the proof of Proposition 3.2.11 and [2, Proposition 5.5] (using the identification from

Lemma 3.2.18) completes the proof.

Stability under base change

We finally observe that the property of the Johnson or modified diagonal class being torsion is

in fact a geometric property — that is, it descends through finite extensions of the ground field.

Proposition 3.2.20. Let K be a field and X a smooth, geometrically connected curve over K.

Let ℓ be a prime and J(X) the associated Johnson class; if b ∈ X(K) is a rational point

we let MD(X, b) be the modified diagonal class. Let L/K be a finite extension. Then J(XL)

(resp. MD(XL, bL)) is torsion if and only if J(X) (resp. MD(X, b)) is torsion.

Proof. Choose an algebraic closureK ofK (and hence of L). Let iL/K : Gal(K/L)→ Gal(K/K)

be the natural map; then it follows from the definition that i∗L/KJ(X) = J(XL) (respectively,

i∗L/K MD(X, b) = MD(XL, bL)). This proves the “if" direction.
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To see the “only if" direction, suppose J(XL) (resp. MD(XL, bL)) is torsion. It follows then

that iL/K∗i
∗
L/KJ(X) (resp. iL/K∗i

∗
L/K MD(X, b)) is torsion (where here iL/K∗ denotes the core-

striction map). But iL/K∗i
∗
L/K is simply multiplication by the index of Gal(K/L) in Gal(K/K),

which completes the proof.

3.3 Curves with torsion modified diagonal or Johnson class

3.3.1 Aut(X)-invariance

Let X be a smooth geometrically connected curve over a field K, and ℓ a prime different from

the characteristic of K. Choose a geometric point x of X and let G = πℓ
1(XK , x).

In this section, we show that AutK(X) places restrictions on the Johnson class J(X); analo-

gously, AutK(X, b) places restrictions on MD(X, b) for b ∈ X(K).

Proposition 3.3.1. Let B ⊂ AutK(X) be a finite subgroup such that H0(B,A(G)) = 0. Then the

Johnson class J(X) is torsion with order d | #B. Likewise, for b ∈ X(K), if B′ ⊂ AutK(X, b) is

a finite subgroup with H0(B′,Hom(I /I 2,I 2/I 3)) = 0, then class MD(X, b) is torsion with

order d | #B′.

Proof. We first prove the statement for J(X).

We apply the inflation-restriction sequence to the group extension

1→ B → Gal(K̄/K)× B → Gal(K̄/K)→ 1,

which gives

0→ H1(Gal(K̄/K), A(G)B)→ H1(Gal(K̄/K)× B,A(G))

→ H1(B,A(G))Gal(K̄/K).
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SinceB is a finite group, its cohomologyHn(B,M) has exponent dividing #B for any finitely

generated B-module M and any n > 0. The pullback of the Johnson class Juniv via

B ×Gal(K̄/K)→ Out(πℓ
1(XK̄))

is an element in H1(Gal(K̄/K)) × B,A(G)). Multiplying this class by #B gives a class in

H1(Gal(K̄/K)), A(G)B). But by assumption, A(G)B = 0 which finishes the proof.

The proof is the same for the class MD(X, b) with the coefficients A(G) replaced by the group

Hom(I /I 2,I 2/I 3) and B replaced by B′.

3.3.2 Hyperelliptic curves

Proposition 3.3.2. When X is a hyperelliptic curve, class J(X) is 2-torsion. Moreover, if X has

a rational Weierstrass point x, class MD(X, x) is also 2-torsion.

Proof. Let ι ∈ AutK(X) denote the hyperelliptic involution on X . Then ι acts on H1(X,Z)

(which is isomorphic to I /I 2) as multiplication by −1, and hence on I 2/I 3 as the identity.

Thus Hom(I /I 2,I 2/I 3)ι = 0. Now the statements follow from Proposition 3.3.1, applied

with B = B′ = 〈ι〉.

Remark. The method used in Proposition 3.3.2 cannot yield similar results for superelliptic curves,

using the cyclic group Aut(C/P1), as we now explain. For a degree n cyclic cover of the projective

line, pick a prime p | n so that we have µp ⊂ Aut(C/P1) (here µp is the set of p-th roots of unity).

Given a primitive root of unity ζp ∈ µp, its action on H = H1
sing(C,C) gives a decomposition

H = ⊕p−1
i=1Vi where ζp acts on Vi as multiplication by ζ ip. Then we have dimVi =

2g
p−1

, which in

particular does not depend on i [51]. Similarly, H⊗H also decomposes into eigenspaces for the ζp

action, and all the Vi for i = 1, . . . , p − 1 appear with nonzero multiplicity in this decomposition.

Therefore, we cannot rule out nontrivial Aut(C/P1)-equivariant maps between H and H ⊗ H

using this isotypic decomposition alone.
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3.3.3 The Fricke-Macbeath curve

The Fricke-Macbeath curveC is the unique Hurwitz curve over Q of genus 7. Its automorphism

group is the simple group PSL2(8) of order 504 [3, pg. 541]. Simplicity of PSL2(8) implies

that there is no central order 2 element in AutQ(C) and, in particular, C is not hyperelliptic. By

analyzing the action of the automorphism group on the homology of curve, we show the following.

Proposition 3.3.3. Let X/K be a curve over a number field with XQ isomorphic to the Fricke-

Macbeath curve C above. The class J(X) is torsion.

Proof. By Proposition 3.2.20, we may without loss of generality assume AutK(X) ∼= PSL2(8),

by replacing K with a finite extension.

We now choose an embeddingK →֒ C and analyze the induced representation ρ of AutK(X) ∼=

PSL2(8) on H1
sing(X(C)an,Q). By standard comparison results the representation of AutK(X) on

H1(XQ,ét,Qℓ) will be isomorphic to the representation obtained from ρ by extending scalars from

Q to Qℓ.

Hodge theory tells us H1
sing(C,C) decomposes as the direct sum of two complex-conjugate 7-

dimensional PSL2(8)-representations χ, χ. As PSL2(8) in fact acts on H1
sing(C,Q), it follows that

the action of every element of PSL2(8) on H1
sing(C,C) has trace in Q. Furthermore, the action of

PSL2(8) on H1
sing(C,C) is faithful since the genus of X is greater than 1.

We now decompose H1
sing(C,C) = χ ⊕ χ as an AutK(X) ∼= PSL2(8) representation using

character theory. In the following table, ζn is a choice of primitive n-th root of unity and ζ̄n its

complex conjugate [24, pg. 6].

First note that if the 7-dimensional representation χ has a trivial subrepresentation, then this

forces χ itself to be trivial (since the smallest nontrivial irreducible representation of PSL2(8) has

dimension 7). If this happens, then χ, and in turn χ are trivial PSL2(8)-representations. This

contradicts the faithfulness of H1
sing(C,C) = χ ⊕ χ as a PSL2(8)-representation; hence χ is irre-

ducible. So H1
sing(C,C) decomposes as a sum of an irreducible 7-dimensional representation and

its complex conjugate.
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Table 3.1: Character Table for PSL2(8).

class 1 2 3 4 5 6 7 8 9
size 1 63 56 72 72 72 56 56 56

order 1 2 3 7 7 7 9 9 9
χ1 1 1 1 1 1 1 1 1 1
χ2 7 -1 -2 0 0 0 1 1 1
χ3 7 -1 1 0 0 0 −ζ9 − ζ̄9 ζ29 + ζ̄29 ζ49 + ζ̄49
χ4 7 -1 1 0 0 0 ζ49 + ζ̄49 −ζ9 − ζ̄9 ζ29 + ζ̄29
χ5 7 -1 1 0 0 0 ζ29 + ζ̄29 ζ49 + ζ̄49 −ζ9 − ζ̄9
χ6 8 0 -1 1 1 1 -1 -1 -1
χ7 9 1 0 ζ7 + ζ̄7 ζ27 + ζ̄27 ζ37 + ζ̄37 0 0 0
χ8 9 1 0 ζ37 + ζ̄37 ζ7 + ζ̄7 ζ27 + ζ̄27 0 0 0
χ9 9 1 0 ζ27 + ζ̄27 ζ37 + ζ̄37 ζ7 + ζ̄7 0 0 0

Of the four 7-dimensional irreducible representations χi, i = 2, · · · , 5, of PSL2(8) in the char-

acter table below, the only one that has the property that χ⊕ χ has all its traces in Q is χ2. Hence

ρ ∼= χ2 ⊕ χ2
∼= χ2 ⊕ χ2.

Now we compute the inner product

〈χ2 ⊗ χ2, χ2〉 = 7 · 49− 63− 2 · 4 · 56 + 56 + 56 + 56 = 0.

Thus χ2 does not appear in the decomposition of χ2⊗χ2 into irreducibles. Hence there can be

no PSL2(8)-equivariant map from χ2 ⊕ χ2 to (χ2 ⊕ χ2)
⊗2, which means

H0(PSL2(8),Hom(I /I 2,I 2/I 3)) = 0.

Thus H0(PSL2(8), A(G)) = 0, and by Proposition 3.3.1, the class J(C) is torsion. Indeed, if

AutK(C) = PSL2(8) then the class has order a divisor of 504.

Corollary 3.3.4. Let X be as in Proposition 3.3.3. Then the Ceresa class ν(X) as defined in [2]

is torsion.
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Proof. This is immediate from Proposition 3.2.19.

Remark. This is, to the authors’ knowledge, the first known example of a non-hyperelliptic curve

such that the image of the Ceresa cycle under the (ℓ-adic) Abel-Jacobi map is torsion. An anal-

ogous argument (with the mixed Hodge structure on the Betti fundamental group) shows that the

Hodge-theoretic analogue is also torsion (that is, the image of the Ceresa cycle in the appropriate

intermediate Jacobian is torsion). It is natural to ask if the Ceresa cycle itself is torsion in the Chow

ring of the Jacobian of X modulo algebraic equivalence. Benedict Gross has explained to us that

this is a prediction of the Beilinson conjectures.

It would be interesting to find (or prove the nonexistence of) a positive-dimensional family of

non-hyperelliptic curves with torsion Ceresa class.

3.3.4 Curves dominated by a curve with torsion modified diagonal or John-

son class

In this last section we prove the following:

Theorem 3.3.5. Let X be a curve over a finitely-generated field k of characteristic zero, and let

f : X → Y be a dominant map of curves over k. Then:

I. If x ∈ X(k) is a rational point and MD(X, x) is torsion, then MD(Y, f(x)) is torsion.

II. If J(X) is torsion, then J(Y ) is torsion.

We view this as analogous to the fact that any curve dominated by a hyperelliptic curve is

hyperelliptic.

As a corollary we have:

Corollary 3.3.6. Let ι ∈ PSL2(8) be any element of order 2. If X/K is a curve of genus seven

over a number field with AutK(X) ≃ PSL2(8), then X/〈ι〉 is a non-hyperelliptic curve of genus

three with J(X/〈ι〉) torsion.
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Remark. Note that curves X as above exist — for any model of the Fricke-Macbeath curve over a

number field K, the base-change to a finite extension of K over which all the automorphisms are

defined will suffice.

Proof of Corollary 3.3.6. The statement that J(X/〈ι〉) is torsion is immediate from Theorem 3.3.5

and Proposition 3.3.3. So we need only verify that such curves are genus 3 and not hyperelliptic.

To see that X/〈ι〉 has genus 3, note that PSL2(8) has a unique conjugacy class of order 2,

whose trace (by the discussion in the proof of Proposition 3.3.3) on H1(X) is −2. Hence by the

Lefschetz fixed point theorem, ι has 4 fixed points. Now Riemann-Hurwitz gives the claim.

To show that X/〈ι〉 is not hyperelliptic, first we note that PSL2(8) has a unique conjugacy

class of order 2. Hence for any two elements ι1, ι2 in this conjugacy class, the quotient curves

X/〈ι1〉 and X/〈ι2〉 are isomorphic. Now in [52, Section 2], the authors give a model for one of

the quotient curves — it is a smooth quartic curve in P2. Thus this isomorphism class of curves is

non-hyperelliptic.

We now give the proof of Theorem 3.3.5. We require the following lemmas.

Lemma 3.3.7. Let G be a group and let

0→ U → V → W → 0

be an extension of G-representations over an algebraically closed field of characteristic zero, with

U,W semisimple. Then the extension splits if and only if the unipotent radical of the Zariski-

closure of G in GL(V ) is trivial.

Proof. If the extension splits, then V is semisimple. Hence the Zariski-closure of the image of G

is reductive, and we are done.

On the other hand, assume the sequence does not split. We may without loss of general-

ity replace G with the Zariski-closure of its image in GL(V ); we now wish to argue that G

is not reductive. Let H ⊂ G be the kernel of the natural map G → GL(U ⊕ W ); H is
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evidently unipotent and normal, so it suffices to show that H is non-trivial. By semisimplic-

ity of U ⊕ W , it follows that G/H is reductive; hence applying inflation-restriction shows that

H1(G,Hom(W,U)) → H1(H,Hom(W,U)) is injective (using the assumption of characteris-

tic zero). But H1(G,Hom(W,U)) is non-trivial by assumption. Hence the same is true for

H1(H,Hom(W,U)) and thus H is non-trivial, as desired.

Lemma 3.3.8. Let G be a group and let

0→ U → V → W → 0

be an extension of G-representations over an algebraically closed field k of characteristic zero,

with U,W semisimple. Let S ⊂ G be a subgroup acting trivially on U,W , and let m : S →

Hom(W,U) be the induced map. Then the image of the extension class of this sequence under the

natural map

H1(G,Hom(W,U))→ H1(G,Hom(W,U)/im(m))

vanishes if and only if the unipotent radical of the Zariski-closure of G in GL(V ) equals the

Zariski-closure of the image of S in GL(V ).

Proof. Without loss of generality we may replaceGwith the Zariski-closure of its image inGL(V )

and S by the Zariski-closure of its image.

Let N ⊂ G be the kernel of the natural representation G → GL(U ⊕W ); this is a unipotent

normal subgroup with reductive quotient (by the assumption that U,W are semisimple) and hence

equals the unipotent radical of G. By definition we have S ⊂ N . We wish to show that the given

vanishing holds in H1(G,Hom(W,U)/im(m)) if and only if S = N .

Consider the short exact sequence

0→ Hom(W,U)/im(m)→ V ′ → k → 0
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induced by our element of H1(G,Hom(W,U)/im(m)). Then by definition, the kernel of N →

GL(V ′) is exactly S. Thus by Lemma 3.3.7 this extension splits if and only if N ⊂ S. This

completes the proof.

Proof of Theorem 3.3.5. We first prove (1). Let IX be the augmentation ideal in Zℓ[[π
ℓ
1(Xk, x)]]

and let IY be the augmentation ideal in Zℓ[[π
ℓ
1(Yk, f(x̄))]].

Let UX = I 2
X/I

3
X ⊗ Qℓ, VX = IX/I

3
X ⊗ Qℓ,WX = IX/I

2
X ⊗ Qℓ, and similarly let

UY = I 2
Y /I

3
Y ⊗Qℓ, VY = IY /I

3
Y ⊗Qℓ,WY = IY /I

2
Y ⊗Qℓ. Note that by Faltings’s proof of

the Tate conjecture for Abelian varieties [53, Satz 3], it follows thatWX ,WY are semisimple Galois

representations; as VX , VY are quotients of W⊗2
X ,W⊗2

Y , respectively, they are also semisimple.

By the observation on semisimplicity in the previous paragraph and Lemma 3.3.7, the Zariski

closure of the image of Galois in GL(VX) is reductive. Hence the Zariski closure of Galois

in GL(VY ) is reductive, as a quotient of a reductive group is reductive. Now we conclude by

Lemma 3.3.7.

To prove (2), we proceed identically, using Lemma 3.3.8 in place of Lemma 3.3.7. Let GX

be the Zariski-closure of the image of πét
1 (X, x̄) in GL(VX), and similarly let GY be the Zariski-

closure of the image of πét
1 (Y, f(x̄)) in GL(VY ) (note here that we are not taking geometric funda-

mental groups). Let SX be the Zariski-closure of the image of πét
1 (Xk, x̄) in GL(VX) and let SY be

the Zariski-closure of the image of πét
1 (Yk, f(x̄)) in GL(VY ).

Unwinding the definition of J(X), J(Y ) and applying Lemma 3.3.8, we conclude that J(X)

(resp. J(Y )) is torsion if and only if SX (resp. SY ) is the unipotent radical of GX (resp. GY ). By

assumption this is true for GX ; now we conclude by the functoriality of GX , SX . That is, GY /SY

is a quotient of GX/SX , hence reductive.
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Chapter 4

The Supersingularity of Hurwitz Curves

4.1 Background

The first supersingular curves found were supersingular elliptic curves. Hasse noticed that

some elliptic curves in positive characteristic had endomorphism rings of rank four. In 1941,

Deuring defined the basic theory of supersingular elliptic curves. Supersingular curves are useful

in error-correcting codes called Goppa codes. They also have potential applications to quantum

resistant cryptosystems.

In this chapter we determine a condition for supersingularity of Hurwitz curves Hn,ℓ when n

and ℓ are relatively prime. In particular we show that every supersingular Hurwitz curve Hn,ℓ is

maximal over some finite field. We also provide a classification of supersingular Hurwitz curves

with genus less than 5 over fields with characteristic less than 37 and some restrictions on the

genera of Hurwitz curves.

We first define the Hurwitz curve and the Fermat curve. Next we define the zeta function

of a curve. From the zeta function we compute the normalized Weil numbers which we use to

study supersingularity. We must also state the Hasse-Weil bound in order to define maximality and

minimality.

4.1.1 The Hurwitz Curve

Let n and ℓ be positive integers. The Hurwitz curve is given by the projective equation

Hn,ℓ : X
nY ℓ + Y nZℓ + ZnXℓ = 0.

Throughout this chapter set m = n2−nℓ+ ℓ2. The curve Hn,ℓ is smooth if gcd(m, p) = 1 and has

genus

g =
m+ 2− 3 gcd (n, ℓ)

2
.
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4.1.2 The Fermat Curve

The Fermat curve of degree d is given by the projective equation

Fd : U
d + V d +W d = 0.

It has genus (d−1)(d−2)
2

and is smooth when the characteristic p of the field does not divide d. Note

that the Hurwitz curveHn,ℓ is covered by the Fermat curve of degreem = n2−nℓ+ℓ2; see Section

4.3.2 for more details.

4.1.3 Zeta Function

For a curve C defined over a field Fq, denote the number of points on C by #C(Fq). For

extensions of Fq define Ns = #C(Fqs). The zeta function of a curve is the series

Z(C/Fq, T ) = exp

( ∞∑

s=1

NsT
s

s

)
. (4.1)

By the Weil conjectures,

Z(C/Fq, T ) =
L(C/Fq, T )

(1− T )(1− qT ) . (4.2)

The L-polynomial, L(C/Fq, T ) ∈ Z[T ], is of degree 2g [54, p152],

L(C/Fq, T ) = 1 + C1T + ...+ C2gT
2g. (4.3)

The L-polynomial of a curve C over Fq with genus g factors in C[T ] as

L(C/Fq, T ) =

2g∏

i=1

(1− αiT ).

Furthermore, |αi| =
√
q for each 1 ≤ i ≤ 2g [54, pg. 155]. The coefficients of L(C/Fq, T ) follow

a pattern.
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Lemma 4.1.1. In Equation (4.3) for 0 ≤ k ≤ 2g, the coefficient Ck has the form

Ck =
∑

γ∈par(k)

∏

j∈γ

Nj

j

len(γ)!
−

k−1∑

i=0

(Ci

k−i∑

µ=0

qµ).

Proof. Equation (4.1) can be expanded using the Taylor series of the exponential function

Z(C/Fq, T ) =
∞∑

i=0

(N1T + N2

2
T 2 + . . .+ N2g

2g
T 2g)i

i!
.

Collecting terms up through T 3 gives a pattern to follow:

Z(C/Fq, T ) = 1 + (N1)T +

(
N2

2
+
N2

1

2

)
T 2 +

(
N3

3
+
N1N2

2
+
N3

1

6

)
T 3 + . . . . (4.4)

The key step is to recognize the subscripts on the Nj are the partitions of k. Therefore, the

coefficient on T k can be written as

∑

γ∈par(k)

∏

j∈γ

Nj

j

len(γ)!
.

Equation (4.2) gives a simplified version of Z(C/Fq, T ). Using the Taylor series for each of

the denominator terms as well as equation (4.3) results in the following expansion:

Z(C/Fq, T ) = (1 + C1T + ...+ C2gT
2g)(1 + T + T 2 + . . .)(1 + qT + q2T 2 + . . .). (4.5)

Expanding and collecting terms, the coefficients on T k are given by
∑k−1

i=0 (Ci

∑k−i
j=0 q

j) + Ck.

Setting equation (4.4) and equation (4.5) equal and comparing coefficients gives a linear system

allowing one to solve for Ck in terms of the values of Ns.
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4.1.4 The Newton Polygon and Supersingularity

Fix a curve C/Fq with associated L-polynomial L(C/Fq, T ). We can verify whether C/Fq is

supersingular by computing its Newton polygon. A couple definitions are required.

Definition 4.1.2 (Normalized Valuation on Fpr ). Let n = plk be an integer with p ∤ k. We denote

the normalized Fpr valuation of n by valpr(n) = l
r
. If n = 0 we say valpr(0) =∞.

Definition 4.1.3 (Newton Polygon). Fix a curve C/Fpr with L-polynomial in the form of equation

(4.3). The Newton polygon of C/Fpr is the lower convex hull of the points {(i, valpr(Ci)) | 0 ≤

i ≤ 2g}.

Remark. Because C0 = 1 for every curve C/Fpr , the Newton polygon will always have initial

point (0, 0). Likewise the final coefficient of L(C/Fpr , T ) is always C2g = prg. For this reason the

Newton polygon always has terminal point (2g, g).

From the above remark we can see that the Newton polygon of a curve C over Fpr will always

be a union of line segments on or below the line y = 1
2
x with increasing slopes. A curve is

supersingular when its Newton polygon is the line segment from (0, 0) to (2g, g).

Definition 4.1.4 (Supersingularity). A curve C/Fq is supersingular if its Newton polygon is a line

segment with slope 1
2
.

4.1.5 Normalized Weil Numbers

The normalized Weil numbers (NWNs) are normalized reciprocal roots of the L-polynomial.

Definition 4.1.5 (Normalized Weil Numbers). The Weil numbers of C/Fq are the reciprocal roots

αi of L(C/Fq, T ) for 1 ≤ i ≤ 2g. The normalized Weil numbers are the values αi/
√
q for

1 ≤ i ≤ 2g.

Remark. The curve C is supersingular if and only if all NWNs are roots of unity.

Remark. If {α1, . . . , α2g} are the NWNs over Fq, then {αi
1, . . . , α

i
2g} are the NWNs over Fqi .
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4.1.6 Minimality and Maximality

Minimality or maximality of a curve C/Fq is determined by the Hasse-Weil bound

1 + q − 2g
√
q ≤ #C(Fq) ≤ 1 + q + 2g

√
q.

The curve is called minimal over Fq if its point count is equal to the lower bound and maximal

if the point count is equal to the upper bound. If a curve is minimal or maximal over a field, it is

also supersingular.

Remark. The curve C is maximal over Fq (resp. minimal over Fq) if and only if all its NWNs are

-1 (resp. 1) over Fq.

In the following remark we use the notation that ζk is the primitive kth root of unity e
2πi
k . Notice

that there is a power s such that ζsk = −1 if and only if k is even.

Remark. Let C be a supersingular curve over Fq. Suppose the NWNs of C/Fq are of the form

ζt1k1 , . . . , ζ
t2g
k2g

. Assume gcd(ki, ti) = 1. The curve C is maximal over Fqr if and only if

• there exists s ≥ 1 and bi odd, such that ki = 2s(bi)

• and r is an odd multiple of 2s−1lcm(b1, . . . , bn).

Proof. Assume C is maximal over Fqr . The curve C is maximal over Fqr if and only if ζrtiki
= −1

for all i. Consequently, ki is even for all i. Thus ki = 2sibi for some positive integer si and odd

integer bi. The condition ζrtiki
= −1 for all i implies that there exists an s such that s = si for all i

and r is an odd multiple of 2s−1lcm(b1, . . . , bn).

For the converse, the conditions imply that the NWNs of C over Fqr are all −1.

4.2 Which Genera Occur

Recall that the genus of the Hurwitz curve Hn,ℓ has the following equation

g =
n2 − nℓ+ ℓ2 − 3 gcd(n, ℓ) + 2

2
.
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From this, it can be seen that the genus is determined by the quadratic form q(x, y) = x2 −

xy + y2 and gcd(x, y). One might ask which genera can appear? Or, if we are given a genus of

a supersingular Hurwitz curve, can we determine possibilities for x and y? In this section we will

provide information about which genera can appear as a result of these equations.

Lemma 4.2.1. Suppose we have two integers, m and n, representable by q(x, y) over Z, then mn

is also representable by q(x, y) over Z.

Proof. We can factor x2 − xy + y2 over Q(
√
−3) in the following way

x2 − xy + y2 = (x− yζ6)(x− yζ56 ).

Note that ζ6 = 1+
√
−3

2
and ζ6 + ζ56 = 1. Now, by the assumption that m and n are representable

by q(x, y), there exist a, b, c, d ∈ Z such that q(a, b) = m and q(c, d) = n. This means that

m = (a− bζ6)(a− bζ56 ) and n = (c− dζ6)(c− dζ56 ). Taking their product yields

mn = (a− bζ6)(c− dζ6)(a− bζ56 )(c− dζ56 ).

Multiplying the terms with ζ6 together, and the terms with ζ56 together, we get

mn = (ac− (ad+ bc)ζ6 + bdζ26 )(ac− (ad+ bc)ζ56 + bd(ζ56 )
2).

Using the identity ζ26 = ζ6 − 1, and that ζ56 = ζ6, we can simplify the previous expression to

mn = ((ac− bd)− (ad+ bc− bd)ζ6)((ac− bd)− (ad+ bc− bd)ζ56 ).

This equation has the same form as the ones we started with, and so we can see that (ac− bd, ad−

bc+ bd) is a solution to q(x, y) = mn, and since a, b, c, d ∈ Z, we have (ac− bd, ad+ bc− bd) ∈

Z2.
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From this we can make an important statement about which numbers can be a result of this

quadratic form. This ultimately relates back to our question about which genera can appear for a

Hurwitz curve.

Theorem 4.2.2 ( [55, Vol. II, pp. 310-314]). The equationm = x2−xy+y2 has solutions x, y ∈ Z

if and only if for every prime p in the prime decomposition of m, either p ≡ 0, 1 mod 3 or p is

raised to an even power.

Proof. This is the key idea of the proof. Let p 6= 3 be a prime. Then p ≡ 1 mod 3 if and only if
√
−3 is a square in Fp. This occurs if and only if p factors in Q(

√
−3) = Q(ζ6) which is true if

and only if p = x2 − xy + y2 has a solution for (x, y) ∈ Z2.

There is no restriction in Theorem 4.2.2 on what the values x and y are. However, for Hurwitz

curves we require n and ℓ to be positive. The question remains as to when the equationm = q(x, y)

has solutions in the positive integers. To solve this we study the following automorphisms of

q(x, y) = m.





f : Z2 → Z2 | f(x, y) 7→ (y, x)

g : Z2 → Z2 | g(x, y) 7→ (−x,−y)

ϕ : Z2 → Z2 | ϕ(x, y) 7→ (x, x− y)

I : Z2 → Z2 | I(x, y) 7→ (x, y)

To see that ϕ(x, y) is an automorphism, compute the following

q ◦ ϕ(x, y) = x2 − x(x− y) + (x− y)2

= x2 − x2 + xy + x2 − 2xy + y2

= x2 − xy + y2

= q(x, y).
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Corollary 4.2.3. If the equation m = q(x, y) has solution (x, y) ∈ Z2 then there is a solution with

(x′, y′) ∈ N2.

Proof. We separate into cases, depending on the values of x and y.

I. If both x and y are negative, then g(x, y) = (−x,−y) ∈ N2.

II. If y negative and x positive, then ϕ(x, y) = (x, x− y) ∈ N2.

III. If x negative and y positive, then ϕ(f(x, y)) = (y, y − x) ∈ N2.

IV. If x is 0, then ϕ ◦ f(0, y) = (y, y) and if y is 0, then ϕ(y, 0) = (y, y).

4.3 Curve maps and covers

4.3.1 Aoki’s Curve

Let α = (a, b, c) ∈ N3 with a+ b+ c = m. Note that S3, the symmetric group on three letters,

acts on α by permuting the coordinates. For σ ∈ S3 we denote the action by ασ. We say two

triples α = (a1, a2, a3) and β = (b1, b2, b3) are equivalent, denoted α ≈ β, if there exist elements

t ∈ (Z/m)∗ and σ ∈ S3 such that

(a1, a2, a3) ≡ (tbσ(1), tbσ(2), tbσ(3)) mod m.

In [56] and [57], Aoki studies curves of the form

Dα : vm = (−1)cua(1− u)b.

He provides the following conditions for when Dα is supersingular.

Theorem 4.3.1 ( [57, Theorem 1.1]). The curve Dα is supersingular over Fpr if and only if at least

one of the following conditions holds:

61



• pi ≡ −1 mod m for some i.

• α ≈ (1,−pi, pi−1) for some integer i such that d = gcd(pi−1,m) > 1 and pj ≡ −1 mod m
d

for some integer j.

4.3.2 Covers of Hn,ℓ by Fm

In Section 4.1.2, we noted that the Hurwitz curve Hn,ℓ is covered by the Fermat curve Fm

where m = n2 − nℓ + ℓ2. On an affine patch the Fermat and Hurwitz curves are given by the

following equations

Fm : um + vm + 1 = 0

Hn,l : x
nyℓ + yn + xℓ = 0.

Then the following covering map is provided by [58, Lemma 4.1]

φ : Fm → Hn,ℓ

(u, v) 7→ (unv−l, ulvn−l).

Furthermore, it is known that Fm is supersingular over Fp if and only if pi ≡ −1 mod m for

some integer i [59, Prop. 3.10]. See also [60, Theorem 3.5]. In [61, Theorem 5] it is shown that

Fm is maximal over Fp2i if and only if pi ≡ −1 mod m.

Remark. If X → Y is a covering of curves defined over Fpr , then the NWNs of Y/Fpr are a subset

of the NWNs of X/Fpr , see [62].

Thus when a covering curve is supersingular (or maximal or minimal) the curve it covers will

be as well.
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4.3.3 A Birational Transformation

In [63], Bennama and Carbonne show that Hn,ℓ is isomorphic to a curve with affine equation

y′m = x′λ(x′ − 1) (4.6)

via the following variable change. Suppose 1 ≤ ℓ < n and gcd(n, ℓ) = 1. Then there exist integers

θ and δ such that 1 ≤ θ ≤ ℓ, 1 ≤ δ ≤ n − 1, and nθ − δℓ = 1. Let λ = δn − θ(n − ℓ) and

m = n2 − nℓ+ ℓ2. The birational transformation is as follows





x = (−x′)−δ((−1)λy′)n

y = (−x′)−θ((−1)λy′)ℓ

and





x′ = −xℓy−n

y′ = (−1)λxθy−δ.

Equation (4.6) is very similar to the equation for Dα that Aoki studies but there are small differ-

ences. The following argument shows that these can be reconciled. Consequently, this variable

change can be used to apply Aoki’s results to Hurwitz curves.

Notice that equation (4.6) is divisible by (x′ − 1) while Aoki studies curves whose equation

contains a (1 − x′) factor. Aoki requires that a + b + c = m so the exponent on the negative

sign is important. Inspecting equation (4.6) we see that m will always be odd since (n, ℓ) = 1.

Consequently, this negative sign is not an issue. Since m is always odd we can replace v with −v.

This choice allows us to pick c = m− a− b. Then b = 1 and a = λ.
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4.4 Supersingular Hurwitz Curves

We arrive at explicit conditions on supersingularity for Hn,ℓ when n and ℓ are relatively prime.

We use results from [63] and [56] to accomplish this. We will be using affine equations for the

Hurwitz curve in this section.

Lemma 4.4.1. If n and ℓ are relatively prime then xnyℓ + yn + xℓ = 0 is supersingular over Fp if

and only if at least one of the following conditions holds.

I. There exists i ∈ Z>0 such that pi ≡ −1 mod m.

(In this case the Fermat curve covering the Hurwitz curve is maximal over Fp2i .)

II. There exists i ∈ Z>0 with d = (pi − 1,m) > 1 such that

(δ(n− ℓ) + ℓθ − 1, 1,−(δ(n− ℓ) + ℓθ)) ≈ (1,−pi, pi − 1)

and pj ≡ −1 mod (m
d
) for some integer j.

Proof. We use the variable substitution from [63] to apply Aoki’s results to Hurwitz curves. We

use the substitutions:

• m = n2 − nℓ+ ℓ2,

• a = λ = δ(n− ℓ) + ℓθ − 1,

• b = 1,

• c = m− (δ(n− ℓ) + ℓθ).

Combining these with Aoki’s results completes the proof.

Remark. If n and ℓ are relatively prime, then n and ℓ are relatively prime to n2 − nℓ+ ℓ2.

Theorem 4.4.2. Suppose n and ℓ are relatively prime and m = n2 − nℓ + ℓ2. Then Hn,ℓ is

supersingular over Fp if and only if pi ≡ −1 mod m for some positive integer i.
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Proof. If pi ≡ −1 mod m for some positive integer i, then Fm is supersingular over Fp by [59,

Prop. 3.10]. Recall from section 4.3.2 that Fm covers Hn,ℓ, thus Hn,ℓ is supersingular over Fp.

Suppose Hn,ℓ is supersingular over Fp. By Lemma 4.4.1 it is enough to show condition 2 in

Lemma 4.4.1 can not happen. We begin by simplifying it using the substitution θ = 1+ℓδ
n

and

reducing modulo m to show that condition 2 is equivalent to ( ℓ
n
− 1, 1,− ℓ

n
) ≈ (1,−pi, pi − 1) for

some i such that d = (pi − 1,m) > 1 and pj ≡ −1 mod (m
d
) for some integer j. Recall that

α ≈ α′ if α = tα′σ for some t ∈ (Z/m)∗ and σ ∈ S3. We will show that pi−1 andm are relatively

prime. We label the three coordinates of ( ℓ
n
− 1, 1,− ℓ

n
) as (a, b, c) and the three coordinates of

(1,−pi, pi − 1) as (A,B,C).

The proof will address six cases accounting for the orbit of (A,B,C) under the action of S3.

In each case we will show that gcd(pi − 1,m) = 1. Specifically, we show d = 1 by taking these

congruences modulo d. By Remark 4.4 we know that n−1 exists modulo m and modulo d. Finally,

note that ℓ
n

is relatively prime to d.

• (a, b, c) ≡ t(A,B,C) mod m: Comparing c and tC yields

− ℓ
n
≡ t(pi − 1) mod m.

Consequently, ℓ
n
≡ 0 mod d. Therefore, d = 1.

• (a, b, c) ≡ t(B,A,C) mod m: Comparing a with tB and b with tA yields

ℓ

n
− 1 ≡ −tpi mod m

1 ≡ t mod m.

Substituting we have ℓ
n
≡ pi − 1 mod m. Reducing modulo d produces ℓ

n
≡ 0 mod d, thus

d = 1.
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• (a, b, c) ≡ t(A,C,B) mod m: Comparing b and tC yields

− ℓ
n
≡ t(pi − 1) mod m.

This is identical to the first case.

• (a, b, c) ≡ t(C,B,A) mod m: Comparing a and tC yields

ℓ

n
− 1 ≡ t(pi − 1) mod m.

Thus ℓ
n
− 1 ≡ 0 mod d. Recall by the definition of m and selection of d, we have d |

n2 − nℓ+ ℓ2. Hence, d divides 1− ℓ
n
+ ( ℓ

n
)2. We conclude d|( ℓ

n
), thus d = 1.

• (a, b, c) ≡ t(C,A,B) mod m: Comparing b with tA and c with tB yields

1 ≡ t mod m

ℓ

n
≡ tpi mod m.

This case is completed as in the previous case.

• (a, b, c) ≡ t(B,C,A) mod m: Comparing b with tC yields

1 ≡ t(pi − 1) mod m.

Modulo d this reduces to 1 ≡ 0 mod d. Therefore, d = 1.

Corollary 4.4.3. If n and ℓ are relatively prime and Hn,ℓ is supersingular over Fp, then it will be

maximal over Fp2i where i is the same as in Theorem 4.4.2.
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Proof. By Theorem 4.4.2, if Hn,ℓ is supersingular over Fp, then pi ≡ −1 mod m for some i. By

the results of [61] we know that this implies Fm will be maximal over Fp2i . Since Fm covers Hn,ℓ,

this implies Hn,ℓ will also be maximal over Fp2i .

Apriori, if Hn,ℓ is supersingular (or maximal or minimal) over Fp then Fm may not be because

it has more NWNs.

Corollary 4.4.4. If n and ℓ are relatively prime and Hn,ℓ is supersingular over Fp, then Fm is

supersingular over Fp.

Proof. If Hn,ℓ supersingular over Fp and gcd(n, ℓ) = 1, Theorem 4.4.2 shows the existence of

positive integer i such that pi ≡ −1 mod m. Then by [59, Prop. 3.10] Fm is supersingular over

Fp.

Partial results are known for when a Hurwitz curve is maximal.

Theorem 4.4.5 ( [58, Theorem 3.1]). Let ℓ = 1. The curve Hn,1 is maximal over Fq2j if and only

if pj ≡ −1 mod m for some positive integer j.

Theorem 4.4.6 ( [58, Theorem 4.5]). Assume that gcd(n, ℓ) = 1 and m is prime. Then Hn,ℓ is

maximal over Fp2j if and only if pj ≡ −1 mod m for some positive integer j.

Note that the key property used in [58] is the existence of some positive integer j such that

pj ≡ −1 mod m. (4.7)

Remark. Under the requirements ℓ = 1, or gcd(n, ℓ) = 1 and m prime, the results in [58] and [61,

Theorem 5] show that Fm is maximal over Fq2 if and only if Hn,ℓ is maximal over Fq2 .

We consider the case when Hn,ℓ and Fm are minimal.

Corollary 4.4.7. If ℓ = 1, or n and ℓ are relatively prime and m is prime, Hn,ℓ is minimal over

Fp4i if and only if Fm is minimal over Fp4i .
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Proof. First suppose Fm is minimal over Fp4i with set N of NWNs. Then the NWNs of Hn,ℓ are a

subset of N . Thus Hn,ℓ will also be minimal over Fp4i .

Now assume Hn,ℓ is minimal over Fp4i . Minimality implies supersingularity, thus Hn,ℓ must

also be supersingular. By Theorem 4.4.2 supersingularity of Hn,ℓ over Fp implies pj ≡ −1 mod

m for some positive integer j. Choose a minimal such j. Then Corollary 4.4.3 shows Hn,ℓ is

maximal over Fp2j thus minimal over Fp4j . Minimality of j implies that Fp4j is a subfield of Fp4i .

Consequently, j | i.

Now, by [58] pj ≡ −1 mod m implies that Fm is maximal over Fp2j . Hence, Fm is minimal

over Fp4j . Because j | i, Fm is minimal over Fp4i .

Remark. The curve H3,3 is maximal over F52 but F9 is not. The above theorems show a supersin-

gular Hurwitz curve and its covering Fermat curve will both be maximal over Fp2i . This does not

imply that the Fermat curve will always be maximal over the same field extension that the Hurwitz

curve is. The Hurwitz curve could also be maximal over Fp2j where j | i with i/j odd. In this case

the Fermat curve may not be maximal over this field because it has a higher genus. Unfortunately

our example of this does not have n and ℓ being relatively prime. It is difficult to find an example

with n and ℓ relatively prime, as the genera of Hurwitz curves grow quickly causing the point

counts to become computationally expensive.

Figure 4.1 illustrates how the current theory fits together. The straight, dotted arrows are under

the conditions ℓ = 1, or gcd(n, ℓ) = 1 and m prime. The notation max/Fq2 means, for some

power q of p, the curve is maximal over Fq2 . If a curve is maximal over Fq2 then it is minimal

over Fq4 . The curved arrows show that under appropriate conditions a Hurwitz or Fermat curve is

supersingular if and only if it is minimal over some field extension. Corollary 4.4.3 and Corollary

4.4.4 are under the condition that gcd(n, ℓ) = 1, while [58] and Corollary 4.4.7 are under the

condition that ℓ = 1, or gcd(n, ℓ) = 1 and m is prime.
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Figure 4.1: Current results regarding supersingularity, minimality, and maximality of Hurwitz and Fermat
curves.

Fm s.s./Fp Fm max/Fq2 Fm min/Fq4

Hn,ℓ s.s./Fp Hn,ℓ max/Fq2 Hn,ℓ min/Fq4

[61]

[62] [62] [62]

Corollary 4.4.3

Corollary 4.4.4 [58] Corollary 4.4.7

4.5 Data

Here we provide a classification of supersingular Hurwitz curves over fields with characteristic

p < 37 and with genus less than 5.

By counting points and using Lemma 4.1.1 we computed, using [64], the L-polynomials and

NWNs of many supersingular Hurwitz curves over Fp. When n and ℓ are not relatively prime it

is possible that certain points of the equation for Hn,ℓ are singular. Resolving these singularities

requires taking a field extension of Fp. To adjust for this we see if q ≡ 1 mod gcd(n, ℓ) and

count the multiplicities of singular points. This gives the correct point counts to compute the L-

polynomial of the normalization of the equation. The table has all supersingular Hurwitz curves

Hn,ℓ of genus less than 5 for primes less than 37. The table also includes some curves of genus 6.
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Table 4.1: Supersingular Hurwitz curves in characteristic p < 37 with genus < 5.

n l p g L-Polynomial NWNs (multiplicity)

2 1 5 1 5T 2 + 1 i, -i
2 1 11 1 11T 2 + 1 i, -i
2 1 17 1 17T 2 + 1 i, -i
2 1 23 1 23T 2 + 1 i, -i
2 1 29 1 29T 2 + 1 i, -i
3 3 5 1 5T 2 + 1 i, -i
3 3 11 1 11T 2 + 1 i, -i
3 3 17 1 17T 2 + 1 i, -i
3 3 23 1 23T 2 + 1 i, -i
3 3 29 1 29T 2 + 1 i, -i
3 1 3 3 27T 6 + 1 i,-i, ζ12, ζ512, ζ

7
12, ζ

11
12

3 1 5 3 125T 6 + 1 i,-i, ζ12, ζ512, ζ
7
12, ζ

11
12

3 1 13 3 2197T 6 + 507T 4 + 39T 2 + 1 i(3), -i(3)
3 1 17 3 4913T 6 + 1 i, -i, ζ12, ζ512, ζ

7
12, ζ

11
12

3 1 19 3 6859T 6 + 1 i, -i, ζ12, ζ512, ζ
7
12, ζ

11
12

3 1 31 3 29791T 6 + 1 i, -i, ζ12, ζ512, ζ
7
12, ζ

11
12

3 2 3 3 27T 6 + 1 i,-i, ζ12, ζ512, ζ
7
12, ζ

11
12

3 2 5 3 125T 6 + 1 i,-i, ζ12, ζ512, ζ
7
12, ζ

11
12

3 2 13 3 2197T 6 + 507T 4 + 39T 2 + 1 i(3), -i(3)
3 2 17 3 4913T 6 + 1 i, -i, ζ12, ζ512, ζ

7
12, ζ

11
12

3 2 19 3 6859T 6 + 1 i, -i, ζ12, ζ512, ζ
7
12, ζ

11
12

3 2 31 3 29791T 6 + 1 i, -i, ζ12, ζ512, ζ
7
12, ζ

11
12

4 2 5 4 625T 8 + 500T 6 + 150T 4 + 20T 2 + 1 i(4), -i(4)
4 2 17 4 83521T 8 + 19652T 6 + 1734T 4 + 68T 2 + 1 i(4), -i(4)
4 2 29 4 707281T 8 + 97556T 6 + 5046T 4 + 116T 2 + 1 i(4), -i(4)
4 1 5 6 15625T 12 + 1875T 8 + 75T 4 + 1 ζ8(3), ζ

3
8 (3), ζ

5
8 (3), ζ

7
8 (3)

4 3 5 6 15625T 12 + 1875T 8 + 75T 4 + 1 ζ8(3), ζ
3
8 (3), ζ

5
8 (3), ζ

7
8 (3)

5 5 3 6 729T 12 + 243T 8 + 27T 4 + 1 ζ8(3), ζ
3
8 (3), ζ

5
8 (3), ζ

7
8 (3)

5 5 7 6 117649T 12 + 7203T 8 + 147T 4 + 1 ζ8(3), ζ
3
8 (3), ζ

5
8 (3), ζ

7
8 (3)

5 5 13 6 4826809T 12 + 85683T 8 + 507T 4 + 1 ζ8(3), ζ
3
8 (3), ζ

5
8 (3), ζ

7
8 (3)
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