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ABSTRACT 

 

 

ASSESSMENT OF SENSATION SEEKING PERSONALITY TYPE USING BEHAVIORAL AND 

FUNCTIONAL NEUROIMAGING MEASURES  

 

 

Sensation seeking personality type, in which an individual has the propensity to engage in risky 

behaviors while searching for an optimal level of stimulation, is associated with a variety of 

negative health outcomes, such as higher rates of substance misuse, gambling, and self-harm. It 

is important to develop methods to identify those at higher risk of engaging in such health risk 

behaviors. Historically, sensation seeking has been primarily measured using self-report 

surveys. Providing additional measures of sensation seeking, such as through behavioral 

assessment or biomarkers, would aid our measurement of the sensation seeking personality 

type. The present work sought to create a new behavioral measure of sensation seeking 

personality type, the Sensation Seeking Dot Probe Task (SSDP), that measures an individual’s 

attentional bias towards sensation seeking imagery. Further, the SSDP task was combined with 

functional Near Infrared Spectroscopy, which utilizes the spectral differences of hemoglobin in 

the brain to measure neural activity, to identify neural correlates of attention to sensation 

seeking imagery and relate them to the Sensation Seeking Personality Type scale. I 

hypothesized that the SSDP would be as effective in identifying sensation seeking as the self-

report scale, and that attention to sensation seeking images would correlate with changes in 

neural activity in the prefrontal cortex and orbitofrontal cortex (regions associated with 

executive control and decision making) that would be greater in high sensation seeking 
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individuals. While the SSDP did not find significant differences in accuracy or reaction time, the 

typical measures used in attentional bias dot-probe tasks, there was a significant difference in 

selection of sensation seeking imagery when paired with neutral control imagery. There were 

also significantly different changes in activity during sensation seeking congruent tasks in areas 

of the lateral prefrontal cortex for high sensation seeking individuals. These results suggest 

functional and behavioral differences measurable in high sensation seekers, and future tasks 

can use these findings to lead to a greater understanding of the personality type. 

  



 

 iv 

TABLE OF CONTENTS 

 

 

 

ABSTRACT………………………………………………………………………………………………………………………………….ii 

INTRODUCTION……………………………………………………………………………………………………………………….…1 

Sensation Seeking Personality Type…………………………………………………………………………………..…1 

Measures of Sensation Seeking…………………………………………………………………………………………...4 

Neural Bases of Sensation Seeking and its Effects on Decision Making ………………………………..4 

Multimodal Assessment……………………………………………………………………………………….………………6 

Behavioral Assessment of Sensation Seeking…………………………………………..………………….……….7 

Neuroimaging…………………………………………………………………………………………..………………………....9 

Functional Near Infrared Spectroscopy (fNIRS)…………………………………………..……………………..…9 

Neuroimaging Studies of Sensation Seeking…………………………………………………………….…………11 

METHODS…………………………………………………………………………………………………………………………..…...14 

Participants………………………………………………………………………………………………………………….…….14 

Measures and Procedures………………………………………………………………………………………………....14 

Behavioral Sample………………………………………………………………………………………………………..14 

Sensation Seeking Personality Type Scale…………………………………………………………….…14 

Sensation Seeking Dot Probe Task……………………………………………………………………….…15 

Table 1: Structure of the Sensation Seeking Dot Probe Task (SSDP) …………………………….19 

fNIRS Sample…………………………………………………………………………………………………….………….20 

Functional Near Infrared Spectroscopy……………………………………………………………..……20 

Procedural Differences from Behavioral Sample………………………………………………….…21 

RESULTS…………………………………………………………………………………………………………………………………..22 

Behavioral Results……………………………………………………………………………………………………….…….22 

Figure 1 - Effects of risk and experience seeking score on tendency to select Sports 

stimuli ………………………………………………………………………………………………………………………….24 

Figure 2 – Effects of risk and experience seeking score on tendency to select OtherSS 

stimuli…………………………..……………………………………………………………………………………………..25 

Functional Near Infrared Spectroscopy Between-Subjects Results………………………………..……26 

Figure 3 – Effect of high versus low risk seeking score in the lateral prefrontal cortex…27 

Figure 4 – Effect of high versus low risk seeking score in the OFC………………………………..28 

Figure 5 – Effect of high versus low experience seeking score in the lateral prefrontal 

cortex…..………………………………………………………………………………………………………………………29 

Figure 6 – Effect of high versus low experience seeking score in the OFC ……………………30 

DISCUSSION……………………………………………………………………………………………………………………….…….31 

Behavioral ……………………………..…………………………………………………………………………………..……..31 

fNIRS …………..…………………………………………………………………………………………………………….………32 

Potential Implications and Limitations…………………………….………………………………………..……….34 

REFERENCES…………………………………………………………………………………………………………………………….39 

 



 

 1 

INTRODUCTION 

 

 

 

Sensation Seeking Personality Type  

 Sensation seeking is a distinct personality trait defined as an individual’s propensity to 

pursue novel and excessively stimulating experiences despite potential risks (Zuckerman et al., 

1972; Arnett, 1994; Roberti, 2004). Expression of the trait is related to the dopaminergic 

midbrain and factors in reward-based cognitive decision making (Zuckerman, 1994; Noël et al., 

2011; Norbury, 2015). This results in greater motivation and preference for highly stimulating 

activities, such as substance misuse, extreme sports and highly exciting or risky occupations, as 

well as decreased goal-directed behavior when alternative sensational stimuli are present 

(Lawson et al., 2012; Roberti, 2004; Norbury, 2015). The increased motivation towards 

sensation providing stimuli can lead to decreased risk appraisal, which could impact normal 

avoidance of dangerous or risky situations (Roberti, 2004; Lissek et al. 2005). Sensation seeking 

is often associated with related constructs such as novelty seeking, which leads to behavioral 

differences similar to addiction such as changes in craving and risk perception (Bardo et al., 

1996; Zimmermann, 2010).  

Novelty seeking is a construct closely related to sensation seeking, in which individuals 

have greater motivation towards unknown, novel stimuli compared to known, familiar stimuli 

(Wittmann et al., 2008; Wingo et al., 2016). Some preference towards novelty is expected in 

behavior as it aids in the exploration of unknown information, seen in studies finding an 

inherent reward response due to novelty of stimuli (Daw et al. 2006; Wittmann et al., 2008). 

This uncertainty and “informational reward” tie the related constructs of novelty, sensation 
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seeking, exploration, and curiosity together (Kidd & Hayden, 2015; Kolling et al., 2012; Koster et 

al., 2016; Morris et al., 2016). This behavior can lead to similar results as (and is often coexisting 

with) sensation seeking in leading towards health-risk behaviors (Bardo et al., 1996; Büchel et 

al., 2017). 

There are distinct behavioral differences found between individuals measured as either 

high or low in sensation seeking. Low sensation seeking individuals tend to be risk-averse and 

report greater levels of anxiety in response to risk and threat (Lissek et al., 2005). Meanwhile, 

high sensation seeking individuals are biased toward risky situations and may view them as 

more intrinsically rewarding or overvalue them (Zuckerman et al., 1972; Conner & Henson, 

2011; Huskey et al., 2018). This bias along with a motivation to seek out highly stimulating 

situations can result in those high in sensation seeking showing preference towards certain 

activities, such as extreme sports (Norbury & Husain, 2015). The exact mechanism causing this 

difference between trait values is not definitively known, however it is possibly heritable due to 

genetic changes affecting the dopaminergic midbrain (Hamidovic et al., 2009). 

Several distinct decision-making behaviors are affected by sensation seeking and novelty 

seeking, including approach-avoidance and explore-exploit decision making (Norbury et al., 

2015; Wittmann et al., 2008; Abram et al., 2016; Sweis et al. 2018). Approach-avoidance is the 

decision an individual makes between engaging with a stimulus or avoiding it, while explore-

exploit is the decision between trying to find a more valuable stimuli (explore) or to continue 

with the stimuli you have available (exploit). These decisions may factor in potential reward, 

expected danger, cost, and other considerations.  
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Approach-avoidance decision making can be seen in foraging behavior in an animal. A 

specific example being the choice of whether or not to approach food which it highly values 

while a predator’s scent is also present. The interplay between value of the food and the risk of 

harm from the apparent predator affect the decision made. An animal with high sensation 

seeking may overvalue the food or underappreciate the risk (Norbury et al., 2015; Wittmann et 

al., 2008).  

Explore-exploit decision making can be seen as an economic decision made in order to 

maximize reward. An example would be a situation such as a person deciding to watch a movie 

that they know and like versus the deciding to try watching something they hadn’t seen before, 

which could be better or worse. This results in a decision between something with a known 

value or risking finding something better, but potentially finding something worse and being a 

waste of time. This decision would be partially determined by the individual’s level of sensation 

seeking personality trait (Abram et al., 2016; Sweis et al. 2018). Novelty seeking affects 

approach-avoidance decision making as well, giving preference to new or unknown stimuli, 

though not necessarily highly stimulating ones (Daw et al., 2006; Krebs et al., 2009).  

Due to the motivation those high in sensation seeking have towards stimulating 

outcomes, those high in sensation seeking have an increased risk for several behaviors such as 

substance misuse, gambling, risky sexual behavior, and non-suicidal self-injury (Knorr, Jenkins, 

& Conner, 2013; Palmgreen et al., 2001; Quinn & Harden, 2013; Steinberg, 2008). Further 

understanding of sensation seeking and implementation of individual differences into clinical 

treatments would improve outcomes in therapies concerned with these behaviors. 
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Measures of sensation seeking  

Sensation seeking as a trait has been primarily studied using self-report surveys. The 

first scale created was the Sensation Seeking Scale (SSS) developed by Zuckerman and 

colleagues (1972), and now is in its fifth iteration, the SSS-V. This scale attempted to validate its 

content through self and peer reported behaviors as well as theoretical behavioral measures 

(Roberti, 2004). The SSS-V categorizes sensation seeking as a whole through four 

subcomponents: thrill and adventure seeking, experience seeking, disinhibition and boredom 

susceptibility. However, these subscales have had concerns in terms of their reliability, 

particularly in samples of children and adolescents (Roberti, 2004). To address these, other 

scales have been made attempting to further parse out the particular intricacies of sensation 

seeking, such as separating novelty and risk (Arnett, 1994) and experiential versus risk seeking 

behaviors (Conner, 2020). Risk seeking entails a tendency to engage in risk behaviors that can 

endanger health and well-being, whereas experience-seeking is a tendency to engage in novel 

and intense experiences that are not necessarily associated with risk to health (Conner, 2020). 

By incorporating the differences in these subscales with other related constructs such as 

novelty seeking, a clearer understanding of the connections and separation of these traits can 

be made.  

Neural Bases of Sensation Seeking and its Effects on Decision Making 

 Decision making relies on interactions between multiple neural systems, including the 

reward-based circuitry found in the dopaminergic midbrain (Alcaro et al., 2007; Gershman & 

Tsovaras, 2018). The classic mesolimbic path consists of the ventral tegmental area’s (VTA) 

dopaminergic projections onto the nucleus accumbens, or ventral striatum (Düzel et al., 2009). 
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Dopaminergic projections in these areas code for anticipation of reward, and receipt of 

unexpected rewards and novel stimuli (Bromberg-Martin & Hikosaka, 2009). There are also 

several connections to the cortex and areas responsible for cognitive control and motivation 

(Krebs et al., 2009; Wittmann et al., 2008; Bunzeck & Thiel, 2016). This could be seen for 

example in connections originating from the orbitofrontal cortex (OFC) and dorsolateral 

prefrontal cortex (dlPFC) on the VTA, or in interactions with stimuli valuation through the 

ventral medial prefrontal cortex (vmPFC) (Bush et al. 2002). These dopaminergic projections 

also themselves extend to many other cortical areas, such as the basal ganglia and anterior 

cingulate, as shown by neuroimaging studies in humans and in invasive neural stimulation 

studies using animals (Haber & Behrens, 2014; Li et al., 2017; Chandler & Gass, 2013). Most 

modulation appears to occur at the core VTA dopaminergic projections to the nucleus 

accumbens (Alcaro et al., 2007; Düzel et al., 2009). Interventions and studies targeting this 

system and type two dopamine receptors (D2) in particular seem effective at assisting with 

addiction and reward system dysfunction (Han et al. 2011, Norbury, 2016, Hamidovic et al. 

2009; Sweis et al. 2018). 

Sensation seeking is related to the dopaminergic reward system (Norbury & Husain, 

2015; Düzel et al., 2009; Düzel et al., 2010; Krebs et al., 2009). In particular, sensation seeking 

studies have primarily localized its biological mechanism to the striatal and ventral tegmental 

area system (mesolimbic pathway) and its connections to the prefrontal cortex (Norbury, 2016; 

Bardo et al., 1996; Bechara, 2005; Büchel et al., 2017; Gershman & Tzovaras, 2018; Chen et al., 

2013). It also has been implicated, specifically in relation to emotional and sexual stimuli, with 

the amygdala and the anterior cingulate cortex (Cyders, 2009; Cardinal et al., 2002). The 
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dopaminergic reward system has been found to increase in activity in anticipation of reward as 

measured by increased dopamine binding at D2 receptors (Bromberg-Martin & Hikosaka, 2009; 

Norbury, 2016). These cells also fire after presentation of novel stimuli, another factor that 

affects experience seeking (Bunzeck & Thiel, 2016; Wittmann et al., 2008; Zheng et al., 2010). 

This dopamine signal has a number of effects throughout the brain, including promoting 

memory encoding and long-term potentiation in the hippocampus (Davidow et al., 2016; 

Duncan et al., 2018; Duszkiewiczs et al., 2019; O’Doherty et al., 2017; Wittmann et al., 2007).  

Multimodal Assessment 

 In scale development and personality literature, multimodal assessment refers to the 

ability for multiple different measurements of the same variable to be studied using different 

methods or scales, and the inter-reliability between these methods (Bornovalova et al., 2008). 

In the case of sensation seeking, the only existing measurement is through self-report scales. 

Recent studies have made clear the case that there is a greater need for integration of a 

biopsychosocial design in order to fully understand behavior (Moeller et al., 2013; Daw et al., 

2006). This sort of integration would entail studies combining physiological measures of 

biological processes and genetic influences with psychopathologies, behaviors, and self-report 

responses in order to apply results out of the laboratory (Moeller et al., 2013). The best way to 

combat limitations in psychology is to be open to multimodal assessments. What’s more, the 

larger number of multimodal data we accumulate, the better we are able to hypothesize and 

use prior findings for future studies using Bayesian statistics and machine learning algorithms 

(Gillan et. al, 2017; Calhoun & Sui, 2015). 
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 Self-report surveys have been the standard measurement for sensation seeking 

personality type, but as mentioned previously, self-report surveys are susceptible to various 

forms of bias. For example, Stanton and colleagues (1996) found that adolescents had difficulty 

recalling information over large stretches of time. Another study by Elgar and colleagues (2005) 

found that self-reported height and weight, which should theoretically be very easy for a 

participant to intentionally record correctly, were biased by the participants and was thus 

underreported. The potential for these biases as well as response bias in altering the 

completion of these reports is a fault inherent in self-reporting (Mortel et al., 2008). This is not 

to say that self-report measures are invalid, it is only another example of how no one method is 

perfect, thus requiring multimodal approaches in psychology and science at large. 

 Potential modalities which are well equipped to measure sensation seeking other than 

self-report would be behavioral studies and neuroimaging. Behavioral models are common in 

psychology and have been used in several different constructs and personality traits including 

those similar or related to sensation seeking (Roberti, 2004). However, less progress has been 

made with sensation seeking itself. The existence of a behavioral task for sensation seeking 

would be an important tool in measuring predictability of engaging in health risk behavior. Such 

a task could potentially be developed based on previously validated tasks, such as attentional 

dot probe measures of bias (Macleod et al., 1986). 

Behavioral assessments of sensation seeking 

One recent attempt has been made at creating a behavioral measure of sensation 

seeking. Norbury (2016) created a design in which the computational valuation an individual 

gives an economic task could predict sensation seeking score. The experiment was an explore-
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exploit decision making task in which participants would try to maximize points gained in the 

task. However, some of the trials would include a mild electric shock along with the reward, 

with the shock being more often included with higher point values. They found that high 

sensation seekers consistently rated the electric shock eliciting values as more positive than 

those low in sensation seeking. This design is a significant advancement in behavioral measures 

of sensation seeking, however it does have limitations. Mild electric shock is still painful and 

certainly could be considered to be invasive to most participants. As well, this study measured 

sensation seeking using the SSS-V, rather than other measures such as the SSPT which can 

separate subtypes of experience-seeking and risk-seeking. Further behavioral advancements 

should be possible as other studies have found measurable differences in these similar 

behavioral constructs, such as novelty seeking and gambling tasks as seen in alcoholics or 

addiction models (Noël et. al, 2011; Dong et al., 2017; Lucantonio et al., 2015). 

 Attentional bias as measured through dot-probe tasks could also be a tool used in 

studies concerning sensation seeking. A dot-probe task measures attentional bias towards 

types of images based on performance in a reaction time task and was originally developed by 

MacLeod and colleagues (1986). Participants are shown pairs of stimuli for a very short amount 

of time, which are followed by a small cue (the dot-probe) behind one of the stimuli, after 

which the participant is required to report the location of the dot via a speeded button press. 

The logic is that if the participants are motivated towards and attending a particular stimulus, 

then they will be able to more accurately and/or rapidly report the dot-probe location when it 

appears in the same location of the attended stimulus. Macleod (1986) initially found that 

clinically anxious individuals, but not those who were also clinically depressed, showed bias 
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towards threat inducing words. Current cigarette smokers have been found to display greater 

bias towards smoking cues than former smokers through an attentional bias dot-probe task 

(Ehrman et al., 2002). Given the similarities discussed previously between sensation seeking 

and addiction related neural correlates, this suggests that such a task may be able to 

differentiate sensation seeking personality trait levels as well.  

Neuroimaging techniques 

Neuroimaging has strong potential for finding biomarkers that could be used to identify 

high sensation seeking individuals. Clementz (2016) combined imaging with behavioral tasks, 

psychological screenings, saccadic control through eye tracking, genetic panels, and other 

potential biomarkers to classify different types of psychoses with greater discrimination than 

clinical diagnosis alone. This approach has been used in Alzheimer’s disease as well 

(Esmaeilzadeh et al., 2018). There is also a potential to utilize multimodal imaging 

methodologies along with other biomarkers in psychiatry through symmetric data (Calhoun & 

Sui, 2016; Gillan & Whelan, 2017; Lawson et al., 2012). The potential benefits of this approach 

are likely to grow given development of advanced statistical techniques such as Bayesian 

Modeling, Dynamic Causal Modeling, and Structural Equation Modeling (Cooper et al., 2019). 

Functional Near Infrared Spectroscopy (fNIRS)  

A common neuroimaging approach is measuring the Blood Oxidation Level Dependent 

(BOLD) response in functional Magnetic Resonance Imaging (fMRI) and in functional Near 

Infrared Spectroscopy (fNIRS) (Turner, 1998; Kocsis, 2006; Cope & Delpy, 1988; Ferrari & 

Quaresima, 2012). Oxygenated and deoxygenated blood have various different properties due 

to the change of their molecular orientation, and these differences allow the relative change in 
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concentration to be measured. The movement of oxygenated and deoxygenated blood can 

then be identified in order to measure relative activity patterns of the brain non-invasively 

(Cope & Delpy, 1988). It should be noted however that this change in oxygenation takes some 

amount of time, usually around 6-8 seconds. The exact timing for analysis in imaging software 

can be determined through a hemodynamic response function (Lindquist et al., 2009). Though 

both use the BOLD response in order to assess neural activity, fMRI and fNIRS have several 

advantages and disadvantages. fMRI uses the different magnetic properties of hemoglobin 

(oxygenated hemoglobin being diamagnetic, while deoxygenated being paramagnetic) to 

visualize the concentration of each through manipulating the magnet induced spin and 

relaxation of hydrogen atoms found within hemoglobin. By taking multiple images at different 

times through an MRI scan, these changes can be followed throughout the duration of the scan. 

This provides good spatial resolution across the entire brain, but as it is dependent on requiring 

more powerful magnetics to reduce the gap between consecutive magnetic pulses (TR), fMRI 

has relatively poor temporal resolution (Turner, 1994). Motion artifacts are common as well, as 

it is required that the participants must remain still for the duration of the entire scan.  

fNIRS, however, utilizes different spectrographic properties of hemoglobin in order to 

follow the change in oxygenation (Kamran, 2016; Kim et al. 2017). Near infrared light (roughly 

700-1100nm in wavelength) is capable of piercing the outer skin, bone, and tissue around the 

skull and into the cortex up to a few centimeters in depth. Both oxygenated and deoxygenated 

hemoglobin absorb light maximally at different wavelengths, allowing for the concentration to 

be measured using the isometric point between oxygenated and deoxygenated hemoglobin. 

This can be done very quickly, reducing overall time of fNIRS compared to fMRI (though still 
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retaining the 6-8 second delay of hemodynamic functioning), but with the consequence of not 

being able to penetrate deeply enough to target deep brain structures such as the basal 

ganglia. However, for areas on the cortical surface, signal will show both high spatial and higher 

temporal resolution than fMRI (Kocsis, 2006; Lloyd-Fox et al., 2010). It should still be noted that 

the temporal resolution of fNIRS is still poor due to the nature of the BOLD signal. Because 

sensors are directly attached to the head via a skull cap and don’t require the head to remain 

completely still as in fMRI, fNIRS is ideal for use in studies requiring movement, difficult 

populations, and children in developmental studies as well (Gogtay et al., 2004). This presents 

fNIRS as a cheaper alternative to fMRI when used appropriately, and in some cases is a better 

fit for the study design. 

Neuroimaging Studies of Sensation Seeking 

In prior neuroimaging studies, a few regions of interest have been shown activity 

sensitive to sensation seeking. The orbitofrontal cortex (OFC) and ventral medial prefrontal 

cortex (vmPFC) have been shown to respond to rewarding stimuli as seen in decision making 

studies (Camara et al., 2009; Hommer et al., 2011; Rolls et al., 2000; Kahnt et al., 2014). In a 

study by Rolls, Burton, and Mora (1980), squirrel and rhesus monkeys had electrodes implanted 

in the orbitofrontal cortex and other reward-based areas allowing the monkeys to self-

stimulate these areas by pressing on a brass bar. The monkeys would self-stimulate the OFC 

when hungry and stop when they were satiated, implying that activation of this area is based 

on how the animal would need or value the food (Rolls, Burton, & Mora, 1980).  For sensation 

seeking behavior in particular, a study by Lawson and colleagues (2012) took recordings with 

EEG and fMRI while completing an old-new task in which the participants needed to recall 
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previously studied (old) stimuli. High sensation seekers responded with increased activity 

localized in the orbitofrontal cortex in response to new images than low sensation seekers. This 

indicates that the OFC is displaying a difference in valuation of stimuli in the OFC, and clearly 

responds differently to high sensation seekers (Lawson et al., 2012). This agrees with existing 

theories concerning economic decision making such as approach-avoidance and explore-exploit 

to be dependent on separate regions taking into account reward valuation (Steinberg, 2008; 

Sanfey et al., 2003).  

fMRI has been used extensively in examining closely related constructs to sensation 

seeking, such as risk avoidance and novelty (Kahnt, 2018; Luijten et al., 2017). In a study by Li 

and colleagues (2017), personality traits were correlated with salience related connectivity 

changes during a salience expectancy task using rated pictures from the International Affective 

Picture System. Novelty seekers were found to have greater disconnection between the 

anterior insula and middle cingulate cortex when expecting pictures considered “high salience” 

according to normative data for the IAPS (Li et al., 2017). Further, studies using NIRS 

specifically, while not directly measuring sensation seeking but looking at closely related 

constructs, found significant differences in neural activity relative to measures in harm 

avoidance, novelty seeking (Nakao et al., 2013), or reward in regard to prior substance abuse 

(Hammers & Suhr, 2010). For example, the Nakao study used resting state slow oscillations in 

the dorsal and ventral medial areas of the PFC to differentiate between different levels of 

novelty seeking and harm avoidance (Nakao et al., 2013). 

 Sensation seeking has been implicated in multiple health-risk behaviors, but the neural 

mechanism and precise behavioral differences compared to typical health population 
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functioning are not well understood. The independent components relevant to sensation 

seeking have been difficult to parse out and lack agreement between subtypes and scales 

(Roberti, 2004). Assessing the differences between high and low sensation seeking would aid in 

both understanding behavioral differences as well as neurocognitive mechanisms. For this 

thesis, I aimed to create a novel task which would discriminate between high and low 

experience-seeking and risk-seeking by using an attentional bias dot probe task which displayed 

bias towards sensation-seeking images. Different behavior in those high in sensation seeking 

could be measured by bias towards sensation seeking stimuli in the task. Accuracy, reaction 

time, and likelihood to select and image regardless of congruency were then compared to 

scores on the Sensation Seeking Personality Type (SSPT) scale (Conner, 2020) in order to 

correlate scale measurement with task performance and apparent bias. By performing more 

accurately and quickly on sensation seeking congruent trials, an attentional bias towards 

sensation-seeking images can be inferred. Further, the task was run on a second sample of 

participants from the same source while using fNIRS, to compare localized activity differences 

in frontal areas of the cortex. I hypothesize that individuals high in sensation-seeking 

personality type will have a noticeable attentional bias towards sensation-seeking imagery, 

demonstrated by increased accuracy, reduced reaction time, and greater preference of 

selecting sensation-seeking imagery in congruent sensation-seeking trials. Further, I predict that 

those high in sensation-seeking personality type, both risk and experience-seeking, will have a 

significantly different BOLD response to sensation-seeking congruent trials compared to control 

congruent trials within the lateral PFC and OFC regions of interest. 
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METHODS 

 

 

 

Participants and Procedures 

 This study involved analyses of two samples of a college population. 246 undergraduate 

students (140 female, 56.9%; mean age = 19.5) recruited from introductory psychology courses 

and compensated with class credit completed the SSPT-18 (18 item sensation seeking 

personality type scale), the sensation seeking dot-probe (SSDP), and a battery of other 

measures not relevant to the current study. 30 different undergraduate students recruited 

from the same source completed the SSPT-18 and then performed the dot probe task during 

NIRS recording using a NIRScout Extended (NIRx Medical Technologies, Los Angeles, CA) system. 

These 30 participants either scored high or low on a self-report measure of sensation seeking. 

Due to problems in the quality of recorded NIRS data, 5 participants had to be removed from 

this sample, for a final participant count of n = 25.  

Measures and Procedure 

 

Behavioral sample (n = 246) 

Sensation Seeking Personality Type Scale – 18 (SSPT; Conner & Henson, 2011): 

Participants responded to items on the SSPT indicating agreement with a given sentence 

using a 5 item Likert-type scale, the minima and maxima being “Strongly disagree/agree” 

respectively. This is the 18 item version with two subscales, risk seeking (ex. “I enjoy 

participating in unsafe activities,”) and experience seeking (ex. “I think it is important to try as 

many new things as I can,”) for which higher scores indicate greater risk seeking and experience 

seeking, respectively. 
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 Sensation Seeking Dot Probe Task (SSDP; Wilton Logic 2013):   

The SSDP is an attentional dot-probe bias task, a task which attempts to measure 

behavior through an individual’s reaction to different stimuli in the trial. The design of this task 

was based on other attentional dot-probe tasks as seen in the MacLeod (1986) and Ehrman 

(2002) studies. Two images are being attended to by the participant, with a small dot-probe 

hiding behind each image. During the trial, the images disappear, potentially revealing the dot-

probe behind one of the images. The participant is then required to select which image the dot-

probe was behind or if there was no dot-probe. It is expected attentional bias can be measured 

as participants will perform better on trials congruent with the attended stimuli, usually 

through reaction time and trial accuracy. Trials would consist of low bias trials, in which both 

stimuli were of the same type, or high bias, in which there would be one experimental stimuli 

type and one control stimuli. In the Macleod (1986) study, this was a difference between a 

threat inducing word and a control word, looking between clinically anxious and clinically 

depressed participants. The Ehrman study (2002) used cigarette smoking cues versus control 

images to differentiate behavior in current smokers and non-smokers. 

Classic attentional bias dot-probe tasks typically focus on two measurements in order to 

determine bias: accuracy (or performance based on congruency) and reaction time (MacLeod 

1986, Ehrman et al., 2002). Accuracy is calculated by examining the tendency for participants to 

select the stimuli hiding the dot-probe correctly differently based on trials using the 

hypothesized bias stimuli and control stimuli. For example, in Ehrman’s 2002 study, images of 

smoking cues and neutral control images were presented to tobacco smokers. Trials consisted 

of either low bias trials in which both images were of the same type and high bias trials in which 



 

 16 

a smoking cue and control image were present. The high bias trials were categorized as 

congruent if the dot-probe was behind the smoking cue and incongruent if behind the control 

image. Smoking cue bias was measured with accuracy, based on the participant’s overall ratio 

of correct hits in congruent smoking trials compared to correct hits in incongruent trials. The 

SSDP was modeled similarly, in which the experimental stimuli were sensation seeking imagery.  

In the original example of an attentional bias dot probe task, reaction latency was used 

to gauge the bias towards words associated with threat in either clinically anxious or depressed 

individuals. They used this measure of latency and reaction time to assess the inherent bias 

towards experimental stimuli, in that case, clinically anxious individuals to words based on 

threat. This resulted in a shorter reaction time during congruent threat trials and longer 

reaction time in the incongruent threat trials. They also looked at accuracy measured in the 

same way as the Ehrman study, finding a greater number of correct hits for clinically anxious 

individuals to the threat stimuli than control stimuli (MacLeod et al. 1986; Ehrman 2002). 

In the SSDP, our experimental stimuli consisted of three types of presented images, 

action sport (Sports), sensation seeking other than action sports (OtherSS), or neutral people-

based controls (Control). Sports images consist of people engaged in a physically demanding, 

exciting, or extreme sport. OtherSS images feature emotionally arousing stimuli that are not an 

action sport. Control images consist of people in non-exciting or relaxed environments. Trials 

could be low bias for any stimuli type, in which there would be two of the same type of stimuli, 

or high bias, where a Sports or OtherSS stimuli were paired with a Control image. Some trials 

were neutral and contained no dot-probe, for which the participant was meant to select that it 

was not behind either picture. The dependent variables used were individual measurements of 



 

 17 

percentage of correct responses in trials for each stimuli type (Sports, OtherSS, Controls) in 

congruent or incongruent trials. Individual reaction time dependent variables were measured 

based on the stimuli type, congruency, and whether it was a correct or incorrect response. In 

addition, we measured the likelihood of each participant to select each stimuli type based on 

their apparent tendency to select that stimuli type regardless of the congruency of the trial. 

Accuracy would depend on the participants ability to correctly select which stimuli held 

the dot-probe based on whether it was low or high bias and the trial’s congruency. A congruent 

trial would feature the dot-probe behind the relevant stimuli, for example a congruent Sports 

trial would have the dot probe behind the Sports image. Reaction time would be measured by 

the latency between the dot-probe appearing and the participant selecting a response. This 

could be separately measured based on congruent or incongruent trials, as well as trials in 

which the participant correctly or incorrectly selected the image with the dot-probe. Two 

images are displayed at once on the left and right sides of fixation on a screen following a 

fixation cross. The two images remain for 450ms, and then disappear, potentially revealing a 

small dot behind one of the pictures for 50ms. The participant is asked to respond as quickly 

and accurately as possible using directional buttons which picture had the dot probe behind it, 

the left or the right, or if there was no dot at all with a central “None” button. 

There were 64 trials total following a brief training session, with a balanced mixture of 

52 bias trials, half of which the dot-probe was congruent with sensation seeking bias (behind a 

sensation seeking image, half of these Sports and half OtherSS, combined as AllSS) and half 

where it was incongruent (behind a Control image). Half of the congruent and incongruent trials 

were “low bias”, where both images were of the same type, and half were “high bias” in which 
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there was one sensation seeking and one control image. This resulted in 13 Sports congruent 

trials, 13 OtherSS congruent trials, and 26 Control congruent trials. High bias trials would always 

contain a control image, so the resulting pairings would either be OtherSS vs Control or Sports 

vs Control. There were also 12 trials in which there was no dot present, coded as a neutral 

(None) trial. Accuracy and reaction time for each trial were recorded to measure performance 

in the task and attentional bias towards particular stimuli. Additionally, a bias score for each 

type of sensation seeking stimuli (One for Sports and one for OtherSS) was calculated as the 

likelihood of a participant selecting the particular stimuli when presented alongside a Control 

image during the SSDP. An important consideration to note is that the bias score was just the 

tendency to select a stimuli type and trial congruency was completely irrelevant in its 

calculation, which was only determined by the ratio of selected stimuli in each category. A 

series of linear regressions were used to assess a relation between SSPT subtype scores (risk 

and experience seeking) as measured by the previous Sensation Seeking Personality Type 

measure and the various dependent measurements of accuracy, reaction time, and bias. 
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Table 1: Structure of the Sensation Seeking Dot Probe Task (SSDP) 

Arrangement of the task by trial type 

All trials Bias v. neutral Congruency to 

Sensation Seeking 

SS stimuli type 

 

 

 

 

64 trials total 

 

 

 

52 Bias Trials 

 

26 Sensation Seeking 

Congruent Trials 

(Control Incongruent 

Trials) (AllSS) 

13 Sports 

Congruent Trials 

13 OtherSS 

Congruent Trials 

26 Sensation Seeking 

Incongruent Trials 

(Control Congruent 

Trials) 

13 Sports 

Incongruent Trials 

13 OtherSS 

Incongruent Trials 

12 Neutral Trials (No Dot-probe) 
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fNIRS sample (n = 25) 

Near Infrared Spectroscopy:  

Data was acquired using a NIRScout Extended (NIRx Medical Technologies, Los Angeles, 

CA) system using 32 detectors and 48 dual-wavelength sources (760 and 850nm). A 128-

position EasyCap (EasyCap, Germany) using the EEG 10-5 International Electrode system was 

used for optode placement. A whole brain optode distribution pattern was used for the scan. 

Source-detector spacing was between 25-30mm and 64 total positions were used (32 detectors 

and 32 sources). All detector-source pairs with an acceptable signal to noise ratio were used to 

synthesize channels, while unacceptable “bad” detectors had their signal interpolated from 

neighbors. This yielded 1024 channels with approximately 20% yielding sufficient signal to noise 

ratio, for around 204 channels. We then determined which participant data was acceptable by 

removing any participants who had less than 2/3 “good” signals compared to the total within 

the channels used in the ROI, specifically channels formed from those optodes closest to the 

anterior of the brain. This resulted in our final participant count of 25. Each optode location was 

digitized for transformation to MNI space using a Polhemus Patriot digitizer (Colchester, VT). All 

signals were resampled at 1hz. Light sources were time-multiplexed to avoid spatial confusion 

over the source of light for each detector. 

All neuroimaging results were analyzed using SPM fNIRS (Tak et al., 2016), a MATLAB 

(MATLAB ver. R2018b, 2018) toolbox that works together with SPM 12 (Penny et al., 2006) 

neuroimaging statistical analysis software that is specifically designed for analysis of fNIRS data. 

SPM 12 natively cannot interpret fNIRS data, thus requiring the use of SPM fNIRS. Thus, the 

initial results were first prepared in SPM fNIRS, then used as first level analyses in SPM as SPM 
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files, and then using an SPM fNIRS script for second level analysis directly on the contrasts 

created from first level analyses. First level analyses were performed for each of the 25 

participants individually. A single t-test contrast was formed comparing activation during 

congruent Sports and OtherSS trials combined with congruent Control trials (AllSS > Control). 

Two second level (Group) analyses were performed comparing the AllSS> Control contrasts for 

the those high versus low in risk seeking (11 and 14 respectively), and high versus low in 

experience seeking (10 and 15 respectively). Via this two-step process, two 2x2 ANOVAs were 

conducted with a within-subjects measure of SS (AllSS versus Control) and a between-subjects 

measure of sensation seeking (high vs. low risk seeking, and high vs low experience seeking. 

These ANOVAs were fit separately to each of the fNIRS channels within the two regions of 

interest (Lateral PFC and OFC).  

Procedural difference from behavioral sample: 

Participants in the NIRS sample initially took the SSPT-18 in the exact same format as 

described above for the behavioral sample. They then completed the same SSDP task as with 

the behavioral sample, with the only difference being a small black spot presented at the same 

time as the fixation cross in the corner of the screen and the inclusion of the NIRS scanning. The 

spot in the corner was used to initiate the NIRS scan concurrently with the fixation cross. 
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RESULTS 

 

 

 

Behavioral results 

 Across all subjects the mean risk seeking score was 28.06, (median = 28, range 10-43) 

and the mean experience seeking score was 20.38 (median = 20, range 9-25) on the SSPT. All 

behavioral results were analyzed by linear regression in R (R Core Team, 2019) using the OLSRR 

package (Hebbali, 2020). Analyses on behavioral data compared the general linear regression of 

either risk seeking subscale or experience seeking subscale scores of the SSPT on the dependent 

variables. Dependent variables included accuracy on the dot-probe task, as well as reaction 

time in regard to the congruency of the trial. There were no significant findings from these 

analyses in this study. Participant performance on the SSDP did not significantly differ based on 

risk seeking or experience seeking score. 

The linear regression model of risk seeking score on bias for Sports stimuli over Control 

stimuli found that there was a significant difference, with higher risk seeking scores leading to a 

greater likelihood of Sports images selected (Figure 1A; r = 0.503, p < 0.001, SE 0.141, adj. r2 = 

.250). This effect is seen regardless of the congruence of the trial, meaning participants would 

have had both greater correct hits and greater false positive selections for sensation seeking 

images. In addition, increased risk seeking resulted in a faster reaction time in selecting a Sports 

image (Figure 1B; r = -0.205, p < 0.001, SE = 6.146, , adj. r2 = .038) without considering trial 

congruence. Higher risk seeking predicted a significant difference with OtherSS stimuli, with 

tendency to select the OtherSS image when paired with Control images regardless of the 

congruence of the trial (Figure 2A; r = .267, p < .001, SE = 0.13, adj. r2 = .068). The effect 



 

 23 

however did not translate to a faster reaction time on selecting the OtherSS images, as with the 

Sports stimuli. 

A separate set of linear regression models examined the relation between experience 

seeking with bias measures. Experience seeking was significantly related to the likelihood of 

selecting Sports stimuli in a trial over Control stimuli, with higher experience seeking scores 

associated with a greater tendency to select Sports images (Figure 1C: r = 0.286, p < 0.001, SE = 

0.386, , adj. r2 = .078). In addition, like with risk seeking, increased experience seeking scores 

were associated with faster reaction times selecting Sports images (Figure 1D; r = -0.185, p 

<.003, SE = 15.205, , adj. r2 = .030). Also similar to the risk seeking results, there was a 

significant difference in bias towards selecting the OtherSS images as opposed to Control 

images for those with higher experience seeking scores (Figure 2B; r = 0.227, p <.001, SE = 

0.324, , adj. r2 = .048). Again, this bias is calculated regardless of the congruence of the trial or 

accuracy and was not accompanied by significantly faster reaction times selecting OtherSS 

stimuli. It should also be noted that these are all quite low adjusted r2 values, indicating a poor 

fit for the model.  
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Figure 1 – Effects of risk and experience seeking score on tendency to select Sports stimuli 

Linear regressions of the likelihood of selecting Sports stimuli compared to control stimuli 

based on risk seeking and experience seeking. A) Likelihood of selecting Sports stimuli opposed 

to control stimuli, as a function of risk seeking score. B) Reaction time in selecting Sports stimuli 

opposed to control stimuli as a function of risk seeking score. C) Likelihood of selecting Sports 

stimuli opposed to control stimuli, as a function of experience seeking score D) Reaction time in 

selecting Sports stimuli opposed to control stimuli as a function of experience seeking score 
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Figure 2 – Effects of risk and experience seeking score on tendency to select OtherSS stimuli 

Linear regressions of the likelihood of selecting OtherSS stimuli compared to control stimuli 

based on risk seeking and experience seeking scores. A) Likelihood of selecting OtherSS stimuli 

opposed to control stimuli as a function of risk seeking score. B) Likelihood of selecting OtherSS 

stimuli opposed to control stimuli as a function of experience seeking score. 
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Functional Near Infrared Spectroscopy Between-Subjects Results 

 When examining the risk seeking groups, in the lateral PFC ROI there were significant 

differences in activation between high and low Risk Seekers for the AllSS> Control contrast, as 

illustrated in Figure 3. These activated areas were centered at channel 4 (MNI: -59, 14.67, 4.67; 

t = -3.19, p <.001), 7 (MNI: -44.3, 25, -22.67; t = -2.20, p < 0.04), 14 (MNI: 66.33, 4.33, 27; t = -

2.41, p < 0.02), 15 (MNI: 61.33, 15.33, 5.67; t = -2.17, p < 0.04), and 20 (MNI: 70, -16.67, 16.67t 

= -2.07, p < 0.05). In the set OFC ROI, shown in Figure 4, there was a significantly different 

response at channel 10 (MNI: -70, -19.67, -17.33; t = -2.20, p < .04). All significantly activated 

areas between groups had a degree of freedom of n = 23. P values were not corrected to 

account for the number of tests. 

 When examining the experience seeking groups, high experience seekers showed 

significantly different activity in the AllSS > Control contrast than low experience seekers in the 

Lateral PFC ROI at channel 8 (MNI: -68, -16.67, -15.67; t = -2.32, p < .03) as seen in Figure 5. In 

the OFC, there were no significant between-group differences at any of the channels for the 

AllSS > Control contrast, as shown in Figure 6. All significantly activated areas between groups 

had a degree of freedom of n = 23. P values were not corrected to account for the number of 

tests. 
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Figure 3 – Effect of high versus low risk seeking score in the lateral prefrontal cortex 

BOLD activation in our established lateral PFC ROI during congruent sensation seeking trials 

versus congruent control trials compared across groups of those high in risk seeking to those 

low in risk seeking. Channels at which the differences reached statistical significance are 

marked with a red asterisk. A) An anterior coronal view of the defined lateral PFC region. B) Left 

lateral view. C) Right lateral view  

  

A 

B C 
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Figure 4 – Effect of high versus low risk seeking score in the OFC 

BOLD activation in our established OFC ROI during congruent sensation seeking trials versus 

congruent control trials compared across groups of those high in risk seeking to those low in 

risk seeking. Channels at which the differences reached statistical significance are marked with 

a red asterisk. A) An anterior coronal view of the defined lateral PFC region. B) Left lateral view. 

C) Right lateral view  

 

B 

A 

C 
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Figure 5 – Effect of high versus low experience seeking score in the lateral prefrontal cortex 

BOLD activation in our established lateral PFC ROI during congruent sensation seeking trials 

versus congruent control trials compared across groups of those high in experience seeking to 

those low in experience seeking. Channels at which the differences reached statistical 

significance are marked with a red asterisk. A) An anterior coronal view of the defined lateral 

PFC region. B) Left lateral view. C) Right lateral view  

 

A 

B C 
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Figure 6 – Effect of high versus low experience seeking score in the OFC 

BOLD activation in our established OFC ROI during congruent sensation seeking trials versus 

congruent control trials compared across groups of those high in experience seeking to those 

low in experience seeking. Channels at which the differences reached statistical significance are 

marked with a red asterisk. A) An anterior coronal view of the defined lateral PFC region. B) Left 

lateral view. C) Right lateral view  

B 

A 

C 
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DISCUSSION 

 

 

Behavioral 

 This study aimed to create a behavioral task capable of assessing sensation seeking 

personality type. While the task did not perform in a manner consistent with other attentional 

bias dot-probe tasks, aspects of the study have provided further understanding of how to 

measure sensation seeking. Those high in sensation seeking showed some behavioral 

differences from those low in sensation seeking, having an increased likelihood of selecting the 

sensation seeking stimuli over a control image, regardless of congruency. Previous attentional 

bias tasks have used accuracy and reaction time based on congruency to measure bias through 

task performance, assessing higher accuracy and shorter reaction time on congruent stimuli 

trials for the attended stimuli by group (MacLeod 1986, Ehrman et al., 2002). These 

measurements did not show significant differences related to sensation seeking in this study’s 

attentional bias dot-probe task, the SSDP.  Rather, an apparent bias towards sensation seeking 

imagery manifested in the sensation seekers choosing Sports and OtherSS stimuli over control 

imagery more often, in a manner unrelated to the congruency of each trial. 

A series of linear regressions were run to assess changes the various accuracy and 

reaction time variables as a function of risk and experience seeking scores, but no significant 

results were found. This leaves the SSDP unable to identify group bias in sensation seekers 

through the usual means in attentional bias dot-probe tasks. The lack of these differences in 

performance implies that the SSDP was not able to differentiate high and low sensation 

seekers. 
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 However, for the SSDP we also made a calculation for a direct bias variable. Rather than 

being based on accuracy and reaction time in congruent and incongruent trials by stimuli type 

in the task, this was only based on the number of times the participant selected a sensation 

seeking image, either Sports or OtherSS, over Control images featuring people doing non-

sensation seeking activities during high bias trials. This calculation did show significant 

differences between high and low sensation seekers. Both high risk and high experience 

seekers were found to have a higher likelihood of selecting either types of sensation seeking 

images when paired with a people control image during a high bias trial. In addition, for the 

Sports stimuli specifically, a slightly faster reaction time occurred during these trials as well 

when selecting the Sports image. Thus, in regard to identifying behavioral differences between 

high and low sensation seekers, the SSDP did succeed by finding bias towards sensation seeking 

images in those high in sensation seeking. 

fNIRS 

 In the second part of this study I was interested in neural activation differences between 

high and low risk and experience seekers in the lateral PFC and the defined OFC region. I 

hypothesized that there would be differential activity in the lateral PFC and the OFC between 

those high and low in risk seeking in response to sensation seeking images compared to control 

images. Likewise, the same expectation for differential activity in those areas was to occur for 

those high in experience seeking compared to those with low experience seeking scores. The 

results showed mixed findings for neural activation differences but seem to confirm that there 

were some differences between each paired group. Specific loci of greater BOLD response in 

the Lateral PFC were found in both high risk and high experience seekers compared to low risk 
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and low experience seekers respectively. High risk seekers also appeared to have some slight 

change in activation in the defined OFC ROI which was not found in experience seekers. The 

presence of these differences in response to sensation seeking stimuli implies an identifiable 

difference in neural activity between high and low sensation seekers. 

 The lateral PFC for risk seekers showed the greatest number of differentially activated 

channels in locations corresponding to primarily the anterior temporal lobe and ventral PFC, 

including Broca’s area and locations known for being responsible for semantic memory and 

tasks. While the distributed pattern may correspond to the general cognitive control present in 

the lateral PFC, it should be noted that some of these areas have also been found to contain 

mirror neurons and are involved with observation (Hamzei et al., 2003). In such a case it is 

possible that risk seekers may be essentially projecting themselves or reacting to the 

observation more personally than low risk seekers. High experience seekers activity was 

centered around the anterior temporal lobe at the edge of the actual ROI near the ventral PFC. 

 It is possible that this is functioning in a similar way, with these locations being critical for 

semantic memory.  

For the set of OFC ROIs, high risk seekers had greater activity than low risk seekers in an 

area quite close in proximity to the same areas along the anterior temporal lobe and lateral 

PFC. It could be responding in a similar way as the activity with high experience seekers as the 

channels are very close.  

The slight difference in location from the OFC could be due to difficulty in analyzing the 

OFC using BOLD techniques. This could potentially explain the lack of activation difference 

between high and low experience seekers in the OFC as well, causing the activated voxels to be 
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just outside of the ROI. The OFC ROI was targeted to broadly include all ventral and medial 

parts of the frontal lobe due to their relation to sensation seeking stimuli in past studies 

(Camara et al., 2009; Hommer et al., 2011; Rolls et al., 2000; Rolls et al., 2014, Lawson et al., 

2012). The close activated channels in risk seekers in the OFC and experience seekers in the 

OFC is between anterior temporal lobe, typically more responsible for memory and conceptual 

processing, and the vmPFC which is also related to memory and valuation (Ralph, 2017; Gilboa 

& Marlatte, 2017). fNIRS has previously had difficulty in analyzing the OFC and medial PFC, as 

they are further from the scalp than other more surface areas like the lateral PFC (Derosière et 

al., 2013; Kopton & Kenning, 2014). A possibility in the analysis of the OFC ROI is that due to the 

limitations of fNIRS, and difficulty of the OFC to be analyzed with fMRI, the BOLD response may 

have been more focused on the Frontopolar region (Stanger, 2006). This location is primarily 

concerned with executive control, typically in regard to overall goal-tracking in working 

memory and task switching (Badre & Nee, 2018). Given the SSDP had only one set of 

instructions for the task, selecting which image held the dot-probe, it would make sense for this 

area to not have a change in activity, as there is no change in task. 

Potential Implications and Limitations 

 While the SSDP did not identify differences between high and low experience and risk 

seekers in the typical way that attentional bias dot-probe tasks do, it does seem to highlight the 

differences between high and low sensation seekers in general. Seeing as the only difference 

was found regardless of task congruency, this could potentially mean that the SSDP was too 

difficult for participants to reliably perform well on, or that the effects of this attentional bias 

do not transfer to task performance as with typical dot-probe designs. This could be due to a 
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key difference in the previous dot-probe task literature. In both the Macleod (1986) and 

Ehrman (2002) studies discussed earlier, the dot-probe would not flash on the screen for 50ms 

as with the SSDP. Rather, the dot-probe would remain one the screen until the participant 

responded to the task, indefinitely for the Macleod task and for 2 seconds in Ehrman’s study, 

after which the trial would end (Macleod, 1986; Ehrman et al., 2002). The SSDP attempted to 

have a much shorter interval in order to better ascertain slight attentional bias, but it is possible 

that this made the task too difficult or did not allow for the bias to be reflected in task accuracy 

or reaction time. Another consideration is that there few trials of each type in the SSDP, with 

only 13 high bias trials for each of the sensation seeking stimuli. This low number of trials may 

not have allowed for differences to be seen between those few trials but was apparent with the 

full 64 trials used when calculating the bias variables. Regardless, the bias towards sensation 

seeking stimuli in sensation seekers is not in doubt and would be useful to consider in designing 

future studies and task designs.  

 In addition to the similar behavioral functions of risk and experience seekers, it seems 

that both groups respond in the same way to both Sports stimuli and OtherSS stimuli. Both 

performed similarly for sensation seekers on the SSDP, with the exception of Sports stimuli also 

resulting in a slightly faster selection time. This does not seem to be convincing evidence that 

there are particular differences in the types of sensation seeking stimuli and can most likely be 

collapsed in future work.  

 Several possible conclusions can be drawn given the neuroimaging results. Risk seeking 

and experience seeking performed similarly in terms of BOLD activation differences between 

high and low groups near the anterior temporal lobe and ventral PFC, while only risk seekers 
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had additional activation more towards the dlPFC in areas with connection to understanding 

observed actions. If we consider that the anterior temporal lobe - vmPFC activation found in 

both the lateral PFC ROI for risk seekers and the OFC in experience seekers could actually be of 

the same origin, it is possible that this area of activation persists across all sensation seekers 

while the additional increased lateral PFC areas are exclusive to risk seekers. This could be due 

to both subtypes finding value in the stimuli, but that risk seekers also engage in cognitive 

mirroring, perhaps due to the experience seekers enjoying the images as they are but the risk 

seekers imagining the experience as well. However, it is also possible that the anterior temporal 

lobe – vmPFC activity in each ROI are completely separate. In this case it would completely 

separate risk seeking and experience seeking in terms of neural activity while still exhibiting 

differential activity between high and low members of each group. This however would not 

explain why the two subscales have completely different activity changes from low sensation 

seekers. 

A limitation that may also explain this finding could be from inherent difficulty in fNIRS 

(and fMRI) in analysis of the OFC. in fMRI, there are significant difficulties in assessing the OFC 

due to the nearby sinuses and general position in regard to the cortex and skull (Stanger, 2006). 

This problem, being due to the nature of the BOLD response, thus translates to fNIRS as well. 

This compounded with the inherent limitation in fNIRS to penetrate the scalp may have 

resulted in susceptibility artifacts for those ROI analyses. It may be necessary to use fMRI and 

specific methods to address this difficulty, such as parallel imaging, in order to find conclusive 

evidence for this region.  
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Another limitation to consider is that in all statistical analyses between the high and low 

groups, no values survive significance after a multiple comparisons check. Using a false 

discovery rate method through a between groups analysis script in SPM fNIRS, these results are 

nonsignificant in each area. While multiple comparison tests are common in fMRI due to the 

incredibly high number of tests performed at every potential voxel, in fNIRS there are 

significantly less, as statistical checks were only performed at a much smaller number of 

channels. In addition, by restricting the analyses to the two ROIs and only reporting the central 

channel voxels as results, this concern is reduced. Another consideration is that both groups are 

small and not equally represented due to the removal of some data. A total sample size of 25 is 

under the typical threshold considered for power in fNIRS. Reducing the sample to two, uneven 

groups for between groups analyses only compounds this issue. Future fNIRS studies should 

have a greater number of participants in order to ensure stronger statistical analyses and 

reliable results. 

Given the behavioral results, my hypothesis that creating a behavioral task to assess 

sensation seeking personality type through attentional bias is possible appears to be supported. 

However, it did not affect accuracy or reaction time across congruency, or any part of the dot-

probe itself. This warrants the creation of a better task design to better understand these 

qualities. Future considerations I have taken are using emergent engagement in sensation 

seeking behavior through video games or interactive virtual reality tasks. This would provide 

the opportunity to present sensation seeking stimuli and control stimuli but have participants 

engage in the tasks in alternative measurable ways not dependent a dot-probe paradigm. I may 
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also attempt to identify issues with the SSDP and see if it would be possible to enhance its 

function to better address these topics. 

 The SSDP may not have performed in the manner which was expected as with other 

attentional bias dot-probe tasks, but it has demonstrated some evidence which helps us better 

understand sensation seeking and its subtypes. The neuroimaging results also presented with 

notable differences between high and low sensation seekers, implying functional neurological 

differences between those high in the personality type and those who are not. Though more 

work will be needed to create a reliable task and to better understand neurological differences 

in sensation seekers, this is a promising start for future studies that will need to address these 

discrepancies in order to have a clearer understanding of sensation seeking personality type. 
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