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Abstract

One-dimensional (1D) antiferromagnetic chains and ladders realized in strongly

correlated materials have attracted significant interest as a platform for studying

quasiparticle fractionalization, quantum criticality, and other emergent phenomena.

In this thesis, we examine spin and charge dynamics of 1D antiferromagnets revealed

by resonant inelastic x-ray scattering (RIXS) using numerical techniques, including

exact diagonalization and density matrix renormalization group. One of the major

findings of this thesis is the first direct observation of multi-spinon excitations at

the oxygen K-edge of Sr2CuO3, a prototype 1D cuprate, establishing RIXS as a

complementary probe to inelastic neutron scattering (INS) in search of quantum

spin liquids. In another study on 1D doped antiferromagnets, the RIXS spectra are

shown to be rich, containing distinct two- and four-spinon excitations, dispersive

antiholon excitations, and combinations thereof, further establishing that RIXS can

serve as a probe of spin-charge separation in these materials. Finally, a systematic

theoretical investigation of the Cu L-edge RIXS spectra of undoped and doped cuprate

two-leg spin-ladders in both the non-spin-conserving and spin-conserving channels

is presented. The spectra host many exotic excitations, in particular, singlet two-

triplon bound state excitations. Furthermore, direct signatures of charge quasiparticle

excitations are revealed by RIXS in the doped ladders. This dissertation helps

establish RIXS as an important tool for revealing the signatures of spin and charge

fractionalization, and other collective excitations in strongly correlated materials
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Chapter 1

Introduction

Resonant inelastic x-ray scattering (RIXS) is a photon-in and photon-out x-ray

spectroscopy that reveals the charge, orbital, lattice, and spin degree of freedom of the

materials [1]. In the last decade, RIXS has been established as a prominent probe for

studying strongly correlated materials such as cuprates [2, 3, 4, 5], iridates [6, 7, 8, 9],

nickelates [10, 11, 12, 13], ruthenates [14, 15, 16, 17], etc. and contributed immensely

to the understanding of these materials. Our work in this thesis is largely focused on

models motived from cuprates.

Since the discovery of high-temperature superconductivity in the two-dimensional

(2D) cuprates in 1986 [18], cuprates have been an exciting topic of research in

condensed matter physics. These materials have been studied extensively both

experimentally and theoretically, but their behavior is still full of surprises. Apart

from 2D geometries exhibiting superconductivity [19], cuprates also exist in one-

dimensional (1D) chain and ladder geometries. These 1D geometries exhibit exotic

behaviors and are an important playground to study many-body physics. For

example, 1D materials allow one to observe the richness of quantum mechanics.

Fractionalization of a particle is one such phenomenon. In solid state physics,

quasiparticle excitations of electrons are composite particles that can fractionalize

into their spin, orbit, and charge degree of freedom namely; spinon, orbiton, and
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holon, respectively. The study of spin-charge separation dates back to the work of

Tomonaga in 1950 [20], followed by Luttinger for 1D systems [21]. After a long

wait, the phenomenon was observed using angle-resolved photoemission spectroscopy

(ARPES) in the 1D cuprate SrCuO2 [22, 23]. Similarly, the phenomenon of spin-orbit

separation was predicted in 1997 by van den Brink et al. [24, 25] and later confirmed

by Schlappa et al. in 2012 using RIXS at the Cu L3 edge of Sr2CuO3 [5].

Understanding spin and charge dynamics is the key to understanding the

superconductivity in cuprates. Local spin fluctuations are considered as one of the

possible mechanisms for superconductivity in cuprates [26, 27]. Inelastic neutron

scattering (INS) has been extensively used to study these materials and understand

their spin dynamics.

With the improvement in instrumentation, RIXS has emerged as a powerful

spectroscopic tool to study elementary excitations of quantum materials. The

realization that RIXS can observe single spin-flip excitations [3, 29] has made it a

probe of magnetic excitations complementary to INS. RIXS has indeed played a very

important role in understanding the magnetic excitations in cuprates and at times

overcome the limitations of INS. For example, INS studies on doped superconducting

cuprates the could not observed any significant signatures of magnetic excitation due

to poor statitics in INS and also the lack of large crystal sizes for some cuprates. In

contrast, “paramagnons”, signature of magnetic excitations shown in Fig. 1.1, were

observed using RIXS in the recent past [4, 30, 31, 32, 33, 34]. Recently, an electron-

hole asymmetry in the doping dependence of the spin excitations of 2D cuprates was

reported, as well as an additional collective charge excitation in the electron-doped

case that is absent in the hole-doped case [28]. These observations have been possible

because RIXS provide much better statistics in comparison to INS probe and requires

smaller sample volumes [1].

While it is now well accepted that RIXS is sensitive to spin and charge dynamics in

materials, the interpretation of low energy charge/magnetic excitations in the RIXS

spectra of 2D cuprates has been quite controversial. While some model calculations

2



Figure 1.1: Paramagnon and collective mode dispersions in the RIXS spectra of the
2D cuprate Nd2−xCexCuO4 along the (0, 0)− (π, 0) and (0, 0)− (π, π) directions, as
indicated in the figure for doping x = 0.147. The paramagnon dispersion deviates
from simple linear-spin-wave theory (as a guide-to-eye, black dashed curve). The
plot also shows the magnon dispersion in an underdoped (x = 0.04) compound for
comparison. The blue dashed line is a fit to the collective mode dispersion in the form
of generic collective charge excitations. The diagram is reproduced from Ref. [28].
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indicate that these low energy features arise from collective paramagnon modes

induced by strong correlations [32, 33, 35], others attribute them to incoherent, non-

generic particle-hole excitations that reflect the band structure of specific cuprate

compounds [36, 37]. Other studies have tried resolving the excitations into spin

and charge components [38, 39]. Most of the progress in the interpretation of RIXS

experiments have been made with two assumptions: i) the quasiparticle nature of

magnetic and charge excitations and ii) that the RIXS cross-section can be modeled

in terms of simpler correlation function such as spin or charge dynamical structure

factor or spin-exchange dynamical factor, which is at times compared against INS

data. But a number of studies in recent past have cast aspersions on the quasiparticle

nature of the excitations observed even in INS spectra. For example, the existence

of deconfined fractional spin-1/2 quasiparticles in the 2D cuprates was reported [40].

Also, 1D cuprates are well known to host fractionalized excitation, but recently even

higher modes in addition to the usual two-spinon excitation have been observed in

INS studies [41].

Exact numerical methods such as exact diagonalization (ED) and density matrix

renormalization group (DMRG) can overcome the problem of using a simplified

quasiparticle description by directly employing many-body wavefunctions. However,

ED is limited in cluster sizes and can do fairly long systems only in 1D. Also, DMRG

can access much longer systems in 1D compared to ED but is again currently well

suited for mostly quasi-1D systems only. This thesis, therefore, targets the problem of

understanding RIXS spectra of 1D systems, which allows treating the full many-body

physics and Kramers-Heisenberg formalism using numerical methods.

Cuprate materials allow for crystal structures simpler than 2D layers, namely, (a)

1D chain and (b) two-leg ladders. These geometries still host intriguing quantum

mechanical many-body properties and studying them has proved to be a fruitful path

for progress in the field [2, 5, 23, 42]. These simpler geometries are an ideal playground

for theorists to perform model Hamiltonian calculations and understand the spin and

4



charge dynamics revealed by RIXS spectroscopy. We discuss the crystal structures of

1D chain and two-leg ladder cuprates in the next section.

1.1 Overview of one-dimensional cuprates

Sr2CuO3 realizes a quasi-1D system and serves as an ideal playground to study

1D physics [5, 43, 44, 45]. It hosts corner-shared CuO4 plaquettes in a chain,

as shown in Fig. 1.2. The CuO4 plaquettes have a Cu (d9) configuration, which

hosts an effective single spin in each plaquette with antiferromagnetic (AFM)

correlation along the chain direction. Sr2CuO3 has passed some of the stringent

tests confirming the 1D nature of the material. For example, an INS study on this

compound has confirmed the presence of fractionalized two-spinon excitation, the

signature of 1D antiferromagnets [46] (also in another related cuprate, SrCuO2 [47]).

Furthermore, ARPES studies on Sr2CuO3 reported the observation of spin-charge

separation [48, 49]. Additionally, a more recent RIXS study at the Cu L3-edge of

Sr2CuO3 reported the observation of spin-orbit separation [5].

RIXS is element and edge sensitive; the x-ray resonant with the edges in Cu and

O atoms can probe the dynamics of the chain, albeit through a different mechanism.

Fig. 1.3(a) and Fig. 1.3(b) shows the RIXS spectra for Sr2CuO3 at oxygen K-edge and

Cu L3-edge, respectively. Since the oxygen K-edge (1s → 2p resonance) is resonant

at 528.6 eV and Cu L3-edge (2p3/2 → 3d resonance) at 931 eV, these incident energies

allow for accessing half and all of the first Brillouin zone (BZ), respectively.

The spectra at the oxygen K-edge, shown in Fig. 1.3(a), is primarily sensitive

to the charge excitations on the oxygen sites of the CuO4 plaquettes. The brightest

features are between 2−6 eV and the excitations can be broadly understood as Zhang

Rice Singlet (ZRS) and charge transfer (CT) excitations [50, 51, 52]. Both ZRS and

other CT excitations are driven by local electronic interactions. A detailed analysis of

these charge excitations is missing in the literature but is also well beyond the scope

of this thesis.

5



Figure 1.2: Crystal structure of Sr2CuO3, reproduced from Ref. [43]. The corner-
shared single and double CuO4 plaquettes run along the a-axis and form 1D chains.

6



Figure 1.3: RIXS spectra at different edges of Sr2CuO3; (a) Oxygen (bridging) K-
edge and (b) Cu L3-edge . The O K-edge (1s→ 2p resonance) can access half of the
Brillouin-zone (BZ), whereas Cu L3-edge (2p3/2 → 3d resonance) can access the entire
first BZ. The white dotted/dashed lines are overlays for the magnetic excitation in the
1D antiferromagnets. The data in (a) was provided by our collaborators J. Schlappa
and T. Schmitt, whereas (b) is reproduced from Ref. [5].
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On the other hand, the RIXS at Cu L3-edge shown in Fig. 1.3(b) is sensitive to the

excitations on Cu and allow one to observed the separation of spin and orbital degrees

of freedom. The exctations at around 1.5−3.0 eV show a well defined dispersion with

a bandwidth of around 0.2 eV. Usually understood as dd-excitations, Schlappa and

coauthors showed that these dispersing excitations could be understood as a distinct

quasi-particle, namely, orbitons, propagating through the lattice [5].

In both panels (a) and (b) of Fig. 1.3, the excitations below 1.5 eV are weak

compared to the charge and orbital excitations, and are understood as magnetic

excitations. Mechanism for the magnetic excitations at the oxygen K-edge and Cu

L3 are very different. The details of these magnetic excitations will be discussed in

chapter 3.

Sr2CuO3 can be doped with Zn, Ni, or Co [49, 53, 54], and so this material can

help one realize a doped 1D system. Since RIXS is also sensitive to charge, it provides

an opportunity to observe charge dynamics in the 1D doped system. A theoretical

study to reveal charge along with the spin dynamics at the oxygen K-edge of doped

Sr2CuO3 is presented in chapter 4.

1.2 Ladder cuprates

(Sr,Ca)14Cu24O41, shown in Fig. 1.4, is a prototype ladder cuprate that consists of two

sets of plaquettes, chain unit CuO2 and ladder unit Cu2O3 running along the c-axis

direction. The Cu sites have 3d9 configurations, which host a spin at each plaquette.

The CuO2 plaquettes form ferromagnetic chain whereas the Cu2O3 plaquettes form

antiferromagnet spin-ladder. (Sr,Ca)14Cu24O41, also known as a ‘telephone number

compound’ has passed stringent tests of its classification as a quantum spin ladder.

For example, a spin gap, a signature of the spin ladder was reported in the INS

study of Sr14Cu24O41 in 1998 [42]. Later, in 2007, triplet two-triplon excitations were

reported in the INS study of La4Sr10Cu24O41 [56] further confirming the predictions

8



Figure 1.4: Crystal structure of (Sr,Ca)14Cu24O41 reproduced from Ref. [55].
(Sr,Ca)14Cu24O41 consists of chain unit CuO2 and the ladder unit Cu2O3 running
along the c-axis direction. The CuO2 plaquettes form ferromagnetic chains whereas
the Cu2O3 plaquettes form antiferromagnet spin-ladders.
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of ladder physics in these cuprates. Another RIXS study on Sr14Cu24O41 reported

the observation of two-triplon collective excitations [2].

Cuprate ladders are important systems for several reasons: they are quasi-one

dimensional, which is an ideal setting for the application of accurate numerical and

analytical techniques; more importantly, cuprate ladders share many similarities with

their 2D counterparts including unconventional superconductivity when doped with

hole carriers [2, 5, 41, 42, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71].

The discovery of superconductivity in the ladder compound Sr0.4Ca13.6Cu24O41.84 [19],

which had been theoretically predicted [72], created new opportunities to study the

relationships between lattice, orbital, charge, and magnetic degrees of freedom and

unconventional superconductivity in copper-oxide materials. Apart from studying

high critical temperature (high-Tc) superconductivity, strongly correlated spin ladders

are another excellent platform for studying quantum many-body phenomena, such as

spinon confinement [70].

From a RIXS perspective, it is very surprising that only a few theoretical and

experimental RIXS studies have been conducted on cuprate ladders in contrast to

a large number of RIXS studies on two-dimensional cuprates. RIXS experiments on

Sr14Cu24O41 and CaCu2O3 have been reported, but with limited analysis. The studies

on CaCu2O3 did not report any analysis of ladder physics [73, 74], but the studies on

Sr14Cu24O41 reported the observation of magnetic excitations in spin ladders [2]. But

the versatility of RIXS experiments can reveal further spin and charge dynamics in

these compounds. In chapter 5, we show how RIXS can further reveal rich spin and

charge dynamics feature in the spin ladders.

1.3 Scope and Organization

The goal of this thesis is to examine the spin and charge dynamics in quasi-

1D strongly correlated materials using numerical methods, and to understand and
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make predictions for the RIXS experiments studying these dynamics. The overall

organization is as follows:

Chapter 1 (this chapter) motivates the need to study one-dimensional cuprates.

The crystal structures of the relevant cuprates is discussed. Chapter 2 presents the

microscopic details of RIXS theory. Numerical methods employed for simulating the

RIXS cross-section are also discussed. Chapter 3 presents the recent observation of

four-spinon excitations in a 1D Heisenberg antiferromagnet material using resonant

inelastic x-ray scattering study. Chapter 4 presents the spin and charge dynamics of

doped 1D antiferromagnets. Through numerical calculations, it is shown that RIXS

can access spin-charge separation in doped 1D antiferromagnets. Chapter 5 presents

a systematic study of spin and charge dynamics in spin-ladder antiferromagnets.

Resonant inelastic x-ray scattering (RIXS) spectra allow us to explore these directly in

the materials exhibiting spin-ladder antiferromagnetic structures. Chapter 6 presents

the conclusions of the thesis and a discussion on the possible extensions of this work

in the future.
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Chapter 2

Methods

In this chapter, we explore the microscopic details of the theory of RIXS. The

numerical methods used in this thesis for simulating the RIXS cross-section are also

discussed.

RIXS is a photon-in and photon-out spectroscopy. RIXS uses X-ray photons that

have large momentum that can partly be transferred to the crystal, and hence, allow

one to observe the dispersion of quasiparticle excitations in the material. This is in

contrast to another photon based spectroscopy, Raman scattering, which uses photon

at lower energies such as visible/infrared and does not have momentum transfer to

the crystal.

In the RIXS process, an incoming photon with momentum ~kin and energy ~ωin

excites an electron from a core-level of an atom into the unoccupied valence band,

as shown in 2.1(a). The system then relaxes in the presence of core-hole, and

excitations in the valence band are created. Finally, when an electron from the

valence band recombines with core-hole, a photon with momentum ~kout and energy

~ωout is emitted from the system with a transfer of finite energy and momentum to

the crystal, as shown in 2.1(b). In this process, an energy ~Ω = ~ωin − ~ωout and

momentum ~q = ~kin − ~kout is transferred to the crystal. As the name suggests,

RIXS uses x-rays to excite the electron and can be made to resonate with any of the
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Figure 2.1: A sketch of the excitation pathway in the RIXS. a) A photon with
momentum ~kin and energy ~ωin excites an electron from a core-level to an empty
state. b) A photon with momentum ~kout and energy ~ωout is emitted out. The
empty core level is filled by an electron from the occupied band leaving behind an
excitation in the valence band.
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Figure 2.2: A schematic of the experimental geometry. In this example, CuO4

plaquettes in the 1D chain (shown here) lie in the scattering plane. The incidence
angle, θ, is varied during the experiment to change the projection of the momentum
transfer along the chain direction, whereas the scattering angle ψ is kept constant. A
photon with momentum ~kin and energy ~ωin enters with the crystal and another
photon with momentum ~kout and energy ~ωout is emitted out. This schematic
diagram is reproduced from Ref. [57].

core-levels like K,L,M absorption edge of metals or ligand oxygens in the transition

metals oxides.

In RIXS experiments, the incoming and outgoing photons form a scattering plane.

In this plane, the incident photon with momentum ~kin and energy ~ωin enters with

the crystal at an angle θ and another photon with momentum ~kout and energy ~ωout

is emitted out. The angle between the incoming and the outgoing light, the scattering

angle, ψ is usually kept fixed in the RIXS experiments. As shown in Fig. 2.2, the

momentum transferred to the crystal can be controlled by changing the incident angle

θ of the photon with respect to the orientation of the crystal.
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Since the RIXS spectroscopy involves the light-matter interaction, we will discuss

it to understand the theory of the RIXS process.

2.1 Light-Matter Interaction and the Kramers-

Heisenberg Formalism

The physics of light-matter interaction is described by the theory of quantum

electrodynamics (QED); however, derivation of the RIXS cross-section in terms of

QED would be a cumbersome task and is unnecessary. In our case, the electrons are

non-relativistic. Also, the photons have relatively low energy compared to the mass

of an electron, and the total energy of the system is far below the electron-positron

pair creation energy (~ωin � 1.022 MeV), and thus these high-energy process can

be neglected. This allows for the charge conservation of electrons in our system and

hence, we can study RIXS using an effective low energy approximation of QED.

We consider a system consisting of a photon interacting with an electron in the

presence of its atomic potential. The X-ray scatters the electron resulting in a

transition in the system. The transition rate w is given by Fermi’s Golden rule,

which to second order is

w =
2π

~
∑

f

∣∣∣∣〈f|H1|g〉+
∑
n

〈f|H1|n〉〈n|H1|g〉
Eg − En

∣∣∣∣2δ(Ef − Eg). (2.1)

Here, the states, |g〉, |f〉, and |n〉 are the initial, final, and intermediate states for the

system with energies Eg, Ef , and En, respectively. Also, Eg = Eg + ~ωin, Ef = Ef +

~ωout and the terms Eg and Ef are initial and final states of the material, respectively.

H1 is the perturbation in the system due to the electron-photon interaction. In

general, the first order term dominates in the transition rate, but if the incident

photon is in resonance with a specific edge in the material (Eg ≈ En), then the

second order term dominates and the first order term can be neglected [75].
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Let us discuss the origin of the perturbation term H1 responsible for the transition

in the system. The vector potential A for a photon with wave vector k and the

polarization along ε is given by,

A = A0[εakεe
ik·r + ε∗a†kεe

−ik·r]. (2.2)

Here, a†kε (akε) creates (annihilates) a photon. The interaction between a photon with

vector potential A and an electron in an atomic orbital at site-i, momentum operator

pi, mass me, and in the presence of central potential φ(xi) as discussed in Sakurai

[76] is considered. The Hamiltonian for a fixed gauge ∇ ·A = 0 is given by

H =
(pi − eA(ri)/c)

2

2me

+ eφ(x)

=
p2
i

2me

+ eφ(x) +
e2A2(ri)

2mec2
− e

mec
A(ri) · pi,

= H0 +H1

(2.3)

where,

H0 =
p2
i

2me

+ eφ(x), H1 = − e

mec
A(ri) · pi. (2.4)

In the above equation, we have partitioned the total Hamiltonian H into its

contribution from the material H0 and the electron-photon coupling H1, and the

Thomson scattering term proportional to A2(ri) has been neglected. A2(ri) dominates

only when the incident energy ~ωin of the photon is much larger than resonance, i.e.

non-resonant inelastic scattering. It also contributes to Bragg peaks but is weak in

RIXS and hence omitted.

The perturbation term is responsible for the transition in the system. Also, it is

important to note that the term corresponding to akε in A annihilates a photon and

survives for the case of absorption. Motivated by it, we define a transition operator

for absorption given by

D =
1

imeωk

N∑
i=1

eik·riε · pi. (2.5)
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Here, ~ωk is the energy of the absorbed photon. In the dipole limit, it is

assumed that the wavelength of radiation is very long compared to atomic size

(λphoton >> Ratom). Hence, eik·ri is constant on the length scale of atom such that

eik·ri = eik·(Ri+r) ≈ eik·Ri . Here, Ri and ri are the position of nucleus and electron

of ith atom in the lattice, and r is the position vector connecting Ri and ri. The

dipole limit is valid because for the photon to excite an electron from the core-

level of an atom, its energy must be of the order of atomic energy level spacing,

Ephoton = ~c
λ̄photon

' Ze2

Ratom
. Thus Ratom

λ̄photon
' Ze2

~c = Z
137
� 1 for lighter atoms. The

magnitude of r is on the order of the atomic radius, so the leading term is usually

sufficient as k · r� 1. Thus, one can approximate the dipole operator as

D =
1

imeωk

N∑
i=1

eik·riε · pi =
1

imeωk

N∑
i=1

eik·Riε · pi. (2.6)

It helps to express the transition operator in real space as one often writes the basis

in real space for crystals.

〈n|D|g〉 =
1

imeωk
ε ·

N∑
i=1

eik·Ri〈n|pi|g〉 =
1

imeωk
ε ·

N∑
i=1

eik·Ri
me

i~
〈n|[ri, H0]|g〉

=
1

~ωk
(En − Eg)ε ·

N∑
i=1

eik·Ri〈n|ri|g〉 ≈ ε ·
N∑
i=1

eik·Ri〈n|ri|g〉.

(2.7)

In the above equations, we have used the relation [ri, H0] = i~pi
me

and the fact that

energy of the photon is in resonance with excitations in the material ~ωk ≈ En−Eg.

The reader is reminded that ri is position of the electron at ith-site of the crystal. For

simplicity, we transform the position operator ri to its second quantized form, which

is given by,

〈n|ri|g〉 =
∑
α,β

〈φβ(r)|r|φα(r)〉c†i,β,σci,α,σ (2.8)

Here, c†i,β,σ(ci,α,σ) are creation (annihilation) operators that cause a transition between

the φα(r) and φβ(r) orbitals in the σ−spin channel. Also, the index on r has been
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dropped as the excitation is an on-site process as the core-level orbitals are localized.

The transition operator in the second quantized form can, therefore, be written as

D =
∑
α,β,σ

〈φβ(r)|ε · r|φα(r)〉
N∑
i=1

eik·Ric†i,β,σci,α,σ. (2.9)

Similarly, the transition operator for the emission of photon with polarization ε′

can be written as

D′† =
∑

α′,β′,σ′

〈φα′(r)|ε′ · r|φβ′(r)〉
N∑
i=1

e−ik′·Ric†i,α′,σ′ci,β′,σ′ . (2.10)

Combining these results gives the Kramers-Heisenberg for the RIXS intensity

IRIXS = |Ffg|2δ(Ef + ~ωout − Eg − ~ωin), (2.11)

where the scattering amplitude Ffg for RIXS is given by

Ffg(kin,kout, ωin, ωout, ε, ε
′) =

∑
n

〈f |D′†|n〉〈n|D|g〉
Eg + ~ωin − En + iΓn

= Tα′,β′,β,α(ε′, ε)
∑
n,i

eiq·Ri
〈f |c†i,α′,σ′ci,β′,σ′|n〉〈n|c†i,β,σci,α,σ|g〉

Eg + ~ωin − En + iΓn
.

(2.12)

The term Γn is the inverse core-hole lifetime of intermediate state and ~q = ~kin −

~kout is the momentum transfer to the crystal.

In the above expression, the polarization factor has been separated from the rest

of the scattering and is given by

Tα′,β′,β,α(ε′, ε) = 〈φβ′(r)|ε′∗ · r|φα′(r)〉〈φβ(r)|ε · r|φα(r)〉. (2.13)

Tα′,β′,β,α(ε′, ε) is called the “atomic scattering factor” and does not contain any

correlation effects of the material. The information from polarization is of central

importance to RIXS calculations. Using appropriate polarization one can choose
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the excitations created in the system [77, 78, 79, 80]. Polarization in the system is

accounted using atomic scattering operator, Tα′,β′,β,α(ε′, ε), which looks simple. In

the presence of spin-orbit coupling, it has to be treated carefully. In general, the core-

hole orbitals in RIXS with finite orbital angular momentum (l > 0) have significant

spin-orbit coupling. This is due to the large unscreened potential they experience in

core-level compared to the screened potential in the valence band. Thus one has to

shift from the |l, lz, s, sz〉-basis to the total angular momentum |J, Jz〉-basis as the spin

and orbital angular momentum are no longer good quantum numbers. Smith et al.

[81] evaluated the the dipole matrix elements for optical transitions using circularly

polarized light for L2 and L3 edges. de Groot et al. [82] used these polarization

dependencies to study local spin flip ecitations in Cu+2 and Ni+2 using RIXS. Since

in recent times, RIXS experiments are largely carried out using lineraly polarized

light, we present the dipole matrix elements for the L2 (2p3/2 →3d), L3 (3p1/2 →3d),

M2 (3p1/2 →3d) and M3 (3p3/2 →3d) edges transitions for a linearly polarized light

in the Appendix A.

Oxygen K-edge:— In the case of the oxygen K-edge of Sr2CuO3 relevant for

Chapter 3 and 4, the transition is between 1s → 2p orbitals. Since one is usually

interested in the low energy spin and charge dynamics in 1D cuprates, only the px-

orbital of the bridging oxygen of Sr2CuO3 is relvant. In the atomic scattering factor

T2px,1s,2px,1s(ε
′, ε) = 〈φ1s(r)|ε′∗ · r|φ2px(r)〉〈φ2px(r)|ε · r|φ1s(r)〉, (2.14)

one can see that only x-polarized light can cause excitation and dexcitations.

Therefore, the atomic scattering factor T2px,1s,2px,1s(ε
′, ε) ∝ sin(θ) sin(ψ − θ). Here, θ

and ψ are the incidence and scattering angles shown in Fig. 2.2.
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2.2 Numerical methods

In general, RIXS experiments are used to study materials that display strong local

Coulomb interactions. Therefore, these materials are modeled using the Hubbard

model Hamiltonian, as the picture of independent particles is no longer accurate.

While evaluating the RIXS cross-section, one writes two sets of Hamiltonian: a) H0

for the material, and b) Hch for the material with the absorbed photon. The RIXS

response is usually simulated using Kramers-Heisenberg formalism which is given by

IRIXS = |Ffg|2δ(Ef + ~ωout − Eg − ~ωin). (2.15)

where the scattering amplitude Ffg is given by

Ffg = 〈f |
∑
i

eiq·RiD
′†
i,σ′

1

~ωin + Eg −Hch,i + iΓn
Di,σ|g〉. (2.16)

We now discuss the numerical techniques used in the later chapters to evaluate

the RIXS cross-section.

2.2.1 Exact Diagonalization

Exact diagonalization (ED) can be used to solve model Hamiltonians with electron-

electron interactions for simulating strongly correlated materials such as cuprates.

The hilbert space for these Hamiltonians grows exponentially with the increase in

cluster size for the model. To partially overcome this challenge, one can make use

of the sparseness of Hamiltonian and performs the diagonalization using the Lanczos

method or ARPACK library [83]. We briefly outline the steps to evaluate the x-ray

absorption spectroscopy (XAS) and RIXS cross-section.

Procedure for computing XAS spectra:
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1. Set up a cluster model to simulate the material. The Hamiltonian H0 considers

all interactions in the material and is written in the Fock space; Hch considers

all interactions in the material along with a core-hole in the system.

2. |g〉, Eg, and |n〉, En are evaluated by solving H0 and Hch respectively for a fixed

number of particles using an eigen-solver, which in turn is used to evaluate the

XAS intensity.

IXAS =
∑
n,i

∣∣〈n, i|Di|g〉
∣∣2δ(En − Eg − ~ωin). (2.17)

The energy ~ωk → ~ωin for which XAS has the maximum absorption

corresponds to resonance and is used as an incident energy in the RIXS

calculation.

Procedure for computing RIXS spectra using Lanczos method:

1. Evaluate the ground state |g〉 of the Hamiltonian H0 using the standard Lanczos

algorithm.

2. Apply the dipole operator D, for the incoming photon to the initial state as

|v〉 = D|i〉.

3. Perform a tridiagonalization of the new Hamiltonian with the core-hole Hch

in the Krylov basis starting with vector |v〉 and subsequent diagonalization

is carried out and a new vector |c〉 =
∑

n
1

En−Eg−~ωin+iΓc
|v〉 is evaluated. The

vector |c〉 is then in the original basis. Here, ~ωin is the incident energy obtained

from the XAS calculation, which is a constant value in our calculation.

4. Apply the outgoing photon transition operator D′† on the vector as |x〉 =∑
i e
iq·RiD′†i |c〉

5. Perform a tridiagonalization of the original Hamiltonian H0 starting with the

vector |x〉. A subsequent diagonalization is then carried out, which produces
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the final states |f〉 and associated final energies Ef . The overlap of final states,

〈f |f〉 associated with different final energies is then evaluated.

6. Finally, the RIXS spectra are computed using IRIXS(q,Ω) = |〈f |f〉|2δ(Ef −

Eg − Ω).

The ED algorithm described above can be easily modified to evaluate other

responses such as dynamical spin and charge structure factors.

2.2.2 Dynamical Matrix Renormalization Group

This section is modified version of A. Nocera, U. Kumar, et al., Sci. Rep. 8, 11080

(2018) [84].

After the development of Dynamical Matrix Renormalization Group (DMRG) in

1992 by White [85, 86], major efforts have been focused on extending it to study

real-time dynamics [87]. The development of a RIXS-DMRG formalism is a further

stride in this direction. In the existing literature, RIXS studies have been limited to

exact diagonalization (ED) methods [57, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. It is

well known that ED calculations suffer from memory requirements due to growth in

the Hilbert space, and hence one is limited to relatively small cluster sizes. Our work

with Nocera, A. et al. [84] developed a RIXS-DMRG formalism and allows one to

shift the bottleneck from memory requirements to computational time.

We can formulate an efficient DMRG algorithm by expanding the square in

Eq. (2.15), yielding a real space version of the Kramer-Heisenberg formula. To

compact the notation, we define vectors |αj,σ〉 ≡ [ωin − Hch,j + Eg + iΓ]−1Dj,σ|g〉.

Using this definition, Eq. (2.15) can be written as

I(q,Ω) ∝ −Im

[
L−1∑
i,j=0

∑
γ,γ′

σ,σ′

eiq·(Ri−Rj)〈αi,γ|Di,γ′
1

Ω−H0 + Eg + iη
D†j,σ′|αj,σ〉

]
. (2.18)
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Figure 2.3: A sketch of the algorithm for computing the real space Kramers-
Heisenberg formula [Eq. (2.18)] using the DMRG method at a fixed value of the
energy loss Ω = ωl.

Here, η is the Lorentian broadening in the RIXS spetra and σ, σ′, γ, γ′ are spin indicies.

The L-edge RIXS spectra of cuprates have ∆S = 0 and ∆S = 0 channels. In the

DMRG-RIXS algorithm, the ∆S = 0 contribution corresponds to the σ = σ′ and

γ = γ′ terms, whereas the ∆S = 1 contribution corresponds to the σ 6= σ′ and γ 6= γ′

terms.

Procedure for computing RIXS spectra using the DMRG method: The

algorithm to compute the RIXS spectra using Eq. (2.18) is as follows (see also

Fig. 2.3):

1. Compute the ground state |g〉 of H0 using the standard ground state DMRG

method. The vector |g〉 must be stored for later use.

2. Target the ground state vector calculated earlier using a different Hamiltonian

Hch,c = H0 + HC
c , where j = c is the center site of the chain. Construct the

vector |αc,σ〉 at the center of the chain using the Krylov-space correction vector
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approach [98]

|αc,σ〉 ' T̃ †c S̃
†
c

1

ωin −Dch,c + Eg + iΓ
S̃cT̃cDc,σ|g〉, (2.19)

where we have performed a Lanczos tridiagonalization T̃c with starting vector

Dc,σ|g〉, and a subsequent diagonalization S̃c of the Hamiltonian Hch,c, repre-

sented in its diagonal form Dch,c in the Krylov basis. The vector |αc,σ〉 should

also be stored for later use. Because the cluster is not periodic, the use of

a central site here represents an approximation that will become exact in the

thermodynamic limit. This central site “trick” was used for the first time in

the application of time-dependent DMRG [87].

3. Restart from the previous run, now using a different Hamiltonian Hch,j =

H0 +HC
j . Read and then target (in the DMRG sense) the ground state vector

calculated in Step 1, as well as the vector |αc,σ〉 constructed in Step 2. For each

site j, except for the center site considered in Step 2, construct the vector

|αj,γ〉 ' T̃ †j S̃
†
j

1

ωin −Dch,j + Eg + iΓ
S̃jT̃jDj,γ|g〉, (2.20)

with a Lanczos tridiagonalization T̃j with starting vector Dj,γ|g〉, and a

subsequent diagonalization of Hch,j. This step of the algorithm requires a

number of runs equal to the number of sites minus 1, i.e., L−1. These can be run

in parallel on a standard cluster machine, restarting from Step 2. Performing

Step 2 and Step 3 in this sequence is crucial for having the vectors |αc,σ〉 and

|αj,γ〉 in the same DMRG basis. The vector |αj,γ〉 should also be stored for later

use.

4. Restart using the original Hamiltonian H. Read and then target the ground

state produced in Step 1, |αc,σ〉 produced in Step 2, and the vector |αj,γ〉

constructed in Step 3. For a fixed Ω = ωl, compute the correction vector of

24



|αc,σ〉 using again the Krylov-space correction vector approach as

|xc,σ′,σ〉 ≡
1

Ω−H0 + Eg + iη
D†c,σ′ |αc,σ〉

= T̃ †S̃†
1

Ω−D0 + Eg + iη
S̃T̃D†c,σ′|αc,σ〉, (2.21)

with a Lanczos tridiagonalization T̃ (using D†j,σ′|αc,σ〉 as the seed) and a

subsequent diagonalization S̃ of the Hamiltonian H0, with D0 being the diagonal

form of H0 in the Krylov basis. This is a crucial part of the algorithm, which

amounts to computing the correction vector |xc,σ′,σ〉 of a previously calculated

correction vector |αc,σ〉. Execute this computation NΩ times for Ω ∈ [ω0, ωN−1].

5. Finally, compute the RIXS spectrum in real space Ij,c(Ω) ∝ 〈αj,γ|Dj,γ′|xc,σ′,σ〉

(in Ij,c(Ω) we omit the spin indices γ, γ′, σ, σ′ in order to lighten the notation)

and then Fourier transform the imaginary part to obtain the RIXS intensity

I(q,Ω) ∝ −Im
∑
j,γ,γ′

σ,σ′

eiq·(Rj−Rc)Ij,c(Ω). (2.22)

Computational complexity — The computational cost required for DMRG to

compute the RIXS spectrum can be easily estimated, assuming that the ground state

of the Hamiltonian has already been calculated. Let C2−3 be the computational cost

(i.e., the number of hours) for a single run in Step 2 (1 run only) or Step 3 (L − 1

runs in total). Let C4 be the computational cost for a single run in Step 4. The

total computational time needed to compute the RIXS spectrum is then CPUcost =

C2−3L + C4LNΩ, where NΩ is the number of frequencies needed in a given interval

of energy losses. As explained in the previous section, we use a center site “trick” to

reduce the computational cost by a factor of the order of L [Eq. (2.18) to Eq. (2.22)].

The computational cost C4 for Step 4 follows the typical performance profile of the

Krylov-space approach found in Ref. [98], where less CPU time is needed to compute
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the spectra at lower energy-losses. We also note that the calculation of each energy

loss is trivially parallelizable.
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Chapter 3

Observation of two-spinon and

four-spinon excitations in

corner-shared Sr2CuO3 using

oxygen K-edge resonant inelastic

x-ray scattering study

This chapter is a modified version of J. Schlappa, U. Kumar, et al., Nat. Commun.

9, 5394 (2018) [57].

3.1 Introduction

In this chapter, we present the recent observation of four-spinon excitations in a one-

dimensional (1D) Heisenberg antiferromagnet material using resonant inelastic x-ray

scattering (RIXS).

When confined to 1D, systems of interacting electrons host an assortment of

macroscopic many-body phenomena, including quantum critical magnetic states with

27



collective excitations carrying fractional quantum numbers. For this reason, quasi-

1D magnetic insulators have attracted wide experimental and theoretical interest

as an ideal playground for studying quantum many-body phenomena. Owing

to numerous experimental realizations of such models in real materials, some of

the most stringent tests of quantum many-body theory have been conducted in

1D [2, 5, 41, 46, 70, 94, 96, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109].

The 1D Heisenberg antiferromagnet (HAFM), where localized spins S interact

with their nearest-neighbors via an exchange interaction J , is perhaps the simplest

and best understood of these systems; the spin-1/2 case is an important reference

system that can be solved exactly using the Bethe ansatz. The ground state is

a macroscopic SU(2)-symmetric singlet, in which quantum fluctuations suppress

long-range order, leading to a spin liquid ground state even in the limit of zero

temperature. The elementary excitations are collective spin density fluctuations called

spinons, which are fractional excitations carrying spin-1/2 but no charge. Spinons

generated experimentally in 1D HAFM through an elementary spin-flip process, e.g.

during inelastic neutron scattering (INS) or RIXS are created in pairs. As such, the

low-energy magnetic excitations are spanned by states involving an even number of

spinons forming manifolds of two-, four-, six-spinon continua and so forth.

The magnetic excitation spectrum has been observed for different realizations of

the 1D HAFM by INS [41, 46, 70, 99, 100] and by RIXS [1, 5, 88, 90, 102]. The

spectral weight captured by these studies, assigned to the triplet manifold, is located

entirely within the boundaries of the two-spinon continuum. The reason for this is

now well understood through applications of analytical theory [110, 111] or numerical

approaches like density matrix renormalization group [104, 105]. While the allowed

phase space for four-spinon excitations (and greater) is much larger than for two-

spinon excitations [88, 111], kinematic constraints on the matrix elements between

the spinon manifolds lead a situation where the multi-spinon states only contribute

significantly for momentum and energy transfers within the boundaries of the two-

spinon continuum. This picture has been confirmed by detailed comparisons between
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INS experiments [41, 104] and exact calculations of the dynamical structure factor

(DSF) [41, 110, 111], which find the two-spinon excitations account only for 73-74% of

the total detected spectral weight, while four-spinon excitations exhaust the majority

of the remaining sum rule.

While the exact solution of the pure HAFM model predicts that the DSF does

have a small amount of spectral weight located between the upper boundary of the

two-spinon continuum and the upper boundary of the four-spinon continuum [111],

such a small signal has yet to be detected. Four-spinon excitations have been

reported outside of the two-spinon continuum in the metallic 4f electron material

Yb2Pb2Pb [112] and the 1D ferromagnet LiCuVO4 [106, 107, 108]. Both materials,

however, have physics beyond the simple HAFM such as long-range hopping in

Yb2Pb2Pb or frustration in LiCuVO4. A direct observation of higher-order spinon

excitations separated from the two-spinon continuum in the prototypical case of a 1D

HAFM with nearest-neighbor interactions only is still lacking. Here, we show that

RIXS at the O K-edge allows for such an observation, a capability that results from

the fundamentally different correlation function that it probes compared to e.g. the

spin density pair correlation function of the DSF [88, 113].

RIXS is a photon-in photon-out spectroscopy technique where photons inelas-

tically scatter from a sample [1]. In a RIXS experiment, the photon energy ~ωin

of the incident X-rays is tuned close to an absorption edge of an atomic species

in the material of interest, thereby initiating an electron transition between a core

level and an unoccupied valence band state. This process creates an intermediate

state with an additional electron either in the valence or conduction band and a

hole in the core level. This core-hole excited state will decay on a femtosecond

time scale, leaving the system in a long-lived valence-band excited state. Since

x-ray photons carry substantial momentum (in contrast to the light of optical or

VUV wavelengths), the triggered valence-band excitations can be studied both in

the energy and the momentum domain. Thus, RIXS can be viewed as momentum-

resolved resonant Raman spectroscopy, suitable for mapping dispersions of excitations
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in quantum materials. The RIXS selection rules allow studies of magnetic excitations

with ∆Stot = 0 (where Stot is the total spin of the system) and, in case of a strong

spin-orbit coupling in the initial, intermediate or final state, ∆Stot = 1.

RIXS has been used to probe electronic excitations involving charge [1, 5, 109],

orbital [5, 102, 109], spin [2, 5, 28, 30, 102, 114, 115], and lattice [94, 116] degrees of

freedom in a wide range of materials. Studies on the dynamic magnetism have largely

focused on cuprates, where ∆Stot = 1 direct spin-flip excitations can be investigated at

the Cu L3-edge [29]. Indeed, in Cu L3 RIXS measurements of the quasi-1D spin chain

cuprate Sr2CuO3, two-spinon continuum excitations could be probed (with indications

of also four-spinon excitations) [5]. Studies in other cuprate materials revealed two-

triplon excitations in the spin-ladder system Sr14Cu24O41 [2] and magnon excitations

in many quasi-two-dimensional superconducting cuprates [28, 29, 30, 116].

In this chapter, we report momentum-resolved oxygen K-edge RIXS studies of the

quasi-1D spin-chain cuprate Sr2CuO3, one of the best realizations of the 1D HAFM.

We observe magnetic excitations that exist in two non-overlapping regions of phase

space. Through detailed modeling within the t − J model, we show that one set

of these excitations is quite similar to triplet excitations generally associated with

the DSF while the other set corresponds to predominantly four-spinon excitations.

Specifically, four-spinon excitations centered at 500 meV energy transfer give a

strong and broad response around the Γ-point (q = 0, where q is the momentum

transfer along the chain) that is well separated from the boundaries of the two-spinon

continuum. Our results constitute the discovery of a new channel for the creation of

magnetic excitations in 1D materials, beyond those resulting from elementary spin-

flip excitations. We argue that this capability stems from the charge dynamics of

the intermediate state, which grants access to fundamentally different correlation

functions, not captured by a simple two-site correlation function.
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3.2 Methods

3.2.1 Experiment

Our collaborators performed experiments at the ADRESS beamline of the Swiss Light

Source at the Paul Scherrer Institut [117, 118] and provided us the experimental

data. Single-crystal samples of Sr2CuO3 were grown by the floating-zone method

and freshly cleaved before the RIXS experiment. The technique of high-resolution

resonant inelastic x-ray scattering (RIXS) with the incident photon energy tuned

to the O K-edge (1s → 2p) (around 528.6 eV) was used to probe the material.

During experiment, the surface normal to the sample, [010], and the propagation

direction of the chains, [100], were oriented parallel to the scattering plane, which

was horizontal. The sample was cooled with a helium-flow cryostat to 14 K during

the measurements. Incident photons were linearly polarized either in the scattering

plane (π-polarization), which was the case for most of the data, or perpendicular to the

scattering plane (σ-polarization). The XAS data was measured in total fluorescence

yield. The beamline (BL) energy resolution was set to 70 meV or better, with the BL

exit slit open to 30 µm (the BL energy resolution for the Cu L3 data [5] was 100 meV

or better, with the BL exit slit open to 10 µm.) The RIXS spectrometer was located

at a fixed scattering angle of ψ = 130◦±1◦, whereas the incidence angle on the sample

varied between 10◦±1◦ and 110◦±1◦ grazing (see Fig. 2.2 in chapter 2). The angular

horizontal acceptance of the spectrometer was approximately 5 mrad [119]. The total

experimental energy resolution was 80 meV and the simultaneously recorded energy

window was 22.2 eV (the total experimental resolution for the Cu L3 data [5] was 140

meV and the simultaneously recorded energy window was 59.2 eV).

3.2.2 Cluster Calculations

The RIXS intensity I(q,Ω) was evaluated using the Kramers-Heisenberg formalism

where (~ = 1)
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I(q,Ω) =
∑
f

∣∣∣ ∑
n,Rm

e−iqRm
〈f |D†m|n〉〈n|Dm|i〉
Eg + ωin − En + iΓ

∣∣∣2δ(Ef − Ei + Ω). (3.1)

Here, q = ex · (kout − kin) is the momentum transfer along the x-axis and Ω = ωout−

ωin is the energy loss, D is the dipole operator, and |i〉, |n〉, and |f〉 are the initial,

intermediate, and final states of the RIXS process with energies Ei, En, and Ef ,

respectively, Rm = am is the position of mth Cu atom, a is the Cu-Cu distance,

and Γ is the core-hole lifetime. We compute the eigenstates by diagonalizing t − J

Hamiltonian defined on a twenty-two site cluster. The use of this low-energy effective

model is justified since all of the dd and charge-transfer excitations appear well above

1.5 eV in energy loss [see Fig. 3.1(c)]. Moreover, recent DMRG calculations have

explicitly shown that the magnetic excitations probed by Cu L-edge RIXS obtained

from a four orbital pd-model for Sr2CuO3 can be accurately reproduced using an

effective t−J Hamiltonian [84] up to an overall rescaling of the intensity. This result

gives us confidence that the downfolded t− J Hamiltonian can capture the magnetic

excitations of Sr2CuO3. At the oxygen K-edge, dipole operator in the effective model

is given by Dm =
∑

σ(dm,σ − dm+1,σ)s†m,σ where dm,σ annihilates a spin σ hole on Cu

site m and s†m,σ creates a hole in the oxygen 1s orbital on the site between the m

and m+ 1 Cu sites. Here, the relative phases reflect the phases of the original Cu-O

overlap integrals. The model parameters are t = 300 meV and J = 250 meV, which

is appropriate for Sr2CuO3 [5, 96], and Γ = 150 meV for the oxygen K-edge [94, 109].

3.3 Results

3.3.1 Experimental results

The low-energy electronic degrees of freedom in the charge transfer insulator

Sr2CuO3 are formed from the CuO4 plaquettes, which are arranged into 1D corner-

shared chains [5, 120], as shown in Fig. 3.1(a). In the atomic limit, the Cu ion is
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Figure 3.1: Summary of the experimental data at the oxygen K-edge. (a) A cartoon
sketch of the Cu-O-Cu corner-shared chains forming the active low-energy degrees of
freedom in Sr2CuO3, and of the incident-light geometry. The Cu atoms are primarily
in a d9 valence state, where a single hole occupies each of the Cu 3dx2−y2 orbitals
and interacts antiferromagnetically with its in-chain neighbors. (b) The polarization
dependence of the XAS spectra. σ-polarized light (black solid line) probes unoccupied
states perpendicular to the CuO4-plaquettes, having no spectral weight at the UHB
(there are no apical oxygens). Data obtained with π-polarized light at incidence angles
of 10◦ (grazing incidence geometry, blue line) and 70◦ (close to normal incidence and
q ≈ 0, red line) and 10◦ (grazing incidence geometry and q ≈ π/2a) primarily probes
the out-of-chain (A) and in-chain (B) oxygen sites, respectively. The difference in
the pre-peak resonance corresponds to the differences in the chemical environments
of these two oxygen sites (chemical shifts), where the B site hosts the plaquette-
connecting oxygen orbital [120]. (c) Polarization dependence for π-polarized O K-
edge RIXS data for incident energies tuned to the A (blue) and B (red line) peaks
in the XAS shown in panel (b) [Incident angles as in (b): 70◦ (10◦) corresponds
to q ≈ 0 (q ≈ π/2a)]. The π-polarized Cu L3-edge RIXS data at 20◦ incidence
angle (q ≈ π/2a) is also shown for comparison (black line). The RIXS spectra are
normalized to acquisition time. The peaks above 1.8 eV energy transfer are associated
to dd (orbiton) and charge transfer (CT) excitations, as indicated. The peak below 0.6
eV in the Cu L3 data corresponds to multi-spinon excitations [5]. (d) The Cu L3 and
O K B-resonance RIXS data from panel (c) and B-resonance for 10◦ incidence angle
(q ≈ π/2a, turquoise line), now focusing on the first 1.3 eV energy loss, where several
low-energy spin excitations are found. The RIXS data are reported in arbitrary units
(a. u.). (e) A sketch of the double spin-flip process across two Cu sites at the oxygen
K-edge.
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in a d9 valence state, with a single hole occupying the Cu 3dx2−y2 orbital. There

is, however, significant hybridization between the Cu 3d and 2p orbitals of the

surrounding oxygen, resulting in a substantial isotropic superexchange interaction

J ∼ 250 meV [5, 96, 46] between the Cu spins. In the real material, the individual -

Cu-O-Cu- chains are weakly coupled such that the system has a bulk Néel temperature

of TN ≈ 5 K [101]. Above this temperature, however, the chains decouple and become

nearly ideal realizations of the 1D HAFM, as evidenced by the observation of the two-

spinon continuum in INS [46] and Cu L3 RIXS [5]. The latter RIXS study also found

evidence for novel spinon-orbiton separation effects in Sr2CuO3, further underscoring

the importance of the 1D physics.

Fig. 3.1(b) shows the x-ray absorption (XAS) data of Sr2CuO3 measured at

the O K-edge (a 1s → 2p resonance). The intensity reflects the partial density

of the unoccupied valence and conduction band states, here projected onto the

oxygen orbitals. We observe a sharp excitonic structure in the pre-edge region and

broad continuum states at energies above 529 eV. The excitonic peak corresponds to

excitations of the O 1s core electron into the upper Hubbard band (UHB), creating a

Cu 3d10 state [120]. This excitation is allowed by the sizable hybridization between the

O 2p and Cu 3d orbitals. The UHB XAS peak depends strongly on the polarization

of the incident photons reflecting the strong structural and electronic anisotropy of

the system [120]. In particular, the suppression of intensity for σ−polarized light

indicates that the unoccupied states are oriented in the plane of the CuO4 plaquettes,

whereas the energy shift upon changing the incidence angle of π−polarized light

reflects differences in coordination between the out-of-chain and the in-chain oxygens

(indicated in Fig. 3.1(a) as sites A and B, respectively), in agreement with previous

findings [121]. For the remainder of this work, we focus on RIXS spectra recorded

with the incident photon energies tuned to the UHB B (or A) peak, where an in-

chain (or out-of-chain) O 1s core electron is promoted into a neighboring Cu 3d

orbital. This final state of the XAS process dictates the intermediate state of RIXS

and is important in determining the scattering cross-section.
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Fig. 3.1(c) shows RIXS spectra measured with the incident photon energy tuned

to the resonance of the A and B peak at the O K-edge in comparison with Cu L3-

edge data at q = π/2a. There are two energy regions with pronounced excitations:

one below 1 eV and one above 1.5 eV, separated by a region of very weak spectral

weight. The excitations at higher energies are dominated by inter-orbital dd and

charge transfer (CT) excitations [5, 96]; the dd excitations are dominant at the Cu

L3-edge, whereas the CT excitations are dominant at the O K-edge.

Fig. 3.1(d) zooms in on the low-energy excitation region, well below the dd and

CT excitations, which is our focus. O K RIXS for photon energies tuned to B with

different incident angles are compared to low-energy Cu L3 RIXS data. Below 1

eV we see several excitations. In addition to the elastic line at zero energy loss, we

observe a weakly dispersing excitation at ≈ 90 meV with varying cross section for the

different configurations. This behavior is typical of an optical phonon excitation and

the energy scale agrees well with that of a Cu-O bond-stretching lattice vibration [94].

We, therefore, assign this feature to such a phonon. The A line spectrum at q = π/2a

[see Fig. 3.1(d), turquoise solid line Fig. 3.1(d)] reveals a sharp structure coinciding

with the very strong spinon excitations at the same q−point in Cu L3-edge data

(black line, note that the Cu L3 spectrum is divided by a factor 10). In addition,

the line spectrum cut taken close to the Γ-point [red line in Fig. 3.1(d) Fig. 3.2(e)] is

dominated by a broad structure, centered at around 0.5 eV and extending to about

1 eV in energy transfer. The energy of this structure is well separated from the dd

and CT excitations, suggesting that they are magnetic in origin. A possible path for

creating magnetic excitations during RIXS at the O K-edge is sketched in Fig. 3.1(e).

This process will be discussed in more detail in the Discussion section.

To probe the dynamic character of these low-energy magnetic excitations visible

in the O K-edge RIXS spectra, we have studied their momentum dependence for

momentum transfer along the chain direction, as shown in Fig. 3.2(a). O K-edge

RIXS can access about 25% of the first Brillouin zone along [100] on each side of
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q = 0. The experimental geometry is described in Fig. 2.2 of Chapter 2. Additional

comparisons of the data with the Cu L3-edge are provided in Sec. 3.3.2.

In addition to the strong phonon excitation in O K-edge data, there are two

distinct sets of continua in the magnetic region between 0.2 eV and 1.0 eV. Sr2CuO3

is known to host 1D HAFM physics, and the manetic excitations for this system are

spinons. The upper and lower boundaries of the two-spinon continuum are given by

ωu2s = πJ | sin (qa/2)| and ωl2s = πJ | sin (qa)|/2, respectively. The upper and lower

boundary of the four-spinon continuum are given by ωu4s = πJ
√

2[1 + | cos (qa/2)|]

and ωl4s(q) = πJ | sin (qa)|/2, respectively [111].

One set of excitations is dispersing towards zero energy for q = 0 and lies well

within the boundaries of the two-spinon continuum (indicated by the white dotted

lines). The second region is centered at q =0 and 500 meV energy transfer and is

clearly situated outside of the two-spinon continuum. The boundaries in Fig. 3.2

correspond to the two-spinon continuum expected for the 1D HAFM model obtained

from purely kinematic constraints assuming a superexchange value of J = 250

meV, as inferred from prior scattering experiments [5, 46]. Comparison to Cu L3

data displayed in Fig. 3.2(b) and 3.2(c), where the two-spinon continuum dominates

the spectrum, illustrates that O K-edge and Cu L3-edge RIXS have quite different

responses in terms of the magnetic excitations. However, the line cuts of O K-edge

and Cu L3-edge RIXS spectra in Fig. 3.2(f) 3.2(c) show that there is also a finite

weight in Cu L3-edge RIXS spectra at q = 0. Note that the O K-edge data reveal

much stronger polarization dependence due to the difference in connectivity of the

in-chain and out-of-chain O 2p orbitals.

The fact that the Γ-point excitations appear outside of the boundaries of the two-

spinon continuum, and well below the energy losses where dd and CT-excitations

occur suggests that they are multi-spinon in nature. This interpretation is further

supported by the fact that they lie completely within the boundaries expected for the

four-spinon continuum (indicated by dashed lines, as obtained from pure kinematic

arguments of four-spinons).
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Figure 3.2: Comparison between the experimental and calculated RIXS spectra
at the oxygen K-edge. (a),(b) The experimental RIXS spectra as a function of
momentum transfer and energy transfer measured at: (a) the oxygen K-edge with an
incident photon energy of ~ωin=528.6 eV (resonance B) and (b) the copper L3-edge
from Ref. [5]. (c) compares the O K-edge (blue) and Cu L3-edge (magenta line) RIXS
line cuts at q = 0. In the case of Cu L3 data, there is a tailing contribution from higher
energy dd excitations, which extends down to low energy loss [see Fig. 3.1(c)]. (d)
displays the calculated oxygen K-edge spectra are for ~ωin = 500 meV. (This value
optimizes the intensity of the four-spinon features, see Sec. 3.3.2.) The excitation at
∼90 meV in the oxygen K-edge data is a phonon excitation not included in our model
calculations. The modeled RIXS intensity was obtained from exactly diagonalizing a
22-site t − J chain with periodic boundary conditions and the elastic line has been
removed from the data for clarity. (e), (f) show line cuts of the RIXS spectra at
q = π/2a and q = 0, respectively. The experimental (theoretical) data are represented
by the blue (red) solid lines. The dotted and dashed white lines in (a), (b) and (d)
indicate the boundaries of the two- and four-spinon continua, respectively.
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3.3.2 Theoretical results

The phase space considerations given above identify the Γ-point excitations belonging

to multi-spinon excitations involving at least four or more spinons. However, to

understand the spectral weight of these excitations it is necessary to compute the

RIXS intensity within the Kramers-Heisenberg formalism, due to the prominent role

played by the core-hole lifetime at the O K-edge. To this end we performed small

cluster exact diagonalization (ED) calculations to further elucidate the nature of

these excitations. Since we are interested in the energy region well below the dd-

and CT-excitations, we used the t − J model, where these multiorbital processes

have been integrated out [84]. In this case, we adopt values of the hopping integral

t = 300 meV and superexchange interaction J = 250 meV, which are consistent with

existing literature (see Sec. 5.2). The computed spectra (with elastic peak removed)

are compared against the experimental data in Fig. 3.2(d). Line cuts of the data

superimposed over the calculations are shown in Figs. 3.2(e) (q ≈ q/2a) and 3.2(f)

(q = 0).

The overall agreement between the calculated magnetic response and the experi-

mental data is excellent: our model captures both the dispersing magnetic excitations

and the broad continuum centered at the Γ-point. Even the quantitative agreement is

very good. Note that the phonon excitation is not included in the theory; therefore,

we do not capture this low-energy excitation. If the spin-lattice coupling is weak,

we expect that the inclusion of the lattice vibrations would superimpose a phonon

excitation on the RIXS spectrum. In this case, the level of agreement between the

model and the data in the magnetic region indicates that any spin-lattice coupling is

small and that the final states of the O K-edge RIXS process can be well described

solely by excitations of the half-filled t − J model, whose final states are the same

as those in the Heisenberg model. This observation justifies our neglecting of the

lattice excitations and allows us to identify the upward dispersing branch as two- and

four-spinon excitations, commonly associated with the DSF, while the continuum
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Figure 3.3: RIXS spectra plotted over the full first Brillouin zone. (a) The
experimental spectra at the O K-edge shown in the momentum range accessible to
the experiment. (b) The calculated RIXS spectra at O K-edge over the entire 1st BZ.
(c) the experimental data at Cu L3-edge. The dotted and dashed lines overlaid over
the data shows the boundaries for the two- and four-spinon continuua respectively.

of excitations centered at q = 0 corresponds to four-spinon excitations that require

a more complex correlation function. This assignment is further supported by the

dependence of these excitations on the core-hole lifetime, which will be discussed

shortly.

RIXS spectra in the full Brillouin zone

Due to the relative low energy of x-ray photons used for the excitations at the oxygen

K-edge, the technique can only access about half of the first Brillouin zone (BZ).

On can, however, measure out to the Brillouin zone boundary at other elemental

edges such as the Cu L2,3-edge. Similarly, we can also compute the RIXS spectra

throughout the entire BZ. By examining the magnetic excitations throughout the 1st

BZ, we can gain further insight into their identities. Fig. 3.3 compares the measured

and calculated RIXS spectra over the available momentum-transfer range: O K-edge

data [Fig. 3.3(a)], theory [Fig. 3.3(b)], Cu L3-edge data [Fig. 3.3(c)]. One can see

that the calculated weight of the dispersing branch agrees well with the continuum

observed at the Cu L3-edge (primarily due to two-spinon excitations) out to the zone

boundary.

39



Figure 3.4: RIXS spectra dependence on the incidence energy. Panels (a)-(f) show
the RIXS spectra evaluated at various incident energies as indicated in XAS spectra
shown in the inset of panel (a).

Incidence energy dependence

Fig. 3.4 shows how the various magnetic excitations depend on the incident photon

energy in our model. The multi-spinon excitations that are prominent at q = 0

are very sensitive to the incident energies compared to the dispersing two-spinon

excitations, and the multi-spinon excitations have the largest spectral weight for ωin in

the range of 0.3 eV to 0.6 eV. This sensitivity to the incident photon energy indicates

that the multi-spinon excitations found outside of the two-spinon continuum are more

effectively reached via particular intermediate states of the RIXS process.

3.4 Discussion

How can we understand the magnetic excitations in RIXS captured by the t − J

model, and why do we see magnetic excitations that are absent in INS? In Fig. 3.5, we

illustrate schematically the magnetic excitation mechanisms in a spin chain with the
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different scattering techniques: INS [Fig. 3.5(a)], Cu L2,3- [Fig. 3.5(b)], and O K-edge

RIXS [Fig. 3.5(c) & 3.5(d)]. The ground state of the HAFM is an SU(2) symmetric

singlet with Stot = 0. INS measurements connect this ground state to the triplet

manifold with Stot = 1 at low temperatures, such that ∆Stot = 1. In a simplified

picture (shown here for ∆Sz = ±1), such excitation creates two domain walls in the

spin chain [Fig. 3.5(a)], which decay predominantly into two-spinons carrying parallel

spins of 1/2 (due to conservation of angular momentum). Exact calculations [111]

show that these excitations also have overlap with four-spinon excitations, but the

majority of the four-spinon weight remains within the boundaries of the two-spinon

continuum due to kinematic constraints in the matrix elements.

Unlike INS (and RIXS at the Cu L2,3 edges), excitations with ∆Stot = 1 are

generally forbidden for K-edge RIXS. (This statement holds only for materials with

small spin-orbit coupling in the valence band; single-flips are allowed in O K-edge

RIXS on iridates, see Ref. [123].) Instead, ∆Stot = 0 processes like the one sketched

in Fig. 3.1(e) must be used to create magnetic excitations. Here, the incident photon

creates a Cu 3d10 UHB excitation in the intermediate state, resulting in a Cu site with

an additional “spin-down” electron in direct vicinity to an O 1s core hole (represented

in the sketch as blue arrow (spin down) on the left-hand Cu-side). The 180◦ Cu-O-Cu

bonding angle in Sr2CuO3 enables efficient double inter-site hopping of 3d electrons

between two adjacent Cu sites via the bridging in-chain oxygen site [B in Fig. 3.1(a)],

transferring the Cu 3d10 to the neighboring Cu site [right-hand Cu-side in Fig. 3.1(e)].

Since this Cu atom is also hybridized with the oxygen where the core hole is localized,

the “spin-down” electron can then decay and fill the core level [see Fig. 3.1(e)], leaving

the system with a net double inter-site spin flip. This process, sketched in Fig. 3.5(c),

is analogous to an indirect double spin flip process predicted for Cu K-edge RIXS [122,

124] giving rise to a double domain wall that decays predominantly into two-spinons

carrying antiparallel spins (due to momentum conservation) [88]. The cross section,

in this case, can be related to a dynamic exchange correlation function, whose spectral

weight is similar to that of DSF near the zone center [122]. This excitation pathway
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Figure 3.5: An illustration of various spin excitation processes through the creation
of spin-flips. (a) The ∆Stot = 1 direct spin flip process that can occur in an inelastic
neutron scattering experiment, which primarily decays into two-spinon excitations
that are visualized as domain walls in the antiferromagnetic (AFM) background [41].
(b) The same ∆Stot = 1 spin flip process in RIXS, which is accessible in materials
with strong spin-orbit coupling in the core level [29]. (c) The indirect double spin-flip
process at the oxygen K-edge, which occurs via the multi-orbital hopping processes
sketched in Fig. 3.1(e). This process generates a nearest-neighbor double spin flip,
which predominantly decays into a two-spinon excitation [88, 122]. (d) A second
order process at the oxygen K-edge that produces four-spinon excitations. Here, the
absence of the spin in the AFM chain allows double spin flips to occur on the sites
adjacent to the missing spin. These double spin flips generate spinon excitations away
from the site where the core hole is created. The subsequent decay of the core hole
then produces two additional spinons in its vicinity. This process requires a long-lived
core-hole to allow for sufficient time to generate the two double spin-flips before the
core-hole decay occurs.
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explains the presence of the sharper dispersing magnetic excitations in O K-edge

RIXS spectra. (Note that in two dimensions a ∆Stot = 0 excitation can only create

bi-magnon excitations, as each magnon carries a spin of 1). To visualize the scattering

process responsible for the creation of four-spinon excitations around the Γ-point the

lifetime of the intermediate state plays a critical role.

As we mentioned previously, in Cu L2,3-edge RIXS ∆Stot = 1 spin-flip excitations

that are similar to INS are allowed [32]. This is possible, since for a Cu 2p core-

hole the spin-orbit coupling is strong and therefore the change of spin momentum

can be compensated by the change of orbital angular momentum. In contrast to

INS, however, RIXS involves a doublon in the intermediate state, which decays on

a timescale set by the corehole lifetime (∼ several fs) [119]. During this time, the

additional charge in the intermediate state can interact with the system, creating

excitations that are inaccessible through either a single or double spin-flip process.

For the O 1s core hole there is no appreciable angular momentum available; therefore,

the spin momentum must be conserved and only ∆Stot = 0 excitations are possible (as

described above) [Fig. 3.5(c)]. In a 1D system, the result of this ∆Stot = 0 excitation

looks very similar to the result of a single spin flip ∆Stot = 1 in that both excitations

lead to the creation of two domain walls, but at the O K-edge they are separated by

at least one atomic site and have opposite spins. The lifetime of O 1s core-hole states

is somewhat longer than the lifetime of Cu 2p core-hole states, however. During

this time, the doublon in the 3d band can also generate double spin flips on the

surrounding sites, as sketched in [Fig. 3.5(d)], creating two additional double spin

flips separated by larger lattice distances. The subsequent decay of the core hole

results in the creation of two additional domain walls, and a total of four spinons in

the final state. This scattering channel is the direct result of fluctuations that take

place in the intermediate state. Its intensity, therefore, depends on the lifetime of the

core-hole, as a longer-lived doublon will have sufficient time to generate the longer-

range double spin-flips, separated by large lattice distances. This new excitation
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Figure 3.6: The effect of the core-hole lifetime on the RIXS spectra. The variation
in the computed RIXS intensity at momentum transfer (a) q = 0, (b) q = π/2a, and
(c) q = π/a. As the core-hole lifetime is decreased (increasing Γ), the four-spinon
excitations at q = 0 disappear rapidly, while the two-spinon contributions to the
spectra at q = π/2a and q = π/a are more robust.

channel is expected to be weak in Cu L3 RIXS, whose core-hole is short lived, and

completely absent in INS.

We performed calculations for the dependence of these excitations on the lifetime

of the intermediate state to test our interpretation. The results are presented in

Fig. 3.6. We observe that upon decreasing the core-hole lifetime (increasing Γ)

the intensity of magnetic excitations in O K-edge RIXS decreases. Moreover, the

spectral weight of the four-spinon excitations moves towards smaller energy losses

[see Fig. 3.6(a)]. The decrease in intensity is much slower for excitations belonging

to the two-spinon continuum than for the four-spinon excitations. Whereas the two-

spinon excitations are still quite pronounced for Γ = 500 meV [(b) and (c)], the

four-spinon excitations are suppressed below Γ = 300 meV (a), which is comparable

to the superexchange interaction J . The suppression of the four-spinon weight at

q = 0 proves that the core-hole lifetime sets the time scale for the intermediate state

to generate these excitations. As its lifetime is quenched below J (∼ 1.3 fs), there

is not enough time for additional double spin-flips to occur in the chain during the

frustrating presence of the doublon. The dynamics of this intermediate state plays

an important role for the discovered excitation channel for magnetic excitations and
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produces additional magnetic correlation functions beyond a single or double spin-

flip.

3.5 Conclusions

In this chapter, we have demonstrated that RIXS grants access to complementary

correlation functions for magnetic scattering compared to INS, which arises from the

lifetime and dynamics of the intermediate state. Importantly, this new scattering

channel is unique to RIXS and provides access to non-local spin correlation functions

beyond two-site correlation functions probed by traditional scattering techniques.

O K-edge RIXS has long core-hole lifetimes and is therefore ideal for examining

excitations that cannot be detected by INS scattering, as long lifetimes of the

intermediate state allow charge fluctuations to take place. We have exploited this

fact to observe directly four-spinon excitations of a pure 1D HAFM, located outside

the boundaries of the two-spinon continuum. This technique opens another avenue

to explore quantum magnetism and quasi-particle fractionalization, which has broad

applications in the field of quantum magnetism. Time-resolved studies at the

upcoming x-ray free-electron laser (XFEL) sources, for example, European XFEL

and Swiss FEL, will hopefully facilitate studying such dynamics at the fs-timescale.
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Chapter 4

Multi-spinon and antiholon

excitations probed by resonant

inelastic x-ray scattering on doped

one-dimensional antiferromagnets

This chapter is a modified version of U. Kumar, et al., New J. Phys. 20, 073019

(2018) [97].

4.1 Introduction

In this chapter, we explore the spin and charge dynamics of doped one-dimenssional

(1D) antiferromagnets. Resonant inelastic x-ray scattering (RIXS) spectra allows us

to explore these directly in the materials exhibiting 1D antiferromagnetic structures.

1D magnetic systems have attracted considerable interest throughout the scientific

community for more than half a century. This interest stems from the fact that these

systems provide excellent opportunities to study novel quantum phenomena such as

quasiparticle fractionalization or quantum criticality. Moreover, model Hamiltonians
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of 1D systems can often be solved exactly using analytical or numerical techniques,

making them ideal starting points for understanding the physics of strongly correlated

materials. For example, the exact solution of the 1D Hubbard model by Lieb

and Wu [125] represented a breakthrough in the field, showing that interacting

electrons confined to 1D are characterized by spin-charge separation, where electronic

quasiparticle excitations break into collective density fluctuations carrying either

spinless charge (“(anti)/holons”) or chargeless spin (“spinons”) quantum numbers

with different characteristic energy scales. This work inspired an intense search for

materials showing spin-charge separation, but it has only been in the last two decades

that this phenomenon was observed [22, 23, 48, 126, 127, 128].

RIXS [1] has evolved as an important tool for studying the magnetic excitations

in correlated materials [29, 129, 130], complementing inelastic neutron scattering

(INS). RIXS, however, is also a powerful probe of orbital and charge excitations,

as was succinctly demonstrated by the experimental observation of spin-orbital

fractionalization in a Cu L-edge RIXS study of Sr2CuO3 [5, 96]. Sr2CuO3 contains

1D chains of corner-shared CuO4 plaquettes [see Fig. 4.1(c)], where a single hole

occupies each Cu 3dx2−y2 orbital, forming a quasi-1D spin-1
2

chain. Due to a very weak

interchain interaction, the CuO3 chains decouple above the bulk ordering temperature

TN = 5.5 K and form a nearly ideal realization of a 1D antiferromagnet (AFM) [121].

A recent O K-edge RIXS study [57] of undoped Sr2CuO3 directly observed multi-

spinon excitations outside of the two-spinon (2S) continuum (see also Fig. 4.1) further

highlighting the potential for RIXS to probe such excitations.

To date, spin-charge separation has not been observed using RIXS [96]. In this

chapter, we performed exact diagonalization (ED) and density matrix renormalization

group (DMRG) [85, 86] calculations to show that RIXS measurements on doped 1D

AFMs can fill this need. Specifically, we show that O K-edge RIXS can access multi-

spinon excitations, antiholon excitations, and combinations thereof, thus providing

a unique view of spin-charge separation in doped 1D AFMs. Since Sr2CuO3 can be

doped with Zn, Ni, or Co [53, 54], this material can be used to test our predictions.

47



Moreover, we expect our results to be valid for other 1D doped antiferromagnets,

such as Ca2CuO3 and SrCuO2, and are not just restricted to Sr2CuO3.

Magnetic Scattering at the O K-edge — Before proceeding, we review how

magnetic excitations occur in the OK-edge (1s→ 2p) [75] measurements on Sr2CuO3,

as sketched in Fig. 4.1(a). Sr2CuO3 is a charge-transfer insulator and the ground

state character of the CuO4 plaquettes is predominantly of the form α|d9〉+ β|d10L〉

(α2 ≈ 0.64, β2 ≈ 0.36) [43, 46], due to hybridization between the Cu 3dx2−y2 and O 2p

orbitals. Here, L denotes a hole on the ligand O orbitals. Due to this hybridization,

the incident photon can excite an O 1s core electron into the Cu 3d orbital when tuned

to the O K-edge, creating an upper Hubbard band excitation. In the intermediate

state, the d10 configuration can move to the neighboring Cu ion via the bridging O

orbital. Since the adjacent Cu orbital also hybridizes with the O containing the core

hole, one of the d10 electrons can then decay to fill it, creating a final state with a

double spin flip.

The dynamics in the intermediate state are essential for generating magnetic

excitations at this edge, and this is a fundamental difference in how RIXS and

INS probe magnetic excitations. One of the advantages of working at the O K-

edge is that it has relatively long core-hole lifetimes (~/Γn, Γn = 0.15 eV [131]) in

comparison to other edges (Γn = 1.5 eV at the Cu K-edge and 0.3 eV at the Cu

L3-edge [132]), which provides a longer window for generating magnetic excitations

[57, 133]. Because of this, inclusion of the intermediate states in the modeling is

necessary. Several efforts addressing the spin dynamics in RIXS have mostly used the

ultrashort core-hole lifetime (UCL) approximations, which applies to edges with short

core-hole lifetimes [122, 134], while studies of 1D systems beyond UCL approximations

have been limited [90, 132]. Ref. [90] studied the effect of incidence energy on spin

dynamics RIXS spectra in 1D using small cluster ED, but a systematic analysis of

the incident energy dependence was not carried out. As a result, the multi-spinon

excitations at q = 0 were not reported. Similarly, Ref. [88] discussed the doping

dependence of the RIXS spectrum for the t-J model by evaluating the spin response,
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O 2px

O 2p�y

Cu 3dx2�y2

O 2p+y

(a)

Figure 4.1: a) A sketch of the spin-flip mechanism in oxygen K-edge RIXS.
Hybridization between the Cu and O orbitals allows an incident photon to excite
an O 1s electron into the 3dx2−y2 orbital on one of the two neighboring Cu sites,
creating a Cu d10 upper Hubbard band excitation in the intermediate state (subpanel
i). The d10 excitation can transfer to the other neighboring Cu site via two Cu-O
hopping processes [(subpanel ii) & (subpanel iii)]. Finally, the extra electron decays
back into the O 1s core level, leaving the system in a final state with a double spin-flip
(subpanel iv). The inset in panel c) shows the CuO4 plaquettes of Sr2CuO3 in which
only the bridging oxygen participates in the spin-flip process. b) The computed RIXS
spectra for an undoped t-J model on a 22-site chain. c) S(q, ω) for an undoped 80-
site chain, calculated with DMRG for the same model. Note the additional spectral
weight in the RIXS intensity centered at q = 0, and absent in S(q, ω).
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but the charge response along with the intermediate state dynamics were left out.

For these reasons, the prior studies could not address the physics reported here.

4.2 Model and methods

Sr2CuO3 is a multiorbital system, and a multiorbital Hamiltonian should be employed

if one wishes to capture the RIXS spectra at all energies. However, our focus here

is on the low-energy magnetic and charge excitations that arise from quasiparticle

fractionalization. Prior work at the Cu L-edge showed that the dd- and charge-transfer

excitations in Sr2CuO3 appear at higher energy losses (Ω > 1.5 eV) [5]. Based on

this observation, we work with an effective 1D t-J model, where these interorbital

excitations have been integrated out, with the caveat that we will restrict ourselves

to energy losses below 1.2 eV (i.e. 4t). The fact that this same model accurately

captures the low-energy the magnetic excitations observed in undoped Sr2CuO3 [57],

provides further support for this approach. The model Hamiltonian is

H = −t
∑
i,σ

(d̃†i,σd̃i+1,σ + h.c.) + J
∑
i

(Si · Si+1 −
1

4
nini+1).

Here, d̃i,σ is the annihilation operator for a hole with spin σ at site i, under the

constraint of no double occupancy, ni =
∑

σ ni,σ is the number operator, and Si is

the spin operator at site i.

During the RIXS process [1], an incident photon with momentum kin and energy

ωin (~ = 1) tuned to an elemental absorption edge resonantly excites a core electron

into an unoccupied state in the sample. The resulting core hole and excited electron

interact with the system creating several elementary excitations before an electron

radiatively decays into the core level, emitting a photon with energy ωout and

50



momentum kout. The RIXS intensity is given by the Kramers-Heisenberg formula [1]

I =
∑
f

∣∣∣∣∑
n

〈f |D†|n〉〈n|D|i〉
Ei + ωin − En + iΓn

∣∣∣∣2δ(Ef − Ei − Ω), (4.1)

where Ω = ωin − ωout is the energy loss, |i〉, |n〉, and |f〉 are the initial, intermediate,

and final states of the RIXS process with energies Ei, En, and Ef , respectively, and

D is the dipole operator for the O 1s→ 2p transition. In the downfolded t-J model

D takes on the effective form

D =
∑
i,σ

eikin·(Ri+ax̂/2)
[(
d̃i,σ−d̃i+1,σ

)
s†
i+ 1

2
,σ

+ h.c.
]
, (4.2)

where q (= kout − kin) is the momentum transfer and the relative sign is due to the

phases of the Cu 3dx2−y2 and O 2px orbital overlaps along the chain direction. Here,

si+ 1
2
,σ is the hole annihilation operator for the 1s core level on the O atom bridging

the i and i+ 1 Cu sites.

The x-ray absorption scattering (XAS) spectra is given by

IXAS =
∑
n

∣∣〈n|D|i〉∣∣2δ(En − Eg − ωin). (4.3)

At the oxygen K-edge, the evaluation of XAS spectra, prior to RIXS calculation is

important to get the appropriate ωin. The dependence of the RIXS spectra on incident

energy is discussed in section 4.3.2.

In the real material, the core hole potential raises the on-site energy of the bridging

oxygen orbital (in hole language) in the intermediate state while exerting a minimal

influence on the Cu sites. This change locally modifies the superexchange interaction

between the neighboring Cu atoms [135]. To account for this effect, we reduce the

value of Ji,i+1 = J/2 when solving for the intermediate states, where the core-hole is

created on the O atom bridging the i and i+ 1 sites. Our results are not sensitive to

reasonable changes in this value, as shown in Sec. 4.3.2.
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Throughout we set t = 1 as our unit of energy (t ≈ 300 meV in Sr2CuO3). The

remaining parameters are Γn = 1
2
t for all n and J = 5

6
t, unless otherwise stated. These

values are typical for the O K-edge measurements of Sr2CuO3. The superexchange J

for Sr2CuO3 was reported to be around 250 meV by prior INS and RIXS studies

[5, 46, 57]. For Sr2CuO3 and closely related 1D cuprate SrCuO2, the hopping t was

reported to be 300-600 meV [22, 23, 48, 57, 136]. Also, as discussed in Sec. 4.3.2, our

calculated spectra do not change qualitatively in the range of reported values of t.

The inverse core-hole lifetime Γn for the oxygen K-edge is 150 meV [131]. We also

introduce a Gaussian broadening (Γ = 1
3
t) for energy conserving δ-function appearing

in Eq. (4.1). We evaluated Eq. (4.1) on a L = 20 site chain using the Lanczos method

with a fixed filling.

To help identify the relevant charge and spin excitations in the RIXS spectra,

we also performed DMRG simulations [85, 86] for the dynamical charge N(q, ω)

and spin S(q, ω) structure factors on an L = 80 site chain, and using correction-

vector method [137, 138]. Within the correction vector approach, we used the Krylov

decomposition [139] instead of the conjugate gradient. In the ground state and

dynamic DMRG simulations, we used a maximum of m = 1000 states, keeping the

truncation error below 10−8 and used a broadening of the correction-vector calculation

of η = 0.08t. The computer package dmrg++ developed by G. Alvarez, CNMS,

ORNL, was used for the DMRG simulations [140].

4.3 Results

4.3.1 Undoped RIXS spectra

Figure 4.1(b) shows the RIXS intensity for the half-filled t-J chain, reproduced from

Ref. [57]. For comparison, Fig. 4.1(c) shows S(q, ω) obtained using DMRG for the

same parameters. The RIXS intensity has two main features. The first is a continuum

of excitations that closely mirrors S(q, ω) and is situated within the boundaries of the
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2S continuum. Its intensity is relatively independent of the incident photon energy

and is associated primarily with 2S excitations [57, 141]. The second feature is a

continuum of excitations laying outside of the 2S continuum, corresponding to 4S

excitations. As discussed in Chapter 3, intensity is sensitive to both the incident

photon energy and the core-hole lifetime, indicating that the intermediate state plays

a critical role in creating those excitations [57].

4.3.2 Doped RIXS spectra

We now turn our attention to the results for the doped case. Figures 4.2(a) and

4.2(b) show the RIXS intensity obtained on a 20-site chain at 5% and 10% electron

doping, respectively. Here, we have used ωin = 3t to enhance the intensity of the

features appearing at q = 0. To help us better understand the main features, we also

computed S(q, ω) [Fig. 4.3(a)] and N(q, ω) [Fig. 4.3(b)] for 5% doping using DMRG.

The RIXS spectra for the doped cases have three recognizable sets of features: i)

a continuum that mirrors the S(q, ω) in Fig. 4.3(a); ii) a cosine-like dispersive feature

with a bandwidth of 4t that mirrors N(q, ω) in Fig. 4.3(b); and iii) two continua,

centered at q = 0 and extending up to ∼ 6t in energy loss. These features are absent

in S(q, ω) and N(q, ω). The excitations (i) and (ii) point to a manifestation of spin-

charge separation in that the response bifurcates into primarily two-spinon (i) and

antiholon (ii) excitations, characterized by different energy scales. Also, notice that

the dispersions of various peaks in Figs. 4.2(a) and 4.2(b) do not vary significantly

with a small change in doping, except for their relative intensities. It is important

to note that the RIXS and N(q, ω) are response functions that probe excitations

with net charge zero, and one would expect to see a holon-antiholon continuum [142].

However, for small electron doping, the holon-antiholon continuum appears effectively

as a single antiholon excitation band due to phase space constraints in the holon

scattering. For larger electron dopings, we expect to see a distinct holon-antiholon

continuum in both RIXS and N(q, ω).
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Figure 4.2: Calculated RIXS spectra at ωin = 3t for an L = 20 sites doped t-J
chain with (a) one and (b) two additional doped electrons. The white, black, and red
lines shows the boundaries for two-spinon continuum, the dispersion of the antiholonic
excitation, and upper boundary for antiholon-2S excitations, respectively. Panels (c),
(d), and (e) compare the doped RIXS spectra with the undoped case for momentum
transfers of q = π/a, q = π/(2a), and q = 0, respectively.
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Figure 4.3: DMRG results for (a) S(q, ω) and (b) N(q, ω) for the doped t-J model
on an L = 80 sites chain and 〈n〉 = 0.95 doping.

Figures 4.2(c)-4.2(e) compare the doping evolution of the RIXS features at fixed

momentum points. Fig. 4.2(c) shows q = π/a, where the upper bound (πJ) of the

spin excitations decreases upon doping. Similarly, the line-cut at q = π/2a in 4.2(d)

shows that the lower bound (πJ/2) of the 2S continuum also decreases with doping,

allowing for final states below the 2S continuum of the undoped case. We also observe

a secondary feature at higher energy loss due to changes in the holon branch and 4S

excitations. Fig. 4.2(e) shows a cut at q = 0, where two distinct sets of peaks are

clear. The group at lower energy losses appears in the same energy range of the

multi-spinon peak observed in the undoped case. The peaks at higher energy loss

appear above Ω = 4t and are identified below. Also, panels (c)-(e) illustrate that the

RIXS intensity of spin excitations 2S and 4S is suppressed upon doping, resulting in

a much broader spectral features. Conversely, the antiholonic features, absent in the

undoped case, are enhanced as doping is increased.

The calculated spectra can be understood by making use of the spin-charge

separation picture: in 1D, the wavefunction of the large U Hubbard model for N
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electrons in L lattice sites is a product of ‘spinless’ charge and ‘chargeless’ spin

wavefunctions [143, 144, 145]. The dispersion of charge excitations is given by

ωh̄(kh̄) = 2t[1 − cos(kh̄a)] [146, 147], which agrees well with the dispersion observed

for feature (ii) (see black dashed line) and in N(q, ω). As shown in the Sec. 4.3.2, the

N(q, ω) computed here for small electron doping is identical to the N(q, ω) obtained

for a 1D spinless fermions chain with the same fermionic filling, supporting the spin-

charge separation picture. This result indicates that the charge excitation is behaving

like a nearly free spinless quasiparticle, i.e. a holon/antiholon. Concerning the spin

part, the dispersion relation for a single spinon is given by ωs(ks) = π
2
J | sin(ksa)|.

Due to the RIXS matrix elements, these spin excitations must be generated in even

numbers, resulting in a continuum whose boundaries are defined by this dispersion

relation. At small doping, the limits of this continuum are modified, which is

accounted for using a slightly modified superexchange J̃ = J〈n〉 [145]. The upper

and lower boundaries of the modified 2S continuum are indicated by the white lines

in Fig. 4.2 and agree well with the observed excitations.

We can summarize the picture emerging from our results as follows: the 2S-like

continuum present in the RIXS spectrum is a pure magnetic excitation as it compares

well with the S(q, ω) from DMRG. The dispersing cosine-like feature in the doped

RIXS spectra compares well with the N(q, ω) from DMRG. We have verified that

the N(q, ω) of the spinless fermions with occupations equal to the electron-doping

considered above are qualitatively similar to the results obtained for the doped t-J

chain as discussed in Sec. 4.3.2. We therefore assign this feature to purely charge-like

antiholon excitations.

The peaks at q = 0 of the RIXS spectrum are not captured by either S(q, ω)

or N(q, ω). The lower continuum resembles the multi-spinon continuum [57] also

observed in the undoped case, and we, therefore, associate it with 4S excitations.

Conversely, the continuum of excitations at energy losses between 4t and 6.5t (well

beyond the upper boundary of 4S continuum [2πJ (= 5.24t)] [111]) is unique to the

doped case. The excitations are bounded by 4t+πJ cos(q/2a) (dotted red line), which
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one obtains from a simple convolution of the antiholon and two-spinon excitations.

Therefore, we assign these to an antiholon plus two-spinon final state. The fact that

the intensity and distribution of these excitations are very sensitive to doping supports

this view. As we further increase the doping, we see additional spectral weight above

the 4t + πJ cos(q/2a) boundary, indicating that these quasiparticle excitations are

beginning to interact to produce modified dispersion relationships.

Incidence energy dependence

We now explore dependence of the RIXS spectra on incident energy considering two

values of doping. Figs. 4.4 and 4.5 show the changes in RIXS intensity maps as the

incident photon energy is varied from ωin = −t to 4t for the 5% and 10% dopings,

respectively. The final state excitations resembling S(q, ω) and N(q, ω) are clear in

all cases, but there are some variations in the overall intensity as ωin is tuned through

the XAS resonance peak (Figs. 4.4a and 4.5a, inset). The remaining excitations

exhibit a strong incident energy dependence, where both antiholon excitations and

the multi-spinon/antiholon excitations centered at q = 0 are difficult to resolve for

ωin /∈ [−t, 4t].

By varying ωin, one selects particular intermediate states |n〉 in the RIXS process.

The incident energy dependence shown in Figs. 4.4 and 4.5 indicate that only certain

intermediate states can reach the multi-particle excitations centered at q = 0. The

comparison of Fig. 4.5 with Fig. 4.4 shows that the antiholonic features become more

robust whereas the spin excitations are relatively unaffected at each incident energies

on increased doping in the 1D chain.
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Figure 4.4: The dependence of RIXS spectra on the incident photon energy ωin for a
5% doped 20-site chain, evaluated using the full Kramers-Heisenberg formalism. The
inset of panel (a) shows the XAS spectrum from the model, along with the incident
energies used in each of the RIXS calculations.
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Figure 4.5: Dependence of RIXS spectra on the incident photon energy ωin for a
10% doped L = 20 site chain. The inset of panel (a) shows the XAS spectrum of the
same system, along with the incident energies used in each of the RIXS calculations.
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Effect of hopping parameter on the RIXS spectra

In this section, we discuss dependence of the RIXS spectra on the hopping parameter

t for a fixed J . This analysis helps us further clarify the spin- and charge-like

nature of the excitations observed in the RIXS spectra. Fig. 4.6 shows two set

of excitations: The first are purely magnetic excitations, which are insensitive to

hopping parameter. In this case, the 2S excitations highlighted by the red solid lines

overlay is completely driven by the superexchange coupling (J). The 4S excitation

continuum upper boundary is highlighted by red dotted line. Note that in panels

(c) and (d), the 4S continuum is not visible due to our choice of incident energy ωin.

In panel (a), the q = π/a excitations vanish at t = 0. This behavior has also been

obtained in Ref. [90]. The second set of excitations are the antiholonic excitations

whose dispersion are governed by the hopping amplitude and have a bandwidth of 4t.

Additionally, an antiholon plus two-spinon continuum (h̄2S) is characterized by both

the J and t parameters. Indeed, the upper boundary of these excitations is given by

[4t+ πJ cos(q/a2)]. As t is changed, the RIXS spectra evolves as expected.

N(q, ω) of a spinless chain and electron-doped t− J model

We study the dynamical charge structure factor N(q, ω) of a t−J chain [148] at small

electron doping, which is similar to the spectrum of a spinless fermion 1D chain with

the same small fermionic filling.

The N(q, ω) of a 1D non-interacting spinless fermion chain is given by

N(q, ω) =
∑
i,j

eiq(Ri−Rj)〈ψg|n̂j
1

ω − Ĥ + Egs + iη
n̂i|ψg〉, (4.4)

where n̂i = ĉ†i ĉi is the fermionic density operator on site i, and η indicates the spectral

peaks’ broadening. We also denote the ground state as |ψg〉 =
∏
|k|≤kF

ĉ†k|0〉 with energy

Egs, and Fermi momentum kF = πn, where n = N/L is the fermionic filling. Focusing
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Figure 4.6: Dependence of the RIXS spectra on the hopping parameter t for an
L = 16 site doped t − J chain with 〈n〉 = 0.94 doping. The incidence energy,
ωin = 1.8J, 3.4J, 5.6J and 7J for (a), (b), (c) and (d) panel, respectively. We have
chosen these values of the incident energy to highlight the h̄2S continuum portion
(absent in t = 0 case) of the RIXS spectrum. The spin parts shown with red overlays
are insensitive to the hopping, whereas the parts involving antiholon shown with
black overlays are directly dependent on the hopping parameter t. Solid and dotted
(red) lines report the boundaries of the 2S and 4S continuum, while the solid and
dotted (black) show the dispersion of antiholon excitations and upper boundary of
antiholon-2S continuum.
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Figure 4.7: Panels (a) and (b) report the N(q, ω) for 1D t− J chain with L = 80
sites calculated using DMRG at 5% and 10% doping, respectively. Panels (c) and
(d) report the N(q, ω) for spinless-fermion 1D chain with L = 80 sites computed
analytically at 5% and 10% fermionic fillings, respectively.

on the q 6= 0 part, one finds

N(q, ω) =
1

L

∑
k

θ(|k| ≤ kF )θ(|k + q| > kF )

ω − εk+q + εk + iη
, (4.5)

where εk = −2t cos(k) is the dispersion relation for free fermions.

Fig. 4.7 shows explicitly that the N(q, ω) of the t−J chain at 5% and 10% electron

doping computed with DMRG is qualitatively very similar to the results obtained for a

spinless fermion chain (L = 80 sites) with 5% and 10% fermionic fillings, respectively.

Effect of Jch at core-hole site on the RIXS spectra

We explore the dependence of RIXS spectra on the value of superexchange interaction

Jch in the vicinity of the core-hole. Fig. 4.8 confirms that the RIXS spectra, at fixed

incident energy, do not depend on Jch qualitatively.
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Figure 4.8: RIXS spectra for different Jch values used in the RIXS intermediate
state, with incident energy ωin (= 3t).

4.4 Discussion

Several previous theoretical works have calculated the RIXS spectra for 1D t-J [122,

134] and Hubbard [90, 132] chains using the same formalism. In the doped and

undoped cases, these studies obtained RIXS spectra resembling S(q, ω); however, they

did not capture the (anti)holon or multi-spinon excitations observed here. Refs. [90]

and [134], obtained nonzero weight in the q = 0 response but with a significantly

reduced spectral weight in comparison to our results. In RIXS at oxygen K-edge,

only ∆S = 0 excitations are allowed. Refs. [90] and [132] showed that ∆S = 0

excitations vanishes at q = π/a, whereas we have the maximum at that point in our

model. We believe that this discrepancy is due to the lack of hopping from the core-

hole site due to the strong core-hole potential used in that work, which is appropriate

for the Cu L and K-edges. A strong core-hole potential will tend to localize the

excited electrons in the intermediate state, thus suppressing its dynamics. We can

confirm this in our model by setting t = 0 in the intermediate state for the undoped

system, which also prohibits charge fluctuations and produces spectra similar to Refs.

[90] and [132]. Furthermore, given the sensitivity to ωin as discussed in section 4.3.2,

63



prior studies may have missed the relevant excitations due to their choice of incident

energies.

In RIXS experiment, we expect a uniform modulation of all the excitations in the

RIXS intensity given by the angular dependence of the bridging oxygen px-orbital [57].

At the oxygen K-edge, the 2S, 4S and antiholon excitations are ∆S = 0 excitations

without any polarization dependence and hence, one cannot use it to disentangle these

excitations. However, 2S and 4S can be disentangled from the antiholonic excitations

by making use of the differences in doping dependence of these excitations. One

expects that the 2S and 4S will be suppressed upon doping. Instead, the antiholonic

features absent in the undoped case, will be enhanced on increased doping.

4.5 Conclusions

In this chapter, we have shown that spin-charge separation can be observed in O K-

edge RIXS on doped 1D-AFMs and that these systems exhibit remarkably rich spectra

consisting of multi-spinon and holon excitations. Our results highlight the potential

for RIXS to simultaneously access the charge, spin, and orbital degrees of freedom

in fractionalized quasiparticle excitations, applicable to many quantum materials.

Our work provides strong motivation for RIXS experiments at the oxgen K-edge of

doped 1D antiferromagnets. The recent RIXS experiment at the O K-edge of undoped

Sr2CuO3 [57] and the availability of doped Sr2CuO3 and SrCuO2 crystals [53, 54, 149]

give us confidence that our predictions can be verified experimentally in the near

future.
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Chapter 5

Systematic study of spin and

charge dynamics in two-leg spin

ladders probed by resonant

inelastic x-ray scattering

This chapter is a modified version of U. Kumar, et al., Phys. Rev. B 99, 205130

(2019) [150].

5.1 Introduction

In this chapter, we explore the spin and charge dynamics of spin-ladder antiferromag-

nets. Strongly correlated spin ladders are excellent platforms for studying quantum

many-body phenomena, such as high critical temperature (high-Tc) superconductiv-

ity [151] and spinon confinement [70]. Quantum ladders are intermediate between

one- and two-dimensional materials, and their study allows for detailed comparisons

between theoretical models and experimental probes [2, 5, 41, 42, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. The discovery of superconductivity in
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the ladder “telephone number” compound Sr0.4Ca13.6Cu24O41.84 [19], which had been

theoretically predicted [72], created new opportunities to study the relationships

between lattice, orbital, charge, and magnetic degrees of freedom and unconventional

superconductivity in copper-oxide materials. Accordingly, a significant effort has

been launched to understand the magnetic excitation spectrum of materials hosting

quantum ladders and its connection to superconductivity. For example, inelastic

neutron scattering (INS) studies have reported the observation of a spin gap in

Sr14Cu24O41 [42], triplon and two-triplon excitations in La4Sr10Cu24O41 [56], and

spinon confinement in CaCu2O3 [70].

With continued improvements in instrumentation, resonant inelastic x-ray scatter-

ing (RIXS) is being increasingly employed to study collective magnetic excitations [2,

3, 4, 5, 28, 30, 33, 34, 57, 114]. RIXS is complementary to INS in that the scattering

processes allows for both ∆S = 0 and ∆S = 1 excitations, depending on the elemental

edge [29, 114], the strength of the spin-orbit coupling in the core level [29], and the

local crystal stucture of the material [123]. As such, the technique accesses many

magnetic excitations including magnons [4, 28, 30, 33, 34] and bimagnons in two-

dimensional (2D) cuprates [114, 152], and multi-spinon excitations in one-dimensional

(1D) cuprates [57, 88, 90, 97]. RIXS also provided surprising results for 2D cuprates,

where the paramagnon excitations are found to persist deep into the overdoped region

of the phase diagram [4, 30, 32, 33, 34]. Recently, an electron-hole asymmetry in the

doping dependence of the spin excitations of 2D cuprates was reported, as well as an

additional collective charge excitation in the electron-doped case that is absent in the

hole-doped case [28].

The rich variety of excitations observed in 1D and 2D cuprates described above,

and their possible connection to unconventional superconductivity, provides a strong

motivation for exploring the RIXS spectra of two-leg spin ladders, both as a function

of the rung coupling and doping. Such studies provide information not only

about magnetic excitations but also about potentially cooperative/competing charge,

orbital, and lattice excitations. Early RIXS Cu K-edge experiments on the telephone
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number compounds focused primarily on the high-energy charge excitations across

the Mott gap [153, 154, 155]. Later, as the instrumental resolution improved, studies

started addressing low-energy magnetic excitations. For example, the magnetic

response of Sr14Cu24O41 at the Cu L3-edge was measured [2] and interpreted in

terms of the lower boundaries of a two-triplon continuum. Another Cu L3-edge

study on CaCu2O3 – a weakly coupled spin-ladder system – showed that the spectra

could be decomposed into contributions from the spin-conserving (SC) and non-spin-

conserving (NSC) channels [74]. Subsequent work at the same edge on the same

material focused on spin-orbital fractionalization, but did not carry out an analysis

of spinon confinement [73].

From a theoretical perspective, studies of the RIXS response of spin ladders

have mainly focused on undoped systems using a projector method [59] or exact

diagonalization (ED) of small (4 × 2) Hubbard clusters [2], and were restricted to a

limited set of rung couplings. To our knowledge, no systematic RIXS study of the

low-energy excitations of doped and undoped ladders has been carried out. Here,

we present such a study. Specifically, we use the Kramers-Heisenberg formalism to

compute the RIXS response of undoped and doped two-leg t-J ladders while varying

the superexchange coupling along the rungs over a wide range of values. The RIXS

intensity is evaluated numerically, exactly or with a very small error, using ED and

the density matrix renormalization group (DMRG) [84, 156, 157] methods. Using

these tools, we investigate the charge and magnetic excitations in both the SC and

NSC channels and catalog an assortment of quasiparticle and collective excitations.

The present systematic study can guide future RIXS experiments and help to classify

compounds as being in the weak- or strong-rung coupling regime, depending on the

observed excitations.

Iridates are another group of spin-1
2

(Jeff = 1
2
) materials that have been studied

with RIXS [6, 7, 8, 9]. Moreover, progress was recently made in engineering quasi-1D

iridates in heterostructures [158], establishing another platform for examining and
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controlling the properties of quantum spin ladders. The results presented here can

serve as a valuable roadmap in these contexts as well.

Our organization in this chapter is as follows: Section 5.2 introduces the

spin ladder model and the relevant scattering cross-sections for RIXS within the

Kramers-Heisenberg formalism. Sections 5.3.1 and 5.3.2 present results for the RIXS

spectra in the NSC and SC channels, respectively. Section 5.3.3 reports effective

correlation functions that can reproduce the RIXS spectra of NSC and SC channels.

Section 5.3.4 revisits and discusses the RIXS data reported [2] on the spin-ladder

compound Sr14Cu24O41 in the context of our results. Finally, section 5.4 summarizes

our findings.

5.2 Methods

5.2.1 Model Hamiltonian

We study the t-J model in a two-leg ladder geometry. The Hamiltonian is

H = Jrung

∑
i

(
Si,0 · Si,1 − 1

4
ni,0ni,1

)
+ Jleg

∑
i,τ

(
Si,τ · Si+1,τ − 1

4
ni,τni+1,τ

)
+ trung

∑
i,σ

(
c†i,0,σci,1,σ + h.c.

)
+ tleg

∑
i,τ,σ

(
c†i,τ,σci+1,τ,σ + h.c.

)
.

(5.1)

Here, τ = 0, 1 indexes the legs of the ladder while i = 1, . . . , L indexes the unit

cell along each leg; Si,τ is a spin operator; ci,τ,σ (c†i,τ,σ) annihilates (creates) a hole

with spin σ (=↑, ↓) at site (i, τ) subject to the constraint of no double occupancy;

J leg (Jrung) and tleg (trung) are the superexchange and hopping integrals along the

leg (rung) direction of the ladder, respectively; and ni,τ =
∑

σ c
†
i,τ,σci,τ,σ is the hole

number operator. Note that we neglected the ring-exchange terms in our model for

simplicity.

The two-leg spin-ladder model can be used to describe several compounds, and

a range of model parameters have been reported, as summarized in Table 5.1. The
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Table 5.1: Different values of the exchange parameters (in units of meV) reported
in the literature for various spin-1

2
ladder systems. Entries where the value of Jring

is missing correspond to studies where the ring exchange terms were not included in
the analysis.

Material Jleg Jrung Jring Experiment
Sr14Cu24O41 130 72 INS [42].

110 140 RIXS [2].
110± 20 4Jleg/5 Raman [159].
145 123 This work.

La4Sr10Cu24O41 186 124 31 INS [56].
La6Ca8Cu24O41 110 110 16.5 INS [64].
CaCu2O3 134 11 RIXS [73].

parameters can be different even for the same compound depending on the nature

of the experiment or model used to analyze the data. Due to the variability in

the reported couplings, we opted to carry out a systematic study over a range of

rung parameters spanning from weak to strong rung couplings. Unless otherwise

stated, we adopt the specific couplings (in units of meV) Jleg = 140, Jrung = 140r,

tleg = −300, and trung = −300
√
r, where r = Jrung

Jleg
is a parameter used to adjust the

ratio of the rung-leg couplings. The choice trung = −300
√
r preserves the relationship

Jrung ∝
t2rung
U

, assuming a fixed value of U .

5.2.2 RIXS Intensity

We evaluated the RIXS response at the Cu L-edge of cuprate materials. In a RIXS

experiment, photons with energy ωin and momentum kin (~ = 1) scatter inelastically

from a sample, transferring momentum q = kout − kin and energy ω = ωout − ωin

to its elementary excitations. The RIXS spectrum is evaluated using the Kramers-

Heisenberg formula [1] and is given by

I =
∑
f

∣∣∣∣〈f |D†kout
|n〉〈n|Dkin

|g〉
Eg + ωin − En + iΓ

∣∣∣∣2δ(Ef − Eg + ω), (5.2)
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(a) (b)

(c) (d)

NSC-channel

SC-channel

Ground state

Figure 5.1: Schematic diagrams of the elementary magnetic excitations that are
possible in spin-ladders. Panel (a) shows the ground state configuration of the spins
with antiferromagnetic correlations. Panel (b) shows the single spin-flip excitations
that appear in the non-spin-conserving (NSC) channel. Panels (c) and (d) show the
double spin-flip processes relevant to the spin-conserving channel (SC). In each panel,
the wiggly grey lines indicate “broken” magnetic bonds.
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where |g〉, |n〉, and |f〉 are the ground, intermediate, and final states with energies Eg,

En, and Ef , respectively, and Γ is the core-hole lifetime broadening. The eigenstates

are obtained by diagonalizing H + Hch, where Hch = Vc
∑

i,τ ni,τn
p
i,τ accounts for

the interaction between the valence and the core holes in the intermediate state.

Here, Vc is the inter-orbital repulsion between the holes in the Cu 2p and 3d orbitals,

npi,τ =
∑

mJ
p†i,τ,mJpi,τ,mJ , and p†i,τ,mJ (pi,τ,mJ ) creates (annhilates) a hole in the mJ =

±3
2
,±1

2
(mJ = ±1

2
) states of the J = 3

2
(J = 1

2
) manifold of the core level of site

(i, τ) for L3 (L2)-edge. In the two-leg t-J ladder, the dipole operator is given by

Dk =
∑

i,τ,σ,mJ
eik·Ri,τ [ci,τ,σp

†
i,τ,mJ

+ h.c.], where we have neglected the prefactor that

depends on the polarization of the photon and the scattering angle. Due to the large

spin-orbit coupling in the core 2p orbital, both NSC (∆S = 1) and SC (∆S = 0)

excitations can occur at this edge [74, 84, 90], and the RIXS spectra has contributions

from both of these channels. However, it has been recently shown how the Cu L3-edge

spectra can be resolved into their individual SC and NSC components [74]. For this

reason, we will consider these two channels separately in what follows.

The momentum transfer has two components in a two-leg ladder geometry: q =

(qx, qy), where qx = 2πn/La, with n ∈ [0, L) but qy = 0 or π/a, only. For our ED

calculations, we evaluate Eq. (2) directly, while the details of our DMRG approach

are given in section 2.2.2 of Chapter 2 [84].

Throughout this study, we use Vc = 6.7t, Γ = |t| for all n, and a Lorentzian

broadening with η = Jleg/6 for the energy-conserving delta function appearing

in Eq. (2), unless stated otherwise. These parameters are typical for Cu L-edge

measurements on the cuprates. Most of the spectra were computed using ED on

N = L × 2 = 10 × 2 clusters with periodic boundary conditions, while DMRG was

used on N = L×2 = 16×2 undoped clusters with open boundary conditions. For the

doped cases, our ED results are for a filling of 〈n〉 = 0.9 (or 10% doping). Due to the

finite size of the lattice, we have discrete peak-like structure in our RIXS plots instead

of smooth dispersions, both along momentum and energy axis. Nevertheless, as will

become clear in our analysis, the computed RIXS response of small size systems still
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Figure 5.2: XAS spectra for the undoped (left panel; n = 1.0) and doped (right
panel; n = 0.9) ladders for various values of r = Jrung

Jleg
, using ED and a 10×2 cluster.

Increasing the rung coupling factor r, the peak position of the XAS shifts to higher
incident photon energies.

captures the correct energy scales of the excitations as evident from the comparison

with the overlays evaluated from other methods with better momentum resolution.

X-ray absorption: — For all the RIXS figures discussed in this chapter, we

tuned the incident photon energy to the peak position observed in the x-ray absorption

(XAS) spectra given by

I(ωin) =
∑
n

∣∣〈n|Dk=0|g〉
∣∣2δ(En − Eg − ωin). (5.3)

Figure 5.2 shows the XAS spectra for the undoped and doped cases as a function

of the rung coupling r = Jrung/Jleg. For the undoped two-leg ladder shown in left

panel of Fig. 5.2, the resonance peak in the XAS spectra shifts to larger values of ωin

with increasing rung coupling. In the strong-rung case (r > 1), the ladder acts as a

collection of rung-dimers and the shift in the XAS peak reflects the increased cost

of breaking the dimer singlets. For the doped two-leg ladder shown in right panel

of Fig. 5.2, the overall intensity of the XAS also decreases with increasing r and an

additional peak appears on the high-energy side of the resonance.
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5.3 Results and Discussion

We calculated the RIXS spectra in various rung coupling regimes, ranging from strong

(r = Jrung
Jleg

= 4, 2), to isotropic (r = 1), to weak (r = 0.5, 0.25, 0.1). But before

examining our results, it is worthwhile to review the various excitations that are

expected in a two-leg spin-ladder system.

The magnetic excitations of undoped spin-1
2

ladders in the strong rung coupling

limit are well understood starting from a dimerized rung basis [72, 160]. For r →∞,

the individual rungs of the ladder are decoupled, each forming a spin dimer. For the

antiferromagnetic case, the ground state of the L-rung ladder is then a direct product

of rung singlets with total spin S = 0. The elementary excitations of this state are

“triplons” [161, 162, 163], where one or more of the rungs are excited into the triplet

manifold.1 For example, the first excited state is L-fold degenerate, where one of the

rungs is in a triplet spin configuration, while the higher lying excited states involve

integer numbers of rung triplets distributed throughout the system. The degeneracy

of the excited states is lifted when Jleg 6= 0, leading to a dispersive quasiparticle

excitation. To order O
(
J2

leg/Jrung

)
, the triplon dispersion is [163]

ωt(q) = Jrung

[
1 +

1

r
cos(qa) +

3

4r2

]
, (5.4)

where a is the lattice constant along the leg direction.

The two-triplon excitation manifold is even richer. Here, the two-triplon

excitations appear in three angular momentum channels corresponding to S = 0, 1, 2,

namely the singlet, triplet and quintet channels, respectively [160, 164, 165]. Previous

work [164] showed that a finite value of Jleg can lead to two-triplon bound states

whose dispersions in the singlet (S = 0) and triplet (S = 1) channels are to order

1The triplon and bound two-triplon excitations are often referred to as magnon and bound two-
magnon excitations, respectively, in the literature. We have adopted the triplon nomenclature to be
consistent with the previous RIXS studies [2, 59].
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O
(
J3

leg/J
2
rung

)
given by [160]

ωS2t(q) = Jrung

[
2− 3

2r
+ 19

16r2
− 9

32r3
−
(

1
2r
− 1

8r2
+ 51

128r3

)
cos(qa)

−
(

5
16r2

+ 21
32r3

)
cos(2qa)− 37

128r3
cos(3qa)

]
,

(5.5)

and

ωT2t(q) = Jrung

[
2− 3

2r
+ 11

8r2
+ 17

16r3
−
(

1
r

+ 1
4r2
− 9

16r3

)
cos(qa)

−
(

1
2r2

+ 1
2r3

)
cos(2qa)− 5

16r3
cos(3qa)

]
,

(5.6)

respectively.

The two-triplon excitations in the triplet channel were analyzed in a recent INS

study [56], reporting a dispersive excitation along the q = (qx, 0) direction in the

Brillouin zone, in very good agreement with the lower boundary line of the two-triplon

continuum. It was also argued that the four-spin ring-exchange term frustrates the

formation of a S = 1 bound state below the continuum. In this effort, we neglect the

four-spin cyclic exchange, thus we find that our data overlays well with the dispersion

of the S = 1 two-triplon bound state. Our results are also consistent with the available

RIXS experimental data [2]. We know of no experimental study probing two-triplon

excitations in the singlet and quintet channels; however, our results below show that

the RIXS SC channel can access the two-triplon bound state in the singlet channel.

In the weak rung coupling limit for undoped two-leg spin-1
2

ladders, the system can

be viewed as a set of weakly coupled Heisenberg chains. In this regime, the excitation

spectrum is understood in terms of a confined spinon continuum with a finite spin

gap [166]. Intuitively, the excitations of a Heisenberg chain are spin-1
2

spinons, which

always appear in pairs and are basically free to move along a single chain. When the

two chains are coupled antiferromagnetically, however, the spinons within a single

chain feel an effective confining potential [70]. This potential is created by the region

of ferromagnetically coupled spins that forms on the rungs between the two spinons

as they separate.
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When r � 1, the two-leg ladder problem can be mapped onto one of weakly

interacting singlet and triplet Majorana fermions with effective masses ms = 3m

and mt = m, respectively, where m ≈ 0.41Jrung [167]. The excitation spectrum,

as encoded in the dynamical spin structure factor S(q, ω) [62], is characterized by

combination of sharp modes and a broader continuum arising from several multi-

particle Majorana excitations. The lower boundaries of these excitations are defined

by

ωl(q) ≈
√
m2

thres + v2(qx − qmin
x ), (5.7)

where v =
πJleg

2
is the spin velocity of the chain and mthres and qmin depend on the

particles involved in the excitation. A summary of the relevant values can be found

in Table I of Ref. [62], which we have reproduced in Table 5.1 for convenience. From

this table, one can see that a Majorana triplet (1T) excitation appears near qmin =

(π/a, π/a) and mthres = m, while the excitations near qmin = (π/a, 0) correspond

to a three-particle bound state consisting of two Majorana triplets and a Majorana

singlet (2T + 1S) with a threshold set by mthres = 5m. While the mapping to the

Majorana fermion picture holds for r � 1, recent DMRG results for S(q, ω) [62] have

shown that this picture provides a qualitative description of the excitation spectrum

for a wide range of r < 1. These same calculations also showed that the spectral

weight of the multi-particle continuum increases as r → 0 until the entire excitation

spectrum converges to the expected two-spinon continuum of the antiferromagnetic

Heisenberg chain with lower and upper boundaries given by ωls(q) = π
2
J |sin(qa)| and

ωus (q) = πJ |sin(qa/2)|, respectively.

Understanding the behavior of a small number of holes doped into an antifer-

romagnetic background is one of the central problems in the quest to comprehend

unconventional superconductivity. In this context less is known about the excitations

in doped spin-ladders as compared to the undoped case, where the former are usually

studied using numerical methods [72, 168, 169, 170, 171, 172]. A single hole doped

into a two-leg ladder introduces a spin 1
2

and charge +e to the system. DMRG
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Table 5.2: The momentum qmin and mthres values that define the lower boundaries
of the single- and multiparticle excitations that occur in the Majorana fermion
description of the spin-1

2
ladders. Reproduced from Ref. [62].

Excitation qmin mthres

1T (π/a, π/a) 1m
2T (0, 0) 2m
3T (π/a, π/a) 3m
1T + 1S (0, π/a) 4m
2T + 1S (π/a, 0) 5m

results [169] indicate that in the strong-rung coupling limit, the doped hole behaves

as a quasiparticle, where the spin and charge remain tightly bound within a typical

distance of about one lattice constant. In the isotropic limit, the quasiparticle

develops more internal structure with a length scale of ∼ 3a. In the decoupled case

(Jrung = 0), the doped hole fractionalizes completely into a spinon and holon [97, 125].

In the analysis below, we explore the RIXS spectra in both the NSC and SC

channels and identify the relevant elementary excitations in these spectra.

5.3.1 Results for the non-spin-conserving channel

We begin our study with the NSC or “spin-flip” channel, which typically dominates

the Cu L-edge RIXS spectra in cuprates [74, 113]. The NSC channel produces

local single spin-flips due to a large spin-orbit coupling in the 2p core level, as

shown in Fig 5.1(b). The elementary excitations generated in this scattering channel

correspond to magnetic excitations with ∆S = 1 relative to the ground state. In

terms of the spectra, the NSC channel is comparable to the spin-flip channel of INS,

and hence RIXS spectra at the Cu L-edge of cuprates compare well with S(q, ω) (see

Sec. 5.3.3) [32, 113].
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Figure 5.3: The RIXS spectra in the non-spin-conserving channel for a half-filled t-J
ladder, using ED and a 10×2 cluster. I∆S=1(qx, 0, ω) and I∆S=1(qx, π/a, ω) are shown
in panels (a)-(f) and (g)-(l), respectively. Panels (a)-(c) and (g)-(i) have overlays
of the dispersion relationships for the bound triplet two-triplon [Eq. (5.6)] and the
one-triplon excitations [Eq. (5.4)], respectively, calculated using perturbation theory.
Panels (c) and (i) have overlays (solid white) of the dispersion relationships for the
same excitations extracted from Ref. [161], which were evaluated using a continuous
unitary transformation (CUT) method. The thin dotted and solid white lines in
panels (f) and (l) plot the upper and lower boundaries of the two spinon continuum
expected for completely decoupled chains. The thick white lines in panels (d)-(f) and
(j)-(l) plot the lower boundaries of the multiparticle continua near their respective
minima. Note that the y-axis of the top and bottom rows are scaled with respect to
Jrung and Jleg, respectively.
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Undoped t-J ladders

The RIXS spectra in the NSC channel for undoped ladders are plotted in Fig. 5.3.

Panels (a)-(f) and (g)-(l) show results for momentum transfers q = (qx, 0) and q =

(qx, π/a), respectively. Several excitations are identified.

In the limit of strong rung coupling, the spectra along the q = (qx, 0) direction

[Figs. 5.3(a) and 5.3(b)] exhibit a dispersive quasiparticle-like excitation. To

determine its nature, we overlayed the dispersion ωT2t(q) given by Eq. (5.6). We

find that the observed excitation closely follows the dispersion relationship for r = 4

but for r = 2 there are some deviations, most notably at the zone boundary. (The

disagreement becomes even more apparent for r = 1, as discussed below.) The

agreement between the dispersion of the excitations and ωT2t(q), and the fact that we

are in the NSC channel, allows us to conclude that these excitations are the two-

triplon bound state in the triplet channel. Similarily, the q = (qx, π/a) excitation in

the strong-rung coupling case [Figs. 5.3(g) and 5.3(h)] corresponds to a single triplon

excitation. To confirm this, we overlayed the dispersion ωt(q) given by Eq. (5.4),

showing it captures well the observed excitations for r ≥ 2.

As discussed in the previous section, in the weak-rung coupling limit we expect

the legs of the ladders to behave as weakly coupled antiferromagnetic chains. Indeed,

along both the (qx, 0) [Figs. 5.3(d)-(f)] and (qx, π/a) [Figs. 5.3(j)-(l)] directions, the

spectra can be described using the picture of confined spinons with a continuum of

excitations appearing above a sharper dispersing mode. The lower boundaries of the

continua near their respective minima are overlaid as thick white lines. According

to Table 5.2, we assign the excitations near qmin = (0, 0) to 2T excitations with

mthres = 2m, while the excitations near qmin = (π/a, 0) correspond the 2T + 1S

excitations with mthres = 5m. Similarily, the excitations near qmin = (π/a, π/a) are

1T excitations with mthres = m and the excitations near qmin = (0, π/a) correspond

to 1T + 1S excitations with mthres ≈ 4m.
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The isotropic coupling case behaves qualitatively like the strong-rung coupling

cases, but the calculated spectra deviate significantly from the dispersion predicted

by perturbation theory [Eq. (5.6)]. Nevertheless, we are still able to assign the

intense dispersing features to the S = 1 two-triplon bound state and the one-triplon

excitations, as in the strong-rung coupling limit. In Fig. 5.3(c) and Fig. 5.3(i) we

have overlayed the dispersions of triplet two-triplon bound states and one-triplon

excitations, respectively, this time extracted from Fig. 4 of Ref. [161]. In this case,

the dispersions were computed using a continuous unitary transformation (CUT)

method, and agree well with our evaluated spectra. In Fig. 5.3(c) we also observe

additional spectral weight at higher energies, which corresponds to the two-triplon

continuum. Our results in this regime should be of considerable interest for future

RIXS experiments on cuprate spin-1
2

ladder materials, as most of the estimated values

of the Jrung/Jleg ratios fall in this intermediate category.

Doped t-J ladders

The excitations of doped ladder compounds are relevant to explain pressure-induced

superconductivity. Moreover, while low-energy spin-fluctuations are widely consid-

ered pivotal for superconductivity, the relationship between the doping evolution

of charge and high-energy spin excitations and the superconducting mechanism has

recently become the subject of considerable debate, especially in 2D cuprates. Our

results for the RIXS spectra of the doped spin-ladder in the NSC-channel are in

Fig. 5.4. As in the undoped case, panels (a)-(f) and (g)-(l) show spectra along the

(qx, 0) and (qx, π/a) directions, respectively.

For strong-rung couplings [Figs. 5.4(a) and 5.4(b)], the spectra along the q =

(qx, 0) directions have two distinct sets of excitations. The first corresponds to the

same triplet two-triplon excitations identified in the undoped case, as confirmed by

overlaying the dispersion given by Eq. (5.6) as solid white lines. The second is the

Bloch quasiparticle excitation formed from the tightly bound spin and charge of the

doped hole [169]. Its dispersion is well described by ω(k) = 2t̃[1 − cos(ka)] (the
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Figure 5.4: RIXS spectra in the non-spin-conserving channel for a doped t-J
ladder, using ED on a 10×2 cluster and a filling of 〈n〉 = 0.9. I∆S=1(qx, 0, ω) and
I∆S=1(qx, π/a, ω) are in panels (a)-(f) and (g)-(l), respectively. Panels (a), (b) and
(g), (h) have overlays (solid white) of the dispersion relationships for the bound triplet
two-triplon [Eq. (5.6)] and one-triplon excitations [Eq. (5.4)], respectively, derived
using perturbation theory. Panels (a) and (b) have an additional overly (dashed
white) of the dispersion for a quasiparticle ω(k) = 2t̃[1− cos(ka)]. The y-axis of the
top and bottom rows are scaled with respect to Jrung and Jleg, respectively.
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dashed line overlay), where t̃ = trung/2 is the effective hopping of a quasiparticle in

the bonding band [168]. The fact that the spectra exhibit gapless charge and gapped

spin (C1S0) excitations is consistent with the system’s classification as a Luther-

Emery liquid [168, 173]. The spectra along the q = (qx, π/a) direction, shown in

Figs. 5.4(g) and 5.4(h), have only a single set of excitations, whose dispersions agree

well with the one-triplon excitation Eq. (5.4), which is again overlaided as a solid

white line.

Results for the weak-rung coupling regime along the q = (qx, 0) and (qx, π/a)

directions are shown in Figs. 5.4(d)-(f) and Figs. 5.4(j)-(l), respectively. We find that

the spectra soften as compared to the undoped spin ladders. Moreover, the spin gap

no longer appears to scale with Jrung but instead appears to vanish at (π/a, 0) for all

r < 1 while persisting at q = (π/a, π/a).

In the isotropic case at q = (0, π/a), shown in Fig. 5.4(c), the brightest dispersing

peak does not have the same downturn in the two-triplon dispersion that was observed

in the undoped case. Instead, there is an increased weight appearing in at higher

energy losses, corresponding to the two-triplon continuum. In contrast, the excitations

at q = (π/a, π/a), shown in Fig. 5.4(i), have the ubiquitous incommensurate peaks

that are also commonly observed in doped ladders and 2D cuprates [172, 174, 175,

176]. It is interesting to contrast the results for the doped two-leg spin ladder found

above with available results in the doped 2D cuprates at the Cu L-edge. In 2D

cuprates, a weakly dispersive high-energy paramagnon band along the q = (qx, 0)

line was reported to be persistent upon hole doping [4, 30, 32, 33, 34]. This type

of excitation compares relatively well with our results in the two-leg ladder case in

Fig. 5.4(c) for the isotropic case.

5.3.2 Results for the spin-conserving channel

We now analyze the RIXS spectra in the SC channel, both for the undoped and doped

cases. As shown pictorially in Figs. 5.1(c) and 5.1(d), the magnetic excitations that
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are accessible in this channel occur via double spin-flip processes, which correspond

to ∆S = 0 excitations in the antiferromagnetic ladders. For the undoped cuprates

measured at the Cu L-edge, the SC channel probes excitations encoded in the

dynamical exchange structure factor Sexch(q, ω) (see Sec. 5.3.3), which is a second

order term in the ultrashort core-hole lifetime (UCL) expansion [88, 113]. The

fact that Sexch(q, ω) captures most of the RIXS intensity indicates that magnetic

excitations in this channel are dominated by double spin-flip processes. Because

these are higher order processes, this channel is expected to be weaker as compared

to the NSC channel, [74, 113] and our results are consistent with this expectation. In

the doped case, magnetic and charge excitations coexist in the RIXS spectra and the

SC channel also has a significant contribution at second order given by a modified

charge structure factor Ñ(q, ω) (see Eq. (9) of Ref. [113] and Sec. 5.3.3). The SC

channel is also particularly relevant at the O and Cu K-edges, where direct spin-flip

excitations are often forbidden [57, 97, 114]. Our numerical study motivates RIXS

experiments that can disentangle SC and NSC components of the spectra by the use

of photon polarization, which has been successfully demonstrated in Ref. [74] for the

weakly coupled ladder cuprate CaCu2O3.

Undoped t-J ladders

The RIXS spectra in the SC channel for the undoped ladders are shown in Fig. 5.5.

Panels (a)-(f) and (g)-(l) show the RIXS spectra for momentum transfers along

the q = (qx, 0) and (qx, π/a) directions, respectively. As expected, the intensity

of the excitations in this channel is weaker as compared to the NSC channel by

approximately one order of magnitude.

As with the previous sections, we first consider the strong-rung coupling limit.

Along the (qx, 0) direction [Figs. 5.5(a) and 5.5(b)], we observe a weakly dispersing

feature that agrees well with the two-triplon bound state in the singlet channel given

by Eq. (5.5). This is one of the important results of our current investigation:

because the SC channel probes ∆S = 0 excitations, we are able to clearly identify
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Figure 5.5: RIXS spectra in the spin-conserving channel for the half-filled t-J ladder,
using ED and a 10×2 cluster. I∆S=0(qx, 0, ω) and I∆S=0(qx, π/a, ω) are in panels (a)-
(f) and (g)-(l), respectively. Panels (a) and (b) have overlays (solid white) of the
dispersion relations of the singlet bound two-triplon excitations [Eq. (5.5)] derived
using perturbation theory, while panel (c) has an overlay of the dispersion relation
for the same excitation from Ref. [161], using the CUT method. The thin dotted and
solid white lines in panels (f) and (l) plot the upper and lower boundaries of the two
spinon continuum expected for completely decoupled chains. The thick white lines in
panels (d)-(f) and (j)-(l) plot the lower boundaries of the multiparticle continua near
their respective minima. The y-axis of the top and bottom rows are plotted in units
of Jrung and Jleg, respectively.

83



and distinguish the two-triplon bound states in both the singlet and triplet channels.

We also see additional spectral weight at higher binding energies near (π/a, 0), which

contrasts qualitatively with the results in the weak-rung coupling limit. This weight

falls within the two-triplon continuum and likely corresponds to the two-triplon

continuum in the singlet channel.

Along the q = (qx, π/a) direction in the strong-rung coupling regime shown in

panels (g) and (h), the spectra can again be understood as multiparticle excitations

in the singlet channel, which we observe at energy losses around 3Jrung. Further

analysis of these excitations using strong-coupling series expansion methods is

desirable [160]. We observe zero spectral weight at (π/a, π/a) for all the rung

couplings we investigated, in contrast to the weak spectral weight observed at (π/a, 0).

The nature of these excitations can be qualitatively captured using the dynamical

exchange structure factor Sexch(q, ω), which has been computed and shown in Fig. 5.9

of Appendix 5.3.3. Indeed, Sexch(q, ω) shows the spectral weight cancellation at

(π/a, π/a) for all the rung couplings investigated.

In the weak rung regime (r < 1), the spectra along q = (qx, 0) and (qx, π/a), shown

in Figs. 5.5(d)-(f) and 5.5(j)-(l), respectively, resemble the continuum expected for

confined spinons also observed in the NSC channel. To highlight this, we overlaid

the boundaries of the two-spinon continuum as well as the lower boundaries of the

multi-particle continua that were introduced when describing the NSC channel. In

this case, all of the excitations appear above the lower boundary lines, indicating

that these excitations are multiparticle in nature. We also note that spectra along

both momentum directions have a suppressed intensity at qx = π/a, which is similar

to what occurs in one-dimensional antiferromagnetic chains when probed in the SC

channel [90, 122, 124].

The spectra along both momentum directions for the isotropic case (r = 1)

behaves qualitatively similar to the strong-rung coupling case, where we observe a

continuum of excitations. In Fig. 5.5c, we plot an overlay extracted from Fig. 4(b)

of Ref. [161] for bound two-triplon excitation in the singlet channel, again evaluated
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using the CUT method. This dispersion agrees well with the lower boundary of the

evaluated spectra suggesting that the continuum of excitations is related to singlet

two-triplon excitations and that the bound singlet state is not far removed from the

continuum.

Doped t-J ladders

Finally, we examine the RIXS spectra of the doped ladders in the SC channel. As

before, Figs. 5.6(a)-(f) and 5.6(g)-(l) show results for momentum transfers q = (qx, 0)

and (qx, π/a), respectively. The spectra are quite rich and we observe several new

excitations that were not present in the undoped ladders. Indeed, we expect that

magnetic and charge excitations coexist in the SC channel response and that most of

the spectral features observed in the full RIXS response can be described using the

modified dynamical charge correlation function Ñ(q, ω) (see Fig. 5.10 in Sec. 5.3.3

and Ref. [113]).

As before, we begin our discussion from the strong-rung coupling limit. In this

case, the ladder can be considered as composed of weakly decoupled dimers where

the orbitals on each leg form bonding and antibonding orbitals. If tleg is finite, these

bonding (-) and antibonding (+) states form the basis for Bloch states with dispersion

relations given by ω(q) = ∓trung +2t̃[1−cos(qa)] [168], where t̃ is the effective hopping

parameter obtained from the change of basis to the bonding and antibonding states.

When a small number of holes are doped into the system, they first occupy the

bonding band as quasiparticles, as shown in Fig. 5.7. The charge excitations observed

in this channel can then be understood by invoking quasiparticle scattering within

and between the bonding and antibonding bands, respectively.

Along the (qx, 0) direction in the strong-rung coupling regime, Figs. 5.6(a)

and 5.6(b), we observe dispersive charge excitations consistent with particle-hole

scattering within the bonding band, as shown in Fig. 5.7. To confirm this, we

overlaid the dispersion ω(q) = 2t̃[1− cos(qa)], where t̃ ≈ tleg/2, which agrees with the

numerical data [168]. Along the (qx, π/a) direction [Figs. 5.6(g) and 5.6(h)] we find the
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Figure 5.6: RIXS spectra in the spin-conserving channel for the doped t-J ladder,
using ED, a 10×2 cluster, and n = 0.9. I∆S=0(qx, 0, ω) and I∆S=0(qx, π/a, ω) are
in panels (a)-(f) and (g)-(l), respectively. In panels (a)-(c) the dispersions of the
quasiparticle state with a bandwidth W = 2trung are shown (white dashed). In panels
(d)-(f) and (j)-(l) the holon dispersion with a bandwidth W = 4tleg is also shown
(solid white). The white dashed overlay in panels (g)-(i) plot the boundary of the
spinon-holon continuum gapped by 2trung, while the dotted overlay in panels (g) and
(h) corresponds to the dispersion relation of the one-triplon excitations. The y-axis
of the top row and bottom rows are plotted in units of tleg.
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corresponding particle-hole excitation where scattering occurs into the antibonding

band. In this case, we overlaid the dispersion ω(q) = 2trung + 2t̃[1 − cos(qa)] (white

dashed line). We also notice that the bonding and anti-bonding band are separated by

2trung, which accounts for the shift in cosine-like dispersion observed when qy = π/a.

It is important to note that, even in this case, these charge excitations are

weaker in intensity when compared to the magnetic excitations in NSC channel by

approximately one order of magnitude, but stronger than the SC channel of the

undoped case. Our results show that RIXS can explicitly probe charge excitations at

low energies as suggested in the literature for the Cu L3-edge [36, 37].

In addition to the charge excitations, we also observe a continuum of magnetic

excitations for momentum transfers along (qx, π/a). The lower boundary of this

continuum is defined by the one triplon dispersion given by Eq. (5.4), which has been

overlaid as a dotted white line.

In the weak-rung coupling regime, shown in Figs. 5.7(d)-(f) and 5.7(j)-(l), the

quasiparticle excitations display a bandwidth 4tleg with dispersion ω(q) = 2tleg[1 −

cos(qa)] along both the (qx, 0) and (qx, π/a) directions. This is similar to the results

for the 1D AFM chain reported in Ref. [97] where the excitations are holons, and

consistent with the notion that the individual legs of the ladder are weakly coupled.

The fact that these observed excitations are completely governed by tleg indicates

that the holes can be viewed as occupying the chains of the ladder rather than the

bonding and antibonding orbitals on each rung.

Finally, we consider the isotropic rung-coupling limit, which is of much interest

for future RIXS experiments and future theoretical investigations. In this case, our

spectra show a gapless and a gapped continuum along the (qx, 0) and (qx, π/a)

directions, respectively. These results hence resemble qualitatively the spectral

features also observed in the strong-rung coupling limit. It is interesting to compare

our full RIXS spectra with the dynamical charge structure factor results reported in

Fig. 7 of Ref. [71]: our results compare well with the lower Hubbard band excitation

observed in which N(qx, π/a, ω) is gapped, in contrast to the gapless N(qx, 0, ω).
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Figure 5.7: A schematic diagram of the particle-hole excitations possible in the
doped t-J ladder in the strong-rung coupling regime. In this limit, the orbitals along
the legs form bonding 1√
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the rung hopping ±trung. The doped holes form quasiparticles carrying both spin-1
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and charge e, and the broad blue colour highlights the filled states in the ground
state. RIXS probes scattering within the bonding and to the antibonding band, as
shown by the arrows.
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5.3.3 Results for the dynamical correlation functions

The interpretation of RIXS spectra computed with the Kramers-Heisenberg formalism

can be difficult. To simplify matters, the full RIXS intensity can be expanded in

powers of J/Γ using the ultra-short core-hole lifetime (UCL) approximation. This

procedure expresses the RIXS intensity as a series of increasingly complicated multi-

particle correlation functions, which can then be further subdivided into correlation

functions of the NSC and SC channels. The detailed procedure to be followed has

been reported in several prior studies [113, 124, 177, 178]. Here, we evaluate some

effective correlation functions motivated by Eqs. (B1) and (B2) of Ref. [113]. In

many cases, these simplified correlation functions give an accurate description of the

RIXS intensity in this chapter.

The spectral weight of the NSC channel is dominated by the first-order term in

the UCL expansion, which is equivalent to the dynamical spin structure factor

S(q, ω) =
1

L

∑
f

∣∣∣〈f |∑
i,τ

eiq·Ri,τSαi,τ |g〉
∣∣∣2δ(Ef − Eg + ω). (5.8)

Here, Sαi,τ (α = {±, z}) is a component of the spin operator at site (i, τ). The S(q, ω)

responses for an undoped ladder along the (qx, 0) and (qx, π/a) directions are plotted

in Figs. 5.8(a)-(c) and 5.8(c)-(f), respectively. These results compare well with the

RIXS intensity computed within the Kramers-Heisenberg formalism shown in Figs. 5.3

for all values of the rung coupling.

To account for the magnetic excitations of the SC channel, the second-order term

in the UCL expansion of the Kramers-Heisenberg formula is needed (see Eq. (B2) of

Ref. [113]). In the undoped case, the first-order term only contributes to the elastic

line in this channel and a double spin-flip process appearing at second-order generates

magnetic excitations. The RIXS spectra in the SC channel of the undoped ladders is
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Figure 5.8: The dynamical spin correlation function S(q, ω) evaluated for the
undoped ladder with r = Jrung

Jleg
= {4, 1, 0.1} rung couplings, using ED and a 10×2

cluster. Panels (a)-(c) and (d)-(f) show the spectra along the q = (qx, 0) and
q = (qx, π/a) directions, respectively. The overall intensity has been rescaled by a
factor 1/Γ2, which corresponds to the prefactor relating S(q, ω) to the RIXS intensity.
These plots capture all of the features of the spectra presented in Fig. 5.3.
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Figure 5.9: The dynamical spin exchange correlation function Sexch(q, ω) evaluated
for the undoped ladder with r = Jrung

Jleg
= {4, 1, 0.1} rung couplings, using ED and a

10×2 cluster. Panels (a)-(c) and (d)-(f) show the spectra along the q = (qx, 0) and
q = (qx, π/a) directions, respectively. The overall intensity was rescaled by a factor
of 1/Γ4, which corresponds to the prefactor relating Sexch(q, ω) to the RIXS intensity.
These plots capture many of the features of the spectra Fig. 5.5.
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hence dominated by the dynamical spin-exchange structure factor [113, 122, 124]

Sexch(q, ω) =
1

L

∑
f

∣∣∣〈f |∑
i,τ

eiq·Ri,τOexch
i,τ |g〉

∣∣∣2δ(Ef − Eg + ω). (5.9)

Here, Oexch
i,τ = Si,τ · [Jleg (Si+1,τ + Si−1,τ ) + JrungSi,τ̄ ] /2 evaluates the spin exchange

between nearest-neighbor sites of the ladder, as sketched in Fig. 5.1(c) and 5.1(d).

The results for Sexch(q, ω) in the undoped ladder along the (qx, 0) and (qx, π/a)

directions are shown in Figs. 5.9(a)-(c) and 5.9(d)-(f), respectively. These results

compare well with the RIXS intensities shown in Fig. 5.5 evaluted using the full

Kramers-Heisenberg formalism. Sexch(q, ω) captures the correct excitations for weak-

rung couplings, but the intensities are overpredicted for strong-rung couplings, the

regime where the UCL approximation is expected to fail (large J/Γ).

The SC channel for the doped ladders is dominated by charge excitations. In this

case, one must also go to second order and the RIXS intensity is well approximated

by a modified dynamical charge structure factor [113]

Ñ(q, ω) =
1

L

(∑
f

∣∣∣〈f |∑
i,τ

eiq·Ri,τO1
i,τ |g〉

∣∣∣2 +
1

Γ2

∣∣∣〈f |∑
i,τ

eiq·Ri,τO2
i,τ |g〉

∣∣∣2)
×δ(Ef − Eg − ω).

(5.10)

Here, O1
i,τ =

∑
σ c
†
i,τ,σci,τ,σ, O2

i,τ =
∑

σ[tleg(c†i+1,τ,σ + c†i−1,τ,σ) + trungc
†
i,τ̄ ,σ]ci,τ,σ/2, and

ci,τ,σ annihilates a spin σ hole at site (i, τ), subject to the constraint of no double

occupancy. Results for Ñ(q, ω) along the (qx, 0) and (qx, π/a) directions are shown

in panels Fig. 5.10(a)-(c) and Fig. 5.10(d)-(f), respectively. In the doped case, the

first-order term is non-zero but the majority of the intensity is set by the second-order

term. The Ñ(q, ω) results compare reasonably well to the RIXS spectra shown in

Fig. 5.6 evaluated using the full Kramers-Heisenberg formalism.
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Figure 5.10: The modified dynamical charge structure factor Ñ(q, ω) evaluated
for the doped ladder with r = Jrung

Jleg
= {4, 1, 0.1} rung couplings, using ED, a 10×2

cluster, and n = 0.9. Panels (a)-(c) and (d)-(f) show the spectra along the q = (qx, 0)
and q = (qx, π/a) directions, respectively. The overall intensity has been rescaled by
a factor 1/Γ2, corresponding to the prefactor relating Ñ(q, ω) to the RIXS intensity.
These plots capture many of the features of the spectra presented in Fig. 5.6.
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5.3.4 Revisiting Sr14Cu24O41 RIXS data

Cu L3-edge RIXS data has been reported [2] for the prototypical spin-ladder

Sr14Cu24O41. At that time, the observed spectra were interpreted in terms of two-

triplon ∆S = 0 excitations in the strong rung coupling regime (r ≈ 1.37) as

it was believed that ∆S = 1 excitations were forbidden at the Cu L3-edge. It

was later shown that not only is this channel allowed but that it dominates the

magnetic RIXS response in the undoped cuprates [29]. The RIXS spectra were later

theoretically evaluated [59] employing a projection method for the two-leg ladder

using the parameter set derived from La4Sr10Cu24O41 in Ref. [56] (the model involved

additional ring spin-exchange term as compared to our model). These calculations

showed that the RIXS spectra was associated with the two-triplon excitations with

∆S = 1 when momentum transfers of qy = 0 were used, as shown in Fig. 6 of Ref. [59].

But there was also a significant difference in the dispersion of the experimental and

theoretical data. Armed now with these theoretical insights of this chapter and our

new model calculations, we revisit the existing Sr14Cu24O41 data.

To access large system sizes with improved momentum resolution, we computed

the RIXS spectra in the ∆S = 1 channel for an undoped spin-ladder using our recently

formulated DMRG approach [84]. To obtain a unified description of RIXS and INS

experiments, we first adopted a model given by Eq. (5.1) without ring exchange terms,

however, we found that this model gave poor agreement with the experimentally

observed RIXS spectra. Instead, we are able to find good agreement when we set

Jleg = 145 meV and Jrung = 0.85Jleg. This result places Sr14Cu24O41 in the weak

rung-coupling regime but close to the isotropic limit. The resulting RIXS spectra

shown in Fig. 5.11 agree well with the experimental data, but the theoretical model

predicts a vanishing spectral weight at qx = 0. This observation is consistent with

the model of Ref. [59] but inconsistent with the finite intensity observed in the

experiment. At this time, the source of this discrepancy is unclear.
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Figure 5.11: Calculated RIXS spectra of an undoped t-J ladder in the non-spin-
conserving channel I∆S=1(qx, 0, ω) evaluated using DMRG on an N = 16× 2 lattice.
The black squares overlay the peak positions of the spectra extracted from the
experimental Cu L3-edge data for Sr14Cu24O41, reproduced from Ref. [2].

Because r is close to the isotropic case, the data can be qualitatively understood

using either the dimer excitation picture or the confined spinon picture. In the

former case, the excitations are understood as S = 1 two-triplet bound excitations.

In the latter case, they are viewed as a three particle bound state composed of

Majorana fermions near the zone boundary. However, a quantitative description of the

data can only be achieved with nonperturbative numerical methods. In this sense,

our results place Sr14Cu24O41 in a regime similar to the organometallic compound

(C7H10N)2CuBr4 [62], but with larger exchange couplings.

5.4 Conclusions

In this chapter, we have systematically studied the RIXS spectra of both undoped and

doped spin-1
2

ladders, covering the weak- to strong-rung coupling regimes. Our study

shows that RIXS experiments performed on these compounds can access a wealth of
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magnetic and charge excitations. This study was motivated by RIXS experiments at

the Cu L-edge in low-dimensional cuprates, where the RIXS data can be decomposed

into the non-spin-conserving (NSC) and spin conserving (SC) channels [74, 90, 113,

114]. Therefore, we evaluated the RIXS spectra in both of these channels and provided

an energy-momentum resolved roadmap that can guide future RIXS experiments on

spin-ladder compounds.

In the first part of this chapter, we reported the RIXS excitations in the NSC

or “spin-flip” channel, which typically dominates the Cu L-edge RIXS spectra in the

cuprates [74, 113]. In the undoped two-leg ladder, we have shown that RIXS can

access dispersive one triplon excitations and a two-triplon bound state in the triplet

(S = 1) channel in the intermediate to strong rung coupling regime. In the weak-

rung coupling regime, the NSC channel probes single- and multiparticle excitations

consistent with the Majorana fermion description of confined spinons.

The study of the RIXS spectra for doped spin-1
2

ladder compounds is of much

importance in the context of pressure-induced superconductivity in low-dimensional

high-Tc cuprates. In the doped ladder, we accessed one- and (triplet) two-triplon

excitations in the strong-rung coupling limit and softened confined spinons in the

weak-rung coupling limit. We also identified signatures of a bound spin-charge

quasiparticle excitation in the strong-rung coupling limit.

In the second part of this chapter, we studied the RIXS spectra of the spin-ladder

in the SC channel, which probes ∆S = 0 excitations of the system [74, 113]. This

component of the RIXS spectra has received less attention in the literature, and our

work provides a starting point for future theoretical and experimental investigations

of this channel on spin-ladders. In the undoped ladders, magnetic excitations are

created in this channel via double spin-flip processes. Because these are higher order

processes, their contribution to the RIXS spectra is expected to be weaker compared

to the NSC channel [74, 113]. Our results are consistent with this expectation, and

we found that the spectral intensity is at least one order of magnitude smaller than

the corresponding spectra in the SC channel. Nevertheless, in the intermediate to
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strong rung coupling regime, we are able to identify bound two-triplon excitations in

the singlet (S = 0) channel.

In the SC RIXS channel for doped spin-ladders, we identified a set of dispersive

low-energy charge excitations that were interpreted by invoking quasiparticle scat-

tering within and between the bonding and antibonding bands, respectively, in the

strong rung coupling case. Conversely, the spectra are dominated by holon excitations

in the weak-rung coupling limit. The direct access to charge excitations offered by this

channel provides a new opportunity to study superconductivity in cuprate ladders,

where the role of spin and charge excitations is still debated. We believe our numerical

study motivates new RIXS experiments on spin-ladders such as Sr14Cu24O41 allowing

disentanglement of data into the NSC and SC channels, due to the richness predicted

in the RIXS spectra.

Since the Kramers-Heisenberg formalism is complicated, we also reproduced the

RIXS cross-section using simpler correlation functions. It was shown that the RIXS

spectra observed in the NSC channel are captured well by S(q, ω). To capture the

RIXS spectra in the SC channel, higher order correlation functions such as Sexch(q, ω)

and Ñ(q, ω) are needed for the undoped and doped spin ladders, respectively.

Studying these correlation functions on spin-ladders using analytical methods will

allow one to characterize the excitations observed in these responses.

Finally, we revisited the available RIXS data for Sr14Cu24O41 and found that it

was best described using a model in the weak rung coupling regime with r = 0.85.

This result is in contrast to the previous analysis [2] that placed it in the strong rung

coupling regime but in qualitative agreement with the INS data [42].
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Chapter 6

Summary and Outlook

This dissertation presented the spin and charge dynamics of quasi-one-dimensional

(1D) antiferromagnets as revealed by resonant inelastic x-ray scattering (RIXS)

using numerical methods such as exact diagonalization (ED) and density matrix

renormalization group (DMRG). Specifically, we reported several exotic fractionalized

quasiparticles as revealed in the RIXS spectra of 1D chain and two-leg ladders.

In chapter 1, we discussed the need for investigating 1D cuprates using RIXS

and how such studies complement those of two-dimensional (2D) cuprates. The

crystal structure of Sr2CuO3 and Sr14Cu24O41, and how these compounds realize 1D

antiferromagnetic chain and two-leg ladder structures, respectively, was discussed. In

chapter 2, we introduced the RIXS cross-section, starting with the theory of light-

matter interactions, and how the Kramers-Heisenberg formalism captures RIXS cross-

section. Numerical methods, such as ED and DMRG used in this thesis were also

discussed.

In chapter 3, we reported the first direct observation of multi-spinon excitations

at the oxygen K-edge of Sr2CuO3. We demonstrated that RIXS grants access to

complementary correlation functions for magnetic scattering compared to INS, which

arises from the lifetime and dynamics of the intermediate state. Importantly, this

new scattering channel was shown to be unique to RIXS and provides access to
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non-local spin correlation functions beyond the two-site correlation functions probed

by traditional scattering techniques. O K-edge RIXS with long core-hole lifetimes,

is therefore demonstrated as an important probe for examining excitations that

cannot be detected by INS, as long lifetimes of the intermediate state allow charge

fluctuations to take place during the scattering process.

In chapter 4, we showed that spin-charge separation can be observed in O K-edge

RIXS on doped Sr2CuO3, and further, that these systems exhibit remarkably rich

spectra consisting of multi-spinon and holon excitations. Our results highlighted the

potential for RIXS to simultaneously access the charge and spin degrees of freedom in

fractionalized quasiparticle excitations, applicable to many quantum materials. The

availability of doped Sr2CuO3 and SrCuO2 crystals [53, 54, 149] give us confidence

that our predictions can be verified experimentally in the near future.

In chapter 5, we systematically studied the RIXS spectra of both undoped and

doped spin-1
2

ladders, covering the weak- to strong-rung coupling regimes. Since RIXS

data at the Cu L-edge of cuprates can be decomposed into the non-spin-conserving

(NSC) and spin conserving (SC) channels [74, 90, 113, 114], we investigated both

these channels and provided an energy-momentum resolved roadmap that can guide

future RIXS experiments on spin-ladder compounds. Our study showed that RIXS

experiments performed on these compounds can access a wealth of magnetic and

charge excitations. Importantly, we showed that the SC channel allows one to observe

singlet two-triplon bound states in spin ladders. Conversely, in the doped case, the

SC channel primarily probes gapless and gapped charge excitations, originating due

to bonding and antibonding states of a bound spin-1/2 and charge along a rung of the

ladder. Finally, we revisited the available experimental data for the ladder compound

Sr14Cu24O41 [2] in the context of our results. Our work classifies this ladder compound

in the Jrung/Jleg < 1 limit, instead of the Jrung/Jleg > 1 limit reported earlier [2, 132].

In this thesis, we have largely characterized the signatures of spin and charge

dynamics in both the undoped and doped 1D chain and ladder antiferromagnets

using numerical methods. Our work has motivated RIXS experiments on doped 1D
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antiferromagnets, and both the undoped and doped two-leg spin ladder compounds

to test the richness of our predictions. These predictions would indeed count as

some of the most stringent tests of many-body physics in those materials. From

a numerical methods perspective, our work is readily expandable to further exotic

geometries such as spin-1/2 Kitaev-Heisenberg ladder [179, 180] relevant for Kitaev

materials. The recently developed RIXS -DMRG formalism [84] can allow one to

simulate the RIXS response of 2D cuprates using multi-leg ladders [174]. In recent

years, there have also been advancements in the instrumentation of non-equilibrium

RIXS and there is an urgent need for theoretical developments for these probes [181].

The 1D geometries discussed in this thesis are easy to simulate, and hence are the

well-suited to explore novel phases of matter such as superconductivity [182] under

driven conditions realized in these probes using non-equilibrium RIXS.
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Hunt, and F. Doğan. The magnetic excitation spectrum and thermodynamics

of high-Tc superconductors. Science, 284(5418):1344–1347, 1999. 2

[27] D.J. Scalapino. The case for dx2−y2 pairing in the cuprate superconductors.

Physics Reports, 250(6):329 – 365, 1995. 2

[28] W. S. Lee, J. J. Lee, E. A. Nowadnick, S. Gerber, W. Tabis, S. W. Huang, V. N.

Strocov, E. M. Motoyama, G. Yu, B. Moritz, H. Y. Huang, R. P. Wang, Y. B.

Huang, W. B. Wu, C. T. Chen, D. J. Huang, M. Greven, T. Schmitt, Z. X.

Shen, and T. P. Devereaux. Asymmetry of collective excitations in electron-

and hole-doped cuprate superconductors. Nature Physics, 10:883 EP –, Oct

2014. Article. 2, 3, 30, 66

[29] Luuk J. P. Ament, Giacomo Ghiringhelli, Marco Moretti Sala, Lucio Braicovich,

and Jeroen van den Brink. Theoretical demonstration of how the dispersion of

magnetic excitations in cuprate compounds can be determined using resonant

inelastic x-ray scattering. Phys. Rev. Lett., 103:117003, Sep 2009. 2, 30, 42, 47,

66, 94

[30] M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. Moretti Sala, V. Hinkov, M. W.

Haverkort, M. Minola, M. Bakr, K. J. Zhou, S. Blanco-Canosa, C. Monney,

Y. T. Song, G. L. Sun, C. T. Lin, G. M. De Luca, M. Salluzzo, G. Khaliullin,

T. Schmitt, L. Braicovich, and B. Keimer. Intense paramagnon excitations in

a large family of high-temperature superconductors. Nature Physics, 7:725, Jul

2011. 2, 30, 66, 81

106



[31] Matthias Vojta. Magnetic fluctuations revealed. Nature Physics, 7:674 EP –,

Sep 2011. 2

[32] C. J. Jia, E. A. Nowadnick, K. Wohlfeld, Y. F. Kung, C.-C. Chen, S. Johnston,

T. Tohyama, B. Moritz, and T. P. Devereaux. Persistent spin excitations in

doped antiferromagnets revealed by resonant inelastic light scattering. Nature

Communications, 5:3314, Feb 2014. 2, 4, 66, 76, 81

[33] M. Minola, G. Dellea, H. Gretarsson, Y. Y. Peng, Y. Lu, J. Porras,

T. Loew, F. Yakhou, N. B. Brookes, Y. B. Huang, J. Pelliciari, T. Schmitt,

G. Ghiringhelli, B. Keimer, L. Braicovich, and M. Le Tacon. Collective nature

of spin excitations in superconducting cuprates probed by resonant inelastic

x-ray scattering. Phys. Rev. Lett., 114:217003, May 2015. 2, 4, 66, 81

[34] H. Y. Huang, C. J. Jia, Z. Y. Chen, K. Wohlfeld, B. Moritz, T. P. Devereaux,

W. B. Wu, J. Okamoto, W. S. Lee, M. Hashimoto, Y. He, Z. X. Shen,

Y. Yoshida, H. Eisaki, C. Y. Mou, C. T. Chen, and D. J. Huang. Raman and

fluorescence characteristics of resonant inelastic x-ray scattering from doped

superconducting cuprates. Scientific Reports, 6:19657, Jan 2016. 2, 66, 81

[35] Y. F. Kung, E. A. Nowadnick, C. J. Jia, S. Johnston, B. Moritz, R. T. Scalettar,

and T. P. Devereaux. Doping evolution of spin and charge excitations in the

Hubbard model. Phys. Rev. B, 92:195108, Nov 2015. 4

[36] David Benjamin, Israel Klich, and Eugene Demler. Single-band model

of resonant inelastic x-ray scattering by quasiparticles in high-Tc cuprate

superconductors. Phys. Rev. Lett., 112:247002, Jun 2014. 4, 87

[37] M. Kanász-Nagy, Y. Shi, I. Klich, and E. A. Demler. Resonant inelastic x-

ray scattering as a probe of band structure effects in cuprates. Phys. Rev. B,

94:165127, Oct 2016. 4, 87

107



[38] M. Guarise, B. Dalla Piazza, H. Berger, E. Giannini, T. Schmitt, H. M. Rønnow,

G. A. Sawatzky, J. van den Brink, D. Altenfeld, I. Eremin, and M. Grioni.

Anisotropic softening of magnetic excitations along the nodal direction in

superconducting cuprates. Nature Communications, 5:5760 EP –, Dec 2014.

Article. 4

[39] M. Kang, J. Pelliciari, Y. Krockenberger, J. Li, D. E. McNally, E. Paris,

R. Liang, W. N. Hardy, D. A. Bonn, H. Yamamoto, T. Schmitt, and R. Comin.

Resolving the nature of electronic excitations in resonant inelastic x-ray

scattering. Phys. Rev. B, 99:045105, Jan 2019. 4

[40] B. Dalla Piazza, M. Mourigal, N. B. Christensen, G. J. Nilsen, P. Tregenna-

Piggott, T. G. Perring, M. Enderle, D. F. McMorrow, D. A. Ivanov, and H. M.

Rønnow. Fractional excitations in the square-lattice quantum antiferromagnet.

Nature Physics, 11:62 EP –, Dec 2014. Article. 4

[41] Martin Mourigal, Mechthild Enderle, Axel Klöpperpieper, Jean-Sébastien
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N. Motoyama, H. Eisaki, S. Uchida, M. Domke, and G. Kaindl. Four-

band extended Hubbard Hamiltonian for the one-dimensional cuprate Sr2CuO3

distribution of oxygen holes and its relation to strong intersite coulomb

interaction. Phys. Rev. B, 62:10752–10765, Oct 2000. 5, 6, 48

108



[44] Sebastian Eggert. Accurate determination of the exchange constant in Sr2CuO3

from recent theoretical results. Phys. Rev. B, 53:5116–5118, Mar 1996. 5

[45] N. Motoyama, H. Eisaki, and S. Uchida. Magnetic susceptibility of ideal spin-

1/2 Heisenberg antiferromagnetic chain systems, Sr2CuO3 and SrCuO2. Phys.

Rev. Lett., 76:3212–3215, Apr 1996. 5

[46] Andrew C. Walters, Toby G. Perring, Jean-Sebastien Caux, Andrei T. Savici,

Genda D. Gu, Chi-Cheng Lee, Wei Ku, and Igor A. Zaliznyak. Effect of

covalent bonding on magnetism and the missing neutron intensity in copper

oxide compounds. Nat Phys, 5(12):867–872, Dec 2009. 5, 28, 34, 36, 48, 52

[47] I. A. Zaliznyak, H. Woo, T. G. Perring, C. L. Broholm, C. D. Frost, and

H. Takagi. Spinons in the strongly correlated copper oxide chains in SrCuO2.

Phys. Rev. Lett., 93:087202, Aug 2004. 5

[48] H. Fujisawa, T. Yokoya, T. Takahashi, S. Miyasaka, M. Kibune, and H. Takagi.

Angle-resolved photoemission study of Sr2CuO3. Phys. Rev. B, 59:7358–7361,

Mar 1999. 5, 47, 52

[49] Dalila Bounoua, Romuald Saint-Martin, Ji Dai, Tobias Rdel, Shamashis

Sengupta, Emmanouil Frantzeskakis, Franois Bertran, Patrick Lefevre, Franck

Fortuna, Andrs F. Santander-Syro, and Loreynne Pinsard-Gaudart. Angle

resolved photoemission spectroscopy study of the spin-charge separation in

the strongly correlated cuprates SrCuO2 and Sr2CuO3 with S = 0 impurities.

Journal of Electron Spectroscopy and Related Phenomena, 225:49 – 54, 2018. 5,

8

[50] Kozo Okada and Akio Kotani. Copper K and oxygen K resonant inelastic x-

ray scattering of one-dimensional cuprates. Journal of the Physical Society of

Japan, 75(4):044702, 2006. 5

109



[51] J. Richter, C. Waidacher, and K. W. Becker. Role of Zhang-Rice singletlike

excitations in one-dimensional cuprates. Phys. Rev. B, 61:9871–9874, Apr 2000.

5

[52] D. S. Ellis, J. P. Hill, S. Wakimoto, R. J. Birgeneau, D. Casa, T. Gog, and

Young-June Kim. Charge-transfer exciton in La2CuO4 probed with resonant

inelastic x-ray scattering. Phys. Rev. B, 77:060501, Feb 2008. 5

[53] Koushik Karmakar, Rabindranath Bag, and Surjeet Singh. Crystal growth of

spin chain compound Sr2CuO3 doped with quantum defects: Zn, Co, Ni, and

Mn. Crystal Growth & Design, 15(10):4843–4853, 2015. 8, 47, 64, 99

[54] Koushik Karmakar, Rabindranath Bag, Markos Skoulatos, Christian Rüegg,
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[62] D. Schmidiger, S. Mühlbauer, A. Zheludev, P. Bouillot, T. Giamarchi,

C. Kollath, G. Ehlers, and A. M. Tsvelik. Symmetric and asymmetric

excitations of a strong-leg quantum spin ladder. Phys. Rev. B, 88:094411, Sep

2013. 10, 65, 75, 76, 95
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Appendix A

Dipole Matrix Elements for L-edge

We consider the transition of a hole (electron) in transition metal (TM) from d →

p (p→ d) orbitals caused by an incoming photon. No spin-orbit splitting is considered

in the d orbitals, whereas it is considered in core p-orbitals, which is usually the case

for 3d TM atoms. The total angular momentum |J, Jz〉 is used as the basis for the

p-orbitals, whereas, the d-orbitals can be written in terms of the spherical harmonics

Y m
2 . The table is evaluated using spherical harmonics integration

〈J, Jz|ε · r|3d〉 ∝
∫
Y m1∗

1 Y m
1 Y m2

2 dΩ. (A.1)

The position vector of the electron is r = rxêx + ryêy + rz êz. The coefficients rα for

linear polarization in terms of spherical harmonics are given by

a) x-polarization, rx = 1√
2

√
4π
3

(Y 1̄
1 − Y 1

1 )

b) y-polarization, ry = i√
2

√
4π
3

(Y 1̄
1 + Y 1

1 )

c) z-polarization, rz =
√

4π
3
Y 0

1 .

Table A.1 shows the L-edge transition matrix elements corresponding excitation

to core-hole excitation from 3d→ 2p.
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Table A.1: Dipole matrix elements for linearly polarized photon transitioning a
hole (3d→ 2p) in L-edge RIXS.

Pol. |3
2
, 3

2
〉 |3

2
, 1

2
〉 |3

2
, -1

2
〉 |3

2
,-3

2
〉 |1

2
, 1

2
〉 |1

2
, -1

2
〉

dx2−y2(↑)
x -

√
6

2
1√
2

-1

y -i
√

6
2

-i 1√
2

-i

z

dx2−y2(↓)
x - 1√

2

√
6

2

y - i√
2

-i
√

6
2

-i

z

d3z2−r2(↑)
x 1√

2
- 1√

6
1√
3

y - i√
2

- i√
6

- i√
3

z 4√
6

- 2√
3

d3z2−r2(↓)
x 1√

6
- 1√

2
- 1√

3

y - i√
6

- i√
2

- i√
3

z 4√
6

- 2√
3

dxy(↑)
x i

√
6

2
i√
2

y -
√

6
2

1√
2

z

dxy(↓)
x i√

2
i
√

6
2

y - 1√
2

√
6

2

z

dyz(↑)
x

y -
√

2

z -i
√

6
2

- i√
2

dyz(↓)
x

y -
√

2

z - i√
2

-i
√

6
2

dzx(↑)
x -

√
2

y

z
√

6
2

- 1√
2

dzx(↓)
x -

√
2

y

z 1√
2

-
√

6
2
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Appendix B

Ultrashort Core-hole Lifetime

expansion

The complicated Kramers-Heisenberg formalism under ultrashort core-hole lifetime

(UCL) expansion can be written in terms of simpler correlation functions, which

further aid understanding of the RIXS spectra.

The RIXS scattering amplitude in terms of the Green’s function is given by

Ffg = 〈f |D†G(zk)D|g〉. (B.1)

Here |g〉 and |f〉 are the ground and final states of the system, D is the dipole

transition operator, and G(zk) is a Green’s function, which accounts for the

intermediate-state propagator in the Kramers-Heisenberg formalism and is given by

G(zk) =
1

zk −H
=
∑
N

|N〉〈N |
zk − EN

. (B.2)

Here, |N〉 are the eigenstates of intermediate state Hamiltonian H with energy EN

and zk = Eg + ~ωk + iΓ.

Under the assumption that the bandwidth of the energies of the intermediate-

state manifold are much smaller than the inverse core-hole lifetime Γ, the Green’s
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function can be treated using UCL expansion. This is indeed true for the magnetic

excitations at Cu L-edge of cuprates, where J
Γ
< 1, which allows one to simplify

Kramers-Heisenberg formalism into simpler correlation functions [75, 113, 124]. In

this work, our model is motivated by the t-J model as introduced in various chapters

in this thesis and we focus on spectra for the Cu L-edge as introduced in Chapter 5.

We start by investigating the spectral decomposed states of the intermediate

Hamiltonian operator the RIXS formalism.

1

ωin −H + iΓ
=
∑
|N〉

|N〉〈N |
ωin − EN + iΓ

(B.3)

We know that due to large Uc on the core-hole site, the hopping on that d-orbital

is suppressed. This allows one to decompose the intermediate states- |N〉 into its

valence band |n〉 and core-hole, |nc〉 states as

|N〉 = |n〉|nc〉, EN = En + Ec. (B.4)

Then one can rewrite the Greens function as

1

ωin −H + iΓ
=
∑
|n,nc〉

|n〉|nc〉〈nc|〈n|
ωin − En − Ec + iΓ

(B.5)

Using the characteristic value of Ec, one can select the L2 or L3 edge. We will

discuss our derivation in the context of the L3 edge, though the discussion can

be easily extented to L2-edge by replacing L2 by L3 and considering the relevant

approximations.
1

ωin −H + iΓ
=
∑
|n〉

|n〉|L3〉〈L3|〈n|
ωin − En − EL3 + iΓ (B.6)

It is important to note that |L3〉 can both flip or conserve the spin in core-hole and

hence produce ∆S = 1 (NSC) and ∆S = 0 (SC) excitations respectively. Lets us

define ∆ = ωin − EL3 → 0. Since Ec and EL3 are eigenstates of independent states
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and |n〉 forms a complete set, one can write

∑
|n〉

|n〉|L3〉〈L3|〈n|
ωin − En − EL3 + iΓ

= |L3〉〈L3|
1

∆− H̃ + iΓ
(B.7)

Here, H̃ = H0 + Vc
∑

i,σ,σ′ ndi,σn
p
i,σ is Hamiltonian with the excited core hole in the

valence band.

Resonance condition and the UCL approximation: In the limit of incident energy

resonant with the L3-edge, ∆→ 0, the propagator in above expression can be written

in terms of a series expansion as

∑
n

|n〉〈n|
∆− En + iΓ

=
1

∆− H̃ + iΓ

=
1

∆ + iΓ

∞∑
l=0

(
H̃

∆ + iΓ

)l (B.8)

The first term in the Green function expansion contributes for the elastic scattering

(σ = σ′) and dominant NSC (σ 6= σ′) part of spectra. The above series is convergent

only in the limit H̃
∆+iΓ

<1.

One can see that it is always convergent in the off-resonance condition as En < ∆+

iΓ ∀ n as has been discussed in [134]. One can evaluate RIXS intensity using the first

few terms of the expansion. Also, the overall intensity goes down as one moves away

from resonance.

It gets trickier in the case of the resonance condition. It is important to remember

that the intermediate Hamiltonian has a finite bandwidth (Wn). If the Wn < Γ, the

expression is convergent.

As explained App. A of [113], all the terms that act on site-i vanishes since

the vector Di|g〉 has annihilation operator projects out all the particles on this site.

Therefore, only the term (H̃ − H̃i)Di,σ|g〉 = (H0 − Hi)Di,σ|g〉 survives. It is also

important to note that the terms H −Hi also commute with operator Di and hence
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one can reorganize the operators as

∞∑
l=0

H̃ l

(iΓ)l+1
Di|g〉 =

∞∑
l=0

Di
(H −Hi)

l

(iΓ)l+1
|g〉

= Di

(
1

iΓ
+

Hi

(iΓ)2
+ ...

)
|g〉

(B.9)

Now, one can see that the RIXS cross-section can be written in terms of correlation

functions as the terms Hi can be written as a generic operator in real space. For

practical reasons, we restrict our expansion to second order. The first term in the

expansion can be written as,

〈f |D†i,σ′ |L3〉〈L3|Di,σ 1|g〉 =

〈f |
∑

i e
iq·Rini,σ|g〉 if σ′ = σ,

〈f |
∑

i e
iq·RiSi,σ|g〉 if σ′ 6= σ̄.

(B.10)

Here, the ni (=
∑

i,σ d
†
i,σdi,σ) conserves the spin and Si (=

∑
i,σ d

†
i,σ̄di,σ) flips spin on

the local site-i.

To the second order, RIXS cross-sections for the ∆S = 0 channel can be written

as

IUCLπ−π (q, ω) = |Wπ−π|2
{ 1

Γ2

∑
f

∣∣∣〈f |∑
i

eiq·Rini,σ|g〉
∣∣∣2

+
J2

4Γ4

∑
f

∣∣∣〈f |∑
i

eiq·RiSi · (Si+1 + Si−1)|g〉
∣∣∣2

+O
(J4

Γ6

)}
δ(Ω + Eg − Ef ).

(B.11)

Simlarly for the ∆S = 1 channels, the RIXS cross-section can be written as

IUCLπ−σ (q, ω) = |Wπ−σ|2
{ 1

Γ2

∑
f

∣∣∣〈f |∑
i

eiq·RiSzi |g〉
∣∣∣2

+
J2

4Γ4

∑
f

∣∣∣〈f |∑
i

eiq·RiSzi Si · (Si+1 + Si−1)|g〉
∣∣∣2

+O
(J4

Γ6

)}
δ(Ω + Eg − Ef ).

(B.12)
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These derived effective correlation function can be an important tool to understand

the RIXS correlation as has been used in Chapter 5.
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