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Abstract

The web has transformed the way people create and consume information. However, data-

intensive visualization applications have rarely been able to take full benefits of the web

ecosystem so far. Analysis and visualization have remained close to large datasets on large

servers and desktops, because of the vast resources that such applications require. This

hampers the accessibility and on-demand availability of data-intensive science. In this work,

I introduce a novel architecture for the delivery of interactive, data-intensive visualization

to the web ecosystem. The presented architecture, codenamed Fabric, follows the idea

of keeping the server-side oblivious of application logic as a set of scalable microservices

that 1) manage data and 2) compute data products. Disconnected from application logic,

the services allow interactive and data-intensive visualization be simultaneously accessible

to many users. Meanwhile, the client-side of this architecture perceives visualization

applications as an interaction-in image-out black box, with the sole responsibility of

keeping track of application state and mapping interactions into well-defined and structured

visualization requests. Fabric essentially provides a separation of concern that decouples the

otherwise tightly coupled clients and servers seen in traditional data applications. Results

show that Fabric enables high scalability of audience, supports large data while maintaining

interaction, supports scientific reproducibility, and improves control and protection of data

products.
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Chapter 1

Introduction

The web has been revolutionary. It has transformed the way people create and consume

information for over 20 years. With recent advancements in web technologies, cloud-based

systems and on-demand services, many applications and products have moved to the web

to leverage its numerous advantages such as high accessibility, availability, and sharability

to name a few. These applications often share several themes. They typically serve a large

number of simultaneous users, provide interactive experiences, and are highly accessible

through various devices.

Along with it, the web has also brought the era of big data. An era that necessitates the

development of new methods and techniques for data analysis and visualization. However,

data-intensive visualization applications have faced many challenges in embracing the web

ecosystem itself. They have remained on servers and desktops closer to the core of analysis,

their datasets.

The primary reason for the lethargic development of web-based data-intensive appli-

cations has been the tight coupling in application architectures involving large data [73].

Applications containing large datasets have often had a monolithic architecture in which

the entire state of the application has been bound to application logic, the data, and user

actions. In traditional data-intensive applications, the client requires full control over a

spawned server. In other words, a one-to-one connection is established for each user, limiting

the scalability of resources.
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Figure 1.1: An overview of the Fabric architecture is shown. The server-side is composed
of a swarm of containers that receive requests and compute visual data products, oblivious
to application logic. The client-side has the responsibility of converting user interactions to
visualization requests as well as managing application state.

In this dissertation, I introduce a new perspective on the delivery of interactive, data-

intensive visualization to the web. The overarching method, named Fabric and shown in

Figure 1.1, follows the idea of keeping the server-side oblivious of application logic as a set

of scalable microservices that 1) manage data and 2) compute data products. Disconnected

from application logic, the microservices allow interactive data-intensive visualization be

simultaneously accessible to many users and allows horizontal scaling on the cloud.

The client-side in Fabric is untangled from computing data products and therefore

perceives visualization applications as an interaction-in image-out black box. It has the

sole responsibility of keeping track of application state and mapping user interactions into

well-defined and structured visualization requests. The conversion of these visualization

requests to visuals is only the responsibility of the server-side data-compute microservices.

The model is essentially a separation of concern that decouples the otherwise tightly coupled

client and server seen in traditional applications.

Fabric’s server-side is realized based on the idea of software containerization and is built

as a swarm of containers (Figure 1.1). Each container serves incoming requests using a web-

server and computes data products using a stateless and independent program that we call a

visualization kernel. Different visualization kernels are used for different application needs.
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In this dissertation, I first describe a Fabric application that incorporates a simple

visualization kernel that serves pre-rendered image responses to clients. I then introduce

two other Fabric applications with kernels that perform live computation with high fidelity.

We call these two types of visualization kernels passive, and active due to the time in which

they compute data products.

A passive visualization kernel follows the idea that by limiting incoming requests and

responses between the client and server to a finite number, a visualization request can be

simplified as a call for a particular pre-rendered image, previously captured. With this

restriction, one can consider a visualization application as a finite set of application states

and their corresponding visual outputs. In other words, the application can be modeled as a

deterministic state machine. Through this approach, my work allows interactive visualization

applications be captured as independent standalone objects that are completely disconnected

from the original data while still maintaining interactivity through a large yet finite and

compressed set of pre-rendered images. One of the main usecases of this is the archival of

interactive visualization.

While a pre-rendered set of responses can have many usecases, it limits the fidelity of the

visualization. Active kernels alleviate this by rendering responses on the fly, at the cost of

computational resources and more complicated client-side state machines.

At a high level, two types of visualization exist in the community: scientific visualization,

and information visualization. My approach considers the needs of both of these sub-

communities and supports three properties to provide a rich experience on the web when it

comes to data-intensive visualization:

First is the size of data. Fabric supports the delivery of large datasets both in the

information visualization and scientific visualization domains.

Second is the size of audience also known as the number of users. One of the main

benefits of the web is that it provides a platform for multiple users to share and collaborate.

Fabric takes this into account and offers support for high accessibility and sharability for

multiple users.

Third is the degree of interaction. Interaction has always been one of the key components

of visualization. In the past, large data visualizations have been delivered through pictures
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and videos only, or have only supported single users. Fabric enables high interactivity in

both cases where the original application and data are present and in the case where they

are not.

This dissertation is organized as follows. Chapter 2 discusses the relevant background

work in the literature. Chapter 3 gives an overview of a Fabric-based architecture with

support for various visualization kernels. Chapter 4 presents an implementation of Fabric

with a passive pre-rendering kernel. Chapter 5, and Chapter 6 describe two realizations of

Fabric using active kernels for scientific and graph rendering respectively. Finally, Chapter

7 concludes the dissertation, and discusses future works.
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Chapter 2

Background

Fabric aims at the delivery of an interactive experience with large datasets both in the

information visualization and scientific visualization domains. This challenge vertically

touches many aspects in computer science. At a low level, it involves building fast and reliable

visualization kernels that can render visual data products in real-time. At an architecture

level, the kernels are scattered throughout a swarm of containers among many machines.

On the client-side, higher level aspects such as interactivity, and shareability are considered.

This chapter discusses the background work in these areas with regard Fabric’s approach.

It also describes the background work of the three Fabric-based applications in this work,

namely, Loom (Chapter 4), Tapestry (Chapter 5), and KnitGraph (Chapter 6).

2.1 Web-based Visualization

Over the years, visualization researchers have made much effort to make interactive

visualizations work inside web browsers.

At an architectural level, visualization applications on the web can be divided into

two categories based on where the data source is placed. One category is client-side

applications that require the data be present in the web browser or streamed to the browser

while users interact with the system. In these applications, the client-side is responsible

for performing the rendering and visualizing the results. The second category is remote-

visualization applications that perform visualization on the server-side and communicate

5



the visual product to the browser for viewing. These systems require dedicated servers other

than typical web servers on the Internet.

Within the client-side category, the creation of D3.js in 2011 became one of the most

recognized milestones [22]. D3.js provides a simple interface for mapping data to visuals.

One of the reasons for its popularity is the plethora of examples that can be found online [30].

As a competing project, Vega has provided a reactive visualization grammar for the web

[83, 82]. These works are typically based on web-based elements in the Document Object

Model (DOM) and are limited to the number of DOM elements that can be supported and

rendered in browsers.

Three dimensional graphics libraries and tools such as WebGL and ThreeJS [24] have

also been used for visualization on the web [57]. While applications that use WebGL or the

HTML5 canvas with D3.js alleviate the DOM elements limitation, they still require the data

be present on the client-side and perform visualization tasks natively inside web browsers.

As a result, they are more suitable for small datasets and rely on the user’s machine for

rendering performance.

In the remote-visualization category, dedicated scalable systems perform data processing

and rendering on a remote server and transmit final or intermediate data to the client for

further handling. While, some of these methods transmit intermediate data products, it is

more common to send fully rendered images in general [32]. These solutions fit better with

the high-end computing community [54, 53, 70, 97, 98], where server-side computing and

networking resources tend to be abundant. However, these methods typically create a one-

to-one connection between the client and the server-side and require large dedicated servers

or clusters for a user’s task. This limits these approaches in horizontal scalability, cloud

deployment support, and as a result, the number of users that can be handled simultaneously.

At the extreme end of remote-visualization techniques, some image-space methods pre-

render visual products, store them on disk, and communicate the results using light web-

servers. As a recent success, ArcticViewer is a web visualization system that improves

in-browser user experience by serving pre-rendered images of datasets on demand [4]. Paired

with Cinema [12], ArcticViewer addresses needs by the in-situ visualization community

particularly well. Pre-rendering typically generates a large amount of rendered images that
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may or may not be used by the end-user and limits the number of interactions possible to

only those that were pre-rendered.

Other notable successes in the remote-visualization category include: (i) visualization

system interfaces, such as Visualizer and LightViz [54]; (ii) API-based scientific data

management applications, such as MIDAS using the ParaViewWeb API [53]; (iii) plugin-

based web browser systems backed by a high-end resource, such as ViSUS using an IBM

BlueGene [70]; and (iv) plugin free implementations backed by custom clusters, such as

XML3D [97, 98]. ParaViewWeb and LightViz make use of vtk.js [57], a web port of the

popular visualization toolkit.

In this dissertation, I introduce Fabric as an image-space remote-visualization architec-

ture that is stateless and can therefore be horizontally scaled and easily deployed on cloud

platforms. Unlike previous works, Fabric is a web service composed of many copies of

micro-visualization-kernels that work independently of one another and do not maintain a

persistent connection to the client. I first present a flexible pre-rendering-based kernel and

then present two visualization kernels for live rendering of large scientific data.

2.1.1 Architectural Designs of Client-Server

Regardless of whether a web browser is used, delivering visualizations with mobility should

ideally combine the best of both client-side and remote-visualization designs. For example,

it should be “expressive and flexible” like in data-space systems[22], and be “immediately

available” for large data like in [12].

This need can benefit from having a more clear separation of concerns, where the

expressive and flexible interactions are handled separate from the highly available and

efficient computing.

Existing applications often take a monolithic approach (Figure 2.1-left). In result, the

1-to-1 mapping between client and server has become a standard design in existing systems,

such as VisIt[29], ParaView[15], and web-based systems like ParaViewWeb. Previous works

have also explored adding staging nodes in between the client and the server, in order to

achieve better system performances [106, 89], while continuing to abide by the monolithic

1-to-1 mapping between client-server.
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Figure 2.1: Comparing a monolithic design (left) and a decoupled design (right). In a
monolithic design, application states exist throughout the component stack. In a decoupled
design, compute-intensive tasks such as rendering and data management are encapsulated
in stateless services and accessed through a unified cloud-hosted gateway.

A decoupled design (Figure 2.1-right) can separate the highly responsive visual applica-

tion from the compute-intensive components such as rendering. In that regard, our recent

work, Tapestry [74] was the first example to our knowledge that implemented such decoupling

and allow the client-server to have an m-to-n relationship, where m and n can be any number

above 1. Tapestry can be considered as a particular implementation of a Fabric architecture

for scientific volume and iso-surface rendering and is discussed in detail in Chapter 5.

By simplifying the client-server interface into rendering requests, Tapestry’s server-side

is responsible for rendering and is completely oblivious to anything application related; that

is, it has become stateless, free of application logic. The server can answer simultaneous

requests from m different clients. On the client-side, a web-page can contain visualizations

of many datasets, potentially hosted on n different servers.

While computing services commonly use HPC platforms, the Tapestry server was instead

created as a web service managed by Docker [74], to reap the benefits of automatic load

balancing, auto-scaling, and automatically parallelized data transfers that are standard in

today’s web technology.

In [73], we further extended Tapestry so that the server can run as an Amazon AWS

deployed microservice, which is independently deployable, fine-grained, and lightweight.
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Deployed on AWS, applications can achieve interactive performance at minuscule costs.

Hence, scientific visualization can be more accessible and available than before.

We perceive Fabric as an adoptable method that established tools that have played a

pioneering role in today’s computational science, such as VisIt[29], ParaView[15], and Arctic

Viewer [4], can incorporate for resource-scaling purposes. Chapter 3 gives more details into

how a Fabric architecture is structured.

2.2 Pre-Rendering and its Applications

Chapter 4 discusses a Fabric implementation called Loom that uses a pre-rendering-based

visualization kernel. Loom captures visualization applications and serves them to the web.

This section covers the background work on pre-rendering, capturing, and its applications.

2.2.1 Capturing and Modeling Application Behavior

Interaction with applications and managing their state have been modeled with UMLs and

other types of finite state machines for many years [80, 49]. UMLs provide a complex state

machine that can represent how one can interact with a user interface and how the state of

the application changes with actions. However, UMLs can quickly become very large and

complex. In recent years, behavior trees have been used to model artificial intelligence in

games [59] as simpler and more modular alternatives. Originally, behavior trees were designe

d by Dromey et al. as a way to formalize requirements in designing systems [34].

Inspired by behavior trees, Loom uses a tree structure as a simple way to model

interactions in a visualization application.

Capturing and storing an entire application along with its data and code has been

possible for a long time with the help of virtual containers. Containers can be used to

store applications along with their data and requirements [5]. While containers simplify

installation and reuse, the size of the resulting container images can grow exponentially.

Additionally, any system that is not based on processed products of the application requires

the presence of the data source or at least a connection to it. However, this is infeasible for

archival in which the data source may no longer be accessible.
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2.2.2 Scientific Reproducibility

The topic of reproducibility has become a focal point in the scientific community in recent

years. This is evidenced by the forming of a special joint project of the National Academies

of Sciences, Engineering, and Medicine (October 2017) [2], publications in PNAS (March

2018) [38], and an entire special issue in Nature (October 2018).

Reproducibility involves techniques that help re-create the results of other scientists. It is

a crucial attribute of scientific research that differentiates impactful work from paper-driven

work. Reproducible research also increases the speed of scientific endeavor since trying to

recreate and continue the works of others can cost a lot of time.

Within the visualization domain, provenance has been a key component of reproducibility.

Tools supporting provenance, record and show how a researcher using the visualization

arrived at a hypothesis or conclusion and what the process of arriving at the particular

settings in the application were.

Tools such as VisTrails [17] and ParaView lookmarks [91] have been used for a long time

within scientific visualization applications like ParaView itself. More recently SIMProv.js

has been introduced as a library that simplifies adding provenance capabilities to web-based

visualizations [25].

The Fabric-based Loom application in this work not only considers the provenance of user

actions but also introduces methods for reproducing visualization results while disconnected

from the original application and data. This feature can simplify sharing and storing

hypothesis testings and research results as standalone objects.

2.2.3 Archival and Provenance

Archival of data and data products has been a crucial endeavor in advancing research [72,

100, 78]. As an example, research based on the Internet Archives’ Wayback Machine has

steadily increased since its birth in the year 2000 [14]. However, as an important insight

interface to data, archival of visualization has been seldom studied. This is while software

used for visualization can become obsolete as is evident by the discontinuation of Adobe

Flash [9], and data ownership policies mean that data sources may not always be available.
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Provenance is perhaps the closest area to archival in the literature and has been a

key topic in visualization as a way to enable scientific reproducibility. VisTrails [17]

systematically captures provenance information in a tree structure and is used in conjunction

with other visualization tools to store and recreate workflows. In Paraview [11], Lookmarks

have been used to store views of datasets similar to how bookmarks work for webpages [91].

The topic of provenance has also been looked at in the context of web applications. The

Open Provenance Vision [64] has been presented as a general vocabulary and format that

can be used by different semantic web applications. As follow-up work, the W3C presented

the PROV standard as a set of specifications for storing and sharing transformations to data

[102]. Many applications have been built on top of such web-based specifications, such as

Komadu [95], and Karma [88].

Within web-based visualizations, SIMProv.js has been recently introduced as a general

way of augmenting web-based applications to include provenance throughout the user’s

interactions and reasoning process [26].

Provenance deals with storing the history of user tasks within a visualization application.

However, this is different than archival. We define archival as storing a visualization and

restoring it at a time when the data or software infrastructure may not fully exist. An

archived visualization may still include provenance data regarding how the visualization was

utilized before.

One of the most related works to Loom is Graphical Histories [50], in which the states of

a visualization application are stored as a hierarchy of images depending on user interactions.

Similar works exist that store image transformations in hierarchical structures [47, 28]. Loom

takes this idea further in that it also recreates the interactivity of the application at runtime

so that the visualization can be used and explored while the data and code no longer need

to exist.

2.2.4 Automation in Visualizations

The most common assumption with visualization is that it is visual, and interactive. Hence

a Graphical User Interface (GUI) is assumed. When using these GUIs, a common user

behavior is to search through a problem space in search of significant patterns.
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As common in computer science, the search can be automated even for visualization. For

example, automated compound boolean query based visualizations [93], automated regular

expression based queries [46], even one of the most difficult tasks in visualization, the design

of effective transfer functions [111, 67, 76]. These automations employ simple, powerful

visualization specific languages, and as a result, have led to many visualization researchers

considering the specification of visualization as textual.

In the above cases, researchers used special program-accessible interfaces to control the

visualizations and found great successes. In a related way, other researchers have also built

and used UI-bots to automatically go through a graphical user interface. One of the most

recent works is the use of monkey testing to automatically stress-test web based visualizations

[75].

In Loom, we have also developed a UI-bot and ways for a human expert (e.g. a

visualization developer or an archivist) to guide the UI-bot to methodically go through

the problem space as specified by the graphical user interfaces. Our key focus here is that, in

a transparent way, the captured visualizations are organized according to guidance provided

by the human expert.

2.3 Visualizing Volumetric Data

Chapter 5 discusses Tapestry, a Fabric-based architecture for scientific rendering of

volumetric data. This section looks at the background of volume visualization.

Volume visualization is well understood from an algorithm perspective [61]. Highly

efficient implementations using many-core processors, either GPU or CPU, are available

as community-maintained open-source renderers [29, 15, 103, 1]. In this work, we use

OSPRay [103] because of its rendering performance. Additionally, its software-only nature

makes it easier to manage in a typical cloud-managed container. A GPU-based renderer that

exhibits similar throughput to OSPRay can also be used.

Level-of-detail is a proven approach to manage the trade-off between speed and quality

for time-critical visualization [109, 58, 17]. Tapestry uses a similar approach. When a user

interacts with the 3D visualization in the web document, rendering requests are made at a
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lower resolution. After a user pauses, rendering requests are made at a higher resolution.

This is detailed in Section 5.1.1.

Parallel visualization generally takes three approaches: data-parallel, task-parallel, and

a hybrid of the two [44, 108]. Our primary concern is system throughput (i.e. rendering

requests/sec). We chose the task-parallel approach to process rendering requests in parallel.

As is commonly done [40], we group worker processes into a two-level hierarchy: (i) the

computing cluster as a whole, (ii) each computing node. Worker processes on the same node

share datasets via memory-mapped regions of disk. Using known methods to resolve I/O

bottlenecks [56], we have a dedicated I/O layer as the data manager on each node to manage

pre-loading the data once Tapestry starts (detailed in Section 5.1.2).

2.4 Visualizing Large Graphs

Graphs are used in many areas of science to show relationships among entities. With

the increase in recent decades, many works in the literature have tackled the challenges

of visualizing and interacting with large graphs. Works in the literature can be divided into

three main types: layout calculation, clutter reduction, and rendering. Chapter 6 covers a

Fabric application for large graph visualization.

Earlier works on graph visualization revolved around optimal layouts for graphs. The

Fruchterman-Reingold algorithm is one of the most famous force-directed layouts from earlier

days [41] with its optimized parallel version having been introduced more recently [42]. Many

other graph layout algorithms exist in the literature [18].

While most works outside of the visualization community, pertained to layouts, the

visualization community often presented full-stack applications that also tackled the problem

of graph rendering. For example Munzner et al. Munzner et al. visualized large graphs as

minimum spanning trees and in a hyperbolic space to reduce clutter. Munzner also developed

H3Viewer, capable of interacting with 100k node graphs [65].

Layout algorithms are at the heart of graph visualization. In this work, we use the SFDP

[52], and ARF [45] layouts due to their inherent parallelism and availability in the graph-tool

library that provides fast and efficient graph algorithms [71].

13



More recent works revolve around edge bundling and similar techniques that reduce vertex

and edge clutter by altering the shape of edges. One of the first edge bundling algorithms

for general undirected graphs was the work of Cui et al. [31]. More recently, multilevel edge

bundling can create a layout for a million node graph in a matter of minutes [43].

In the area of graph rendering, applications such as Gephi [16], GraphViz [36], and

Cytoscope [85] are commonly used. These applications facilitate the entire process of

visualizing and analyzing a graph. However, they are mostly desktop-based and are meant

for single-user exploration.

Many graph rendering applications rely on some technique to reduce the number of

elements rendered at each point in time. One of the first such systems, ASK-GraphView,

used the notion of hierarchies and clustering to limit the number of rendered elements [8].

GraphMaps facilitates the browsing of large graphs in tile-sized portions [66]. Other works

used querying [19, 39], and machine learning [27] as ways to limit the size of the rendered

data.

While some of these works have been effective in browsing graphs of over a million

node in size, they have often visualized limited local views of graphs and expected prior

knowledge about the graph for querying. In contrast, the Fabric-based architecture for

graph visualization in this work is capable of rendering the entire global view of large graphs

on the web, and provides live interactive tools for filtering and exploration.

A common critique of rendering large graphs in their entirety is how most layout

algorithms tend to show large graphs as a giant hairball [39]. However, I believe that

with interactive zooming and fast rendering, a global rendering can better communicate

the overall structure while still allowing for the local dive-in option. Additionally, with live

filtering tools, a global view can enhance exploration. In Chapter 6, we look at the effects

of filtering at a large scale.
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Chapter 3

Architecture Overview

The difference between a Fabric application and traditional visualization applications can

be seen in Figure 2.1.

The Fabric architecture revolves around the idea of managing application state on the

client and serving visualizations from a swarm of containerized stateless servers. Application

state is the collective variables and values that define the state of the application and change

often depending on user interaction.

In a visualization application architecture, two contrasting variables affect the location

of application state. On one hand, interaction is what changes it, while on the other

hand, how the system processes and renders the data depends on it. From a programming

perspective, these two components, interaction and computation, pull application state

towards themselves. In large-data systems, the data is often on the server-side due to its

size and interaction is first handled on the client-side where the user is. As a result of this,

traditional visualization applications manage state in both the client and server sides. This

results in a tight coupling between the client and server and limits their scalability.

Tight coupling is a measure in software engineering that developers strive to reduce

between the components of their system [51]. Reduced coupling increases the scalability of

components and simplifies programming and debugging.

In the following, we look at the main components of Fabric.
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3.1 Containerized Services

The overall idea of the stateless server model is that freeing the server-side from application

state allows it to be easily replicated and scaled on multiple machines. This modularity

increases performance by allowing the server-side to respond to various users simultaneously,

instead of being bound to a one-to-one connection and responding to a single user.

To facilitate this distribution and the management of resources, we use containers to

wrap the servers. Specifically, we use Docker containers in a Docker swarm [5]. We have

experimented with this setup in our Tapestry project [74] and seen great performance.

Figure 3.1 shows a simplified overview of each visualization container. Every container

includes a web server that handles incoming requests. Requests are parsed and sent to a

visualization kernel that produces an output by visualization the data through the data

management component. The output may take the form of an image or other format. The

idea is that the output should need almost zero further processing for the client. A raster

image, for example, would need no processing and can be handled natively in a browser.

A visualization kernel can either be passive or active. A passive kernel is a program that

only serves pre-determined and pre-computed results such as pre-rendered images. An active

kernel produces results at runtime, based on client requests.

At a higher level, a set of virtual containers reside on a physical node within the cloud.

In this setup, the datasets involved can be replicated on all nodes if the nodes have sufficient

memory. Data files can be memory mapped so that they only load in memory once per node.

In cases where the datasets are too large to fit in memory, they can be distributed across

the swarm. The visualization kernels in this case would have the responsibility of providing

parallel computation and rendering.

In Fabric, the server-side is only responsible for repetitive computation (e.g. rendering

and encoding). The client-side handles interaction and is in charge of application logic. When

application state changes as a result of user interaction, the new state is temporarily sent

to an instance of the server-side (i.e. a container) to create a new output (i.e. rendering)

and return the result. After the server-side container has finished its task, it forgets the

application state and becomes available for another task.
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Figure 3.1: An overview of a visualization container. The web server within the container
responds to request from the outside world. The kernel accesses the data manager and
produces visual responses based on the incoming request from the web server.

Using Docker Swarm, the client-side only sees a single unified HTTP endpoint that it

can communicate with. Requests to the endpoint are load-balanced and routed to available

Docker containers. The response from the containers is also handled by the router and sent

back to the correct client.

Containerization using Docker provides easy scaling and load balancing. Additionally, it

provides fault tolerance. If a container fails due to software error, other containers take its

place to respond to visualization requests.

3.2 Application Logic

The client-side in a Fabric implementation is responsible for handling user interaction. For

example, as shown in Figure 3.2, in a browser-based application the client-side listens to

changes in the Document Object Model (DOM) and invokes callback functions as a result

of them. In Fabric, the interactions are mapped to visualization requests. While seemingly

trivial, the mapping depends on the application at hand and the application state. For

example, in Tapestry, the main supported interaction is 3D rotation through an Arcball

algorithm and a new request is generated given the user interaction and the previous state

of the application (a virtual camera’s position in 3D space). Arcball is a known algorithm
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Figure 3.2: An overview of a the client-side of our architecture is shown. Even handlers
handle interactions with the Document Object Model (DOM). They then invoke the request
generator that creates a new visualization request by means of the application’s state
machine. The request is then sent to the server-side through the Internet.

in computer graphics that maps 2D mouse interactions to 3D rotations using quaternion

calculations.

The generated request is then sent to the server-side as an HTTP request.

3.3 Features and Use Cases

3.3.1 Scalability of Audience

The main benefit of Fabric, is that it provides a basis for a system that can deliver large

data visualization, as well as simultaneously supporting many clients.

While scalability in computation has been a theme in the HPC-Visualization community

for a long time, Fabric takes this one step further and increases the scalability of audience

so that large data visualization can be available on the web ecosystem.

It is worth noting that the audience is not limited to those on the Internet using a

browser. The support of multiple clients and web tools allows a Fabric application to be

used in other settings as well. Collaborative environments with heterogeneous devices, and

augmented/virtual reality settings are two such cases.
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3.3.2 Access Policies

Being able to set access policies in a visualization application is another advantage of a

Fabric architecture. Because the server is the one providing visual output, it can easily limit

what different users can request, with user-defined access policies. Consider an example of a

Tableau visualization. The server can simply not respond to requests for information on some

parts of the application. Authorized users however, can send hash tokens for authorization

along with their requests and gain the complete experience. As another example, entire

sub-menus of applications can be enabled/disabled using predefined access-policies.

Access policies can take a form of server-side configuration files mapping hashed user

tokens to a list of application states that they have authority to interact with.

3.3.3 Reproducibility

Creating a reduced stateful interface between the client and servers through HTTP requests

makes it easy to record all interactions and their responses by listening and saving the

requests. Given an initial application state, a pre-recorded set of requests can reproduce the

exact steps another scientist took while using a visualization tool. Unlike a video however,

users are not limited to just those steps and have the freedom to stop and interact with the

tool in other ways.

Additionally, given the ability to capture different states of an application, scientists can

record their visual analysis as a set of finite states for others to use. Users can then not only

see the results that the scientists reached or saw in the visualizations but also interact in the

same way with the visuals. The paths of interaction as stored in the interaction tree can be

searched and annotated for guided interaction.

3.3.4 Archiving & Sharing Applications

The mapping of interaction to request gives structure and organizes the states of a

visualization. By discretizing the requests and responses in a visualization to a reduced finite

set, one can easily construct a standalone version of an interactive visualization without its

data and source code.
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This provides a method for archiving data insights for the future. The captured

application states can be endorsed with metadata allowing future users to learn more about

specific visuals and insights. Externalization also allows applications to be easily shared and

stored offline while still maintaining their interactivity.

Our first example of a Fabric architecture, called Loom, provides such archival capabilities

and is further described in Chapter 4.

3.4 Production Environment

Implementations of Fabric have been deployed on both an institutional cloud and Amazon’s

AWS cloud.

The institutional cloud includes a total of six machines. Three of those machines contain

Intel Xeon E5-2650 v4 CPUs and 128 GB memory each, while the other three contain 2x

Intel Xeon E5-2660 v4 CPUs with 256 GB memory each. The total number of cores are 156

and the total memory of the cluster is 1.12 TB.

On AWS, based on our initial findings from Tapestry [73], a series of micro or medium

EC2 instances are sufficient for running the system.

The client-side of this work mostly resides in user browsers, however due to the request-

based nature of our approach, other tools that omit HTTP requests such as cURL should

also be supported.
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Chapter 4

Delivering General Visualizations for

Archival

A simple visualization kernel can be considered as one that has pre-computed all possible

request responses as images and simply serves them. This fits in the group of remote-

visualization techniques that use pre-rendering as the driving mechanism. The types of

interactions in such approaches are very limited.

However, we will show that pre-rendering can be greatly extended to capture entire

visualizations. In this chapter, we introduce Loom, a system that incorporates a pre-

rendering-based kernel that delivers highly interactive visualization applications to the web.

As opposed to live-rendering kernels that require specifically tailored code, Loom can

be used to capture and deliver already existing visualization applications. This way,

visualizations that were offline in the past can be experienced on the web and can be more

accessible. Due to its pre-rendering nature, Loom can help archive interactive visualization

without needing to keep the original data or source code.

For instance, a Loom object can capture portions of a visualization in the desktop-based

Tableau application or the Paraview application and provide them in a browser, disconnected

from its original data.

Note that while Loom objects can include exploratory visualizations that include many

application states, Loom is mainly created for explanatory visualizations [92] in which the

interactive workflow is pre-determined and known to the archivist.
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Using a Loom object is simple. Our Loom viewer is Javascript-based and works in web

browsers natively. To this end, archival visualizations can also be used as interactive web

objects, regardless of whether the original visualization software is web-based or not.

Loom models user interactions as a tree structure. Given an interactive visualization

tool, an archivist can use Loom’s Overlay Application (LOA) to specify different UI areas

and indicate to Loom, what interactions those UI areas support (e.g. clicking). Then our

system uses OS-level UI automation to capture the different states of the visualizations

as images. It then organizes and compresses them into a single object. Loom objects

also contain information that associate recorded user interactions with the captured images.

Loom objects provide a black-box perspective on visualization – accepting interactions as

input and providing images as output.

We consider each view of an interactive visualization application as a frame. When a

user changes some UI controls, the visualizations on the screen change to a new view, and

hence a new frame. At 628 frames and Retina screen resolution (2560 x 1600), the Loom

object of the NYT visualization is only 5.5MB in size. In this work, our maximum averaged

storage overhead of Loom objects is below 40KB per interaction frame.

4.1 Architecture Design

Let us start with Loom’s system workflow and show an example to capture a Tableau

visualization of the superstore dataset [96].

Overall, there are three stages in a Loom object’s lifecycle (Figure 4.1): (1) user

annotation and specification, (2) construction, (3) interactive use. Details of each stage

are in Section 4.1.1, Section 4.1.2, and Section 4.1.3, respectively.

In the first stage, Loom solely focuses on the visualization’s interface that include user

controls and various visualization displays. Loom needs to work non-invasively, and be able

to capture interactive visualizations of an existing application without needing to modify the

application, or in other ways hinder how the visualization application functions. To this end,

we consider the data layer, transformations, and rendering components of the visualization

application as a complete black-box.
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Figure 4.1: The overview of the Loom system. The three stages of a Loom object’s lifecycle
is shown.

For the first stage, we have designed a desktop application. When opened, the application

creates a semi-transparent overlay that can be placed on top of visualizations. We call this

the Loom Overlay Application (LOA).

A domain expert uses LOA to annotate the UI controls of the visualization application

that they would like to include in the final Loom object. Additionally, they specify the

sequence of actions that users are expected to perform.

Using the Tableau visualizations in (Figure 4.2) as an example, these sequences could

be as simple as: click on the “Overview” button to launch the overview window, and then

mouse over individual states on the map for more information. Another sequence could be

to click on the “Profit Ratio by City” button, and then scroll through the bar graph in the

new window.

With every interaction with an application, users are presented with different options

that can be picked and interacted with. This forms a hierarchy of options. Therefore, Loom
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Figure 4.2: The Tableau application (left) showing the sample superstore dataset. Clicking
on the first highlighted button at the bottom of the screen (Overview) shows a map view.
The next button shows a bar graph of profit ratio by city. It is only after clicking the
Overview button, that the map becomes available and the states will become clickable. This
is an example case of a hierarchical behavior in a user interface.

stores the sequences of interactions into a tree-based structure. We call this the action tree.

Earlier actions in the sequences become upper level nodes in the tree, and the latter actions

are closer to the leaf level. By specifying particular sequences, the user is implicitly defining

an intended user workflow using the visualization application. Hence, LOA outputs are

user workflow specific. There is no limit on how many trees can be created and used as

specifications. Neither is there a limit on the depth of the action trees. A simplified version

of the action tree of the Tableau example is shown in Figure 4.3.

Specifying all actions and their order can be a time-consuming task for users. To alleviate

this, LOA provides a suite of smart tools that help users in selecting visual components and

specifying their actions. These tools are detailed in Section 4.1.1

In the second stage, Loom objects are constructed based on the specifications output by

LOA. We built a UI-bot that automatically triggers UI events by invoking OS level mouse

and keyboard control.
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Figure 4.3: An action tree for the Tableau superstore example. Every node of the tree is
a state in the application. The action that allows one to go to a state is written in brackets
inside each node. For example, one can hover over Washington on the map only after they
have clicked on the “Overview” button that reveals the map visualization.

Naively, one can capture all possible visualizations by having the UI-bot exhaustively

“click” or interact through all available UI controls, and take screen snapshots of the

visualization application along the way.

We optimize that naive approach by having the UI-bot conduct an orchestrated parameter

sweep according to the action trees specified in LOA. This gives us two benefits. First, the

user workflow specified by the domain expert using LOA provides an “access policy” of

the visualization application. Whoever uses the Loom object is limited by that policy.

This provides a new way to define, customize, and enforce fine-grained information access

privileges for the first time. Second, we have discovered through experiments that such

orchestrated parameter sweep as guided by the tree structure produces frames that have the

maximal amount of similarities, and the cross-frame differences are usually just incremental.

In result, the captured screen snapshots can be compressed very efficiently using widely

available video compression technology.

In the third stage, to use the object, our browser-based code opens the Loom object and

reconstructs the visualization application. Based on the user’s interactions in the browser,

appropriate images of the visualization application are then loaded and shown. To the

end-user, the experience is as if they are interacting with the original visualization and data.
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4.1.1 User Annotation and Specification

To capture a user’s possible interactions with a visualization, Loom requires the specification

of every interactive element in the application that they want to include. We call these

elements “targets”. Loom also requires the specification of several properties for every target.

Specifying this information is done by the user and the assistance of LOA’s toolset. The

required properties for each target are as follows.

• Action represents the type of action that can be performed on an interactive element.

Examples are “click”, “brushing”, “3D rotation”, etc.

• Position represents the physical position of the interactive element on the screen

• Area represents the area of the region that the interactive element spans on the screen

• Parent represents the element that must be interacted with before the current element

becomes accessible. An example of a parent target is a dropdown menu for the buttons

inside the dropdown. Hierarchically, the dropdown itself must be interacted with before

its options become available

The specification phase provides the user with a way to create an action tree based on the

application interface. Rather than having the user script the interface manually, such as with

a general purpose programming language, Loom shows the user the underlying application

and allows the user to define the steps visually and intuitively. This is done through Loom’s

Overlay Application (LOA).

When the user starts LOA, they are presented with a semi-transparent overlay like the

one shown in Figure 4.4. LOA allows the user to visually see the application and define areas

for various targets. These targets have an associated shape defining their position and area,

and an action property that specifies what event they perform. Additionally, every target

has a name, an optional description, and a unique ID.

LOA supports rectangles, circles and complex polygons as target shapes. Created targets

can be selected using a selection tool. Every target is accompanied by a setting menu where

their properties can be set in. The menu appears in the toolbar whenever a target is selected.
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Figure 4.4: Loom provides an overlay application (LOA) that allows users to select different
parts of their visualization and tell Loom how it should interact with each component. These
selections are then used by Loom to construct an action tree that represents the possible
interactions with the application. In this figure, the states of the US are target components
selected in red.

If multiple targets are selected, all of their properties can be edited at the same time through

the same menu. In other words, the changed property (e.g. the targets’ parent) changes to

the same value at the same time. This simplifies editing a large number of targets. Loom’s

toolbar is shown in Figure 4.5 along with a property menu for a selected target.

For each target specified by the user, Loom adds a node to an action tree. When the

user is done with adding targets, they can “export” the Loom object, at which point Loom

saves the action tree to disk as a JSON file.

Additionally, the user can add a name and description for each target. The name and

description can be used at runtime to search for specific states within a visualization.

Assisted Target Specification

As the user adds more targets, LOA’s display can become cluttered, making subsequent

selections difficult. To organize these selections, LOA provides workspace tabs (shown in

Figure 4.5). This way, users can use each workspace for a specific part of an application.

To LOA, all workspaces still define the same visualization. This means that parent target

relationships can be specified across workspaces.

LOA also assists users in specifying large numbers of UI components with a suite of tools,

described in the following.
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Figure 4.5: Loom’s toolbar is shown. (a) shows the selection menu supporting circles,
rectangles, and polygons, as well as three assistive selection tools. (b) shows the properties
of a selected target. The first textbox contains the name of the target. The second textbox
contains the description. Two dropdowns receive the parent state and the action of the
target from the user. In the current toolbar, two workspaces are opened by the user.

• Grid Selection. In many user interfaces, menu items are horizontally or vertically

distributed. The grid selection tool simplifies defining a series of rectangular targets

based on a single outer rectangle selected by the user and the number of rectangles to

automatically create in the X and Y directions.

• Magic Wand. Visualization elements can sometimes have complicated shapes

making them difficult to select (e.g. a state in the US map). The magic wand tool uses

a flood fill algorithm [99] to select a component, based on its boundaries and color.

The states in Figure 4.4 were selected using this tool.

• Smart Selection. Visualizations can sometimes have hundreds of visual components.

The smart selection tool uses a contour detection algorithm and automatically selects

distinct visual elements. The user can then edit or delete the elements as needed. The

magic wand and smart selection tools work by taking a screenshot of the underlying

visualization, applying their respective image processing method to the image, and

adding the selections to LOA.

• Copy Tool. UI elements can act differently depending on which target was interacted

with before, meaning that the same UI elements can have multiple parents. For

example, depending on the value of a radio button, the states on a map might show

different information upon hovering. This necessitates adding multiple targets for the

same area. The copy tool simplifies this. A user can select a series of targets and

by clicking the copy button, new targets of the same shape will be created in a new

workspace.
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Using LOA on our Tableau example, the user creates a selection box around the two

buttons at the bottom of the screen and sets their actions to “click”. A default name

is automatically associated with the selections. The user also has the option to change

those names. In the Tableau application, the user then navigates to the “Overview” map

visualization. Using the Loom overlay, they then select the physical position of each of the

states on the map and set the action to “hover”. To convey the hierarchical aspect of the

tree, they additionally set the parent node of each of the state selections to the Overview

button. This means that the states are only hoverable if the Overview button had been

clicked.

To add the bargraph visualization, the user navigates to the page in Tableau. Using

LOA, they then select the portion of the screen that includes the bargraph, and set the

action to scroll. By now, the resulting overlay includes all of the selections for our example

(Figure 4.4).

By default, Loom supports several action types such as click, hover, brush, 3D rotation,

and sliding. Advanced interactions can be added by writing custom actions in small scripts

and are discussed in Section 4.1.4.

4.1.2 Construction

During the construction stage, Loom traverses the action tree and interacts with the

visualization application on behalf of the user using a UI bot that controls the mouse and

keyboard. At every node of the tree, Loom captures the state of the application in the form

of a screenshot and saves it to disk. An index number is associated with every screenshot

and the number is stored in the visited node in the tree.

Starting from the root of the action tree, every branch down to the leaves is a sequence of

possible interactions. For instance, in our Tableau example, a user can select the overview,

then click on any of the states on the visualized map. Another path is for the user to select

the profits button and view the bar graph. Due to this, the traversal algorithm should

interact with only the nodes of a sequence starting from the root and ending at leaves and

cannot jump to other branches along the way. As another example, consider an interface

that requires the user to click on a dropdown, then click on an option of the dropdown to
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Figure 4.6: A simplified action tree for a dropdown button is shown. Different visualizations
are shown based on the two options of the dropdown. After interacting with the interactive
map, Loom’s UI bot needs to start from the root of the tree again in order to reach the
interactive bar chart. This requires restarting a pre-order traversal.

reveal a map visualization. An illustration of its action tree can be seen in Figure 4.6. The

left most branch starts from the root, then based on the left most child of the root, Loom

chooses to click on the dropdown. The dropdown opens at this point in time. Loom then has

the option to go to the left most child of the dropdown and click on the map visualization

button. Finally, Loom can click and interact with the map. Note that after interacting

with the map, it is impossible to click on a different option of the dropdown simply because

the dropdown is no longer open. In other words, the application has lost its previous state.

Inevitably, Loom must start from the root again then choose a different branch along the

way. This process is repeated until all leaves have been visited. This traversal process is

equivalent to a pre-order traversal in which after every set of leaf nodes that share a parent,

we go back to the root. The algorithm for this traversal is shown in Algorithm 1.

The DO ACTION function in Algorithm 1 performs the specific action for the target (e.g.

move mouse, click, etc.). The CAPTURE SCREENSHOT function takes a screenshot and returns

an index representing the screenshot. The number is then set to the frame number for the

node and will be used in the interactive use stage.

When the tree is fully traversed, the screenshots taken in this stage are saved on disk

and served to the web using a simple web-server.

Alternatively, when the number of frames is low, Loom can save all screenshots in a video

format for compression. At this point, the frame numbers in the video correspond to the

index that is stored in the nodes of the action tree. In other words, Loom linearizes the
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various application states and stores them sequentially in the video. The video can then be

sent with the web page, eliminating the need for any server communication. This option is

particularly useful for archiving visualizations.

For the video format, we chose MP4 with H.264 compression. Other technologies such

as WebM and H.265 could also be used. However, it’s worth noting that H.264 is practically

the first video compression technology that could enable the development of Loom.

When H.264 became a standard in 2003, besides significant coding efficiency improve-

ments, there were crucial advances in the flexibility of using the technology over a much

broader variety of application domains than before[104]. Efficient and high-quality out-of-

order playback of video over the web would not be feasible with older technologies. We use

the ffmpeg implementation of H.264.

Algorithm 1 Traversal of the action tree for automated UI interaction

1: procedure Traverse(tree)
2: repeat
3: n←Find next non-visited leaf node
4: Find the path from root to n
5: for every node along the path do
6: Visit(node)

7: for every leaf node that is a sibling of n do
8: Visit(node)

9: until all nodes have been visited
10:

11: procedure Visit(node)
12: DO ACTION(node.action)
13: if node has not been visited before then
14: frame num←CAPTURE SCREENSHOT()
15: node.frame num← frame num

4.1.3 Interactive Use

Reconstructing the application as an interactive visualization takes place in a browser. The

code for viewing a compressed Loom object is written in Javascript and therefore can be

executed using any modern browser on different devices such as desktops, tablets and mobile

phones.
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In order to reconstruct the application’s interface, the Loom viewer requires the action

tree as a JSON file. The viewer then makes frame requests to the server based on user

interactions.

In the case of the compressed-video option, the video that was created in the second stage

is also needed. In which case, the viewer then essentially provides out-of-order playback of

the constructed Loom video, based on user interactions.

Initially, when the viewer is opened, it traverses the action tree and creates an invisible

HTML DOM object for each of the targets that the user made. These DOM objects will

be responsible for handling user interactions. Then, based on the actions of the targets,

appropriate event handlers are set up. For example, consider a target with the click action

and a respective position P and area A that describe the selected area in the application.

To add this target, Loom adds an invisible DOM element with the position and area of P

and A. Loom then adds a Javascript “click” handler. The DOM element is then associated

with its node in the action tree using a hash table. When the DOM element is clicked on, it

finds the connected node in the tree, takes the frame number associated with the node and

seeks the Loom video to the correct frame number or requests the frame from the server.

Consequently, the image shown to the user is the same as what they would have seen if they

had interacted with that button in the original visualization.

Although a DOM element is created for every target, not all targets should be interactable

at all times. For example, the options of a dropdown should not be available before the

dropdown is opened (clicked on). As another example, the DOM elements created for the

states in the Tableau example should only be clickable if the user has previously activated

the map visualization. In other words, an application state should only become accessible

if its parents have been acted on beforehand. Loom handles this using the concept of state

machines.

In the reconstruction stage, the action tree is converted to a state machine. The

conversion between the action tree model and the state machine is done using the following

rules.

1. An application state is created for every node in the tree
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2. A transition is created between every state S and its children in the tree. The condition

of the transition is set to the action belonging to the child node

3. A two-way transition is created between every two leaf nodes that have the same parent

Within the state machine, every state can be reached if its parent is the current state and

its action is executed. Additionally, the root of the tree can always be accessed if the user

clicks on anywhere outside of other targets. This is so that users can continue interacting

with the system once they have reached a leaf node.

The number of DOM elements that handle interaction can grow very quickly depending

on the complexity of the visualization. Additionally, some of the DOM elements can overlap

on the screen in condense visualizations. In this case, DOM elements that are on top prevent

bottom elements from receiving user events such as clicking. The state machine solves this

issue by raising the DOM elements that should be accessible and lowering those that should

not be accessible. This is done through CSS by changing the z-index style attribute of the

DOM elements.

Guided Interaction and Provenance

A user may choose to not capture the entire visualization application and only specify

portions of it. This means that images shown to users may have inactive sections. The

Loom viewer provides several tools that hints at what is and what is not interactive. Figure

4.7-left shows the Loom viewer in the browser. The right panel is added by Loom. The panel

includes a mini-map showing a gray overview of interactive regions. Additionally, a hints

toggle button is provided. When hints are turned on, interactive regions are highlighted in

the visualization (Figure 4.7-right).

Having captured the states and elements of a visualization creates a unique opportunity

for Loom at runtime. The panel includes a search tool with which users can search through

names and descriptions of UI elements using fuzzy searching [77]. When a user clicks on

a search result, Loom switches to the appropriate application state and draws the user’s

attention to the element they searched for with a ripple effect. The state machine switches
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Figure 4.7: Both images show the Loom viewer within the browser. The right toolbar
provides a mini-map that shows the position and shape of interactive elements. The right
image shows the usage of the hints toggle button, highlighting interactive elements.

to the parent state of the element so that the user can choose to interact with the element

or not. An example of this is shown in Figure 4.8.

4.1.4 Extending Interactions

Visualizations include interactions that are much more complicated than simply clicking and

hovering over visual elements. Loom’s interactions can be extended with custom plugins.

A Loom plugin consists of two scripts. The first script tells Loom how to interact with a

visual element whose boundary is defined by the user’s selection box. In other words, it is

essentially a DO ACTION function. The second script tells Loom how to handle interactions

in the browser and map them to the appropriate frames in a Loom video. Here, we give an

example of how we implemented a plugin for a slider action and a brushing action. Plugins

can support even more complex interactions. Section 4.2.2 explains how we added a plugin

for 3D rotation around scientific visualizations.

Consider a slider in a visualization with its knob moved to the left. Given the position

and area of a user’s selection, a simple slider action moves the mouse to the inner side of

the selected rectangle. It then performs a click event, holds the slider knob, and moves it

incrementally to the right. At every defined interval, it takes a screenshot. In Loom’s viewer,

a DOM element is automatically created for event handling as mentioned in Section 4.1.3.

The plugin for the slider sets a Javascript drag event on the DOM target element. Then,
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Figure 4.8: Searching through target descriptions populates a list of possible visual elements
in the toolbar. Clicking on a target makes Loom navigate to the appropriate application
state and highlights the searched target with a ripple effect (in blue)

based on the position of the mouse in the target, it seeks the Loom video to the correct

frame.

Brushing is a common interaction in visualization applications. Consider a rectangular

brushable area A. Users can pick a location in A and press the mouse button. They can

then drag the mouse elsewhere within A and finally release the mouse. They have essentially

selected a box S that can be defined with a start and an end position. To support brushing,

the brushing plugin discretizes the interaction. In other words, it divides area A horizontally

and vertically into a set of cells. It then starts by capturing every possible combination of

selections for the divided cells. For n cells (
√
n columns and

√
n rows), a total of n2 selections

can be made. For example, an area that is divided into 16 cells (4 columns and 4 rows) leads

to 256 different selections. The captured frames are then linearly indexed and added to the

Loom object. In Loom’s viewer, a DOM element is created for handling the brushing. The

handler registers mouse press and releases, calculating the cells encompassed by the user’s

brushing. Based on the starting cell and ending cell of the selection it re-calculates the linear

index of the suitable frame and seeks the Loom video to the frame.

This technique can be used to support many other interactions such as panning, scrolling,

dragging, etc. The general mechanism is to capture possible image responses from the

visualization and index them linearly, and finding the linear index based on interactions

in the viewer to seek to the correct frame. Loom’s current code-base includes support for

clicking, hovering, sliding, brushing, and 3D rotation.
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4.1.5 Control of Privacy

Typically, the control of privacy is related to the data. Many visualizations that could be

public are not shared, simply because their data sources cannot be shared due to various

regulations and policies. Sometimes, we see non-interactive visualizations of a protected

dataset, but never see an interactive version online, simply because the website would require

direct access to the dataset.

Separating a visualization from its data creates an opportunity to look at the privacy and

security aspect of visualizations. An interactive Loom visualization only contains images,

making it safer to share. Additionally, it is possible to encrypt certain frames and only

enable them for authorized users, providing a finer control on privacy.

In our current prototype, Loom uses AES encryption to encrypt video frames. The

archivist can select frames using a query on their target description and choose to encrypt

those frames. The frames are extracted from the video into a separate encoded file. The

remaining Loom video will no longer support the extracted interactions, unless patched with

the decrypted file. Loom uses the OpenSSL implementation of AES, however other types of

image encryption techniques can also be used.

While a data-connected visualization can also encrypt its dataset, it will be required to

decrypt all or most of it at runtime to create the interactive visualization. However in Loom

visualizations, a frame will only need to be decrypted if the user has authorization to view

it.

4.2 Applications

4.2.1 Archiving Journalistic Visualization

Unlike many other types of media that can be easily saved as images, videos, or PDFs,

interactive visualizations are often difficult to be archived. For example, visualizations used

in online data journalism are often bound to a news agency’s servers and can be taken down

at any point.
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Figure 4.9: A Loom object in the browser showing the 2014 Soccer World Cup visualization
from the New York Times. The visualization no longer depends on the original website or the
data source, yet is fully interactive. The bounding box of the selected targets are highlighted
in red in the top image.

Using Loom with the video option, many types of interactive visualizations can be saved,

archived, and then independently used long after the original visualization has become

inaccessible. Figure 4.9 (B, C) shows a visualization from the New York Times [68], that

has been captured using Loom and re-opened in a Chrome browser.

The complete graph in the visualization has 628 interactive nodes that highlight

connected neighbors when hovered on. The size of the resulting Loom object is 5.5MB.

Selecting 628 nodes using LOA can be a tedious task. In this example, we used Loom’s

magic wand and smart selection to assist in selecting the interactive elements of the page.

Figure 4.9 (A) exposes the boundary of the selections.

Although the size of the Loom object is 5.5MB, the full Loom video is not downloaded

to the client immediately. Loom utilizes HTML5’s video streaming and only loads a small

portion of the video when the page loads. As the user interacts with the visualization and

as a result, seeks to the various frames of the video, the remaining portions are downloaded.

Therefore, unlike the original version of the visualization that requires loading and running

many assets and algorithms, the Loom object becomes available almost immediately when

the page starts. This serves as a proof of concept for progressively streaming an application.

4.2.2 Capturing Large Scientific Visualizations

To showcase Loom’s capability on capturing interactions with scientific visualization, we

picked the Paraview application as a subject, and opened a volumetric heptane dataset in
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Figure 4.10: A reconstructed version of the Paraview interface in the Chrome browser. In
this example, the volume can be freely rotated using Loom’s arcball extension (A). The two
tabs at the top (B, C) change between volume rendering and surface rendering modes. The
Loom object for these interactions is approximately 10MB.

Paraview. The dataset had a size of 105MB. Figure 4.10 shows Paraview with the heptane

dataset reconstructed within a browser.

One of the most widely used types of interaction in scientific visualization is 3D rotation

around an object. To support this, we added a custom action as an extension. In the capture

stage, the action simply uses the mouse to exhaustively drag around an object in Paraview in

an organized way. The action first rotates the object so that the camera looks at the zenith.

It then rotates the object around the X axis towards the nadir. Loom takes screenshots

along the way. Going from zenith to nadir once spans 180 degrees. The action script then

re-centers the object, and incrementally rotates the object along the Y axis and continues

the first step again. This process continues until the complete object has been captured.

Figure 4.10 contains two fully rotational targets in the middle of the screen.

In cases where one has access to the underlying application’s API, one can rotate the

camera or the object with incremental angles in the custom action script. However, in the

case of this example, we aimed for an application-agnostic way of capturing the rotations

around an object. Due to this lack of access to the underlying application in this case, we

initially measured how many pixels the cursor must travel to complete 180 degrees around

the object in our Paraview instance, and then used this to complete the rotations in our

custom script. Our action script takes 500 images around an object. That is 20 intervals
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around the object, each of which includes 25 images from the zenith to the nadir of the

object.

In the reconstruction stage, the extension implements a standard arcball algorithm that

maps mouse movements to the 500 captured images based on the yaw and pitch of the arcball

algorithm. In our example with Paraview and the heptane dataset, we included two sets of

rotations, one for a volume rendering and one for a surface rendering. Figure 4.10 shows

the reconstructed Paraview interface within a Chrome browser. What the user sees in the

browser is a single frame of the Loom video showing a screenshot of Paraview. Clicking

on options B, and C switch between volume rendering and surface rendering. For each

option, the rendering in the middle of the screen updates appropriately and can be rotated.

As a user drags the mouse cursor on the rendering, their mouse movement is converted to

angles using the arcball algorithm. The angles are then mapped to the appropriate image

among the 500 captured images from the object, and the image is shown to the user. It is

important to note that this is a quantization over the possible rotations around the data and

is less smooth than the original experience. However, it stands as an example of complex

interaction reconstructed in the browser using Loom, independent of the original data and

application.

4.2.3 Capturing Information Visualizations

Throughout the years, many visualizations have been created using Adobe Flash. The

discontinuation of Flash and its lost support in modern browsers, makes them a great

candidate for archival. Figure 4.11 shows LOA on top of an Flash-based information

visualization from the Senseable City Lab at MIT [6].

The visualization shows medical record data. The circular keywords in the visualization

have been captured with the assistance of the smart selector. The complete Loom object

includes 336 targets created in 3 workspaces. The size of the Loom object is 4.2MB.

As another example for information visualization, Figure 4.12 shows a more complicated

version of the Tableau superstore example in Section 4.1.
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Figure 4.11: The Loom Overlay Application is shown on top of an Adobe Flash
visualization. The Loom object includes 336 selected targets and has a size of 4.2MB.

Figure 4.12: A Loom object of the Tableau superstore dataset is shown in the browser. An
interactive map and clickable tabs are shown in (A). A functional dropdown that changes
the order of the data is shown in (C). Three different line graphs can be picked in (D). The
action tree of the Loom object can be seen at the bottom. All of the interactions resulted
in a 2.6MB file with 72 frames at a resolution of 2560x1600.
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Figure 4.13: The effect of H.264 compression on two Loom objects is shown. The size of
the object is at a minimum, 38 times smaller than the raw images. This is mainly due to
the similarity between consecutive frames.

The final Loom object included 72 frames with an interactive US map visualization, 10

tabs with various static visualizations, and a dropdown with 3 buttons. The resulting object

had a size of 2.6MB at a resolution of 2560x1600.

4.3 Results and Discussions

In contrast to typical videos, subsequent frames in the videos of Loom objects are extremely

similar to one another. This results in great compression of the frames and small Loom

objects. Figure 4.13 compares the compressed and uncompressed versions for two Loom

objects that included volumetric visualizations in Paraview. We can see that Loom objects

are 38 times smaller when compressed, compared to the raw images.

The size of Loom objects change not based on the size of the visualized data, but by the

amount of interaction that a user needs. This provides an alternative control on the size of

visualizations.

Based on the definitions in [21], an interaction is an action by a user with an intent to

change the state of an application. Every frame in a Loom video is a new visual response to

a state change. Therefore, to quantifiably measure the amount of interaction Loom provides,

we consider each frame an interaction.

Although increasing the number of interactions also increases the size of Loom objects,

it can also help with video compression. In Table 4.1, the Loom video size and the number
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Table 4.1: Results of comparing a Loom object’s video size and the number of interactions
it provides (measured as new frames). The similarity between frames in cases where there
is more interaction has contributed to how well the video compresses. In all cases, the cost
of adding an interaction to the object was less than 40KB.

Test Case Loom Video Size (MB) Number of Interactions KB/Interaction
New York Times 5.5 628 8.96

Tableau Superstore 2.6 72 36.97
Senseable City Lab (Adobe Flash) 4.2 336 12.5

Paraview (two 3D rotations) 9.9 1003 10.10
Paraview (two 3D rotations + clipping) 14 1015 14.12

of interactions for five different test cases is shown. Additionally, the KB/Interaction

ratio shows how much an interaction is taking space in the Loom object. The Tableau

examples have much less interaction and subsequently less number of frames. However, their

KB/Interaction ratio is much larger than the Paraview examples that compress better. This

is simply because the frames that involve 3D rotation are not drastically different from one

another.

In the Table, we can also see the effect of adding new types of interactions. The last row

shows an example that includes a clipping interaction that clips a surface rendering. The

added detail of the surface renders has affected the KB/Interaction ratio.

Despite these relationships, it is important to note that in all of our tests, the ratio was

always below 40KB per interaction.

Loom’s UI-bot periodically waits after every interaction in order to let the underlying

visualization update if it needs to. It also waits after every mouse movement to prevent

incorrect mouse clicks. Therefore, generating Loom objects takes time depending on the

number of interactions. The most time consuming case in our examples was for the Paraview

object with two full 3D rotations and a surface clipping slider action. Loom’s UI-bot took

approximately 40 minutes to capture the interactions. That is less than 2.5 seconds wait

time between every two interactions. The duration of the waitings can be changed in Loom.

4.3.1 Limitations

Making a visualization independent of the original code and data via pre-rendering can

induce some limitations on the types of interactions possible. While many application states
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Table 4.2: Loom’s support for different types of interactions based on the taxonomy of
Brehmer et al. [23] is shown. In general, discrete interactions can be captured, while
continuous and undetermined interactions cannot be captured by Loom.

Taxonomical Unit Support Comments
Select 3 Discrete Selections Supported
Navigate 3 Navigations such as panning are supported if discrete
Arrange 3 -
Change 3 -
Filter 7 Filtering is usually undetermined (based on user input)
Aggregate 7 Aggregation typically exponentially increases the state space

can be captured, there can only be a finite amount, making it impossible to completely

replace Turing complete code. Therefore, it is important to discuss what is and what is not

possible to capture with Loom.

Many works have introduced interaction taxonomies and organized the types of interac-

tions used in visualizations. With regard to the taxonomical dimensions of interaction [90],

Loom supports stepped, passive, and composite interactions and does not support continuous.

As mentioned in Section 4.1.4, some continuous interactions can be imitated with discrete

alternatives. For example, scrolling can be discretized such that the application scrolls in

steps. We classify Loom’s interaction types with regard to the taxonomy of Brehmer et

al. [23]. Table 4.2 shows the results. In essence, Loom supports interactions that are

pre-determined and discrete.

4.3.2 Comparison to Virtual Containers

There is a tradeoff between Loom and other application archival options such as virtual

containers (e.g. Docker). On one hand containers can provide the entire ecosystem needed

for an application meaning that complete interactivity is preserved. On the other hand,

containers require the entire data and application to still be present within an operating

system along with all requirements installed. The size of the containers can quickly rise.

Loom alleviates this at the cost of reducing the possible interactions. Moreover, Loom

provides a mechanism with which offline visualizations can be partially available online

without the need of any server, whereas containers make it more difficult to access a
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visualization even in offline modes often requiring internal network configurations and display

forwarding to run a graphical application.

4.3.3 Comparison to the Web

Web-based information visualizations of small datasets are sometimes independent of

external data sources and servers by default, making it easy to simply save the files for

archival. However, most visualizations rely on technology and language standards that

change often. When these technologies become obsolete, browsers remove their support and

the visualizations fail to run. This has been seen in the discontinuation of Adobe Flash [9]

as well as frequent changes in the Javascript and WebGL standards. While Loom also uses

Javascript, it relies on the idea of showing images, a very basic structure that can live on for

a very long time. Even without the proper Loom code, individual visualization frames are

still retrievable from Loom objects.

4.3.4 Suitability for Visualization vs. Other Applications

Visualization applications often rely on external and pre-defined data sources. This creates

a unique opportunity for systems like Loom. Loom cannot be used with general utility

applications such as Microsoft Word simply because their data source is provided by users

(i.e. text) at runtime and is not pre-determined. Moreover, the types of interactions

with visualizations are well- and pre-defined, making capturing much simpler. General

applications on the other hand support interaction with components that are created on

the fly based on user data.
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Chapter 5

Delivering Volumetric Visualizations

in Real-time

While Loom pushes the boundaries of pre-rendering, the resulting visualizations can suffer

from low interaction fidelity and limitations in explorability. When it comes to volumetric

data that is often used in scientific visualization settings, explorability, and high fidelity are

very important.

In this chapter, we present Tapestry as a different implementation of a Fabric-based

architecture. Tapestry delivers explorable scientific visualization of volumetric data to the

web. It incorporates an active kernel that renders visual responses live and sends them to

the client-side.

Different from Loom, the visualization requests in Tapestry take the form of conventional

visualization parameters as opposed to simple frame numbers. Additionally, due to the

high interaction fidelity provided, the client’s state machine in Tapestry takes the form of

Javascript functions.

5.1 Architecture Design

As a Fabric-based architecture, Tapestry decouples the client and the server and separates

the application space from the system space.
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We do so by formalizing rendering requests as a reduced and restricted interface, and the

only interface, between the two spaces. As shown in the system diagram (Figure 5.1), the

generation of rendering requests in the application space is asynchronous and distributed. On

the server side, rendering requests are automatically distributed to many disparate endpoints

through typical web server load balancers and ensures scalability.

The application space maintains the dynamic states related to the application and

interaction. The system space is dedicated to answering rendering requests and stays stateless

without maintaining any application state information.

The two spaces have different life cycles. The system space stays up as long as the

cloud service is up. The application space exists as individual instances, with one instance

per each session when a user accesses the application, e.g. a web page with embedded 3D

visualizations. The application space can have many instances. The system space is a single

entity shared by all instances of the application space.

In the application space, a hyperimage is the universal interactive visualization object.

Each hyperimage is controlled by an attached Tapestry object in JavaScript, which presents

the 3D interactions and automatically requests services from the server, by way of issuing

rendering requests. Details in Section 5.1.1.

The system space is cloud hosted on a cluster of nodes. These nodes comprise a Docker

Swarm [5]. The swarm abstracts handling of rendering requests into a cluster of microservices

implemented in virtualized containers, which the swarm manages altogether as a collection.

The system also includes elastic task handling, request routing, and automatic resource

scaling. Details in Section 5.1.2.

Connections between the two spaces are simple, short, and transient rendering requests.

An application instance can generate many rendering requests concurrently. The system

space can answer a large amount of rendering requests simultaneously. The system space

does not relate one rendering request with another, and treats each request independently,

even when the rendering requests are from the same application instance.
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Figure 5.1: The Tapestry system architecture, which separates the application space and
system space.
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Figure 5.2: Hyperimages reside in the DOM. In the application space, each hyperimage
element is paired with a Tapestry object, which handles user interaction and communicate
with the Tapestry server.

5.1.1 Application Space

Using Tapestry, the presentation of the visualization resides in a desktop/mobile web browser

as an embedded object.

Within a browser, we could consider using the HTML5 canvas or the 3D-enhanced

WebGL canvas [37]. However, we chose to use a simple image tag (<img>) instead for several

reasons. First, HTML5 and WebGL canvases are heavyweight elements with initialization

costs. Their performance also relies on the user’s hardware. Second, the output of many

visualizations is an image and therefore an <img> tag is a natural medium that does not need

any post-processing and is widely used across the web ecosystem. We refer to our enhanced

<img> tags as hyperimages.

Control of Visualization Objects

Figure 5.2 shows a closeup of Tapestry’s application space in a web setting. An application

can use as many hyperimages as the developer desires. In this example, we show a single

hyperimage in the DOM, but multiple may be present. In essence, a hyperimage is a simple

<img> tag with extended capabilities. As a user interacts with a hyperimage, a controlling

JavaScript object generates and submits rendering requests to the server automatically,

updates the received renders and updates the hyperimage’s src attribute.

The Graphics Context (GC) of each hyperimage is controlled by an attached Tapestry

object in the tapestry.js JavaScript code. The GC information includes: camera

management through arcball, an image buffer for received images, event handlers and a
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list of other hyperimages that may be linked to the object. Optional settings such as initial

camera position can be sent to the Tapestry constructor if needed.

Listing 5.1: Sample code for adding a hyperimage into a webpage

<script > $(".hyperimage").tapestry ({}); </script >

<img class="hyperimage" data -dataset="supernova"/>

Listing 5.1 shows the full HTML code to embed a 3D visualization on a web page.

The second line of Listing 5.1 shows a simple hyperimage of a supernova. The class

attribute identifies the tag as a hyperimage, and the dataset being rendered is added in

the data-dataset attribute. Note, data-* is the standard prefix for custom attributes in

HTML5 [101]. Hyperimages become interactive by replacing the source attribute of the tag.

When the user is not interacting, a hyperimage is effectively a simple image.

For time varying data, a hyperimage can take an optional data-timerange attribute.

The value of this attribute represents the time step range through which the volume can

animate. This range is formatted as <integer>..<integer>. For example, a value of 5..15

would mean that the hyperimage cycles through time steps 5 to 15 when animated.

In addition to mouse and hand gestures, Tapestry allows a customizable type of

interaction: hyperactions. Hyperactions provide a way for the DOM to manipulate a

hyperimage without user intervention. A simple use case of a hyperaction is a hyperlink

in a text that rotates a hyperimage to a specific viewpoint. Hyperactions essentially provide

a simple connection between textual content and volume renderings. Any standard DOM

element can be converted to a hyperaction by adding three attributes: the class hyperaction,

a for attribute that denotes which hyperimage should be associated with the action, and a

data-action attribute describing the action itself. For example, a hyperlink that sets the

camera position of a hyperimage is shown in Listing 5.2.

When clicked on, this hyperaction sets the camera position of the hyperimage with the

id of teapot1 to (10, 15, 100). A list of supported actions and their syntax is shown in

Table 5.1. The logic behind what hyperactions do is also controlled by Tapestry objects.

When a Tapestry object is initialized, it looks at the DOM for hyperimages and their
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Table 5.1: Tapestry’s list of supported hyperactions

Action Description

position(x, y, z) Sets the position of the camera
rotate(angle, axis) Rotates the camera angle degrees about the given axis
zoom(z) Sets the relative camera Z position
link(id1, ...) Links the viewpoint of other hyperimages to the current hyperimage’s

camera
unlink(id1, ...) Unlinks the viewpoint of other hyperimages
play() Animates the time steps of a time series dataset
stop() Stops the time series animation
time(t) Changes the timestep to t
switch config(name) Switches to a new hyperimage configuration

corresponding hyperactions and sets up event handlers for the hyperactions’ action. Two

example applications in Section 5.2 make use of hyperactions.

Listing 5.2: An example hyperaction that sets the camera position to the given position

for the teapot dataset.

<a class="hyperaction" for="teapot1" data -action="position =10 ,15 ,100">a

new viewpoint </a>

Generation of Rendering Requests

The DOM defines the structure of a web page, and the JavaScript provides interactivity and

control. The relationship between a hyperimage (a DOM element) and the related Tapestry

object is no exception to that. When a user interacts with a hyperimage through mouse or

touch gestures, the corresponding Tapestry object manages callback functions and generates

rendering requests as needed. While interaction is happening, it continues to send new

requests to the server-side and asks for updated renders.

During interaction (e.g. when rotating), the object requests interaction resolution images

(2562 by default) to allow for smoother movement. When interaction stops, the object

requests a viewing resolution image (10242).

Rendering requests are sent using the HTTP GET method. As a result, renderings

can be saved or shared after interaction just like any image with a valid address. A

rendering request takes the form of http://HOST/DATASET/POS X/POS Y/POS Z/UP X/UP Y/

UP Z/RESOLUTION/OPTIONAL. The DATASET parameter denotes which configured dataset

should be rendered. The camera position is given by <POS X, POS Y, POS Z>, and the

up vector is given by <UP X, UP Y, UP Z>. RESOLUTION denotes the rendering’s resolution.
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Finally, additional optional parameters can be added as a comma separated string of key-

value pairs. For example, to specify the time step in a temporal series.

Listing 5.3: Two rendering requests for a well-known supernova simulation [21]. The

values represent camera position, up vector, and image size, respectively. The second request

includes an optional time step parameter.

http://host.com/supernova /128.0/ -256.0/500.0/0.707/0.0/0.707/256

http://host.com/supernova /128.0/ -256.0/500.0/0.707/0.0/0.707/256/

timestep ,5

Tapestry objects also control the volume of rendering requests. For example, a user’s

mouse can typically emit up to 125 move events per second (on a common 125Hz mouse).

We set a default policy: let every fifth event trigger a rendering request. This policy generates

up to 25 rendering requests per second.

Due to the minimal interface between the client and server, requests can also be generated

in batches and by scripts, for more complicated applications. Section 5.2 shows this in more

detail through several applications.

Non-Invasive Embedding

From an application developer perspective, Tapestry provides non-invasive integration in

clients. In other words, it is simple to integrate and customize and does not cause any global

changes in the host web application.

More specifically, hyperimages in the client are self-contained and do not share state with

each other. This means that they can be independently added or removed in a page.

Another aspect of non-invasiveness are hyperactions. Hyperactions are behaviors, not

objects. In other words, they can be added to a variety of HTML elements (e.g. buttons,

hyperlinks, images, etc.) and enable interaction with a hyperimage. Those HTML elements

can be freely styled and edited by the developer.

Users of scientific visualization often need to tweak and edit visualization tools to add

new capabilities. To facilitate this, the Tapestry server can take an optional app directory

as input at runtime. JavaScript, HTML, or CSS source code in the app directory overrides
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Figure 5.3: A container is the basic processing unit in Tapestry’s system space. Each
container runs an instance of the hyperimage server.

those of Tapestry’s default, allowing for easy hot-swappable functional changes. In other

words, client-side changes to a user’s application do not require a re-compile or restart of

the Tapestry service.

5.1.2 System Space

The sole concern of the system space is to process rendering requests. It is a task-parallel

computing system, using distributed resources that auto-scale on demand.

In system space, we make a distinction between a physical node, a Docker container, and

a hyperimage server instance. A physical node refers to the real machine on which multiple

Docker containers may be launched. There may be multiple physical nodes. A Docker

container is an in-memory virtual operating system.

Figure 5.3 shows a single Docker container. Each container includes an instance of a

hyperimage server, which is a web server that manages attributes of given datasets, and

handles any rendering requests it receives in sequence.

Container-Based Rendering Services

Virtualization and containerization are classic concepts in software architecture [69]. Open-

source software container platforms have become popular, including for HPC computing

services [94].
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We chose Docker [5] containers because they are lightweight, and provide a robust and

simple interface. Each Docker container includes a small, stripped-down version of an

operating system as well as all the dependencies needed to run an application independently.

Multiple containers can run on the same node.

Each physical node runs a local Docker daemon, which manages all running containers

on that node. Across nodes, we use Docker Swarm as another layer of abstraction on top of

a collection of physical nodes, allowing a pool of containers to have unified entry points as

well as leverage Docker Swarm’s load balancer.

In Tapestry, each Docker container is based on a stripped down version of Ubuntu, which

runs a hyperimage server instance inside. The Docker Swarm Manager monitors and manages

the containers, routes incoming rendering requests, and load balances the containers using

its internal Ingress load balancer [55].

When a hyperimage server starts, it loads all pre-configured datasets into memory using

a memory-mapped loading operation. In other words, containers that reside in the same

worker node only load the data once and only during system startup.

Hyperimage Server and Data Attributes

A hyperimage server is initialized once and lives for the lifetime of the cloud service.

A hyperimage server takes a configuration directory during initialization. All valid

configuration files – properly formatted JSON files – within this directory are used to provide

data attributes for the server instance. These configuration files, provide basic information

about the datasets. An example configuration file is shown in Listing 5.4.

Listing 5.4: Example configuration file providing data attributes

{

"filename" : "/path/to/data/magnetic.bin",

"dimensions" : [512, 512, 512],

"colorMap" : "cool to warm",

"opacityAttenuation" : 0.5,

"backgroundColor" : [38, 34, 56]

}
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The configuration files are a list of key-value pairs. A complete list of keys and possible

values for configuration files can be found in our previous work [74]. These parameters

are standard visualization data attributes. Basic information about the dataset, such as

filename and dimensions are required, but most others are optional and can revert to

default values. Different transfer functions require different configuration files. However,

they can all point to the same dataset. Memory-mapping assures that the dataset used by

different configurations are only loaded to memory once for each node.

Additional configuration keys available also include isosurfaceValues and specular to

control isosurface rendering if desired. Note that Tapestry uses OSPRay’s implicit isosurface

rendering to provide images of surfaces. Implicit isosurfaces avoid the need to explicitly

compute and store surface geometry, which allows the server to remain stateless.

Currently, the server handles raw binary and NetCDF files, two common formats for

scientific data. The filename provided may be a path to a single file, i.e. a static volume,

or a path with wildcard characters to describe multiple volumes, i.e. a time-varying

series. Example filenames for a time-varying series could be: "∼/supernova/*.bin" for all

available time steps or "∼/supernova/time [2-7].bin" for 5 specific time steps.

During initialization, the datasets referred to by the configurations are loaded. Since

each physical node may run multiple server instances, we memory-map the datasets when

loading. This allows the physical node’s host operating system to maintain an in-memory

map of a file that can be given to each server instance. This reduces I/O costs and allows

using multiple configuration files to reference the same dataset without additional overhead.

Attributes about the dataset from the configuration, such as transfer function or data

variable, are kept alongside the reference to the data. Multiple configuration files may

reference the same dataset, for example, using varying transfer functions. This flexibility

allows for more power in the rendering requests.

Handling of Rendering Requests

After being routed from a unified endpoint to a specific Docker container, a rendering request

is handled by a hyperimage server. Rendering requests from the client ask for an image URL

in which various parameters are embedded. Image requests are processed by the C++ web
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server, built with the Pistache library [60], by first parsing the options and then rendering

the requested image using the OSPRay renderer.

Each incoming rendering request contains the dataset, camera position, up vector, the

resolution of the render, and potentially time-step. Camera and renderer settings are updated

accordingly.

OSPRay performs the rendering according to the above parameters. The life-cycle of

the OSPRay rendering objects in each server are equal to that of the hyperimage server

itself. Data and rendering attributes are pre-configured per volume during hyperimage server

initialization. When the render completes, we composite the OSPRay framebuffer onto the

appropriate background color and encode as a JPG image. There is no need to store the

image to disk on the server, so the encoding is done to a byte stream in memory. At this

point, all information about the camera position and other dynamic state parameters are no

longer needed nor held.

The web server sends the rendered image as JPG byte stream (e.g. image/jpg MIME

type) from the rendering module. The Docker Swarm Manager, which routed the request

to this container, handles responding to the appropriate user. The hyperimage server itself

remains oblivious to whom it has communicated with.

Elastic System Operation

Job Assignment and Runtime Management.

Using a single container, rendering requests from n users will be queued up by the web

server. Each request will occupy the container until rendering and network transfer of the

image is complete. With multiple containers, any container available can be selected for any

given rendering request. Sequential requests from a single user can be routed to different

containers on different physical nodes. This has two main benefits: (i) new rendering requests

can be processed while other requests are blocked for I/O, network transfer, or rendering;

and (ii) elastic routing provides fault tolerance when a hyperimage server or physical node

goes down.
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The volume of rendering requests is variable over time and hard to predict. We monitor

the current load on all containers and scale the number of containers up or down accordingly,

through the runtime manager (RM) shown in Figure 5.1.

Our RM, like RMs on typical cloud platforms, implement elasticity by periodically

checking CPU usage across all containers, and start new containers or close idling containers

as needed. In our previous work, we showed how Tapestry leveraged such auto-scaling on an

institutional cluster [74]. In this work, we deploy Tapestry on Amazon AWS as a microservice

and, to this end, benefit from Amazon’s auto-scaling RMs transparently.

Cache Container. In each physical node, we have added an Nginx cache container

intercepting all messages between hyperimage servers and the outside. In a completely

transparent manner, this enables caching for the Tapestry microservice instances. Server

responses are now cached based on the incoming request. This improves efficiency and

scalability for many use cases. For example, commonly used view angles, isovalues, etc.

in repeated batches of renderings for hypervideos and tiled renderings can now be simply

reused, saving hyperimage servers to handle new rendering requests. Note that client-side

caching inside web browsers also take place transparently by browsers themselves.

Controllable Granularity. Tapestry’s server-side is a task-parallel engine. As known

for task-parallel systems in general, the granularity of the tasks can affect the parallel

efficiency of the overall system. In this work, we have added a tiling mechanism to Tapestry

as an option so that an application can choose to use finer granularity to achieve better

performance.

With tiling, a single hyperimage can be divided into many <img> tags on the client-side.

Each tile represents a portion of the final render and is rendered on a different container

in parallel to other tiles. Using tiling, the client-side creates a render request for each tile

and sends them to the server-side. Once the response comes back, the appropriate <img> is

updated with the result.

The setting “tiling,TILE NUMBER-N TILES” is an optional parameter in the rendering

request to specify tiling. For example, tiling,0-16 denotes that the rendering request is

for the first tile out of a 16-tile render. Once this rendering request reaches a hyperimage
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server, the server calculates the portion of the volume that it needs to render and updates

the OSPRay camera’s clip space.

When rendered tiles are returned to the client-side, the tiles are placed in the DOM in

their own corresponding <img> tag. Because each tile request can be sent independently

and routed to the correct position in the hyperimage, there is no explicit compositing step

required. That is, we provide stitch-free tiling.

Multiple Endpoints. Docker Swarm uses an Ingress load balancer [55]. The setup

allows any physical node to be an endpoint for incoming requests. The requests are then

routed to a free container. As a new addition, in this work, we have added support for

multiple endpoints in the client (tapestry.js). The host parameter in a Tapestry object

can be set to an array of host addresses. Endpoints are then chosen using a round-robin

approach in the client in Tapestry objects. This achieves two purposes. First, the problem of

bottlenecking at a node’s inbound traffic is alleviated. Second, browsers typically only open

a limited number of sockets per host address (e.g. Chrome currently defaults to opening

6 connections per destination host (endpoint) [3].) By using multiple endpoints, Tapestry

objects can take advantage of more open sockets.

In the case of Amazon’s cloud, AWS also has a load balancer that provides the same

effect as Docker Swarm’s and is called the Elastic Load Balancer (ELB). Multiple ELBs can

target the same set of machines to provide a similar effect on AWS as on our institutional

Docker Swarm. The address of the ELBs can be used as endpoints in Tapestry clients.

5.1.3 Deployment on Institutional Clouds

Tapestry’s source code comes with a command-line interface (CLI) named tapestry.sh that

simplifies setting up and running the backend on institutional clouds. Linux and Docker

Swarm are the only requirements for running the Tapestry system. With Docker Swarm

installed, users can simply run ./tapestry.sh build and ./tapestry.sh run to run the

system. Since Tapestry is built inside Docker containers, the build is guaranteed to be

successful on machines that run Docker. In that regard, Docker has simplified portability.

The command-line interface also contains other sub-commands such as scale (for manually

scaling the system), example (to download and run the examples), cache report (to view
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the number of cache hits and misses) among others. Extra features of the interface can be

seen using the help subcommand.

5.1.4 Deployment on Amazon AWS as a Microservice

Although the achieved performance metrics on public clouds may be lower than on

institutional clouds, public facing cloud platforms, such as Amazon AWS, provide true

Internet-scale availability and accessibility at very affordable cost levels.

To create a Tapestry service on AWS from scratch, only a few steps are needed. AWS

provides a load balancer that is instrumental in distributing rendering loads across multiple

machines. For the setup, an AWS load balancer needs to be started with its listening port

set to a publicly accessible port for the service; typically the default HTTP port 80. The

load balancer must then be configured to forward traffic to some alternative port (e.g. 8080).

After that, an AWS Elastic Container Service (ECS) service can be created. Tapestry’s

Docker image then needs to be uploaded to Amazon’s cloud-based registry and needs to

include any necessary data and configurations. The ECS service needs to point to this image

and use the previously specified private port (8080). Finally, the user needs to scale the

service as necessary; often a higher number than would be used on an institutional cloud

because AWS shares the resources with other users and services.

In studying the performance of Tapestry on Amazon AWS, we were mostly interested

in choosing the optimal type of machine and measuring the price for a desired frame-per-

second performance. In our tests, we spawned various numbers of different machines and

sent rendering requests of different image sizes and measured the round trip time. As

a summary of the outcome, we found to support a large number of simultaneous users,

using a large number of small T2 type instances is more cost effective. However, for super

resolution renderings for a few users, the Compute-Optimized machines are more suitable.

More detailed results are shown in Section 5.3.4. Additionally, to simplify usage on cloud

services, we have released a Docker image of Tapestry 1.

1https://hub.docker.com/r/seelabutk/tapestry
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5.2 Applications

In this section, we describe three application development settings enabled by using the

Tapestry microservice. Specific application performance results are in Section 5.3.6.

5.2.1 Embedding Visualizations into Web Pages

Hyperimages can be easily added to a web page using HTML tags and a short JavaScript

function call. To integrate hyperimages into a page, the developer must include the

tapestry.js file and its dependencies: arcball.js, sylvester.js, math.js and jQuery.js. Then, one

line of JavaScript needs to be called to initialize all hyperimages: $(".hyperimage").tapestry();

This call creates a Tapestry object per hyperimage tag. Parameters such as default size

of the hyperimage and camera position can be sent to the object through the constructor.

Time-Varying Data Animation (Wikipedia Example)

Listing 5.5 shows the changes needed to include a hyperimage of a time-varying dataset into

a Wikipedia page.

Figure 5.4 shows the Wikipedia page on tornadoes after the modification. The page

includes a hyperimage linked to a series of time steps from a tornado simulation dataset.

Two hyperactions can be seen in the code. Users can click a hyperaction to play or stop the

animation, while still having the ability for 3D interaction with the volume rendering.

Listing 5.5: Code for adding a hyperimage of a time varying simulation into the Wikipedia

tornado page.

$(".hyperimage").tapestry ({

"host": "http :// host.com:port/",

"width": 256, "height": 256, "zoom": 300, "n_timesteps": 20

});

<img id="timeseries" class="hyperimage" data -volume="tornado"

data -timerange="0..20"/>

<a class="hyperaction" for="timeseries" data -action="play()"></a>

<a class="hyperaction" for="timeseries" data -action="stop()"></a>
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Figure 5.4: Left: embedded a volume rendering of tornado (dataset details in Table 3) in
a Wikipedia page on tornadoes. Users can start and stop an animated temporal sequence.
Right: The same page also works on mobile phones. The page used to hold a static image
showcasing the shape of a stovepipe tornado. Now users can interactively see the temporal
progression of the natural phenomenon.

Multiple Linked Views (NASA Example)

Here we show a NASA educational outreach page explaining supernovae. The relevant code

changes are in Listing 5.6. The modified page is shown in Figure 5.5.

The page now contains four hyperimages showing consecutive time steps of a supernova

simulation. The views can be linked and unlinked with the hyperaction in the caption. When

linked, all four hyperimages move together when a user interacts with any one of them.

5.2.2 Controllable Movies of Scientific Visualization

By unifying the interface of the Tapestry microservice as simple rendering requests, we

can achieve more complex application logic, for example, for making movies of scientific

visualization.

Traditionally, making a visualization movie requires creating the keyframes first. Then,

a movie is created by rendering all of the intermediate frames sequentially. Making changes

to an already-made movie requires a user to have access to significant computing resources,

and is usually a very time consuming process.
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Figure 5.5: Embedding four time steps of a supernova simulation into a NASA educational
web page (dataset details in Section 5.3). The four hyperimages (bottom right) can be linked
or unlinked using the hyperaction in the caption below it. Previously, the page had only
a static figure (top right) showing an artist’s rendition. Now users can also interactively
explore how a supernova evolves over time.

Listing 5.6: Code needed to insert the four linkable hyperimages and hyperaction into

NASA’s supernova web page

<script >

$(".hyperimage").tapestry ({

"host": "http :// host.com:port/",

"width": 128, "height": 128, "zoom": 300

});

</script >

<img id="s1" class="hyperimage" data -dataset="nova1" />

<img id="s2" class="hyperimage" data -dataset="nova2" />

<img id="s3" class="hyperimage" data -dataset="nova3" />

<img id="s4" class="hyperimage" data -dataset="nova4" />

<a class="hyperaction" for="s1" data -action="link(s2 ,s3 ,s4)"></a>
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Using the Tapestry microservice, we can make the movie-making process interactively

controllable by a user from within a simple web browser. While offloading all rendering tasks

to the microservice, we simplify the application space of the movie-making process to just

the textual representations of the keyframes (i.e. the corresponding rendering requests). We

call these application-space constructs, hypervideos.

Hypervideos can be embedded in HTML with the class attribute set to hypervideo,

and their data-keyframes set to a JSON file. Alternatively, developers can set the

data-keyframeid attribute to the id of a script tag that contains the JSON. Listing 5.7

shows an embedded hypervideo with two keyframes.

Using and interacting with hypervideos is different from traditional movies in important

ways.

First, each keyframe can be presented on a web page as a hyperimage, which has all of

the interactivity described in Section 4.1, including allowing the user to alter the keyframe

by changing the view. The generation of intermediate frames is automatic. We use linear

interpolation for changes in timesteps, isovalues, and zoom levels; we interpolate camera

rotations using slerp [86].

Listing 5.7: Sample script for a hypervideo with two keyframes

<script id="video" type="text/json">

{

"keyframe0": {

"rotation": [-0.72, 0.30, 0.62, 0.51, 0.83, 0.19, -0.46, 0.45, -0.75],

"zoom": 500, "timestep": 0, "isovalue": 0.2

},

"keyframe1": {

"rotation": [0.44 , -0.16, 0.88, 0.43, 0.90, -0.05, -0.78, 0.40, 0.46] ,

"zoom": 200, "timestep": 20, "isovalue": 0.7

}

}

</script >

<div class="hypervideo" data -keyframeid="video" data -dataset="supernova"

></div >
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Figure 5.6: A webpage for creating and manipulating hypervideos. A user can add
keyframes, edit existing keyframes, and export movies. Editing the movie can be to modify
camera angle, time step, isovalue, color map, etc.

Second, in a traditional movie, only the keyframes are controllable. In contrast, due

to the Tapestry microservice treating all rendering requests in the same way, we turn each

individual frame in the movie into a hyperimage. In this way, when a viewer watches the

movie, he or she can pause the movie at any time to interact and navigate around the dataset

freely.

Third, because of the microservice’s availability, the movie, i.e the hypervideo, can remain

text-only, and hence remain compact, easily editable, sharable, and version controlled. In

addition, while changing number of frames, screen resolution, splitting and re-joining movies

etc., are hard for traditional movies, they are trivial tasks for hypervideos.

For creating hypervideos, Figure 5.6 shows a GUI that is essentially a web page. A user

can interactively add and control the key frames. When the keyframes are set, the user

can play the animation or export the video in the form of JSON text or as MP4 (rendered

and encoded server-side using ffmpeg). At all times, the Tapestry microservice serves as the

rendering engine.

The performance of hypervideo renderings is presented in Section 5.3.6.
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Figure 5.7: A volume rendering of the turbine blade dataset shown through HoloLens.

5.2.3 Augmented Reality and Power-Wall

The endpoints of the Tapestry microservice is served by Docker Swarm following standard

HTTP protocols. This kind of generality allows any application to simply access the

endpoints (e.g. via Linux’s curl). When using the Tapestry microservice, the application

space does not have to be related to web browsers at all. We further provide two

demonstrative examples as follows.

For the first example, we developed HoloTapestry, a C# application for augmented reality

using the Tapestry microservice. This prototype runs on a Microsoft HoloLens device and

performs stereo renderings using two textured planes, rotated so they stay normal to the

viewer’s eyes. Each plane independently updates its texture by making rendering requests to

the microservice based on the current camera parameters from the HoloLens. Transparency

is achieved by setting the background color of the renders to black as is standard in HoloLens

applications.

In result, Tapestry microservices allowed us to deliver volume renderings of a 7.5GB

dataset to an AR device with 2GB of memory by writing about 100 lines of code. Figure

5.7 shows a view of the turbine blade dataset on a desk. The performance of HoloTapestry

is in Section 5.3.6. HoloTapestry is open-source 2.

For the second example, we target power-wall displays, which is arguably one of the

most prized tools for demonstrating advances in science and engineering. Traditionally, each

power-wall facility is accompanied by its own computing cluster. Due to the typical tiled

2https://github.com/seelabutk/holotapestry
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Figure 5.8: A user using Tapestry to inspect a 3D printed wind turbine on a 4× 3 power-
wall. Renderings are 2048× 2048 in resolution.

nature of power-walls, producing super-resolution renderings using the Tapestry microservice

is straightforward. One can use a short Shell script that batch-generates rendering requests

through curl. Or, one can run a web browser across the power-wall and have the browser

transparently issue the batch of rendering requests, one per each tile in the image, in order

to achieve parallel acceleration on the server side. In both cases, a lightweight single-node

can deliver data-intensive visualizations onto the whole power-wall.

Figure 5.8 shows a user using Tapestry to inspect defects in a 3D printed wind turbine

blade on a 4×3 power-wall display. The volume is created by scanning the actual 3D printed

model using neutron scattering [20]. The renderings are at 20482 resolution, rendered in 256

tiles (1282 pixels per tile) in parallel. The tiles are synchronized using a global barrier.

Tiled-based performance is detailed in Section 5.3.1.

5.3 Results and Discussion

Our testing platforms include our institutional cloud and Amazon AWS instances. Our

institutional cloud setup includes three machines each with 24 physical cores (dual-socket

Xeon E5-2650 v4, 2.9 GHz, 128 GB memory) and three machines each with 28 cores (dual-

socket Xeon E5-2650 v4, 2.9 GHz, 256 GB memory).

On AWS, we tested seven different types of instances. Table 5.2 shows the detailed list.

The “d” suffix (e.g. c5d.xlarge) refers to AWS instances with SSDs. For our system, the

SSDs do not affect the runtime performance, only microservice initiation time.

65



Table 5.2: Amazon AWS instances used in this work. The t2 prefix (e.g. t2.micro) refers
to general purpose instances, while the c5 prefix refers to compute optimized instances.
The containers column shows the maximum number of containers allowed by AWS on each
particular instance.

Instance Core Cnt Memory # Containers

t2.micro 1 vCPU 1 GiB 1
t2.medium 2 vCPUs 4 GiB 2
c5d.large 2 vCPUs 4 GiB 2
c5d.xlarge 4 vCPUs 8 GiB 3
c5.2xlarge 8 vCPUs 16 GiB 3
c5d.2xlarge 8 vCPUs 16 GiB 3
c5.9xlarge 36 vCPUs 72 GiB 7
c5d.18xlarge 72 vCPUs 144 GiB 14

Our testing includes: (i) using 1 single container to serve 1 rendering request (Sec-

tion 5.3.2), (ii) using an institutional cluster to serve a varying number of emulated streams

of rendering requests (Section 5.3.3), (iii) using Amazon AWS cloud to serve a varying

number of emulated request streams (Section 5.3.4), (iv) using AWS cloud to serve a varying

number of simulated users (Section 5.3.5), and (v) performance of demonstrative applications

as experienced by a user (Section 5.3.6).

Among the above tests, (i) - (iii) are to understand how the Tapestry server performs,

independent of user behavior. (iv) is to understand the quality of service received by a cohort

of simultaneous users performing exactly the same kinds of operations. (v) is to understand

how a single user experiences applications supported by the Tapestry microservice. Note

that end-users are not affected by dataset load time in these tests because all datasets are

pre-loaded before the service starts.

5.3.1 Configuring the Tapestry Microservice

This section discusses application policies to consider when deploying Tapestry on the cloud.

When deploying on Amazon AWS, because virtual instances have to share their physical

nodes with others, Amazon by default sets a low cap on the number of containers. For

example (as shown in Table 5.2), on c5d.18xlarge (with 72 vCPUs), the Amazon imposed

container count cap is 14, which translates to a 0.2 container/core ratio. Because this is

much lower than the 0.8 ratio on institutional cloud (explained in Section 5.3.3), we use the

max number of containers allowed by AWS.
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For applications to run optimally on the cloud, there are three accelerations to consider,

all of which are independent of Tapestry. Instead, they are solely application-side policies.

First, use tiling. Instead of sending a rendering request for a 10242 image, send 16

rendering requests of 2562 tiles. These per-tile rendering requests will be answered by the

Tapestry microservice in parallel. For example, a t2.medium instance has 2 vCPU and 2GB

memory, each available for 4.6 cents/hour. It’s easily affordable, and beneficial for fault

tolerance, to get a cohort of 100 t2.mediums to use for Tapestry.

We have found a simple and general heuristic to set tiling factor to 16. A tiling factor of

4 still limits the amount of parallelism that can be exploited. A tiling factor of 64 creates too

much management overhead for the client. Based on our tests, a tiling factor of 16 reliably

leads to 3 to 4 times faster rendering performance, as compared to when tiling is not used.

Tile size or image size of 642 or smaller is to fine grained. In all our demo applications, we

lower bound tile size to 1282.

Second, use a lower interaction-resolution and a higher viewing-resolution. As discussed

in Section 2.3, level-of-detail is very effective to ensure user-experience. Specifically, when

needing a visualization at a viewing resolution of 10242, during interaction for faster response

time, it is helpful to use a lower interaction resolution. Regardless of whether rendering for

interaction- or viewing-resolutions, all of our demo applications use tiling (to benefit from

parallel server-side rendering).

Third, use multi-threaded downloading. Most modern web browsers implement this by

default. For example, Chrome automatically opens 6 asynchronous socket connections for

each destination host. When accessing Tapestry from a non-browser client (e.g. curl), we

have also found parallel connections helpful.

Hence, we have set up our tests of Tapestry microservices, in Sections 5.3.4, 5.3.5, and

5.3.6, using the following assumptions: (1) each user has 6 concurrent request streams, (2)

tile-based rendering requests, (3) when testing for user experience, use a viewing-resolution

of 10242 and a interaction-resolution of 2562.
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5.3.2 Rendering Pipeline Performance

We benchmarked the rendering and encoding process using three variables that affect render

time: image size, level of attenuation of a ramp opacity map, and number of samples per

pixel. We used 6 image sizes (642, 1282, 2562, 5122, 10242, and 20482), 4 attenuation values

(1.0, 0.5, 0.1, and 0.01), and 4 sampling rates (1, 2, 4, and 8). The target hardware was

a 24-core node of our institutional cluster with a single container. We then tested each

combination of these parameters, resulting in 96 test cases. We repeated each of the 96 cases

10 times with the camera at a randomized positions to simulate the effects of the volume

being at different distances and angles. We calculate the average time taken for 10 renders

for a given test case. To see the effect of image sizes, we then averaged the times for each

image size. This simulates possible variation in image quality within same-sized images.

The target datasets were: supernova, isotropic turbulence, and magnetic reconnection

(described in Table 5.3). All three datasets are structured grids of floating point values.

To measure rendering time, each image was rendered to OSPRay’s internal framebuffer and

was then discarded to avoid buffer copy or encoding time. We then tested the encoding

time (without saving to disk) separate from render time. Results are shown in Table 5.4.

Note that rendering time does not necessarily increase linearly with image size (a known

characteristic of ray-tracing [62]).

The fastest rendering case was unsurprisingly 642 image size. Within the test cases that

used a 642 image, attenuation of 0.1 and sample rate of 1 resulted in the fastest renders

at 0.001 seconds, approximately 1000 frames per second. On the other hand, the slowest

renders occurred with 20482 images.

We also compared the encoding time of PNG vs JPG (at 100% quality). PNG was the

image format used in our previous work [74]. On average, JPG was 2.5 times faster in

encoding than PNG and generated byte streams were generally smaller.

In our experiments, the size of the rendered images varied between a few kilobytes for

low resolutions up to under 300 KB for 20482 images. The exact size of the generated images

depends on the content of the rendering.
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Table 5.3: The datasets used in this work. For time-varying data, varying time steps were
used during testing.

Dataset Size per Volume Spatial Resolution Time Steps

Boston teapot with lobster 45 MB 356 × 256 × 178 1
Isotropic turbulence[33] 64 MB 256 × 256 × 256 1
Jet flames[107] 132 MB 264 × 396 × 66 122
Superstorm[81] (1 run) 201 MB 254 × 254 × 37 49
Tornado [105] (wind velocity) 257 MB 480 × 480 × 290 600
Supernova[21] 308 MB 432 × 432 × 432 60
Magnetic reconnection[48] 512 MB 512 × 512 × 512 1
Turbine blade[20] 7500MB 1589 × 698 × 1799 1

Table 5.4: Average benchmarking results for rendering requests using the supernova,
isotropic turbulence, and magnetic datasets. The round-trip time for each request includes
render, encode, and transfer time to and from the server with JPG encoding.

Image size Rendering PNG Enc. JPG Enc. Round-trip
time (s) time (s) time (s) time (s)

64 × 64 0.003 0.005 0.003 0.009
128 × 128 0.004 0.011 0.005 0.016
256 × 256 0.009 0.035 0.012 0.030
512 × 512 0.024 0.122 0.037 0.092

1024 × 1024 0.083 0.452 0.147 0.284
2048 × 2048 0.338 1.651 0.580 1.066

5.3.3 Tapestry Server Throughput

In order to evaluate our system’s throughput, we implemented a stress test of Tapestry

microservices running on our institutional cluster. We orchestrated multiple test machines

to send rendering requests to Tapestry simultaneously. In other words, each test machine

sends a different request stream to the server.

The testing master starts by spawning testing workers on the test machines. The master

then waits until all test workers have finished their tests. Test workers use curl to send

rendering requests at a rate of 25 requests/second, while randomly changing rendering

parameters (e.g. camera position) for each request. Finally, the master reads off the test

logs from a shared queue and saves to disk. The logs list request-sent and response-received

times that allow us to measure the average time it takes our system to respond to rendering

requests. This throughput testing suite is written in Python and is included in the Tapestry

repository.

To increase the load on the system, we simply increase the number of test workers. Like

in Section 5.3.2, initially our test target was one Tapestry container in a single 24 core node

of our cluster. We ran each test 100 times on the supernova, turbulence and tornado datasets
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Figure 5.9: System throughput results showing request rate vs. response time for various
image sizes in log scale. The linear regression trendlines are over-plotted indicating the linear
growth of response time in relation to the number of concurrent request streams.

(Table 5.3). For each dataset, we generated rendering requests for six image sizes: 642, 1282,

2562, 5122, 10242, and 20482.

We then averaged the response time collected, to show an overall system throughput

under a mixture of different sizes of rendering jobs. Figure 5.9 shows the scaling curves

for various image sizes. When doubling image size, average response time approximately

increased by a factor of 4, which is expected.

Then, we tested for the effect of the number of containers per node. In this test, we kept

the number of testing workers constant (150), and varied the number of Tapestry containers.

Figure 5.10 shows the results for three image sizes. For all image sizes, as we gradually

increase the number of containers from 1 towards 20, average response time improves. After

reaching 20 containers, adding more containers did not yield noticeable improvements.

With the hardware being a single node with 24 physical cores, getting best performance

with roughly 20 containers suggests roughly a 0.8 container/core ratio. Through additional

testing, we found this ratio to be quite consistent on institutional cloud.
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Figure 5.10: Results showing the relationship between the number of containers in our
institutional cloud and average response time. The optimal number of containers is shown
to be 20 for a machine with 24 physical cores.

5.3.4 AWS Microservice Throughput

Next, we evaluated Tapestry’s performance on Amazon AWS. In particular, we looked at

the relationship between FPS vs. Price over various tile sizes: 642, 1282, and 2562.

Since Tapestry is a compute-intensive service, we tested Amazon’s Compute-Optimized

instances as well as T2 Performance instances [13]. We chose T2 machines because of their

ability to sustain CPU workload and low costs [13]. For each instance type, we ran different

number of machines. For more powerful machines we were limited to lower quantities due

to Amazon’s policies.

For the supernova dataset, Figure 5.11 shows FPS vs Price for 6 and 120 concurrent

request streams with all of our tested AWS instance types. Each point in the scatter plot

represents an AWS instance type and configuration.

For example, Figure 5.11-top shows the cost to sustain 10 FPS when rendering tiles of

2562 is approximately $4/hour. Please note, tiling lets applications transparently leverage

server-side parallel rendering; when an application requests tiles of 2562, the target image

resolution is actually 10242.

To evaluate the choices of AWS instances, we used 120 concurrent request streams and

a tile size of 1282 (i.e. targeting a typical desktop visualization resolution of 5122).
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Figure 5.11: Graphs showing FPS vs. price on Amazon AWS for 6 (top) and 120 (bottom)
concurrent request streams. Each point in the scatter plots belong to a different AWS
instance and configuration. 10 FPS and 30 FPS are marked in green.

Figure 5.12 shows the performance of different instance types in blue for 120 streams.

The cost of these instances can be seen in 5.12-right. It appears that the cost correlates

quite well with the desired FPS. The two graphs also show that although large Compute-

Optimized machines (towards the right) perform better, they are less cost-efficient. A reason

may be that larger machines are more suited for fewer users and large tile sizes.

Figure 5.12 shows that by lowering the number of request streams to 6 (red bars), the

rendering speed of the Compute-Optimized instances grew much more than a large number

of smaller machines such as 100 t2.medium instances.

Furthermore, we compared the performance of 100 t2.medium machines and 3× 72 core

C5D.18xlarge machines. Based on the changes in the number of concurrent requests from 6

to 120, we used the least squares fitting model to estimate where the performance of the two

meet. The fitness of the model had a root mean square error of 0.019. Figure 5.13 shows

that at 380 concurrent request streams (i.e. about 60 simultaneous uses), 100 t2.medium

instances become more cost-efficient.

5.3.5 User Experience Benchmarking

To test our system’s performance under realistic workloads, we used “monkey testing”, a

standard approach to stress-test web pages. Monkey testing involves simulating interactions

across elements of the page. We used this on hyperimages to simulate user interaction.
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Figure 5.12: Left image shows a comparison between the rendering performance of various
AWS instances for 120 and 6 concurrent request streams (both at a request rate of 25 FPS).
In a Chrome browser that uses 6 request streams per host, the former results in 20 users
while the latter results in 1 user. Compute-optimized instances perform better with 6 request
streams. Right image shows the cost of different AWS instances.

Figure 5.13: Graph showing the estimated point at which T2 instances surpass compute-
optimized instances at efficiency.
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We ran the “natural monkey testing” scripts in the same configuration as before [74],

only that in this work 100 Amazon t2.micro instances were acting as testing clients. The

datasets used were supernova, turbulence and magnetic (Table 5.3).

Each of the t2.micro instances ran a lightweight version of Ubuntu and a headless Chrome

browser. Our testing script used SSH to connect to all 100 instances and run our hyperimage

test page within the headless browser, and with monkey testing controlling the interactions.

When the monkey testing interactions were done, the JavaScript code within the page

sent timing results to a simple Python server that log the results to a file. The timing

results included request times, response times, and the resolution of requested images. On

average, 3.46% of the images were at viewing resolution (10242), and the rest were interaction

resolution (2562).

Figure 5.14 shows average response time for a varying number of testing clients. The

blue line shows when the testing clients are deployed on Amazon AWS, and the red line

shows when the testing clients are on the local area network as the institutional cluster.

The result shows diminishing differences due to network proximity as the number of testing

clients increase, which can lead to network congestion regardless of proximity.

Figure 5.15 shows the same test repeated to reveal resource-scalability of our platform.

We expanded the deployment from 3 nodes (72 cores, blue curve) to 6 nodes (156 cores, red

curve). In both of these two cases, the testing clients were deployed on AWS.

5.3.6 Application Performance

To test the performance of the applications in (Section 5.2) with a single user, we used three

C5.9xlarge AWS instances as server.

For hyperimage embedding, we conducted a single monkey-testing user test on a web

page with a visualization of a dataset selected randomly (full list in Table 5.3). On

average, interaction-resolution renderings (2562) were rendered at a speed of 9.43 FPS, while

viewing-resolution renderings (10242) achieved 2.08 FPS. In other words, when a user stops

interacting, a high quality rendering is provided in less than 0.5 seconds.
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Figure 5.14: Response time for a varying number of users is shown. The slower out-of-
network results are from 100 simulated users on AWS, accessing our institutional cloud. The
in-network results are from 100 simulated users in our local 1 Gbps network.

Figure 5.15: Graph showing the scalability of the system. The 72 core cluster is the same
as the one used in our previous work [74]. In both cases, we used 100 users (simulated on
AWS with monkey-testing).
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We also looked at the overhead of including the client-side JavaScript code for Tapestry.

On average, pages with Tapestry enabled loaded 1.29 times slower than pages without

Tapestry included. For example, a Wikipedia page without hyperimages, loaded in 510ms,

while with hyperimages, it took 659ms. Most of this overhead is due to the jQuery library.

Hypervideo performance essentially depends on the server throughput since interpolation

has a negligible cost. In our tests, we created three hypervideos for different datasets (5

keyframes each). We chose to generate 50 frames between every two keyframe and therefore

200 frames were rendered for each video. Our video playback speed was set to 30 frames

per second; the 200 frame videos were approximately 6 seconds long. The keyframes were

chosen at random with different angles, and zoom levels. On average, it took 70.66 seconds

to render a full video.

When changing one of the keyframes, on average, the readjustment of a keyframe took

21.15 seconds, since most of the intermediate frames were auto-cached by the cache container

(Section 5.1.2). A user can watch the video as it renders albeit at the rendering speed.

Any subsequent playback is at 30 frames/second. All hypervideo tests were done using a

resolution of 10242.

We also tested the speed of our augmented reality application. To view volume renderings

of the 7.5GB sized turbine dataset on a HoloLens (Figure 5.7), HoloTapestry can update

renderings at a sustained speed of 4.5 FPS. The viewing-resolution in the tests was 5122

(stereo, without explicit synchronization of left and right eye images), using all 6-nodes of

our institutional cluster. While the speed of our prototype implementation is not sufficient

for practical use yet, we believe as hardware performance on AR devices improves, better

results can be achieved, and HoloTapestry can be utilized in situations where the data is

large and cannot be rendered on the device.

5.3.7 Discussion

A visualization that allows real 3D interaction can achieve better user engagement and

provide more information than a still image or video can provide. In this respect, Tapestry

helps make 3D visualization more accessible. The model used by Tapestry also simplifies
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Table 5.5: Summary of the pros and cons between client-side rendering, stateless, and
stateful server-side rendering.

Architecture Pros Cons

Client only Does not require external server, existing frameworks Requires data transfer initial overhead, relies on poten-
tially inadequate local resources, relies on approximated
volume rendering techniques via WebGL

Client &
Stateful
server

Does not rely on client resources, no transfer time, low
interaction overhead, dedicated server resources

Requires server-side setup, requires consistent connec-
tion to server, does not scale well for many users

Client &
Stateless
server

Does not rely on client resources, no transfer time, low
interaction overhead, multi-user m-to-n mapping

Requires server-side setup, requires consistent connec-
tion to server

how a visualization can be hosted as a web service using open-source industry standards,

such as Docker, jQuery, and OSPRay.

Comparison to VTK.js. As previously mentioned, client-side systems such as VTK.js

have limitations on dataset size and render quality. They also rely on potentially inadequate

local resources. Additionally, client-side solutions have significant load time and runtime

overheads. For example, a 308 MB supernova volume would need to be pushed to each user.

If the user is on a mobile device, this is infeasible. Render performance would be slow on a

mobile device as well, leading to an unresponsive web page. Table 5.5 summarizes the pros

and cons between client-side rendering versus the stateless remote rendering in Tapestry.

As an example, we informally compared a page with a Tapestry hyperimage with a

VTK.js page. Both pages visualized the CHI variable from the jet dataset and a similar

interaction pattern was executed across both pages. The Tapestry page took 1.12 seconds to

load on average across three tests, while the VTK.js page took 3.21 seconds. The test

was executed on a local network, therefore the data download time was not measured.

However this should be considered in a real-world scenario. Furthermore, at its peak, the

single Tapestry page used 24.4 MB memory while VTK.js used a maximum of 56.8 MB.

Additionally, we tested a 308 MB supernova volume with VTK.js. The load time was 13.11

seconds on average with the data residing locally. In contrast, with Tapestry, the NASA

supernova page with four supernova volumes took 2.04 seconds to load.

Comparison to ArcticViewer. Perhaps from a client’s perspective, one of the most

similar works to Tapestry is ArcticViewer [4]. Paired with Cinema [12], ArcticViewer enables

the exploration of a dataset through pre-rendered images. While this technique is well suited

for in-situ visualization, it generates a large amount of rendered images that may or may not
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be used by the end-user. Distributed rendering on-the-fly in Tapestry however, allows users

to perform unplanned interactions (e.g. changing transfer functions) without the burden of

having generated and stored a large amount of data. Additionally, distributed tiling allows

enables users to render large resolution images mid-exploration.
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Chapter 6

Delivering Graph Visualizations in

Real-time

Graph is the universal model for representing relationship among entities. With the explosion

of big data in recent years, the size of graphs have also exponentially increased. The challenge

to view and work with such graphs takes three different dimensions. First, the shear size

of the graphs necessitate more computational resources and efficient methods in storing,

visualizing and communicating them. Second, due to the prevalence of public data, the

potential audience has also increased. While gaining insights from a graph may have been

an offline practice in the past, it now calls for efficient web access, so that many people

can benefit from the insights at the same time. Third, when the size of a graph increases,

statically rendering and viewing it is no longer a viable action. New interactions need to be

thought of and implemented.

In this chapter, I introduce a Fabric-based architecture that visualizes large graphs for

multiple audiences on the web at the same time while also enabling live interactions. The

system, codenamed KnitGraph is comprised of an active visualization kernel responsible

for rendering a layout of a graph, a client-side that distributes rendering request responses

among a tiling system. KnitGraph utilizes the idea that OpenGL’s Shader language (GLSL)

is external to the typical graphics pipeline, can be manipulated externally and then compiled

on the fly. Therefore, the client-side of KnitGraph alter the server-side graph rendering on

the fly by sending GLSL code for compilation based on user interactivity.
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Note that the definition of large graphs in the literature is subjective and depends on

time. KnitGraph considers a large graph as a graph with above one million vertices and

edges.

6.1 Architecture Design

6.1.1 Minimal Graph Rendering Kernel

Similar to the OSPRay-based visualization kernel used in Tapestry, KnitGraph also employs

a micro-kernel that is stateless and other than having a few graph datasets loaded in memory,

does not maintain the state of interaction that the user has with the system. Instead, the

state of the visualization is sent from the client-side to the server with each rendering request.

As a result of being stateless, KnitGraph servers are distributed in Docker containers

within a load-balanced Docker Swarm. Every KnitGraph server renders a portion of the full

graph and correctly positions the graphics camera based on the incoming request.

In Tapestry, the kernel used an external rendering engine for scientific visualization

(OSPRay), and therefore, the format of the requests was customized for that engine and

its usecases. However, in KnitGraph, we use standard OpenGL, a well established graphics

programming programming interface [87]. This design choice allows us to have a more

standard request structure. Each rendering request from the client includes two OpenGL

shader snippets. These snippets are codes written in GLSL, edited on the client-side based

on user interactions and compiled on the server on the fly. GLSL code is platform agnostic

and even runs in WebGL if needed. Moreover, GLSL is compiled based on the graphics

hardware available on a machine with compilers that are optimized by the hardware vendor.

Sending GLSL code as a request allows for a lot of flexibility in how the rendering can change.

Figure 6.1 shows an overview of a KnitGraph server.

6.1.2 Client-Side Interaction

The client-side of KnitGraph uses Leaflet’s tiling system [10]. Leaflet is a commonly used

Javascript library for creating tile-based map applications. Every tile in has an x, y, z
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Figure 6.1: An overview of KnitGraph’s architecure. Note the similarity to Tapestry’s
architecture. The visualization kernel in this case is implemented in OpenGL and performs
the graph rendering. The client-side is comprised of tiles that invoke rendering requests to
the server.
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Figure 6.2: A view of KnitGraph within a browser.

coordinate. The x, and y coordinates denote the 2D position of a tile with the origin set to

the top-left side of the screen. The z coordinate denotes the zoom level. In map-libraries z

is typically an integer from 0 to 16.

Figure 6.2 shows a view of KnitGraph within the browser. The image shows a zoomed in

view of a large software dependency graph. A series of vertices are selected with the cursor

and their names attribute is displayed in a box on top-left side of the screen. A transfer

function editor provides filtering capabilities and is described in the next section.

Opacity Transfer Function

One of the main challenges in rendering a large graph is how edges overlap one another

until the visualization resembles a blob with no particular feature visible. As a first remedy,

graph rendering applications decrease the opacity of the edges and use alpha-blending when

drawing edges on top of one another. While this solution helps significantly in displaying

graph features, it does not completely solve the problem. In dense enough graphs, the edges

ultimately stack up to create completely opaque areas.

Another solution in the literature is edge-bundling in which edges that take similar routes

are bundled together to clear the way for other structures in the graph. Many edge-bundling

algorithms exist in the literature [110], however, they come with significant computational

overhead making this approach infeasible for large graphs.
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Figure 6.3: Three images show how changing the opacity transfer function (TF) helps
structures appear in the graph. With a uniform transfer function, the graph becomes
extremely cluttered (left image), while the middle and right images show different structures
with the help of a TF.

A third approach is providing a filtering mechanism to the user so that they can explore

the different features in the graph based on their attributes of interest. Filtering perfectly

matches KnitGraph’s architectural design for two reasons. First, the choice of using OpenGL

shaders as a request format gives full control to the client in displaying and emphasizing edges

based on data attributes. KnitGraph uses the GLSL fragment shader for this purpose, and

can therefore alter the color and opacity of each edge based on a data attribute. Second, the

scalable server-side means that a new rendering of the entire graph can be served in realtime,

allowing the user to freely explore different viewing parameters.

Filtering in KnitGraph’s client-side is done through an Opacity Transfer Function (OTF).

An OTF is a function mapping a data attribute’s value to an opacity value. This allows

users to hide or emphasize edges based on an attribute of interest. While OTFs are widely

used in scientific 3D rendering applications, to our knowledge, this is the first time that they

are used as a filtering mechanism for large graph rendering.

As done traditionally in visualization software, the x axis in a transfer function editor

represents the range of a selected numerical data attribute. The y axis represents opacity

from 0 to 1.

Figure 6.3 shows the transfer function editor being used in KnitGraph. The left image

in the figure shows all edges with uniform opacity. The other two images in the figure show

internal structures in the graph using a transfer function that highlights edges with a high

attribute value and dims those with a low value. The attribute used in this example was the

number of maintainers in software projects.
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Figure 6.4: An example of using the fisheye tool in KnitGraph is shown. The left image
shows a dense and cluttered area in a graph. The right image is the result of using the
fisheye tool on this area. The edges and vertices are expanded from the center.

Layout Manipulation

In addition to a fragment shader, OpenGL’s programmable pipeline includes another type of

shader called a vertex shader. Vertex shaders are responsible for manipulating the physical

position of vertices in a rendering. While KnitGraph follows the idea of calculating a graph

layout once and then distributing its rendering without layout changes that are often costly,

the vertex shader can be used to make small adjustments to the layout on the fly.

As a prototype for this feature, KnitGraph includes a fish-eye view that expands dense

areas when clicked on, so that the internal structures can be better viewed. The adjustment

is computationally simple. When a user clicks on a region in the graph with the cursor, the

client side code alters the vertex-shader such that all vertex positions within a chosen radius

of the cursor are moved further out based on their proximity to the cursor position. The

code is then sent to the server-side for compilation and rendering.

Figure 6.4 shows the effect of the fisheye tool on a dense region (left). The vertices and

edges are expanded and can be better viewed (right).

Vertex Selection

A graph cannot be explored if the vertices are unknown. A vertex-selection method is

therefore an absolute necessity. KnitGraph includes a vertex-selection mode that is toggled

using the left bullseye icon. When active, users can use a cursor to select graph vertices. The

“name” attribute for the selected vertices is then fetched from a random server container

and displayed in the second top-left box.

84



Figure 6.5: A small cluster of vertices is selected towards the top-left side of the graph
using the vertex-selection tool. The name of the selected vertices is shown in the left box.

Because of the large size of the graph, and proportional size of the vertices, it may be

difficult for a user to exactly select a vertex. To alleviate this, the vertex-selection mode has

a cursor whose radius can be adjusted by scrolling up or down. This interaction mechanism

is similar to that of interactions in the Blender application [79]. The radius of the cursor is

also sent to the server-side when requesting vertex names.

When a user clicks on a region in the graph using the selection tool, the location of

the click event as well as the radius of the selection cursor are sent to the server-side. The

location of the click event includes the tile’s coordinates, the zoom level, and the offset of the

click event within the tile. One of the graph kernels on the server-side receives the request

and using the location, and maps the event location from the image space to a region in

the data space based on the range of the data points. A function then looks through all

vertex points and collects vertices that fall within the calculated region. The attributes for

the found vertices are then sent back to the client.

Figure 6.5 shows a view of a graph with many small clusters. The selection cursor can

be seen towards the top-left of the graph. Having selected one of the clusters, the names of

the vertices is shown in the left selected-vertices box.
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6.2 Applications

KnitGraph aims at increasing the supported number of users, while still providing a degree of

interactivity with a graph. Therefore in this section, we have picked two graph datasets that

can be beneficial to a large number of users throughout the Internet. Both of the datasets

are revolve around software packages and pertain to the vast community of developers. In

the following sections, we introduce each dataset, and show how KnitGraph has been used

in exploring various features within each of them.

6.2.1 The Heartbleed Network

The open source community has immensely grown in size in recent years and the network of

various open source projects on the web, holds many types of relationships among entities

such as projects, developers, code snippets, and languages to name a few. Each of these

relationship networks pertains to different aspects of the community and understanding

them can have great impact [112].

One of the many aspects in open source networks is security and the propagation of

vulnerabilities throughout the ecosystem. If developers find a vulnerability in a software

package, it is time-consuming but not difficult to find projects that cite the vulnerable project

as a dependency. Many software packaging systems already track dependencies. However,

finding similarly vulnerable packages due to code-reuse and copying is a much more difficult

endeavor.

In this section, we look at a portion of Github that has been either known to have been

directly vulnerable to the Heartbleed bug [35] or is indirectly vulnerable due to have copies

of vulnerable code. We obtained the data for this network from our collaboration with the

software supply chain group at the University of Tennessee [63].

The graph dataset includes 7478 projects represented as vertices and 25 million edges.

An edge between two projects indicates that they share one or more files that are identical.

Common files such as copyright notices and licenses are not included.
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Figure 6.6 shows a view of the heartbleed network using the ARF layout [45]. The transfer

function is set such that repositories that were originally reported vulnerable are shown. The

graph shows many groups of repositories in clusters that share content. The large cluster

towards the middle of the graph consists of copies of the OpenSSL and Wireshark projects.

Realizing that the large cluster includes copies of Wireshark using hte vertex selection

tool, the user can further filter the view. The user selects those vertices using KnitGraph’s

neighbor selection tool. The result is shown in Figure 6.7. The graph now only shows the

selected Wireshark copies and their immediate neighbors. In the image, a group of these

neighbors are selected and their names are shown in the vertex attribute box.

As another example, Figure 6.2 shows a zoomed in version of the same dataset. In this

view, a cluster of OpenVPN projects are shown. Among the selected vertices, an outlier is

visible (ios-openssl) that shares content with the other projects and could potentially be

vulnerable.

6.2.2 NPM Dependency Network

With the introduction of modern Javascript, NodeJS and the NPM package manager, the

Javascript community has embraced the idea of reusing code by depending on micro-projects

that do one thing and one thing well. However, this has not been without issues. In 2016,

thousands of projects on NPM broke because a package named leftpad that only included

11 trivial lines of code was taken down by the developer [7].

We believe, it is therefore important for developers to know exactly on which projects

they are depending down the dependency tree and know the properties of such packages.

For example: Do they include any known vulnerabilities? Are they only reliant on a small

number of maintainers? Are they prone to become obsolete due to lack of updates?

While these questions can be easily answered for first-level dependencies, they become

very difficult to answer for deeper levels as well as for the whole NPM community as a whole.
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Figure 6.6: A view of the heartbleed network is shown. The transfer function is set so
that only those vertices that were originally found vulnerable are shown. The large cluster
towards to the middle represents copies of the OpenSSL and Wireshark projects.

Figure 6.7: A group of Wireshark-related projects are shown using the neighbor-selection
tool. A group of neighbors are further selected (towards the right). Their project names are
shown in the vertex-attribute box.
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In this section, we look at the NPM dependency graph. The graph includes approxi-

mately 1.1 million packages represented as vertices, and about 6.1 million edges showing

dependencies among the packages. Each vertex also includes properties such as its name,

number of maintainers, last update time, and whether it has been flagged with a known

vulnerability.

Figure 6.8 shows a zoomed-in view of the NPM graph, in which the transfer function

is set such that projects with the highest number of maintainers are shown. The vertex

selection tool has selected a few nodes indicating that the cli project is highly maintained.

6.3 Results and Discussion

We tested KnitGraph’s performance on our institutional cloud described in Section 3.4.

Our tests considered the NPM dataset. On average, KnitGraph showed an average

response time of 1.47 seconds for a tile request. This was in the case of asking for the

entirety of the graph at a zoomed out view. In a more detailed view, where the rendered

images were less dense, an average response time of 1.01 seconds were observed per tile.

We also measured the performance of vertex attribute queries done using the vertex

selection tool. On average, it took 0.5 seconds to retrieve the attributes of less than 200

selected vertices.

The main benefit of having a stateless architecture is being able to horizontally scale the

server and support more users. Therefore, we tested the effect of multiple containers in the

face of 100 concurrent requests. Figure 6.9 shows how increasing the number of containers

helps lower response times. On average, 20 containers showed a response time of 3.8 seconds

per tile. Note that this is the time it took for a tile request to be answered and its response

rendered on the client’s screen. It does not mean that users have to wait 3.8 seconds between

each new tile.
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Figure 6.8: A zoomed-in view of the NPM graph is shown. Projects with a large number
of members have been set as visible by the transfer function.

Figure 6.9: KnitGraph’s response times are shown for 100 concurrent requests while varying
the number of containers. Similar to Tapestry, more containers help handle more requests.
With 20 containers, tiles took an average 3.8 seconds to appear.
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Chapter 7

Conclusion and Future Works

Many applications that were previously offline have embraced the web ecosystem for better

availability and accessibility. While the movement of data analysis and visualization to the

web has been tackled before, large data-oriented applications have faced many obstacles in

adopting the web ecosystem.

I believe this has mostly been due to the monolithic and highly-coupled systems that

served such applications. Many such applications have been based on remote-visualization

architectures that were originally built for HPC systems and not originally built with the

web in mind.

In this dissertation, I presented a novel perspective on the delivery of interactive

visualization to the web ecosystem. At a high level, my approach, named Fabric, separates

application logic and interaction from rendering and data management. This allows

application logic to reside closer to where interaction is initiated from (the client-side). This

also means that the application logic is able to stay oblivious of the servers that compute

data products and perform rendering, and as a result allows the server-side to be dynamically

switched from one server to another. On the server-side, the mentioned separation of concern

allows for statelessness and hence, horizontal scalability in response to a varying workload. In

this chapter I summarize the work in this dissertation, and discuss potential future directions.
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7.1 Delivering General Visualizations

My work on capturing interactive visualization, and its accompanying prototype named

Loom, has shown that the behavior of many interactive applications can be captured as a

state machine along with a set of finite images that represent each application state. On

one hand, this has resulted in being able to detach a captured application from its original

source code, computational needs, and data source. On the other hand, this has lays the

basis for the separation of the client-side and server-side in complex interactive applications.

Loom’s detachment from the source code and data has enabled the archival of interactive

visualization. In addition, we showed how Loom can help with reproducibility of scientific

visualizations, provided better sharability.

The ideas behind Loom can be extended in many ways. One potential direction is

combining the passive pre-rendering in Loom with active rendering in order to increase the

interactive fidelity of applications on-demand.

Considering that specifying UI components is the most time-consuming step in Loom’s

process, another direction is using machine learning for automatic interaction with applica-

tions in the capture phase.

7.2 Delivering Volumetric Scientific Visualization

Replacing the passive pre-rendering kernel in Loom with live rendering enabled scientific

visualization of large data with high-fidelity become possible for a wide-audience. The

resulting system called Tapestry, showed that scientific visualization can be hosted on

the cloud as a micro-service. The cloud-based solution abstracted high-end visualization

performance to dollars per frame. Additionally, we showed how Tapestry can serve various

devices such as regular desktops, mobile phones, AR/VR devices, and large powerwalls.

Utilizing the on-demand rendering kernel in Tapestry, we further showed how the system

can help in building scientific movies and sharing them as small textual snippets that can

be modified and rendered on the fly. In recent advancements, Tapestry has been used to
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render an entire 3D scene of the Moana movie on the web [84]. The complete scene has an

approximate size of 200GB and was rendered on the cloud with Amazon’s AWS.

For future directions, I believe Tapestry can be used as a basis for taking high-

performance movie rendering to the cloud and allow small teams to build animations and

only pay for the resources at render time. The shareability aspect of Tapestry’s videos can

be very useful in teams that would like to collaborate.

7.3 Delivering Graph Visualization

In Chapter 6, we showed that extremely large graphs can be rendered and interacted with

on the web. KnitGraph’s approach is general in that it makes no assumptions about the

underlying graph. It is therefore suitable for initial explorations of large graphs. I foresee

KnitGraph being used in scenarios where a large audience can benefit from understanding

the underlying data. Examples are project dependency graphs, and large social network

data that belongs to the large number of people that created it.

The core contribution of KnitGraph however, is the type of visualization request it

utilizes. Unlike the other Fabric kernels, KnitGraph’s requests are complete code snippets

in GLSL. Results have shown that GLSL functions can be written, manipulated, and sent

across the web for remote rendering, in each request, while still maintaining an interactive

speed. This provides a great amount of flexibility to end users in a stateless architecture.

It also serves as a good example of the kind of flexibility that the OpenGL programmable

pipeline provides. Additionally, to our knowledge, KnitGraph is the first application to use

shaders for filtering and interacting with graphs.

The current implementation of KnitGraph serves as a prototype and can benefit from

many new functionalities such as cluster-coloring, and applying more complicated local

layouts on clusters. At a higher level, KnitGraph’s approach can be used for non-graph

visualizations such as interactive arc diagrams, hive plots, and parallel coordinates.
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