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Abstract 

Neutron coincidence counting is a technique widely used in the field of international safeguards 

for the mass quantification of a fissioning item. It can exploit either passive or active interrogation 

techniques to assay a wide range of plutonium, uranium, and mixed oxide items present in nuclear 

facilities worldwide. Because neutrons are highly penetrating, and the time correlation between events 

provides an identifiable signature, when combined with gamma spectroscopy, it has been used for 

nondestructive assays of special nuclear material for decades. When neutron coincidence counting was 

first established, a few system designs emerged as standards for assaying common containers. Over 

successive decades, new systems were developed for a wider variety of inspection assays. 

Simultaneously, new system characterization procedures, data acquisition technologies, and performance 

optimizations were made. The International Atomic Energy Agency has been using many of these 

original counters for decades, despite the large technological growth in recent years. This is both a 

testament and an opportunity.  

 This dissertation explores several topics in which the performance of neutron coincidence 

counting systems is studied such that their behavior may be better understood from physical models, and 

their applications may be expanded to a greater field of interest. Using modern list mode data acquisition 

and analysis, procedures are developed, implemented, and exploited to expand the information obtained 

of both these systems and sources in question in a common measurement. System parameters such as 

coincidence time windows, dead time, efficiency, die-away time, and non-ideal double pulsing are 

explored in new ways that are not possible using traditional shift register logic. In addition, modern 

amplifier electronics are retrofitted in one model, the Uranium Neutron Coincidence Collar, to allow for a 

count rate-based source spatial response matrix to be measured, ultimately for the identification of 

diversion in a fresh fuel assembly. The testing, evaluation, and optimization of these electronics is 

described; they may serve as a more capable alternative to existing electronics used in IAEA systems. 

Finally, with a thorough understanding of the system characteristics and performance, neutron 

coincidence counters may be used to self-certify calibration sources with superior precision to national 

metrological laboratories.  
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Introduction 
 

Neutron coincidence counting is a well-established technique used for the nondestructive 

quantification of special nuclear material (SNM) and other fissioning isotopes of interest during 

international safeguards inspections. Neutrons are characteristically highly penetrating particles and are, 

therefore, quite difficult to shield from detection in either a security or safeguards scenario. Neutrons are 

also not commonly produced in nature. The sources of neutrons are cosmic rays, nuclear fission, and (α, 

n) reactions. Therefore, neutrons serve as a strong signature of the presence of fissioning material that is 

of interest in safeguards, especially when they may be detected in coincidence or higher multiplicities. 

The gross number of neutrons may be acquired for a source intensity measurement or to locate a neutron 

source in a search and find application. Time correlation methods may be applied for a more detailed 

quantification analysis of a known source such as in neutron coincidence or multiplicity analysis. When 

coupled with gamma spectroscopy, a correlated neutron signal may identify the isotopes present in an 

item.  

However, it is a challenge to measure neutrons. They are neutral particles, and may be born with 

approximately 2 MeV of energy from a fission reaction. In one method of detecting a neutron, it must be 

slowed by elastic collisions with nuclei of similar mass, such as high-density polyethylene, to a point 

where the neutron may be captured by a medium such as 3He. This hydrogenous moderator is selected in 

order to have the largest possible scattering cross section so that the maximum amount of energy is 

deposited by a neutron per interaction. This thermalization, to an energy of 0.025 eV, takes hundreds of 

microseconds. At this energy, the 3He will have a maximized neutron capture cross section, which will 

allow a greater detection efficiency for the system. The transition from fast to detectable speeds occurs at 

times of 10-100 μs in three phases: slowing down, thermalization, and migration. Slowing down and 

thermalization occur in only a few microseconds, but the migration, or diffusive, phase follows a 1/e time 

relationship of approximately 20-50 μs in typical counters. This restricts the 3He detector response time. 

Due to the numerous collisions, the original locations of these neutrons are obscured. Because of this, 

most safeguards neutron systems do not rely on spatial resolution or spectroscopy, but rather a neutron 

count rate. Neutron coincidence counting, in addition to gross neutron counting, relies on the conversion 

of these captured neutrons into charged particles such that a current may be used to indicate an interaction 

event. These signals are then analyzed as a function of time to relate the number of trigger events to the 

number of neutrons produced from the item measured.  

3He gas has been used as the gold standard for neutron detection for decades because of its high 

thermal neutron absorption cross section and robust performance in high rate applications over long 

durations. 3He proportional counters are used in a wide variety of fields including nuclear scattering, 

nuclear and particle physics, health physics, medical physics, security, and oil well logging, in addition to 

nuclear safeguards. These tubes have been shown to have a long-lasting reliable performance even when 

exposed to high radiation. They operate on a relatively low working voltage setting with high gain 

abilities and they can be used in high rate scenarios.  

Gas proportional counters tend to consist of an aluminum or copper cylindrical container housing 

pressurized gas mixtures, and an inner biased wire of tens to hundreds of micron diameter. The gas-filled 

proportional detectors function by applying a potential difference between the central anode wire and the 

wall of the container which is effective as a cathode. The bias may be supplied by a preamplifier, and the 

resulting charge collection signal is amplified and shaped into a signal that can be analyzed using a lower 

level discriminator to eliminate noise, such as gamma interactions and wall effects, from true neutron 

capture events. These logic pulses can then be analyzed in coincidence time windows to determine their 

relationship to a fissioning event in the material under question. 
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Neutron coincidence counters are commonly designed with a high-density polyethylene annular 

body, centered about an inner well for item assay, and are populated with a number of 3He proportional 

counting tubes connected to a varying number of preamplifiers. 3He gas is selected as the preferred 

detection material for these fission neutrons due to its high thermal neutron cross section paired with 

excellent gamma–neutron pulse height discrimination. When a neutron interacts with the 3He gas within 

the proportional counter, the neutron is captured in the 3He (n,p) T reaction. This capture reaction, with a 

thermal neutron cross section of 5333 barns, releases two charged particles: a proton with 573 keV and a 

triton having 191 keV with back-to-back trajectories to conserve energy and momentum. These heavy 

charged particles interact with the surrounding gas through collisions which further ionize the inert 3He 

into free electrons and positive ions in a Townsend Avalanche [1]. The electron-ion pairs are created in a 

number directly proportional to the energy deposited by the neutron; the number of pairs is also directly 

related to the number of capture reactions, and thereby, neutrons. The 3He tubes are specifically biased to 

operate in the proportional counting voltage region of a gaseous detector, above the ion chamber region 

and below the Geiger region [1]. By operating the 3He detector in the proportional mode, each avalanche 

is created independently from the others, and the signal produced by each interaction is proportional to 

the energy absorbed from the capture of the neutron. Therefore, the incident radiation is able to be 

measured in distinct interaction events resulting in individual pulses. 

Due to the cylindrical geometry of these tubes and the back-to-back release of the primary 

charged particle pairs, some capture reactions result in the absorption of one of the two heavy charged 

particles by the tube wall. When this happens, the remaining energy of that particle is absorbed, and not 

transferred to the ionization of the 3He gas, which affects the charge collection response. This 

phenomenon is known as the wall effect, and it creates low energy noise in the pulse height spectrum in 

the form of a continuum between the full triton energy deposition and the full proton energy deposition 

(see Error! Reference source not found.). Because gamma rays are also produced during fission events 

but have a low interaction probability with the low density gas, gamma interactions will be measured 

simultaneously with neutron interactions, due to their ionization of the aluminum or copper in the 

proportional counter wall, but the energy deposition between the two interactions differs greatly. The 

energies deposited by these gamma interactions are only tens of keVs compared to the 191 keV of the 

triton and 573 keV of the proton (Error! Reference source not found.). The discriminating threshold 

value would be ideally set such that all energies on the pulse height spectrum beginning at the triton edge 

and ending after the full neutron energy peak will indicate a neutron interaction, but any gamma events 

will not be incorporated into the gross counting performed using these tubes; in reality this is difficult for 

high rate applications, but it can be optimized to the best ability.  

The track lengths of these primary charged particle pairs through the tube will vary based on the 

gas composition and pressure, which can be calculated using stopping power programs such as TRIM for 

specific tube characteristics. Typically, the gas is a mixture between 3He and a quench gas such as CO2 or 

Ar/CH4. The quench gas helps reduce the range of the proton and triton through the detector’s volume by 

introducing higher Z elements for the primary charged particle pairs to collide with, thereby increasing 

the stopping power. This reduces the fraction of particles striking the wall, improving the signal to noise 

ratio, while also improving the electron drift velocities to the anode. Commonly in 3He proportional 

counters a mixture of 90% Argon and 10% CH4 is used, commercially known as P-10 gas. It is important 

to remove all impurities in the gas, as they are likely to absorb electrons and decrease the avalanche chain 

through de-excitation through photon emission. Quench gas decreases wall effect, but also increases the 

number of ion-pairs created by a gamma interaction by introducing gases with lower ionization energies. 

As with many of the other tube design parameters, a good balance between these two effects must be 

reached for proper system performance.  

Near the cathode, the electric field is not strong enough to accelerate the electrons to cause 

ionization collisions whereas around the anode, the electric field is the strongest. At approximately two 

times the radius of the anode wire, the electrons gain enough energy in the field to cause an ionization in a 

collision with the gas [2]. Due to the avalanche process, most electrons are produced very near to the 

anode, and therefore do not travel a large distance, preventing the gain of a large amount of energy,  
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Figure 1.1. A pulse height spectrum example of a 3He tube response, indicating the gamma response signal, wall 

effects, and the thermal capture peak contributions that would be present [6]. 
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before reaching the anode.  This generates a low amplitude charge collection signal from the electrons.  

The reciprocal positive ions travel to the cathode on a much slower timescale, approximately 

1000 times slower than the electrons. Because the electrons are produced very near to the anode, the 

positive ions travel across a majority of the tube’s radius before reaching the cathode, thereby gaining 

much more energy across the electric field. Therefore, the induced charge caused by the movement of the 

positive ions is what is used to collect a large amplitude signal of the neutron interactions within the gas. 

This current may be distinguished from the primary current based on the particle drift timescales 

(nanoseconds compared to microseconds).  

The resulting current is input to the preamplifier, which maximizes the signal-to-noise ratio and 

creates the linear tail pulse such that it may be further integrated, shaped, and amplified by the amplifier 

circuit to modify the signal into a useable shape and pulse height for the discriminator [1]. The signal has 

a fast rise time component generated by the induced charge collection of the electrons near the anode, 

convoluted with the slower component generated by the induced charge collection of the ions as a 

function of distance from the cathode. The charge collection time of the ion–induced current on the anode 

has a long signal tail of hundreds of microseconds. Therefore, the shaping time used in the charge 

integration circuit of the 3He tubes must encompass at a minimum the rise time of the signal, but should 

omit some of the long component of the tail to reduce pulse pileup and improve detection efficiency [3]. 

If a number of counters are connected in parallel to a common preamplifier/amplifier/discriminator then 

the gamma pile-up is worsened because the pulses are additive. 

Typically, a shaping time of 1-4 µs is selected for neutron coincidence counting in order to 

resolve the separate fission neutron events while minimizing the number of gamma events recorded and 

minimizing dead time effects. The typical charge collection time of the positive ion drift extends from 

several microseconds up to the order of milliseconds depending on many different parameters [2] [4]. The 

charge collection time of the electrons is approximately 1000 times faster. In general, for high rate 

applications such as with large items or spent nuclear fuel, a shorter shaping time is preferred for 

sufficient gamma discrimination in order to minimize pulse pileup. For neutron spectroscopy longer 

shaping times are necessary to ensure the entirety of the pulse’s energy is collected, from the full charge 

collection of the neutron interaction, in order to properly bin the interaction events into an energy 

spectrum. In addition, the collection of the induced charge cloud as a function of time is related to the 

orientation of the back-to-back trajectory of the primary charged particle pairs relative to the anode and 

cathode, and therefore the ionization clouds caused by their interactions with the 3He gas. Variations in 

this initial trajectory, ranging from parallel to perpendicular to the anode wire, cause variations in the rise 

times and long tail component of the signal response. The shaping time must be long enough to integrate 

over the charge clouds generated by both primary charged particles such that the discriminator does not 

register two neutron events from a single interaction. Various systems should have an optimized shaping 

time for their specific geometry, application, and rate application. 

As the shaped pulses are evaluated by the discriminator, if their amplitudes cross the set 

threshold, logic pulses are generated. A record of these logic pulses as a function of time is kept in 

associated software, indicating the number of neutron interactions in the system during a measurement in 

addition to their relationship over time. These logic pulses are then analyzed with specified time windows 

for correlations to produce a single, coincidence, and higher order multiplicity neutron event count rate.  

 

 Neutron Coincidence Counting 
 

The burst-like nature of neutron release from spontaneous and induced fission in SNM allows for 

multiple neutrons to be detected from a single originating fission event. The fission timescale is less than 

a picosecond, typically releasing between one and three prompt neutrons. However, background and (α, 

n) reactions also contribute to the total number of fission events [4] [5]. In addition, not all neutrons 

produced during a fissioning event will be thermalized or captured; some will leak out of the system and 

go undetected (Figure 1.2 a). For neutron coincidence counting, in order to determine the mass of the 
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fissioning material, an item is centralized in the counter, and the emitted neutrons are captured by 

surrounding 3He-filled tubes. Neutrons from the same fission event are detected close to each other in 

time, whereas neutrons from non-fission processes are randomly distributed in time (Figure 1.2 b). Using 

time-correlation methods allows these counters and associated software to discriminate against this 

background and distinguish between events. The highly time-correlated neutron distributions do not obey 

Poisson statistics, unlike many other types of radioactive decay. Neutron coincidence counters must 

possess high enough efficiencies to detect correlated events while still distinguishing between successive 

fission events.   

When the item undergoes fission, a random number of neutrons are released, varying from zero to 

upwards of ten, forming a neutron multiplicity distribution. These detected neutron events are recorded 

and used to perform time-correlation analysis to ultimately determine the mass of the fissioning material 

[4] [5]. Each isotope has a unique signature through this analysis. In traditional neutron coincidence 

counters, only the number of one (totals or singles) and two (pairs, reals or doubles) time-correlated 

neutron events (defined by shift register logic) are recorded. Meanwhile in neutron multiplicity analysis, 

the software counts the 0, 1, 2, 3, 4... multiples of neutrons (the multiplicity histogram) within the event-

triggered correlation-timing windows. Neutron multiplicity counting requires significantly more efficient 

counters such that triples (3 correlated neutron events) may be detected in a timely fashion. It is a highly 

useful technique for mass quantification in some more advanced inspection scenarios, but it will not be 

discussed here.  

Traditionally, shift register acquisition methods are used to collect the neutron signals from the 

coincidence counters. The shift register is based on a number of clock–driven flip-flop circuits linked 

together in a number of stages [4] [5]. The incoming pulses shift through the different stages, over the 

circuits’ characteristic time. During this length of time, the electronics are busy and will not be able to 

process future events. Events that are registered during this time are stored in a buffer to then be 

processed after the circuit is no longer busy to prevent dead time and a high loss of events; if the buffer 

capacity is sufficient for the count rate, this introduces a marginal dead time for the full system. These 

pulses can then be compared with every other pulse to perform this time-correlation analysis with 

respective timing windows. The associated up/down counter keeps a record of the number of events being 

processed in the circuit over time. When another pulse is detected, the counter is incremented, and when 

the pulse passes through the final stage, the counter is decremented. This keeps a running tally of the 

number of pulses measured. From this time correlation analysis, the number of singles and doubles may 

be calculated for each acquisition. Despite the number of preamplifiers used on a system, traditionally the 

total summed signal from the system is recorded and analyzed using one signal in to the shift register. 

These timing windows consist of four gates: a predelay, (R+A) gate width, a long delay, and an A 

gate (Figure 1.3 a). The predelay, 𝑇𝑝, is a short timing gate, typically 4.5 µs for standard neutron 

coincidence counters, used to account for any electronic artifacts influencing the neutron pulse train.  

Following a triggering event, the predelay is open and the system does not record any measured 

events during this duration. During this time, the system experiences charge collection and dead time 

effects from the processing time of the electronics. However, during this time, there is a greater 

probability of detecting another correlated neutron event relative to the trigger event. Therefore, it is 

important to balance the length of this time window between mitigating the dead time and charge 

collection effects and losing correlated neutron events. Following the predelay, the (R+A) gate width, 𝑇𝑔, 

opens for a typical length of 64 µs.  

The (R+A) gate is derived from the Rossi-alpha distribution (Figure 1.3 b). This distribution was 

initially developed for reactor noise analysis [7] and is commonly used in neutron coincidence counting 

analysis. The Rossi-alpha distribution is a histogram of the doubles count rate measured in the 

coincidence system as a function of time. It is produced through the neutron pulse train record time 

stamps, and it provides a great deal of information about the counting system. After an initial triggering 

neutron event is measured, the frequency at which another neutron is measured relative to that trigger is 

recorded over a range of time for selected time bins. Every measured neutron event acts as a trigger; 
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Figure 1.2. (a) A diagram of a general neutron coincidence counter containing 3He tubes and a central assay 

cavity. The different processes that neutrons undergo with relation to detection are shown. (b) An example 

neutron pulse train illustration showing how correlated neutron events would ideally appear solely from fission 

events, compared to a typical pulse train with randomly distributed background convoluting these fission events. 
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Figure 1.3. (a) A neutron pulse train illustration indicating which time correlation gates are applied for analysis. 

(b) A Rossi-alpha distribution showing how this correlation analysis builds a histogram of neutron coincidence 

events based on these timing windows. [5] (c) An example correlation analysis performed on the neutron pulse 

train using varying timing gate lengths. 
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therefore, this analysis is conducted for every measured event. Ultimately, the total number of coincident 

events is collected and reported in the Rossi-alpha distribution for the full duration of a measurement. 

Typically, a Rossi-alpha distribution ranges from t=0 to t=1024 µs, and it can have bins as small as 0.1 

µs.  

Due to the exponentially decaying nature of this histogram, the (R+A) gate of length 𝑇𝑔 

encompasses a majority of the true doubles count rate (R for reals). However, in combination with these 

true neutron events, background neutron events and (α, n) events are also recorded as coincidences with 

the triggering event (A for accidentals). A long delay of 4096 µs follows the (R+A) gate to allow 

sufficient time for all correlated neutrons relative to the trigger to be detected or escape the system, 

including any room return events. After this long delay the same gate width, 𝑇𝑔, is opened to count the 

number of accidental coincidences. A subtraction is then done in software to determine the true number of 

coincidences, (R+A)-A, and the doubles count rate.  

An example of this analysis in terms of the neutron pulse train is shown in Figure 1.3 c. This 

drawing is not to scale but it is made to highlight the important components of this analysis. Beginning 

with the initial trigger event at t0, the red gate represents the predelay. The arrows then indicate the 

distance in time between the trigger event and the individual successive events. The events in blue are the 

true fission neutron detections and the events in black are the randomly distributed neutron background 

(Accidentals). Each of these events will have a respective time stamp. Analyzing the neutron pulse train 

for three different gate widths, 𝑇𝐺 =16, 64, 128 µs, the dotted lines indicate where the successive events 

fall within the respective gates. Starting the analysis from t0 for the instance where 𝑇𝑝= 4.5 µs and 𝑇𝑔= 16 

µs, t1 would fall within the predelay, and not contribute to the coincidence analysis. Both t2 and t3 would 

fall within the (R+A) gate width for a record of 2 different coincidence events with t0 with their respective 

time differences being reflected in their binning on the histogram. The (R+A) 𝑇𝑔 is followed by the long 

delay indicated by the break on the diagram. The long delay, in reality, would extend across a large 

portion of the pulse train (~4096 µs) to allow for correlated events relative to the trigger to either be 

captured by the system or escape. Here, it is drastically shortened to show how the accidental gate 

subtraction would take place. Following this long delay, the number of events recorded in the second 𝑇𝑔 

gate for the t0 case would be 1 neutron coincidence with the trigger. Therefore, the (R+A)-A subtraction 

would result in 1 true coincidence between t0 and the successive events. This would be the expected result 

as there was both one true neutron event and one background neutron event recorded in the (R+A) 𝑇𝑔 

gate, as indicated by the blue and black pulses, and one background neutron event recorded in the (A) 𝑇𝑔 

gate, as indicated by the black pulse, for a net result of one true neutron coincidence following the t0 

trigger.  

This same analysis is then performed for the t1 trigger. The t2 event would fall within the set 

predelay. For this analysis a gate width of 𝑇𝑔= 64 µs is used to illustrate how more counts will be 

recorded from the neutron pulse train with a longer time gate. This is also highlighted with the 𝑇𝑔= 128 µs 

example. It is important to optimize this gate width setting relative to the length of time correlated neutron 

events will linger within the system to ensure a maximum number of correlated events can be detected, 

while not introducing a large number of background events in this analysis. For the 𝑇𝑔= 64 µs, within the 

(R+A) gate five neutron coincidence events are recorded relative to the t1 trigger. However, because the 

long delay is not to scale, and therefore falls earlier along the pulse train than it would in a real analysis, 

this subtraction will not work out to the true number of coincidence events in this instance. This is 

attributed to the fact that in this example true events are still being recorded in the A gate, when in reality 

the only events being recorded in the A gate would be background and randomly distributed events from 

( , n). This analysis is continued along the neutron pulse train for all trigger events for the respective 

time gates selected, and the frequency of these coincidences in time relative to their respective trigger 

build the Rossi-alpha distribution and the net doubles count rate.  
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 Nondestructive Analysis 
 

Neutron coincidence counters are used to perform nondestructive assays (NDAs) on declared 

fissioning items that may be housed in areas such as a material balance area of a nuclear facility or within 

the assembly line of a nuclear fuel fabrication plant. The item may be loaded in the central well of a 

neutron counter that is appropriate for the size, activity, and application of the item. There are many  

different models of neutron counters reported to be routinely used in the field currently for a wide variety 

of measurements [8] [9].  

These systems can be large, expensive, and sometimes cumbersome. Therefore, typically they 

remain in house, stored between inspection dates in a location that is easily accessible. They require the 

presence of an inspector who oversees the movement of the items, operates the counting software, and 

records the results of the assay. The purpose of the neutron coincidence counting measurement is to verify 

that the declared mass given by the facility is correct without opening or otherwise altering the item. 

Gamma measurements are used in combination with neutron coincidence counting to provide the 

isotopics of the item under question. The same systems and procedures can also be used for domestic 

safeguards. 

A time correlated neutron nondestructive measurement can exploit either passive or active 

interrogation techniques to assay a wide range of Pu, U, and MOX items [11]. Many of the available 

neutron coincidence counting systems can be used in both active and passive mode to perform NDAs on 

items under question. Passive neutron counters have been designed and built for plutonium-bearing items 

but may be applied to assay uranium; active neutron correlation counting can be used for uranium, 

plutonium, and mixtures of both. The dynamic range of items is large, extending from milligrams to 

multiple kilograms for both current passive and active assay techniques.  

The selected mode is dependent on if the item has a significantly high spontaneously fission rate 

or if it needs a neutron source to stimulate fission.  Passive assay relies on the natural radioactivity of an 

item to determine the mass by spontaneous fission; even isotopes such as 238U, 238Pu, 240Pu, and 242Pu 

undergo spontaneous fission and can be measured without an external source. For nuclides that will not 

spontaneously fission, like those containing a significant fraction of 233U and 235U, active assay requires 

bombarding the item with neutrons from an external source to stimulate fission. Current 3He counters 

have inserts, typically containing AmLi sources, which can be used for active measurements. Typically, 

these AmLi sources can also be removed for passive measurements to offer both mode options for a 

single design.  

The neutron coincidence events from a Pu item will be generated from the various even isotopes 

of Pu. 240Pu is traditionally the most present isotope in either low burnup or high burnup fuel; therefore, a 

majority of the detected neutrons stem from the 240Pu spontaneous fissions. In terms of nonproliferation, 

when 240Pu is present in measurable quantities in an item, that item is no longer easily weapons-useable. 

The spontaneous fission neutrons would prematurely initiate the necessary chain reaction for a successful 

implosion, thereby significantly decreasing the yield. So, 240Pu is a clear indicator of peaceful uses of that 

material, and its presence is verified during an inspection. Therefore, it is the focus for quantification 

during a passive NDA. Since it is not possible to separate when neutrons come from 240Pu compared to 
238Pu or 242Pu, an effective 240Pu mass must be calculated by incorporating the other constituents 

contributing to the measured coincidence rate [4] [5]. The effective mass is the mass of 240Pu that would 

be necessary to generate the same coincidence response as that that is measured with a mixed item. The 

coefficients are used to account for the different spontaneous fission yields in Pu metal. 

 

𝑃𝑢𝑒𝑓𝑓 = 2.52 ∙240 𝑃𝑢238 + 𝑃𝑢240 + 1.68 ∙ 𝑃𝑢242                                       (1.1) 
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When combined with gamma spectroscopy or previously declared isotopics of the item, the total Pu mass 

may be calculated from the 𝑃𝑢𝑒𝑓𝑓
240  value by: 

 

𝑃𝑢𝑡𝑜𝑡𝑎𝑙 =
𝑃𝑢𝑒𝑓𝑓

240

2.52 𝑓238 + 𝑓240 + 1.68 𝑓242
                                               (1.2) 

 

where 𝑓238, 𝑓240, 𝑓242 are the weight fractions of the respective isotopes within the item. The 𝑃𝑢𝑒𝑓𝑓
240  

value would be given through an NDA analysis and these further calculations can then be performed.  

 In a measurement, though, it is more likely that the effective weight would be calculated in place 

of the 𝑃𝑢𝑒𝑓𝑓
240 , obtained from the mass fractions declared in the isotopics in place of the weight 

fractions given in Equation 1.1. Then, the neutron coincidence counting would be used to produce an 

effective mass value, which would be used on Equation 1.2 with the effective weight, to determine the 

total Pu mass.   

 For an active measurement, assay of the odd numbered isotopes of uranium and plutonium is of 

interest. However, active measurements focus primarily on uranium. The neutron coincidence events 

from a U item will be generated from inducing fission in 233U and 235U; spontaneous fissions rates are 

very low. The singles count rate cannot be used due to the random–in–time neutrons dominating this 

signal, produced from the interrogation source such as AmLi. Instead, the neutron coincidence rate is used 

to isolate the induced fission neutrons from the singles background. The spontaneous fissions occurring 

with 238U also convolute the signal and therefore must be subtracted out using passive analysis in 

combination with the active interrogation analysis. Since 233U is not produced in nature, but is made by 

bombarding 232Th in an accelerator or reactor, it is not present in fresh fuel assemblies for Light Water 

Reactors. It has a high specific activity and is challenging to handle. Because of this. it would not be 

common to find 233U in items under question during an inspection. Therefore, the primary signal acquired 

during an active measurement is of the neutron coincidences produced from the induced fission in 235U.  

Some systems can be adapted to operate in fast or thermal mode.  In the former mode, cadmium 

is used within the walls of the detector to prevent thermal neutrons from scattering back into the item and 

inducing more fissions later in time. Thermal mode does not use cadmium liners within the system. The 

use of cadmium simplifies the interpretational model used to convert rates to reported or assayed mass. 

Fast mode is used more readily when high-mass items are being assayed. Fast neutrons are more likely to 

penetrate into the center of the high mass items. Because high-mass items will naturally have a higher 

count rate due to the presence of more nuclei that can undergo fission, the associated lower capture cross 

section of the nuclei provides a suitable balance to prevent large dead time effects overwhelming the 

system. Thermal mode is used for low-mass items since the thermal energy neutrons will be more readily 

captured by the item due to the high fission cross section, thereby improving the statistical precision of 

the measurement. However, if thermal mode is used on high mass items, the neutrons will not penetrate 

deeply into the item, resulting in fission events mainly near the surface of the item. These options allow 

these systems to have a wide range of applications in the field with ease of use for operators. 

 An NDA neutron coincidence measurement may take anywhere between several minutes to tens 

of minutes, but it does not traditionally extend beyond a half hour. The measurement is conducted for the 

length of time necessary to achieve good statistics on both the singles and doubles neutron count rate, so 

it is source rate and system dependent.  Better statistics yield better assay precision. The item under 

question is placed within the central well of the respective neutron coincidence counter, and a shift 

register is used to acquire the neutron pulse train over the length of the measurement. The time correlation 

analysis is performed automatically using associated internal software of the connected data acquisition 

hardware and the results may either be read directly from the shift register or using INCC software.  
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For in-field use, the data is analyzed using INCC. INCC is the IAEA Neutron Coincidence 

Counting software created by Los Alamos National Laboratory (LANL) [12], and it is used for all neutron 

coincidence counting NDAs. It is a user-friendly program that works on Windows operating systems and 

it provides information like the singles, doubles, and triples count rates, background values, (R+A) and A 

values, associated errors, cycle data, calibration curves, known-alpha curves, etc., and ultimately assists in 

performing an NDA. A background measurement is always conducted prior to data acquisition of the item 

and again following the acquisition to ensure no changes have occurred. These files are stored and a 

background subtraction is performed on successive data. It is also important to ensure the system is 

performing as it was the last time it was used to verify that it has not been tampered with, nor has the 

system malfunctioned. All acquired rates must be dead time corrected based on the respective correction 

factor equations of the system used.   

 Before a measurement can be performed, however, the counting system must be calibrated to 

understand that specific system’s response to a source relative to what it will be used to measure. In a 

laboratory or manufacturing setting, it is common to measure multiple sources of different neutron output 

activities that are characteristically similar to those unknown items that will be measured in the field. This 

is done by using various source standards that may have a similar geometry, composition, and/or neutron 

count rate. Typically, these are certified sources, whose neutron output is known to approximately 0.1% 

precision.  If the standards used to calibrate the system are representative of what items will be measured, 

the multiplication, 𝑀, and ratio of (α,n) neutrons to spontaneous fission neutrons, 𝛼, will be known, for a 

straightforward assay. Multiplication, also known as leakage multiplication, can be defined as the number 

of neutrons leaving the item divided by the number of neutrons produced from a combination of 

spontaneous fission and (α,n) reactions. This will allow a successful NDA coincidence measurement to be 

performed with confidence. However, in the field these standards are not readily available. Instead, 

normalization procedures across different systems and different sources are necessary to allow for 

practical field verification measurements to be conducted in a timely manner. Or, instead, neutron 

multiplicity counting and analysis may be used with the appropriate systems where all system parameters 

and several source parameters are taken into consideration for an in-depth analysis. There are three 

calibration and assay methods used with neutron coincidence counters which will be discussed below. 

Nondestructive analysis is dependent on many potentially unknown parameters, some of which 

include: 1) the spontaneous fission rate, 2) the induced fission, or item self-multiplication, and its 

variation across the item, 3) the (α,n) reaction rate in the item, 4) the spatial variation in neutron detection 

efficiency, 5) the energy spectrum effects on detection efficiency, 6) the neutron capture in the item, and 

7) the neutron die-away time in the detector [4]. These parameters must be well understood such that their 

influence on an NDA may be corrected. It has become common practice to use empirical methods for 

calibration of a system in the field out of necessity due to measurement and analysis limitations, and to 

bundle these possibly unknown parameters into less complex semi-empirical “effective” correction 

factors. In doing so, however, information about the counting system and source may be lost. The known-

alpha method assumes the chemical composition of the item is known (in part also compensating for other 

uncertainties), which allows the 𝛼 value to be calculated from the isotopic composition using nuclear data 

of known ( , n) and spontaneous fission yields for those isotopes. Pure metal items have an 𝛼 = 0, 

meanwhile oxides and fluorides and impurities have varying (α, n) reaction rates that can be referenced in 

documents such as the Passive Non-Destructive Assay Manual (PANDA) manual [11], which is a 

powerful reference for this field. For the example of a 240Pu source under question, the alpha value is 

calculated for pure Pu oxide; a scaling factor, the alpha weight, is then used for other Pu compounds 

relative to the pure oxide alpha value. The alpha weight is 1 for pure plutonium oxide and 0 for pure 

plutonium metal. A library of different doubles to singles count rate ratios must be built for various mass 

items, with this set known alpha. Using the known 𝛼, and the measured doubles to singles count rate ratio, 



12 

the doubles count rate can be corrected for item multiplication of the unknown item to determine its mass. 

The doubles to singles count rate ratio must have been previously calculated or measured for a non-

multiplying item of pure 240Pu metal to provide a 𝜌0 value. Using  

𝑟 =
(

𝐷
𝑆

) (1 + 𝛼)

𝜌0
                                                                          (1.3) 

with the quadratic equation  

 

2.166(1 + 𝛼)𝑀2 − [2.166(1 + 𝛼) − 1]𝑀 − 𝑟 = 0                                   (1.4) 

 

to solve for the item multiplication, 𝑀, the doubles rate for that specific item composition’s may be 

determined [13].   

This analysis is done internally to INCC where the user must input the material type, alpha 

weight, and 𝜌0 parameters. This can be done for an active or passive measurement by selecting the 

appropriate box. For an inspection, there would be a stored library from previous use of this system using 

known sources, or from historical reference that would be used as the comparison to the new 

measurement data. A fit through the measured doubles to singles count rate ratio against the declared  

mass would have a straight line, on which the new measurement should fall, within statistical error. If this 

new measurement point deviates greatly from this fit, it may be assumed that the known alpha is not 

correct and another method may be necessary.  

In this instance, the system dead time, the item chemical composition, the respective (α,n) rate 

and spontaneous fission rate nuclear data, and the doubles to singles ratio for a non-multiplying item of 

pure metallic item of the same isotopics as the item under question, must be known for an accurate assay. 

Knowing all of these components is oftentimes difficult, and, without them, this method is not reliable.   

 Another method relies on forming a calibration curve and referencing that data against the item 

under question. Calibration sources of known activities and compositions are recorded in separate 

measurements. The item types may be selected from INCC or input manually with the respective known 

isotopics. Their rates are then recorded. The calibration curve is a representation of the measured doubles 

count rate compared against the declared mass. As the mass of the item increases, however, multiplication 

will increase due to introducing induced fissions in addition to the spontaneous fissions within the matrix. 

This causes a non-linear relationship between this ratio. The difference between a passive calibration 

curve and an active calibration curve is the behavior at these high mass ranges. For a passive curve, the 

behavior will be an increasing non-linear trend; meanwhile, for an active curve, the behavior will be a 

saturating trend due to increasing self-shielding of the neutrons due to short mean free paths within the 

high mass item. The fit is applied through INCC by selection of the desired curve equation across the 

relevant data sets. For most items inspected, this method suffices because these items fall within the linear 

region of this relationship and not the non-linear regions. The item under question is then measured using 

a verification measurement in INCC and the calculated assay mass, using the designated fit equation, is 

reported alongside the entered declared mass. The assay mass should be in agreement with the declared 

mass within the predetermined error.  

This measurement relies solely on the doubles count rate, and it has a higher error than the 

known-alpha method that relies on the ratio of the doubles to singles. It requires that several calibration 

source standards similar to the source in question are available for measurement. This is not always 

accessible during an inspection, and high mass and high multiplication items are less accessible. In certain 

instances, a proper calibration curve cannot be produced if the important characteristics of the items to be 

assayed are not well known. The correct fit equation must also be selected. Fast and thermal mode 
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operations of the same system have very different calibration curves. Different materials also have 

significantly different calibration curves since the penetration of the neutrons varies based on the mass of 

the item, and the neutron multiplication in the items is sensitive to the density and geometry of the item.  

It is more efficient, convenient, and commonly selected to use normalization procedures for a 

system, exploiting empirical calibration approaches. To do this, one model of the neutron coincidence 

counting system type is calibrated in a manufacturing or laboratory setting using the appropriate category 

of material over a wide range of mass standards. The calibration parameters necessary for this system are 

then fixed, and the response from any other model of that system type is normalized to those fixed 

parameters in a scaling factor. That specific calibration curve is then used as the “gold standard” for that 

configuration and application against which all other models are normalized. This is typically successful 

in calibrating and performing an NDA, but it leaves behind a large amount of unrecorded information 

about the source and system with many empirical correction factors.  

The final, and more mathematically direct, approach includes the system parameters and source 

nuclear data in a detailed analysis rather than an empirical approach. The observable rates are described in 

terms of the item properties and detector characteristics in the framework of a point kinetics model 

(Equations 1.5-1.7).  In the case of neutron coincidence counting, this is typically solved or inverted in the 

known (α,n) and known efficiency approximation. This holds the assumptions that the material is known 

so that the (α,n)-to-spontaneous fission rate ratio can be calculated from the isotopic composition and 

nuclear data, like with the known-alpha method. Also, it is assumed that the neutron counter efficiency 

(and gate factor) is not strongly influenced by the presence of the item, so this value would be known 

through a previous system characterization. Using the measured, dead-time-corrected singles and doubles 

count rate values, Equations 1.5 and 1.6 can be solved for the mass and multiplication of the item. This is 

a robust and mathematically complete solution, as there are two equations (for singles and doubles) and 

two unknowns (mass and multiplication). In the case of neutron multiplicity counting, the triples rate is 

also acquired, and the three point model equations are solved for three unknowns: the effective 240Pu 

mass, item self-multiplication, and the (,n) reaction rate when this is not well-known. However, in 

practice, this is much more sensitive to model bias, and some of the previously listed point-model 

parameters are treated as effective rather than physical values. Work is consistently ongoing to improve 

this understanding. 

In using the point kinetic equations, more information is recorded about the measurement and the 

system used [4]. These equations, when used for passive neutron coincidence counting, are: 

S = FεMνs1 (1 + α)                                                                            (1.5) 

D =
Fε2fdM2

2
 [ νs2 +  (

M − 1

 νi1 − 1
)  νs1(1 + α) νi2]                                               (1.6)  

and if multiplicity counting were to be used, the triples equation would be: 

𝑇 =
Fε3ftM3

6
 { νs3 +  (

M − 1

 νi1 − 1
) [3 νs2 νi2 +  ν𝑠1(1 + α) νi3] + 3 (

M − 1

 νi1 − 1
)

2

 ν𝑠1 (1 + α) ν𝑖2
2 }  (1.7)  

where 

𝐹: spontaneous fission rate for 240Pu  

𝜀: detector efficiency 

𝑓𝑑: doubles gate fraction  

𝑓𝑡: triples gate fraction  

𝑀: leakage self-multiplication 
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𝛼: ratio between the number of (𝛼,n) reactions to spontaneous fission neutrons (varies from item 

to item depending on its composition) 

𝜈𝑖𝑛, 𝜈𝑠𝑛: n order reduced factorial moment of induced/spontaneous fission neutron distribution 

 

The gate fractions are calculated using the time correlation gates, assuming an ideal system with a pure 

exponential decaying behavior, following:  

 

𝑓𝑑 = 𝑒−
𝑇𝑝

𝜏 (1 − 𝑒−
𝑇𝑔

𝜏 )                                                                 (1.8) 

𝑓𝑡 = 𝑓𝑑
2                                                                                (1.9) 

 

where Tp is the predelay, Tg is the gate width, and τ is the known neutron die-away time of the system.  

 The equations used for the active measurements consist of [14]:  

S = 𝑆0 + B + 𝑆𝑆 + FεMνs1                                                        (1.10) 

D =
Fε2fd νs2

2
∙  C𝑑                                                               (1.11) 

T =
Fε3ft νs3

6
∙  C𝑡                                                                  (1.12) 

where the same parameters exist as above, in addition to: 

𝑆0: singles count rate from the AmLi sources without an item present in the well 

𝐵: background singles rate in the room 

𝑆𝑆: the change to 𝑆0 due to scattering and absorption of AmLi neutrons by the item 

𝐶𝑑: correction factor for the self-multiplication contribution to the doubles 

𝐶𝑡: correction factor for the self-multiplication contribution to the triples 

Self-multiplication must then be solved using a cubic equation. Coupling between the AmLi source and 

the item must also be taken in account. Due to the complexity of these equations, traditionally the more 

empirical methods are used with active neutron counting. For a fresh fuel NDA, five correction factors are 

applied to the “gold standard” calibration curve to accommodate any differences in the coincidence 

counters, AmLi sources, electronics, assembly sizes, and burnable poisons between the reference model 

and the model being used [15]. 

The point kinetics model NDA analysis requires an in-depth understanding of the system 

behavior and the sources used, from physics first principles. Various source standards will be used to 

determine the system-specific parameters in a characterization and calibration approach prior to system 

operation in the field. Although this method is time consuming and requires detailed analysis of each of 

the terms included, it is the ideal analysis method for system evaluation and detailed reporting. In using 

each of these parameters, system designers may be able to study which characteristics may be better 

optimized to minimize the error on an NDA while maximizing the count rate obtained during a 

measurement. In addition, if a discrepancy were to arise between the declared mass of an item and the 

calculated mass through this analysis, it would be easier to identify the source of error contributing to this 

discrepancy compared to using empirical normalization analysis methods. This approach is not currently 

ideal for time-restricted inspection measurements, but NDA scientists have been focusing their efforts on 

making this more efficient such that it may be more widely implemented in the future. The development 

of modern neutron coincidence counting procedures and analysis techniques in support of the point 

kinetic equation NDA method will be the focus of this work. 
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 Counting System Characterization Parameters 

 Referencing the nondestructive analysis methods discussed in the previous section, it is obvious 

that the system’s parameters have a large influence on the final analysis. In order to perform a reliable and 

accurate NDA, the neutron coincidence counting system that is used in this measurement must be well 

characterized and its behavior must be very well known. Specifically, for the point kinetics model an in-

depth system characterization must be performed prior to the system’s use where the predelay, Tp, and the 

gate width, Tg, must be optimized, and the neutron die-away time, τ, the dead time, and the efficiency, ε, 

of the system must be well understood.  

 A neutron coincidence counting characterization procedure begins by verifying the operational 

high voltage (HV) through the HV characteristic (or Geiger Plateau Curve [1]). The HV characteristic is a 

visual representation of the neutron count rate across a range of HV settings. The singles count rate is 

typically used for this analysis, but it is possible to also study the doubles trend across a range of HVs. 

This is done to ensure proper performance and accurate gain settings of the preamplifiers within the 

system, matching the measured trend to historical data of the same model systems. For most neutron 

coincidence counting systems, the operational HV selected is between 1680 V and 1720 V. This setting is 

selected based off the stability of the count rate across different HVs. With the optimized HV setting, the 

predelay and gate width settings must then be optimized to ensure a balance between the collection of true 

neutron coincidences and the inclusion of background and electronic events in the analysis. 

 The neutron die-away time of a system is the length of time it takes a neutron to either be 

thermalized and captured in the system, or escape. Verifying the neutron die-away time will support the 

gate width selection as it should be approximately 1.27 times the neutron die-away time [4]. These values 

are then used to calculate the gate fractions in the point kinetic equations. The gate fractions are used to 

account for the fact that not all correlated neutron events fall within the selected timing windows, 

resulting in some inefficiency. It adjusts the rate equation to accommodate this decreased measured value 

from the true emitted value. In addition, the system’s detector efficiency must also be well known to 

correct the point kinetic equations for the true emitted source rate. Most neutron coincidence counting 

systems have a system efficiency of 15-30%. Therefore, a majority of the emitted neutrons will not be 

captured and measured by the counter. In order to calculate the correct mass of the item, this effect must 

be taken into account. Finally, due to the properties of the charge collection in the 3He tubes and the 

electronic pulse processing chain, dead time effects will be inherent within the pulse train. These effects 

decrease the number of measured neutron events. Because of this, the measured rates will need to have an 

accurate dead time correction applied to them for the true singles and doubles rates to be evaluated. It is 

crucial to accurately represent these parameters in the point kinetics equation for each system. Each of 

these parameters has an associated uncertainty that propagates through to the final calculated assay mass, 

so minimizing the uncertainty on these parameters will have a significant impact in final assay precision.  

 

 International Safeguards 
  

 The International Atomic Energy Agency  

 As the work of neutron coincidence counting research and development directly supports the 

International Atomic Energy Agency (IAEA), its attributes, duties, and limitations must be considered. 

The IAEA is, as the name implies, an international agency comprised of representative from many 

different countries around the world, which is responsible for the promotion of peaceful uses of nuclear 
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energy. It ensures that nuclear technology is not used for military purposes, including nuclear weapons. 

The Agency is autonomous, but it does report to both the UN General Assembly and Security Council.  

The IAEA is broken down into three bodies: the Board of Governors, the General Conference, 

and the Secretariat. The Board of Governors is responsible for making most of the policy of the IAEA. It 

selects the Director General, interprets the Safeguards Agreements, determines the non-compliance of a 

State, approves the budget, and also decides what to report to the UN Security Council, which is the only 

body with power to enforce the repercussions of non-compliance. The General Conference is comprised 

of 171 member states that participate in the annual meetings held to approve the actions and budgets 

passed on from the Board of Governors. The conference serves as a forum for debate on current issues 

and policies in which each state may voice its concerns and opinions. The Secretariat is made up of the 

staff working for the IAEA such as the inspectors, analysists, and scientists.  

 It has three main missions on which it operates: safeguards and verification, safety and security, 

science and technology. For the safeguards and verification mission the IAEA works to prevent the 

further spread of nuclear weapons through the deployment of inspectors who work to verify that 

safeguarded nuclear material and activities are not used for military purposes in nuclear facilities 

worldwide. For the safety and security mission the IAEA works to protect people and the environment 

from harmful radiation exposure through helping countries upgrade their nuclear safety standards and 

procedures and prepare for, and respond to, emergencies. For the science and technology mission the 

IAEA works to support the peaceful applications of nuclear science and technology in its member states 

such as in developing countries. 

The IAEA received governance from its Statute [16], a treaty, which came into effect in 1957. 

The Statute has since been amended in 1963, 1973, and 1989. The agency was developed following 

President Eisenhower’s “Atoms for Peace” address to the General Assembly of the United Nations in 

1953, concerned with atomic warfare and the implications it could have on society. Several articles to 

highlight are: Article II which outlined the objectives of the Agency, Article III which set forward the 

functions of the Agency and what it is authorized to do, and Article XII which established the rights and 

responsibilities of the Agency in terms of applying safeguards and conducting inspections in various 

States. In 1961 “The Agency’s Safeguards”, INFCIRC/26 was issued, which was applicable primarily to 

research facilities [17]. In 1965 INFCIRC/66 was issued, “The Agency’s Safeguards System (1965),” 

revising INFCIRC/26 and creating an extensive and comprehensive set of safeguards covering reactors of 

all sizes. In addition, revisions were successively made to include reprocessing plants (Rev. 1) and fuel 

fabrication plants (Rev. 2) in 1967 and 1968. 

 In 1970 the Treaty on the Non-Proliferation of Nuclear Weapons (the Non-Proliferation Treaty or 

NPT) entered into force [18]. The NPT was created to prevent the spread of nuclear weapons and 

weapons technology, promote cooperation in exploiting peaceful uses of nuclear energy, and work 

towards achieving nuclear disarmament. It also provides security against the threat of a nuclear 

devastation, through the nuclear umbrella, for non-nuclear weapons states that gave up the option to 

pursue nuclear weapons by signing the treaty. The treaty has since been extended indefinitely. There are 

currently 191 signatories. North Korea has withdrawn, and four UN States have not signed: Israel, 

Pakistan, India, and South Sudan. Four of these five States are believed, or known, to have nuclear 

weapons.  

 The NPT ideals expressed throughout the preamble and eleven articles are interpreted in the form 

of three iconic pillars: non-proliferation, disarmament, and the right to peaceful use of nuclear 

technology. There is an intrinsic balance between these matters that form the pillars and each is mutually 

reinforcing for the other two. Article I of the NPT states that every nuclear-weapon state pledge not to 

transfer nuclear weapons to any recipient, or in any way assist, any non-nuclear-weapon state in 

manufacturing or acquiring a nuclear weapon. Then, Article II states that each non-nuclear weapon state 
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will not attempt to acquire, manufacture, or seek assistance in the manufacturing of, any nuclear weapons. 

These two articles address the non-proliferation concerns. In order to verify that these obligations are met, 

a procedure for inspection and drawing conclusions to this end, had to be developed. Article III 

establishes that each non-nuclear weapons state will reach an agreement with the IAEA for the 

application of its safeguards to all nuclear material in all of the state's peaceful nuclear activities, and to 

ensure there is no diversion this material to nuclear weapons.  

The right to peaceful uses of nuclear energy for both nuclear weapons states and non-nuclear 

weapons states is established in Article IV of the NPT. It clarifies that every signatory to the treaty has an 

inalienable right to develop research for the production and use of nuclear energy technologies, and it 

states that they may benefit from international cooperation in this area, in conformity with their non-

proliferation obligations. International cooperation for the spread of nuclear energy may be used to further 

the development of the applications of nuclear energy for peaceful purposes, with consideration for the 

needs of the developing areas of the world. Because of this article, many countries have since 

implemented, while other countries have helped assist with building, securing, and regulating, nuclear 

reactors for energy needs. Each of these reactors then must fall in an IAEA safeguards agreement with the 

respective State, which requires IAEA resource investments for the inspections and assessments of their 

peaceful uses. 

In addition, the nuclear weapons states agree to pursue good-faith negotiations on effective 

measures relating to general and complete disarmament under Article VI. Although this article has 

generated great dispute over the decades between various countries, the process of disarming has 

produced additional safeguards concerns. The material made available through the dismantling of nuclear 

weapons has been incorporated under the respective State–IAEA agreements, and peaceful uses for that 

material have been investigated, ensuring it is not used for proliferation. 

The NPT defines nuclear-weapon states as those that have tested a nuclear explosive device 

before January 1, 1967 through Article IX. The weapons states are then the United States, Russia, the 

United Kingdom, France, and China. Again, the four other states, Pakistan, India, North Korea, and Israel, 

are known or believed to possess nuclear weapons but have not signed and ratified the NPT. Israel is 

deliberately ambiguous regarding its nuclear weapons status. All other signatories are considered non-

nuclear weapons states.  

In 1972 INFCIRC/153 was issued [19], in support of the NPT Article III requirement that all non-

nuclear weapon state signatories must establish an agreement with the IAEA for application of its 

safeguards with the State to ensure peaceful use of nuclear material. This INFCIRC defines the general 

structure and content of these agreements for the States, through Comprehensive Safeguards Agreements 

(CSAs). The weapons states have different arrangements with the IAEA than non-nuclear weapons states 

regarding their nuclear material. They are not obligated under the NPT to hold safeguards agreements 

with the IAEA. Instead, they have all voluntarily made other arrangements. This is practical as there is no 

longer a concern for these weapons states that they will obtain nuclear weapons; they already have them. 

So, inspection resources should not be dedicated to verifying the peaceful uses of nuclear technology, but 

instead they should be used to verify that these States are not proliferating. In addition, five treaties have 

been ratified from 1967- 2006 regarding regional Nuclear Weapons Free Zones in Latin America and the 

Caribbean, the South Pacific, Southeast Asia, Africa and Central Asia [20]. The NPT supports the 

creation of these nuclear weapons free zones by explicitly stating that any group of States has the right to 

issue regional treaties to assure “the total absence of nuclear weapons in their respective territories.” 

These treaties require the signatories to uphold a CSA with the IAEA. Safeguards are also required for the 

European Atomic Energy Community (Euratom), which was created by a treaty passed in 1957. Euratom 

is an organization formed between the members of the European Union to share nuclear energy and 

technology, and it has its own safeguards that is performed in close partnership with the IAEA. 
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INFCIRC/153 acknowledged the existence of Euratom safeguards, and inspections of their respective 

facilities are performed in collaboration between Euratom and the IAEA [21]. A binational safeguards 

agency exists between Argentina and Brazil (ABACC) to also verify its own peaceful uses of nuclear 

technology. ABACC works in direct support of IAEA concerns. 

Following the discovery of clandestine nuclear weapons activity in both Iraq and North Korea, 

the IAEA decided it needed enhanced verification measures for its safeguards that extended beyond 

declared nuclear material and declared facilities. This discovery proved that the IAEA safeguards worked 

well with verification activities on declared nuclear material and facilities, but it was not well-equipped to 

detect undeclared nuclear material and activities in States with CSAs. Therefore, in 1997 INFCIRC/540 

was issued that outlined an Additional Protocol (AP) for the IAEA. It includes provisions for information 

about, and access to, all parts of a State's nuclear fuel cycle, from mines to nuclear waste facilities, 

including decommissioned sites and locations outside facilities. It was designed for States that have any 

type of safeguards agreement with the IAEA. The AP provides broader information and broader access. 

The broader information comes from the right to inspect nuclear fuel cycle research and development 

components that do not house nuclear material, such as the development of centrifuge technology, in 

addition to the manufacturing and export records of sensitive nuclear-related equipment and material. 

This information must be revealed by the Sate if prompted. The broader access allows complementary 

access to any building on a nuclear site with a short notice of 2 hours, or 24-hour access, visits to any 

State–declared locations as part of the nuclear fuel cycle from mining to waste, and access to any other 

locations for the collection of environmental samples. With the AP inspectors also receive multiple 

entry/exit visas so they may show up on short notice to a facility such that the State may not have time to 

hide its activities. This introduction sparked a great restructuring and investment of new resources in 

terms of non-destructive assay systems for various new applications, data analysists, information 

scientists, and more staff to execute these new requirements. In implementing an AP in combination with 

a CSA, the IAEA can reach more certain conclusions that a State’s activities are for peaceful uses only. 
 

 State Obligations Regarding Safeguarding Nuclear Material 

Because of these different treaties and conditions, the IAEA concludes three types of safeguards 

agreements: CSAs with non-nuclear weapon state parties to the NPT, Voluntary Offer safeguards 

agreements with the nuclear weapon state parties to the NPT, and item-specific safeguards agreements 

with non-NPT States. Each of these agreements may be complemented with an AP. A small quantities 

protocol may be concluded in conjunction with a CSA for States that have minimal or no nuclear material 

and no nuclear material in a facility.  

“The objective of IAEA Safeguards is to deter the spread of nuclear weapons by the early 

detection of the misuse of nuclear material or technology. This provides credible assurances that States 

are honouring their legal obligations that nuclear material is being used only for peaceful purposes.” [22] 

Safeguards are based on assessments of the correctness and completeness of a State’s declared nuclear 

material and its nuclear-related activities. The IAEA verification measures combine inspections and 

ongoing monitoring and evaluation. To draw a conclusion about a State complying with its obligations 

under the NPT, the IAEA must conduct a sufficient level of safeguards activities and also perform a 

comprehensive evaluation of all safeguards-relevant information available. It also needs to have 

addressed anomalies, questions, or inconsistencies identified by its safeguards activities, and have 

assessed whether there are any indications that would constitute a safeguards concern. Therefore, the 

responsibilities and actions of the IAEA follows an annual cycle with four main processes. These 

processes are intertwined and form a constant recycling of duties and obligations. They consist of 
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developing safeguards approaches; planning, conducting, and evaluating safeguards activities; drawing 

safeguards conclusions; and collecting and evaluating information [23].  

For the collection and evaluation of safeguards-relevant information, the IAEA reviews all 

available open source, 3rd party, publications, satellite imagery, patents, and media information to 

evaluate its consistency with the State’s declarations about its nuclear program. In developing a 

safeguards approach for a State, acquisition path analysis, material balance accountancy, design 

information verification, environmental sampling, NDA/DA sampling, weighing, containment, and 

remote surveillance procedures are outlined to physically verify the State’s declarations. The IAEA then 

evaluates these technical findings and identifies if any inconsistencies exist in terms of compliance or 

noncompliance ruling, or if a Complimentary Access visit is necessary. Finally, the safeguards conclusion 

is drawn and reported each year to the Board of Governors in the Safeguards Implementation Report. 

Each State has its own respective agreement with its own inspectors, data analysts, and 

information scientists. It will be evaluated based on its agreement with the IAEA. For all non-nuclear 

weapons states that are signatories to the NPT, a CSA must be performed. The CSA declares that the 

IAEA has the right and obligation to ensure that safeguards are applied on all nuclear material in the 

territory under control of the State, for the exclusive purpose of verifying that such material is not 

diverted to nuclear weapons or other nuclear explosive devices. As of June 2018, 174 States have a CSA 

with the IAEA. For the nuclear weapons states, all five (China, France, Russia, United Kingdom, United 

States) have voluntarily signed Voluntary Offer Safeguards Agreements with the IAEA. These 

agreements allow the IAEA to apply safeguards to nuclear material in State–selected facilities to verify 

that that nuclear material remains in peaceful activities and is not withdrawn from safeguards, except as 

provided for in their respective agreements. This covers civilian nuclear material and sites. Three States 

not party to the NPT (India, Pakistan and Israel) have item-specific agreements they have concluded with 

the IAEA. Item- specific agreements are based on the safeguards procedures established in INFCIRC/66, 

where only the nuclear material, non-nuclear material, facilities and other items directly specified in the 

safeguards agreements can fall under inspection. The States undertake not to use their nuclear material, 

facilities or other items subject to the agreement for the manufacture of any nuclear weapon or to further 

any military purpose. States with minimal or no nuclear activities can conclude a Small Quantities 

Protocol (SQP) with the IAEA if the material is used in locations called ‘locations outside facilities,’ 

defined in the Model Additional Protocol as “any installation or location which is not a facility, where 

nuclear material is customarily used in amounts of <1 effective kg. As of December 2018, 88 States have 

SQPs [24]. The AP may be applied in addition to any of these agreements. As of June 2018, 132 countries 

and Euratom have concluded APs that are now in force; 16 other States have signed their AP agreements 

but have not entered them into force. All five nuclear weapon states have concluded APs to their 

voluntary offer safeguards agreements. 

The States must then develop their own system for Material Control and Accountability in 

compliance with their respective agreement, typically falling under domestic safeguards. This supports 

the State–Level Concept for integrated safeguards, which will tailor the IAEA activities to each specific 

State. The entire State is treated as one entity by the IAEA, such that material balances must exist across 

the entire State, rather than on a facility by facility approach. Each facility may have several material 

balance areas where nuclear material is kept. These facilities then report to the State that keeps a record of 

these balances. Logs of all nuclear material transactions, inventory adjustments, material losses and gains, 

and system access must be kept and reported to the IAEA during the annual inspection or during a 

complimentary access. This information, in combination with the information directly collected by the 

IAEA, helps form the State evaluation. A statistical sampling is then performed by inspectors in material 

balance areas at chosen facilities during the annual inspection. These measurements, in combination with 

the other facets of the inspection, are evaluated such that if discrepancies above a set value were to exist 
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from what was declared by the State, further investigation would be necessary to draw a safeguards 

conclusion. 

 

 The Nuclear Fuel Cycle 

 With the extension of inspections spanning across the entire nuclear fuel cycle with the 

ratification of the AP, many new facilities and procedures have come into play for IAEA inspections. The 

nuclear fuel cycle begins at the mining stage to harvest uranium ores. It then progresses to milling, 

conversion, enrichment, and fuel fabrication stages as illustrated by Figure 1.4. After the lifetime of the 

fuel in the reactor, it must “cool” in the spent nuclear fuel pond, and then be transferred to storage and 

either remain there or be sent to a fuel reprocessing plant. All of these stages have relevant safeguard 

concerns which need to be addressed due to the material handled and the processes involved. 

The nuclear material may begin as one of the many ore chemical forms: Autunite, Coffinite, Davidite, 

Tobernite, Uraninite (pitchblende), Zeunerite, etc. This ore composition is typically less than one percent 

uranium in the total mass of material harvested. The uranium is then milled to chemically purify and 

condition it into U3O8 yellow cake. The material balance between what is mined as ore to what comes out 

in the form of U3O8 must be verified. This mining and milling procedure also leaves behind tailing, or 

waste, that may include small amounts of uranium that must be accounted for. The U3O8 is then converted 

into UF6 gas through a number of eligible processes. The mass balance between this conversion procedure 

must be in agreement. The UF6 gas is then enriched to the desired 235U percent value. In addition to 

verifying a mass balance within this facility, it is crucial to ensure the uranium used during these stages 

remains below the IAEA–specified threshold between low-enriched uranium (LEU) and high-enriched 

uranium (HEU), at 20%. Typically, commercial reactors use enrichments anywhere between 3-5% and 

research reactors can use upwards of 19.9% enriched fuel. This is related to the amount of separative 

work units (SWU) necessary to reach that enrichment threshold. SWU is the work, or effort, needed to be 

put into this process in order to separate 235U from 238U. Beyond a 20% enrichment, there is little gain in 

SWU necessary to reach weapons grade uranium; therefore, the IAEA restricts all peaceful uses of 

nuclear material to below a 20% enrichment to ensure there is no malicious clandestine activity. 

 The enriched UF6 gas is then loaded into large storage cylinders which are typically used to move 

the material from the enrichment facility to the fuel fabrication facility. The UF6 gas is then unloaded and 

typically converted to UO2 for use in Light Water Reactors (LWRs), although other fuel forms exist for 

different reactor types worldwide. The enriched UF6 gas undergoes another conversion to get it into UO2. 

This UO2 powder is ground and sintered into individual pellets, which are then loaded into the respective 

fuel assembly fuel rods. This process contains many different stages and sources of loss of material that 

must be confidently measured to ensure there is no diversion of material. The advancement of these 

nuclear fuel assemblies, such as the inclusion of burnable poisons, complex configurations, and varied 

enrichment pellets throughout an assembly, complicate safeguards verification measures.  

Following the fuel fabrication into an assembly, it is important for safeguards to ensure that same 

amount of material goes in to the reactor, and comes out, less for burnup. After the lifetime of the fuel 

within the reactor, the spent nuclear fuel must be safeguarded during cooling, and then transport, to 

ensure no material is diverted. Depending on the country in question, that spent fuel is either reprocessed, 

which is placed under heavy safeguards due to the presence of 239Pu, or stored in dry casks that also 

require monitoring for diversion. All material must be accounted for throughout this process to adhere to 

the agreements made between the respective State and the IAEA. 
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Figure 1.4. The nuclear fuel cycle. [25] 
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 Neutron Coincidence Counting Used in an Inspection 

 Neutron sources of interest for NDA exist across the entire nuclear fuel cycle. However, for 

neutron coincidence counting of non–irradiated materials, the focus ranges primarily across the different 

aspects of the fuel fabrication stage due to the presence of uranium, and in some State cases, plutonium. 

Neutron coincidence counting is also essential in material balance areas within laboratories or other 

facilities that may house fissioning nuclear material kept under IAEA safeguards. Items of varying 

masses, activities, geometries, and chemical compositions need to be assayed. This requires a variety of 

neutron coincidence counters that can accommodate these differences.  

 The primary applications of neutron coincidence counting are measuring both uranium and 

plutonium metals and oxides, in scrap samples produced throughout the fuel fabrication process, fuel 

pellets, fuel rods, fuel assemblies, laboratory and research samples, and HEU quantities. Solid scrap may 

be contained in complex geometries filled with other non-nuclear waste produced from manufacturing in 

the UF6 to UO2 conversions, sintering of the UO2 into fuel pellets, any unsuitable production quality 

pellets, any excess metal, substantial build-up of material tails from machining, or unrecoverable material 

from any of the processes. If plutonium is part of the State’s nuclear fuel cycle PuO2, Pu metal, Pu 

solutions from the separation of Pu from waste and for fuel fabrication, may also be assayed. The assayed 

items across the numerous systems range from milligrams to multiple kilograms. They may be contained 

in large 55 gallon waste drums, waste crates, shipping crates, in gloveboxes, or cans and containers 

housing any combination and concentration of liquids, powders, and pellets. [26] 

 Once the fuel assemblies are loaded into the reactor, they no longer fall under the pre-irradiation 

neutron coincidence counting NDA jurisdiction. Instead, other safeguards measures come into play such 

as unattended monitoring and surveillance, containment, Cerenkov viewing devices, and spent fuel 

measurement systems. Muon tomography may be used to ensure spent fuel assemblies remain in their dry 

cask storage. 

 

 Approved Neutron Coincidence Counters for Nondestructive 

Assays 

Many IAEA–approved neutron coincidence counters have been imagined and developed into 

prototypes by LANL and its collaborators over the last several decades [11]. The more widely applicable 

prototypes then become commercialized through various companies. For those systems that may have 

very niche applications, industry may provide custom orders for interested customers, but they are not 

highly advertised for reference. AnTech Incorporated and Canberra Industries (now Mirion Technologies) 

are the two main commercial suppliers of neutron coincidence counters to the IAEA. Both manufacturers 

must follow strict guidelines and system performance requirements in each of their designs, as dictated by 

the Agency. Therefore, there is no significant variation between detector models to guarantee similar 

performance. The IAEA has released several public documents [27] over the last twenty years containing 

the glossary of terms used by the Agency, the policies behind the evolution of safeguards, and the 

comprehensive list of detectors used in various field measurements worldwide [8] [9] (Figure 1.5). This 

incorporates the integrated safeguards approach instated in the 1990’s, including the added requirements 

and resources needed for an AP. The IAEA/NVS/I Safeguards Techniques and Equipment [8] [9] lists and 

describes the coincidence neutron detector systems for the nondestructive analysis of non–irradiated 

fissile fuel, which is the focus of this work. These documents are the main references the greater 

community has to what technology is being used to realize the goals of the IAEA in routine 

measurements. About twenty versions of coincidence detector systems are currently in use for nuclear 

safeguards, with design features optimized for specific item sizes, shapes, or plutonium mass ranges 
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(Table 1.1). The associated commercial systems produced by Canberra and Antech have been compiled 

in this table as well as reference examples. Other systems exist beyond the twenty; through private 

communication with a previous system designer [10], it has become clear that not all systems that are 

used by safeguards customers are included in this list. Some of these systems have niche applications, so 

they are not widely deployed, meanwhile it is unknown why others are not listed.  

It is clear that each of these systems has its own application and item range that lends itself useful 

to particular assay situations. It is typical that these systems remain within the set facility where an 

inspection will take place, due to their size and niche. Therefore, during an IAEA inspection, previous 

calibrations and characterizations will be used in the current analysis to perform an NDA. Inspectors are 

trained on how to use each system, with associated electronics and data acquisition software, and how to 

interpret the data acquired to reach conclusions on their NDAs. Large resource investments are associated 

to these measurements, and because of that, these systems are not easily replaced or interchanged. Most 

of these systems were designed in the late half of the 20th century and have been used since. As facilities 

continue to advance and the items under question become more complex, these systems may be 

challenged. However, since 2003, no new systems have been widely deployed, as is shown with 

referencing Table 1.1.  
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Figure 1.5. Timeline of IAEA publications containing the list of detectors used in field measurements and their 

respective applications.   
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Table 1.1. A list of given IAEA–approved neutron coincidence counters used in inspections to assay non-irradiated samples, as given in [8] [9]. 

These systems are listed with their commercial model numbers, as available from Mirion Technologies [28] and Antech Inc [29]. [10] 

 Counter Name Counter Description IAEA NVS 

Listing 

Mirion 

Technologies 

Model # 

Antech  

Model # 

Passive 

Counting 

     

 Bird Cage Counter (BCNC) Verification of Pu mass in fast critical 

assembly fuel plates that are stored in 

containers called birdcages 

2003, 2011 --- --- 

 Compact Neutron Coincidence Counter 

(CNCM) 

Verification of MOX fuel assemblies in 

shipping crates 

2003 --- --- 

 Drawer Counter (DRNC) Verification of Pu mass in facility 

specific containers 

2003, 2011 --- --- 

 Fuel Assembly/Capsule Assay System 

(FAAS) 

Verification of Pu mass in MOX fuel 

assemblies 

2003, 2011 --- --- 

 Fuel Pin/Pallet Assay System (FPAS) Verification of Pu mass in MOX fuel 

pins in facility specific storage trays 

2003, 2011 --- --- 

 Glovebox Assay System (GBAS) Semi-quantitative determination of Pu 

hold-up in gloveboxes 

2003, 2011 Available Available 

 Hold-up Blender Assay System 

(HBAS) 

Semi-quantitative determination of Pu 

hold-up in facility blenders 

2003, 2011 --- --- 

 High Level Neutron Coincidence 

Counter (HLNC) 

Verification of Pu in 20-2000 g canned 

samples (pellets, powders, scrap) 

2003, 2011 JCC-31 N2018 

 Inventory Sample Counter (INVS) Verification of Pu in 0.1-300 g 

samples. Modified version can be 

attached to gloveboxes 

2003, 2011 JCC-12 --- 

 Large Neutron Multiplicity Counter 

(LNMC) 

Verification of Pu in 

contaminated/impure items  

2003, 2011 LEMC, 

multiple 

Available 

 Glovebox Counter (MAGB) Verification of Pu mass in facility 

gloveboxes 

2003, 2011 Available --- 

 Canister Counter (PCAS) Verification of Pu mass in MOX 

canisters 

2003, 2011 Available Available 

 Plutonium Neutron Coincidence Collar 

(PNCL) 

Verification of Pu mass in MOX fuel 

assemblies 

2003, 2011 JCC-71, 72, 

73 

N2023-M, 

N2044, N2071 
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Table 1.1. Continued. 

 Counter Name Counter Description IAEA NVS 

Listing 
Mirion 

Technologies 

Model # 

Antech  

Model # 

 Plutonium Scrap Multiplicity Counter 

(PSMC) 

Verification of Pu in 1-300 g (1-5000 

g)* canned samples of scrap 

2003, 2011 PSMC-01, 

multiple 

N2098 

 Passive Well Coincidence Counter 

(PWCC) 

Verification of Pu mass in CANDU 

MOX fuel bundles 

2003, 2011 JCC-51, 41, 

multiple 

N2442 

 Universal Fast Breeder Counter 

(UFBC) 

Verification of Pu in Fast Breeder 

reactor fuel, up to 16 kg  

2003, 2011 JCC-61, 62 --- 

 Underwater Coincidence Counter 

(UWCC) 

Underwater verification of Pu in fresh 

MOX fuel assemblies 

2003, 2011 --- N2106, N2108 

Active 

Counting 

     

 Active Well Coincidence Counter 

(AWCC) 

Verification of 235U in high enriched U 

samples 

2003, 2011 JCC-51 N2442 

 Uranium Neutron Coincidence Collar 

(UNCL) 

Verification of 235U in low enriched U 

fuel assemblies 

2003, 2011 JCC-71, 72, 

73 

N2023-M, 

N2044, N2071 

 Waste Crate Assay System (WCAS) Verification of waste materials, mg-kgs 2003, 2011 WCAS N2940-2552 

 Waste Drum Assay System (WDAS) Interrogation of low level waste drums 

for Pu mass 

2003, 2011 WM3100, 

3400 

N2240 Series, 

N2223-220,  

N2221-220 
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 Coincidence Counters Studied 

 The Safeguards laboratory at Oak Ridge National Laboratory houses several standard neutron 

coincidence counters. These include: a Canberra Industries/Mirion Technologies JCC-71 Neutron 

Coincidence Collar that represents the Uranium Neutron Coincidence Collar, an Antech N2071 Neutron 

Coincidence Collar, a large volume variant on the Mirion JCC-51, Large Volume Active Well 

Coincidence Counter, and a modern 3He replacement prototype a boron–coated–straw–based High Level 

Neutron Coincidence Counter. Characteristics on each of these systems will be discussed below.  

 

The Uranium Neutron Coincidence Collar (UNCL) 

The Neutron Coincidence Collar was designed to measure 235U content in fresh fuel assemblies 

used in pressurized water reactors, boiling water reactors, or Canada Deuterium Uranium reactors. It can 

also measure plutonium content in MOX fuel. The size of the counter’s assay cavity can also be altered to 

better accommodate these different fuel assembly types. The rectangular detector body is comprised of 

four individual banks each containing six 3He tubes with 2.54 cm diameters pressurized at 4 atmospheres 

(atm) embedded in a single row within HDPE moderating slabs.  

The Neutron Coincidence Collar is designed to operate in two modes: active and passive.  In 

active mode, three 3He detector banks are connected with a fourth hinged HDPE bank (Figure 1.6 a), 

containing no 3He tubes, whose central hole contains an AmLi source encased in a tungsten pot. In 

passive mode, the HDPE slab is replaced by a fourth detector bank containing 3He tubes. This fourth bank 

is hinged to ensure easy placement of a fuel assembly within the cavity. Cadmium sheets can also be 

inserted, if desired, to reduce neutron reflections back into the system and therefore decrease the neutron 

die-away time. 

For the JCC-71 (Figure 1.6 a) [30], the tubes and HDPE assembly are connected to a junction 

box panel containing a single preamplifier board per bank designed around an Amptek A111 charge 

sensitive preamplifier, discriminator, & pulse shaper chip [31]. Each bank is then capable of producing a 

signal. The Mirion electronics used in each of their junction boxes is named the JAB-01 

Preamplifier/Amplifier/Discriminator board which houses the A11 with additional shaping and OR logic. 

The junction box transfers HV between the connected banks through “HV in” and “HV out” connections, 

and it contains “Signal in” and “+5 V in” inputs and “Signal out” and “+5V out” outputs to interconnect 

the banks and communicate with an external data acquisition system. For the N2071 (Figure 1.6 b) [32], 

these junction boxes house the Amptek A111 chip and the necessary low voltage, signal and HV 

distribution networks. It has the same connections on the box faces as the JCC-71, and they are both 

compatible with the same data acquisition technologies. 

 

The Active Well Coincidence Counter (AWCC) 

 The LANL design standard version of the AWCC, manufactured by Canberra as model JCC-51, 

uses 42 3He tubes with 2.54 cm diameters pressurized at 4 atm. These tubes are arranged in two 

concentric rings of 21 tubes each, embedded in HDPE, for a total system diameter of 50 cm; they extend 

throughout the 70 cm height of the cylindrical body with an active length around 51 cm [33]. The central 

cavity dimensions can be altered from as small as 23 cm in diameter and 21 cm in height to as large as 23 

cm in diameter and 35 cm in height by removing the nickel ring and spacers within the end plugs to 

accommodate larger items. The AWCC uses two AmLi sources for active interrogation. The system can 

be operated in active fast, active thermal, and passive thermal configurations by adding or removing the 

AmLi and Cd inserts.  

The ORNL Large Volume Active Well Coincidence Counter (LV AWCC) is a variant of the 

JCC-51 but with a larger cavity (Figure 1.6 c). This model uses 48 3He tubes with 2.54 cm diameters  
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Figure 1.6. (a) JCC-71 UNCL (b) N2701 UNCL (c) JCC-51 Large volume variant AWCC (d) Boron coated 

straw HLNC. 
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pressured at 4.5 atm and arranged in two concentric rings encompassing a 27.94 cm diameter by 38.10 cm 

tall assay measurement cavity. The tubes are organized into eight groups with each group connected to a 

Canberra JAB-01 Preamplifier/Amplifier/Discriminator board. The top of the system has a “HV in”, “+5 

V in” and three signal output connections; one for each of the two rings plus a total summed signal 

output. 

 

A Boron–Coated–Straw–Based High Level Neutron Coincidence Counter (HLNC) 

 A boron-coated-straw-based (BCS) counter was built by Proportional Technologies Incorporated 

(PTI) as a direct replacement to the HLNCC-II for a previous project at ORNL [34]. The BCS-based 

HLNCC-II is composed of 804 10B straws, each 4.4 mm in diameter, allowing for a tight packing within 

the geometry to help improve detection efficiency by compensating for the lower neutron capture cross 

section compared to 3He. 10B4C at 96% enrichment is sputtered along the inside of an aluminum or copper 

straw with a thickness of approximately 2 μm and filled with a mixture of P-10 gas at 1 atm. The 

dimensions of the 3He HLNCC-II are preserved, although there is an increase in mass of 6 kg; it consists 

of a cylindrical HDPE body with 34 cm diameter and a height of 68.2 cm (Figure 1.6 d). The sample 

cavity is 17 cm in diameter and 41 cm in height and is sealed with top and bottom end plugs made of 

HDPE and aluminum. There are six detector banks, of 134 tubes each, connected together and processed 

by six amplifiers made in-house at PTI. The 804 straws are uniformly dispersed within the moderator for 

thermalization of neutrons. Six signal connections are available on the top face of the system. This signal 

can then be read out with standard acquisition software. 

 

 Current Data Acquisition Technologies 

 Neutron coincidence counters almost exclusively operate in combination with a shift register 

logic module when used in the field. The shift register provides HV to the system and a low voltage to the 

preamplifier boards, it acquires the neutron pulse trains from the connected signal(s), and then it performs 

the data analysis in combination with an affiliated software, INCC, as discussed in Section 1.1. Today, the 

IAEA uses the Mirion JSR-12 model, the Neutron Coincidence Analyzer, paired with a laptop using the 

INCC software and a printer during its measurements using these coincidence systems [9]. The JSR-12 

(Figure 1.7) was designed by LANL and first produced commercially by Canberra in the early 1990s. It 

was made as an upgrade from the previously used JSR-11. This module included a new LCD screen 

compared to the JSR-11, a 4 MHz internal clock, and a serial port to connect it to a computer.  The JSR-

12 counts and records pulses from neutron events and their time-correlations for coincidence counting. 

 In addition, Mirion has also produced commercially available JSR-14 Neutron Analysis Shift 

Register and a JSR-15 Handheld Multiplicity Register modules (Figure 1.7). These shift registers have 

since introduced further improvements to the data acquisition hardware and software such that the 

interface between the inspector and the module are now easily done through the computer, and 

multiplicity rates can be recorded. Both modules are more easily portable and battery powered for ease of 

use, and their internal clocks are significantly faster than the JSR-12.  

The JSR-15 is used throughout this work as the comparison for all data acquisition and analysis 

as it is the most modern shift register available to the Agency. It was designed by LANL and made 

commercially available by Canberra in 2011. It has a large LCD screen face paired with push buttons that 

allow easy option selection independent from a computer. It may be plugged in but also holds a sufficient 

charge for various measurements. It provides the HV, LV, and can acquire 3 inputs simultaneously: one 

in the signal in port, and 2 others in the auxiliary 1 and 2 ports. A measurement summary can be written 

out on the LCD screen for the signal in port listing the cycle data, singles rate, doubles rate, triples rate 

and associated uncertainties, (R+A) values, A values, and a background value. A count rate value can be 
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produced for the two auxiliary ports. The JSR-15 has a 50 MHz internal clock so it may handle higher 

count rate applications. Despite the added capabilities and benefits offered by JSR-15, due to the cost of 

replacing the JSR-12 in many facilities worldwide, it is still widely used for inspections. This prevents 

any acquisition from recording a measured triples rate and it operates on a lower internal clock speed for 

incoming pulses to be processed.  
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Figure 1.7. (a) The Mirion Technologies JSR-12. (b) JSR-14 (c) JSR-15 [28] 
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   Current Limitations of Neutron Coincidence Counting 

Neutron coincidence counting works. It has been applied in hundreds of thousands of NDAs to 

successfully verify a State’s compliance to the obligations of its respective safeguards agreement. It 

accomplishes the relevant tasks of an inspection and has for decades. However, through the use of these 

systems, several limitations and weaknesses have become apparent from a fundamental perspective.  

The process in which an NDA is carried out with these systems contains many different 

correction factors that are not based on system characteristics that can be understood from physics first 

principles, as discussed in Section 1.1.1. The known-alpha and calibration curves involve empirical fits 

that are dependent on the system used, the item in question, and the representative sources previously 

measured. These empirical fits are completed at the time of the measurement and are subject to inspector 

decisions. A passive NDA using the point kinetics equations uses an approach much more grounded in 

physical parameters, but it still suffers from the challenges of a reliable system characterization. 

Representative source standards are not easily accessible, and the system parameters oftentimes are 

selected based on historical values, resulting in sizeable uncertainties. This analysis also contains 

calculated gate fractions, which are dependent on the timing gates selected for neutron coincidence 

counting analysis, and other correction factors that cannot be broken down into fundamental properties. 

The data acquisition hardware used with these systems, such as a commercial–off–the–shelf shift 

register, has a limited number of input signals for analysis, and it reports the total summed results from all 

connected channels, rather than each individual counter bank’s results. This limits the amount of 

information obtained from the system- constraining it to a single neutron pulse train analysis. If one of the 

banks of these systems is malfunctioning at the time of measurement, the only indication would be a 

decreased count rate measured from the source relative to previously measured values. This may not be 

easily identified, depending on the change in count rate, empirical fit uncertainty, or other environmental 

factors. A lesser mass may be determined from this NDA, raising further compliance questions. In 

addition, with models such as the Canberra JSR-12, only the singles and coincidence values are reported, 

which limits the use of any neutron multiplicity counters for a three-parameter assay. Finally, when data 

is acquired using a shift register such as the JSR-12, there is no saved record of measurement of the 

neutron pulses as a function of time for offline replay and analysis if a measurement is called into 

question. A measurement would need to be repeated through means of another visit from inspectors. 

Most of these systems were designed in the late half of the 20th century and have been used since. 

Both commercial suppliers, Mirion and Antech, implement similar electronics in their systems based on 

the Amptek A111 charge sensitive preamplifier, discriminator, & pulse shaper chip [31]. This A111 was 

designed in the 1960’s for x-ray applications, and it was adopted for use in neutron coincidence counters 

in 1984 by Swansen [35]. Since this adoption, the A111 has been applied in all successive neutron 

coincidence counters. However, over the last few decades there has been a very large advancement in the 

realm of pulse processing electronics. This means that not only are electronic circuit designs and 

components developed in the 1960’s powering and processing the signals from these counters, but the 

same A111s are paired across a wide range of neutron coincidence counters in a variety of geometries, 

tube lengths, fill pressures, and rate applications. This occasionally causes the response of the system to 

not operate at its optimal performance.  

Today, the amount of nuclear material and the number of nuclear facilities under IAEA 

safeguards is growing steadily [36]. More nuclear power plants are being built and used in nations 

worldwide, and the demands are also increasing as more facilities are decommissioned, generating 

additional needs to verify nuclear material packaging, movement, and disposition. The IAEA resources 

are stretched extremely thin to ensure they can complete all required tasks in a timely fashion. There have 

been two revisions on the Safeguards Techniques and Equipment publications in 2003 [8] and 2011 [9].  
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During these 8 years, no new coincidence counting systems were openly adopted. The sole change 

between Rev. 1 and Rev. 2 for coincidence systems was the removal of the Compact Neutron 

Coincidence Counter (Table 1.1). This, however, does not reflect the efforts of the safeguards 

community; there have been large movements to develop and test novel system models, data acquisition 

technologies, and the recent movement to build and characterize systems utilizing 3He alternatives as 

drop-in replacements to address the reported 3He shortage. Despite this effort, an updated revision has not 

been released within the last 7 years to reflect new adoptions of these systems. This statement is not 

acknowledging the advancements incorporated in other realms of the safeguards field, including 

differential die-away self-interrogation and remote sensing; but for neutron coincidence counting, the 

hope of wide–spread adoptions of new systems to replace pre-existing functioning counters is not well–

grounded. 

The main difficulties associated with attempting to replace current neutron coincidence counting 

technology are that 3He gas has optimal performance over other neutron capture reactions, and the current 

systems fulfill all required tasks of an inspection. The different neutron coincidence counting system 

models are deployed worldwide with existing infrastructure, and IAEA inspectors have many hours of 

experience and training on them. In order to begin replacing these systems, the IAEA would need to 

significantly alter their annual budgets, and for an organization with limited budgets to fulfill all 

obligations, the perceived benefits and tangible improvements would need to be far-reaching and 

guaranteed; at this moment, they are not. As the pressure on IAEA resources continues to grow, there’s a 

drive to do more with less. New ways of using existing systems and the data collected with them are 

needed, combined with ensuring the continued functionality of the current safeguards instrumentation 

fleet. 

 

   Addressing the Concerns, A Dissertation Overview 

How do we then get more information out of the same system? My current drive to advance the 

field of neutron coincidence counting for international safeguards is to improve the functionality of 

currently deployed systems in the measurement capabilities, data acquisition, and analysis fronts. This 

will minimize costs, while still modernizing and advancing the field. In using modern data acquisition, 

advanced data analysis techniques, and improved system design, neutron coincidence counting may be 

more widely applied to measure complicated items, with modern electronics and better calibration 

procedures; ultimately leading to improved performance and more confidence in a system’s reliability.  

This can be accomplished by obtaining an in-depth physical understanding of the system 

performance using additional capabilities of List Mode Data Acquisition (LMDA) paired with 

multichannel analysis using updated modern electronics. The Hungarian Institute of Isotopes/ Centre for 

Energy Research Pulse Train Recorder-32 (PTR-32) LMDA hardware and software module [37] is the 

only commercial–off–the–shelf LMDA module approved for use by the IAEA. LMDA provides a 

complete record of the measurement taken, with offline analysis options. Using LMDA allows a careful 

inspection of the system parameters, with low associated uncertainties, through detailed analysis of the 

neutron pulse train– which is grounded in true physical parameters. The PTR-32 is also directly 

compatible with existing neutron coincidence counters through its 32 channel input BNC connections, for 

a drop-in replacement. It was approved for use in 2014, but its use has not since been well characterized. 

In addition, more signal outputs may be added to existing counters by introducing additional 

preamplifiers into the system. The footprint of these systems, and signal output format, may also be 

maintained. Each preamplifier is then capable of producing a measurable signal from its respective 

grouping of 3He tubes. The more preamplifiers used, the smaller the groupings, and the more detailed 

information may be obtained. In doing so, modern commercial electronics may also be introduced. This 
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not only would help mitigate costs associated with introducing more electronics, but it would help move 

these existing systems into current day and provide additional pulse processing capabilities.  

In order to implement these changes, LMDA technology and its associated analysis procedures must 

be used with preexisting neutron coincidence counters. Today, list mode capabilities are not being fully 

utilized in safeguards neutron counting systems or by corresponding analysis methods. To make this 

possible, it was necessary for me to develop a characterization and measurement method that translates 

between various counting systems and achieves the same (if not better) results as shift register–based 

analysis. This is done in Chapter 2. This allows for an understanding of each system’s behavior for 

diagnostic, characterization, acquisition, and analysis purposes for in-field and in-laboratory 

measurements.  

In addition, I had to expand upon current neutron coincidence counting procedures, theory and 

equations to exploit this greater knowledge granted by LMDA. To do this, I had to obtain a high-fidelity 

physics-based understanding of these systems, and have an in-depth understanding of all of the 

characterization parameters and their sources of error. System parameters such as coincidence time 

windows, dead time, efficiency, die-away time, and non-ideal double pulsing are explored in new ways 

that are not possible using traditional shift register logic. This is done in Chapter 2, 3, 5, 6 and 7.  

Finally, the feasibility of replacing present electronics with modern prototype electronics on smaller 

groupings of tubes was evaluated in support of a Department of Energy National Nuclear Security 

Administration Defense Nuclear Nonproliferation Research and Development funded project, the “List 

Mode Response Matrix for Advanced Correlated Neutron Analysis for Nuclear Safeguards.” The List 

Mode Response Matrix project consisted of electronics design and development, experimental, and 

simulation tasks performed by a large team with various skill sets over four years. This dissertation 

research directly supported, and provided, the experimental objectives of the project in developing and 

implementing the procedures for LMDA system characterization and comparative analysis, testing and 

evaluating the ORNL–developed preamplifiers, presenting work at international conferences and project 

reviews, collecting and analyzing the spatial response data for the various stages of the project, and 

simulating the system’s response to a 252Cf to compare and evaluate the MCNP model’s performance to 

physical measurements. These details are discussed in Chapter 4. Working alongside the designers at 

ORNL, I tested these prototype electronics, implemented on all 18 3He tubes of the JCC-71 Neutron 

Coincidence Collar, with the relevant safeguards analysis approaches and software in several iterations to 

understand, evaluate, and optimize their performance. This work is described in Chapters 3 and 4. 

The List Mode Response Matrix generated a need for the implementation and testing of these new 

technologies, with a focus on source positioning location using a maximum number of counter system 

channel outputs. It also led to the diagnoses of several non-ideal behaviors within the A111 electronics, 

the prototype electronics, and the PTR-32 module. In doing so, the signatures of these historic counters 

were investigated to provide a much more detailed understanding of the system performance and 

limitations; meanwhile their capabilities and applications were also extended. With a thorough 

understanding of the system characteristics and performance, and access to the full neutron pulse train 

with offline analysis options, neutron coincidence counters may be used to perform an absolute source 

measurement to self-certify calibration sources on the same order of precision as national metrological 

laboratories. This could help expand the use and interest of neutron coincidence counting, and assist with 

nuclear data concerns. The relationship of uncertainties in these parameters are studied for their influence 

on the final precision of the certification in Chapter 6. These topics will be studied using the systems 

described in Section 1.3.1, 1.3.2, and the PTR-32 LMDA. 
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List Mode Data Acquisition and Analysis1 
 
 

 Abstract 
 

There is a perceived trend toward augmenting or interchanging current international safeguards shift 

register-based data acquisition systems with list mode data acquisition systems because of their greater 

versatility. Neutron list mode data analysis offers comparable analytical results to the more widely used 

shift register analysis in nuclear material quantification applications. In addition, it offers several 

instrument diagnostic benefits that are specifically useful to in-laboratory characterization and calibration 

measurements such as identification of non-ideal behavior, optimization of operational parameters from a 

single measurement, and a better understanding of the physics–based behavior for a more precise system 

representation and more confident assay results. In this work, two commercial-off-the-shelf International 

Atomic Energy Agency–supported technologies are used for a typical detector characterization procedure. 

Specifically, a 3He-based Canberra Industries JCC-71 Neutron Coincidence Collar is characterized using 

the Hungarian Institute of Isotopes’ Pulse Train Recorder-32 (PTR-32) list mode data acquisition system, 

and the results are compared to those found using the standard Canberra Industries JSR-15 model shift 

register. The quantitative results from the two systems are in agreement, which demonstrates that the 

PTR-32 is a technically viable alternative to conventional shift register electronics for this task. A suitable 

procedure for full instrument characterization is described, and the added benefits of list mode for 

characterization and data collection are discussed. This is an important step toward establishing a 

procedure for the routine use of list mode data acquisition and analysis for system characterization in 

safeguards field applications. 

 

 Introduction 

 Shift register data acquisition systems are well-established in international safeguards where they 

are used to measure and record detected neutron events. When coupled to neutron coincidence counters, 

shift registers help perform nondestructive assays on nuclear material samples using time-correlation 

counting techniques [4]. There are several other plausible analysis options beyond time–correlation 

analysis that allow nondestructive assays to be performed, but this paper will focus on this approach since 

it is the most commonly used approach in current field measurements. Shift register circuits are composed 

of a series of clock-driven flip-flops linked together in a number of stages. These stages are driven by a 

set frequency of the internal clock to process the incoming stream of electronic pulses, where each pulse 

represents a detected neutron event, with a preset timing gate. Through this logic circuit, time-correlated 

neutrons can be detected and related to the effective mass of a nuclear material sample undergoing 

spontaneous or induced fission. The accurate measurement of these neutrons is crucial to the successful 

quantification and verification of the declared mass of nuclear material within a material control or 

                                                           
 

1This chapter was originally published in a peer reviewed journal under the original title “Using the JCC-71 neutron 

coincidence collar as a benchmark for detector characterization with PTR-32 list mode data acquisition,” A.T. 

Simone, S. Croft, J.P. Hayward, L.G. Worrall, Nuclear Instruments and Methods in Physics Research Section A: 

Accelerators, Spectrometers, Detectors and Associated Equipment, 908, pp.24-34. It is printed here with permission 

from the editors in its original form.  
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international safeguards program. Therefore, it is imperative that the instrumentation used for these 

verification measurements operates as designed, without artifacts, so all parties have confidence in the 

results of an assay. Additionally, the ability to confirm correct setup and operation of a nondestructive 

assay system is a desirable acquisition feature, improving the effectiveness and efficiency of safeguard 

inspections.               

In general, list mode data acquisition (LMDA) systems, as applied in international safeguards 

applications, are based on a common field programmable gate array (FPGA) circuit with multichannel 

signal inputs. They function by recording neutron arrival times for each channel on an event-by-event 

basis, within a specific timing resolution, for the entirety of a measurement. Typically, a timing resolution 

of tens to hundreds of nanoseconds is provided, which is generally acceptable for typical neutron 

coincidence counters that have characteristic neutron lifetimes in the few tens of microseconds range.  In 

a post-measurement analysis of the pulse train, various timing gate windows can be applied to the same 

data set to optimize statistical precision and to exploit various modes of analysis. This type of analysis has 

been proven to have comparable precision to shift register analysis [38] [39], while offering several 

detector system diagnostic benefits not available with existing shift register acquisition platforms.  

The European Safeguards Research and Development Association (ESARDA) Nondestructive 

Analysis Working Group organized several benchmark measurements in 2009 for a comparison between 

then-available list mode acquisition modules for use with neutron coincidence counting systems [40] [41] 

[42]. In parallel to this benchmark, individual laboratories and companies have continued investigating, 

improving, and implementing list mode models for use with various neutron coincidence systems [38] 

[43] [44] [45] [46]. Although it is an old concept, there is renewed interest in list mode systems that have 

progressively benefited from the reduced size and increased functional density of electronics (e.g., 

FPGAs) and storage media, in addition to increased computing power available; i.e. list mode analysis is 

continuously reformulated as each generation of electronics is better than the previous, and thereby the 

same concepts may be reapplied to a wider range of applications. Although the IAEA has recently 

approved a LMDA system for use, current list mode analysis for in-field safeguards inspections is still 

limited by the lack of straightforward, user-friendly analysis interfaces, the relatively large file size 

associated with high count rates, and limited processing power. However, its additional capabilities have 

expanded the scope of detector characterization and calibration in the laboratory setting. The use of list 

mode has extended the investigation of physical parameters including optimal gate width and gate 

utilization factors [47], double pulsing [48], neutron correlation analysis [49], detector dead time [50], and 

differential die-away self-interrogation [51]. 

List mode has also expanded steadily to benefit other fields such as high energy physics, medical 

imaging and homeland security, in addition to international safeguards. Since safeguards is not the driving 

field for list mode development, we are able to draw inspiration from these developments and reengineer 

and expand these methods of analysis for our own purposes. Our intention here is not to provide a 

comprehensive summary of this technology, since the applications of list mode are vast, but instead to 

discuss some established and emerging examples in which list mode analysis is relevant. The advantages 

provided by offline analysis of the full system also pertain to coincidence spectroscopy [52] and imaging 

arrays [53] using various scintillators, positron emission tomography reconstruction in medical 

applications [54], and measuring accelerated particle flux-induced reactions from ion beams [55], to 

provide some examples. The full-time record of measurement and post-processing options of these data 

allow for simultaneous multiparameter acquisition, gamma rejection in false coincidence events under 

varying timing windows, optical fiber resolution and linearity tests, and complex image reconstruction 

analysis. Both commercially available systems and in-house designed [56] [57] [58] data acquisition 

systems are frequently used in experimental setups, depending on the needs and complexity of the 

measurement; the FASTComTec Multiparameter TOF Acquisition System [59] has been chosen by some 

in the literature for use with scintillators and spectrometers, and the Hungarian Institute of Isotopes’ Pulse 

Train Recorder-32 (PTR-32) [37] has commonly been used for neutron multiplicity counters in 

international safeguards. 
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Ultimately, with a full record of the measurement, an enhanced physics-based understanding of 

coincidence counting system characteristics can be achieved using LMDA. The use of list mode permits 

second order effects on neutron correlation analysis to be examined, for more a precise system 

representation and more confident assay results. Analyzing the pulse train offline with various gating 

parameters allows flexibility for the system; although this same analysis could be performed using shift 

register data acquisition systems, LMDA reduces the hurdle by utilizing a single pulse train rather than 

independent pulse trains for each timing window. Monitoring the behavior of the system for the duration 

of data acquisition using time-tagged list mode techniques also allows for greater information on the 

state-of-health of the system and of each individual detector bank. If a bank malfunctions, the full data 

acquisition is not compromised, and can be amended offline. In addition, due to the multichannel input 

capability, spatial patterns and cross-correlation may be used in the future for complex systems (e.g., a 

fuel assembly), which cannot be supported by current shift register technology. As they exist now, list 

mode systems are most applicable to in-laboratory safeguard instrument characterization measurements, 

where their extended capabilities are most beneficial to a characterization and calibration regimen on a 

more flexible timeline. However, efforts are underway to make list mode more streamlined for practical 

field applications.  

Because of this, nondestructive assay measurements using neutron coincidence counters remain 

limited by the constraints of the shift register approach. To better the general understanding of the 

applications of LMDA and ease the transition to this data-rich system, an accepted procedure for a full 

detector calibration and its use must be outlined, and the accuracy of the measurement results for systems 

currently used in the field must be demonstrated. This paper serves as an in-depth characterization 

procedure for a representative 3He-based neutron coincidence counter, the Canberra Industries2 JCC-71 

Neutron Coincidence Collar [30], which is used in conjunction with the advanced LMDA options made 

available by the PTR-32. We select the Neutron Coincidence Collar to be used with the PTR-32 first in 

part due to the lower count rate associated with measuring fresh fuel and the efficiency of the system. The 

resulting file sizes will be smaller than with other detector systems, and therefore, more easily handled by 

everyday computers. The results obtained through the PTR-32 are compared to the results obtained using 

the JSR-15 Handheld Multiplicity Register [60], and the additional capabilities of LMDA are described in 

the context of international safeguards measurements.  We suggest that the measurements and information 

described herein may be extended for use with other 3He-based neutron coincidence or multiplicity 

counters. 

  

 

 

 Shift Register Analysis and Detector Characterization 

Parameters 

When a fission takes place in a measurement item, a number of neutrons are released essentially 

simultaneously [61]. These time-correlated neutrons are slowed in the moderating body of a detection 

system, spreading out the distribution over a longer period of time, related to the characteristic neutron 

die-away time, . The thermalized neutrons captured by the 3He tubes may be registered, after shaping 

and amplification, as electronic logic pulses (e.g. TTL or LVDS) by the shift register software, which are 

then translated into coincidences and higher order multiplicities using appropriate timing gates driven by 

flip-flop circuitry. 

In addition to recording the incoming pulse train, the shift register module performs a signal-

triggered coincidence measurement. The action of the shift register can be thought of in the following 

                                                           
 

2 Canberra Industries has recently become Mirion Technologies. 
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way. It is designed to count pairs (or coincidences) with respect to each incoming event using a gating 

structure and logic that naturally records the second reduced factorial moment [4]. Each pulse triggers, 

and thus marks, the opening of a time gate called the predelay, Tp (see Figure 2.1), which is a set duration 

of time when the shift register does not record subsequent correlated events. During this short time 

interval following a pulse, the amplifiers are biased by pulse pileup and electronic dead time, and the 

count rate cannot be accurately measured. Consequently, the shift register waits for these effects to 

stabilize before beginning to collect coincidence data. Having a predelay that is too long in duration 

causes true neutron counts to be missed, so determining the optimal time duration is essential. Once the 

predelay time has ended, a longer gate width, Tg, is opened to collect neutron event pulses. All succeeding 

neutron events detected within the set gate width are recorded as a histogram (2 time–correlated neutrons 

for coincidence counting, and greater numbers such as 3, 4, and 5 for multiplicity counting). This gate 

width must be large enough (e.g., 64 μs) to ensure collection of correlated neutron events without 

allowing background neutron events to dominate; this distribution of true fission neutrons as a function of 

time approximately follows an exponentially decaying trend. After the pulse collection for the set gate 

width has completed, a long delay is set where no events are recorded (commonly on the order of 

thousands of μs). After the long delay, a second gate of width, Tg, is opened, and neutron events are 

recorded (as Accidentals) for this duration. This is repeated for every neutron event acting as the initial 

trigger. The pulse shifting process through all stages of the register is related to the number of stages and 

the clock speed of the module (e.g., JSR-15: 50 MHz), which is typically on the order of tens of 

microseconds. This process could produce a Rossi-α distribution through list mode analysis [4] (Figure 

2.1) which can be used in part to describe the characteristics of the instrument such as neutron die-away 

time. 

The total number of neutron events measured during an acquisition is recorded as the singles 

count tally. The doubles count tally corresponds to the number of times two neutrons were measured 

together during the acquisition, with each pair including the trigger event as one of the pair. Higher 

multiplicities, such as triples, are not measured quantities, but derived quantities, obtained from factorial 

moments calculated using the techniques outlined by Hage and Cifarelli [62] [63]. These are not used for 

the assay of fresh fuel in the Uranium Neutron Collar (UNCL) [64].  The detected events are tabulated 

according to the number of 1 registered neutron events and 2 registered correlated neutron events to form 

a neutron count distribution; that is if 2,000 1s (single neutron events) and 700 2s (double neutron events) 

were recorded, then multiplicities of 1 and 2 would have 2,000 counts and 700 counts, respectively. 

However, in addition to truly time-correlated fission neutrons, background and (α, n) neutrons are also 

detected within these timing gates. These “Accidentals” (A) generate artificial coincidences which must 

be subtracted.  

 

 

 

 

 
Figure 2.1. A Rossi-α distribution demonstrating the relevant timing gates for a number of neutron pulses. [5] 

 



39 

The likelihood of higher order events being measured during these timing gates is related to the 

detector efficiency, neutron die-away time, and the dead time of the detector plus electronics system, in 

addition to background cosmic ray spallation events causing false multiplicities to be measured due to a 

simultaneous increase in count rate relative to the neutrons produced by the fissioning source. The 

accurate characterization of these parameters for an instrument is crucial to a successful verification 

measurement of special nuclear material. The single neutron efficiencies of various neutron coincidence 

and multiplicity counters differ greatly, ranging from approximately 10% [65] up to 65% [66], and are 

mostly dependent on system geometry and the number of 3He tubes used in the design. Because neutron 

die-away time is a measure of the time it takes for an emitted neutron to thermalize and be detected by the 

system, a short neutron die-away time is desired to improve measurement precision through a lower 

accidental rate. The dead time is related to the charge collection and pulse processing recovery time of the 
3He tube plus electronics system. It depends on the distribution of charge throughout the individual 

amplification chains and varies based on the number of preamplifiers used in the system. During this 

characteristic dead period, individual neutron interactions cannot be distinguished, so they do not 

contribute to the neutron pulse train and information is lost. The total system dead time is therefore less 

than an individual channel’s dead time because there are multiple amplification chains (i.e., if one channel 

is dead, the other remaining channels may still detect a neutron event). The resulting count rate within this 

timing regime is decreased approximately by the percentage this detector bank would contribute to the 

total rate. The dead time contribution from either a shift register or LMDA system is considered 

negligible. It is necessary to have high confidence in these parameter values prior to using a counter for 

an assay, therefore proper characterization procedures and methodology are required. 

 

 Instrument Setup 
 

The JSR-15 Handheld Multiplicity Register was designed by Los Alamos National Laboratory 

and built by Canberra Industries. The model JSR-15 is a commonly used shift register which has replaced 

the previous JSR-12 and JSR-14 models. The JSR-15 can output a user-selected high voltage to supply 

the 3He tubes, a +5 V output to provide power to the neutron coincidence counter electronics junction 

box, and it has a “Signal in” BNC connection in addition to two auxiliary scaler inputs that process TTL 

pulses. The internal clock speed of the JSR-15 is 50 MHz, which allows for pulses separated by at least 

20 ns to be recorded. It is typically used in conjunction with the IAEA Neutron Coincidence Counting 

(INCC) Program [12] through a USB computer connection. A JSR-15 was used by Canberra Industries 

for an initial detector characterization prior to shipment of a JCC-71 Neutron Coincidence Collar, 

described below. 

The PTR-32 was chosen as the preferred list mode acquisition system for this work since it has 

already been approved for use by the IAEA. The hardware contains 32 BNC channel inputs and can 

output a user-selected high voltage and +5 V. It communicates with a separate computer GUI interface 

through a USB connection. Within the software, the user can set a count time limit, the number of cycles 

desired, and/or a pulse limit before beginning acquisition. As data is acquired, the window updates a plot 

showing the number of counts as a function of follow-up time (which is the time between subsequently 

registered neutron events), the total count rate, and the acquisition time. The system can handle rates up to 

3 MHz of periodic pulses, and it can process pulses separated by at least 10 ns. During a measurement, 

the individual rates measured on each of the detector banks can be monitored using the “Channel Rates” 

option. 

A Canberra Industries–built JCC-71 Neutron Coincidence Collar (used as an UNCL) was 

characterized using the PTR-32. This instrument was built and shipped to Oak Ridge National Laboratory 

(ORNL) after it was factory tested by Canberra for performance evaluation. The Neutron Coincidence 

Collar was designed to measure 235U content in fresh fuel assemblies used in pressurized water reactors 

(PWRs), boiling water reactors (BWRs), or Canada Deuterium Uranium (CANDU) reactors. It can also 

measure plutonium content in mixed oxide (MOX) fuel.  
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The rectangular detector body (Figure 2.2) is comprised of four individual banks each containing 

six 3He tubes, with 2.54 cm diameters and active length of 33 cm [30], embedded in a single row within 

high-density polyethylene (HDPE) moderating slabs. The tubes and HDPE assembly are connected to a 

junction box panel containing a single JAB-01 preamplifier/amplifier/discriminator board per bank. This 

Canberra amplifier/discriminator board is designed around an Amptek A111 preamplifier chip. The 

junction box transfers high voltage (HV) between the connected banks through “HV in” and “HV out” 

connections, and contains “Signal in” and “+5 V in” inputs and “Signal out” and “+5V out” outputs to 

interconnect the banks and communicate with an external data acquisition system. This entire assembly 

has a height of 52.4 cm and weighs approximately 38 kg. 

 The Neutron Coincidence Collar is designed to operate in two modes: active and passive. The 

former mode is used to measure U fresh fuel, and the latter mode is used to measure 240Pu in MOX.  In 

active mode, three 3He detector banks are connected with a fourth hinged polyethylene bank, containing 

no 3He tubes, whose central hole contains an AmLi source encased in a tungsten pot. In field applications, 

four measurements must take place for an accurate active interrogation assay: 1) no AmLi source, nor fuel 

assembly is present, a background measurement is conducted, 2) no AmLi source, the fuel assembly is 

present, the doubles count rate background measurement is conducted, 3) an AmLi source is present, no 

fuel assembly, the singles count rate background measurement is conducted, and 4) an active 

measurement is taken. The active measurement uses the AmLi source to interrogate the 235U in the fuel 

assembly by inducing fissions, and the neutrons released are then detected by the 3He tubes. From the 

combination of both the background and the active measurements, the linear density of 235U in a fresh fuel 

assembly can be calculated. In passive mode, the polyethylene slab is replaced by a fourth detector bank 

containing 3He tubes. This configuration is used to measure 240Pu-effective content in MOX by detecting 

neutrons emitted from the spontaneous fissions of the Pu isotopes. This fourth bank is hinged to ensure 

easy placement of a fuel assembly within the cavity. Cadmium sheets can also be inserted, if needed, to 

reduce neutron reflections back into the system and therefore decrease the neutron die-away time. 

 The size of the counter’s assay cavity can also be altered to better accommodate different fuel 

assembly types. The Neutron Coincidence Collar is designed to accommodate either PWR fuel assemblies 

or smaller BWR assemblies within the cavity. The larger configuration measures 23.4 cm x 23.4 cm, and 

the smaller configuration measures 16.5 cm x 23.4 cm; the geometrical change is made by sliding one of 

the detector banks inward to fit an inner screw position. To allow all four detector banks to be 

characterized simultaneously, the passive mode configuration was selected for this work. The Neutron 

Coincidence Collar will further be referenced as the UNCL. The UNCL was arranged and fixed in the 

passive, PWR configuration without cadmium inserts for these measurements.  

The UNCL “High voltage” and “+5 V” ports were daisy-chained between banks using BNC 

cables connected to their appropriate inputs and outputs; both the incoming high voltage and +5 V were 

supplied by the PTR-32 module. Each of the four detector bank “Signal out” channels were connected to 

an input channel on the PTR-32.  

The PTR-32 software provides various offline analysis options. When a pulse train is recorded, 

the summation of all channel inputs connected to the board at the time of measurement is saved as a 

single file. Each of the channels can be extracted from this summed pulse train using either the “Unfold” 

option, which will produce 32 individual files—one per channel including unused channels—or using the 

“Subtract” option. Subtraction allows the user to manually select which channels to remove from the 

current pulse train. This is particularly useful if post-measurement a problem has been identified with a 

tube or bank and the measurement is not able to be repeated. The problematic bank’s pulse train can be 

subtracted and the remaining pulse train will be intact for analysis, albeit a non-ideal analysis, but not all 

of the measured data would be lost. Any number of channels can be placed in coincidence using the 

simple “Channel Coincidence” submenu, which combines pulse trains into a single file reporting 

coincidence events. Additionally, the neutron count distribution can be produced using the “INCC export” 

option (which saves data in an output with similar format to INCC), the Rossi-  distribution can be 

produced and saved using the “Rossi Alpha” menu, the data can be fit using the “Fit exponential” 

function, and a portion of the pulse train as a function of time can be omitted using the “Chopper” menu.  
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Figure 2.2. (a) Side view of the JCC-71 Neutron Coincidence Collar with input/output wires connected (b) 

Illustration and (c) photo of a top-down view of the UNCL showing a 252Cf source placed on a metal stand in the 

center of the detector body. 
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Ultimately, these built-in features of the PTR-32 list mode analysis provide additional capabilities with a 

potential for improved system diagnostics. 

 

 JCC-71 Characterization using PTR-32 

When the UNCL was received at ORNL, all four detector banks were connected to the inputs of 

PTR-32 and basic source response checks were conducted. After this, a full characterization of the system 

was performed. These characterization measurements are described in detail below and include the 

determination or optimization of the operating HV characteristic, timing gate parameters, neutron die-

away time constants, absolute efficiency, and finally dead time estimation. All list mode acquisition 

results are compared with the Canberra-measured values reported using their own JSR-15 shift register at 

their facility. These values were given in the shipping documents accompanying the system, which 

incorporate the standard system functionality tests and their associated calibration performed prior to 

shipment. This checklist report is a 34 page document detailing the 3He tube serial numbers and their 

associated characteristics, along with the electronic settings used within the system, and all successive 

characterization measurement results. Inclusion of a checklist report is customary with the purchase of a 

new system from a vendor such as Canberra to show the system is functioning as expected; however, the 

measurements may not always have the finest precision or the greatest detail included. One would 

typically repeat these same tests in the facility or laboratory once the system has been delivered as a test 

to ensure there was no damage during shipping. Further tests beyond what is reported in the checklist 

report were also completed using the PTR-32. 

 

 High Voltage Characteristic 

The optimal operational voltage was verified by acquiring the neutron count rate as a function of 

HV to produce a HV characteristic. The HV characteristic functions as a visual diagnostic of the optimal 

operational HV by plotting the neutron count rate as a function of increasing HV; the count rate will begin 

at 0, increase with a certain slope, and then reach a plateau. It is common practice to operate the counter 

40 V above the “knee” where the count rate changes from increasing to level to accommodate any HV 

drift over the operational time. A 252Cf source of approximately 3 ∙ 105 nps emission was placed on an 

aluminum stand positioned at the center (within 5 mm) of the UNCL cavity. Data were collected using the 

PTR-32 “HV plateau” option in software. The HV range and the voltage increment were specified 

between measurements, along with the duration of the count time. For this measurement, 300 s 

measurements were performed at 20 V increments between 1560 V and 2000 V. The program recorded 

the pulse train in these specified steps and produced a live-time plot of singles count rate and doubles 

count rate as a function of HV.  

The pulse train from the total input signal for each HV setting was saved inherently as an 

individual binary and channel file. PTR-32 software reads in the binary file to perform successive analysis 

on the neutron pulse train. The channel file is crucial if any unfolding or subtractions on the original 

acquired pulse train are desired. Using the PTR-32 software main screen, each of the channels’ pulse 

trains were unfolded from the total file offline. Employing this method for each HV setting, the 

characteristics for each channel, in addition to the total detector signal, were evaluated. Often the HV 

operating point is set based solely on the singles HV characteristic. However, since the principal assay of 

fresh fuel is based on the doubles count rate, it is good practice to also measure the doubles HV 

characteristic; yet, it is not currently done since it is not automated in shift register software. Because 

PTR-32 software plots the doubles HV characteristic in live time alongside the singles HV characteristic, 

it is now possible to utilize the doubles HV characteristic as a diagnostic without additional analysis. 

Thus, the “SDT” function in PTR-32 (which provides the Singles, Doubles, and Triples count rate values 

for the acquisition) was used to determine the multiplicity rates for each HV setting. The uncertainty in 

these values is reported by PTR-32, with no explanation of their determination. Therefore, the error 
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analysis described in [67] is used for our reported values; these errors differ slightly from those given by 

the PTR-32. The count rates were then compiled externally to produce a HV characteristic. 

The HV characteristic was produced for both the singles neutron count rate and the doubles 

neutron count rate (see Figure 2.3). Each of the four detector channels follow very similar trends as a 

function of HV: increasing from 1560 V to approximately 1660 V, reaching a plateau between 1680 V 

and 1780 V, increasing again between 1800 V and 1900 V, and then decreasing through 2000 V. The total 

signal also follows this trend. This structure has been proposed to be an indication of non-ideal behavior 

in the JAB-01 boards, such as double-pulsing [48]. It is thought that this effect becomes evident as HV 

increases because the gain is effectively increased, which means the discriminator is more likely to re-

trigger on structure in the pulse shape. Double pulsing is primarily caused by the difference in collection 

and shaping times within the electronic charge collection process; it is exacerbated as the trajectory angle 

of the charged particles relative to the anode wire increases from 0° to 90°. Varying the pulse shaping 

time in the preamplifier boards would allow this effect to be studied. A concurrent work has focused on 

studying and describing these effects. 

The HV data obtained at ORNL was compared with the data reported by Canberra (Figure 2.4). 

Both data sets follow the same trend; however, they reflect different count rates because different activity 
252Cf sources were used. The JSR-15 is not capable of easily producing a doubles HV characteristic. To 

produce the HV characteristic for the total detector signal and reproduce the singles HV characteristic for 

all four individual detector banks (Figure 2.3), five separate data acquisitions would be necessary with 

the shift register.    

For the UNCL, the doubles HV characteristic is more relevant than the singles HV characteristic, 

since when operated in the standard active mode to assay fresh fuel, the singles count rate will be flooded 

with uncorrelated scattered neutrons from the AmLi interrogation source; therefore, it cannot be used  

quantitatively in the assay. Looking at the doubles HV characteristic obtained from the list mode data, the 

double plateau structure is more pronounced. This is because the doubles scales with the square of the 

efficiency of the system, whereas the singles scales directly with the system efficiency. Canberra selects 

1680 V as the operational HV based on the singles HV characteristic, but we have decided to operate 

slightly higher at 1720 V in a more stable count rate region. It is essential to operate the system in a stable 

region not only to accommodate HV drift without compromising the efficiency, but also to remain below 

any gamma breakdown that may occur in the 3He tubes. Because the UNCL is not used in high gamma 

field fluxes, nor is the fresh fuel count rate high, the system is simple to calibrate. This voltage can be set 

by simply entering the value in the “Set HV” menu option in the PTR-32 software. For all future 

measurements the UNCL was operated at 1720 V.  
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Figure 2.3. (a) Singles count rate as a function of high voltage with individual channel rates on the left vertical axis 

and the total detector signal rates on the right vertical axis; (b) Doubles count rate as a function of high voltage. 
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Figure 2.4. Singles count rate as a function of HV shown for data acquired by Canberra using a JSR-15 shift 

register [68] and data acquired by ORNL using a PTR-32 LMDA system. Differences in count rate are due to 2 

different activity 252Cf sources used. 
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In addition to producing a HV characteristic for all attached channels, the list mode data allows 

for an in-depth study of the doubles to singles squared ratio as a function of increasing HV as a diagnostic 

of the system’s behavior (Figure 2.5). This ratio should be proportional to efficiency squared over 

efficiency squared from the point kinetic model equations, ultimately reducing this relationship to be 

independent of the count rate increase effects as the HV increases. For a properly operating system, this 

should produce a constant value across an increasing HV; deviation from this behavior may indicate some 

form of non-ideal behavior in the system where the doubles count rate may not scale with the singles 

count rate. If electronic artifacts are causing the preamplifiers to re-trigger on the same event, non-

physical representations will appear in this study. We see this behavior across a range of commonly-used 

instrument types, and yet it is a feature that has typically been ignored. This effect is not significant for 

the current applications and general operation of these instruments within their predetermined timing 

windows. However, it would be relevant for any absolute measurements or extraction of count rate values 

at extreme timing windows. Because of the simplicity of this analysis, the inclusion of this test in a 

standard laboratory characterization procedure would be of great benefit to future system diagnostics.    
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Figure 2.5. The ratio of double neutron counts to single neutron counts squared as a function of 

increasing HV 
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 Predelay and Gate width Determination 

Once the operational voltage was established, the predelay and gate width were investigated. Four 

AmLi sources, two with strengths of approximately 7,300 cps with a relative standard deviation of 0.11% 

and two with strengths of approximately 10,200 cps and relative standard deviation of 0.11%, were 

centered in the detector body, and a 7,200 s data acquisition was obtained using 24 cycles of 300 s each.  

Because an uncorrelated neutron source was used for these data, the typical decaying trend 

illustrated in a Rossi-α distribution (Figure 2.1) is no longer present, and there is statistically no 

difference in mean neutron count number, 〈𝑖〉, between the (R+A) and (A) gate (Figure 2.6). This means 

that because an AmLi source was used, these measurements are in the domain where the Accidentals rate 

(the singles count rate squared multiplied by the gate width) dominates the net doubles count rate. If the 

count distributions are not equal between these gates, non-ideal behavior in the system may be present, 

and the predelay gate selection may help mitigate this effect.  

The PTR-32 “INCC export” function was used to produce neutron count distributions for the 24 

cycles in order to match the INCC software format. A preamplifier re-triggering event not related to a true 

neutron event (e.g., non-ideal behavior and charge collection artifacts) could then be identified by a 

calculation of the bias, where 

𝐵𝑖𝑎𝑠 = 100 [
〈𝑖〉𝑅+𝐴

〈𝑖〉𝐴
− 1] %.                                                                           (2.1) 

A bias of 0% is desired. A study of the calculated bias, using the neutron count distributions for 

all predelay and gate width combinations, reveals the regimes where this is achievable. A predelay of 2.5 

μs or longer will suffice for all gate widths for the UNCL (Figure 2.7). It has long been established that 

the timing gates of the UNCL are 4.5 μs for the predelay and 64 μs for the gate width, and these have 

been standardized for routine operational use. There is no expected difference in bias between 2.5 μs and 

4.5 μs predelays over the dynamic range of the UNCL fresh fuel count rates, so it would be possible to 

shorten the predelay value to include more counts during an acquisition. Yet to allow for an unbiased 

comparison between others’ measurements with the UNCL, the standard 4.5 μs was selected for further 

measurements. Note, these values are instrument-specific and could be altered by design. 

The 252Cf source of approximately 3 ∙ 105 n/s emission replaced the four AmLi sources, and a 

7,200 s data acquisition run was taken. The PTR-32 software can be used to produce the singles and 

doubles count rates for a wide range of gate widths and predelay values. The single file was loaded offline 

and the “SDT” function was used to generate singles and doubles rates for predelays varying from 0.5 μs 

to 6.0 μs in 0.5 μs steps. Gate widths of 16 μs, 32 μs, 48 μs, 56 μs, 64 μs, 72 μs, 86 μs, and 128 μs were 

used to provide a wide range for comparison. As previously discussed, the reported neutron count rate 

will vary based on the timing gates. Because of this, a comparison of the relative standard deviation (rsd) 

in the doubles count rate was able to be determined as a function of gate width for all selected predelays 

(Figure 2.8).  The uncertainties used in this calculation are generated using the format provided in [67], 

which utilizes the count time, predelay, gate width, and count rates.  

The rsd reaches a minimum between 32 μs and 64 μs, and is marginally less for shorter predelay 

times. Despite the lower rsd measured at 48 μs, a 64 μs gate width was preserved both for historical 

reasons and to ensure a substantial count rate for good statistics in a short collection period. This is 

consistent with the expectation that the gate width should be approximately 1.27 times the neutron die-

away time [4] for pure exponential behavior. 

Canberra provides both a Reals count rate and an Accidentals count rate as a function of gate width 

with a constant predelay value of 4.5 μs. With these data, an uncertainty on each of these rates can be 

back-calculated from standard deviations and calculated gate fractions [67]. Because of the difference in 

source strength, and the 90 s acquisition time per measurement, the shift register-determined rsd is over 

an order of magnitude greater, and the significance of these rsd values is questionable. Since the list mode 

data was acquired over 7,200 s, with a source that was approximately nine times stronger than the source  
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Figure 2.6. The Rossi-α distribution produced using an uncorrelated neutron AmLi source. The counts recorded 

in the (R+A) and (A) gates should be approximately equal. 

 

 

 

 

 

 
Figure 2.7. Bias percentage as a function of predelay for varying gate widths. 
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Canberra used, the rsd values offer greater confidence. What is evident between the comparisons, 

however, is that both the shift register-analyzed data and the list mode-analyzed data follow a comparable 

trend. Both analyses justify a gate width setting ranging from 32 μs to 64 μs.   

 The ability to analyze an acquired pulse train multiple times, while varying parameters, is unique 

to list mode and has advantage over repeating measurements for every parameter change, as is necessary 

when using a shift register–based approach. The significance of this application is that within 7,200 s of 

acquisition and post analysis, an entire parameter space can be surveyed for optimal calibration in the 

laboratory. Another benefit of using LMDA is that a measurement can be taken of a source before 

specifying the timing gates. Therefore, the unadulterated pulse train is recorded and offline analysis can 

be performed later if the optimal settings are not known, which is a useful tool for characterizing new 

systems.   

 PTR-32 can record the number of pulses in 100 ns bins up to 1,024,000 ns under the “Rossi 

Alpha” option. This file was exported as a .csv for manipulation. By adjusting the gate width to 1 μs, the 

doubles count rate for 1,024 bins yielded Rossi-α distributions (see Figure 2.9) for each of the detector 

channels and the total signal. Again, a single measurement with PTR-32 produces all of this information. 

In Figure 2.9, the full distribution for the 1,024 μs is shown on the top, and an expanded window between 

0 μs and 6 μs is shown on the bottom. 

The expanded window reveals structure in the count rate behavior consistent with the previously 

calculated bias below 2.5 μs. Although the source of this bias has not been fully determined beyond 

speculation of double pulsing in combination with standard charge collection effects in the Canberra JAB-

01 boards, the Rossi-α distribution provides another, and rather direct, visual justification that operating 

the UNCL at a 4.5 μs predelay will mitigate any of these undesirable effects.  
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Figure 2.8. Relative standard deviation of the doubles count rate as a function of gate width for varying predelay 

values using a 252Cf source. 



52 

 

 

 

 
Figure 2.9. (a) Rossi-α distribution through 1024 μs. The channel width is 100 ns. (b) Expanded portion of the 

Rossi-α distribution between 0 and 6 μs to show non-ideal behavior structure below 2.5 μs. 

 



53 

 Neutron Die-away Time 

Using the previous measurement of the 252Cf source and the Rossi-α distribution produced, the 

die-away time for each of the four detector banks and the total detector signal were determined. An 

exponential fit was independently applied to the distribution between 2.5 μs and 1024 μs (Figure 2.10) 

using  

𝐴 𝑒−𝑇𝑝/ + 𝑏                                                                               (2.2) 

where 𝐴 is a scaling factor, 𝑇𝑝 is the predelay gate value, and  is the die-away time. Both 𝐴  and   were 

determined by chi-squared analysis minimizing the sum of squared errors between the data and the 

exponential fit. This equation also includes a background term, 𝑏, into the fit rather than initially 

subtracting out the Accidentals. This approach is unique to list mode analysis as the Rossi-α distribution 

must be used for this analysis. 

This procedure was completed for each of the channels, and the results are summarized in Table 

2.1. Channel 4 was the bank closest to the cement wall, and, therefore, the calculated die-away time is 

slightly longer due to associated neutron scatter. A single exponential does not fully and accurately 

describe the neutron die-away time of the instrument based on differences in shape, fill pressure, tube 

location, position of Cd liners, etc.; however, this expression can approximate it. The die-away time may 

vary slightly as different intervals of time are fit, and as multiple fits are applied together over different 

ranges. PTR-32 software assists in this analysis as the pulse train may be trimmed to different time 

lengths using the “Chopper” function. The “Rossi Alpha” menu must then be selected for the file to 

produce a die-away time value. There is also a simple “Fit Exponential” option that allows the user to 

select the range for the fit to be applied over. It then draws the fit alongside the data and the trend of that 

fit can be compared to adjust the range accordingly. PTR-32 does not calculate a value of the die-away 

time, however.  

 

Table 2.1. Calculated Die-Away time and Efficiency for all 

channels 

Channel Die-Away 

(μs) 

Efficiency 
(%) 

1 48.76 ± 0.20 3.371 ± 0.047 

2 49.45 ± 0.19 3.440 ± 0.048 

3 49.53 ± 0.19 3.357 ± 0.047 

4 51.20 ± 0.20 3.496 ± 0.048 

All 50.657 ± 0.058 13.66 ± 0.15 

 

An alternative approach to determine the neutron die-away time with shift register logic uses the 

doubles count rate (RG) as a function of increasing gate width (TG), rather than fitting the Rossi-α 

distribution. By performing chi-squared analysis using 

 

𝑅𝐺 = 𝑅0  (1 − 𝐸𝑥𝑝 (−
𝑇𝐺


))                                                                      (2.3) 

and minimizing the sum of squared errors, both 𝑅0 (the maximum count rate) and  may be calculated. 

The doubles count rates measured with the JSR-15 (provided by Canberra), were used with this fit to 

calculate a total detector system die-away time of 50.89 μs, with a fit uncertainty of 0.66 μs (see Figure 

2.11). The die-away time analyzed by both methods, with data acquired through the PTR-32 and the JSR-

15, are in agreement. Slight deviations and sources of error may be attributed to differences in the 

measurement environment (i.e., the individual channels or total detector body may have been subjected to  



54 

 

 

 
Figure 2.10. A single detector channel Rossi-α distribution with the red exponential fit applied. 

 

 

 

 

 

 

 
Figure 2.11. Doubles count rate data obtained by the JSR-15, with a saturating exponential fit applied. 
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more scatter and/or reflection in one of the two facilities where measurements were conducted), 

measurement time, the time window to which the exponential fit was applied, and the associated fit error. 

It should be noted that a similar analysis may also be performed by fitting the doubles count rate 

as a function of increasing predelay value with 

𝑅𝐺 = 𝑅0  (𝐸𝑥𝑝 (−
𝑇𝑝


))                                                                        (2.4) 

but this is not completed in the scope of this paper. Both of these analyses may be completed, as well as 

the analysis described by Equation 2.2, using the list mode neutron pulse train data by selecting the 

specific timing windows and performing count rate analysis. However, the results for each time setting 

would be correlated due to sampling the same pulse train for each setting rather than performing separate 

measurements as is the case with the shift register. These results also integrate over a wide range of gate 

widths which tends to smooth out and mask finer structure in the behavior of the system.  

 

 

 Absolute Efficiency 

A simple efficiency calculation was applied to each of the four detector channels in addition to 

the total detector body using separate pulse trains produced through the “Unfold” option. The same 7,200 

s data acquisition file from the 252Cf source measurement, of known strength and relative standard 

deviation of 1.02%, was analyzed to determine the efficiencies (counts per source neutron) of the 

channels, as reported in Table 2.1. The efficiency calculated from the Canberra reported values is 13.6% 

using an independent 252Cf source.  The minor channel efficiency variations may have been slightly 

influenced by the instrument placement near a concrete block wall that caused scatter and reflection of 

neutrons. The same analysis may be performed using a shift register, but multiple measurements, or 

additional shift registers, would be needed to determine the individual channel efficiencies due to the 

limited number of channel inputs. 

 

 Dead Time Determination 

The dead time of each of the four channels was calculated using the previously described 24 

cycles of 300 s acquisition data obtained by measuring the four uncorrelated neutron AmLi sources. The 

total detector pulse train measured in PTR-32 was unfolded into the pulse trains for each of the four 

detector channels and each file was exported to INCC format for analysis.   

To perform the “INCC export” function in PTR-32 for similar analysis to that done with the shift 

register, the predelay and gate width parameters were changed to match the 4.5 μs and 64 μs gates of the 

UNCL. We iterated through all of the acquired cycle files to produce a final result file containing the 

neutron count distribution. This procedure was repeated for each channel. Then, the neutron count 

distribution was analyzed to determine the dead time using the neutron count number and its frequency, 

the affiliated variance across all 24 cycles, and the known gate width as derived in [69]. The dead time 

was calculated individually for the (R+A) and (A) neutron count distributions, checked for bias (as 

previously described), and then combined into a 48 cycle data set to determine a combined dead time 

value exploiting the fact that the uncorrelated AmLi sources would have statistically equal (R+A) and (A) 

distributions (Section 4.2).  

The dead time values found for the (R+A) and (A) gates are in agreement for all channels, as 

expected when using an uncorrelated neutron AmLi source with a bias consistent with 0 (Table 2.2). 

Although this procedure differs from the one used by Canberra [70], which is currently the most widely-

used method in the field, a recent work [71] has proven the two methods return very similar results when 

the list mode data is analyzed in software to simulate the output of a shift register. Both methods only 
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return experimental approximations for the dead time values of the system. The benefit of using the 

neutron count distribution to determine the dead time is the simplicity of the acquisition and analysis, and 

the reduced associated uncertainties. 

 

 

Table 2.2. Dead time values calculated for all four detector channels and the total 

detector signal 

Channel δ(R+A) δ(A) δ(Combined) Bias 

 (μs) (μs) (μs) (%) 

1 0.699 ± 0.012 0.666 ± 0.014 0.6824 ± 0.0092 -0.022 ± 0.032 

2 0.685 ± 0.012 0.688 ± 0.014 0.6865 ± 0.0091 0.033 ± 0.026 

3 0.717 ± 0.011 0.701 ± 0.013 0.7091 ± 0.0085 0.043 ± 0.025 

4 0.615 ± 0.010 0.622 ± 0.011 0.6187 ± 0.0075 -0.017 ± 0.023 

Total 0.1648 ± 0.0021 0.1635 ± 0.0022 0.1641 ± 0.0015 0.0028 ± 0.0047 

 

  The a and b parameters listed by Canberra (a=1.07 μs, b=0.53 ps, with a/b ratio set at 2 ∙ 106) 

were tested using the standard dead time correction equations (Equations 2.5–2.7) with the given shift 

register-measured source count rates (𝑆𝑚, 𝐷𝑚)  

 

𝐶𝐹𝐷 = 𝑒𝛿𝑅 ∙ 𝑆𝑚 = 𝑒(𝑎+𝑏 ∙ 𝑆𝑚) ∙ 𝑆𝑚                                                                 (2.5) 

𝐶𝐹𝑆 = 𝑒𝛿𝑇 ∙ 𝑆𝑚 = 𝑒
1
4

(𝑎+𝑏 ∙ 𝑆𝑚) ∙ 𝑆𝑚 = 𝐶𝐹𝐷
1/4                                                 (2.6) 

𝑆𝐷𝑇𝐶 = 𝐶𝐹𝑆 ∙ 𝑆𝑚 , 𝐷𝐷𝑇𝐶 = 𝐶𝐹𝐷 ∙ 𝐷𝑚                                                             (2.7) 

 

The total detector doubles dead time found with these values was 1.1 μs. When this analysis was repeated, 

and b was set to be equal to 𝑎2/4 [72], the dead time was again found to be 1.1 μs, showing negligible 

dependence on the b term at these relatively low count rates. The dead time parameter for the singles 

count rate can therefore be approximated as 𝑎/4 in this instance, resulting in a system dead time of 0.27 

μs. These data were analyzed four ways: the two previously described methods, along with b set to 0, and 

finally eliminating a data point from the fit to study the sensitivity. This study of generated dead time 

values revealed that this data set did not generate a highly precise result, with final dead time values 

ranging approximately 20%. This study indicates that the five sources used by Canberra for this 

determination are not sufficient to produce a reliable fit that is robust against model choice or the number 

of data points included. Due to the magnitude of this discrepancy, and the sources of uncertainty just 

discussed, we are inclined to refer to the neutron count distribution-determined dead time values 

performed at ORNL. This approach has been previously verified with multiple 3He- based neutron 

coincidence counters [73] and the standard error–associated uncertainty generated from this method is 

smaller due to the nature of minimal user-dependent manipulation.  

The neutron count distribution-determined dead time results can be justified by referencing the 

previously discussed Rossi-α distribution in Figure 2.9. When examining the individual detector bank 

responses, an increasing structure is evident between 0 μs and 0.7 μs. From 0 μs to approximately 0.4 μs, 

there is no measured count rate; this is consistent with dead time, where no coincidence events can be 

registered. Then, between 0.4 μs and roughly 0.7 μs, the drastic increase in count rate signifies the 

recovery of the preamplifier system combined with charge collection effects in the 3He tubes. After this 

artifact, more structure can be observed until the signal stabilizes around 2 μs. This may be related to 

ultimate charge drifting and collection effects and the further stabilization of the electronics. Investigating 

the pulse train behavior of the total detector signal reinforces these claims. Between 0 and 0.4 μs, there is 

approximately ¾ of the total count rate measured, which is in agreement with one of the four detector 

banks being dead. Because the total signal relies on all four channels, it will still register neutron events in 

three out of the four banks while a neutron event is being processed in the last bank; therefore, the dead 
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time of a system is much less than the dead time of a single preamplifier chain. Then, following the same 

trend as each individual channel, there is a drastic increase in count rate between 0.4 μs and 0.7 μs. The 

undershoot that is present in the individual signals is also much less drastic in the total signal.     

Using LMDA and analysis to produce a Rossi-α distribution provides a cursory visualization of 

the dead time and electronic stability of a system. It is a simple approach to gain relevant insight into this 

behavior, and can be used as a quick diagnostic of the characterization parameters and timing windows. 

Again, both calculation methods return experimental approximations for the dead time values, and 

therefore may be slightly different than what is observed in the Rossi-α distribution.  It is important to 

note, however, that since the UNCL is designed for low count rate applications (which is standard for 

fresh fuel assembly assay), there is no dead time correction applied in the field. Rather, the dead time 

effect is included empirically in the doubles versus 235U g/cm calibration curve, alongside the efficiency 

and die-away time values. This test and characterization is strictly relevant to laboratory measurements, 

so this deviation is not significant to its application. 

 

 Discussion 

 Although a shift register data acquisition system has many of the same characterization 

capabilities as a list mode acquisition system, often the complexity of the required measurements to 

achieve similar results hinders its extended use. A JSR-15 shift register, in combination with a neutron 

coincidence counter and in this instance INCC, is capable of performing a live time singles HV 

characteristic, and is capable of recording neutron count rates used to determine optimal gating 

parameters, neutron die-away time, system efficiency, and dead time. However, by using list mode 

acquisition and analysis, many channels may be studied simultaneously and a single data acquisition can 

be analyzed to produce these values. A summary of these parameters found by both data acquisition 

systems is provided in Table 2.3. In terms of the JSR-15 and the PTR-32, one signal input in combination 

with two auxiliary inputs may be connected to the shift register, whereas 32 channel inputs may be 

connected to the list mode system. The stability of individual channels over the duration of a 

measurement may easily be investigated and compared to the total detector output signal. In addition, 

more in-depth studies may be performed using PTR-32 such as an investigation into non-ideal behavior 

done by examining the doubles HV characteristic and the doubles to singles count rate ratio, or the more 

readily available visual representation of the pulse train in a Rossi-α distribution.  

 

 

 

 

 

Table 2.3. Summary of system characterization parameters obtained through the JSR-15 and PTR-32 

Parameter JSR-15 Shift 

Register Values 

PTR-32 LMDA Values 

 Total Channel 1 Channel 2 Channel 3 Channel 4 Total 

Neutron die-

away time 

50.89 

± 0.66 μs 

48.76 

± 0.20 μs 

49.45 

± 0.19 μs 

49.53 

± 0.19 μs 

51.20 

± 0.20 μs 

50.657 

± 0.058 μs 

Absolute 

efficiency 

13.6% 3.371 

± 0.047 % 

3.440 

± 0.048 % 

3.357 

± 0.047 % 

3.496 

± 0.048 % 

13.66 

± 0.15 % 

Dead time 0.27 μs 0.6824 

± 0.0092 μs 

0.6865 

± 0.0091 μs 

0.7091 

± 0.0085 μs 

0.6187 

± 0.0075 μs 

0.1641 

± 0.0015 μs 



58 

 Conclusions 

 List mode has long been established in a variety of fields; however, it has not been readily 

implemented in international safeguards. Efforts are currently underway to streamline list mode for more 

practical field applications. Meanwhile, new versions of INCC are being developed to resolve some 

outstanding issues. This paper ultimately serves to provide an in-depth characterization of a standard 

neutron coincidence counter in which the extended capabilities of list mode data acquisition (LMDA) are 

highlighted in comparison to traditional shift register data acquisition. Some of these capabilities include 

an automated doubles HV characteristic, individual channel analysis options, a Rossi-α distribution for 

specific neutron die-away time calculations, and offline analysis where an acquired pulse train can be 

studied multiple times, while varying parameters, to optimize settings.  

In this work, we described the characterization of a JCC-71 Neutron Coincidence Collar (UNCL) 

using a Pulse Train Recorder-32 LMDA system. The results of these list mode measurements/analyses are 

compared with JSR-15 shift register-based measurements/analyses on the same system, or in some cases, 

compared to the parameters reported by the manufacturer. The HV characteristic, predelay, gate width, 

neutron die-away time, detector efficiency, and system dead time were analyzed through measurements 

and detailed offline analysis. Operating at the determined HV of 1720 V, the traditionally accepted 

predelay and gate width parameters of 4.5 μs and 64 μs were validated, respectively. Using these timing 

settings, the neutron die-away time for the each of the four UNCL channels was discovered to range 

between 48.76 and 51.20 μs, with a total detector system die-away time of 50.66 μs, which is similar to 

the shift register-determined die-away time of 50.89 μs, as shown in Table 2.3. In addition, the absolute 

efficiency for each of the channel banks was determined to range between 3.36% and 3.50%. When 

analyzing the total UNCL response, the system efficiency was calculated to be 13.66%, which is in 

agreement with the shift register-calculated value of 13.6% found using an independent 252Cf source. 

Finally, using the neutron count distribution provided by PTR-32 in the specific timing windows, the dead 

time was found to range between 0.62 μs and 0.71 μs for the four channels, and 0.16 μs for the total 

system response. The total detector system dead time determined using the shift register is 0.27 μs. The 

cause and the effect of this discrepancy on a final assay value will be investigated as a part of future work.       

The use of LMDA in its current state better suits laboratory characterization and calibration 

efforts than in-field measurements. Future work toward a more universal safeguards implementation will 

need to include automating more of this process through scripts and GUIs to provide a more user-friendly 

interface. In addition, at high rates up to the megahertz range for various safeguards applications, the 

main drawback of the LMDA format is the large and variable file size. This can be tolerated in laboratory 

measurements to a degree, but it can be prohibitive for routine field use. Therefore, for the time being 

with current computer storage and data processing limitations, full LMDA in its current form is best 

suited for low rate applications. However, because the extended capabilities of LMDA provide a better 

understanding of the physics–based behavior for a more precise system representation and more confident 

assay results, establishing a characterization procedure for the routine use of list mode data acquisition 

and analysis is an important step toward its full implementation in the safeguards field. 
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Modern Preamplifier, Amplifier, Discriminator Electronics 
 

 

 The Amptek A111 Charge Sensitive Preamplifier and 

Discriminator Chip 
 

After Swansen’s adaptation and adoption of the Amptek A111 hybrid charge sensitive 

preamplifier, discriminator, & pulse shaper [31] for neutron coincidence systems in 1984 [35], it has been 

almost exclusively used in all Antech and Canberra Industries’ commercial systems used by the IAEA 

(Table 1.1).  The Antech electronics board is based on the Amptek A111 chip. The Canberra JAB-01 

preamplifier/amplifier/discriminator board implements the Amptek A111 chip with a 74221 dual 

monostable multivibrator integrated circuit and a 74-S140 50-ohm line driver integrated circuit [30]. The 

A111 was developed in the mid-20th century for high–rate applications implementing short shaping times 

and radiation hardness while adhering to specific design parameters for its original x-ray measurement 

application. It was designed for use with charge-producing fast detectors operating in the pulse counting 

mode [31]. Over the last several decades the commercially available chip has been adopted for use in the 

safeguards field, among many other fields, such as aerospace and portable instrumentation, mass 

spectrometers, particle detection, imaging, laboratory and research experiments, medical electronics and 

electro-optical systems, due to its reliable performance in a range of different count rates. It is a self-

contained amplifier, shaper, and discriminator unit (Figure 3.1) that produces a digital output. The unit 

requires a single + 5 V supply, and can perform in count rates up to 106 cps without saturation of the 

preamplifier [31]. 

Precision Data Technology (PDT) also produces electronics directly compatible with 3He systems 

[74]. PDT shaping times are generally ~0.5 μs, and are, therefore, slower than the A111 [75]. They also 

have a lower charge sensitivity than the A111. Some counting systems developed by LANL have been 

designed using these 110A preamplifier/discriminators in place for the A111; however, they have not yet 

been widely adopted by neutron coincidence counting manufacturers such as Canberra or Antech for use 

by the IAEA.  

The A111 uses bipolar shaping, with a time constant much shorter than the full charge collection 

duration to mitigate the long dead times characteristic of 3He counters. Currently, two types of shapers are 

used in detection circuits: unipolar shapers and bipolar shapers. As Figure 3.2 illustrates, the preamplifier 

signal is integrated and differentiated by the selected shaper to produce the respective pulse shape, which 

is then evaluated by a discriminator with a set lower level threshold, producing logic pulses to be read by 

counting software. These shapers use a number of CR-RC combinations in order to integrate and 

differentiate this signal. The CR stage is a high-pass filter differentiator, while the RC stage is a low-pass 

filter integrator. This combination cuts out large amounts of electronic noise in frequencies where there is 

little signal energy. However, it also adds to the duration of the pulse due to the long exponential decay 

component. To mitigate these effects, several stages of these filters may be used in combination to create 

a Gaussian filter whose resulting pulse does not suffer from the long, exponentially decaying tail.  

However, since the pulse width of a Gaussian filter is longer than with a unipolar or bipolar shaper, pileup 

is more common in high rate applications, which makes this filter less desired for safeguards applications.  

The A111 has a CR-RC-CR circuit typical of all bipolar shapers with time constant 0.15 µs [35]. 

However, its final pulse output appears unipolar when probed from the pulse monitor since this original 

pulse is not externally available. A problem with the A111 chip is that it is housed in a self-contained 

circular metal casing that cannot be modified or probed (Figure 3.1). Whatever timing properties it is 
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Figure 3.1. A photograph of the Amptek A111 chip, with metal housing. 

 

 

 

 

 

 

 

 

 

 
Figure 3.2. A diagram illustrating the general pulse processing chain used to analyze the 3He charge collection 

signals [75]. 
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manufactured with are what the chip will operate with. In a way, these systems are black boxes; as the 

documentation on their components is minimal, access to different parts of the circuit is restricted, and 

proprietary information is controlled. The threshold is adjusted externally by a potentiometer which 

controls the gain, rather than a comparator threshold. The gain is set during the manufacturing of a 

neutron coincidence system by matching the performance across all channels and then increasing or 

decreasing the value of the gain to match the desired count rate performance of the system at the 

operating setting. It is specifically selected such that the threshold will fall in the valley of the 3He pulse 

height spectrum between the gamma and neutron regions (Chapter 1). 

Bipolar shapers do not suffer from large baseline shifts, unlike unipolar shapers, due to their 

balance of both a positive and negative pulse lobe centered about zero. Therefore, no additional baseline 

restorer is necessary in a bipolar circuit. When a unipolar shaper is exposed to high rate fields, counting 

losses become more prominent as their characteristic undershoots in pulse amplitude, generated by a 

pulse’s long decaying tail [1], effectively increase the threshold for any subsequent pulses stacked on this 

negative amplitude baseline. Because of this effectively increased threshold, lower amplitude pulses at the 

lower end of the pulse height spectrum, such as wall effect events, may not be counted. However, at lower 

rates, unipolar shapers have the advantage, since bipolar pulses have a comparably longer duration for the 

same charge collection, increasing the system’s dead time. Bipolar signal-to-noise characteristics are also 

typically worse than unipolar shaping because the resulting pulse amplitude is lower. However, through 

their decades of use, the A111 has proven that it has sufficient gain and adequate signal-to-noise to be 

used with 3He detectors— at the expense of realizing full count-rate capability, which is accounted for in 

analysis. 

Due to the physics of charge collection from the 3He(n,p)T reaction in the tubes, the collected and 

shaped pulses have a large variation in shape and duration. The location of the capture event, and 

subsequent charged particles’ ionization tracks relative to the anode wire, generate a shorter fast charge 

collection component joined with a longer slow charge collection component that must both be accounted 

for in the shaping time. If the shaping time is not sufficient to collect both peaks this charge, not only 

could the system retrigger on the two ionization cloud’s components (known as double pulsing and 

discussed in detail in Section 5), but it could also cause a large variation in the measured pulse height for 

a given energy interaction due to ballistic deficit, that may not allow the true number of measured pulses 

to cross the set threshold. Ballistic deficit is the degree to which a shaped pulse’s amplitude is decreased 

compared to the expected amplitude that could be obtained with an effectively infinite time constant [1]; 

it is especially significant for spectroscopy. Since the spectrum does not matter in coincidence counting, 

these counters are operated in a shorter pulse shaping time regime (hundreds of nanoseconds up to 

microseconds) compared to the charge collection time of the positive ions (several microseconds up to the 

order of milliseconds for the full collection time) to decrease dead time effects, which in turn causes pulse 

height distribution distortions. This is not problematic as long as the separation between gamma events 

and neutron events in the pulse height spectrum remains sufficient. 

The shaping time of the A111 chip is 150 ns, meanwhile the rise time is listed at 25 ns (electron 

collection time is 1000 times faster than the positive ion collection time) [31]. Because the same settings 

are selected for all A111s, and then paired across a wide range of neutron coincidence counters used in a 

variety of geometries and different count rate applications, occasionally the performance of the system is 

compromised to incorporate this commercially available component; e.g. double pulsing may be present 

in some systems using the A111 where it is not present in others. 

 

 The Canberra JAB-01 Preamplifier/Amplifier/Discriminator Boards 

The Canberra Industries’ neutron coincidence counters employ an in-house designed 

Preamplifier/Amplifier/Discriminator Board that is built around the A111 chip. The JAB-01 

Preamplifier/Amplifier/Discriminator Boards uses the amplification, shaping, and discrimination 

provided by the Amptek A111 chip. It also incorporates a 74221 dual one-shot to modify the output 



62 

signal to a set 50 ns width, and a 74-S140 50 Ω line driver to provide a single signal output from the 

system containing multiple boards [30]. The 74-S140 also functions as an OR gate that can combine logic 

pulses produced from other banks used in a daisy-chain fashion to supply a single neutron pulse train. The 

components are integrated on a 1.5 x 2.2” printed circuit board (PCB) [35] which is housed in a junction 

box and connected to the 3He tube groupings (Figure 3.3 a and b). This double-sided PCB is divided into 

two sections: all HV components are placed on one side of the board, and all low voltage components are 

placed on the other side of the board.  The tube signal is fed through a pin jack to an insulating standoff to 

prevent any signal feedback generated by impedance mismatch through the exposed anode connections, 

which could lead to multiple pulsing or oscillations. The output monitor LED lamp flashes for any pulse 

that exceeds the set threshold in the A111 (Figure 3.4 b). Dessiccant plugs are placed on each junction 

box to reduce the humidity and minimize any HV breakdown across the capacitors which would cause 

electrical noise [30].  
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Figure 3.3. (a) The JAB-01 Board positioned next to the (b) ORNL prototype board (c) the original JCC-71 

junction box containing 1 JAB-01 board for 6 3He tubes and (d) the new retrofit JCC-71 bank containing 6 

ORNL boards for the 6 3He tubes. 

  
Figure 3.4. (a) Modified JCC-71 junction box to accommodate the new ORNL electronics. The “HV in” position 

has been moved along with the “+5 V in” and the “Signal in”, “Signal out”, “HV out”, and “+5 V out” have been 

removed, as seen when compared to the original junction box (b). 
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 ORNL Design Implemented on the JCC-71 Neutron 

Coincidence Collar, Original Prototype3 

New neutron counting electronics were designed and built by Chuck Britton, M. Nance Ericson, 

and R. Bruce Warmack, electrical engineers at ORNL, as an alternative to the Canberra Industries/Mirion 

Technologies JAB-01 preamplifier/amplifier/discriminator boards under a NA-22 funded project titled the 

“List Mode Response Matrix for Advanced Correlated Neutron Analysis for Nuclear Safeguards.” The 

results of my testing, evaluation, and optimization of these electronics in support of this project are 

discussed here.  

The goal of the new electronics for this project is to provide the same neutron processing 

functionalities as the JAB-01 boards and extend the capabilities of the JCC-71 system by placing a 

preamplifier on each of the 18 3He tubes. Each 3He tube is then capable of producing an individual signal 

output to be analyzed using a LMDA system. This project aims to use all 18 signal channels to produce a 

spatial response matrix to ultimately assay fresh nuclear fuel assemblies; this will be discussed in detail in 

the next chapter. It could be possible to use the JAB-01 board for each of the 3He tubes, but they are 

expensive and too large to place within the existing junction boxes (Figure 3.3 c). Instead, the ORNL 

electronics are used for this project for convenience, cost, and the evaluation of modern electronic 

components with neutron coincidence counting systems. There are other suitable alternative electronics 

designed for use in safeguards systems, specifically for high rate applications [75] [76], but to date, they 

have been used commercially to replace the A111, possibly primarily out of tradition.  

The JCC-71, like other standard UNCLs, contains six 3He tubes embedded in a single row within 

a HDPE moderating slab. Four of these slabs are connected to form the Passive Neutron Collar, and three 

slabs are used connected to a basic HDPE slab housing an active interrogation source for the Active 

Neutron Collar, which is most commonly used in inspections. The six tubes in each bank are connected to 

a junction box panel containing a single JAB-01 preamplifier/amplifier/discriminator board per bank 

(Figure 3.3 a). The junction box transfers HV between the connected banks through “HV in” and “HV 

out” connections and contains “Signal in” and “+5 V in” inputs and “Signal out” and “+5 V out” outputs 

to interconnect the banks and communicate with an external data acquisition system (Figure 3.4). The 

JCC-71, like other collars, ORs the signal from six separate 3He tubes to a single JAB-01 board (Figure 

3.5 a). Then, depending on the data acquisition method, again ORs the output between the number of 

banks, in this case three, to measure a total system output.  

Instead, the modern ORNL design consists of 18 separate preamplifier networks with their 

individual discriminators to produce pulses for each qualifying neutron event in each tube. Each detector 

then has its own signal output going to the digital processing unit using a custom external FPGA (Figure 

3.5 b and c). The preamplifiers are also modular and scalable in design, which could ultimately allow for 

easy translation between various coincidence counting systems.  

To satisfy the goals of the List Mode Response Matrix project and to make these electronics a 

viable modern alternative option for neutron coincidence counting systems, the new electronics were 

designed such that they would have the same, or superior, performance to the JAB-01. Therefore, the 

design was based on low cost commercially-available components. These new electronics include a 

preamplifier and motherboard design, which fit inside the footprint of the existing junction box (Figure 

3.3 d), as well as an external FPGA pulse processor board. They leverage advanced electronic 

components developed for use in other fields such as high-energy physics. This combination is a more 

cost-effective upgrade than replacing historic systems with other novel systems that may offer 

multichannel analysis options. 

                                                           
 

3 This work has been adapted from its current form as presented in the Institute of Nuclear Materials Management 

Annual Meeting Conference Proceedings, Baltimore, MD, 2018 
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Figure 3.5. (a) A diagram illustrating the traditional electronics chain used in the original JCC-71. (b) A diagram 

illustrating the ORNL electronics chain as implemented on the modified JCC-71.  (c) A basic illustration of the ORNL 

electronics retrofit design and placement on 6 3He tubes in 1 bank of the JCC-71.  [77]
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The first iteration of the ORNL prototype electronics consisted of six preamplifiers based on PCB 

technology and a motherboard retrofit in a single bank of the JCC-71, and an external Low Voltage 

Differential Signal (LVDS) to TTL converter board. This new design uses the latest generation, low-

voltage, commercial operational amplifiers. The operational amplifier packages are standard 8-SOIC 

packages (EIA-481-D), which provide footprint compatibility with future devices to mitigate the risk of 

component obsolescence, looking toward the use of FPGA-based signal processing. There are minimal 

hand wiring connections in contrast to the JAB-01 board using the PCB design (Figure 3.3 d). The 

standard BNC “Signal in”, “Signal out”, and “+5 V out” connectors were removed from the face of the 

junction boxes, as this is no longer needed, or it is handled using external components (Figure 3.4). The 

previous connection locations from the “HV in” and the “+5 V in” were changed, using the preexisting 

holes in the junction box face, to accommodate the new circuitry. The HV is supplied by an external 

power source and supplies HV to each board independently, removing the previous “HV out” daisy chain 

used for the JAB-01 assembly throughout the different banks. The “+5 V in” is supplied from an external 

power source. The signal is output using ribbon cable. 

Fully differential, low-swing logic allows faster signal processing, reduced injected electrical 

interference, and less ground-induced current noise. This helps make each channel independent of the 

others, as single-ended TTL signals notoriously feed fast edges back into the circuit from which they 

came, and also feed those edges into other co-located circuits as cross talk, causing false triggers. LVDS 

is instead a fully balanced signal that has a low voltage swing which makes it inherently non-interfering 

in a complex multichannel system. This enables LMDA using many simultaneous channel inputs. LVDS 

is a standard interface on all modern FPGAs. However, all IAEA–approved neutron coincidence counting 

data acquisition modules, whether they are shift registers or the PTR-32, are designed to accept TTL 

pulses of 50 ns widths through BNC connections. The PTR-32 needs input TTL pulses of a minimum of 

30 ns wide; a maximum width is not limited [78]. Therefore, for compatibility with current safeguards 

technology, an external FPGA–based converter board is necessary to take the time-over-threshold signal 

from each discriminator and convert it to a fixed 50 ns width TTL pulse of approximately 5 V amplitude. 

During this 50 ns pulse window, the board does not allow retriggering. Using this converter board, the 

logic pulses may be output using BNC connections, which are directly compatible with existing 

infrastructure. These outputs may be read as individual channels, or as an ORed sum of six tubes as one 

bank, as is possible with the JAB-01–based UNCL, or as an ORed sum of the three six–tube banks that 

are traditionally used. This converter board was unshielded on the benchtop during the first phase of 

testing. 

For this first iteration of the prototype, the gain was optimized at 0.440 V for a system operational 

HV of 1720 V; the shaping time was selected as 160 ns, the preamplifier comparator (LTC6754) 

hysteresis was fixed at 4.5 mV (i.e., the difference between the threshold and the retrigger point), and the 

output was designed as a unipolar signal with 200 ns peaking time (the time it takes for the shaped pulse 

to go from baseline to its peak value). Both the gain and discriminator threshold were made to be 

adjustable, and pole-zero compensation was included. A HV input filter of 220 KΩ and 0.1 µF, followed 

by a 499 KΩ and 0.1 µF, near each of the preamplifier connections on the motherboard was used. HV 

coating was also manually applied to the exposed HV locations on the daughterboard PCB (Super Corona 

Dope, MG Chemicals). 

The initial performance of these electronics was tested on the benchtop using an oscilloscope. 

The signal from both the unipolar shaper and the preamplifier are shown in Figure 3.6. Then, as the 

electronics were retrofit in the single bank of the JCC-71, I performed side-by-side comparison  

measurements against a JAB-01–based bank of the same JCC-71 (see Figure 3.7). 

The six tube LVDS outputs connected to the ORNL preamplifiers were sent to the converter 

board, and those TTL pulses were read into Channels 1-6 in PTR-32. A single TTL output from the JAB-

01 board on the opposing bank was read in as Channel 7 on PTR-32. A 252Cf source was suspended 

equidistant between the two banks to ensure equal geometric efficiency between the two banks, isolating 

any differences in measured count rate to a difference in performance of the different electronics. The HV 

was sent into the ORNL preamplifier board input from the PTR-32 module and split to continue to the
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Figure 3.7. (a) The two JCC-71 banks with the ORNL electronics on the left and JAB-01 boards on the right. A 
252Cf source is suspended equidistant between the banks for simultaneous comparative measurements. The 6 ORNL 

LVDS channel outputs are sent to the converter board (b) where they are changed into TTL pulses and output by 

BNC connections so that they may be recorded using the PTR-32 (c). 
 

 
Figure 3.6. An oscilloscope trace of both the unipolar shaper output (brown) and the preamplifier output (green) 

using in the ORNL circuit. The preamplifier output indicates that the charge was collected quickly in this instance, 

resulting in a sharp, quick-rising pulse.  Note that the vertical scales for these pulses are different, as given on the 

oscilloscope display [77]. 
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JAB-01 HV input. An additional +5 V was supplied to the ORNL preamplifiers from an external power 

supply, which was also used to supply low voltage to the converter board. Meanwhile, the PTR-32 +5 V 

output was used to power the JAB-01 board. The events measured in all 6 ORNL–system tubes were 

summed and compared to the output of the events measured in the JAB-01 bank. 

A HV characteristic (see Section 1.1.2) was acquired as a comparison between both systems. The 

measured singles and doubles count rates of the 252Cf source were recorded, from 1560 V to 1980 V in 

steps of 20 V, from both banks of the JCC-71 and compared. This initial measurement was used to test 

the gain and discrimination on each of the preamplifiers to match the count rate response to that of the 

JAB-01 boards within the relevant operating regime. It was determined that the gain should be set at 

0.440 V and the discrimination at 30 mV. The HV characteristic is used in later described measurements 

as the main source of diagnosing the behavior of the ORNL preamplifiers because it provides the neutron 

counting rates over the detector’s operational range and, therefore, provides simple performance 

comparisons across both banks. However, during this testing, the first measurement revealed a peculiar 

response that resulted in an in-depth testing of the system. An extensive study of this behavior is 

discussed in the following section. 

 

 

 Revealing PTR-32 HV Instabilities  

 In a separate measurement, the count rate response was recorded over a HV range of 1200 V-

1980 V in 20 V increments supplied by the PTR-32 to also study the system’s behavior outside of the 

operational regime. More electronic artifacts manifested over this range. For this measurement, as is seen 

in the singles count rate response of Figure 3.8, between 1280 V and 1400 V the ORNL boards registered 

many more single neutron events than the JAB-01 board. The doubles count rates differ greatly as well 

between the two boards’ responses in the range of 1280 V-1540 V. This behavior obscures the true 

performance of the preamplifiers below 1540 V. Another acquisition was taken examining the region 

between 1200 V and 1400 V in detail for this behavior and for repeatability. The same effect was 

measured again. 

These count rate responses are not physical. If this spurious effect at low HVs was caused by 

something physical in the setup, the singles and doubles count rates would trend together over the same 

range since they are not independent of each other, which they do not. The measured doubles count rate 

should not be of similar magnitude (or greater) to the measured singles count rate. The measured doubles 

count rate should also not be greater at lower HVs than along the plateau region as well. This is not 

reflected in the JAB-01 board response. Based on these results, these effects can be assumed to be caused 

by a persistent electronic artifact intrinsic to the setup.  

For this measurement, a value of 0 cps was measured at 1600 and 1620 V in the JAB-01 boards 

for both the singles and doubles HV characteristics. It is important to note, before this side-by-side 

comparison campaign, a 0 cps value beyond 1300 V was never recorded with the JCC-71 system, in any 

bank containing a JAB-01 board. Since the same neutron source, in the same geometry, is present 

equidistant between both banks, they should both record the same number of events, within statistical 

error, around 1600 V since their performance was previously matched within the operational regime by 

setting an appropriate gain. 

To investigate the 0 cps response within the 1600 V region, another acquisition was taken of the 

system using the PTR-32 HV supply for the range of 1550-1675 V in 25 V increments. In this separate 

measurement, there was no longer any registered 0 cps events in either system where they were 

previously measured. This conflicting result around 1600 V further confounded the diagnosis of the 

behavior measured. To diagnose whether this behavior was due to the introduction of the ORNL 

electronics or not, the JAB-01–based bank was then measured without any connections from the ORNL– 

based bank using the PTR-32 HV supply from 1200 V-1980 V in 20 V increments. No erroneous 0 cps 

readings were measured in the 1600 V range (Figure 3.9). This investigation incited the notion that the 
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Figure 3.8. The singles (a) and the doubles HV characteristic (b) measured using the PTR-32 HV supply from 

1200-1980 V. 
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problem was caused by an unexpected interaction between the ORNL boards and the JAB-01 board when 

the full range of HVs were sampled from 1200-1980 V. 

The behavior of the response from both the JAB-01–based bank and the ORNL–based bank was 

then studied at the lower HVs simultaneously using an alternative HV supply rather than the PTR-32 

supply. Using an Ortec 556 HV supply from 1200-1650 V in 50 V increments shows no indication of the 

structure that was seen when using the PTR-32 HV supply (Figure 3.10). The count rate response was 

clean of any electronic artifacts in both the singles and doubles HV characteristics of the ORNL response 

and the JAB-01 response. This was tested using a JSR-15 shift register HV supply, with the same clean 

result. Surprisingly, it was revealed that the behavior at low HVs and around the 1600 V region was HV–

supply dependent. 

 To confirm this finding, a HV probe was connected to the HV output of the PTR-32 and the 

signal was inspected on an oscilloscope for various settings (Figure 3.11 a). The scope captures are 

1V/division and are looking at the true HV output from the PTR-32 SHV port. It was determined that an 

instability in the PTR-32 HV power supply in this region was causing the peaks in count rate to be 

measured in the ORNL electronics at low HVs. This behavior was determined to not be transient; it 

persists for as long as the applied HV remains at that setting. Looking at an average of the HV output 

signal measured at 1340 V on a 1 mV scale (Figure 3.11 b), this effect results in a ~0.25 mV peak in HV 

relative to the baseline; 1340 V has the greatest measured increase in singles and doubles count rate. This 

increase in HV allows for greater charge collection by increasing the electric field, which increases the 

measured count rate.  Beyond 1420 V, these instabilities appear to quiesce, but it is not likely that this 

instability is no longer affecting the system, as proven by the 0 cps measurement around 1600 V. 

Simultaneously during these investigations, the supply current drawn from the six ORNL boards was 

noted to vary between 0.260 A and 0.299 A. This means that the drift in HV is pulling the negative output 

signal in the ORNL amplifiers closer toward ground, which ultimately decreases the measured counts; 

which may be part of the cause of the seemingly random 0 cps measurements as a function of HV.  

Because the HV supplied to the system initially enters the junction box with the ORNL electronics, and is 

connected to also supply the junction box with the JAB-01 electronics, there may be some cross talk that 

drives the JAB-01 signal toward zero as well when the HV instability directly affects the ORNL 

preamplifiers.  

It was proposed that this instability was caused by a HV loop instability related to the use of a 

Cockcroft–Walton generator circuit [79] within the PTR-32. These circuits are used to generate a high DC 

voltage from a low-voltage AC or pulsing DC input; they are commonly used to supply HV in every day 

electronic devices so this assumption is reasonable without additional proprietary knowledge. It is a 

convenient HV supply as the circuit converts low voltage to a higher DC voltage level through a voltage 

multiplier ladder network of capacitors and diodes. This enables lightweight, inexpensive, supplies that 

can multiply a low starting voltage up to a very high voltage. Therefore, it is an attractive option for many 

portable module designers such as the PTR-32. However, based on the circuit design, as the number of 

multiplying stages increases, voltage ripple becomes significant when supplying an output current; which 

is likely what is happening here. This effect can be mitigated by using an output filter. 

Due to the minimal HV filtering initially applied to these ORNL electronics, this instability was 

not only revealed, but its effects had significant impacts on the measured HV characteristics. This 

behavior was masked previously in the laboratory, and likely during the fabrication and testing of PTR-32 

by its manufacturer, when using JAB-01 electronics within various neutron coincidence counters due to 

the heavy filtration networks. Although adding greater HV filtering to the ORNL electronics is not a large 

burden, the fact that this instability exists within an agency–approved module is significant and should be 

addressed. Another PTR-32 module of the same model number as the first was brought in to repeat these 

measurements to investigate if this behavior was module or model-specific. The same results 

were reflected in the neutron pulse trains acquired using this other PTR-32. Unfortunately, after numerous 

attempts were made by the author and colleagues to contact the designer and manufacturer of PTR-32, Dr. 

Jozsef Huszti, over the length of this dissertation, it was discovered that he had recently unexpectantly  
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Figure 3.9. The singles (a) and the doubles HV characteristic (b) measured using the PTR-32 HV supply for the range of 1200-1980 V, with all channels from 

the ORNL preamplifiers disconnected. No HV settings measured an erroneous 0 cps result. 

 
Figure 3.10. The singles (a) and the doubles HV characteristic (b) measured using an Ortec 556 HV supply module and manually changing the HV settings 

while simultaneously acquiring the signals from the JAB-01–based bank and ORNL–based bank through the PTR-32.
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Figure 3.11. (a) A comparison of HV outputs for various settings as studied using a HV probe and oscilloscope. An unstable ripple can be noted between 

1260 V and 1420 V. The output signal is relatively clean beyond this region. (b) An oscilloscope trace measured of the PTR-32 HV supply measured at 1340 

V on a 1 mV scale. This average shows a ~0.25 mV increase from baseline caused by instabilities in the HV supply. 
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passed. At the time of this work, a new contact is being established. Many questions remain unaddressed 

regarding the functionality and more detailed processes of the module which need to be pursued. 

For this first iteration of electronics, before a more robust HV filtration network could be 

introduced into the circuit, the challenges this discovery brings is only significant in terms of when 

multiple data acquisitions are necessary at varying HV settings. Because the PTR-32 HV supply can no 

longer be used with confidence in this testing, an external HV supply is substituted for biasing the system, 

meanwhile the PTR-32 is still used to acquire and analyze the channel data. This means that a user cannot 

take advantage of the automated HV ramping between acquisitions that PTR-32 “HV plateau” 

subprogram performs, but instead must be present to manually change the HV using their substituted 

power supply. This is relevant when considering system characterization such as performing the HV 

characteristic, which was used here extensively for the performance comparison between the different 

electronics. However, with a characterized system, a simple substitution of an external HV supply can be 

made for laboratory measurements until the PTR-32 HV supply issues are resolved by the manufacturers 

or a third party.   

 

 Comparison to Standard JAB-01 Preamplifier/Amplifier/Discriminator 

Boards 

 To maintain consistency of using an IAEA–approved device for the project, a JSR-15 shift 

register was substituted for both the PTR-32 HV supply and the Ortec 556 HV supply to provide the bias 

to both detector banks. The channel data was still obtained and analyzed through the PTR-32 list mode 

capabilities. The HV characteristic was repeated using the same 252Cf source in the same geometry from 

1200 V to 1980 V in 20 V increments for 5 minutes each. As is clear in Figure 3.12, there are no obvious 

indications of HV instabilities influencing the counting rates, and the performance of the ORNL 

electronics appears to match to the performance of the JAB-01 electronics. The doubles count rate plateau 

is not as stable as expected within the counting precision, which points to a need for further optimization, 

but it is sufficient to provide information for this performance comparison. 

The threshold setting was verified to be sufficient by placing a 13 mCi 137Cs source between the 

two banks to provide >100 mR on contact on the slabs. As seen in Figure 3.13, the measured gamma 

response begins at 1800 V due to a sufficiently high gain that is able to amplify the gamma pileup tail on 

a neutron pulse above the set threshold. This verifies that the 30 mV threshold was adequate for this 

system at the operational HV setting of 1720 V because there is no gamma response measured within this 

region. The increasingly negative doubles count rate measured in the JAB-01 board may be related to 

more Accidental counts being measured than Reals+Accidentals in their respective time gates due to 

increasing dead time as the HV increases. When the (R+A)-A subtraction is done to determine the 

doubles count rate, if the dead time extends well into the (R+A) gate, less counts will be measured. The A 

gate does not suffer from this dead time effect. In addition, another contributing factor to the increasingly 

negative doubles count rate measured with the JAB-01 board may be that as the exposure rate increases, 

the pulse height distribution overall broadens, decreasing the amplitude of the neutron pulse, and if the 

threshold is set too high, some events will drop below the threshold and will not be measured. These 

effects are important to understand, but are not present at the operating HV setting, and therefore will not 

influence the performance of the system. 

 When a simultaneous measurement of the 137Cs and 252Cf sources was conducted, the resulting 

singles HV characteristic trends as expected and supports the finding that the gamma influence on the 

count rate is not measured until 1800 V, and is therefore, not of concern within the operating regime 

(Figure 3.14); this threshold setting is applicable for the JCC-71. 

However, the doubles count rate response showed troublesome behavior. This response indicates 

that some aspect of the electronic processing is randomly causing more doubles counts to be measured 

than are physically present at various HV settings, without pattern. Because the JCC-71 is used in low 

count rate applications, the unipolar pulse shape suffices and should not cause a sporadic count rate
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Figure 3.12. The singles (a) and doubles HV characteristic (b) of a 252Cf source produced using a JSR-15 supply bias, while the data was collected and analysed 

using PTR-32. The performance between the two banks with differing electronics is matched. 

 
Figure 3.13. The singles (a) and doubles HV characteristic (b) produced using a 137Cs source to test the threshold settings of the ORNL electronics. There are no 

gamma events measured before 1800 V. 



75 

to be measured. If these boards are to be implemented on systems with higher rate applications, the signal 

should be changed to a bipolar output to avoid baseline shifts. The pole zero compensation included in 

these circuits is intended to mitigate any undershoot in the unipolar shaper; pole zero restricts the charge 

signal to a single decaying exponential to ensure the amplitude of a successive pulse is not lowered below 

threshold if it were to be stacked on this tail. However, it is possible that this could be causing pile-up 

events that are falsely increasing the count rate depending on their location in time relative to other 

events. Pole zero will be removed in the optimized prototype. With pole zero removed, and more HV 

filtering added, this response is expected to stabilize. 

For completeness, a longer shaping time of 600 ns was investigated to test if the 160 ns shaping 

time was causing double pulsing which was contributing to the behavior found in Figure 3.14. Double 

pulsing will be discussed in detail in Chapter 5, but it is an unwanted electronic artifact caused by the 

physics of charge collection in 3He tubes. The shaping time must be long enough such that both the 

proton and triton charge collection peaks can be collected. If it is not, and if the amplitude drops below 

threshold between the collection of the two peaks, two events will be measured when only one took place. 

It is a function of HV and the charged particles’ trajectories relative to the anode wire. This would falsely 

increase the measured doubles count rate. Although double pulsing was found to be present at low HVs 

with the 160 ns shaping time, strictly due to the electric field being strong enough to collect both charge 

clouds, but not large enough to accelerate them on a similar time scale, there is no double pulsing 

measured at 1660 V and beyond so it is not a concern for these boards and does not explain the erratic 

behavior seen in Figure 3.14. Double pulsing is, however, clearly exemplified in the operating range of 

the HV characteristic of Figure 3.12; but in the JAB-01 response and not with the ORNL boards. This 

discovery will be examined and explained in Chapter 5. The increased shaping time did change the 

ORNL HV characteristic such that counts began to be measured approximately 100 V later than with a 

160 ns shaping time, which does not match the performance of the JAB-01 board. In addition, a longer 

shaping time increases the dead time of the electronics. Therefore, 160 ns shaping time was maintained 

for the second iteration of these boards. 

Through this testing, the optimal gain, threshold, and shaping time were determined for this 

application. These studies also revealed a HV instability within the IAEA-approved PTR-32 list mode 

module HV supply. In progressing to the second iteration of these prototype preamplifiers, modifications 

on the HV filtering and pole zero compensation were made. 
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Figure 3.14. The singles (a) and doubles HV characteristic (b) produced by simultaneously using a 137Cs and 252Cf 

source to test the threshold settings of the ORNL electronics. The singles HV characteristic supports the threshold 

setting is sufficient for the operational HV. The doubles HV characteristic has a sporadic behavior that prompted 

further optimization in a second iteration. 
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  ORNL Design Implemented on the JCC-71 Neutron 

Coincidence Collar, Modified Prototype 

 The comparison of settings used on the first prototype of the ORNL boards, as implemented on 6 
3He tubes, and the second prototype of the ORNL boards, as implemented in the full system retrofit of 18 
3He tubes (Figure 3.15 a), is outlined in Table 3.1. The HV filtering was increased to accommodate the 

PTR-32 HV instabilities, and account for any other systems that may introduce electronic artifacts into the 

counting circuit. The HV input filter resistance was increased from 220kΩ to 1MΩ, and the preamplifier 

connection filter was increased from 499 kΩ to 1MΩ. Local voltage regulators were added to each 

preamplifier’s supply voltage as well, and the HV signals were routed for improved isolation. The hole 

size in the motherboards that center over each of the 3He tubes was decreased from 0.96” to 0.50” to 

allow the HV components to be better spaced from the motherboard’s edges and the junction box’s 

housing, which improved voltage standoff.  

 Pole zero compensation was removed for prototype 2 to investigate if this provides a more stable 

doubles count rate response. Because 18 channels would be used on the full system retrofit, the current 

supply for the preamplifiers was increased to 1.5 Amps. The converter board was also fit into a housing 

that provided convenient shielding, while organizing the 18 LVDS signals in and the 18 TTL signals out 

for a cleaner setup (Figure 3.15 b). On the boards, the two potentiometers used for setting the 

preamplifier gain and comparator threshold for each tube were replaced with same value versions having 

side adjustments rather than top adjustments for ease of access when working within the constraints of the 

junction boxes. This change should have no effect on the performance of the preamplifier but only 

enables adjustments to be made much more easily. The shaping time of 160 ns was maintained, the gain 

of 0.440 V and threshold of 30 mV were also maintained.  

 

 

 

 

Table 3.1. A comparison of settings for iteration 1 and 2 ORNL electronics 

 ORNL Prototype 1: 6 preamplifiers ORNL Prototype 2: 18 preamplifiers 

Shaping time 160 ns 160 ns 

HV filtering HV input filter: 220kΩ and 0.1µF, Preamp 

connection filter: 499kΩ and 0.1µF 

HV input filter: 1MΩ and 0.1µF, Preamp 

connection filter: 1MΩ and 0.1µF 

Gain 0.440 V 0.440 V 

Threshold 30 mV 30 mV 

Pole zero Yes No 
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Figure 3.15. The full JCC-71 active system retrofit with iteration 2 electronics (a), shielded converter boards (b), 

and PTR-32 18 channel inputs (c).
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 System Testing and Optimization 

 The full retrofit system containing the 18 iteration 2 ORNL electronics boards were tested in the 

same way that the iteration 1 boards were. A 252Cf source was suspended equidistant between all banks 

(Figure 3.16) and HV characteristics were obtained for each channel using PTR-32. For these 

measurements, due to the added HV filtering, PTR-32’s HV supply was used; it was previously verified 

that the use of this HV supply did not affect the measured neutron count rate as it did with the iteration 1 

electronics. The combined total signal from all 18 preamplifiers was analyzed to generate the results 

shown in Figure 3.17. The individual channel responses can be seen in the spatial response data provided 

in the next chapter. 

It is clear that with the optimized filtration, the removal of the pole zero compensation, and a 

longer count time, the stability of the count rate response across a range of HVs has improved, even using 

the PTR-32 HV supply. These electronics maintain the gamma discrimination behavior previously shown 

in Figure 3.14 through the operational HV region. Within the system’s doubles count rate response to 

both a gamma and neutron source, however, there is an unexplained trend beyond the operational region. 

Beyond 1760 V, a decreasing trend in the measured doubles count rate is evident (Figure 3.18). This 

behavior is not a hindrance to using this system for its intended application as its operational HV ranges 

between 1680-1720 V, but this is significant in terms of optimizing the final ORNL prototype.  

Although this behavior is unexplained, this structure is now seen with both the original JAB-01 

board comparison measurement and the iteration 2 ORNL prototype (Figure 3.19), where before the 

iteration 1 ORNL prototype had an increasing trend across this range compared to the JAB-01 response 

(Figure 3.13). Without access to the PTR-32 specific analysis description, since this is not documented 

for reference, it cannot be determined what the reason for this behavior is. It may be possible that the 

source of this behavior is the way the internal analysis is performed by PTR-32; or it may be due to 

electronic behavior such as dead time effects and the broadening of the pulse height distribution in the 

both preamplifiers, as discussed in Section 3.2.2. Despite this uncertainty, with confidence through these 

measurements, it is confirmed that the ORNL prototype 2 boards match the performance of the original 

JAB-01 boards with use in the JCC-71. 

 

 

 

 

 

 

 

 

 



80 

     
Figure 3.16. The measurement setup used to measure the 18 channel iteration 2 retrofit. 



81 

    
Figure 3.17. The singles (a) and doubles HV characteristic (b) of a 252Cf source produced using PTR-32 and the full JCC-71 system retrofit with iteration 2 

ORNL electronics. 

   
Figure 3.18. The singles (a) and doubles HV characteristic (b) produced by simultaneously using a 137Cs and 252Cf source. The singles HV characteristic 

supports the threshold setting is sufficient, with the modifications made between iteration 1 and 2. The doubles HV characteristic is more stable within the 

operational HV than Figure 3.14, but shows a downward trend beyond 1760 V. 
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Figure 3.19. The doubles HV characteristic produced using a 137Cs and 252Cf source. This figure compares the 

results for both the initial JAB-01–based measurement and the iteration 2 ORNL prototype measurement to 

highlight how both characteristics have a downward trend beyond ~1760 V. 
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 Discussion 

 It has been shown that the JCC-71 can be retrofitted with the ORNL prototype preamplifiers 

within the existing counter junction boxes without modification to the system or overall counter form 

factor. This is an important result in the context of defining an upgrade plan. Each of the 18 3He tubes 

within the JCC-71 were retrofitted with a prototype preamplifier, and their combined signal outputs were 

studied in detail. These prototype iterations have addressed many concerns in the count rate response, 

meanwhile achieving similar precision to the JAB-01 Preamplifier/Amplifier/Discriminator boards. They 

also provide a viable alternative that outperforms the JAB-01 in certain instances due to the discovery of 

non-ideal behavior measured in the JAB-01, which is discussed in detail in Chapter 5.  

The performance of these boards was adjusted to match the performance of the preexisting JAB-

01 for this project. However, these settings may be further optimized to exceed the performance of 

currently available systems with the proper testing and components.  In addition, a successive third 

iteration could provide the final optimization adjustments to make this prototype fieldable. Some of these 

modifications include an improved version of the printed spacer used on each motherboard to better route 

the LVDS ribbon cables away from the HV coupling capacitor and HV traces to avoid any possibility of 

arcs. Securing the components in a robust backbone structure between the motherboard and channel 

preamplifiers would also be necessary to avoid any wear during shipment and movement of these 

systems. Better design placement of the components across the PCB would aid in the manufacturing, 

assembly, and adjustment performed during system testing. Furthermore, increasing the comparator 

hysteresis, which controls the difference between the threshold and the retrigger point, could improve 

performance. If these electronics are to be extended to other system models, a higher rated HV cap could 

provide a lenient buffer to encompass a greater range of applied HV settings. Finally, understanding the 

PTR-32 LMDA internal analysis could improve any final optimization made on these electronics.  

Similarly designed preamplifiers were also produced and tested for use in a neutron counter used 

in the Neutron Activation Analysis laboratory at the High Flux Isotope Reactor at ORNL. These 

preamplifiers have similar components as those implemented in the JCC-71 but are again modified in 

design to fit within counter-specific housing. They are designed to be compatible with a different tube 

manufacturer, tube diameter and fill gas pressure, operational HV, geometry, form factor, and different 

readout software. The system is also used in high rate applications with significant gamma exposure, so a 

shaping time of 400 ns compared to 160 ns was used. Therefore, the performance and pulse processing 

requirements differed considerably from the JCC-71 electronics. It was my role to test the assembled 

system for performance optimization using the standard neutron coincidence counting software and 

appropriate timing windows. Through this testing, these electronics were found to also meet the specified 

requirements, further justifying that these prototypes may be easily modified to fit various systems for a 

variety of applications, while remaining compatible with most common neutron coincidence counters.  
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Spatial Response Measurements in a new List Mode Neutron 

Coincidence Collar 
 

 

Serving as the experimental lead under the Department of Energy National Nuclear Security 

Administration Defense Nuclear Nonproliferation Research and Development sponsored project, “A List 

Mode Response Matrix for Advanced Correlated Neutron Analysis for Nuclear Safeguards,” this chapter 

presents the various stages of the project in context of the contributions and goals of the experimental 

measurements and validation I have performed. The ultimate goal of this project, which motivated this 

research, was to demonstrate the capabilities of a list mode response matrix for the nondestructive assay 

of fresh nuclear fuel assemblies. To enable partial defect detection of fuel pin locations and absences 

within an assembly, the project aims to extend well-established correlated neutron analysis techniques on 

a preexisting Neutron Coincidence Collar by extracting a greater number of useful signatures from the 

system than are currently generated. LMDA, combined with the addition of multiple preamplifiers, 

facilitates this capability by increasing the number of simultaneous signals that can be measured due to 

the many channel inputs on the hardware, while allowing for an in-depth analysis of multi-channel 

neutron coincidence events to determine a fissioning sample’s location based on the measured doubles 

count rate in various channel logic coincidence combinations. All of this can be done from a single 

measurement pulse train in offline analysis, which is the major benefit provided by LMDA.  

 For the traditional use of the UNCL in the field, one summed neutron pulse train is collected by 

shift register electronics during an active measurement of the fresh fuel assembly; this acquisition yields a 

net total system neutron coincidence counting rate when background and passive contributions are 

subtracted, despite 18 detector channels being potentially available. From the original design, four 

channels may be measured using LMDA, by terminating each bank’s Signal In connection and measuring 

each Signal Out when the system is assembled in passive mode. This project has alternatively made use of 

the 18 independent detector channels in active mode to analyze each signal output to form the spatial 

response matrix from the doubles count rate. To accomplish this, each of the 18 individual 3He tubes was 

retrofit with individual preamplifiers designed and tested at ORNL, which were described in detail in 

Chapter 3. 

 As is seen in Figure 4.1, at the start of the project campaign, a relative fission rate map was 

generated to illustrate what count rates would be expected when using the specific JCC-71 UNCL in 

active mode with a representative AmLi source as the interrogation source. The induced coincidences in 

the fresh fuel assembly were then used to build a representative spatial response matrix that could 

ultimately highlight any measurable difference in count rates caused by a lack of fresh fuel within the 

assembly. This was done by studying the singles and doubles neutron count rate profile on all 18 3He tube 

channels. 

 The first stage of this dissertation research performed to support the project was to ensure that the 

JCC-71 performed on delivery to ORNL as was specified during industry testing at Canberra Industries. 

This was done, as described in detail in Chapter 2, while conducting a comparative system 

characterization procedure using PTR-32 LMDA to ensure reciprocity of values between the standard 

JSR-15 shift register and LMDA. It was shown that LMDA does not introduce any bias in the 

characterization procedure relative to using a shift register for these measurements, and, therefore, it was 
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verified that using this technology for the project would be suitable. After this characterization, source 

positioning response measurements were conducted using a 252Cf source placed at various locations 

within the well of the collar. The count rate response measurements are discussed in Section 4.1, showing 

the initial capabilities of locating a source’s position based on its LMDA measured coincidence rate. 

These measurements were conducted with the original system, containing a single JAB-01 board in each 

of the four banks. After the first iteration of the ORNL prototype electronics were shown to have similar 

functionality as the JAB-01 boards, as outlined in Section 3.2.2, a simple spatial response was compiled 

from the measured 252Cf data. Using the ORNL electronics in one bank of the JCC-71, the source 

response profile was used to indicate if individual neighboring tubes were able to discern a measurable 

difference in count rate, which they were, as described in Section 4.2.1. Finally, with the full system 

retrofit with the Iteration 2 ORNL preamplifiers, a final stage of this phase of the project was completed 

by measuring a certified 252Cf source in various positions within the well of the Collar to determine the 

source spatial response, as discussed in detail in Section 4.2.2. Then, a MCNP6 model of the JCC-71 was 

modified and evaluated using the measured spatial response data for its performance relative to the 

physical system, laying the foundation for future analysis work to meet the ultimate goals of the List 

Mode Response Matrix project. 
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4Figure 4.1. (a) A map of fission events occurring in an example fresh fuel assembly as a function of distance 

from the AmLi source. (b) List mode response matrix illustrating the coincidence count rate due to AmLi–

induced fissions as a function of 3He tube number from 1–18. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
 

4 The anticipated performance and response of this proposed system was initially simulated in MCNP6 by Andrew 

Nicholson and Louise Worrall at ORNL, using an original UNCL-I MCNP model in fast Pressurized Water Reactor 

mode, developed by Anthony Belian of NA-241 for the separate Neutron Rodeo Campaign, and modified to match 

the active configuration of the Canberra Industries JCC-71 using their technical drawings. 
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 Source Position Resolution Using Original JAB-01 Banks 

 
The original JCC-71 Neutron Coincidence Collar UNCL arrived from Canberra Industries with the 

standard JAB-01 preamplifier/amplifier/discriminator boards within each of the four banks. As the system 

design describes, a single JAB-01 board is used in each of the four banks to produce a signal output from 

the 6 tubes in that bank. Unlike in its standard operation, each of these four signals were acquired 

simultaneously using PTR-32 LMDA to measure the spatial response of the JCC-71 operated in passive 

mode to a 252Cf source. The 42 µCi 252Cf was placed on a stand centralized axially within the well (Figure 

4.2), the JCC-71 was biased by PTR-32 to 1720 V, and various measurements were taken as the source 

was moved to 9 different positions. The positions were assigned to show the general variation of the 

spatial response across the system, and the source was placed by eye. The neutron pulse trains were 

recorded for all four channels at each of the positions for 5 minutes each. From these 9 measurements all 

successive comparisons were made offline through use of the replay features in PTR-32 using the 

traditional timing window settings.  

The first comparison evaluates the measured count rates on opposing segments of the detector body. 

As shown in Figure 4.3, the ratio of doubles count rate on the front-to-back detector banks changes with 

the source position. At position 0 (the center) the ratio is 1, as expected. An even distribution of neutron 

counts should be incident on all banks from the center position. As the source is moved closer to the front 

detector bank (#2) as in positions 2, 3 and 6, the ratio increases; when it is moved closer to the back 

detector bank (#4) as in positions 1, 4 and 5, the ratio decreases. Positions 7 and 8 are intermediate and 

this is reflected in the response. 

The same method of analysis was performed on the ratio of doubles count rate on the left-to-right 

detector banks. Again, it is evident that the ratio responds to the source position, shown in Figure 4.4. 

The ratio between left-to-right doubles count rate increases at source positions 2, 4 and 8 and the ratio 

decreases at positions 1, 3, and 7. Positions 5 and 6 provide intermediate count rate ratios. 

The four individual 6-tube bank rates were individually analyzed as well to investigate if their 

measured rates would suffice for source positioning location. This is significant as when the new 

electronics are retrofit on the JCC-71, the efficiency of each of the 18 tubes will be much less than the 

combined efficiency of the 6-tubes used in the total summed signal from each bank. If these banks were 

not able to indicate the source’s relative position, it would not be possible to continue to the next stage of 

testing. Referencing Figure 4.5, it is clear that the individual banks measured count rates can indicate the 

source’s relative position. The total doubles signal differs slightly across the different positions due to the 

slight difference in geometry and manufacturing tolerances within the separate banks. 

With a basic proof of concept that each of the four 6-tube banks count rate responses could 

indicate a relative source’s position, the next step in experimental validation was to test the neutron count 

rate responses for various bank channels in logic coincidences with each other in offline analysis. This 

feature is crucial for the List Mode Response Matrix as the measured doubles count rate in channel logic 

coincidences will be higher than the measured doubles rate in individual channels; this will be necessary 

for active interrogation with fresh fuel assemblies that suffer from characteristic low count rates due to the 

proportion of fissioning 235U. In addition, to resolve partial defects such as fuel pin removal, positioning 

of the decreased count rate is key. These channel logic coincidences allow the user to isolate the region in 

which a lower count rate is measured than expected compared to closely neighboring rates, and prompt 

further investigation.  

PTR-32 has a combination of GUI subroutines available that enable any number of pulse trains 

from the 32 channel inputs to be put into logic coincidences in any combination. First, the total acquired 

neutron pulse train must be spliced to contain the combined pulse trains of interest using the “Subtract” 

subprogram. Then, that pulse train may be analyzed using either the “SDT” subprogram for the 

Coincidence Rates for which a simple text file is produced, the “Channel Coincidences” subprogram for a 

more in-depth visual comparison, or the “All Coincidences” subprogram to automatically analyze any 

number of different files containing combinations of spliced neutron pulse trains which are then read out 
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Figure 4.2. The experimental setup using the JCC-71 in passive mode, with 252Cf source resting on an axially 

centralized source stand. The radially center position is shown. 

 

 

 

 

 

 

 
Figure 4.3. The doubles count rate measured in the front detector bank (#2) to the doubles count rate measured in 

the back detector bank (#4) as the 252Cf source location varied through 9 positions. 
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Figure 4.4. The doubles count rate measured in the left detector bank (#3) to the doubles count rate measured in 

the right detector bank (#1) as the 252Cf source location varied through 9 positions. 

 

 

 

 
 

 
Figure 4.5. The measured doubles count rates obtained for the 4 original banks of the JCC-71 as a function of 
252Cf source position, in addition to the total system output doubles count rate signal. 
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in a simple text file. Each of these subprograms require the user to click and select the input files, 

designate what channels to keep and remove, and also set the relevant timing windows. This can be done 

for any and all combinations of the measured input channels. For this work, the “Subtract” was used to 

produce the modified pulse trains for all combinations of 2 banks. “All Coincidences” was then used for 

convenience and efficiency purposes for the various files containing the pulse trains of different bank 

combinations at each position.  

However, this approach will not be favorable in terms of time and effort invested to perform this 

offline analysis when 18 separate channels are used in the full system retrofit and any number of tubes in 

any number of combinations will need to be analyzed to assay a fuel fresh fuel assembly. Unfortunately, 

PTR-32 is not an editable program and its code is proprietary so modifications to these scripts must come 

from the developers. As was previously mentioned in Chapter 3, over the course of this dissertation, the 

author and colleagues attempted to get in contact with the developer to discuss these concerns, without 

response. It was only recently that we have learned of Dr. Jozsef Huzsti’s unexpected passing. For the 

purpose of this project, PTR-32 must be used as it is currently the only IAEA-approved LMDA module, 

and with attempting to keep these modifications fieldable, new software cannot be introduced at this point 

in time.  

Referencing Figure 4.6, the measured doubles count rate produced from the channel logic 

coincidences reflect the source’s position with a distinguishable count rate, and, therefore, prove that this 

may be a viable prospect to accomplish when using the full system retrofit. This positive spatial response 

investigation using the four banks of the JCC-71 with original JAB-01 electronics encouraged the project 

to progress to its next stage of electronics development, implementation, and testing discussed in the next 

section. 
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Figure 4.6. The measured doubles count rates obtained for various combinations of logic coincidences between 

the 4 original banks of the JCC-71 as a function of 252Cf source position. 
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 Source Position Resolution Using ORNL Electronics 
  

 Measurements Using Iteration 1 Electronics 

The next stage of this project implemented the 6 ORNL–designed preamplifiers onto 6 tubes in 

one bank of the JCC-71. These electronics were shown to have equal, if not better, performance to the 

original JAB-01 preamplifier/amplifier/discriminator boards contained in the JCC-71 (Chapter 3). In 

addition, to make measurements more precise and repeatable, I designed an XYZ source stand that was 

fabricated at ORNL (Figure 4.7). The source stand allows any source to be suspended, and its position 

relative to the desired tube(s) in x,y, or z to be chosen and specified. Using the one retrofitted bank of the 

JCC-71 and the same 252Cf source suspended approximately 15 cm away from the center of the bank, a 

neutron pulse train was acquired for all 6 channels simultaneously using PTR-32. This pulse train was 

acquired across a range of HV settings, as part of the electronics evaluation campaign presented in 

Chapter 3.  

Due to the source’s positioning relative to the 6 channels, a simple spatial response was 

discerned; the positions of channels 1–6 are illustrated in Figure 4.8, with the source placed between 

channels 3 and 4. Channels 3 and 4 are expected to have the highest measured count rate, followed by 

both channels 2 and 5, then channels 1 and 6. This is reflected in the measured Singles count rate as a 

function of applied HV (Figure 4.8). With these data, the location of the source may be inferred; with the 

remaining twelve 3He tubes, this positioning resolution should increase to better pinpoint where the 

decreased measured count rate is generated from. However, the measured doubles count rate was not as 

stable, nor as consistent, in providing a distinguishable response profile like with the singles count rate. 

This was in part due to the measurement duration in addition to the electronic settings selected for testing 

on the Iteration 1 electronics. The stability of the electronics was improved in Iteration 2.  
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Figure 4.7. The design, and fabricated, XYZ source stand as implemented on the JCC-71. 

 

 

 

 

 

Figure 4.8.(a) Singles count rate data as a function of applied HV illustrated for each channel. Preliminary 

indication of spatial response capabilities with additional preamplifiers for each detector bank are shown (b) The 

source was placed between detector Channels 3 and 4. 
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 Full System Retrofit Measurements Implementing Iteration 2 

Electronics 

 Once the second iteration of the ORNL preamplifiers was tested, as described in Chapter 3, a 

spatial response measurement was conducted using the 252Cf source suspended equidistant from the banks 

of the modified JCC-71 system. The active configuration of the system was used, with no AmLi placed 

within the active HDPE bank. The system was biased to 1720 V, and the preamplifiers were supplied with 

the low voltage from an external supply. The data from each of the 18 channels were read into PTR-32. 

Measurements of the 252Cf source, of a strength of 42 µCi, were conducted for 9 different positions within 

the well, centralized axially, at 20 minutes each. The neutron pulse trains from each of 18 3He tubes were 

obtained and analyzed to get a net singles and doubles count rate for each. The doubles count rates were 

then studied relative to each tube to provide a spatial response of measured counts. Three different cases 

are shown in Figure 4.9-Figure 4.11: the first with the 252Cf in the center, the second with the 252Cf in the 

corner between banks 1 and 2 near tubes 6 and 7, and finally with the 252Cf in the corner between bank 3 

and the active HDPE slab near tube 18. It is evident that the addition of the preamplifiers on each 3He 

tube has improved the spatial positioning of a point source and the current setup has the ability to indicate 

a large difference in measurable count rate across the 18 tubes depending on the location of the source.  

 It is also evident that geometric effects of the system have a role in the measured count rate.  In 

Figure 4.11 with the source in the center, tubes 6, 7, 12, and 13 have distinguishably lower count rates. 

This is due to their location; at the corners of the JCC-71 there is less HDPE which decreases the number 

of neutrons thermalized and captured in this region. This effect is seen reflected in Figure 4.10 and 

Figure 4.11 as well, but it is not as noticeable due to the sources location in those instances. In addition, 

the tubes more centralized in the HDPE banks such as 3 and 4, 9 and 10, and 15 and 16 measure a greater 

count rate due to the opposite effect: there is more HDPE in areas both to the left and right of these tubes 

in which neutrons can be thermalized and then captured in these tubes. As a whole, the system has a very 

low measured doubles count rate in each tube with the 252Cf placed in the center position.  

 Using the same strength source, the measured doubles count rate is significantly higher in Figure 

4.10 and Figure 4.11 where the 252Cf is placed up against  the corners of the banks. When the source is 

instead placed in the corner between banks 1 and 2, the doubles count rate measured in tubes 4-9 is much 

greater count rate than that measured with the source is at its center position. Due to geometry, the count 

rate measured in tubes 13-18 are low comparatively as many neutrons will not travel in this direction, but 

instead escape out of the system. With the same argument, banks 1 and 2 in Figure 4.11 have a low 

measured count rate due to the placement of the 252Cf near the active HDPE block that will not detect any 

events. Tube 18 has the greatest measured count rate due to the thermalization of the neutrons within this 

block and capture within the 3He tube. 

 Finally, the response of the modified JCC-71 for all 9 252Cf source positions was compared to 

illustrate the different count rates recorded in every tube at all positions (Figure 4.12). This figure is quite 

complex and contains considerable information within it. The measured doubles count rates are recorded 

in a histogram format, coupled with a color-coded trend that guides the eye to better interpret the trend of 

the count rate as a function of tube number. For the instances where the 252Cf is closest to bank 1 (Tubes 

1-6) such as in positions 1, 3, and 7, the count rate responses in these tubes are greatest. The exact 

location can be assumed between these three positions as well. For position 1 the measured doubles rate is 

greatest in Tubes 1, 2, and 3 with the greatest value measured in Tube 1. For position 3 the measured 

doubles rate is greatest in Tubes 5, 6, 7, and 8 with the greatest value measured in Tube 7. In position 7 

the measured doubles rate is greatest in Tubes 3 and 4. The measured rates in the other tubes then varies 

based on that source’s position relative to them, but they are always less than what is measured in bank 1. 

The same applies to the other 6 source placements and their neighboring tubes.  
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Figure 4.9. A measured doubles count rate response across all 18 3He tubes with a 252Cf source placed in the 

center of the well of the modified JCC-71. 
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Figure 4.10. A measured doubles count rate response across all 18 3He tubes with a 252Cf source placed near banks 1 

and 2 (tubes 6 and 7) of the modified JCC-71. 



 

 

97 

 

 
Figure 4.11. A measured doubles count rate response across all 18 3He tubes with a 252Cf source placed near bank 3 

(tube 18) and the active HDPE slab of the modified JCC-71.
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Figure 4.12. The measured doubles count rates in Tubes 1-18 for 252Cf source positions 0-9 within the JCC-71 well.  
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Essentially, this comparative measurement highlights the greater capability of source positioning based on 

measured doubles count rates available with the 18 preamplifiers applied to the system. The combination 

of source strength and tube efficiency was sufficient to measure a varying count rate based on the 

different positions of the point source within the well.   

 Due to the complexities of handling these data for all combinations of the 18 tubes in each 

measurement within PTR-32, as was mentioned in Section 4.1, the logic coincidences are not studied 

here. This is beyond the scope of this work and would require extensive software development beyond 

what is available with the PTR-32 software. In order to complete a full tube–by–tube logic coincidence 

analysis, one would need access to the originally acquired neutron pulse trains taken with a LMDA 

interface, such as PTR-32 or another, which is not currently possible. Then, an external pulse processing 

software would need to be developed to not only analyze the individual neutron pulse trains for all 18 

tubes but perform all combinations of the logic coincidences offline in a timely fashion that would be 

useful to in-field measurements. This would, at a minimum, need to support the analysis of all 18 tubes in 

pair combinations, leading to over 150 analyses in real time. If multiple channel logic coincidences were 

to be performed for better spatial resolution, this would complicate the analysis further.  

 

 MCNP Simulations 

 A fresh fuel assembly mockup was not available in the laboratory at ORNL to take experimental 

data representative of a field measurement. Instead, MCNP6 was used to develop a simulation that would 

generate the response of the 18 tubes to the measured 252Cf source such that in a second phase of this 

project, this model could be used to simulate partial defect detection scenarios in various fresh fuel 

assemblies with greater confidence. 

An original UNCL-I MCNP model in fast Pressurized Water Reactor mode, developed by Anthony 

Belian of NA-241 for the separate Neutron Rodeo Campaign, was modified to match the active 

configuration of the Canberra Industries JCC-71. The JCC-71 dimensions and geometry were modeled 

based on Canberra specifications and technical drawings, and the cadmium liners and AmLi source within 

the HDPE slab were removed. The output of the MCNP model was then analyzed in–depth and compared 

to the experimentally measured spatial response results presented in the previous section. The physics of 

the simulated counter was validated using the comparison, ensuring that this model can accurately 

represent the experimental behavior of the JCC-71, laying the foundation for future analysis work to meet 

the ultimate goals of the List Mode Response Matrix project.  

A small 252Cf source was simulated and moved to three of the positions measured in the previous 

section for comparison, as shown in Figure 4.13- Figure 4.15. A cumulative probability distribution was 

used to represent the spontaneous fission of the 252Cf source, the spontaneous fission yield was directly 

specified, and the typical parameters of the Watt spectrum were entered into the source definition, as 

stated by the MCNP User’s Manual [80]. Various tallies were recorded to study the count rate responses 

across these different source positions using the spontaneously fissioning source. Singles tallies, infinite 

gate tallies, ungated coincidence capture tallies, and coincidence capture tallies with various timing 

windows were produced through the MCNP simulation. The gated coincidence capture tallies, FT8, in 

each of the individual 18 3He tubes for a predelay of 4.5 µs and a gate width of 64 µs are specified. Using 

the CAP keyword with 2003 on the input, the 3He is indicated as the location for the captures of interest. 

The GATE keyword applies the correct gate structure, following shift register logic. Variance reduction is 

not possible with multiplicity problems. MCNP does not place the starting trigger events onto a timeline, 

which LMDA does to form the neutron pulse train, so it does not need to deal with overlapping events 

and Accidentals; the output of MCNP is then a series of well isolated launch events. The capture tallies 

may be written to a PTRAC file, mimicking the pulse trains produced through LMDA, but external codes 

are necessary to process and analyze these pulse trains. 

Histograms are then produced for each specified tally. The number of neutron captures, in terms of 

neutron multiplicities, are grouped together and the histograms are used to produce the moments of the 
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neutron distribution. All values are given for events recorded over all time, not as a rate; this must be 

done offline. For the end goal of the list mode response matrix, the neutron coincidence rate would be the 

signature of focus. Using the neutron creation source track number, the 252Cf average neutron number per 

fission 𝜈̅, the run time, the number of captures within the 3He in all tubes without any timing windows, 

the first factorial moment recorded for an infinite gate width, and the first factorial moment recorded for 

the set predelay and gate width timing windows, the singles and doubles count rates can be calculated. To 

do this the total simulated count values must be converted to rates, and the simulated source strength must 

be normalized to the experimental source output rate in order to get comparable values to the measured 

data.  

Performing this analysis for each of the 18 tubes results in similar trends across all three positions 

of the simulated singles data, and similar trends across the three positions of the simulated doubles data, 

compared to the measured data, but the values are not in agreement. The measured data is taken from the 

previous section, Positions 0, 3, and 4. The MCNP simulation underpredicts the Singles count rate that 

should be measured in these scenarios (Figure 4.13 a, Figure 4.14 a, Figure 4.15 a). The simulation 

overpredicts the Doubles count rate for the same positions (Figure 4.13 b, Figure 4.14 b, Figure 4.15 b). 

Many factors have been considered for their impact on these results; some of which include: MCNP’s 

lack of electronic pulse processing losses and dead time contributions, background counts, geometric 

differences in the system and differences in the true source placement compared to what is simulated. 

None of these factors account for as large of a difference between the measured to simulated rates, and 

the fact that the measured singles count rates are larger than the simulation, but the measured doubles 

count rates are smaller than the simulation. After attempting to apply corrections for various factors, it 

became clear that the cause of the discrepancy was that the source information used throughout this 

analysis was not accurate. The true neutron output and the age of the source do not appear to match what 

is reported. 

The original assay activity and current activity of the 252Cf source used for these measurements are 

logged into a source control database. The current activity was recorded on the date of measurement and 

was used to normalize the simulated data to the source intensity used within the experiment. However, the 

difference in Singles rate indicates the activity of the measured source may be greater than what is given 

on its source certificate. It is not uncommon in a laboratory setting for a 252Cf source to have an 

uncertainty of ±15 % when its value is based off a nominal specification from the vendor; in a couple 

instances a measurement has shown that the neutron output of a source has an even larger variation than 

15% of its quoted value. It is important to have source standards for these scenarios such that the true 

neutron output can be known to ±1 %, and better compared to simulated data. These standards are 

discussed in more detail in Chapter 7. 

Because the simulated singles count rate is calculated by normalizing the factorial moment of the 

neutron capture in 3He tally, independent of any timing gates, by the experimental source output value 

and the weight of the simulated source fission neutrons, a difference in the quoted source activity would 

have a large impact on these rates. Then, the doubles count rate in each tube is calculated using the gated 

neutron capture tallies, factorial moments, and the event rate. The event rate used in these calculations are 

based off of the average neutron number; changes to 𝜈̅, the number of neutron tracks, or weight 

normalization by source fission neutrons has a significant impact on the simulated rate values. If the 

measured source is old, the 250Cf contribution will be significant. The full implications of the presence of 
250Cf in a 252Cf source is discussed in Chapter 7 but simply, it will alter the average neutron number per 

fission. The 𝜈̅ for 250Cf is 3.53 rather than 3.768 for 252Cf; this would therefore decrease the measured 

doubles rate. By simulating a pure 252Cf, using its specific nuclear data, and then scaling that data using 

measured values obtained from a mixed source, there will undoubtedly be deviation in the comparison of 

those values.  

It is possible to calculate the actual neutron output and the correct 250Cf mass ratio of this source 

given the correct date of calibration and the associated output uncertainty. Then, the 250Cf contribution, 

including the weight percent and its associated neutron spectrum, could be added into the simulation, but 

it is far better practice to repeat these measurements with a well–calibrated, young, certified source.  This
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Figure 4.13. A comparison of MCNP simulated data and (a) measured singles count rate data and (b) measured doubles count rate data using a 252Cf source 

placed at the center Position 0 of the modified JCC-71. The MCNP output data has been normalized to the experimental source strength. 
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Figure 4.14. A comparison of MCNP simulated data and (a) measured singles count rate data and (b) measured doubles count rate data using a 252Cf source 

placed at the top left Position 3 of the modified JCC-71. The MCNP output data has been normalized to the experimental source strength. 
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Figure 4.15. A comparison of MCNP simulated data and (a) measured singles count rate data and (b) measured doubles count rate data using a 252Cf source 

placed at the bottom right Position 4 of the modified JCC-71. The MCNP output data has been normalized to the experimental source strength. 
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can be done using any of the certified sources presented in Chapter 7. The benchmarking simulation used 

for the List Mode Response Matrix needs to have better precision than what this current source certificate 

value can provide to allow credible count rate estimations for various source placement scenarios.  

Despite the differences in value caused by the source output uncertainty, the trends of the simulated 

data coincide with the measured trends as a function of source position in the Collar. Examining Figure 

4.13 where the 252Cf source is placed within the center of the well, tubes more centralized within the 

HDPE record higher count rates. Tubes closer to corners of the HDPE record lower count rates. When the 

source is then placed in the top left corner as shown in Figure 4.14, the range of rates is more drastic 

across the 18 tubes. A higher count rate is recorded in tubes surrounding the source’s position, and the 

response can be distinguished from that recorded when the source is moved to the opposing corner in 

Figure 4.15. These trends validate that the model used here is reasonable and that it can accurately 

predict the neutron capture behavior across the 18 3He tubes. This is the crucial aspect of the spatial 

response matrix project goal, as ideally there would be reference matrices obtained through simulation, to 

which an experimentally acquired matrix would then be compared to that library of scenarios. Any 

deviations along an otherwise matched trend could indicate diversion. The sensitivity of the system 

response will need to be studied for detectable minimums. Therefore, using MCNP may allow the user to 

anticipate the spatial response in the modified JCC-71, and any deviation from this behavior would 

prompt further investigation for the true numerical values of count rate and source activity compared to 

declared values. 

To eliminate the concern regarding the difference in quoted source strength and age, the simulated 

results for the top left and bottom right positions were normalized to the results obtained at the center 

position (Figure 4.16 and Figure 4.17). This provides the spatial response in terms of a relative 

efficiency, which avoids the uncertainty in the original source strength. With this normalization, it is clear 

that the measured and simulated trends are nearly identical with the singles count rates in both source 

positions, within <1 cps difference (Figure 4.16 a and Figure 4.17 a). As for the doubles count rate 

comparison between measurement and simulation, the difference is slightly greater <2 cps difference 

(Figure 4.16 b and Figure 4.17 b), that could stem primarily from the positional difference between the 

true physical placement and the source location in the simulation.  

There are numerous sources of uncertainty that could contribute to these slight differences as well. 

MCNP assumes perfect electronics. There is no dead time component nor any electronic artifacts 

incorporated in the simulation analysis. The doubles dead time is known to be characteristically longer 

than the singles count rate (see Chapter 6). Therefore, the measured singles count rate is not as greatly 

impacted as the doubles count rate by dead time, and the difference attributed to the presence of dead time 

in the measured rates compared to the simulated rates should be less for the singles response.  

The code also assumes that every neutron capture event generates an electronic logic pulse that 

could be read by an associated software; i.e., the tubes are 100% efficient. However, there are slightly 

different thresholds set on the preamplifiers, within human tolerances, which change the trigger point at 

which a neutron event can generate a logic pulse and be recorded from tube to tube experimentally. 

Therefore, the simulated response will always differ slightly from true experimental values.  

The MCNP simulation is given a fill pressure and atomic composition of the 3He material within 

each tube. This is traditionally quoted by the manufacturer; as are the tube dimensions and any other 

dimensions provided in the technical drawings of the counter. It is not well known how accurate these 

values are in reality, as machining tolerances and slight uncertainties from tube to tube will cause slight 

deviations in experimental performance. Changes in the HDPE slabs would have an effect on the neutron 

thermalization within each bank. The fill pressure uncertainty would not be a large contribution to the 

overall measured count rate, but it should be considered. The dead layers, or the ends of the 3He tubes 

where no captures will be recorded, are included in the MCNP model but may have varying impacts on 

the active volume tube to tube depending on its accuracy. 

Depending on the physical placement of not only the source capsule relative to the banks in height 

and XY positions, but the 252Cf active material within the source capsule, the loading on the tubes may 

vary slightly compared to its placement in the simulation. Within the source definition in MCNP  the
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Figure 4.16. A comparison of MCNP simulated data and (a) measured singles count rate data and (b) measured doubles count rate data using a 252Cf source 

at Position 3. The data has been normalized to the singles count rate measured and simulated for the central position 0 response. 

 
Figure 4.17. A comparison of MCNP simulated data and (a) measured singles count rate data and (b) measured doubles count rate data using a 252Cf source 

at Position 4. The data has been normalized to the singles count rate measured and simulated for the central position 0 response. 
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252Cf was roughly estimated as a point source and placed at set distances from the center. Uncertainty in 

the physical placement of the source could cause slight deviations in the measured count rates across the 

different tubes. Room return and scattering are not included in the MCNP model. Since these 

measurements were taken on a benchtop within several feet of a wall, the tubes do experience some 

events caused by this return, which is not accounted for in the simulated response. The model could be 

refined to accommodate a more accurate scatter environment such as incorporating the tabletop on which 

the Collar was placed for these measurements, including the neutron source stand that was used to 

suspend the 252Cf in its various positions, and the nearby cement walls of the room. In reality, the 

environment of every fuel fabrication plant or laboratory environment will differ, so there will always be 

an associated uncertainty from simulation. Many of these contributions to uncertainty are studied in depth 

for their final impact on the MCNP simulation results in [81] Unfortunately, introducing a fresh fuel 

assembly in place of a 252Cf point source only adds complexity to the problem as knowing the exact 

geometry and machine tolerances, exact source activity and location, full material compositions and 

introducing the AmLi interrogation source within the model adds more uncertainty in the rates.  

To solidify confidence in the MCNP model, further investigation was performed using the 

simulation values compared to experimental values. Using the PTR-32 LMDA and MCNP output, the 

physical behavior of the simulated system was compared to that what was measured at the three simulated 

source positions. The die-away time of the measured and simulated systems were calculated for each of 

the three source positions using chi-squared analysis of minimizing the sum of squared errors of the 

doubles count rate across a range of gate width settings (Figure 4.18 a). This follows the analysis 

presented in Section 2.5.3. The die-away times at each position were in general agreement between the 

simulation and measurement (Error! Reference source not found.). In addition, the relative standard 

deviation (rsd) was analyzed for both the simulated and measured doubles count rates to identify the 

optimal operational gate width as presented in Section 2.5.2. The data showed the minimum relative 

standard error was achieved at the traditional operational gate width of 64 µs for both data sets (Figure 

4.18 b), across all three source positions. Again here, the rates, such as R0 and the rsd values, are not in 

agreement, due to the source certificate discrepancy, but the trends verify that the physical system 

behavior is well represented through the MCNP input. The behavior of the simulated counter was 

validated using the comparison of representative physics trends, ensuring that this model is performing as 

it should, and it can accurately represent the experimental behavior of the JCC-71. Therefore, there is 

confidence in expanding this model for future analyses.  

 

 

 

 

Table 4.1. A comparison of experimental to simulated calculated system die-away times and fit 

parameter R0 

 Experimental (LMDA) Simulation (MCNP) 
252Cf Source 

Position 

R0 

 (cps) 

τ  

(µs) 

R0 

 (cps) 

τ  

(µs) 

Center 1680.23 62.38 2189.16 60.69 

Top Left 2850* 50* 4731.78 58.72 

Bottom Right 2124.39 65.20 2487.00 66.40 
*The chi-squared fit parameters were estimated by eye 
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Figure 4.18. The comparison between LMDA measured data and MCNP simulated data used to determine the (a) 

neutron die-away time using the doubles count rate trends as a function of gate width and the (b) optimal operational 

gate width using the relative satdard deviation as a function of gate width for the center source position. These 

values were verified for the other two source positions. 

 

 

 

 

 

 

 



 

 

108 

 Conclusions and Further Work 

 This work has successfully addressed the objectives of the experimental testing and validation 

aspect of the List Mode Response Matrix project. The novel developments and necessary groundwork to 

complete the end goals of this project have been established here through this first phase of the larger 

picture of the LMDA spatial response matrix. This project has demonstrated that a historic system may be 

retrofitted with modern electronics on each of its original 3He tubes. As a contribution to the overall 

project goal, this dissertation research has helped optimize those electronic settings over a couple 

prototype iterations through performance matching with associated software. It has also proven that the 

new electronics have equivalent performance to the existing electronics. Through extensive experimental 

testing, it has been shown that these electronics can then be used to provide detailed spatial response 

measurements for a neutron source.  

An MCNP simulation has been developed and evaluated for its performance relative to the physical 

system when measuring a 252Cf source. Despite uncertainties surrounding the measured source activity, 

which propagates through to deviations in the measured to simulated data comparisons, this model has 

demonstrated it is representative of the physics trends present in the JCC-71. A certified source should be 

measured and compared to simulated values to determine the final error associated with the calculations. 

The MCNP model can then be used in future work to simulate various fresh fuel assemblies and various 

diversion scenarios to test and optimize the algorithms for detection. In Figure 4.19, a general 17x17 

pressurized water reactor fresh fuel assembly was designed within the well as an example of what could 

be done for future work. In this figure, the 17x17 array has several fuel pins removed, shown in white, 

centered in a circular arrangement. Within this MCNP model of the JCC-71, the cadmium sheets are 

included and the active AmLi interrogation source is also include with the correct geometries.    

From the work I performed for this project, LMDA has been introduced and characterized as a 

fully suitable alternative to shift register based logic, and its additional capabilities in system calibrations 

and characterizations have been exploited and discussed in detail. Simultaneous multichannel acquisition 

and analysis will help further advancement in the field, while expanding the physics-based understanding 

of the behavior of these systems. Through this knowledge, better calibration and analysis procedures, 

grounded in first principles rather than empirical methods, may be introduced.   

This work has also established a significant area for further development and improvement. 

Through the course of the project several challenges were identified, and a few limitations were 

encountered. These challenges include: the performance and reliability of the LMDA module PTR-32 

(discussed intermittently throughout this dissertation), non-ideal behavior in the standard JAB-01 boards 

within the JCC-71 (as discussed in the following chapter), physical limitations of efficiency in the 

individual 3He tubes that will impact minimal detectable rates, and overcoming the significant 

computational demand for multichannel analysis combined with logic coincidences performed in real 

time, overlaid with a easily referenced simulated spatial response matrix.  

Then, introducing fresh fuel assemblies into the problem further complicates this analysis. With an 

average enrichment of around 3-5%, the activity of these fresh fuel assemblies are significantly less than 

that of the 252Cf point source. Using a 42 µCi 252Cf source at the center of the JCC-71 well, the average 

doubles count rate measured in all tubes was approximately 3 counts per second.  Detecting small 

changes in the associated doubles count rate caused by the removal of few fuel pins at a time will be a 

significant challenge. Currently, with traditional methods, the standard deviation on an UNCL 

measurement falls around 5%; this is a significant number of fuel pins removed.  The LMDA spatial 

response matrix project aims to identify the removal of 8 pins and, specifically, the location of their 

removal within the fuel assembly.  

The logic coincidences would increase the effective efficiency of these tubes by combining the 

neutron pulse trains of the designated tubes to calculate the doubles count rate. This requires large 

computational power in real time in order to provide, at a minimum, over 150 different tube pair 

combinations from the system. Once this is overcome, it may be possible, then, that the measured count 
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rate would suffice for fuel pin diversion detection, yet at this point it is not possible to give quantitative 

conclusions. 

The activity is also distributed throughout a highly complex fuel pin matrix that contains metal fuel 

rods, burnable poisons and neutron absorbers. These assemblies suffer from self-shielding, scatter, and a 

high singles count rate generated by the interrogation source that raises the percentage of false 

coincidence events. In terms of creating reliable MCNP inputs, not only are there complexities in 

simulating the base geometries of these arrays, but there is also the added contribution of the active 

interrogation source within the assembly. This is an extremely complicated problem to simulate. Each 

fresh fuel scenario must have a reliable reference simulation to benchmark the experimental results on to 

identify diversion scenarios. Future work for this project includes further development of the 

classification algorithms based on machine learning, and laboratory measurements of a mockup fresh fuel 

assembly that would be more representative of a field measurement.  

This work has also introduced concepts that may be applied across all neutron coincidence 

counting systems to advance the field and improve the performance of historic systems without a large 

financial burden. With minimal overhead cost, preexisting systems may easily be retrofit with modern 

electronics, which not only updates these systems, but also expands the information generated by them. 

More detailed source profiles may be obtained on complex samples in the field by using preamplifiers on 

each of the 3He tubes within any system, without changes to these system footprints or manufacturing 

processes. 
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Figure 4.19. A MCNP model of the JCC-71 in active mode with Cd liners, the AmLi interrogation source, and a 

standard 17x17 pressurized water reactor fresh fuel assembly. 
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Double Pulsing in the Amptek A111 Charge Sensitive 

Preamplifier & Discriminator Board–3He Proportional 

Counter Combination Used in Common Safeguards Neutron 

Coincidence Counters 
 

 

 Investigating the Non-Ideal Behavior Using LMDA5 
 

 Abstract 

Neutron coincidence counting is a well-established technique used for the nondestructive quantification of 

special nuclear material during international safeguards inspections. The neutron counters are commonly 

designed with an annular body, centered about an inner well or cavity into which a measurement item is 

placed, and the moderating annulus is populated with 3He tubes connected to a varying number of 

preamplifiers. The Canberra Industries JAB-01 preamplifier/amplifier/discriminator board is employed 

within the company’s neutron coincidence counters, built for use by the International Atomic Energy 

Agency. Non-ideal behavior of these boards was identified during a detector characterization, using list 

mode data acquisition, of a Canberra Industries JCC-71 Neutron Coincidence Collar implementing four 

JAB-01 boards. List mode data acquisition and analysis reveals features that have commonly been 

overlooked by historic timing gate selection while using shift register data acquisition methods, which are 

routinely adopted in international safeguards. It has been shown that double pulsing effects are not fully 

captured within the predelay setting; therefore, they may influence the response of the system within the 

standard operating regime. We set out to identify and correct for double pulsing in our post analysis of 

neutron pulse trains, while isolating this behavior to the relevant system. To understand and potentially 

address these concerns, the responses of two different JAB-01 board systems—the JCC-71 Neutron 

Coincidence Collar and a modified JCC-51 Active Well Neutron Coincidence Counter—are compared 

with the responses of an AnTech Inc. N2071 Neutron Coincidence Collar that also uses an amplifier built 

on the Amptek A111 Charge Sensitive Preamplifier & Discriminator chip, and a JCC-71 that employs 

custom preamplifiers designed at Oak Ridge National Laboratory. 

 

 Introduction 

 Neutron coincidence counting is a well-established safeguards technique used for nondestructive 

analysis of fissioning samples of special nuclear material. It can exploit either passive or active 

                                                           
 

5 This section was originally published in a peer reviewed journal under the original title “Investigating the Non-

Ideal Behavior of the Amptek A111 Charge Sensitive Preamplifier & Discriminator Board–3He Proportional 

Counter Combination Used in Common Safeguards Neutron Coincidence Counters,” A.T. Simone, S. Croft, C.L. 

Britton, R.D. McElroy, M.N. Ericson, and J.P. Hayward, Nuclear Instruments and Methods in Physics Research 

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019. It is printed here with 

permission from the editors in its original form. 
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interrogation techniques to assay a range of Pu, U, and mixed oxide samples [4]. Commonly, arrays of 
3He gas proportional counters are placed within an annular system body, centered about an inner well or 

cavity to accommodate these samples. The induced current generated from the charge drift resulting from 

the 3He(n,p)T capture reaction is collected over a period of time on the central anode wire of the 3He 

proportional counter. This current is integrated and passed through the pulse processing chain containing 

preamplifiers and amplifiers to modify the signal into a useable shape and pulse height, so that the voltage 

signal may cross a threshold in the discriminator circuit and generate a logic pulse. The compatibility of 

the pulse processing chain with the operational application of the neutron coincidence counter is adjusted 

by the detector system manufacturers to optimize the triggering and filtering thresholds.  

AnTech Inc. and Canberra Industries are the two main commercial suppliers of neutron 

coincidence counters to the International Atomic Energy Agency (IAEA). Both companies implement the 

Amptek A111 Charge Sensitive Preamplifier & Discriminator chip [31] in their system electronics. The 

A111 functions as a hybrid charge-sensitive preamplifier, discriminator, and pulse shaper. Therefore, the 

counters from both suppliers behave similarly, within design variations from their respective filtering 

networks. The A111 chip was developed in the mid-20th century for high–rate applications implementing 

short shaping times, ~200 ns, while adhering to specific design parameters for the original x-ray 

measurement application. It has since been adopted for use in the safeguards field among many other 

fields such as aerospace and portable instrumentation, mass spectrometers, particle detection, imaging, 

laboratory and research experiments, medical electronics and electro-optical systems. The AnTech 

electronics board, used on many of the company’s neutron coincidence systems, is based on the Amptek 

A111 chip. The Canberra JAB-01 preamplifier/amplifier/discriminator board implements the Amptek 

A111 chip with a 74221 dual monostable multivibrator integrated circuit and a 74SI40 dual 4-input, 

Positive-NAND, 50-ohm line driver integrated circuit [30]. The Canberra JAB-01 board is employed 

within many of their own counters, including the JCC-51 Active Well Neutron Coincidence Counter 

(AWCC) model [33] and the JCC-71 Neutron Coincidence Collar (UNCL) model [30]. Both systems 

have been characterized at Oak Ridge National Laboratory (ORNL), and both have previously shown 

indications of non-ideal behavior, in particular double pulsing artifacts.  

Triggering on, and successively processing, the individual proton and triton charge response 

peaks from a single neutron event as two separate neutron events, due to shaping time mismatch in the 
3He tube and associated electronics pulse processing chain, is known as double pulsing. It is an unwanted 

artifact of the electronics design and operation of these neutron detectors. Although it is a well-known 

problem to assay system designers, it is not widely acknowledged in the user community, as its effects 

have not been historically significant in standard operational regimes. Double pulsing increases the 

apparent number of measured neutron events from a source, but its origins lie within the electronics of the 

system. Therefore, it may contribute to a falsely increased count rate if present at the operational high 

voltage used when assaying samples, and it is therefore necessary to identify and characterize before 

accurate measurements can be taken––especially considering the future goals to perform absolute source 

measurements with these systems. If double pulsing is a fixed fraction of events, it may be incorporated 

into an empirical calibration. Setting a conservative predelay may also minimize the influence of this 

effect on a safeguards measurement by rejecting a majority of these pulses at shorter times, but the 

entirety of this effect cannot be captured as additional coincidences will be formed between the electronic 

feature and other true successive neutron events throughout the set gate width; the fraction of which is 

dependent on many factors, which will be discussed in this paper. However, this behavior will complicate 

system intercomparisons and comparisons to theory; and it is at odds with assumptions made in data 

interpretation, such as in rate loss corrections and coincidence counting used for absolute counting 

methods. Note that double pulsing is distinct from other problems—such as HV breakdown, electrical 

noise, and ringing from impedance mismatch—which can be eliminated by detector system design. 

Modifications to the time components of the electronic pulse processing chain must be made to resolve 

double pulsing effects on a measured neutron pulse train. 

  Therefore, to attribute this double pulsing behavior to either a counter system, the JAB-01 boards, 

or the Amptek A111 chip, four different systems were tested using a Hungarian Institute of Isotopes Pulse 
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Train Recorder (PTR-32) list mode data acquisition module [37]. The investigation began by obtaining a 

response from the UNCL, and then a response from the AWCC. The double pulsing behavior 

demonstrated by the UNCL and the AWCC ruled out that this is a model-specific behavior. Then, the 

response of an AnTech N2071 Neutron Coincidence Collar [32], using the A111 chip, illustrated that this 

behavior was A111-specific, not JAB-01-specific. Finally, the responses of the three previously listed 

systems were compared with the response of preamplifier prototypes, designed and built at ORNL, placed 

within the junction box of a single bank of the original JCC-71, which exhibited no signs of double 

pulsing within the operational regime. This paper outlines the comparison measurements among these 

systems, discusses double pulsing behavior, and attempts to apply a correction to the neutron pulse train 

data in post–analysis for these commonly used neutron coincidence counters. 

 

 Neutron Coincidence Counting Systems 

Summary information for the Canberra Industries JCC-71 UNCL; the JCC-51 AWCC with its 

modified variant, the Large Volume AWCC (LV AWCC); and the AnTech N2071 UNCL is provided in 

Sections 2.1, 2.2, and 2.3, respectively. 

 

Canberra Industries JCC-71 Neutron Coincidence Collar 

The UNCL is designed to operate in two modes: active and passive. The active mode is used to 

measure the 235U content per unit length in fresh fuel. The passive mode is used to measure 240Pu in MOX. 

The system was designed to accommodate assemblies used in pressurized water reactors, boiling water 

reactors, or Canada Deuterium Uranium reactors. The rectangular detector body (Figure 5.1 a) consists of 

four individual banks, each containing six 3He cylindrical proportional counters (“tubes”), with an active 

length of 33 cm [30], embedded in a single row within high-density polyethylene (HDPE) moderating 

slabs. The tubes and HDPE assembly are connected to a junction box panel containing a single JAB-01 

preamplifier/amplifier/discriminator board per bank, which reduces the count rate burden and related 

pulse pileup on a single bank. The junction box transfers high voltage (HV) between the connected banks 

through “HV in” and “HV out” connections.  The junction box also contains “Signal in” and “+5 V in” 

input connections and “Signal out” and “+5V out” output connections to interconnect the banks and 

communicate with an external data acquisition system. 

The 3He tubes are the GE Reuter Stokes model RS P4-0813-101, pressurized at 4 atmospheres 

(atm) with argon methane quench gas added, each having a 2.54 cm diameter. The six 3He tubes per bank 

are processed by a single JAB-01, and the signal outputs from each of the four JAB-01 boards are ORed 

by the 74SI40 dual 4-input, 50-ohm line driver to provide a single total signal output when the UNCL is 

used in the field. The tubes are matched to operate at the same HV, and the threshold of the A111 

preamplifier discriminator is set to match the gain and minimize the gamma–ray response before 

shipment of the systems. The 74221 dual one shot adjusts the digital output from the A111 discriminator 

to 52 ns, and requires no adjustment in the field.  

 

Variant on the Canberra Industries JCC-51 Active Well Neutron Coincidence Counter 

 The AWCC is designed to operate in active mode, implementing an AmLi source within the 

HDPE end plugs, to interrogate and assay samples containing 235U or 233U. It can accommodate a large 

range of samples, such as bulk UO2 samples, high-enrichment uranium metals, UAl alloy scraps, light 

water reactor fuel pellets, and 238UTh fuel materials [33] within its well. The system can be operated in 

active fast, active thermal, and passive thermal configurations by adding or removing the AmLi or Cd 

inserts.  

A LV AWCC (Figure 5.1 b) with 48 3He tubes, pressurized at 4.5 atm and arranged in two 

concentric rings surrounding a 27.9 cm diameter by 38.1 cm tall assay measurement cavity, was used for 
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Figure 5.1. (a) Canberra Industries JCC-71 Neutron Coincidence Collar. (b) Variant on the Canberra Industries 

JCC-51 Active Well Neutron Coincidence Counter, the large-volume Active Well Coincidence Counter. (c) 

AnTech N2071 Neutron Coincidence Collar. 

 

 

 

 

 

the measurements at ORNL. The tubes are GE Reuter Stokes model RS P4-0825-103, with an active 

length of 63.5 cm, and a quench gas composition of argon and methane [82]. The 48 tubes are organized 

into eight groups, with each group connected to a JAB-01 board. Transistor-transistor logic (TTL) logic 

pulses of 52 ns width are electronically summed and fed as a single pulse train for data acquisition. The 

LV AWCC provides three TTL outputs; one for each of the two rings plus the total summed signal 

output. Signals from both the inner and outer rings may be collected, but standard in–field use employs 

the total summed signal for analysis. Again, the 3He tubes are matched to operate at the same HV settings, 

and the threshold of the A111 preamplifier discriminator is set to match the gain and minimize the 

gamma–ray response before shipment of the systems. 

 

AnTech Inc. N2071 Neutron Coincidence Collar 

 Both the Canberra Industries JCC-71 and the AnTech N2071 UNCL systems must behave 

similarly within design variations from their respective filtering networks. Thus, the N2071 (Figure 5.1 c) 

has a very similar form factor at 23.5 × 23.5 cm for the larger configuration and 23.5 × 16.5 cm for the 

smaller configuration [32]. Each bank also houses six 3He tubes, populated at ORNL with GE Reuter 

Stokes model RS P4-0810-116, pressurized at 4 atm with an argon methane quench gas. The signal is 

processed using Amptek A111 chips within each bank, producing a TTL pulse width of 50 ns. An 

externally mounted N1081 de-randomizing Mixer Buffer Counter reduces dead time and provides HV, +5 

V, and signal out BNC connections for each detector bank. 

 

 Non-Ideal Behavior: Double Pulsing 

During a list mode–based detector characterization campaign, the non-ideal behavior of a JCC-71 

UNCL was revealed through investigation of the HV characteristic and the Rossi-α distribution (RAD) 

[4] produced from a 252Cf source with a measured count rate of approximately 4 ∙ 104 nps. Because the 

use of list mode data acquisition offers analysis with various timing gate parameters, it reveals features 

that have commonly been overlooked by historic timing gate selection while using traditional shift 

register data acquisition methods. These overlooked effects may have an impact on the results of 

coincidence timing analysis within the systems’ operating regimes, as predelay values do not encompass 
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and exclude the totality of this effect due to coincidences formed between the electronic feature and other 

true successive neutron events throughout the pulse train [83]; the effect is dependent on the double 

pulsing ratio to true neutron events.  

The JCC-71 doubles HV characteristic illustrates a plateau structure between 1680 and 1780 V, 

an increasing trend between 1800 and 1900 V, and a decreasing trend from 1900 to 2000 V (Figure 5.2 

a). Once the system has reached the plateau region, it is expected that the count rate will remain stable 

until gamma breakthrough overtakes the trend, as shown at the Figure 5.2 b. The behavior measured with 

the JCC-71 suggests that the effective shaping time of the preamplifiers is short with respect to the signal 

formation within the operational range with associated threshold settings. The difference in count rate 

within the expected plateau region corresponds with triggering and processing individual proton and 

triton response peaks from a single neutron event; i.e. double pulsing. Double pulsing was briefly 

discussed in relation to Amptek circuit boards by Dytlewski et al in 1990 [84], and the cause for this 

phenomenon was later explained in detail by Fazzi and Varoli [85]. The cause will be discussed in detail 

later in this section. 

When these data were analyzed to produce an individual RAD for each HV setting (Figure 5.2 c), 

a spike in the doubles count rate was observed to grow as a function of HV, which again indicates double 

pulsing [48]. The RAD serves as a histogram of double neutron events measured as a function of time in 

relation to the initial triggering neutron event.  Based on the selected counter’s timing gates, after an 

initial triggering neutron event, the frequency at which another neutron is measured, per selected timing 

bin width, is recorded over a range of times (e.g., a 1 μs binning structure from t=0 to t=1024 μs). This 

process is repeated for every neutron measured, where each can serve as the triggering neutron event to 

collect the total number of measured neutron coincidence events. The first few microseconds of the RAD 

suffer from charge collection and dead time effects, decreasing the measured count rate; this effect is not 

represented in Figure 5.2 d. It is expected that this distribution should follow an exponential decaying 

trend for a time–correlated (fissioning) source and a flat distribution for an uncorrelated source such as an 

AmLi (α,n). The peak in count rate measured at approximately 1 μs begins to build into the pulse train 

within the operational range between 1680 and 1720 V and is unmistakable at the higher HV settings.  

Commonly, to determine the mass of the fissioning material, a sample is loaded into the central 

well of an annular neutron coincidence counter, and the emitted neutrons are captured by surrounding 
3He-filled tubes. The 3He capture releases a proton and triton at different energies in a back-to-back 

orientation to conserve momentum. These particles travel through the 3He gas, ionizing it into free 

electrons and positive ions which, in turn, ionize more gas atoms as they move through the electric field 

near the anode, resulting in an avalanche-like multiplication process. The average track of these particles 

is several millimeters depending on the gas pressure and quench gas composition. Together, these 

ionization tracks have the appearance of a dual-lobed cloud of charge. The electrons move ~1000 times 

faster than the positive ions; therefore, we can ignore the movement of the positive ions over the 

timescale in which the electrons are collected. The initial charge structure is dual-lobed, and not a single 

column of charge, because the degree of ionization changes along the charged particle’s trajectories as a 

result of stopping power and Bragg peak effects. The current generated from the induced charge of the 

particle migrations is collected over a period of time on this central anode wire. The collection period of 

this charge cloud is influenced based on the particles’ orientations relative to the anode (Figure 5.3), and 

it must be long enough to avoid double triggering on a single event. The induced charge signal is then 

modified, integrated, and differentiated as a function of the RC time constant in the preamplifier and the 

amplifier chips, respectively, to produce a voltage signal with suitable shape and pulse height for the 

discriminator [1].  

If these back-to-back particle trajectories are parallel to the anode wire, a simple pulse collected 

over a short period of time is formed (Figure 5.3 c). However, if the trajectory is perpendicular to the 

anode wire (Figure 5.3 d), this dual-lobed cloud of charge will be accelerated toward the anode wire for 

collection as a function of initial position, i.e., the charge from one end of the lobe will reach the wire 

before the charge from the opposite end of the other lobe. The primary peak can be larger  (Figure 5.3 a) 

or smaller (Figure 5.3 d) than the secondary peak, depending on whether the proton or triton was stopped 
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Figure 5.2. (a) Measured doubles count rate HV characteristic of the UNCL with individual channel count rate scale on the left and the total detector signal 

with scale on the right. (b) A measured HV characteristic for a well–behaved neutron coincidence counting system. (c) RAD for a 252Cf measurement with the 

UNCL for HV range 1560–2000 V, revealing non-ideal behavior centered about 1 μs. (d) A measured RAD characteristic for a well–behaved neutron 

coincidence counting system. 
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Figure 5.3. (i) An exaggerated representation of various pulse shapes collected on the central anode wire of a 3He 

tube, caused by the positional dependence of the p and T–induced charge collection from the 3He(n,p)T reaction. (a) 

Triton ionization trajectory is closer to the anode; collection of the triton–induced charge cloud is smaller and 

collected earlier in time than the charge cloud generated by the proton. (b) Charged particle trajectories at an 

intermediate angle; it is more difficult to resolve the two individual charge collection peaks. (c) The particles’ 

trajectories are parallel to the anode; charge collection time is the same. (d) Proton ionization trajectory is closer to 

the anode; collection of the proton–induced charge cloud is larger and collected earlier in time than the charge cloud 

generated by the triton. (ii) An example neutron pulse train with red double pulsing, events highlighting the possible 

false counts that could be measured [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

118 

closer to or farther from the wire. This influences the charge collection process from a single neutron 

event, causing the induced charge waveform to appear bimodal with a portion of time between the peaks 

of the measured charge. 

If the shaping time of the amplifier is much shorter than the charge collection time of the detector 

tube (~1 μs depending on the system), this bimodal pulse will be processed and sent to the discriminator, 

causing it to trigger on both peaks of the signal (Figure 5.4). If the digital output is also short, these 

pulses will be registered and counted as if they were two separate neutron events, causing this double-

pulsing phenomenon to be observed in the count rate, as in the bottom three example pulse trains at right 

in Figure 5.3 [48]. For example: assuming 𝑆0 and 𝐷0 are the true singles and doubles counts that should 

be measured by the system, respectively, and 𝑆𝑚 and 𝐷𝑚 are the singles and doubles counts actually 

measured by a system, the differences in these counts can be attributed to incompatibility of the pulse 

processing time settings, and thereby, double pulsing. For trajectories at intermediate angles, this 

separation in time is less, and it is much more difficult to resolve the two individual peaks (Figure 5.3 b); 

therefore, a majority of incoming signals are registered as a single pulse. 

Ultimately, in a well-behaved pulse processing chain, one would expect the pulse from each 

neutron interaction to be of an amplitude great enough to be accepted by the discriminator, thereby 

eliminating gamma events and electronic noise, and for it to be registered as a single interaction event. As 

the gamma ray dose increases, more non-neutron events will be falsely registered as the gamma pulse 

height crosses the threshold more often because of pileup. Also, as the gain on the preamplifiers 

increases, the amplitude of lower-level noise is increased. By operating the counter at a higher than 

optimal HV for characterization and testing purposes, it is possible to induce and emphasize double 

pulsing that is present, but possibly not considerable, at lower voltages by effectively raising the gain. 

This means the discriminator is more likely to re-trigger on structures in the pulse shape. The threshold 

must be suitable to accommodate a wide range of conditions, but this is not always perfected. Matching 

the pulse processing chain with the application of the neutron coincidence counter and its associated 

gamma field and neutron background is done by the detector manufacturers before new systems are 

shipped for use; however, as has been shown, it may not always be optimized to fully account for double 

pulsing. 
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Figure 5.4. Oscilloscope captures of two different neutron events measured in the JCC-71 with ORNL 

preamplifiers before their optimization. These captures highlight the difference in the effects that pulse 

shape and amplitude can have on the number of events measured by the system, dependent on pulse 

shaping time and threshold settings. (a)The charge collection peaks for the proton and triton are 

distinguishable; however, because the measured voltage does not drop below the set threshold between the 

peaks, a single neutron event is measured. (b) The charge collection peaks for the proton and triton are 

marginally distinguishable and have a lower voltage amplitude than the previous pulse. Because the 

voltage signal dips below the threshold between charge collection peaks, two events are measured instead 

of one.  
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 Isolating the Behavior: A Comparison between Systems 

 Because double pulsing was observed with the Canberra JCC-71, we set out to isolate this 

behavior to the relevant subsystem: the Canberra JCC-71 counter system, the Canberra JAB-01 boards, or 

the Amptek A111 chip.  We did so by testing four different systems using the PTR-32 list mode data 

acquisition module. To first ascertain that double pulsing was not an isolated occurrence dependent on the 

number of detector channels analyzed or on the source type used, the neutron pulse train was obtained 

using an uncorrelated AmLi neutron source (compared with the previously measured correlated 252Cf 

source). The resulting neutron pulse train was analyzed to produce a RAD for the total detector signal 

with the same measurable effect at 1 μs, followed by a RAD that was flat because an uncorrelated neutron 

source was used. This was done to justify that the double-pulsing behavior is source type–independent, as 

expected. The dead time was then determined for a combination of Channel 1; Channels 1 and 2; 

Channels 1, 2, and 3; and Channel 1, 2, 3, and 4, using the methods described in Croft et al. [73]. As 

expected, the dead time decreased as more preamplifiers were added to the pulse processing chain. 

However, when the RAD was analyzed for these four combinations of channels, the spike in the count 

rate was consistently measured at 1 μs, for all combinations of channels; this result indicated that the 

spike was not caused exclusively by dead time effects.  

 

Variant on the JCC-51 Active Well Neutron Coincidence Counter: LV AWCC 

The double pulsing response was also recognized in the RAD of the LV AWCC using a 252Cf source with 

a measured count rate of 8 ∙ 103 nps, with the spike in count rate again resolved at 1 μs (Figure 5.5 a), 

eliminating the possibility that this effect was detector-specific. With this system, however, the double 

pulsing did not have a visible contribution until the bias was increased to 1820 V. 

 

N2071 Neutron Coincidence Collar 

Expanding the investigation of this behavior, the same measurements were performed once again on an 

AnTech N2071 Neutron Coincidence Collar, which implements the Amptek A111 chip. This time, the 

structure within the HV characteristic was not initially apparent; but when the RAD was analyzed for 

each HV setting, the spike at 1 μs was again seen, with slight variations in the shape and magnitude due to 

the difference in the two companies’ filtering networks (Figure 5.5 b). The double pulsing effect begins 

around the operational HV of 1680 V and increases as the HV increases. These findings eliminated the 

possibility that this effect was JAB-01–specific. 

 

JCC-71 implementing ORNL Preamplifiers  

Finally, a HV characteristic and RAD analysis were performed using prototype preamplifiers that were 

designed at ORNL and placed on six 3He tubes within a single bank of the original JCC-71. These 

preamplifiers are independent of any A111 electronics, and they therefore provide an unbiased 

comparison. The RAD (Figure 5.6) shows no indication of a spike in count rate throughout the entire 

1024 μs range tested for all HVs listed, and it follows an obvious exponential decaying trend. For this HV 

characteristic, the stable plateau region extends from 1680 to 1980 V, illustrating ideal behavior for a 

preamplifier system. Therefore, it can be reasoned that the cause of the double pulsing in these three 

counting systems is the Amptek A111 Preamplifier and Discriminator chip. 
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Figure 5.5. (a) A comparison of the RAD of the large volume JCC-51 AWCC compared with that of the JCC-71 

UNCL. The spike is again measured at 1 μs. (b) A comparison of the RAD of the AnTech N2071 compared with 

that of the JCC-71. The spike is again measured at 1 μs, but it drifts in time as the HV is increased. 
 

 

 

 

 

 

 

 
Figure 5.6. The RAD obtained from one bank of the JCC-71 retrofitted with ORNL-designed preamplifiers shown for 

HVs from 166 to 1980 V. (a) A 0–20 μs subsection of the 0–1024 μs bin range shown at the right (b).   
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 ORNL Preamplifier Design 

 The ORNL preamplifier design is based on modern commercially available components, using 

the latest- generation, low-voltage, commercial operational amplifiers. The general electronics chain is 

based on printed circuit board technology, a motherboard, and a converter box. The operational amplifier 

packages are standard 8-SOIC packages (EIA-481-D). All six prototype preamplifiers were fabricated to  

fit within the existing junction box of the JCC-71 to maintain the overall system footprint (Figure 5.7). 

The preamplifiers have a unipolar input, rather than a bipolar input as with the A111. The ORNL 

preamplifiers do not output TTL pulses (+5 V, 52 ns) directly (as in the case of the JAB-01 board) but 

instead use low-swing logic (low-voltage differential signals). Fully differential, low-swing logic results 

in faster signal processing, reduced injected electrical interference, and less ground-induced current noise 

––ultimately looking toward the use of FPGA (field programmable gate array) –based signal processing. 

This helps make each channel independent of the others and eliminates daisy chains, which enables 

single-channel analysis through list mode data acquisition. The goal of this prototype design was to match 

and, in the instance of double pulsing, improve upon the performance of the JAB-01 board while 

benefiting from the same form factor and an affordable cost.  

 As discussed earlier, the ORNL preamplifier response did not indicate any double pulsing 

behavior within the relevant operating regime at 1680 V or higher as the electronics implementing the 

Amptek A111 chip did. The gain, shaping time, and discriminator threshold settings are well defined for 

the ORNL prototypes, for a total charge integration time of ~200 ns, but these values are not well 

documented for the A111 for comparison. Figure 5.8 illustrates a comparison between the total signal 

responses from one bank of the JCC-71 with an original JAB-01 board and another bank of the JCC-71 

with the six ORNL preamplifiers summed as one output, using a 50.6 μCi 252Cf source. In the image at 

left, the HV characteristic supports the claim that the ORNL boards achieve similar performance to the 

JAB-01 board; however, it also highlights the difference in performance between the two electronics in 

the 1680–1980 V range attributed to double pulsing. The ORNL preamplifier response is similar to the 

expected performance of a 3He tube throughout the plateau region; once the characteristic begins to 

plateau, the measured count rate remains stable with slight increases due to a marginally increasing 

charge collection efficiency. The RAD was already shown to behave ideally for the full HV range 

measured. When the RAD is analyzed for each individual HV measurement (Figure 5.8 c), the lack of 

double pulsing is evident in the ORNL board, in contrast to the JAB-01 systems. The ORNL prototype 

does suffer from charge collection time and dead time effects, as exposed in the decreased measured 

count rate between 0 and 1.6 μs. Beyond the double pulse centered about 1 μs in the JAB-01, both 

preamplifier designs achieve similar performance.      
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Figure 5.7. (a) Original JAB-01 board within the JCC-71 junction box. (b) A comparison between the JAB-01 

circuit board and the new ORNL board (right). (c) Six ORNL boards placed within the JCC-71 junction box. 
 

 

 

 

 

 

 

 

 

 

 
Figure 5.8. (a) The HV characteristic comparison between the JAB-01 boards and the ORNL boards. (b) A RAD 

produced for both electronic systems at 1720 V to highlight the lack of double pulsing measured in the ORNL boards. 
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 Double Pulsing Correction for Common A111–based Systems 

 Previous work has been done to derive and apply a double pulsing correction to neutron data 

acquired using an AWCC at Los Alamos National Laboratory by Koehler et al. [48]. In terms of the 

common systems discussed in Section 2, we set out to quantify the double pulsing in each and correct for 

it in post–analysis using this approach. Koehler et al. provide several equations that may be applied to a 

neutron pulse train to determine the double pulsing fraction. This fraction, 𝑟, is the number of pulses 

measured under the peak in the RAD attributed to double pulsing, 𝐴𝑝, compared with the true singles 

counts that should be measured by the system if no double pulsing was present, 𝑆0 (Eq. [5.1]). To 

calculate 𝐴𝑝, a difference in counts may be taken between a pulse train at a HV where double pulsing is 

present and a pulse train at a HV where negligible double pulsing is measured. The singles counts 

measured at the HV of interest where double pulsing is measured is referenced as 𝑆𝑚, and the singles 

counts measured at the HV with negligible double pulsing may be assumed to be approximately the true 

singles counts that should be measured by the system. Once the double pulsing fraction is determined, 

and knowing the measured singles, 𝑆𝑚, and the measured doubles, 𝐷𝑚, the true singles and doubles may 

be calculated using Eq. [5.2] and [5.3].  

  

𝑟 =
𝐴𝑝

𝑆𝑚 − 𝐴𝑝
=

𝐴𝑝

𝑆0
                                                                                (5.1) 

𝑆𝑚 = 𝑆0(1 + 𝑟)                                                                                  (5.2) 

𝐷𝑚 = 𝐷0(1 + 𝑟)2                                                                                (5.3) 

 

The double pulsing correction for the JCC-71 UNCL with the JAB-01 board was achieved by 

first identifying the last HV setting where negligible double pulsing was observed in the RAD. For this 

system, with measurements taken every 20 V from 1580 to 1980 V, the HV selected was 1640 V. Recall 

that the standard operational HV for field measurements with the UNCL is 1680 V. The neutron pulse 

trains at 1660, 1680, 1720, 1760, 1800, 1840, 1880, 1920, and 1960 V were then analyzed to determine 

their double pulsing fractions. This range of HV illustrates the magnitude of the effect of double pulsing 

through their RADs in selected operating regimes, as well as in more extreme regimes (Figure 5.9 a). To 

do this analysis, the pulse train at 1640 V was subtracted from each pulse train of the HVs listed above 

over the full time range of 0-1024 μs between the triggering neutron event and the successive coincident 

event (Figure 5.9 b); i.e. not considering a predelay setting. This assumption is somewhat faulted because 

of a slightly higher efficiency at the analyzed HV regions compared with the efficiency at 1640 V. 

However, this difference in measured counts related to the lower efficiency is difficult to resolve from the 

difference in measured counts caused by the double pulsing effect.  

The total number of doubles counts under this subtracted RAD response was obtained as a sum, 

and taken as 𝐴𝑝. Because the starting and ending boundaries of the peak in count rate shifted as a function 

of HV, we elected to take 𝐴𝑝 as the entire difference in count rate between the two neutron pulse trains to 

avoid any ambiguity, assuming the difference would encompass the double pulsing effects and the slight 

increase in efficiency. The singles count rate was given in the PTR-32 RAD data file output. The dead 

time may be estimated by visually inspecting the pulse train for the point in time when the measured 

count rate changes from 0 cps to several cps and is estimated at an average of 0.3 μs for the JCC-71 

system throughout the HV range. By applying a standard dead time correction to the singles count rate, 

and knowing the measurement time, the double pulsing fraction was determined. The results are given in 

Table 5.1, with associated error propagated through the related variables such as 𝐴𝑝, the singles count 

rate, and the dead time. The double pulsing percentage at the operational HV of 1680 V is calculated to be 

1.75% and is as large as 5.41% at 1960 V. This means that under the standard operational HV of this 

particular system in the field, without any predelay selected, 1.75% of all measured counts will be 

generated by electronic artifacts. Since the greatest effect on the count rate is measured at 1 μs, operating 
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Figure 5.9. (a) RAD for several HVs within the operating regime and beyond, illustrating the effect of double 

pulsing.(b) RADs normalized to the RAD at 1640 V without double pulsing.    
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the system with a 4.5 μs predelay will lessen this percentage, but as has been shown by Nguyen et al. 

[83], the totality of this effect cannot be absorbed by the predelay setting due to additional coincidences 

formed between the electronic feature and other successive events throughout the pulse train.    

 

 

Table 5.1. Canberra JCC-71 Collar Double Pulsing Normalized to 1640 V, measured source strength: 

~40, 500 nps  

 1660 1680 1720 1760 1800 1840 1880 1920 1960 

r 0.01144 0.01748 0.02202 0.02810 0.03966 0.05100 0.05785 0.05711 0.05411 

± 0.00018 0.00026 0.00032 0.00040 0.00055 0.00070 0.00080 0.00079 0.00074 

 

The same analysis was performed for the N2071 UNCL. In this case, the last HV setting where 

negligible double pulsing was observed in the RAD was at 1660 V; therefore, all successive neutron pulse 

trains were normalized to the pulse train at 1660 V.  This normalization should have a smaller 

discrepancy in counts because of a slightly greater efficiency and its location on the HV plateau. The dead 

time was estimated at an average of 0.4 μs for the system throughout the HV range. The double pulsing 

fraction found for this system, however, is much greater than that of the JCC-71 UNCL, as shown in 

Table 5.2. At 1680 V the double pulsing percentage was calculated to be 4.16%, with no predelay setting, 

and at 1960 V the percentage was calculated as 15.9%. This large contribution may be due to the fact that 

the N2071 was populated with 3He tubes at ORNL that may or may not have been fully compatible with 

the timing components on the preamplifier circuit, to differences in the filtering network between the 

AnTech and Canberra electronics, and/or to differences related to source strength effects. 

 

 

Table 5.2. AnTech Collar double pulsing normalized to 1660 V, measured source strength: ~26, 000 

nps  

 1660 1680 1720 1760 1800 1840 1880 1920 1960 

r 0.0000 0.04165 0.10315 0.13371 0.1486 0.1574 0.1580 0.1572 0.1586 

± 0.0000 0.00029 0.00073 0.00096 0.0011 0.0011 0.0011 0.0011 0.0012 

 

 Finally, the double pulsing fraction was determined for the JCC-51 AWCC. Recalling that the 

AWCC RAD did not show any visible contribution of double pulsing until 1820 V and higher, the 

neutron pulse trains at 1840, 1880, 1920, and 1960 V were normalized to the pulse train obtained at 1820 

V. Because the standard in-field operating voltage is 1680 V as well, this correction is not as relevant as 

those done for the UNCL designs. Nonetheless, it is important to understand how a counting system is 

behaving and how it may influence other analyses. The dead time was estimated at an average of 0.1 μs 

for the system throughout the HV range. The percentage calculated is much lower than those for the other 

two systems; this may be due to better matching between the 3He tubes used and the JAB-01 used, and/or 

the source strength used (Table 5.3). 

 

 

Table 5.3. LV AWCC variant on the Canberra JCC-51 double 

pulsing normalized to 1820 V, measured source strength: 

~8,000 nps  

 1840 1880 1920 1960 

r 0.00641 0.00630 0.00623 0.00622 

± 0.00009 0.00009 0.00009 0.00009 
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 Discussion 

 The double pulsing correction values described cannot be generalized and applied to all UNCL 

systems nor all AWCC systems, but they indicate what others should expect to see in their own common 

systems. This analysis must be performed on a system-by-system basis, as many factors may contribute to 

the overall double pulsing fraction. Some of these include: threshold settings on the preamplifier, tube 

diameter and length, gas mix, applied HV, gain, pulse shaping time, electronics layout and associated 

capacitance across cables and connections, system dead time, and source strength. The Amptek A111 has 

also been modified throughout its several–decade history of use, so the generation of the chip may also 

influence the double pulsing fraction. Furthermore, any additions to the circuitry beyond the A111 chip 

made by manufacturers such as Canberra or AnTech, will also influence this behavior. The measured 

effect will be influenced by the predelay settings selected and the operational HV used. Initial plans for 

this work also included increasing the shaping time on the A111 to help mitigate some of the double 

pulsing effects in these systems, i.e. minimize by design. However, the A111 chip is a sealed hybrid unit 

and, therefore, no modifications can be made to minimize double pulsing because access to the 

components is restricted. Instead, we relied on quantifying the double pulsing fraction on a system-by-

system basis to better understand its contribution to the counter’s response. We propose that others 

characterize this behavior over the full HV range of interest and calibrate or correct for this behavior as 

needed; note that using neutron coincidence counting for any absolute source measurements requires that 

double pulsing is negligible. 

 

 Conclusions 

 Double pulsing was found to be present in a Canberra Industries JCC-71 Neutron Coincidence 

Collar, a variant on the Canberra Industries JCC-51 Active Well Neutron Coincidence Counter, and an 

AnTech Inc. N2071 Neutron Coincidence Collar—but not in independent preamplifiers designed and 

built at ORNL. After a series of characterization measurements, the cause of the double pulsing was 

isolated to the Amptek A111 Charge Sensitive Preamplifier, Discriminator, and Pulse Shaper. The A111 

chip is used in both Canberra JAB-01 preamplifier/amplifier/discriminator boards and the AnTech 

preamplifier boards, but it is not present in the ORNL preamplifier prototype. The causes of this behavior 

are discussed with mention of how to avoid these issues in future designs through better compatibility 

matching. As modifying the A111 was not feasible because of its design structure, a double pulsing 

correction was applied to the JCC-71, JCC-51, and N2071 neutron pulse trains in post-analysis using the 

approach described in Koehler et al.  A range of double pulsing percentages were found for the three 

systems, ranging from 1.7 to 4.2% at the operational voltage of 1680 V with no predelay setting in the 

UNCLs, from 2.2 to 10.3% at this work’s chosen operational voltage of 1720 V in the UNCLs, and 

reaching a maximum at ~16% for the N2071 at 1880 V under the specified conditions and assumptions. 

Double pulsing is important to understand and quantify, as its influence on the neutron pulse train could 

affect the nuclear material mass measurement of a sample during a nondestructive assay. The study of this 

effect through to the final sample assay values is a topic for future work, including the effect as a function 

of predelay. This double pulsing correction will also be incorporated in future absolute source 

measurements that rely on knowing the behavior of the pulse train at a 0 predelay and infinite gate width.  

We recommend that future neutron counter designs could incorporate the custom ORNL preamplifier in 

place of the A111.  Furthermore, future work could study the ORNL preamplifier performance in the 

higher gamma fields encountered in waste assays. 
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  Methods for Diagnosing and Quantifying Double Pulsing Using 

Shift Register Logic6 
 

 Abstract  

Double pulsing in neutron coincidence counters is the result of a pulse processing chain–3He proportional 

counter timing incompatibility well known to nondestructive assay system designers. It is not currently 

widely acknowledged, or accounted for, in the safeguards user community. However, it is gaining 

attention as list mode data acquisition and analysis becomes more commonly used for system diagnostics, 

revealing features that have been overlooked by historic timing gate selection using traditional shift 

register data acquisition methods. Double pulsing increases the apparent number of measured neutron 

events from a source. Therefore, it may contribute to a falsely increased count rate if present at the 

operational high voltage used when assaying samples, even with set predelays. The authors have 

previously studied the effects of double pulsing on neutron pulse trains in three common neutron 

coincidence counting systems used in routine measurements for international safeguards—a Canberra 

Industries JCC-71 Neutron Coincidence Collar, a variant on the Canberra Industries JCC-51 Active Well 

Neutron Coincidence Counter (the Large Volume Active Well Neutron Coincidence Counter), and an 

AnTech Inc. N2071 Neutron Coincidence Collar—using list mode data acquisition and analysis. This 

non-ideal behavior was isolated to the Amptek A111 Charge Sensitive Preamplifier & Discriminator chip 

used in both the Canberra Industries and Antech systems. The double pulsing fraction was calculated in 

post-analysis for various high voltage settings in these A111–based systems, assuming no predelay 

settings. In this work, the authors expand upon this identification and analysis to make it more 

translatable between list mode data acquisition and analysis and shift register–based analysis. By 

investigating the double pulsing fractions in a JCC-71 Uranium Neutron Collar as a function of predelay 

settings, as well as describing and performing alternative tests and analyses to diagnose and quantify the 

double pulsing using shift register logic, this work hopes to complete the picture of double pulsing 

identification and analysis. 

 

 Introduction 

Neutron coincidence counters are used widely in international safeguards for nondestructive 

assay verification measurements of uranium and plutonium. They typically comprise moderated 3He 

proportional counters arranged in some geometry around a centralized well to detect thermalized neutrons 

emitted from the sample under question. The pulse processing chain of common International Atomic 

Energy Agency (IAEA)–approved counters is based around the commercially available Amptek A111 

Charge Sensitive Preamplifier & Discriminator chip [31], as implemented by both Canberra Industries 

and Antech Inc [35]. The signals are then acquired and processed by shift register–based technologies, 

such as the Canberra Industries JSR-15 [60], based on Los Alamos National Laboratory Handheld 

Multiplicity Register concepts, to calculate neutron multiplicity rates used for further evaluation. This 

paper elaborates on prior work (Section 5.1), which identified double pulsing in three systems containing 

the A111: the Canberra Industries JCC-71 Neutron Coincidence Collar [30] and Large Volume JCC-51 

                                                           
 

6 This section is under review to be published in a peer reviewed journal under the original title “Methods for 

Diagnosing and Quantifying Double Pulsing in a Uranium Neutron Collar System Using Shift Register Logic,” A. S. 

Moore, S. Croft, R. D. McElroy Jr., and J. P. Hayward, Nuclear Instruments and Methods in Physics Research 

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019. It is printed here with 

permission from the editors in its original form. 
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Active Well Coincidence Counter [33] [82], and the Antech N2071 Neutron Coincidence Collar [32]. 

That work set out to: identify double pulsing in a neutron pulse train using list mode data acquisition 

(LMDA) and analysis, isolate the behavior to the relevant component in the pulse processing chain–which 

turned out to be the Alll, and calculate the double pulsing fractions in each of these systems across a range 

of high voltages (HVs). This work explores various alternatives to identify and quantify double pulsing 

using more traditional shift register–based data acquisition and analysis, specifically under historical 

timing gate selections. This will help determine the impact double pulsing may have on practical in-field 

measurements. 

Double pulsing is the result of the mismatch between the charge collection time through the 
3He(n,p)T capture reaction and the electronic pulse processing shaping time. It is strictly an unwanted 

electronic artifact. The current generated by the ionized gas is integrated and passed through the 

preamplifiers and amplifiers to modify the signal into a usable shape and pulse height. Based on the 

amplitude of this pulse, the signal may cross a threshold in the discriminator circuit and generate a logic 

pulse. This logic pulse is then read by either a shift register or list mode module, indicating a neutron 

interaction [1]. Individually triggering on and successively processing the two ionized charge response 

peaks (generated by the movement of both the proton and triton through the gas) from a single neutron 

event is double pulsing. It is a function of the position of the particles’ trajectories relative to the central 

anode wire; the measured charge, and its difference in time, is proportional to that trajectory [85]. It is 

common for double pulsing to be present in 3He-based systems, simply based on the physics of charge 

collection and electronic pulse processing characteristics. In a properly designed safeguards system, 

double pulsing is nonexistent or negligible in the operational HV regime. Some forms of double pulsing, 

such as reflections of the logic pulses formed between the counting system and pulse processing system, 

are easy to eliminate by termination. Here, we are discussing an intrinsic effect that may be insidious to 

some systems. 

It is possible that this effect has always been present in these coincidence counters. It could have 

been disguised by empirical calibration methods and historic timing gate selection while using shift 

register data acquisition methods, which are routinely adopted in international safeguards. Or, it is 

possible that previous systems did not suffer from this effect and, as modifications have been made to 

these components over decades of production, double pulsing has since been introduced. The problem is 

also likely to stem from the fact that the same preamplification system, the A111, is used across a range 

of 3He proportional counters in practice. The A111 is approved for general use by the IAEA and Euratom 

due to its reliability, radiation tolerance, and count rate capabilities. However, the same performance 

cannot be achieved across all counting systems using the same timing settings when the A111 is 

connected to different systems with varying fill pressures, gas compositions, and tube diameters. 

Standard operation of these A111 systems, with predetermined HV settings and timing windows, 

does not imply that there is a problem with the historical design. However, in certain conditions—such as 

cases of the A111 paired with the systems studied—as the HV increases, the double peaks become 

increasingly amplified above threshold because of the greater gain. This allows a larger double pulsing 

fraction to be measured, revealing the underlying non-ideal behavior and indicating further investigation 

may be necessary. Although this behavior is not always obvious at operational HV settings, it may 

nonetheless be present. For systems that have double pulsing present within the operational HV range 

where the timing gate settings do not encompass the totality of this effect, it is important to characterize, 

quantify, and understand the influence of this behavior on a measurement. 

It is also essential from a practical standpoint to identify when a system is behaving correctly, and 

when it is not. It is crucial to establish that the standard assumptions of the coincidence counting system 

behavior hold true for the operational conditions so that they may be used to accurately perform the 

specified measurement. Because double pulsing effects are not included in traditional coincidence system 

models, or in physical assumptions made in solving the point kinetics equations, this behavior is not 

currently corrected for in neutron coincidence counting measurements [5]. 

As these systems are modernized and their applications are expanded as a result of new list mode 

capabilities and associated theory, double pulsing continues to be a hindrance. Dead time behavior cannot 
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be fully described in common systems implementing the Amptek A111 because of the double pulsing 

present within this timing regime. These effects cannot be separated, and generalizations must be made 

for the best approximation. Overall system efficiency is also affected as the measured neutron count rate 

is falsely elevated due to these electronic artifacts. In addition, as the field is motivated to use neutron 

coincidence counting for absolute source measurements—as an alternative to certify neutron emission 

rates independent of the national MnSO4 bath program [86] [87] [88] (Chapter 7) —estimating the 

neutron count rate independent of any coincidence timing windows becomes increasingly challenging 

when double pulsing is present. The closer the proximity of the double pulsing events to the triggering 

event (i.e., location in time relative to 0 μs), the more difficult it is to estimate the expected neutron 

coincidence rate at 0 μs predelay without dead time, charge collection effects, and spurious electronic 

artifacts. In addition, the count rate at long gate widths is subject to large increases due to double pulsing, 

which would influence this calculation as well. Therefore, having a detailed methodology to identify, 

quantify, and correct double pulsing effects is essential as the applications of neutron coincidence 

counting expand. It is important to provide several different methods—both for LMDA and analysis and 

for traditional shift register data acquisition and analysis techniques—for ease of use and for cross 

verification and confidence that the calculated double pulsing fraction values are correct before they are 

applied to a system. 

This paper will focus on the double pulsing behavior measured in a Canberra Industries JCC-71 

UNCL (Uranium Neutron Coincidence Collar). This is a fairly typical system configuration of tube 

pressure, diameter, fill gas composition, and grouping ratio to the number of preamplifiers. Therefore, this 

study is applicable to a wide audience, and these methods may also be extended to other system 

configurations. It investigates and quantifies the double pulsing fraction for various predelay settings and 

gate widths, and it verifies consistency between the previous LMDA calculation and additional methods 

of determining the double pulsing fraction. The results of these studies support the idea that double 

pulsing effects are not fully captured within the predelay setting within the standard operating regime. 

These overlooked effects do impact the results of coincidence timing analysis due to coincidences formed 

between the electronic feature and other true successive neutron events throughout the pulse train, the 

magnitudes of which are quantified for specific timing windows. Using the general procedures outlined in 

Sections 3 and 4, the authors hope to encourage neutron coincidence counting users and manufacturers to 

check and quantify their systems for this behavior using shift register data acquisition and analysis, since 

double pulsing remains a significant hindrance for LMDA, system characterization, neutron multiplicity 

counting, and future research and development focused on expanding the scope of neutron coincidence 

counting. 
 

 

 Established Methods of Identifying Double Pulsing 

As was shown in previous work (Section 5.1), only when a full system characterization was 

performed using LMDA was double pulsing first identified within several IAEA-approved neutron 

coincidence counting systems. This behavior manifested as a spike in count rate centered about 1 μs in the 

Rossi-alpha distribution (RAD) of three different Amptek A111–based systems: the JCC-71 [30], LV 

JCC-51 [82], and N2071 [32]. This was the first indication that the JCC-71 UNCL was not behaving as it 

should historically. This result attracted our attention and encouraged type-testing to identify the origin of 

this behavior. An in-depth investigation was conducted, including a comparison with electronics that did 

not show signs of double pulsing. This investigation resulted in identifying this behavior as a product of 

the Amptek A111 Charge Sensitive Preamplifier & Discriminator chip–3He combination. The qualitative 

contribution of this double pulsing fraction to the entire neutron pulse train was estimated for the JCC-71. 

The JCC-71 is populated with GE Reuter Stokes model RS P4-0813-101 3He cylindrical proportional 

counters (“tubes”), pressurized at 4 atmospheres (atm) with argon methane quench gas added, with an 

active length of 33 cm, and a 2.54 cm diameter. At the historical standard operational HV of 1680 V, 



 

 

131 

applying no predelay and making several other systematic assumptions for the normalization, the double 

pulsing fraction was found to be 1.748 ± 0.026 % (Table 5.4). However, it was shown that in this 

standard operational regime, the Large Volume JCC-51 Active Well Coincidence Counter with GE 

Reuter Stokes model RS P4-0825-103 tubes, pressurized at 4.5 atm with a quench gas composition of 

argon and methane, an active length of 63.5 cm, and a 2.54 cm diameter, did not exhibit significant 

double pulsing fractions. Instead, double pulsing became evident only at 1840 V, well beyond the 

operational regime. Its fraction was calculated to be 0.641 ± 0.009 % (Section 5.1) –– well below the 

UNCL double pulsing fraction. 

 

Table 5.4. Canberra JCC-71 Collar Double Pulsing RAD approach, no timing settings 

(Section 5.1) 

HV (V) 1660 1680 1720 1760 1800 1840 1880 1920 1960 

r (%) 1.144 1.748 2.202 2.810 3.966 5.100 5.785 5.711 5.411 

± 0.018 0.026 0.032 0.040 0.055 0.070 0.080 0.079 0.074 

 

The RAD, generated using LMDA, facilitates identifying the double pulsing present in a system 

by providing a histogram of double neutron events measured as a function of time in relation to the initial 

triggering neutron event. RADs commonly use small timing windows for better response resolution. After 

an initial triggering neutron event, the frequency at which another neutron is measured, per selected 

timing bin width, is recorded over a range of times (e.g., a 1 μs binning structure from t=0 to t=1024 μs). 

This process is repeated for every neutron measured, where each serves as the triggering neutron event. 

Ultimately, the total number of coincidence events is collected over the duration of a measurement. The 

first few microseconds of the RAD suffer from charge collection and dead time effects, decreasing the 

measured count rate. Beyond this, it is well known that this RAD follows an exponential decaying trend, 

related to the neutron die-away time of the system. Because of different fast and delayed components, 

multiple exponentials can be fit to this distribution for an accurate representation of the neutron die-away 

time. This exponential behavior represents a greater probability that successive neutron coincident events 

will be detected closer in time to the triggering event. The die-away time of the system is typically on the 

order of 20–100 μs across the full range of neutron correlation counters, but more closely approximated to 

50 μs across neutron coincidence well counters and collars. Beyond the neutron die-away time of the 

system, accounting for room return and reflected neutrons to also die-away, future events can be 

attributed to background, or accidental, coincident neutron events.  

When double pulsing is present, a peak will manifest in the first few microseconds of the RAD 

(Figure 5.10). The time at which this peak manifests is dependent on system parameters such as tube 

diameter, fill pressure, gas composition, electronic shaping time, and so on. It may also be caused by 

easily changeable factors such as cable length, reflection, impedance mismatch, and termination. When 

the cause is the electronic timing settings, not much can be done on a commercially available system with 

restricted access to the components, such as the case of the A111. It is important to note that the 

accidentals count rate will also be influenced by double pulsing. This complicates any background 

(chance coincidence), or accidental, subtraction that is traditionally performed on a RAD. Double pulsing 

events are also recorded as event triggers, which then form future false coincidence events, which 

ultimately elevate the count rate level along the full RAD. This elevated accidentals behavior is masked 

unless the full RAD is compared and normalized across a range of HVs, with settings that suffer from 

double pulsing and settings that do not, along the HV plateau. 

The RAD can be a comprehensive LMDA diagnostic to identify double pulsing, to test whether it 

is rectifiable, to quantify its effect, and to see at what point in time the double pulsing takes place. 

However, it is not easy to produce a RAD using shift register logic, as a new measurement would have to 

take place for every time bin desired (e.g., 1024 separate acquisitions in the example given). Therefore, 

one must rely on more simple diagnostics when using traditional shift register–based data acquisition and 

analysis. 
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Double pulsing can be identified by simple investigations of an amplifier’s pulse output on an 

oscilloscope. After triggering on a charge collection pulse, another pulse caused by double pulsing will 

appear close in time. Its frequency may be estimated by turning up the persistence and identifying the 

point at which there is a greater saturation of events compared with the more Poisson-like distribution of 

true neutron events. However, this is not a very quantitative approach, so more advanced diagnostics and 

analysis techniques are necessary. Specifically, diagnostics within typical operating procedures and 

characterization testing of these neutron coincidence systems are needed to avoid significant resource 

investments. 

 Using standard neutron coincidence characterization parameters, such as the HV characteristic, 

double pulsing can be initially identified during system testing. The HV characteristic is a visual 

representation of the system’s behavior over a range of applied HV settings. It may be generated by 

LMDA or by shift register–based acquisition and analysis– making it a simple, universal diagnostic for 

neutron coincidence counting systems. The HV characteristic is one of the basic characterization 

measurements conducted, so using it as a diagnostic does not add resource investments during 

performance testing. A predelay and gate width setting are selected and the neutron multiplicity rates are 

acquired within those regimes for each HV setting desired. These rates are then plotted and visually 

inspected. For a 3He counter, the measured neutron count rate begins at 0. Then, at some threshold the 

current generated from neutron interactions in the 3He(n,p)T reaction begins to be collected on the anode 

and processed by the electronics chain. The effective efficiency increases as the bias is increased, as more 

charged particles can reach the anode and allow a related logic pulse to be measured. Finally, at some 

value intrinsic to the system, the charge collection saturates around the anode. This efficiency then 

remains relatively constant across a range of HV settings (<+1%/100 V slope due to small amplitude wall 

effect pulses being amplified above threshold by the increasing gain), known as the HV plateau [1]. A 

counter is operated at a point along this plateau; it is standardly selected at 40 V above the inflection 

point, known as the knee. Typically, there will be gamma breakthrough at high HVs beyond the plateau 

where, because of pulse pileup, a gamma event can be falsely measured as a neutron event. This 

saturation of the anode wire causes runaway behavior of the charge collection response as HV increases. 

It is important to operate the counter away from this region, accounting for HV drift. When the 3He HV 

characteristic does not have a plateau region, it may indicate that electronic artifacts are present which are 

overpowering the physical behavior of the system. For the UNCL, the operational HV is selected to be 

1680 V off the singles HV plateau. It has been argued that since the UNCL exploits the doubles neutron 

count rate rather than the singles neutron count rate in a measurement, the instruments should be 

characterized by the doubles HV plateau [89] (Chapter 2), resulting in an operational HV of 1720 V to 

meet the criteria described. Both settings will be evaluated in this work. 

As in the HV characteristic in Figure 5.10, the neutron count rate continues to increase in the 

historical plateau region between 1680 V and 1980 V. The count rate increases from 1560 V to 

approximately 1660 V, reaches a plateau between 1680 V and 1780 V, increases again between 1800 V 

and 1900 V, and then decreases through 2000 V. This structure appears to follow the double pulsing 

assumption that as the HV increases, the system is more likely to trigger on the structure in the pulse 

shape, resulting in two measured neutron events from one physical one. The decreasing trend beyond 

1920 V is consistent with the theory that the gain begins to reach a value large enough that both peaks 

have an increasing probability of remaining above threshold, decreasing the double pulsing probability. 

The plateau region is measuring a greater neutron doubles count rate than is physically present, but it is 

not obvious from the characteristic what the true value should be because the base count rate is 

fundamentally elevated. Therefore, although the HV characteristic is a good visual diagnostic, it cannot 

be used in this context to quantify a double pulsing fraction. 
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Figure 5.10. (a) RADs produced for a range of HVs RAD within the operating regime and beyond, illustrating 

the effect of double pulsing (Section 5.1). (b) A HV characteristic produced using the JCC-71 UNCL and PTR-32 

LMDA module. The expected “plateau” region is depicted for a coincidence system without double pulsing. 
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 Double Pulsing Fractions Determined for Various Time Gate Settings 

Using a 1-D RAD, the same approach initially described by Koehler et al. [48], was used to 

calculate the double pulsing fraction, 𝑟, in the JCC-71 UNCL for various predelay settings. This was 

previously done for the JCC-71 using 0 predelay (Section 5.1). A neutron pulse train was acquired with a 
252Cf and the IAEA– approved Hungarian Institute of Isotopes’ Pulse Train Recorder-32 (PTR-32) [37] 

LMDA module software. The double pulsing fraction is taken as the number of pulses measured under 

the peak in the RAD attributed to double pulsing, 𝐴𝑝, compared with the true singles counts that should 

be measured by the system if no double pulsing was present, 𝑆0 (Eq. [5.1]). To calculate 𝐴𝑝, a difference 

in counts is taken from a RAD at a HV where double pulsing is visually evident, compared with a RAD at 

a HV where double pulsing is not visually evident (Figure 5.10). The singles measured at the HV of 

interest where double pulsing is seen are referenced as 𝑆𝑚. The singles counts measured at the HV with 

negligible double pulsing are assumed to be the true singles counts that should be measured by the 

system. This analysis was performed on the RADs for 1680 V and 1720 V, both compared with the RAD 

at 1640 V, for predelays ranging from 0 to 6 μs in 0.5 μs increments. 1640 V is the last HV setting where 

negligible double pulsing effects are seen.  

The argument must be made that because 1640 V is not in the HV plateau region (Figure 5.10), 

but instead is the beginning of the knee (or cusp of the plateau), these calculated double pulsing fractions 

also include minor effects of an increased count rate caused by a difference in the charge collection 

efficiency at the relevant HV compared with that at 1640 V. It is not possible with this method to separate 

these effects from the effects caused by double pulsing. Because 1680 V and 1720 V settings should 

historically fall within the HV plateau region, the same contribution of this difference in efficiencies 

should apply to the calculations at both 1680 V and 1720 V. As shown in the HV characteristic in Figure 

5.10, however, the measured count rates at both settings are not consistent; the inconsistency is attributed 

to the increasing double pulsing fraction as HV increases. 

The predelay was applied by excluding the counts in each 0.1 μs time bin of the RAD from the 

sum 𝐴𝑝, through to the specified predelay value. This was first done for an effectively infinite gate width, 

where the doubles count rate is summed from the specific predelay until 1024 μs (Table 5.5 and Table 

5.6). This analysis was then performed over a typical gate width of 64 μs following the predelay (Table 

5.7 and Table 5.8). As the predelay increases, fewer events are counted in the sum, and the double 

pulsing fraction decreases slightly. However, this decrease is not significant enough to conclude that 

setting a conservative predelay, such as the traditional 4.5 μs setting, will encompass and mitigate the 

double pulsing behavior. If this were true, we would expect a greater decrease in the double pulsing 

fraction once the predelay exceeded 1 μs, where the double pulsing–induced spike in count rate was 

recorded. Instead, this result supports the notion that the double pulsing effects have an impact on 

coincidence timing analysis, despite predelay settings, due to coincidences formed between the electronic 

feature and other true successive neutron events throughout the entire pulse train. However, in the 

operational HV range of 1680–1720 V, the double pulsing contribution is approximately 0.122% of the 

pulses at 1680 V, with a 4.5 μs predelay and a 64 μs gate width (Table 5.7), and 0.146% at 1720 V 

(Table 5.8). The double pulsing fraction at the standard operational timing gates of the JCC-71 over a 

range of HVs is reported in Table 5.9 for comparison. 

The same analysis was subsequently conducted for various gate widths using the standard 

predelay setting of 4.5 μs (Table 5.10 and Table 5.11). The double pulsing fraction increases with 

increasing gate width, since a larger time window will allow more false coincidences to be measured 

between a single neutron event from the source or from background in combination with the electronic 

artifact. 

These tables indicate that the double pulsing fraction in the JCC-71 may not be significant when 

considering a traditional nondestructive assay coincidence measurement. However, this effect will be 

significant if greater multiplicities are used. Because triple events are not measured by neutron 

multiplicity counters but are derived and calculated from factorial moments, any electronic artifact will 
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manifest with greater impact in higher multiplicity calculations, thereby influencing the point kinetic 

equations. The effect of double pulsing in a multiplicity measurement will be studied in the future. For 

other non-JCC-71 systems, this double pulsing percentage may be determined to be greater due to system 

characteristics or the operational timing windows selected. Therefore, there may be a significant impact 

on coincidence timing analysis using other systems, but this possibility must be evaluated on a system-by-

system basis, as many factors contribute to the percentage (Section 5.1). The discovery of double pulsing 

is also significant for modeling and understanding the behavior of these systems from first principles. It 

will also influence any proposed extension of use of these systems in more extreme timing regimes. For 

example, the pulse train analyzed at a 0 predelay and infinite gate width will not be known with certainty 

due to this effect, as is necessary for absolute source measurements.
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Table 5.5. JCC-71 UNCL Double Pulsing Normalized to 1640 V for various predelays; HV: 1680 V, Tg: 1024 μs- Tp 

Tp (μs) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

r (%) 1.748 1.748 1.741 1.738 1.737 1.736 1.734 1.733 1.732 1.731 1.730 1.729 1.728 

± 0.026 0. 026 0.026 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

 

Table 5.6. JCC-71 UNCL Double Pulsing Normalized to 1640 V for various predelays; HV: 1720 V, Tg: 1024 μs- Tp 

Tp (μs) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

r (%) 2.202 2.201 2.176 2.169 2.166 2.165 2.163 2.162 2.161 2.159 2.158 2.157 2.156 

± 0.032 0.032 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 

 

Table 5.7. JCC-71 UNCL Double Pulsing Normalized to 1640 V for various predelays; HV: 1680 V, Tg: 64 μs  

Tp (μs) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

r (%) 0.1301 0.1305 0.1245 0.1228 0.1224 0.1220 0.1220 0.1218 0.1214 0.1215 0.1213 0.1209 0.1209 

± 0.0029 0.0029 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 

 

Table 5.8. JCC-71 UNCL Double Pulsing Normalized to 1640 V for various predelays; HV: 1720 V, Tg: 64 μs  

Tp (μs) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

r (%) 0.1771 0.1770 0.1537 0.1480 0.1470 0.1465 0.1466 0.1464 0.1463 0.1459 0.1457 0.1452 0.1452 

± 0.0033 0.0033 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 

 

Table 5.9. RAD–based Double Pulsing Percentage, with 4.5 μs predelay and 64 μs gate width  

HV (V) 1680 1720 1760 1800 1840 1880 1920 1960 

r (%) 0.1215 0.1459 0.2703 0.4259 0.5763 0.6524 0.6334 0.5775 

± 0.0028 0.0030 0.0043 0.0061 0.0079 0.0088 0.0086 0.0079 

 

Table 5.10. JCC-71 UNCL Double Pulsing Normalized to 1640 V for various gate widths; HV: 1680 V, Tp: 4.5 μs  

Tg (μs) 2 4 8 16 32 64 128 256 512 1019.5 

r (%) 0.00430 0.00832 0.01660 0.0319 0.0638 0.1218 0.2298 0.4453 0.8728 1.7311 

± 0.00042 0.00060 0.00085 0.0012 0.0018 0.0028 0.0044 0.0075 0.0134 0.0254 
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Table 5.11. JCC-71 UNCL Double Pulsing Normalized to 1640 V for various gate widths; HV: 1720 

V, Tp: 4.5 μs  

Tg 

(μs) 

2 4 8 16 32 64 128 256 512 1019.5 

r (%) 0.00502 0.00983 0.01996 0.0404 0.0782 0.1479 0.2844 0.5529 1.0992 2.1858 

± 0.00043 0.00060 0.00087 0.0013 0.0019 0.0030 0.0050 0.0087 0.0163 0.0315 

 

 

 Double Pulsing Disguised in Traditional Shift Register Measurements 

LMDA may not always be accessible in a field measurement or in a laboratory setting. Thus, 

alternative tests and procedures to the RAD analysis must be developed to diagnose and quantify double 

pulsing effects using shift register–based techniques as well. If traditional characterization measurements 

that are routinely used and easily conducted can be exploited to identify double pulsing, a better 

understanding of each system may be obtained with little demand. Less traditional shift register–based 

measurements can also be conducted and used with new procedures for better identification and 

quantification of double pulsing effects. These tests are described in detail below. 

This section discusses traditional shift register–based system characterization measurements 

currently performed to evaluate system performance. It also investigates whether these measurements 

suffice for revealing double pulsing behaviors. As seen in the RAD produced through LMDA (Figure 

5.10), a greater concentration of electronic coincidences is measured around 1 μs. This should also be the 

case in performing similar analyses using shift register data acquisition and analysis. However, because 

the data are standardly acquired on a wider time interval scale (compared with the 0.1 μs time bins with 

the PTR-32 LMDA), there will be some smoothing of these effects. With shift register–based analysis 

using a JSR-15, we no longer have access to the neutron pulse train as a function of time, but instead we 

are given the multiplicity rates per cycle measured at the specified timing windows. A value for the 

singles, doubles, and triples will be reported for each measurement cycle using the JSR-15. These values 

can be used for external comparative analysis across various timing settings and cycles to study any non-

ideal behaviors. A new measurement must be conducted for every timing setting, however.  

In traditional shift register–based neutron coincidence counter characterization analysis, many 

measurements are made of a neutron source in the same configuration for varying predelays and gate 

widths to identify the optimal timing gates. However, this is only standardly done for operational HV at 

1680 V, and not for multiple HV settings. These doubles count rate data are then plotted as a function of 

predelay with set gate width (Figure 5.11), and again as a function of gate width with a set predelay value 

(Figure 5.12). The optimal settings may be chosen based on historical selection or by visual inspection of 

the stability of the count rate response. The neutron counting system die-away time may be extracted by 

applying two different fits to these data. One fit is a decaying exponential, and the other a saturating 

exponential, respectively. The values obtained from these two methods should be in agreement, and the 

die-away time should be independent of HV settings. If they are not, the disagreement is an indication of 

non-ideal behavior influencing the system response as a function of HV. 

A neutron pulse train was taken at different HV settings using the UNCL and a 252Cf source. The 

PTR-32 LMDA was used to emulate a shift register by sampling each HV pulse train for various predelay 

and gate width settings, and the singles and doubles count rate values were recorded for each setting. The 

same could be done with a JSR-15, by performing separate measurements at every setting for every HV. 

Using the doubles count rate for the different predelay settings, a neutron die-away characterization time 

plot was produced for three different HV settings: 1680 V, 1720 V, and 1840 V (Figure 5.11). 

For the doubles count rate data acquired as a function of predelay, the gate width was set at 64 us, 

and data were taken from 0 to 10 μs in 0.25 μs intervals. On short time scales the die-away behavior may 

be approximated as linear, beyond the dead time and charge collection effects measured in the first few 

microseconds; these effects may differ slightly based on the HV applied. Double pulsing may be entwined 
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Figure 5.11. The measured doubles count rate values as a function of increasing predelay, with set gate width of 

64 μs for 1680 V, 1720 V, and 1840 V. 
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Figure 5.12. The measured doubles count rate values as a function of increasing gate width, with set predelay of 

4.5 μs for 1680 V, 1720 V, and 1840 V. Counting statistic error bars are smaller than the data points. The 

calculated die-away times are also reported for each fit. 
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with the dead time and charge collection effects, but this study does not allow the opportunity to 

individually discern these different factors’ effects on the measured rates at these scales. Therefore, 

analyzing these data at different starting predelays should help distinguish the predominant electronic 

artifact influencing the pulse train at that point in time. 

The dead time and charge collection effects between 0 and approximately 2 μs are evident in the 

decreased doubles count rate responses for 1680 V and 1720 V (Figure 5.11); double pulsing is not 

evident. Double pulsing clearly dominates in this timing regime for 1840 V, as shown by the increased 

count rate. Recall that the double pulsing fraction increases with each HV setting, allowing a greater 

contribution of double pulsing in these similar measurements. However, because it is not standard to 

perform this analysis at 1840 V once the HV characteristic has identified the operational HV of 1680–

1720 V, the double pulsing contribution would not historically be revealed. It is possible that the 

overshoot in count rate between 1 and 2.25 μs at 1720 V above each of the linear fits may be the influence 

of double pulsing, but this is not obvious for diagnosing the non-ideal behavior. It is also noticeable that 

the measured count rates increase significantly as the HV increases, despite historical justification that all 

3 HV settings should be along the plateau. Although this finding would be difficult to quantify in relation 

to a double pulsing fraction, it is the result of false coincidences measured related to the electronic 

artifact.  

A linear fit was applied to the data in the ranges of 3–10 μs, 3.5–10 μs, 4–10 μs, 4.5–10 μs, 5–10 

μs, and 5.5–10 μs for 1680 V, 1720 V, and 1840 V (Figure 5.11). Each of these predelay–based linear fits 

has a slightly different slope due to the influence of these competing electronic effects. These slopes 

differ across a single HV measurement, by fitting a different time range, and they also differ between the 

3 HV settings. It is expected that the neutron counting system will have the same die-away time for 

various HVs, i.e., the same slope at short time lengths. A difference in HV should not change the neutron 

transport behavior through the system; that is, the physical die-away should not be affected by a 40 V 

increase in applied bias. The die-away times, , were calculated using chi-squared analysis of the sum of 

errors squared between the measured doubles rate and this traditional fitting equation: 

 

𝑅𝐺 = 𝑅0  (𝐸𝑥𝑝 (−
𝑇𝑝


))  ,                                                          (5.4) 

 

where 𝑅0 is the maximum estimated doubles count rate value, 𝑇𝑝 is the predelay, and 𝑅𝐺 is the calculated 

doubles value expected with the determined die-away time. The die-away times for the 3–10 μs regime 

are in agreement, within one standard deviation, despite the slightly varying slopes calculated from these 

various time interval fits. 

However, the calculated maximum doubles count rate varies substantially among the different 

timing ranges. Including the count rates measured between 2 and 3 μs up to 10 μs changes the slope more 

drastically than the inclusion and exclusion of any of the points from 3 to 10 μs. This result is consistent 

with the trend of the double pulsing fraction given in Table 5.7 and Table 5.8—where the greatest double 

pulsing fraction is calculated with a 0 predelay, and then decreases from 1 to 2 μs, and finally remains 

stable from 2 μs forward through the 6 μs predelay range studied. However, as mentioned, it is not 

possible to fully discern if this behavior is caused strictly by double pulsing, or by a combination of 

double pulsing and charge collection effects; so, fitting through this region may not be reliable. Therefore, 

a standard study of the doubles count rate values as a function of predelay and set gate width may not be a 

clear indicator of double pulsing. 

In addition, each of these count rate values is correlated, as they are all derived from the same neutron 

pulse train. A study of this correlation and how it propagates into the uncertainty of the doubles value and 

associated fit is a topic for a tangential work. However, because this is not well known, die-away time 

uncertainty values cannot be provided with confidence. 

The system die-away time is also traditionally determined using a saturating exponential fit, 
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𝑅𝐺 = 𝑅0  (1 − 𝐸𝑥𝑝 (−
𝑇𝐺


)) ,                                                    (5.5) 

and performing chi-squared analysis to minimize the sum of squared errors. RG as a function of increasing 

gate width (TG) is used here. Both 𝑅0 and  may be calculated. Using this method, and sampling the 

neutron pulse train for the different gate widths, it is obvious that not only do shorter predelay settings 

result in greater measured doubles count rates, but also they result in different die-away times (Figure 

5.12). This finding could prompt further investigation into the behavior of the system. At longer 

predelays, such as the operational value of 4.5 μs, the calculated die-away time is similar across the three 

HVs investigated. But the doubles count rate at 1024 μs is approximately 1000 cps greater at 1840 V than 

at 1680 V or 1720 V, and at 64 μs there is an increase of several hundred cps between each of the three 

HVs sampled (relating to the trends seen in Table 5.10 and Table 5.11). Again, this test would not 

standardly be performed across several different HV settings, so these differences would be undiscovered. 

Ultimately, these measurements are very important to a system characterization, but they may not be 

sensitive enough, as currently applied, to diagnose double pulsing in the system. 

The system bias parameter is used to identify the optimal predelay operation setting. The predelay 

must be long enough to avoid dead time and charge collection effects, but not so long as to lose a 

significant number of correlated events relative to the triggering event. A study of this parameter can also 

be used to identify non-ideal performance. The doubles count rate in both the (R+A) and A timing gate of 

a RAD are compared to calculate the bias. These count rates are automatically generated by a shift 

register measurement. The (R+A) timing window corresponds to the specified gate width following the 

predelay setting. Within this time region, all correlated (doubles/reals) neutron events are expected to be 

measured, with a background plateau of accidental coincidence events. After this timing window 

completes, a long delay relative to the operating timing windows (such as 4096 μs) is then started, and the 

system does not record any events. During this time all correlated neutron events, including reflected 

neutrons, are expected to have quiesced, leaving only background (or accidental) coincidences. 

Afterward, these accidentals are measured in the A gate, which is the same time length as the (R+A) gate. 

This value is subtracted from the (R+A) total to get the true number of neutron coincidence events. 

The bias is typically evaluated using uncorrelated neutron AmLi sources. AmLi produces 

random-in-time neutrons, so only a singles neutron count rate should be recorded; there should be no true 

neutron coincidence events. The accidentals rate then dominates the net doubles count rate. Therefore, 

there should be no statistical difference between the (R+A) and (A) gate values with a properly set 

predelay; i.e., the bias should be statistically consistent with 0. If the count distributions are not equal 

between these gates, the inequality may indicate the presence of electronic artifacts or non-ideal behavior 

in the system. If double pulsing is present, it is anticipated that the bias would be able to reveal this 

behavior.  

Typically, the bias is calculated at a set HV for a range of predelay settings. This would be done 

for the operational HV selected for the system. Calculating the bias for varying predelays ranging from 0-

6 µs at 1680 V and 1720 V using PTR-32 software does not indicate any concerning non-ideal behavior. 

The bias is not consistent with 0 for these HVs at these time settings, yet, its difference would not prompt 

further investigation. The bias calculated at 1840 V for different predelays is approximately 2% for <1 μs 

predelays, with a higher bias beyond this setting compared with 1680 V and 1720 V. Those results could 

draw attention that some non-ideal behavior was occurring at this setting prompting further investigation, 

but again it is not conclusive nor quantitative. This data would also not be standardly acquired at a HV 

beyond the operational setting.  

Because double pulsing is ever present in a system, and manifests with a probability relative to 

the charge collection position and amplitude for all events, these effects are continuous along a RAD. 

Therefore, the effect of double pulsing should also be equal between the (R+A) and A gates (beyond the 

spike at 1 μs), and bias will therefore not reflect the underlying non-ideal behavior with traditional 

operational timing settings, even as the double pulsing fraction increases as a function of HV. The bias 
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was calculated using the (R+A) and A values given for each HV setting at the 4.5 and 64 μs windows to 

show this effect (Figure 5.13).  

The trend of the bias over the HV range also does not support the fact that double pulsing is 

present in the system and is increasing as HV increases. However, there is a surprising response across 

the HVs studied. The bias is clearly negative, within uncertainty, up through 1660 V. This would mean 

that the accidentals count rate later in time (predelay + gate width + long delay) is greater than the (R+A) 

count rate measured. If we hold true the assumption that double pulsing is ever present across the RAD 

(i.e., with equal probability of its effects manifesting in the R+A and A gates outside of the double 

pulsing peak and charge collection physics), the difference between the two gates should still be 

consistent with zero. Within the region of 1680–1800 V, a statistically equal rate is measured to result in a 

bias consistent with zero. Then, from 1820 to 1860 V, the bias increasingly becomes more negative again, 

reaching a minimum at 1860 V. This trend is consistent with the maximum double pulsing fraction 

calculated in Table 5.4 but its physical justification is lacking. Beyond 1860 V, the bias begins to trend 

toward zero again. There are stronger trends when the bias is evaluated for a shorter predelay, but it is not 

common to do so across a range of HVs in the field with these systems. Therefore, although bias could be 

a preliminary indicator of non-ideal behavior, within the standard 4.5 μs/ 64 μs settings, it is not an 

obvious diagnostic, nor quantitative. 

As has been shown, double pulsing does not clearly manifest in standard shift register–based data 

acquisition and analysis methods; and if it did, it is quite difficult to quantify. Because measurements are 

routinely conducted at a set predelay value and set gate width setting at a set HV, the double pulsing 

effects have traditionally been masked by the historical timing gates selected and specific analysis 

procedures. Longer gate widths, such as those used for operation of the UNCL (64 μs) aid in smoothing 

out this behavior while intrinsically elevating the measured count rates, further complicating its 

identification and quantification. This response is a main reason why double pulsing may not be widely 

acknowledged in the user community. Although the double pulsing contributions are not large, they are 

still present. The only clear indication that could be determined through standard measurements appears 

to be an increased count rate across plateau HV settings, which would be difficult to discern if a HV 

characteristic did not exist from a properly behaving system for comparison. Therefore, typical 

investigative measurements may not be adequate for easily identifying double pulsing using shift register 

logic and set predelay time intervals. 
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Figure 5.13. The calculated bias from the RAD (R+A) and A gates, of 64 μs, across a range of HVs. 
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 Double Pulsing Revealed with Non-Traditional Shift Register 

Measurements 

Some nontraditional analysis of common shift register–based measurements may be more 

effective at revealing double pulsing effects if LMDA is not accessible. If shift register analysis is going 

to successfully diagnose double pulsing, users must be open to expanding how, and at what timing and 

HV regimes, measurements are taken at. The count rate data can still be obtained in a traditional matter, 

but additional analyses of these data may be performed offline to gain an expanded knowledge of the 

system’s behavior. Measurements must be taken using both a spontaneously fissioning neutron source 

and random–in–time neutron sources to reveal these features. In this case, LMDA was again used to 

sample the neutron pulse train as a shift register would to save measurement time. 

A measurement of the ratio of doubles count rate to singles count rate squared was taken at a 

predelay of 4.5 µs and gate width of 64 µs. Because doubles scales as efficiency squared, and singles as 

efficiency, this ratio eliminates the count rate dependence on differences in efficiency as a function of 

HV. It also highlights differences generated by system performance abnormalities. This ratio should be 

equal for all HVs, as the doubles should trend with the singles equivalently across all settings. All HVs 

along the HV plateau region should certainly be in agreement as long as no non-ideal behavior is present. 

This analysis would also validate that efficiency differences are not mistaken as double pulsing 

contributions in Section 3 if the doubles to singles squared ratios were not the same for 1640, 1680, 1720, 

and 1840 V. The behavior illustrated in Figure 5.14 was first introduced in [89] (Chapter 2). It is obvious 

that this behavior is not consistent across all HV settings, especially across the HV plateau settings. Since 

these ratios are different, it reveals underlying non-ideal behavior across these different settings. This 

approach would be the first, simplest, and most accessible diagnostic for any non-ideal behavior, as these 

rates are already obtained in a traditional system characterization when collecting the HV characteristic. 

This result appears to follow a similar trend to that shown in Figure 5.13. 

By simple inspection of Figure 5.15, it is evident that there is some discrepancy in the system’s 

response as a function of predelay between all three HV settings, as was also shown in the traditional 

analysis of Figure 5.11. Fits are applied to the data within the 3–10 μs region with slightly varying slopes 

and intercepts. Again, all rates generated for the different predelay settings are correlated because the 

same pulse train is sampled. However, like Figure 5.14, the important aspect of this plot is the 

relationship of the ratios at the different HVs. The largest difference in behavior is highlighted in the 

region between a 0–1.25 μs predelay for 1840 V. This is consistent with the spike in doubles rate seen 

centered about 1 μs in the RAD.  

The doubles rate at 1840 V dominates the doubles to singles squared relationship at short 

predelays because the double pulsing peak is large and is not excluded by these settings, which is a clear 

indicator of abnormal behavior. After the predelay encompasses the double pulsing peak at 1 μs, this ratio 

stabilizes and resembles the trends at both 1680 V and 1720 V, but its value is consistently lower. This 

would seemingly indicate a decreased double pulsing fraction relative to 1680 V and 1720 V as less 

counts are measured, implying there are less false triggers. As has been shown in previous sections, this is 

not the case. 

The decrease in this ratio at 1840 V relative to 1720 V may be explained by the fact that an 

average singles count rate is being used across all timing settings for these HVs. The singles rate is not 

subject to predelays or gate widths. The singles rate would be both higher and lower than this average at 

different points across the full measurement time because of the determined probability of double pulsing 

occurring. However, the overall singles rate would be significantly greater at 1840 V than at 1720 V or 

1680 V, because the greater double pulsing probability would cause a greater number of electronic events. 

As the predelay increases, and the doubles count rate decreases with the exclusion of the double pulsing 

peak at 1 µs, the singles rate remains at the elevated value because it is an average across the entire 

measurement. The resulting ratio is therefore less than that calculated for 1720 V. This resulting decrease  
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Figure 5.14. The ratio of double neutron count rate to single neutron count rate squared as a function of 

increasing HV, illustrating inconsistencies in system response due to double pulsing. [89] 

 

 

 

 

 

 

 

 

 
Figure 5.15. The measured doubles to singles squared count rate ratio values as a function of increasing predelay, 

with set gate width of 64 μs for 1680 V, 1720 V, and 1840 V. 
 

 

 

 

 



 

 

146 

in the ratio is a product of how this analysis is performed. Because of this, this diagnostic cannot be used 

quantitatively, but rather to indicate further investigation into the system is necessary.  

For this to be a successful diagnostic, multiple HV settings would need to be sampled and 

compared for the different timing settings. Doing so would be quite time-intensive but worthwhile in a 

system characterization and a search for non-ideal behavior if efficiency differences are of concern. Even 

if the structure below 1.25 μs were not studied, the difference in ratios along the HV settings, as with 

Figure 5.14, would indicate concerning behavior for further investigation.  

As has been stated, both the singles and doubles rates suffer from the effects of double pulsing (as 

does the triples count rate, but that is more complicated and not considered here), but there is no way to 

experimentally determine what the true rates should be. From Koehler et al. [48], the double pulsing 

correction factors for the singles and doubles rates are given by Eq (5.2) and (5.3). The measured singles, 

𝑆𝑚, and the measured doubles, 𝐷𝑚, are used with the double pulsing fraction, 𝑟, to calculate the true 

singles and doubles rates. These true rates, 𝑆0 and 𝐷0, respectively, would be measured by the system if 

no double pulsing were present. Rearranging and taking 
𝐷0

𝑆0
2 for the above relationship, results in an 

equation that is equal to 
𝐷𝑚

𝑆𝑚
2 ; this equation does not include 𝑟 to allow any correction to these rates. This 

means that this plotted ratio will exhibit the influences of double pulsing on the measured rates across the 

different settings, but it is not clear how to quantify this effect using this diagnostic.  

Another straightforward diagnostic for double pulsing involves measurements performed with 

very short timing gates to encompass the double pulsing peak, and not much else. A predelay of 0.5 μs 

and a gate width of 1.5 μs were used to acquire the measured doubles count rates from both 252Cf and 

AmLi neutron sources as a function of HV applied to the system. Examining this behavior on a short time 

scale with a correlated 252Cf neutron source and uncorrelated AmLi neutron source accentuates the double 

pulsing as a function of HV. This time range, from 0.5 μs to 2 μs, would capture a majority of the primary 

double pulsing events (and not the successive coincidences formed between a true event, another 

electronic event, or a background event with the electronic trigger), while also limiting the effects of dead 

time and charge collection behavior in the system. With these short timing windows, it can be assumed 

that the probability of detecting correlated neutron events produced from the 252Cf is small and increases 

slightly with HV. There should be no truly correlated neutron events measured with the AmLi source. 

Nevertheless, low count rates are traditionally measured with the AmLi due to background events 

measured in coincidence with the single random-in-time neutron events from (α,n) reactions. Because the 

plateau region of the JCC-71 should extend from approximately 1680 to 1980 V, the efficiency should be 

equal across the region. Therefore, the detection probability of these events should be equal throughout 

this region. These data should then reflect a stable low count rate attributed both to background events 

counted in coincidence in this short timing window, and to the small probability of detecting some 

correlated neutrons for the 252Cf. 

At lower HV settings (1560–1740 V), dead time effects within the first few microseconds of the 

(R+A) gate decrease the measured count rate (Figure 5.16). These dead time effects do not extend into 

the A gate. This allows more events to be measured here, resulting in a negative value when the (R+A)-A 

subtraction is performed to get the doubles count rate. The relatively high count rate measured between 

1740 V and 1960 V can be attributed to double pulsing. This is emphasized in the AmLi random neutron 

response, as no net double neutron events should be measured, within counting statistics. Although this is 

a simple measurement, it is quite informative.  

The double pulsing fraction may be calculated using the double pulsing fraction equation (Eq 

[5.1]) presented earlier. However, since the timing windows are significantly different from those used in 

a traditional in-field assay measurement, these fractions are not highly relevant to further measurements. 

As is shown in Section 3, the double pulsing fraction is heavily dependent on the timing settings selected. 

Since no counter is operated with these settings for a true measurement, and therefore this fraction cannot 

be applied as an accurate correction factor, this method serves best as simply a diagnostic of double 

pulsing behavior when using shift register logic.  
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Figure 5.16. The doubles count rate measured with a 0.5 μs predelay, and 1.5 μs gate width for both a 252Cf 

source and an AmLi source to reveal double pulsing. Error bars are smaller than the data points. 
 

 

 

 

The same analysis may be done using applicable timing windows, 4.5 μs and 64 μs, but this 

analysis does not provide an obvious trend that may serve as a useful diagnostic because of statistical 

fluctuations dominating the double pulsing effect over this time regime (Figure 5.17). The doubles count 

rates at these settings are also compared between LMDA–generated RAD values for the net reals (~net 

doubles) count rate, as provided by PTR-32’s Rossi Alpha subprogram, and the doubles count rate as 

reported by PTR-32’s SDT subprogram, using the typical shift register gating structure on the same 

neutron pulse train. The (R+A) and A values given by SDT are not used since they are not given with an 

associated uncertainty. Instead the (R+A)- A subtraction for the net reals is calculated from the counts per 

bin given in the Rossi Alpha file for the 4.5 μs predelay and 64 μs gate widths. The large error bars allow 

these values to agree for most HV settings, but this difference in doubles rates indicates that there is some 

discrepancy between how these two subprograms of PTR-32 perform their calculations on the neutron 

pulse train, which will need to be investigated further as the choice of analysis package appears to affect 

results when using PTR-32. Because the documentation of the software and analysis used within PTR-32 

routines is not well reported, we speculate that the discrepancy stems from the specification of the long 

delay used, the full acquisition time recorded, and the tagging of the events relative to the triggering event 

in the Rossi Alpha subprogram. 

Therefore, including a doubles to singles squared analysis into a system characterization 

procedure would reveal the presence of non-ideal behavior, without large resource investments. But it 

cannot provide a quantitative analysis of the double pulsing fraction. It can instead be used to highlight  

the behavior of the system across a range of HVs, independent of efficiency contributions, as well as 

across a range of predelay settings, to isolate the primary contributing electronic effect at that setting. This 

would then prompt further investigation using LMDA methods. In addition, an analysis of a 252Cf and 

AmLi source response in the system at short time gates would also emphasize the HV regime in which 

these effects are most prominent. An accurate double pulsing correction factor cannot be obtained by this 

method. 
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Figure 5.17. The doubles count rate measured with a 4.5 μs predelay and 64 μs gate width for an AmLi source, as 

determined through LMDA RAD values and shift register based analysis using PTR-32 timing windows. 
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 Double Pulsing Fractions Determined Using a Comparison of High 

Voltage Characteristics 

 A final method to identify and quantify the double pulsing fraction at various HVs is done by 

comparing the HV characteristic of two equivalent banks of a neutron coincidence counting system 

simultaneously. These banks would need to have different electronics, with and without double pulsing, 

and the differences in measured count rates along the plateau would then be used to calculate the double 

pulsing fraction in that system. It is not common to have the opportunity to simultaneously measure the 

response from one bank of a neutron coincidence counting system with one set of electronics producing 

double pulsing effects, and measure a duplicate bank of the system with another set of electronics without 

any double pulsing effects. Therefore, this section serves more to validate the previously calculated 

RAD–based double pulsing fractions—since the methods described in Sections 5.2.4 and 5.2.5 were 

diagnostic and not quantitative in nature—rather than to propose a common diagnostic method that can be 

routinely used. However, this is a straightforward analysis method that could, in practice, be applied if a 

similar situation were available (e.g. if historical data were available using a system without double 

pulsing in comparison with a modern system with double pulsing). 

One bank of the JCC-71, containing preamplifiers designed and built in-house at Oak Ridge 

National Laboratory (ORNL), was placed on a benchtop opposite another bank of the JCC-71 containing 

the A111–based board (the JAB-01). The 252Cf source was suspended equidistant between both banks, 

and a simultaneous measurement was conducted using PTR-32 to obtain both signal sums of the 

respective banks. A HV characteristic was produced using a 4.5 μs predelay and a 64 μs gate width for 

1200–1980 V in 20 V increments (Figure 5.18). The ORNL electronics have no double pulsing within 

the operational regime, and their performance has been optimized to match the response of the previous 

A111 electronics outside the double pulsing regions. The efficiency of both banks should be equal 

because of their replicate geometries. This measured count rate should then be constant along the HV 

plateau region. Thus, there should be a negligible increase in the measured count rate due to the increase 

in HV and the effective gain. Because the A111–based bank does not exhibit this HV-independent 

behavior, the difference in measured count rate can be assumed to be due to double pulsing effects. Note 

that the authors are not claiming superiority for the ORNL design against alternative designs [75] [76] in 

high-rate or fast-recovery situations. It simply provides a useful comparison for our purposes, especially 

because the shaping time could be readily tailored on the bench to better match the charge collection 

characteristics of the particular 3He proportional counters and wiring configuration used. 

The difference between the A111–measured count rate (Sm) and the ORNL–measured count rate 

(S0) was taken as Ap for this calculation: i.e., the number of counts generated by double pulsing. The 

difference in this count rate is illustrated in Figure 5.19. Below 1680 V, the difference in count rate is 

negative. This finding can be primarily attributed to the slight difference in the charge collection and 

pulse processing chain performance of the two boards in this HV regime and not double pulsing effects. It 

is assumed that beyond this regime, the performance of the A111–based board is matched by the ORNL 

boards, so the difference in measured count rate is caused by the presence/lack of double pulsing in the 

circuits, respectively. At 1680 V, the difference in measured count rate was positive, which was also the 

HV at which double pulsing was first clearly evident on the neutron pulse train through RAD analysis. As 

the HV increased, the difference in count rates, Ap, increased. Therefore, the double pulsing percentage 

calculated also increased between 1680 and 1880 V. Beyond 1880 V, the difference in measured count 

rates decreased, as shown in Figure 5.19. This finding was again reflected in the calculated double 

pulsing percentage. The decrease can be credited toward the high gain at these HVs. With a sufficiently 

high gain, despite the double peak structure of the 3He(n,p)T charge collection, the total pulse shape 

remains above threshold for the duration of the timing window, preventing the electronics from triggering 

twice for one single neutron event. As the HV increased, the amplitude of the signal increased. This 

allowed a greater fraction of the double peaked pulses to remain above threshold, which decreased the 

additional measured counts beyond 1880 V. Theoretically it is possible that if the gamma breakthrough 
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Figure 5.18. The HV characteristic (Section 5.1) produced for a simultaneous measurement of one JCC-71 bank 

with A111 electronics and another bank with ORNL electronics with the given experimental setup. The difference in 

performance across the HV range is attributed to double pulsing in the A111 and lack of double pulsing in the 

ORNL boards. 

 

 

 
Figure 5.19. The difference in count rate measured between the double pulsing bank and non–double pulsing 

bank of the JCC-71 for various HVs. 

 

 

 

 

Table 5.12. HV Characteristic–based Double Pulsing Percentage, with 4.5 μs predelay and 64 μs gate 

width, subtraction of singles neutron count rate values  

HV (V) 1680 1720 1760 1800 1840 1880 1920 1960 

r (%) 0.243 0.983 2.386 5.198 7.945 9.461 8.814 7.332 

± 0.117 0.117 0.117 0.118 0.119 0.119 0.118 0.117 
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point were well beyond this regime, and the system could be biased beyond 1980 V, the measured count 

rate might reach a plateau once the double peak charge collection structure was above threshold for all 

pulses. 

Using Eq (5.1), and these count rate differences, the double pulsing fraction, r, was determined as 

reported in Table 5.12. The difference in singles count rates, as measured between the A111–based bank 

and ORNL bank, are used in this expression. This is different from Section 3 where the doubles count rate 

difference is used to calculate Ap. These values were first compared with the results given in Table 5.7, 

Table 5.8, and Table 5.9 using the RAD–based approach. Table 5.7 and Table 5.9 report the double 

pulsing percentage calculated at 1680 V with a 4.5 μs predelay and 64 μs gate width to be (0.1215 ± 

0.0028) with the same 252Cf source measured in this section. Table 5.12 reports a double pulsing 

percentage of (0.243 ± 0.117) at 1680 V for this HV characteristic approach, with a 4.5 μs predelay and 

64 μs gate width. Again, the results given in Table 5.8 and Table 5.9 for the 4.5 μs predelay and 64 μs 

gate width at 1720 V have a lower calculated percentage: (0.1459 ± 0.0030) compared with those given in 

Table 5.12 (0.983 ± 0.117), and the discrepancy between these two tables grows as HV increases.  

This approach is quite different from the RAD–based approach. Instead of analyzing the neutron 

pulse train as a function of time, it takes two measured values—the average singles count rate for the 

A111–based bank and for the ORNL bank—and subtracts them. This uncertainty is then dictated by the 

measurement time. Subtracting two values at the same HV in the same measurement configuration with 

the same system efficiency does eliminate any efficiency dependence that may be entangled within 

double pulsing effects. Despite the challenge of separating the variation in performance between the two 

electronic systems due to fundamental processing differences from double pulsing effects, this approach 

is quite straightforward for analysis. 

Interestingly, when the same analysis was performed again—this time taking the doubles neutron 

count rate values from the A111–based boards for Sm and the doubles neutron count rate values from the 

ORNL boards for S0 to calculate Ap, but maintaining the singles neutron count rate as the denominator to 

determine r—the double pulsing fraction was in much better agreement with the RAD–based approach in 

Table 5.9. This is logical since the RAD subtraction uses doubles count rate values for Ap. Recall, the 

RAD is a histogram of double neutron events measured as a function of time in relation to the initial 

triggering neutron event. Therefore, when one RAD is normalized to another RAD, it is the subtraction of 

two separate doubles count rates, which is not outwardly stated in Koehler et. al [48]. So, instead, taking 

the values from the doubles HV characteristic results in the Table 5.13 values. This approach then 

compared (0.016 ± 0.117) to (0.1215 ± 0.0028) for 1680 V, (0.146 ± 0.117) to (0.1459 ± 0.0030) for 1720 

V, and (0.411 ± 0.119) to (0.5763 ± 0.0079) for 1840 V.  

 

 

Table 5.13. HV Characteristic–based Double Pulsing Percentage, with 4.5 μs predelay and 64 μs 

gate width, subtraction of doubles neutron count rate values  

HV (V) 1680 1720 1760 1800 1840 1880 1920 1960 

r (%) 0.016 0.146 0.106 0.399 0.411 0.532 0.536 0.369 

± 0.117 0.117 0.117 0.118 0.119 0.119 0.119 0.118 

 

 

 The ORNL doubles count rate values were not as stable across the plateau region as the singles 

count rates, as a result of the length of measurement and efficiency, and therefore, the double pulsing 

fractions were not as reliably determined as through the RAD–based approach. The ORNL preamplifiers 

are currently in the prototype phase, and they are undergoing optimization testing for better HV filtering 

and stabilization. This approach is therefore a proof of concept for a similar diagnostic tool and method. It 

also serves as validation that the previously calculated double pulsing fractions are the correct order of 

magnitude when determined either by the LMDA RAD approach or by shift register–generated neutron 

count rates.  
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 Conclusion 

 As it has been shown, it is quite difficult to produce quantitative values for double pulsing 

fractions in a neutron coincidence counting system when shift register acquisition and analysis is used. 

Not only are the measurement requirements much more time-intensive than those for LMDA, but also the 

information gained by acquiring data at set timing windows inhibits easy identification of the behavior 

because of smoothing of effects over long durations (relative to 0.1 μs binning resolution or similar). The 

best diagnostic tools lie with LMDA, specifically through RAD normalization. However, it is possible to 

identify double pulsing when using shift register analysis if additional measurements are added into the 

typical characterization procedure of neutron coincidence counting systems. The most effective shift 

register–based analysis of double pulsing incorporates referencing historic data taken with a system 

known and proven to be double pulsing–free and comparing that with data taken with a modern system of 

the same model known to have double pulsing in mirroring conditions. Or, if the situation is available, an 

effective analysis incorporates taking a simultaneous HV characteristic measurement using identical 

banks with different electronics within them and comparing the count rate data for a quantitative analysis. 

A useful diagnostic measurement to identify whether double pulsing is present, and if so, in what HV 

regime—using shift register data acquisition and analysis—is measuring a spontaneously fissioning 

neutron source and a random-in-time neutron source at short time windows such as a 0.5 μs predelay and 

1.5 μs gate width with the A111 to predominantly capture double pulsing events and no true coincidence 

events. In addition, plotting the doubles to singles squared count rate ratio for varying predelay values 

over several different HVs is also enlightening if any electronic artifacts are present in a system, as this 

ratio is self-normalizing. The singles and doubles should trend together at the same HV, and any 

differences across these HVs would indicate non-ideal behavior. 

 Although LMDA is gaining traction and its use is expanding in the field of international 

safeguards, it is still much more widely used in research and development applications at laboratories than 

for in-field measurements. Therefore, it is still necessary to provide effective shift register–based 

characterization tools that can, at a minimum, indicate to a user or manufacturer of a coincidence system 

that the behavior and performance should be investigated further. The tests outlined in Sections 4.2 and 

4.3 would suffice for identification of non-ideal behavior using a shift register, which could then be 

followed up using LMDA for quantification. 

 The double pulsing fraction in the UNCL is also specifically evaluated for various timing 

windows using the LMDA–based RAD approach to quantify how this effect influences correlation timing 

analysis used in the field. At a standard operational HV of 1680 V and timing windows of 4.5 μs predelay 

and 64 μs gate width, the double pulsing fraction in this system configuration is approximately 0.12%. 

This added error is not large enough to be alarming for restructuring a safeguards measurement using the 

UNCL when considering other sources of error during a nondestructive assay that exceed several percent. 

The double pulsing fraction does change as predelay increases and as gate width increases over the range 

of HV plateau settings, since a different number of neutron events are included in the pulse train analysis. 

Therefore, a correction may become more relevant to A111–based systems that traditionally operate at 

short predelays and/or long gate widths, or higher HVs. This effect would also be much more significant 

for neutron multiplicity counters as the triples rate would be impacted to a greater degree by double 

pulsing than lower multiplicities.  

This effect also becomes relevant as the applications of neutron coincidence counting are 

expanding. In terms of absolute source measurements, dead time calculations, physical assumptions made 

about the system when solving the point kinetic equations, and an overall understanding of the efficiency 

and charge collection process of these systems, double pulsing continues to be a hindrance. 

Unfortunately, these tests and evaluations of double pulsing at various timing windows must be 

performed on a system-by-system basis, as many factors contribute to this double pulsing fraction, so a 

general correction cannot be applied. Using the procedures outlined here and in (Section 5.1) the authors 

hope to encourage the users and manufacturers to check and quantify their systems for this behavior. 
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Neutron Coincidence Counting System Dead Time 

Calculations 
 

 

Neutron coincidence counting depends on the accurate measurement of fission neutrons as a 

function of time to correctly determine the quantity of nuclear material within the measured sample. As 

each neutron is captured and processed by the 3He tube–electronics chain system in these counters, that 

chain remains busy, and “dead,” for a length of time. This means that any neutrons captured during this 

dead period are not counted and do not contribute to the total neutron pulse train. The resulting neutron 

count distribution histograms are perturbed due to this dead time, which influences assay values. The 

count rate response behavior can no longer be assumed to follow Poisson counting statistics, as the width 

of this distribution decreases due to the dead time [90]. Because of this influence on the neutron pulse 

train, another correction for the dead-time-related losses in the system is required. 

A significant contribution to the uncertainty introduced during pulse processing by the data 

acquisition electronics is due to dead time effects. Dead time is generated in a combination of different 

components; there are contributions from the charge collection time in the proportional counters, the 

shaping time of the preamplifier to convert the analog signal into a TTL logic pulse, losses due to 

coincident signals falling within busy amplifiers, and processing time in the shift register or LMDA 

module. The dead time is rate and sample dependent, and it depends on the degree of correlation in the 

pulse train. Typically, a dead time value, or dead time parameters, are reported for a system using a range 

of commonly–used source types and activities, but it may vary slightly if a sample differs significantly 

from that range. This dead time is inherent to the system, and is characteristic of the tube diameter, bias 

applied, neutron and gamma count rate, and the electronic settings such as thresholds, shaping time, 

filtering networks, and derandomizer used. The dead period is related to the processing and recovery time 

of the electronics used and applies to each tube–electronic system within the counter. The more 

preamplifiers present in a system, the shorter the dead time for these 3He counters. Using LMDA, the 

dead time can be determined for each individual 3He tube–preamplifier system, a combination of a 

number of these systems, or the neutron coincidence counter as a whole. This value must be well-known 

to accurately adjust the respective measured neutron singles and doubles count rates for the true emitted 

rates to perform an accurate analysis.  

It has been a great challenge to accurately describe the dead time in neutron coincidence counters. 

It requires extensive knowledge about the system behavior, well–understood neutron pulse train analysis 

methods and doubles multiplicity histograms, and an in-depth measurement campaign exploiting multiple 

sources.  The long-standing and widely-used approach for totals and reals (singles and doubles) relies on 

empirical methods [91] rather than first principles. This method is essentially the only method used in 

routine system characterizations applied for NDAs. It will be described in detail below. Work by 

Dytlewski further develops this empirical method to incorporate triples count rate dead time analyses 

[92], and a recent paper discusses the challenges and limitations of these empirical methods to 

experimental scenarios that must be addressed and overcome in addition to extension of this method to all 

orders [93]. Others have also built on these methods over the last several decades. There is currently a 

revival of interest in better quantifying and modeling the dead time of neutron coincidence and 

multiplicity systems in terms of physical parameters. As technology improves, understanding the dead 

time of a system should not be the limiting factor in using these counters. These additional works derive 

alternative approaches to singles dead time corrections [72] [90] and investigate the effect of correlation 

in the neutron pulse train due to varying sources [94] [95], while also trying to simplify the theory and 

expressions for easy adaptation.  This list is certainly not exhaustive, and it illustrates the revived drive to 
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accurately, precisely, and easily represent detector dead times based on true physical models. Generally, 

the final expressions and implementation of these theories to experiment are complex in these methods, 

and, as a result, they have not been adopted in favor of the older simplifications. 

Currently, theoretical models of the dead time of neutron coincidence counters are based on the 

well-defined paralyzable (or updating) model. This model assumes that not only will a neutron captured 

during the dead period of the tube not be counted towards the total neutron pulse train, but that a neutron 

event will extend the dead period for a characteristic length of time. Each neutron event does this whether 

it’s from the same fission event, background, or a successive fission event (Figure 6.1). Therefore, if this 

behavior is not taken into account when designing the circuit, the dead time may extend indefinitely, and 

no successive events may be recorded. Another assumption is that the neutron counter behaves as a single 

effective counting chain. Although this model has been assumed for neutron coincidence counting, it has 

not been fully verified. This compares to the non-paralyzable dead time model, where, following a 

detected neutron event, the dead time will be induced and occur for its characteristic duration. According 

to this model, if successive events are detected during this time, they do not extend the dead time beyond 

this set duration.  
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Figure 6.1. An illustration exaggerating the response of a neutron coincidence counting system to separate fission 

event neutrons. An example neutron coincidence counter is drawn here with 6 separate banks, each with their 

own preamplifier, separated by the dark gray lines. The yellow and red highlights indicate that the specific bank 

has captured a neutron and its associated preamplifier electronics are busy processing that event. For the red 

highlight, the preamplifier was already busy when the second neutron was captured, therefore this event will not 

be recorded. In reality, dead time may be induced through multiple fission events, or the detection of multiple 

neutrons from one fission event.   
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 A Comparison of Methods Using a Boron Coated Straw–Based, 

High–Level Neutron Coincidence Counter1 
 

With current neutron coincidence counting data acquisition widely in the form of shift register 

logic, there are several options to determine effective dead time model parameters. A customary approach 

consists of incrementally overwhelming the counting system with various sources to generate different 

count rates for analysis. An empirical fit to these data can then produce a dead time parameter for 

correction to the measured rates. This method makes use of the expectation that the doubles to singles 

count rate ratio, after dead time correction, should remain fixed for the same isotope and counting system 

pairing, irrelevant of source strength. The common experimental approach to measure the dead time with 

this method makes use of multiple 252Cf sources of increasing strength to determine two dead time 

parameters. Another experimental approach for this method makes use of random-in-time neutrons 

produced by AmLi (α, n) sources— in conjunction with a single 252Cf spontaneous fission neutron 

source— to increase the uncorrelated single neutron events while maintaining the doubles neutron rate.  

For an uncorrelated neutron source, where the emitted neutrons have no time-dependent pattern (as a 

fissionable source would have), there is a very low probability that emitted neutrons will be counted as 

doubles. Therefore, the Reals + Accidentals count rate should be approximately equal to the Accidentals 

count rate in a RAD. A number of AmLi sources can be used with a single 252Cf source to incrementally 

overwhelm the detection system to generate different singles count rates for a similar analysis. The 

number and/or strength of the sources chosen should correlate with the full count range expected to be 

measured with the system in the field. 

This traditional, and most commonly used, approach was established decades ago, and extended 

to greater multiplicities by Dytlewski in 1990 [92], assuming the paralyzable dead time model.  This 

methodology was then applied for use in neutron coincidence counters such as the 3He-based High–

¬Level Neutron Coincidence Counter (HLNCC) models [35] [70]. The combination of these works 

implements the following equations for the doubles (D) and singles (S) dead time correction factors (CF): 

𝐶𝐹𝐷 = 𝑒𝛿𝐷 ∙ 𝑆𝑚 = 𝑒(𝑎+𝑏 ∙ 𝑆𝑚) ∙ 𝑆𝑚                                                                 (6.1) 

𝐶𝐹𝑆 = 𝑒𝛿𝑆 ∙ 𝑆𝑚 = 𝑒
1
4

(𝑎+𝑏 ∙ 𝑆𝑚) ∙ 𝑆𝑚 = 𝐶𝐹𝐷
1/4                                                 (6.2) 

𝑆𝐷𝑇𝐶 = 𝐶𝐹𝑆 ∙ 𝑆𝑚 , 𝐷𝐷𝑇𝐶 = 𝐶𝐹𝐷 ∙ 𝐷𝑚                                                             (6.3) 

where 𝛿𝐷 is the dead time for the doubles, 𝛿𝑆 is the dead time for the singles, 𝑆𝑚 is the measured singles 

rate, and 𝑎 and 𝑏 are the dead time parameters which are empirically determined for a specific detection 

system using various sources. Equation 6.1 represents the dead time correction factor for the doubles rate, 

and Equation 6.2 represents the dead time correction factor for the singles rate. Equation 6.3 is used to 

apply the dead time correction onto the measured rates. These three equations were previously given and 

used in Chapter 2 for the JCC-71 system characterization.  

A chi-squared analysis is performed by minimizing the sum of squared errors between the 

measured doubles-to-singles, dead-time-corrected values to the calculated ratio. The free parameters 𝑎 

and 𝑏 are determined by a quadratic fit using Equations 6.1 and 6.2 for these corrected doubles-to-singles 

count rate ratios as a function of increasing singles rate. It is common for counters of the same model to 

keep the ratio of a/b constant across all systems during characterization and calibration measurements, 

                                                           
 

1 Aspects of this section are published elsewhere in a full journal article as A.T. Simone, J. P. Hayward, S. Croft, 

and A. Favalli. "A Comparison of Approaches to Determine Dead Time Parameters Using a Boron-Coated-Straw 

High-Level Neutron Coincidence Counter." ESARDA Bulletin 54 (2017): 6-13. 
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aiding in this analysis. The dead-time-corrected rates are then determined by multiplying the measured 

rate for the respective multiplicity by the appropriate correction factor.  

Another more recently developed approach consists of utilizing the neutron count number 

distribution produced in a basic measurement using shift register or LMDA–based acquisition, for a 

number of counting cycles, to permit a statistical analysis and subsequent determination of the dead time 

along with a robust estimate of the statistical uncertainty. Using the approach laid out by Menaa [69], 

based on the theory outlined by Foglio Para and Bettoni [96], random-in-time neutrons produced by 

AmLi sources are used to obtain a neutron-count distribution. Then, a statistical analysis is performed on 

this distribution over many cycles. Moments of several orders can be used; therefore, several estimates of 

the effective dead time parameter are obtained [73]. With this analysis, the dead time parameters for 

second, third, and fourth order factorial moments can be determined, enabling an inter-comparison of 

values from a single data acquisition. These multiple samplings also allow for a robust estimate of the 

statistical uncertainty.  

The equations presented in [96], under the assumption of a paralyzable not-free counter (the 

system starts counting the initial neutron pulse while it may be dead), represent the mean value of the 

count distribution and the variance of that distribution. They are then used by Menaa et al. [69] to derive 

expressions for the dead time, δ, in terms of the gate width, 𝑇𝑔, and the statistics of the neutron count 

distribution: 

𝜑 = 1 − √1 − [
〈𝑖〉 − 𝜎𝑖

2

〈𝑖〉2
] ;  𝜑 =

𝛿

𝑇𝑔
                                                             (6.4) 

with 〈𝑖〉 representing the mean value of the neutron count distribution as 

〈𝑖〉 =
∑ 𝑖 ∙ 𝐴𝑖𝑖

∑ 𝐴𝑖𝑖
                                                                                  (6.5) 

and 𝜎𝑖
2 representing the variance of the distribution as  

𝜎𝑖
2 =

∑ [𝑖 − 〈𝑖〉]2 ∙ 𝐴𝑖𝑖

∑ 𝐴𝑖𝑖
.                                                                             (6.6) 

Croft et al. [73] reviewed this method in detail and built upon this work to extend the same methodology 

to higher order moments of the neutron count distribution. This equation may be applied to third, fourth, 

and higher order moments if the precision on these measured rates suffices. This can all be done from a 

single measurement producing the neutron count rate distributions for each cycle. Typically for a neutron 

coincidence counter in a laboratory-based setting, triples may be acquired, using LMDA or the JSR-15, 

but they are not used in the field. Therefore, the second order moment is primarily used in the analysis of 

a neutron coincidence counter dead time here. Through simple measurement of an AmLi source, all 

necessary variables can be obtained in a short period of time. 

Because the bias (previously defined in Chapter 2 and 5) should be approximately zero for an 

uncorrelated neutron source, the neutron count distributions should be roughly equal between the Reals + 

Accidentals and the Accidentals gates. To test this theory, the (R+A) and (A) neutron count distributions 

were analyzed separately to produce individual dead time values, checked for bias, and then combined 

into a single 48 cycle dataset for an additional dead time determination. 

The importance of this method from a safeguards inspection perspective relates to the availability 

of sources for in-field measurements; AmLi sources are present for active interrogation in neutron 

coincidence counters.  Meanwhile, it is uncommon for a facility under inspection to have 252Cf source 

standards at that location. The strength of the AmLi is not crucial, as the values are derived from the 

measured neutron count distributions from the respective sources and not the given source activity. The 

stronger the sources, the better the statistics and the shorter the counting time, but the calculation of the 
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dead time parameter is not intimately dependent on the source strengths selected. Compared to the 

traditional method, the AmLi sources allow for shorter acquisition times with similar precision, and they 

do not have to be replaced as frequently due to the long half-life of Am isotopes.  

Here the traditional approach and the statistical approach are implemented and compared using 

data obtained with a novel boron-coated-straw (BCS) High-Level Neutron Coincidence Counter 

(HLNCC) prototype. The same analysis procedures would apply to a 3He–based neutron coincidence 

counter. These two methods are compared for the first time using the same system in an attempt to bridge 

the gap between the traditional empirical method, and a more modern calculation using measured neutron 

count distributions. Distancing neutron coincidence counter characterization procedures from empirically 

determined methods aids in furthering the field’s physics–based understanding of the system behavior and 

hopes to lead to further developments in the modeling of this behavior from physics first principles.  

The BCS HLNCC contains preamplifiers designed in-house by its manufacturer, Proportional 

Technologies Inc. Through extensive characterization of the system, it was determined that these 

electronics did not suffer from double pulsing in the relevant HV region. Because of this, the neutron 

pulse train is not obscured at short time lengths, and the dead time is not convoluted with non-ideal 

effects. This allows a detailed study of the dead time to be performed with confidence. Because these 

custom preamplifiers also had their own filtration networks, PTR-32 LMDA was used to bias, record, and 

analyze the neutron pulse train for each of the six counter channels (Figure 6.2). PTR-32 can produce 

output files in a form similar to those output by INCC (Chapter 1), including a neutron count distribution 

per every cycle recorded, in addition to neutron count rate analysis. The optimal timing gates for this 

system were determined to be 2 μs for the predelay, 48 μs for the gate width, and 4096 μs for the long 

delay. The total neutron signal was used for this analysis.  

 To determine the dead time parameter through the traditional empirical method, a single, newly-

acquired, NIST-traceable 252Cf source, with a known neutron emission rate around 94,000 cps and 1.10% 

relative standard error, was placed in the center of the BCS HLNCC. A 7200 s acquisition, using only the 
252Cf source, was obtained to ensure good counting statistics on the doubles count rate. Then, it was 

successively combined with a number of AmLi (α,n) sources in separate acquisitions of the neutron pulse 

train. The next measurement taken was of the 252Cf along with two AmLi sources. These two AmLi 

sources had measured strengths around 7,300 cps with a count rate uncertainty of 0.11% with the selected 

timing gates. Because of the greater singles count rate, the acquisition time for this data collection was 

reduced to 1800 s. A third AmLi source, with a measured strength around 10,200 cps and a count rate 

uncertainty of 0.11%, was then added. Data were taken again for 1800 s. A fourth, and final, AmLi 

source, with similar strength to the third, was then added. For this run, the acquisition time was increased 

to 2700 s to give a greater certainty of the count rate, as this is crucial for producing an accurate fit using 

the endpoint. The time-correlated fission neutrons from the 252Cf are recorded in these timing gates and 

the random-in-time neutrons produced from the multiple AmLi sources provide excess counts on which to 

trigger.  This method benefits from the convenience and availability of using one 252Cf source, while still 

having the ability to determine the dead time corrections for both the singles rate and the doubles rate.  

From these acquisitions, the doubles-to-singles ratio was calculated from the measured rates as a 

function of singles rate (which is dependent on the number of sources used). This trend is shown in 

Figure 6.3, and the empirical fit, reflecting the ratio of the dead time-corrected rates calculated using 

Equations 6.1 and 6.2, is shown with the dotted red line. From these fit values and chi squared analysis, 

the 𝑎 and 𝑏 parameters are determined. For a set of standard counters, the ratio of 𝑏/𝑎 has typically been 

determined previously using a large number of 252Cf sources; but for this new BCS HLNCC, there is no 

predetermined ratio. Instead, assuming that 𝑏 =
𝑎2

4
 as outlined in the literature [72] [90], the fitting 

parameters were found to be 𝑎 = 6.53 ∙ 10−8 and 𝑏 = 1.066 ∙ 10−15, resulting in an average dead time of 

(0.0653 ± 0.0054) μs. The uncertainty in this value was determined through chi-squared analysis of 

minimizing the sum of squared error and is relatively large due to the reasons discussed previously. Next, 

𝑏 was constrained to 0, as is oftentimes done, and 𝑎 was found to be 6.199 ∙ 10−8, producing a dead time  
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Figure 6.2. The BCS HLNCC showing (a) the six detector bank outputs; (b) the BCS HLNCC-specific conversion 

box containing electronics to shape and amplify the output signals, resting on the external power supply used for the 

+5 V; (c) the output signal cables of the conversion box; and (d) PTR-32. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3. A plot of the measured doubles-to-singles count rate ratio as a function of the measured singles count 

rate. An empirical fit used to determine the dead time parameters is shown as the dotted red curve. The error bars 

are smaller than the markers. 
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of (0.0620 ± 0.0077) μs. The dead time values found are within error using the different empirical 

constraints, due to the insensitivity of the equations to 𝑏 over a wide range of values.  

This empirical dead time correction method is not robust, as it relies on a user to manipulate the 

terms to produce the best fit. This method is also sensitive to the number of data points acquired, and 

length of acquisition, thereby increasing the total experimental time and number of sources needed for a 

more accurate result. Because of this, there can be several values which minimize the sum of squared 

errors of the deviation between the dead-time-corrected doubles-to-singles ratio to the uncorrected ratio 

with respect to 𝑎 and 𝑏. 

Then, the dead time parameter was determined through the statistical method of analysis on 

multiple data acquisition cycles outlined by Equations 6.4-6.6. Twenty-four cycles of 300 s data 

acquisition runs were taken to randomly sample the neutron count distribution, produced by the AmLi 

sources previously listed, a large number of times. The AmLi sources were centered vertically and 

radially within the well to load an approximately even count rate on each of the six detector banks. Two 

separate acquisition runs were taken, one using two AmLi sources for a combined measured singles count 

rate of approximately 14,000 cps with a standard error of 0.02%, and the other using all four AmLi 

sources for a combined measured singles count rate of 33,500 cps with a standard error of 0.016%. The 

total neutron pulse train recorded in PTR-32 was exported to INCC format to produce the count 

distributions. As is customary with shift register electronics and INCC software, the neutron distributions 

in each of the cycles are reported as a function of multiplicity for both the (R+A) and (A) gates. Detected 

neutron multiplicities can range up to, on average, approximately 10 neutrons per cycle due to 

background events falsely measured in coincidence with AmLi single neutron events. These count 

distributions were analyzed using the second order moment expressions to determine the dead time and 

verify that the bias was consistent with 0 in support of the combined dead time values. The results are 

reported in Table 6.1.  

As expected, there is less uncertainty in the dead time calculated for the measurement using four 

AmLi sources rather than just two sources, due to better counting statistics. However, as is typical for in-

field measurements, two AmLi sources may be more readily available and still provide accurate 

evaluations of the detector dead time. The bias is consistent with 0, the individually calculated dead time 

values are consistent within counting precision across sources, and, therefore, the average dead time 

values between (R+A), (A), and the combined gates are also in agreement.  

The comparison of the dead times determined from both the traditional and statistical methods are 

shown in Table 6.2. The traditional approach values are reported for two different empirical fits: where 

𝑏 =
𝑎2

4
 and when b was constrained to zero. The combined gate average dead time value, obtained from 

both the two source and four source measurements, are reported for this comparison. The dead time 

values are in agreement within uncertainties (Table 6.2) across all calculations. It is evident that the 

uncertainty in the neutron count distribution analysis approach is much less than the uncertainty 

associated with the traditional approach. This is due to the traditional method’s insensitivity to 𝑏 in its 

equations over a wide range of values, and the number of experimental data points used to find the 

empirical fit.  

This result verifies that the statistical approach of dead time analysis is robust and appropriate as 

an alternative to the empirical approach. Compared to the empirical method of dead time parameter 

determination, the statistical method is more heavily grounded in true physical parameters that may be 

measured with the system; this compares to the user–manipulated fits that are dependent on the 

constraints selected for analysis. It provides an experimentally determined approximation to the neutron 

multiplicity counter’s dead time which may be simpler to grasp and implement, returning values with 

greater confidence due to the robust uncertainty calculations. This alternative method may allow neutron 

coincidence counter characterization procedures to rely more heavily on physics–based understanding of 

each system’s behavior and also lead to further developments in the modeling of this behavior from 

physics first principles. 
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Table 6.1. Total detector dead time values calculated using the second order factorial moment.  

Number of 

AmLi Sources 

δ(R+A) 

(μs) 

± δ(A) 

(μs) 

± δ(Combined) 

(μs) 

± Bias 

(%) 

± 

2 0.0669 0.0050 0.0657 0.0054 0.0663 0.0036 0.0008 0.0197 

4 0.0641 0.0015 0.0652 0.0018 0.0646 0.0012 0.0060 0.0069 

Average 0.0655 0.0052 0.0654 0.0057 0.0654 0.0038 0.0034 0.0209 

 

 

Table 6.2. Comparison of total detector dead time values using the 

traditional method and the statistical approach. 

Method δ ± 

 (μs)  

Traditional- b=a2/4 0.0653 0.0054 

Traditional- b=0 0.0620 0.0077 

Statistical- 2 sources 0.0663 0.0036 

Statistical- 4 sources 0.0646 0.0012 

Statistical- Average 0.0654 0.0038 

 

 

 

 Dead Time as a Function of Preamplifier Number  
 

It is well known that the dead time varies based on the number of preamplifiers used within a 

system. The more 3He tubes (or BCS) connected to a single preamplifier, the longer the effective 

paralyzable dead time is since the likelihood of a neutron capture increases with an increasing number of 
3He or 10B atoms. This would subsequently occupy the electronics of that system with the pulse 

processing for each capture event for the characteristic duration. But if numerous preamplifiers are placed 

within a system, this tube-preamplifier pairing ratio decreases, and it is less likely that a pairing will 

encounter two successive neutron events over the dead period due to the isotropic behavior of emissions 

from a fission event. This means it is less likely that the pairing will be busy processing a previous 

capture event when another neutron is captured. Less events will then be lost. If there are multiple 

channels, even if some channels are occupied processing an event, there are others that may not be dead 

that can simultaneously record a capture, which decreases the effective system dead time. The more 

pairings, the lower the effective dead time becomes. This behavior is studied across a various number of 

preamplifier combinations contributing to the total measured neutron pulse train. For each combination of 

preamplifier number, the effective dead time is calculated.  

The statistical approach of dead time analysis was used here. The results in Figure 6.4 show 

calculated values for the combined (R+A) and A gate dead time. For this analysis, a single measurement 

was taken and a variety of channel number combinations were analyzed offline with LMDA. Initially, the 

dead time for all six individual channels of the BCS HLNCC was calculated. This results in the 

characteristic dead time of a single preamplifier, or a readout subsystem dead time. This value is 

understandably the greatest dead time value as there are no alternative tube–preamplifier pairings to 

capture and process another neutron event while this one pairing is dead. Every neutron coincidence 

counting system should have a slightly different characteristic channel dead time based on the electronic 

settings used, tube pressure and diameter, and applied HV. 

Then, the neutron pulse trains from two detector banks, channels 1 and 2, channels 3 and 4, and 5 

and 6, were summed and analyzed. There is a very small difference in the calculated dead time values 

across these different combinations. This may be due to small variations in the geometry or electronics 

across the different channels. Combinations for channels 1, 2, and 3 then 4, 5, and 6 were used for the  
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Figure 6.4. The dead time determined using the statistical analysis approach is shown for a variety of channel 

combinations in the BCS HLNCC. 
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dead time value for three channel sums. Insignificant differences in the dead time values between these 

two different combinations were recorded. For the four channel result, channels 1, 2, 3, and 4 were used 

and finally for the five channel dead time calculation channels 1, 2, 3, 4, and 5 of the BCS HLNCC were 

used. The total summed pulse train returns the minimal dead time value calculated across all 

combinations. It is shown in Figure 6.4 that the more channels used in a system, the lower the system 

dead time is. The dead time decreases from an average single preamplifier dead time of (0.4229 ± 0.0153) 

µs to the total system dead time, using all 6 preamplifiers, of (0.0646 ± 0.0012) µs. This is due to the 

likelihood that even while one preamplifier may be busy, there are increasingly more preamplifier–bank 

systems that will not be busy and can detect successive events during that time.  

Therefore, not only do additional preamplifiers help with the spatial response signature of a 

source, as presented in Chapter 4, they also fundamentally lower the system dead time to allow a more in–

depth study of the other system parameters. With a lower effective system dead time, less events will be 

lost during an NDA and a smaller correction factor may be applied with lesser uncertainty. This would 

effectively increase the system efficiency without changes to the system geometry or composition. With 

LMDA, the additional channel signals are easily recorded and analyzed. In addition, without dead time 

behavior convoluting other behavior at short time bins, diagnosing and quantifying double pulsing may be 

more straightforward. This would also allow for more reliable studies of the system behavior at short 

predelays with a more well defined, and shorter, dead time duration. Finally, the system dead time may 

then be better studied and modeled to isolate to the correct behavior and calculation method on a more 

fundamental scale. Once this is done, more accurate dead time corrections may be applied to existing 

systems. Or, if the addition of multiple preamplifiers in current neutron coincidence counting systems 

may be done at an affordable cost, the additional benefits of their inclusion would also be reflected in 

aspects of system design, analysis procedures, and final NDA results.  

 

 A Difference in Values Due to Double Pulsing Using a JCC-71 

Neutron Coincidence Collar 
  

The same statistical dead time analysis methods and channel–by–channel combination analysis 

may be applied across a wide range of neutron coincidence counters. However, for systems such as the 

original JCC-71 with the four JAB-01 boards, and any other systems with double pulsing present within 

the HV operational region, dead time methods are not in agreement due to the effect that double pulsing 

has on the neutron pulse train and any affiliated analysis performed on it. Since the previously discussed 

traditional method and statistical method rely on different information from a measurement, they return 

different dead time values when characterizing the JCC-71.   

It is important to note that since the JCC-71 UNCL is designed for low count rate applications of 

measuring fresh fuel assemblies, there is no dead time correction applied in the field. Instead, the dead 

time effect on the measured rates is included empirically in the doubles versus 235U g/cm calibration 

curve, alongside the efficiency and die-away time values. Therefore, this deviation is not significant to the 

UNCL’s application, but stands as a representation and common model of other A111–based neutron 

coincidence counters that may have double pulsing present in their HV operational region. 

Referencing the dead time parameter characterization originally presented in Section 2.5.5, the 

traditional empirical analysis was performed using the 𝑎 and 𝑏 parameters given by Canberra Industries 

during their system characterization. Given 𝑎 = 1.07 µ𝑠 and 𝑏 = 0.53 𝑝𝑠 with an 𝑎/𝑏 ratio set at 2 ∙ 106 

from historical data, the system coincidence dead time was found to be 1.1 μs. The dead time parameter 

for the singles count rate can therefore be approximated as 𝑎/4 (Equation 6.2), resulting in a system dead 

time of 0.27 μs. The same neutron pulse train was analyzed four ways: the previously described method 

with 𝑎 = 1.07 µ𝑠 and 𝑏 = 0.53 𝑝𝑠, with 𝑎 = 1.07 µ𝑠 and 𝑏 = 𝑎2/4 [72], along with b set to 0, and, 

finally, eliminating a data point from the fit to study the sensitivity. This study of dead time values 

revealed that this data set did not generate a precise result, with final dead time values ranging by 
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approximately 20%. This result is as expected when using the empirical method since it is highly 

insensitive to the selection of 𝑏, is manipulated by hand by the user, and is strongly dependent on the 

number and strength of the sources used. The statistical dead time analysis was performed on a neutron 

pulse train acquired similarly to that acquired with the BCS HLNCC using AmLi sources. Using LMDA, 

the total system coincidence dead time was found to be 0.1648 µs, with individual channel dead times 

ranging from 0.685-0.717 µs (Table 6.3). These values are clearly not in agreement. However, these two 

methods previously produced values that were in assured agreement for the BCS HLNCC and the 3He–

based LV AWCC; both of which did not have double pulsing present at the HV used for the 

measurement. 

 The full system behavior, including dead time effects and double pulsing, may be revealed 

through the RAD produced from the measured neutron pulse train. This is reflected in its structure, 

including zero count rates measured across a range of time bins and the spikes in count rate compared to 

surrounding bins. The RAD provides a cursory visualization of the dead time and electronic stability of a 

system by binning the coincidence neutron events into small time dwell bins. For the PTR-32, the 

smallest time bins achievable are 0.1 µs, which suffices to resolve features attributed to these effects to a 

high level of fidelity. The RAD is true measured data and does not rely on approximations or assumptions 

of the behavior of the system, therefore what it reveals is difficult to dispute. Both discussed calculation 

methods return experimental approximations for the dead time values, and, therefore, may be slightly 

different than what is observed in the RAD. 

 Figure 6.5 shows RADs produced for each of the four JAB-01–based JCC-71 channels at 1720 

V, and the total summed signal from these banks on different scales. When examining the individual 

detector bank RAD responses, zero counts per bin are recorded between 0 µs and 0.4 µs; this is consistent 

with dead time, where no coincidence events can be registered successive to the triggering neutron event. 

Then, between 0.4 μs and roughly 0.7 μs, the drastic increase in count rate signifies the recovery of the 

preamplifier system combined with charge collection effects in the 3He tubes (Chapter 3 contains a 

discussion of the JAB-01 electronics specifications). A small double pulsing peak is measured between 

0.5 µs and 1 µs (see Chapter 5). After this artifact, more structure can be observed until the signal 

stabilizes around 2 μs. This may be related to ultimate charge drifting and collection effects and the 

further stabilization of the electronics. Then, the count rate begins to follow the expected exponentially 

decreasing trend of a RAD. The RAD produced from the total signal data reinforces these claims. From 

the 0-0.1 µs time bin, there is an increase in count rate. Between 0.1 and 0.4 μs, there is approximately ¾ 

of the count rate measured at 2 µs and beyond, which supports one of the four detector banks being dead 

over this duration. Because the total signal relies on all four channels, it will still register neutron events 

in three out of the four banks while a neutron event is being processed in the last bank; as was shown in 

Section 6.1.1, the dead time of a total system is much less than the dead time of a single preamplifier 

chain (JCC-71 values reported in Table 6.3). Then, following the same trend as each individual channel, 

the count rate increases between 0.4 μs and 0.7 μs, followed by the double pulsing peak, before reaching 

the stable decreasing exponential trend at 2 µs.  

Depending on how the traditional and statistical dead time calculation methods isolate the values 

for their results, the dead times could, in principle, be justified between the range of 0.4 µs up to 2 µs for 

an individual channel coincidence dead time and the range of 0.1 µs up to 2 µs for the total summed 

signal. A 1.1 µs total system dead time may indicate that the traditional method is sensitive to the effects  

of double pulsing, as following 1.1 µs the total signal RAD no longer decreases but increases until it 

reaches a more stable response. As for the statistical approach, the total system dead time was determined 

to be 0.16 µs. The lowest doubles count rate in the RAD is measured between the 0-0.1 µs time bin. 

Beyond the 0.1 µs time bin, a decreased stable count rate is measured between 0.1-0.4 µs, indicating one 

of the four banks is dead. Following this range, a double pulsing peak can be resolved and the total 

measured signal reaches a stable value below 2 µs. Resolving this behavior may be subject to the time bin 

resolution available in the PTR-32 analysis software, limiting the ability to further discern the system 

response at short time intervals; but this cannot be investigated as the bin values are not adjustable by the 

user. The individual channel dead time values determined through the statistical approach may also be  
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Table 6.3. The dead time values calculated for the JAB-01–based JCC-71 using the 

statistical analysis method 

Channel δ(R+A) δ(A) δ(Combined)  
(μs) (μs) (μs) 

1 0.699 ± 0.012 0.666 ± 0.014 0.6824 ± 0.0092 

2 0.685 ± 0.012 0.688 ± 0.014 0.6865 ± 0.0091 

3 0.717 ± 0.011 0.701 ± 0.013 0.7091 ± 0.0085 

4 0.615 ± 0.010 0.622 ± 0.011 0.6187 ± 0.0075 

Total 0.1648 ± 0.0021 0.1635 ± 0.0022 0.1641 ± 0.0015 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5. The RADs produced for the four individual JCC-71 banks and the total summed signal. The dotted 

black line indicates where the measured count rate stabilizes. 
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justified by their respective RADs. The contribution of double pulsing clearly convolutes and obscures 

the dead time behavior within this region, but dead times ranging between 0.685-0.717 µs coincide with 

the point where a majority of the expected count rate is being recorded. There is an increase in measured 

rate within the double pulsing peak following these dead time values, which then decreases, increases, 

and reaches a stable value around 2 µs. This complicates the interpretation and modeling of this behavior, 

to ultimately deceive dead time analysis methods. 

Although both the statistical experimental approach and traditional experimental approach to 

dead time analysis provide consistent results when characterizing a system that does not suffer from 

double pulsing, they break down when double pulsing is present. They no longer provide reliable dead 

time values that can be traced back to physics first principles. This would affect any dead time parameter 

calculation performed on a system with unknown double pulsing. The speculation surrounding how the 

calculated dead time values relate to what is seen on an experimentally obtained RAD, for a system with 

double pulsing, indicates a need to be able to simulate the effects of dead time within a system with 

confidence. Simulated neutron pulse trains should be analyzed to produce their own RADs with the 

various dead time values across different models such that the intricate response may be compared to 

experimentally obtained RADs. 

Beginning with the first principles of the neutron capture in a 3He tube or a BCS, it would be 

extremely beneficial to track the formation of each neutron pulse, its resulting pulse processing and 

induced dead time, and the final time stamp on each event forming a simulated neutron pulse train. This 

would require extensive simulation packages including gas capture physics and simulations for the 

charged particle clouds, an electronics pulse processing simulation software, and neutron pulse train 

analysis software that could analyze the output of these combined simulations. Several existing codes that 

may be suitable for this analysis are discussed in the Future Work section of Chapter 8.  
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Absolute Source Measurements 
 

 

Neutron coincidence counters capture neutrons released by fission reactions in an item and 

convert the current generated through their related ionization interactions into logic pulses as a function of 

time. These detected neutron events, and their correlation over time, may be used with the point kinetic 

equations (PKE) to calculate the relevant sample effective mass in an NDA. When these neutrons are 

collected over a period of time using LMDA, a neutron multiplicity histogram can be generated from the 

frequency of the number of time correlated measured neutrons; where the number of zero neutron events 

measured in a set timing window following the initial triggering event, one neutron event in that timing 

window (singles), two neutron events in that timing window (doubles), etc. are summed over the 

measurement time [4]. Each isotope has a unique signature through this analysis, which allows for mass 

identification when paired with gamma spectroscopy.  

However, it is not simple to perform this NDA analysis. The PKEs are dependent on many 

potentially unknown parameters that must be determined by system characterization and calibration using 

standard sources in a laboratory or industry setting, and at the time of the NDA measurement in the field 

using the item under question. Some of these parameters include: the source’s spontaneous fission rate, 

the source’s induced fission rate (or sample self-multiplication, and its variation across the sample), the 

(α,n) reaction rate in the sample, the neutron capture in the sample, the spatial variation in neutron 

detection efficiency, the energy spectrum effects on detection efficiency of the system, and the neutron 

die-away time in the detector [4]. These parameters are taken from nuclear data, with associated 

uncertainties, through simulation, extensive characterization and calibration, and from estimates from 

fissioning source standards as a representation for 240Pu. It is therefore crucial to have reliable source 

standards and calibration methods with low associated uncertainties for a quantitatively accurate NDA. 

The strengths and characteristics of the source standards must be known to a high precision to avoid 

propagating significant errors further into the final determination of effective mass.  

Typically, 252Cf source standards are used. They are often certified sources, calibrated using a 

MnSO4 bath at a national standards laboratory [86] such as the National Institute of Standards and 

Technology (NIST) [97]. The accuracy of the national standards laboratory measurement emission is of 

the order of ±1%. A counting system’s efficiency can then be calibrated using the known 252Cf neutron 

emission rate, and then scaled for a 240Pu source using known nuclear data (energy spectra and 

multiplicity distributions) [4], and so a calibration for 240Pu neutrons can be obtained with a somewhat 

higher uncertainty. Other standards would suffice, and other calibration methods are possible [98], but the 

most commonly used approach implements 252Cf standards and relates the counting system’s performance 

to that expected when measuring 240Pu. Unfortunately, certified 252Cf sources typically require a several 

month lead time with high associated costs to produce and measure in the MnSO4 bath and have an 

approximate 2.65 year half-life so they must be replaced frequently. Also, numerous certified sources are 

necessary in facilities where a large variety of sample activities are used.  

Instead, an alternative method for self-certification of a 252Cf source using an-in house procedure 

to determine the absolute neutron output has previously been proposed and tested using neutron 

multiplicity counters [87] [88] [99]. This passive counting ABsolute Californium Determination (ABCD) 

method utilizes commonly–available safeguards resources to obtain a source strength estimation precision 

on par with national standard facilities’ capabilities. This is achieved by long measurement times, which 

are possible in a research laboratory, with low associated costs. In this approach, the correlated neutron 

counting technique is applied absolutely. This means that for the ABCD, the doubles neutron count rate 
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must be obtained at an effectively infinite gate width relative to the operating gate width of the system, 

and at a zero predelay; i.e., the measurement is independent of any timing settings traditionally set with 

these counters to collect the total number of neutron events interacting with the system.  

The neutron coincidence counting used for this analysis must also be characterized for dead time, 

die-away time, and any non-ideal behavior. Combining these system parameters, nuclear data for the 252Cf 

source neutron output properties, and applicable counting rates at the operational timing windows, 

provides the absolute determined neutron source output of the 252Cf in question.  

This has previously been achieved using traditional shift register logic, where multiple 

measurements were obtained independently and recorded for each of the different time windows selected 

[99], in addition to LMDA where a single pulse train was obtained and various timing settings were 

applied to the neutron pulse train in post–analysis [87] [88]. An in-house LMDA unit, the LMMM, was 

used for this testing at LANL [87] [88] in addition to the JSR-15 at ORNL [99]. 

This chapter investigates if this procedure can be extended from high efficiency neutron 

multiplicity counters to neutron coincidence counters, since the previous works used counters with some 

of the highest efficiencies of all safeguards counters, such as the Epithermal Neutron Multiplicity Counter 

[66]. Here a less efficient traditional safeguards counter, a variant of the Active Well Coincidence 

Counter [33], the LV AWCC, with the PTR-32 LMDA module is used.  Using neutron coincidence 

counters also restricts the data acquisition and PKE analysis to using the singles and doubles rates, rather 

than the singles, doubles, and triples as with neutron multiplicity counters. The procedure for this LMDA 

absolute measurement and extrapolation analysis is summarized, and the results of 3 separate 252Cf 

sources are compared to the NIST certificate. It also tests the precision of results found using the pairing 

of the neutron coincidence counter and LMDA.  

Because the same pulse train is sampled for the different timing windows using LMDA, unlike 

with a shift register measurement, the extrapolated count rate results are innately correlated. This 

complicates the uncertainty estimation, which influences the precision of the absolute source rate 

determination. For the first time various uncertainty estimations are proposed to account for this 

correlation. The impact of characterization parameter uncertainties is studied, in addition to the validity of 

the extrapolation analysis provided by the PTR-32 software. The uncertainty contributions generated by 

assumptions and approximations made throughout this procedure are also investigated.   

 

 Absolute Source Measurement 252Cf Certification Procedure 
 

The idea of ABCD is centered around determining the expected doubles count rate output from a 

neutron source, independent of any counting system timing parameters. To calculate these values, a zero 

predelay must be used to avoid eliminating relevant neutron events following the triggering event (Figure 

7.1). In addition, an effectively infinite gate width must be used to ensure that all neutron coincidence 

events are recorded relative to the triggering event (Figure 7.1). Then, an estimated value for the true 

doubles count rate can be obtained, as D(0, ∞). When these rates are known, they can be used with 252Cf 

nuclear data, and the doubles count rate at the standard operational timing settings, to calculate the 

absolute neutron output of the source. The absolute measurement result is ideally independent of the 

counting system used and therefore, the final value can be compared between detection systems assuming 

all detection parameters are understood and properly adjusted for in the calculation.   

The LV AWCC has been shown to have double pulsing, but it is not measurable until 1820 V 

which is well above the operational setting of 1700 V (Chapter 5). The LV AWCC is used in this work to 

perform the ABCD on three different 252Cf sources. These sources are referenced as FTC-CF-1830, FTC-

CF-3010, and FTC-CF-7009 and have source strengths of 222,528.323 nps with a rsd of 1.063%, 

91,136.480 nps with a rsd of 1.061% and 245,772.459 nps with a rsd of 1.074%, respectively, on their 

dates of relevant measurement. Source FTC-CF-1830 is certified through the NIST MnSO4, and Sources 

FTC-CF-3010 and FTC-CF-7099 have been cross–calibrated at ORNL using FTC-CF-1830; they have  
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Figure 7.1. (a) Extrapolated doubles count rate estimated for a 0 µs predelay with set gate width by fitting a range 

of measured data, ignoring charge collection and electronic effects. The structure seen between successive predelay 

settings is described in the next section.  (b) Extrapolated doubles count rate estimated for a 1024 µs gate width with 

set predelay.  
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not been NIST certified. To the knowledge of the author, the multiplicity counters used in previous works 

[87] [88] [99] have not been studied for evidence of double pulsing behavior in their A111-based boards 

(Chapter 5).  

The LV AWCC differs from the neutron multiplicity counters used in the previous works for this 

analysis [87] [88] as its design purpose is coincidence counting not multiplicity counting, its efficiency is 

approximately half that of the neutron multiplicity counters used, and its dead time is an order of 

magnitude longer. This analysis tests to see if the ABCD method is translatable between neutron 

coincidence counters and neutron multiplicity models.  

 The equations for calculating the absolute source output are developed in [87] and summarized in 

[88]. They consist of expressions for a lightly encapsulated 252Cf source, that with known system 

parameters and nuclear data, can be used to extract its yield, 𝑌. The focus here is on the expression that is 

only dependent on the singles and doubles count rates, as neutron coincidence counters are used. With 

LMDA or modern multiplicity shift registers, triples data is easily measured in neutron coincidence 

counters, but the counting time required for suitable precision is much longer.  

 

𝑌 =
1

𝑟2
𝑆 (

𝑆

𝐷(0, ∞)
) (

𝜈2/2

𝜈1
)                                                                             (7.1) 

1

𝑟2
=

(1 +
𝜈𝑑
𝜈1

)

(1 +
𝜀𝑑 𝜈𝑑
𝜀 𝜈1

)
2                                                                                       (7.2) 

In these equations: 𝑆 is the dead time corrected singles rate; 𝐷(0, ∞) is the extrapolated doubles count 

rate at zero predelay and infinite gate width;  𝜈1 is the first factorial moment of the 252Cf spontaneous 

fission neutron distribution (i.e. the mean number of prompt fission neutrons emitted per fission); 𝜈2 is 

the second factorial moment of the 252Cf spontaneous fission neutron distribution; 𝜈𝑑 is the mean number 

of delayed neutrons emitted per fission; and 
𝜀𝑑 

𝜀 
 is the ratio of the system’s detection efficiencies of 

delayed neutrons to prompt fission neutrons, which should be close to unity for a carefully constructed 

counter.  

 As described in [87], a majority of these values are well known through nuclear data references 

and can easily be entered into this calculation. Referencing the well-established work of [100] [101], 𝜈1 is 

given as (3.757 ± 0.010) prompt neutrons per fission produced for 252Cf. The experimentally determined 

estimate of the delayed neutron yield is taken from [102] [103] where 𝜈𝑑 is (0.0086 ± 0.0011) delayed 

neutrons per fission with a rsd of 0.27%. This results in a 
𝜈𝑑

𝜈1
 ratio of (0.00229 ± 0.00029) with a rsd of 

13% and a (
𝜈2/2

𝜈1
) ratio of (1.5901 ± 0.0043), with a rsd of 0.27%, using a 𝜈2 value of 11.953. Note, it is 

important that a physically small, fresh 252Cf source is used, such that the neutron production is dominated 

by 252Cf spontaneous fission and there no position–sensitive efficiency differences in the system influence 

the final analysis. Then, the nuclear data given for 252Cf may be applied with certainty to the expressions 

above.  

 The singles count rate is obtained directly from the neutron pulse train. It is independent of any 

timing windows set for coincidence analysis, so it only needs to be determined once per measurement. 

The measured singles count rate must be dead time corrected before it is used to determine the absolute 

yield of a source. A dead time correction must also be made to the measured doubles count rate. This can 

be done by using the equations given in Chapter 6 (Eq.6.1-6.3), so these parameters must be well defined 

through in-depth system characterization. These equations show no dependence of the dead time 

parameter on gate width, so a universal doubles dead time parameter can be applied, regardless of 

predelay and gate width used. In reality, this may not fully represent the dead time behavior, but this 

needs to be explored further through simulation. This is the assumption made here. The dead time of the 

LV AWCC was previously determined using the traditional empirical method of analysis presented; the 
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values of both the singles and coincidence dead times are reported in Table 7.1.  Due to the insensitivity 

of the dead time calculation to variations in the determined dead time parameters, a conservative 

systematic 5% uncertainty is assigned to this calculation. The dead time can be applied directly to the 

extrapolated doubles count rate determined for zero predelay rather than each of the calculated doubles 

rates in the 3.0-10.0 µs fit region. This is justified as the dead time correction is applied directly as a 

scaling factor to the measured rates, as given in Eq.6.3. With this linear extrapolation, the correction 

factor would have the same effect if applied to each of the measurement points, or directly to the 

extrapolated value.  It was verified that both methods return the same extrapolated rate. 

The extrapolated doubles count rate at a zero predelay is used in combination with the calculated 

doubles count rate at an infinite gate width to ultimately determine the doubles count rate independent of 

timing windows, 𝐷(0, ∞). This can be done by first extrapolating to an infinite gate width with set 

predelay, determining the saturation gate width setting, and then using that gate setting combined with 

varying predelay settings to extrapolate to zero predelay. It can also be done by taking the doubles count 

rate measured at the counter’s standard operational time windows, 𝐷(4.5, 64), the calculated doubles 

count rate at infinite gate width and set predelay, 𝐷(4.5, 1024), and the extrapolated doubles count rate at 

𝐷(0, 64), as shown in Eq. 7.3 [99].  

 

𝐷(0, ∞) ≈ 𝐷(4.5, 1024) ∙ [
𝐷(0, 64)

𝐷(4.5, 64)
]                                             (7.3) 

 

This relationship may be justified through the gate utilization factor (GUF) parameter, which represents 

the fraction of neutron coincidence events recorded in the specified gate window compared to that which 

would be recorded over all time in a measurement [104]. Here, the goal is to obtain a GUF of unity. The 

GUF is influenced by both the predelay and gate width timing windows set for the acquisition. A different 

neutron coincidence count rate will be recorded if either timing window is changed. Therefore, the GUF 

for a particular measurement can be described by both a predelay component contribution and a gate 

width component contribution. The first component is representative of the fraction of neutron 

coincidence events recorded when using the specified predelay setting, and the second component is 

representative of the fraction of neutron coincidence events recorded when using the specified gate width 

setting. This is reflected in Eq.7.3. This equation incorporates the calculated doubles count rate 

determined at the standard operating predelay value and infinite gate width, encompassing all possible 

coincidence events that could be recorded when using the system at a 4.5 µs predelay; the extrapolated 

doubles count rate determined at a zero predelay and standard operating gate width of 64 µs, which 

incorporates all neutron events that could be obtained in that set gate width; and normalizes these two 

rates to the doubles count rate that would typically be measured when using the system in a measurement 

at its standard operating time windows. 

Because the final source measurement uncertainty must be comparable or lower than what is 

achieved in the national certification programs, it is important to also take background measurements 

surrounding the long counts of the neutron source. Using the background singles and doubles count rates, 

a subtraction may be applied to the singles and doubles count rates measured with the 252Cf source. The 

reported doubles count rate is already a net value through the PTR-32 software subtraction of Accidentals, 

but a background count rate from the room and cosmic events also be accounted for. While neutron 

background is minimal in most laboratory measurement scenarios, it is still important to consider. This 

background subtraction will introduce an additional statistical uncertainty; therefore, the counting time 

should span for several hours for multiple acquisition cycles to minimize this contribution.  

It is also necessary to account for the differences in the efficiency of the counting system for both 

prompt and delayed neutrons such that an accurate correction may be applied using Eq.7.2 for the true 

absolute source output. These parameters can be obtained from measured data. It has been shown that the 

mean energy of the AmLi spectrum can approximate the average spectrum of delayed neutrons well [105] 

[106]. By measuring certified AmLi sources in the well of the LV AWCC, and using the well-known 
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source strength, the delayed neutron efficiency can be calculated for the system. AmLi has a very long 

half-life so the decay correction is minimal and introduces a small uncertainty. Then, for the 252Cf source 

an efficiency can also be measured. This efficiency is calculated for all 3 252Cf sources, and averaged, to 

ensure consistency and accommodate the slight calculated differences into the uncertainty. These two 

values are reported in Table 7.1. Then using these values, 
𝜀𝑑 

𝜀 
 is calculated to be (1.135 ± 0.027) and used 

in Eq. 7.2 for the final analysis. This ratio provides a small, but important, correction factor into the 

analysis to compensate for the slight differences in detection efficiency due to the energies of delayed 

neutrons also produced in measurement scenarios.  

It was mentioned that it is important that a fresh 252Cf source is used in these measurements. The 

half-life of 252Cf is 2.645 years. As 252Cf ages, 250Cf builds in. The average neutron number produced by 
250Cf differs from that produced by 252Cf. This would affect the nuclear data parameters used in these 

equations, and the associated measured doubles count rate, if the source contains a significant amount of 
250Cf. Therefore, the 250Cf contribution to the neutron output must be corrected for when using aging 

sources. For all three sources used, the 250Cf to 252Cf mass ratio were, 0.105 for FTC-CF-1830, 0.101 for 

FTC-CF-3010, and 0.136 for FTC-CF-7009. The known source strength values for each respective date of 

measurement, based on the given nuclear data certificate values, were all adjusted for the decay of 252Cf 

and build in of 250Cf contributions. The 250Cf contribution correction factor is very small. The nuclear data 

parameters used in Equations 7.1 and 7.2 are not changed from their original 252Cf values given. 

In addition, due to slight differences in the emitted neutron energy spectrum between 250Cf and 
252Cf, it is possible the detection efficiency of the system may be impacted by the presence of 250Cf. It is 

important to identify if this will influence measurements. The average energy of these neutrons may be 

estimated using [107] paired with system efficiency data obtained across a variety of sources having 

different mean energies. Since the ratio of estimated 
𝜀250

𝜀252  is (1.004 ± 0.004), this contribution can be 

assumed to be insignificant in this instance. Even if the 250Cf concentration was large, it wouldn't seem to 

be significant in terms of a correction factor to the calculated system efficiency due to the small 

difference in average energy values. If the average energy of various isotopes’ spectra differ significantly 

in another source undergoing certification, both efficiencies will have to be taken into account. 

 

 

Table 7.1. LV AWCC characterization parameters 

 Value Uncertainty 

System Singles Dead time (µs) 0.218 0.011* 

System Doubles Dead time (µs) 0.870 0.044* 

Delayed Neutron Efficiency (%) 39.51 0.40 
252Cf Neutron Efficiency (%) 34.81 0.75 

*A 5% systematic uncertainty is assigned to the dead time due to insensitivity 

of dead time parameters to slight variations 
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 Neutron Pulse Train Extrapolation to Zero Predelay and 

Infinite Gate Width using PTR-32 List Mode Data Acquisition 

and Analysis 

LMDA has the ability to emulate the same analysis performed by a shift register to determine 

singles and doubles count rates for neutron coincidence counters. LMDA records the total number of 

neutron events as a function of time over the full duration of measurement. In offline analysis, this 

neutron pulse train is then analyzed with relevant timing windows to determine rates and produce 

multiplicity histograms, if desired. A single measurement can be analyzed countless times with any 

combination of timing windows to generate the associated count rate for that combination, which saves 

valuable measurement time both in the field and in a laboratory setting by not having to repeat individual 

measurements for every timing window sampled, as would have to be done with a shift register. LMDA 

also allows for a greater in-depth study of the behavior of the counting system as each channel output may 

be studied for performance and individual characterization. By doing so, the efficiency, neutron die-away 

time, and dead time can be well described and understood such that multiple channels of one system may 

be used as a cross verification in a single measurement.   

An extrapolation to zero predelay is used from measured data obtained with longer predelays 

(Figure 7.1 a). Then, the doubles count rate can be calculated at an effectively infinite gate width while 

keeping the predelay constant (Figure 7.1 b); the predelay selected is the value traditionally used with the 

system in shift register analysis, e.g. 4.5 μs for D(4.5, 1024). The effectively infinite gate width should be 

chosen relative to the neutron die-away time of the system to ensure that all correlated neutrons will be 

captured in that timing gate. The neutron die-away time is the amount of time it takes a neutron to either 

get captured by the system or escape, and is typically on the order of 50 μs for standard well or collar 

neutron coincidence counters. For this work, 1024 μs is taken as the infinite gate width, but it will be 

shown later that the doubles count rate reaches a saturation value between 512 and 1024 μs that could 

instead be used as approximately infinite relative to the die-away time. There is little difference between 

the rates at these two settings; the slight variation stems from more accidental counts recorded in the 

longer gate width.  

Using the PTR-32 LMDA it is notionally possible to sample the pulse train with a predelay of 0 

μs, but that was discovered to be problematic. Entering 0 μs in the PTR selection window for the 

extrapolation to zero predelay allows the program to run, but it is clear that this analysis is not reliable at 

this setting based on the drastic increase in rate from a 0.25 µs predelay to no predelay (Figure 7.2). The 

calculated doubles count rate reported at this setting is also more than the singles count rate measured for 

the run, which is not physical.  

Therefore, it is necessary to extrapolate backward to a zero predelay from confidently reported, 

physically validated values. The measured doubles count rate can be obtained by sampling the pulse train 

at different short predelay values, ranging from 2.0-10.0 µs, while keeping the gate width constant 

(Figure 7.1 a). The gate width selected is the value traditionally used with the system in shift register 

analysis, e.g. 64 μs for D(0,64). Then, a trend may be applied to that data and extended backward to 

intercept at a 0 µs predelay. This trend comes from the traditional equation used in die-away 

determination,  

𝑅𝐺 = 𝑅0 𝐸𝑥𝑝 (−
𝑇𝑝


)                                                                        (7.4) 

where 𝑅𝐺 is the gated doubles count rate, 𝑅0 is the maximum calculated doubles count rate, 𝑇𝑝 is the 

predelay setting, and  is the die-away time of the system. By minimizing the sum of squared errors 

between this fit’s 𝑅𝐺 and the calculated doubles count rate given by PTR-32 software, in a chi squared 

analysis where 𝑅0 and  are the free variables, an accurate fit may be applied to the PTR-32 calculated 

data. The fit may, in principle, be generated from any number of data points across the desired range of  
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Figure 7.2. (a) Doubles count rate values over a range of predelays, including the PTR-32 calculated value at 0 µs 

illustrating non-physical behavior. (b) Doubles count rate values from 0.25 µs-10 µs, showing an expected count 

rate trend.  
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short predelay settings. This fit may then be extended backward using a linear trendline to a zero predelay 

intercept.  

The behavior of the doubles count rate over this short predelay range can be approximated as 

linear as 

𝑅𝐺~𝑅0 (1 −
𝑇𝑝


 )                                                                (7.5) 

through the Taylor expansion of Equation 7.4, or through taking the logarithm such that   

 

ln 𝑅𝐺 = ln 𝑅0 −
𝑇𝑝


                                                                        (7.6) 

if the system die-away time can be verified to have a single exponential decay trend, which is a good 

approximation for most common systems, and the predelay range used for this analysis is short relative to 

this die-away time.  

The calculated difference between setting a 0 µs predelay in PTR-32 and extrapolating to a zero 

predelay in an example 3.0-10.0 µs range, using Equation 7.3, is then given in Table 7.2. Additionally, 

the doubles count rate provided for a 0.01 µs predelay entered in PTR-32 is also compared. It is clear that 

these three methods of estimating an approximate D(0,64) provide values that are not in agreement within 

uncertainty, as may be anticipated by using different predelay settings which omits part of the neutron 

pulse train. However, one would imagine that the values determined by PTR-32 for D(0.01, 64) and by 

the least squares fit for D(0,64) may be in better agreement. The difference across these three approaches 

is caused by competing electronic effects in these respective time ranges, and the behavior of PTR-32’s 

analysis algorithms.  

 

 

Table 7.2. The different doubles count rate values estimated for an approximately zero predelay 

D(0.01,64) 

(cps) 

± 

(cps) 

σ D(0.25,64) 

(cps) 

± 

(cps) 

σ Extrapolated 

D(0,64) 

(cps) 

± 

(cps) 

σ 

27631.09 23.95 22.47 27549.46 23.93 24.01 28043.34 12.78 23.85 

 

 

In addition, when studying the results of PTR-32’s neutron pulse train analysis using 0.05 µs 

increments, it became evident that the doubles rates generated by the software exhibits non-physical 

microstructure. There is a very clear oscillation between the calculated doubles count rate across the 

different predelay settings. This behavior is shown in Table 7.3. This behavior results from the analysis 

software programmed within PTR-32 and will need to be addressed by its developers.  

The challenge with using PTR-32 is that there is no documentation on how the software performs 

its analysis. The user manual does not provide algorithms, nor how the pulses are handled along the pulse 

train. Although its performance has been characterized in depth relative to a common shift register 

module, as discussed in Chapter 2, there are instances where the validity of the PTR-32 results raise 

further questions, like at the 0 µs time setting and with these small changes in predelay settings. The same 

challenges are not reported, nor is data shown for a 0 µs setting or in 0.05 or 0.25 µs increments, in the 

LANL LMMM analysis for their absolute measurements [87] [88]. This software is an in-house LANL 

unit that is not available for this study. Because PTR-32 is the only current IAEA–approved LMDA 

module, it is used in this work, but in the future as more LMDA for neutron coincidence counters are 

developed, there may be opportunity for improvement. 
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Table 7.3. Doubles count rates for various predelay settings in 0.05 µs increments 

Tp (µs) D (cps) ± Difference from previous value 

3.00 26629.58 23.654 ----- 

3.05 26476.08 23.609 -153.500 

3.10 26575.21 23.638 99.130 

3.15 26421.05 23.592 -154.160 

3.20 26520.46 23.622 99.410 

3.25 26366.06 23.576 -154.400 

3.30 26465.18 23.605 99.120 

3.35 26311.66 23.559 -153.520 

3.40 26411.17 23.589 99.510 

3.45 26258.13 23.543 -153.040 

3.50 26357.45 23.573 99.320 

3.55 26203.63 23.527 -153.820 

3.60 26303.39 23.557 99.760 

3.65 26149.45 23.511 -153.940 

3.70 26249.30 23.541 99.850 

3.75 26095.73 23.495 -153.570 

3.80 26195.61 23.525 99.880 

3.85 26041.70 23.479 -153.910 

3.90 26141.48 23.509 99.780 

3.95 25988.28 23.463 -153.200 

4.00 26087.98 23.493 99.700 

4.05 25935.10 23.447 -152.880 

4.10 26034.90 23.477 99.800 

4.15 25881.53 23.431 -153.370 

4.20 25981.03 23.461 99.500 

4.25 25827.63 23.415 -153.400 

4.30 25927.43 23.444 99.800 

4.35 25773.68 23.398 -153.750 

4.40 25873.40 23.428 99.720 

4.45 25720.75 23.382 -152.650 

4.50 25820.72 23.412 99.970 

4.55 25667.60 23.366 -153.120 

4.60 25767.71 23.397 100.110 

4.65 25614.49 23.350 -153.220 

4.70 25714.90 23.381 100.410 

4.75 25562.05 23.335 -152.850 

4.80 25662.03 23.365 99.980 

4.85 25509.71 23.319 -152.320 

4.90 25609.50 23.349 99.790 

4.95 25457.73 23.303 -151.770 

5.00 25558.30 23.334 100.570 

5.05 25405.01 23.287 -153.290 
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Examining this behavior in larger increments of 0.25 µs, it is shown that each 0.50 µs multiple 

has a difference from its previous predelay setting of under 10 cps (Table 7.4). This means that two 

successive predelay settings are producing nearly identical count rates through this analysis; this is 

visualized in Figure 7.2 b. Specifically, it appears that the data follows a step trend between the 0.5/1.0 

µs  predelay settings and the 0.25/0.75 µs predelay settings where the count rate will drop significantly 

between this range, and then the successive 0.5/1.0 µs predelay data point measures a similar value to that 

value. Therefore, on the average the trend with predelay is correct as the doubles count rate is linearly 

decreasing. To proceed, then, we ignore this instrumental artifact in short predelay increments, and the 

extrapolation is sustained using data in 0.50 µs increments.  

One remaining point to be addressed is which 0.50 µs increments to use. For the 0.25 and 0.75 µs 

settings, the calculated doubles count rate is lower than what is calculated for the 0.50 and 1.0 µs predelay 

settings. Although using either grouping results in a consistent difference in count rate from setting to 

setting (Table 7.4), the extrapolated D(0,64) value will differ depending on the grouping selected. This 

difference is illustrated in Figure 7.3. However, this difference in the final effective D(0, 64) value is not 

large, 95 cps, so either choice would suffice. Thus, every 0.50 and 1.0 µs predelay settings is used in the 

following analysis. 

 

 

Table 7.4. Doubles count rates for various predelay settings in 0.25 µs increments 

Tp (µs) D (cps) ± Difference from 

previous value 

Difference in 

0.50 µs steps 

3.00 26629.58 23.654 ----- ----- 

3.25 26366.06 23.576 -263.52 ----- 

3.50 26357.45 23.573 -8.61 -272.13 

3.75 26095.73 23.495 -261.72 -270.33 

4.00 26087.98 23.493 -7.75 -269.47 

4.25 25827.63 23.415 -260.35 -268.10 

4.50 25820.72 23.412 -6.91 -267.26 

4.75 25562.05 23.335 -258.67 -265.58 

5.00 25558.30 23.334 -3.75 -262.42 
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Figure 7.3. The PTR-32–calculated doubles count rate for various predelays. The orange and blue data points 

show the oscillating values as given by PTR-32: orange is for every 0.25 and 0.75 µs predelay setting, blue is for 

every 0.50 and 1.00 µs predelay setting. Their extrapolation difference for the zero predelay intercept is 

highlighted. 
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Extrapolating to zero predelay is victim to dead time and charge collection effects. Dead time on 

the microsecond scale is unavoidable in 3He–based systems due to charge collection physics and the pulse 

processing time of associated electronics, and it is therefore always relevant in these systems, as discussed 

in the previous chapter. As the predelay decreases with a set gate width, the system starts collecting data 

closer to the triggering event which incorporates some of the dead period where the system cannot record 

any events. The averaged count rate then decreases with shorter predelays, compared to the same data at 

settings with a longer predelay which are not subject to dead time effects, as more of the dead period is 

included in the measurement time. This causes a “rolling over” behavior of the count rate (Figure 7.4 a 

and b), which further complicates applying an accurate fit to these data for D(0,64). To avoid these 

effects, the fit must be applied to data beginning at longer predelays. This introduces more uncertainty in 

the D(0,64) estimation as the extrapolation extends backwards over a greater range than if the fit could be 

used from 0.25 μs to estimate 0 μs.  

 To study this behavior, the FTC-CF-1830 neutron pulse train was analyzed with different 

predelay values, ranging from 2.0-10.0 µs, while keeping the gate width constant. The results are reported 

in Table 7.5. These values, and their associated uncertainties, are the average doubles count rate values 

and uncertainties calculated by PTR-32 across 20 cycles of acquisition, of 1 hour each, where the source 

placement and system placement remained constant. The uncertainties are low due to the high count rate 

and long measurement time. This was done, like in [87] [88], as a basic form of uncertainty estimation, to 

determine the statistical spread in the data as a check of self-consistency in the values generated. The 

decay of the 252Cf over this time range is verified to be negligible for this analysis. The average 

extrapolated D(0,64) value is obtained from the intercept calculated by a least squares fit applied to each 

cycles’ doubles count rate data for the fits.  

 

 

Table 7.5. The effective doubles count rate estimated 

for fits to the measured data in different predelay 

intervals 

Fit interval (μs) Eff. D(0,64) ± 

2.0-10.0 28,090.149 13.020 

2.5-10.0 28,066.572 12.908 

3.0-10.0 28,043.336 12.781 

3.5-10.0 28,020.026 12.634 

4.0-10.0 27,996.495 12.460 

4.5-10.0 27,972.419 12.252 

5.0-10.0 27,948.843 12.013 

 

 

As the starting predelay setting included in the fit increases in length, the final estimate of the 

effective D(0,64) decreases (Figure 7.4 c). Despite this change in D(0,64), the overall difference from the 

2.0-10.0 μs fit to the 5.0-10.0 μs fit is 141 cps (Table 7.5). Therefore, relative to the total count rate, this 

difference is not significant. For this analysis, then, the 3.0- 10.0 μs fit interval is used.  
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Figure 7.4. (a) Doubles count rate data as a function of increasing predelay setting with a fit applied from 2.0 µs- 10.0 µs and extrapolated backwards to 

determine the intercept for D(0,64). (b) Doubles count rate data with a fit applied from 5.0 µs- 10.0 µs. (c) The deviation of intercepts generated by different 

fits applied between a starting predelay range of 2.0 µs and 5.0 µs to 10.0 µs. 
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 Comparison of Neutron Coincidence Counting Absolute Source 

Measurements to NIST Certificate Values 

Data were collected in two hour acquisitions for each of the three sources: FTC-CF-1830, FTC-

CF-3010, and FTC-CF-7009. Recall, at the date of measurement, the calculated source outputs were 

222,528.323 nps with a rsd of 1.063%, 91,136.480 nps with a rsd of 1.061% and 245,772.459 nps with a 

rsd of 1.074%, respectively. The NIST certificate output for FTC-CF-1830, and the associated cross–

calibrated output values for FTC-CF-3010 and 7009, were decay corrected and the 250Cf contribution was 

accounted for in these values.  

Each measured pulse train was then extrapolated to a zero predelay using linear fits to the data 

ranging from 3.0-10.0 µs, and to an infinite gate width at 1024 µs (Figure 7.5). The final 𝐷(0, ∞) were 

used with Equations 7.1 and 7.2, the nuclear data given in Section 7.1, and the specific LV AWCC 

characterization parameters given in Table 7.1. The final calculated yields are reported in Table 7.6, with 

their ratios to the respective calculated source outputs. The ratios range from 0.9415 with the weakest 

source FTC-CF-3010 up to 1.0014 with the strongest source FTC-CF-7009. It is believed that FTC-CF-

3010 is older than it is quoted and has a much more significant 250Cf contribution. This would affect the 

comparison of the yield to calculated source output values if the proper 250Cf correction cannot be applied. 

Error is propagated through each calculation for all parameters involved that have an associated 

uncertainty. Source FTC-CF-1830 is analyzed across twenty cycles for an additional statistical 

contribution to its uncertainty. This is discussed in detail in the next section. For FCT-CF-3010 and FTC-

CF-7009, one two-hour measurement was obtained and the error from that measurement is propagated 

through. With all factors considered, these equations and the final yield result precision are ultimately 

governed by the confidence in the extrapolation fit parameters and assumptions made, and the counting 

precision. The calculated rsd for each source is less than that typically quoted on a NIST certificate. This 

is achieved by the long measurement time, and the in–depth LMDA characterization and associated 

analysis of the neutron coincidence counting system behavior.   

 

 

 

 

 

Table 7.6. Absolute source measurement yield comparison to the NIST certificate value 

 Y 

(nps) 

± 

(nps) 

rsd 

(%) 

Calculated 

output 

(nps) 

± 

(nps) 

rsd 

(%) 

Ratio 

Calculated 

output/Y 

FTC-CF-1830 219,649.34 *1,211.36 0.55 **219,716.12 2,339.26 1.06 1.0003 

FTC-CF-3010 96,794.97 422.76 0.44 91,135.51 967.34 1.06 0.9415 

FTC-CF-7009 245,426.19 1,149.42 0.47 245,772.46 2,638.41 1.07 1.0014 
*The uncertainty term for FTC-CF-1830 also includes the standard deviation of the extrapolated doubles count 

rate across 20 cycles of data described in the next section 
**FTC-CF-1830 has an associated NIST certificate from which the other 2 sources were cross–calibrated. The 

output value calculated here is from that certificate 
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Figure 7.5. (a). The measured doubles count rates obtained for various predelay settings for all three 252Cf 

sources. A linear fit is applied to each source’s data from which the 𝐷(0,64)  count rate value is calculated. (b). 

The measured doubles count rate data obtained for an infinite gate width, 𝐷(4.5,1024), for all three 252CF 

sources. 
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 Uncertainty Determination 

The final uncertainty value incorporates many different sources of error and uncertainty produced 

throughout this analysis. Beginning with the initial measured doubles count rate at the specific predelay 

and gate width settings, there is an affiliated counting statistics uncertainty. Then, with the LMDA 

analysis of these rates and the associated extrapolation to a zero predelay, there are additional uncertainty 

factors that must be considered.  

To test the relationship of the fit interval and the calculated yield, the ratio of the expected 

neutron output of FTC-CF-1830 to the NIST certificate values were analyzed using the different 𝐷(0,64) 

count rates estimated from the various fits presented in Table 7.5. Here, the impact of these differences is 

propagated through to the final calculation of the yield. The 𝐷(0,64) value, in combination with the 

constant PTR-32–calculated 𝐷(4.5,1024) and 𝐷(4.5,64) count rates were used to calculate 𝐷(0, ∞). All 

other factors in Equations 7.1 and 7.2 were kept constant for this comparison. The differences in the final 

ratio values are then due to the differences in the extrapolated values (Table 7.7). As reflected in this 

table, the omission of data in 0.5 µs predelay increments provides a 0.001 ratio change, in most cases, of 

the NIST certificate output to that which is calculated through the ABCD method. Therefore, it is 

necessary to include the uncertainty involved with the fit selection into the extrapolated doubles count 

rate. The associated doubles count rate difference across these different settings is propagated into the 

uncertainty. It is possible that in unfolding the different electronic contributions (dead time, charge 

collection effects, double pulsing) at short predelays through neutron pulse train simulation, and 

determining at what predelay setting there is still confidence in the resulting behavior of the doubles count 

rate, an optimal fit range can be specified in future work. This may improve the precision of the final 

yield. 

It is also shown that the selection of either a 512 µs infinite gate width or a 1024 µs gate width 

provides a 𝐷(4.5, ∞) doubles count rate that is in agreement within counting statistic uncertainty. Due to 

tradition, 1024 µs is used. Since the die-away is on the order of 50 µs, performing this analysis at 512 µs 

is long enough such that the doubles count rate behavior is saturated (Table 7.8), acting as an infinite gate 

width as well. The data analyzed with a 1024 µs gate width has a higher counting statistics uncertainty 

due to the greater contribution of Accidentals, which propagates through to the final uncertainty analysis. 

Although the doubles count rate at 𝐷(4.5,1024)  is used in the above analysis, the doubles count rate at 

𝐷(4.5,512) could also be used and provide a slightly smaller uncertainty.   

 Because this extrapolation method for an absolute source measurement utilizes the same neutron 

pulse train for list mode analysis with various predelay and timing gates, unlike with a shift register 

measurement, the data points are inherently correlated. This influences the fits applied to these data, 

which ultimately impacts the 𝐷(0,64) values. This complicates the uncertainty estimation for these 

calculated values, and the added uncertainty caused by this correlation must be taken into account in the 

final yield precision. However, reflecting this uncertainty is not straightforward. There are several 

methods that may be used to further determine uncertainties associated with the LMDA analysis and 

propagate them into the final ABCD calculation.  

The most commonly used method when working with list mode data, and the method used here, 

is performing statistical analysis of independent replicate counts. This is achieved by obtaining data in 

multiple cycles of acquisition without changing anything about the measurement system. The source and 

counter remain in place, and PTR-32 records data for the duration of the specified count time and iterates 

through the number of cycles specified by the user. With a shift register, it is necessary for the user to 

manually set the time settings before initiating a run; therefore, each measurement is independent of any 

other measurements taken across other settings. Although the calculated doubles count rates across a 

single pulse train have an inherent correlation, the values obtained at a specific setting are independent 

from cycle to cycle. These multiple cycles provide a spread in measured doubles count rate that is used to 

calculate an additional uncertainty term, as any measurement of that source at that setting could be 

expected to fall within this range of data, despite the correlation from point to point on one pulse train.  



 

 

184 

 

Table 7.7. A summary of the different doubles count rates of FTC-CF-1830 and associated 

yields calculated for various predelay range fits 

Fit interval 

(μs) 

Eff. D(0,64) 

(cps) 

D(0, ∞) 

(cps) 

D(0, 

∞)DTC 

(cps) 

Calculated Y 

(nps) 

Ratio NIST output/Y 

2.0-10 28090.149 39783.266 40432.967 219143.181 1.003 

2.5-10 28066.572 39749.874 40399.030 219327.270 1.002 

3.0-10 28043.336 39716.965 40365.583 219509.005 1.001 

3.5-10 28020.026 39683.951 40332.031 219691.616 1.000 

4.0-10 27996.495 39650.625 40298.161 219876.265 0.999 

4.5-10 27972.419 39616.528 40263.507 220065.508 0.998 

5.0-10 27948.843 39583.138 40229.571 220251.144 0.998 

 

 

 

 

 

Table 7.8. Doubles count rate values for two effectively infinite gate width settings at 4.5 μs 

predelay 

 512 μs 1024 μs 

 Doubles ±     Doubles ± 

FTC-CF-1830 36,436.91 87.71 36,314.60 126.38 

FTC-CF-3010 15,608.58 26.93 15,569.29 38.73 

FTC-CF-7009 40,969.79 69.50 40,961.13 100.30 
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Using FTC-CF-1830, twenty cycles of one hour counts were obtained using PTR-32 and the LV 

AWCC. Each of these neutron pulse trains was then analyzed to determine the doubles count rate with 

predelays ranging from 3.0-10.0 µs at a 64 µs gate width, a predelay of 4.5 µs with a 64 µs gate width, 

and a predelay of 4.5 µs with a 1024 µs gate width. The scatter in these rates is not large (Figure 7.6); over 

all 20 cycles the doubles count rate at 𝐷(2.5,64) has a rsd of 0.086 %. The scatter increases as the gate 

width increases; at 𝐷(4.5,1024) the rsd is 0.400 %. This helps show that the correlation associated with 

using list mode analysis to sample the same pulse train for various rates does not greatly impact the 

determined rates compared to the effect of counting statistics, but it is still something that should not be 

ignored when operating on a sub 1% precision measurement. For the 𝐷(0,64) total uncertainty, the 

counting statistics uncertainty, the fit range uncertainty, and the statistical spread across multiple cycles 

are added in quadrature to determine a combined value. For the 𝐷(4.5,64) and 𝐷(4.5,1024) total 

uncertainty, the counting statistics uncertainty and the standard error across these multiple cycles are 

added in quadrature and propagated through to the final yield uncertainty. The decay of the 252Cf source 

over this acquisition time had a negligible impact on the measured values, so it is not included in the 

uncertainty analysis. 

For the final calculation of the 𝐷(0, ∞) uncertainty rates performed here using the multicycle 

LMDA data, an extrapolated fit was applied to each of the twenty cycle’s data across the 3.0-10.0 µs 

predelay setting range, and an associated zero predelay value was recorded. An average extrapolated 

doubles count rate was taken across all cycles and the standard error was taken as the associated 

uncertainty. Therefore, it is important to have a large number of cycles for this analysis. This standard 

error is added in quadrature with the counting statistics uncertainty and the different fit range uncertainty 

to finalize a total count rate–LMDA uncertainty term. There is then dead time uncertainty, efficiency 

uncertainty, and nuclear data uncertainties, as they were all specified in the previous section, incorporated 

into the final yield uncertainty value.  

As an alternative to the multicycle acquisition, a single neutron pulse train could be separated into 

multiple cycles of data by dividing the measurement into shorter, multicycle neutron pulse trains. This 

could be done in software of the LMDA (not readily available with PTR-32 but it is available with other 

in–house LMDA modules), or possibly through bootstrapping the data. Bootstrapping the data could 

incorporate Monte Carlo sampling; the sequence of shorter count duration files could be analyzed by 

randomly picking some number of the cycles and analyzing the data for variation. The cycle lengths and 

the number of files analyzed could also be studied for their impact on the correlation analysis. Each of 

these new files can then be analyzed separately and their standard error could be propagated through to 

the final uncertainty analysis.  

There are other methods beyond sampling that are under investigation for the interpretation and 

analysis of the correlation across the pulse train. One avenue of interest is analyzing a RAD. A calculation 

for 𝐷(0, ∞) could be applied to the RAD using the PTR-32 0.1 µs time bins. The selected predelay can be 

applied such that data on the RAD below this setting is not included in the analysis, and data up through 

the desired gate width is summed. The RAD could then produce 𝐷(4.5,64), 𝐷(4.5,1024), and the doubles 

count rates obtained at a range of predelay settings for the extrapolation to zero. Through this analysis, 

including the successive summation of neighboring bins for a full gate width, it becomes clear that 

neighboring 𝐷(𝑇𝑝, 𝑇𝑔) settings, such as what is done for the extrapolation, share most data points and are 

therefore correlated. The goal of this method is to compute the full input covariance matrix for the linear 

fit that may be applied to these data for uncertainty analysis. 
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Figure 7.6. (a). The doubles count rate data for various predelay settings reported for twenty cycles of one hour 

acquisitions. The cut away investigates the scatter in the calculated doubles count rates over these multiple cycles 

for two specific predelay values. (b). The doubles count rate data for various gate width settings reported for 

twenty cycles of one hour acquisitions. The spread in the calculated doubles count rates increases with increasing 

gate width. 
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 Conclusion 

It has been shown that this previously developed ABCD method can also be used with readily 

available neutron coincidence counters and the commercially available PTR-32 LMDA module rather 

than expensive neutron multiplicity counters and in-house LMDA. These systems on average have half 

the efficiency and an order of magnitude longer dead time. It can be performed using either shift register–

based logic [87] or LMDA–based logic [88] and allow a user to self–certify a 252Cf neutron source in-

house with precision surpassing national metrological laboratories such as NIST. This mitigates long lead 

times and expensive price tags associated with the use of certified neutron sources, which are necessary 

for the calibration and characterization of neutron coincidence counters and NDA measurements. With 

the validation that this procedure can be used in traditional NDA laboratories, further progress has been 

made to establish the various sources of uncertainty contributing to the final certification precision, 

including correlations caused by list mode analysis of a single neutron pulse train. 

The applications of this approach extend beyond international safeguards or neutron time-

correlation counters. Although a neutron coincidence counter must be present to perform this analysis, 

once the source strength is known it can be used in a variety of applications. One application could be 

calibrating other neutron detectors, for a wider neutron counting audience and metrology focus. Having 

the ability to self-check a source after certification, or after some time has passed since its manufacturing, 

is an added benefit to any laboratory, and this method lends itself for straightforward source checks as 

well.  
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Summary of Research Findings 
 

 

This dissertation proposes and addresses advancing the field of neutron coincidence counting for 

international safeguards through the characterization and implementation of a list mode data acquisition 

(LMDA) system and affiliated advanced data analysis techniques, in combination with an improved 

counter system design using modern prototype electronics. These modifications will improve the 

functionality of currently deployed systems by augmenting their measurement capabilities, in addition to 

enabling enhanced analysis techniques. This allows for in–depth detector characterization, calibration, 

and optimization procedures based on physics first principles rather than traditional empirical methods; 

ultimately leading to improved performance and more confidence in a system’s reliability.  

Others have focused their efforts on the design and evaluation of novel systems over the last 

couple of decades. The traditions associated with current systems, including the thousands of systems 

deployed worldwide, and their associated infrastructure and man hours dedicated towards training on 

them, do not readily lend themselves to the easy adoption of new technologies. Furthermore, today the 

amount of nuclear material and the number of nuclear facilities under IAEA safeguards is growing 

steadily, placing increasing demands on limited resources. Instead, this research addresses the need to do 

more with less. Drawing from advancements in other related fields, and commercial–off–the–shelf 

technology, cost–effective improvements are shown to be viable and beneficial to the operation of these 

systems. These upgrades may be incrementally introduced into existing systems in order to provide a 

complete refurbishment without large associated overheads. 

The research topics presented in this dissertation to realize these goals include: substituting list 

mode data acquisition and analysis for shift register–based analysis, which enables simultaneous 

multichannel data acquisition and an in–depth investigation into the behavior and performance of the 

system; the testing, evaluation, and optimization of preamplifiers designed at ORNL as implemented on a 

Uranium Neutron Collar; using an advanced system design to perform 18 channel count-rate-based spatial 

response measurements; diagnosing and quantifying double pulsing in currently-used preamplifiers; 

calculating dead time for systems, with and without double pulsing, and for an increasing number of 

preamplifiers, using more physics–based approaches; and using these technologies to expand the 

applications of neutron coincidence counters to include absolute source measurements that allow for 

source certifications with a <1% relative standard deviation, a precision surpassing that of national 

metrological laboratories such as the National Institute of Standards and Technology.  

A majority of the research presented here was in direct support of, or inspired by work performed 

for, a Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation 

Research and Development funded project, the “List Mode Response Matrix for Advanced Correlated 

Neutron Analysis for Nuclear Safeguards.” The new List Mode Response Matrix method provided an 

avenue for the study of the use of LMDA, modern electronics, and advanced measurement procedures, 

with a focus on source positioning location using a maximum number of counter system channel outputs. 

During the first stage of this project, the use of the commercial–off–the–shelf PTR-32 LMDA 

was evaluated with the Mirion Technologies (Canberra), Inc. JCC-71 UNCL [30]. A translatable counting 

system characterization procedure was developed here, for the first time, using LMDA. This involved 

work which expanded upon current traditional neutron coincidence counting characterization procedures, 

theory, and equations that the field is accustomed to, meanwhile exploiting the greater information 

revealed through LMDA for a detailed representation of system behavior. Through this research, it was 

shown that this procedure is compatible with traditional analysis methods performed, and ensures that the 

results acquired have the same, if not more precise, results as shift register–based analysis methods. 
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LMDA can also be used to gain more in-depth understanding of the system performance through 

individual channel characterizations as well. This LMDA procedure and analysis is published in a peer 

reviewed journal article in Nuclear Instruments and Methods in Physics Research Section A: 

Accelerators, Spectrometers, Detectors and Associated Equipment (NIM A).  

Parameters such as coincidence time windows, dead time, efficiency, die-away time, and non-

ideal double pulsing were explored in new ways through detailed analysis of the neutron pulse train using 

LMDA, that are not possible using traditional shift register logic due to the prespecified timing windows 

and number of signal inputs. This permits a high-fidelity physics-based understanding of these systems 

with a detailed representation of all the characterization parameters and their sources of error across all 

system channels.  

This characterization analysis also led to the diagnoses of several non-ideal behaviors within the 

A111 preamplifier electronics present in most neutron coincidence counting systems, and the PTR-32 

module. A HV instability was found within the PTR-32 module, which influences the measured count 

rates if insufficient filtering is present within the counting electronics. Double pulsing was measured in 

the Mirion Technologies JAB-01 preamplifier/amplifier/discriminator boards across different neutron 

coincidence counting systems, as well as in the Antech N2071 UNCL implementing the Amptek A111 

chip, for a range of high voltage (HV) settings– including the operational HV in the UNCLs. Double 

pulsing falsely elevates the measured count rate and will affect a nondestructive assay measurement in 

addition to characterization and calibration measurements  Here, the source of this behavior was isolated 

to the A111 for the first time and new methods for diagnosing and quantifying this behavior in a system 

are provided using both LMDA and shift register–based analysis. These findings are presented in two 

other journal articles within NIM A.  

During the second stage of the List Mode Response project, new preamplifiers were tested, 

evaluated, and optimized using the appropriate coincidence counting procedures and software. It was 

shown through extensive testing that these ORNL prototype boards match the performance of the JAB-01 

board when used within the UNCL, can be made to fit within the existing counter footprint, are 

translatable and scalable to other neutron coincidence counting systems with few modifications (as 

verified with the evaluation of a prototype for a coincidence system implemented at the ORNL High Flux 

Isotope Reactor Neutron Activation Analysis laboratory), and do not contain double pulsing within the 

operational HV settings. These electronics may then be a suitable alternative to the JAB-01 or A111. 

Count rate–based spatial response measurements were then successfully performed using the 

modified JCC-71 with the prototype electronics and a 252Cf source. The 18 channel outputs were analyzed 

using PTR-32 for various source placements and compared to an MCNP simulation. The simulation 

results were used to show the physical performance of the simulated JCC-71 was in agreement with the 

true physical system, despite source certificate uncertainties, such that this simulation may be used as a 

benchmark after further optimization.   

In addition, neutron coincidence counters have successfully been used to self–certify 252Cf 

sources at ORNL with a precision surpassing that of national metrological laboratories using LMDA 

methods for the first time. Previously much more efficient multiplicity counters, with an order of 

magnitude less dead time, were used at LANL to perform these measurements. The experimental 

procedures, analysis methods, and results described for these absolute source measurements may expand 

the application of neutron coincidence counters and assist with addressing nuclear data uncertainty 

concerns. With a better understanding of the influence of dead time on the neutron pulse train, the 

precision of these certifications may be improved even further.  

  

 

Currently, list mode capabilities are not being fully utilized in safeguards neutron coincidence 

counting systems or by corresponding analysis methods. LMDA is only used in research and laboratory 

environments and is not routinely used in the field by nuclear safeguards inspectors. With these new 

developments presented throughout this dissertation it is possible that LMDA may be more easily adopted 

for international safeguards inspection applications, and the additional capabilities of these analysis 
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procedures may be exploited for further advancement of these systems. Ultimately, the combination of 

these improvements and discoveries help achieve the goals of modernizing the field of neutron 

coincidence counting in a cost-effective manner. The research problems addressed throughout this work 

help reconcile the current limitations facing both inspectors and researchers and lead to further avenues 

for development and expansion of the relevance of neutron coincidence counting beyond international 

safeguards applications. 

 

 

 Recommendations for Future Work 
 

 Absolute Source Measurements 

The ability to self–certify any neutron source using a neutron coincidence counter and LMDA, as 

an extension of the absolute source method presented here for 252Cf sources, would make system 

calibrations for NDA measurements more straightforward because representative source standards are not 

easily accessible in either inspection applications or laboratory settings. By having a 240Pu source standard 

with a neutron output known to ±1%, the efficiency of a neutron coincidence counting system no longer 

needs to be calibrated using a 252Cf standard and then scaled for a 240Pu source response using known 

nuclear data (energy spectra and multiplicity distributions). This allows the NDA calibration procedure, 

using the point kinetic equations, to be independent of any associated nuclear data uncertainties that often 

contribute to an overall measurement. The absolute source method may therefore be extended to self-

certify well-known 240Pu sources in future work. The absolute source method may be applied to certifying 

other neutron sources as well, based on interest. 

 

 The List Mode Response Matrix 

Although the work presented in this dissertation provides a successful experimental proof of 

concept, in order to complete the List Mode Response Matrix project goals, a second phase will be 

necessary. This phase will have a strong computational focus including machine learning and sizeable 

MCNP components in order to accurately develop a library of fresh fuel pin diversion scenarios such that 

a measurement could, in live time, correlate decreased count rates with a localized position within a 

complex assembly related to the diversion. This will also require the development of an external pulse 

train processing code that can efficiently perform all combinations of channel logic coincidences in 

software. Then, the measured matrix will have to be compared to the simulated expected matrix for that 

particular fresh fuel assembly and measurement condition, to compare if there is a localized difference in 

count rate. The minimum detectable differences will also have to be studied for their application and 

relevance. 

 

 A New List Mode Data Acquisition System 

Through the extensive use and study of the PTR-32 LMDA module for this work, it has become 

evident that it will be necessary to either improve the current, or design a new, LMDA module. Several 

significant shortcomings of the PTR-32 hardware and software were revealed in different facets of its use 

and testing. Currently, PTR-32 is the only IAEA–approved LMDA hardware and software. Although 

there are several other functioning in-house LMDA modules, such as the List Mode Multiplicity Module 

[38] at LANL, many are laboratory–specific, and are not well documented for use, nor commercially 

available. Over the duration of this research more LMDA modules have been under development, such as 
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the Antech N2000 Universal Neutron Counter [108]; however, none of which have been characterized 

alongside the PTR-32, nor any shift register, for performance testing and none have yet been approved for 

use by the IAEA. Unfortunately, due to the untimely death of PTR-32’s designer, Jozef Huszti, it is 

uncertain at this time if the company will maintain his work and continue to make improvements on this 

module in collaboration or not.  

First and foremost, it is imperative to have sufficient documentation regarding a data acquisition 

module and its affiliated software. There were many instances during the use of PTR-32 where questions 

would arise regarding its capabilities and the actual mathematics surrounding an analysis subroutine in its 

software. Oftentimes this would result in directly contacting Dr Huszti. As discovered in Chapter 3, the 

HV supply provided by PTR-32 is unstable. When used with a system with minimal filtering, the 

instabilities become evident and clearly interfere with the measured neutron signal. Although current 

JAB-01 boards appear to have sufficient filtering that make them immune to the fluctuations in HV 

during a measurement, this behavior is not acceptable for a commercialized system. The hypothesized 

Cockroft-Walton circuit providing the HV could be replaced by a more stable design. There are other 

deficiencies in the analysis subroutines, ranging from simple limitations such as file path input lengths to 

complex limitations such as the user manipulation required to unfold, subtract, or place in logic 

coincidence, individual channel neutron pulse trains. In addition, there are several supplemental functions 

and features of analyses that would benefit the community and expand the applications of LMDA. This 

would incorporate the work of an electrical engineer to design the circuitry, a neutron coincidence 

counting expert to outline all of the mathematics and analysis procedures that the module must 

accomplish, and a computer scientist who can efficiently program and execute these analyses into 

routines and subprograms within a user–friendly software. This prototype would then need to undergo 

extensive testing and evaluation for robustness and completeness compared to other LMDA modules. 

 

 Modern Electronics and Advanced System Designs 

The prototype electronics presented here may undergo further development such that they could 

be readily adopted into preexisting systems without a large overhead burden. Since they rely on modern 

commercial–off-the–shelf products, they are easily accessible and are designed to be affordable. In doing 

so, the more preamplifiers used in a system, the smaller the 3He tube groupings, and the more detailed 

information may be obtained of a system’s performance in a characterization and calibration 

measurement. Then, using these advanced system designs, neutron coincidence counting may be more 

widely applied to measure complicated items, with better calibration procedures; ultimately leading to 

improved performance and spatial response measurements. In addition, the more preamplifiers used, the 

shorter the system dead time. This will effectively improve system efficiencies without modifications to 

the system geometry, as more counts can be recorded due to less loss. More dead time simulation, from 

physics first principles, will be necessary to quantitatively assess these improvements and evaluate how 

best to characterize this parameter fundamentally. 

 

 Dead Time Modelling Using Monte Carlo Simulation Codes 

To first perform a reliable dead time simulation benchmark, it must be established that double 

pulsing will not be present. Once this is established, various dead time models and correction factors may 

be studied by applying them individually to a simulated neutron pulse train response. The simulated data 

can be compared to experimental data taken with the system to determine which model, if any, fully 

represents the physical behavior of the system. Once the correct model can be verified, successful 

corrections may be applied to the pulse train. Then, these simulation platforms may be modified to 

include a double pulsing contribution, in addition to a dead time contribution, to propagate through to the 

analysis. This would hopefully encompass the full behavior expected to be measured in a system and 
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provide a simulation benchmark to accurately characterize any neutron coincidence counting system’s 

dead time prior to an NDA measurement–whether it contains double pulsing or not.  

MCNP is the “gold standard” simulation package for safeguards studies. The source–counter 

interaction, including nuclear fission probabilities, neutron thermalization and the successive particle 

tracks throughout a volume can be simulated and the results reported in a readable format. The code 

depends on the correct geometry input, source definitions, and specified tallies. For neutron coincidence 

counters, spontaneous and induced fission sources may be included in the source definitions using nuclear 

data libraries, and the 3He capture physics is modeled using the correct physics cards and system 

geometry across a wide variety of systems. Tallies can then be produced that indicate the desired 

interaction in the system, which can be related to the measured coincidence rates using timing windows. 

However, MCNP does not account for detector electronics effects, reporting answers assuming perfect 

electronics. 

There have been several efforts over previous decades to develop and test various Monte Carlo 

codes for the applicability to neutron coincidence counter measurements [109] [110] [111] [112] [113] 

[114] [115] [116].  These various platforms seek to be directly compatible with MCNP while also 

introducing additional data and capabilities that are directly applicable to neutron coincidence counting 

for safeguards. They pair the preexisting capabilities and reliability of MCNP to simulate the neutron 

radiation transport within the sample plus detector system with external codes that allow simulation and 

analysis of this response into neutron pulse train data. These external codes, named differently across 

these various projects, have similar goals and functionalities. They may provide easily referenced 

multiplicity distribution nuclear data for 252Cf and 240Pu spontaneous fission sources for direct inclusion 

into the input file, and also incorporate the influence of the electronics pulse processing behavior on the 

pulse train. These data are then analyzed as they would be experimentally using shift register or LMDA 

logic with relevant timing windows.  The success of these codes has been tested across their niches, but 

the platforms have not become readily available to the general safeguards community. 

 In more recent years, an example of a combination Monte Carlo code, the MCNP-PTA (Pulse 

Train Analysis) [115] [116] has been created and evaluated across various neutron coincidence counting 

systems. It adds a special module to MCNP to enable neutron coincidence counting while including the 

complete distributions of the neutron number probability to improve simulation precision to experimental 

values. It then uses the output from a successful MCNP run to form a Pulse Information File which is 

read into the Pulse Train Analysis file for final analysis. Here within the PTA the neutron pulse train is 

created. The program calculates the dead-time losses created through the electronic pulse processing 

chain, and finally performs the neutron analysis using predelays and gate widths for a direct comparison. 

The MCNP-PTA has been compared and its performance verified with experimentally obtained values 

obtained with various counters and sources: fresh fuel assemblies in a JCC-73 Collar and a low enriched 

uranium standard [115], MOX fuel assemblies, AWCC, and a High Efficiency Passive Counter [116]. 

However, the MCNP-PTA is used in-house at the JRC on their respective cluster and is not openly used 

across the community for similar simulations.  

An MCNPX input deck paired with a bespoke C++ pulse analysis code were used and reported in 

[117] for dead time studies. The combination of the MCNPX PTRAC output analysis, and the C++ pulse 

train analysis/ shift register simulator, allowed the author to overlay perturbations on the simulated pulse 

train using a single system dead time parameter, according to the chosen model. This analysis was done 

considering either the paralyzable and non-paralyzable dead time models. New dead time correction 

approaches were also studied through these simulations, which would benefit the discussion in Section 

7.2. Ultimately, the author suggests future areas of work with her code could address multiple channel 

analysis as would be available in the multi preamplifier neutron coincidence counter and 3He pulse shape 

variation that would encompass double pulsing effects.  These suggestions echo the needs that this 

dissertation outlines for future study and quantification.  

The codes discussed here are not exhaustive of the efforts put forward by the community. Some 

of these codes may no longer be supported due to the new versions of MCNP. As discussed in [117], the 

ESARDA NDA working group held several benchmark exercises for the community to develop and test 
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the performance of various pulse train analyses programs, and additional work is consistently ongoing to 

better represent the dead time parameters for a system through theory and experimental analysis. MCNP 

is continuously improved, and in-house codes are made to address certain research challenges. However, 

the development and evaluation of these complete codes have formed several scientists’ dissertations and 

various teams of scientist’s efforts over years of work. Therefore, it is evident that further development of 

these codes, with the inclusion of double pulsing effects connected to dead time simulation, would require 

a lengthy effort and should be considered for future work. These particular codes are discussed here as 

feasible platforms to build this extended analysis from.   

 Alternative Monte Carlo codes have also been developed to perform similar analyses to MCNP. 

A program has been written by ORNL scientist Scott Stewart to address part of this challenge for 

safeguards. The Monte Carlo Simulator of Point Model Neutrons (MASTODON) Software Application [ 

118] was written as a means to easily use the point model assumption of neutron behavior in a counter, 

for appropriate neutron sources, to generate a neutron list mode pulse train. Paired with the source 

specifications and system characterization parameters, the user may define input probabilities of various 

interactions based on the source desired. Multichannel systems with individual preamplifiers can be 

simulated individually, with known parameters, and included in the pulse train output. This software 

builds on the work of a previous application called Simple Neutron Simulation that LANL used to 

simulate pulsed neutron data [119]. In order to read out the neutron pulse train, an additional external 

code is needed to apply the appropriate timing windows for analysis. The simulated pulse train can then 

be compared externally with the measured neutron pulse train to draw comparisons in the external pulse 

processing code. 

MASTODON outputs a neutron pulse train in a shorter time duration than full neutron transport 

codes. It also does not require extensive input decks, but rather user specified parameters that can be 

obtained from experimental setups and easily accessible nuclear data. It can be used in implementations 

where the application could still be studied using a point model assumption of neutron behavior, and it is 

not intended to serve as a replacement for MCNP simulations, but instead as an alternative simulation tool 

for the applications where the robustness of the codes is not needed. For the relevance to this section, 

MASTODON’s primary purpose was to further the exploration and understanding of dead-time 

phenomena in neutron counting for safeguards applications. Currently, as it sits, MASTODON would 

need modifications to the code in order to allow for in depth analysis of dead time effects throughout the 

pulse train. Currently, the user inputs a set dead time value which is then applied to the program’s 

analysis using the non-paralyzable assumption of dead time. It does not incorporate double pulsing 

contributions in its analysis.   

Geometry and Tracking (GEANT) is another Monte Carlo simulation package that is more 

widely used outside of the field of nuclear safeguards, for in depth object-oriented radiation simulations 

[120]. GEANT is open source and based on C++ coding, with a more complex user interface than MCNP 

as essentially every parameter may be specified and modified by the user. It allows for simulating the 

passage of particles through matter through a range of functionality including tracking, geometry, physics 

models, and hits. The physics of the particle creations, interactions, captures, and digitizations are all 

incorporated in the code. However, the user must provide their own analysis of the detector response, 

specific to their electronics used, the application of their work, and the successive information desired. 

Here, it may be possible to include electronic artifacts in the final simulation output response, but the 

complex nature of GEANT is often a deterrent for more basic counter system modeling and performance 

testing.  

Each of these codes may be possible avenues for future modification and in-depth studies of both 

the correct dead time analysis method, and the effect of double pulsing paired with dead time effects on 

the resulting neutron pulse train. Other platforms not discussed here may also be suitable with proper 

tailoring. With the ability to simulate the full lifetime of a neutron event within a neutron coincidence 

counter, from birth from the source to thermalization, capture, electronic pulse processing, and final 

record on the neutron pulse train, simulated data can be directly compared to experimental data taken. The 

RADs may be compared through this analysis, and the neutron pulse trains resulting from different dead 



 

 

194 

time approaches and models may be studied to determine the model that best represents these systems, 

independent of double pulsing effects. This behavior would then be grounded in physics first principles 

and not reliant on empirical methods. Then, the analysis could be extended to include the convolution 

between dead time effects and double pulsing effects. Having the additional ability to simulate multiple 

neutron pulse trains, for the multichannel preamplifier systems, allows an estimation of the optimal 

number of preamplifiers for the system to minimize dead time losses during a NDA. 
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