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ABSTRACT 

A series of ion irradiation and annealing experiments have been performed on 

Zr52.5Cu17.9Ni14.6Al10Ti5 “BAM-11” and Cu60Zr20Hf10Ti10 bulk metallic glass (BMG) specimens to 

evaluate their irradiation- and temperature-induced microstructural and mechanical property 

evolution.  These experiments covered four main themes, namely, ion irradiation, neutron 

irradiation, thermal annealing, and helium implantation.  For the ion irradiations, samples were 

exposed to 9 MeV Ni and 5.5 MeV C ions at temperatures ranging from room temperature to 360 

oC.  For the Ni ion irradiations the samples were exposed to midrange (~1.5 m depth) doses of 

0.5 and 10 displacements per atom (dpa), while the C ion irradiations samples were irradiated to a 

midrange dose of 0.5 dpa.  For the neutron irradiations, samples were irradiated by neutrons (E > 

0.1 MeV) at ~70 oC to fluences of 1.4 × 1020 n/cm2 and 1.4 × 1021 n/cm2 (doses of 0.1 and 1 dpa).  

Thermal annealing experiments involved heating the samples to various temperatures ranging from 

25 - 770 oC.  For the helium implantation experiments, amorphous and partially crystallized BMGs 

were exposed to helium fluences of 2 × 1015 and 5 × 1015 cm-2.  The mechanical property and 

microstructural characterization included nanoindentation, compression testing, bend testing, X-

ray diffraction (XRD), neutron diffraction, thermal desorption analysis (TDS), and nuclear 

reaction analysis.  From the experiments, several important conclusions were obtained.  The results 

of the XRD and nanoindentation characterizations of the ion irradiated and thermal annealed 

specimens indicate good stability during irradiation at 25 to 290 oC up to at least 10 dpa but suggest 

that the BAM-11 BMG is not suitable for irradiation environments where temperatures exceed 300 

oC for prolonged periods of time.  As for the neutron irradiation and thermal annealing 

experiments, significant softening was observed in the sample irradiated by neutrons, while post-

irradiation annealing led to a marked increase in hardening.  Neutron diffraction results indicated 
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that primary knock-on events caused rejuvenation (disordering) while annealing resulted in 

structural relaxation.  The results of the TDS experiments found that for the lower He implantation 

fluence, He desorbed more quickly in the partially crystallized alloy, indicating a structural effect 

on the mobility of He.   
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1.1 Nuclear Fusion Energy 

The future of the world will depend on the generation of energy that is both 

environmentally sustainable and economically viable [1].  One source of energy that can meet both 

requirements is nuclear fusion, which relies on the fusing of smaller atoms to generate power [2]. 

Decades after the discovery of Einstein’s famous mass-energy equivalence principle [3-6], 

scientists began pondering whether energy could be harnessed not only from the breaking apart of 

atoms [7], but also by fusing them together [8].  The fusion process typically involves light 

particles such as deuterium and tritium, and can be succinctly described by the following equation 

[9]: 

 

 

where D is the deuteron, T is the tritium, He is the helium, n is the neutron, and Q is the energy 

released (in the form of heat) as a byproduct of the reaction.  To overcome the coulombic repulsive 

forces of the fusing nuclei requires kinetic energies on the order of ~20 keV to achieve the fusion 

reaction rates appropriate for commercial energy production [1].  The above energy corresponds 

to fuel temperatures exceeding ~2 × 108 oC.  Interestingly, this type of reaction is exactly what 

happens in the sun on a regular basis.  Thus, scientists are trying to obtain the equivalent of the 

philosopher’s stone in the modern age, that is, to harness the power of a star inside a facility that 

is no larger than a typical sports arena. 

The resultant heat of the reaction then transforms a working fluid circulating past the 

reactor core into steam which drives a turbine.  The motion of the turbine produces electrical 

energy which is used to power nearby residential areas or other infrastructure.  It is estimated that 

  

𝐷1
2 + 𝑇 → 𝐻𝑒2

4 + 𝑛     ;       𝑄 = 17.59 𝑀𝑒𝑉0
1

1
3  

 

(1-1) 
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the fusion of one gram of hydrogen equals the thermal energy released from burning ~ 5,000 

gallons of gasoline or 20 tons of coal [10].  From the above statement, one can clearly see how 

important this vital source of energy will be as the amount of available fossil fuel dwindles in the 

coming years. 

One of the earliest fusion reactor concepts was the Tokamak, as proposed by Sakharov in 

1952 [11].  A schematic of the tokamak is displayed in figure 1-1 [12].  As can be seen, the tokamak 

consists of various components, which include transformer coils that induce the toroidal current, 

and outer poloidal field coils that position and shape the plasma.  Furthermore, the toroidal plasma 

current, which is induced by the behavior of the transformer, produces the poloidal magnetic field 

current which flows in the plasma.  For more details on the basics of Tokamak reactors, please see 

[13-16]. 

 

 

 

 

 

 

 

 

Figure 1-1 Schematic of a tokamak.  The toroidal current is induced by a transformer and the outer 

poloidal field coils are used to manipulate and shape the plasma (from Ref. [12]). 
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More recently, ITER [17] was created as an ambitious energy project with the intent of 

building the world’s largest tokamak.  One goal of the project will be to produce 500 MW of power 

from only 50 MW of input heating power (Q = 10).  As a comparison, the TFTR device in the 

USA achieved a Q value of 0.27 in the mid 1990’s [18].  Figure 1-2 presents a cross-section of the 

ITER tokamak, which includes the position dependent total neutron fluxes and a comparison of 

the calculated fast neutron fluences for several key components in ITER and in a demonstration 

fusion reactor [18].  It should also be stated that the results of the position-dependent total neutron 

fluxes were based on the work of R. Feder & M. Youssef, while the neutron fluences for several 

key components in ITER were based on input from M. Sawan. 

 

 

Figure 1-2 View of the neutronics of the ITER tokamak with (a) a comparison of the calculated 

fast neutron fluences for several key components in ITER and in a demonstration fusion reactor 

and (b) the position-dependent total neutron fluxes (from Ref. [18]). 
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1.2 Material Challenges in Fusion Energy Systems 

Similar to nuclear fission energy systems, which are subject to a host of material 

degradation issues such as swelling, stress corrosion cracking, and fuel-cladding chemical 

interactions [19-26], numerous factors must be considered in the selection of structural materials 

for fusion energy systems.  These factors include material cost and fabricability, mechanical and 

thermophysical properties, radiation effects (degradation of properties), chemical compatibility 

and corrosion issues, and nuclear properties [27].  Inside the region where the plasma flows, the 

facing material must be able to perform various functions [11].  These roles include sustaining the 

impact of the energetic particles associated with the plasma, transfer a heat load ranging from 0.5 

to 1 MW/m2 emanating from the plasma to a cooling medium, and be able to withstand high heat 

loads associated with anomalous behavior such as disruptions, and to minimize the tritium 

retention.   

In addition, structural materials must operate at elevated temperatures for extended 

lifetimes under severe conditions, including high fluxes of high energy (14 MeV) neutrons [28].  

These materials will be submitted to a high heat flux of energetic particles (0.1-20 MW/m2), high 

temperatures (775-3475 K), electromagnetic radiation, sputtering erosion, blistering and 

exfoliation, and high levels of neutron-irradiation (3-30 dpa/year) [29].  A summary of the possible 

types of interactions between energetic particles comprising the fusion plasma and exposed 

material is displayed in figure 1-3 [18, 30].  As can be seen, the above process is of a very complex 

nature and can be extremely deleterious to the plasma facing components (PFCs).  The underlying 

interactions of this process include ion implantation, sputtering, surface atom recombination, and 

chemical removal arising from electron exchange between the material and the ion.  Importantly, 
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this type of exposure, over time, can lead to localized erosion and surface buildup in different 

regions on PFC surfaces [18, 30-32]. 

Furthermore, the materials must be able to withstand exposure to a combination of intense 

neutron irradiation and high heat and particle fluxes [30, 32, 33].  Additionally, neutrons that are 

produced as a byproduct of the fusion reaction (see Eq. 1.1) inevitably encounter the surrounding 

materials.  As they travel through the matrix, energy is transferred through inelastic collisions with 

the surrounding atoms [34].  These interactions introduce a wide range of temperature-dependent 

microstructural alterations and changes in material properties, as summarized in figure 1-4, 

including dislocation loops and phase formation (hardening/embrittlement), and void swelling. 

Over time, these events can lead to the buildup of deleterious effects in the alloy and 

perhaps even failure.  For instance, neutron irradiation in the BOR-60 fission reactor up to doses 

of 5 and 7 dpa at irradiation temperatures of 335 oC and 345 oC, respectively, resulted in disastrous 

embrittlement of pure copper when mechanically tested at ≥ 300 oC [35, 36].  It was found that the 

drop in plasticity was accompanied by the transition to a brittle intergranular fracture [35].  

In addition to the facing components, nonstructural materials will must be able to function 

while exposed to irradiation at a wide range of temperatures [1].  Applications for these materials 

include insulators (electrical and thermal), windows, diagnostic sensors, plasma heating 

feedthroughs and cabling, and the constituents of superconducting magnets [37-39].  Importantly, 

materials in these situations are operating at temperatures that are much lower than their melting 

point, which limits their ability to thermally recover from radiation damage due to reduced defect 

mobility [1].   
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Figure 1-3 Schematic illustration of the complex plasma-surface interactions which involve the 

contact of gamma ray, hydrogen, deuterium, and tritium (each denoted γ, H, D, and T, respectively) 

with near-surface lattice (from Ref. [18, 30]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 A showcase of potential microstructures in materials exposed to irradiation 

displacement damage in various temperature regimes.  Here, SFT denotes stacking fault tetrahedra 

(from Ref. [1]).  
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1.3 Helium Embrittlement in Fusion Reactor Materials 

Currently, one of the major impediments for materials in fusion environments involves 

helium retention.  Helium, when trapped in a material over time, can lead to deleterious effects 

such as embrittlement and swelling. During neutron irradiation, virtually all elements in reactor 

materials (such as stainless steel) produce helium to some degree via (n, α) reactions [40].  In 

reactor cladding, for example, He is formed through a two-step reaction involving thermal neutrons 

and Ni [23]: 

 

 𝑁𝑖58 + 𝑛1 → 𝑁𝑖59 

 

𝑁𝑖59 + 𝑛1 → 𝐹𝑒56 + 𝐻𝑒4 

(1-2) 

 

(1-3) 

 

After production, He remains insoluble in the matrix, where it can form bubbles with 

vacancies and other He atoms.  It has also been shown that helium bubbles are precursors to void 

formation in an alloy [41].  Furthermore, He is a huge issue for reactor materials due to its 

interactions with crystalline defects such as grain boundaries and dislocations.  For example, He 

atoms diffuse to grain boundaries once the temperature of the material reaches ~ 0.5 Tm, where 

they become trapped [42]. Once the He is trapped, applied stresses can lead to bubble growth and 

subsequent swelling. Figures 1-5 (a)-(c) and 1-6 (a)-(c) compares the growth of helium bubbles in 

Fe-12Cr-17Ni (weight %), as observed in transmission electron microscopy (TEM), of austenitic 

stainless steel foil specimens (0.12 mm thick) after annealing at 750 oC with and without an applied 

stress.  The compressive stress was 19.6 MPa and while the annealing times ranged from 2.88 × 

104 s to 2.16  
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Figure 1-5 Growth of helium bubbles in unstressed Fe-17Cr-17Ni (wt. %) specimens after 

annealing at 750 oC for (a) 2.88 × 104 s, (b) 6.48 × 104 s and (c) 2.16 × 104 s (from Ref. [43]). 

 

Figure 1-6 Growth of helium bubbles in Fe-17Cr-17Ni (wt. %) after annealing at 750 oC with a 

stress of 19.6 MPa for (a) 2.88 × 104 s, (b) 6.48 × 104 s, and (c) 2.16 × 105 s  (from Ref. [43]). 
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× 105 s [43].  The He content of the implanted foils ranged from 73 to 180 atomic parts per million 

(appm).  As can be seen in the figures, the bubbles were orders of magnitude larger for the tensile 

loaded specimens as compared to the non-stressed samples.    

Helium can become a problem over time as it can lead to embrittlement and enhanced 

cavity swelling.  Woodford et al. suggested that He induces embrittlement by hampering 

dislocation motion [44].  Here the impedance of dislocation lines leads to an increased strength in 

the material which prevents relaxation of stress concentrations at the grain-boundary triple points.  

Unfortunately, a lack of stress relaxation at these points leads to enhanced failure via the 

propagation of wedge cracks [43].  An example of helium induced embrittlement can be seen in 

figure 1-7 [45]. The embrittled material was gas tungsten arc welded neutron irradiated 304 

stainless steel (fast neutron fluence 1.0 × 1016 - 7.6 × 2020 n/cm2) that produced measured helium 

concentrations from 0.85 to 12.0 appm helium.  It was found that the retained helium, when 

combined with the increased weld heat input, resulted in a greater amount of cracking in the weld. 

There is significant research being performed to gain further knowledge on the behavior of 

materials when exposed to transmutant helium levels that are typical of fusion reactor first-wall 

and blanket structures [46, 47].  Figure 1-8 summarizes the capabilities of several  prior, current 

and proposed irradiation facilities for production of transmutant helium in 9-14%Cr reduced-

activation ferritic/martensitic (RAFM) steels as a function of the displacement damage level [1].  

As indicated in this figure, these materials in fusion systems will be exposed to 50-100 times the 

amount of He/dpa in demonstration (DEMO) fusion reactors as compared to in conventional 

fission reactors. 



11 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7 Conventional gas tungsten arc weld on irradiated 304 stainless steel containing 1.5 

appm helium (from Ref. [45]). 
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Figure 1-8 Summary of the RAFM steel experimental database in terms of transmutant He versus 

displacement damage in various nuclear reactor technologies (from Ref. [1]). 

 

 

1.4 Recently Proposed Material Systems for Fusion Reactor Technology 

Based on the discussion above, it can be said that the viability of fusion power technology 

will be largely dependent on the development of high-performance, reduced activation materials 

[48-52].  A major step that will help accomplish this goal will be to develop structural materials 

with simultaneous improvements in strength and radiation resistance without any degradation in 

ductility or fracture toughness [18].   Recently, more advanced materials such as oxide-dispersion 

strengthened (ODS) steels [53-58], high entropy alloys (HEAs) [59-69], and bulk metallic glasses 
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(BMGs) [70]  have been proposed as viable candidate in fusion systems.  The purpose of the next 

section will be to introduce the reader to BMGs.   

1.5 Bulk Metallic Glasses 

The first bulk metallic glass (BMG), which was developed by Chen in 1974, was composed 

of palladium, copper and silicon and required a cooling rate of 103 K/s [71].  Results of the study 

indicated that glasses containing atoms of different sizes increased the glass forming ability of the 

alloy.  It was theorized that the increased glass forming ability arose from the strong interactions 

between unlike atoms, which lowered the melting temperature and raised the glass transition 

temperature.  Furthermore, the addition of metalloids such as silicon appeared to distort the short- 

range order of the metallic glass, leading to the high stability of its bulk form.   

More recently, BMGs with diameters that exceed the micrometer-thicknesses in the 1960s 

have been produced [72].  For example, Pd40Cu30Ni10P20 BMG was fabricated using a cooling rate 

of only 0.1 K/s [73], with a corresponding diameter of 7.2 cm.  It is important to note that the 

required cooling rate is 4 orders of magnitude lower as compared to the BMG that was produced 

by Chen.  In the past few years, additive manufacturing methods have been used to successfully 

produce BMGs [74-76].  For instance, a direct metal laser sintering process was used to fabricate 

fully amorphous FeCrMoCB BMG whose thickness was more than 15 times the critical casting 

thickness (3 mm) in all dimensions [74].        

Figure 1-9 shows schematically the structure formation during quenching from the melt by 

the time–temperature phase transition diagram [71]. The parabolic curves in the middle of the 

graph arise from the competition between the increasing driving force for crystallization and the 

slowing down of atomic kinetics [77].  To prevent the transition from a liquid to a crystalline phase 
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the melt must be cooled at rates such as those mentioned above.   If a sufficiently fast cooling rate 

is achieved, the liquid melt can reach its glass transition temperature Tg, where it will transition 

into a glassy structure. 

Inoue determined that there are three empirical rules which lead to high glass-forming 

ability (GFA) in supercooled liquids [78].  The first rule is that a multicomponent system must 

have more than three elements.  For instance, the quaternary BMG alloy Pd40Cu30Ni10P20 can be 

formed with a cooling rate of 0.10 K/s.  This rate is 4 orders of magnitude lower than the rate 

required to form the alloy procured by Chen [77].  The second rule is that the size difference 

between the three main constituent atoms must be at least 12 %.  The first and second rule leads 

to what is known as the “confusion principle”, where the number of atoms and mismatch in sizes 

lead to poor bonding.  The poor bonding between atoms inhibits the formation of crystal structure 

and consequently lowers the cooling rate required for amorphization [79].  The third rule for GFA 

is negative heats of mixing among the three main constituent elements.  

In terms of material properties, BMGs possess excellent properties such as high hardness 

[80, 81], high strength [82, 83], exceptional corrosion resistance [84-86], good fatigue resistance 

[87-90], high fracture strength [78, 91], and excellent magnetic properties [92, 93].  BMGS do not 

work harden like crystalline alloys, and exhibit deformation in the form of shear bands [94].  It is 

interesting to note that although the percent strain within a shear band is quite large, it does little 

to contribute to the overall plastic strain [95].    Furthermore, shear bands correspond to server 

localization of plastic deformation.  When combined with the lack of dislocations and slip systems 

in BMGs, these factors result in undesirable effects on their post-yield plastic deformation [96].   
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Figure 1-9 Schematic time–temperature-transition diagram of structure formation during 

quenching from the melt (from Ref. [71]). 

 

Consequently, these materials exhibit virtually no tensile ductility and catastrophic failure after 

yielding, which are undesirable features for structural materials. 

A lack of crystalline structure in metallic glass leads to an absence of crystal defects such 

as twin boundaries, grain boundaries, or dislocations [79].   Furthermore, this lack of crystalline 

structure in amorphous alloys may provide substantial advantages in terms of radiation 

resistance,since the concept of vacancies and interstitials does not apply to amorphous materials. 

Although irradiation has been found to produce point defects and macroscopic changes in 

amorphous materials in a manner similar to what happens in crystalline alloys [97, 98], there is 
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some evidence that the amount of retained displacement damage can be significantly less in 

amorphous materials [70].  

Another factor which may make amorphous metals desirable is their potentially high 

helium permeability due to their large free atomic volume and lack of grain boundaries which can 

act as helium traps [99].  In contrast to crystalline alloys, metallic glasses do not possess defects 

such as dislocations and grain boundaries due to their amorphous structure [49].  This lack of 

conventional defects should in theory prohibit the formation of large He bubbles in the material. 

Furthermore, the free volume content of amorphous alloys should lead to a higher diffusivity of 

He in the material.  The higher diffusivity should lead to a faster escape of He from the material, 

which will lead to reduced swelling in the material.  This superior resistance to He-induced cavity 

formation and high diffusivity has been verified in at least one amorphous material [100].   

This higher diffusivity would potentially give metallic glasses an advantage over 

crystalline materials since He is a huge issue in nuclear reactors due to its ability to embrittle and 

swell reactor materials.  This lack of entrapped He in BMGs could lead to good resistance to cavity 

swelling at elevated temperatures.  If a high density of cavities is not present, the amount of tritium 

trapped in the bulk metallic glass under prototypic fusion reactor conditions might also be very 

low [1] .  Therefore, it can be surmised that bulk metallic glasses could be a viable material for use 

in different components of a fusion reactor such as piping, breeding blanket structure or the reactor 

pressure vessel, given that the surrounding temperature remains below the glass transition.   

A key aspect for achieving BMGs with sufficient radiation resistance will be to identify 

amorphous atomic configurations that can withstand irradiation induced bond rearrangements. 

Therefore, an important stability criterion for amorphous materials is the potential, or lack thereof, 
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for radiation-induced recrystallization [101].  Interestingly, it has been found that different BMG 

alloys may not experience the same volumetric change under the same irradiation condition [99].  

Specifically, two different alloys may undergo volumetric expansion, minimal change, or 

contraction during irradiation.  

 

1.6 Research Goals 

The purpose of this thesis research is fourfold.  First, the project will perform fundamental 

science to understand whether the BMG short range atomic configuration is changed by energetic 

atomic mixing (i.e., is the BMG in its lowest energy configuration, or does particle irradiation 

mixing introduce metastable configurations).  Second, it will explore the radiation effects in a 

material where the conventional radiation defects such as vacancies and self-interstitial atoms are 

not produced.  Third, the project will examine the effects of increased free volume and lack of 

grain boundaries on helium diffusion in BMGs.  Fourth, this investigation will examine the 

microstructural and mechanical response of BMGs when exposed to different thermal and 

irradiation spectrum environments.  

 

1.7 Thesis Outline 

This thesis consists of six chapters, including a literature review of prior radiation effects 

studies on BMGs that will be discussed in chapter 2.  Chapter 3 discusses the experimental 

techniques utilized for the investigations on the irradiation and thermal response completed for 

this thesis.  Chapter 4 provides the detailed results and the corresponding analysis of the 

experimental data while chapter 5 provides a discussion of the results.  Finally, chapter 6 details 
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the conclusions arising from the outcome of the experiments and outlines some recommendations 

for future research projects.   
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CHAPTER 2 LITERATURE REVIEW 
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2.1 Atomic Structure of Metallic Glasses  

The atomic arrangements of an amorphous solid resemble that of a liquid more than a 

crystalline solid.  Figure 2-1 compares the radial distribution function (RDF) between the liquid, 

solid and amorphous solid phases [102].  As can be seen, the amorphous structure has a similar 

radial distribution function to that of the liquid phase.  Furthermore, the left figure shows how the 

radial distribution function relates to the geometric spacing of the atoms in the metal.  The area 

under each curve represents a shell consisting of a number of atoms within a distance of r and r  + 

dr.  Zhang et al. calculated the average atomic radii of different amorphous alloys [103], which are 

listed in Table 2-1.  As can be seen, the average atomic radius ranges from 1.4 – 2.0 Å. 

In addition, an amorphous metal is composed of a random distribution of different sized  

polyhedra.  The theory of polyhedral clustering dates back to the work of Bernal, who investigated 

the atomic structure of liquids [104-106].  Bernal determined that when atoms are arranged in one 

of five specific types of polyhedra, long range order can be prevented.  The five types of polyhedra 

which inhibit the long-range ordering can be seen in figures 2-2(a)-(e), and are the tetrahedron, the 

octahedron, the trigonal prism, the Archimedean antiprism, and the tetragonal dodecahedron [104].  

Bernal also found that the irregularity of the neighborhood polyhedra is the essential condition for 

liquid as against crystalline structures [105]. 

Although Bernal’s model is satisfactory for monoatomic metals and alloys which have 

atoms of comparable size, it does not account for the observed short range or medium range order 

(SRO and MRO, respectively) in metallic glasses [107].  Here short range is defined as 1-2 nearest 

neighbors of an atom while medium range order is approximately 1-1.5 nm [108].  In contrast to 

Bernal’s model however, atom sizes must differ by at least 12 % to produce stable multicomponent 

bulk metallic glasses [78].   
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Figure 2-1 Left: Relationship between radial distribution function and atomic spacing in an 

amorphous solid.  Right:  Pictorial representation of atom distribution in matter with their expected 

typical diffraction patterns (from Ref. [102]). 
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Table 2-1 Average atomic radii of select amorphous alloys (from Ref. [103]). 

Composition 

(at. %) 

Average 

atomic 

radii (Å) 

Composition 

(at.%) 

Average 

atomic 

radii (Å) 

Zr62Cu15.4Ni12.6Al10 1.67 Fe70Mo5Ni5P12.5C5B2.5 1.40 

Zr59Ta5Cu18Ni8 Al10 1.67 Fe61Mn10Cr4Mo6Er1C15B6 1.40 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 1.58 Pd64Ni16P20 1.44 

Cu47.5Zr47.5Al5 1.61 Pt57.5Ni5Cu14.7P22.8 1.49 

Cu60Zr20Hf10Ti10 1.56 Pt60Ni15P25 1.50 

(Ti0.5Cu0.5)84Ni7Hf5Zr3Si1 1.54 Ni60Nb35Sn5 1.50 

Ni62.5Zr20Nb15Pd2.5 1.52 Ni60(Nb0.8Ta0.2)34Sn6 1.50 

Ni60Zr20Nb15Pd5 1.52 Zr50Cu50 1.51 

Ni57.5Zr20Nb15Pd7.5 1.52 Zr48Cu48Al4 1.60 

Ni55Zr20Nb15Pd10 1.53 Ca65Mg8.54Li9.96Sn16.5 1.61 

Ni52.5Zr20Nb15Pd12.5 1.53 Ca65Mg8.31Li9.69Sn17 2.00 

[(Fe0.8Co0.1Ni0.1)0.75B0.2Si0.05]96Nb4 1.40 Yb62.5Mg17.5Cu5Zn15 2.00 

[(Fe0.6Ni0.4)0.75B0.2Si0.05]96Nb4 1.40 Ce70Al10Ni10Cu10 1.97 

Fe76Si9.6B8.4P6 1.47 (Ce20La80)68Al10Cu20Co2 1.89 

(Fe0.76Si0.096B0.084P0.06)99.9Cu0.1 1.47 Ce68Al10Nb2Cu20 1.88 

Zr65Cu10Ni10Al10 1.67 (Ce80La20)68Al10Cu20Co2 1.88 

Zr64.13Cu15.75Ni10.12Al10 1.67 Ce68Al10Co2Cu20 1.88 

Zr61.88Cu18Ni10.12Al10 1.66 Ce68Al10Ni2Cu20 1.87 

Zr55Cu7Co19Al19 1.66 La60Al20Co20 1.87 

Zr57Cu15.4Nb5Al10Ni12.6 1.66 Dy55Al25Co20 1.85 

Zr57Cu20Ti5Al10Ni8 1.66 Pr55Al25Co20 1.78 

Au49Ag5.5Pd2.3Cu26.9Si16.3 1.63 Tb55Al25Co20 1.82 

(Zr0.59Cu0.22Ti0.06Ni0.13)85.7Al14.3 1.62 Ho55Al25Co20 1.78 

Zr45Cu45Gd3Al7 1.62 Er55Al25Co20 1.76 

Au55Cu25Si20 1.62 Tm55Al25Co20 1.75 

Zr54Cu46 1.60 Tm39Y16Al25Co20 1.75 

Zr46.75Ti8.25Cu10.15Ni10Be27.25 1.59 Lu39Y16Al25Co20 1.75 

Zr41Ti14Cu12.5Ni10Be22.5 1.57 Lu45Y10Al25Co20 1.74 

Zr48Fe8Cu12Nb8Be24 1.59 Lu55Al25Co20 1.74 

Ni45Zr25Ti20Al10 1.56 Mg65Cu25Gd10 1.74 

Pd77.5Cu6Si16.5 1.56 Mg65Cu25Y9Gd1 1.71 

Pd60Cu20P20 1.51 Mg65Cu25Y10 1.70 

Pd40Cu40P20 1.50 Mg65Cu25Y8Gd2 1.70 

Pd39Ni10Cu30P21 1.47 Mg65Cu25Y5Gd5 1.69 

Fe53Cr15Mo14Er1C15B6 1.47 Mg65Cu25Tb10 1.68 

Fe74.5Mo5.5P12.5C5B2.5 1.47   
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Inoue classified bulk metallic glasses into three types, namely, metal-metal-type alloys, 

metal-metalloid-type alloys, and the Pd-metalloid-type alloys [78].  The atomic configurations for 

the three structures are shown in figure 2-3 [109].  As can be seen, the three different types of 

metallic glasses have distinct structures containing different morphologies.  In the metal-metal 

alloy, high-resolution transmission electron microscopy (TEM), X-Ray diffraction (XRD) and 

neutron diffraction studies reveal that the glass consists of icosahedral clusters [110-113].   

For the metal-metalloid-type glassy alloys, a network of atomic configurations consisting 

of trigonal prisms which are connected with each other through glue atoms comprising Zr, Nb, Ta 

or lanthanide metal are commonly found [113].  It has been found that the chemical short range 

ordering in these types of alloys are pronounced [107, 114].  Furthermore, the Pd-based BMGs 

consist of two large clustered units of trigonal prism caped with three half-octahedra for the Pd-

Ni-P and a tetragonal dodecahedron for the Pd-Cu-P region, as shown in figures 2-4(a)-(b). 

 

Frank was the first to suggest that icosahedral structure might be the reason for the stability 

of supercooled metals [115].  He theorized that the stability of local icosahedral order is due to its 

highly close packed structure, lack of long-range order and difficulty of growth [113].  Frank’s 

assertion was later confirmed through experiments involving synchrotron X-ray structural studies 

on deeply supercooled liquids [116, 117].  Later studies showed that metallic glasses with excellent 

GFA are composed predominantly of full icosahedron with Voronoi index <0,0,12,0> [118, 119].  

Although SRO plays a dominant role in the structure of metallic glasses, as was discussed 

above, it has also been found that MRO plays a significant role as well.  Diffraction studies have 

shown that there is a significant degree of MRO in these disordered materials [120, 121].  In 

particular, Sietsma et al. found that for three different amorphous alloys, the medium range  
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Figure 2-2 The five types of polyhedra which prevent the occurrence of long range ordering in 

liquids: (a) Tetrahedron; (b) octahedron; (c): trigonal prims; (d): Archimedean antiprism; (e): 

tetragonal dodecahedron (from Ref. [104]). 

 

 

 

  

 

 

 

 

 

 

Figure 2-3 The different atomic configurations of three types of BMGs (from Ref. [109], Copyright 

(2002) by The Japan Institute of Metals.) 
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Figure 2-4 (a) Schematic illustration of a trigonal prism capped with three half-octahedra 

consisting of Pd, Ni and P atoms and (b) a tetragonal dodecahedron consisting of Pd, Cu and P 

atoms (from Ref. [78]). 

 

distance statistics of the RDF closely resembled that for Fe-Fe correlations in crystalline Fe3B 

[122].Miracle et al. proposed a way to model the MRO in metallic glasses using the concept of 

efficiently packed solute centered atom clusters [a 2-dimensional (2D) representation can be seen 

in figures 2-5(a)-(b)] [123, 124].  For the model, the local structural units are thought to be 

composed of efficiently packed solute-centered atomic clusters which are arranged in face centered 

cubic (fcc) and hexagonal closed packed configurations [123].  The solvent atoms are designated 

Ω, while solute atoms are labelled α and β. 

Wu et al. investigated the connection between MRO and GFA in Al-based metallic glass 

[118].  Here the medium range order of Al86Ni14-xYx (x = 2 - 9 %) metallic glasses was examined 

via conventional and synchrotron high-energy X-ray diffraction.  With respect to the XRD curves, 

the ratio of the area under the pre-peak curve to the area under the total main peak, indicated that 
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the GFA of the alloy increased with respect to the MRO content.  The above result therefore 

provides evidence that the MRO of an amorphous alloy aids in the “confusion effect” [125], thus 

inhibiting crystal phase formation in the material.  The experimental results suggest that the 

icosahedral cluster structure, as shown in figure 2-6, is a viable MRO motif for metallic glasses. 

 

2.2. Microscopic Theory on the Mechanical Behavior of Metallic Glasses 

 

2.2.1 Free-Volume Model 

As described by Spaepen, the free volume is that part of an atoms nearest neighbor cage in 

which the atom can move around without an energy change [126].  Furthermore, Turnbull et al. 

derived a free volume diffusion coefficient based on the theory for molecular transport in liquids 

and glasses [127].  Here they found that the diffusion coefficient predicted that liquids of even the 

simplest structure would go through the glass transition if sufficiently undercooled and 

crystallization did not occur.  

To create free volume, an atom with volume υ must have sufficient energy ΔGm in order 

to squeeze into a smaller hole of size υ*.  The required energy may be provided through an 

externally applied force such as compression, which causes a localized shearing event. The driving 

energy for the creation of free volume is written as [126]:  
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Figure 2-5 2D representations of an efficient cluster packing structure in (a) plane of a single fcc 

n (a) the {1 0 0} plane and (b) the {1 1 0} plane of a single fcc cluster unit cell. The dashed circles 

in (a) represent an overlap between the α and β clusters (from Ref. [123]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6 MRO structural configurations of (a) Al86Ni5Y9 [(Al9.56Y)Ni0.56], (b) Al86Ni8Y6 

[(Al14.33Y)Ni1.33], (c) Al86Ni9Y5 [(Al17.2Y)Ni1.8], (d) Al86Ni11Y3 [(Al7.8Ni)Y0.27] MGs from Ref. 

[118]). 
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here τ is the atomic level shear stress, Ω is the atomic volume, μ is the shear modulus, υ is Poisson’s 

ratio, and S is the elastic distortion energy required to squeeze the atom into the smaller hole.  After 

a hopping event, the atom experiences a change in its free energy equal to the difference between 

the driving term τΩ and the elastic distortion energy.  Figure 2-7 illustrates the creation of free 

volume due to an applied shear stress on an atom and its nearest neighbors.     

Once the free volume is created, there is a chance for it to be annihilated due to diffusive 

motion.  The number of diffusive jumps required for annihilation can vary anywhere from 1 to 10 

[126].  The hypothesis of diffusive annihilation has been supported by a two-dimensional 

amorphous dynamic hard sphere model [39].  In this model it was found that an artificially created 

quasi-vacancy in an amorphous material is annihilated in just a few atomic hops, which is in 

contrast to crystalline alloys, where vacancies require a large number of diffusive jumps in order 

to be annihilated.  

From the above concepts, Spaepen derived an equation which determines the total change 

in free volume due to applied stress and diffusive events: 

 

 

where Δνf
+ and Δνf

-
 are respectively the increase and decrease in free volume, γ is the macroscopic 

shear strain, k is Boltzmann’s constant, T is the temperature, N is the total number of atoms, nD is 

the number of diffusive jumps required to annihilate a free volume ν*, ΔGm is shown in figure 2-7 

above, vf is the free volume, in the matrix.  Furthermore, Ω and S are as defined in Eq. 2-1. Spaepen  
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Figure 2-7 Illustration of the creation of free volume by squeezing an atom of volume v* into a 

neighboring hole of smaller volume v  (from Ref. [126]). 
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determined that at small loads can decrease the average free volume in the steady-state condition 

[126]. 

A number of studies have theorized that the increase in ductility in amorphous alloys 

following irradiation is due to an increase in the free volume of the material [128-131].  This 

increase in the free volume was observed as a decrease in the relative density of the alloy.  It is 

believed that an amorphous alloy with a higher free volume content can better accommodate local 

shear strains.  This accommodation leads to the deterrence of shear band propagation and 

subsequently increased ductility in the metallic glass [130].  However, it is still unclear why certain 

amorphous alloys exhibit an increase in free volume content during irradiation while other alloys 

do not.  

 

2.2.2 Shear Transformation Zone 

A shear transformation zone model was first proposed by Argon, which arises from multi-

atomic sized flow units which exhibit nonlinear resistance to deformation in the solid [132].  

During the shear transformation event, deformation occurs between two short rows of 4-6 atoms  

around a free volume site, in which its shear resistance behavior can be modeled according to a 

skewed sinusoid [132, 133].  Specifically, this type of process resembles the nucleation of a 

dislocation loop that does not expand.  Furthermore, the energetically favored transformation 

configuration is in the shape of a thin disk containing the shear transformation direction in its 

plane.   

Argon also mathematically described the change in the excess free volume fraction fv of 

metallic glass during shear transformation [132]: 
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here k is Boltzmann’s constant, T is the temperature, εv is the local transformation dilatation in the 

transformation region, εv(1-fv) is  a first order correction for the decrease in local dilatation in a 

structure that has already accumulated an average excess free volume fraction fv.  In addition,  νG 

and vD are respectively frequency factors for the shear transformation and diffusive rearrangements 

while ΔG* and ΔGD are respectively the activation free enthalpy of a transformation and activation 

free energy for a net diffusive rearrangement in the inactivated structure.  The variables σ and τ’ 

are the applied stress and the elevated shear stress due to STZ activation respectively. 

The first term on the right-hand side of Eq. (2-3) represents the rate of production of excess 

free volume during a shear transformation event and the second term represents the elimination of 

free volume due to diffusive rearrangements in the post-transformation structure.  Later on it will  

Figure 2-8 A two-dimensional schematic of a shear transformation zone in an amorphous metal.  

A shear displacement occurs to accommodate an applied shear stress τ, with the darker upper atoms 

moving with respect to the lower atoms (from Ref. [72]). 
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be argued that the frequency factors and free energy variables may depend on irradiation dose 

since knock on events cause atomic rearrangements in the metallic glass. 

Langer extended the STZ theory to include two state dynamics of the zones and an effective 

disorder temperature, which provides an accurate account of large-scale deformation in metallic 

glasses [134].  The first state involves system jamming when all available STZs have been 

transformed due to an applied stress, preventing plastic deformation in the direction of stress.  The 

second state occurs at higher stresses, where the system becomes unjammed due to the rapid 

creation and annihilation of STZs.  

 

2.2.3 Shear Banding 

Despite having relatively high strengths and elastic limits, metallic glasses exhibit poor 

ductility that is caused primarily by the formation of shear bands which subsequently leads to 

cracking [72, 135].  This lack of plasticity in amorphous alloys can be seen during tensile testing, 

where the material will fracture without appreciable elongation.  However, amorphous specimens 

undergoing compression testing may display some ductility before failure.   

Shear bands are primarily initiated by structural inhomogeneity and defects that introduce 

stress concentrations into the material [95].  This non-uniformity in structure can arise from the 

local production of free volume or the evolution of structural order.  Once initiated, the shear band 

will propagate until the applied strain is fully accommodated by the shear accumulated within the 

band [95].  In terms of the macroscopic structure of shear bands, there are two types, primary and 

secondary.  Figures 2-9(a)-(b) shows both types of shear bands on the fractured surface of a 

Zr64.13Cu15.75Ni10.12Al10 BMG after compression at a strain rate of 5 × 10-5 s-1 [136].  As displayed 
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in the figure 2-9(a), the primary shear bands propagate through the material at ~45o and can initiate 

failure.  While the secondary bands are displayed in figure 9(b), where they appear to be 

significantly smaller and branch off of the primary type. 

A number of studies have examined the microstructure of shear bands using transmission 

electron microscopy [137-142]. In [138, 139], TEM imaging revealed that nanocrystalline phases 

had formed in the shear bands, which was hypothesized to be caused by deformation-assisted 

atomic transport. Hirotsu et al. used a spherical-abberration-corrected (Cs corrected) HRTEM to 

examine the local structure of shear bands in Pd40Ni40P20 BMG [95, 141].  Here phosphide 

compound-like nanoclusters with sizes 1-2 nm and composed of FCC Pd-Ni type were observed 

(see figure 2-10).  

During tensile and compression testing, shear band propagation is characterized by 

fluctuations in the stress-displacement behavior of the glass, which are called serrations [136].  An 

 

 

 

 

 

 

 

 

 

Figure 2-9 (a) lateral surface of a fractured BMG sample, Zr64.13Cu15.75Ni10.12Al10, after 

compression at a strain rate of 5 × 10-5 s-1, and (b) magnified region indicated by a rectangle in (a) 

showing the interaction of multiple shear bands (from Ref. [136]). 
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Figure 2-10 HRTEM images of shear bands taken by a CS corrected HRTEM at CS = 2 μm and Δf 

= 1 nm (a) 5 nm (b) and 9 nm (c) (from Ref. [141]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11 (a) Compressive load-displacement curve of Zr64.13Cu15.75Ni10.12Al10 BMG at a 

nominal strain rate of 2 × 10-4 s-1. (b) Enlarged view of the serrated region (from Ref. [135]). 
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example of serration behavior can be seen in figure 2-11 for Zr64.13Cu15.75Ni10.12Al10 BMG 

undergoing compression at a strain rate of 2 × 10-4 s-1.  In addition, Rodriguez determined that 

there are primarily 5 types of serrations which occur during serrated flow in a material [143].  For 

metallic glasses, serrations usually disappear at high strain rates (≥ 0.1 s-1) and cryogenic 

temperatures [135].   

 

The size of shear bands has also been analyzed using TEM.  It has been found that shear 

band geometries consist of widths ranging from 120-200 nm and thicknesses between 10-20 nm 

[142, 144].  However, other studies have found shear bands with thicknesses with ranges of 10-

100 nm [95].  It has suggested that local heating, as a result of plastic energy dissipated within a 

shear band, increases the temperature within a shear band to approximately Tg [61].  This 

temperature rise is accompanied by a dramatic drop in the viscosity inside the shear band, which 

leads to significant softening that can cause rapid shear band propagation and catastrophic failure 

in BMGs [72].  To better understand thermal behavior of shear banding, Yang et al. performed 

tensile testing on Zr52.5Cu17.9Ni14.6Al10Ni5 BMG and recorded heat measurements using a high-

speed thermographic camera on a [72, 145].  Using the STZ model, Yang calculated the change in 

the temperature of the shear band with the following equation: 

 

 

 

where ρ is the density, σf is the nominal fracture strength, Cp is the heat capacity, and α is the ratio 

of plastic work converted to heat and approximately equal to 0.9.  From the heat measurements, 

 𝛥𝑇𝑠 =
𝛼𝜎𝑓

2𝜌𝐶𝑝
 (2-4) 
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they determined ΔTs for the Zr BMG and the corresponding shear-band temperature Ts at fracture.  

Using Eq. (2-4) and mechanical property data from literature, they were able to calculate Ts for 8 

other amorphous alloy. 

Figure 2-12 shows the plot of Ts vs. Tg for 9 BMG alloys, and as can be seen, the calculated 

Ts is in relatively good agreement with known Tg values.  The results of the investigation provide 

evidence that a temperature rise does occur in the shear bands which leads to subsequent 

catastrophic failure in the BMG. 

However, some have suggested that other factors may account for the reduced viscosity in 

shear bands, such as free volume accumulation due to the dynamic strain rate [135].  Specifically, 

Nieh et al. used Spaepen’s free volume model [126] to derive an equation which calculates the 

viscosity change in a propagating shear band: 

 

 

 

 

where α = 1, υ* is the atomic volume of the glass, and υf1, η1 and υf2, η2 are respectively the free 

volume and viscosity of the glass before and after a shear band event.  Based on Eq. (2-5), a 1 % 

increase in the free volume would lead to a factor of 10 decrease in the viscosity of a shear band 

in Zr based BMG at room temperature [146].  Here υf2 is a function of 휀̇ since it was shown that 

the free volume decreases with respect to the applied strain rate [135].  An example of   this 

decreasing trend (Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG) can be seen in figure 2-13 [147]. 

 𝜂2
𝜂1
= 𝑒

𝛼𝜐∗[
1

𝜐𝑓2(�̇�)
−
1
𝜐𝑓1

]
 (2-5) 

 



37 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12 Comparison between glass-transition temperature and calculated shear-band 

temperature at fracture strength for different BMGs (from Ref. [145]). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13 Normalized viscosity (viscosity/Newtonian viscosity) as a function of normalized 

strain rate for Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) BMG (from Ref. [147]). 
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2.3 Material and Mechanical Properties of Amorphous Alloys 

BMGs have elastic moduli which are slightly lower than crystalline materials.  Figures 2-

14(a)-(b) show the fracture toughness and fracture energy, as a function of the Poisson’s ratio, υ, 

for a wide range of different amorphous alloys [148].  As can be seen, the fracture toughness and 

energy exhibit an increasing trend with respect to the Poisson’s ratio.  Furthermore, the range of 

toughness values as seen in figure 2-14(a) range from ~2 MPa·m1/2 for the Mg based metallic 

glasses to 100 MPa·m1/2 for the Pd and Pt based amorphous alloys.  However, Pt- and Pd- BMGs 

are not practical due to their high manufacturing costs.  Zr based alloys, on the other hand, had 

fracture toughness values comparable to certain steel and titanium alloys, which makes these alloys 

very attractive due to their relatively lower manufacturing costs as compared to Pt- BMGs.  Figure 

14(c) compares the tensile strength and Young’s modulus for several BMGs and conventional 

alloys [149].  The metallic glasses shown here have significantly higher tensile strength and lower 

Young’s modulus as compared to conventional steels.  The difference in these values between the 

BMG and crystalline alloys is as large as 60 % [113].  This combination of high tensile strength 

and low Young’s modulus make them a very interesting material with many possible applications. 

A number of studies have investigated the fracture toughness of BMGs using fatigue pre-

cracked BMG specimens.  For instance, investigations that examined the fracture toughness (Kc) 

of vitreloy 1 found that KC ranged from 30-68 MPa·m1/2 [150, 151], while another study recorded 

a measured value of ~17.9 MPa·m1/2 [152].  Another BMG alloy with the composition of 

Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) exhibited toughness values ranging from 28 to 69 MPa·m1/2 

[153].  

Figure 2-15 summarizes the relationship between Young’s modulus (E) and tensile fracture 

strength (σt,f) or Vickers hardness (Hv) for various BMGs [113].  There is an observable linear  



39 

 

 

 

 

 

 

 

 

 

 

Figure 2-14 (a) Fracture toughness and (b) fracture energy vs. ν for different metallic glasses 

(MGs). The MGs are categorized into four groups separated by dashed lines (from Ref. [148]). (c) 

Tensile strength vs. Young’s modulus for various alloys (from Ref. [149]). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15 The relations between the mechanical properties of typical BMGs: (a) tensile fracture 

strength and (b) Vicker’s hardness as a plot of Young’s modulus (from Ref. [113]). 
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Table 2-2 Summary of the properties of metallic glasses listed in Ref. [154].  

Alloy 
ρ 

(g/cm3) 

E  

(GPa) 

G 

(GPa) 

B 

(GPa) 
υ 

σy  

(GPa) 

Tg  

(K) 

Zr41.2Ti13.8Ni10Cu12.5Be22.5 5.9 95  34.1 114.1 0.352 1.86 618 

Zr48Nb8Ni12Cu14Be18 6.7 93.9    34.3 118 0.367 1.95 620 

Zr55Ti5Cu20Ni10Al10 6.62 85    31 118 0.375 1.63 625 

Zr57.5Nb5Cu15.4Ni12Al10 6.5 84.7 30.8 117.6 0.379 1.58 663 

Zr55Al19Co19Cu7 6.2 101.7 37.6 114.9 0.352 2.2 733 

Pd40Cu30Ni10P20 9.28 92 34.5 151.8 0.399 1.72 593 

Pd60Cu20P20 9.78 91 32.3 167 0.409 1.70 604 

Pd40Cu40P20 9.30 93 33.2 158 0.402 1.75 548 

Ni45Ti20Zr25Al10 6.4 109.3 40.2 129.6 0.359 2.37 791 

Ni40Ti17Zr28Al10Cu5 6.48 127.6 47.3 140.7 0.349 2.59 862 

Ni60Nb35Sn5 8.64 183.7 66.32 267 0.385 3.85 885 

Ni60Sn6(Nb0.8Ta0.2)34 9.24 161.3 59.41 189 0.357 3.50 875 

Ni60Sn6(Nb0.6Ta0.4)34 9.80 163.7 60.1 197.6 0.361 3.58 882 

Cu64Zr36 8.07 92 34 104.3 0.352 2.0 787 

Cu46Zr54 7.62 83.5 30.0 128.5 0.391 1.40 696 

Cu46Zr42Al7Y 7.23 84.6 31 104.1 0.364 1.60 713 

Pd77.5Cu6Si16.5 10.4 89.7 31.8 166 0.409 1.5 550 

Pt60Ni15P25 15.7 96.1 33.8 202 0.420 1.4 488 

Pt57.5Cu14.7Ni5P22.8 15.2 95.7 33.4 243.2 0.434 1.45 490 

Pd64Ni16P20 10.1 91.9 32.7 166 0.405 1.55 452 

MgGd10Cu25 4.04 49.1 18.6 46.3 0.32 0.98 428 

La55Al25Cu10Ni5Co5 6.0 41.9 15.6 44.2 0.342 0.85 430 

Ce70Al10Ni10Cu10 6.67 30.3 11.5 27 0.313 0.65 359 

Cu50Hf43Al7 11.0 113 42 132.8 0.358 2.2 774 

Cu57.5Hf27.5Ti15 9.91 103 37.3 117.5 0.356 1.94 729 

Fe61Mn10Cr4Mo6Er1C15B6 6.89 193 75 146 0.280 4.16 870 

Fe53Cr15Mo14Er1C15B6 6.92 195 75 180 0.32 4.2 860 

Au49.5Ag5.5Pd2.3Cu26.9Si16.3 11.6 74.4 26.5 132.3 0.406 1.20 405 

Au55Cu25Si20 12.2 69.8 24.6 139.8 0.417 1.00 348 
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relationship between both the tensile strength and Vickers hardness with respect to Young’s 

modulus.  In addition, crystalline alloys such as stainless steel also exhibit the same linear trend, 

albeit with a lower slope.  This higher slope indicates a larger elastic limit of the BMGs as 

compared to the crystalline alloys.  Furthermore, the BMGs in the graph show a more linear trend 

in the data, which can be attributed to the formation of an ideally homogenized solid solution over 

the whole composition range [113]. 

 

2.4 Mechanical Testing of Amorphous Alloys 

 

2.4.1 Compression Testing and Serrated Flow 

As discussed in the previous section, a BMG may experience jerky motion during 

compression testing that is characterized by fluctuations in the corresponding stress-strain graph.  

This type of mechanical behavior is known as the serrated flow and is characterized by either rapid 

drops in the applied stress or a mix of decreasing and increasing stress values.  Serration behavior 

is significant because it is typically associated with plastic instabilities and significant changes in 

the microstructure [155, 156].  This type of mechanical behavior has been observed in BMGs (see 

figure 2-16) [136, 157-162], steels [163-169], HEAs [164, 170-177] and Al-Mg alloys [178-183].  

In bulk metallic glasses, serrated plastic flow is observed, and attributed to shear banding dynamics 

[136, 158, 164].  This behavior contrasts with that exhibited by crystalline materials, where a major 

cause of serrations is the locking of dislocations by solute atoms [163, 170, 184].   

Serrations may display different behavior which typically depends on the teste temperature 

or the applied strain rate [136, 164, 171].  During dynamic strain aging that occurs during 

compression, serrations typically exhibit three distinct types of behavior. These types have been 
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labelled as A, B, and C, and can be seen in figure 2-17 [155, 164, 171].  As can be seen in the 

figure, Type-A serrations rise above the general level of stress values before experiencing a drop 

in the stress.  Furthermore, their behavior is periodic in nature and is associated with high strain 

rates.  Type-B serrations, on the other hand, fluctuate rapidly about the general level of stress and 

occur with less spatial correlations as compared to Type-A serrations.  Finally, Type-C serrations 

occur during compression at lower applied strain rates and consist of stress drops that ensue below 

the stress-strain curve. 

 

2.4.2 Modeling and Analysis of Serrated Flow  

Several techniques have been used to evaluate the complexity of time series data that is 

generated from nonlinear dynamical systems [185].  One such technique that can analyze this type 

of behavior is known as the refined composite multiscale entropy (RCMSE) algorithm, which was 

proposed as a technique to overcome the limitations of previous multiscale entropy methods [186].  

The magnitude of the complexity, as determined by the algorithm, is typically denoted as the 

sample entropy in which a higher value is typically characteristic of a less predictable time series.  

In contrast, a time series that is more predictable is usually characterized by lower values.   

Furthermore, this algorithm estimates the probability that two sequences of m consecutive 

data points, which are similar, will remain similar when an additional consecutive point is included 

[187]. The RCMSE algorithm consists of a two-step process where the first step involves a coarse-

graining procedure that is used to derive the representations of a system’s dynamics on different 

time scales [188].  To begin the analysis, one first eliminates the trend that arises in the strain 

hardening regime [163], where the stress vs. time data is fitted using a third order polynomial.  

After the fit is made it is subtracted from the original data [189].  Figures 2-18 (a)-(b) show the  
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Figure 2-16 Compression stress-time profiles of Zr64.13Cu15.75Ni10.12Al10 BMG cylindrical samples. 

Samples were compressed at strain rates of 1 × 10-3 s-1,  2 × 10-4 s-1, and 5 × 10-5 s-1 at room 

temperature (from Ref. [136]). 

 

 

 

 

 

 

 

 

Figure 2-17 Type-A, Type-B, and Type-C serrations (from Ref. [177]). 
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true stress-strain serration data for an as-extruded Al-Mg sample compressed at 10-4 s-1 and its 

detrended counterpart [189]. From the detrended data one creates the coarse-grained time series 

[186]: 

 

 

where xi is the ith point from the original time-series data, X, N is the total number of data points 

from the original time series, k is an indexing factor, which tells us at which data point in the series 

to begin the modeling and analysis, and τ is the scale factor. One should notice that for k, τ = 1 

indicates that one recovers the original time series.  Figure 2-19 present the schematic for the 

coarse-grained series with k = 1 – 2 and τ = 2 – 3 [186].  Once 𝑦𝑘,𝑗
𝜏 is constructed, one writes the 

time series of 𝑦𝑘
𝜏 as a vector for each τ [186]: 

 

 

where M = N/τ, and each 𝑦𝑘,𝑗
𝜏  is determined using Eq. (2-6). From here, creates the template vectors 

of dimension m (typically m = 2): 

 

 

The next step in the process is to find n-matching sets of distinct template vectors for a 

given value of k.  The total number of matching vector sets for a given k, τ, and m are designated 

as 𝑛𝑘,𝜏
𝑚 .    The infinity norm, 𝑑𝑗𝑙

𝜏,𝑚
, which defines the distance between two template vectors, is 

used as a criterion to determine if two vectors are matching pairs.  This quantity is defined as [190]:   

  

𝒚𝒌
𝝉 = { 𝑦𝑘,1

𝜏   𝑦𝑘,2
𝜏    ….  𝑦𝑘,𝑀

𝜏  } (2-7) 

 

 
 

𝒚𝒌,𝒊
𝝉,𝒎 = { 𝑦𝑘,𝑖

𝜏    𝑦𝑘,𝑖+1
𝜏  ….  𝑦𝑘,𝑖+𝑚−1

𝜏 }   ;     1 ≤   𝑖  ≤   𝑁 − 𝑚 ; 1 ≤ 𝑘 ≤ 𝜏
 
 (2-8) 

 

 

𝑦𝑘,𝑗
𝜏 =

1

𝜏
∑ 𝑥𝑖

𝑗𝜏+𝑘−1

𝑖=(𝑗−1)𝜏+𝑘

      ;   1  ≤   𝑗  ≤  
𝑁

𝜏
        1 ≤ 𝑘 ≤  𝜏 

 

(2-6) 
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here r is a predefined tolerance value.  Two vectors will match if djl
τ,m

 is less than r.  In [191-193], 

r is chosen as 0.15 times of the standard deviation of the data since it imposes a normalization 

effect on the data such that the sample entropy will not depend on its variance.  One repeats this 

process for m + 1, thus finding the number of matching vectors, 𝑛𝑘,𝜏
𝑚  for both m and m + 1.  Then 

one sums 𝑛𝑘,𝜏
𝑚   from k = 1 to τ (for both m and m + 1).  To find the refined composite multiscale 

entropy (RCMSE) value for the original data, the natural log of the ratio of these two sums is 

calculated using [186]: 

 

 

The RCMSE technique has been used to evaluate various phenomena, including the 

serrated flow in an Al-containing HEA, colored noise, chaos, and physiological signals [190, 194-

199].  In [190], the logistic map [200] was analyzed using the RCMSE method.  Here the data 

analyzed the data in which the bifurcation parameter, R, was varied from 2.8 to 4.  The results are 

displayed in figure 2-20, where the complexity results were compared with the map’s bifurcation 

diagram.  The bifurcation diagram was divided into subsections where a black box denotes each 

subsection in the figure. Here, arrows link the sample-entropy curves with the respective 

subsections of the bifurcation diagram.  As can be observed in the figures, the increase in the 

sample entropy curves with respect to R corresponded to an increase in the to the number of 

asymptotic values visited there.   

 
 

𝑑𝑗𝑙
𝜏,𝑚 = ‖𝒚𝒋

𝝉,𝒎 − 𝒚𝒍
𝝉,𝒎‖

∞
= max{|𝑦1,𝑗

𝜏 − 𝑦1,𝑙
𝜏 | … |𝑦𝑖+𝑚−1,𝑗

𝜏 − 𝑦𝑖+𝑚−1,𝑙
𝜏 |} < 𝑟

 
  (2-9) 

 

 
𝑅𝐶𝑀𝑆𝐸(𝑿, 𝜏, 𝑚, 𝑟) = 𝐿𝑛 (

∑ 𝑛𝑘,𝜏
𝑚𝜏

𝑘=1

∑ 𝑛𝑘,𝜏
𝑚+1𝜏

𝑘=1

) 

 

 (2-10) 
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Figure 2-18 Graphs for (a) the serrations of the true stress curve for as-extruded Al-Mg alloy 

compressed at a strain rate of 10-4 s-1 at room temperature and (b) the corresponding detrended 

time series (from Ref. [189]). 
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(b) 
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Figure 2-19 Schematic illustration of the coarse-graining procedure (from Ref. [186]). 
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Figure 2-20 (a)-(b) The bifurcation diagram (plotted for 2.8 ≤ R ≤ 4.0) for the logistic map with 

arrows that link the various regions of the map to its corresponding sample-entropy curves from 

(Ref. [190]).  

 

 

 

(a) 

 

(b) 
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2.4.3 Nanoindentation 

Recently, there has been considerable interest in the mechanical characterization of thin 

film systems and small volumes of material using depth-sensing indentation tests with either 

spherical or pyramidal indenters [201].  Nanoindentation has been able to meet this need by being 

able to examine materials at the sub-micron scale.  In this type of test, the applied load and the 

depth of penetration of an indenter into the specimen are recorded and used to indirectly determine 

the area of contact and hence the hardness of the test specimen [202].  Properties which are usually 

measured using this technique are nanoindentation hardness and Young’s modulus.  

Nanoindentation hardness is defined as the mean pressure the material will support under a given 

load [203].  

Many indentation tests use what is called a “Berkovich indenter” for which the typical 

load- displacement data is shown in figure 2-21(a)-(b) [203, 204].  The graph from figure 2-21(a) 

also features the geometry of the Berkovich tip geometry.  The quantities shown in figure 2-21(b) 

include the peak indentation load Pmax, the indenter displacement at peak load hmax, the final depth 

of the contact impression after unloading hf, and the initial unloading stiffness, S.  As with the 

observed graphs, the loading curves typically have a parabolic like shape.  Figure 2-22(a) shows 

the cross section of an indentation and identifies other parameters used in the analysis such as the 

contact depth hc, hs which is the displacement of the surface at the perimeter of the contact, and 

the radius of contact at peak load (labelled a in the figure) [203].  The value hf represents the final 

depth of the residual hardness impression once the load is fully removed.   

The loading and unloading curves exhibit a power law behavior which are typically written 

as [203, 205]: 
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Figure 2-21 (a) Typical load-displacement data obtained in the calibration material fused silica 

using a Berkovich indenter, a three-sided pyramid.  (b) Load versus indenter displacement data for 

an indentation experiment (From Ref. [203]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-22 (a) Schematic illustration of the unloading process showing parameters characterizing 

the contact geometry (from ref. [205]) (b) A scanning electron micrograph of a 40 mN indentation 

in fused silica (from Ref. [203]). 
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For the Berkovich indenter, unloading curves typically have exponent values between 1.2-

1.5 (see Table 2-3 [203]).  The three important factors for nanoindentation data analysis are the 

maximum load Pmax, the stiffness S, and the indenter depth at maximum load (hmax).  The contact 

stiffness, S, is defined as the derivative dP/dh at the maximum load and is written as [202, 205]: 

 

 

Oliver and Pharr added the β value to account for any physical process which may affect 

the constant in Eq. (2-13).  The reduced (or effective) modulus, Er, is defined as [206]: 

 

 

here, Es and υs are Young’s modulus and Poisson’s ratio for the specimen and Ei and υi are the 

same parameters for the indenter tip material.  For a diamond tip, Ei and υi are 1,141 GPa and 0.07, 

respectively [207].  

 

 

  

1

𝐸𝑟
=
1 − 𝜐2

𝐸𝑠
+
1 − 𝜐𝑖

2

𝐸𝑖
 

 

(2-14) 

 

  

𝑃𝑙𝑜𝑎𝑑 = 𝛽ℎ
𝑛 (2-11) 

   

𝑃𝑢𝑛𝑙𝑜𝑎𝑑 = 𝛼(ℎ − ℎ𝑓)
𝑚

 (2-12) 

 

 
 

𝑆 = 𝛽
2

√𝜋
𝐸𝑟√𝐴
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Table 2-3 Values of parameters characterizing unloading curves as observed in nanoindentation 

experiments with a Berkovich indenter (from Ref. [203]). 

Material α (mN/nmm) m 
Correlation 

coefficient, R 

Aluminum 0.265 1.38 0.999938 

Soda-lime glass 0.0279 1.37 0.999997 

Sapphire 0.0435 1.47 0.999998 

Fused silica 0.0500 1.25 0.999997 

Tungsten 0.141 1.51 0.999986 

Silica 0.0215 1.43 0.999985 

 

 

The contact area at peak load, A, is a function determined by the geometry of the indenter 

and the depth of contact hc.  The area function, A, is a truncated power series with the following 

form [201]: 

 
 

 

 

 

For the ideal Berkovich indenter, A1 = 24.5.  The importance of the area function cannot 

be overstated since it must be known prior to analyzing nanoindentation data.  To determine the 

area function, we must first determine hc.  The contact depth can be determined from the maximum 

displacement using the following equation: 

 

   
ℎ𝑐 = ℎ𝑚𝑎𝑥 − 휀

𝑃

𝑆
 

 

 (2-16) 

Equation (2-16) is known as the Oliver and Pharr method [203-205].  Here ε depends on 

the indenter geometry, but is typically 0.75 for the Berkovich indenter. The aforementioned 

method was introduced as a necessary modification of the flat punch approximation since it did 

  

𝐴(ℎ𝑐) = ∑𝐴𝑘ℎ𝑐
22−𝑘

8

𝑘=1

 
(2-15) 
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not adequately describe the behavior of materials indented by a Berkovich tip.  From the area 

function, A,  the nanoindentation hardness, H, can be determined at hc:  

 

 

 

 

 

2.4.3.1 Indentation Size Effect  

The indentation size effect (ISE) is observed during indentation experiments and is 

characterized by a decrease in hardness with increasing indentation load [208].  This phenomenon 

has been observed in metallic glasses [209, 210], polymers [211], and crystalline alloys [212, 213].  

One such model that has examined the ISE in crystalline materials is known as the Nix Gao model 

[212]. This method has its origins in the Taylor dislocation model and is based on the theory of 

geometrically necessary dislocations.  Based on this model, Nix and Gao were able to derive an 

equation that can extrapolate nanoindentation hardness data in order to estimate the bulk hardness 

of a given material.    The extrapolation is performed through the following equation: 

 

   
𝐻

𝐻0
= √1 +

ℎ∗

ℎ
 

 

 (2-18) 

where H is the hardness at an indentation depth h, Ho is the hardness in the limit of infinite depth 

and h* is a characteristic length that depends on the shape of the indenter [72].  It should also be 

mentioned that Ho is the hardness which arises from the statistically stored dislocations and is 

written as: 

 

  

𝐻 =
𝑃𝑚𝑎𝑥
𝐴(ℎ𝑐)

 

 

(2-17) 
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here μ is the shear modulus, ρs is the density of statistically stored dislocations, b is the Burger’s 

vector, and α is a constant (taken as 0.5 in [212]).  Using Eq. (2-19) and the half angle θ of the 

indenter tip we can solve for h* with the following equation: 

 

   
ℎ∗ =

81

2
𝑏𝛼2 tan2 𝜃 (

𝜇

𝐻0
)
2

 

 

(2-20) 

To account for a non-uniform dislocation spacing, Eq. (2-20) is usually modified into the 

following form: 

    

ℎ∗ =
27

2
𝑏𝛼2 tan2 𝜃 (

𝜇

𝐻0
)
2

 

 

(2-21) 

 

To determine the theoretical bulk hardness of a material, one simply plots H2 vs. 1/h and 

extrapolates a straight line to the limit 1/h → 0, which correlates to an infinite indentation depth.  

The y intercept determines the bulk hardness Ho and the slope determines h*.  Once Ho and h* are 

found, one plots the data on a (H/Ho)
2 vs. 1/h graph. An illustration of the extrapolation technique 

for (111) single crystal and cold worked polycrystalline Cu can be seen in figures 23 (a)-(c) below 

[72, 75]. 

More recently, other models have been used to analyze the ISE [211, 213-215].  For 

example, Lam and Chong proposed a model which they applied to glassy polymers [211].  This 

  

𝐻0 = 3√3𝛼𝜇𝑏√𝜌𝑠   

 

(2-19) 
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model was based off the work done by Argon [216], which replaced statistically stored and 

geometrically necessary dislocations with analogous kink pairs.  Here, the formation of kinks 

canbe thought of as changes of entropy associated with the straightening of polymer chains and 

strain hardening effect [211].  In terms of the hardness, the extrapolated hardness is written as:   

 

 

 

  

Here, the extrapolated hardness is defined as: 

 

 

 

 

 

 

 

 

where G is the shear modulus, ψ is a dimensionless constant that depends on G and the temperature, 

and nks proportional to the density of statistically stored kinks.  The characteristic depth is defined 

as: 

 

 

 

 

 

here, z* is the activate kink length of a kink pair, σ0 is a reference stress. 

 

Lam and Chong derived a model to examine the ISE in metallic glasses [209], in which the 

depth dependent terms depend on material parameters such as the extrapolated hardness and the 

number of atomic cluster defects in the amorphous matrix.  This model consists of an equation that 

  

𝐻0 =
3√3

8
𝐺(1 + 𝜓𝐿𝑛𝑛𝑘𝑠)

6/5    

 

(2-23) 

 

  

𝐻 = 𝐻0(1 + √
ℎ∗

ℎ
 )     

 

          (2-22) 

 

 

  

ℎ∗ =
81𝑧∗𝛼2𝐺2𝜓2 tan2 𝜃

128𝐻0
2 exp (

16√3𝜎0 − 3𝐺
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Figure 2-23 (a) Hardness of (111) single crystal and cold worked polycrystalline copper, (from 

Ref. [212]).  (b) Nix-Gao extrapolation of the hardness data of (111) single copper, and  (c) Nix-

Gao extrapolation of the hardness data of polycrystalline copper. 
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is similar to the one as proposed by Nix and Gao: 

 

 

where H is the nanoindentation hardness, H0 is the extrapolated (bulk) hardness value, H0 is the 

hardness arising from the statistically stored clusters in the absence of the geometrically-necessary 

clusters that are associated with strain gradients [209, 217], h is the indentation depth, and h* is a 

term which characterize the depth dependence of the hardness.  For this model, h* depends on 

other parameters such as the temperature, the angle between the tip and surface of the specimen, 

the Helmholtz free energy associated with the shear transformation of clusters, the local shear 

strain required to modify a single cluster, and the number of clusters associated with the strain. 

  

2.5. Microstructural Characterization Techniques  

 

2.5.1 X-ray Diffraction 

X-rays were accidentally discovered by Wilhelm Röntgen during vacuum tube experiments 

in 1895 [218].  He named this mysterious type of radiation “X-ray” since in mathematics the “X” 

represents an unknown quantity [219].  Subsequently, Bragg et al. used X-rays to probe the 

structure of matter [220, 221].  From their work, they formulated what is known today as Bragg’s 

Law, which is used to characterize the lattice structure in crystalline materials [222]:  

 

where n is a positive integer, λ is the wavelength of the incident X-ray, d is the spacing between 

atomic planes, and θ is the scattering angle of the X-ray.  Figure 2-24 presents a schematic 

  

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

 

(2-26) 

 

  

𝐻 = 𝐻0
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√ℎ
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illustration of incident radiation diffraction by a crystal lattice [223].  In the figure, two separate 

X-rays (with same wavelength), labeled 1 and 2, strike a crystal structure.  From the figure it can 

be observed that as compared to Ray 1, Ray 2 must travel a longer distance before being reflected.  

If this distance (2dsinθ), is equal to an integer multiple of the wavelength, then the two X-rays will 

be in phase and constructively interfere upon exiting the crystal.  This interference will be observed 

as intensity peaks as a function of scattering angle (see figure 2-25 [224]).  Importantly, the 

scattering angle associated with the intensity peaks can be used to determine the lattice spacing for 

a given crystalline material.  

Due to their amorphous structure, BMGs do not contain lattice planes.  This lack of lattice 

planes leads to a broad peak in the diffraction pattern (DP).  To put it into perspective, figure 2-26 

displays a normalized intensity vs. scattering angle for a fully amorphous and partially crystallized 

Cu60Zr20Hf10Zr10 BMG.  As can be seen, the patterns are noticeably different. 

As to date, there have been numerous studies that have used X-ray diffraction (XRD) to 

examine the temperature dependent crystallization behavior of different metallic glasses [225-

237].  In a couple of investigations [228, 229], a link was established between the corrosion 

behavior and the degree of crystallinity of the glass [227].  Another investigation found that the 

activation energies of crystallization in metallic glass ribbons gradually increased, respectively, 

with a decreasing Zr:Ni ratio [233]. Xu et al. surmised that oxidation in amorphous alloys occurs 

at a faster rate as compared to their crystalline counterparts due to its free volume content [238], 

which is believed to enhance the diffusion of oxygen [234]. 

For the above investigations, diffraction patterns were taken ex-situ, which means that the 

kinetics of the crystallization behavior could not be ascertained.  However, more recent techniques 
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have employed characterization methods that have examined the in-situ kinetics of phase 

transformations in real time.  Typically, this method is performed via the rapid collection of 

diffraction patterns during heating.  Importantly, this technique has evolved in such a manner that 

the experimentalist can now perform the work in a typical laboratory setting, without the need for 

a synchrotron X-ray source [239].   

With regards to evaluating the crystallization kinetics, it can be performed by analyzing 

the integrated area under the diffraction peaks [240, 241].  Furthermore, the fraction of the different 

crystalline phases that form in the matrix during heating can be determined via Rietveld 

Refinement [242].  The experimental kinetic data, with regards to the isothermal data, can be 

transformed to what is referred to as the experimental master plots that are used to determine the 

appropriate kinetic model [243].  This plot involves plotting This model depends on the parameter 

α, which is defined as the fraction of total reaction product formed at time t [244].  Next f(α) is 

 

Figure 2-24 Schematic illustration of incident radiation diffraction by a crystal lattice (from Ref. 

[223]). 
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Figure 2-25 Constructive interference of X-rays scattered from planes of atoms which results in 

the observed peaks at various scattering angles (2θ) (from Ref. [224]).   

 

 

 

 

 

 

 

 

 

Figure 2-26 X-ray diffraction pattern of as cast and partially crystallized Cu60Zr20Hf10Ti10 BMG. 
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defined, which is a function that is representative of the kinetic model guiding the crystallization 

mechanism, and corresponds to the reaction rate dependence on α [245].    Another important 

mechanism of crystal growth is the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model [246-

250].  This model is tied to the random nucleation and growth of crystal nuclei in a matrix, and the 

guiding equations is written as [239]: 

 

 

where the temperature-dependent rate constant, k, and JMAK exponent, n, equate to: 

 

 

 

 

 

here, fd is the dimensionality of growth, v is the effective attempt frequency, 𝛥𝑆 is the system 

entropy, kb is Boltzmann’s constant, U is the particle growth rate, d is the dimensionality of the 

growth mechanism, and m is the growth mode factor.  To determine the growth mode, one first 

graphs the master plot f(α)/f(0.5) vs. α and then fits the data for 
𝑑𝛼

𝑑𝑡
/
𝑑𝛼

𝑑𝑡𝛼=0.5
 vs. α to the various 

plots.  To evaluate the rate constant, k, and the JMAK exponent, n, one applies linear regression 

analysis to the plot of Ln [Ln (
1

1−α
)] vs. Ln(t − t0).    
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Table 2-4 lists the kinetic mechanism, the corresponding symbol, and the representative 

function f(α) for the different solid-state kinetic transformations [239].  These transformations can 

range from two dimensional phase boundary controlled to three dimensional diffusion (Ginstein-

Brounshtein equation) [243]. 

With respect to diffusion-controlled transformations, diffusion typically affects the rates of 

reaction between two reacting solids when they coexist as distinct crystal lattices [251].  In other 

words, the atomic mobility essentially controls the transformation rate.  Furthermore, the rate of 

product formation decreases proportionally with the thickness of the product barrier layer [252].    

For heterogenous transformations, the solid-state reactions often occur between crystal lattices that 

eventually permeate into lattices where the motion is restricted and may depend on lattice defects 

[253]. 

Figures 2-27(a)-(b) show a basic schematic of the JMAK and heterogenous processes that 

would occur in the matrix over time.  As apparent in the figures, both mechanisms have slightly  

 

Table 2-4 The kinetic mechanisms, the corresponding symbol, and the representative function f(α) 

for the solid-state kinetic transformation.  Reproduced from [239]. 

Kinetic Mechanism Symbol f(α) 

Unimolecular decay law F1 1 − 𝛼 

Phase boundary controlled (Two-dimensional) R2 (1 − 𝛼)1/2 

Phase boundary-controlled reaction (Three-

dimensional) 
R3 (1 − 𝛼)1/3 

Two-dimensional diffusion D2 −
1

ln (1 − 𝛼)
 

Three-dimensional diffusion (Jander equation) D3 
3(1 − 𝛼)2/3

2(1 − 𝛼)1/3
 

Three-dimensional diffusion (Ginstein-

Brounshtein equation) 
D4 

3

2[(1 − 𝛼)−1/3 − 1]
 

Random nucleation and growth (JMAK) Am 𝑛(1 − 𝛼)[− ln(1 − 𝛼)]1−1/𝑛 
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different characteristics.  With regards to the JMAK model, as shown in figure 2-27(a), the 

particlesnucleate randomly throughout the matrix in which they expand uniformly in all directions.  

Whereas for the diffusion-controlled process [see figure 2-27(b)] two separate phases interact with 

each other, thereby producing a third phase which increases in size over time. 

 

2.5.1.1 High Energy In Situ X-ray Diffraction 

High energy X-ray diffraction has been used to probe the microstructure of crystalline 

materials in various ways [254].  This technique is especially useful when examining samples that 

are poor diffractors or are extremely small.  Due to the amorphous structure of BMGs, an imposed 

compressive field during XRD reveals the nature of the structure due to a broken symmetry that 

would otherwise not be observed without the field [255].  Because of the elastic deformation 

induced anisotropy [256], the PDF analysis of the anisotropic and the isotropic data for the BMG  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-27 Schematic of the (a) JMAK, and the (b) heterogeneous diffusion transformation 

processes (from Ref. [239]). 
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can be applied [257].  The isotropic PDF is related to the structure function in the following 

manner:  

   
𝜌0𝑔(𝑟) =

1

2𝜋2𝑟
∫ [𝑆(𝑄) − 1] sin(𝑄𝑟)𝑄𝑑𝑄
∞

0

 

 

 
 

 

where g(r) is the radial distribution, S(Q) is the structure function, Q is the diffraction vector that 

is equal to 4πsinθ/λ where θ is the diffraction angle, λ is the wavelength of the probe, and ρ0 is the 

number density of the atoms in the BMG [256].  To examine the changes to the anisotropic 

behavior of a BMG under an applied stress, the anisotropic pair density function (PDF) method 

can be applied to the in situ compression data [258], which is based on spherical harmonics, is 

applied.   

  The anisotropic PDF is related to the structure function via a Bessel transformation: 
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∞
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here Jl(Qr) is the spherical Bessel function [259], and the functions 𝑔𝑙
𝑚(𝑟) and 𝑆𝑙

𝑚(𝑄) are related 

to the functions g(r) and S(Q) via the spherical harmonic relations:   

 

 

 

 

where 𝑌𝑙
𝑚 are the spherical harmonics.  Another important quantity is the affine anisotropic PDF, 

𝑔2,𝑎𝑓𝑓
0 (𝑟) [255, 260]: 
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where −휀𝑧𝑧,𝑎𝑓𝑓
2(1+𝜈)

3√5
 is a fitting parameter, −휀𝑧𝑧,𝑎𝑓𝑓 is the affine strain, and υ is Poisson’s ratio.  

Figure 2-28 compares the anisotropic PDF g2
0(r) and the affine PDF (red curve) for the Zr55Cu30Ni-

5Al10 BMG when compressed by 1,000 MPa for 1 hr. at 623 K [255]. 

 

2.5.2 Transmission Electron Microscopy  

Historically, transmission electron microscopes (TEM) were developed because of the 

limited age resolution in light microscopes, which is imposed by the wavelength of visible light 

[261].   The resolution of modern TEMs is 2 Å while the theoretical resolution for optical 

microscopes is 200 nm. Although the superior magnification is a distinct advantage, TEMs do 

have some disadvantages such as the requirement of very thin samples (< 100 nm [262]) and high 

operational expenses.  

A basic schematic of a TEM can be seen in figure 2-29.  At the top of the TEM is either a 

thermionic or field emission gun (FEG) (see Table 13 from Ref. [157] for different electron 

sources).  It should be noted that the design of the thermionic gun is different than that of a field 

emission gun.  For example, in a thermionic gun, the electrons are boiled off through resistively 

heating the gun, while in a FEG the electrons are removed through an electrostatic potential.  For 

TEM, bright-field (BF) and dark-field (DF) are the main types of images used, and are formed by 

a combined use of the objective lens and objective aperture.  Specifically, a BF image is formed 

by the direct-beam electrons while a DF image is formed by the diffracted beam (high angle 

electrons) [263].  If instead a diffraction pattern (DP) is desired, a SAD aperture is inserted in 

  

𝑔2,𝑎𝑓𝑓
0 (𝑟) = −휀𝑧𝑧,𝑎𝑓𝑓

2(1 + 𝜐)

3√5
𝑟
𝑑

𝑑𝑟
𝑔0
0(𝑟) (2-34) 
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Figure 2-28 Comparison of the anisotropic PDF g2
0(r) and the affine PDF (red curve) for the 

Zr55Cu30Ni5Al10 BMG when compressed by 1,000 MPa for 1 hr. at 623 K (from Ref. [255]).  
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Figure 2-29 Simplified Schematic diagram of the principles of TEM imaging and diffraction (from 

Ref. [265]).  
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place of the objective aperture.  Here, the SAD is inserted into the image plane of the objective 

lens.  While in the image plane the SAD aperture will permit only those electrons inside the area 

defined by the virtual aperture.   A DP for nanocrystalline Al can be seen in figure 2-30, which 

includes the corresponding BF and DF images [262].  Notice the complimentary nature of the BF 

and DF images. 

Inelastic scattering of electrons can lead to beam damage of the material, which can be in 

the form of knock on damage or heating [261].   Knock on damage occurs when, just as the name 

suggests, an electron collides with an atom in such a way that the atom is displaced from its original 

lattice site.  The resultant interstitial vacancy combination is known as a Frenkel pair [34].   

However, due to their amorphous structure, Frenkel pairs cannot be created in an 

amorphous alloy during irradiation.  Although for these materials, both knock-on collisions and 

beam heating can increase the temperature of the material, which can fundamentally alter the short-

range ordering of the glass and even cause crystallization.  This is because both phenomena can 

heat the alloy, causing the temperature to rise above its glass transition.  Although it was not 

discussed earlier, knock on collisions can lead to displacement cascades, which exhibit a sharp 

increase in temperature in the region where the knock on occurs.  Therefore, beam heating should 

always be minimized when examining metallic glass specimens in TEM. 

Liu et al. examined the crystallization behavior of (Fe0.99Cu0.01)78Si9B13 amorphous alloy 

ribbons by in situ transmission electron microscopy [264].  The specimen was heated to 

temperatures ranging from 583-813 K using an electron microscope specimen holder.  During  
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Figure 2-30 (a) Diffraction pattern of a nanocrystalline Al film. (b) Corresponding BF image. (c) 

Corresponding DF image (from Ref. [262]).  

 

annealing, crystal nuclei were observed forming around the edge of the thin area of the sample.  

The crystalline region grew to a thickness of 150 nm after exposure to 583 K for 10 minutes.   

Moreover, it was found that after 15 minutes of annealing that the average grain size of the 

crystallites were about 15 nm.  After heating to 723 K, the sample was observed to fully crystallize.  

Figure 2-31 shows the bright field (BF) TEM and selected area electron diffraction pattern 

corresponding for the as-quenched and annealed samples.  When heated to 583 K for 15 minutes, 

a crystalline phase composed of α-Fe(Si) (bcc structure) with a random orientation formed in the 

sample.   After annealing for 723 K for 10 minutes, the sample underwent full crystallization 

accompanied by the formation of a Fe2B crystalline phase.  In contrast to the above conditions, no 

new crystalline phases were observed when the sample was exposed to 813 K.  It was also observed 

that there was increased grain growth around the edge of the thinned area. 

Pekarskaya et al. performed room temperature in situ straining TEM experiments to study 

shear band propagation in Zr56.3Ti13.8Cu6.9Ni5.6Nb5.0Be12.5 BMG based composite [144].  For this 

study a JEOL 4000 EX operating at 300 kV was used and images were taken using both bright- 
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Figure 2-31 BF TEM images and DPs for (Fe0.99Cu0.01)78Si9B13 (a) as-quenched (c) annealed (583 

K, 15 min) (e) fully crystallized.  Here, (b), (d), and (f) are the corresponding diffraction patterns 

for (a), (c), and (e) respectively (from Ref. [264]). 
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field and dark-field techniques.  However, contrast issues with dark-field techniques led to using 

bright–field as the primary technique for imaging shear bands. In terms of sample preparation, 

specimens were prepared by ion milling.  Figure 2-32 shows the microstructure and corresponding 

diffraction pattern of the composite material.  In terms of composition, the material consisted of 

an amorphous matrix which contained crystalline β-phase dendrites with bcc structure which had 

a lattice parameter of 3.5 Å.  However, the presence of twins in the body centered cubic (bcc) 

structure indicated there was instability in the dendritic configuration. 

Figure 2-33 shows a crack which had propagated through the amorphous matrix.  Shear bands 

were observed to form at the crack tips and were characterized by a lighter contrast as compared 

to the rest of the material.   The lighter contrast indicates that the shear band regions were less 

dense than the undeformed material.  Furthermore, shear bands were observed to have a width 

ranging from 120-200 nm, which were similar to results obtained from scanning electron 

microscopy imaging, and varied between 200-300 nm. 

Figure 2-34 shows a typical interaction between the shear band and the β-phase dendrite.  

It was found that the localization of deformation in the crystalline phase only occurred when a 

shear band interaction was accompanied by a large amount of shear in the amorphous phase.  Here 

an adequately strong shearing event will lead to the formation of dislocations in the β-phase that 

corresponds to deformation in the crystallites. 

Koziel et al. investigated the crystallization of Fe72Si9.1B14.8Cr2.2C1.9 amorphous ribbons 

with a 3 mm width and thickness of 20 μm [266].  To achieve crystallization, the material was 

heated to 923 K using a heating rate of 5 K/min. To examine the structure of the crystallized alloy, 

a JEM 200 CX TEM (JEOL, Tokyo, Japan) operated at 200 kV was used.  Differential scanning  
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Figure 2-32 (a) TEM micrograph of the microstructure of the composite material and 

corresponding diffraction pattern. (b)  TEM image of the twins in the β-phase with diffraction 

pattern for the [111] zone axis (from Ref. [144]). 

 

 

calorimetric (DSC) analysis was utilized to examine the crystallization process.  Here the TEM 

specimens were standard 3 mm discs cut out from the as-spun and crystallized ribbon and thinned 

by ion milling at 2.5 kV and 0.5 mA.  TEM studies revealed the presence of α-Fe3(Si) solution, 

Fe23(C,B)6, Fe3B and Fe2B crystalline phases [266].    

Figures 2-35(a)-(b) shows TEM bright-field selected area electron diffraction of the as-

spun and annealed ribbon. The diffraction pattern in figure 2-35(b) exemplify the crystalline 

phases α-Fe3(Si)  and Fe23(C,B)6.  From the results of the DSC analysis, it was concluded that 

during crystallization, metastable borides initially formed in the Fe72Si9.1B14.8Cr2.2C1.9 amorphous 

alloy, followed by the formation of a stable Fe2B phase. 
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Figure 2-33 Crack propagation with shear banding in the glassy phase (from Ref. [144]). 

 

 

 

  

 

 

 

 

 

  

Figure 2-34 TEM image of the shear band propagation through the amorphous and crystalline 

regions Zr56.3Ti13.8Cu6.9Ni5.6Nb5.0Be12.5 BMG based composite.  Localization of deformation is 

observed in the β-phase (from Ref. [144]). 
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Figure 2-35 TEM bright-field SAED Patterns for Fe72Si9.1B14.8Cr2.2C1.9 amorphous alloy (a) The 

as-spun ribbon, (b) Ribbon heated up to 923 K (from Ref. [266]). 

 

Jang et al. studied the crystallization kinetics of Zr60Al7.5Cu17.5Ni10Si4B1 metallic glass 

ribbons under isothermal annealing [267].  Here annealing temperatures were 709 K, 714 K, 719 

K and 724 K with respective heating times of 2600 s, 1381 s, 1270 s and 562 s.  A Philips Tecnai 

G2 TEM with an operating voltage of 200 kV was used in conjunction with a DSC 2920 

differential scanning calorimeter to determine crystallization kinetics.  SAD patterns for the sample 

annealed at 714 K consisted of diffraction spots with Miller indices of (213), (006), (103) and 

(110) which indicated the formation of Zr2Cu-type crystalline phase in the matrix.  Isothermal 

differential calorimetry analysis revealed that the radius of the crystal (also labelled grain) was 

found to be 5 nm after an annealing time of 119 s, but grew to asize of 17 nm after 619 s.  The 

calorimetric analysis was then extended to all heat treatment conditions for which the results can 

be seen in figure 2-36. 

The activation energy for crystal growth in the Zr60Al7.5Cu17.5Ni10Si4B1 metallic glass was 

found to be 210 ± 25 kJ/mol.  For reference, the activation energies for Zr65Cu27.5Al7.5 and Zr65Cu35 

amorphous alloys are 165 kJ/mol and 440 kJ/mol respectively [268, 269].  From the results it was  

  

(a) (b) 
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Figure 2-36 Relationship between the particle size of Zr2Cu and annealing time at different 

temperatures (From Ref. [267]). 
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suggested that lower activation energies for crystallization growth corresponds to rearrangement 

of smaller atoms such as Al or Si [267].  In contrast, higher activation energies for growth may be 

due to the diffusion of larger atoms, such as Zr, in the metallic glass [270].  For more studies on 

TEM experiments involving metallic glasses, see [271-279].  

 

2.6 Irradiation Theory  

The effects of irradiation on the mechanical and microstructural behavior of different 

material systems is a broad field which has been intensively studied for over a century.  With the 

advent of nuclear reactor technology, the field has only accelerated because of a need to understand 

the deleterious effects of irradiation on the properties of reactor materials.  Specifically, neutron 

bombardment of a material over time can fundamentally alter its microstructure, eventually leading 

to embrittlement and fracture.  Therefore, gaining a thorough understanding of the underlying 

mechanisms which contribute to irradiation induced degradation of structural materials can 

improve predictive capabilities that is expected to improved reactor performance and lifetime. 

In the field of radiation material science, neutron bombardment is not the only means to 

study the irradiation effects in materials.  Charged particles such as ions and electrons have also 

been used to gain a better understanding of how materials respond to irradiation damage.  

However, unlike neutrons, which interact with the nucleus of an atom, charged particles interact 

with both the nucleus and the electron cloud [34].  The reason ions and electrons are used is 

because of their significantly higher defect production rates as compared to neutrons [280].   
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2.6.1 Defect Production  

 

2.6.1.1 Knock-On Collisions  

When a material is irradiated by neutrons or charged particles, collisions occur between 

the incoming particle and the constituent atoms.  For crystalline materials, collisions lead to atoms 

being knocked off their lattice site, forming interstitial-vacancy pairs called Frenkel defects.  To 

calculate the amount of defects produced in a material the damage rate equation is used [34, 281]: 

 

 
𝑅𝑑 = 𝑁∫ 𝜙(𝐸𝑖) [∫ 𝜎(𝐸𝑖, 𝑇)𝜐(𝑇)𝑑𝑇

𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛

] 𝑑𝐸𝑖

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

 (2-35) 

 

here N is the lattice atom density, ϕ(Ei) is the energy-dependent particle flux, σ(Ei,T) is the 

probability that a particle of energy Ei will impart a recoil energy T to a struck lattice atom, and 

υ(T) is known as the damage function which describes the number of displaced atoms resulting 

from such a collision.  According to the modified Kinchin-Pease model (often referred to as the 

Norgett-Robinson-Torrens (NRT) model [282]), the function υ(T) can be written as [283, 284]: 

 

 

 

 

where Td is the average threshold energy for displacements, and ED(T) is the portion of the recoil 

energy T available for producing displacements [285].  It is now known, however, that the 

 

𝜐(𝑇) =   
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modified Kinchin-Pease model overestimates the defect production by a factor of 3-5 in most 

metals and also underestimates atomic mixing effects [286, 287].   

 

2.6.1.2 Collision Cascades  

When a primary knock-on event occurs, a collision cascade typically follows.  If the energy 

is large enough, multiple sub-cascades are produced instead of one large cascade.  For example, 

well-defined subcascades begin to form in copper for PKA energies above roughly 20 keV [287].  

The large number of ions set into motion in a displacement cascade gives rise to a “mixing” of 

atoms in the solid (see figure 2-37) [288]. 

Cascade mixing is a process which involves multiple collisions that cause the recoiled 

atoms to be randomly implanted.  A parameter which can estimate the magnitude of cascade 

mixing is known as the mixing parameter Q, and is defined as [288]: 

 

 

here λ is the jump distance, β is the number of “replacements” per atomic displacement, No is the 

atomic volume and Ed is the threshold displacement energy.  Table 2-5 lists the mixing parameters 

of several metals [288, 289].  The mixing parameter is an accurate measure for metals that have 

average to low atomic numbers and high melting temperature (Tm), but inaccurate for metals with 

high Z and Tm. 

 

 

  

𝑄 =
0.4𝛽𝜆2

𝑁0𝐸𝑑
 

(2-39) 
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Figure 2-37 Schematic depiction of the three mechanisms of ion beam mixing (from Ref. [288]). 

  

 

 

 

Table 2-5 Mixing parameter in several metals [288, 289]. 

 

 Al Ti Fe Ni Cu Ag Pd Au Pt 

Z 13 22 26 28 29 47 46 79 78 

Tm (K) 933 1933 1,807 1,726 1,357 1,235 1,825 1,337 2,045 

Q 

(Å5/eV) 
120 24 36 42 135 450 72 720 114 
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Another process which occurs during collision cascades is thermal mixing, and is believed 

to be a factor in the amorphization of crystalline materials during irradiation.  Mixing during this 

process is larger for metals with low melting temperatures and high energy densities [288].  A 

solution for the temperature distribution within the spike was derived by Vineyard and is written 

as [290]: 

 
𝑇(𝑟, 𝑡) =

휀

4𝜋𝜅0𝑡
𝑒
−
𝑐𝑜𝑟

2

4𝜅𝑜𝑡  (2-40) 

 

here Co, κo and ε are respectively the thermal conductivity, heat capacity and the energy density of 

the target material.   

 

2.6.1.3 Primary and Weighted Recoil Spectra  

An important concept in defect production is the primary recoil and weighted average 

recoil spectra [34, 288].  Here the primary recoil spectrum is defined as the relative number of 

collisions in which an energy between T and T + dT is transferred from the primary recoil atom to 

other target atoms.  It is also represented by the following normalized equation: 

 

 
𝑃(𝐸, 𝑇) =

1

𝑁
∫

𝑑𝜎(𝐸𝑖, 𝑇)

𝑑𝑇
𝑑𝑇

𝑇

𝐸𝑑

 (2-41) 

here N is the total number of primary recoils and dσ is the differential cross section for a particle 

of energy Ei to produce a recoil of energy T.  The left side of figure 2-38 gives a qualitative 

representation of the primary recoil spectra for 1 MeV particles in Cu [288].  An important quantity 
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is T1/2, which is the median cascade energy. The circles represent the relative location and recoil 

energy of knock on collisions.  On the right side of figure 2-38 is displayed a plot of the fraction 

of recoils with energy above Ed and below T.  Here each point on the curve represents the fraction 

of total recoils with energy between Ed and recoil energy T. As can be seen in both figures, heavier 

ions undergo a larger number of higher energy collisions as compared to their lighter counterparts.  

Furthermore, as indicated on the left side of figure 2-38, neutrons produce recoils with typically 

higher energies than charged particles although they occur less frequently.   

Another important quantity in analyzing defect production is the weighted recoil spectra 

(WRS), which is the fraction of defects and damage energy that are produced in recoils of a 

particular energy [34].  This quantity has an integral form similar to that used by the primary recoil 

spectra and is written as: 

 

 

 

 

 

 

 

 

 

 

Figure 2-38 (a) Visualization of primary recoil spectra (RS) for 1 MeV particles in Cu.  Circles’ 

location and size represent the recoil location and magnitude, respectively.  (b) Integral primary 

RS based on the equation for 1 MeV particles in Cu (from Ref. [288]). 
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𝑊(𝐸, 𝑇) =

1

𝐸𝐷(𝐸𝑖)
∫

𝑑𝜎(𝐸𝑖, 𝑇)

𝑑𝑇
𝐸𝐷(𝑇)𝑑𝑇

𝑇

𝐸𝑑

 (2-42) 

 

Where ED(T) is the damage energy created by a recoil of energy T and ED(Ei) is defined as: 

 

 
𝐸𝐷(𝐸𝑖) =

1

𝐸𝐷(𝐸𝑖)
∫

𝑑𝜎(𝐸𝑖, 𝑇)

𝑑𝑇
𝐸𝐷(𝑇)𝑑𝑇

𝑇𝑚𝑎𝑥

𝐸𝑑

 (2-43) 

If electron excitations are ignored, the damage energy ED(T) = T and inserting the 

differential cross sections from [34] (here they use σ instead of a differential form) into Eq. (2-43) 

yields: 

 

 
𝑊𝑐 =

𝐿𝑛(𝑇) − 𝐿𝑛(𝑇𝑚𝑖𝑛)

𝐿𝑛(𝑇max ) − 𝐿𝑛(𝑇min)
 (2-44) 

 

 
𝑊𝐻𝑆 =

𝑇2 − 𝑇𝑚𝑖𝑛
2

𝑇𝑚𝑎𝑥2
 (2-45) 

 

here WC and WHS denote the Coulomb and hard sphere WRS respectively.  The value WC is a good 

approximation for proton irradiations while WHS is used for particles such fast neutrons [34].  The 

WRS for heavier ions such as Ne and Kr is derived using Lindhard cross sections which are based 

on screened Coulomb fields [291]. 
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2.6.1.4 Stopping Power 

So far collisions have been treated primarily as single processes when in reality multiple 

collisions are occurring during irradiation.  In the latter scenario, the irradiating specie is 

undergoing multiple knock on events as it travels through the solid, losing energy with each 

successive collision. For ions, the energy loss occurs through processes such as ionization or 

electronic excitation.  Because successive knock-ons occur over extremely small distances, the 

discrete nature of collisions may be approximated as a continuous event.  This approximation 

allows one to denote the collisional loss in energy per unit length as a differential quantity, and is 

defined as [292]: 

 

 

here 
𝑑𝐸

𝑑𝑥
|
𝑒
and  

𝑑𝐸

𝑑𝑥
|
𝑛

 are respectively the electronic and nuclear stopping powers.  The stopping 

power is written as Si = 1/N × 
𝑑𝐸

𝑑𝑥
|i and has units of MeV nm2.  Figures 2-39(a)-(b) shows in what 

recoil energy regimes that each stopping power dominates [34].  At higher energies, electronic 

excitations are the primary means of energy loss and therefore electronic stopping dominates. At 

lower energies where elastic collisions with the atomic nuclei occur, the nuclear stopping power 

is the primary energy loss mechanism.  Since ions have higher energies when they first penetrate 

the material, electronic stopping will dominate at shallower depths.  At a critical depth, however, 

the ion will have lost enough energy such that only elastic collisions will occur and therefore 

nuclear stopping dominates. 

 

  
𝑑𝐸

𝑑𝑥
=
𝑑𝐸

𝑑𝑥
|
𝑒
+
𝑑𝐸

𝑑𝑥
|
𝑛

 (2-46) 
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2.6.2 Ion Range & SRIM Calculations  

The range of an ion in matter is simply defined as the total distance R that a projectile of 

initial energy Ei will travel before coming to rest.  Since ion implantation is a stochastic process, 

a more rigorous definition of the range is the most probable location for an ion to come to rest 

[292].  The mathematical definition for range involves integrating the nuclear and electronic 

stopping powers: 

 

 

where Ei is the initial ion energy before impinging on the material surface and the rest of the terms 

are defined as above.  Due to the stochastic nature of ion trajectories, the range should typically be 

calculated using computer software programs.  The Stopping and Range of Ions in Matter (SRIM) 

is a Monte Carlo based computer program which can estimate the ion range [293].  For 

explanations on the theory behind the code, please see [294-296].  In particular, SRIM is used 

tocalculate the interactions of energetic ions with amorphous targets. The statistical accuracy of 

SRIM in calculating the stopping power for a range of atoms has been steadily improving since 

the software was created in 1985 [297].  

Although the developers of this software recommend using the full cascade mode [293], 

Parish et al. recommend using the “quick” Kinchen and Pease option as suggested by Stoller et al. 

[298, 299].  In addition to using the “quick” option, one should also use the recommended 

displacement threshold energies as listed in [300], and set the lattice binding energy to zero.  

Although a value of zero is recommended in [299], it tends to crash the program, and so a 

reasonably small value such as 10-6 is instead suggested.   

  

𝑅 =
1

𝑁
∫

1

[𝑆𝑛(𝐸) + 𝑆𝑒(𝐸)]
𝑑𝐸

𝐸𝑖

0

 
(2-47) 
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Figure 2-39 (a) Energy loss from electron and nuclear stopping as a function of energy and depth. 

(b)  Ion energy as a function of depth in both the electronic and nuclear stopping regimes from 

Ref. [34]). 

 

After the ion range is calculated using SRIM, the displacements per atom rate (dpa/s) can be 

calculated from the following equation [281]: 

here 0.4 is a constant based on the displacement efficiency from the NRT model, ϕ is the incident 

particle flux, N is the atomic density of the target, ED is the damage energy, R is the ion range and 

Ed is the spatial-average displacement threshold energy.  Although dpa is very useful in estimating 

irradiation damage, it does not account for the number of atomic replacements in which an atom 

that is displaced during a collision event is replaced by another atom on the same lattice site [299].   

Figure 2-40 compares the displacement rates as a function of penetration depth for 

energetic particles of various mass and energy [301].  As observed in the graph, ions with higher  

 𝑑𝑝𝑎

𝑠
=
0.4𝜙𝐸𝐷
𝑁𝑅𝐸𝑑

 (2-48) 
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Figure 2-40 Displacement rate as a function of penetration depth for energetic particles with 

various masses and energies (from Ref. [301]). 
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masses tend to have a shorter range as compared to lighter ions of comparable energy.  

Furthermore, neutrons have a significantly higher range as compared to ions since they tend to 

collide less often and do not lose energy through electronic stopping. 

 

2.7 Irradiation Effects in Amorphous Alloys 

Irradiation with high-energy particles can prompt the crystallization of amorphous phases 

in a metallic glass due to temperature and irradiation induced increases in short-range ordering and 

the atomic diffusivity [302].  The resulting change in microstructure can fundamentally alter the 

macroscopic properties such as ductility, hardness and Young’s modulus.  In some cases, however, 

irradiation of an amorphous alloy has led to the recovery of the plasticity lost due to heat treatment 

[303]. 

 

2.7.1 Ion Irradiation Effects  

Table 2-6 summarizes the results of different studies on the irradiation response of metallic 

glass alloys.  The table features the alloy, the specimen type, ion species, ion energy, ion fluence, 

irradiation temperature, and whether the specimen crystallized during irradiation.  Interestingly, 

there were mixed results as to whether a give amorphous alloy would crystallize during irradiation 

or not.   

Carter et al. performed a couple studies involving the ion irradiation of Cu50Zr45Ti5 [304-

306].  In [305, 306], the copper alloy was irradiated with 140 keV He ions to a fluence of 1.7 × 

1017 ion/cm2.  Vicker’s hardness tests found that there was increase in hardness in the irradiated 

samples.   Specifically, they found that the Vicker’s hardness increased by 20 % in the irradiated 
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samples.  Iqbal et al. found similar results in Ar irradiated [Zr65Cu18Ni9Al0.08]98Gd2 and 

[Zr65Cu18Ni9Al0.08]98Er2 bulk amorphous alloy [307].  TEM characterization showed that 

nanocrystals had formed in the regions most associated with the increase in hardness [305]. 

Furthermore, HRTEM, nano-beam electron diffraction (NBD) and X-ray energy dispersive 

spectrometry (EDS) results showed that the formed crystalline phases were a mixture consisting 

of orthorhombic Cu10Zr7 phase, a tetragonal CuZr2 phase, and a monoclinic CuZr phase.   

In [304], Carter et al. involved the 1 MeV Cu irradiation of the same copper-based alloy 

[223].  Results from the XRD and TEM analysis indicated that nanocrystalline phases formed and 

were composed of Cu10Zr7 and CuZr2.  The diameters of the nanocrystals ranged from 2 to 14 nm, 

with a typical size of 6 nm.  Table 2-7 shows the interplanar distances as calculated from the 

selected area diffraction SAD pattern (see figure 2-41).  As can be seen in the table, the d spacing 

is similar to values found in the literature, and indicates the presence of the phases listed in the 

table.  

A few studies have examined the radiation stability of Zr55Ni5Al10Cu30 metallic glass [308-

311]. The studies from [309, 310] found that the alloy crystallized when irradiated, while the other 

investigations did not [308, 311].  The study by Carter et al. used XRD in addition to transmission 

electron micrography (TEM) to examine the microstructure of the Zr based alloy post irradiation 

[310].  Using selected area diffraction, they found that the intermetallic phases Cu10Zr7 and (Nix, 

Cu1-x)Zr2 formed during irradiation by 1 MeV Cu ions at room temperature to a fluence of 1 × 1016 

ions/cm2 (see figure 2-42).   

Nagata et al. conducted two conflicting studies on the effects of ion irradiation on 

Zr55Al10Ni5Cu30 amorphous alloy [308, 309].  In [312], they irradiated 50-100 micron foils with  
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Table 2-6 Summary of ion irradiation studies in amorphous alloys R.T.: Room temperature. 

Alloy 
Specimen 

Type 

Ion 

Species 

Ion Energy 

(keV) 

Ion fluence 

(cm-2) 

Irr. Temp 

(0C) 

Crystallized? 

(Y/N) 
Ref. 

Cu50Zr45Ti5 Ribbon He 140 1.7 × 1017 R.T. Y 

[305, 

306, 

313] 

Cu50Zr45Ti5 Ribbon Cu 1,000 1 × 1016 R.T. Y [304] 

(Cu47Zr45Al8)98.5Y1.5 Bulk He 500 
2 × 1017 – 2 × 

1018 
- N 

[314, 

315] 

[Zr0.65Cu0.18Ni0.09Al0.08]98M2 Bulk Ar 10 1.44, 2.17 × 1017 - Y [307] 

Ti45Cu40Zr5Ni5Sn5 Ribbon N 170 5 × 1015-2 × 1016 - N [316] 

Zr50.7Al12.3Cu28Ni9 Thin Foil Ar 70 1.43 × 1016 - Y [317] 

Zr50.7Al12.3Cu28Ni9 Thin Foil Xe 7,000 6 × 1015 R.T. Y [318] 

Zr64Cu17.8Ni10.7Al7.5 Bulk He 500 
2 × 1017 – 2 × 

1018 
R.T. N [315] 

Fe80Si7.43B12.57 Thin Foil H 250 1 × 1017- 1 × 1018 R.T. N [319] 

Fe40Ni38Mo4B18 Ribbon He 2,800 1 × 1016-1 × 1017 R.T. Y [320] 

Fe78B13Si9 Ribbon He 2,800 1 × 1016-1 × 1017 R.T. Y [320] 

Fe66Co18B15Si1 Ribbon He 2,800 1 × 1016-1 × 1017 R.T. Y [320] 

Fe79B16Si5 Ribbon He 5 1 × 1020 - N [302] 

Fe40Ni40P14B6 Ribbon He 40 1 × 1018 400 Y [321] 

Fe80Si7.43B12.57 Strip He 500 1 ×1017-1 × 1018 R.T. N [322] 

Zr55Ni5Al10Cu30 Bulk Au 500 8 × 1016 R.T. Y [309] 

Zr55Ni5Al10Cu30 Thin Foil 
H, Cu, 

Ag, Au 
150-500 8 × 1016 R.T. N [308] 

Zr55Ni5Al10Cu30 Ribbon Cu 1,000 1.0 × 1016 R.T. Y [310] 

Zr55Ni5Al10Cu30 Bulk Ar 10 2.7 × 1017 - N [311] 

Zr50Cu35Al7Pd5Nb3 Ribbon Kr 1,000 4.3 × 1013 420 Y  [323] 
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Table 2-6 continued. 

Alloy 
Specimen 

Type 

Ion 

Species 

Ion Energy 

(keV) 

Ion fluence 

(cm-2) 

Irr. Temp 

(0C) 

Crystallized? 

(Y/N) 
Ref. 

Ni52.5Nb10Zr15Ti15Pt7.5 Ribbon Xe 18,000 5 × 1010 - N [324] 

Zr55Cu28Al10Ni7 Bulk Ar 200, 75 1 × 1016, 5 × 1015 347 N [325] 

Ti40Zr10Cu38Pd12 Bulk Ar 200, 75 1 × 1016, 5 × 1015 347 Y [325] 

Zr52.5Cu17.9Ni14.6Al10Ti5 Bulk Ni 3,000 
4.2 × 1013, 4.2 × 

1016 
200 N [98] 

Co61.2B26.2Si7.8Ta4.8 Bulk He 500 
2 × 1017 – 2 × 

1018 
- N [315] 

Ni52.5Nb10Zr15Ti15Pt7.5 Ribbon Ni 1,000 1 × 1016 R.T. Y [326] 

Zr50Cu40Al10 Bulk Al 5,000 3 × 1014 R.T. N [327] 

Fe81B13.5Si3.5C2 Ribbon He 2,800 1 × 1016 R.T. Y [328] 

Ti40Zr25Be30Cr5 Bulk C, Cl 25,000 

9.6 × 1014 (C) 

7.63 × 1015 (Cl) 

R.T. N [329] 

 

Table 2-7 Interplanar distances of crystalline phases produced in Cu50Zr45Ti5 during irradiation by 

1 MeV Cu+ ions (from Ref. [304]). 

Experimental data 

from the present study 

Cu10Zr7 standard d-

spacing/orientation 

CuZr2 standard d-

spacing/orientation 

3.178 3.174/(004)  

2.889 2.880/(311)  

2.755  2.782/(004) 

2.642 2.621/(204)  

2.463  2.429/(103) 

2.416 2.420/(313)  

2.252 2.287/(224) 2.269/(110) 

1.933 1.923/(315)  

1.759 1.746/(117) 1.761/(114) 

1.603 1.598/(442) 1.607/(200) 

1.433 1.437/(662) 1.429/(211) 

1.372 1.378/(119)  

1.260 1.262/(248),(713)  

1.116  1.117/(010) 

1.035  1.030/(303) 

 



91 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-41 The SAD pattern of Cu ion irradiated Cu50Zr45Ti5 glass.  The miller indices correspond 

to crystalline Cu10Zr7 (#) and CuZr2 (*) phases. (from Ref. [304]).    

 

  

  

  

 

 

 

 

 

 

 

 

Figure 2-42 The (SAD) pattern of Cu-ion-irradiated Zr55Cu30Al10Ni5 glass.  The indexing indicates 

the co-existence of Cu10Zr7 (#) and NiZr2 (*) phases (from Ref. [310]). 
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H, Cu, Ag and Au ions possessing energies of 150 to 500 keV to fluences of 8 × 1016 ions/cm2.  

X-ray diffraction results indicated that the amorphous alloys did not crystallize under any 

irradiation condition.  However, Carter et al. points out that the lack of detection of nanocrystalline 

phases in Nagata’s study was puzzling since it involved similar ion fluences as the study in [310].  

It was surmised in [310] that the high detection limits of XRD may have prevented the observance 

of crystalline phases and therefore should have been used in combination with TEM and SAD 

techniques. 

Unlike in [308], the other study conducted by Nagata et al. did involve the use of TEM in 

combination with XRD [309]. Specifically, their research involved 500 keV Au ion irradiation in 

bulk Zr55Al10Ni5Cu30 amorphous alloy (at a fluence the same as [308]).  Although x-ray diffraction 

results initially suggested that the alloy did not crystallize, bright field TEM showed the formation 

of nano-crystalline precipitates with sizes of roughly 50 nm.  From the results it was theorized that 

the nano-crystals which formed during irradiation were probably composed of fcc-Zr2Ni and fcc-

Zr2Cu. 

A study conducted by Huang et al. found that irradiated Ti45Cu40Zr5Ni5Sn5 amorphous 

ribbons exhibited an increase in hardness while remaining amorphous [316].  For this study, the 

metallic glass was irradiated with 170 keV nitrogen ions to fluences ranging from 5 × 1015-2 × 

1016 ions/cm2.  X-ray diffraction results showed a shift in the intensity peaks I(Q) to higher values 

which implies a decrease in the atomic spacing.  There was also an increase in the Young’s 

modulus with respect to irradiation fluence, which is further proof for the decrease in atomic 

spacing.   
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Kraposhin et al. examined the effects of Ar irradiation on three different Co based 

amorphous alloys [330].  For their study, they irradiated Co83.7Fe5.6Si8.6B2.2, Co82Fe4.3Si7.2Cr4B2.5 

and Co86.7Fe3.6Si2.7Mn3.5B3.5 alloys with 30 keV Ar ions to a fluence of 1.5 × 1018 ions/cm2 to 

temperatures ranging from 100-600 oC.  XRD results showed that all three alloys crystallized at 

temperatures ≤ 300 0C.  For the Co83.7Fe5.6Si8.6B2.2 glass, crystallites began to form at 100 oC and 

were composed of CoB, Co-based solid solution (a mixture of hexagonal closed packed and face 

centered cubic modifications) and Co2Si.  Like the first alloy, the Co82Fe4.3Si7.2Cr4B2.5 alloy 

produced crystalline phases consisting of Co solid solution and CoB, which occurred after 

irradiation at 300 oC.  The third alloy also produced the same crystalline phases as the alloy with 

the Cr additions under irradiation at 200 oC.  However, unlike the first two alloys, the most 

intensive peaks of the XRD belonged to the Co-based solution, and not the CoB phase.  

Furthermore, diffraction peaks of an unknown cubic aperiodical phase were observed and were 

determined to be based on the α-Mn structure.  The study also found that the third alloy recovered 

its amorphous structure after annealing to 250 oC. 

Miglierini et al. used 73Fe conversion electron Mӧssbauer spectroscopy (CEMS) to study 

the effects of proton and nitrogen irradiation on the short range order in Fe76Mo8Cu1B15 and 

Fe74Nb3Cu1Si16B6 amorphous ribbons [331].  CEMS was chosen due to its sensitivity to structural 

modifications.  In addition, a similar experiment was performed on the second alloy where they 

examined the irradiation effects of nitrogen and gold [332].  For the experiment involving proton 

and nitrogen irradiation, the researchers found that Fe76Mo8Cu1B15 was sensitive to radiation 

damage while Fe74Nb3Cu1Si16B6 was not.   

Chen et al. found that nanocrystals formed in Zr50.7Al12.3Cu28Ni9 amorphous thin films 

when exposed to 70 keV Ar irradiation (fluences up to 1.43 × 1016 ions/cm2) [317].  Here 
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nanocrystals (diameter of 10-30 nm) containing either an fcc Cu phase or an fcc AlNi3 phase or 

both were observed.  In addition to the nanocrystals, they found Cu- enriched and Ni- depleted 

nanostructures, which were attributed to the migration of Cu and Ni atoms.  Furthermore, they 

believed that the nanocrystals acted as nuclei for the formation of these Cu- and Ni- enriched 

nanostructures.   

Another study conducted by Chen et al. examined the irradiation effects of 7 MeV Xe ions 

on the same alloy [318].  Selected area diffraction and scanning tunneling electron microscope 

(STEM)-energy dispersive x-ray spectroscopy analysis suggested that the needle-like nanocrystals 

were composed primarily of Cu10Zr7.  Furthermore, the crystals were observed to form along the 

(311) plane, which was caused by irradiation induced diffusion of atoms along that direction.  In 

addition to the formation of the crystalline phase, evidence showed that the substitutional 

intermetallic (NixCu1-x)10Zr7 phase may have formed as well. 

There have also been studies regarding radiation enhanced diffusion (RED) in amorphous 

alloys.  R. Averback et al. found that in Ni-Zr amorphous alloys, radiation enhanced diffusion 

occurred but did not necessarily lead to crystallization [333].  It was concluded that the reason why 

the binary alloy did not crystallize was because of the fact that although nickel diffused, zirconium 

remained immobile. Another study by Averback et al. involving an amorphous Ni-Zr diffusion 

couple found that Ni is far more mobile than Zr, which supports the results of the study above 

[334].   

Another study of RED in amorphous alloys involved the irradiation of Fe40Ni40B20 by 300 

keV 58Ni ions [335].  Results indicated that diffusion under irradiation was strongly enhanced in 

comparison to thermal diffusion.  Together with other results [336, 337], they concluded that the 
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diffusion behavior was best described by atomic transport via irradiation-induced, point defect like 

entities which perform long-range diffusion and can undergo a recombination reaction. 

Jung examined the effects of proton irradiation on the creep of Ni78B14Si8 amorphous 

ribbons [338].  For this experiment they irradiated the metallic glass with 6.3 MeV protons with 

fluxes up to 1.1 × 1014 p/cm2s and temperatures of 420 ± 15 K.  Uniaxial tests revealed that the 

irradiation creep rate in this metallic glass alloy was approximately 25 times higher than compared 

to its crystalline counterpart.  From the results they theorized that the high irradiation creep rates 

may be beneficial in reducing irradiation-induced internal stresses but would be disadvantageous 

in terms of dimensional stability for application in irradiation environments.  

The effects of He ion irradiation on Fe40Ni40P14B6 were examined by Hayashi et al. [321].  

Here they irradiated 80 μm thick ribbons with 40 keV He ion irradiation to a fluence of 1 × 1018 

ions/cm2 at 400 oC.  Mӧssbauer spectroscopy indicated that crystallization occurred in the alloy 

when exposed to the above conditions.  However, thermally induced crystalline ferromagnetic 

phases such as α-iron, Fe2B or Fe3P were not detected (which were expected to form [339, 340]), 

but instead paramagnetic phases such Fe2P and (Fe1-xNix)P2 may have formed instead.  Auger 

electron spectroscopy results indicated that nickel enriched portions were separated from iron 

enriched portions in this region.  This separation indicates that ion irradiation may induce long 

range diffusion of the metal and metalloid atoms in addition to the creation of vacancy like defects 

in the affected region. 

Hou et al. compared the radiation resistance of Fe80Si7.43B12.57 amorphous alloy, 

polycrystalline W and crystalline V90.62Cr4.69Ti4.69 [322].  For this experiment the three alloys were 

exposed to 500 keV He2+ irradiation to fluences ranging from 1 × 1017 - 1 × 1018 ions/cm2.  XRD 
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and TEM revealed that the Fe based amorphous alloy did not crystallize under any fluence.  

Furthermore, helium bubble layers were observed at approximately 1.1 μm beneath the surface. 

Atomic force microscopy measurements revealed that the surface roughness of the Fe-based 

metallic glass did not increase significantly while the surface roughness of the polycrystalline W 

increased significantly at the maximum fluence.  In addition, V90.62Cr4.69Ti4.69 blistered and flaked 

at the fluence of 5 × 1017 ions/cm2 and exhibited multi-layer scaling and peeling at the fluence of 

1 × 1018 ions/cm2.  The results above indicate that the iron based amorphous alloy had higher He2+ 

ion radiation resistance as compared to the other two alloys.  

Similar to the study conducted by Hou et al., Wang et al. compared the effects of He2+ ion 

irradiation resistance of Zr64Cu17.8Ni10.7Al7.5 and metallic W [341].  Here the two alloys were 

irradiated with 500 keV He2+ to ion fluences ranging from 2 × 1017 - 2 × 1018 ions/cm2 at ambient 

temperature.  Like the previous investigation, He2+ irradiation resistance in the amorphous alloy 

was found to be superior to that of the metallic W alloy.  AFM revealed that the initially, the 

surface roughness of the amorphous alloy increased, but then became smooth at higher doses.  This 

was in contrast to the metallic W, which began to exhibit lamination and peeling on the surface at 

a fluence of 1 × 1018 ions/cm2.  In addition, the Zr alloy did exhibit irradiation induced 

crystallization at any ion fluence.   

In the Zr64Cu17.8Ni10.7Al7.5 alloy, a helium bubble layer appeared within the range of 1.2-

1.4 microns away from the surface corresponding to the mean implanted He region, as can be seen 

in figure 2-43(a).  Bubble morphology was divided into three zones which were labeled A, B and 

C in the figure.  In zone A (near the irradiated surface), the helium bubbles were mostly round, 

with sizes ranging from nanometers to several tens of nanometers.  In zone B (0.3-1.3 μm away 

from the surface), the bubble size was much smaller.  In zone C, however, there was a helium 
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bubble layer which formed and consisted of bubbles which were irregularly polygonal in shape 

and several tens of nanometers in diameter.  Furthermore, bubbles coalesced in this zone which 

can be seen in figure 2-43(b).  For a similar study comparing the He2+ ion irradiation effects in 

(Cu47Zr45Al8)98.5Y1.5 amorphous alloy and polycrystalline W, see [314]. 

Wang et al. investigated the He2+ resistance of 4 different alloys [315].  Here, they 

irradiated three different amorphous alloys and compared the radiation response with 

polycrystalline W.  Specifically, the amorphous alloys which were irradiated were 

(Cu47Zr45Zl8)98.5Y1.5, Zr64Cu17.8Ni10.7Al7.5 and Co61.2B26.2Si7.8Ta4.8 at room temperature.   The ion 

energy and fluence were 500 keV and 2 × 1017-2 × 1018 ions/cm2, respectively.  Figures 2-44 and 

2-45 show the SEM surface morphology before and after irradiation.  After an irradiation fluence 

of 1 × 1018 ions/cm2 it was observed that the tungsten alloy began to roughen, peel and flake, while 

no such changes were seen in the three metallic glasses.  At an irradiation dose of 2 × 1018 ions/cm2 

the Co based metallic glass began to experience surface roughening, while the Zr and Cu based 

amorphous alloys did not.  Furthermore, helium bubbles were found to congregate at the grain 

boundaries in the polycrystalline W, which can lead to embrittlement.  

 

2.7.1.1 Ion Irradiation Effects on Nanoindentation Behavior  

Menendez et al. irradiated Zr55Cu28Al10Ni7 and Ti40Zr10Cu38Pd12 with Ar ions in a 

consecutive two-step process [325].  The first step consisted of irradiating the alloys with ion 

energies of 200 keV to a fluence of 1 × 1016 ions/cm2 while the second step consisted of an ion 

energy and fluence of 75 keV and 5 × 1015 ions/cm2 respectively.  Both irradiations were conducted 

at room temperature and 347 oC.  It was found that the ion irradiations at room temperature cause 

an increase in nanoindentation depth with respect to the as-cast state for both alloys.  However, 
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Figure 2-43 (a) TEM image of sample of 500 keV He2+ irradiated Zr64Cu17.8Ni10.7Al7.5 metallic 

glass with fluences of 2 × 1018/cm2 and (b) TEM image of the He-ion range of sample.  Red circles 

indicate coalescence growth of two or more bubbles (from Ref. [341]). 

 

  

 

 

 

 

 

 

 

 

 

Figure 2-44 SEM images for pristine and 500 keV He2+ ion irradiated ((Cu47Zr45Al8)98.5Y1.5, 

Zr64Cu17.8Ni10.7Al7.5, Co61.2B26.2Si7.8Ta4.8 and metallic W at different fluences (from Ref. [315]). 
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Figure 2-45 The cross-sectional SEM images of irradiated ((Cu47Zr45Al8)98.5Y1.5, 

Zr64Cu17.8Ni10.7Al7.5, Co61.2B26.2Si7.8Ta4.8 and metallic W at different fluences from (Ref. [315]). 

 

the nanoindentation depth decreased in both alloys for ion irradiations at 347 oC.   Moreover, 

nanoindentation hardness and Young’s modulus decreased in both alloys irradiated at room 

temperature and increased in both alloys irradiated at 347 oC.   The reduction in hardness and 

Young’s modulus was attributed to a decrease in free volume concentration.  It was also reported 

that the Zr based bulk metallic glass remained amorphous while the Ti alloy crystallized during 

irradiation at 347 oC.  

In addition to the above study, changes in free volume have also been found in ion 

irradiated Zr-Ti-Cu-Ni-Be metallic glass [342, 343].  Raghavan et al. examined the effects of Ni 

ion irradiation on Zr42.1Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) metallic glass through micropillar 

compression and nanoindentation experiments [342, 343].  They found that ion irradiation led to 

an increased ductility which correlated with a decrease in stress drops during serrated flow.  

Specifically, stress drops decreased from 880 ± 224 MPa in the as cast alloy to 121 ± 40 MPa in 
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the sample irradiated to 100 dpa.  It was theorized that the increased ductility was due in part to 

the irradiation induced creation of shear bands.  Enhanced shear band initiation is thought to 

promote shear band intersections, which are necessary for increased plastic strains before failure 

[343, 344]. 

Perez-Bergquist et al. investigated the effects of Ni ion irradiation on the nanoindentation 

behavior and microstructure of Zr52.5Cu17.9Ni14.6Al10Ni5 bulk metallic glass [98].  For this 

investigation, the Zr based alloy was irradiated with the above alloy with 3 MeV Ni ions to fluences 

of 4.2 × 1013 and 4.2 × 1014 ions/cm2 (peak doses of 0.1 and 1 dpa) at room temperature and 200 

oC. Hardness and elastic modulus both decreased for the specimens irradiated at room temperature.  

However, for irradiations at 200 oC, the hardness exhibited a slight decrease while the Young’s 

modulus was found to increase.  Furthermore, TEM characterization revealed that irradiation did 

not lead to any observable changes in the microstructure. 

Lucca et al. examined the mechanical response of an irradiated Ni free Ti based metallic 

glass by nanoindentation [130].  For this study they irradiated Ti40Cu32Pd32Zr10Sn2Si2 metallic 

glass ribbons with 4 MeV Fe2+ ions at 25 oC over a range of fluences from 1 × 1012 to 1 × 1015 

ions/cm2.  Nanoindentations were performed using both Berkovich and spherical diamond 

indenters.  Results revealed that the ion irradiated samples exhibited a decrease in elastic modulus 

and hardness in addition to a shift in the deformation mechanism toward less shear localization 

and more homogenous plastic flow.  This shift was attributed to an increase in free volume due to 

ion irradiation.   

In addition, the study analyzed the irradiation effects on nanoindentation pop-ins, which 

occur at the onset of plastic deformation in the metallic glass.  It was found that the force at first 
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displacement increased from ~1 mN in the as-cast sample to ~2.6 mN in the sample irradiated to 

a fluence of 1 × 1013 ion/cm2s at room temperature.  Since pop-ins are intimately related to shear 

banding, the increased force at the first displacement burst indicates that ion irradiation alters the 

way the shear bands form and propagate in the material [329].  In addition, the initial pop-in force 

decreased to ~1.8 mN when the sample was irradiated to the same fluence at 300 oC.  It is known 

that amorphous alloys with a higher free volume content can accommodate local shear strain, and 

hence deter the propagation of shear bands [130].  Therefore, thermal treatment annihilates the 

free volume that is created under ion irradiation, which is exhibited in a drop in the required force 

to initiate displacement bursts.  

Hu et al. compared the effects of heavy and light ion irradiations in Ti40Zr25Be30Cr5 [329].  

For this study, the team irradiated the Ti alloy with 25 MeV C4+ and Cl4+ ions at room temperature.  

The ion fluences for the carbon chlorine irradiations were 9.60 × 1014 ions/cm2 and 7.63 × 1015 

ions/cm2 respectively.  XRD results indicated that the amorphous alloy did not crystallize under 

either irradiation condition.  Nanoindentation hardness decreased from 7.18 GPa in the as cast 

sample to 7.16 and 6.74 GPa in the C4+ and Cl4+ irradiated samples respectively.  The above results 

indicate that heavier ions cause significantly more softening in the material than do light ions.  In 

contrast to the hardness, the average Young’s modulus was not affected by either type of ion 

irradiation. 

Luo et al. examined the effects of 300 keV Ar ion irradiation on Zr61.5Cu21.5Fe5Al12 bulk 

amorphous alloy [345].  Here they irradiated the material to doses ranging from 3 × 1015 - 3 × 1016 

ions/cm2 at room temperature.  Using HRTEM and SAD techniques it was discovered that 

nanocrystal precipitates formed at doses of 1 × 1016 ions/cm2 and had an average size of 5 nm.  
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Furthermore, nanoindentation experiments revealed that both the average hardness and modulus 

increased with respect to irradiation fluence. 

 

2.7.2 Neutron Irradiation Effects  

Table 2-8 presents a summary of neutron irradiation studies that include the alloy, its 

material type, the neutron energy, the neutron fluence, the irradiation temperature, and whether the 

sample crystallized or not.  As can be seen, none of the alloys crystallized during irradiation.  Gupta 

et al. found that Fe40Ni40B20 and Fe78Si9B13 metallic glass ribbons became brittle after neutron 

irradiation [346].  For their study the above iron based amorphous alloys were exposed to thermal 

neutrons with a flux of 1013 n/cm2s.  They found that after an irradiation dose of 1019 n/cm2 that 

all the specimens became highly brittle.  Using Mӧssbauer spectroscopy, they found that helium 

formation was the possible cause of embrittlement, and not phase separation or cluster formation. 

This was in contrast to earlier studies which indicated that the cause of embrittlement was 

attributed to phase separation or cluster formation in the amorphous alloy [131].  

Another study conducted on the neutron irradiation response of Fe40Ni40B20 was conducted 

by Gerling et al. [347].  For their study they irradiated the above alloy with both thermal (E < 0.1 

eV) and fast (E > 0.1 MeV) neutrons to a fluence of 6 × 1013 n/cm2 and 4.3 × 1019 n/cm2, 

respectively.  Transmission electron microscopy (TEM) results indicated that specimens remained 

amorphous even after irradiation to 26 dpa. Furthermore, no irradiation induced defects or He-

bubble formation were observed under TEM.   

In terms of density, Gerling et al. found that the density of amorphous Fe40Ni40B20 ribbons 

decreased with respect to thermal neutron dose [348].  As can be seen in figure 2-46, the relative 
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swelling density decreased by ~0.8 % after a neutron fluence of 1 × 1019 n/cm2.  Furthermore, 

swelling approached a constant value around a fluence of 3 × 1019 n/cm2, which is roughly 

equivalent to 12 displacements per atom.  It is interesting to note that at the time the article was 

published, such a pronounced saturation behavior of the swelling rate had never been observed in 

crystalline materials [348].  It was theorized that the observed swelling was caused by radiation 

defects and not by any changes in composition during irradiation.  A study regarding the structural 

restoration of neutron irradiation on Fe40Ni40B20 may be found in [129]. 

Kramer et al. explored the effects of neutron irradiation on a superconducting metallic glass 

[128].  Here they irradiated (Mo0.6Ru0.4)82B18 metallic glass ribbons with 1 MeV neutrons at room 

temperature.  XRD revealed that the alloy did not crystallize when exposed to fluences of 1 × 1019 

n/cm2.  Furthermore, the alloy exhibited a decrease in density from 10.37 to 10.22 g/cm3, (~1.5 %) 

which corresponded to an increase in the free volume content and corresponding increase in 

ductility.  Johnson and Williams have reported that there is positive correlation between excess 

structural volume and ductility of (Mo0.6Ru0.4)1-xBx alloys [349].  

 A study conducted by I. Skorvanek et al. found that ductility of thermally embrittled 

Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons could be restored by neutron irradiation [350].  For their 

research, they compared the fracture strain of thermally treated, and neutron irradiated iron based 

metallic glass after exposure to thermal neutrons to fluences ranging from 3 × 1017 to 1019.  As can 

be seen in figure 2-47, all the thermally-embrittled amorphous samples regained ductility after 

neutron irradiation.  Furthermore, the metallic glass ribbons did not undergo crystallization from 

neutron irradiation.  Based on previous results in addition to this study, embrittlement was caused 

by thermal annealing (decrease in excess free volume), while a restoration of ductility occurred 

via neutron irradiation by a generation of excess free volume or swelling [129, 348]. 
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Table 2-8 Summary of neutron irradiation studies in amorphous alloys. R.T. : Room temperature. 

Alloy 
Material 

Type 

Neutron 

Energy 

Neutron 

Fluence 

(cm-2) 

Irr. 

Temp 

(0C) 

Crystallized? 

(Y/N) 
Source 

Fe40Ni40B20 Ribbon Thermal 1018- 1019 ~R.T. N [346] 

Fe78Si9B13 Ribbon Thermal 1018- 1019 ~R.T. N [346] 

Fe40Ni40B20 Ribbon 
Thermal, 

fast 
8 × 1019 < 70 N [131] 

Fe40Ni40B20 Ribbon 
Thermal, 

fast 

6.5 × 1019 

(thermal) 

4.3 × 1019 

(fast) 

< 120 N [347] 

(Mo0.6Ru0.4)82B18 Foil 1 MeV 1 × 1019 R.T. N [128] 

Fe73.5Cu1Nb3Si13.5B9 Ribbon Thermal 
3 × 1017-

1019 
< 70 N [350] 
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Figure 2-46 The relative density for Fe40Ni40B20 in the as-quenched state, crystallized, and neutron 

irradiated to 12 dpa (from Ref. [348]). 
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The effects of neutron irradiation on the short-range order in amorphous alloys have also 

been the subject of previous research.  One study involved the irradiation of Fe78-xNIxSi8B14 (with 

x = 0, 15, 25, 38, 53, 58) amorphous ribbons with thermal neutrons to a fluence of 1019 n/cm2 [351].  

Mӧssbauer spectroscopy revealed that before irradiation, increasing the Ni concentration in (Fe, 

Ni)-metalloid glass drove Fe atoms to sites with higher metalloid near neighbors.  However, it was 

found that neutron irradiation tended to randomize the system, partially destroying the occupancy 

of metalloid depleted sites by Ni. Furthermore, the increase in randomization by neutron irradiation 

was thought to cause an increase in the average magnetic moment of Fe atoms which in turn 

increased the Curie temperature of the alloy. 

 

2.7.3 Summary of Irradiation Studies  

Based on Table 2-6, there is not conclusive evidence whether metallic glasses will 

crystallize during ion irradiation or not.  Crystalline phases which formed in the amorphous alloys 

during irradiation were observed as either spikes in the XRD patterns or spots in the TEM (SAD) 

diffraction patterns.  In alloys which crystallized, diffraction patterns indicated that the primary 

phase which formed was binary in nature and consisted of bcc, fcc, or hcp structures [305, 309, 

330]. 

In addition, a few studies on the crystallization behavior of Cu+ irradiated Zr55Ni5Al10Cu30 

reported contradictory results [305, 308, 309, 311].  For instance, Carter et al. [305] suggested that 

the high detection limits of XRD may have prevented the observance of crystalline phases in [308].  

They also stated that XRD should have been used in combination with TEM and SAD techniques. 
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Figure 2-47 The relative fracture strain vs. the neutron fluence for Fe73.5Cu1Nb3Si13.5B9 alloy (a) 

as-quenched, (b) annealed at 300 oC/1hr (amorphous), (c) annealed at 400 oC/1hr (amorphous), (n) 

annealed at 545 oC/1hr (nanocrystalline) (from Ref. [350]). 
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In terms of mechanical properties, a number of investigations reported that ion irradiation 

led to a decrease in nanoindentation hardness or Young’s modulus which was thought to 

correspond to an increase in the free volume of the alloy [98, 130, 325, 329].  Additionally, Hu et 

al. found that significantly more softening occurred with heavier ion (Cl4+) irradiation which was 

attributed to the excess creation of atomic-scale defects [329].  In contrast to the above results, a 

study by Huang et al. found that ion irradiation led to an increase in Hardness and Young’s 

modulus in Ni+ irradiated Ti45Cu40Zr5Ni5Sn5 [316].  Another study found that bulk metallic glass 

samples which had undergone ion irradiation induced crystallized exhibited higher 

nanoindentation hardness and Young’s modulus as compared to the as-cast condition [345].  The 

nanoindentation results were echoed by studies involving Vickers hardness testing of metallic 

glasses which had also undergone irradiation induced crystallization [304-307].Investigations into 

the RED of amorphous alloys found that diffusion in Fe40Ni40B20 was greatly enhanced under 

irradiation [335].  Along with a couple of other studies  [336, 337] it was concluded that the RED 

behavior was best described by atomic transport via irradiation-induced, point defect like entities 

which perform long-range diffusion and can experience recombination reactions.  Similar behavior 

was observed in study involving He irradiation of Fe80Si7.43B12.57 amorphous alloy [321]. 

Some studies have also found that metallic glasses exhibit a higher resistance to He 

irradiation as compared to crystalline alloys [315, 322, 341].  In particular, He irradiation induced 

little changes in the surface morphology of the BMG alloys while there was observed blistering 

and peeling in their crystalline counterparts.  However, the results of another study suggested that 

He formation in neutron irradiated Fe40Ni40B20 and Fe78Si9B13 metallic glass ribbons led to 

embrittlement of the alloy [346], although other studies found that it was most likely due to phase 

separation or cluster formation [131].   
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A few studies found that neutron irradiations increased the free volume in metallic glass 

alloys as evident in relative density measurements [128, 129, 348].  It was found that the increase 

in free volume correlated to an increase in the ductility of the amorphous alloy [129, 348].  In 

addition, it was observed that neutron irradiation could restore the ductility in an alloy which had 

been previously annealed (decrease in free volume).  However, other studies have found that 

neutron irradiation led to an embrittlement, which was most likely caused by phase separation or 

cluster formation in the alloy [131, 346]. 

Based on the above discussion, there are some questions which still need to be answered.  

It is still unknown why some metallic glasses crystallize during irradiation while others remain 

amorphous.  Although irradiation resistant BMGs are thought to contain SRO configurations 

which maintain stability during energetic atomic mixing; it is still not fully known.  Furthermore, 

the absence of conventional defects such as Frenkel pairs in BMGs only adds to the complexity of 

its irradiation behavior.  Moreover, He and 3H behavior in amorphous alloys is still not fully 

understood.  The absence of grain boundaries and higher volume content in BMGs should lead to 

an increased outgassing of He and correspondingly less embrittlement and cavitation (leading to 

decreased 3H retention) as compared to their crystalline counterparts. However, the results of [346] 

indicate that He production in a given amorphous alloy can cause embrittlement, contradicting this 

assertion.  Therefore, further investigation is required to fully resolve these issues. 
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CHAPTER 3 EXPERIMENTAL PROCEDURES 
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3.1 Experimental Specimens  

For this research project, two BMG alloys were used which have the following 

compositions: Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) and Cu60Zr20Hf10Ti10.  Both alloys have 

relatively high compressive ductility and fracture toughness (see figures 3-1 to 3-3).  For BAM-

11, attributes such as high strength (~1,700 MPa [352, 353]), a relatively high reported fracture 

toughness of 49 MPa·m1/2 [153, 354], a critical cooling rate as low as 10 K/s [355], and the fact 

that it does not contain beryllium, make BAM-11 BMG a particularly attractive candidate for use 

in mechanical components [356].  Cu60Zr20Hf10Ti10 was chosen as the second alloy for this study 

not only because of its different composition (and hence different atomic structure) as compared 

to BAM-11, but also because of its relatively high fracture toughness (67 MPa·m1/2 [357]), high 

strength (~1,960 MPa [358]), comparable ductility to as-cast Zr-based metallic glass alloys [358], 

and low cost as compared to Zr-based and Pd-based BMGs [358, 359]. 

 

  

  

 

 

 

 

 

 

 

Figure 3-1 Fracture toughness of BAM-11 BMG as compared to other Zr based BMGs (from Ref. 

[354]).  
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Figure 3-2 The correlation of fracture energy G with Poisson’s ratio υ for all the as-cast metallic 

glasses (all compositions in atomic percent (at.%)).  Cu60Zr20Hf10Ti10, one of the amorphous alloys 

chosen for this thesis, is highlighted in red (from Ref. [357]). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 The correlation of fracture energy E with elastic modulus ratio G/B for different 

metallic glasses (from Ref. [107]).  
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Each of these materials have interesting characteristics of potential benefit to fusion and 

their study may provide critical insight into the development of next-generation fusion materials.  

This study uses a mixture of neutron and ion irradiation studies to explore the overall phase 

stability, short range atomic configurations and He/H retention in the proposed materials.  

Identification of promising radiation resistant attributes in either of these alloys may provide new 

opportunities for developing suitable reduced activation materials for the hostile environment in 

fusion reactor systems.  

BAM-11 and Cu60Zr20Hf10Ti10 BMGs were fabricated by Dr. Hongbin Bei via arc melting 

in an argon atmosphere using a mixture of base metals with the following purities: 99.5% Zr, 

99.99% Cu, 99.99% Ni, 99.99% Al, and 99.99% Ti. The preform alloys was then remelted and 

drop cast into a cylindrical copper mold with 3 mm diameters in a Zr-gettered helium atmosphere. 

Figure 3-4 presents the as-cast rod of both alloys.  Five ingots of BAM-11 BMG and three ingots  

 

 

 

 

 

 

 

 

 

Figure 3-4 Left) 5 mm diameter rod of the as-cast Zr52.5Cu17.9Ni14.6Al10Ti5 BMG and Right) 3 mm 

diameter rod of the as-cast Cu60Zr20Hf10Ti10 BMG. 
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Figure 3-5 XRD patterns for the as-cast Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) and Cu60Zr20Hf10Ti10 

BMG alloys. 
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of Cu BMG were fabricated for the experimental work performed for this thesis.  Subsequent X-

ray diffraction (XRD) and differential scanning calorimetry both confirmed that the material was 

in the fully amorphous state.  Figure 3-5 shows the XRD of the as-cast state for both specimens, 

where the single, broad peak indicate that they are fully amorphous. 

 

3.2 Ion Irradiation Experiments  

 

3.2.1 Ion Irradiation Facility  

The BMG samples were irradiated at the ion accelerator at the Ion Beam Materials 

Laboratory (IBML) located at the University of Tennessee-Knoxville (UTK) [360].  The Beamline 

is equipped with two ion sources, a 3 MV tandem accelerator, three beamlines, and four end-

stations [360].  In addition, the implantation capabilities of the facility include ions of most 

elements, energies from a few hundreds of keV up to tens of MeV (depending on ion and 

currentneeded), and controlled irradiation temperatures from -150 to 800 °C (depending on the 

beamline).  The beam is generated by an ion sputtering source and a source of He- ions.  Figures 

3-6 and 3-7 show an overview of the accelerator facility at the University of Tennessee and a 

schematic of the laboratory.  Table 3-1 gives the technical specifications for the 3-MV tandem 

electrostatic accelerator [361]. 

The creation of the ion beam is a complex process which involves many components.  

Initially, heavy anions are created through a Source of Negative Ions by Cesium Sputtering 

(SNICS) system [362].  Helium ions may also be created through the Alphatross system which is 

adjacent to the SNICS source.  With respect to the sputtering process, a reservoir of Cs and a tube 
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leading into the ion source are heated, creating a vapor of Cs which is sprayed onto the negative 

ion source [363].  Once the beam leaves the SNICS, an injection magnet bends the beam 30o such 

that it enters the beamline.  An extraction electrode provides a potential which accelerates the 

negative ions into the injection beamline.  To avoid contamination of the outgoing beam, a 90o 

double focusing magnet is used to analyze the beam and remove impurities. 

After passing through the injection magnet, the beam travels into a 3.0 MV Pelletron 

(model 9SDH-2) tandem electrostatic accelerator (manufactured by National Electrostatics 

Corporation) [360].  Here, the negative ions are accelerated in a first tube from a ground potential 

to a positively charged terminal at high-voltage in the middle of the tank [364].  In the terminal, 

the ions come into contact with a nitrogen gas that strip electrons from the ions, converting them 

into positive ions.  After the conversion process a potential drop accelerates the positive ions 

towards the other end of the accelerator.  Upon exiting the accelerator, the energetic ions are 

focused using a magnetic quadrupole and a Y-axis electrostatic steerer into the analyzing magnet 

[360].  Here the analyzing magnet, via the Lorentz force, directs the portion of the beam with the 

desired energy (charge state and mass) into the target chamber, where it irradiates the specimen.   

 

 

 

 

 

 

 

Figure 3-6 The research beamline which includes the 3 MV ion accelerator, the analyzing magnet, 

the L3 beamline, and the sample irradiation chamber. 
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Figure 3-7 Schematic layout of the UT-ORNL IBML, including a separated control room, the two 

ion sources, a 3 MV tandem accelerator, beamlines and end-stations (from Ref. [360]). 

 

 

 

 

 

 

Table 3-1 Technical specifications for a typical 3-MV tandem electrostatic accelerator (from Ref. 

[361]). 

 

 

 

 

Parameter Value 

Terminal high voltage current 250 μA 

Chamber pressure 1-5 ×10-8 torr 

Insulating column voltage 3 MV 

Voltage Stability >1kV 

Voltage ripple (peak-to-peak) <=500V 

Ion energy range 0.5-26 MeV 
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Figure 3-8 illustrates the typical schematic of a heavy ion irradiation target chamber and 

its associated vacuum system [281].  The system consists of many different components such as a 

Faraday cup and multiple vacuum pump systems.  In the chamber a Faraday cup is used to monitor 

the beam current and the vacuum pumps ensure a satisfactory pressure during irradiation. 

 

3.2.2 Sample Preparation  

After fabrication, samples were mechanically ground and polished to a mirror finish at 

ORNL.  Here, the cylinder rods were cut with a diamond saw into discs that were 3 mm in diameter 

with a thickness of ~ 300 μm. A Buehler MiniMet 1000 semi-automatic grinder/polisher was used 

for grinding and polishing [316] (see figure 3-9).  The device operates under a range of speeds and 

pressures (2 – 10 lbf) and contains a sample holder which allows for grinding to a precision of tens 

of microns. 

 

   

 

 

 

 

 

 

 

Figure 3-8 Schematic of a typical heavy ion irradiation target chamber and vacuum system (from 

Ref. [281]). 
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Figure 3-9 Left) Buehler MiniMet 1000 semi-automatic grinder/polisher.  Right) Adjustable 

sample holder which allows for grinding of sample to a precision of tens of microns. 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3-10 Cu based BMG 3 mm disc specimen secured in the top holder device. 
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For polishing, samples were first adhered to a glass disc with CrystalbondTM  low melting 

temperature mounting adhesive and then secured into the top holder device (see figure 3-10).  For 

the thinning process, specimens were ground with progressively finer SiC paper (grits of 320, 600 

and 1200) where water was used as the lubricant. Due to the roughness of the 320 and 600 grit  

papers, they can efficiently thin the sample down to a desired thickness in only a few steps.  The 

applied force and duration during these steps respectively varied from 0 - 4 lbf and 2.5 - 4 minutes. 

To start the grinding process, the zero point of the sample was set.  This step of the process 

involves rotating the top holder piece (see figure 3-9 right) to adjust the height of the sample with 

respect to the grinding paper.  The dial was rotated until the sample experienced minimum contact 

friction with the grinding paper, which corresponded to a slight resistance when trying to move 

the top holder piece.  Once the zero point was set, the dial was  rotated clockwise to set the amount 

of material to be ground away.  The sample thickness was measured after the completion of a 

grinding step using digital calipers and then was repeated until the desired specimen thickness was 

achieved.  Between steps, the sample and holder were rinsed with ethanol to reduce contamination 

by surface particles removed during grinding.  

Once the desired thickness was achieved, 1200 grit was used to remove a majority of the 

remaining large scratches.  After each step, the sample surface was examined using a Omano 

OM4424 Dual-Power 20X / 40X Stereo microscope.  The surface was examined after each step 

until relatively larger scratches were no longer visible.  To remove contaminant particles produced 

by grinding, sample and holder were cleaned with acetone and then allowed to air dry in between 

each step.  Figure 3-11 shows a picture of the microscope. 
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After grinding, smaller scratches were eliminated by polishing the samples with diamond polishing 

(DP) cloths ranging from 6, 3 and 1 μm.  The lubricant used for these steps consisted of DP-Purple 

diamond polish. Furthermore, an applied force of 0 - 1 lbf. was used for a duration of 2.5 minutes.  

Again, a microscope was used to observe changes in surface quality.  The polishing steps were 

repeated until there remained only 1 - 2 noticeable scratches.  After the 1 μm polishing step, 

samples were polished using OP-U colloidal silica polish combined with a DP Nap 200 mm cloth.  

Each polishing step involved using a compressive force of 0 - 1 lbf with a duration of 4 minutes.  

In addition, a minimum of ten polishing steps with colloidal silica were used in which the surface 

was examined between each step with the same optical microscope as mentioned previously.  

Once the sample surface was of sufficient quality, it was cleaned with acetone, methanol 

and ethanol under a fume hood and then placed onto a Kimwipe to air dry.  After the sample was 

cleaned and dried it was stored in a cool, dry place.  For further details on the complete grinding 

and polishing process, please refer to Table 3-2. 

 

  

 

 

 

 

Figure 3-11 Omano OM4424 Dual-Power 20X / 40X Stereo microscope used to inspect samples 

as they were being polished. 
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Table 3-2 Summary of grinding/polishing steps for bulk metallic glass specimens. 

Procedure Pad 

Machine Settings 

 Lubricant/Polishing 

Solution 
Force 

(lbf.) 

Speed Time 

(min.) 

Grinding 

320 Grit SiC 4 35 4.0 

Water 600 Grit SiC 3 35 4.0 

1200 Grit SiC 1 45 2.5 

Polishing 

6 μm DP Cloth 
1 

45 
2.5 

DP-Purple 

Diamond Polish 
3 μm DP Cloth 

1 μm DP Cloth 

DP Nap 200 mm 0 4.0 OP-U Colloidal Silica Polish 
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3.2.3 Ion Irradiation Stage 

For the ion irradiations, a specimen platen was obtained from the Thermionics Vacuum 

Products that is compatible for the IBML vacuum chamber and stage system.  Because the sample 

holder was initially unable to hold multiple small samples such that there was adequate thermal 

contact between the specimens and the heated back plate, the system was modified accordingly 

[365].  Figure 3-12 displays a schematic of the platen system, and as can be seen, the middle plate 

contains three circular slots that have a diameter somewhat larger than the samples.   

To ensure that the samples were properly contained in the device, the middle plate was 

machined to have a thickness greater than the samples, which corresponded to approximately 0.5 

mm. To account for any potential thickness variations in the middle plate and to ensure that the 

samples had adequate thermal contact with the Mo base plate, crushable niobium wire rings (0.25 

mm diameter) were positioned onto the sample surfaces. In terms of the top plate, it contains 2.1 

mm diameter holes that are positioned directly over the sample surfaces. The peripheral surface 

on the inside surface of the top plate, when placed onto the middle plate, is intended to apply a 

uniform pressure on the Nb rings to keep the specimens secured in the holder.   Moreover, this 

uniformly applied pressure will ensure that the samples will maintain a good thermal contact with 

the base plate during irradiation.  Once the top plate is positioned correctly, it is fastened to the 

stage via six stainless steel screws that are threaded through the outer holes of all three plates. To 

distribute the pressure of the screws evenly over the surface of the top plate, the screws were placed 

through stainless steel washers with a ~100 μm tolerance before fastening them to the device. 

To adequately monitor the temperature during irradiation, two K-type (aluminel-chromel) 

thermocouple wires were attached to the stage. The first thermocouple wire was welded to a ~3mm 

diameter iron-chromium-aluminium (FeCrAl) [366, 367] disc which was placed into one of the 
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three sample positions in the middle plate, and was secured in place with a molybdenum clip.  

Furthermore, the second thermocouple wire was secured firmly onto the base plate via a Mo screw.  

The two separate thermocouples were used to ensure a more accurate temperature reading during 

irradiation.  In addition, ceramic insulating tubes were placed around the wires to minimize 

electrical contact between the wires and the environment to minimize errors that are associated 

with incorrect temperature measurements.  An alumina piece was attached to the top place of the 

specimen stage to help align the ion beam appropriately before irradiation commenced.  Figure 3-

13 shows the fully assembled irradiation stage, while figures 3-14(a)-(b) displays the stage 

mounted properly in the irradiation chamber. 

Previous work was performed by Daniel Clark and Dr. Congyi Li at UTK to calibrate the 

thermocouple system [365].  Here, they monitored the temperature distribution of the irradiation 

stage during exposure to temperatures ranging from ambient to 800 oC.  An infrared camera was 

used to verify that there was uniform heating across the holder.  It was found that the temperature 

remained relatively uniform across the surface of the top plate. 

 

3.2.4 SRIM Calculations 

To estimate the ion range, depth dependent dpa, and the corresponding ion concentrations 

for the experiment, SRIM 2013 [294, 297] was used.  These values were calculated using the quick 

Kinchin-Peace option [297], as suggested by Stoller et al. [299], using threshold displacement 

energies of 40 eV.  Moreover, the densities used for the Cu and BAM-11 BMG calculations were 

8.6 g cm-3 and 6.7 g cm-3, respectively.  Figures 3-15 (a)-(d) shows the results of the SRIM 

calculations.  For both alloys, the calculated Ni3+ damage and displacements per atom (dpa) for 
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Figure 3-12 Modified sample holder schematic (from Ref. [365]). 
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Figure 3-13 Top view of the fully assembled ion irradiation sample stage with the attached 

thermocouple wires (encased in ceramic beads) and Al2O3 scintillator piece. 

 

Figure 3-14 Images of the (a) Irradiation stage properly mounted into the beamline irradiation 

chamber and (b) a close-up of the stage. 
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the midrange and peak doses, respectively, were 10 and 25 dpa.  The dotted line corresponds to 

the depth at which the midrange dose occurs.  Furthermore, the projected ion range was calculated 

to be ~3.0 μm, which corresponded to implanted Ni concentrations of ~0.42 and ~0.36 atomic % 

(at. %) for the BAM-11 and Cu BMG, respectively.  In terms of the C+ irradiations, the calculated 

damage and displacements per atom (dpa) for the midrange and peak doses, respectively, were 0.5 

and 5.5 dpa.  Like with the Ni3+, the projected ion range was ~3.0 μm, which corresponded to 

implanted C concentrations of ~2.0 and ~1.7 at. % for the BAM-11 and Cu BMG, respectively. 

 

3.2.5 Ion Irradiations 

The Cu and BAM-11 BMG specimens were irradiated by 9 MeV Ni3+ and 5.5 MeV C+ 

ions at three different temperatures of 25, 290, and 360 oC.  For these experiments, Dr. Miguel 

Crespillo operated the beamline during the irradiations.  The maximum temperature of 360 oC was 

selected since it well below the reported crystallization temperatures of the alloys, which are 452 

oC for the BAM-11 BMG [368] and 510 oC for the Cu BMG [358].  For the Ni3+ irradiations, 

samples were irradiated to midrange doses of 0.5 and 10 dpa, while for the C+ irradiation they were 

irradiated to 0.5 dpa.  The ion energy was selected to produce a reasonably deep irradiated region 

to mitigate issues associated with diffusional broadening [369, 370] and “swift heavy ion” effects 

that emerge at higher ion energies.  To achieve the prescribed doses during irradiation, an ion flux 

of ~ 1012 cm-2s-1 was used.  For the Ni3+ irradiation, the time required to reach the midrange doses 

of 0.5 and 10 dpa were respectively 20 minutes and 7 hours.  Moreover, the irradiation time 

required for the C+ irradiation to reach a midrange dose of 0.5 dpa in the specimens was 7 hours. 

With respect to each irradiation condition, both types of BMG were irradiated 

simultaneously. Table 3-3 lists the ion specie, the midrange dose, the ion fluence, the irradiation  
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Figure 3-15 Irradiation damage (dpa) profile (blue curve) and at. % (red curve) versus depth for 

(a) BAM-11 BMG and (b) Cu BMG irradiated by 9 MeV Ni3+ (midrange dose of 10 dpa), (c) 

BAM-11 BMG and (d) Cu BMG irradiated by 5.5 MeV Cu+ (midrange dose of 0.5 dpa). 

 

 

Table 3-3 Ion Irradiation Matrix. 

Ion Species Midrange 

damage (dpa) 

Fluence 

(ions/cm2) 
Temp (°C) 

Irr. Time 

(h) 

9 MeV Ni3+ 

 

0.5 1.2 × 1015 
25 

0.3 

10 2.4 × 1016 7 

0.5 1.2 × 1015 
290 

0.3 

10 2.4 × 1016 7 

0.5 1.2 × 1015 
360 

0.3 

10 2.4 × 1016 7 

 

5.5 MeV C+ 

 

0.5 2.4 × 1016 

25 

7 290 

360 
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temperature, and the irradiation time for each experiment.  To minimize the inaccuracies associated 

with surface effects and diffusional broadening of the implanted ions [369-372] the microstructure 

and mechanical properties were examined at an intermediate depth of approximately 1.5 μm which 

corresponds to the prescribed midrange doses of 0.5 (for C+) and 0.5 and 10 dpa (for Ni3+) (dotted 

line in figures 3-15 (a)-(d)).   

With respect to each irradiation condition, both types of BMG were irradiated 

simultaneously. Table 3-3 lists the ion specie, the midrange dose, the ion fluence, the irradiation 

temperature, and the irradiation time for each experiment.  To minimize the inaccuracies associated 

with surface effects and diffusional broadening of the implanted ions [369-372] the microstructure  

and mechanical properties were examined at an intermediate depth of approximately 1.5 μm which 

corresponds to the prescribed midrange doses of 0.5 (for C+) and 0.5 and 10 dpa (for Ni3+) (dotted 

line in figures 3-15 (a)-(d)).   

The accumulated ion fluence on the samples during the irradiation was calculated from the 

beam spot size that is normally regulated by the double slits on the beamline close to the target 

chamber.  To mitigate issues associated with beam heating and charge accumulation on the 

samples, a low beam current density of ~ 4.8 × 102 nA/cm2  was used to minimize beam heating 

and charge accumulation on the samples [373].  Before the irradiation began, the ion beam was 

located and calibrated using an alumina piece that was attached to the top plate of the specimen 

stage.   

During the ion implantations, the ion beam was scanned both vertically and horizontally 

for lateral homogeneity of the beam and was found to be within 10 % throughout the irradiated 

area.  Here an ion beam area of 4 × 9 mm2 was directed onto the sample surface during irradiation 

using adjustable slits.  Beam homogeneity was within 10% throughout the irradiated area, which 
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was validated by checking the ion beam induced luminescence (IL) on Al2O3 (used as a scintillator) 

monitored with a CCD camera (more details can be found elsewhere [360, 374]). 

During the entire experiment, the temperature was continuously monitored using two K-

type (chromel-alumel) thermocouples to ensure that the target holder did not exceed the desired 

temperature during irradiation.  To avoid surface contamination during irradiation, the chamber 

was continuously monitored and was maintained at ~ 10-7 torr during operation.  Table 3-4 shows 

the recorded thermocouple temperatures and chamber pressure, as a function of time, during the 

heat up process for a 360 oC ion irradiation experiment.  As can be seen in the table, the temperature 

difference between the two thermocouples never exceeded 5 oC  during a typical monitoring 

process.  Once the chamber pressure and temperature reached the desired values, they were 

monitored for another 20 minutes to ensure minimal deviation (± 5 oC and ± 5 × 10-8 torr) before 

initiating the irradiation.   

During irradiation, there is a chance that there will be a significant temperature variability 

between the individual specimens.  These differences could arise from factors such as poor thermal 

contact between the sample and the thermocouple and/or a temperature gradient across the stage.  

This variability could result in specimen temperatures exceeding the glass transition, or even 

crystallization temperature of the BMG, although it is unlikely. 

 

3.2.6 X-Ray Diffraction Characterization  

Bulk and glancing X-ray diffraction (XRD) was carried out on the as-cast and irradiated 

specimens at the Joint Institute for Advanced Materials (JIAM) Diffraction Facility at the 

University of Tennessee.  The XRD was performed using a PANalytical Empyrean diffractometer 

equipped with a Xe proportional detector.  Figure 3-16 shows the basic setup of the instrument  
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Table 3-4 Typical recorded thermocouple temperature and irradiation chamber pressure as a 

function of time during the heating up period of the ion irradiation experiment.  T. C.: 

Thermocouple. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time 

T. C. 1 

Temperature 

(oC) 

T. C. 2 

Temperature 

(oC) 

Chamber 

Pressure 

(torr) 

11:30 A.M 20 20 6.1 × 10-8 

11:39 A.M 18 20 6.5 × 10-8 

11:46 A.M 19 20 1.1 × 10-7 

11:52 A.M 32 31 1.0 × 10-7 

11:57 A.M 50 48 3.1 × 10-7 

12:06 P.M 112 110 9.6 × 10-7 

12:11 P.M 176 172 6.2 × 10-7 

12:20 P.M 208 206 1.2 × 10-6 

12:26 P.M 265 262 7.5 × 10-7 

12:31 P.M 273 269 6.5 × 10-8 

12:38 P.M 318 312 6.5 × 10-8 

12:44 P.M 322 316 6.5 × 10-8 

12:49 P.M 357 353 6.5 × 10-8 

12:55 P.M 358 353 6.5 × 10-8 

1:00 P.M 354 350 6.5 × 10-8 

1:06 P.M 354 349 6.5 × 10-8 

1:12 P.M 356 353 6.5 × 10-8 

1:17 P.M 360 358 6.5 × 10-8 
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which includes the X-ray source, the PreFix modulus/optics, the sample holder, and the Xe 

proportional detector.  The left PreFix module consists of the incident X-ray beam before it 

impinges on the specimen.  Figure 3-17 shows the associated optical components which include 

the soller slits, the programmable divergence slit, and the fixed incident beam mask.   

Furthermore, the right PreFix module contains two beam paths, one of which is used for 

the glancing XRD, while the other that is used for the bulk XRD measurements.  Figure 3-18(a) 

shows the optical components used for the glancing XRD, while figure 3-18(b) displays the optics 

involved with the bulk XRD measurements.  As for figure 3-18(a), the diffracted beam optics 

include the parallel plate collimator, the large soller slits, and the previously mentioned Xe 

proportional detector.  On the other hand, figure 3-18(b) shows the optics used for the bulk XRD 

experiment, which include the large soller slits, the beta nickel filter, and the PIXcel3D detector.  

Finally, figure 3-19 displays the soller slits, the mask, the anti-scatter slit, the large soller slit and 

the Ni filter. 

Figure 3-16 PANanalytical Empyrean X-ray diffraction instrument.  
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Figure 3-17 Schematic of optics used on the incident beam side of the instrument (from Ref. [375]). 

 

 

 

Figure 3-18 Schematic of optics used on the diffracted beam side of the instrument (from Ref. 

[375]). 
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To begin the XRD measurement, specimens were placed on a zero-background holder to 

shield out diffraction patterns that were not associated with the sample. Using an alignment 

camera, the sample was centered on the stage to maximize counting statistics.  The X-ray consisted 

of a Cu beam with a K-alpha wavelength of 1.54 Å, in addition to an accelerating voltage and 

current of 45 kV and 40 mA.  Furthermore, the diffraction angle 2θ ranged between 20 - 80o where 

data was taken every 0.013 degrees.  The Powder Bragg-Brentano method was used to examine 

the specimens.  Table 3-5 summarizes the experimental parameters used for the both the glancing 

incidence and bulk XRD experiments.   

Glancing angles ranging from 0.5-1 degree were used to examine whether any 

crystallization or phase decomposition occurred in the ion irradiation region.  The glancing angles 

were calculated using the method described in [376].  The penetration depth, D, of an X-ray into 

a sample is based on the glancing angel, ϕ, through the following equation: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-19 Some of the optics used in the PANalytical XRD instrument optics (from Ref. [375]). 
 

  

𝐷(𝜙) =
𝜆

2√2𝜋 [√(𝜙2 − 𝜙𝑐2)2 + 4𝛿𝑖
2 + 𝜙𝑐2 −  𝜙2]
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Table 3-5 Optics used for bulk and glancing XRD. 

Parameter/Optic Glancing Bulk 

Fixed Incident Beam Mask Fixed mask 4 mm  Fixed incident beam mask 10 mm 

Divergence Slit 1/16o 1/16o 

Anti-Scatter Slit - 1/8o 

Incident beam Soller Slit 0.04 rad 0.04 rad 

Diffracted Beam Soller Slit Large 0.04 rad Large 0.04 rad 
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where ϕc is the critical angle below which total external reflection occurs, δi is a value related to 

the index of refraction, and λ is the X-ray wavelength.  The critical angle, ϕc, and δi are both defined 

as: 

 

 

 

here No is Avogadro’s number, e is the electron charge, Z is the average atomic number, ρ is the 

mass density, m is the electron mass, c is the velocity of light, A is the average atomic mass, and 

μ is the linear absorption coefficient.   

 

3.2.7 TEM Characterization  

To determine whether irradiation induced nanocrystalline formation had occurred in the 

alloy, transmission electron microscopy (TEM) characterization was performed in the Low 

Activation Materials Development and Analysis (LAMDA) laboratory at ORNL [377].  TEM foils 

were fabricated using an FEI Quanta Dual-beam focused ion beam (FIB)/SEM, which is displayed 

in figure 3-20.  The foils were cut and lifted out of the sample using an omniprobe needle and then 

deposited onto a molybdenum FIB lift-out grid.  After welding the lift-out specimen to the grid, 2 

kV Ga+ ions were used for the thinning steps where the energy was gradually reduced from 30 

keV to 3 keV.  Figure 3-21 shows an as-cast BAM-11 BMG welded sample before thinning was 

commenced.  An ion current of 30 pA with a glancing angle of about 4° was used during the final 

thinning step to minimize ion beam milling damage.  A Fischione Nanomill (model 1040) 

  

𝜙𝑐 = √
𝑁𝑜𝑒2𝑍𝜌

𝜋𝑚𝑐2𝐴
𝜆 

 

(3-2) 
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Figure 3-20 FEI Quanta Dual-beam FIB/SEM that is located in the LAMDA facility in ORNL. 
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Figure 3-21 As-cast BAM-11 BMG lift-out sample that was welded to a Mo grid before thinning 

steps were commenced. 
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4 keV Ar+ ion polisher (at low incident angles) was used to polish the specimens after the thinning 

of the specimen was completed.  After polishing, the welded lift-out specimens were then 

examined and analyzed in a JEOL JEM-2100F TEM/STEM at 200 kV (see figure 3-22) using 

bright field (BF) imaging and selected area diffraction (SAD).  The TEM characterizations of the 

ion irradiated specimens were performed by Dr. Tengfei Yang.  The selected area diffraction was 

performed to determine whether there were any diffraction spots, which corresponds to the 

presence of crystalline phases in the matrix. 

 

3.2.8 Nanoindentation Testing  

Nano-indentation hardness tests were performed at room temperature using a KLA-Tencor 

G200 Nano-indenter with a Berkovich diamond (3-sided pyramidal tip) in continuous stiffness 

measurement mode.  For the ion irradiated specimens, they were glued to a metal stage using  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-22 The JEOL JEM-2100F TEM/STEM system (from Ref. [377]) located in the LAMDA 

facility in ORNL. 
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epoxy.  Prior to indenting, specimens were mounted on a JEOL JSM 840 Aluminum standard 

sample mount (from Electron Microscopy Sciences©) using Crystalbond adhesive.  The 

nanoindenter was programmed to run using the Nanosuite software which is run on a Hewlett-

Packard© personal computer equipped with a Windows 7 operating system.   Figure 3-23(a) shows 

the setup of the device in LAMDA while figure 3-23(b) shows a close-up of the indenter, 

microscope and sample contained in the sample tray.  In addition, figure 3-24 shows a top view of 

the mounting stage. 

To begin nanoindentations, the nanosuite software was initialized and the desired 

indentation program was selected.  The sample tray was then brought into the loading position and 

the hood of the indenter system was opened.  To prevent the stage from swiveling that could lead 

to damage, two screws were inserted into mounting holes in the front of the nanoindenter 

instrument and then fastened.  These screws prevent the instrument from experiencing any 

unnecessary movements during loading that may damage the instrument.  With the screws in place, 

the sample was mounted into the tray and then moved into a position beneath the microscope.  

During the loading process, extreme care was taken to make sure that the stage was adequately 

beneath the microscope and indenter to avoid damage to the components. 

After sample placement, the hood was closed and the specimen was placed under the 

microscope via the computer interface.  Then the microscope was turned on via the computer 

interface and its height was adjusted until the sample surface came into focus.  The area function 

of the tip, in addition to the machine stiffness for the nanoindenter, was calibrated by indenting on 

a standard fused silica sample [98].  After calibration, nanoindentation tests were conducted.  The 

experiments were performed using a constant loading rate of 400 µN/s.   
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Figure 3-23 (a) KLA-Tencor G200 nanoindenter.  (b)  Close up view of microscope, sample in 

tray, indenter mechanism, and fused silica sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24 Top view of the sample stage with the fused silica piece that is used for calibrating the 

instrument and a mounted BMG specimen. 

 

 



141 

 

was used for the BAM-11 and Cu based BMGs [207, 378].  Table 3-6 lists the parameters typically 

used in a nanoindentation experiment.  The other parameters that were not discussed here, such as 

the harmonic displacement target, were default values that were already set into the instrument and 

therefore were not altered for the experiment.  After the input parameters were chosen, locations 

for the indents were selected.  For this process, the locations were placed at least 50 μm apart to 

mitigate the overlap of indentation strain fields [379].  Once the indent locations were placed, the 

machine was programmed to run after the work-day was over to minimize indentation error due to 

external vibrations.   

For statistical accuracy, ~25 indents were made where hardness and Young’s modulus were 

measured as a function of depth from the point of contact of the nanoindenter with the surface to 

a depth of ~2,500 nm. The resulting nanoindentation hardness and Young’s modulus data were 

analyzed using matlab software [380].  For the analysis, outliers were removed from the set of 

data.  Furthermore, the hardness data below a depth of ~100 nm from the specimen surface was 

omitted due to large data scatter associated with surface roughness. Hardness was calculated using 

the Oliver and Pharr method [381, 382]. 

 

 

Table 3-6 Typical values programmed into the G200 nanoindentation system for a nanoindentation 

experiment. 

 

 

 

 

Parameter Value 

Surface Approach Distance 1,000 nm 

Surface Approach Velocity 10 nm/s 

Loading Rate Input 400 μN/s 

Thermal Drift Rate 0.05 nm/s 

Harmonic Displacement Target 2 nm 

Frequency Target 45 Hz 

Depth Limit 2,500 nm 

Poisson’s Ratio 0.37 
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After the tests were finished, the data was filtered and then uploaded into an Excel file where it 

was later analyzed using indentation size effect (ISE) models [209, 211, 212] and other techniques.  

The ISE models were used to analyze the data to avoid discrepancies associated with surface 

defects and underlying substrate effects.  Once the Excel file was uploaded, the sample was 

removed from the instrument.   

 

3.2.8.1 Indentation size effect analysis 

To examine the influence of irradiation and annealing on the indentation size effect (ISE) 

[209, 211, 212, 217] of the BMG, the hardness was plotted according to the following equations 

[209, 212]: 

 

 

 

 

 

 

where H is the nanoindentation hardness, H0 is the extrapolated (bulk) hardness value, H0 is the 

hardness arising from the statistically stored clusters in the absence of the geometrically-necessary 

clusters that are associated with strain gradients [209, 217], h is the indentation depth, and h1
*, h2

* 

are length scale terms which characterize the depth dependence of the hardness.  It should be 

mentioned that Eq. (3-4)  was first derived by Nix and Gao [212] to examine the ISE in crystalline 

alloys while the Eq. (3-5) was developed by Lam and Chong to examine the ISE behavior in 

metallic glasses [209].  With respect to the first model, the characteristic depth term is dependent 
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on factors such as the statistically stored dislocation density and the shear modulus.  In contrast, 

h2
* depends on parameters of the metallic glass such as the local shear strain required to transform 

a single atom cluster, or the Helmholtz free energy associated with the shear transformation of 

clusters occurring and the experimental temperature.  In the present work, the concept of cluster 

defects will be extended to include other defect types such as liquid-like sites and soft-zones [206, 

256].  

 

3.3 Neutron Irradiation Experiments 

 

3.3.1 Neutron Irradiation Facility 

The high flux isotope reactor (HFIR) is a multipurpose isotope production and test reactor 

located in ORNL [383].  It was initially designed to produce gram quantities of transuranium 

isotopes such as californium-252 [384].  The reactor has a power output of 85 MW and is light 

water moderated and cooled [385].  Furthermore, HFIR also contains a reflector which is 

composed of beryllium (approximately 1 ft. thick) and burnable poison (boron-10) is included in 

the inner fuel element [384].  The core of the HFIR is a cylinder approximately 2 feet tall by 17 

inches in diameter which contains approximately 9.4 kg of 93 % enriched 235U in two concentric 

annular elements [385].  A fuel element has a lifetime at 100 MW of about 20 days [386].  The 

fast neutron flux of the HFIR is approximately 1015 n/cm2s.   

Figures 3-25 and 3-26 show different schematics of the cross section of the HFIR at the 

horizontal midplane [384, 385].  As can be observed in figure 3-25, HFIR consists of may 

components such as outer fuel elements, horizontal beam tubes, and a target bundle in flux trap.  

Moreover, the flux trap target region (FFT) of the HFIR has 37 experimental sites [385].  As can  
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Figure 3-25 Reactor core assembly showing flux trap positions (from Ref. [385]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-26 Cross-section of HFIR that shows the many functional components (from Ref. [384]). 
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be seen in figure 3-25, 31 of these positions (white hexagons) are located in the interior of the 

basket while 6 (yellow circles) sites are on the periphery.  There is also a hydraulic tube which 

allows for the insertion and removal of samples while the reactor is operating.  The normal 

operating schedule of HFIR consists of approximately 6 irradiation cycles per year, with an 

average of ~24 days per cycle.  

For this project, BAM-11 BMG samples were irradiated in the PTP positions where the 

fast neutron flux is the highest.  Samples with various dimensions were encased in a perforated 

rabbit capsule which allowed the coolant water (flow rate of 15.1 min-1)  to directly contact the 

samples at ~60 oC.  Figure 3-27 shows a schematic of the rabbit capsule assembly [387].  The fins 

that are on the periphery of the tube are utilized to keep the rabbit separated from the tube wall, 

ensuring adequate cooling to the entire assembly. 

The BAM-11 BMG samples were wrapped in aluminum foil to avoid potential aqueous 

corrosion during irradiation [388].  After encapsulation, the specimens were irradiated using  

 

 

 

 

 

 

 

 

 

 

Figure 3-27 HFIR rabbit assembly (from Ref. [387]). 
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fission neutrons at the ORNL High Flux Isotope Reactor (HFIR) in hydraulic tube 2 (HT-2). Here 

the samples were exposed to a neutron fluences of 1.40 × 1020 n/cm2 and 1.40 × 1021 n/cm2 (E > 

0.1 MeV), which corresponds to  ~0.1 dpa and 1 dpa, respectively.  After consideration of internal 

nuclear heating effects in the samples, the estimated average sample temperature is ~70 oC.  For 

this irradiation, samples with various dimensions were irradiated.  These specimens include 4 

charpy bars with linear dimensions of 3 × 2 × 14 mm3, 4 bend test bars with geometries of 3 × 2 × 

27 mm3, and TEM discs with dimensions of Ø 3 x 0.4 mm. 

 

3.3.2 Post Irradiation Annealing  

After the neutron irradiation, the BAM-11 BMG samples were annealed.  These annealing 

conditions include 300 oC for two weeks and 325 oC for 72 hours.  These temperatures were chosen 

since they are sufficiently below the glass transition temperature of the BAM-11 alloy (393 oC 

[98]).  Here, the specimens were annealed under a pressure of  ~10-6 torr in a materials research 

furnace MRF© (figure 3-28).  The heating system consists of a front-loading multi-application 

furnace, which is located in the LAMDA facility at ORNL.  The furnace has a maximum operating 

temperature and vacuum of 1800 oC and 10-8 torr.  The vacuum is achieved through a turbo 

pumping system which consists of a mechanical dry diaphragm pump MD-60, a V-550 turbo pump 

with turbo controller and a 6” electro-pneumatic large port high vacuum valve.  Table 3-7 displays 

the neutron irradiation and post-irradiation annealing conditions.   

 

3.3.3 Neutron Diffraction Experiments 

Microstructural characterizations of the irradiated and annealed BMG specimens were 
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performed via powder neutron diffraction at the Nanoscale Ordered Materials Diffractometer 

(NOMAD) [389], which is housed in the Spallation Neutron Source (SNS) at ORNL.  Figure 3-29 

shows a schematic diagram of NOMAD while figure 3-30 displays the control room that operates 

the instrument.  The instrument is a high-flux, medium-resolution diffractometer that utilizes the 

time-of-flight (TOF) technique [390].  The TOF set-up allows for 3 Å neutrons to reach the 

detector at 22 m from the hydrogen moderator before fast neutrons from the next pulse arrive at 

the detector [391].  Importantly, this instrument can analyze the local order in amorphous materials 

via a large range of neutron energies and wide detector coverage.  Table 3-8 displays instrument 

specifications. 

For the neutron diffraction experiments, samples were carefully suspended in 6 mm 

diameter vanadium cups in which glass wool was centered on top of the canister.  The specimen 

conditions for the experiment can be seen in Table 3-7.  Samples were positioned such that their 

cross-sectional area was perpendicular to the neutron beam.  Here samples with a mass of ~0.5 g 

(linear dimensions of 3 × 2 × 14 mm3) were exposed to a neutron flux of ~108 n/cm2s and 

environmental temperature of 25 oC for a duration of three hours.   

 

 

Table 3-7 The sample conditions for the neutron irradiation experiments. 

 

 

 

 

 

 

Sample Condition 

As-cast 

Annealed 300 oC for two weeks 

Neutron irradiated to 0.1 dpa 

Neutron irradiated to 0.1 dpa and then annealed 325 oC for 72 hours 

Neutron irradiated to 0.1 dpa and then annealed 300 oC for two weeks 
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Figure 3-28 MRF© Materials Research Furnace located in LAMDA. 
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Figure 3-29 Schematic diagram of NOMAD (from Ref. [391]). (from Ref. [391]). 

 

 

 

 

Figure 3-30 NOMAD instrument control room. 
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Table 3-8 Beamline-1B NOMAD instrument specifications (from Refs. [389, 392]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specification Description/Value 

Applications 

− Total scattering (PDF) 

− High flux measurements 

− High throughput capabilities 

− Small samples 

Neutron beam TOF  

Resolution (Δd/d) 5 × 10-3 - 5 × 10-2 

Q-range 0.2 - 50 Å 

Beam size at sample Variable.  Typical is 0.6 × 0.6 cm 

Measurement times Sample dependent, typical range is 1-60 min 

Moderator Decoupled poisoned supercritical hydrogen 

Moderator-to-sample 

distance 
0.5 - 3 m 

Wavelength range 0.1 - 3 Å  

Momentum transfer 

range 
0.04 – 100 Å-1 

Detector angular 

range 
3 – 175 o scattering angle 

Initial coverage 4.0 steradian 

Full detector 

complement 
8.2 steradian 

Flux on sample ~ 1 × 108 neutrons cm-2 s-1 
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After the diffraction data was collected, PDFgetN software, which is a user-friendly 

program with a graphical user interface, was used to obtain S(Q) values [393].  It should be 

mentioned that the beamline scientist, Dr. Joerg Neuefeind, was instrumental in obtaining the data 

from the diffraction patterns.  After obtaining the raw data, the program was utilized to determine 

the structure factor and subsequently the pair distribution function (PDF) for each specimen 

condition.  The pertinent data that is attained from the database includes the scattering factor, S(Q) 

(SQ.dat files), and the pair distribution function, g(r) (NOMXXXftf.dat files).  Here, Q represents 

the momentum transfer in reciprocal space [394], while r represents the distance in real space.  In 

the context of the NOMAD data, the PDF is related to the scattering factor via the following 

relation:  

   
𝑔(𝑟) − 1 = 𝐴∫ [𝑆(𝑄) − 1]𝑄 sin(𝑄𝑟)𝑑𝑄

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

 

 

 

 

 

where A is an arbitrary constant.  After collecting the S(Q) and g(r), it was entered into an Origin 

file and plotted.  

 

3.3.4 TEM Characterization  

To determine whether irradiation induced nanocrystalline formation had occurred in the 

alloy, transmission electron microscopy (TEM) characterization was performed in the Low 

Activation Materials Development and Analysis (LAMDA) laboratory at ORNL [377].  TEM foils 

were fabricated using an FEI Quanta Dual-beam focused ion beam (FIB)/SEM (see figure 3-20).  

The foils were cut and lifted out of the sample using an omniprobe needle and then deposited onto 

a molybdenum FIB lift-out grid.  After welding the lift-out specimen to the grid, 2 kV Ga+ ions 

   (3-6) 
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were used for the thinning steps where the energy was gradually reduced from 30 keV to 3 keV.  

Figure 3-21 shows an as-cast BAM-11 BMG welded sample before thinning was commenced.  An 

ion current of 30 pA with a glancing angle of about 4° was used during the final thinning step to 

minimize ion beam milling damage.  Cleaning the specimens was performed in a similar manner 

as that performed on the ion irradiated specimens (see Section 3.2.7).  After polishing, the welded 

lift-out specimens were then examined and analyzed in a JEOL JEM-2100F TEM/STEM at 200 

kV using bright field (BF) imaging and selected area diffraction (SAD).  The TEM 

characterizations of these specimens were performed by Dr. Tengfei Yang and Mr. Yan-Ru Lin.   

 

3.3.5 Nanoindentation Experiments  

Nano-indentation hardness measurements were performed at room temperature using a 

KLA-Tencore G200 Nano-indenter in the continuous stiffness measurement mode with a constant 

loading rate of 400 µNs-1. The samples used for these experiments were the same ones as listed in 

Table 3-7.  For sample preparation, specimens were cut to dimensions of 3 × 3 × 1 mm3, cold 

mounted in epoxy, and then mechanically polished to a mirror finish using colloidal silica.  Due 

to the radioactivity of the irradiated samples (see Table 3-9 for dose measurements), specimen 

preparation was performed in the hot zone of the LAMDA facility.  Figure 3-31 displays a finished 

sample.  In terms of the data, nanoindentation hardness and Young’s modulus was calculated using 

the Oliver and Pharr method [381, 382].   

 

3.3.6.3-Point Bend Test Experiments  

Specimens used for this study consisted of rectangular coupons with linear dimensions of 

3 × 5 × 0.9 mm3.  Due to the radioactivity of the irradiated samples specimen preparation was 
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performed in the hot zone of the LAMDA facility.  The irradiated samples were cut from the ends 

of non-deformed tensile bars.  Before testing, samples were polished to a mirror finish using 

colloidal silica.  After preparing the as-cast and irradiated samples they underwent room 

temperature 3-point bending tests using a MTS tensile screw-driven machine (model Insight 2-52; 

load capacity 2 kN).  The system is connected to a computer interface system which utilizes MTS 

TestSuite™ TW Software to record the stress vs. strain data during the experiment.  An image of 

the instrument is displayed in figure 3-32.  The 3-point bend test device used for this study is a 

specially designed bend assembly for sub-sized specimens [395].  Figures 3-33(a)-(b) presents the 

bending device (acquired from Dr. Maxim Gussev) and a close up schematic of the three-point 

bend mechanism.  As can be seen, there are three rods contained in the inner potion of the apparatus  

 

 

 

 

 

 

 

 

 

 

Figure 3-31 Cold mounted post-annealed neutron irradiated (0.1 dpa and then 300 oC for 2 weeks) 

BAM-11 BMG specimen (3 × 3 × 1 mm3) for nanoindentation experiments. 
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Table 3-9 Surveyed dose rates of the neutron irradiated BAM-11 BMG samples used for the 3-

point bend test experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-32 MTS tensile screw-driven machine (model Insight 2-52) system used for the 3-point 

bend test experiments. 

Sample 
Contact γ 

(mrem/hr) 

1 ft. γ 

(mrem/hr) 

Contact β 

(mrad/hr) 

BAM-11 BMG 0.1 dpa  280 18 1,092 

BAM-11 BMG 0.1 dpa  

300 oC, 2 weeks 
425 21 1,235 

BAM-11 BMG 0.1 dpa 

325 oC, 72 hours 
300 15 1,040 
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Figure 3-33 (a) 3-point bend test instrument and (b) corresponding scheme of 3-point bend test. 

 

which have a diameter of 1.23 mm each.  The bottom two rods have diameters of 1.23 mm with a 

span distance of 3.77 mm between the rods.  For the experiments, an applied strain rate of 0.1 

mm/s was applied, and the stress vs. deformation behavior was recorded using computer software.  

 

3.3.7 Immersion Density Measurements  

Density measurements were performed on the neutron irradiated and annealed specimens 

at room temperature using an immersion density instrument, which consists of an ultra-sensitive 

balance, the Satorius ME215S, a density kit, and a high-precision digital thermometer.  Samples 

that consisted of linear dimensions of 3 × 2 × 14 mm3 were immersed in a 3M FluorinertTM Liquid 

FC-43 which has high density, low surface tension, low thermal expansion, low vapor pressure 

and low water/air solubility.  Each specimen was measured three times and the density was 

determined using Archimedes principle. 
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3.4 Thermal Response Experiments  

 

3.4.1 Insitu Synchrotron X-ray Diffraction Compression Tests  

BAM-11 BMG specimens were prepared from as-cast rods by an electrical discharge 

machine. For the compression testing, samples were cut into linear dimensions of 4 × 2 × 1.5 mm3 

and polished to a mirror finish.  After fabrication, one of the samples was annealed at 300 oC for 

two weeks under vacuum (10-6 torr). 

High energy XRD studies on the as-cast and the annealed samples were carried out by Hui 

Wang through synchrotron irradiation at the 1-ID beam line of the Advanced Photon Source 

(APS), Argonne National Laboratory (ANL). The beam energy at 1-ID was 100 keV (λ = 0.12358 

Å).  2D detectors with 2048 × 2048 pixels and 200 μm × 200 μm pixel size was used to collect 

data. The detector was placed about 40 cm behind the sample. Calibration was performed using 

the CeO2 NIST powder standard. While in the chamber, samples were subjected to compression 

tests with loads ranging from 0 (control) to 1,500 MPa in 300 MPa increments.  High-energy 2D 

X-ray diffraction data was processed using FIT2D software [396] to correct the data.  Figure 3-34 

shows a basic setup of the experiment, which features the X-ray beam, the specimen, a beam 

stopper, and the area target.  

Because of the elastic deformation induced anisotropy [256], the pair density function 

(PDF) analysis of the anisotropic and the isotropic data was applied [257].  The isotropic PDF is 

related to the structure function in the following manner:  

 

   
𝑔(𝑟) =

1

2𝜋2𝑟𝜌0
∫ [𝑆(𝑄) − 1] sin(𝑄𝑟)𝑄𝑑𝑄
∞

0

 

 

 
 

 

   (3-7) 
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Figure 3-34 General high-energy XRD setup at the beamline 1-ID in the APS located at ANS 

(Adapted from Ref. [397]).                                                
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where S(Q) is the structure function, Q is the diffraction vector (or momentum transfer) that is 

equal to 4πsinθ/λ where θ is the diffraction angle, λ is the wavelength of the probe, and ρ0 is the 

atomic number density of the alloy [256].  One can notice the similarities of Eqs. (3-6) (from 

Section 3.3.3.) and (3-7).  To examine the changes to the anisotropic behavior of a BMG under an 

applied stress, the anisotropic pair density function (PDF) method can be applied to the in situ 

compression data [258], which is based on spherical harmonics.  This method utilizes the spherical 

harmonics in the following manner: 

 

   𝑔(𝒓) =∑𝑔𝑙
𝑚(𝑟)𝑌𝑙

𝑚 (
𝒓

𝑟
)

𝑙,𝑚

 

  

 

  
𝑆(𝑸) =∑𝑆𝑙

𝑚(𝑄)𝑌𝑙
𝑚 (

𝑸

𝑄
)

𝑙,𝑚

 

  

 

 

where 𝑌𝑙
𝑚 are the spherical harmonics, g(r) is the radial PDF, and S(Q) is the structure function.  

The anisotropic radial PDF is related to the structure function via a Bessel transformation: 

   
𝑔𝑙
𝑚(𝑟) =

𝑖𝑙

2𝜋2𝜌0
∫ 𝑆𝑙

𝑚(𝑄)𝐽𝑙(𝑄𝑟)𝑄
2𝑑𝑄

∞

0

 

 

 
 

 

here Jl(Qr) is the spherical Bessel function [259].  It should be mentioned that for the isotropic 

case, i.e., l, m = 0, Eq. (3-10) reduces to Eq. (3-7) [255].  For the purposes of analyzing the elastic 

deformation, the term for l = 2 will be used [258].  After applying the spherical harmonic expansion 

and Bessel transformation, the anisotropic PDFs is generated.  When analyzing the anisotropic 

PDF, a reference state of the sample under affine deformation is introduced [255], namely the 

   (3-10) 

   (3-8) 

   (3-9) 
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affine anisotropic PDF, 𝜌2,𝑎𝑓𝑓
0 (𝑟). Here, the affine deformation can be analyzed using the 

following equation [255, 260]: 

   

𝑔2,𝑎𝑓𝑓
0 (𝑟) = −휀𝑧𝑧,𝑎𝑓𝑓

2(1 + 𝜐)

3√5
𝑟
𝑑

𝑑𝑟
𝑔0
0(𝑟) 

 

 

 

where −휀𝑧𝑧,𝑎𝑓𝑓
2(1+𝜈)

3√5
 is a fitting parameter, −휀𝑧𝑧,𝑎𝑓𝑓 is the affine strain, and υ is Poisson’s ratio,  

which for the purposes of the current experiment, has been experimentally determined as 0.38 

[398]. 

 

3.4.2 In Situ X-Ray Crystallization Kinetics Experiments  

High-temperature X-ray diffraction (HTXRD) measurements were made in vacuum (~10-

5 torr) using an Anton Paar HTK 1200N environmental oven chamber.  Figure 3-35 displays the 

HTXRD setup, which shows the furnace and vacuum system attached to the Empyrean 

PANalytical XRD instrument.  Samples with dimensions of 2 × 1 × 5 mm3 were prepared by 

grinding the specimen surface (2 × 5 mm2) with silica grit paper ranging from 320 to 1200 grit.  

Specimens were placed on a silicon zero background plate that was mounted on top of an alumina 

sample plate.  Figure 3-36(a) shows the sample mounted onto the silicon background plate and 

alumina sample holder.  Due to their relatively small size as compared to the stage a silicon zero 

background plate was used to prevent the overlap of alumina and specimen reflections.  In addition, 

figure 3-36(b) displays the front view of the mount system.  After placing the sample holder system 

into the chamber, it was locked into place.  

After securing the samples, the chamber was reduced to a pressure of approximately 8 × 

10-5 torr using a turbo pump.  After reaching the desired pressure, the specimens were heated using 

   (3-11) 
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ramp rates of 60 and 180 °C/h.  The BAM-11 BMG samples were heated to 760 oC and 355 oC 

while the Cu BMG specimens were heated to 800 oC and 345 oC.  The higher temperatures 

correspond to ~0.9 of the melting temperature [368, 399], while the lower temperatures correspond 

to values below the glass transition [358, 368].  During heating, software provided by PANalytical 

was used to adjust the height of the sample stage to accommodate for the thermal expansion of the 

alumina sample plate.  However, the software was not able to account for the thermal expansion 

of the silicon zero background plate since it was not a component of the original stage device.  As 

a result, the apparent peak shift in the diffraction patterns are not due solely to the sample.   

Data collection parameters were set such that X-ray counts could be collected in both a 

rapid and continuous manner during the furnace ramp up that allowed for a detailed analysis of the 

kinetic phase evolution. The scattering angles used for the in-situ study ranged between 32-46o and 

33-45o for the BAM-11 and Cu BMGs, respectively.  These range of angles was chosen to balance 

between resolution and time constraints imposed by the heating rate.  The reported temperature 

during heating is the sample temperature and not the set temperature that was measured by a 

thermocouple placed directly below the specimen. Instrumental setup and collection parameters 

were optimized for intensity over resolution and are summarized in Table 3-10. 

After the diffraction experiment, the specimen and stage were carefully removed from the 

chamber to prevent damaging the equipment.  Subsequent powder diffraction in conjunction with 

qualitative and quantitative phase analysis was performed to analyze the crystalline phases in the 

BMG.  Here, qualitative phase identification (ID) was determined using the HighScore Plus 

software package [400] in conjunction with the Powder Diffraction File-4+ (PDF-4+) database. 

Quantitative phase analysis was conducted by Drs. Michael Kohler and John Salasin from 

the Joint Institute for Advanced Materials.   The Rietveld refinement was performed using the  
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 Figure 3-35 Empryean HTXRD setup which includes a furnace and a vacuum system. 

 

Figure 3-36 (a) Top-down view of the Cu BMG sample mounted on the alumina sample plate and 

the silicon zero background plate on the sample stage, and (b) the front view of the stage. 
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GLAS Science Algorithm Software II (GSAS II) software [401].  The software was used to find 

the lattice parameters, background, phase fractions, and profile parameters relevant to the 

crystallite size determination. 

During the initial phase formation, pseudo-Voight peak fitting [402] was used to determine 

the change in peak area that corresponds to an increase in the amount of crystalline phase in the 

matrix.  Furthermore, instrumental broadening was characterized using NIST standard SRM 640e 

(Si) [403].  Importantly, this approach can estimate the crystallite size and size variance of the 

crystallites.  For more details on this specific process, please refer to [239].  To evaluate the rate 

constant, k, and the JMAK exponent, n, one applies linear regression analysis to the plot of 

Ln [Ln (
1

1−α
)] vs. Ln(t − t0).    

 

3.4.2.1 Surface Microstructural Characterizations 

To aid in the phase identification process, microstructural characterization was performed 

to identify precipitation and phase heterogeneity on sample surface and bulk.  Characterization of 

the microstructure was performed at the JIAM microscopy center via scanning electron 

microscopy (SEM) on a Zeiss EVO MA15 scanning electron microscope.  The surface 

composition was analyzed using electron dispersive spectroscopy (EDS) via a Bruker XFlash 6130 

detector.  The surface characterization was first performed on the as-diffracted samples.  To 

examine the bulk composition of the specimen using this technique, the surface was first removed 

via mechanical grinding.  Figure 3-37 displays an image of the SEM system, which features the 

SEM and the computer interface with keyboard. 
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Table 3-10 HTXRD instrumental and data collection parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instrument Parameters  

 
Instrument PANalytical Empyrean 

 
Source Cu Kα1/Kα2 

 
Stage Anton Parr HTK 1200N 

 
Detector PIXcel3D-Medipix3 1x1 detector 

            Mode Scanning Line Detector 

 
Collimation 

 
      Incident Beam Optics 

 
             Divergence Slit [°] 1/2 

 
             Soller slit [rad] 0.04 

 
            Anti-scatter slit [°] 1 

 
            Mask [mm] 10 

           Diffracted Beam Optics 

 
              Anti-scatter slit [°] 1 

  Soller Slit [rad] Large 0.04 

Scan Parameters 

 
Step Size [°2θ] 0.0131 

 
Step Time [s] 

31.4 (180 oC/h)  

82.4 (60 oC/h) 

 
Scan Time [s] 104 

 
Scan Range [°2θ] 

32 – 46 o (BAM-11 BMG) 

33 – 45 o (Cu BMG) 
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Figure 3-37 Zeiss EVO MA15 FIB/EDS system used for performing surface characterization of 

post-diffracted BMG specimens. 
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3.4.2.2 Nanoindentation Experiments 

To compare the hardness of the partially crystallized and as-cast material, nano-indentation 

tests were performed using techniques summarized previously.  Here, both as-cast and annealed 

specimens were indented.  To ensure a high-quality surface, the surface was mechanically ground 

and then polished to a mirror finish using colloidal silica.  As for the nanoindentations, ~25 indents 

were made where hardness was measured as a function of depth from the point of contact of the 

nanoindenter with the surface to a depth of ~2,500 nm. The hardness and Young’s modulus data 

from the surface to ~100 nm from the specimen surface was omitted due to large data scatter 

associated with surface roughness. Hardness values were calculated using the Oliver and Pharr 

method [381, 382].  

 

3.4.3 Compression Testing Experiments 

 

3.4.3.1 Sample Preparation and Experimental Setup  

The cast rods for compression tests were prepared with a length of 6 mm and diameter of 

3 mm (unconstrained condition).  Some samples were encased in a vacuum evacuated quartz tube 

and then annealed at 300 oC for two weeks in a Ney® model 3-550 furnace.  This temperature was 

chosen since it well below the glass transition temperature of the BAM-11 BMG (T = 393 oC) 

[98].  During the heating, a ramp rate of 5 oC/min. was used.  The furnace is composed of a heavy 

gauge steel cabinet in which the access door opens vertically to give maximum access to the 

heating chamber and ensures operator safety.  The specifications of the furnace are displayed in 

Table 3-11 [404].  Prior to heating, the encased specimen is placed in a ceramic heating tray.  

Figure 3-38(a) shows an encased specimen (for nanoindentation) in the ceramic sample heating 
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tray, whereas figure 3-38(b) displays the sample and tray inside of the furnace. After annealing, 

the two compression faces of each sample were carefully polished such that they were parallel to 

one other to ensure adequate contact with the platens during compression.  

The uniaxial compression tests were conducted by Dr. Zhong Wang.  Here, the as-cast and 

annealed BAM-11 BMG specimens compressed at room temperature using a computer-controlled 

MTS 810 materials testing machine at a constant strain rate.  The samples were compressed in the 

unconstrained condition at strain rates of 2 × 10-5 s-1 and 2 × 10-4 s-1.  Figure 3-39 displays the 

testing machine and a sample in compression.  The stress vs. time data were recorded using a data-

acquisition rate of 100 Hz.  To ensure accurate results, the specimen was first placed between the 

compression platens, ensuring that the specimen center line passes though the center line of the 

two compression plates. Furthermore, the specimen was visually inspected to ensure there is no 

slippage between the specimen and the compression plates before initiating the test.   

 

 

 

 

Table 3-11 Specifications of the Ney® model 3-550 furnace (from Ref. [404]). 

 

 

 

Specification Value 

Temperature Control Programmable 

Outside Dimensions 16”W × 17”D × 16”H 

Chamber Dimensions 9”W × 9”D × 7”H 

Height w/Door Open 25” 

Maximum Temperature 2,012o F 

Firing Time 15 min. to 1000o F 
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Figure 3-38 (a) BAM-11 BMG specimen encased in an evacuated tube and place in a ceramic plate 

and (b) sample and tray placed in the Ney® model 3-550 furnace prior to heating.  

 

 

Figure 3-39 Left) The computer-controlled MTS 810 materials testing machine and right) sample 

in compression (adapted from Ref. [405]). 
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3.4.3.2 Data Analysis 

The stress vs. time data was analyzed using Matlab 2018.  The data was examined using 

the refined composition multiscale entropy method  [186], which examines the complexity of a 

given time series.  Here, the stress vs. time curve is first normalized by subtracting away the 

moving average or polynomial fit of the time-series data [163].  One then generates the coarse-

grained time series from the detrended data using the following equation: 

 

 

where xi is a value from the initial data set and τ is the scale factor while k represents an index that 

determines on which xi the coarse-graining procedure is initialized.  A visual representation of Eq. 

(3-12) can be seen in figure 3-40.  Next the template vectors, 𝒚𝒌,𝒊
𝝉,𝒎

, of the dimension (or size), m 

are constructed: [188]: 

 

here 𝑦𝑘,𝑖
𝜏  is simply the ith component of the vector and is the quantity defined on the left-hand side 

of Eq. (3-12).  After the template vectors are determined, one calculates the number n of matching 

sets of distinguishable template vectors using the following relation [190, 197]:   

 

where 𝑑𝑎𝑏
𝜏,𝑚

 is the infinity norm, a and b (a ≠ b) are the indices of some chosen vector, y, as given 

in Eq. (3-13), and r is a tolerance value that is typically set as 0.15 × σ (σ is the standard deviation 

of the relevant data) to reduce the standard error in the sample entropy results [186, 192, 193, 406].   

 

𝑦𝑘,𝑗
𝜏 =

1

𝜏
∑ 𝑥𝑖

𝑗𝜏+𝑘−1

𝑖=(𝑗−1)𝜏+𝑘

      ;   1  ≤   𝑗  ≤  
𝑁

𝜏
        1 ≤ 𝑘 ≤  𝜏 

 

(3-12) 

 

 𝑑𝑎𝑏
𝜏,𝑚 = ‖𝒚𝒂

𝝉,𝒎 − 𝒚𝒃
𝝉,𝒎‖

∞
= max{|𝑦1,𝑎

𝜏 − 𝑦1,𝑏
𝜏 |… |𝑦𝑖+𝑚−1,𝑎

𝜏 − 𝑦𝑖+𝑚−1,𝑏
𝜏 |} < 𝑟    

 

(3-14) 

 

  𝒚𝒌,𝒊
𝝉,𝒎 = { 𝑦𝑘,𝑖

𝜏    𝑦𝑘,𝑖+1
𝜏  ….  𝑦𝑘,𝑖+𝑚−1

𝜏 }   ;     1 ≤   𝑖  ≤   𝑁 − 𝑚 ;   1 ≤ 𝑘 ≤  𝜏 

 

    (3-13) 
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Figure 3-40 Visual representation of the coarse-graining procedure for (a) k = 1, τ = 2, (b) k = 1, τ 

= 3, (c) k = 2, τ = 2, and (d) k = 2, τ = 3 (from Ref. [186]). 
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After the number of matching vectors are calculated, this method is performed again for 

𝒚𝒌,𝒊
𝝉,𝒎+𝟏

.  Once the total number of matching vectors, 𝑛𝑘
𝑚 and 𝑛𝑘

𝑚+1, are found, they are summed 

for k = 1 to τ.  Next, the RCMSE value of the data set at a given scale is calculated using the 

following equation [196]:  

 

 

 

3.5 Helium Diffusion Studies  

 

3.5.1 Sample Preparation 

BAM-11 and Cu BMG samples were cut into bars with linear dimensions of 3 mm × 2 mm 

× 6 mm.  Subsequently, one specimen from each alloy was encased in a quartz tube that was 

evacuated and then heated until the alloy partially crystallized.  Here the BAM-11 and Cu BMG 

samples were heated for 2.5 hours at 520 oC using a ramp rate of 20 oC/min [352, 358] at ORNL.  

After heating, all samples were polished to a mirror finish using colloidal silica.  Powder XRD 

was performed to confirm the amorphous and crystalline structure of the specimens, in which the 

corresponding diffraction patterns can be seen in figure 3-41.  A second set of samples, which 

were used for further experiments, were cut to linear dimensions of 3 mm × 2 mm × 10 mm, and 

polished in the same manner as above.  These specimens were annealed at the same temperature 

conditions as listed above under vacuum (pressure of 9 × 10-8 torr) at Los Alamos National 

Laboratory (LANL).  XRD later established their crystalline structure.     

 

 
𝑅𝐶𝑀𝑆𝐸(𝒚, 𝜏, 𝑚, 𝑟) = 𝐿𝑛 (

∑ 𝑛𝑘,𝜏
𝑚𝜏

𝑘=1

∑ 𝑛𝑘,𝜏
𝑚+1𝜏

𝑘=1

) 

 

(3-15) 
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Figure 3-41 XRD patterns of the amorphous and partially crystallized BAM-11 and Cu BMG. 

 

3.5.2 Helium Implantations 

Samples were implanted at the Center for Integrated Nanotechnology (CINT) located in 

LANL.  For these experiments, two different sets of implantations were performed.  The first set 

of irradiations involved nuclear reaction analysis, while the second set was conducted for thermal 

desorption spectroscopy analysis.  The implantations involved irradiating specimens at room 

temperature with 150 keV 3He+ and 4He+ ions with a 200 kV Varian ion implanter.  Here, 3He was 

chosen for the deuteron-induced reaction 3He(d,p)4He [407] required for the nuclear reaction 

analysis (NRA) characterization, whereas 4He was chosen for the thermal desorption spectroscopy 

(TDS) (see Sections 3.5.3. and 3.5.4.).  For the first set of implantations, the specimens were 

irradiated to a fluence 5 × 1015 ions/cm2, while for the second set, specimens were bombarded by 

 



172 

 

150 keV 4He+ ions to two different ion fluences, namely 2 × 1015 ions/cm2 and 5 × 1015 ions/cm2.  

The latter helium isotope was chosen because it is relatively inexpensive as compared to 3He.  

Furthermore, the fluence values for these experiments were chosen to avoid bubble formation in 

the matrix.  Table 3-12 summarizes the experimental parameters of the implantations.   

The irradiation induced damage profile and He concentration were calculated using SRIM-

2013 Quick Kinchin-Pease Mode [297, 299], using a displacement threshold energy (Ed) of 40 eV 

for all the elements comprising the BMG matrix.  In the BAM-11 BMG the peak damage and peak 

He concentration were estimated to be roughly 0.12 dpa (500 nm), occurred at 500 nm, and 0.27 

at.% (570 nm), respectively.  On the other hand, the same values for the Cu BMG were 0.12 dpa 

(460 nm) and 0.34 at.% (520 nm).  The corresponding damage profile and He concentration as a 

function of depth are displayed in figures 3-42(a)-(b). 

Before irradiation, specimens were placed firmly on double sided carbon tape that had 

already been secured to the surface of the Cu block stage apparatus. Special care was taken when 

planting the specimens onto the tape as to not scratch the surface.  After mounting, the stage and 

samples were placed into the ion beam chamber where the pressure was reduced to 3 × 10-6 torr.   

 

 

Table 3-12 Experimental parameters for He implantations. 

 

 

 

 

 

 

Parameter Value 

Ion energy (keV) 150 

Beam current (μA) 20 

Current density (μA/cm2) 1.75 

Analyzer voltage (V) 2.3 

M/q ratio 3 

Ion Fluence (ions/cm2) 2 × 1015 and 5 × 1015 

Ion flux (ions/cm2s) 1.1 × 1013 

Chamber temperature (o C) 25 

Chamber pressure (torr) 3 × 10-6 
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Figure 3-43 shows a basic schematic of the mounted BAM-11 BMG and Cu BMG samples in the 

chamber during the He irradiation. 

After implantation, samples were removed from the chamber and carefully placed back in 

their respective containers.  As mentioned above, two methods were used to investigate the 

diffusion of helium in the sample, namely nuclear reaction analysis (NRA) [408] and thermal 

desorption spectroscopy (TDS) [409].   

 

3.5.3 Nuclear Reaction Analysis  

To determine the helium distribution in the amorphous and crystallized BMG specimens 

implanted with 3He, NRA was performed using a 3 MV NEC tandem accelerator at the IBML 

located in LANL.  Before the NRA commenced, some of the implanted samples were annealed in 

vacuum (~ 10-8 torr) at temperatures ranging from 250-600 oC, using a ramp rate of 20 oC/min., 

for times ranging from 30 minutes to 24 hours.  The NRA was performed on the as-implanted and 

annealed specimens to determine whether there was a change in the He profile.  

For the NRA, specimens were irradiated with 575-600 keV deuterons in which the 

deuterons collide with the embedded He.  The collision will cause 3He(d, p)4He nuclear reactions 

to take place in which a proton and 4He (α) particle are released with energies of 3.8 MeV and 14.6 

MeV, respectively. The released particles will then encounter a 6 μm aluminum foil, where their 

energy will be sufficiently reduced such that it can be detected by a 2 mm thick Si solid-state 

surface barrier detector (surface area of 314 mm2) [410].  Figure 3-44 shows a basic schematic of 

the NRA scattering process. 

The SIMNRA simulation code [411, 412] was employed to analyze the outgoing α-particle 

energy spectrum. The procedure for fitting the data consists of fitting the proton spectrum recorded  
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Figure 3-42 Irradiation damage (dpa) profile (fluence of 5 × 1015 cm-2) versus depth and 

corresponding at. % He versus depth for the (a) BAM-11 BMG and (b) Cu BMG.  Both graphs 

were obtained from SRIM 2013 simulation using quick Kinchin-Pease calculations. 
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Figure 3-43 Schematic showing the 150 keV 3He+ ion irradiations of the 3 mm × 2 mm × 10 mm 

specimens. 

 

 

Figure 3-44 Basic schematic of the NRA scattering process (from Ref. [408]).  
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at the energy corresponding to the maximum NRA yield to minimize the error. For our study, the 

energy spectrum corresponding to 575 and 600 keV deuteron energies were fitted to obtain the 

helium depth profile of the as-implanted and annealed samples amorphous and partially 

crystallized BMGs.   

To begin the analysis, the experimental parameters were first input into the software (see 

figures 3-45(a)-(c) and 3-46).  These parameters include the detector energy calibration values, the 

aluminum foil thickness, detector geometries, detector energy calibration values, nuclear reaction 

cross sections for each element, and incident beam characteristics.  Furthermore, the samples were 

defined as consisting of multiple layers with varying thicknesses and compositions.  The first layer 

was designated as having no helium and just the elements comprising the BMG.  The middle layer 

was input to contain both the BMG elements and the He. Finally, like the first layer, the last layer 

(furthest from the surface) was input as containing no He.   

To evaluate the helium concentration depth profile ρ(x) one considers the following 

equations [408]:  

 

 

here A is a normalization constant that is equal to the depth profile integrated area which is 

proportional to the helium fluence, xc is the centroid of the distribution (near to mean projected 

range Rp of the 3He ions), and s is the standard deviation near the longitudinal range straggling 

(ΔRp).  the variable ρ(x) is the helium concentration depth profile and is approximated via a 

Gaussian curve [413, 414]: 

  

𝜌(𝑥) = (
𝐴

𝑠
) exp [−

(𝑥 − 𝑥𝑐)
2

2𝑠2
]       

 

 

 (3-16) 
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Furthermore, the diffusion coefficient D and effective activation energy ΔE (assuming 

Arrhenius laws), for the implanted He, can be calculated from the broadening of the Gaussian peak 

using Eqs. (3-18) and (3-19): 

 

 

 

 

 

where D is the diffusion coefficient, s0 is the standard deviation of the as-implanted profile, ta is 

the annealing time, kB is Boltzmann’s constant, and T is the annealing temperature.  For more 

details pertaining to the NRA experiment, please see [415-418]. 

 

3.5.4 Thermal Desorption Spectroscopy  

As mentioned in the previous section, amorphous and crystallized BAM-11 and Cu BMG 

specimens (dimensions of 3 mm × 2 mm × 6 mm) were implanted by 150 keV 4He ions to fluences 

of 2 × 1015 ions/cm2 and 5 × 1015 ions/cm2 at CINT in LANL.  Following the irradiation, the as-

implanted samples were transported to the LAMDA facility in ORNL to undergo thermal 

desorption spectroscopy (TDS) experiments.  The spectroscopy experiments were performed by 

Dr. Xunxiang Hu.  Here, the specimens were heated to 770 oC (heating rate of 0.4 oC/s) using a  

  

𝐷 ≈ 𝐷0 exp (−
∆𝐸

𝑘𝐵𝑇
) 

 

 
 (3-19) 

 

  

𝐷 = (𝑠2 − 𝑠0
2)/2𝑡𝑎 

 

 

   (3-18) 

 

 

 

 

 

 

  

∫ 𝜌(𝑥)𝑑𝑥
∞

0

= 𝐴√𝜋   

 

 

(3-17) 
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Figure 3-45 SIMNRA software experimental input windows which include the (a) general 

experimental parameters such as incoming deuteron energy and calibration offsets, (b) specimen 

target composition and thickness input, and (c) foil composition and thickness input. 
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Figure 3-46 The nuclear cross section parameter input screen. 
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Figure 3-47 TDS equipment located in LAMDA at ORNL. 

 

customized electrical resistivity heater.  The maximum temperature used for these experiments 

was based on the melting temperature (Tm) of the BAM-11 BMG since it is lower than that for the 

Cu BMG (Tm = 910 oC [399]).  The chamber pressure was held at approximately ~1 × 10-9 torr to 

reduce the He background to a level of approximately 2 × 1010 He/s.  A mass spectrometer was 

used to record the He gas content during the heating of the specimens.  Figure 3-47 shows an image 

of the TDS equipment. 

 

3.5.4.1 Thermal Desorption Analysis 

Assuming that the He desorption follows a first order kinetic dissociation model, one can 

calculate the activation energies that are associated with desorption events by using the following 

equation [409]: 
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where N is the number density of remaining He atoms in the specimen corresponding to a 

desorption event, f is the Debye frequency (1013 s-1 [34]), T is the temperature associated with the 

desorption peak, E is the activation energy associated with the desorption events, and kB is 

Boltzmann’s constant.  Since it was assumed that the desorption follows a first order model, we 

may assume that the second derivative of the number density with respect to time is zero.  Upon 

taking the derivative of Eq. (3-20) and setting it to zero, yields: 

  

 

Plugging the identity for dN/dt from Eq. (3-20) into the above equation and simplifying 

gives: 

 

here the substitution β = dT/dt was used.  To solve Eq. (3-21) in terms of E for a given temperature 

and heating rate, β, one must use non-linear numerical methods. To determine the activation energy 

associated with a desorption event, one first plots the energies on the same graph as the He 

desorption spectra data [409].  The energy values that align with the spectrum peaks corresponds 

to the energy at which He desorption occurs in the specimen. 
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CHAPTER 4 EXPERIMENTAL RESULTS 
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4.1 Review of Preliminary Experiments 

Preliminary experiments were performed on the BAM-11 BMG to help elucidate the 

effects of irradiation and annealing on the microstructure and mechanical properties of the alloy.  

These experiments included irradiating the BAM-11 BMG with 3 MeV Ni+ ions as well as >0.1 

MeV neutrons.  In summary, the results of these studies provided useful results on the radiation 

effects behavior of BMGs using multiple characterization techniques.   

Figure 4-1 (a)-(b) displays the BAM-11 BMG as-cast rod and its corresponding bulk XRD 

pattern indicating that the sample was fully amorphous after fabrication.  After fabrication, the rod 

was cut into sections consisting of linear dimensions of 8 × 3 × 1 mm3 that were subsequently 

ground and polished to a mirror finish.  Figure 4-2 shows a representative 8 × 3 × 1 mm3 specimen 

that was used for the irradiation and annealing experiments.   

Preliminary microstructural examination of unirradiated BAM-11 bulk metallic glass was 

performed on a polished BAM-11 BMG specimen [419]. As can be seen infigure 4-3, diffraction 

patterns showed the amorphous nature of the alloy sample while TEM images revealed the 

featureless nature of the sample.  Additionally, a baseline electron energy loss spectroscopy 

(EELS) scan performed via TEM gave a composition of Zr-7Al-3.8Ti-6.9Cu-15Ni with oxygen as 

the only major impurity. 

 

4.1.1 Ion Irradiation Experiments 

 

4.1.1.1 TEM Microstructural Characterization  

One study involved the irradiation of BAM-11 BMG by 3 MeV Ni+ ions to fluences of 4.2 
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Figure 4-1 (a) Rod of BAM-11 prepared by casting and quenching at Oak Ridge National 

Laboratory and (b) X-ray diffraction pattern showing the amorphous structure (from Ref. [70]). 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 3 × 8 × 1 mm coupon of BAM-11 BMG used in preliminary irradiation and annealing 

experiments. 
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Figure 4-3 TEM micrograph of the unirradiated BAM-11 BMG with diffraction pattern inserted 

on top right (From Ref. [419]). 

 

× 1013 and 4.2 × 1014 cm-2 at both room temperature and 200 oC.  The Ni ions had a projected range 

of 1.36 μm and these fluences correspond to peak damage levels of 0.1 and 1 dpa, respectively.   

Figure 4-4 shows TEM micrographs of the irradiated alloy (room temperature and 200 oC), 

including the BF images at 9.6 and 135 kx with the respective diffraction pattern (DP) of the 

sample.  The lack of spots in the diffraction patterns revealed that no significant microstructural 

changes (crystallization) in the samples occurred during irradiation at room temperature and 200 

oC [15].  Also, figure 4-4 features high resolution (HR) images that are shown at 580 kx times 

magnification. As can be observed in the figure, the specimens appeared feature-free at differing 

tilt conditions in the TEM, while no point defects or point defect-like structures were noticed at 

HR.   
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Another set of experiments involved samples that were irradiated by 3 MeV Ni3+ ions, but 

to peak damage levels of 1 and 10 dpa [420].  These doses respectively corresponded to fluences 

of 4.2 × 1014 and 4.2 × 1015 cm-2.  Furthermore, some as-cast specimens were also annealed at 300 

oC for 48 hours.  Figure 4-5 displays the TEM characterization of the as-cast, annealed, and 

irradiated samples.  The TEM, HRTEM and DPs revealed that after irradiation and annealing, the 

specimens were completely amorphous and feature-free. In addition, tilting on two different axes 

in the TEM revealed no dislocations or point defect-like structures in the alloy.   

 

4.1.1.2 Nanoindentation Results 

For these experiments, nanoindentations were performed on the samples that were 

irradiated to peak doses of 0.1 and 1 dpa, and at room temperature and 200 oC.  The indentations 

were utilized a Berkovich tip in which the hardness and Young’s modulus were continuously 

recorded as a function of the indentation depth.  The nanoindentations were performed using the 

CSM method with a constant loading rate [(dP/dt)/P] of 0.05/s with a maximum applied load of 

15 mN.  Figures 4-6 and 4-7 show the depth dependent hardness and elastic modulus 

nanoindentation data for the as-cast and ion-irradiated BAM-11 BMG.  From the figures, a few 

things may be noticed.  The hardness and modulus values increased in a monotonic fashion with 

respect to indentation depth.  These results will be shown to be at odds with the later experiments 

where the hardness decreased with respect to the indentation depth.  Interestingly, the hardness 

curves were lower for the irradiated samples, as compared to the as-cast condition.  In terms of the 

modulus, the specimens irradiated at the 200 oC exhibited modulus values that were higher as 

compared to the unirradiated sample, for depths beyond 110 nm. 
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Figure 4-4 TEM image showing bright field images at 135 kx, diffraction patterns, and high-

resolution images at 580 kx of ion-irradiated BAM-11 irradiated to 0.1 and 1.0 dpa at room 

temperature and 200°C (from Ref. [98]). 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 TEM BF (135kx), DPs, and HR images (580kx) of as-cast and heat-treated ion-

irradiated BAM-11 BMG irradiated to 1 and 10 dpa. No changes in crystallinity or any defect 

structures were observed (From Ref. [420]). 
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Figure 4-6 Nanoindentation hardness as a function of indenter depth in the unirradiated and ion-

irradiated BAM-11 BMG specimens (from Ref. [98]). 

 

 

 

 

 

 

 

 

 

Figure 4-7 Elastic modulus as a function of indenter depth in the unirradiated and ion-irradiated 

BAM-11 BMG specimens (from Ref [98]).  
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4.1.2 Neutron Irradiation Experiments  

Microstructural and mechanical property tests were performed on the as-cast and neutron 

irradiated BAM-11 BMG specimens.  Here, the samples were exposed to neutron fluences of 1.4 

× 1020 n/cm2 and 1.4 × 1021 n/cm2, which corresponded to doses of 0.1 and 1.0 dpa.  The depth-

dependence hardness values of the neutron irradiated BMG specimens are shown in figure 4-8.  A 

pronounced depth dependence was measured for the nanoindentation hardness, particularly for the 

unirradiated and 0.1 dpa irradiated samples. At 800 nm, there was a decrease in the nano-

indentation hardness of about ~6% and ~12% from the unirradiated state for the specimens 

irradiated to 0.1 dpa and 1 dpa, respectively.   

It is notable in figure 4-8 that the nanoindentation hardness exhibits a pronounced depth 

dependence. Since the nano-indentation hardness is performed at relatively shallow depths 

compared to the bulk Vickers hardness measurements (< 1 microns vs. ~6.5 microns), the 

discrepancy between the two hardness tests could be a result of surface effects due to machining 

or mechanical polishing effects, or a near-surface composition gradient due to chemical 

inhomogeneity or near-surface radiation induced solute segregation.   

The Young’s modulus vs. nano-indentation depth can be seen in figure 4-9.  As can be 

seen, the elastic modulus decreases with increasing depth, resembling the trend for nano-

indentation hardness.  At 800 nm, the data indicates a slight decrease of ~1.4% and ~0.9% after 

irradiation to 0.1 and 1 dpa, respectively as compared to the unirradiated specimen.  The dynamic 

Young’s modulus for the control and sample irradiated to 0.1 dpa can be seen in Table 4-1.  There 

was a decrease of ~5% in the dynamic Young’s modulus of the specimens irradiated to 0.1 dpa at 

90C as compared to the control sample. 
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Figure 4-8 Nano-indentation hardness as a function of indenter depth in the neutron irradiated and 

control BAM-11 BMG specimens. 

 

 

 

 

 

 

 

 

Figure 4-9 Young’s modulus vs. nano-indentation depth for neutron irradiated BAM-11 BMG 

specimens. 
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Table 4-1 Average dynamic Young’s modulus of unirradiated and irradiated BAM-11 BMG 

specimens. 

BAM-11 BMG Control 0.1 dpa – 70C 

Average Dynamic Young’s 

Modulus (GPa) 
79.4 75.7 

Std. Dev of Dynamic 

Young’s Modulus (GPa) 
0.7 1.8 

 

The measured densities for the control and irradiated specimens are shown in figure 4-10. 

A decrease in density was found in the irradiated samples as compared to the control specimens.  

Here the specimens exhibited ~0.4% decrease in density at both irradiation doses. Moreover, the 

density at 1 dpa was slightly greater than the density at 0.1 dpa.  The decrease in density is likely 

associated with an irradiation induced increase in free volume content.  

Previous studies have reported neutron irradiation induced microstructural changes in 

metallic glasses.  For example, a study conducted by Gupta et al. found that thermal neutron 

irradiation of iron based metallic glass containing 13-20% boron to low doses increased the short 

range order which was accompanied by a relief in the random internal stresses of the as-received 

specimens [346].  In contrast to the above studies, the study by Perez-Bergquist et al. found no 

significant microstructural changes in the BAM-11 BMG after exposure to 3 MeV Ni+ ions [419].  

In summary, there were relatively slight irradiation induced changes in the bulk hardness, nano-

indentation hardness, density and dynamic Young’s modulus for the given dose regime.  For the 

first three tests, the exhibited change did not differ significantly between the samples tested at 0.1 

and 1 dpa.  This result signifies that a saturation of irradiation damage may be occurring in BAM-

11 BMG within the examined dose and temperature regime. 
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Figure 4-10 Measured density of unirradiated and neutron irradiated (0.1-1 dpa) BAM-11 BMG 

specimens. 
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4.2  Current Experimental Results 

 

4.2.1 Ion Irradiation Experiments  

To advance our knowledge on the irradiation response of this material system, these 

investigations will gain insight on how irradiation and temperature modifies the nanoindentation 

properties of this material.  To carry out this investigation, nanoindentation tests and 

microstructural characterization techniques were performed on specimens irradiated by 9 MeV 

Ni3+ and 5.5 MeV C+ ions to midrange doses of 10 dpa and 0.5 at temperatures ranging from 25 - 

360 oC.  Nanoindentation tests were performed to measure the depth dependent hardness, while 

XRD and TEM methods were conducted to examine whether the BMG remained amorphous 

during irradiation.   

 

4.2.1.1 Microstructural Characterization 

 

4.2.1.1.1 BAM-11 BMG 

To obtain a broader ion irradiation region for characterization, ion irradiations for this 

thesis research utilized 9 MeV Ni ions (vs. 3 MeV Ni ions used for the preliminary studies). In 

addition, relatively high dose levels were examined (~10 dpa at midrange, ~25 dpa at peak).  Figure 

4-11 displays the glancing XRD patterns for the as-cast and 9 MeV Ni3+ irradiated BAM-11 BMG 

samples.  For the plots, the intensity of the patterns was normalized.  The shift in the peak to lower 

angles suggests that the atomic spacings increased during the irradiation [421].  The patterns for 

the specimens irradiated at 25 and 290 oC consisted of a broad hump at diffraction angles ranging 

from approximately 30 to 46 o, which indicates that samples remained amorphous during 
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irradiation.  This was opposed to the pattern for the sample irradiated at 360 oC, where a small 

discrete peak centered around 45o can be seen in addition to the broad amorphous peak at 30 to 46 

degrees.  This result indicates that that partial crystallization occurred during irradiation.   

To examine whether the crystallization in the sample was induced by thermal or irradiation 

effects, glancing XRD was also performed on the unirradiated side.  In addition, these patterns 

were compared to one representing a sample that was annealed at 500 oC for 2.5 hours. This 

comparison was intended to gain an understanding regarding the XRD patterns for temperatures 

at ~33 oC below and ~100 oC above the glass transition temperature (Tg) of the BAM-11 BMG 

(393 oC [352]).   

The corresponding patterns are displayed in figure 4-12, and as can be observed, all three 

patterns are quite similar.  The overall similarity in the patterns from the irradiated and unirradiated 

sides of the specimen indicates that partial crystallization was thermally induced.  However, we 

can note some important differences from this figure.  Firstly, the peak at ~45o is more pronounced 

in the pattern representing the unirradiated side.  Secondly, there is an increase in the intensity 

values for the angles beyond 60o. Thirdly, the peak centered around 38 oC for the as-cast sample 

is shifted slightly to the left for the irradiated specimens.  Finally, in the patterns for the specimen 

annealed at 500 oC, there are more distinct peaks corresponding to scattering angles ranging from 

30-50o.  This result suggests that specimen heated at 500 oC experienced more extensive 

crystallization as compared to the sampled irradiated at 360 oC for a longer period of time.  

In addition to the XRD characterization, TEM was also performed on the sample irradiated 

at 360 oC.  The TEM BF and SAD images, as featured in figure 4-13, showed no features that 

would indicate crystallization had occurred.  In contrast to the XRD results, the atomic structure 
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of the lift-out specimen that was examined by TEM (see figure 4-13), showed that it had remained 

amorphous during irradiation. This result indicates that the crystallization did not occur uniformly 

throughout the material.   

Additional experiments were performed to examine the role of average primary knock-on  

atom energy on the radiation stability in the BAM-11 and Cu BMGs.  Here, the specimens were 

irradiated by the 9 MeV Ni3+ and 5.5 MeV C+ to a midrange dose of 0.5 dpa at temperatures 

ranging from 25 oC to 360 oC.  Figures 4-14 (a)-(b) display the XRD patterns (with normalized 

intensity) for the as-cast and irradiated BMG samples.  For the samples irradiated by 9 MeV Ni 3+, 

the broad hump centered at scattering angles ranging from 30 to 46o indicates that radiation BAM-

11 BMG sample that was irradiated by 5.5 MeV C+ at 290 oC, however, there were several distinct 

peaks in the pattern, which indicates that partial crystallization occurred in the specimen induced 

crystallization did not occur in the samples irradiated at any of the temperatures.  For the during  

 

 

 

 

 

 

 

Figure 4-11 Glancing X-ray diffraction patterns for BAM-11 BMG samples in the as-cast and Ni3+ 

irradiated condition (9 MeV, 10 dpa) at different temperatures. 
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Figure 4-12 Bulk X-ray diffraction patterns for the BAM-11 BMG sample irradiated by Ni3+ ions  

(9 MeV, 10 dpa) at 360 oC (unirradiated and irradiated sides) and the specimen annealed at 500 oC 

for 2.5 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13 TEM Diffraction pattern and inset which contains the corresponding bright field 

imaging of the irradiated region in the BAM-11 BMG sample irradiated with 9 MeV Ni3+ ions to 

a midrange dose of 10 dpa at 360 oC. 
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Figure 4-14 Glancing X-ray diffraction patterns for the BAM-11 BMG samples in both the as-cast 

and (a) 9 MeV Ni3+ and (b) 5.5 MeV C+ irradiation condition (0.5 dpa) at different temperatures.  
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irradiation.  Interestingly, the specimen irradiated by the same ion but at the higher temperature of 

360 oC did not show any signs of crystallization. This indicates there may have been some issues 

with thermal contact of some of the samples with the target holder substrate.  

 

 

4.2.1.1.2 Cu BMG 

 

The XRD patterns of the as-cast and irradiated (9 MeV Ni3+, 25 - 360 oC)  Cu BMG samples 

are presented in figure 4-15.  Here, a broad peak centered at scattering angles ranging from 32 to 

46o can be observed in the samples bombarded at 25 and 290 oC, indicating that the specimens 

remained amorphous during irradiation. On the other hand, numerous sharp peaks were observed 

in the XRD patterns for the sample irradiated at 360 oC, indicating that partial crystallization 

occurred. Like the BAM-11 BMG sample irradiated at the above temperature, glancing XRD was 

also performed on the unirradiated side of the specimen. These patterns were then compared with 

a specimen that was annealed at 520 oC for 2 hours to induce thermal crystallization.   

Figure 4-16 also compares the bulk XRD measurements for the sample irradiated at 360 

oC (irradiated and unirradiated sides) for 7 hours with an unirradiated specimen that was annealed 

at 520 oC for 2.5 hours. Again, like the BAM-11 BMG, this comparison was intended to examine 

the XRD behavior at ~120 oC below vs. ~40 oC above the reported Tg of the Cu BMG, which is 

480 oC [358].  As shown in figure 4-16,  the pattern for the unirradiated side of the specimen is 

similar to the one for the irradiated side, implying that the partial crystallization was thermally 

induced.  However, for the pattern of the 520 oC annealed specimen, the peaks centered at ~37, 

39, and 40o exhibited a greater intensity as compared to the same peaks for the sample irradiated 

at 360 oC.  This result indicates that a greater degree of crystallization occurred in the sample 
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Figure 4-15 Glancing X-ray diffraction patterns for Cu60Zr20Hf10Ti10 BMG samples in the as-cast 

and Ni3+ irradiated condition (9 MeV, 10 dpa) at different temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16 Glancing X-ray diffraction patterns of the irradiated and unirradiated sides of the 

Cu60Zr20Hf10Ti10 BMG specimen irradiated by Ni3+ at 360 oC (9 MeV, 10 dpa) in addition to a 

bulk scan of the sample annealed at 520 oC for 2.5 hours. 
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heated at 520 oC for 2.5 hours as compared to the 360 oC (~7 hours) irradiated condition. 

Figure 4-17 displays TEM BF image (medium-magnification) of the Cu BMG specimen 

irradiated by 9 MeV Ni3+ ions to a midrange dose of 10 dpa at 360 oC.  The corresponding 

diffraction pattern is displayed in the upper left corner of the figure. The spots in the SAD and 

diffracting features in the BF images indicated that crystallization occurred.  This result contrasts 

with the BAM-11 BMG that was irradiated at the same condition, where no such features were 

observed in the TEM imaging.  The crystallites that formed throughout the irradiated region and 

consisted of various shapes and sizes. Since the XRD patterns exhibited crystalline peaks for both 

the irradiated and unirradiated near-surface regions of this sample, the crystallization is most likely 

associated with thermal (overheating) effect rather than a radiation-induced effect. 

To analyze the crystal phases in the partially crystallized Cu BMG specimen, qualitative 

and quantitative phase analysis was performed using Rietveld refinement techniques [239].  The 

qualitative phase identification (ID) was determined in Highscore using the Powder Diffraction 

File-4+ (PDF-4+) database, whereas the quantitative phase analysis was performed via Rietveld 

refinement via the GLAS Science Algorithm Software II (GSAS II) software [401].  Figure 4-18 

and Table 4-2 display the results of the analysis.  The inset of the figure shows the same data, but 

for scattering angles between 30 and 50o.   

With respect to the results shown in Table 4-2, the crystalline phases were found to be 

dominated by some form of CuZrTi solid solution phase at 81.7 wt. % with the secondary phase 

being CuTi at 18.3 wt. %.  It was also determined that the CuTi crystallites were of a tetragonal 

structure corresponding to the P4/mmm space group [422], while the CuTiZr crystallites were 

composed of a hexagonal structure that corresponded to the P63/mmc space group [423].   
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Figure 4-17 TEM bright field imaging and inset which contains the corresponding diffraction 

pattern of the irradiated region in the Cu60Zr20Hf10Ti10 BMG sample irradiated with 9 MeV Ni3+ 

ion beam to a dose of 10 dpa at 360 oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18 Rietveld refinement analysis of X-ray diffraction pattern of partially crystallized 

Cu60Zr20Hf10Ti10 BMG after irradiation by 9 MeV Ni3+ to midrange dose of 10 dpa at 360 oC. 
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Table 4-2 Rietveld refinement for the goodness of fit (χ2), software used for the analysis, 

background fitting function, lattice parameters (a, b, c), the crystal system, the space group, the 

crystallite volume, and the weight percent for the multi-phase Cu60Zr20Hf10Ti10 BMG. 

 

 

 

 

 

 

 

 

 

   
CuZrTi CuTi 

Refinement:   

Goodness of fit, (χ2 ) 4.66 

Software GSAS II [401] 

Variables   

     Background Chebyschev-Background 

     Lattice parameters a = b, c a = b, c 

Crystal Data:   

Crystal system Hexagonal Tetragonal 

Space group (194) 𝑃63/𝑚𝑚𝑐 (123) 𝑃4/𝑚𝑚𝑚 

a=b* [Å] 5.167 (2) 3.182 (3) 

c*, [Å] 8.265 (2) 2.853 (3) 

Volume, [Å3] 191.12 (2) 28.904 (9) 

Weight Percent 81.7 (7) % 18.3 (5) % 

*Estimated standard deviations are 3σ 
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Interestingly, the results indicated that the Hf in the matrix did not combine with any other 

elements in the matrix to form compounds.  Figures 4-19(a)-(b) displays the glancing XRD 

patterns (with normalized intensity) for the as-cast and irradiated Cu BMG samples that were 

irradiated by 9 MeV Ni3+ and 5.5 MeV C+ to a midrange dose of 0.5 dpa.  From both figures it 

may be observed that for the Cu BMG specimen, no apparent crystallization had occurred during 

irradiation at any of the irradiation conditions.  Again, this lack of evidence for irradiation or 

thermally induced crystallization is signified by the broad hump for scattering angles ranging from 

30 to 46o.   

 

4.2.1.2 Nanoindentation Experiments 

 

4.2.1.2.1 BAM-11 BMG  

The nanoindentation indentation data for the BAM-11 BMG specimen irradiated by 9 MeV 

Ni3+ ions to midrange doses of 0.5 and 10 dpa at temperatures ranging from 25 - 360 oC are 

displayed in figures 4-20(a)-(b).  The hardness data below a depth of ~100 nm from the specimen 

surface was discarded due to large data scatter associated with surface roughness.  As discussed in 

[420, 424], the nanoindenter tip is sensitive to material properties up to 5-10 times beyond its 

penetration depth.  Thus, an indentation depth of approximately 200 nm and 450 nm corresponds 

to the midrange depth of 1.5 m and projected ion range of 3 m, respectively.   

The corresponding hardness data for these indentation depths are presented in Table 4-3.  

Furthermore, evaluation of the depth-dependent hardness, as shown in figure 4-20(a), indicates 

that an indent depth of 450 nm corresponds to the transition between the ion irradiated and 

unirradiated  
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Figure 4-19 Glancing X-ray diffraction patterns for the Cu BMG samples in both the as-cast and 

(a) 9 MeV Ni3+ and (b) 5.5 MeV C+ irradiation conditions (0.5 dpa) at different temperatures.  

 

regions.  To account for this transition, a vertical line was inserted into figure 4-20(a) to mark the 

approximate irradiation- and nonirradiation-dominant regimes in the indented regime.  Figure 4-

20(b) shows a close-up of the irradiated region (100-450 nm indent depths).   

In the irradiated region it was found that the hardness for the as-cast condition was within 

one standard deviation of the room temperature irradiation condition.  The above result indicates 

that a slight, but not statistically significant increase in the hardness of the material occurred during 

irradiation.  It was also observed that with increasing irradiation temperature, the irradiated 

hardness progressively increased up to the maximum investigated temperature of 360 oC.  As can 

also be observed in the unirradiated region in figure 4-20(a), the hardness slightly increased 

between the as-cast condition and the room temperature and 290 oC irradiation conditions for 

indent depths beyond 450 nm, where the tip predominantly senses the unirradiated regions. In 

contrast, the hardness values for the unirradiated region exhibited a large increase for the sample 

irradiated at 360 oC, which was associated with the partial crystallization of the specimen. It should 

also be  
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Figure 4-20 Nanoindentation hardness vs. indentation depth for BAM-11 BMG as-cast and 

irradiated samples (9 MeV Ni3+, 10 dpa) at temperatures ranging from 25 to 360 oC for indent 

depths ranging from (a) 100-2500 nm (irradiated and unirradiated regions) and (b) the irradiated 

region (100-450 nm). 

 

 

 

 

(a) 

(b) 

Irradiated 

Region 

Unirradiated Region 

 



207 

 

 

Table 4-3 Summary of nanoindentation results on as-cast and irradiated samples (9 MeV Ni3+, 

dose of 10 dpa) at depths of 200 and 450 nm, corresponding to the midrange and end-of-range 

regions for the ion irradiated samples. 

 

 

mentioned that the hardness was found to increase with decreasing indent depth, which indicates 

a significant ISE in the alloy. 

Figure 4-21(a) displays the nanoindentation Young’s modulus as a function of indenter 

depth for all the ion irradiation conditions.  As can be seen in the graph, the modulus decreased 

with respect to indentation depth for all conditions. For depths below 200 nm, the modulus for the 

specimens irradiated to a dose of 10 dpa at 25-360 oC were lower as compared to the as-cast 

sample.  For depths between 250 – 450 nm, the modulus was slightly higher for the irradiated 

samples, although within error.  However, beyond 450 nm, the modulus was significantly higher 

for the bombarded specimens.  Here, the modulus values were within a standard error of each other 

for the specimens irradiated at room temperature and 290 oC.  In addition, the sample irradiated at 

360 oC showed a noticeably higher modulus as compared to the other irradiation temperatures 

although it decreases to values comparable to the other lower temperatures at depths ≥ 2,400 nm.  

Figures 4-21(b)-(c) show a close-up of both the irradiated (100-450 nm) and unirradiated regions 

(450-2500 nm).   

The ISE hardness analysis based on the Nix-Gao model is plotted in figures 4-22(a)-(c) for 

the as-cast and the 9 MeV Ni3+ ion irradiated BAM-11 BMG specimens. The vertical line in the  

 Depth (nm) As-cast 25 oC irr. 290 oC irr. 360 oC irr. 

Average 

Hardness 

(GPa) 

200 7.4 ± 0.6 8.0 ± 0.2 8.1 ± 0.4 8.8 ± 0.4 

450 6.8 ± 0.2 6.8 ± 0.7 7.0 ± 0.1 7.4 ± 0.1 
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Figure 4-21 Nanoindentation Young’s modulus vs. depth for BAM-11 BMG as-cast and irradiated 

samples (9 MeV Ni3+, 10 dpa) at temperatures ranging from 25 to 360 oC for (a) depths of 100 to 

2500 nm, (b) the irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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plot at 2.2 μm-1 [figure 4-22(a)] corresponds to an indenter depth of 450 nm, which is near the 

expected transition between the hardness dominated by the unirradiated and ion-irradiated regions.   

 For all indentation depths, the extrapolated hardness values were found to exhibit non-

linear behavior with respect to the independent variable, h-1.  The ISE hardness analysis from the 

Lam and Chong model was also plotted for the as-cast material and the specimens irradiated by 9 

MeV Ni3+ ions [see figures 4-23(a)-(c)].  As was done with the previous figure, a vertical line was 

inserted into the plot at 1.5 μm-0.5 [figure 4-23(a)].  This line corresponds to the expected transition 

between the hardness dominated by the unirradiated and ion-irradiated regions.  For every 

condition, the fitted values based on this latter model did not behave in a linear fashion versus 

1/h0.5 throughout the entire indentation region, although the overall deviation from linear behavior 

was much less pronounced as compared to figures 4-22(a)-(c).  The corresponding fitting 

parameters are presented in Table 4-4, and as can be observed for the near-surface irradiated 

region, the fitted bulk hardness value was ~5.8-6.2 GPa for the as-cast and samples irradiated up 

to 290 oC.  Also, the reduction was most pronounced for the specimen irradiated at 25 oC (-9%), 

while the sample bombarded at 290 oC only softened by about 3%.  

 

 

Table 4-4 Comparison of the results for the parameters h*, H0, and the percent change in H0 [Eq. 

(3-5)] for the as-cast and the 9 MeV Ni3+ irradiated BAM-11 BMG for the irradiated region (100 

- 450 nm).  

Condition 
h* 

(nm) 

H’ 

(GPa) 

Change 

H0 (%) 

As-cast 3.1 6.4 - 

9 MeV Ni3+ 25 oC 15.2 5.8 -9.4 

9 MeV Ni3+ 290 oC 11.2 6.2 -3.1 

9 MeV Ni3+ 360 oC 19.2 6.2 -3.1 
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Figure 4-22 H2 vs. 1/h for BAM-11 BMG in the as-cast and irradiated (9 MeV Ni3+, 10 dpa at 

different temperatures of 25-360 oC) samples for depths of (a) 100-2500 nm, (b) the unirradiated 

region (450 nm-2500 nm), and (c) the ion irradiated region (150-450 nm). 
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Figure 4-23 H vs. 1/h0.5 for BAM-11 BMG in the as-cast and irradiated (9 MeV Ni3+, 10 dpa at 

temperatures of 25-360 oC) samples for depths of (a) 100-2500 nm, (b) the unirradiated region 

(450 nm-2500 nm), and (c) the ion irradiated region (100-450 nm). 
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Table 4-5 summarizes the derived hardness parameters, as assessed from the Lam and 

Chong model, for indentation depths representative of the unirradiated region (500 to ~2500 nm).  

For the unirradiated region, the extrapolated values of the bulk hardness for the as-cast and 

irradiated samples up to 290 oC are ~4.2-4.6 GPa.  Comparing the results for the unirradiated and 

irradiated regions for the specimen irradiated at 360 oC, H0 was 6.2 and 6.5 GPa, respectively.  

Apparently, there is no significant difference in H0 for either region of the specimen irradiated at 

the highest temperature, where partial recrystallization occurred throughout the sample during the 

prolonged exposure.  For all conditions, as listed in Table 4-5, the characteristic depth values, i.e. 

h*, were one to two orders of magnitude greater than those from the near-surface (ion irradiated) 

region, as listed in Table 4-4.  However, for 360 oC (partially crystallized), both the irradiated and 

unirradiated regions have similar h* values.   

The nanoindentation hardness as a function of indenter depth for the as-cast and 9 MeV 

Ni3+ ion irradiated (midrange dose of 0.5 dpa) BAM-11 BMG is presented in figures 4-24(a)-(c).  

Here, the specimens were irradiated at temperatures ranging from 25 to 360 oC.  Similar to the 

previous results, the hardness data below a depth of ~100 nm from the specimen surface was 

discarded due to large data scatter associated with surface roughness.  The black line in figure 4-

24(a) separates the unirradiated and irradiated regimes in the sample.  For depths below 400 nm,  

Table 4-5 Comparison of the results for the parameters h*, H0, and the percent change in H0 [Eq. 

(3-5)] for the as-cast and the 9 MeV Ni3+ irradiated BAM-11 BMG for the unirradiated region (500 

to ~2500 nm).  

 

 

Condition 
h* 

(nm) 

H0 

(GPa) 

Change 

H0 (%) 

As-cast 210 4.2 - 

9 MeV Ni3+ 25 oC 130 4.5 7.1 

9 MeV Ni3+ 290 oC 130 4.6 9.5 

9 MeV Ni3+ 360 oC 18 6.5 55.8 
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the alloy exhibited an increase in hardening following ion bombardment to a dose of 0.5 dpa at 25-

360 oC.    

As compared to the as-cast condition, there was a slight increase in the hardness although 

it was within one standard deviation.  On the other hand, there was a more pronounced increase in 

the hardness for the specimens irradiated at 290 and 360 oC.  Moreover, the specimens irradiated 

at the above temperatures continued to display significantly higher hardness values as compared 

to the as-cast condition for depths beyond the irradiation region. Unexpectedly, the specimen 

irradiated at room temperature displayed significantly lower hardness values, beyond three 

standard deviations as compared to the as-cast state.   

Figures 4-25(a)-(c) shows the nanoindentation Young’s modulus as a function of indenter 

depth for the as cast and 9 MeV Ni3+ irradiated BAM-11 BMG to a midrange dose of 0.5 dpa (25 

to 360 oC).  As with the hardness data, the data below a depth of ~100 nm from the sample surface 

was discarded due to large data scatter associated with surface roughness.  A vertical line was 

inserted into the figure to separate the irradiated and unirradiated regions in the sample.  The 

modulus decreased with respect to the indentation depth for the as-cast and irradiation conditions.   

For indentation depths below 200 nm, the modulus was significantly greater for the 

irradiated specimens compared to the as-cast condition.  Moreover, the modulus for the specimens 

irradiated at 290 oC and 360 oC was slightly greater than the as-cast condition in the entire 

indentation region.  For indent depths greater than 1,000 nm, the measured modulus of the 

specimen irradiated at room temperature was significantly lower than the as-cast condition, which 

is similar to the low hardness behavior at deep depths for this irradiation condition [figure 4-24(c)].  
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Figure 4-24 Nanoindentation hardness vs. depth for BAM-11 BMG as-cast and irradiated samples 

(9 MeV Ni3+ to 0.5 dpa) at different temperatures for (a) depths from 100 to 2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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Figure 4-25 Nanoindentation Young’s modulus vs. depth for BAM-11 BMG as-cast and irradiated 

samples (9 MeV Ni3+ to 0.5 dpa) at temperatures ranging from 25 to 360 oC for (a) depths of 100-

2500 nm, (b) the irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 

 

 

 

  

(b) (c) 

Irradiated Region 

 
 

Unirradiated 

Region 

 

(a) 



216 

 

Figures 4-26(a)-(c) presents the hardness values for the BAM-11 BMG irradiated by 5.5 

MeV C+ to a midrange dose of 0.5 dpa at temperatures ranging from 25 - 360 oC.  The sample 

irradiated at 290 oC exhibited significantly higher values as compared to any of the other conditions 

in both the unirradiated and irradiated regions of the material.  The grazing incidence XRD results, 

as shown in in figure 4-14(b), indicate that the high hardness is associated with partial 

crystallization of this specimen. On the other hand, the sample irradiated at room temperature 

exhibited values that were below the hardness values of the as-cast condition for depths between 

100 - 2,200 nm.  As for the specimen irradiated at 360 oC, it displayed similar hardness values as 

the as-cast condition, although the values were significantly lower for depths beyond ~1,000 nm. 

The Young’s modulus values for the BAM-11 BMG samples that were irradiated by 5.5 

MeV C+ ions are presented in figures 4-27(a)-(c).  In the irradiated region, the measured modulus 

was similar to the as-cast values.  Some anomalous behavior was observed for the BAM-11 BMG 

specimen irradiated at room temperature, where the modulus values were significantly greater as 

compared to the as-cast sample for indentation depths greater than ~750 nm.  As compared to the 

as-cast state, the modulus at large depths (corresponding to the unirradiated substrate material) 

was markedly greater for the specimens irradiated at the higher temperature.   

 

4.2.1.2.2 Cu BMG  

The depth dependent nanoindentation hardness for both the as-cast and the 9 MeV Ni3+ ion 

irradiated Cu BMG (midrange dose of 10 dpa) samples is presented in figure 4-28(a).  Similar to 

the BAM-11 BMG, there was a noticeable indentation size effect, indicated by a decrease in the 

hardness values with respect to the indentation depth.  Similar to the previous nanoindentation 

results for the BAM-11 BMG, the data below 100 nm was omitted, and a line was inserted at 450  
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Figure 4-26 Nanoindentation hardness vs. depth for BAM-11 BMG as-cast and irradiated samples 

(5.5 MeV C+, 0.5 dpa) at different temperatures (a) depths ranging from 100-2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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Figure 4-27 Nanoindentation Young’s modulus vs. depth for BAM-11 BMG as-cast and irradiated 

samples (5.5 MeV C+, 0.5 dpa) at different temperatures for (a) depths of 100 to 2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 

 

 

 

  

(b) (c) 

Irradiated Region 

 
 

Unirradiated 

Region 

 

(a) 



219 

 

nm to demarcate between the irradiated and unirradiated regimes.  In the Cu BMG, the hardness 

values which correspond to a midrange dose of 10 dpa and the projected ion range correspond to 

distances of 1.2 and 2.8 μm beneath the surface.  These depth values correspond to depths of 200 

and 450 nm since the nanoindenter tip is sensitive to substrate regions that are 5-10 times beyond 

its penetration depth [98, 424]. The hardness values at these depths are displayed in Table 4-6.  

Figure 4-28(b) displays the depth dependent hardness data for the irradiated region, which 

corresponds to depths of 100-450 nm beneath the surface.  In the irradiated region, the hardness 

for the room temperature condition did not noticeably increase as compared to the values for the 

as-cast condition.    The hardness values for the unirradiated region exhibited a large increase for 

the sample irradiated at 360 oC due to partial crystallization (in both the irradiated and unirradiated 

regions).   

 To compare the effects of annealing and irradiation damage on the nanoindentation 

properties for the sample that partially crystallized during irradiation at 360 oC, the 

nanoindentation hardness was measured in the irradiated and unirradiated regions of the irradiated 

surface.  The unirradiated region of the sample corresponds to the portion of the surface that was 

shielded by the front plate during irradiation.  As can be observed from figure 4-29, which 

compares the nanoindentation hardness of the two sections, the hardness values were quite similar 

for all indentation depths. 

Table 4-6 Summary of nanoindentation results on as-cast and irradiated Cu60Zr20Hf10Ti10  BMG 

samples (9 MeV Ni3+, midrange dose of 10 dpa) at depths of 200 and 450 nm. 

 

 Depth (nm) As-cast 25 oC 290 oC 360 oC 

Average 

Hardness 

(GPa) 

200 8.4 ± 0.3 8.4 ± 0.2 8.4 ± 0.3 10.6 ± 0.4 

450 7.6 ± 0.1 7.6 ± 0.1 7.4 ± 0.2 9.5 ± 0.2 
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Figure 4-28 Nanoindentation hardness vs. indentation depth for Cu60Zr20Hf10Ti10 BMG as-cast and 

irradiated samples (9 MeV Ni3+ to 10 dpa) at different (a) depths ranging from 100-2500 nm and 

(b) the irradiated region (100-450 nm). 
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Figure 4-29 A comparison of the nanoindentation hardness in both the irradiated region and the 

unirradiated substrate (polished front surface shielded from the ion beam) in the Cu60Zr20Hf10Ti10 

BMG alloy after irradiation by 9 MeV Ni3+ to 10 dpa at 360 oC. 
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 Figures 4-30(a)-(c) display the ISE hardness data for the Lam and Chong model, as applied 

to the as-cast and irradiated (9 MeV Ni3+) Cu BMG specimens.  Similar to figure 4-23(a), a vertical 

line was inserted at ~1.5 μm-0.5 in figure 4-30(a) to separate the nonirradiation and irradiation-

dominant regimes.  As can be observed, the fitted values based on this model for the as-cast and 

the irradiated specimens did not follow the predicted linear behavior versus 1/h0.5 throughout the 

entire indentation region, indicating that the quantitative values derived from this analysis are 

somewhat unreliable.  The corresponding fitting parameters for the irradiated region (100 – 450 

nm) are presented in Table 4-7.  As can be seen in the table, the fitted H0 hardness values did not 

vary significantly for the unirradiated (as-cast) and irradiated samples at 25 and 290 oC. For the 

near-surface irradiated region, the extrapolated bulk hardness was ~7.1 to 7.6 GPa for the as-cast 

materials and for the samples irradiated up to 290 oC. The detailed fitted hardness values imply a 

slight radiation-induced softening. The fitted reduction in hardness was most pronounced for the 

specimen irradiated at 290 oC (-6.6%), while the sample bombarded at 25 oC softened by about 

1.3%.  However, H0 was 9.3 GPa for the specimen irradiated at 360 oC, which corresponded to an 

increase in the hardness of 20 % as compared to the as-cast state due to the partial crystallization 

of the material. 

 The hardness parameters, as derived from the Lam and Chong model for indentation 

depths 500 - ~2500 nm (unirradiated region), are presented in Table 4-8.  With regards to the 

extrapolated bulk hardness, H0, the values ranged from ~4.7 to 5.0 GPa for the as-cast and 

irradiated samples (25 and 290 oC).  Comparing the results for the irradiated and unirradiated 

regions for the specimen irradiated at 360 oC, H0 was 9.3 and 6.0 GPa, respectively.  This 

difference in the hardness was due to non-linearity of the data, which produced different 

extrapolation values.  For all conditions, as listed in Table 4-7, the characteristic depth values, i.e.  
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Figure 4-30 H vs. 1/h0.5 for as-cast vs. irradiated Cu60Zr20Hf10Ti10 BMG (9 MeV Ni3+, 10 dpa) at 

different temperatures for (a) depths ranging from 100-2500 nm, (b) the unirradiated region (450 

nm-2500 nm), and (c) the irradiated region (100-450 nm).  

 

 

 

  

 

 



224 

 

Table 4-7 Comparison of the results for the parameters h, H0, and the percent change in H0 [Eq. 

(3-5)] for the as-cast and the 9 MeV Ni3+ irradiated Cu60Zr20Hf10Ti10 BMG for the irradiated region 

(100 - 450 nm). 

Condition 
h* 

(nm) 

H0 

(GPa) 

Change 

H0 (%) 

As-cast 33.8 7.6 - 

9 MeV Ni3+ 25 oC 38.3 7.5 -1.3 

9 MeV Ni3+ 290 oC 63.2 7.1 -6.6 

9 MeV Ni3+ 360 oC 47.4 9.3 22 

 

 

h*, were one order of magnitude greater than those from the near-surface (ion irradiated) region, 

as listed in Table 4-6.   

Figure 4-31(a) presents the nanoindentation hardness as a function of indenter depth for 

the as cast and 9 MeV Ni3+ irradiated (25-360 oC) Cu BMG.  For depths in the irradiated region, 

the specimen irradiated at 25 oC displayed greater hardening as compared to the specimen 

irradiated at 290 oC.  Moreover, the samples irradiated at room temperature and 360 oC exhibited 

significantly greater hardness values as compared to the as-cast state.  For depths beyond 450 nm, 

which correspond to the unirradiated region of the sample, the specimens irradiated at 290 oC and 

360 oC exhibited significantly higher values as compared to the as-cast condition. However, the 

sample irradiated at room temperature had similar hardness values as compared to the as-cast state, 

as shown in figure 4-31(c). 

 

Figures 4-32(a)-(c) shows the nanoindentation Young’s modulus as a function of indenter 

depth for the as cast and 9 MeV Ni3+ irradiated (0.5 dpa, 25-360 oC) Cu BMG.  The Young’s 

modulus behavior was similar for the BAM-11 BMG irradiated at the same set of conditions, 

except that the modulus was significantly higher for the irradiated, as compared to the as-cast  
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Table 4-8 Comparison of the results for the parameters h*, H0, and the percent change in H0 [Eq. 

(3-5)] for the as-cast and the 9 MeV Ni3+ irradiated Cu60Zr20Hf10Ti10 BMG for the unirradiated 

region (500 - ~2500 nm). 

Condition h* (nm) 
H0 

(GPa) 

Change 

H0 (%) 

As-cast 7.2 × 102 5.0 - 

9 MeV Ni3+ 25 oC 3.7 × 102 5.8 16.0 

9 MeV Ni3+ 290 oC 7.8 × 102 4.7 -6.0 

9 MeV Ni3+ 360 oC 8.0 × 102 6.0 20 
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Figure 4-31 Nanoindentation hardness vs. depth for Cu BMG as-cast and irradiated samples (9 

MeV Ni3+, 0.5 dpa) at different temperatures for (a) depths ranging from 100-2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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Figure 4-32 Nanoindentation Young’s modulus vs. depth for Cu BMG as-cast and irradiated 

samples (9 MeV Ni3+, 0.5 dpa) at 25-360 oC for (a) depths ranging from 100-2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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sample [see figures 4-25(a)-(c)].  The modulus decreased with respect to the indentation depth for 

all the irradiation conditions.  For depths below 200 nm, the modulus was significantly greater for 

the irradiated specimens, as compared to the as-cast condition.  Furthermore, the modulus was 

significantly greater for the irradiated specimens in the entire indentation region.   

Figures 4-33(a)-(c) presents the hardness values for the Cu BMG irradiated by 5.5 MeV C+ 

to a midrange dose of 0.5 dpa at temperatures ranging from 25 – 360 oC.  In the irradiated region, 

the specimens irradiated at room temperature and 290 oC exhibited hardness values that were lower 

than those for the as-cast state.  On the other hand, the hardness values were higher for the sample 

that had been irradiated at 360 oC.  In the unirradiated region, the specimen irradiated at 290 oC 

displayed values that were greater than those for the unirradiated sample for depths beyond 1,100 

nm. 

The Young’s modulus values for the Cu BMG specimens that were irradiated by 5.5 MeV 

C+, is presented in figure 4-34(a)-(c).  As for the BAM-11 BMG [see figures 4-27(a)-(c)], there 

was some anomalous behavior for the specimen irradiated at room temperature, where the values 

were significantly greater for indentation depths greater than ~750 nm.  Furthermore, the modulus 

was markedly greater for the samples irradiated at the higher temperature, as compared to the as-

cast state.   

 

4.2.2 Neutron Irradiation Experiments  

There are no known prior studies on the effects of neutron irradiation on Zr based BMGs.  

Furthermore, there are no studies which have compared the effects of irradiation damage and heat 

treatment on the nanoscale mechanical properties of amorphous alloys.  The current investigation 

examines the effects of neutron irradiation and annealing on the nanoindentation hardness and  
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Figure 4-33 Nanoindentation hardness vs. depth for Cu BMG as-cast and irradiated samples (5.5 

MeV C+, 0.5 dpa) at different temperatures for (a) depths ranging from 100-2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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Figure 4-34 Nanoindentation Young’s modulus vs. depth for Cu BMG as-cast and irradiated 

samples (5.5 MeV C+, 0.5 dpa) at different temperatures for (a) depths of 100-2500 nm, (b) the 

irradiated region (100-450 nm), and the (c) unirradiated region (450-2500 nm). 
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short-range ordering of the BAM-11 BMG.  Additionally, this work expands upon previous studies 

that examined the competing effects of irradiation and annealing on the properties of metallic 

glasses.  Importantly, the results, as presented below, is intended to elucidate the effects of 

annealing and irradiation displacement damage on the behavior of these complex alloy systems. 

 

4.2.2.1 Neutron Diffraction Characterization  

Figures 4-35(a)-(b) present the PDF and structure function for the annealed and 0.1 dpa 

neutron irradiated BAM-11 BMG samples.  The inset highlights the upper portion of the first peak 

for both figures.  The fluctuating pattern of the curves signifies that the specimens did not 

crystallize during annealing or neutron irradiation. Importantly, the changes in the shape of the 

peaks indicates that irradiation and thermal effects altered the microstructure of the metallic glass.  

This effect can be seen in the curve representing the non-irradiated sample that was annealed at 

300 oC for two weeks, which had the highest and most narrow peak as compared to the other 

conditions.  This was opposed to the specimen that was irradiated to 0.1 dpa without post-

annealing, where the associated curve exhibited an opposite trend.  On the other hand, the 

specimens that were annealed after being neutron irradiated exhibited peak behavior that was 

intermediate between that of the as-received and the irradiated-only conditions.  

 

4.2.2.2 Transmission Electron Microscopy Characterization  

 Figure 4-36(a)-(e) displays the TEM BF and diffraction patterns of the as-cast, neutron 

irradiated (0.1 dpa), and annealed specimens.  As can be observed, there were no significant 

changes in the microstructures of the specimens and the amorphous nature of the specimens.  

Furthermore, the high-resolution imaging did not reveal the presence of any nanocrystallites.  All  
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Figure 4-35 The (a) structure function S(Q) and (b) pair distribution function g(r) for the as-cast, 

neutron irradiated (0.1 dpa), and annealed BAM-11 BMG. 
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Figure 4-36 TEM SAD and BF images for the (a) as-cast, (b) annealed 300 oC (2 weeks), (c) 

neutron irradiated (0.1 dpa), (d) neutron irradiated (0.1 dpa) and post-annealed 325 oC (72 hours), 

and (e) neutron irradiated (0.1 dpa) and post-annealed 300 oC (two weeks). 
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of the specimens appeared similarly feature-free and did not show any adverse microstructural 

effects upon radiation or thermal annealing.  

 

4.2.2.3 Density Measurements  

Table 4-9 displays the results of the immersion density measurements.  As can be observed, 

the density of the irradiated-only specimen was ~ 2 % below the as-cast density.  In contrast, the 

density was highest for the unirradiated as-cast sample annealed at 300oC for two weeks, with a 

value ~ 1% higher than that of the as-cast density.  Furthermore, thermal annealing of the neutron 

irradiated specimens restored the density to within ~0.5% of the as-cast density.   

Figures 4-37(a)-(c) shows the plot of the immersion density vs. the first three CNs.  As can 

be observed, the macroscopic density was linearly correlated with the coordination numbers.  In 

addition, the degree of correlation decreased as the coordination number increased, where the R2 

values were 0.98, 0.97, and 0.81 for the first, second, and third CNs, respectively.  The above result 

signifies that for smaller r, the density is highly correlated to the number of first and second nearest-

neighbor atoms surrounding a central atom. 

 

Table 4-9 Immersion density measurements for the as-cast, neutron irradiated, and annealed BAM-

11 BMG. 

Sample Condition Density (g/cm3) 

As-cast 6.67 ± 0.02 

Annealed 300 
o
C 2 weeks 6.73 ± 0.02 

0.1 dpa 6.53 ± 0.02 

0.1 dpa 300 
o
C 2 weeks post-anneal 6.64 ± 0.02 

0.1 dpa 325 
o
C 72 hours post-anneal 6.63 ± 0.01 
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To help elucidate how the amorphous structure of the alloy is affected by neutron 

irradiation and annealing, the first three coordination numbers (CNs) were estimated from the pair 

distribution function curves (PDF) [figure 4-35(a)] using Eq. (4-1): 

 

   
𝐶.𝑁.𝑖= 4𝜋𝜌∫ 𝑟2𝑔(𝑟)𝑑𝑟

𝑟𝑖

𝑟𝑖−1

 

  

where ρ = 5.51 × 1022 atoms/cm3 is the calculated number density of the as-cast BAM-11.  Table 

4-10 presents, for each experimental condition, the values for the first 3 CNs.  The trend exhibited 

by the CNs is similar to that of the diffraction results.  Namely, the neutron irradiation without 

heat treatment led to a decrease in all three numbers as compared to the as-received condition 

while annealing without irradiation increased the values. Moreover, the coordination numbers for 

the samples heat treated after irradiation had larger values as compared to the irradiated only 

sample.  Finally, the CNs for the sample annealed at 300 oC for two weeks after irradiation were 

larger than the sample post-annealed at 325 oC for 72 hours. 

 

 

 

Table 4-10 First three coordination numbers for the irradiated and annealed BAM-11 BMG. 

Sample Condition 1st C. N. 2nd C. N. 3rd C. N. 

As-cast 12.86 49.89 92.26 

Annealed 300 oC 2 weeks 13.07 50.46 94.63 

0.1 dpa 12.24 47.97 89.57 

0.1 dpa 300 oC 2 weeks post-anneal 12.67 49.23 91.17 

0.1 dpa 325 oC 72 hours post-anneal 12.64 49.68 91.64 

   (4-1) 
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Figure 4-37 The immersion density vs. (a) first coordination number, (b) Second coordination, and 

the (c) Third coordination number. 
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4.2.2.4 Mechanical Testing  

 

4.2.2.4.1 Nanoindentation  

Figures 4-38 and 4-39 present the nanoindentation hardness and Young’s modulus vs. 

depth results for the five as-cast, neutron irradiated and thermal annealed experimental conditions 

discussed above (see Table 4-9).  The measured hardness and decreases with respect to 

nanoindentation depth for all conditions (indentation size effect).  The Young’s modulus also 

exhibited a similar decreasing trend with respect to the indentation depth.  Importantly, neutron 

irradiation to a dose of 0.1 dpa was found to significantly decrease the hardness and modulus as 

compared to the as-received state.  Similar to the neutron diffraction and immersion density results, 

annealing to 300 oC for two weeks had the opposite effect of inducing an increased hardness and 

modulus, as compared to the as-cast condition.  Moreover, heating after irradiation recovered some 

of the softening induced by irradiation.  Interestingly, post-irradiation annealing at 300 oC for two 

weeks produced a similar decrease in the hardness as compared to the sample that was annealed at 

325 oC for 72 hours following irradiation.   

 

 

4.2.2.4.2 3-Point Bend Testing 

The flexural stress-displacement (deflection) curves for the 3-point bend testing 

experiments, are shown in figure 4-40 for the neutron irradiated and annealed BAM-11.  Except 

for the as-cast sample, the specimens fractured before they reached their yielding point.  The data 

for the unirradiated annealed sample (300 oC, 2 weeks) is not displayed since it fractured after 

approximately 10 N (0.4 MPa) was applied during the test, and therefore did not show any 

appreciable deformation during the test.  Furthermore, the slope of the curve, which is known as 

the flexural modulus, was found to be the lowest for the neutron irradiated sample.  On the other  
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Figure 4-38 The nanoindentation hardness for indentation depth for the neutron irradiated and 

annealed BAM-11 BMG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-39 The nanoindentation Young’s modulus for indentation depth for the neutron irradiated 

and annealed BAM-11 BMG. 
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Figure 4-40 Flexural stress–displacement (deflection) curve for the as-cast, neutron irradiated, and 

annealed BAM-11 BMG. 

 

hand, annealing after irradiation led to gradients that were intermediate between that of the as cast 

and irradiated specimens.  Although these differences can be seen in the graph, they were still 

comparable. 

 

4.2.3 Nonirradiation Thermal Response Experiments  

The goal of these thermal experiments is to investigate the mechanical and microstructural 

response of BMGs to temperatures ranging from ambient to temperatures approaching the melting 

point of the alloy.  This section will cover experiments involving temperature effects on the 

nanoindentation and Vickers hardness, in-situ XRD compression tests, serrated flow analysis, and 

high temperature in situ XRD behavior. 
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4.2.3.1 Thermal Annealing Nanoindentation Experiments  

Figure 4-41 shows the nanoindentation hardness curves for the as-cast and the annealed 

specimens that were heated at temperatures ranging from 150 to 300 oC.  As can be seen, the 

annealed samples exhibited significantly higher hardness values, as compared to the as-cast 

condition, for all indentation depths. Furthermore, the hardness values for the sample heated at 

150 oC for 96 hours and 200 oC for 72 hours were virtually the same.  On the other hand, the 

hardness values exhibited by the specimens heated at 300 oC for 48 hours were greater than any of 

the other conditions.  This substantial increase in the hardness suggests that significant short-range 

atomic rearrangement occurred in the specimen annealed at the highest temperature. 

As can be observed in the figure, a pronounced ISE can be observed in the data, which corresponds 

to rapid decreases in the hardness for small indent depths. Also, this ISE is significantly more 

pronounced in the thermally annealed samples.  The ISE hardness for the Nix-Gao model, with 

regards to the as-cast and unirradiated specimens that were annealed at temperatures ranging from 

150 oC to 300 oC, is plotted in figure 4-42.  Similar to the ion irradiated and as-cast results for the 

ion irradiation experiments, the data did not behave in a linear fashion with respect to the 

independent variable, h-1.  In addition, the extrapolated hardness values did not change much for 

the unirradiated specimens annealed  at 150 oC for 96 hours and 200 oC for 72 hours, as compared 

to the as-cast condition.  However, annealing at 300 oC led to an apparent increase in the 

extrapolated hardness.   

A comparison of the extrapolated nanoindentation bulk hardness values that were obtained 

from applying the Nix-Gao relation with the bulk Vickers hardness data for the as-cast and the 

annealed specimens for temperatures ranging from 150 to 300 oC, are displayed in Table 4-10.  For 

the data obtained using Nix-Gao, the hardness was approximately the same as compared to the as- 
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Figure 4-41 Nanoindentation hardness vs. depth for BAM-11 BMG as-cast and annealed samples 

at different temperatures ranging from 150 oC to 300 oC and respective heating times of 96, 72, 

and 48 hours for depths ranging from 100-2500 nm. 
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cast sample for the specimens heated at 150 and 200 oC.   However, the extrapolated hardness was 

slightly higher for the sample annealed at 300 oC, as compared to the as-cast state.  A similar trend 

was observed in the data obtained using the Vickers hardness technique.  It should also be 

mentioned that for every condition, the bulk hardness values from the Nix-Gao extrapolation 

model were 11-17% higher than the values obtained from the Vicker’s hardness tests.  However, 

in contrast to the nanoindentation results, where the hardness was higher for all the annealed 

samples, the Vickers hardness was lower for the samples annealed at 150 oC and 200 oC, as 

compared to the as-cast condition.     

The ISE hardness values, as obtained from the Lam and Chong model, are presented in 

figure 4-43 for the as-cast and annealed specimens (150-300 oC).  Interestingly, the extrapolated 

hardness values for the as-cast sample was higher, as compared to the annealed samples, when 

fitting the full set of nanoindentation data for the 100-2,500 nm depths. Therefore, it appears that 

the extrapolated hardness values obtained by fitting the Lam and Chong model to the day may not 

be valid since these values are not in agreement with the trend observed in figure 4-42 for the depth 

dependent hardness.   

The extrapolated nanoindentation bulk and Vickers hardness data, as obtained from 

applying the Lam and Chong model, are listed in Table 4-11 for the as-cast and unirradiated 

annealed specimens for temperatures ranging from 150 oC to 300 oC  Similar to Table 4-10, both 

the extrapolated nanoindentation and Vickers hardness values were comparable for the as-cast, 

150, and 200 oC annealing conditions.  Regarding the Vickers data, the hardness was slightly higher 

for the sample annealed at 300 oC as compared to the as-cast state.  Lastly, the bulk hardness values 

evaluated using the Lam and Chong extrapolation model were lower by 2-17% as compared to the 

values evaluated from the Vickers hardness tests, for every condition.   
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Figure 4-42 H2 vs. 1/h for BAM-11 BMG, using the Nix-Gao model, in the as-cast vs. annealed 

samples at temperatures of 150 oC, 200 oC, and 300 oC (respective heating times of 96, 72, and 48 

hours).  Here the data corresponded to depths ranging from 100 - 2500 nm. 

 

 

 

 

 

 

Table 4-11 Comparison of the extrapolated nanoindentation hardness H0 (Nix-Gao model) and 

Vickers hardness (1,000 gf) results for the as-cast and annealed samples. 

Condition 
H0   

(GPa) 

Vickers 

(GPa) 

Percent Diff.  

(%) 

As-cast 5.7 5.1 ± 0.01 11.1 

150 oC 96 hours 5.8 4.9 ± 0.03 16.8 

200 oC 72 hours 5.6 5.0 ± 0.07 11.3 

300 oC 48 hours 6.2 5.3 ± 0.05 15.7 
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Figure 4-43 H vs. 1/h for BAM-11 BMG, using the Nix-Gao model, in the as-cast vs. annealed 

samples at temperatures of 150 oC, 200 oC, and 300 oC (respective heating times of 96, 72, and 48 

hours).  Here the data corresponded to depths ranging from 100-2500 nm. 

 

 

 

 

Table 4-12 Comparison of extrapolated nanoindentation hardness, H0’ (Lam and Chong model) 

and Vickers hardness (1,000 gf) results for the as-cast and annealed samples. 

Condition 
H0

’
   

(GPa) 

Vickers 

(GPa) 

Percent 

Diff. (%) 

As-cast 5.0 5.1 ± 0.01 2.0 

150 oC 96 hours 4.4 4.9 ± 0.03 10.8 

200 oC 72 hours 4.2 5.0 ± 0.07 17.4 

300 oC 48 hours 4.6 5.3 ± 0.05 14.1 
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4.2.3.2 In Situ X-Ray Diffraction Crystallization Kinetic Experiments  

 

4.2.3.2.1 BAM-11 BMG 

Figure 4-44 displays the HTXRD results for the BAM-11 BMG exposed to a heating rate 

of 1 oC/min. that was heated until a maximum temperature of 760 oC.  The graph shows a clear 

evolution of phase behavior as a function of furnace temperature. An amorphous character is 

initially observed and retained until ~365 oC, at which point rapid formation of the tetragonal Zr2Ni 

phase, at the expense of the characteristic amorphous hump is observed.  Phase stability is observed 

through ~440 oC at which point tetragonal Cu-Ti-Zr and ZrO2 is observed.  At 505 oC, another 

transition occurs in which the crystalline phases Cubic Ti-Ni-Cu, hexagonal Ni and ZrO2 were 

observed.   This phase transition occurs in conjunction with a shift and decrease in magnitude of 

the Zr2Ni crystal structure characteristic peaks.  At approximately 610 oC, another phase transition 

occurs in which the phases TiO, Hexagonal Ni, CuO, and ZrO2 were observed.  This phase 

equilibria remains upon cooling showing a sharp high 2Θ shift in peak position correlated with 

negative thermal contraction.  

Figure 4-45 shows the isothermal masterplot and Avrami fit of the formation of tetragonal 

Zr2Ni (ICDD #04-004-3205 [425]).  The nine lines in the figure represent the models for the solid-

state kinetic transformations, as discussed in [239].  These transformations include different 

mechanisms such as phase boundary reactions and reactions and 3D diffusion.  During the initial 

stages of the transformation, i.e. α < 0.5, the data adheres to line labeled A2 in the graph, which 

indicates that the rate of the ZrO2 formation obeys a Johnson-Mehl-Avrami-Kolmogorov Process.  

Once α becomes greater than 0.5, the data follows the line labeled D4, which suggests that the 

crystallization process follows a Ginstein-Brounshtin kinetic mechanism.  This means that  
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Figure 4-44 Isochronal HTXRD characterization of the BAM-11 BMG under a chamber pressure 

of ~10-5 torr and heating rate of 1 oC/min. Color is indicative of scan intensity, the independent 

variable is °2Θ, and the y-axis is the sample temperature. 

 

initially, the crystallites are randomly nucleating and growing isotropically although after there is 

enough growth, the particles grow via a 3D diffusion growth mechanism. 

Figure 4-46 presents the SEM/EDS characterization of the same BAM-11 BMG after the 

surface layer was removed.  Here, the different elements comprising the matrix are represented by 

their respective color.  The heterogenous nature of the elemental suggests that crystalline phase 

formation occurred during heating.  This effect of segregation is especially evident for the Ni and 

Zr, which indicates that these elements may have formed phases in the matrix. 

Figure 4-47 shows the Rietveld summary for the XRD analysis of the bulk BAM-11 BMG 

sample for scattering angles ranging from 25 to 90 o.  As can be seen, there are numerous peaks 

throughout the diffracted region, in which the taller peaks exist at angles varying from 34 – 42 o,  
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Figure 4-45 Isothermal masterplot and Avrami fit of the formation of tetragonal Zr2Ni (ICDD #04-

004-3205 [425]). 

 

 

Figure 4-46 Bulk SEM and EDS characterization of the BAM-11 BMG that was heated to a 

maximum temperature of 760 oC using a ramp rate of 1 oC/min.  
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Figure 4-47 Rietveld summary and quantitative phase identification of BAM-11 BMG bulk 

crystalline phases.  Three unique crystalline phases are identified. 

 

which correspond to the amorphous peak in the as-received state.  The inset in the graph 

correspond to the angles where the refinement found three unique crystal structures that had 

formed in the matrix during annealing.  These phases consist of cubic Fd3̅m CuZr2, (ICDD #04-

004-2397), Tetragonal I4/mmm CuZr2, and Hexagonal P63/mmc NiTiZr (ICDD #04-005-5411). 

  The nanoindentation hardness and Young’s modulus, as a function of indenter depth for 

the as-cast and partially crystallized BAM-11 BMG specimens, are displayed in figures 4-48(a)-

(b).  The crystallized specimen was heated to a maximum temperature of 760 oC.  As can be seen, 

there was a pronounced indentation size effect exhibited by both specimens where the measured 

hardness increases rapidly at small indent depths. Furthermore, the ISE is most pronounced in the 

crystallized specimen due to a more pronounced decrease in the hardness at depths below 700 nm.   
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Figure 4-48 The (a) nanoindentation hardness and (b) Young’s modulus of the as-cast vs. the 

crystallized BAM-11 BMG as a function of indenter depth. 

 

Moreover, the hardness was higher at all indent depths for the crystallized sample, as 

compared to the as-received specimen.  In terms of the modulus, it decreased with respect to the 

indenter depth.  Like with the hardness, the partially crystallized specimen exhibited values 

significantly higher than the as-cast sample at all indentation depths.   

 

4.2.3.2.2 Cu BMG 

Figure 4-49 presents the HTXRD evolution for the Cu BMG that was heated to maximum 

temperature of 800 oC using a ramp rate of 1oC/min.  Similar to the results for the BAM-11 BMG, 

the nine lines in the figure represent the models for the solid-state kinetic transformations, which 

include different mechanisms such as phase boundary reactions and reactions and 3D diffusion.  

There was an evolution of phase behavior as a function of furnace temperature.  Initially, an 

amorphous character is observed and retained until ~360 oC, at which point there is the rapid 

 

 

 

(a) (b) 
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formation of cubic Cu Fm3̅m (ICDD #04-001-3342) and cubic Zr (ICDD # 01-079-9867) Im3̅m 

phase structures, at the expense of the characteristic amorphous hump. Phase stability is observed 

through ~500 oC at which point the appearance of some unknown oxide phase is observed in 

conjunction with a shift and decrease of the cubic Fm3̅m and Im3̅m characteristic peaks.  This 

phase equilibria remains upon cooling showing a sharp high 2Θ shift in peak position correlated 

with thermal contraction. 

Figure 4-50, which presents the isothermal master plot, indicates that both the nucleation 

rate and growth rate follow the basic JMAK model.  Figures 4-51(a)-(b) and 4-52(a)-(b) presents 

the kinetic characterization of the formation of cubic Im3̅m and Fm3̅m phases for the isothermal 

heating of the Cu BMG at 345 oC.  The linear fit of figures 4-51(b) and 4-52(b) demonstrates a 

clear Avrami type behavior where there is an increasing and decreasing rate of formation.    Using 

this model and fitting the data yields an n value of 2.40 and a rate constant, k, of 6.4 × 10-10 s-1 for 

the Im3̅m phase, while for the for the Fm3̅m phase n was 2.31 and k was 1.4 × 10-9 s-1. 

Microstructural characterization, as performed by the SEM and EDS, revealed the 

precipitation of spherical particles on the surface of the bulk samples, as shown in figure 4-53. 

Elemental characterization revealed that these precipitates are TiO2 (space group P21/c ICDD # 

04-012-6345 [426]).  According to the EDS color map, the grounded surface most likely did not 

contain any oxide phases but rather Cu and Zr crystalline phases instead.  

The nanoindentation hardness and Young’s modulus, as a function of indenter depth for 

the as-cast and partially crystallized Cu BMG specimens, are displayed in figures 4-54 (a)-(b).  

The crystallized specimen was heated to a maximum temperature of 760 oC.  As can be observed 

for both the as-cast and partially crystallized conditions, a pronounced indentation size effect is  
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Figure 4-49 Isochronal HTXRD characterization of Cu60Zr20Hf10Ti10 BMG under high vacuum. 

Color is indicative of scan intensity, the independent variable is °2Θ, and the y-axis corresponds 

to the chamber temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-50 Isothermal masterplot (345 oC) and Avrami fit of the formation of cubic Fm3̅m and 

cubic Im3̅m for the Cu BMG specimen. 

 

 



252 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-51 The Avrami fit for the isothermal curves (345 oC) that correspond to the cubic Im3̅m 

phase with coefficients of k = 6.4 × 10-10 s-1, n = 2.40. 
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Figure 4-52 The Avrami fit for the isothermal curves (345 oC) that correspond to the cubic (a) 

Fm3̅m phase of k = 1.4 × 10-9 s-1, n = 2.31. 
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Figure 4-53 SEM and EDS characterization of the surface and the bulk of the Cu BMG.  

 

 

 

 

 

Figure 4-54 The (a) nanoindentation hardness and (b) Young’s modulus of the as-cast vs. the 

crystallized Cu BMG as a function of indenter depth. 

  

(a) (b) 
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observable where the measured hardness and modulus increase rapidly at small indent depths. 

Furthermore, the ISE is most pronounced in the crystallized specimen due to a more pronounced 

decrease in the hardness at depths below 700 nm.  Moreover, the hardness was higher at all indent 

depths for the crystallized sample, as compared to the as-received specimen.  Similar to the 

hardness behavior, the partially crystallized specimen exhibited elastic modulus values that were 

significantly higher than the as-cast sample at all indentation depths.  It should also be noted that 

these values were approximately twice as large as those for the as-cast state.   

 

4.2.3.3 In Situ X-Ray Diffraction Compression Test Experiments  

Figures 4-55(a)-(d) compares the high temperature XRD results for the isotropic structure 

function and PDF of the uncompressed and compressed (1,500 MPa) BAM-11 BMG (as-cast and 

annealed) specimens.  For both the as-cast and the annealed specimens, it was found that the 

amplitude of the isotropic components of S(Q) and ρ(r) [S0
0(Q) and ρ0

0(r)], exhibited very small 

changes with an increase in the applied stress.  Furthermore, the general shape of the curves did 

not significantly change.  As compared to the as-cast sample, the first peak for the specimen 

annealed at 300 oC (2 weeks) exhibited a greater amplitude, for both the uncompressed and 

compressed (1,500 MPa) conditions.  Figure 4-56 compares the first peak of the isotropic PDF, 

ρ0
0(𝑟), for the as-cast and the annealed specimens (300 oC 2 weeks).  As can be seen in the inset 

of the figure, the annealed sample exhibits a slightly higher and narrower profile as compared to 

the as-cast condition.   

 Figures  4-57(a)-(d) present the elliptical component [256], S2
0(Q) and ρ2

0(r) for the applied 

stresses ranging from 300 MPa to 1,500 MPa.  Here, ρ2
0(r) was calculated using the  
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Figure 4-55 Comparison of the isotropic pair distribution function ρ0
0(r) for the as-cast and the 

annealed (300oC 2 weeks) BAM-11 BMG samples that were uncompressed (control) and 

compressed at 1,500 MPa. 

 

   

 

 

 

 

 

 

 

Figure 4-56 Magnification of the first peak in the isotropic pair distribution function ρ0
0(r) for the 

as-cast and the annealed (300oC 2 weeks) control (uncompressed) BAM-11 BMG samples. 
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Figure 4-57 Comparison of the anisotropic pair distribution function ρ2
0(r), and S2

0(Q) for the as-

cast and the annealed (300 oC 2 weeks) samples compressed at stresses ranging from 300 to 1,500 

MPa. 
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Figure 4-58 The anisotropic PDF, ρ2
0(r),, of the sample subjected to the stress of 1.5 GPa (black 

dashed line), compared to the anisotropic PDF of the sample under affine deformation (red solid 

line) for the (a) as-cast and (b) annealed conditions. 

 

 

(a) 

 

(b) 
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Figure 4-59 The difference 𝜌2,𝑒𝑥𝑝
0 − 𝜌2,𝑎𝑓𝑓

0  for the as-cast and annealed (300 oC, 2 weeks) BAM-

1 BMG. 

 

spherical Bessel transformation from Eq. (3-10).  In contrast to the isotropic components, as shown 

in figures 4-55(a)-(d), the elliptical components show significant changes in which the amplitudes 

were approximately proportional to the stress.    However, similar to the results for the isotropic 

components [see figures 4-55(a)-(d)], the shape was almost independent of the applied stress.    To 

further analyze the anisotropic PDF, the affine anisotropic PDF, ρ2,aff
0 (𝑟), under affine deformation 

is introduced [255].  Figures 4-58(a)-(b) present the fitting of the experimental and affine 

anisotropic PDFs, i.e., ρ2,exp
0 (𝑟) with the ρ2,aff

0 (𝑟), of the as-cast and annealed BAM-11 samples.  

As shown in the inset, the fitting works well for r > 6.5 Å.  On the other hand, there was a  

noticeable difference for lower r, especially at distances associated with the first nearest neighbor. 

Figure 4-59 displays the deviation of the experimental anisotropic PDFs from the affine anisotropic  
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PDF, 𝛥𝜌2
0 = ρ2,exp

0 − ρ2,aff
0  for both conditions.  It was found that the as-received condition 

exhibited larger oscillations in the graph as compared to the annealed specimen in the first shell. 

 

4.2.3.4 Compression Testing  

Figure 4-60(a) displays the room temperature stress vs. time curves for the as-cast and 

annealed (300 oC, 1 week) BAM-11 BMG compressed at a strain rate of 2 × 10-4 s-1.  As can be 

observed, the annealed sample was compressed for 1,060 s before rupturing (generally high 

compressive ductility), whereas the as-cast sample fractured after a significantly shorter period of 

360 s and much lower plastic compressive deformation.  Figures 4-60 (b) and (c) show a close-up 

of the serration behavior during compression.  It is apparent in the figures that the specimen that 

was annealed exhibited more irregular serrated flow as compared to the as-cast specimen.  Figures 

4-61(a)-(c) present similar graphs for as-cast and annealed (300 oC 2 weeks) BAM-11 BMG that 

was compressed at a strain rate of 2 × 10-5 s-1.  From figures 4-61 (b)-(c) it can be observed that 

the serrated flow for the sample that was annealed at 300 oC for 2 weeks exhibits a greater number 

of fluctuations as compared to the as-cast condition. 

 

4.2.3.4.1 Serrated Flow Analysis  

Figure 4-62(a) presents the results of the sample entropy (complexity) modeling and 

analysis for the as-cast BAM-11 BMG compressed in the unconstrained condition at strain rates 

of 2 × 10-4 and 2 × 10-5 s-1.  For both conditions, the sample-entropy curve was found to increase, 

in general, with increasing scale factor.  Beyond a scale factor of 1, the sample entropy for the 

specimen that was compressed at the higher strain rate exhibited sample entropy values that were 

greater as compared to the specimen compressed at the lower strain rate.   
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Figure 4-60 Graphs for the (a) stress vs. strain curves for the BAM-11 BMG compressed at a strain 

rate of 2 × 10-4 s-1 and the close-up of the serration behavior for the (b) as-cast specimen and (c) 

the sample annealed at 300 oC for 1 week. 
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Figure 4-61 Graphs for the (a) stress vs. strain curves for the BAM-11 BMG compressed at a strain 

rate of 2 × 10-5 s-1 and the close-up of the serration behavior for the (b) as-cast specimen and (c) 

the sample annealed at 300 oC for 2 weeks. 
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Figure 4-62 The sample entropy vs. the scale factor for the BAM-11 BMG specimen that was 

compressed in the unconstrained conditions at strain rates of 2 × 10-4 and 2 × 10-5 s-1. 

  

 

 

 

 

 

 

 

Figure 4-63 The sample entropy vs. the scale factor for the as-cast and annealed (300 oC, 1 week) 

BAM-11 BMG specimen that was compressed in the unconstrained conditions at a strain rate of 2 

× 10-4 s-1. 
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Figure 4-64 The sample entropy vs. the scale factor for the as-cast and annealed (300 oC, 2 weeks) 

BAM-11 BMG specimen that was compressed in the unconstrained conditions at a strain rate of 2 

× 10-5 s-1. 

 

Figure 4-63 presents the sample entropy curves for the as-cast and annealed (300 oC, 1 

week) BAM-11 BMG that was compressed in the unconstrained condition at a strain rate of 2 × 

10-4 s-1.  Similar to the results for figure 4-62, the sample entropy increased with increasing scale 

factor.  For the annealed sample, the sample entropy was significantly higher as compared to the 

as-cast specimen for all scale factors.  Figure 4-64 shows the sample entropy curves for the as-cast 

and annealed (300 oC, 2 weeks) BAM-11 BMG that was compressed in the unconstrained 

condition at a strain rate of 2 × 10-5 s-1.  As with the previous figure, the sample entropy was larger 

for the annealed specimen, indicating that the annealed sample exhibited more complex behavior 

during the serrated flow, as compared to the as-cast condition.  
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4.2.4 Helium Diffusion Experiments  

The goal of these experiments is to gain a greater understanding on how helium diffuses in 

amorphous, as compared to crystalline, alloys.  The current hypothesis is that He diffusion could 

be significantly higher in noncrystalline materials compared to crystalline materials, which if 

demonstrated would imply improved resistance to He embrittlement effects, etc. (important for 

fusion energy applications due to the high amount of transmutation He generation in materials 

exposed to 14 MeV D-T neutrons). There have been reports that some amorphous materials do 

indeed exhibit very rapid He diffusion [100]  

 

4.2.4.1 Microstructural Characterization  

Figures 4-65(a)-(b) show the TEM BF and corresponding SAD images for two of the 

BAM-11 BMG specimens that were He irradiated to a fluence of 5 × 1015 cm-2, which amounted 

to approximately 3 × 103 atomic parts per million in the implanted region of the alloy.  Figure 4-

65(a) represents the fully amorphous specimen that was post-annealed at 250 oC for 15 minutes, 

while figure 4-65(b) corresponds to the partially crystallized BMG sample that was annealed for 

the same condition after implantation.  It is apparent from figure 4-65(a) that crystallites and 

bubbles with appreciable size (within the TEM resolution) did not form in the amorphous matrix 

during the annealing. 

 

4.2.4.2 Nuclear Reaction Analysis  

Figures 4-66(a)-(d) compare the results of the nuclear reaction analysis for the as-irradiated 

and annealed (250 oC, 15 minutes) amorphous and partially crystallized BAM-11 and Cu BMGs.  

From the results, two things can be observed in all the figures.  Firstly, the peaks did not broaden  
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Figure 4-65 TEM BF and corresponding SAD images for the He implanted (5 × 1015 cm-2) (a) 

amorphous BAM-11 BMG (b) partially crystallized BAM-11 BMG.  Both samples were annealed 

after the He implantation at a temperature of 250 oC for 15 minutes.  
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Figure 4-66 Nuclear reaction analysis results for the as-implanted (150 keV He, 5 × 1015 cm-2) and 

annealed (250 oC, 15 minutes) samples (a) Amorphous BAM-11 BMG, (b) partially crystallized 

BAM-11 BMG, (c) amorphous Cu BMG, and (d) partially crystallized Cu BMG. 
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Figure 4-67 NRA results for the (a) amorphous BAM-11 BMG, (b) amorphous Cu BMG, (c) 

partially crystallized BAM-11 BMG, and (d) partially crystallized Cu BMG after implantation by 

150 keV to a fluence of 5 × 1015 cm-2. 
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to an appreciable extent.  Secondly, there was an apparent peak shift to lower channels, and hence 

closer to the surface.  

Figures 4-67(a)-(d) show the latter experiment where the amorphous and partially 

crystallized BAM-11 and Cu BMGs were irradiated and then post-irradiation annealed at 355 oC 

for both 30 minutes and then 24 hours.  Similar to figures 4-66(a)-(d), there was no apparent peak 

broadening.  From these results, it can be surmised that the helium did not diffuse in either alloy 

for the investigated annealing conditions, whether in the amorphous or partially crystalline form. 

 

4.2.4.3 Thermal Desorption Spectroscopy 

Figure 4-68 displays the XRD patterns for the originally amorphous and partially 

crystallized BAM-11 BMG after the TDS was performed.  As can be seen, the specimens all 

displayed multiple peaks throughout the diffracted region, indicating that the samples were 

partially crystalline after the experiment.  Furthermore, the patterns were very similar to one 

another, indicating that the specimens had similar crystalline structure.   

Figures 4-69(a)-(c) compares the results of the He desorption spectra from the amorphous 

and partially crystallized BAM-11 BMG and Cu BMG specimens that were implanted with 150 

keV He ions.  The BAM-11 BMG specimens were implanted two fluences, namely 2 and 5 × 1015 

cm-2, whereas the Cu BMG was implanted to a fluence of 5 × 1015 cm-2.  To produce the spectra, 

the specimens were thermally annealed with a constant ramping rate of 0.5 oC/s.  Figure 4-69(a) 

presents the results for the specimens irradiated to a fluence of 2 × 1015 cm-2, while figure 4-69(b) 

shows a comparison for the samples irradiated to a fluence of 5 × 1015 cm-2.  Figure 4-69(c), on 

the other hand, displays the results for the amorphous and partially crystallized Cu BMG samples.  
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An energy scale is displayed on the top horizontal axis of the graph, where the values correlate 

with the temperature scale presented on the bottom axis. 

With respect to the figure 4-69(a), the amorphous BAM-11 BMG sample exhibited 

interesting behavior.  For instance, there were a few broad peaks that occurred in a stair-step pattern 

for temperatures ranging from 330 to 447 oC.  This type of pattern indicates that He is being 

released from a variety of different trapping sites during heating.  Furthermore, the center of these 

peak steps corresponded to activation energies of 1.77 eV, 1.82 eV and 1.98 eV, respectively.  The 

sharp peak centered around 467 oC (2.17 eV) is thought to be associated with the desorption of He 

during a crystallization process that occurs after the initial crystallization of the alloy [368].  

Interestingly, no such peak was observed at the crystallization temperature of the alloy (452 oC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-68 XRD patterns for the BAM-11 BMG specimens that in which they were exposed to 

He fluences of 2 × 1015 cm-2 and 5 × 1015 cm-2. 
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[368]).  Another peak centered around 693 oC (2.85 eV) can be observed in the figure that was 

followed by a gradual increase in the desorption flux up to the maximum heating temperature of 

770 oC.  As for the partially crystallized sample, no significant desorption was observed below a 

temperature of 670 oC.  However, a final peak can be observed the spectra that is centered 762 oC, 

which corresponds to an activation energy of 3.06 eV.  

For figure 4-69(b), the partially crystallized alloy released more He as compared to the 

amorphous sample, for temperatures below 625 oC.  Similar to figure 4-69(a), there were a few 

broad peaks that occurred in a stair-step pattern for temperatures ranging from 313 to 490 oC for 

the partially crystallized specimen.  The center of these peak steps corresponded to activation 

energies of 1.74 eV, 1.82 eV and 2.05 eV, respectively.  The amorphous sample exhibited a broad 

peak centered around 410 oC, which corresponded to an activation energy of 2.00 eV.  Similar to 

figure 4-69(a), a sharp peak centered around 470 oC (2.18 eV) can be observed for the amorphous 

BAM-11 BMG.  There was a final peak that was centered for both samples, respectively, at 756 

oC (3.03 eV) and 762 oC (3.06 eV) for the amorphous and partially crystallized samples. 

As for the Cu implanted specimens, as shown in figure 4-69(c), both the amorphous and 

partially crystallized samples exhibited similar trends below 500 oC.  For instance, a broad peak 

centered around ~420oC can be observed, which corresponded to an activation energy of 2.03 eV.  

As for the fully amorphous specimen, there was a sharp peak centered around ~505 oC, which 

corresponded to an energy of 2.29 eV.  This peak is most likely is attributed to the He released 

during crystallization the alloy (509 oC) [358].  For both specimens, there was a final peak that 

was centered, respectively, at 710 oC (2.90 eV) and 730 oC (2.96 eV) for the partially crystallized 

and amorphous samples.   
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Figure 4-69 Thermal helium desorption spectra of the 150 keV He implantation of the (amorphous 

and partially crystalline) (a) BAM-11 BMG (2 × 1015 cm-2), (b) BAM-11 BMG (5 × 1015  cm-2), 

and Cu BMG (5 × 1015  cm-2).  
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Figure 4-70 Helium outgassing statistics in the (a) BAM-11 BMG samples (implanted He fluences 

of 2 × 1015 and 5 × 1015 cm-2) and the (b) Cu BMG samples (implanted He fluence of 5 × 1015 cm-

2). 
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Figures 4-70(a)-(b) presents percentage of He that desorbed from the amorphous and 

partially crystallized Zr and Cu BMG specimens (fluences of 2 × 1015 and 5 × 1015 cm-2).  From 

figures 4-70(a)-(b) it can be observed that at a fluence of 5 × 1015 cm-2, there was significantly 

more He desorption exhibited by the partially crystallized Zr and Cu BMGs.  In contrast, there was 

no substantial difference in the amount of He released by the BAM-11 BMG that was implanted 

to a fluence of 2 × 1015 cm-2.  For both the amorphous and partially crystallized BAM-11 BMG, 

more He was released as a proportion to total fluence after implantation to a fluence of 2 × 1015 

cm-2. Finally, the data from figures 4-70(a)-(b) indicates that for a fluence of 5 × 1015 cm-2, both 

the amorphous and partially crystallized BAM-11 and Cu BMGs desorbed approximately the same 

amount of He.  Considering both the NRA (figure 4-66) and TDS (figures. 4-69, 4-70) results, 

pronounced He diffusion in the two investigated BMGs begins to occur around 360-400C at the 

lower implantation fluence.  
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CHAPTER 5 DISCUSSION 
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5.1 Ion Irradiation Experiments  

 

5.1.1 9 MeV Ni Ion Irradiations  

 

5.1.1.1 BAM-11 BMG 

As can be seen in figure 4-11, the glancing XRD patterns indicate that the BAM-11 BMG 

remained amorphous during the ion irradiation up to 290 oC.  However, the alloy did partially 

crystallize when irradiated at 360 oC.   To confirm the crystallization mechanism, glancing XRD 

was performed on the unirradiated side of the sample and then compared to bulk XRD 

measurements that were performed on a separate sample that was annealed at 500 oC for 2.5 hours.  

It should be mentioned that the temperature of 500 oC was chosen since it is sufficiently above the 

reported crystallization temperature of the BAM-11 BMG [352, 368].   

The similarity of the patterns, as displayed in figure 4-12, indeed confirms that the 

crystallization mechanism was thermal in nature.  In addition, TEM characterization of the 

bombarded region of the specimen irradiated at 360 oC shows that not only did the sample partially 

crystallize during irradiation, but that the crystallization process occurred in a heterogenous 

fashion.  It is also noted that as displayed in figure 4-11, there was an appreciable peak shift to 

lower values for the irradiated samples.  This shift in the peak towards lower angles indicates that 

there was an increase in the distance between neighboring atoms inside the amorphous matrix 

[421]. 

In terms of the nanoindentation behavior of the as-cast and irradiated BAM-11 BMG [see 

figures 4-20(a)-(b)], the samples exhibited a pronounced indentation size effect on the measured 

nanoindentation hardness, particularly for indent depths below ~200 nm.  For the specimens that 

were irradiated by 9 MeV Ni3+ ions to midrange doses of ~10 dpa at 25-290 oC, only slight changes 
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in hardness were observed. This result indicates, therefore, that the nanoscale mechanical 

properties are not significantly affected by exposure during irradiation to temperatures at or below 

290 oC.  In contrast, increased hardening was observed in the ion irradiated region and unirradiated 

substrate after irradiation at 360 oC for ~7 hours.  As discussed previously, this hardness was 

attributed to the partial crystallization of the glassy matrix due to thermal annealing effects.   

In the majority of cases, the crystallized form of a metallic glass is harder than its 

amorphous counterpart since nanocrystallites may disturb the passage of shear bands [427].  Such 

an effect was reported by Luo et al., where it was found that 300 keV Ar+ room temperature 

irradiation to a dose of 37 dpa led to significant increase in the hardness of Zr61.5Cu21.5Fe5Al12 

BMG, and was associated with the formation of fcc nanocrystals during irradiation [345].  The 

current study, however, found that an increase in the hardness of the BAM-11 BMG that was 

irradiated by 9 MeV Ni3+ at 360 oC (~7 hours)  was the result of thermally induced partially 

crystallization of the amorphous matrix. 

In terms of the partial crystallization that occurred during irradiation, there were some 

sporadic results.  For instance, 9 MeV Ni3+ irradiation at 360 oC for 7 hours led to partial 

crystallization of both the BAM-11 and Cu based BMGs.  However, no such crystallization was 

observed in the specimen that was irradiated by 5.5 MeV C+ at 360 oC for the same amount of 

time.   In addition, the BAM-11 BMG specimen did crystallize during irradiation by 5.5 MeV C+ 

at 290 oC for the same time period.  These spurious results indicate that there were some occasional 

issues with thermal contact of individual specimens for the sample holder used in these 

experiments. A careful redesign of the sample holder to provide more reliable sample temperatures 

is therefore strongly recommended for future studies. 
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As for the ISE behavior of the as-cast and irradiated BAM-11 BMG specimens, the poor 

linear fit between the near-surface and deep (> 450 nm indent depth) indents [see figure 4-22(a)], 

suggests that the Nix-Gao model [212] is not valid to accurately quantify the nanoindentation 

hardness of the alloy.  The discrepancy with this model is somewhat unexpected since it was used 

successfully in a previous experiment to describe the ISE in this alloy [210].   

One possible reason for the deviation may be the result of surface defects formed during 

mechanical polishing.  This effect of surface polishing on the model is inherent in the 1/h 

dependence in the Nix and Gao model, where this term becomes more significant at shallower 

depths.  Finally, the significantly larger H0 values for the specimen irradiated at 360 oC (for the 

unirradiated region), probably corresponds to the partial crystallization of the specimen.  Another 

reason why the model may not be appropriate for the ISE in the BAM-11 BMG is due to physics 

considerations, since the model assumes the ISE is associated with geomentrically necessary 

dislocations whereas  the BAM-11 BMG does not produce dislocations during deformation due to 

its amorphous structure.   

In addition to the Nix and Gao model, the equation from the Lam and Chong model [211], 

as displayed in figure 4-23(a), provided a slightly better fit (albeit still poor) to the nanoindentation 

data for the as-cast and 9 MeV Ni3+ irradiated samples.  From the above results it can be surmised 

that this model is also quantitatively not valid for the ISE of the BAM-11 BMG.  As with the Nix-

Gao model, the significantly larger H0 values for the specimen irradiated at 360 oC are most likely 

attributed to the partial crystallization of the amorphous matirx.   

An extrapolation model recently applied to various metallic glass thin films [217] was also 

used to analyze the ISE in the as-cast and irradiated BAM-11 BMG, but was ultimately not 

successful.  It was found that this method failed for two reasons, namely the inability of the model 
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to appropriately fit the data and because the underlying equation produced characteristic length 

values that were negative.  This issue with h* is especially apparent in the underlying relation ℎ∗ ∝

1

1−𝜒𝐿
, where χL denotes the fraction of fertile sites [428] contained in the amorphous alloy.  

Therefore, a negative value of h* implies that the fertile sites comprise more than 100 % of the 

matrix, which is an impossibility. In addition to the above, there were more conflicting results with 

regards to the extrapolated hardness values.  For instance, the Lam and Chong model provided H0 

values that were lower for all irradiation temperatures as compared to the as-cast condition, while 

for the Nix and Gao model, only the room temperature irradiation led to a decrease in H0.   

Previous investigations have also examined the effects of Ni irradiation on the properties 

of BAM-11 BMG.  For instance, Perez-Bergquist et al. examined the response of BAM-11 BMG 

after irradiation by 3 MeV Ni+ to varying irradiation dose and thermal conditions [98, 420].  In 

[98], it was reported that samples irradiated to a midrange dose of 0.1 dpa at 200 oC did not exhibit 

significant changes in hardness.  In [420], it was found that the hardness decreased after being 

annealed at 300 oC for 48 hours and subsequently irradiated to a midrange dose of 10 dpa at 25 oC.  

It was found that for both investigations that the material did not crystallize under any irradiation 

or annealing condition, via TEM characterization. Since the metallic glass can become extremely 

brittle upon crystallization, this resistance to phase change during irradiation is especially 

important.  Based on the results of the current and previous studies, it can be concluded that the 

effects of ion irradiation on the microstructure and mechanical properties of BAM-11 BMG 

appears to be relatively modest for doses up to ~10 dpa at 25-290 oC. 
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5.1.1.2 Cu BMG 

The glancing XRD characterization, as displayed in figure 4-15, shows that the 

Cu60Zr20Hf10Ti10 BMG did not crystallize during the ion irradiation up to 290 oC.  However, the 

Cu BMG sample partially crystallized when irradiated at 360 oC for 7 hours.  This result indicates 

that the Cu based BMG may not be suitable for irradiation environments where it will be exposed 

to temperatures greater than ~0.75 Tg for prolonged periods of time.   

As reported in [279, 429], it was found that the BAM-11 BMG behaved in a similar fashion 

to the Cu BMG where it did not crystallize when irradiated by 9 MeV Ni3+ ions to a midrange dose 

of 10 dpa at room temperature and 290 oC.  Perez-Bergquist et al. reported that the same alloy did 

not crystallize when irradiated by 3 MeV Ni+ ions to a midrange dose of 1 dpa at 200 oC [98].  In 

terms of microstructure, Yuka et al. observed that 200 MeV Xe irradiation (room temperature) of 

Zr50Cu40Al10 BMG to a dose of 0.25 dpa resulted in a decrease in the free volume content of the 

material without causing crystallization [430, 431].  This crystallization resistance that is exhibited 

by the BMGs during irradiation at lower temperatures could be attributed to various factors.  These 

factors include low irradiation enhanced diffusivity and a high required driving force for 

irradiation-induced crystallization [432].   

As can be seen in figure 4-16, glancing XRD that was performed on the unirradiated side 

of the specimen suggests that the partial crystallization that occurred during irradiation at 360 oC 

was most likely caused by thermal annealing, and not irradiation damage.  Also shown in the figure 

is the pattern for the Bulk XRD measurements that were performed on a separate specimen that 

was annealed at 520 oC for 2.5 hours.  The temperature of 520 oC was chosen as it is above the 

reported crystallization temperature (Tx) of the alloy [358].  The apparent similarity between all 

three patterns gives further evidence that partial crystallization was thermally induced. 



281 

 

In addition to the present work, other investigations have reported on the irradiation 

induced crystallization of Cu based BMGs.  Carter et al. studied the crystallization of Cu50Zr45Ti5 

metallic glass during irradiation by 1 MeV Cu ions at room temperature.  It was reported that CuZr2  

and Cu10Zr7 crystalline phases formed in the amorphous matrix [304].  Wang et al. observed that 

Cu10Zr7 phases formed when heated to 700 oC while exposed to a pressure at 5 GPa during in-situ 

XRD experiments [358].  In another investigation, Xie et al. examined the nanocrystallization 

behavior of a Cu50Zr45Ti5 metallic glass melt spun ribbons irradiated at room temperature by 200 

keV electrons to fluences of 2.4 × 1021 cm-2 - 2.9 × 1022 cm-2 [433].  TEM characterization 

determined that monoclinic CuZr nanocrystallites formed during the irradiation.  A subsequent 

investigation, however, found that room temperature 200 keV electron irradiation to a fluence of 

4.4 × 1022 cm-2 led to the formation of Cu10Zr7 phases in the same material [434].  Finally, Fu et 

al. examined the Ar-ion-milling induced nanocrystallization of Cu50Zr45Ti5 metallic glass [435].  

TEM characterization revealed the presence of Cu10Zr7 nanocrystals after irradiation by Ar ions 

with accelerating voltages of 2 to 4 kV at room temperature.   

From these investigations it can be surmised that CuZr polymorphs typically form in Cu 

based BMGs during the crystallization process.  However, the outcomes of the present 

experimental studies involving the Cu BMG appear at odds with their results.  More specifically, 

the results of the Rietveld refinement suggest that the nanocrystallites which formed in the sample 

that was irradiated at 360 oC consisted of tetragonal CuTi and hexagonal CuZrTi phases.  This 

discrepancy may be explained by the following.  In the study performed by Wang et al. [358],  

there were some crystalline peaks that were not identified in the XRD pattern, and could have 

corresponded to either the CuZrTi or CuTi phases.  
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Carter et al. hypothesized that crystallites which formed in the Cu50Zr45Ti5 BMG during 1 

MeV Cu irradiation (room temperature) was a consequence of the enhanced atomic mobility 

resulting from the introduction of excessive free volume during quenching [304].  Here, the free 

volume is spread over a relatively large region, resulting in increased atomic mobility that 

enhances the short-range order which leads to crystallite nucleation.  Importantly, the Cu BMG 

currently studied did not crystallize during irradiation by a more energetic ion (9 MeV) at 

temperatures up to 290 oC.  This lack of induced crystallization may be the result of a greater 

number of elements with differing radii.  The greater degree of atomic size mismatch in the 

Cu60Zr20Hf10Ti10 BMG, as opposed to the Cu50Zr45Ti5 BMG, will favor a denser random packing 

structure.  Consequently, atomic rearrangement that can lead to crystallization will be harder to 

achieve in the Cu60Zr20Hf10Ti10 BMG [78, 436, 437].    

Interestingly, experiments involving other types of metallic glasses have yielded varying 

results.  For example, a study involving the crystallization of Co86.7Fe3.6Si2.7Mn3.5B3.5 metallic 

glass ribbons reported that that irradiation can induce a different crystallization mechanism in 

metallic glass, as opposed to thermal annealing [330].  It was observed that although the MG 

crystallized after irradiation by 30 keV Ar+ ions to a peak dose of 840 dpa at 200 oC, it did not 

crystallize during thermal annealing until the temperature reached 500 oC.  With respect to the 

microstructure, XRD revealed that during the thermally induced crystallization, the Co-based solid 

solution and CoB crystalline phases formed during devitrification.  Furthermore, an unknown 

cubic aperiodical phase was also observed after irradiation, which was thought to be isostructural 

to the α-Mn aperiodical cubic phase.  Thermal annealing after irradiation, at temperatures of 250 o 

and 300 oC (1 hour) recovered the amorphous phase.  This recovered amorphous phase was thought 
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to contain non-crystalline long-range order structures consisting of polytopes with a non-integer 

order symmetry axis [438].  

Before moving on, the odd results regarding the crystallization behavior of the 30 keV Ar 

ion irradiation Co based MG should be discussed.  Perhaps the crystallization of the amorphous 

ribbon during irradiation at 200 oC was caused by an increased temperature in the sample induced 

by beam heating [439].  The high beam fluxes necessary to achieve 840 dpa in a reasonable time 

period may have also caused beam heating of the sample. Furthermore, the temperature during 

irradiation may have been higher than reported if the chamber temperature was not being 

accurately monitored.  The lack of details pertaining to how the specimen temperature was 

monitored during irradiation raises questions as to the accuracy of the reported temperature.    

The results of previous irradiation studies on BMGs is summarized in Table 5-1.  As can 

be seen, some of the metallic glasses crystallized during irradiation at various irradiation 

temperatures, although some remained amorphous.  It is apparent that in nearly all of the 

investigations listed, there was no mention as to how the sample temperature was monitored during 

the irradiation.  This lack of reporting, therefore, raises serious concerns as to the accuracy of the 

reported irradiation temperatures.  This issue with apparent temperature variability was also 

observed in the individual ion irradiation specimens during the thesis work, which further stresses 

the need for careful temperature monitoring during irradiation experiments.  

 Furthermore, several interesting or puzzling results can also be observed in the table.  For 

instance, Ti40Zr10Cu38Pd12
 BMG was found to crystallize during 200 keV/75 keV Ar ion 

irradiation at 347 oC, whereas Zr55Cu28Al10Ni7 BMG did not [325].  Moreover, neither of the two 

BMGs experienced crystallization after room temperature irradiation [325].  Since the Tg, Tx, and 

ΔTx of the Zr BMG (429 oC, 498 oC, and 69 oC  [440, 441]) is larger than that of the Ti BMG (412  
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Table 5-1 Summary of ion irradiation studies in amorphous alloys Irr.: Irradiation, Temp.: 

Temperature, *:  Sample crystallized via thermal effects instead of irradiation damage. 

 

 

Alloy 
Specimen 

Type 
Ion  

Ion 

Energy 

(MeV) 

Irr. 

Dose 

Rate 

(dpa/s) 

Irr. 

Dose 

(dpa) 

Irr. 

Temp. 

(0C) 

Crystallized? 

(Y/N) 

Temp. 

Measurement 

Ref. 

Ti40Zr25Be30Cr5 Bulk 
C, 

Cl 
25 - 

0.1(C) 

5.7 (Cl) 
25 N - [329] 

Ti40Zr10Cu38Pd12 Bulk Ar 

0.2, 

0.075 

(consec

utive) 

0.008 
29 

(total) 

347 Y - 

[325] 
25 N - 

Fe81B13.5Si3.5C2 Ribbon He 2.8 - 0.05 25 Y - [328] 

Fe80Si7.43B12.57 Ribbon H 0.25 0.0003 5 25 N - [319] 

Fe78B13Si9 Ribbon He 2.8 - 2 25 Y - [320] 

Fe79B16Si5 Ribbon He 0.005 0.005 1 25 N - [302] 

Fe40Ni40P14B6 Ribbon He 0.04 0.0009 28 400 Y - [321] 

Ni52.5Nb10Zr15Ti15Pt7.5 Ribbon Ni 1 0.0018 18 25 Y - [326] 

Ni52.5Nb10Zr15Ti15Pt7.5 Ribbon Xe 18 - 
0.0001

4 
25 N - [324] 

Co61.2B26.2Si7.8Ta4.8 Bulk He 0.5 0.0009 40 25 N - [315] 

Co86.7Fe3.6Si2.7Mn3.5B3.5 Ribbon Ar 0.03 0.17 840 200 Y - [330] 

Zr55Cu28Al10Ni7 Bulk Ar 

0.2, 

0.075 

(consec

utive) 

0.006 
22 

(total) 

347 N 

- [325] 
25 N 

Zr64Cu17.8Ni10.7Al7.5 Bulk He 0.5 0.00009 40 125 N - [315] 

Zr52.5Cu17.9Ni14.6Al10Ti5 Bulk Ni 3 0.005 1 
25 

N Thermocouple [98] 
200 

Zr52.5Cu17.9Ni14.6Al10Ti5 Bulk Ni 9 0.0004 10 

  25 N 

Thermocouple 
[279, 

429] 
290 N 

360 Y* 

Zr50Cu40Al10 Bulk Xe 200 - 0.25 25 N - [430] 

Zr55Cu30Al10Ni5 Ribbon Cu 1 0.0001 16 < 50 Y - [310] 

Zr55Cu30Al10Ni5 Bulk Co 0.04 0.34 160 < 140 Y - 
[444, 

445] 

Zr50Cu35Al7Pd5Nb3 Ribbon Kr 1 -  420 Y - [323] 

(Cu47Zr45Al8)98.5Y1.5 Bulk Ar 3 - 7.5 25 N - [446] 

Cu50Zr45Ti5 Ribbon Cu 1 0.001 16 25 Y - [304] 

(Cu47Zr45Al8)98.5Y1.5 Bulk He 0.5 0.0012 40 25 N - 
[314, 

315] 

Cu60Zr20Hf10Ti10 Bulk Ni 9 0.0004 10 

25 N 

Thermocouple 
This 

work 
290 N 

360 Y* 
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oC, 447 oC, and 35 oC [442]), it is expected that that the former Zr BMG has greater glass 

formability and thermal stability that would make it more resistant to irradiation [443].  Finally, 

the Ni52.5Nb10Zr15Ti15Pt7.5 metallic glass was found to crystallize when it was irradiated by 1 MeV 

Ni to a dose of 18 dpa, but did not crystallize during irradiation by 18 MeV Xe to a dose of 1.4 × 

10-4.  This result suggests that irradiation dose may be a larger contributing factor to the 

crystallization of metallic glass during irradiation. 

Despite the raised concerns, the results of these studies have important implications 

pertaining to the irradiation response of amorphous alloys.  Firstly, in some metallic glasses total 

irradiation dose appears to be more of an influence as to whether a metallic glass will crystallize 

as compared to ion mass or energy.  Secondly, it appears that the chemical complexity of the 

metallic glass may perhaps play an important role in determining the radiation resistance of the 

material.  In this context, the enhanced irradiation resistance may be influenced by the mass 

disparity in addition to the “confusion principle” in which the stability (and Tg) of the glass 

increases as the number of elements in the metallic glass increases [125, 447].  It should also be 

mentioned that oxygen impurities may promote crystallization of the material during irradiation 

[355].  These impurities can assist in the heterogeneous nucleation of intermetallic phases, 

effectively decreasing the temperature or heating time at which crystallization can occur.  Finally. 

considering only the few ion irradiation studies that utilized thermocouples to monitor the 

irradiation temperature ([98, 279, 429] and the current study) along with the studies from [324, 

325], it appears that recrystallization has been reported only for irradiation temperatures 

approaching Tg for the given BMG. 

On the other hand, beam heating may have been a contributing factor to the crystallization 

of the specimen during irradiation.  It has been reported that in commercial ion implanters, ion 
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beam heating can result in temperature increases approaching hundreds of degrees [439].  

Therefore, if not properly monitored, the sample temperature during irradiation could reach values 

that would result in the thermal-induced crystallization of the sample.    

In terms of the nanoindentation behavior, only slight hardening was observed in the Cu 

BMG after irradiation by 9 MeV Ni3+ to midrange doses of ~10 dpa at 25 o and 290 oC (see figures 

4-20(a)-(b)].  In contrast, the sample irradiated at 360 oC for 7 hours exhibited a significant increase 

in hardness, which is indicative of partial crystallization of the matrix during irradiation. Moreover, 

the nanoindentation hardness and XRD evaluation, as respectively shown in figures 4-20 and 4-

15, indicate similar crystallization and depth-dependent hardness changes for the unirradiated and 

irradiated regions.  Thus, these changes appear to be the result of thermal annealing effects instead 

of irradiation damage.   

In terms of other Cu based BMGs, crystallization induced hardening has also been 

observed in He irradiated Cu50Zr45Ti5 metallic glass [305].  The crystallization was found to occur 

in the specimens after room temperature 140 keV He irradiation to a dose of 4 dpa, which amounts 

to approximately 11 at.% He.  Subsequent TEM characterization revealed the presence of either 

He bubbles and/or voids in the matrix.  It was also found, via microindentation tests, that the 

irradiated sample exhibited greater hardness as compared to the as-cast condition.  Furthermore,  

the enhanced hardness reached a maximum at the interrogated depth of 600 nm below the surface, 

which coincided with the presence of implanted He or the maximal nuclear stopping power at that 

depth.   

The poor linear fit, as can be observed in figure 4-23(a) for all the sample conditions, 

suggests that the ISE model as derived by Lam and Chong [211] is not sufficient for analyzing the 

ISE in the Cu BMG.  Perhaps the inadequate fit may arise from either surface artifacts created 
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during sample preparation or an inherent limitation of the model.  Moreover, the nonlinear 

behavior is particularly noticeable in the irradiated region of the specimens, where the deviation 

becomes more significant at larger depths.  Importantly, this behavior in the deeper region is 

unexpected for the as-cast specimen, since a variation in hardness vs. depth should not be observed 

there.   

Importantly there was also a discrepancy in the linear fitting of the Lam and Chong model 

that was not accounted for by Lam et al. [209].  This discrepancy is related to the apparent deviation 

away from linearity for indentation depths beyond ~1.6 μm, which suggests that the model may 

not be applicable to BMGs.  It should be mentioned that the Nix-Gao extrapolation method was 

also applied to the data.  However, like with the BAM-11 BMG, this model gave a poorer fit as 

compared to the previous method.  As discussed before, it is not surprising that the Nix Gao model 

does not provide an adequate fit to the data, since it is based on proximity to geometrically 

necessary dislocations to induce plastic deformation whereas such defects do not exist in Cu BMG.   

Based on the results of the BAM-11 and Cu BMGs, therefore, it can be surmised that a new model 

may be needed to examine the ISE in BMGs.  

 

5.1.2 Lower Dose (0.5 dpa) Ion Irradiation Experiments  

In general, there was no evidence for pronounced irradiation spectrum effects from a 

comparison of the nanoindentation mechanical properties behavior of the two investigated BMGs 

following irradiation with 9 MeV Ni ions (relatively high average primary knock-on energy of ~20 

keV) versus 5.5 MeV C ions (relatively low average primary knock-on energy of ~5 keV). For 

both the BAM-11 and Cu BMGs, ion irradiation near room temperature produced similar 

hardening behavior as the as-cast material [figures 4-24(a), 4-26(a), 4-31(a), and 4-33(a)]. Either 
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slight hardening (Ni ion irradiation) or slight softening (C ion irradiation) was observed for the 

irradiated samples. At irradiation temperatures of 290 and 360 oC (excluding the anomalous result 

for C ion irradiated BAM-11 at 290 oC where thermal crystallization occurred),  Ni ion irradiation 

generally produced slightly more hardening in the irradiated region compared to the C ion 

irradiations for both BMG materials. A more marked effect appeared to occur for the neutron 

irradiated sample compared to the ion irradiated samples, where pronounced softening was 

observed after neutron irradiation near room temperature (figure 4-38).    

This significant increase in the hardness without apparent crystallization during the high 

temperature irradiation may be the result of thermally induced structural relaxation occurring in 

the amorphous matrix [448].  The idea that structural relaxation during irradiation leads to an 

increase in the hardness in metallic glass was theorized by Jiang et al. [449].  Here they postulated 

that a decrease in free volume, which accompanies structural relaxation, results in a higher 

resistance to localized plastic deformation  (i.e., an increase in hardness).    Another reason for the 

lack of crystal phase detection may be that the crystallite phases that formed during irradiation 

consist of sizes that are below the resolution of the XRD.   

 

5.2 Neutron Irradiation Experiments  

As displayed in figure 4-35(a), the sample irradiated to 0.1 dpa exhibited a slightly lower 

and broader pair distribution function peak as compared to the as-cast condition, suggesting that 

neutron displacement damage led to slight rejuvenation in the alloy.  This rejuvenation of the alloy 

is typically associated with an increase in the atomic disorder of the BMG [450].  In contrast, 

annealing the BAM-11 BMG at 300 oC for 2 weeks resulted in a taller and narrower peak, which 

is evidence for structural relaxation that is associated with an increase in the short-range order.  It 
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was also found that annealing the glass after neutron bombardment led to a peak that had a width 

and height that was intermediate between the ones for the as-cast and irradiated only condition.  

This result suggests that annealing the sample reverses the effects of disordering brought about by 

the neutron irradiation.  Moreover, annealing at 325 oC for 72 hours appears to have a slightly 

greater reversing effect as compared to heating at 300 oC for 2 weeks, as illustrated by a relatively 

higher peak.   

Also, the macroscopic density appears to be correlated with the neutron diffraction results, 

as evident from Tables 4-9, 4-10 and figures 4-37(a)-(c).  Pairing these results suggests that with 

an increase in the disordering during neutron irradiation there is a corresponding decrease in the 

density.  Furthermore, annealing of the sample leads to structural ordering that corresponds to an 

increase in the density.  In terms of the figures 4-37(a)-(c), the correlation between the density and 

the coordination number is more pronounced for the first nearest neighbor shell.  Thus, it may be 

said that neutron irradiation leads to an increase in the interatomic spacings in the material.   

Egami et al. showed that an increase in the interatomic spacings in a metallic glass enhance 

the number of liquid-like sites in the glassy matrix [451, 452].  Furthermore, these sites are 

associated with free volume/anti-free volume defects in the amorphous matrix [238, 453].  Thus, 

it appears that rejuvenation in the alloy, as induced by neutron irradiation, leads to the creation of 

free volume/anti-free volume defects (see figure 5-1).  This change in the structure can also be 

elucidated from the neutron scattering PDF.  Here, a broadening in the curve is associated with an 

increase in the number of short and long inter-atomic distances [448].  Therefore, atomic mixing 

caused by neutron collisions leads to an increase in the number of regions with shorter and longer 

interatomic distances.  These regions with the shorter atomic bonds will be associated with the 

anti-free volume sites while the regions with the longer bonds are associated with the free-volume  
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Figure 5-1 A schematic of the BAM-11 BMG before and after neutron irradiation.  The figure on 

the bottom left of the figure represents the free volume and anti-free volume defects in the glassy 

matrix. 
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regions with atoms.  Furthermore, annealing will have the opposite effect on the interatomic 

distances, thereby annihilating these liquid-like sites. 

In terms of the nanoindentation and three-point bend test results, as shown in  4-38 and 4-

40, the data apparently follows a similar trend as that of the immersion density and neutron 

diffraction measurements.  Firstly, the irradiation leads to softening in the metallic glass, while 

annealing results in hardening.  Based on the neutron PDF [see figure 4-35(a)], this softening is 

accompanied by an increase in the atomic disordering (rejuvenation) and creation of free 

volume/anti-free volume defects.  The rejuvenation of the alloy also appears to be related to the 

decrease in the flexural modulus, while relaxation corresponds to its increase.  Furthermore, it may 

be suggested that this decrease in the hardness may be linked to the creation of soft-zone defects, 

as discussed in [454].   

On the other hand, the increase in hardness is most likely due to the thermally induced 

structural relaxation, and therefore destruction of defects, occurring in the alloy [455].  The above 

result supports the idea that particle collisions led to the production of soft-zone defects while 

annealing at 300 oC for 2 weeks caused their annihilation. From here it can be thought that the 

degree of hardness in the alloy is related to the amount of soft zone defects contained in the matrix. 

However, it should be mentioned that in the same study, Vickers hardness tests revealed that the 

irradiation led to a modest increase of ~7% and ~10% in the hardness at neutron doses of 0.1, 1 

dpa respectively.  It should also be mentioned that the link between free volume and hardness was 

also discussed in [449], where they theorized that a decrease in free volume, which accompanies 

structural relaxation, results in a higher resistance to plastic deformation. 

These results are similar to those reported by Pan et al., where they observed that 

rejuvenation in a metallic glass via mechanical deformation led to a decrease in the microhardness 
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in Zr64.13Cu15.75Ni10.12Al10 BMG [450].  Furthermore, they suggested that rejuvenation in a metallic 

glass also reduces the initial yield stress.  Since the results suggest that the free volume content is 

inversely related to the density, it appears that inducing regions of lower density into the specimen 

corresponds to a decreased resistance to deformation.   

Perez-Bergquist et al. found that 3 MeV Ni+ (10 dpa) irradiation of the BAM-11 BMG at 

room temperature resulted in a small decrease in the nanoindentation hardness [420].  In another 

investigation, they reported that the hardness slightly decreased after irradiation to a peak dose of 

1 dpa at both room temperature and 200 oC [419].  Furthermore, irradiation at the higher 

temperature (200 oC) was found to decrease the hardness by a smaller margin as compared to 

irradiation at room temperature.  The decrease in hardness during irradiation at 200 oC indicates 

that softening via irradiation has a greater effect on the hardness behavior as compared to 

hardening induced by annealing.  Therefore, it can be surmised that there exists a competition 

between knock-on collisions and thermal effects on the mechanical properties, which are linked to 

changes in the free volume content.   

This creation of free volume defects by charged particle collisions was also theorized in a 

study involving the MeV electron irradiation of Ni based metallic glass ribbons [432].  Because of 

the disappearance of these liquid-like sites, the ability of the material to resist plastic deformation 

is increased, which corresponds to an increase in the nanoindentation hardness of the alloy.  On 

the other hand, collision cascades lead to more soft-zone defects, resulting in a softening of the 

BMG.  It should be mentioned that other studies have found similar  irradiation induced softening 

in nickel irradiated Vitreloy 1 BMG [343]. An additional study found that irradiation of a Ti based 

BMG by 25 MeV Cl4+ ions also led to softening of the material, which they surmised was linked 

to the corresponding free volume creation [329]. Their hypothesis that creation of free-volume 
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defects or nano-voids via collision cascades further corroborates the findings from this 

investigation. 

Based on the nanoindentation results of the ion and neutron irradiated specimens, it is 

hypothesized that there exists a threshold temperature at which the irradiation and thermal effects 

balance out, creating no net change in the nanoindentation hardness.  However, despite no change 

in the mechanical response of the alloy, there may still be changes in the short-range ordering due 

to atomic collisions and diffusion.  It should also be stated that beyond the threshold temperature, 

destruction of defects overrides the creation of them, resulting in a hardening of the alloy. 

The increase in the modulus during annealing may be due to the thermal annihilation of 

soft-zone defects during structural relaxation.  Since these defects consist of free volume, and 

hence are lower in density, their destruction would lead to a decrease of the local interatomic 

distance throughout the matrix.  Since the modulus is inversely proportional to the distance 

between neighboring atoms, a decrease in the quantity of these defects, therefore, would lead to 

an increase in the modulus.  Conversely,  irradiation would lead to a decrease in the modulus via 

the reduction in density caused by the creation of these structures via energetic atomic mixing 

caused by particle bombardment.  Bian et al. found that Xe irradiation led to the increase in the 

free volume fraction of a Zr based BMG [456]. 

 

5.3 Thermal Response Experiments 

 

5.3.1 In situ X-Ray Diffraction Crystallization Kinetic Experiments  
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As mentioned earlier , the process of crystallization in the BMGs is very complex.  This 

complexity can be seen in the color intensity maps as displayed in figures 4-44 and 4-49.  From 

the figures it is evident that the BAM-11 BMG underwent a more complex crystallization process 

as compared to the Cu BMG.  Furthermore, the greater quantity of diffraction peaks in the BAM-

11 BMG diffraction patterns made the analysis of the crystal structure in the Zr based alloy matrix 

comparatively much more difficult as compared to the Cu BMG.  It should also be mentioned that, 

similar to the irradiation studies, the crystallization of the specimens was accompanied by a 

significant increase in the nanoindenation hardness and Young’s modulus due to the introduction 

of nanocrystallites into the matrix.   

In terms of the Rietveld analysis, there were some interesting results.  In general, the 

crystalline phases typically followed the JMAK kinetic process in both BMGs, which means that 

the crystallites nucleated randomly throughout the matrix and then grew in a uniform fashion.  

However, for BAM-11 BMG, the Zr2Ni phase exhibited a two-state nuclei-growth, where the first 

50% of the transformation (0 < α < 0.5) corresponded to a JMAK process, which was followed by 

the Ginstein-Brounshtin diffusion mechanism. A schematic of these kinetic models is shown in 

figures 5-2(a)-(b) [239].  Therefore, in terms of the BAM-11 BMG, once the material reaches 365 

oC, Zr2Ni nuclei begin to form in random positions throughout the matrix.  Over time, these nuclei 

will grow in a uniform fashion.  Once the volume fraction of the phase reaches 50 %, however, 

the nuclei will begin to grow through a three-dimensional diffusional process.   

There were also some unexpected results.  For instance, oxide phases were observed in 

both alloys once they reached sufficiently high temperatures.  More specifically, the oxides 

appeared in the BAM-11 BMG at 440 oC, while it was 500 oC for the Cu BMG.  The reasons for 

the formation of the oxide phases in the matrix were thought to be caused by oxygen contained in  
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Figure 5-2 Schematic of the (a) JMAK and (b) diffusion controlled crystallization processes (from 

Ref. [239]).  

 

the insulating elements of the heating chamber or by oxygen impurities in the original BMG 

ingot. Additionally, the BMGs began to crystallize well below the glass transition temperature.  

The reason that the glasses crystallized at temperatures well below Tg may be the result of 

oxygen impurities in the ingot after fabrication [355]. 

 

5.3.2 In Situ X-Ray Diffraction Compression Test Experiments  

As discussed earlier, it has been theorized that soft-zone defects, which can be thought of 

as liquid-like atoms and their neighbors [428, 457], consist of structural heterogeneities [458] that 

can accommodate shear deformation under an applied load.  Thus, these defects can be thought of 

as loosely packed regions that are less resistive during an applied stress.  Furthermore, annealing 

leads to the annihilation of these structures.  For instance, Li et al. [207, 454] found that annealing 

reduces the concentration of these defects in the matrix, which in turn leads to embrittlement of 
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the alloy.  This suggestion is supported by the results of the high energy X-ray diffraction, where 

the difference in the anisotropic PDFs were larger for the as-cast sample, as compared to the 

annealed sample (figure 4-59).   

As can be seen in figure 4-56, the taller but narrower first peak in the pair distribution 

function corresponding to the annealed sample indicates that annealing led to a slight structural 

relaxation, and hence atomic ordering in the BMG. The good fitting for relatively large r, as 

displayed in figures 4-58(a)-(b), implies that the strain at longer distances is similar to 휀𝑎𝑓𝑓𝑖𝑛𝑒. On 

the other hand, the local strain is smaller than the 휀𝑎𝑓𝑓𝑖𝑛𝑒 for the first nearest neighbor shell, which 

results in the local strain relaxation. Therefore, this local strain relaxation is most likely caused by 

the local topological rearrangement (LTR) of the BMG sample under an applied stress [256]. It 

can therefore be surmised that the BAM-11 BMG will become more ductile as the activated LTRs 

increase. Therefore, as compared to the as-cast sample, the annealed sample will be embrittled. 

As can be observed in figure 4-59, there was a larger difference in 𝛥𝜌2
0  during compression 

for the as-cast specimen as compared to the sample annealed at 300 oC for two weeks.  The above 

result suggests that annealing reduces the ductility of BAM-11.  If this change in ductility follows 

a similar trend as that of the free volume content, then it can be thought that neutron irradiation 

will lead to an increase in the ductility of the alloy.  Therefore, it can be thought for neutron 

irradiation that the softening that occurs in the BAM-11 BMG may correspond to an increase in 

the ductility of the alloy. Furthermore, the hardening experienced by the BAM-11 BMG after long-

term annealing at 300 oC (see figure 4-38) may perhaps correspond to a decreased ductility as 

observed by the in-situ compression results (see figure 4-58).   
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5.3.3 Compression Testing  

As shown in figures 4-50 and 4-51, the sample-entropy curves for the samples that were 

annealed at 300 oC for 1 and 2 weeks were noticeably different.  The higher sample entropy for 

the samples that were annealed indicates that there is a higher degree of “meaningful structural 

richness” [192] in the serrated flow.  Comparison with the compressive deformation behavior in 

figures 4-60 (b)-(c) and 4-61 (b)-(c) indicates that this richness in the dynamics may correspond 

to stress fluctuations that are more irregular.  

To better convey the concept of dynamical richness and irregularity, the sample entropy 

was plotted and compared for three different types of colored noise, namely brown, white, and 

pink noise [190].  These particular noises were chosen since they yield significantly different 

sample entropy profiles.  The results can be seen in figure 5-3, which contains plots for the three 

types of colored noises where the corresponding sample entropy data.  The entropy was plotted for 

scale factors of 1-30.  In addition, the noise plots contain both the original waveform and its 

associated coarse-grained average set, where the data was averaged over every 30 points. 

As mentioned previously, the sample entropy curves are noticeably different from each 

other.  For instance, the curve which corresponds to the white noise monotonically decreases for 

all scale factors.  This decrease in the sample entropy with increasing scale factor reflects the idea 

that white noise only has information on the shortest time scale [192].  On the other hand, the 

sample entropy for the brown noise increases monotonically.  While for the pink noise, the curve 

stays relatively constant over the given domain.   It should also be stated that for scale factors 

greater than 3, the sample entropy values for the pink noise are greater than those for the white and 

brown noise.  This result means that the pink noise contains more complex behavior across a wider 

range of spatio-temporal scales [193], as compared to the other types of aforementioned signals.  
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The idea that the pink noise is the most complex noise in nature has been discussed previously in 

the literature [190, 192, 459]. 

The above concepts become clearer once the sample entropy data is compared to the 

coarse-grained data sets.  For the white noise signal, coarse-graining the data set causes the 

amplitude to decrease in magnitude and become more regular.  The opposite was true for the brown 

noise, where coarse-graining led to more irregular fluctuations.  In the present context, irregularity 

means that given an arbitrary data point from the set, it will be harder to predict what value a 

subsequent point in the time series will be.  Pink noise, on the other hand, displayed no significant 

change in the dynamical behavior after coarse-graining.  The above statement combined with the 

fact that the sample entropy values for pink noise is greater than brown and white noise (scale 

factor > 3) implies that pink noise exhibits the most complex behavior, in general.    

Using the above ideas, we will now attempt to explain the sample entropy values that 

correspond to the time dependent serration behavior of the BAM-11 BMG.  For this analysis, we 

will assume that the information of the system, over time, is intimately related to the defect 

interactions during the serrated flow.  As discussed in [206, 458], metallic glasses are regarded as 

a topologically-disordered material that contains soft-zone defects. These defects are similar to 

liquid-like sites, which are lower in density and contain higher free volumes, or n-type defects 

[457], as compared to the matrix.  These lower-density regions are coupled with more condensed 

regions that are known as the anti-free volume, or p-type defects [238, 457].  Furthermore, during 

compression, the free volume content (and soft zone defects) in an amorphous alloy increases with 

an increase in the strain rate [460].  To compensate for an increase in the quantity of soft zones, 

there will also be an increase in the p-type (anti-free volume) defects [461] in the matrix.   
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Figure 5-3 Comparison of the sample entropy for brown, pink, and white noise signals. 
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The complexity in the serrated flow was also noticeably higher for the sample compressed 

at the higher strain rate (2 × 10-4 s-1) as displayed in figure 4-62.  It is known that an increase in 

the strain rate leads to an increase in the free volume during compression [460].  Furthermore, an 

increase in the local concentration of free volumes will eventually lead to the creation of voids that 

can spontaneously coalesce into microcracks [462].  Thus, with an increasing deformation rate, 

there should be a rise in the variety of interactions between adjacent microcracks in the matrix.  

This increase in the variety of interactions should consequently lead to serrated flow that exhibits 

more complex behavior.  

Therefore, an increase in the dynamical complexity of the serration behavior with an 

increasing strain rate may be linked to an enhanced frequency of defect creation at the higher strain 

rate [460].  Thus, a higher strain rate will lead to a greater number of both p-type and n-type defects 

that can interact with propagating microcracks during the serrated flow. This enhancement in the 

variety of interactions is reflected by the results of the RCMSE modeling and analysis where it 

increases for the higher compression rates.  In this context, the higher sample entropy of the 

serrated flow at the higher strain rate, namely 2 × 10-4 s-1, may correspond to weak spots that are 

more spatially linked, in general.  Also, the complexity may gauge the ability of weak spots to 

“communicate” with one another during an avalanche.  Therefore, if we relate the defect 

interactions to the information content of the dynamical system, the serrated flow will contain 

underlying dynamics that are of a more complex nature as the density of defects increases in the 

alloy. 

As for the higher sample entropy in the specimens that were annealed, it may be explained 

by the following.  After the specimens are annealed, the soft zone defects are reduced in numbers.  

As the sample is compressed, there is less of a barrier for propagating microcracks, which allow 
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them to interact at a higher rate.  Furthermore, the increase in the interaction rate results in an 

overlap of perennial plastic events which leads to a hierarchy of length scales, and hence more 

complex serrated flow at large time scales.  

 

5.3.4 Indentation Experiments  

The nanoindentation hardness vs. indentation depth data for the as-cast and annealed 

samples, as displayed in figure 4-41, indicates annealing to temperatures ranging from 150 - 300 

oC for 2 to 4 days led to a significant increase in the hardness of the material.  A slight increase in 

hardness due to the annealing of BAM-11 BMG has been reported in a previous study where the 

nanoindentation hardness (350 nm) increased by ~4 % after being heated at 310 oC for 30 minutes 

[449].  Similar to figure 4-20(a), all thermally annealed BAM-11 BMG specimens exhibited a 

more pronounced indentation size effect on the measured nanoindentation hardness as compared 

to the as cast sample.   

Although XRD was not performed on the unirradiated annealed samples, it was assumed 

that the specimens remained amorphous since a previous study found that the material did not 

crystallize during exposure to 300 oC for 48 hours [420].  This assumption is further confirmed by 

work performed by Li et al., where XRD patterns revealed that the BAM-11 BMG did not 

crystallize when heated at 300 oC for a week [206].  From these results, in addition to those from 

the specimens irradiated by 9 MeV Ni3+ to a midrange dose of 10 dpa, it can be said that both the 

BAM-11 and Cu based BMGs are limited to temperatures of 300 oC or lower due to thermally 

induced partial crystallization that occurs during long-term (7 hours) exposure at 360 oC.   

In terms of the ISE behavior for the as-cast and thermally annealed specimens, the poor 

linear fit between shallow (<450 nm indent depth) and deep indents (4-42, 4-43), indicates that the 
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model proposed by Nix and Gao [212], and Lam and Chong [209], are not quantitatively valid for 

the indentation hardness of the BAM-11 BMGs.  Furthermore, there were discrepancies when 

comparing the extrapolated hardness and the Vickers hardness results.  For the same model, the 

extrapolated hardness values were higher than the Vickers hardness, while the opposite was true 

for model prescribed by Lam and Chong.  Moreover, as compared to the as-cast state, the Vickers 

hardness was found to be less for the samples annealed at 150 oC and 200 oC (5.1 GPa vs. 4.9 GPa 

and 5.0 GPa), which appears contradictory to the results for the depth dependent hardness.  Since 

the standard deviation ranged from 0.01 to 0.07 for the above specimens, these changes appear to 

be statistically significant.  The above discrepancy may be the result of different deformation 

responses between the macroindentation and the ISE from nanoindentation.  The above 

discrepancies, when combined with the insufficiency of all three models to properly fit the data, 

suggests that a new model is needed to properly analyze the ISE in this BMG system. 

 

5.4 Helium Diffusion Experiments  

This section of the PhD work included three main objectives.  The first objective was to 

investigate the role of microstructure, such as grain boundaries, on the behavior of He.  This 

behavior includes diffusion, bubble formation (or lack thereof), and release.  The second objective 

was to gain a better understanding on the role of helium concentration on the diffusion of helium.  

The third and final objective was to examine the role of composition on the diffusion of He in the 

BMG.   

The lack of He peak broadening in the NRA results [see figures 4-66(a)-(d) and 4-67(a)-

(d)] suggests that there was no He diffusion in any of the samples heated at the investigated 

temperature conditions.  This lack of observable broadening in the profiles may be explained by 
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the following.  As the implanted specimen is being heated, He atoms diffuse only a small distance 

before encountering another He atom, forming atomic clusters.  Consequently, the clusters become 

immobilized.  Since these newly formed clusters probably only consist of a few atoms each, they 

would not be detected by the TEM.   

In contrast, the TDS results, as presented in figures 4-69(a)-(c), clearly showed that the 

helium diffused through the samples.  The sharp peak at ~470 oC (BAM-11 BMG) and ~505 oC 

(Cu BMG) in the figures for the amorphous BMGs indicates that the He release was associated 

with a phase change in the material.  For the Cu BMG, this phase change is most likely due to the 

crystallization of the alloy since it is around the reported Tx  (509 oC [358])  of the alloy.  However, 

for the BAM-11 BMG, the peak occurred above its crystallization temperature of 452 oC at 

approximately its second exothermic peak (467 oC) [368].  Therefore, the He release in the BAM-

11 BMG is more likely associated with the growth of a new crystalline phase in the already 

partially crystallized matrix.   

Furthermore, there were observable differences in the peaks for the amorphous and 

crystalline BAM-11 BMG samples.  This effect of structure on the peak is expected since the peak 

is usually associated with He release from various trapping sites that reach a given activation 

energy during the heating sequence [463].  It should also be mentioned that sharp peaks, as opposed 

to broad and overlapping peaks, are thought to correspond to distribution of gas pressure found in 

bubbles that is in concert with specific mechanical and microstructural properties [464].  In 

addition to the above, there were also some peculiar, yet interesting features in the spectra.  For 

instance, the stepwise peaks suggest that the trapping sites in the material consist of groups, yet 

similar dissociation energy.  In addition, the wide peaks in the figures are associated with multiple 

types of trapping sites in the material.  Finally, the crystalline BAM-11 BMG that was irradiated 
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to a fluence of 2 × 1015 cm2 exhibited no outgassing of helium until the temperature reaches values 

exceeding 700 oC. 

Figures 4-70(a)-(b), indicate that at an implantation fluence of 2 × 1015 cm-2, He outgassed 

faster in the in the partially crystallized BAM-11 and Cu BMGs.  On the other hand, this means 

that the He mobility was reduced in the fully amorphous BMGs.  This result appears to corroborate 

a previous study that observed relatively slower gas diffusion in a metallic glass.  Schirmacher et 

al. investigated the diffusion of hydrogen in Ni24Zr76 metallic glass ribbons [465].  Samples were 

implanted with hydrogen to a concentration of 8 at. %.  Quasi-elastic neutron scatting revealed 

that the hydrogen displayed subdiffusive motion in the observed frequency range of 2 × 109 s-1 ≤ 

ω ≤ 4 × 1010 s-1. The authors concluded that the anomalous behavior exhibited by the protons 

corresponded to activated jump diffusion processes with a broad distribution of activation energies. 

The reason for the slower diffusion in the fully amorphous BMGs may be explained by the 

following.  As the He diffuses through the amorphous matrix, anti-free volume sites provide a 

barrier for He motion due to their relatively small atomic spacing.  Since in this scenario there is 

less space for the He to move around, there is probably higher chance that He atoms will encounter 

one another as they migrate.  Furthermore, the greater atomic spacing in the free volume regions 

of the metallic glass may provide a stable region for He atoms to coalesce into bubbles where they 

could remain trapped. 

Other studies have also examined He diffusion in disordered materials.  For instance, Su et 

al. studied the He migration in amorphous SiOC [100].  Here, 50 keV He+ implantations were 

performed to a fluence of 1.58 × 1021 m-2,  which corresponded to a peak dose and He concentration 

of 10 atom % and 6 dpa, respectively.  Proton backscattering characterization revealed that the He 

outgassed at a rapid rate.  The rapid outgassing of the He in the SiOC was thought to result from 
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small He interstitial formation and migration energies as well as a negligible He dimer  interaction 

energies.  Altemose examined the He permeation rate in 20 different oxide glasses [466].  The 

results indicated that alkali ions inhibited the gas permeation as much as the heavier lead ions.  

From here he concluded that density played a role in the permeation of the He as it relates to the 

closeness of the packing of the network as opposed to the weight percent.   
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CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 
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6.1 Conclusions 

The main conclusions that have resulted from this thesis study are listed below.  In addition, 

suggested topics that should be pursued in the future are provided at the end of this chapter. 

 

6.1.1 Ion Irradiation Studies  

Results of the 9 MeV Ni3+ ion irradiations to a midrange dose of ~10 dpa ion irradiation 

and thermal annealing experiments revealed several interesting conclusions.  In terms of the BAM-

11 BMG, the maximum operating temperature for the alloy (Tg = 393 oC) appears to be limited to 

300 oC or lower.  This limitation arises from the thermally induced partial crystallization that 

occurs during  exposure to the above temperature for periods of time that exceed ~7 hours.  As 

indicated by the XRD characterization, irradiation does not appear to lead to any obvious radiation-

enhanced partial crystallization of the irradiated samples.  Increased hardening was observed in 

the samples irradiated by 9 MeV Ni3+ ions to a midrange dose of ~10 dpa  at 360 oC (~7 hours), 

and is attributed to the thermally induced partial crystallization of the sample. Subsequent TEM 

characterization provided evidence that the sample only partially crystallized during irradiation at 

the highest temperature.  In terms of the lower temperature irradiations (25-290 oC), only slight 

changes in hardness were observed following (25 dpa at peak damage region).  

A pronounced indentation size effect was exhibited by all of the BAM-11 BMG samples 

for the measured nanoindentation hardness and elastic modulus.  This behavior was particularly 

evident for indentation depths below ~200 nm.  Three different extrapolation models were used to 

analyze this phenomenon in the BAM-11 BMG.  Unfortunately, none of these models provided a 

linear fit to the data.  For instance, the Nix-Gao model, which pertains to dislocation mechanics in 
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crystalline solids, is not expected to work for BMGs since these materials arew noncrystalline and 

do not contain dislocations.  A model that has been applied to noncrystalline materials (Lam and 

Chong) was also examined.  Although the model produced a slightly better fit to the 

nanoindentation data as compared to Nix and Gao model, it was still unsuccessful for obtaining 

the predicted linear fit.  A third model, which has been applied to thin film metallic glasses, was 

also unsuccessful since like the other models, it did not provide a linear fit to the data.  

Furthermore, it provided nonsensical values for the characteristic length, h* and the fraction of 

fertile sites in the matrix.  Based on the observed poor fitting of the nanoindentation results with 

existing indentation size effect models,  a new model may be needed to study the ISE in the BAM-

11 BMGs.  

A similar investigation which examined the irradiation response of  Cu60Zr20Hf10Ti10 BMG 

after exposure to the same irradiation conditions as above, led to several important results.  As  

with the BAM-11 BMG, the maximum operating temperature for the Cu BMG was determined to 

be ~300 oC since partial crystallization occurred during prolonged (~7 hours) exposure to an 

environmental temperature of 360 oC.  Furthermore, there does not appear to be any pronounced 

radiation-enhanced crystallization of the irradiated samples at 25-290 oC, as indicated by the XRD 

patterns.  The subsequent TEM characterization revealed that the crystallites in the sample 

irradiated at 360 oC consisted of various morphologies.  Rietveld refinement also showed that the 

crystallized portion of the specimen that was irradiated at the above temperature was comprised of 

tetragonal Cu-Ti (P4/mmc) and hexagonal Cu-Zr-Ti (P63/mmc) and phases.   

The nanoindentation hardness also behaved in a similar fashion to the BAM-11 BMG.  For 

instance, after irradiation by 9 MeV Ni3+ ions to a midrange dose of ~10 dpa (peak dose of 25 dpa) 

at temperatures of 25 o and 290 oC only slight changes were observed in the hardness.  On the other 
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hand, irradiation at 360 oC for ~7 hours led to a significant increase in the hardness at all 

indentation depths.  Similar to the BAM-11 BMG, this hardening was associated to the partial 

crystallization that occurred due to thermal annealing effects.  This significant hardening at all 

depths indicates that the partial crystallization was not caused by irradiation, but by thermal effects.   

With respect to the irradiated region of the surface, all of the specimens displayed a 

pronounced indentation size effect, similar to the BAM-11 BMG. Unirradiated as-cast specimens 

also exhibited a pronounced indentation size effect. The nanoindentation experiments revealed that 

as compared to the as-cast state, there was no apparent change in the depth dependent hardness 

during irradiation at room temperature to 290 oC.  The Lam and Chong extrapolation method, that 

has been previously used to examine the ISE in metallic glass, was employed on Cu BMG.  

However, the analysis revealed that the model provided a poor quantitative fit to the 

nanoindentation hardness data.  This failure suggests that, like with the BAM-11 BMG, a new 

model is needed to properly analyze the ISE phenomenon in amorphous alloy systems. 

In addition, other experiments examined the effects of 9 MeV Ni3+ and 5.5 MeV C+ ion 

irradiation (midrange dose of 0.5 dpa) on the microstructural and mechanical behavior of BAM-

11 and Cu based BMGs.  For this study, nanoindentation and microstructural characterization were 

performed on BAM-11 and Cu based BMGs to examine the radiation response of the alloy.  

Specimens were irradiated by 9 MeV Ni3+ and 5.5 MeV C+ ions to a midrange dose of 0.5 dpa at 

temperatures ranging from ambient to 360 oC.  To further examine the effects of collision cascades 

on the nanoindentation behavior, samples were irradiated by neutrons (E > 0.1 MeV) to a dose of 

0.1 dpa at ~90 oC.  In general, the lack of observed cavity formation in addition to a small change 

in density and hardness indicate that the BMG exhibited good radiation resistance.  
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 There was no evidence for pronounced irradiation spectrum effects on the nanoindentation 

mechanical properties behavior of the two investigated BMGs following irradiation with 9 MeV 

Ni ions (relatively high average primary knock-on energy of ~20 keV) versus 5.5 MeV C ions 

(relatively low average primary knock-on energy of ~5 keV).There was some indication of slightly 

increased hardening for the Ni ion irradiation conditions compared to the C ion irradiation 

conditions at 25, 290 and 360 oC. 

   

6.1.2 Neutron Irradiation Studies  

In addition to the ion irradiation, BAM-11 BMG specimens were irradiated by neutrons (E 

> 0.1 MeV) to a dose of 0.1 dpa (fluence of 1.4 × 1020 cm-2) at ~70 oC.  Neutron irradiation and 

thermal annealing were observed to act as competing processes with regards to their effect on the 

mechanical and microstructural properties of the BAM-11 BMG. For instance, annealing after 

irradiation largely reversed the atomic disordering effects caused by the irradiation.  

Nanoindentation hardness measurements found that irradiation led to softening in the alloy while 

annealing caused an increase in hardness.  Similarly, the sample density was reduced by ~2% after 

neutron irradiation but was increased by ~1% after annealing at 300 oC. Neutron diffraction results 

indicated that primary knock-on events caused rejuvenation (disordering) while annealing resulted 

in structural relaxation.  However, flexural bend bar testing indicated very low tensile elongation 

for all test conditions (neutron irradiated and thermal annealed). In general, an increase in the 

disorder of the matrix is linked to a softening of the alloy and perhaps also linked to a higher 

concentration of soft-zone defects in the matrix.  Furthermore, results indicate that hardening 

caused by heat treatment corresponds to structural relaxation, densification, and a loss of ductility 
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in the alloy.  Finally, the decrease in the ductility appears linked to the annihilation of soft-zone 

defects, and thus the free volume of BAM-11 BMG. 

 

6.1.3 Thermal Response Studies 

For the thermal response studies, there were three main objectives.  The first objective was 

to examine how annealing affected the complexity of the serrated flow in the BAM-11 BMG.  The 

second objective was to investigate how the crystal structures evolve in the matrix of the BAM-11 

BMG and the Cu based BMG.  Finally, the third objective was to elucidate how temperature effects 

the ductility of the BAM-11 BMG via in situ synchrotron XRD compression testing. 

With respect to the first goal, it was found that both annealing and increased strain rate 

resulted in a noticeable increase in the complexity of the serrated flow exhibited by the BAM-11 

BMG during compression.  As for the first factor, it was believed that an increase in the strain rate 

leads to the creation of free volume content and its associated defects during compression.  These 

newly formed defects will then interact in a more varied way during deformation, leading to the 

higher sample entropy values.  As for the effects of annealing, the destruction of the soft zone 

defects increases the interaction rate between propagating cracks in the matrix.  Consequently, this 

increase in the activity during the serrated flow leads to interactions spanning a hierarchy of 

spatiotemporal scales, resulting in more complex serration behavior. 

Additionally, the synchrotron XRD compression tests linked the temperature induced 

structural relaxation of the alloy to a loss of ductility and increase in nanoindentation hardness, 

which agrees with the literature.  Furthermore, results indicate that nanoindentation hardening 

caused by heat treatment corresponds a loss of ductility in the BAM-11 BMG.  Finally, the 
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decrease in the ductility appears linked to the annihilation of soft-zone defects, and thus the free 

volume of BAM-11 BMG.   

 

6.1.4 Helium Diffusion Studies 

This dissertation also focused on the study of helium behavior in BMGs which are potential 

candidates in nuclear fusion systems. These alloys are promising candidates since they have high 

strength, hardness, shape formability, and lack grain boundaries that can trap helium.  Furthermore, 

it is thought that the free volume in these material systems might provide a pathway for efficient 

He release.  

According to the NRA results, it was found that the He did not diffuse in any of the 

specimens that were annealed at temperatures ranging from 250 to 600 oC.  Furthermore, TEM 

analysis revealed that bubbles did not form in the matrix.  Therefore, it was thought that perhaps 

He atoms coalesced to form atomic clusters with sizes that were below the resolution of the TEM.  

On the other hand, the lack of peak broadening may have been related to the insensitivity of the 

solid-state detector apparatus.  However, for the TDS experiments, He was found to exhibit 

interesting off-gassing behavior in a couple of the specimens.  This interesting behavior was 

thought to be associated with sets of distinct sites where gas was released.  At the current moment, 

however, the origin of these trapping sites is not well understood.   

 

6.2 Suggestions for Future Work  

The following is suggested for future work: 
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1. More work needs to be done to examine the indentation size effects in BMGs.  To 

achieve this goal, a couple of approaches could be done.  A good step would be to 

perform nanoindentations using a constant deformation rate vs. constant loading 

rate, with each analyzed using Nix-Gao and the Lam-Chong models.  

2. Perform further investigations on the He diffusion in BMGs.  As for the nuclear 

reaction analysis, should conduct higher flux implantations on amorphous and 

partially crystallized BMGs to examine the effects of grain boundaries on bubble 

formation in the matrix.  Finally, could perform complementary experiments such 

as laser induced breakdown spectroscopy to gain a more fundamental 

understanding of the diffusion behavior in the BMGs. 

3. Further irradiation studies on the neutron irradiated and annealed samples to 

elucidate the interplay between relaxation and rejuvenation effects in the BMGs.  

For instance, differential scanning calorimeter experiments could be performed on 

the specimens to elucidate the effects of neutron induced disordering and thermal 

reordering on the fictive temperature of the BMG.  Since the fictive temperature is 

related to the ductility of the BMG, a possible link could be established between 

the irradiation induced structural modifications and the ductility of the material. 

4. Perform compression testing on the neutron irradiated samples to examine the 

effects of irradiation on the complexity of the serrated flow in the alloy.  This 

experiment would be important since such a study has never been performed.  

Furthermore, the results of the experiment would help elucidate the relationship 

between the creation of soft-zone defects and the way in which the microstructure 

behaves during stress-drop events. 
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5. Conduct in situ stress relaxation and creep testing on the BAM-11 and Cu BMGs.  

Here, X-ray diffraction would be performed at temperatures ranging from room 

temperature to 90 % of the melting temperature under vacuum.  These experiments 

would have the goal of examining the link between the collective defect behavior 

and the microstructure, especially during the crystallization of the samples.     

6. Perform dual beam He irradiation studies on the BMGs to better simulate reactor 

conditions.  Here, the specimens would be simultaneously irradiated by a midsized 

ion such as Ni, and He under a range of temperatures ranging from ambient to 90% 

of the melting temperature.  Characterization techniques such as nanoindentation, 

TEM and XRD would be employed to examine the effects of dual irradiation on 

the microstructural and mechanical properties of the alloys. 
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