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Abstract

The Standard Model (SM) is one of the most complete theories of fundamental

particle physics. Despite its wide success, there are still mechanisms for which the SM

does not account. Neutrino flavor oscillations, the observed baryon asymmetry, and

the dark matter puzzle make it clear that there must exist a sector of physics which

is beyond the standard model (BSM). As such, a plethora of BSM extensions have

been proposed, necessitating experiments with the ability to validate or set limits

upon these extensions. Beta decay spectrum shape measurements provide the ability

to probe possible scalar and tensor current interactions not included in the SM. The

Nab experiment and a related 45Ca beta spectrum measurement aim to measure the

Fierz interference term ‘b’, which is a purely BSM decay correlation parameter. The

following will discuss some aspects of the Nab experiment as well as the current limits

placed on ‘b’ by the aforementioned 45Ca beta spectrum measurement.
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Chapter 1

Introduction

1.1 Nuclear Decay History

Nuclear radioactivity was first discovered by Henri Becquerel in 1896 while

experimenting with photographic plates [1–3]. Subsequent discoveries made by Peter

and Marie Curie as well as Hans Geiger and Earnest Rutherford began to illuminate

the emerging field of nuclear physics. Rutherford categorized the observed decay

modes as alpha, gamma, and beta decay, depending on the penetration depth of the

particle ejected from the radioactive nucleus. Initially, alpha decay was characterized

as having the smallest penetration depth. A few sheets of paper was more than

sufficient to shield from alphas. Charge-to-mass measurements would eventually lead

to the identification of the alpha particle as a 4He nucleus. The particles emitted

in beta decay were termed “beta rays” and were somewhat more penetrating than

alpha particles. Eventually, Becquerel’s measurement of the charge-to mass ratio of

these “beta rays” proved to be consistent with that of J.J. Thomson’s “cathode ray”

charge-to-mass measurements. Hence the “beta ray” was identified as an electron.

Gamma rays were initially thought to be neutral, massive, highly energetic particles.

Gamma radiation was observed to be the most penetrating form of radiation and its

trajectory was unperturbed by the presence of a magnetic field. Rutherford would

1



go on to find that these gamma rays could be reflected from a crystal surface and

established that these gamma rays were in fact electromagnetic radiation [4].

As the field matured and new experimental techniques were developed, energy

measurements for these decay particles became tractable. This was particularly

intriguing for beta decay measurements due to the unexpected nature of the observed

electron energy spectrum. At the time, beta decay was thought to be a two-body

process, which should give rise to a very narrow band of allowed electron energies. In

actuality, a continuous electron energy spectrum was observed. An understanding of

the underlying cause eluded physicists until 1930, when Wolfgang Pauli proposed a

three-body process to explain the observed spectrum of beta decay. In addition to the

electron, it was postulated that a neutral particle is also ejected from the beta decaying

nucleus. This particle was initially termed a neutron by Pauli, and the assumption was

that this ejected particle resided in the nucleus. James Chadwick would go on to show

that the mass of the nuclear neutron was too large to be consistent with the ejected

particle proposed by Pauli. Hence the posited neutral particle ejected in a beta decay

process was renamed to neutrino, or “small neutron” in Italian. Shortly thereafter,

Enrico Fermi developed a formalism for beta decay where a neutron decays into a

proton and emits an electron and said neutrino [5]. Direct detection of the neutrino

was finally achieved by Clyde Cowan and Frederick Reines [6], which confirmed Pauli’s

hypothesis and Fermi’s formalism.

Since the direct detection of the neutrino, the field of nuclear physics has taken

substantial leaps. Several other modes of nuclear decay such as spontaneous fission [7],

single and two-proton emission [8–10], neutron emission, and a whole host of various

forms of beta decay have since been observed. From Rutherford’s initial perception

that radioactive decay rates obey Poisson statistics and Fermi’s model of the nuclear

interaction [5] to the development of the Standard Model (SM) [11–13] and a plethora

of effective field theories [14], the theoretical framework to describe nuclei has also seen

much development. Nevertheless, 120 years after its advent, there are still countless

avenues worth exploring in nuclear physics.
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1.2 Beta Decay and the Standard Model

The Standard Model of particle physics describes the interaction of elementary

particles on the most fundamental level. The theory has withstood test after test

and numerous predictions have been made with SM roots [11–13, 15, 16], which were

later observed by experiment[17–19]. Although the theory has not yet been shown

to be incorrect, it is clear that it is incomplete. One of the most glaring deficits is

the absence of a gravitational interaction. The trajectories of celestial bodies can

be determined to high precision with Newtonian Mechanics an General Relativity.

However, there are no candidate mediating bosons or interactions currently included

in the SM that can give rise to this long-range gravitational interaction that is so well

understood macroscopically. According to the SM, neutrinos are massless particles.

The absence of neutrino mass implies that each so called neutrino flavor state would

be completely stable. Various experiments however have observed neutrino oscillation

between flavor states [20–22]. The SM is also unable to address the apparent baryon-

antibaryon asymmetry. There are no mechanisms included in the SM which give a

preference to the production of baryons to antibaryons to a degree that is consistent

with current observations. The majority of the known universe is composed primarily

of baryonic matter. Various searches have limited the possible existence of anti-

baryonic to amounts inconsistent with the SM [23–25]. Forays into these research

topics and others search for so called Beyond Standard Model (BSM) processes or

structures to explain one or more of the aforementioned discrepancies.

1.2.1 SM Particle Content

The SM itself is a quantum field theory (QFT) which describes interactions of

fundamental particles in terms of fields. In much the same way the interaction of

electric charges can be described in terms of electric and magnetic fields, fundamental

interactions are governed by particle fields in the SM. These particles can be found in

Fig. 1.1. Note that the abbreviations used in Fig. 1.1 will be used for the remainder
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Figure 1.1: The above shows the particles included int the SM. [26]. The fermions
(quarks and leptons) consit of six flavors, and are all spin 1/2 particles. The vector
bosons are all spin 1 particles and are the mediators for the SM interactions. The
Higgs boson is a spin 0 (scalar) boson which couples to fermions and the Z and W
bosons, which gives rise to nonzero masses.
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of the document, i.e. an up quark will be represented by u, a down quark by d, and

so on.

All leptons and quarks are considered fermions, spin 1
2

particles. There are six

lepton types or flavors as well as six anti-lepton flavors which have equal mass but

opposite charge to the corresponding lepton flavor. The only stable lepton is the

electron. All others decay into lighter species, or in the case of the neutrinos, oscillate

between neutrino flavors. The fundamental unit of charge is given in terms of the

charge of the electron. Neutrinos are neutral leptons with no electric charge, while

the remaining leptons have a charge of 1. There are also six quark flavors with an

accompanying six anti-quark flavors. The charges of the quarks are either 2
3

or −1
3
.

Due to the strength of the strong force which binds quarks to one another (discussed

further in Sec. 1.2.2), quarks are not isolated particles. Instead, they typically form

composite particles called hadrons. Hadrons with an even number of quark anti-

quark pairs are referred to as mesons. Hadrons which are composed of three quarks

are referred to as baryons. Protons and neutrons are examples of baryons.

All spin 1 or spin 0 particles are called. These bosons are responsible for mediating

the various interactions between SM particles. Spin 1 bosons are referred to as vector

bosons, since its spin may be projected along some axis, taking on values of -1, 0 or

1 for massive bosons. For massless bosons, the spin projection can take values of -1

or 1. The vector bosons include the photon, gluon, Z, W+ and W− (W±) bosons.

The gluon and photon are electrically neutral, massless and are involved in strong

and electromagnetic interactions respectively. The Z and W± bosons are massive

bosons which take part in the weak interaction. The W± bosons carry an electric

charge of ±1, and the Z boson is neutral. Spin 0 bosons are referred to as scalar

bosons. The Higgs boson is the only fundamental scalar boson present in the SM. It

is a chargless, massive boson, which is responsible for the generation of mass terms

in the SM Lagrangian. Observation of and measurement of its mass has been the

driving force for many large-scale collider based experiments. The first observation

was achieved in 2012 via proton-proton collisions [19].
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1.2.2 SM Interactions

The Higgs Couplings

The Higgs boson couples to all massive particles. In effect the Higgs boson can

decay into any massive particle with a strength that goes as m
mH

, where m is the mass

of the outgoing particle(s) and mH is the mass of the Higgs. The coupling of each

particle to this Higgs field gives rise to non-zero particle masses. The Higgs boson

also participates in self-interactions or self-couplings whereby multiple Higgs bosons

interact.

The Strong Interaction

The strong interaction is mediated by gluons. This interaction occurs between

quarks and gluons. Both gluons and quarks carry an additional “color” charge. Unlike

electric charge which consists of a single type of charge, color charge is one of three

types. The standard colors used to denote the type of color charge for a given quark are

red, green and blue. The corresponding color charges for the antiquarks are denoted

as anti-red, anti-blue, or anti-green. A quark carries one of the three possible color

charges. A gluon carries some combination of color-anticolor charges. The strong

interaction between quarks occurs via the exchange of a gluon. The interaction of a

gluon with each quark results in a quark color change. This exchange is responsible

for the binding of quarks to form hadrons. Hadrons are referred to as colorless, as they

either contain quarks of all three colors (or anticolors) or are composed of a color-

anticolor pair. At the length scale of hadrons, the strong force does not diminish with

increasing distance. Additionally, the strength of the strong force as measured by the

size of the coupling constant (relative to the other fundamental interactions at this

length scale) is the largest of all forces. Thus at some distance, the action of separating

two quarks requires enough energy to produce another quark-antiquark pair from the

vacuum, which bind to the original two quarks producing two (colorless) hadrons.
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This is known as color confinement and is thought to be responsible for the lack of

observations of isolated quarks.

Because these colorless hadrons are composite particles, there exists a residual

strong interaction between hadrons, similar to the residual Coulomb interaction

between to neighboring neutral molecules. This residual strong force is responsible

for the binding of nucleons into nuclei. At length scales much smaller than 1 fm, the

residual force is repulsive. At the range of a few fm, the net force is attractive, but

quickly diminishes with increasing distance.

The Electroweak Interaction

The electroweak interaction, as the name implies, includes the weak and electro-

magnetic interactions. There are three sectors to the elctroweak interaction: the boson

self-interactions, the “neutral current” and the “charged current” sectors. The self-

interactions consist of the possible interactions among the photon, Z and W bosons.

The neutral and charged current sectors concern the fermion to W/Z boson or photon

couplings. In the neutral current sector, a fermion couples to one or both of the neutral

vector bosons: the photon or Z boson. When the involved energy scale is much smaller

than that of the rest mass of the Z boson, interactions are predominantly mediated by

the photon and are electromagnetic in nature. At these scales, the resulting formalism

is consistent with Quantum Electrodynamics. As energy tends towards the mass of

the Z-boson, the Z-boson contribution becomes more relevant and must be included.

In addition to spin, mass, and charge, a particle field also has a “handedness”. The

handedness of a particle is only relevant to the weak charged current interaction, as the

strong and weak neutral current interactions show no preference for the handedness

of a particle and are thus parity conserving. The charged current interaction however

only couples left handed particles or right-handed antiparticles to the W bosons. The

parity violating nature of this interaction was first demonstrated in Ref. [27]. This

experiment involved the observation of electron emission direction in the beta decay

of polarized 60Co. Under a parity conserving charged current sector, the preferred
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direction of emission would be independent of the the nuclear polarization. However,

the experiment showed a preferential direction of emission opposite to the spin of

the polarized nucleus and thus established the parity violating structure of charged

current processes.

Weak charged current interactions couple left-handed fermions to a W boson. The

“charged” portion of the terminology originates from the fact that the mediating

boson is a W+ or W− boson, which carries an electric charge. It is only this

process through which a fermion flavor change can occur. Strong and neutral current

interactions are flavor conserving and do not change the respective flavor of the

fermions involved. As such, all forms of beta decay are charged current processes.

A Formalism for Beta Decay: The Electroweak Lagrangian

Beta minus decay is the mechanism by which a neutron (n) transitions into a

proton (p) via the emission of a virtual W− boson which decays into an electron (e−)

and electron anti-neutrino (νe−). Within this document all symbols used to represent

anti-particles will be written as the standard symbol with an overbar. The electron

neutrino is written as νe− , hence the electron anti-neutrino is written as νe− .

n→ p+ e− + νe− (1.1)

A
ZX → A

Z+1 X
′ + e− + νe− (1.2)

In the above, X is an example nucleus with Z protons and A total number of

nucleons in X. To first order, the likelihood of the transition is dictated energetically.

If the transition is not energetically forbidden, it can occur. Thus a nucleus (termed

the mother) may beta decay into a daughter nucleus if enough energy is available. For

ground state nuclei, a nucleus may beta decay if the daughter product is less massive

than the mother. Because this principle is true for any physical process, it also holds

for the charge conjugated process where a nuclear proton transitions to a neutron via
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Figure 1.2: A neutron is composed of an up quark and two down quarks. A down
quark decays into an up quark via the emission of a virtual W− boson, which decays
into an electron and electron-antineutrino.

the emission of a virtual W+ boson. The W+ promptly decays into a positron and

electron neutrino. This process is known as beta plus decay and can be written as:

A
ZX → A

Z−1 X
′ + e+ + νe− (1.3)

All beta decay processes can be represented by any particle-antiparticle rearrange-

ment of Eqs. 1.2 and 1.3. The material below is only concerned with beta minus decay,

and beta minus decay will simply be referred to as beta decay henceforth.

Returning to the SM, beta decay can be described at the quark level by the

electroweak charged current interaction, whereby a down quark of the neutron

transitions to an up quark through emission of a virtual W− boson. The virtual

vector minus boson decays into an electron and electron antineutrino (see Fig. 1.2).

To mathematically describe this process, a Lagrangian QFT formalism is typically

used. The form of the SM charged current Lagrangian governing the transition on

the quark level is given as [28]:

LSM
CC =

ig2

2
√

2

[
W−
µ

(
e′mγ

µ (1 + γ5) ν ′m +
(
V †
)
mn
d
′
mγ

u (1 + γ5)u′n

)]
(1.4)
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Where g2 is the weak gauge coupling, g2 = 2MW

v
, MW the mass of the W boson, v

the vacuum expectation value, W−
i is the i’th component of the W− field, and γi the

i’th Dirac matrix, V †ij is the conjugate of the Cabbibo-Kobayashi-Maskawa matrix.

e, ν, u, and d denote the quark or lepton Dirac spinor type, and the subscripts n and m

denote the quark or lepton flavor. For example u1 = u represents the up quark Dirac

spinor, e2 = µ denotes the muon Dirac spinor, and d3 = b represents the bottom

quark Dirac spinor. Also note that repeated indices indicate Einstein summations.

Note that this interaction only includes a vector (fγµf
′) and axial vector (fγµγ5f

′)

interactions. This need not be the only type of interaction included. The most general

interaction would also include scalar (ff ′), pseudoscalar fγ5f
′, and tensor (fσµνf

′)

contributions as well, see Ref. [29].

Effective Field Theories for the Weak Interaction

To deal with the complexity of the Lagrangian one may recast it in terms of

relevant energy scales, i.e. an effective field theory (EFT). The quintessential example

of an EFT is quantum electrodynamics (QED). While not necessarily developed as an

EFT, the QED lagrangian results when the SM electroweak Lagrangian is restricted

to interactions between charged particles with energies less than twice that of the

muon rest mass. The advantage of such a method is that numerical calculations may

be greatly simplified when performed in terms of an EFT. Additionally, an EFT can

be used when much higher energy processes (or much heavier mediating particles)

are relevant but not well known, and the low energy implications of their inclusion

are desired. In such cases, operators are constructed from the well-understood fields

and expanded in terms of the heavier particle mass.

The first principle in constructing an effective field theory is to identify the relevant

energy scale. For the transition of a down quark into an up quark (i.e. a beta decay

process), an EFT may be constructed by restricting the particle content to at most

the mass of the down quark. Hence the relevant degrees of freedom (included particle

content) are the up and down quarks, the electron, and the neutrinos. The full
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W 

Figure 1.3: Shown above on the left is the transition of one fermion to another via
the emission of a virtual W boson. With an appropriately modeled EFT, the diagram
can instead be reduced to that on the right. Two 3-particle vertices with a virtual W
boson internal line can instead be represented as a 4-particle vertex with an effective
coupling.

calculation of transition probabilities would ordinarily include the W boson field

and its propagation. Within an EFT framework where the energy of the incoming

and outgoing particles are much smaller than the rest mass of the W boson, the

momentum of the virtual W boson is negligible in comparison to its rest mass. The

intermediate states can therefore be accounted for with a simple approximation which

depends only on the intermediate particle mass. The SM charged current Lagrangian

of Eq. 1.4 becomes:

LSM
CC = eWW

−
µ C

µ

→L′CC =
GF√

2
CµC∗µ (1.5)

with Cµ :=
∑3

m=1

[
ieγµ (1 + γ5) νe +

∑3
n=1 iU

∗
nmdmγ

µ (1 + γ5)un
]

and GF√
2

=
g22

8M2
W

[28]. This effectively takes two three-particle vertices with virtual particle propagation

and replaces the diagram with a four-particle interaction (see Fig. 1.3). Instead of

evaluating the full propagation of the virtual W boson, the process is approximated

by a four particle vertex with an effective coupling given by GF .
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The above is a SM EFT with Vector - Axial Vector (V-A) operators. A BSM EFT

of beta decay may be constructed by postulating that heavier BSM particles exist

and play a role in beta decay. Then in addition to the V-A SM operators additional

operators can be included with an interaction strength (coupling constant) which

scales as
(

1
Λ2

)n
, where Λ is the mass or energy scale of the BSM particle.

Ref. [30] developed a low-scale effective Lagrangian for semi-leptonic charged-

current transitions. The EFT includes the standard up u, down d, electron e, and

neutrino ν fields along with an additional right-handed neutrino state. The effective

couplings εi : i ∈ {P,S,T,L,R} are pseudoscalar, scalar, tensor, left and right handed

couplings, respectively. These couplings scale as εi, ε̃i ∝
(
mW

Λ

)
, and their exact form

in terms of weak-scale couplings can be found in [30]. The energy scale was restricted

to be on the order of 1 GeV. The resulting quark level Lagrangian is given as [30]:

Leff =− GFVud√
2

[
(1 + εL) eγµ (1− γ5) νe · uγµ(1− γ5)d (1.6)

+ ε̃Leγmu (1 + γ5) νe · uγµ (1− γ5) d

+ εReγµ (1− γ5) νe · γµ (1 + γ5) d+ ε̃Reγµ (1 + γ5) νe · uγu (1 + γ5) d

+ εSe (1− γ5) νe · ud+ ε̃Se (1 + γ5) νe · ud

− εP e (1− γ5) νe · uγ5d− ε̃P e (1 + γ5) νe · uγ5d

+ εT eσµν (1− γ5) νe · uσµν (1− γ5) d+ ε̃T eσµν (1 + γ5) νe · uσµν (1 + γ5) d

]
+ h.c.

where h.c. is the Hermitian conjugate of the terms listed, σµν = i
2

[γµ, γν ],

GF/(~c)3 = 1.1663787(6) GeV−2 [31] is the Fermi coupling constant and is related

to the vacuum expectation value v by GF√
2

=
e2W
M2
W

=
g22

8M2
W

= 1
2v2

. Vud is the ud

element of the Cabibbo-Kobayashi-Maskawa matrix, which represents the coupling

strength of the transition from a down quark to an up quark. Currently, the most

precise value of |Vud| is obtained from super-allowed 0+ → 0+ beta decays with
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|Vud| = 0.97420 ± 0.00021 [31, 32]. The contributions from terms involving right

handed neutrino (terms with ε̃i) are very small, and can be neglected [14]. The

resulting lagrangian is given as:

Leff = −GFVud√
2

[
ēγµ (1− γ5) νe · ūγµ (1− (1− 2εR)γ5) d

+ εS ē (1− γ5) νe · ūd

− εP ē (1− γ5) νe · ūγ5d

+ εT ēσµν (1− γ5) νe · ūσµν (1− γ5) d

]
+ h.c. (1.7)

Note that the operators included in the above Lagrangian are written in terms

of up and down quark fields. To write any beta decay observables in terms of these

BSM couplings, the corresponding neutron-proton matrix must be evaluated for each

operator involved. In effect
〈
p | Ôi | n

〉
i ∈ {P, S,T,L,R} = gi

〈
u, e−, νe | Ô | d

〉
,

where gi is a Lorentz-invariant form factor which depends on the momenta of the

proton and neutron. This was carried out in Ref. [33]. The Lagrangian of Eq. 1.7 can

then be evaluated at the nucleon level and compared that of Lee and Yang in Ref.

[29]. The comparison yields the following relations to the Lee-Yang coupling constants

Ci : i ∈ {P,V,A,S,T} [30]:
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Ci =
GF√

2
VudCi

CV = gV (1 + εL + εR + ε̃L + ε̃R)

C
′
V = gV (1 + εL + εR − ε̃L − ε̃R)

CA = −gA (1 + εL − εR − ε̃L + ε̃R)

C
′
A = −gA (1 + εL − εR + ε̃L − ε̃R)

CS = gS (εS + ε̃S) (1.8)

C
′
S = gS (εS − ε̃S)

CP = gP (εP + ε̃P )

C
′
P = gP (εP − ε̃P )

CT = 4gT (εT + ε̃T )

C
′
T = 4gT (εT − ε̃T )

Beta decay observables then derived in terms of the Lagrangian of Lee and Yang

can thus now be written in terms of the above EFT BSM coupling coefficients.

1.2.3 The Beta Decay Distribution

A general beta decay distribution was derived in Refs. [9, 34]. For nuclei with spin

J, the distribution is given in Ref. [9] as:

w
(
〈J〉 | Ee,Ωe

)
dEedΩedΩν =

F (Z,Ee)

(2π)5
peEe (E0 − Ee)2 dEedΩedΩν× (1.9)

ξ

{
1 + a

pe · pν
EeEν

+ b
me

Ee
+
〈J〉
J
·
[
A

pe
Ee

+B
pν
Eν

+D
pe × pν
EeEν

]}

Where me, pe, Ee are the outgoing electron mass, momentum and energy

respectively; E0 is the endpoint energy of the beta decay spectrum; pν and Eν are the
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neutrino momentum and energy; and F (Z,Ee) is the Fermi function which accounts

for the dominant Coulomb interaction between the outgoing electron and the daughter

nucleus with Z protons. For unpolarized nuclei, 〈J〉 = 0, and Eq. 1.9 becomes:

w
(
Ee,Ωe

)
dEedΩedΩν =

F (Z,Ee)

(2π)5
peEe (E0 − Ee)2 dEedΩedΩν× (1.10)

ξ

{
1 + a

pe · pν
EeEν

+ b
me

Ee

}

Coulomb distortion and relativistic corrections were neglected in the above ex-

pressions. As such, the expression is independent of pseudoscalar coupling constants.

The expressions for ξ,ξa, and ξb are given in terms of the Lee-Yang coupling constants

as [9, 14]:

ξ = |MF |2
(
|CV |2 + |C ′V |

2
+ |CS|2 + |C ′S|

2
)

(1.11)

+ |MGT |2
(
|CA|2 + |C ′A|

2
+ |CT |2 + |C ′T |

2
)

ξ × a = |MF |2
(
|CV |2 + |C ′V |

2 − |CS|2 − |C ′S|
2
)

(1.12)

− |MGT |2

3

(
|CA|2 + |C ′A|

2 − |CT |2 − |C ′T |
2
)

ξ × b =± 2γRe
[
|MF |2 (CSC

∗
V + C ′SC

′∗
V ) + |MGT |2 (CTC

∗
A + C ′TC

′∗
A )
]

(1.13)

γ :=
√

1− (αZ)2, where α is the fine structure constant. If these expressions are

evaluated at the linear level in terms of the non-standard (BSM) Lee-Yang coupling

constants as in [14]:
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ξ ≈ |MF |2

2
|CV + C ′V |

2 (
1 + |ρ̃|2

)
(1.14)

a ≈
1− 1

3
|ρ̃|2

1 + |ρ̃|2
(1.15)

b ≈ ±2γ
1

1 + |ρ̃|2
Re

(
CS + C ′S
CV + C ′V

+ |ρ̃|2 CT + C ′T
CA + C ′A

)
(1.16)

Where ρ̃ :=
CA+C′A
CV +C′V

MGT

MF
, which in the SM limit goes to ρ̃ → ρ = −gAMGT

gVMF
, the

Fermi/Gamow-Teller mixing ratio for the transition in consideration.

The important feature of eq. 1.16 is that the decay correlation parameter ‘b’,

which is known as the Fierz interference term, is linear in scalar and tensor coupling

constants. If one considers polarized nuclear decay or measures the polarization of the

outgoing electrons, additional decay correlation parameters may be found as shown

in Refs. [9, 34]. These decay correlation parameters however are either quadratic in

terms of these small nonstandard Lee-Yang coupling constants, or are experimentally

difficult to access (e.g. measurement of nuclear polarization, electron spin and neutrino

momentum simultaneously). As such, beta spectrum measurements of unpolarized

nuclei provide a relatively clean path to observing or setting bounds on possible BSM

physics via the Fierz interference term. The focus of this thesis is to measure ‘b’ for

45Ca, the details of this measurement can be found in Ch. 4.

1.3 Free Neutron Beta Decay

An especially enticing nucleus is the free neutron, as it is the most fundamental

nucleus that exhibits beta decay. Since there are no other nucleons with which the

decaying neutron can interact, any observables related to the process are free of

the typical nuclear corrections that must be applied with more complex nuclei. As

mentioned above, the most precise extractions of the CKM matrix element |Vud|

have been achieved via super-allowed Fermi transitions. These extractions, however,
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involve said nuclear structure corrections which can only be accessed computationally.

In fact, the experimental precision achieved by these experiments [32, 35] has led to

extractions of |Vud| with the predominant uncertainties arising from these corrections.

The largest contributor to this uncertainty results from the transition-independent

radiative correction (∆V
R = (2.361 ± 0.038)%) [36]. This term is present for all beta

decay transitions, including that of the free neutron. The isospin-symmetry breaking

correction, with an uncertainty ranging from 0.18% to 1.62% [35], and the nuclear-

structure-dependent radiative correction, however, are not present for free neutron

beta decay. Hence the free neutron could provide an additional check of the value

of |Vud| obtained from these 0+ → 0+ transitions, while carrying fewer theoretical

corrections.

1.3.1 Vud and ft Values

The total decay rate Γ can be obtained by integrating the differential decay rate

of Eq. 1.10 over all kinematic variables:

Γ =
1

τ
=

∫
w
(
Ee,Ωe

)
dEedΩedΩν

=
1

(2π)5
ξ

∫ (
F (Z,Ee)peEe (E0 − Ee)2

[
1 + b

me

Ee

])
dEedΩedΩν

=
(4π)2

(2π)5
ξ

∫ (
F (Z,Ee)peEe (E0 − Ee)2

[
1 + b

me

Ee

])
dEe

=
m5
e

2π3
ξf

[
1 + b

〈
me

Ee

〉]
(1.17)

where f := 1
m5
e

∫
F (Z,Ee)peEe(E0 − Ee)

2dEe,
〈
me
Ee

〉
:= 1

me

∫
F (Z,Ee)pe(E0 −

Ee)
2dEe, and τ is the mean lifetime of the transition. Note that up to this point,

natural units have been used (~ = c = 1). For the sake of the following expression,

these units will be explicitly written. Following the convention of [14] with K/(~c)6 :=
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2π3~ln(2)/(mec
2)5 = 8120.27649(25) × 10−10GeV−4s [37], given the half life of the

transition t1/2 = τ ln(2), Eq. 1.17 can be rearranged to give the so-called ft value:

ft1/2 =
K

ξ
[
1 + b

〈
me
Ee

〉] (1.18)

In the SM limit, ξ → |MF |2 |GFVudgV |2
(
1 + |ρ|2

)
and b → 0, and Eq. 1.18

becomes:

ft1/2 =
K

|MF |2G2
F |VudgV |

2 (1 + |ρ|2
) (1.19)

Note that up to quadratic isospin symmetry breaking terms, gV = 1 [38, 39]. For a

0+ → 0+ transition, i.e. pure Fermi transition, MGT = 0 and |MF |2 = 2. Then in the

SM limit ft1/2 = K
2G2

F |Vud|
2 , which is constant for all 0+ → 0+ transitions. Therefore

a measurement of the endpoint energy to determine f and a partial half-life and

branching ratio measurement for a 0+ → 0+ transition are all that is required for an

extraction of |Vud|. In Refs. [32, 35] the authors have compiled all such ft values as

well as the resulting extraction of |Vud|.

For transitions between isobaric analog states, the number of neutrons of the

parent nucleus is equal to the number of protons of the daughter nucleus. If these

states are separated by a single beta decay transition, the transition is referred to as

a mirror beta transition. In such cases, the total angular momentum of the initial and

final state are equal. There is no net change in the total angular momentum. These

transitions are referred to as “super-allowed” transitions. For such super-allowed

transitions |MF |2 = 1. The ft value is then given as:

ft1/2 =
K

G2
F |Vud|

2 (1 + |ρ|2
) (1.20)

18



In addition knowledge of the endpoint energy, partial half-life and branching ratio,

an additional measurement of the mixing ratio ρ must also be performed to extract

|Vud| for most of these mirror transitions. In the decay of the free neutron, |MGT |2 = 3.

Then the ft value (again in the SM limit) becomes:

ft1/2 = f ln(2)τn =
K

G2
F |Vud|

2 (1 + 3λ2)
(1.21)

with λ =
∣∣∣gagv ∣∣∣ and the neutron mean lifetime is given as τn. Then solving for |Vud|2

yields:

|Vud|2 =
K

G2
Ff ln(2)τn (1 + 3λ2)

(1.22)

In this case, the masses of the decay products are known thus the enpdoint

energy E0 = (mn − mp − me)c
2 = 939.5654133(58)MeV − 938.2720813(58)MeV −

0.5109989461(31)MeV = 782.234(16) keV [31, 40, 41]. Thus only two measurements

are required to extract |Vud| via free neutron beta decay: a measurement of the neutron

lifetime τn and a measurement of the hadronic ratio λ.

A brief note: for the sake of clarity, the above derivations and expressions do not

include the typical corrections to the ft values as outlined in Ref. [35]. The isospin-

symmetry-breaking correction is noted as δC , the transition independent radiative

correction is ∆V
R, and the transition dependent corrections are δ′R and δNS. Then

applying these corrections the ft value becomes [35]:

(ft)corr. =
(ft)above

(1 + δ′R)(1 + δNS − δC)(1 + ∆V
R)

(1.23)

1.3.2 The status of τn and λ

The first dedicated measurements of the neutron lifetime τn were published in

1950 and superseded by a result with higher statistics in 1951 [42, 43]. These findings

placed τn ∼ 18 minutes ± 3.6 minutes. There have been many measurements of the
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lifetime since these first experiments and the Particle Data Group (PDG) value of

the lifetime is τn = 880.2 ± 1.0s [31]. Despite this apparently benign uncertainty of

∼ 0.1%, the different methods by which τn has been measured are not self-consistent.

The current discrepancy is at the level of 4σ. The two primary methods used to

measure the neutron lifetime are referred to as the beam and the bottle method

respectively.

Bottled neutron lifetime measurements

The premise of a neutron bottle measurement is as follows, a container is filled

with some number of neutrons N0, which in general is not known. The the number of

neutrons remaining in the bottle after some time t1 is measured as N1. The bottle is

again filled to N0, and the number of neutrons after some time t2 is measured as N2.

The number of neutrons within the bottle written as a function of time is given as:

N(t) = N0e
−t
τs (1.24)

where the storage lifetime τs is related to the neutron lifetime τn and neutron loss

rate τl via τ−1
s = τ−1

n + τ−1
l . Then the storage time can be expressed as τs = ∆t

ln
(
N1
N2

) ,

where ∆t = t2 − t1. The lifetime is given as:

τn =
τs

1− τs
τl

≈ τs

(
1 +

τs
τl

+

(
τs
τl

)2

+ · · ·

)
(1.25)

In reality, there are many loss mechanisms which contribute to τl. These include

neutron scattering from the bottle due to bottle walls, residual gas scattering, and

vibrational excitations from the bottle. All loss mechanisms must be accurately

modeled and thus can lead to substantial corrections, as large as 10% of the storage

time [44]. Because material interactions tend to increase as a function of neutron
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energy, ultra-cold neutrons (UCNs) with kinetic energies on the order of a few neV

are generally used in confinement experiments. The first iterations consisted of UCN

traps with material walls to confine the neutrons [45, 46]. More recently, magnetic

confinement of the UCNs has also been achieved [47, 48], which reduces losses and

loss uncertainties due to interactions with the trap walls.

Neutron beam lifetime measurements

The other technique used to measure the neutron lifetime is the “beam” method.

A beam of neutrons is passed through an electromagnetic proton trap.The number

of protons found in the trap is counted. The number of neutrons per unit time is

measured at two different points along the beam. The ratio of these two rates can

then be used to extract the lifetime. The proton counter is used to measure the rate

at one point, and a neutron flux monitor placed further downstream (further along

the direction of neutron propagation along the beam) measures the rate at another.

Then given adequate knowledge of detection efficiencies, the neutron lifetime can be

extracted by taking a ratio of these two rates. The technical details of this type of

measurement can be found in Ref. [49].

Vud τn and λ

Returning to the discussion of Vud in the context of neutron decay, it is more

convenient to rewrite the uncertainty of |Vud| of Ref. [35] as δ(|Vud|2)
|Vud|2

. This is obtained

by:

δ(|Vud|2)

|Vud|2
=

∂

∂|Vud|
(|Vud|2)δ(|Vud|)|Vud|−2

= 2
δ(|Vud|)
|Vud|

= 4.311 · 10−4 (1.26)
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The the uncertainty of |Vud|2 is given by δ(|Vud|2) =

[∑
i

(
∂|Vud|2
∂xi

δxi

)2
]1/2

where

the sum is carried out over all measured quantities xi. Then using the expression

given in Eq. 1.22, including the additional radiative corrections, the uncertainty is

given as:

δ(|Vud|2)

|Vud|2
=
[(δK

K

)2

+

(
2
δGF

GF

)2

+

(
δ(1 + ∆V

R)

1 + ∆V
R

)2

(
δ(f(1 + δ′R)

f(1 + δ′R)

)2

+

(
δτn
τn

)2

+

(
6λδλ

1 + 3λ2

)2 ]1/2

(1.27)

Note that δK
K
∼ 1.11·10−7 and δGF

GF
∼ 5.1·10−7. The value of

f(1+δ′R)

f(1+delt′R)
= 5.25·10−5

is taken from Ref. [50],
(
δ(1+∆V

R)

(1+∆V
R)

)
= 3.712 · 10−4 is from [36], and the value of λ =

−1.2783(22) was obtained from Ref. [51, 52]. Substituting these into the above:

δ(|Vud|2)

|Vud|2
∼
[
1.37 · 10−7 + 1.70 · (δλ)2 +

(
δτn
τn

)2 ]1/2

(1.28)

The first two values were intentionally separated in Eq. 1.28 to illustrate that the

dominant uncertainty (second term) arises from λ and the sum of all others (with

the exception of the neutron lifetime) contribute to a value less than 2 · 10−7. Then

if an extraction of |Vud| via the free neutron is to be competitive with those of the

super-allowed Fermi transitions, Eq. 1.28 must be comparable to the value 1.26. This

gives the following relation:

1.70 · (δλ)2 +
δ(τn)2

(τn)2
< 4.8 · 10−8 (1.29)

The current precision of the best lifetime measurements is limited to δτn ∼ 1s [48,

53]. Thus a competitive extraction of |Vud| is not possible, regardless of the precision

in λ. Next generation lifetime measurements, however, are currently projecting an
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uncertainty on the level of about 0.1s. At this level, a competitive extraction of |Vud|

is feasible. With a lifetime of about 880s and a 0.1s uncertainty, a competitive |Vud| can

be obtained via the free neutron, provided a measurement of λ with an uncertainty

of δλ < 10−4.
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Chapter 2

Overview of the Nab Experiment

2.1 Introduction

The intent of the Nab experiment is to measure the electron-neutrino correlation

parameter ‘a’ and the Fierz interference term ‘b’ of Eq. 1.10 for the free neutron. As

outlined in the 2007 proposal, the anticipated precision is δa
a
∼ 10−3 and δb ∼ 10−3

[54, 55]. Assuming maximal parity violation (Ci = C ′i; for i ∈ {V,A}) and given that

|MGT |2 = 3 and |MF | = 1 for the free neutron, the expression for ‘a’ of Eq. 1.14

becomes a = 1−λ2
1+3λ2

, where the hadronic mixing ratio λ := |gA/gV |. Hence Nab will

be set a limit on λ with a precision of δλ
λ
∼ 2.7 · 10−4; nearly an order of magnitude

more precise than any value of λ listed by the PDG [31]. A measurement of the

Fierz interference term at the δb ∼ 10−3 level would be competitive with the most

stringent limits on Fierz interference set by the BSM ft values measured for super-

allowed 0+ → 0+ Fermi transitions (see Ch. 6 for a discussion of past and ongoing

Fierz searches).

Such a measurement will be achieved by utilizing a custom 7 meter tall magnetic

spectrometer described in Sec. 2.3. The magnet is situated on the Fundamental

Neutron Physics Beamline (FnPB) of the Oak Ridge National Laboratory (ORNL)

Spallation Neutron Source (SNS). Beta decay particle energies will be measured with

24



thick, large-area, pixelated, single-crystal silicon detectors, which are detailed in Sec.

4.3.1.

2.2 Principles of the Nab measurement

2.2.1 The electron-neutrino correlation parameter: ‘a’

Recall from Eq. 1.9, the triple differential decay rate for free neutrons is given as:

w
(
〈J〉 | Ee,Ωe

)
dEedΩedΩν =

F (Z,Ee)

(2π)5
peEe (E0 − Ee)2 dEedΩedΩν× (2.1)

ξ

{
1 + a

pe · pν
EeEν

+ b
me

Ee
+
〈J〉
J
·
[
A

pe
Ee

+B
pν
Eν

+D
pe × pν
EeEν

]}

In the above equation, 〈J〉 is the expectation value for the spin of the neutron. pe

and Ee represent electron momentum and energy respectively. Similarly pν and Eν

represents the anti-neutrino momentum and energy. For an unpolarized ensemble of

neutrons, 〈J〉 = 0 and eq 2.1 simplifies to Eq. 1.10:

w
(
Ee,Ωe

)
dEedΩedΩν =

F (Z,Ee)

(2π)5
peEe (E0 − Ee)2 dEedΩedΩν× (2.2)

ξ

{
1 + a

pe · pν
EeEν

+ b
me

Ee

}

Now pe · pν = pepνcos(θeν), where θeν represents the opening angle between the

electron and anti-neutrino momenta. For the FnPB, neutron momentum (pn) ranges

from 60 eV/c to 2.5 keV/c [56]. Since mn ∼ 939 MeV/c2, the total energy of the

neutron can be approximated as En = ((mnc
2)2 + (pnc)

2)) ≈ mnc
2. The neutron

momentum is effectively zero with respect to that of the daughter particles: the

electron, proton (pp), and anti-neutrino. Therefore from momentum conservation:
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−pp = pe + pν , so squaring both sides and solving for cos(θeν) gives:

cos(θeν) =
p2
p − p2

e − p2
ν

2pepν
(2.3)

From energy conservation, En = Ep + Ee + Eν , where En ∼ mnc
2. Note that

Eν = (m2
νc

4 + p2
νc

2)
1/2 ∼ pνc, since m2

νc
4 < 0.6eV 2 [37]. Therefore solving the energy

relation for Eν yields pνc = En − Ep − Ee. Then substituting for pν in eq. 2.3:

cos(θeν) =
p2
p − p2

e − (En − Ep − Ee)2

2pe(En − Ep − Ee)
(2.4)

Substituting En = mn in the above expression for cos(θeν) and pνc = En−Ep−Ee
into Eq. 2.2 gives:

dw

dEedΩedΩν

∝ peEe(E0 − Ee)2

(
1 + a

p2
p − p2

e − (mn − Ep − Ee)2

2Ee (mn − Ep − Ee)
+ b

me

Ee

)
(2.5)

Now for a fixed electron energy, eq. 2.5 can be written as:

dw

dEedΩedΩν

∝ C1,e

(
a
p2
p − p2

e − (mn − Ep − Ee)2

2Ee (mn − Ep − Ee)
+ C2,e

)
(2.6)

Note that C1,e and C2,e are simply constants for a fixed Ee, and Ep = mpc
2 +Tp ≈

mpc
2 (see Appendix A). Thus the only varying quantity in the above expression for

fixed Ee is the squared proton momentum. Then ‘a’ can be extracted for neutron beta

decay by measuring the proton momentum (specifically p2
p) distribution at various

fixed electron energies Ee (see Fig. 2.1 for an ideal proton momentum spectra). The

extraction of ‘a’ in Nab will be achieved by measuring the electron energy directly

and measuring the proton momentum via time of flight (ToF) analyses for coincident

proton-electron events.
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Figure 2.1: Above is the squared proton momentum distribution at various electron
energies. These are simulated ideal spectra.
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2.2.2 The Fierz interference term for the free neutron

A brief overview of the measurement of the Fierz interference term for Nab will

be discussed below. A more detailed discussion may be found in Ch. 4.

If Eq. 2.2 is integrated over the electron and neutrino solid angles dΩe and dΩν ,

the result is given as:

w
(
Ee
)
dEe =

F (Z,Ee)

2π3
peEe (E0 − Ee)2 ξ

(
1 + b

me

Ee

)
dEe (2.7)

The Fierz interference term is proportional to scalar and tensor (BSM) couplings.

These operators are absent in the SM, hence ‘b’ may be extracted by measuring

the free neutron beta decay spectrum and comparing it to that predicted by the

SM. Instead of detecting coincident proton-electron events as above for an electron-

neutrino correlation measurement, a measurement of ‘b’ will be achieved for Nab

simply by collecting all outgoing electrons, which minimizes distortions resulting from

uncaptured backscattered events. See Fig. 2.2 for the effect of various values of ‘b’ on

the electron energy spectrum.

2.3 Spectrometer & Detector Mount

A schematic of the Nab spectrometer as well as its ideal magnetic field map

can be found in Fig. 2.3. The asymmetric design of the magnet extends the length

of the proton flight path, minimizing energy uncertainty in ToF analyses. The basic

operating principle of the spectrometer is as follows. Neutrons enter the decay volume

of the spectrometer, and some decay into a proton, electron, and electron antineutrino

(the latter of which is not detected). The magnetic field guides charged decay products

to the silicon detectors at the top and bottom of the spectrometer. Any protons with

downward directed momentum are rejected. The 4T field spike just above the decay

volume creates a magnetic mirror. Protons with large angles between their momenta
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Figure 2.2: Above is the electron energy spectrum from neutron beta decay for
various values of the Fierz interference term.
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and the magnetic field are reflected downward and also rejected. The protons with

sufficiently small angles pass through the “pinch” region and are subjected to a field

expansion region. The magnetic field rapidly decreases from 4 T to 0.2 T. This change

adiabatically longitudinalizes the proton momentum in the direction of the upper

detector and allows for a momentum extraction via |pp| ∝ 1
ToF

. At the end of the

ToF region, the charged particles are subjected to a -30 kV accelerating potential.

This acceleration provides the protons with enough energy to be measured by the

silicon detector. The electron energies are measured directly, by either detector. The

projected goal is to measure the proton ToF with a 100 ps timing resolution and

electron energies with a resolution of a few keV.
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Figure 2.3: In the above schematic of the Nab spectrometer, the neutron beam
enters the spectrometer from the left. Some portion of the neutrons decay within this
fiducial volume and the decay particles are constrained by the magnetic field of the
spectrometer. Upward-going protons with sufficiently small opening angles between
their momentum and the magnetic field enter a ToF region where the magnetic field
rapidly changes from 4T to ∼ 0.2T . This adiabatically redirects the proton mometum
such that it is nearly normal to the face of the silicon detector upon entry.
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Chapter 3

Temperature Stabilization for the

Nab Experiment

3.1 Introduction

Reaching a precision of δa
a
∼ 10−3 requires an energy resolution of a few keV

and a timing resolution on the order of 100 ps. Much of the system resolution is

dictated by the amplifying and digitizing electronics used, however a well controlled

and stable detector temperature is also critical to achieve these specifications. A

terse discussion of solid state detector characteristics will be presented here only to

provide motivation for the rest of the chapter. For a more detailed discussion, see

Ch. 4. As with any solid state particle detector, a decrease in temperature reduces

the probability of thermal excitation of charge carriers across the band gap, i.e. a

reduction of thermal noise [57]. The additional benefit to a lower detector temperature

is better position sensitivity. As a charged particle interacts with the silicon, some

number of electron-hole pairs proportional to the energy of the incident particle are

liberated. This charge diffuses through the detector, thereby reducing the position

resolution. The diffusion of charge through the detector depends linearly on the

temperature of the detector [57]. Then by reducing the temperature of the detector,
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the uncertainty in deposition location is also reduced. This is particularly important

for event reconstruction as position information can be used in the identification of

backscattered or coincident proton-electron events. Although lowering the detector

temperature leads to a noise reduction, it is possible for the detector to be too cold.

The phenomenon known as carrier freeze out occurs when the temperature of the

semiconductor reduces charge mobility and effectively freezes electrons or holes to

the impurity site. Typically at higher temperatures, the impurity is thermally ionized,

and the charge carrier contributes to the overall carrier concentration. At freeze out

temperatures, the carrier cannot be thermally ionized and is bound to the donor or

acceptor impurity site. The net effect reduces the donor or acceptor concentration, and

the n or p-type carrier concentration approaches that of the intrinsic semiconductor

[58, 59]. A more detailed discussion of the detector properties can be found in Sec.

4.3.1. In addition to cooling the silicon detector, the cooling system also controls the

temperature of the accompanying electronics. Temperature stability in within these

sensitive amplifying and shaping chains is essential as temperature fluctuations can

result in an amplifier gain shift . Consequently a cooling system for Nab has been

carefully designed and tested to ensure precise temperature control.

3.1.1 Nab Cooling System Design

A schematic of one of the two identical Nab cooling loops can be seen in Fig. 3.1.

The system operates by circulating helium gas around a closed circuit. The primary

pump is a custom KNF N1400 project pump, which moves helium around the loop.

The mass flow of the gas is regulated by an MKS GE250 mass flow controller. After

traveling through the mass flow controller, the gas is then cooled with Sumitomo

CH-110 cold head and custom heat exchanger (see Fig. 3.2). The heat exchanger is

comprised of a stack of oxygen-free high thermal conductivity (OFHC) copper disks

and spacers on a threaded rod. Each disk has an offset 1/4” hole through which the

gas travels. Neighboring disks are rotated by 180◦ with respect to one another to
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ensure the maximum distance between these holes. This orientation maximizes the

path length of the gas through the exchanger, which in turn maximizes the cooling

power delivered to the gas.

Temperature control and stabilization is achieved with two separate heaters. The

Sumitomo cold head operates at 20K, however the detector optimally operates at

a warmer temperature. To raise the temperature of the cold head (and therefore

the helium coolant) one heater is fixed to the cold head and allows for a 20K-100K

temperature range. Separate, in-line cartridge heaters allow for the fine adjustment

and stabilization of the helium temperature . By utilizing a temperature sensor down

stream of the heater, a PID feedback loop is implemented, which allows for very

precise temperature control, given a reasonable choice of PID parameters.

The cold gas is transported to the high voltage (HV) cage in ∼ 45’ long, vacuum

jacketed, flex line. As shown in Fig. 2.3, there is a high voltage cage for the detectors

at the top and the bottom of the spectrometer. Since the inner portion of the HV

cage is maintained at a 30 kV potential with respect to the outer (grounded) cage, a

custom electrically and thermally insulated feedthrough was designed and fabricated

to pass the gas into the high voltage cage (see Fig. 3.3). From there, the gas travels

through a custom bayonet which mates with the detector mount. As can be seen in

Fig. 3.4, the gas travels through the mount providing cooling to both the field effect

transistor (FET) circuits and the detector itself. The FET circuits are responsible

for the first stage of amplification of the detector signal, and are fairly sensitive to

temperature fluctuations. After exiting the detector mount and HV cage (via a second

identical HV feedthrough), the gas is warmed back up using a room temperature heat

exchanger, as the specifications of the KNF pump require that the gas temperature

be above 0oC at the pump inlet.
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Figure 3.1: There will be two such cooling loops for the Nab experiment: one for
the upper detector and one for the lower detector.
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(a) (b)
Figure 3.2: (a) A model of the vacuum vessel and cooling components within. Warm
gas enters the volume via standard KF40 feedthroughs. The gas travels through steel-
braided flex line (red) and enters a heat exchanger. After being cooled and passing
PID loop components, the cold gas travels along more flex line (blue) and exits the
chamber. (b) A half section view of the heat exchanger. The gas enters at the bottom
and travels upwards towards the cold head.
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(a)

(b)

Figure 3.3: (a) A model of the high voltage feedthrough. A Cryofab transfer line
connects to the bayonet on the left, which is at ground. The gas travels through
vacuum jacketed G-10 line and enters the high voltage cage (30 kV). (b) A half section
view of the feedthough. The space between the two G10 lines (green) is vacuum. The
electrically insulating properties of the G10 and the vacuum between the two G10
lines provides the electrical and thermal insulation.

3.2 LANL Prototyping

The UCNB [61] and 45Ca experiments (see Chapter 4) share experimental

approaches with Nab [62] and have served as a prototyping platform for various

Nab subsystems, including the cooling system. These experiments were conducted in

Area B of the Los Alamos Neutron Science Center (LANSCE) of the Los Alamos

National Laboratory. The earliest implementations of the cooling system consisted

of a very rudimentary LN2 based system. Taking into consideration the problems

brought about by LN2 cooling, helium based prototypes were designed and tested for

subsequent UCNB and 45Ca runs.

3.2.1 Liquid Nitrogen (LN2) Cooling

The original cooling system designed for the UCNB mount was a LN2 based cooling

system, whereby the silicon detectors were cooled by passing LN2 through the UCNB

detector mount. Very rough flow control was provided by the globe valve on the

LN2 dewar. The simplicity of the system required very little custom infrastructure,
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Figure 3.4: Shown above is an exploded view of a Nab detector mount courtesy of
Ref. [60]. The detector (not pictured) mates with the pogo-pin board to the left of
the Fet module assembly. The cold helium gas enters the mount’s vacuum jacketed
cooling lines labeled above. The FET volume (to the left of the Feedthrough Flange)
is maintained at vacuum (∼ 10−6 Torr). The helium circulates around the gold plated
copper FET shroud. The FET thermal anchors tie the shroud and FET cards together.
The detector is cooled by direct contact with the FET shroud and Flex Contact
Assembly.
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however there were some aspects that affected data taking during UCNB and early

45Ca running.

For one, the finite volume of the LN2 dewars paired with relatively poor insulation

of the transfer lines required expeditious and frequent refilling. In addition to the time

lost due to the filling, data taking also suffered lost time to re-cooling the detectors

which warmed during the filling process. The magnet in which the 45Ca and UCNB

experiments were conducted (the SCS [51]) is a warm bore magnet. Without active

cooling over a span of 30 minutes, the detector temperature can rise by ∼ 25K.

Secondly, frequent oscillations in detector baseline were observed and attributed

to the LN2 system. The waveform in Fig. 3.5 exhibits the typical baseline oscillation

attributed to LN2 microphonics. These oscillations were caused by the physical

shaking of the cooling lines which, due to their proximity to the electronics chain,

created vibrations along the FETs and/or preamps. This baseline oscillation degraded

energy resolution and created a need for larger (higher energy) trigger thresholds, see

Chapter 5 for more detail. Although switching to relatively high flow rates of LN2

slightly reduced the amplitude of these oscillations, the problem still persisted and

caused a loss in energy resolution.

3.2.2 Cold He gas cooling at LANSCE

Two prototypes for the Nab cooling system were studied at LANSCE. The goal

of the first prototype was to provide a proof of principle for a helium based cooling

system for a UCNB/Nab style detector mount. The second iteration was used to

study the achievable temperature stability of a helium cooled system.

The first He cooled prototype

A following set of data was taken where a circulating loop of cold helium gas was

used instead of LN2 to cool the detector system (see Fig. 3.6). This implementation

consisted of a room temperature helium supply and around 20 feet of coiled 1/2” tubing
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Figure 3.5: Shown above is baseline data, taken from the central pixel of the West
detector. In the absence of microphonics, the signal is flat with a σrms ∼ 20 ADC.
For reference, a 16 keV event corresponds to a signal of 100 ADC. Not only do these
oscillations necessitate higher trigger thesholds, but also give rise to distortions in
extracted energy and create additional energy uncertainties. See Sec. 5.1.4 for more
discussion.
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Figure 3.6: Shown above is the basic premise for the first prototype of a helium
cooled system. Room temperature helium was cooled down in an LN2 bath, and the
cooled gas was transported to the detector mount via vacuum jacketed lines.

submerged in LN2. The mass flow was regulated by an in-line MKS flow controller on

the warm gas side, upstream of the LN2 bath. The gas then traveled to the detector

mount via vacuum jacketed flex line. The temperature was monitored at five points of

interest within the detector mount (see Fig. 3.7). Three different mass flow rates were

chosen: 60,80, and 100 standard liters per minute (SLM) all at roughly 35 PSIG. The

resulting temperature data (i.e. cooling rate and temperature profile) was compared

to that of previous cooling runs.

As can be seen in Fig. 3.8, LN2 brought the detector mount to the coolest

temperatures. This was to be expected since the mass flow rate of LN2 was much

greater and the input temperature much lower than that of the gaseous helium

at any of the observed flow rates. In terms of stability, the helium gas cooling

performed better than LN2 cooling. With LN2 cooling, the uncertainty of the baseline

temperature of the copper can cooling the FETs and detector was 0.78K over 3 hours.

For helium delivered at 100 SLM, the uncertainty was 0.58K over 3.5 hours. Ideally,
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Table 3.1: Although with helium cooling the peak does broaden, the peak location
is consistent to 1 σ.

Flow Rate Counts Mean Width
(Type) ( keV) ( keV)

LN2 4.92·105 80.95 ± 0.56stat 4.83
80 SLM He 4.84·105 81.29± 0.61stat 5.21
100 SLM He 4.65·105 81.19 ± 0.61stat 5.15

a range from 100-200 SLM of cold helium would have been desirable, however the

requisite equipment to do so was not available.

In addition to providing a proof of principle for the designed Nab cooling system,

this helium cooled setup was also used to monitor gain drift of the front end electronics

as a function of temperature. A 133Ba source was placed in front of the detector. As will

be detailed further in Chapter 4, the source spectra provide multiple sets of conversion

electrons as well as X-ray lines with well known energies. These spectral lines were

fitted to gaussians for various cooling setups, and peak widths (σgaussian) and peak

locations (µgaussian) were ascertained from the fits. Any gain drift would be indicated

by a shift in a given peak’s location, and energy resolution of the system can be

determined from the widths. These widths and locations were also compared to those

of LN2 cooled data. Despite the lower flow rates and therefore higher temperatures,

the locations (µ) for the 133Ba 80 keV peak fits were consistent to 1σ (see table 3.1).

The peak widths for the helium cooled system however were 6-7% larger than those

of LN2. The peak broadening due to a slightly warmer detector and accompanying

electronics chain temperature was to be expected. The secondary goal of this testing

was to begin to quantify any gain drift brought about by warmer temperatures. From

the above, we conclude that if there is any gain drift of the front amplification, it is

beyond our sensitivity.
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Figure 3.8: The overall temperature profile of the detector mount was colder for
LN2 cooling than that cooled via He, however the temperature stabilities proved to
be comparable.
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The second He cooled prototype

In the late spring/early summer of 2017, more sophisticated tests were conducted

at LANSCE to demonstrate temperature stability for a cooling system similar to that

of Nab. These data were taken just prior to the 2017 45Ca data set, and the prototype

cooling system was then implemented for 45Ca production data taking. Instead of

using a room temperature helium supply, the exhaust from a helium liquefier in Area

B was used to cool the system. At the detector mount inlet, the helium temperature

was measured to be 40-50K. Similar to the Nab design, the temperature control and

stability were achieved using an in-line cartridge heater in tandem with an in-line

temperature sensor, all monitored and controlled by a Lakeshore 336 temperature

controller. The controller then operated as a tuned PID feedback loop to maintain a

constant detector temperature. Temperature sensor locations can be found in Fig. 3.9.

Temperature profiles for the above setup were compared to those of an LN2 cooled

system, with an emphasis on stabilities at various points along the mount. The goal

of the study was to benchmark temperature stability provided by helium gas at a

much colder temperature, closer to that of the Nab design.

Temperature stability proved to be challenging to demonstrate with LN2. For one,

the mass flow rate was too large for a 100W heater to regulate. Secondly, most of

the heat transferred to the gas was lost to the latent heat of vaporization, as LN2

is stored near its boiling point. Consequently, the temperature stability was roughly

maintained by providing the maximum flow rate the dewars used would allow. This

translated to a ∼ 1K increase in detector temperature over a 100 minute period. As

the dewar emptied, the flow rates dropped, and temperatures rose.

The helium cooled system provided much finer control over system temperatures,

and surpassed the Nab cooling stability specification comfortably. A stability of ±

0.1K was demonstrated for typical run lengths (4.5 to 5.5 hours): see Fig. 3.10. The

temperature stability goal for Nab is ± 0.5K. Consequently for the 2017 45Ca running,

this helium cooled system was implemented.
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Figure 3.9: The temperature sensor at TA measured the temperature on the face
of a silicon detector. TB monitored the temperature of the copper can which acted
as a coldfinger for the detector. TC was the temperature at the cooling inlet to the
detector mount, and TA corresponded to a temperature sensor mounted to a FET.

3.2.3 Nab Improvements

The design of the Nab cooling system was updated and improved upon with

each prototype. As such, the Nab design reflects important aspects discovered while

testing. As previously noted, the 2017 45Ca detector system was cooled by helium

liquefier exhaust. Because only a single liquefier was operating, the helium line was

split to cool each detector. This split occurred downstream of the flow controller. A

separate PID loop was implemented for each line in an attempt to independently

stabilize detector temperatures. The cooling procedure was as follows. The system

was allowed to naturally cool to equilibrium over the course of about two hours.

Upon reaching equilibrium, the temperature setpoint of each PID loop was set one

or two degrees C higher than the equilibrium temperature. However, these relatively

small changes to the helium temperature resulted in large temperature oscillations

between the two lines. When a heater was powered in one line (say the East line),

the effective flow impedance for that path increased, which caused a decrease in mass

flow along the East line. The increased impedance caused the excess helium to travel

along West line, which created a higher power demand on the West cartridge heater

maintaining the West line’s temperature. Then as the impedence along the West line
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increased, more flow was directed along the East line. Despite several PID parameter

changes, the resulting large, correlated temperature oscillations between the two lines

could not be damped. This problem has been eliminated from Nab by the use of two

separate helium lines.

Microphonic noise due to cooling also has also been significantly reduced. The

switch to helium from LN2 eliminated a coolant phase change, which resulted in a

significant reduction in oscillation amplitude. The coolant switch did not completely

remove the oscillations present in waveform data. By comparing the amplitude of the

oscillations observed in the East detector system to that of the West, it has been

deduced that the cooling line size is partially responsible. The major mechanical

difference between the East and the West detector mount is the size of the cooling

lines within the mount. The West mount has a neckdown from a 1/4” line to an 1/8”

line. The East detector mount was designed with a 1/4” cooling line throughout,

and the data collected from the East detector did not suffer from as large of baseline

oscillations as that of the West detector. The Nab detector mounts have both been

designed with 1/4” inner diameter (ID) lines.

In addition to noise reduction and an elimination of “cross-talk” between cooling

lines, the thermal loads within the mount and spectrometer have also been reduced.

The Nab spectrometer is a cold bore magnet (∼ 70K), as opposed to the warm

bore of the SCS. Thus the bore of the Nab magnet results in radiative cooling of

the detectors. Another gain in cooling power comes from the update to the inlets

of the detector mounts. As can be seen in Fig. 3.7, the inlet and outlet both are

composed of uninsulated G10 (green). A significant portion of the cooling power for

the 45Ca experiment was lost here regardless of the cooling method. This G10 (and

accompanying ceramic break of the mount) provided electrical insulation between the

high voltage (30 kV) and grounded components of the UCNB and 45Ca setups. For

Nab, the entire mount floats at 30 kV and the break occurs between the inner and

outer HV cage. G10 is still used to transport the coolant from a grounded line to

a 30 kV line, however these feedthroughs are vacuum jacketed (see above Fig. 3.3).
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Although there exists some heat leak at the bayonet connections ( ∼ 7W per bayonet

connection [63]) the rest of the line is vacuum jacketed. Therefore heat loads due to

coupling to the room temperature are significantly reduced.

3.3 ORNL Benchmarking

3.3.1 High Voltage Feedthrough Testing

The first custom components produced for the Nab cooling system were the high

voltage feedthroughs seen in Fig. 3.3. The technical drawings for these feedthroughs

along with a few notes of interest may be found in Appendix B. As noted above,

the lines are used to transport the helium coolant into the high voltage cage, while

standing off the 30 kV potential between the inner and outer cage. The lines were

constructed by using cryogenic epoxy to glue the inner and outer G-10 tubes to

3” linde-style bayonets manufactured by Cryofab. The fully assembled high voltage

feedthroughs were then checked for leaks with a standard helium leak detector. Three

of the four feedthroughs maintained a leak rate of < 10−8 mbar · L/s. To determine

a the lowest attainable pressure of the isolating volume between the inner and outer

G-10 lines, the three leak tight feedthroughs were individually pumped on over the

course of a few days. With a HiCube Eco 80 pumping station, a base pressure of a

few 10−4 Torr was achieved for the three assemblies. While the next round of testing

for the three lines was ongoing, the leak of the fourth feedthrough was eventually

identified and repaired.

The three lines were subjected to thermal cycling to verify their structural integrity

at low temperatures. The cycling was designed to test the feedthroughs in much

harsher conditions than that of their designed usage. The vacuum jacketing of each

line was actively pumped and, its pressure monitored. See Fig. 3.11 for a diagram of

the setup. The feedthroughs were connected to a LN2 dewar, and once the pressure

reached the 10−3 − 10−4 Torr level, LN2 was passed through the feedthrough. The
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Figure 3.11: The pump out port of the high voltage feedthrough lines were connected
to a vacuum pump in parallel with a pressure gauge. Once a pressure on the order of
mid-10−4 Torr was reached, LN2 was passed through the feedthrough at the maximum
rate provided by the dewar.

maximum flow rate was used to test the HV feedthroughs at extreme conditions,

with very large thermal gradients across the feedthrough. LN2 cooling of the HV

feedthrough for roughly continued for roughly 5 minutes, until LN2 was observed

exiting the feedthrough. This was repeated on a daily basis approximately ten times

for all available feedthroughs.

The results of the cycling were mixed. All feedthroughs survived four rounds of

cycling without any indication of structural failure. One feedthrough failed during the

fifth round. While cooling, a metallic pop was heard and the pressure immediately

jumped from the 10−6 Torr range to the 10−1 Torr level. The test was abandoned,

and the feedthrough was allowed to warm back to room temperature naturally over

the course of 24 hours. Upon inspection with the helium leak detector, a leak was

discovered in the inner line of the feedthrough. The cause of the leak was attributed

to the thermal contraction of the inner G-10 line. Because of the insulation provided

by the vacuum between the inner line and the outer jacketing, the outer G10 remains

at room temperature and does not exhibit significant thermal contraction. However,

the temperature of the inner line decreases by 200K, which creates internal stresses

longitudinally along the inner line. Although the outer vacuum jacketing was never

removed and the exact location of the leak identified, it is highly likely the leak

occurred at the glue joint between the G-10 and the stainless steel bayonet. The
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tensile strength of the epoxy (3500 PSI) is an order of magnitude smaller than the

rating of the G-10. As the inner line cooled, the internal stresses built and eventually

overcame the ultimate tensile strength of the joint. The remaining two high voltage

feedthroughs were subjected to five more rounds of cycling for a total of ten cycles

without failure.

Subsequently, a modification was made to the feedthrough design. A small bellows

was included in the inner line, which allows the inner line to have some flexibility. See

Appendix B for more detail.

3.3.2 Heat Exchager Testing

It was apparent from the results of the first set of cooling studies conducted at

LANSCE (see Sec. 3.2.2) that a heat exchanger somewhat more sophisticated than

cold coiled copper tube was required. As previously discussed in Sec. 3.1.1, the heat

exchanger designed for Nab consisted of cold copper disks through which the gas

travels. The design creates more turbulence and increases the efficacy of the heat

exchanger. The heat exchangers, being custom components, therefore also required

some benchmarking. The technical drawings for these may be found in Appendix F.

Base Temperatures

The first study aimed to measure the lowest temperature achievable for the two

heat exchangers. See Fig. 3.12 for a model of the setup. The heat exchangers were

bolted to the cold head via the cold head mount plate. This mount plate was machined

from OFHC copper and bolted to the cold head. Because of the purity of the copper

and the area over which contact is made (the full cross section of the cold head),

the temperature of the mount plate is tightly coupled to and, for all of the following,

will be regarded as having the same temperature as the cold head itself. Temperature

sensors were mounted to the cold head mount plate (CH) and the disk furthest from

the cold head (i.e. warmest) in each heat exchanger (HE). The cold head was powered
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Figure 3.12: As shown above, heat exchangers were mounted to the cold head. A
temperature sensor was fixed to the cold head mount plate (TCH), as well as to the
warmest copper disks of the two heat exchangers (THE1 and THE2).

and the temperatures were monitored until they began to approach equilibrium,

at which point the cold head was shut off. See fig 3.13 for a plot of the observed

temperatures as a function of time.

Note that the cold head temperature (TCH) and second heat exchanger temper-

ature (THE2) were measured via platinum resistance temperature detectors (RTDs).

The lower limits of the platinum RTDs are on the order of 20K. Upon reaching

this limit, the reading falls to 0K and should be disregarded. The goal of the test

was to verify that the cooling power provided by the cold head could dissipate the

radiative heat loads and keep the temperatures of the heat exhangers well below

60K, the design temperature of the helium coolant. As shown in Fig. 3.13, both heat

exchanger temperatures did indeed fall to temperatures less than 35K.

Heat Exchanger Coupling

The cooling system studied at LANSCE which utilized the exhaust of a helium

liquefier (see Sec. 3.2.2) showed that coupling between the two cooling lines
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Figure 3.13: Shown above are the temperature profiles observed during the cooldown
of the cold head and attached heat exchangers.

complicated temperature control and stability. For the Nab system, the helium lines

themselves are separated, and the only coupling that can occur is thermal coupling

through the heat exchangers and cold head. A second study was attempted following

the above cool down with the intent to begin to quantify the degree to which the two

cold head temperatures were coupled.

After conducting the base temperature measurement of the heat exchangers, the

cold head was powered down and the system allowed to warm. Temperature recording

was initiated during the warming process, and some time later the cold head was re-

energized. See Fig. 3.14 for the temperature profiles recorded. For this study, the

quantity of merit is the amount of time ∆t required for a change in the cold head

temperature to be reflected at the warmest part of the heat exchanger, i.e. the amount

of time required for a temperature change in the cold head to fully propagate through

the heat exchanger. This time ∆t was estimated by comparing the time at which the

maximum temperature was reached by the heat exchangers and the corresponding
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time for the cold head. As indicated in Fig. 3.14, a ∆t ∼ 65s was measured. In

comparison, the amount of time for a change in one line to be reflected in the other

cooling line was on the order of a few seconds while testing at LANSCE. Hence, it

was concluded that the coupling between the heat exchangers was much weaker than

that of the coupling between the two lines used at LANSCE.

3.3.3 Conclusion

The preliminary design of the cooling system for the Nab detectors and ac-

companying electronics featured LN2 as the coolant. This system was tested and

benchmarked via the UCNB experiment. There were many logistical problems which

arose from such a system design. Additionally, a strong presence of noise due to the

physical shaking of the cooling lines was observed in the UCNB data. This shaking

has been attributed to the phase change which inevitably occurs with a coolant

stored at its boiling point. To mitigate these complications, the cooling system was

redesigned. The updated design features a recirculating helium gas coolant. Early

prototypes of this system implemented at LANSCE showed promising results. The

major components have been assembled and tested at the FnPB. The Nab detector

mounts should arrive at ORNL in spring of 2020, at which point the cooling system

will be fully commissioned. Technical design drawings created by this author may be

found in the appendix (Ap. B-G).
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Figure 3.14: The temperatures recorded for the second set of testing conducted on
the heat exchangers is shown above. The strength of the coupling between the two heat
exchangers was inferred from the amount of time elapsed ∆t between the location of
the cold head maximum temperature and the heat exchanger maximum temperature.
In comparison to the amount of time for changes in cooling lines at LANSCE to be
reflected in one another (on the order of seconds) this change is relatively long, and
therefore the coupling is weak in comparison.
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Chapter 4

45Ca Beta Spectrum Measurement

at LANL

4.1 Motivation & Theory

As has been discussed in Ch. 1, the Fierz interference term ‘b’ is a beta decay

correlation coefficient that provides an avenue to probe BSM physics. The advantage

to a measurement of ‘b’ is that it is linear in scalar and tensor currents, whereas other

BSM sensitive coefficients are typically quadratic in these small couplings [9]. From

Ref. [14], the linearized form of ‘b’ is:

b ≈ ±2γ
1

1 + |ρ̃2|
Re

(
CS + C ′S
CV + C ′V

+
∣∣ρ̃2
∣∣ CT + C ′T
CA + C ′A

)
(4.1)

where ρ̃ ≡ CA+C′A
CV +C′V

MGT

MF
, γ ≡

√
1− α2Z2, and the leading sign corresponds to the decay

type :+ for beta minus and − for beta plus decay. For a pure Fermi beta minus

transition, MGT = 0, and thus ‘b’ reduces to:

bF ≈ −2γRe

(
CS + C ′S
CV + C ′V

)
(4.2)

Similarly for a pure Gamow-Teller beta minus transition, MF = 0 and ‘b’ is given as:
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bGT ≈ −2γRe

(
CT + C ′T
CA + C ′A

)
(4.3)

Recall from Eq. 1.10 that for an unpolarized nucleus, the beta decay distribution is

given as:

w(EeΩeΩν)dEedΩedΩν =
F (±Z,Ee)

(2π)5
peEe(E0 − Ee)2dEedΩedΩν×

ξ

(
1 + a

pe · pν
EeEν

+ b
me

Ee

) (4.4)

Hence a measurement of ‘b’ can be accomplished by looking for deviations in the beta

decay energy spectrum from that of SM predicted spectra. It is worth noting, however,

that as new techniques and technologies push the bounds of experimental precision,

BSM searches are forced to include corrections (arising from SM physics) that had

previously been neglected. The weak magnetism form factor bWM, which arises from

the confined nature of quarks, is of particular importance to Fierz searches via beta

decay energy spectrum distortions.

To accurately describe the Fierz term at the ∆b ∼ 10−3 level, the weak magnetism

form factor must be included when considering any pure or mixture of Gamow-Teller

transitions [64, 65]. For a pure Gamow-Teller transition, the differential decay rate

gains a term proportional to the energy of the outgoing electron (positron) scaled

by the average of the mass of the parent and daughter nucleus M . Eq. 4.4 becomes

[64, 66–68]

w(EeΩeΩν)dEedΩedΩν =
F (±Z,Ee)

(2π)5
peEe(E0 − Ee)2dEedΩedΩν×

ξ

(
1 + a

pe · pν
EeEν

+ b
me

Ee
+ bWM

Ee
M

) (4.5)
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Note that the Fierz term is proportional to 1/Ee and the weak magnetism term

is proportional to Ee. Therefore a nucleus with a low endpoint energy is best suited

for Fierz searches, as the beta spectrum shape suffers from smaller weak magnetism

interference. The decay of 45Ca is a 7/2− → 7/2− transition with a branching ratio of

99.9981(11)%. With an endpoint energy of ∼ 256 keV [69], 45Ca is a particularly well

suited nucleus for a Fierz measurement. In Fig. 4.1, the effect of the Fierz interference

term on the 45Ca beta spectrum can be seen for various values of ‘b’.

4.2 Experimental Setup

Radioactive Sources

The 45Ca source used was prepared at the Institute for Nuclear and Radiation

Physics (IKS) of The Catholic University of Leuven (KU Leuven). A 60 µL water-

based solution of 45Ca with an activity of approximately 1.2 kBq was deposited on

a 100nm thick 6F-6F polymer film. The source was dried under an infrared lamp

and mounted in an aluminum frame. See Fig. 4.2 for a picture of the source in its

holder. For the remainder of the discussion, the 45Ca source and the aluminum frame

in which it was mounted will simply be referred to as the 45Ca source. Additional

radioactive sources of 113Sn, 207Bi, and 139Ce were used for energy calibration and

gain monitoring sources throughout production data taking. These sources are Isotrak

calibration sources commercially produced by the Eckert and Ziegler Group [70].

The Superconducting Solenoidal Magnet

To measure the beta energy spectrum, the aforementioned sources were placed

the Super Conducting Spectrometer (SCS) in Area B of LANSCEf. See Fig. 4.3 for a

layout of the area. The SCS consisted of a 1 T superconducting solenoidal magnet and

two detector systems at each end. The superconducting solenoidal magnet is a custom

warm bore magnet manufactured by American Magnetics Inc. Further information
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Figure 4.1: Above is a plot of the simulated beta decay energy spectrum for 45Ca,
including the effect of the Fierz interference term at various values. In comparison to
the Fierz distortions of the neutron spectrum of Fig. 2.2, the 45Ca beta spectrum is
much more sensitive to a nonzero value of ‘b’.
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Figure 4.2: The 45Ca source was deposited in solution on a 100 nm 6F-6F foil.
The solution was dried and mounted in an aluminum frame on a 10 nm aluminum
substrate.
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Figure 4.3: The 45Ca source was placed in the SCS (green cylinder). The detector
cooling was supplied via the exhaust of the helium liquefier in the area (green
rectangular prism upper right corner).

regarding the design of the SCS can be found in ref. [71]. The 45Ca source was set in a

polyethylene carriage and placed near the center of the SCS in the 1T magnetic field

region. The decay electrons were guided by the magnetic field to silicon detectors at

either side of the SCS. The detectors themselves resided in the 0.6T field expansion

region (see Fig. 4.4). To insert the calibration sources in situ, the load-lock on the

SCS was utilized to intermittently insert the 113Sn, 139Ce, or 207Bi sources.

The detectors were cooled with cold (∼ 40K) helium gas (see Sec. 3.2.2), and the

detectors were biased to 250-300 V, The signals generated were amplified and shaped

by front end electronics. The main components of the electronics chain consisted

of a FET, pre and post-amplifier [61, 62]. The output of this electronics chain was

fed to a National Instruments (NI) data acquisition (DAQ) system. The signal was

digitized and then processed by on board field programmable gate arrays (FPGAs).

The amplitude of the digitized signal was given in terms of analog to-digital-converter

bins (ADC) Should an event satisfy a trigger condition as determined by the FPGA,
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Figure 4.4: Decay electrons were guided by the 1T magnetic field to the silicon
detectors mounted at each end of the SCS.

the event was written to file. The triggering scheme and is discussed in more detail

in Sec. 4.3.2.

4.3 The Detector System

4.3.1 Silicon Detectors

The detectors used for the 45Ca experiment were single-crystal silicon diode

detectors. Single crystal silicon is a useful medium for radiation detection because

it is much more dense and therefore much smaller than its gas-filled, ionization

chamber counterparts. In addition, the electronic energy level structure inherent to

semiconductors provides excellent energy resolution. For crystalline semiconductors,

outer shell electron energies fall within one of two energy bands: the valence or

conduction band. Any electron within the valence band is energetically confined to a

specific lattice site. Electrons within the conduction band have higher energy and can
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freely propagate through the lattice. The valence and conduction bands are separated

by a band gap of energy Eg. Intrinsic, un-doped, crystallized silicon has a band gap

of Eg ≈ 1.63 eV at 110 K [72]. For a zero temperature crystalline lattice, the valence

band would be completely occupied, and the conduction band would be left empty. At

finite temperatures, the probability of thermal excitation of a valence band electron to

a conduction band is given by: p(T ) = CT 3/2e

(
− Eg

2kT

)
, where k denotes the Boltzmann

constant and T the temperature of the lattice (K) [57].Thus with a low, well controlled

detector temperature, the number of charge carriers liberated by incident radiation

is proportional to the energy of the incident particle.

Pure semiconductors are referred to as intrinsic semiconductors. The aforemen-

tioned property whereby the energy of charged particle stopped by a semiconductor

can be determined by the number of charge carriers liberated is very desirable for

radiation detection. The downside is that the charge carriers liberated by the incident

particle are difficult to collect from an intrinsic semiconductor, as diffusion of charge

depends linearly on temperature. Thus the low temperature used to reduce the

thermal noise also lowers charge mobility. As such, fully intrinsic semiconductors are

rarely used as radiation detectors. Instead, the intrinsic semiconductor is typically

doped with impurities that readily accept or donate charge carriers within the

crystalline lattice.

The type of doping is referred to by the type of charge the dopant introduces

or facilitates. An n-type (negative) dopant is an element which donates an electron

to the conduction band of the crystal. Electrons bound to the n-type dopant only

require a small amount of energy to be promoted to the conduction band, and the

overall effect of the n-type dopant is a contribution of negative charge (the elctron)

to the conduction band of the intrinsic semiconductor. A p-type (positive) dopant is

generally an element which has an unoccupied electron state which is energetically

very close to the valence band of the crystalline lattice. Very little energy is required

for an electron within the valence band of the crystal to move to a bound state

of the p-type “acceptor”. The movement of a valence band electron to an acceptor
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site leaves behind a hole, or a low-lying unoccupied state, in the silicon atom from

which it came. Neighboring valence band electrons fill this hole, and the hole diffuses

through the lattice. While in actuality, the only particles involved are electrons,

this hole can be treated as an electron with a +e charge. Hence, the net effect of

the p-type impurity is to accept valence electrons, which creates a positive current.

These impurities are introduced to the semiconductor crystal typically either through

diffusion or ion implantation.

At the boundary between a p-type and an n-type region, there exists a discontinu-

ity in conduction electron (and valence hole) density. Therefore a net diffusion takes

place, where conduction electrons migrate from the n-type material to the acceptor

sites of the p-type. Just as the conduction electron density discontinuity causes the

migration of electrons to acceptor sites, the hole density discontinuity as seen from

the p-type side causes a net diffusion of holes across the boundary as well [57]. The

effect of these two processes creates a negative charge accumulation into the p-type

material and a positive charge accumulation into the n-type material. This establishes

an electric field that suppresses charge migration across the boundary away from its

respective carrier material (see Fig. 4.5). The field established repels electrons from

the p-type side, towards the n-type material. The accumulation of negative space

charge near the boundary within the p-type region repels the electrons back into

the n-type region. Similarly, the positive charge within the n-type material near the

junction sweeps holes back to the p-type side. The region over which this electric field

extends is the depletion region. This region may be extended through the width of

the entire detector by reverse biasing the detector. By applying a negative potential

to the p-type side with respect to the n-type, the electric field established near the

boundary is extended. The potential causes further conduction electron migration

across the boundary and further into the p-type bulk. The overall effect is to increase

the magnitude of the electric field and extend the region over which the depletion

region exists. With a sufficiently large bias, this depletion region will extend through
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the entire detector. As a result, very little current naturally fluctuates through the

detector, which significantly reduces detector noise.

When a charged particle is stopped in a crystalline semiconductor, most of the

deposited energy results in electron-hole pair creation. If an energy of E is deposited,

then roughly N = E/Ep-h particle hole pairs are created. For silicon, Ep-h ∼ 3.6

eV [57]. For 45Ca, Q ∼ 256 keV. Then for an electron at the endpoint energy, there

are roughly 85,000 electron-hole pairs created. With a sufficiently large bias (i.e. a

sufficiently depleted detector) the majority of these charges do not recombine and are

collected. The silicon detectors implemented also have a small layer of silicon dioxide

which surrounds the bulk crystal. Even with a fully depleted detector, charge liberated

within the dead layer cannot fully be collected. Silicon detector manufacturers go to

great lengths to minimize the thickness of this dead layer and thereby increase detector

energy resolution. The 45Ca detectors are reported to have a very thin dead layer of

roughly 100 nm.

The silicon detectors used for the 45Ca and Nab experiments are single-crystal

silicon and were developed by Micron Semiconductor, Ltd [73]. A diagram can be

seen in Fig. 4.6. The bulk of the 45Ca and Nab detectors was slightly n-type due to

residual donor impurities. The junction side (top in Fig. 4.6) was heavily doped with

boron, creating a p+ region. The ohmic side (bottom in Fig. 4.6) was a phosphorous-

implanted n-type region. The junction side was metallized with a ∼ 300 nm thick,

square aluminum wire grid covering 0.04% of the active area. The active area itself

covered roughly 90 cm2, with an 11.7 cm diameter. Charge collection took place

through the hexagonal pads in contact with the ohmic side of the detector. These

pads were separated by about 100 µm. The pad-detector combination is referred to

as a detector pixel.

There were 127 pixels total on each detector, however for the 45Ca experiment, only

19 were instrumented, and the others were grounded (see Fig. 4.7 for a pixel map).

Relative pixel locations between the two detectors were determined via calibration

sources (this work was carried out by the author of Ref. [74]). The sources in the
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Figure 4.5: (a) A p-type and n-type material are brought together to form a p-n
junction. (b) The proximity of acceptor sites to donor sites at the boundary causes
electrons and holes diffuse across the boundary [57]. It is important to note that the
p-n junction is neutral overall. This charge migration only results in local nonzero
charge densities. The region overwhich these densities exist is the depletion region.
The electric field which exists throughout the depletion region suppresses further
charge migration.
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Figure 4.6: Detector Diagram: The bulk of the silicon is slightly (near intrinsic) n-
type. The Junction side (red) is p+ (heavily doped with Boron) with an aluminum grid
to improve conductivity. The ohmic region is an n-type phosphorous doped region.
Contact with the detector is achieved via the 127 ohmic contacts (black), which create
a pixelation of the silicon bulk [61, 62].

load-lock of the SCS were repositioned on a run-by-run basis. The changes in relative

count rates between pixels from run to run were then used to determine approximate

relative pixel locations. If one considers the centroid of a pixel on a given detector, its

mirror pixel is the pixel on the opposite detector whose centroid is closest to that of

the original pixel. The mirror pixel to 64E is 64W, for example. The locations were

utilized in the trigger scheme discussed below (see Sec. 4.4).

4.3.2 Front End Electronics & Data Acquisition System

The detector signal was amplified and shaped by front end electronics which

consisted of a cooled (∼ 200K) BF682 field effect transistor (FET) and a room

temperature AD8011 preamplifier. For a more detailed description, see Ref. [62]. The

amplified and shaped signal was then passed to an NI PXIe-5171R ADC Module,

where the signal was digitized and processed by an onboard field programmable

gate array (FPGA). To determine whether to write a given trace to file, a double

trapezoid filter was implemented. Further details about the DAQ firmware developed

and implemented for the experiment can be found in Ref. [75].

A single trapezoidal filter and its implementation is outlined in Ref. [76] and its

interpretation is described in Ch. 5. The double trapezoidal filter is produced by first
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Figure 4.7: For the 45Ca experiment, only the central 19 pixels of the 127 were
active pixels; all others were grounded. The pixel designated Q1, Q2, Q3, and Q4 were
banks of 5 pixels tied together and read out by a single preamp channel. Capacitve
mismatch between the preamp and the ganged pixels however caused the preamplifier
to be highly unstable and highly susceptible to large oscillations. Ultimately these too
were grounded.
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constructing a negative single trapezoidal filter impulse response and concatenating

it with the negative of itself. The FPGA recursively generated the double trapezoidal

filter output in real time. If the ouput exhibited a rising edge through some threshold,

the trigger was armed. If the output then rose above zero, the trigger condition was

met, and the 14 µs trace was written to file. See Fig. 4.8 for a demonstration.

4.4 Run Configurations and Setup

The data taking run modes for the 45Ca beta spectrum measurement fall into one

of two types of running. In pre-production run modes aspects of the detector or the

amplifying electronics chain were studied. No 45Ca data was taken during these runs.

During production data taking, either 45Ca or calibration source data were taken.

4.4.1 Pre-production data

To determine the appropriate bias voltage and monitor any gain drift of the

electronics chain, a Precision BNL PP5 was capacitively coupled to the bias line

of each detector through a 1 nF capacitor (see Fig. 4.9). The voltage was set such

that the charge injected into the detectors corresponded to a roughly 530 keV signal.

For production data taking, the rate was set to 2 Hz, which corresponds to about

1000 counts in the pulser peak per pixel per run. Thus any statistically significant

change in the pulser peak mean location would be indicative of amplifier gain shift.

The bias voltage for each detector was determined by measuring the pulser peak

width as a function of bias voltage. It should be noted that the voltage measured across

the detector junction and the ground was negative, however only the magnitude of

the voltages will be referenced. A set of data runs were taken at various bias voltages

from 0 V to 100 V in 10 V increments and then from 100 V to 500 V in 50 V

increments. For this set of runs, the pulser output was split, with one line fed directly

to the DAQ. The DAQ trigger was set such that all pixel waveforms were written to
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Figure 4.8: The output of the preamp was digitized and processed by the FPGA.
The FPGA applied a double trapezoidal filter to the data and monitored the output
for a trigger condition. Should the signal have a rising edge through some threshold
(black), the trigger was armed (red circle). If this is followed by a zero crossing (green
circle), the 14 µs trace was written to disk.

70



Vbias
1MΩ

2nF 1nF
50Ω

Detector 
Junction 

Pin

Detector 
Ohmic 

Pin

Figure 4.9: Each detector was pulsed by a BNL PB5 precision pulser independently.
The pulse was injected through a 1 nF capacitor, which deposited charge on the
junction side of the detector.

disk with this direct signal from the pulser. For each recorded waveform, an energy

was extracted (see Sec. 5.1.1). For a given bias voltage setting (i.e. a given run), a

histogram of measured pulser energies was created. These histograms were fitted to

a gaussian distribution, providing a mean and a width for each voltage setting. As

the depletion region increased with an increase in bias voltage, these widths became

narrower. In effect, the detector resolution increased. The voltage at which there was

no appreciable change in detector resolution was chosen as the bias voltage for each

detector. This bias voltage results in a “fully depleted” detector. The applied bias

was 200 V for the East detector and 300 V for the West detector.

The pulser was also used in a set of runs to study detector linearity. The DAQ

again triggered via direct output from the split pulser line. The bias voltage was fixed

for each detector, and the amplitude of the pulser output was varied from 50 mV to

0.1 mV, which corresponds to a range of about 550 keV to 1 keV. The pulser rate

was set to 1 kHz and data was taken for 100 s for each pulser amplitude setting.

Unfortunately it was discovered that the pulser pulse shapes were inconsistent at

different amplitude settings. Ultimately a study of system linearity was forced to

proceed via the aforementioned calibration sources: 139Ce, 113Sn, and 207Bi.
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4.4.2 Production data

For production data, 45Ca, 113Sn, 207Bi, and 139Cesources were used. The

45Ca source was placed in the SCS approximately 75 inches from the West detector

mount flange. The 45Ca source remained fixed in this position for all production data

taking. The length of a typical run was about 30 minutes. For the first 7 hours of a

24 hour period, data was collected with only 45Ca present in the SCS. At the end of

each 7 hour period, two runs were conducted with the 113Sn source. The 113Sn source

was placed in the center of the SCS via the load lock. Because the 45Ca source was

fixed for all production data, the 113Sn runs also include events from the decay of

45Ca. After the 113Sn data were collected, the source was retracted and the collection

of solely 45Ca data resumed for 7 more hours. This collection of 45Ca data for 7 hours

followed by an hour long collection of 113Sn and 45Ca data was repeated a total of

three times each day. Each detector was pulsed continuously at a rate of 2 Hz and at a

voltage of 50 mV. The pulsers were initially synchronized in time. The coupling of the

two pulsers introduced an increase in the root-mean-square (RMS) of the background

noise by a factor of about 6. Therefore the pulsers were decoupled and allowed to pulse

independently. The trigger scheme shown in Fig. 4.10 was used for all production data

taking.
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Is amplitude of double trap
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Record single pixel waveform
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Does trigger counter total
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Is trigger directly from
pulser output?

Record waveform for all pixels
and reset trigger counter

Record waveform for all pixels
and reset trigger counter

Record single and mirror
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Figure 4.10: Above is the logical progression followed by DAQ FPGA firmware
following a triggered event. The first layer (I) is used to determine whether the event
was of cosmic origin. The threshold was set such that all source lines were well below
this threshold. The second layer (II) was used to sample the detector in a somewhat
random fashion. Every 100th trigger resulted the waveforms present on all pixels being
written to file. The third layer (III) was used to ensure all pixels were recorded with
a trigger generated by the direct signal from the pulser to the DAQ. Otherwise only
the pixel which caused the trigger and its corresponding mirror pixel were written to
file. The mirrors were recorded to capture low energy backscatters.
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Chapter 5

45Ca Analysis

The 45Ca experiment took data to test or further constrain the SM by precisely

measuring the 45Ca beta decay energy spectrum (see Chs. 1 & 4 for more detail).

The analysis procedure is discussed in the sections to follow this overview. For every

waveform recorded by the DAQ, an energy was extracted using a trapezoidal filter

based on that of Ref. [76]. 113Sn, 207Bi, and 139Ce source data and Monte-Carlo

(MC) simulation performed in PENELOPE were used to calibrate the detector via

single-pixel spectra. The single-pixel spectra are composed from events that were

well isolated in time to individual pixels. The resulting calibrations were applied.

Calibrated single-pixel 45Ca spectra were compared to MC simulation (also carried

out in PENELOPE). A value of ‘b’ was extracted by fitting a combination of ‘b’= 0

and ‘b’= 1 MC simulation to the observed 45Ca beta spectrum. Additionally, various

systematic effects were analyzed and accounted for in the value of ‘b’ reported here.

It should be noted that the development and running of the PENELOPE simulation

was performed by the author of Ref. [74].

5.1 Waveform Analysis

Every event recorded consisted of pixel identifiers, a data quality flag, timing

information, and a 14 µs waveform trace of preamplifier output sampled by the
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DAQ (250 MHZ sample rate). Initially, these waveform traces were fitted to f(ti) =

A ·
(
e−(ti−t0)/τ1 − e(ti−t0)/τ2

)
, where A, τ1 and τ2 were fit parameters. While initial

results were promising, the required computational time as well as difficulties

quantifying associated systematic biases introduced by such a fit ultimately resulted in

abandoning this method. Instead, A few digital filters were applied to these waveforms

to extract energies and determine the underlying structure of each event. Additionally,

a linear least square fit of the waveform to an oscillating baseline was performed on

a waveform-by-waveform basis. The output of these fits was used as a data quality

filter for spectra generation.

5.1.1 Energy Determination

A trapezoidal filter was used to extract the electron energies from amplifier

waveforms. The details on the derivation of trapezoid parameters can be found in

Ref. [76]. Trapezoidal shaping is ideal for energy extraction, since the waveforms have

a short (< 100 ns) rise time and a long (∼ 4 µs) exponentially decaying tail. See Fig.

5.1 for trapezoidal filter response. The trapezoidal output is produced by convolving a

trapezoidal impulse response (red in Fig. 5.1) and the waveform (blue). The energy is

directly proportional to the pulse height of the output. If h(t) is the impulse response,

where

h(t) =



τfall + t; 0 < t < τrise

τrise; τrise < t < τrise + τtop

2τrise + τtop − τfall − t; τrise + τtop < t < 2 · τrise + τtop

0; Otherwise

(5.1)

and v(t) the waveform, then the trapezoidal output s(t) is given as:

s(t) =
1

τriseτfall

∫ +∞

−∞
v(t′)h(t− t′)dt′ (5.2)
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Figure 5.1: The raw waveform for an event (blue) is convolved with the impulse
response (red) and yields the trapezoid shape (orange).

For the 45Ca experiment, the amplitude at the midpoint of the flat top of the

trapezoid was chosen as the energy of the waveform. This was algorithmically done

by first finding the maximum value of the trapezoid y[tmax], where y[ti] denotes the

amplitude of the trapezoidal output of the i’th timebin. Then, the timebins ta and tb

were determined by requiring that:

y[ta] ≤ 0.8·y[tmax] ≤ y[ta+1]

y[tb] ≥ 0.8·y[tmax] ≥ y[tb+1]

The timebin corresponding to the midpoint of the top of the trapezoid can be

expressed as tmid = ta + tb−ta
2

. Therefore E(ADC) = y[tmid]. See Fig. 5.2 for an

example of this algorithm applied to a waveform.
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Figure 5.2: The waveform for an idealized event is shown in blue. The trapezoidal
filter output y[ti] is shown in orange. The energy for the waveform is determined
by finding the points ta and tb, where y[ta] ≤ 0.8 · y[tmax] ≤ y[ta+1] and y[tb] ≥
0.8 · y[tmax] ≥ y[tb+1]. Then the energy is measured as E = y

[
ta + tb−ta

2

]
5.1.2 Trapezoidal Parameters

The shape of the trapezoid is dependent on the multiple attributes of the waveform

from which it was produced. To obtain trapezoids with flat tops, the fall time of the

trapezoid filter must be set to the decay constant of the shaping and amplifying

electronics. Since the amplifier and shaping components vary slightly from one

electronics chain to another, the decay constants, and thus trapezoidal filters, vary

from pixel to pixel. To determine these constants, pulser data were used. The pulser

data is ideal for such an analysis, as it is free of backscattering which can distort

the apparent decay constant of the waveform. Precision BNL PB5 pulsers were

capacitively coupled to the detector bias lines through a 1 nF capacitor, see Fig. 4.9.

The voltage of the pulsers were set such that the charge injected yielded a signal of

roughly 530 keV, well beyond the endpoint of the 45Ca beta spectrum. The frequency

was set to 2 Hz. Fig. 5.3 represents a typical distribution of extracted decay constants

for pulser events. The distributions for each pixel were fitted with Gaussian shape,
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Figure 5.3: A typical distribution of the decay constant observed for pulser events
of a central pixel. For each pulser event within a given pixel, the decay constant
extracted by fitting the waveform to a decaying exponential function.

and the mean of the fit was used for the trapezoidal decay constant parameter for

said pixel.

The two other parameters which define the trapezoidal filter are the shaping time,

τs, and the top parameter. The shaping time determines the length of the rising

and falling portion of the trapezoid output. The top parameter corresponds to the

length of the top of the trapezoidal output in terms of timebins. It is essentially

the number of timebins over which the the filter averages. To determine the optimal

parameters, a shaping time and top parameter scan were performed. Since these

parameters determine how the trapezoidal filter integrates over and averages noise,

the optimal set was chosen by comparing widths of calibration source and pulser

peaks for various sets of parameters.

The top parameter and shaping time were varied independently over the square

grid of [10, 20, 30, ..., 100, 200, 300, ..., 1000] timebins. For each set of parameters, the

corresponding trapezoid filter was used for energy extraction for a set of 113Sn source

runs. The 363 keV conversion electron (CE) peak was fitted to a Gaussian distribution
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Figure 5.4: For each set of top and shaping time parameters, the 113Sn 363 keV
conversion electron peak was fitted to a Gaussian distribution with a linear term and
a constant offset.

plus a linear term and a constant offset (see Fig. 5.4 for an example fit). The results

of the shaping time scan can be seen in Fig. 5.5.

In terms of energy resolution, a zero length top parameter is ideal (see Ref. [76]).

However, for realistic pulses with finite risetimes, the trapezoidal filter output suffers

from ballistic deficit. When charge is liberated within a detector, the bias sweeps the

charge to the cathode and anode of the detector. The charge collection does not occur

instantaneously, but takes some finite amount of time to migrate through the silicon.

The shaping electronics exponentially dissipate the charge as it arrives with some

decay constant. The difference in amplitude of the output pulse with a finite shaping

time and an infinite shaping time is referred to as the ballistic defficit. With an infinite

shaping time the shaped output can be integrated to determine the total amount of

charge deposited. With a non-infinite shaping time, an additional correction must be

applied to determine the total charge deposited. This correction is dependent on the

risetime of the pulse, and therefore can vary from pulse to pulse. As discussed in Ref.
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Figure 5.5: Above is a scan of the trapezoidal filter parameter space. The 363 keV
113Sn peak was fit to a gaussian for each set of trapezoidal parameters. The color
indicates the width (σ) of the fit.
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[57], with a sufficiently long top parameter, the total charge can be extracted from

trapezoidal output regardless of any variation in the risetime of the pulse.

Pileup effects must also be taken into consideration with a choice of the top

parameter. Pileup (or accidental pileup) refers to an instance where two or more

uncorrelated particles deposit energy within the same pixel very close in time. The

resulting waveform contains a superposition of the two events and can lead to a

distortion in energy extraction. To minimize this effect, the top parameter must be as

short as possible. In contrast, a longer top parameter is ideal to accommodate events

which backscatter. When a particle deposits energy within the same pixel multiple

times, a trapezoidal filter with a top paramater as long as the backscattering process

may be used to fully reconstruct the event energy. To capture the full energy for events

which backscatter from and back into the same pixel, a top parameter at least as

long as the backscattering time window is desirable. By increasing the top parameter,

the probability of including an uncorrelated event (accidental pileup) also increases.

Hence, the trapezoidal top parameter must be long enough to encompass most

backscattering events, but short enough to minimize accidental pileup contamination.

A duration of 400 ns (100 timebins) was chosen for the top parameter. In effect, the

duration of the top parameter was chosen to be long enough to sum the energy

of backscattered events with a maximum of 400 ns between depositions, which

encompasses the majority of backscattered events (see Fig. 5.6).

5.1.3 Accidental Pileup & Backscattering Identification

For the 45Ca data, the source activity was roughly 1 kBq. This corresponds to

an event rate of 1-2 kHz, or a period of 500 to 1000 µs. The DAQ acquired samples

that were 14 µs in duration, so 14µs
500 to 1000µs

= 1.4 − 2.8% of the data should contain

accidental pileup. These accidentals distort the trapezoidal filter energy extraction if

the time separating the two events is less than the length of the trapezoidal filter.

That is, if the trapezoidal filter is 3.48 µs long, any accidental pileup will distort
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Figure 5.6: Above, the backscattering time distribution is shown for simulation.
More than 99.7% of the data falls within a window of 400 ns.

the energy extraction for the primary event if the accidental occurs less than 3.48 µs

before or after the primary event (see (a) of Fig. 5.7). To detect such events, a short

trapezoidal filter was also implemented.

As previously discussed, the length of the top parameter was chosen to be

long enough to encompass the backscattering time window. With such a choice,

the trapezoid output integrates the deposited backscatteerd energy. Knowing that

backscatter occurred is necessary however, because for each hit in a backscatter event,

the particle passes through the dead layer (∼ 100nm SiO) and and loses some amount

of energy as it travels. Thus in order to correctly reconstruct the events total energy,

it is necessary to identify and count the number of transits through the dead layer.

By convolving a waveform with a shorter trapezoidal filter, the response will also

be narrower and therefore have better timing. The trapezoidal filter used for energy

extraction was 3.48 µs long and thus cannot easily and systematically distinguish

between multiple events that occur within this time window. To detect waveforms

with accidental pileup, a much shorter trapezoidal filter with τs = 40 ns and a top
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parameter of 4 ns was used (see (b) of Fig. 5.7). This filter was able to detect events

with energies down to 20 keV and a separation of roughly 100 ns or more between

the primary event and the accidental. If the short trapezoidal output for an event

contained more than one peak above threshold, the time difference between the two

largest peaks was used to categorize the event. If this time difference was larger

than the chosen coincidence window, the event was considered to contain accidental

pileup (see Fig. 5.8 for the effect of the removing events with accidental pileup). From

γmec
2 = E = T + mec

2 where γ = (1− v2

c2
)−1/2 and T is the electron kinetic energy,

it follows that ve =
(

1− mec2

E2

)1/2

c. The energy threshold applied to production data

was 50 keV, so ve > 0.3c. Now the distance between the two detectors was ∼ 5m,

and the time taken for an electron to traverse the spectrometer is ttransit = 5m
ve

. For

electrons with T > 50 keV, ttransit < 56ns. For a given coincidence window tcoinc., the

number of times the slowest electron can backscatter between the two detectors is

very roughly tcoinc.
ttransit

. A coincidence window of 400 ns was chosen, so then tcoinc.
ttransit

=∼ 7,

with this window. At these energies and with the given source-detector-magnetic field

geometries, 30% of the electrons that interact with a detector should backscatter (see

Fig. 5.9 for a distribution of the number of backscatters per event). Hence these

coincidence windows allow for a potential backscatter collection efficiency of up to

1− 0.3tcoinc./ttransit > 99.98%.

5.1.4 Baseline Oscillation

As mentioned in Ch. 3, data taken prior to the 2017 set exhibited oscillations

attributed to the physical shaking of the cooling line (see Fig. 3.5). Switching from

LN2 to cold gaseous helium significantly reduced the amplitude of the microphonics,

however it was not altogether eliminated from the data. The period of the oscillations

observed in the waveform data was on the order of the length of the waveform,

Tosc. ∼ 14 µs or ω = 2π
T
∼ 225 kHz. The length of the optimal trapezoidal filter is

∼ 3.5 µs. Because the period of the baseline oscillation is comparable to the length
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Figure 5.7: When an accidental event occurs within 3.48 µs of the primary event,
the trapezoidal response of each begin to overlap and sum. In (a), the accidental
was synthetically placed exactly 3.48 µs (870 timebins) after the primary event for
illustrative purposes. In (b), the short trapezoidal filter is used to identify the two
events.
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Figure 5.9: Above is a histogram of the number of times decay particle backscatters
within a Monte-Carlo 45Ca simulation. See Sec. 5.2 for a description of the simulation.
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of the trapezoidal filter, the effect of the oscillation does not average to zero within

individual pulses. This effect distorts the trapezoidal output and degrades overall

energy resolution. To combat this problem, a linear least square (LLS) fit to an

oscillating baseline was implemented.

Linear Least Squares Fitting

The inner product of two functions f : < → < over some continuous domain

t ∈ [a, b] is:

〈f, g〉 :=

∫ b

a

f(t)g(t)dt (5.3)

Then over a discrete domain [t0, t1, . . . , tm], the inner product is defined

〈f, g〉 :=
m∑
i=0

f(ti)g(ti)∆ti (5.4)

Now if ∆ti = const. for all i, ∆ti contributes an overall multiplicative factor and

Eqn. 5.4 becomes: 〈f, g〉 = m ·∆t
∑m

i=0 f(ti)g(ti). Since this factor is the same for all

inner products, it may simply be dropped, leaving:

〈f, g〉 =
m∑
i=0

f(ti)g(ti) (5.5)

Now suppose that a waveform Y of m timebins can be described by n functions

fj. Then the i’th component of the waveform is given as:

yi :=
n∑
j=0

αjfj(ti) (5.6)

where 〈f, f〉 =
∑m

i=0 (f(ti))
2 = 1 and αj ∈ <. Then a matrix A can be defined

such that:
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Aij := fj(ti) (5.7)

A =


f0(t0) f1(t0) . . . fn(t0)

f0(t1) f1(t1) . . . fn(t1)
...

...
...

f0(tm) f1(tm) . . . fn(tm)


Then Y = Aα̂, with [α̂]i = αi. Note that AT · A is an m by m square matrix.

Therefore if AT · A is an invertible matrix, α̂ may be obtained:

α̂ = (AT · A)−1AT · Aα̂ = (AT · A)−1AT · Y (5.8)

For the 45Ca data, the functions used were f0 = 1, fi = sin(ωi · t), fi+1 = cos(ωi · t)

where i is one of N frequencies, and f2N+1 =
(
e
t−t0
τfall − e

t−t0
τcc

)
Θ(t− t0) where Θ is the

heaviside function. The first term in f2N+1(t) is the standard exponentially decaying

signal, and the second term takes in to account the finite rise time of the signal. τcc=

20 ns was used. Figure 5.10 demonstrates the LLS fit to a particular 45Ca waveform.

5.1.5 Baseline oscillation effect on a trapezoidal filter

The impulse response is given as Eq. 5.1. If there exists baseline oscillations, then

the input signal can be written as v(t) = v0(t) +f(t) where v0(t) = Θ(t− t0) ·Ae−
t−t0
τ

and f(t) = B sin(ωt+ φ). Thus the trapezoidal output can be written as:
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Figure 5.10: (a) Each individual function of the LLS fit are shown. The overall
fit has a χ2/DoF = 519 ADC2. Given that this value is an estimate of σ2, the fit
corresponds to an estimated σ = 22 ADC. This agrees well with calculations of the
root-mean-square noise for baseline data where σ ∼20-30 ADC for this pixel. (b)
Shows the difference in trapezoidal output between the uncorrected (red) waveform
and the trapezoidal output of the waveform with the oscillation removed (blue). In
this instance, the differnce is 42 ADC or around 5 keV.
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s(t) = s0(t) + s1(t) :=
1

τriseτfall

∫ ∞
−∞

h(t− t′)v0(t′)dt′

+
1

τriseτfall

∫ ∞
−∞

h(t− t′)f(t′)dt′ (5.9)

The first integral results in the standard trapezoidal output, and the second term,

s1(t), is the contribution of the oscillation.

s1(t) =
1

τriseτfall

∫ ∞
−∞

h(t− t′)f(t′)dt′ =
B

τriseτfall

∫ ∞
−∞

h(t− t′) sin(ωt′ + φ)dt′ (5.10)

Let x := t− t′, with dx = −dt′. Then Eq. 5.10 may be written as:

s1(t) =
−B

τriseτfall

∫ −∞
∞

h(x) sin(ω(t− x) + φ)dx (5.11)

Then the nonzero terms are:

s1(t) =
−B

τriseτfall

(∫ 0

τrise

(τfall + x)sin(ω(t− x) + φ)dx +∫ τrise

τrise+τtop

τrise · sin(ω(t− x) + φ)dx +∫ τrise+τtop

2τrise+τtop

(2τrise + τtop − τfall − x) sin(ω(t− x) + φ)dx
) (5.12)

Now
∫ a
b
x sin(ω(t− x) + φ)dx = x

ω
cos(ω(t− x) + φ) + ω−2 sin(ω(t− x) + φ)|ab and∫ a

b
sin(ω(t− x) + φ)dx = ω−1 cos(ω(t− x) + φ)|ab . Therefore Eq. 5.10 becomes:
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s1(t) =
−B

τriseτfall

(
τfall

ω
cos(ωt+ φ) +

sin(ωt+ φ)

ω2
(5.13)

− τfall + τrise

ω
cos(ω(t− τrise) + φ)− sin(ω(t− τrise) + φ)

ω2

+
τrise

ω
[cos(ω(t− τrise) + φ)− cos(ω(t− τrise − τtop) + φ)]

+

(
τrise − τfall

ω

)
cos(ω(t− τrise − τtop) + φ)− sin(ω(t− τrise − τtop) + φ)

ω2

+
τfall

ω
cos(ω(t− 2τrise − τtop) + φ)− sin(ω(t− 2τrise − τtop) + φ)

ω2

)

Now the energy of each event is determined by the midpoint of the trapezoidal

output, E = s(τrise + τrise+τtop
2

). Therefore the root-mean-square of the contribution of

the oscillation to the energy determination is:

σosc. =

√
1

τtop

∫ τrise+τtop

τrise

(s1(t))2dt (5.14)

Again for the 45Ca data set, τrise = 300 timebins, τtop = 100 timebins, and τfall ∼

1100 timebins. For this data set, the relevant observed oscillation frequencies range

from tens to a couple hundred kHz. Because the waveform itself is only 14 µs in

length, only a fraction of the oscillation is observed within a single waveform. Hence

the the magnitude of the contribution also depends on the phase φ of the oscillation.

Then with a frequency of 60 kHz, this contribution results in a maximum uncertainty

of σosc. = 0.841 ·B, where B is given in ADC bins.

Microphonic Frequency

As discussed above, the oscillation frequency ω is fixed for each LLS fit. As such,

standard non-linear fits of baseline data to a constant plus an oscillating function

were performed for several different runs taken at various points throughout the

experiment. These data were fit to f(t) = A sin(ωt) + B cos(ωt) + C, where A,B,C

91



0 50 100 150 200 250 300
kHz

100

101

102

103

104 Fit frequency distribution per pixel
Pixel: 64W: = 15.5 = 5.5
Pixel: 64W: = 60.7 = 9.8
Pixel: 64W: = 154.3 = 6.5
Pixel: 65W: = 12.5 = 4.1
Pixel: 65W: = 62.7 = 11.0
Pixel: 65W: = 149.5 = 7.9
Pixel: 64E: = 12.6 = 5.9
Pixel: 64E: = 64.3 = 19.0
Pixel: 64E: = 142.1 = 6.7

Figure 5.11: Above shows the distribution of frequencies observed (fitted) for the
pixels included in these analyses.

and ω are fit parameters. The waveforms were chosen such that the output of the

trapezoidal filter described in Sec. 5.1.1 had a maximum amplitude less than 50

ADC, or 8 keV. The distribution of fitted frequencies for a particular set of runs can

be seen in Fig. 5.11.

The lowest frequency peak in the 10-15 kHz range was not used for the LLS fits.

With a frequency of about 12 kHz, the calculation in Eq. 5.14 yields an uncertainty in

the range of 0.008 ·B < σosc. < 0.46 ·B, depending on the phase of the oscillation. The

typical amplitudes of these low frequency oscillations ranged from 0 to 75 ADC bins.

Then in terms of keV, the maximum uncertainty in the trapezoidal output introduced

by these oscillations is less than 5.7 keV. The higher frequency peak around 130 kHz

was also discarded for the LLS fits. The data are still being analyzed, however, it

appears that these frequencies result when a waveform exhibits various noise features
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Figure 5.12: In the above 2D histogram, the reduced χ2 value is plotted as a function
of frequency. The fits which resulted with f > 125 kHz typically corresponded to
events with non-oscillatory noise present in the waveforms. Hence the fits were poorer
and the reduced χ2 values were larger.

with a non-oscillatory behavior (see Fig. 5.12 for a distribution of frequencies versus

χ2/Dof values.

As will be discussed below, the three pixels over which 45Ca beta decay electrons

were collected were the central pixels of each detector and pixel 65 of the West

detector. The observed fit frequency distribution for these three pixels is shown in

Fig. 5.11. The overlap of the ∼ 62 kHz peak between the thee relevant pixels allows

for a single frequency to be used for every LLS waveform fit, regardless of pixel.

To determine whether this frequency varies as a function of time, this fit procedure

was applied to a number of runs which were well separated in time (∼ hours to days

apart). Additionally this list of runs spans very early runs to the very final run

taken in 2017. As shown in Fig. 5.13, the observed peak frequencies locations do not

substantially deviate from run to run. As such, the frequency used within the LLS
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Figure 5.13: Above shows the fitted frequency distribution of baseline data for a
sampling of runs taken for the central pixel of the East detector. Since the variation
over the above set of runs is very small (< 2 kHz over the set for any peak), the fit
frequencty may be fixed for all data runs.

fits were fixed for all runs, as the fit amplitude of oscillation is only used to reject a

particular event. Fig. 5.14 shows the effect of the cuts for several different amplitudes.

5.2 Monte-Carlo Spectrum Generation

Before proceeding to building spectra from the aforementioned waveform analysis,

a discussion of the Monte-Carlo simulation will first be presented. The MC simulation

provides both a means to extract ‘b’ by direct comparison to data and a route

to determine critical underlying systematic uncertainties that would be otherwise

inaccessible.

5.2.1 Physical Geometries

The experiment was conducted in the magnet of Ref. [51]. Hence, material and

magnetic field geometries of the SCS were also used (with the permission of the
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Figure 5.14: Shown above is the effect of various 45Ca spectrum cuts based on LLS
fit amplitudes. The quantity of interest is A, the oscillation amplitude. For a given
amplitude A (in ADC), the 45Ca spectrum was cut by removing events with oscillation
amplitudes greater than A. The resulting spectra were then divided bin-by-bin by the
un-cut (in terms of oscillation amplitudes) spectrum. The ratio of these two spectra
were then fit to a line. The slopes listed are given in counts per keV. At the endpoint,
the largest contribution from the linear term is less than two counts.
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collaboration) for the 45Ca experiment. In place of the UCNA detectors of Ref. [51],

the silicon detectors of Ref. [61, 62] were used in the simulation.

5.2.2 Generating Ideal and Realistic Source Spectra

All sources were located at least 1.9 m from a detector. As such, photon detection

was heavily suppressed by the solid angle occupied by the detectors with respect to

the source location (Ω < 2×10−4 sr). Hence, transitions which involved emission of a

photon are negligible. The MC therefore was only concerned with nuclear transitions

which involved the emission of an electron. For 113Sn, 207Bi, and 139Ce, the energies

and the relative intensities of the simulated source were obtained from Ref. [77].

The conversion coefficients were calculated via Ref. [78]. The 45Ca beta spectrum

distribution was obtained from and in collaboration with Ref. [64].The simulation

proceeded as follows:

A particle with some energy, position, and momentum is generated according

to the aforementioned probabilities and geometries. This particle corresponds to

some assigned event number. The initial energy, momentum and position. The

particle then propagates through the source foil and to the detector. PENELOPE

handles the particle’s interactions with the magnetic field and materials. In effect,

the PENELOPE code takes into account the majority of the physical processes

through which a decay electron can lose energy, which includes foil losses, dead

layer losses, and bremsstrahlung losses. When the particle first deposits some energy

within a detector, the amount energy deposited and location of deposition (pixel)

are recorded. If and when a backscatter occurs, the simulation also records each

subsequent deposition of energy. The amount of energy deposited, the location and

time since initial deposition are recorded. Then these energies are smeared (convolved

with a gaussian distribution) according to the measured resolution of the detection

system. This is called the electronic response function and will be discussed further

in Sec. 5.4. The energy spectrum at the generator stage will be referred to as the
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ideal spectrum; while the resulting spectrum after particle transport will be referred

to as the intermediate spectrum. The spectrum resulting from the convolution of

the intermediate MC spectrum with a gaussian will be referred to as the realistic

spectrum. See Fig. 5.15 for a comparison of the ideal and realistic spectra for the

sources used for this experiment.

5.2.3 Electronic Response Function

The shaping electronics varied from pixel to pixel. Hence the electronic response

function was determined on a pixel-by-pixel basis: Φ → Φpixel. For this analysis, Φ

was modeled as a Gaussian distribution. To determine the appropriate width of the

distribution for each pixel, the following procedure was carried out.

1. An approximate calibration was applied by simply matching the maximum of

the 113Sn 363 keV simulated source peak to data.

2. Then σ was estimated by comparing realistic MC spectra to roughly calibrated

data. This was done by convolving intermediate MC spectra with Φ at various

values of the detector response width σ. This was done by eye only to get an

estimation of σ.

3. A calibration was carried out as described above in Sec. 5.3.2, where the realistic

MC source spectra were generated with the current value of σ.

4. An updated value for σ was determined by fitting the convolution of a gaussian

of width σ with intermediate MC source spectra to calibrated data.

5. If δσ
σ
> 0.01, return to 3 and repeat.

Shown in Fig. 5.16 is a comparison of calibration source data taken and the realistic

MC spectra for said sources.
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Figure 5.15: Above are the ideal and realistic MC spectra for 113Sn, 207Bi, 139Ce,
and 45Ca. The ideal spectra correspond to the source spectra prior to energy loss
mechanism such as bremsstrahlung and inelastic scattering losses. The realistic
spectra result after these energy loss mechanisms have been applied by PENELOPE.
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Figure 5.16: Above is the comparison of realistic MC calibration source spectra
compared to data collected for pixel 52W. Realistic MC spectra were generated by
fitting the output of the PENELOPE simulations convolved with a gaussian to the
observed spectrum (blue), with the width of the gaussian as a free parameter.
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5.2.4 Generating MC Waveforms

For calibration and system linearity described below, the realistic source spectra

were sufficient. However for quantifying various systematic uncertainties and for a

‘b’ extraction, a third iteration of the simulation was generated. To further emulate

the data collected, a simulated waveform was generated for each event of realistic

MC spectra. The waveform includes all backscattered events which deposit energy in

multiple instances within a given pixel, with relative timing with respect to the initial

deposition calculated by PENELOPE. The shape of the waveform was generated by

running a step function, an approximate current pulse, through a CR− RC2 filter with

pixel dependent decay times. These decay times were chosen to match the mean fall

times observed for each pixel (see Fig. 5.3 for the distribution of a given pixel). The

amplitude in ADC bins was determined by applying the inverse of the calibration

described below. The noise for each pulse was generated by randomly sampling a

power spectrum of long baseline traces (or waveforms) of a few milliseconds. The

amplitude of the noise was then scaled to the observed RMS baseline noise in each

detector. A comparison of a simulated waveform to a waveform captured during

production data taking can be seen in Fig. 5.17.

5.3 Spectrum Analysis

5.3.1 Single-Pixel Spectra

Single-pixel energy spectra are 45Ca or calibration source spectra where the

included events were confined to a single pixel and are separated by more that 1 µs

from the nearest preceding and subsequent event. Energy was extracted as previously

described in Sec. 5.1.1. The 1µs separation between events is much larger than the

typical backscattering timeframe (see Fig 5.6). Therefore these single-pixel spectra

are largely free of distortions which arise from backscattering processes. This timing

cut also significantly reduces charge sharing effects for events which are incident near
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Figure 5.17: Shown above is a waveform recorded while running in blue and a
simulated waveform in orange. The orange waveform was generated by convolving
a semi-gaussian with a square pulse. Noise was superimposed by randomly sampling
power spectra created from long baseline traces and adding the result to the waveform.
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pixel boundaries. A goal of the 45Ca experiment is to generate single-pixel spectra

and look for distortions in the beta spectrum shape on a pixel-by-pixel basis. The

data were subjected to several cuts, which will be discussed below. In the following

discussion, the cuts were applied in the order in which they are described.

1. The first cut applied was a timing cut to reject waveforms with corruption

present (see Fig. 5.18). The corruption occurred as a result of a race condition

within the DAQ. This race condition took place when the RAM shared between

eight channels of a given digitizer board was accessed for reading prior to

the completion of writing to that sector. These events were generally the

result of very low trigger thresholds. The higher event rates forced the DAQ

to more frequently access the buffer and thus generate corrupted events. For

every waveform, a timestamp and a request time are recorded. The timestamp

corresponds to the time (in 4 ns clock ticks) when the trigger for the waveform

was generated. The request time corresponds to the time (also in 4 ns clock

ticks) at point the event was written to file. To determine whether an event

was possibly corrupted, the timestamp of a given event was compared to the

request time of neighboring events (ordered by timestamps) on the same board.

An event was flagged as corrupted if the timestamp for that event was within 60

µs of a neighbor’s request time. The timestamp corresponds to the first timebin

of an event’s waveform. To ensure that at no point corruption occurred along

the waveform, the timestamp plus 3500 timebins (the length of a waveform)

also was required to be greater than 60 µs from any neighbor’s request time.

This problem has been avoided in Nab by implementation of a software dead

time.

2. A low energy pedestal cut was applied. All events with Eevent < 25 keV were

removed. See Fig. 5.8 for the effect of the energy cut on the 45Ca and 113Sn data.

3. A timing cut was also applied to remove multipixel events, as they require a

separate analysis. A given event was rejected if it fell within 1 µs of its time
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Figure 5.18: When a race condition occurs on a given digitizer board, the waveform
being written to the buffer suffers corruption, as seen above.

ordered neighbors. The cut removed any events in which an electron deposits

energy in one pixel and backscattered into another. This additionally removed

events in which a particle was incident near pixel boundaries and charge sharing

between two or more pixels. See Fig. 5.8 for the effect of the timing cut.

4. The DAQ trigger parameters for the 45Ca experiment were not fully optimized.

As a result, pulses with large amplitudes occasionally caused two or more

triggers, which resulted in multiple recordings of a single waveform (See Fig.

5.19). Consequently, the timebin at which the trapezoidal filter used for energy

extraction reached a maximum was was utilized to find these events. If this

maximum fell within the first 2400 ns of the waveform, the event was discarded.

This cut is referred to as the t0 cut.

5. The next cut applied corresponds to an event classification. The three types

considered are a single independent event, a single event which backscattered

into the same pixel multiple times, and pile up events. For the first class, the

energy simply corresponds to the calibrated trapezoidal output. For the second
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Figure 5.19: Due to inadequately optimized trigger parameters, an event with
a sufficiently large amplitude created multiple triggers. This resulted in multiple
waveforms being created at slightly later times.

class of event, small dead layer corrections must be applied to fully reconstruct

an event’s total energy. The third class must be thrown out entirely. The

coincidence window of 400 ns discussed in Sec. 5.1.3 was used. The effect of

the removal of these events from a single-pixel spectrum can be seen in Fig. 5.8.

6. Finally,the output of the LLS fits to an oscillating baseline are used to remove

any events with a baseline oscillation larger that 50 ADC. The effect of the

removal of these events may also be seen in Fig. 5.8.

5.3.2 Calibration & System Linearity

An important aspect of the detector system is the linearity of its response to a

detected beta particle. The linearity of the detector system refers to the measured

or detected energy in relation to those of other events. For example, if an energy of

E ′ ADC is measured for an event of E keV, the system is considered to be linear

104



if 2 · E ′ is measured for an event of 2 · E. A measurement of ‘b’ is determined by

the energy spectrum of 45Ca. To extract ‘b’, the system must either be linear to

the uncertainty desired in ‘b’, or any non-linearities must be well understood and

numerically characterized. For the 45Ca experiment, the former will be shown.

Mono-energetic sources with well known energies are ideal for linearity characteri-

zation of the detectors and electronics chains. As such, conversion electron (CE) lines

for 113Sn, 207Bi, and 139Ce were used for this characterization (see Ch. 4 for details

regarding the setup).

Calibration proceeded as follows. For a given radioactive source peak, the

corresponding data was fit to a Gaussian plus a linear term. The linear term was

implemented to better fit the low energy portion of each peak. The fit was restricted

to a 2σ window about the maximum . This fit yielded a mean value xpeak ±∆xpeak,

where xpeak is in terms of ADC. Additionally, the corresponding simulated peaks

were also fitted to Gaussians with means µpeak ± ∆µpeak with µpeak in keV. Then

these measured peak locations (ADC) were linearly fit to simulated peak locations

(keV) by least squares minimization. See Fig. 5.20 for the procedure applied to two

pixels from each detector. The calibration uncertainty contribution for a ‘b’ extraction

is discussed in more detail in Sec. 5.4.2.

To quantify the linearity of each calibration, the fractional residuals for each source

peak were calculated with respect to the calibration line. These are shown in Fig. 5.20

for two pixels. The fractional residuals for each pixel are all below 0.02.

5.4 Fierz term extraction

The general procedure for extracting a Fierz interference term is to compare

the spectra obtained from data to a simulated spectrum. One could in principle

simulate numerous 45Ca spectra with different values of the Fierz interference term

and compare each one to data. These simulations however require time to accumulate

sufficient statistics for a reasonable comparison. Therefore a general method is needed
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Figure 5.20: Plotted above is the detector calibration for a pixel on the West detector
(W) and a pixel on the East detector (E). The standard error (SE ) for the slope and
offset (m and b) is also given. Additionally, the red points correspond to the fractional
residuals resulting from calibration at that specific point: data-fit

fit
. The two detectors

exhibit a very similar linear response as well as a comparable spread in fractional
residuals.
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which can be used for a ‘b’ extraction, but does not require a simulated 45Ca spectrum

at that value of ‘b’. Recall that the decay rate for 45Ca relevant to this experiment

is given by integrating Eq. 1.10 over the electron and neutrino solid angles dΩe and

dΩν respectively. This yields:

w
(
Ee
)

=
F (Z,Ee)

2π3
peEe (E0 − Ee)2 ξ

(
1 + b

me

Ee

)
(5.15)

Note that what is actually measured is the number of counts N at some

reconstructed energy Er. Electronic response and detector effects can each be modeled

as a convolution of Eq. 5.15 with some response function. Let Φ(E) and Gd(E) be

the electronic and detector response respectively.

N(Er) = η · (Φ ∗ (Gd ∗ w)) (Er)

= η

∫
Φ(Er, E

′)Gd(E
′, E)w(E)dEdE ′ (5.16)

where η is simply a constant of proportionality. Note that (Gd ∗ w)(E) are the inter-

mediate spectra as defined in Sec. 5.2. Define wSM(Ee) := F (Z,Ee)
2π3 peEeξ (E0 − Ee)2,

so that w(Ee) = wSM(Ee)
(

1 + bme
Ee

)
. Then expanding w(Ee) in the above equation

yields:

N(Er) =η

∫
Φ(Er, E

′)Gd(E
′, E)wSM(Ee)

(
1 + b

me

Ee

)
dEdE ′

=η

(∫
Φ(Er, E

′)Gd(E
′, E)wSM(Ee)dEdE

′

+ b

∫
Φ(Er, E

′)Gd(E
′, E)wSM(Ee)

me

Ee
dEdE ′

)
(5.17)
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For the following discussion, the dependence of the decay rate on the Fierz interfer-

ence term will be written explicitly. In effect w(Ee)→ w(Ee; b) = wSM(Ee)
(

1 + bme
Ee

)
.

Note that w(Ee; 0) = wSM(Ee) and w(Ee; 1)−w(Ee; 0) = wSM(Ee)
me
Ee

. Then inserting

these relations into Eq. 5.17 results in:

N(Er) = η

(∫
Φ(Er, E

′)Gd(E
′, E)w(Ee; 0)dEdE ′

+ b

∫
Φ(Er, E

′)Gd(E
′, E) (w(Ee; 1)− w(Ee; 0)) dEdE ′

)

= η

(∫
Φ(Er, E

′)Gd(E
′, E)w(Ee; 0)dEdE ′

+b

∫
Φ(Er, E

′)

(∫
Gd(E

′, E)w(Ee; 1)dE −
∫
Gd(E

′, E)w(Ee; 0)dE

)
dE ′

)

= η

(∫
Φ(Er, E

′)(Gd ∗ w(b = 0))(E ′)dE ′

+b

∫
Φ(Er, E

′) (Gd ∗ w(b = 1))(E ′)− (Gd ∗ w(b = 0)(E ′)) dE ′

)
(5.18)

Then with intermediate 45Ca spectra generated with ‘b’=0 and ‘b’=1 and a

reasonable approximation of Φ(Er, E
′), the above relation can be used to fit observed

45Ca spectra (N(Er)) to a linear combination of ‘b’=0 and ‘b’=1 simulations and

extract a Fierz term. The only fit parameters in the above expression are η and ‘b’.

This approach allows for a Fierz extraction while only requiring two different values

of ‘b’ for MC simulation.

The only corrections explicitly written in Eq. 5.15 are the BSM contributions

and the Fermi function which accounts for the first order electromagnetic interaction

between the decay electron and the daughter nucleus. There are a number of other

effects which also modify the beta spectrum. These effects are thoroughly discussed

in Ref. [64], and the numerical algorithm which generates the corrected spectrum is

described in Ref. [79]. The spectra used in this analysis were generated from and in
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collaboration with the authors of Refs. [64, 79]. All corrections described in these

references were included.

5.4.1 Fierz Extraction for Pixel 64 E

The above procedure was carried out for the single-pixel spectra of pixel 64E (the

central pixel of the East detector). The width of the electronic response was found

to be σΦ = 2.04 keV. To extract the Fierz term, the realistic MC spectrum was

subjected to the same cuts outlined in Sec. 5.3.1. The waveform specific cuts such

as the t0 cut and corruption cut were not applicable to MC. Pixel 77 was inoperable

for each detector. In order for MC to reflect these circumstances, any events which

deposited energy on pixel 77 were removed. In the cases where an event deposits some

energy in pixel 77 and backscatters into another pixel, only the energy deposition in

pixel 77 is removed from the MC data stream. Then with MC as data-like as possible,

the intermediate b=0 and b=1 spectra were convolved with the electronic response

function for pixel 64E, and Eq. 5.18 was used to fit the resulting MC spectra to

data. The fit range was chosen to maximize the number of bins over which the fit

is performed. The trigger efficiency is ∼ 99.9% at 150 keV (see Sec. 5.4.2 for more

detail). As such, 150 keV was taken as the beginning of the fit range. The end of the

fit range was dictated by statistical uncertainty. At 220 keV, the relative statistical

uncertainty N/
√
N = 0.01, which is at the level of the desired uncertainty in an

extracted value of ‘b’. A value of b = 0.40±0.06±σsyst. was extracted (see Fig. 5.21).

5.4.2 Uncertainties

Source Position and Distribution

The strong magnetic field of the SCS (1 T) confines any decay electron emitted

by the 45Ca or any other source used to a small area of a few mm2. Each pixel of

the detectors covers an area of about 1 cm2. The West and East detectors, each with

the seven central pixels instrumented, should therefore cover the entire 4π sr solid
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Figure 5.21: Shown above is the observed single-pixel spectrum for the central
pixel of the East detector (64E). The data is fit to a linear combination of b=0 and
b=1 realistic MC spectra. The extracted Fierz term is indicated in the legend. The
uncertainty only reflects the uncertainty of the fit. Systematics have not yet been
included.

110



angle of electron emission from any source properly centered in the magnetic field.

With a fully functioning detector, exact knowledge of the source position would not

be critical. Summed spectra could be used instead of single-pixel spectra to extract

a Fierz term. These summed spectra are nearly independent of geometric effects and

therefore subject to less uncertainty in source positioning. Because of a bug in the

DAQ firmware and a malfunctioning FET/preamp chain, no useful data was collected

for pixels 77 East and 77 West. The active pixels therefore did not cover the full 4π,

and some geometric effects or uncertainties must be quantified.

As noted in Ch. 4, the exact location of each source was not known to better

than an inch or so. Furthermore, the physical distribution of the source material on

the foil was also not well quantified. Therefore the simulated source positions had to

be inferred from relative pixel count rates. See Fig. 5.22 for a distribution of count

rates among the active pixels. The spot size was ascertained to be roughly 0.6 mm

in diameter (see Ref. [74]). Although the most of the 45Ca beta decay electrons are

captured captured by pixels 64E/W and 65W, roughly 1% of the decay events are

missed in pixels 77E/W.

To determine the impact on a ‘b’ extraction, a full Fierz term extraction was

carried out for MC events restricted to a particular quadrant of the source. See Fig.

5.23 for the dimensions of the simulated source as well as the extracted value of

‘b’ for each quadrant. The net effect of this variation resulted in an uncertainty of

σpos. =+0.01
−0.07.

Trapezoidal Energy Extraction

A systematic study was also carried out to quantify the uncertainty in the

energy extraction procedure described above in Sec. 5.1.1. For a fixed energy, 10,000

waveforms were generated as described above in Sec. 5.2. The risetime of each

waveform was randomly sampled from a distribution of risetimes observed. For each

waveform, a simulated energy was extracted using a trapezoidal filter with parameters

prescribed in Sec. 5.1.1. An average difference of the known and extracted energy was
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Figure 5.22: Above is a distribution of the number of events on each pixel with
E > 150 keV for run 120 compared to that of simulation (total number of events in
64W scaled to that of run 120).
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Figure 5.23: Shown above is the simulated 45Ca source geometry. The value of
the Fierz interference term that results when restricting MC events to a particular
quadrant is shown in the legend.
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recorded for the set of 10,000 waveforms. The energy was varied over a 0-600 keV

range. The uncertainty was found to scale as δX/X ∼ 0.025 where X is the known

energy in ADC. Then the uncertainty in keV is given as δE/E ∼ 0.025 ∗m, where

m is the slope of the calibration for a particular pixel. To determine the impact of

this uncertainty on a ‘b’ extraction, a resampling procedure was utilized. To this end,

a histogram of single-pixel event energies was created from observed events (data).

Each bin of the histogram was resampled according to a gaussian distribution with a

width of 0.025 ·m ·E. The resulting data was then used to extract a Fierz interference

term. This process was repeated 1,000 times and the standard deviation in ‘b’ was

taken as the systematic uncertainty introduced by the trapezoidal filter. Using this

method, a systematic uncertainty of σtrap = 0.02 was found.

Baseline Oscillation

A similar study to the above in Sec. 5.4.2 was carried out to determine the

uncertainty in ‘b’ due to baseline oscillation. Waveforms that were found to have

an oscillating baseline of an amplitude greater than 50 ADC were removed. To

estimate an uncertainty due to the remaining oscillations, the following strategy was

employed. The contribution of an oscillating baseline to the trapezoidal filter output

was calculated in Eq. 5.13. Typically the energy is read off from the trapezoidal

output from around the 1350’th timebin (see Fig. 5.2). An amplitude of B = 50ADC

was assumed and the output of corresponding to the 1350’th timebin of Eq. 5.13

was recorded for 106 randomly sampled phases φ. The integral of this distribution

was normalized to unity. This distribution was taken as the approximate probability

distribution and is shown in Fig. 5.24. This distribution was randomly sampled and

added to b = 0 event energies. This new b = 0 spectrum was then fitted according to

the above prescription in Sec. 5.4 to extract a value of ‘b’. This process was repeated

one thousand times, where the value of ‘b’ was recorded for each iteration. The value

of the systematic uncertainty introduced by the baseline oscillation was estimated as

the standard deviation in this distribution of values of ‘b’. This gave σ = 0.06. The
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Figure 5.24: MC b = 0 and b = 1 event energies were resampled to include potential
distortions from an oscillating baseline. Shown above is the probability distribution
used in the resampling.
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process was then repeated for a b = 1 spectrum, and the standard deviation in ‘b’

agreed to within 0.005 of the b = 0 spectrum.

Finite MC Statistics

Because an extraction of ‘b’ is achieved using MC, as opposed to an analytic

function, the uncertainty of ‘b’ also depends on the statistical uncertainty present

in the MC used. A resampling method was also used to ascertain the effect of this

statistical uncertainty on a value of ‘b’. For this study, the b=0 and b=1 MC event

energy histograms were resampled. The number of counts in each bin was randomly

resampled according to a poisson distribution P (N) = N̄Ne−N̄/N !, where N̄ is taken

to be the number of counts in each MC energy bin. This process was repeated 100,000

times and resulted in a value of σMCstat. = 0.04. See Fig. 5.25 for a distribution of

extracted values.

DAQ Trigger Efficiency

A set of simulated waveforms was used to study the DAQ trigger efficiency.

The waveforms were generated as outlined in Sec. 5.2. To accurately model the

DAQ response to each event, the waveforms were subjected to the trigger scheme

as discussed in Sec. 4.3.2, where the double trapezoidal parameters were chosen to

match those of the DAQ filter. See Fig. 5.26 for a plot of these efficiencies as a function

of energy for the two central pixels. These trigger efficiencies were taken into account

when choosing the appropriate fit range for the Fierz term fits. At 150 keV, the trigger

efficiency contributes an uncertainty of σ = 0.003; the smallest contribution to the

uncertainty in ‘b’.

Deadtime correction

A 60 µs software dead time was implemented in the above analysis to remove

events with corruption. As noted above, a race condition within the DAQ FPGA
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Figure 5.25: Shown above is a histogram of the various values of ‘b’ extracted by
resampling the number of counts in each energy bin of realistic MC, for both b=0
and b=1 spectra. The MC was resampled according to poisson statistics.

117



0

5000

10000

15000

20000

25000

30000

Co
un

ts
 

[.
8k

eV
]

1

Pixel 64W
Full MC
DAQ Trigger 
applied to MC

0 50 100 150 200 250
Energy [keV]

0

10000

20000

30000

40000

50000

Co
un

ts
 

[.
8k

eV
]

1

Pixel 64E
Full MC
DAQ Trigger 
applied to MC

97

98

99

100

101

102

103

Sim
ulated Trigger Efficiency

97

98

99

100

101

102

103

Sim
ulated Trigger Efficiency

Figure 5.26: Above, the simulated trigger efficiencies for the two central detector
pixels is shown. The root-mean-square (RMS) baseline noise of the East pixels was
about twice as large as those of the West detector pixels. This difference in signal-to-
noise ratio is the primary cause for the difference in simulated trigger efficiencies.
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necessitated the implementation of a software dead time of 60µs. The 45Ca activity

was about 1 kBq, or 1 ms on average between each decay event. Then the observed

rate is reduced by a factor of 1
1+103[counts/s]·6·10−5[s]

= 94.3% of the actual rate. This

contribution only amounts to an overall multiplicative factor applied to each energy

bin. Hence the overall shape remains the same and the correction may be neglected

in a Fierz analysis.

Fit Region

The fit region was chosen by maximizing the range of the included beta spectrum

while minimizing the statistical uncertainty in ‘b’. Since trigger efficiencies were not

included in MC spectra, the inefficiencies over the fitted region were required to be

small, ∼ 0.1%. As can be seen in Fig. 5.26, the simulated trigger efficiency is about

99.9% at 150 keV for pixel 64E. 150 keV was chosen as the lower limit of the fit range

for pixel 64E. The upper limit was chosen such that σstat
N
∼ 0.01% where N is the

number of counts in some energy bin. Solving for N yields N = 106 counts. Thus the

highest energy bin used corresponds to the last bin where N > 106. This corresponds

to an energy of 220 keV for pixel 64E. To determine the uncertainty introduced by

this choice of the fit range, the lower and upper energy bins were varied by ±4 keV

which corresponds to 5 bins at 0.8 keV per bin, and a new value of ‘b’ was extracted.

The upper and lower limits of this variation are reported as σregion =+0.03
−0.04.

Calibration Error

The calibration used also introduces a source of uncertainty in an extraction of ‘b’.

Naively, one can again use the aforementioned method of resampling the calibration

slope and offset according to the reported errors of the calibration fit parameters.

The data are recalibrated according to the resampled slope and offset values and a

value of ‘b’ is extracted using the new calibration. This was done and the uncertainty

was found to be σcal. ∼+0.2
−0.1. This strategy does not, however, take into account the
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correlation between the slope and the offset of the linear calibration. Instead, the

following approach was also implemented. The calibration source peaks have some

gaussian width in ADC. Each peak centroid was shifted according to a resampling of

a gaussian distribution with the aforementioned width, and a new set of calibration

parameters were fit to the resampled peak centroids. The set of calibration parameters

for each resampling was then applied to 45Ca data, and a value of ‘b’ was extracted.

This was done with 1,000 different source peak resamplings. A value of σ =+0.77
−0.45 was

found.

Final Value

A summary of the contributions to the dominant systematic uncertainties in

an extraction of ‘b’ is given below in Table 5.1. The uncertainties were added in

quadrature resulting in a value of b = 0.40± 0.05stat±+0.78
−0.47sys.

Table 5.1: Above is a list of systematic uncertainties with the approaches used
to determine the effect on an extraction of the Fierz interference term. Calibration
uncertainty is the dominant uncertainty on the order of ‘b’.

Systematic Uncertainty in ‘b’
Calibration Uncertainty +0.77

−0.45

Trapezoidal Filter Energy
Extraction

0.02

Electronic Response Model-
ing

0.05

Baseline Oscillation 0.06
MC Source Positioning +0.01

−0.07

Detector Efficiency 0.003
MC Statistics 0.04
Fit Range Variation +0.03

−0.04
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Chapter 6

Conclusion

6.1 Past Fierz Interference Searches

In addition to the that of the 45Ca experiment outlined in Ch. 4, several other

Fierz or Fierz related searches have been performed or are currently underway. These

results are obtained by one of three approaches. BSM ft values, beta decay correlation

coefficient measurements, and beta spectrum shape distortion measurements can all

provide limits on ‘b’.

BSM ft Values

Recall that the BSM ft values given by Eq. 1.18 include a Fierz component. The

term
〈
me
Ee

〉
is determined numerically. ξ, however, is a function of the BSM mixing

ratio |ρ̃| (see Eq.1.14). For any transition with a nonzero Gamow-Teller component, |ρ̃|

can be determined from a measurement of the electron-neutrino correlation coefficient

‘a’ or the beta asymmetry parameter ‘A’. Measurement of ‘a’ for all but neutrons

tends to be difficult, as such a measurement entails either a measurement of the

nuclear recoil (see Ref. [80]) or the outgoing neutrino momentum. In the case of

super-allowed 0+ → 0+ Fermi transitions, the expression for ‘b’ is greatly simplified.

With MGT = 0 for these transitions, the Fierz term is only a function of scalar
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BSM couplings: bF := 2γRe
(
CS+C′S
CV +C′V

)
. The notation bF is used here simply to denote

that the transitions in consideration are Fermi transitions and thus free of tensor

current contributions. Assuming only left-handed currents present in the transition

(|Ṽud| → |Vud|), the ft value is then given as:

ft =
K

2G2
F |Vud|2

(
1 + bF

〈
me
Ee

〉) (6.1)

A value of bF = −0.0028± 0.0026 is reported in Ref. [35].

The BSM Beta Asymmetry Parameter

Measurements of the beta asymmetry parameter ‘A’ have also been used to set

limits on ’b’. In general, the results are reported in the form of a BSM beta asymmetry

parameter Ã. A nonzero value of ‘b’ essentially contaminates the beta asymmetry

parameter: (A → Ã = A
1+me

Ee
b
). The results then are usually left in the form of Ã

without disentangling the contribution from ‘b’. See Refs. [81–84] for such results for

various nuclei or Ref. [85] for a review of these measurements.

6.1.1 Beta Spectrum Measurements

Along with the 45Caexperiment discussed in Chs. 4 and 5, several other experi-

ments have been attempted or are underway which aim to precisely measuring the

beta energy spectrum and extract a Fierz interference term.

Ultracold Neutrons

A measurement of ‘b’ for ultra-cold neutrons (UCN) has been performed and the

results are discussed in Ref. [86]. This measurement was extracted from the UCNA

2010 data set of Ref. [52]. The goal of the UCNA experiment was to measure the beta

asymmetry parameter ‘A’ of Eq. 1.9 for ultra cold neutrons (UCN). An extraction

of ‘A’ requires polarized UCN and a measurement of the momentum of the electrons
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resulting from beta decay of the UCN. A detailed description of the setup as well

as the extraction method can be found in Ref. [52]. The spectrometer utilized for

the measurement was the SCS of Ch. 4, with a different detector package. Instead of

silicon detectors, a multi-wire proportional chamber in front of a scintillating detector

at each end of the SCS were used to measure electron momenta. A beta spectrum

was generated by taking “super” sum of detector count rates and a value of ‘b’ was

extracted from the resulting spectrum. A result of b = 0.067 ± 0.005stat
+0.090
−0.061 sys was

reported [86].

6He & 20F Calorimetry

Another interesting experiment poised to measure the Fierz interference term

for 6He is ongoing at The National Superconducting Cyclotron Laboratory (NSCL)

of Michigan State University. Instead of magnetically confining decay electrons by

a strong magnetic field as was done for the 45Ca and UCNA experiments, the

decaying 6He nuclei were deposited deep within a scintillating calorimeter [87]. This

implantation then allows for all decay particle energy (with the possible exception

of Brehmsstrahlung) to be collected. I.e. the detector is free from backscatter

effects. The spectra of 6He and 20F have been taken and a projected uncertainty

of 0.1% for ‘b’ is anticipated. A preliminary result for the beta decay of 20F with

b = 0.0021± 0.0051stat ± 0.0084sys is reported in Ref. [88].

6He Cyclotron Radiation Emission Spectroscopy

At the University of Washington, a slightly different approach is being imple-

mented to measure the beta decay spectrum of 6He. Instead of using conventional

solid state or scintillating detectors to measure the energy of an electron, energy is

extracted using cyclotron radiation emission spectroscopy (CRES). The apparatus

essentially consists of a large magnetic field created within an electromagnetic

radiation waveguide. Instead of using a solid source, the beta decay source exists
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as a gas trapped within the waveguide. Because the source exists in a gaseous state,

as opposed to a solid source, there are no electron energy losses due to transport

through a source foil. As the electrons spiral around the field lines, a very small

but measureable amount of cyclotron radiation is emitted. The waveguide allows for

collection of this radiation, and an energy is determined by frequency analysis of the

collected radiation. See Refs. [89, 90] for more detail regarding the operating principals

and technical setup. Using this method for the beta decay of 6He, the collaboration

(Project 8) is projected to extract a preliminary result with ∆b ∼ 10−3, followed up

by an even more precise extraction on the 10−4 level.

6.2 Summary and Outlook

The primary goals of this work were to develop a cooling system and explore

an analysis strategy for the extraction of the Fierz interference term, ‘b’, for the

Nab experiment. The former was addressed by constructing and testing several

prototypes for related experiments such as the UCNB and 45Ca beta spectrum

measurements. The first system investigated was a standard LN2 cooled system. This

cooling method resulted in an additional source of noise in waveform data which

arose from the physical shaking of the cooling lines. These microphonics stemmed

from the vaporization of LN2 along the cooling lines. To mitigate this as well as a few

logistical problems for Nab, the cooling system was redesigned. The updated design

features recirculating helium gas, cooled by a cold head. A prototype which utilized

LN2 to cool the helium gas was tested. This demonstrated a proof-of-principle for

the Nab cooling system and was followed up with a more realistic prototype to cool

the detector system for the 45Ca beta spectrum measurement. This design brought

the necessity of utilizing separate cooling lines to light. Additionally, the test also

demonstrated the ability to control the system temperature to the 0.1 K level, well

under the 0.5 K stability required by Nab.
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The work performed in the extaction of the Fierz term for the beta decay

of 45Ca addresses the second major goal of this work. The 45Ca beta spectrum

measurement was setup and took data in the summer of 2017. The raw waveform

data was analyzed using various digital signal processing methods, and energies were

extracted for each event. Single-pixel spectra were constructed. These spectra only

include that were confined to a single pixel and well separated in time. The calibration

source spectra and MC simulated spectra were used to calibrate the extracted energies

from ADC units to keV. The linearity of the calibration was such that the fractional

residuals of calibration source peaks were below the 2 · 10−2 level, with respect to the

linear calibration. This calibration was applied to data. The calibration source data

was also used to precisely determine an electronic response function. Intermediate

MC calibration source data were fit to observed spectra by convolving a gaussian

distribution with the MC spectra, where the width of the distribution was fit as

a free parameter. This electronic response function was used to produce realistic

spectra from the intermediate MC data. A value of ‘b’ was extracted by fitting a

linear combination of realistic b = 0 and b = 1 MC spectra to 45Ca data, with an

overall normalization and ‘b’ as free fit parameters. Finally, a set of systematic studies

were conducted to quantify the dominant systematic uncertainties in the extraction

of the Fierz term. A value of b = 0.40± 0.05stat±+0.78
−0.47sys was found.

In comparison, the value extracted of ‘b’ extracted in this work places less stringent

constraints on the Fierz interference term for 45Ca than those of Sec. 6.1. While many

experimental conditions were sub-optimal for a precise Fierz extraction for 45Ca,

many problems likely to be encountered for Nab were illuminated in this process.

Many difficulties present for the analysis of the 45Ca data have been circumvented

for Nab by various changes to the DAQ firmware. The information gained from the

cooling system will also be a key component in Nab detector stability. The usage

of separate lines of recirculating, cold Helium gas for the upper and lower detectors

will allow for much finer adjustments of detector temperatures for Nab. Finally, the

analysis strategy for an extraction of ‘b’ has not yet been finalized for Nab. This
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work provides insight into benefits and pitfalls of one such route. The knowledge and

lessons learned provided by the 45Ca beta spectrum measurement will be used by the

Nab experiment to achieve a competitive Fierz interference extraction with δb ∼ 10−3.
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Appendix A

Maximum Proton Kinetic Energy

in Neutron Beta Decay

For simplicity, natural units will be used for the proceeding derivation. Also, all

masses written are rest masses. The Q-value is defined as the restmass of the decaying

mother minus the rest mass of all the decay products. For free neutron decay Q =

mn − mp − me − mν ≈ mn − mp − me. The neutrons will be considered to decay

at rest. This is reasonable for the above discussion, as the neutrons used in the Nab

experiment are cold neutrons with a kinetic energy Tn < 1 eV [56]. For the following,

let E, T, p denote total energy, kinetic energy and momentum. Any subscripts will

denot the particle to which the energy or momentum belongs. Energy and momentum

conservation imply:

Q = Tp + Te + Tν (A.1)

−pp = pe + pν (A.2)

Squaring both sides of Eq. A.2 gives:
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p2
p = p2

e + p2
ν + 2pepν cos(θeν) (A.3)

Now the proton kinetic energy is obviously maximized by maximizing the proton

momentum. Then from the above p2
p is maximal when θeν = 0, so Eq. A.3 becomes:

p2
p = p2

e + p2
ν + 2pepν (A.4)

Now pp =
(
E2
p −m2

p

)1/2
and E = T + m. Taking the neutrino as massless (Eν =

Tν = pν), Eq. A.4 becomes:

E2
p −m2

p = p2
e + T 2

ν + 2Tνpe

→ T 2
p + 2mpTp = p2

e + T 2
ν + 2Tνpe (A.5)

Then solving Eq. A.1 for Tν and inserting the result into Eq. A.5

T 2
p + 2mpTp = p2

e + (Q− Te − Tp)2 + 2(Q− Te − Tp)pe (A.6)

Then solving the above for Tp yields:

Tp =
(Q− Te + pe)

2

2 (Q− Te + pe +mp)
(A.7)

Now at the maximum proton kinetic energy, dTp
dTe

= 0. Thus taking the derivative

of Eq. A.7 and solving for Te gives:
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Te =
Q

2
(

1 + me
Q

) (A.8)

Then inserting the value found for the electron kinetic energy into Eq. A.7 gives

a maximum proton kinetic energy of 634 eV << mp = 938 GeV. Thus:

Ep = Tp +mp ≈ mp (A.9)
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Appendix B

High voltage feedthrough design

drawings

The technical drawings for the high voltage transfer lines used in Nab experiment

were uploaded as an attachment (see HV FT drawing.pdf). The design requirements

presented a couple of challenges. The lines were required to stand off the 30 kV

potential between the inner and outer high voltage cages while transporting a

cryogenic coolant to the Nab detector mount. Therefore the lines not only had to

be electrically isolating but also minimize thermal heat contamination. For one,

any contamination diminishes the cooling power of the helium gas used to cool the

detectors. Additionally, heat leaks also ultimately result in condensation and freezing

of atmospheric water on the transfer line. The buildup of condensation of water or frost

eventually would lead to an electrical short of 30 kV to ground along the high voltage

feedthroughs. By itself, electrical isolation or thermal insulation of a transfer line

is solvable via commercially available, economical products. The requirement of the

lines to be both electrical isolating an thermally insulated was not as straightforward.

There were croygenic suppliers willing to construct such a line, however the prices

quoted were prohibitive and the lead times very large. As such, the idea was put

forward to construct vacuum jacketed transfer lines from G-10 and assemble them
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locally. Two of the three initial prototypes survived 10 rounds of thermal cycling. To

mitigate internal stresses brought about by thermal expansion, the inner line of the

feedthrough was redesigned to incorporate a bellows.
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Appendix C

Ramsey Bayonet design drawings

The technical drawings for the Ramsey bayonets were uploaded as an attachment

(see Ramsey bayonet drawing.pdf). These mount with the high voltage feedthroughs

of Sec. B in the high voltage cage and mate with the detector mount cooling lines.

These were produced by Cryofab according to the design specifications.
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Appendix D

Dip Tube Feedthrough design

drawings

The technical drawings for the dip tube feedthroughs were uploaded as an

attachment (see dip tube feedthrough drawing.pdf). This allows the dip tube of the

vacuum jacketed, flexible transfer lines to mate with the vacuum vessel in which the

cold head resides.
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Appendix E

Vacuum vessel design drawings

The technical drawings for the vacuum vessel which houses the Sumitomo CH-

110 cold head were uploaded as an attachment (see Vacuum vessel drawing.pdf). This

provides the insulating vacuum for the cold head and heat exchangers used to cool

the recirculating heliumg gas.
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Appendix F

Heat exchanger design and

drawings

The technical drawings for the Nab heat exchangers were uploaded as an

attachment (see HE drawing.pdf). The Nab cooling goal set forth was to be able

to bring the detector temperature to ∼ 100K with a stability of 0.5K over the length

of a run. As discussed in Ch. 3, a simple cold coiled tube proved to be an insufficient

heat exchanger to accomplish these goals. Hence the design of the cooling system was

modified. A Sumitomo Ch-110 cold head was substituted for LN2 as the heat sink

for the system. It is a single stage cold head with a cooling power of ∼ 140W at

50K. Thus with an adequately designed heat exchanger, much colder helium can be

delivered to the detector mount.

The primary objective was to design a more turbulent heat exchanger. A schematic

of the first prototype attempt can be seen in Fig. F.2. It should be noted that at this

point, LN2 was still intended to be used as the heat sink. The prototype was essentially

a stainless steel box with copper fins to break up the flow. The heat exchanger was

to be submerged in LN2 and helium gas passed through the heat exchanger. After its

construction, pressure drop across the heat exchanger was measured for various flow

rates (see Fig. F.2 for a schematic of the setup). With room temperature nitrogen at

147



140 PSI, the maximum pressure drop measured across the heat exchanger was less

than a few PSI. Although such a low pressure drop was unexpected, the more valuable

lesson learned from the prototype was the need to create a flexible and adaptable

design. There were many unknowns and variables that had to be accommodated by

the heat exchanger, so iterating upon the design would be likely. Thus the design in

the attached technical drawings was eventually settled upon.

The outer body of the heat exchanger is a standard 4.5” conflat half nipple fitting

silver soldered to a solid copper base. The conflat flange allows for the heat exchanger

to be extended if need be by bolting a second conflat full nipple to the end of the

heat exchanger. For Nab, the extension would be unnecessary, however it does provide

some flexibility for any future uses.

The inner fins of the first prototype were instead replaced with copper spacers

and disks. The advantage to these is that both the disks and spacers may be added,

removed or even swapped for thinner pieces. Should more impedance be desired,

thinner spacers may be used and more disks may be added. For less impedance,

disks may simply be removed. This adaptability thus allows the heat exchanger to be

utilized over a much broader set of flow rates and pressures.
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Figure F.1: Shown above are two views of a 3D model of the first heat exchanger
prototype. Two outer stainless steel walls are transparent to show the internal
geometry. A rod was welded to the bottom of the heat exchanger. Stainless steel
spacers and copper fins were stacked along the length of the heat exchanger. Helium
gas enters through the bottom via a 1/4” VCR fitting (not shown). The orientation
of the fins were designed to force the gas to serpentine around each fin and maximize
the total gas path length through the heat exchanger. Gas exits the heat exchanger
through a 1/4” VCR fitting at the top (not shown).
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P1

Heat Exchanger
Mass Flow
Controller

P2

Figure F.2: The above setup was used to measure the impedence of the heat
exchanger prototype. Room temperature nitrogen gas at roughly 140 PSI was
provided by ORNL. The flow was regulated by a mass flow controller, and the
pressures at P1 and P2 were measured for various flow rates. The pressure drop of the
heat exchanger is defined as the difference of P1 and P2.
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Appendix G

Heat exchanger mount plate design

drawings

The technical drawings for the heat exchanger mount plate were uploaded as an

attachment (see HE mount plate drawing.pdf). This piece mounts to the Sumitomo

CH-110. The heat exchangers are coupled to the cold head using this mount plate.

The plate is entirely OFHC copper for optimal thermal conductivity between the cold

head and the heat exchangers.
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Appendix H

Full Cooling Schematics

Process and Instrumentation Diagrams (PID) of the schematic shown in Fig.3.1

have also been included as an attachment (Cooling loop schematics.pdf). These

schematics provide a more detailed view of the cooling system and the included

components. The design and preliminary P&ID work was performed by the author

of this work. The final drawings in the attachment were the work of Maria Zemke.
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