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INTRODUCTION 

The percid genus Ammocrypta comprises six species endemic to central and 

eastern North America.  Members of the genus often inhabit sandy runs of small to 

medium rivers (Page and Burr, 1991), hence their common name, sand darters 

(Etnier and Starnes 1993).  The Florida Sand Darter, A. bifascia, which is the focus 

of our study, was first described by Williams (1975) from specimens collected in 

the Choctawhatchee River, Florida.  Williams (1975) diagnosed A. bifascia as 

distinct from A. beanii (the Naked Sand Darter) based on geographic distribution, 

tuberculation, and medial fin banding pattern (bifascia refers to two bands).  The 

geographic distribution of A. bifascia encompasses Gulf of Mexico drainages of the 

Perdido, Escambia, Blackwater, Yellow, and Choctawhatchee rivers (Boschung 

and Mayden 2004).   

Starnes and Starnes (1979) collected specimens from the Apalachicola 

River, Florida, which is east of the Choctawhatchee River and outside the known 

distribution of A. bifascia.  The Apalachicola specimens were collected a few 

hundred meters below Jim Woodruff Dam, which impounds Lake Seminole, and is 

the confluence of the Chattahoochee and Flint rivers near the Florida, Alabama, 

and Georgia border (Fig. 1).  Only two specimens were collected on two occasions, 

but Starnes and Starnes (1979) considered the Apalachicola specimens native, 

likely missed by earlier sampling efforts not extensive to the main river.  In contrast, 

others (Stauffer et al. 1980; Swift et al. 1986; Fuller et al. 1999; Boschung and 

Mayden 2004) considered the scarcity of records in the Apalachicola as evidence 

of occasional bait-bucket introductions by anglers given the proximity to the tail 

water fishery below Jim Woodruff Dam.  Mettee et al. (1996) did not mention the 

Apalachicola specimens in their account of A. bifascia, while Page (1983), Page 

and Burr (1991; 2011), and Robins et al. (2018) accepted the Apalachicola 

specimens as native without comment. Robins et al. (2018) also included additional 

localities in the Apalachicola and Chipola rivers (Apalachicola drainage) on their 

distribution map for A. bifascia.  

We collected Ammocrypta specimens in the lower Flint River upstream of 

Jim Woodruff Dam in 2013, representing the first record of the genus in Georgia.  

Given their significance, our primary objective was to accurately identify these 

specimens using both morphological and genetic data.  While A. bifascia was likely, 

given their known occurrence further downstream in the drainage, we also 

considered the possibility that our specimens represented an undescribed and 

potentially endemic species. Boschung and Mayden (2004) recognized 9 fishes 

endemic to the Apalachicola drainage. The recently described Halloween Darter 
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Figure 1.  Sites where targeted searches for Ammocrypta were completed as part of this study.  

Lower inset shows watersheds included within the known range of A. bifascia, with watersheds 

sampled in Georgia highlighted. 1 = Patsaliga, 2 = Sepulga, 3 = lower Conecuh, 4 = Escambia, 5 = 

Perdido, 6 = Blackwater, 7 = Pensacola Bay, 8 = Yellow, 9 = Choctawhatchee Bay, 10 = upper 

Conecuh, 11 = Pea, 12 = upper Choctawhatchee, 13 = lower Choctawhatchee, 14 = lower 

Chattahoochee, 15 = Chipola, 16 = Apalachicola, 17 = Ichawaynochaway, 18 = Spring, 19 = lower 

Flint. 
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(Percina crypta; Freeman et al. 2008) is one of the recognized endemics, but 

warrants additional taxonomic study (Hayes and Piller 2018).  

Our secondary objective was to better define the distribution of 

Ammocrypta in Georgia through additional surveys. While Flint River sport fish 

populations have been the focus of extensive research and monitoring (e.g., 

Sammons et al. 2019), sampling for smaller fishes has largely focused on Flint 

River tributary streams (e.g., Albanese et al. 2007; McCargo and Peterson 2010).  

This bias in sampling reflects the inability to effectively sample small fishes with 

boat electrofishing and the difficulty of accessing shallow habitats that can be 

sampled by other gear types.  

METHODS AND MATERIALS 

Study Area  

The lower Flint River basin (LFRB) is located within the Dougherty Plain 

district of the Coastal Plain physiographic province of southwestern Georgia (Rugel 

et al. 2012; Gore and Witherspoon 2013) and receives significant groundwater 

inputs from the upper Floridan aquifer (Hicks et al. 1987; Rugel et al. 2016). 

Coastal Plain rivers of the southeast are often characterized by low-gradient 

meandering channels, broad floodplains, high sediment deposition, and point bar 

formations (Hupp 2000). However, river channels in the LFRB are deeply incised 

into the Ocala Limestone formation, and erosional features exist as springs, 

fractures, and stream bedrock outcrops (Rugel et al. 2012; Rugel et al. 2016). 

Therefore, since hydrology in the Dougherty Plain is largely controlled by mantled 

karst geology (Hicks et al. 1981) and confined channel morphology (Atkinson et 

al. 2009), reaches in this region of the LFRB remain distinct from other alluvial 

reaches characteristic of the Coastal Plain. Notably, due to the influence of the 

limestone outcrops on river morphology, sandbars are rare and often submerged 

within our study reach. 

Sampling 

After our initial discovery of Ammocrypta (n = 5 fish) in the Flint River near 

Newton GA during June 2013, we targeted sandbars and sand dominated runs from 

24 additional sites in the lower Flint Basin. Sites were distributed in the mainstem 

Flint River (Albany to Lake Seminole, n = 15 sites), Spring Creek (between 

Colquitt and the confluence of Spring Creek with Lake Seminole, n = 3 sites), 

Ichawaynochaway Creek (n = 5 sites), and Chickasawhatchee Creek (n = 1 site).  

Collections were made with small seines 3.1 to 5 m long, 1.2-1.8 m deep with 3-6 
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mm mesh. All specimens were either fixed in 10% formalin or preserved with 95% 

ethanol for genetic analyses under authority of the Georgia Department of Natural 

Resources.  For Ichawaynochaway Creek, we also used snorkel crews (2-4 

individuals) to search suitable sand bar habitat for a minimum of 60 minutes or until 

Ammocrypta were found.  The objective of the snorkeling surveys was to detect 

Ammocrypta in multiple distinct locales within the lower reaches of the 

Ichawaynochaway Creek. Therefore, no fishes were collected during snorkeling 

surveys and search efforts focused on behavior and habitat observations once 

Ammocrypta were successfully detected. 

Species Identification 

Morphological 

Morphometric (n = 23) and meristic (n = 8) characters were recorded under 

a dissecting microscope with dial calipers to the nearest one tenth of a millimeter 

and compared to the same characters found in Williams (1975).  Counts and 

measurements followed Hubbs and Lagler (2004) with a few modifications to 

account for scale features unique to Ammocrypta (Williams 1975) and were made 

on 14 females and one male that were initially preserved in formalin and later 

transferred to 70% ethanol. The focus on female specimens was not deliberate but 

reflects what was captured during our surveys. Counts and measurements were 

compared to the five females measured by Williams (1975) from the 

Choctawhatchee/Yellow systems. Counts and measurements were not completed 

on the genetic specimens described below due to effects of 95% ethanol 

preservation on morphology. Similarly, genetic analyses were not carried out on 

the 15 formalin-fixed specimens.  

Genetic 

We targeted the mtDNA cytochrome c oxidase (COI) and nuclear ribosomal 

internal transcribed spacer 2 (ITS-2) genes.  We sequenced 20 individuals for COI 

(n = 9 Flint River, n = 9 Choctawhatchee River, n = 2 Apalachicola River); 

Choctawhatchee and Apalachicola tissue samples were obtained from the 

University of Kansas Biodiversity Institute and the Florida Museum of Natural 

History, respectively. We sequenced 32 individuals for ITS-2 (n = 20 Flint River, 

n = 12 Escambia River; see Appendix). We extracted DNA from tissue using the 

DNeasy Blood and Tissue kit (QIAGEN, Inc.).  The DNA was inspected visually 

for molecular weight via agarose electrophoresis (2% agarose in 1x TAE).   



SFC Proceedings No. 60 

 203 

 

  Polymerase chain reaction (PCR) amplification used primers VF2_t1 and 

FR1d_t1 (Ivanova et al. 2007) for COI, and ITS-2-F (5’-

CTACGCCTGTCTGAGTGTC) and ITS-2-R (5’-

ATATGCTTAAATTCAGCGGG) for ITS-2 (Phillips et al. 1995).  PCR 

amplifications (25 μL reaction volume) included 30-80 ng/uL DNA, 1 × Taq 

reaction buffer (GoTaq Flexi, Promega, Madison, WI), 3.125 mM MgCl2, 0.375 

mM of each dNTP, 0.50 uM of each primer, and 0.05 U Taq DNA polymerase 

(GoTaq Flexi, Promega).  Thermal cycle conditions were an initial 94 ˚C (2 min) 

denaturation followed by 35 cycles of 95 ˚C (30s), 58˚C (30s) 72 ˚C (30s) and a 

final 72 ˚C (7 min) extension. 

PCR products were cleaned using a QIAquick Purification Kit (QIAGEN, 

Inc.) and cycle sequencing (both forward and reverse strands) followed the BigDye 

Terminator v3.1 protocol (Applied Biosystems, Inc., Foster City, CA) using 

primers above.  Products were purified using standard ethanol/EDTA precipitation 

(BigDye Terminator v3.1 Cycle Sequencing Kit User Guide).  We ran the purified 

products on an ABI PRISM 3130 genetic analyzer (Applied Biosystems, Inc.). 

Sequences were checked against original chromatograms using Bioedit v. 7.0.1 

(Hall 1999) and contiguous sequences assembled using the computer program 

Geneious v. 8.1.6 (https://www.geneious.com).   

For mtDNA phylogenetic reconstruction, we downloaded 53 Ammocrypta 

sequences from the Barcode of Life Database (BOLD) repository comprising all 

six species of Ammocrypta (Appendix). We compared ITS-2 sequences between 

Escambia River A. bifascia and Flint River specimens to assess nuclear genetic 

variation. Sequences of each gene were aligned by eye.  

Our resulting alignments were used to estimate a nucleotide substitution 

model and perform maximum likelihood (ML) phylogenetic reconstruction using 

MEGA (v10.0.5; Kumar et al. 2018).  Resolution was assessed via bootstrap re-

sampling with 500 pseudo-replicates. We used Etheostoma cinereum (BNAFA574-

08), Crystallaria asprella (BNAFA008-08) and Percina maculata (BCF308-07) as 

outgroups.  We constructed haplotype networks for A. bifascia (n = 27) and A. 

beanii (n = 9) mtDNA sequences using the R v3.6.2 (R Core Team 2019) library 

pegas (Paradis 2010). 
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RESULTS 

Distribution and Habitat 

We documented Ammocrypta in the mainstem Flint River (n = 3 sites) and 

in Ichawaynochaway Creek (n = 5 sites; Fig. 1; Table 1).  Specimens were collected 

and observed along sandbars in flowing water habitats over a range of depths that 

could be accessed while wading and/or snorkeling (Fig. 2; Table 1).  We only made 

relatively large collections at the discovery site, which is one of a few large 

sandbars we encountered on the Flint River between Albany and Bainbridge.  

Benthic taxa collected with Ammocrypta included Notropis longirostris (Longnose 

Shiner), Notropis amplamala (Longjaw Minnow) and Percina westfalli (Eastern 

Blackbanded Darter). All collections were made during June-October during 

relatively low-flows.  

 

Figure 2. Initial discovery site on the Flint River where we made our largest collections of 

Ammocrypta bifascia.  

Morphological Identification 

Live specimens had medial and distal bands on the dorsal, caudal, and anal 

fins (Figs. 3 and 4). All individuals were similar in appearance to those described 

by Boschung and Mayden (2004) - being translucent with yellow and orange  
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Figure 3.  Ammocrypta bifascia adult male captured from the Flint River, GA in July 2015.  

 

Figure 4.  Ammocrypta bifascia adult male observed while snorkeling in Ichawaynochaway Creek, 

GA in August 2019.  

reflections and having shades of iridescent greens and yellows along the operculum 

and lateral line.   

We documented overlap in almost all morphometric characters (Table 2) 

between Flint River and Choctawhatchee/Yellow drainage specimens measured by 

Williams (1975).  The average value of each measurement tended to be less than 

measured by Williams (1975), which may be attributed to the larger size of his 

specimens.  Exceptions to this pattern are longer anal spine length, longer and non-

overlapping pelvic fin length, and a longer hiatus between dorsal fins in Flint River 

specimens. We also note that average snout length was shorter in Flint River 

specimens and did not overlap with data from Williams (1975). All meristic 

characters overlapped, but average counts and ranges of counts were lower for Flint 

River specimens.
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Table 2.  Comparison of morphological data between Ammocrypta collected from the Flint River 

(this study) and Choctawhatchee/Yellow rivers from Williams (1975).  Data are based on 14 females 

and one male (SL = 37.4-47.5 mm) from the Flint River and five females (SL = 50-54 mm) from 

Williams (1975).  * Indicates characters not measured in both studies. Dia = diameter, bet = between, 

jct = junction. Measurements are to the nearest tenth of a millimeter.  

 Flint River Choctawhatchee/Yellow 

Measurements Range Average (SE)  Range Average 

Snout tip- 1st dorsal origin 355-389 370 (2.7) 383-399 391 

Snout tip-2nd dorsal origin 607-652 636 (3.1) 639-657 646 

Snout tip-anal origin 588-657 627 (4.5) 633-653 641 

Snout tip-pelvic insertion 261-285 274 (2.4) 282-295 280 

Snout tip-jct gill membranes 123-167 149 (2.9) 144-163 154 

Caudal Peduncle length 182-251 209 (5.2) 213-220 216 

Caudal Peduncle depth 43-76 66 (2.2) 65-70 67 

Body depth, 1st dorsal origin 95-146 118 (3.7) 117-137 129 

Body width 95-114 102 (1.5) 109-118 114 

Longest dorsal spine 96-130 113 (2.8) 106-111 109 

Longest dorsal ray 95-132 111 (2.7) 112-120 116 

Caudal fin length 133-182 161 (3.4) 161-172 166 

Anal spine length 49-76 63 (2.0) 42-51 48 

Longest anal ray 92-140 123 (3.3) 123-135 128 

Left pectoral fin length 172-239 202 (4.2) 206-217 210 

Left pelvic fin length 171-198 177 (2.9) 147-157 153 

Head length 219-265 242 (2.7) 252-262 257 

Horizontal dia. fleshy orbit 51-61 55 (0.8) 56-67 63 

Snout length 56-78  66 (1.8) 80-83 81 

Upper Jaw length 59-78 72 (1.3) 77-86 82 

Bony interorbital* -- -- 13-18 15 

Fleshy interorbital* 17-51  31 (2.4) -- -- 

Dorsal hiatus bet dorsal fins  41-81 64 (2.6) 29-64 49  

Dorsal spine count 8-11 9.3 (0.2) 8-12 9.6 

Dorsal ray count 8-11 9.9 (0.2) 10-12 11.0 

Anal ray count 7-9 8.2 (0.2) 8-11 9.3 

Left pectoral ray count 11-13 12.1 (0.2) 12-13 12.9 

Lateral line scale count 63-73 68.2 (0.9) 63-78 70.28 

Scale count above lateral line 1 1 (0.0) 0-2 1 

Scale count below lateral line 0-2 1 (0.1) 0-3 1.29  

Transverse scale row count 3-5 3.3 (0.2) 3-7 4.55  
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Genetic Identification 

The 76 (73 Ammocrypta + 3 outgroups)  aligned COI sequences were 608 

nucleotides (nt) of which 176 positions were variable and 153 parsimony 

informative. The mean base frequencies were as follows: A = 0.23 (SE = 0.07), 

C = 0.29 (0.08), G = 0.20 (0.05) and T = 0.28 (0.08).  The 32 aligned ITS sequences 

were 405 nt and were monomorphic across the geographic range of A. bifascia.  

Due to the lack of variation in ITS, no subsequent analyses were performed on this 

gene.  The Kimura 2-parameter model with rate variation and invariable sites 

(K2+G+I) was selected (Bayesian information criterion = 7178.98) to best describe 

the substitution pattern of the mtDNA COI gene.  The resulting ML phylogeny (Fig. 

5) produced two well-resolved A. bifascia clades.  The first placed Flint River A. 

bifascia with Choctawhatchee and Apalachicola river samples (herein called the 

eastern clade).  The other was rendered paraphyletic by the presence of A. beanii 

with members of A. bifascia from west of the Choctawhatchee River (herein called 

the western clade).     

The 36 sequenced A. bifascia and A. beanii comprised 20 unique mtDNA 

COI haplotypes (Table 3).  Supporting the ML phylogeny, there were 40 nucleotide 

substitutions between Ammocrypta haplotypes from the western clade vs. the 

eastern clade (Fig. 6).  Haplotype II was common to both A. beanii and western A. 

bifascia (Table 3).  Flint River specimens had identical sequences (haplotype VIII; 

Table 3) and shared no haplotypes with Choctawhatchee or Apalachicola samples 

(Table 3, Fig. 6).  The number of substitutions between Flint and Choctawhatchee 

samples ranged from one (haplotype VIII vs XII) to six (haplotypes VIII vs IX or 

XV).  One Apalachicola specimen shared haplotype XVI with Choctawhatchee 

samples (Table 3,) while the other (XVIII) had one substitutional difference when 

compared to Flint River samples (Fig. 6).  

The average genetic distance, inferred from a Kimura 2-parameter model of 

nucleotide substitution, between A. bifascia eastern and western clades was 8% and 

approximated that among species (average = 9%, Table 4).  The average genetic 

distance between the western clade of A. bifascia and A. beanii was 0.08%.  

Average genetic distances among comparisons within the eastern clade ranged from 

(0.03-0.24%). 
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Figure 5.  Maximum likelihood phylogeny of Ammocrypta based on 608 nucleotides of the mtDNA COI gene and inferred with a Kimura 2-parameter substitution model 

with rate variation and invariable sites.  Numbers at the nodes indicate percent support based on 500 bootstrap replicates.  Nodes were collapsed if ≤ 80% bootstrap support.  

The code after each specimen represents the Barcode of Life repository number – see Appendix for details. 
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Figure 6.  Mitochondrial DNA COI haplotype network for Ammocrypta bifascia and A. beanii.  

Light circles represent haplotypes from eastern A. bifascia (Apalachicola, Flint, Choctawhatchee 

rivers).  Dark circles are haplotypes from the western A. bifascia clade (Blackwater, Escambia, 

Perdido rivers) and A. beanii haplotypes from the Cahaba, Sipsey, Tangipahoa, and Pearl rivers.  

Roman numerals in circles correspond to haplotypes found in Table 3.  Note that haplotype II is 

shared between A. bifascia and A. beanii.  Solid dark edges represent the minimum spanning tree 

and the alternative relationships are inferred from light dashed edges.  Smaller perpendicular edges 

represent nucleotide substitutions between haplotypes.
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 A. pellucida A. vivax A. meridiana A. clara A. beanii 

A. pellucida      

A. vivax 0.1178     

A. meridiana 0.1105 0.0585    

A. clara 0.0659 0.0930 0.0893   

A. beanii 0.1362 0.0930 0.0880 0.1054  

A. bifascia 0.1014 0.0939 0.0781 0.0865 0.0415 

 

DISCUSSION 

Specimen Identification 

We documented Georgia’s first record of Ammocrypta, finding it in both 

the lower Flint River and Ichawaynochaway Creek.  Morphometric and meristic 

data along with pigmentation patterns of Flint River specimens are congruent with 

A. bifascia described by Williams (1975). Morphological differences that we 

documented in Flint River specimens, such as longer pelvic fin length and shorter 

snout length may reflect true population-level variation or differences in sample 

size between the two studies.  The mtDNA phylogeny grouped Flint River 

Ammocrypta with those from the Choctawhatchee River, which is the type locality 

of A. bifascia.  While Flint River basin and Choctawhatchee River specimens did 

not share a common haplotype, most were only one or two substitutional 

differences apart and were more closely related to each other than to the western A. 

bifascia + A. beanii clade, further supporting that Flint River specimens are A. 

bifascia.  The lack of shared haplotypes may indicate minimal exchange of maternal 

genetic material or could be due to limited sample sizes.  The Choctawhatchee 

specimens also exhibited greater genetic (mtDNA) diversity than in the Flint River, 

which may have implications for conservation (Moyer et al. 2019).   

Interestingly, both the mtDNA phylogeny and haplotype network showed 

two well-supported geographic clades of A. bifascia.  An eastern clade comprising 

individuals sampled from the Choctawhatchee and east (including specimens from 

the Flint River), and a western clade from drainages west of the Choctawhatchee 

River. The genetic east/west pattern recovered by our study has also been observed 

in the Longnose Shiner (Notropis longirostris), which has a similar distribution 

(Stout 2017).  The western clade appears paraphyletic with respects to the A. beanii 

Table 4. Genetic distances among Ammocrypta species inferred from a Kimura 2-

parameter model of nucleotide substitution. Comparisons between the eastern and 

western clade of A. bifasica are reported in text. 
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individuals downloaded from BOLD.  There are a variety of hypotheses to explain 

this pattern including, hybridization and/or the retention of ancestral 

polymorphisms. Unfortunately, our study was not designed to discern competing 

hypotheses.  The paraphyly of this group warrants further taxonomic study. 

Natural History and Distribution 

Occupied sites for A. bifascia in the Flint River and Ichawaynochaway 

Creek exhibited habitat conditions typical of the species (Williams 1975; Boschung 

and Mayden 2004) and included reaches with strong to moderate current over a 

shifting sand bottom.  We collected A. bifascia typically on unconsolidated barren 

sand bars, along sandy edges of cypress island formations, or on patches of clean 

sand surrounded by large rocks, woody debris, and aquatic vegetation.  We 

observed fish on mid-channel sand bars in clear water at depths ranging from 0.15-

1.5 m with most observations being between 0.5-1.0 m – a finding similar to 

Williams (1975).  For cypress island formations, we observed fish at both upstream 

and downstream ends of island locations, which typically had swift and moderate 

flows, respectively.   

Our snorkeling observations in Ichawaynochaway Creek showed that 

Ammocrypta were often solitary.  However, we also observed groups of 2-5 (x̄ = 

2.33; SE = 0.95) individuals dispersed throughout sand bars and often associated 

with larger groups (n ≥ 25) of mature and juvenile Eastern Blackbanded Darter 

(Percina westfalli) and juvenile leuciscids (sensu Schonhuth et al. 2018).  We also 

observed the sand burying behavior first described by Williams (1975) for an adult 

female and a juvenile at two sites surveyed in September.  The burying behavior 

has been proposed as a mechanism to conserve energy in moderate currents and to 

potentially avoid predation (Williams 1975). 

We observed Ammocrypta at all Ichawaynochaway Creek sites sampled 

within a 12.6 mile reach, suggesting that they are widely distributed between the 

confluence of the Flint River and Chickasawhatchee Creek.  In contrast, sites where 

we detected Ammocrypta in the Flint River were more isolated spatially.  Our 

observation could reflect a true distribution pattern reflecting the more sparse 

distribution of sandbar habitats or the lower probability of detecting the species in 

a large river. We did not detect the species in Chickasawhatchee (site sampled 0.5 

mi upstream of Ichawaynochaway Creek confluence; Fig. 1) or Spring Creek, 

which were targeted because they are smaller but still comparable in size to 

Ichawaynochaway Creek.  Smaller tributary streams throughout the lower Flint 

River system have been extensively sampled using seining and electrofishing but 
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have never reported Ammocrypta (Albanese et al. 2007; McCargo and Peterson 

2010; Davis et al. 2020).  Lower Ichawaynochaway Creek has received relatively 

extensive fish sampling due to the presence of an ecological research center (The 

Jones Center at Ichauway).  Smith et al. (2006) reported 61 fishes taken by 

electrofishing, trapping, seining, angling, and rotenone at the Jones Center, but 

never reported Ammocrypta. Collectively, these results suggest that A. bifascia is 

distributed in larger tributaries and rivers in the lower Flint River system where 

they are inherently more difficult to detect.  Their ability to bury in sand may 

exacerbate their low detection probability. We recommend additional surveys 

targeting sandbar habitats in larger tributary streams using both seining and 

snorkeling to better document the distribution of A. bifascia in Georgia.  Additional 

surveys coupled with robust methods to estimate population presence and 

abundance of A. bifascia would contribute to a better understanding of this 

potentially rare taxon in Georgia.  

Status as a Native Taxon 

Our unexpected finding of A. bifascia in the Flint River system and the 

rarity of collections in the Apalachicola River raises the possibility that this species 

was introduced to the Apalachicola drainage. However, both purposeful (Moyer et 

al. 2014) and accidental (Moyer et al. 2005) introductions seem unlikely since 

Ammocrypta are not sought after as aquarium fishes or desirable baitfishes.  It is 

also unlikely that Ammocrypta would be collected with native schooling baitfishes 

via a variety of typical baitfish capture methods (e.g., cast net, minnow trap, hook 

and line) due to their small size and benthic orientation.   

Genetic data support our hypothesis that A. bifascia (Flint River) is native 

to the system because they share a unique haplotype not found in other A. bifascia; 

however, our sample size was limited, and shared haplotypes with A. bifasicia from 

other drainages could still exist.  Further support for this hypothesis is from 

numerous other native fishes that share a distribution pattern similar to A. bifascia, 

such as Lythrurus atrapiculus (Blacktip Shiner), N. longirostris, N. amplamala, and 

Pteronotropis harperi (Redeye Chub) (Boschung and Mayden 2004).   

The mtDNA data remain inconclusive regarding the presence of A. bifascia 

in the Apalachicola River.  If genetic analyses showed that the Apalachicola 

specimens had a common haplotype with Flint River samples, then it would be 

indicative of being native to the system.  One Apalachicola specimen shared a 

haplotype with Choctawhatchee individuals indicating that it either retained an 

ancestral polymorphism with the Choctawhatchee or was introduced into the 
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system.  The other Apalachicola specimen shared haplotype affinities with Flint 

River specimens, but then again, so do Choctawhatchee samples.  Teasing apart 

these competing scenarios for the Apalachicola specimens would require additional 

nuclear markers and larger samples sizes from the Apalachicola system (including 

the Chipola River) and other drainages.  

Starnes and Starnes (1979) were first to contend that A. bifascia was native 

to the Apalachicola River.  The distribution pattern we documented in the mainstem 

river and lower Ichawaynochaway Creek, where they may be difficult to detect 

using traditional sampling methods, may explain why this species has eluded 

detection in the Flint River system.  Our recent discovery of a new native species 

in Georgia underscores the importance of exploratory sampling in under-sampled 

habitats for documenting and conserving aquatic biodiversity.   
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Appendix. General locality and GenBank/Barcode of Life Database (BOLD) numbers for 

specimens used in this study.  Asterisk signifies a specimen that was sequenced for this study.   

Species General Locality 
COI 

GenBank/BOLD # 

ITS GenBank 

# 

A. bifascia* Flint River, GA  14719 

A. bifascia* Flint River, GA  14720 

A. bifascia* Flint River, GA  14721 

A. bifascia* Flint River, GA  14723 

A. bifascia* Flint River, GA  14724 

A. bifascia* Flint River, GA  14725 

A. bifascia* Flint River, GA  14726 

A. bifascia* Flint River, GA MT575996  

A. bifascia* Flint River, GA MT575997 14706 

A. bifascia* Flint River, GA MT575998 14707 

A. bifascia* Flint River, GA MT575999 14708 

A. bifascia* Flint River, GA MT576000 14709 

A. bifascia* Flint River, GA MT576001 14710 

A. bifascia* Flint River, GA MT576002 14711 

A. bifascia* Flint River, GA  14712 

A. bifascia* Flint River, GA  14713 

A. bifascia* Flint River, GA  14714 

A. bifascia* Flint River, GA  14715 

A. bifascia* Flint River, GA  14716 

A. bifascia* Flint River, GA MT576004 14717 

A. bifascia* Flint River, GA MT576003 14718 

A. bifascia* Choctawhatchee River, AL MT576005  

A. bifascia* Choctawhatchee River, AL MT576006  

A. bifascia* Choctawhatchee River, AL MT576007  

A. bifascia* Choctawhatchee River, AL MT576008  

A. bifascia* Choctawhatchee River, AL MT576009  

A. bifascia* Choctawhatchee River, AL MT576010  

A. bifascia* Choctawhatchee River, AL MT576011  

A. bifascia* Choctawhatchee River, AL MT576012  

A. bifascia* Choctawhatchee River, AL MT576013  

A. bifascia* Apalachicola River, FL MT576014  

A. bifascia* Apalachicola River, FL MT576015  

A. bifascia* Escambia River, FL  14775 

A. bifascia* Escambia River, FL  14776 
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A. bifascia* Escambia River, FL  14777 

A. bifascia* Escambia River, FL  14778 

A. bifascia* Escambia River, FL  14779 

A. bifascia* Escambia River, FL  14780 

A. bifascia* Escambia River, FL  14781 

A. bifascia* Escambia River, FL  14782 

A. bifascia* Escambia River, FL  14783 

A. bifascia* Escambia River, FL  14784 

A. bifascia* Escambia River, FL  14785 

A. bifascia* Escambia River, FL  14786 

A. bifascia Escambia River, FL BNAFB287-08  

A. bifascia Escambia River, FL BNAFB328-08  

A. bifascia Escambia River, FL BNAFB339-08  

A. bifascia Escambia River, FL BNAFB350-08  

A. bifascia Escambia River, FL BNAFB355-08  

A. bifascia Styx River, AL GBGC1323-06  

A. bifascia Blackwater River, FL UKFBJ1050-08  

A. beanii Cahaba River, AL BNAFC243-08  

A. beanii Cahaba River, AL BNAFC244-08  

A. beanii Cahaba River, AL BNAFC245-08  

A. beanii Sipsey River, GBGC1321-06  

A. beanii Tangipahoa River, LA GBGC1322-06  

A. beanii Cahaba River, AL GBGC1324-06  

A. beanii Cahaba River, AL GBGC1325-06  

A. beanii Pearl River, MS GBGC1326-06  

A. beanii Tangipahoa River, LA RMAYC363-08  

A. clara White River, AR BNAFC233-08  

A. clara White River, AR BNAFC234-08  

A. clara White River, AR BNAFC235-08  

A. clara White River, AR BNAFC236-08  

A. clara White River, AR BNAFC237-08  

A. clara Clinch River, VA BNAFC238-08  

A. clara Clinch River, VA BNAFC239-08  

A. clara Clinch River, VA BNAFC240-08  

A. clara Clinch River, VA BNAFC241-08  

A. clara Clinch River, VA BNAFC242-08  

A. clara Clinch River, VA UKFBJ155-08  

A. meridiana Cahaba River, AL BNAFC226-08  



SFC Proceedings No. 60 

 221 

 

A. meridiana Cahaba River, AL BNAFC227-08  

A. meridiana Cahaba River, AL BNAFC228-08  

A. meridiana Cahaba River, AL BNAFC229-08  

A. meridiana Cahaba River, AL BNAFC230-08  

A. meridiana Cahaba River, AL BNAFC231-08  

A. meridiana Cahaba River, AL BNAFC232-08  

A. meridiana Noxubee River. MS UKFBJ144-08  

A. pellucida St. Lawrence River, QC BCF225-07  

A. pellucida Grand River, ON BCF226-07  

A. pellucida Grand River, ON BCF227-07  

A. pellucida Grand River, ON BCF229-07  

A. pellucida Grand River, ON BCF230-07  

A. pellucida Grand River, ON BCF231-07  

A. pellucida Licking River, KY BNAFA004-08  

A. pellucida Licking River, KY BNAFA005-08  

A. vivax Saline River, AR BNAFA001-08  

A. vivax Saline River, AR BNAFA002-08  

A. vivax Saline River, AR BNAFA003-08  

A. vivax Saline River, AR BNAFB034-08  

A. vivax Saline River, AR BNAFB057-08  

A. vivax Saline River, AR BNAFB069-08  

A. vivax Saline River, AR BNAFB081-08  

A. vivax Saline River, AR BNAFB093-08  

A. vivax Saline River, AR RMAYC454-08  

A. vivax no locality data UKFBJ161-08  
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