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Abstract

Advances in materials design have produced novel compounds, such as high-entropy alloys and entropy-

stabilized oxides, that exhibit remarkable properties stemming from an amorphous and highly-disordered

structure. Due to their high-configurational entropy and nanoscale disorder, such materials are not amenable

to traditional techniques that characterize the local atomic-structure. Instead, we invoke techniques such

as atom probe tomography that create information-rich datasets containing elemental type and spatial

coordinates. The technique used to view these materials at the nanoscale produces a large but sparse dataset,

comprised of approximately 107 atoms. However, it is corrupted by nontrivial amounts of observational

noise.

The advent of such material design techniques necessitate new developments in statistical methodologies

and data flows to fully capture the structural variations of these materials at an appropriate scale. A thorough

analysis of these atomic-level variations unlock the capability for rapid material discovery. To fully explore

and analyze such materials requires developing efficient and thoughtfully designed material descriptors.

These descriptors may be continuous or discrete, but must be quantifiable in order to be employed by a

statistical learning methodology. Our goal is to develop statistical methods to quantify the atomic structure

of these materials. Our strategy is decomposed into three parts: i. Classifying the lattice structure of the

material, ii. Mapping the perturbed observational data onto a model crystal lattice, and iii. Finding the

optimal matching between observed data and the model lattice, and identifying the elemental type of the

atoms in the model lattice.

From these three parts, we could map a noisy and sparse representation of a metallic alloy onto its

reference lattice and determine the probabilities of different elemental types that are immediately adjacent,

i.e., first neighbors, or are one-level removed and are second neighbors. Having these elemental descriptors

of a material, researchers could then develop interaction potentials for molecular dynamics simulations, and

make accurate predictions about these novel metallic alloys.
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Chapter 1

Introduction

The comprehensive goal of this work is to extract information from a noisy and sparse dataset by engaging

statistical and topological methodologies for data analysis, which is a fundamentally interdisciplinary

endeavor. The data that we consider is endowed with some geometric structure, and this structure is

obscured due to the noise and sparsity present in the data. While the applications presented herein are

motivated by materials science, the techniques and methodologies can be applied more broadly.

Atom probe tomography (APT) is an analytical atomic-scale imaging technique with the capability to

provide an information-rich descriptor of a material that contains elemental type and geometric coordinates

of the detected atoms in R3. The ability to provide such datasets to material scientists has the potential

to revolutionize the materials discovery process. However, there do not presently exist visualization

techniques with atomic-scale resolution that have the capability to quantify nearest and second nearest

neighbor relationships within a material. The APT process introduces two significant challenges into the

data: sparsity and noise. Indeed, the resulting datasets do not preserve neighbor relationships between atoms,

i.e., there exists a preference for one elemental type to exclusively have first nearest neighbors of a specific

type. As an example of a chemically ordered alloy, consider the binary NiAl system. It is a chemically

ordered alloy, in that each nickel atom has only aluminium first neighbors and each aluminium atom has only

nickel first neighbors.

Local trends in the atomic ordering present in a material are obscured, but elemental clustering can be

seen in the resulting APT dataset. For example see Figure 1.1. The copper rich regions are shown in orange,

but the finer details, such as first and second neighbor relationships are obscured by the noise and sparsity

introduced through the APT process. Furthermore the lattice type and spacing are not present in the resulting

APT dataset, nor are they readily inferred.
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Figure 1.1: A slice of an HEA, Al1.3CoCrCuFeNi, as seen by an APT experiment, where the crystal structure
has been independently corroborated through X-ray diffraction and neutron scattering [1]. Each sphere
represents a different atom, and the elemental type is shown by color, as denoted by the key on the right-hand
side. The sparsity is evident and can be seen by the white areas, where no atoms are detected by the APT
experimental process. We also expect to see a uniform distribution of color outside the orange copper-rich
areas, if all atoms are registered by the process. To the eye, no pattern appears to exist in the material, and
its crystal structure could be either body-centered cubic or face-centered cubic. This crucial distinction is
obscured due to the noise and sparsity introduced through the APT process. For our methods described
herein, we use neighborhoods around each atom to determine the local structure.
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(a) (b) (c)

Figure 1.2: Examples of atomic neighborhoods where the nearest-neighbor relationships and lattice type of
the atomic neighborhood and spacing are obscured due to the noise and sparsity, which increase from left to
right.

As a visual example of the sparsity and noise introduced by the APT process, consider the different

representations of the same atomic configuration in Figure 1.2. The lattice type in Fig. 1.2a is a face-centered

crystal and the nearest and second-nearest neighbor relationships among the atoms are well-defined, easily

seen upon visual examination. In Fig. 1.2b, we have added some Gaussian noise and removed some of the

atoms from the configuration. Now these same fundamental relationships between atoms are less clear, and

the lattice spacing has been dilated. In Fig. 1.2c, these characteristics become indeterminate, where 2/3rds

of the atoms have been removed and those remaining atoms have been significantly perturbed away from

their corresponding lattice sites. No longer can we ascertain with any degree of certainty which atoms are

first neighbors, nor the type of lattice that the atoms form.

Our goal is to reveal the atomic-scale characteristics of a material from noisy and sparse realizations.

Specifically, we are interested in the nearest-neighbor relationships between atoms, the crystal structure, and

the lattice spacing (or lattice parameter). The impact to the materials science community of such information

is twofold. Primarily, using a quasi-chemical approximation [2], we may construct a first approximation

of the interaction potentials governing a multi-component system. While high-quality binary and ternary

interaction potentials exist for different atomic configurations [3, 4, 5], estimating the multi-component

interaction potentials governing high-entropy alloys (HEAs), a specific type of multi-component alloy,

remains an open question in materials science. Secondly, the output from our algorithms is a collection of

atomic neighborhoods that have their pointsmapped onto a crystal lattice. Wemay compute the distribution of
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these configurations by considering both the geometry and atomic composition of the neighborhoods. These

rectified configurations define a distribution over the atomic composition and geometry, and each observation

is then associated with some probability. We provide these empirical probabilities of the observed states as

input for molecular dynamics simulations.

These computational simulations are essential for materials science researchers, as it allows them to

make accurate structure-property predictions. Such relationships currently do not exist with regards to

HEAs, due in part to the nano-scale disorder engineered into the alloys. In HEAs, multiple elements are

mixed in roughly equimolar proportions to create materials of entirely new type possessing unique materials

properties. However, discovering these properties a priori has remained elusive, due to the inability to

perform classical molecular dynamics simulations.

Here we present different statistical models and propose novel algorithmic solutions to infer fundamental

properties of a material as seen through the lens of an APT experiment. We are motivated by a desire to

uncover the structure of high-entropy alloys, which are amenable to characterization via APT. Our goal is

to infer the neighbor relationships, lattice type, and spacing from a noisy and sparse atomic configuration,

e.g., the type shown in Fig. 1.2c, and reconstruct the ideal configuration, Fig. 1.2a. The materials we

consider are primarily one of two different lattice types, which are a priori unknown, but may be inferred

through a logistic regression model. To quantify the neighbor relationships and lattice spacing, we model

both the observed atoms and an aligned lattice, without labeling the lattice points with an atomic type, as

Gaussian Mixture Models, i.e., a convex combination of Gaussian densities. From a mathematical/statistical

viewpoint, we pose these inference questions as one of density estimation, where we seek the maximum a

posteriori estimator, and as a minimization problem, where we seek to minimize the misclassification rate

or to minimize the Kullback-Leibler divergence, i.e., the information gain, or relative entropy, between two

distributions. We obtain a global minimizer of the divergence, and provide a proof of convergence.

We begin with a discussion of the problem, assuming that we know the true lattice structure of the

material, and present a Bayesian formulation of the point-set registration problem. Next, we then work

directly with APT data and develop a topologically-informed classification methodology to infer the lattice

structure. We further develop the statistical model to infer not only the mapping onto a known lattice,

but the chemical identity of the known lattice points as well. It is this latter inference that is of particular

interest to the materials science community, as short-range ordering is an open question to materials scientists

investigating high-entropy alloys.

4



1.1 Known Reference

In the case where the reference lattice structure is known, we view the problem of aligning the noisy and

spare observations with the reference as a point-set registration problem. This problem arises frequently

in computer vision and medical imaging tasks. Typically, one seeks to align two point clouds, called the

observed and reference. One then finds the optimal alignment, where the ‘optimality’ criterion varies widely

depending the different settings of this problem, between the reference and observation point clouds.

We take a Bayesian formulation of the problem that will simultaneously find the transformation and

correspondence between point sets. Most importantly, it is designed to avoid local basins of attraction

and locate a global minimum. Indeed at an additional computational cost, we obtain a distribution of

solutions, rather than a point estimate, so that general quantities of interest may be estimated and quantify

the uncertainty. In case a single point estimate is required, we define an appropriate optimal one, e.g., the

global energy minimizer or probability maximizer. We present our Bayesian methodology and the associated

statistical model in Chapter 3 and present numerical results.

1.2 Unknown Reference

We now take the approach of the case where the reference structure is unknown, and must be inferred from the

APT data. Whenworking with real APT datasets, the true lattice, or reference point set, cannot be determined

directly from the data itself, and subsequent analysis must be employed. We create a topologically informed

machine learning classification process that is able to classify, with a gig degree of accuracy, the lattice

structure of a material from the atom probe tomography dataset.

Having the crystal structure in hand, we may then infer the local atomic structure of each configuration

through our variational Bayesian registration process detailed in Section 4.4. Here we relax the rigid

transformation assumption of Chapter 3, allowing more freedom of motion to identify the mapping between

observation and reference point sets. We further incorporate the chemical identity of the atoms, in order

to estimate the interaction potentials governing the multi-component alloys, and provide a nearest-neighbor

analysis of the registered point set. From such a neighbor analysis, we may infer the presence of short-range

chemical ordering within a material. The presence of short-range ordering and its subsequent analysis

provides materials scientists with unprecedented insight into these alloys, paving the way to quantify the

structure-property relationships that exist in these novel materials.
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Overview of Thesis

Through the techniques and methodologies described above, this document provides a holistic methodology

for researchers analyzing sparse and noisy materials data, not strictly limited to HEAs and APT data.

In Chapter 2 we give the necessary definitions and ideas for our methods presented herein. Chapter 3

describes our Bayesian point set registration algorithm, and presents numerical results on synthetic materials

data. We consider the semi-supervised classification problem in Section 4.1, and provide an accurate

classification methodology for inferring the crystal lattice from APT data. Lastly, we consider the point set

registration problem from a different viewpoint, by incorporating the elemental type associated with each

point in the point sets. This leads us to a variational formulation of the Bayesian registration framework

in Section 4.4. We present, to our knowledge, the first proof of convergence in such a setting. We then

detail results based on the geometry of the point sets alone, and where we consider the geometry and atomic

types on both synthetic and real APT data. These results not only inform materials scientists studying

multi-component alloys, but may apprise researchers working on the APT process, as the results of our

analysis can be employed as a sensitivity analysis, and guide future improvements of the technique.
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Chapter 2

Background and Preliminary Information

In this section we begin by detailing the unique characteristics of high-entropy alloys and the imaging

technique used to view these alloys at the nanoscale, which provides the data set for our analysis. We give

the necessary background mathematical details for topological data analysis in Section 2.2, Monte Carlo

Markov chain methods in Section 2.3, logistic regression and classification in Section 2.4, and variational

Bayesian methods in Section 2.5. Our methodologies employ techniques from each of these separate areas

in our statistical analysis.

2.1 Material Science Background

2.1.1 High-Entropy Alloys

In recent years, a new class of materials has emerged, called high-entropy alloys. These materials are a type

of metallic alloy, first synthesized in the mid 2000’s by [6]. As defined in [7], HEAs are composed of at

least five atomic elements, each with an atomic concentration between 5% and 35%. These novel alloys

have remarkable properties, such as: corrosion resistance [8, 9], increased strength at extreme temperatures,

ductility [10, 11, 12], increased levels of elasticity [13], strong fatigue and fracture resistance [10, 14, 15], and

enhanced electrical conductivity [16, 17]. HEAs demonstrate a ‘cocktail’ effect [18], in which the mixing of

many components results in a composite effect on materials properties, where the mixing between different

elements results in a composite material endowed with properties linked with the individual elements and

indirectly correlatedwithmicrostructure properties [18]. Although thesemetals hold great promise for awide

variety of applications, the greatest impediment in tailoring the design of HEAs to specific applications is the

inability to accurately predict their atomic structure and chemical ordering. This prevents materials science
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researchers from constructing structure-property relationships necessary for targeted materials discovery.

Although these structure-property relationships have begin to be explored in disordered materials, such as

entropy-stabilized oxides and high-entropy alloys [19, 9], they are now yet well-understood.

Knowledge of the chemical ordering and geometric arrangement of the atoms of any material is essential

for developing predictive structure-property relationships. Indeed, the disorder amongst lattice sites present

in HEAs [6], hinders the development of structure-property relationships. Considering the number of

atomic configurations in a disordered crystal structures found in HEAs [20] the number of possible atomic

combinations of even a single unit cell, the smallest collection and ordering of atoms from which an

entire material can be built, quickly becomes computationally intractable for existing algorithms [21].

Moreover, this class of metallic alloys lacks a uniform lattice parameter and atomic composition. The

high-configurational entropy of HEAs yields a distribution of lattice parameters and cell compositions, as

opposed to a single unit cell and lattice constant found in more traditional materials.

For many classes of materials, the lattice structure is either well-known, e.g., sodium chloride (salt) is

body-centered cubic, or it can be discovered via X-ray diffraction (XRD) or neutron scattering techniques [1].

These are routine techniques used to determinate the crystal structure ofmetals, ceramics, and other crystalline

materials. They do not yield atomic level elemental distinctions or resolve local lattice distortions on a scale

of less than 10Å [1] though, and such information is crucial to researchers working with highly-disordered

materials. Furthermore, XRD cannot provide the correlation between atom identity and position. This

chemical ordering of atoms is essential to developing predictive relationships between the composition of an

HEA and its properties.

2.1.2 Atom Probe Tomography

An important experimental characterization technique used to determine atomic-level structure ofmaterials is

atom probe tomography (APT), which has the capability of uncovering nanoscale trends in materials [22, 23].

Although other characterization techniques can yield similar information about the nanoscale structure

of a material, such as X-ray diffraction being used to determine crystal structure, APT includes atomic

composition in the resulting dataset as well. Indeed, it is the only available technique that yields elemental

type and geometric coordinates of atoms present in a material [22, 23]. Such information can be used in

determining stoichiometry, i.e., compositional identification and quantification, at the nanoscale.

APT has been successfully applied to the characterization of the HEA, Al1.3CoCrCuFeNi [1], and recent

advances in the data quality available from a typical experiment have made the atom probe a routine part of a

material characterization [23]. The experiment yields a dataset typically comprised of millions of atoms [23],
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on the scale of 107. Sophisticated reconstruction techniques are employed to generate the coordinates based

upon the construction of the experimental apparatus.

The potential of the APT process remains unrealized however, due to data-recovery issues inherent to

the technique [24, 23, 25]. It is well known that the reconstructed data is corrupted by some experiment-

dependent observational noise, and not all atoms are recovered by the process [26, 27, 24, 23, 25]. Both

factors are significant and any subsequent data analysis must work to mitigate these effects. The amount of

observational noise is non-trivial, as it can make atoms that are first neighbors in the materials appear as

second neighbors in the reconstructed material, and vice-versa [25]. While this permuting of neighborhood

relationships is less significant for a global analysis of the material, it makes determining the presence of

any chemical ordering or elemental preference between neighboring elements a challenging problem. The

difficulty of such a task is only increased when we consider that the percent of the data missing in the

reconstructed material can be greater than 60%. Our goal is to correctly infer this chemical ordering from

noisy and sparse observations, as are typically retrieved from an APT experiment.

As previously discussed, APT data has two main drawbacks: (i) up to 2/3rds of the data is missing and

(ii) the recovered data is corrupted by noise. As noted by [25], the spatial resolution of the APT process is up

to 3Å (0.3 nm) in the GH-horizontal plane, which is approximately the length of an atomic unit neighborhood

that we consider; see Figure 1.1 for a slice of an HEA as seen by an APT experiment. This experimental

noise has a two-fold impact on the data typically retrieved by APT. First, the noise prevents materials science

researchers from extracting elemental atomic neighborhood distributions, which are essential for developing

interaction potentials for molecular dynamics simulations. Secondly, the experimental noise is significant

enough to change the nearest neighbor relationships in a lattice structure [25]. Furthermore, the experimental

noise is only one source of distortion to the lattice structure. HEAs exhibit local lattice deformations due

to the random distribution of atoms throughout the material and atoms of differing size sitting at adjacent

lattice points [20].

The challenge is to uncover the true atomic level structure and chemical ordering amid the noise and

missing data, thus giving material scientists an unambiguous description of the atomic structure of these

novel alloys. Ultimately, our goal is to infer the correct spatial alignment and chemical ordering of a dataset

containing up to 107 atoms. We will examine local structure by extracting configurations, on the scale of

the alloy’s unit cell, and each configuration will be probed by identifying a mapping between the observed

points and a reference lattice, i.e., the unperturbed crystal lattice of the material without atomic labels on the

lattice points, in a neighborhood around each atom.
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In order to infer the correct spatial alignment and chemical identification of each point in the data, we

decompose the problem into separate components. In Chapter 3, we view the alignment of the two point

sets through the lens of Bayesian inference, in the case where the reference lattice structure is known, and

present our Bayesian point set registration methodology. In the true APT data, the lattice is unknown, but

can be separated into different classes by creating a topologically informed machine learning classification

algorithm described in Section 4.1. Having inferred the correct lattice structure, we may then find the best

alignment of the data and infer if chemical ordering exists in the material by again adopting a Bayesian

approach, which is detailed in Section 4.4.

2.2 Topological Data Analysis

2.2.1 Persistent Homology Background

This section succinctly explains the construction of persistence diagrams or barcode plots, which are

topological summaries of the underlying space; detailed introductions can be found in [28, 29]. The

Vietoris-Rips complex provides the necessary computational link between the point cloud, a subset of R3

under the Euclidean distance, and its persistence diagram or persistence barcode. Instead of considering

only clusters of points, the nearby atoms when measured by some distance, homology also incorporates

information about the regions enclosed by the points. This approach yields topological features of the data

in different homological dimensions. Homology describes connectedness and emptiness present within an

object. It allows one to infer global properties of space from local information [30]. In the case of these

atomic neighborhoods created by APT experiments, 0-dim homological features are connected components,

i.e., the atoms themselves. Analogously, 1-dim homological features are holes, and 2-dim homological

features are voids.

Definition 2.1. A a-simplex is the convex hull of an affinely independent point set of size a + 1.

Definition 2.2. For a set of points P, an abstract simplicial complex f is a collection of finite subsets of P

such that for every set � in f and every nonempty set � ⊂ �, we have that � is in f. The elements of f are

called abstract simplices and are the combinatorial analogues of the geometric simplices in Definition 2.1.

Figure 2.1 shows examples of various abstract simplicial complexes of the type typically used in

topological data analysis. They may be created by various processes, such as the U-complex, C̆ech complex,

or the Vietoris-Rips complex [31].
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Figure 2.1: Example of a 0-simplex, 1-simplex, 2-simplex, and 3-simplex, respectively.

Definition 2.3. For a given threshold n , the Vietoris-Rips complex is a simplicial complex formed from a set

such that corresponding to each subset of a points of the set, an a-simplex is included in the Vietoris-Rips

complex each time the subsets have pairwise distances at most n .

The Vietoris-Rips complex can be visualized by placing a ball of radius n/2 at each point in the set and

then adding a a-simplex at the points corresponding to the intersection of a balls. See Figure 2.2 for an

illustration of how the process works. For the Vietoris-Rips complex corresponding to n , denoted by +'n ,

it is clear that +'n ⊂ +'n ′ for n < n ′. Thus we need only examine specific n values corresponding to the

emergence and disappearance of homological features. These n values are recorded as ordered pairs (1, 3)

in a persistence diagram, where 1 denotes the birth of a feature and 3 its death.

As can be seen in Figure 2.2, a 0-dim homological feature is a connected component of a simplex, a

1-dim homological feature is a hole, such as those created by a loop or the circle (1, and a 2-dim homological

feature describes voids, e.g., the inside of a sphere; see [32] for details. Higher dimensional data analogously

yields higher dimensional holes.

Remark 2.1. Persistence diagrams can also be computed using a pertinent function 6 from a topological

space to R. Such a function can act as an approximation to a point cloud; typical functions used are kernel

density estimators as in [33] and the distance to measure function as in [34]. Homological features are

born and die within the sublevel sets 6−1(−∞, C] as C increases. These birth and death times create another

persistence diagram, see Fig. 2.2f.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Begin with a point cloud (a). After increasing the radius of the balls around the points, a 1-
simplex (line segment) forms in the corresponding Vietoris-Rips complex, (b). Eventually, more 1-simplices
are added and a 1-dim hole forms (c). In (d), the persistence diagram tracks all the birth and death times,
with respect to the radius for the homological features in each dimension. The corresponding barcode plot
is shown in (e). Using the same data, a persistence diagram is created using a sublevel set filtration (f).
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To calculate the similarity between diagrams for classification problems, a distance on the space of

persistence diagrams is needed. A typical distance is the Wasserstein distance.

Definition 2.4. The ?-Wasserstein distance between two persistence diagrams �1 and �2 is given by

,? (�1, �2) =
(
inf[:�1→�2

∑
G∈�1 ‖G − [(G)‖ ?∞

) 1
? , where the infimum is taken over all bijections [, and the

points of the diagonal are added with infinite multiplicity to each diagram. If ? → ∞, then,∞(�1, �2) =

inf[:�1→�2 supG∈�1 ‖G − [(G)‖∞ is the bottleneck distance between diagrams �1 and �2.

The Wasserstein distance yields the penalty of matched points under the optimal bijection. Points can be

matched to the diagonal of each persistence diagram, which is assumed to have infinitely many points with

infinite multiplicity; this ensures that a bijection between �1 and �2 actually exists, since �1 and �2 may not

have the same cardinality. In other words, the Wasserstein distance gives no explicit penalty for differences

in cardinality between two diagrams. Instead, the Wasserstein distance penalizes unmatched points by using

their distance to the diagonal. However, cardinality differences may play a key role in machine learning

problems, and to that end, [35] proposed the 32? distance given below.

Definition 2.5. Let �1 and �2 be two persistence diagrams with cardinalities = and < respectively such that

= ≤ < and denoted �1 = {G1, . . . , G=}, �2 = {H1, . . . , H<}. Let 2 > 0 and 1 ≤ ? < ∞ be fixed parameters.

The 32? distance between two persistence diagrams �1 and �2 is

32? (�1, �2) =
(

1
<

(
min
c∈Π<

=∑
ℓ=1

min(2, ‖Gℓ − Hc (ℓ) ‖∞) ? + 2? |< − =|
)) 1

?

, (2.2.1)

where Π< is the set of permutations of (1, . . . , <). If < < =, define 32? (�1, �2) := 32? (�2, �1).

Remark 2.2. Note that this distance can be applied to arbitrary point clouds with finite cardinality as well.

As shown in [35], a smaller 2 in Equation (2.2.1) accounts for local geometric differences, while a larger 2

focuses on global geometry. It is precisely by considering differences in cardinality that the 32? distance can

distinguish between features of the point cloud that other distances may miss. Also in Equation (2.2.1), if �1

is fixed and < →∞ , then 32? (�1, �2) → 2.

2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a natural choice for sampling from distributions which

can be evaluated pointwise up to a normalizing constant, such as any posterior arising in Bayesian
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(a) (b)

Figure 2.3: Consider two persistence diagrams, one given by the green squares and another by the purple
circles. (a) The Wasserstein distance imposes a cost of 0.2 to the extra purple point (the ℓ∞-distance to the
diagonal). (b) The 32? distance imposes a penalty 2 on the point instead.

inference. Furthermore, MCMC comprises the workhorse of Bayesian computation, often appearing as

crucial components of more sophisticated sampling algorithms. Formally, anMCMC simulates a distribution

` over a state spaceΩ by producing an ergodic Markov chain {F: }:∈N that has ` as its invariant distribution,

i.e.
1
 

 ∑
:=1

6(F:) →
∫
Ω

6(F)`(dF) = E` [6(F)] , (2.3.1)

with probability 1, for 6 ∈ !1(Ω).

The Metropolis-Hastings method is a general MCMC method defined by choosing \0 ∈ supp(c) and

iterating the following two steps for : ≥ 0

(1) Propose: \∗ ∼ &(\: , ·).

(2) Accept/reject: Let \:+1 = \∗ with probability

U(\: , \∗) = min
{
1,
c(\∗)&(\∗, \:)
c(\:)&(\: , \∗)

}
,

and \:+1 = \: otherwise.
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2.3.1 Hamiltonian Monte Carlo

In general, random-walk proposals & can result in MCMC chains which are slow to explore the state space

and susceptible to getting stuck in local basins of attraction. Hamiltonian Monte Carlo (HMC) is designed

to improve this shortcoming. HMC is a Metropolis-Hastings method [36, 37] which incorporates gradient

information of the log density with a simulation of Hamiltonian dynamics to efficiently explore the state

space and accept large moves of the Markov chain. Heuristically, the gradient yields 3 pieces of information,

for a R3-valued variable and scalar objective function, as compared with one piece of information from the

objective function alone. Our description here of the HMC algorithm follows that of [38] and the necessary

foundations of Hamiltonian dynamics for the method can be found in [39].

Generally speaking, our objective is to sample from a specific target density

c(\) ∝ exp{−� (\)} (2.3.2)

over \, where � (\) is known as an energy function and is the the negative log of the unnormalized log

posterior density, i.e., � (\) = − log(?(\ | -,. )) in the Bayesian registration case.

First, an artificial momentum variable ? ∼ N(0, Γ), independent of \, is included into Equation (2.3.2),

for a symmetric positive definite mass matrix Γ, that is usually a scalar multiple of the identity matrix. Define

a Hamiltonian now by

H(?, \) = � (\) + 1
2
?) Γ−1?

where � (\) is the “potential energy” and 1
2 ?
) Γ−1? is the “kinetic energy”.

Hamilton’s equations of motion for ?, \ ∈ R3 are, for 8 = 1, . . . , 3 :

d\8
dC

=
mH
m?8

d?8
dC

= −mH
m\8

In practice, the algorithm creates a Markov chain on the joint position-momentum space R23 , by

alternating between independently sampling from the marginal Gaussian on momentum ?, and numerical

integration of Hamiltonian dynamics along an energy contour to update the position. If the initial condition

\ ∼ c and we were able to perfectly simulate the dynamics, this would give samples from c because the

HamiltonianH remains constant along trajectories. Due to errors in numerical approximation, the value of
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H will vary. To ensure the samples are indeed drawn from the correct distribution, a Metropolis-Hastings

accept/reject step is incorporated into the method.

In particular, after a new momentum is sampled, suppose the chain is in the state (?, \). Provided the

numerical integrator is reversible, the probability of accepting the proposed point (?∗, \∗) takes the form

U((?, \), (?∗, \∗)) = min {1, exp {H (?, \) − H (?∗, \∗)}} . (2.3.3)

If (?∗, \∗) is rejected, the next state remains unchanged from the previous iteration. However, note that a

fresh momentum variable is drawn each step, so only \ remains fixed. Indeed the momentum variables can

be discarded, as they are only auxiliary variables. To be concrete, the algorithm requires an initial state \0, a

reversible numerical integrator, integration step-size ℎ, and number of steps !. Note that reversibility of the

integrator is crucial such that the proposal integration &((?, \), (?∗, \∗)) is symmetric and drops out of the

acceptance probability in Equation (2.3.3). The parameters ℎ and ! are tuning parameters, and are described

in detail [38, 37].

The HMC algorithm then proceeds as follows:

Algorithm 2.1 Hamiltonian Monte Carlo

Initialize the algorithm at some \0 ∈ R3 .
for : ≥ 0 do

Generate ?: = b for b ∼ N(0, Γ)
function Integrator(?: , \: , ℎ) return (?∗, \∗)
end function
Generate* ∼ U[0, 1]
if * < min {1, exp {H (?: , \:) − H (?∗, \∗)}} then

\:+1 = \∗:+1
else

\:+1 = \: .
end if
Set : ← : + 1.

end for

Under appropriate assumptions [37], this method will provide samples \: ∼ c, such that for bounded

6 : R3 → R
1
 

 ∑
:=1

6(\:) →
∫
R3
6(\)d\ as  →∞ .
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2.3.2 Metropolis Adjusted Langevin Algorithm

Another random walk metropolis algorithm that incorporates gradient information is the the Metropolis

Adjusted Langevin algorithm (MALA). This algorithm is derived from a discretization of the diffusion

process {!C } that is the solution of the Langevin stochastic differential equation

3!C =
f2

2
∇ log(c(!C ))dC + fd�C (2.3.4)

where {C ≥ 0 : �C } is a standard 3-dimensional Brownian motion, and f2 is the variance of c, a probability

measure on R3 with respect to Lebesgue measure [40]. The random walk generated by the solution to

Equation (2.3.4) is ergodic to the invariant distribution given by c.

The discretization of the solution to Equation (2.3.4) is

\∗:+1 = \: +
f2
3

2
∇ log(c(\:)) +

f3

2
/:

where f2
3
is the step variance, and /: is i.i.d. standard normal. We then set \:+1 = \∗:+1 with probability

U(\: , \∗:+1) = min
{
c(\∗

:+1)@(\
∗
:+1, \:)

c(\C )@(\: , \∗:+1)
, 1

}
and

@(G, H) ∝ ‖H − G −
f2
3

2
∇ log {c(G)} ‖22

Otherwise with probability 1 − U(\: , \∗:+1) we set \:+1 = \: .

The iterative process is then given by:

Algorithm 2.2 Metropolis Adjusted Langevin Algorithm

Initialize the algorithm at some \0 ∈ R3 .
for all : ≥ 0 do

Generate \∗
:+1 = \: +

f2
3

2 ∇ log(c(\:)) + f3
2 /: .

Generate* ∼ U[0, 1]
if * < U(\: , \∗:+1) then

\:+1 = \∗:+1
else

\:+1 = \: .
end if
Set : ← : + 1.

end for
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2.4 Classification

We will begin with a general presentation of the classification problem, proceeding to a discussion of two

models: logistic regression and generalized additive models. The latter model leads directly into a discussion

of AdaBoost. AdaBoost was initially developed for a binary classification problem [41] and a multi-class

extension was given in [42]. While the algorithm and ideas are quite similar in the two cases, there are some

essential differences between the two, the objective function differs between the two cases as one example.

We will present the theory in binary case, as it is part of our materials fingerprinting procedure, and will

give some details about the multi-class extension.

Suppose for the moment we have a labeled set of training data X = {-1, . . . , -# }, where the predictor

variable -8 ∈ R3 is associated with a response H8 , denoting class label, taking values in . = {−1, 1}. We

make the assumption that the pairs (-8 , H8) are i.i.d. samples from a joint distribution D = X × . . Our goal

is to construct a classification rule, �̂ (G) : X → . , that correctly assigns class labels to a vector of unlabeled

data -̃ . That is we seek a rule �̂ such that �̂ ( -̃) = H̃ for unlabeled data ( -̃, H̃) ∼ D.

We want to construct this rule �̂ (-) such that it minimizes the 0/1-loss given by

" (�̂) =


0 if �̂ (-) = � (-)

1 otherwise,
(2.4.1)

where � (-) yields the true class label for - . We may more generally write the loss function as

" (�̂) = 1 − P(�̂ (-) = H | -), (2.4.2)

as it is conceivable that datapoints with similar features are from different classes. This is reasonable since we

choose the attributes used to differentiate between classes and we do not have access to perfect information.

We can only see noisy and sparse representations of an underlying truth. More generally then, a dataum - is

not be associated with a specific class, but instead with a vector of class probabilities where the 8Cℎ entry of

the vector denotes the probability of - being in the 8Cℎ class. Associating the assignment of class labels with

a probability introduces an element of uncertainty into the determination of the class label, even with perfect

knowledge of D. In the case of perfect information, i.e., P(�̂ (-) = H | -) = 1, notice that Equation (2.4.2)

reduces to Equation (2.4.1).
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2.4.1 Optimal Bayes Classifier

A more useful tool allows for us to characterize the best possible outcome of a prediction in the case of less

than perfect information. The quantity of interest is then the conditional probability of the dataum - having

class label : . From a probabilistic perspective, we are interested in

P(H = : | -) = P(- | H = :)P(H = :)
P(-) , (2.4.3)

which follows from Bayes theorem. Consequently, we may minimize the 0/1-loss of Equation (2.4.2) by

maximizing the probability in Equation (2.4.3), and classify data points according to the class that yields the

maximum probability. Under certain independence [43] or dependence [44] assumptions on the data, this

is the optimal choice of classifier. As is frequently the case when working with real-world data, we cannot

make these independence/dependence assumptions on the data, and must devise another classification rule.

For a classification problem, Bayes theorem tells us to compute the quantity of interest, the posterior or

conditional probabilities for each class, is all that is necessary to predict the class of any - ∈ X. From it,

we then label - with the most probable class according to the conditional probability. For example, define

the quantity c(-) = P(H = +1 | -), for any pair (-, H) ∼ D, and if we are interested in the case H = +1,

then the chance of our prediction being incorrect is 1 − c(-). Similarly, if we want to predict H = −1, we

are incorrect with probability c(-). So to minimize our misclassification error, it is logical to predict using

the rule:

ℎ>?C (-) =


+1 if c(-) > 1

2

−1 if c(-) < 1
2

(2.4.4)

which is known as the optimal Bayes classifier [43, 45, 44]. This classifier may equivalently be written as

the Bayes factor

ℎ>?C (-) =


1 if c (- )

1−c (- ) > 1

−1 if c (- )
1−c (- ) < 1,

(2.4.5)

as the ratio between the two competing hypotheses. The error of the Bayes classifier is the optimal error

rate [43, 46, 47], and is given by

err(ℎ>?C ) = E[min{c(-), 1 − c(-)}],

where err(�) = P(� (-) ≠ H) for any (-, H) ∼ D.
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The goal of any classifier is to minimize the 0/1 misclassification rate. Recalling that � (-) yields the

true class label of - , and �̂ (-) = Ĥ is the class assigned to - by the classifier �̂ for any (-, H) ∼ D. Then

the 0/1-loss of �̂ is

E[" (�̂)] = 1 − E[1{ Ĥ≠H } | X = -]

= 1 − P(�̂ (-) ≠ H | X = -)

= P(�̂ (-) = H | X = -)

where

1{Y } =


0 if Y is true

1 if Y is false.

Our goal is to construct a classification rule �̂ that approximates the optimal error rate of the Bayes classifier

�∗(-) = argmax
. ∈{−1,1}

P(� (-) = H | X = -). (2.4.6)

We see that this rate can be achieved precisely when �̂ (-) = H, for any pair (-, H) ∼ D. Additionally,

in the case  = 2, Equation (2.4.6) agrees with the formulations in Equation (2.4.4) and Equation (2.4.5).

The question of how to construct a classification rule yielding the optimal error rate remains. One way

to construct such a rule is through the Boosting methodology of [41, 47]. This process of constructing a

classification rule asymptotically achieves the optimal error rate [48, 47, 42] we seek. We will first give

some discussion about simpler classification models.

2.4.2 Linear Regression

One way we may predict the likelihood in Equation (2.4.3) is by partitioning the input space using linear

decision boundaries. These boundaries may by found through linear regression, via least squares, or through

maximum likelihood estimation. For the case of least squares, we make predictions by the rule

Ĥ = V̂0 +
#∑
8=1

-8 V̂8 ,

where the vector of coefficients in the linear model is found via the relation

V̂ = (X)X)−1X) y,
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if in the case that X)X is non-singular, where X is the ? × # matrix of predictor variables - ∈ R?. This

general framework applies for the  -class classification problem, in which we may write the response . as

an # ×  indicator matrix, i.e. Y = {0, 1}#× , where one entry in each row is a 1, denoting class label. We

will then write the coefficients in matrix form B̂ ∈ R(?+1)× given by B̂ = (X)X)−1X)Y. For this section,

we will present the  -class classification case, as the binary case is an easy special case, as there is only a

single linear function.

We may write the fitted linear model for either case as 5̂: (-) = V̂:0 + V̂): - for : = 1, 2, . . . ,  . So the

decision boundary between any two classes : and 9 is the hyperplane given by {G : ( V̂:0− V̂ 90)+( V̂:− V̂ 9)) G =

0}. For example, in the case where  = 2, we are interested in the separating hyperplane where the log-odds

log
P(� (-) = 1 | X = -)
P(� (-) = 2 | X = -) = V0 + V) -,

are precisely 0. By inverting the logit transformation, log
(
c

1−c
)
, for some probability c, we may recover the

posterior in Equation (2.4.3)

P(� (-) = 1 | X = -) = exp(V0 + V) -)
1 + exp(V0 + V) -)

P(� (-) = 2 | X = -) = 1
1 + exp(V0 + V) G)

.

In general for  > 2, it is easy to see that

P(� (-) = : | X = -) =
exp(V:0 + V): -)

1 +∑ −1
8=1 exp(V80 + V)8 -)

, : = 1, . . . ,  − 1,

P(� (-) =  | X = -) = 1
1 +∑ −1

8=1 exp(V80 + V)8 -)
,

which sum to one.

This type of model is appealing due to the its simplicity and ease of understanding interactions between

predictor variables, but it can fail if the data is not linear, or cannot be locally approximated by a linear

function. In such cases, we need a more general form of regression, one that lets the data dictate the form of

the approximation, as opposed to imposing a linear model.

2.4.3 Generalized Additive Model

A generalized additive model (GAM) relaxes the linear assumptions on the predictor XV with a more

general functional form. In the case of a binary response, traditional linear regression relates the mean,
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c(-) = P(H = 1 | -), to the predictor variables by the logit link function, i.e.,

log
(
c(-)

1 − c(-)

)
= V0 +

?∑
8=1

-8V8 .

In the case of a GAM, this relation takes the form

log
(
c(-)

1 − c(-)

)
= U +

?∑
8=1

58 (-8), (2.4.7)

where each of the functions 58 is some non-parametric smooth function and the intercept U takes the place

of V0. Two benefits of using a GAM as opposed to traditional linear logistic regression are:

1. Categorical values are easily incorporated into the model. For example, if one of the components of

G8 ∈ - takes one of  classes (categories), one may incorporate a  -level factor variable into the

model. This may be fitted by a histogram type smoother [49].

2. The model allows for interactions between categorical and continuous variables to be easily modeled.

For example, if we have reason to believe that -8 has different responses based on a class label, such

as survived or not, we can then estimate both functions 58,( and 58,# as opposed to a single function

58 that may not capture the different interactions.

We remark that the functions 5 9 are estimated in some fashion, and the estimates can reveal the presence

or nonlinear responses, or not. Furthermore, not all of the functions 5 9 need to be nonlinear. In the case that

all 5 9 are linear, then we may take the more traditional course of logistic regression. The point is in the case

of GAMs, we allow our data to dictate the functional form of the model.

Recalling our quantity of interest Equation (2.4.7), we will write � (-) = ∑?

8=1 58 (-8) and the logit

transformation ensures that all values of � (G) ∈ [0, 1], thus yielding valid estimates of class probabilities.

We may recover these probabilities by inverting to obtain

c(-) = P(H = 1 | -) = exp{� (-)}
1 + exp{� (-)} .

In the classification methodology presented herein, we will consider the case where each of the functions 58

are simple functions, 1(G; ·), characterized by some pertinent parameter W and with an associated constant

[, hence we write

58 (G) = [81(G; W8).
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The model is then written

�" (G) =
"∑
8=1

[81(G; W8).

Some examples of a GAM are:

• A single layer neural network, where 1(G; W) = f(W0 + W)1 G) and f(C) = 1/(1 + 4−C ) is the sigmoid

function, parameterized by a linear combination of the input G.

• Multivariate adaptive regression splines, where W parameterizes the variables and values at the knots

of the spline.

• For tree-based classifiers, W determines the split points and split variables, i.e., how the input is

partitioned into different classes at each level, for the child nodes, and the predicted class at terminal

nodes.

GAMs are typically fit by minimizing a loss function, ! (H, 5 (G)), averaged over the training data

min
{[<,W< }"8

#∑
8=1

!

(
H8 ,

"∑
<=1

[<1(G8; W<)
)
, (2.4.8)

for some coefficients [ and functions 5 (G; W<) ∈ R parameterized by W<. Depending on the choice of loss

function and/or basis, this can be computationally challenging at best, or intractable at worst.

For our fingerprinting application, we will fit the model in Equation (2.4.7) through a process called

Boosting [41, 47]. This methodology creates an ensemble of weak learners, classification rules only slightly

better than a random guess, to create an accurate classification rule. Specifically, we will use decision trees

as the weak learner in the boosted ensemble.

2.4.4 Decision Trees

We give background information about decision trees, as they form basis for our ensemble classifier in the

materials fingerprinting methodology of Section 4.1. For more details about decision trees in regression and

classification problems, please see [50, 51, 46].

Decision trees are a method that recursively partitions the input space into rectangles and assigns a

constant value to each partition. For each input variable -8 , we can traverse the tree to a specific terminal

node according to the decision criteria at each split. So each -8 ending in the same partition is assigned

the same class label. We write '< as the partition formed by the <Cℎ node. The algorithm creates two
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G ≤ B1

Ĥ1 Ĥ−1

Figure 2.4: Example decision tree for one vector
of predictor variables G = (G, H)) , and associated
predicted responses Ĥ ∈ {−1, 1}.

Figure 2.5: If B1 is the H-coordinate in the tree to
the left, then any split will include points from both
classes.

child nodes from each node, until the terminal node is reached, by finding a binary split based on one of the

predictor variables.

The first issue in constructing a tree-based classifier is how to create binary splits of the data. A split of

the dataset is defined by a recursive partitioning of the data X into smaller disjoint subsets by considering

some meaningful quantification of the data. These splits are chosen by a measure of ‘purity’, i.e., we want

the population in each node to be homogeneous with respect to the response variable. For example, consider

the datapoints in Figure 2.5 and a one-level tree, seen in Figure 2.4. In this example, the predictor variables

are the (G, H)-coordinates of the data points. If we are to use a tree based classifier, we must determine the

optimal split value B1, the input from the predictor variables used to split the dataset into two classes. If B1 is

chosen to be any H-coordinate of the data, then any split will have members from both classes. Alternatively,

if B1 is chosen to compare any G-coordinates, then the child nodes would be homogeneous in their response

variable, H'8 , and the impurity measure would be zero for the latter and greater than zero for the former.

Consequently, we would choose to split at any of the G-values, to create homogeneous child nodes. While

such a simple example rarely occurs in practice, it is an illustrative example of how trees split the dataset.

Generally, the process of splitting a dataset involves iterating over each input variable -8 , checking if

each feature of -8 is below or above the split value and assigning it to one of two child nodes. The split value

is found through an exhaustive search over all input features as a possible splitting value. We then evaluate

the cost of the split using either equation Equation (2.4.9) or equation Equation (2.4.10), and find the split

that best separates the data into two child nodes, recalling that the goal is to create homogeneous subsets of

the response variable H8 based on a split.
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For example, suppose we have 20 observations for a binary classification problem with 10 observations

per class. Now suppose our tree created two splits: (15, 5) and (5, 15), while the other split produced (10, 10)

and (20, 0). In this case, the misclassification rate for both splits is 25%, but the second split is preferred, as

its second node contains only observations of one class. We want to grow splits with the smallest impurity,

and avoid the situation where classes are mixed together.

Algorithm 2.3 Find split

Select the best split point for a dataset X ∈ R#×3 , # observations in 3-dim space.
for 8 = 1, . . . , # do

for 9 = 1, . . . , 3 do
Ĥ8 = test_split(X)
gini = Gini_index(Ĥ8 , H8)

end for
end for

In Algorithm 2.3, the function test_split tests a proposed split by iterating over each row, checking

if the attribute value is below or above the split value, then and assigning the observation to either Ĥ1 or Ĥ−1.

After creating this proposed split, we compute the impurity measure and track the split variable and value

returning the smallest measure of impurity.

Now the splits in the <Cℎ node of a tree ) are determined through either the Gini index

&<()) =
 ∑
:=1

?̂<: (1 − ?̂<:), (2.4.9)

or cross-entropy

&<()) = −
 ∑
:=1

?̂<: log( ?̂<:) (2.4.10)

for ?̂<: = 1
#<

∑
-8 ∈'< 1{H8=: }, which is the proportion of class : observations in the <Cℎ node, in a

: = 1, . . . ,  -class classification problem. One benefit to using either of these measures of impurity in

equation Equation (2.4.9) and equation Equation (2.4.10) as opposed to the 0/1 misclassification rate, given

by
1
#

#∑
8=1

1{ Ĥ8≠H8 } .

where Ĥ8 is the predicted class and H8 denotes the true class of the iCℎ datum, is that the Gini index and

cross-entropy are differentiable, and are therefore more amenable to numerical optimization algorithms.

Consequently, they are more commonly used in practice.
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As noted in [46, 48], trees suffer from high variance. A small perturbation in the data can have a large

change on the resulting classification, as the tree could choose a different set of splits. Noting the hierarchical

nature of the tree, this small perturbation is passed to all child nodes, resulting in a different end result.

Building an ensemble of ‘stumps’, short trees consisting of one or two levels which are the type used in

boosting algorithms, reduces the variance of the final classification rule [46, 47]. We use a collection of

classification trees in the AdaBoost classifier in our materials fingerprinting method.

2.4.5 AdaBoost Algorithm

The AdaBoost process is summarized in Algorithm 2.4. The first base classifier 61 is trained with equal

weights on each observation, and is the same process as used for training a single classifier. In all future

iterations the weights F (<)
8

increase for those observations that are misclassified, and are reduced for those

observations that are correctly classified. The end result is that subsequent base classifiers are forced to put

greater emphasis on those observations that have been incorrectly classified. The situation is analogous to a

classroom environment. Those students that need more help with the material receive more of an instructor’s

time as compared with those students who are quick learners.

The quantities n< are weighted measures of the misclassification rates for the base classifiers as measured

on the data. As a direct consequence, the U< terms give greater influence to the more accurate base classifiers

in the final majority vote in line 8 of the algorithm.

Algorithm 2.4 AdaBoost.M1

1: Initialize observation weights: F8 = 1
#
, 1 ≤ 8 ≤ #

2: for < = 1, . . . , " do
3: Fit classifier 6<(G) to training data X with weights F8
4: Compute error

n< =

∑#
8=1 F81{H8≠6< (G8) }∑#

8=1 F8
.

5: Compute U< = log((1 − n<)/n<).
6: Update weights

F8 ← F8 · exp
{
U<1{H8≠6< (G8) }

}
, 1 ≤ 8 ≤ #.

7: end for
8: Output 6(G) = sign

(∑"
8=1 U<6<(G)

)
The AdaBoost algorithm is flexible and can take most any base classifier to build the model. We use an

collection of classification trees for our classification problem. While trees are simple and easily interpreted,
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they suffer from high variance [48, 46]. Building an ensemble of ‘stumps’, short trees which are the type

used in boosting algorithms, reduces the variance of the final classifier.

AdaBoost is an algorithmic method for solving the optimization problem:

min
� ∈F

#∑
8=1

! (H8 , � (G8))

where

! (H, � (G)) = exp {−H � (G)} (2.4.11)

over all functions � ∈ F where � (G) : X → R is a weighted linear combination of some sufficiently smooth

functions, i.e., �" (G) =
∑"
8=1 2< 5<(G), and F is the space of all such functions. In practice, this takes the

form

! (�) = 1
#

#∑
8=1

exp{−H8� (G8))},

where

�" (G) =
1
"

"∑
8=1

U<6<(G).

Here we write 6<(G) as the weak hypothesis (classifier) such that 6< : X → . and ∃[ > 0 such that

" (6) = 1
2 − [. Writing the function � in such a form leads us naturally to see Boosting through as fitting

a generalized additive model [48, 46]. The key to AdaBoost’s success is the way it fits an additive model

(Section 2.4.3) by Forward Stagewise Additive Modeling [48].

2.4.6 Forward Stagewise Additive Modeling

Forward Stagewise AdditiveModeling approximates the solution to a general loss function ! (H, �), averaged

over the training data, typically of the form Equation (2.4.8) for some coefficients V and basis functions

1(G; W<).

One of the keys to the success of AdaBoost is instead of solving Equation (2.4.8) using sophisticated

numerical optimization techniques, AdaBoost constructs the optimal function � (G) by adding one basis

function at a time. It seeks

min
V,W

#∑
8=1

! (H8 , V1(G8; W)),

at each iteration. Specifically, AdaBoost seeks to minimize the exponential loss function Equation (2.4.11).

We will first show how to minimize this objective function using forward stagewise additive modeling, then

give some discussion of this objective function.
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Forward stagewise additive modeling approximates the solution to Equation (2.4.8) by sequentially

augmenting the basis function expansion without altering existing functions or their coefficients. The

process works by solving for the optimal basis function 1(G; W<) and associated coefficient at the <Cℎ

iteration to add to the existing expansion of �<−1(G), yielding �<(G). This process only adds terms to the

basis and does not alter previously added terms.

In our implementation of AdaBoost, the individual basis functions are classifiers themselves 6< ∈

{−1, 1}. We use tree classifiers, discussed in Section 2.4.4, and as noted previously the parameter W

represents: how the splits are chosen, where to split the input variables, the class of each terminal node and

number of terminal nodes of each tree. These quantities are fixed in our implementation, so W< can be taken

as a constant. Using the exponential loss in Equation (2.4.11), the minimization problem takes the form

(V<, 6<) = argmin
V,6

#∑
8=1

exp {−H8 (�<−1(G8) + V6(G8))} ,

for classifier 6< and coefficient V< added to the basis at the <Cℎ step. We may equivalently write this as

(V<, 6<) = argmin
V,6

#∑
8=1

F
(<)
8

exp {−H8V6(G8)} , (2.4.12)

where F (<)
8

= exp{−H8 �<−1(G8)} by noting the preceding term does not depend on V nor � (G). As the

weights depend only on the previous iterations, they can be viewed as an adaptive weight for each observation.

Then alternating between solving for 6<(G) and V<, the updated approximation to �∗(G) is �<(G) =

�<−1(G) + V<6<(G), which is Forward Stagewise Additive Modeling, detailed in Algorithm 2.5. To see this,

note for any V > 0 that the optimal classifier 6∗< in Equation (2.4.12) is

6∗< = argmin
6∈G

#∑
8=1

F
(<)
8

1{H8≠6 (G8) }, (2.4.13)

which is precisely the classifier minimizing the weighted misclassification rate in predicting H. Recalling

that 6(G) ∈ {−1, 1} and noting that whenever H8 ≠ 6(G8), sign(−H86(G8)) = −1, and so exp{−H8 · V6(G8)} =

exp{V}.
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Now by splitting the sum, we may alternatively express Equation (2.4.12) as

argmin
V,6

#∑
8=1

F
(<)
8

exp {−H8V6(G8)} = 4−V
∑

H8=6< (G8)
F
(<)
8
+ 4 V

∑
H8≠6< (G8)

F
(<)
8

= (4V − 4−V)
#∑
8=1

F
(<)
8

1{H8≠6 (G8) } + 4−V
#∑
8=1

F
(<)
8
.

Substituting the 6∗< from Equation (2.4.13) into Equation (2.4.12) and taking the partial derivative with

respect to V, setting it equal to zero, and solving for V we see that

V∗< =
1
2

log
(
1 − n<
n<

)
, (2.4.14)

where we have defined

n< =

∑#
8=1 F81{H8≠6< (G8) }∑#

8=1 F8
.

Notice that n< creates a distribution over the misclassified data points.

We may then update the approximation

�<(G) = �<−1(G) + V<6<(G)

and weights

F
(<+1)
8

= F
(<)
8

exp{−V<H86<(G8)}.

Since −H86<(G8) = 2 · 1{H8≠6< (G8) } − 1 we have that

F
(<+1)
8

= F
(<)
8

exp{V<1{H8≠6< (G8) }} exp{−V<}, (2.4.15)

defining U< = 2V<, which is the same as line 4 of Algorithm 2.4. As all weights are scaled by the same

factor exp{−V<}, Equation (2.4.15) is equivalent to line 6 in Algorithm 2.4.

2.4.7 Optimality of AdaBoost

AdaBoost iteratively approximates the optimal Bayes classifier by creating an ensemble of weak classifiers,

i.e., classification rules that are only slightly better than random guessing, and combining them to make

accurate predictions. The final output from the algorithm is a strong learner, i.e., an accurate classification

rule, comprised of a weighted linear combination of weak classifiers. The algorithm approximates the
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Algorithm 2.5 Stagewise Additive Modeling
1: Initialize 50(G) = 0.
2: for 8 = 1, . . . , " do
3: Compute

(V<, W<) = argmin
V,W

#∑
8=1

! (H8 , 5<−1(G8) + V1(G8; W))

4: Set 5<(G) = 5<−1(G) + V<1(G; W<)
5: end for

optimal classifier Equation (2.4.6) by iteratively minimizing the exponential error function over F , the space

of functions that can be represented by a linear combination of base classifiers. Hence minimizing

! (H, � (G)) = exp {−H � (G)}

yields a simple update rule and is related to the log-likelihood. We may see this relationship by observing

that

�∗(G) = argmin
� ∈F

E[exp{−H� (G)} | X = G]

where

�∗(G) = 1
2

log
P(H = +1 | X = G)
P(H = −1 | X = G) . (2.4.16)

We may see this by recalling the connection between probabilities and expectations via indicator functions,

Then by setting the partial derivatives of Equation (2.4.11) with respect to H equal to zero and solving for �,

we may then find the optimal solution �∗. Furthermore, by considering sign(�∗), we can see AdaBoost

achieves the Bayes error rate, 6∗ in Equation (2.4.6). Hence, in the case of binary classification where

H8 ∈ {−1, 1}, we are looking for the best approximation of the log-odds ratio.That is

P(H = +1 | X = G) = exp{�∗(G)}
exp{−�∗(G)} + exp{�∗(G)} (2.4.17)

P(H = −1 | X = G) = exp{−�∗(G)}
exp{−�∗(G)} + exp{�∗(G)} . (2.4.18)

We see that �∗ is half the log-odds, i.e., log (c/(1 − c)), for a probability c. Hence, both Equation (2.4.11)

and the log-loss, the negative log-likelihood, are minimized by Equation (2.4.16).

We may see this optimality of AdaBoost in another way. We want to minimize the true loss, i.e., the

expected loss with respect to D, given by E[exp{H� (-)}]. We may write this expectation as the iterated
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expectation

E [E[exp{−H� (-)} | -]] = E[c(-) exp{−� (-)} + (1 − c(-)) exp{� (-)}], (2.4.19)

where c(-) = P(H = +1 | -). By setting the partial derivative with respect to � (-) equal to 0, then solving

for �∗, we see that

0 = −c(-) exp{−� (-)} + (1 − c(-)) exp{� (-)}

2� (-) = log
(
c(-)

1 − c(G)

)
.

Hence

�∗(-) = 1
2

log
(
c(-)

1 − c(-)

)
. (2.4.20)

We note that �∗ ∈ R ∪ {±∞}, in the case that c(-) is 0 or 1.

Remark 2.3. We remark on the similarity between Equation (2.4.20) and Equation (2.4.14). What we see

here is optimal weight update in the classification scheme is precisely the optimal function that minimizes

the exponential loss function.

Now substituting this expression into the RHS of Equation (2.4.19), we may then write

E [E[exp{−H� (G)} | G]] = E
[
c(G) exp

{
−1

2
log

(
c(G)

1 − c(G)

)}
+ (1 − c(G)) exp

{
1
2

log
(

c

1 − c(G)

)}]
= E

[
c(G) 1

2 (1 − c(G)) 1
2 + (1 − c(G))

(
c(G)

1 − c(G)

) 1
2
]

= 2E
[√
c(G) (1 − c(G))

]
,

which is the optimal expected exponential loss. Recalling the optimal Bayes classifier Equation (2.4.4), we

see that it is precisely sign(�∗). Hence by minimizing the exponential loss over the data we may recover

the optimal classifier by considering sign(�∗). What we see is that it is the best predictor over all R-valued

functions, not just those that are linear combinations of basis classification functions.
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2.5 Variational Bayes

Before delving into the standard machinery of variational inference, we will give some discussion about

the Expectation-Maximization (EM) algorithm, including a more modern treatment, and the connection to

Bayesian inference.

2.5.1 Expectation Maximization

The EM algorithm was introduced by [52] as a methodology for finding maximum likelihood estimates of

likelihood models that can be factored as

ℎ(. | \) =
∫
Z
5 (., / | \)d/,

for observed data . , parameters \, and latent variable / ∈ Z. The methodology monotonically increases

the value of the likelihood, and achieves a maximum likelihood, which may be local or global. We refer the

interested reader to the literature [53, 52, 46, 54] for an in-depth discussion of the process. We will outline

the process generally, and will discuss the view presented by [55], as it is directly related to our methodology.

A general formulation of the EM-algorithm maximizes the log-likelihood, ℓ(\;. ), based on observed

data . and parameters \. We will write the complete data as ( = (., /), for missing or latent data / . Now

defining &(\̃, \) = E[ℓ0(\̃; () | /, \], for the complete data log-likelihood ℓ0, the EM algorithm proceeds as

in Algorithm 2.6

Algorithm 2.6 EM-Algorithm
1: Initial guess for parameters \0
2: for all C > 0 do
3: E-Step: Compute

&(\̃, \C ) = E[ℓ0(\̃; () |., \ (C) ]

as a function of \̃.
4: M-Step: Compute

\ (C+1) = argmax
\̃

&(\̃, \ (C) )

5: Iterate until convergence, i.e., a fixed point of &, is found.
6: end for

The variant of the EM-algorithm presented in [55] maximizes a joint function of the distribution over

the latent variables and of the parameters in the model. Hence, it is sometimes referred to a maximization-

maximization process. What is different in its approach is that the authors adopt the view that this

maximization process is analogous to minimizing the “free energy”’ in statistical physics, which in turn
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can be seen as minimizing the Kullback-Leibler divergence [56, 57, 55]. In this view, each latent variable

is governed by its own variational factor, i.e., @(/) = ∏#
8=1 @8 (I8). Continuing with this interpretation, we

may see how the factorization @(/, \) = @(/)@(\) of the variational density may be justified.

The latent variable model under investigation is of the form I8 → H8 ← \, i.e., the observed datum

H8 is dependent on the latent variable I8 and some model parameters \, where \ represents all of the

model’s parameters for simplicity of notation. As discussed in Section 2.5.1, in the E-step, we make

inferences employing the variational posterior over the latent variables @(I8 | H8) and then compute the

sufficient statistics of the model parameters. Through this process of marginalizing over \ we obtain a

distribution over \, as opposed to the maximum a posteriori (MAP) estimate from the traditional EM-

algorithm, (Algorithm 2.6). This marginalizing over the parameters yields a bound on the evidence, the

marginal likelihood, see Equations (2.5.3)–(2.5.5). The process also gives equal standing in the model

between latent variables and the model parameters, unlike traditional EM, which yields a point estimate,

specifically the MAP estimate [45, 54].

This factorization allows for exchanging a stochastic dependence between \ and / for a deterministic

relationship between pertinent moments of these random variables [56]. Bypassing any interactions between

\ and / yields an analytical approximation of the log likelihood. While this mean-field statistical physics

approximation allows us to see the marginal densities of the latent variables, it cannot capture correlations

between them.

Remark 2.4. It is worthwhile to pause and examine these assumptions on the approximating density @ to

see if they are reasonable, and if we’re gaining computational convenience at the cost of over-simplifying

our model. The variational Bayes EM relies on the mean-field variational approximation

?(\, / |. ) ≈ @(\)@(/) = @(\)
#∏
8=1

@(I8).

In our statistical model, Equation (3.2.2), we have assumed that �, which can be recovered by taking

an expectation with respect to / , see Section 2.5.5, is independent of \, and that the observations are

conditionally independent with respect to the correspondence �. The mean-field assumptions agree with or

model and do not impose additional constraints on it.

2.5.2 Variational Expectation Maximization

Define

F (&̃, \) := E
&̃
[log(?(., / | \))] + � (&̃), (2.5.1)
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for &̃ := @(/ | ., \), and � (&̃) is the entropy of &̃. In keeping with our previous notation, \ represents

the model parameters, . , the observed data, and / , the latent variables. Factoring the variational density

allows for computation of the expectation with respect to the latent variables in the E-step and the M-step

maximizes the function with respect to the model parameters. This view of the EM-algorithm as a variational

process was first proposed by [55], and the variational expectation-maximization routine the proceeds as

in Algorithm 2.7.

Algorithm 2.7 Variational EM
1: for all C > 0 do
2: E-Step: Compute

&̃ (C) = argmax
&̃

F (&̃, \ (C−1) )

3: M - Step: Compute
Θ(C) = argmax

\

F (&̃ (C) , \)

4: if KL(&̃ (C) ‖ ?) < n then Break
5: end if
6: end for

Adopting this perspective, the algorithm seeks to minimize the Kullback-Leibler (KL) divergence. To

this equivalence, first we relate F to the KL-divergence. Recall that the Kullback-Leibler divergence between

probability distributions Q and P with probability density functions @, ? respectively is

KL(P ‖ Q) =
∫
Ω

?(G) log
?(G)
@(G) dG. (2.5.2)

Now to see the connection to the KL-divergence, consider the following.

log(?(. )) = log
(∫

?(., /, \)d\d/
)

(2.5.3)

= log
(∫

@(/, \) ?(., /, \)
@(/, \) d\d/

)
(2.5.4)

≥
∫

@(/, \) log
(
?(., /, \)
@(/, \)

)
d\d/, (2.5.5)

where the inequality follows from Jensen’s inequality [58]. Substituting the optimal choice of @, i.e.,

@∗(/, \) = ?(/, \ |. ), changes the inequality in Equation (2.5.5) to equality. This choice does not simplify

the problem however, since it requires knowledge of the exact form of the posterior ?(/, \ |. ), which in

turn, requires its normalizing constant, the marginal likelihood. Recalling that we require the approximate
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density to be separable, @(/, \) = @(/)@(\), we may then write

log(?(. )) ≥
∫

@(/)@(\) log
(
?(., /, \)
@(/)@(\)

)
d\d/

=

∫
@(/)@(\) log

(
?(., / | \)
@(/)

)
+ log

(
?(\)
@(\)

)
d/d\

= F (@(/), @(\))

and hence,

log(?(. )) − F (@(/), @(\)) =
∫

@(/)@(\) log
(
@(/)@(\)
?(/, \ |. )

)
d/d\

= KL(@(/, \) ‖ ?(/, \ |. ))

≥ 0.

In Algorithm 2.7, minimizing the KL-divergence is equivalent to maximizing the functional F

in Equation (2.5.1). The methodology yields a unique maximizing distribution &̃∗, and that if F (&̃, \)

has a local, global resp., at &̃∗, \∗, then the likelihood, log&(/ | \) is a local, global resp., maximum [55].

Our goal is to maximize the likelihood function, L, with respect to the variational distribution @, which

is equivalent to minimizing KL(@ ‖ ?). In general however, the KL divergence is intractable, and the ELBO

(evidence lower bound) is maximized instead. We may decompose the variational likelihood, ignoring any

terms that depend on \ for the moment, as

L(@) =
∫

@(/) log
(
?(., /)
@(/)

)
d/ (2.5.6)

= E@ [log(?(/ | . ))] − KL(@ ‖ ?) (2.5.7)

=

∫
@(/) log (?(., /)) − @(/) log(@(/))d/ (2.5.8)

= E@ [log(?(., /))] + � (@), (2.5.9)

where � (@) is the entropy of @. What we see here from Equation (2.5.9) is the trade-off between two terms.

The expectation forces @(/) to be large when the the joint distribution ?(., /) is large. The entropy term

wants the variational distribution @(/) to be diffuse and spread out over the space. Equation (2.5.9) is known

in the literature as the ELBO and is, in general, how convergence is determined for variational Bayesian

methods. Also note that L(@) is the expectation of the complete log-likelihood, which is montonically

increased to a maximal value by the expectation-maximization method of [52].
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2.5.3 Variational Inference for GMMs

We will illustrate the process of variational inference through a detailed example of a Gaussian mixture

model [53, 57]. This model forms the basis for our labeled point-set registration methodology of Section 4.5.

A Gaussian mixture model may be written as a linear sum of say # Gaussian densities, each with their own

mean, `=, and covariance, Λ=, such that

?(G) =
#∑
==1

l=N(G | `=,Λ=),

with mixing coefficient {l=}#==1, such that 0 ≤ l= ≤ 1 for all = ≤ # , and ∑#
==1 l= = 1.

Let us now define a binary latent variable / such that I= ∈ {0, 1}# and
∑#
= I= = 1. Clearly, there are

# possible states where I= could equal 1, and the remaining elements are 0. By defining a joint distribution

?(-, /) = ?(- | /)?(/) and considering the marginal distribution over / with respect to the mixing

coefficients of the GMM we see that

?(I= = 1) = l=, (2.5.10)

where 0 ≤ l= ≤ 1 and
∑#
= l= = 1, in order for the marginal, Equation (2.5.10), to be a valid probability.

Thus we may write

?(/) =
#∏
==1

lI== .

Furthermore by the binary construction of /

?(/ | I= = 1) = N(- | `=,Λ=),

and hence

L(- | /) =
#∏
==1
N(- | `=,Λ=)I= . (2.5.11)

Lastly the joint distribution over - and / may be factored as ?(-, /) = ?(- | /)?(/), thus yielding the

marginal

?(-) =
#∑
==1

?(- | I=)?(I=) =
#∑
==1

l=N(- | `=,Λ=),

which is again a Gaussian mixture.
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2.5.4 Prior distibutions

We choose tomodel the prior over the vector of GMMweights as a Dirichlet distribution, which is a conjugate

prior, given by

?(l) = Dir(l | U0) = � (U0)
#∏
8=1

l
U0−1
8

, (2.5.12)

where � (U0) is the normalization constant of the Dirichlet distribution. The parameter U0 determines the

effective number of observations associated with each point in the reference. That is to say, does there exist

information that favors associating observations with specific points in the reference. Choosing U0 small lets

the posterior be influenced by the data, as opposed to our prior beliefs.

For the mean and precision of Gaussian component, we use a Gaussian-Wishart prior

?(`,Λ) = ?(` |Λ)?(Λ) (2.5.13)

=

#∏
8=1
N(`8 |<0, (V0Λ8)−1)W(Λ8 |,0, a0). (2.5.14)

Here we write <0,,0 as the initial values for the mean and precision, and V0 and a0 are the initial scale and

degrees of freedom of the precision matrices respectively. We typically choose <0 = 0 for symmetry.

2.5.5 Variational Posterior Distribution

We are interested in a conditional density given the observations of all random variables: `,Λ, / and l.

Thus,

?(., /, l, `,Λ) = ?(. | /, `,Λ)?(/ |l)?(l)?(` |Λ)?(Λ), (2.5.15)

is our quantity of interest. This distribution is not tractable however, and, following the discussion in the

previous section, instead seek a variational distribution Q such that

@(/, l, `,Λ) = @(/)@(l, `,Λ)
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Now writing the optimal distribution as @∗ and noting that

log(@∗(/)) = El,`,Λ [?(., /, `,Λ, l)] (2.5.16)

= El [log(?(/ |l))] + E`,Λ [log(?(. | /, `,Λ))] + Z (2.5.17)

=

"∑
<=1

#∑
==1

I<= log(d<=) + Z (2.5.18)

by absorbing any term independent of / into the constant Z and by substituting the conditional distributions.

Here we have defined

log(d<=) = E[log(l=)] +
1
2
E[log( |Λ= |)] −

3

2
log(20) − 1

2
E`= ,Λ= [‖.< − `=‖2Λ=] . (2.5.19)

Exponentiating both sides of Equation (2.5.18), we see

@∗(/) ∝
"∏
<=1

#∏
==1

dI<=<= .

Requiring that @∗ be a distribution, i.e., normalized, define

2<= =
d<=∑#
8=1 d<8

,

and as I<= ∈ {0, 1} we see that

@∗(/) =
"∏
<=1

#∏
==1

2I<=<= .

So the form of the optimal distribution @∗ has the same form as the prior over the correspondence

matrix Equation (2.5.11). Furthermore observe that E[I<=] = 2<=, and we can see that 2<= are the

elements of a probabilistic correspondence matrix. By this we mean an assignment matrix that does not

make hard, 0 or 1, assignments, but assigns a probability of each observation point being assigned a point in

the reference set.
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To update the model parameters in the algorithm, we first compute the sufficient statistics of the observed

data, given the correspondence. These are given by

"8 =

"∑
9=1

2 98 (2.5.20)

. 8 =
1
"8

"∑
9=1

2 98. 9 (2.5.21)

(8 =
1
"8

"∑
9=1

2 98 (. 9 − .̄8) (. 9 − .̄8)) , (2.5.22)

for 1 ≤ 8 ≤ # . By our choice of conjugate prior densities, we find the update equations for each of the model

parameters are given by

@∗(`8 ,Λ8) = N(`8 |<8 , (V8Λ8)−1)W(Λ8 |,8 , a8) (2.5.23)

by the update formulas

V8 = V0 + "8 (2.5.24)

<8 =
1
V8
(V0<0 + "8. 8) (2.5.25)

,−1
8 = ,−1

0 + "8(8 +
V0"8

V0 + "8
(. 8 − <0) (. 8 − <0)) (2.5.26)

a8 = a0 + "8 , (2.5.27)

where the pertinent parameters for the priors are as defined in Equation (2.5.12) and Equation (2.5.14). Each

of these update equations depends on the correspondence matrix �. Recalling Equation (2.5.19), we must

compute the normalizing constant for the d<=, and the individual terms are given below inEquations (2.5.28)–

(2.5.30).

E[‖H8 − `=‖2Λ=] =
3

V=
+ a= (H8 − `=)),= (H8 − `=) (2.5.28)

E[log |Λ= |] =
3∑
8=1

(
a= + 1 − 8

2

)
+ 3 log(2) + log |,= | (2.5.29)

E[log(l=)] =k(U=) − k(Û). (2.5.30)
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(a) Complete and noiseless data, we are able to recover the
chemical ordering.

(b) Data with 67% missing and N(0, 1) added to each
point, we cannot recover the chemical ordering.

Figure 2.6: Variational inference applied to complete, noiseless data (a) and noisy, sparse data (b), showing
how the process is not able to recover the chemical ordering, i.e., the aluminium center has 8 nickel first
neighbors and 6 aluminium second neighbors, and vise versa when nickel is the center atom.

Here k(·) is the digamma function, Û =
∑
:=1 U: , and Equations (2.5.29)–(2.5.30) follow from properties

of the Wishart and Dirichlet distributions respectively [53, 59].

This model is insufficient for our purpose here for the APT data, as it lacks any elemental information

about the points in the dataset. indeed, applying the process to our data yields a correspondence matrix and

transformation between the reference and observation sets, it does not take into account the labels (elemental

type) of each point in the observation set. The resulting neighbor analysis is shown in Figure 2.6.

The synthetic data for the numerical experiment in Figure 2.6 was created with interlocking BCC crystals

that were exclusively aluminium or nickel in their composition. The result is a chemically ordered data set,

where each neighborhood with aluminium at is center only has nickel as first neighbors and aluminium as

second neighbors. A similar ordering holds when nickel is at the neighborhood’s center. Consequently, we

can see that this ordering is well-preserved in Fig. 2.6a, but is lost due to the noise and sparsity in Fig. 2.6b.

In Section 4.4, wewill show howwe can extend this framework to include elemental type andmake inferences

about short-range chemical ordering in HEAs.
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Chapter 3

Known Reference

3.1 Introduction

Here we present our Bayesian formulation of the point set registration problem. This problem is one of

the most basic in computer vision tasks that arise from many different applications, e.g., object recognition,

medical imaging, and lidar applications [60, 61, 62, 63]. Fundamentally, the problem involves finding the best

spatial alignment and point correspondence between two finite point clouds when the point correspondences

are not known a priori. If the transformation describing the displacement between the tow point clouds is

taken to be the rigid transformations, then each of the individual problems is easily solved by itself, and

naive methods simply alternate the solution of each individually until convergence. If the transformation

is non-rigid, then the problem quickly grows in complexity as the associated transformations are typically

non-linear, and consequently, are difficult to model accurately.

One of the most frequently used point set registration algorithms is the iterative closest point method,

which alternates between identifying the optimal transformation, i.e., for a given correspondence, itminimizes

the mean-squared distance between point sets, and then identifies the closest points between the point sets

to define a correspondence between them [60]. If the transformation is rigid, and the point sets are of equal

cardinality, then both problems are uniquely solvable. If instead we replace the naive closest point strategy

with the assignment problem, so that any two observed points correspond to two different reference points,

then again the problem can solved with a linear program [64]. However, when these two solvable problems

are combined into one, the resulting problem is non-convex [64, 65]. We may see this by examining the

Hessian of the mean-squared error with respect to the transformation parameter. It is a third order tensor,

which is not symmetric-positive definite [66], and hence, the objective function is not convex. Thus the point

set registration problem no longer admits a unique solution, even for the case of rigid transformations that
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Figure 3.1: Setup for incorrect registration; alternating assignment and ℓ2 minimization

we consider here. The same strategy has been proposed with more general non-rigid transformations [67],

where identification of the optimal transformation is no longer analytically solvable. The method in [68]

minimizes an upper bound on their objective function, and is thus also susceptible to getting stuck in a local

basin of attraction. We instead take a Bayesian viewpoint and by sampling consistently from the posterior

density, may recover the maximum a posterior estimator.

3.1.1 Bayesian Point Set Registration

An alloy consists of a large collection of atoms, henceforth “points”, which we assume are transformed

instances of points on a reference lattice structure, denoted by - = (-1, . . . , -# )) , -8 ∈ R3 for 1 ≤ 8 ≤ # .

The tomographic observation of this configuration is missing some percentage of the points and is subject

to noise, which is assumed additive and Gaussian. The sample consists of a single point and its " nearest

neighbors, where " is of the order 10. If ? ∈ [0, 1] is the percent observed, i.e. ? = 1 means all points

are observed and ? = 0 means no points are observed, then the reference point set will be comprised of

# = d"/?e points. Wewrite thematrix representation of the noisy data point as. = (.1, . . . , ." )) , .8 ∈ R3 ,

for 1 ≤ 8 ≤ " .

The observed points have labels, but the reference points do not. We seek to register these noisy and

sparse point sets, onto the reference point set. The ultimate goal is to identify the ordering of the labels of

the points (types of atoms) in a configuration. We will find the best assignment and transformation, in a

mean-squared error sense, between the observed point set and the reference point set. Having completed

the registration process for all observations in the configuration, we may then construct a three dimensional

distribution of labeled points around each reference point, and the distribution of atomic composition is

readily obtained.

As amotivating example, wewill show how alternating between finding correspondences andminimizing

distances can lead to an incorrect registration. Consider now the setup in Figure 3.1. If we correspond closest

points first, then all three green points would be assigned to the blue ‘1’. Then, identifying the single rigid
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transformation to minimize the distances between all three green and the blue ‘1’ would yield a local

minimum, with no correct assignments. If we consider instead assignments, so that no two observation

points can correspond to the same reference point, then again it is easy to see two equivalent solutions with

the eye. The first is a pure translation, and the second can be obtained for example by one of two equivalent

rotations around themid-point between ‘1’s, by c or−c. Note that in reality the reference labels are unknown,

so both are equivalent for us. Furthermore, this simple example motivates our variational treatment of the

registration problem in Chapter 4, where the labels associated with the points greatly impacts the quality of

a solution.

Here it is clear what the solutions are, but as the problem grows in scale, the answer is not always

so clear. This simple illustration of degenerate (equal energy) multi-modality of the registration objective

function arises from physical symmetry of the reference point-set. This is an important consideration for

our reference point sets, which arise as a unit cell of a lattice, hence with appropriate symmetry. We will

never be able to know the registration beyond these symmetries, but this will nonetheless not be the cause

of concern, as symmetric solutions will be considered equivalent. The troublesome multi-modality arises in

the presence of noisy and partially observed point sets, where there may be local minima with higher energy

than the global minima.

The multi-modality of the combined problem, in addition to the limited information in the noisy and

sparse observations, motivates the need for a global probabilistic notion of a solution for this problem. In the

following sections we show that the problem lends itself naturally to a flexible Bayesian formulation which

circumvents the intrinsic shortcomings of deterministic optimization approaches for non-convex problems.

3.2 Bayesian Formulation

We seek to compute the registration between the observation set and reference set. We are concerned

primarily with rigid transformations of the form

T (-; \) = -'\ + C\ , (3.2.1)

where '\ ∈ R3×3 is a rotation and C\ ∈ R3 is a translation vector.

Write [T(-; \)]:8 = T: (-8) for 1 ≤ 8 ≤ # , 1 ≤ : ≤ 3, and where -8 is the iCℎ row of - . Now let

Γ ∈ R3×" with entries Γ8 9 ∼ # (0, W2), and assume the following statistical model

. = �T(-; \) + b, (3.2.2)
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for b, \, and � independent.

The matrix of correspondences � ∈ {0, 1}"×# , is such that
∑#
:=1 � 9: = 1, 1 ≤ 9 ≤ " , and each

observation point corresponds to only one reference point. So if -8 matches . 9 then � 98 = 1, otherwise,

� 98 = 0. We let � be endowed with a prior, c0(� 98 = 1) = c 98 for 1 ≤ 8 ≤ # and 1 ≤ 9 ≤ " . Furthermore,

assume a prior on the transformation parameter \ given by c0(\). The posterior distribution then takes the

form

c(�, \ | -,. ) ∝ L(. | -,�, \)c0(�)c0(\), (3.2.3)

where L is the likelihood function associated with Equation (3.2.1).

For a given \̃, an estimate �̂ can be constructed a posteriori by letting �̂ 9 ,8∗ ( 9) = 1 for 9 = 1, . . . , " and

zero otherwise, where

8∗( 9) = argmin
1≤8≤#

|. 9 − T (-8; \̃) |2 . (3.2.4)

For example, \̃ may be taken as the maximum a posteriori (MAP) estimator or the mean. We note that �̂

can be constructed either with a closest point approach, or via assignment to avoid multiple registered points

assigned to the same reference.

Lastly, we assume the 9 Cℎ observation only depends on the 9 Cℎ row of the correspondence matrix, and

so .8 , . 9 are conditionally independent with respect to the matrix � for 8 ≠ 9 . This does not exclude the case

where multiple observation points are assigned to the same reference point, but as mentioned above such

scenario should have zero probability.

To that end, instead of considering the full joint posterior in Equation (3.2.3) we will focus on the

marginal of the transformation

c(\ | -,. ) ∝ L(. | -, \)c0(\). (3.2.5)

Let � 9 denote the 9 Cℎ row of �. Since � 9 is completely determined by the single index 8 at which it takes

the value 1, the marginal likelihood takes the form

∑
�

?(. 9 | -, \, �)c0(�) =
#∑
8=1

?(. 9 | -, \, � 98 = 1)c0(� 98 = 1)

=

#∑
8=1

c 98?(. 9 | -, \, �8 9 = 1)

∝ c 98 exp
{
− 1

2W2 |. 9 − T (-8; \) |
2
}
. (3.2.6)
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The above marginal together with the conditional independence assumption allows us to construct the

likelihood function of the marginal posterior, Equation (3.2.5), as follows

L(. | -, \) =
"∏
9=1

?(. 9 | -, \)

∝
"∏
9=1

#∑
8=1

c 98 exp
{
− 1

2W2 |. 9 − T (-8; \) |
2
}
. (3.2.7)

Thus the posterior in question is

c(\ | -,. ) ∝ L(. | -, \)c0(\)

=

"∏
9=1

#∑
8=1

c 98 exp
{
− 1

2W2 |. 9 − T (-8; \) |
2
}
c0(\) . (3.2.8)

At its heart, point set registration is an optimization problem. Consider a prior on \ such that c0(\) ∝

exp(−_'(\)), where _ > 0. Then we have the following objective function

� (\) = −
"∑
9=1

log
#∑
8=1

c 98 exp
{
− 1

2W2 |. 9 − T (-8; \) |
2
}
+ _'(\) . (3.2.9)

The minimizer, \∗, of the above, Equation (3.2.9) is also the maximizer of a posteriori probability

under Equation (3.2.8). This can also be viewed as maximum likelihood estimation regularized by _'(\).

By sampling consistently from the posterior, we may estimate quantities of interest, such as moments,

together with quantified uncertainty. Additionally, we may recover other point estimators, such as local and

global modes.

3.3 Numerical Experiments

To illustrate our approach, we consider numerical experiments on synthetic materials datasets, with varying

levels of noise and percentage of observed data. We focus our attention to rigid transformations of the

form Equation (3.2.1).

For all examples here, the " observation points are simulated as .8 ∼ # ('i- 9 (8) + C, W2�3), for a

rotation matrix 'i parameterized by i, and some C and W. So, \ = (i, C). To simulate the unknown

correspondence between the reference and observation points, for each 8 = 1, . . . , " , the corresponding

index 8( 9) ∈ [1, . . . , #] is chosen randomly and without replacement. Recall that we define percentage of
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observed points here as ? = "
#
∈ [0, 1].We tested various percentages of observed data and noise W on

the observation set, then computed the mean square error (MSE), given by Equation (3.3.1), between the

reference points and the registered observed points,

E(\) = 1
"

"∑
9=1

min
- ∈X
|')i (. 9 − C) − -8 ( 9) |2 . (3.3.1)

3.3.1 Sensitivity Analysis

The datasets from APT experiments are perturbed by additive noise on each of the points. The variance

of this additive noise is not known in general, and so in practice it should be taken as a hyper-parameter,

endowed with a hyper-prior, and inferred or optimized. It is known that the size of the displacement on the

order of several Å (Angstroms), so that provides a good basis for choice of hyper prior. In order to simulate

this uncertainty in our experiments, we incorporated additive noise in the form of a truncated Gaussian, to

keep all the mass within several Å . The experiments consider a range of variances in order to measure the

impact of noise on our registration process.

In our initial experiments with synthetic data, we have chosen percentages of observed data and additive

noise similar to what materials scientist experimentalists have reported in their APT datasets. The percent

observed of these experimental datasets is approximately 33%. The added noise of these APT datasets is

harder to quantify. Empirically, we expect the noise to be Gaussian in form, truncated to be within 1-3 Å.

The standard deviation of the added noise is less well-known, so we will work with different values to asses

the method’s performance. With respect to the size of the cell, a displacement of 3Å is significant. Consider

the cell representing the hidden truth in Figure 3.2. The distance between the front left and right corners is

on the scale of 3Å. Consequently a standard deviation of 0.5 for the additive noise represents a significant

displacement of the atoms.

As a visual example, the images in Figure 3.2 are our synthetic test data used to simulate the noise and

missing data from the APT datasets. The leftmost image in Figure 3.2 is the hidden truth we seek to uncover.

The middle image is the first with noise added to the atom positions. Lastly, in the right-most image we have

‘ghosted’ some atoms, by coloring them grey, to give a better visual representation of the missing data. In

these representations of HEAs, a color different from grey denotes a distinct type of atom. What we seek is

to infer the chemical ordering and atomic structure of the left image, from transformed versions of the right,

where W = 0.5.

For our initial numerical experiments with simulated APT data, we choose a single reference and

observation, and consider two different percentages of observed data, 75% and 45%. For both levels of
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Figure 3.2: Example APT data: Left: Hidden truth, Center: Noise added, Right: Missing atoms colored
grey.

observations in the data, we looked at results with three different levels of added noise on the atomic

positions: no noise, and Gaussian noise with standard deviation of 0.25 and 0.5. The MSE of the processes

are shown in Table 3.1. We initially observe the method is able, within an appreciably small tolerance, find

the exact parameter \ in the case of no noise, with both percentages of observed data. In the other cases,

as expected, the error scales with the noise. This follows from our model, as we are considering a rigid

transformation between the observation and reference, which is a volume preserving transformation. If the

exact transformation is usedwith an infinite number of points, then theRMSE (square root of Equation (3.3.1))

is W.

Nowwemake the simplifying assumption that the entire configuration corresponds to the same reference,

and each observation in the configuration corresponds to the same transformation applied to the reference,

with i.i.d. noise added to it. This enables us to approximate the mean and variance of Equation (3.3.1)

over these observation realizations, i.e. we obtain a collection {E; (\;)}!
;=1 of errors, where E; (\;) is the

MSE corresponding to replacing Y; and its estimated registration parameters \; into Equation (3.3.1), where

! is the total number of completed registrations. The statistics of this collection of values provide robust

estimates of the expected error for a single such registration, and the variance we can expect over realizations

of the observational noise. In other words

E!E(\) :=
1
!

!∑
;=1
E; (\;) and Var! E(\) :=

1
!

!∑
;=1
(E; (\;) − E!E(\))2 . (3.3.2)

We have confidence intervals as well, corresponding to a central limit theorem approximation based on these

! samples.

In Figs. 3.3a–3.3d we computed the registration for ! = 125 i.i.d. observation sets corresponding to

the same reference, for each combination of noise and percent observed data. We then averaged all 125

registration errors for a fixed noise/percent observed combination, as in Equation (3.3.2), and compared

the values. What we observe in Figs. 3.3a–3.3d is the registration error scaling with the noise, which is

expected. What is interesting to note here is that the registration error is essentially constant with respect
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Standard Deviation Percent Observed Registration Error

0.0 75% 3.493686e−11
0.0 45% 4.400718e−11
0.25 75% 0.170252
0.25 45% 0.122155
0.5 75% 0.344568
0.5 45% 0.364317

Table 3.1: E(\) Registration Errors

to the percentage of observed data, for a fixed standard deviation of the noise. More information will lead

to a lower variance in the posterior on the transformation \, following from standard statistical intuition.

However, the important point to note is that, as mentioned above, for exact transformation, and infinite

points, Equation (3.3.1) will equal W2. So, for sufficiently accurate transformation, one can expect a sample

approximation thereof. Sufficient accuracy is found here with very few observed points, which is reasonable

considering that in the zero noise case 2 points is sufficient to fit the 6 parameters exactly.

The MSE registration errors shown in Figs. 3.3a–3.3d, show the error remains essentially constant with

respect to the percent observed. Consequently, if we consider only Fig. 3.3b, we observe that the blue and

red lines intersect, when the blue has a standard deviation of 0.1, and the associated MSE is approximately

0.05. This same error estimate holds for all tested percentages of observed data having a standard deviation

of 0.1. Similar results hold for other combinations of noise and percent observed, when the noise is fixed.

Furthermore, the results shown in Figs. 3.3a–3.3d are independent of the algorithm, as the plots

in Figs. 3.3e–3.3f show. For the latter, we ran a similar experiment with 125 i.i.d. observation sets, but

to compute the registration, we used the MALA [40] sampling algorimth detailed in Section 2.3.2, as

opposed to HMC in Figs. 3.3a–3.3d. Both algorithms solve the same problem and use information from the

gradient of the log density. In the plots shown in Figs. 3.3a–3.3d, we see the same constant error with respect

to the percent observed and the error increasing with the noise, for a fixed percent observed. The MSE also

appears to be proportional to W2, which is expected, until some saturation threshold of W ≥ 0.5 or so. This

can be understood as a threshold beyond which the observed points will tend to get assigned to the wrong

reference point.

To examine the contours of our posterior described by Equation (3.2.8), we drew 105 samples from

the density using the HMC methodology described previously. For this simulation we set the noise to

have standard deviation of 0.25 and the percent observed was 35%, similar values to what we expect from
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(b) Blue: 90% Observed, Red: W = 0.1
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(c) Blue: 75% Observed, Red: W = 0.25
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(d) Blue: 50% Observed, Red: W = 0.5
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(e) Blue: Full data, Red: Noiseless data (MALA)
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(f) Blue: 90% Observed, Red: W = 0.1 (MALA)

Figure 3.3: Error as plotted against various combinations of noise and sparsity.
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Standard Deviation Percent Observed Error

0.25 75% 0.049096
0.5 75% 0.079345
0.25 45% 0.074600
0.5 45% 0.119786

Table 3.2: Errors for 125 Completed Registrations

real APT datasets. The rotation matrix ' is constructed via Euler angles denoted: iG , iH , iI , where

iG ∈ [0, 2c), iH ∈ [− c2 ,
c
2 ] and iI ∈ [0, 2c). These parameters are especially important to making the

correct atomic identification, which is crucial to the success of our method.

In Figures 3.4–3.6, we present marginal single variable histograms and all combinations of marginal

two-variable joint histograms for the individual components of \. We observe multiple modes in a number

of the marginals. In Figs. 3.7a–3.7f we present autocorrelation and trace plots for the rotation parameters

from the same instance of the HMC algorithm as presented in the histograms above in Figures 3.4–3.6. We

focus specifically on the rotation angles, to ensure efficient mixing of the Markov chain as these have thus

far been more difficult for the algorithm to optimize. We see the chain is mixing well with respect to these

parameters and appears not to become stuck in local basins of attraction.

Additionally, we consider the following. Define null sets �1, . . . , �# . For each 9 = 1, . . . , " and

; = 1, . . . , !, let 8∗( 9 , ;) := argmin8∈{1,...,# } |')i; (.
;
9
− C;) − -8 |2, and increment �8∗ ( 9 ,;) = �8∗ ( 9 ,;) ∪. ;9 . This

provides a distribution of registered points for each index 8, �8 , from which we estimate various statistics

such as mean and variance. However, note that the cardinality varies between |�8 | ∈ {0, . . . , !}. We are only

be concerned with statistics around reference points 8 such that |�8 | > !/10 or so, assuming that the other

reference points correspond to outliers which were registered to by accident. Around each of these # ′ ≤ #

reference points -8 , we have a distribution of some  ≤ ! registered points. We then computed the mean of

these  points, denoted by -̄8 and finally we compute the MSE 1
# ′

∑# ′

8=1 |-8 − -̄8 |2. The RMSE is reported

in Section 3.3.1. Here we note that a lower percentage observed ? is correlated with a larger error. Coupling

correct inferences about spatial alignment with an ability to find distributions of atoms around each lattice

point is a transformative tool for understanding high entropy alloys.

53



0 2 4 6 8

Lag

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
u
to
co
rr
el
at
io
n

ϕx

(a) Autocorrelation plot, iG

0 200 400 600 800

0

1

2

3

4

5

6

ϕx

(b) Trace plot, iG

0 2 4 6 8

Lag

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
u
to
co
rr
el
at
io
n

ϕy

(c) Autocorrelation plot, iH

1000 1200 1400 1600

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ϕy

(d) Trace plot, iH

0 2 4 6 8

Lag

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
u
to
co
rr
el
at
io
n

ϕz

(e) Autocorrelation plot, iI

1700 1800 1900 2000 2100 2200 2300 2400 2500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ϕz

(f) Trace plot, iI

Figure 3.7: Autocorrelation and trace plots for i for our MCMC Bayesian registration method.
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Chapter 4

Unknown Reference

We now shift or focus to the case where we do not know the lattice structure of a material beforehand. We now

seek to discover the crystal lattice, and neighbor relationships between the atoms in an atomic neighborhood.

As posed here, the problem has two components: i. classification and ii. labeled point set registration. For

the former, we present a topologically informed classification scheme, employing a distance on the space of

persistence diagrams that leverages both differences in topology and cardinality of the persistence diagrams.

We also show a stability property for this distance. Having inferred the correct lattice structure, we use this

to inform our variational approach to the registration problem.

The version of the point set registration problem that we discuss, and present an algorithmic solution

to, is different from all existing settings. The points we consider have labels, specifically atomic type,

whereas all other existing algorithms make no distinction between points in the sets they consider. While

this increases the computational complexity of the algorithm, we may ameliorate these considerations by

devising a MCMC sampling scheme to find the optimal, i.e., lowest, energy configuration of atoms in a

neighborhood.

4.1 Materials Fingerprinting

A crucial first step in understanding properties of a crystalline material is determining its crystal structure.

For highly disordered metallic alloys, such as high-entropy alloys, atom probe tomography gives a snapshot

of the local atomic environment. APT has the potential to quantify distributions of lattice parameters and

atomic composition within HEAs. Indeed, analysis of HEAs are amenable to the APT experiment as the

process is able to recover elemental type in addition to approximating the lattice sites in a material where the

atoms sit.
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An experimental process that determines the position, identity of each atom, and structure of a material

is currently nonexistent [21, 69]. Indeed, unambiguous quantification of different lattice parameters and

unit-cell compositions has not previously been reported due to data quality issues inherent to APT [24, 25].

While these experiments are able to discern elemental types at a high resolution, the process has two

drawbacks, experimental noise and missing data. Approximately 65% of the atoms in a sample are not

registered in a typical experiment, and those atoms that are captured have their spatial coordinates corrupted

by experimental noise. As noted by [24] and [25], APT has a spatial resolution approximately the length

of the unit cell we consider, as seen in Figure 4.2. Hence the process is unable to see the finer details of

a material, making the determination of a lattice structure a challenging problem. Existing algorithms for

detecting the crystal structure [70, 71, 72, 73, 69, 74] are not able to establish the crystal lattice of an APT

dataset, as they rely on symmetry arguments. Consequently, the field of atom probe crystallography, i.e.,

determining the crystal structure fromAPT data, has emerged in recent years [26] and [69]. These algorithms

rely on knowing the global lattice structure a priori and aim to determine local small-scale structures within

a larger sample. For some materials this information is readily known, for others, such as HEAs, the global

structure is unknown and must be inferred. A recent work by [75] proposes a machine-learning approach to

classifying crystal structures of a noisy and sparse materials dataset, without knowing the global structure a

priori. The authors employ a convolutional neural network for classifying the crystal structure by looking

at a diffraction image, a computer-generated diffraction pattern. The authors suggest their method could be

used to determine the crystal structure of APT data or other noisy and sparse data from materials science.

However, the synthetic data considered in [75] is not a realistic representation of experimental APT data,

where about 65% of the data is missing [1] and is corrupted by more observational noise [25] than is

considered in [75]. Most importantly, their synthetic data is either sparse or noisy, not a combination of both.

We consider a combination of noise and sparsity, such as is the case in real APT data.

The field of atom probe crystallography has emerged in recent years [26, 69], and existing methodologies

in this area seek to discover local structures when the global structure is known a priori. In the case of

HEAs, the global lattice structure is unknown and must be discovered through further analysis. Indeed,

drawing correct conclusions about the material’s crystal structure is virtually impossible from APT analysis

using current techniques [25]. Even in the case of noiseless and complete data, symmetry-based algorithms

for determining the crystal structure may fail due to the non-symmetric nature of HEA crystal structures.

Their lattice structures become distorted due to the many types of differently-sized atoms that are randomly

distributed throughout the material with equal probability. The net effect of neighboring atoms with different

radii in a lattice structure is to deform the symmetry of the cubic lattice, Figure 4.1(a) shows a symmetric
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Figure 4.1: An example of face-centered cubic lattices showing the similarities and differences between an
ideal, noiseless lattice structure in (a) and the data retrieved from an APT experiment in (c). Atoms in (a)
sit precisely at their lattice points and each side of the cube is equal in length. The lattice in (b) shows the
distorted lattice structure of an FCC HEA. The atomic positions no longer form a symmetric lattice and
the sides are unequal in length. These local distortions are due to different sized atoms sitting at lattice
positions and break the symmetry of the idealized FCC lattice in (a). These local lattice distortions make
identification of the crystal structure by existing symmetry-based algorithms a challenging problem. In spite
of these distortions, the unit cell retains the essential characteristics of an FCC cell: (i) number of atoms
in the unit cell and (ii) atoms on the cube’s faces and hollow in the center. We also note the different sized
cubes in each one of the cells due to the random distribution of atoms throughout the material. The cell in
(c) indicates the sparsity and atomic displacements due to the resolution of APT. Importantly, there are fewer
atoms in (c) than in the idealized representation (a).

FCC lattice, into one that defies easy characterization; see Figure 4.1(b) for an example of the distorted lattice

of an HEA. As seen through the lens of APT in Figure 4.1(c), the distorted FCC lattice structure of an HEA

looks unrelated to its idealized version in Figure 4.1(a). Consequently, this deformation of the local crystal

structure makes any determination of the lattice a challenging problem for any symmetry-based algorithm,

such as [71, 72, 73].

We provide a machine learning approach to classify the crystal structure of a noisy and sparse materials

dataset. Specifically, we consider materials that are either body-centered cubic (BCC) or face-centered

cubic (FCC), as these lattice structures are the essential building blocks of HEAs [9] and have fundamental

differences that set them apart in the case of noise-free, complete materials data. The BCC structure has a

single atom in the center of the cube, while the FCC has a void in its center but has atoms on the center of

the cubes’ faces, see Figure 4.2 for a visual representation of these crystal lattices.

The BCC and FCC crystal structures are distinct when viewed through the lens of topological data

analysis (TDA). Differentiating between the holes and connectedness of these two lattice structures allows us

to create an accurate classification rule. This fundamental distinction between BCC and FCC point clouds is

captured well by topological methods and explains the high degree of accuracy in the classification scheme

presented herein. TDA provides input features for machine learning algorithms, as well as a useful toolbox
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(a) BCC cell (b) FCC cell

Figure 4.2: Example of body-centered cubic, (BCC), (a) and face-centered cubic, (FCC), (b) unit cells
without additive noise or sparsity. Notice there is an essential topological difference between the two
structures: The body-centered cubic structure has one atom at its center, whereas the face-centered cubic is
hollow in its center, but has one atom in the middle of each of its faces.

for classification. Several authors have used TDA on real-world problems, see [76, 77, 78, 79, 80, 81, 82,

83, 32, 84] and the references therein. Persistent homology, which measures changes in topological features

over different scales, is the main framework considered by these authors.

Persistent homology is used to create features used as input to machine learning algorithms, and as

such, it is applicable to classification problems. The technique provides a multi-scale analysis of data as

it differentiates holes within the data as viewed in different dimensions, e.g., the space enclosed by a loop

is a one-dimensional hole., This methodology provides a summary of the connectedness and holes (empty

space in atomic cells) of data, which indirectly gives information about the shape of the data as well and

its subsequent analysis quantifies the significance of a homological feature and provides a tool to contend

with noisy data. Persistent homology records when different homological features emerge and vanish in the

data. The appearance and disappearance of a homological feature is calculated and recorded in a persistence

diagram or barcode plot. The persistence diagram yields a topological summary of the persistent homology

of a dataset and are rich sources of detail about underlying topological features. These diagrams may be used

in distance-based classifiers [85, 35] or vectorized and input into standard classification algorithms, such as

support vector machines [86, 87].

Distances on the space of persistence diagrams yield a means of comparison between diagrams, from

which we choose to create features for our classification scheme. Motivated by [35], we consider the 32?
distance, a distance on the space of persistence diagrams, as opposed to the Wasserstein and bottleneck

distances, which are traditionally used to compute distances between persistence diagrams. These two

distance metrics compute the cost of the optimal matching between the points in each persistence diagram,

while allowing matching to additional points on the diagonal to allow for cardinality differences and to prove
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stability properties as in [88]. The 32? distance however, employs the cardinality of the persistence diagrams,

as well as distances between points in the diagrams to compute their similarity. It calculates the cost of an

optimal matching between the persistence diagrams without any points added to the diagonal, as opposed to

the Wasserstein or bottleneck distances. A regularization term then adds a penalty for differences between

the cardinality of the persistence diagrams.

4.1.1 Stability

Here we will prove a stability theorem for the 32? distance. Stability of the distance under investigation means

that small perturbations in the underlying space result in small perturbations of the generated persistence

diagrams. This property guarantees that when the distances between point clouds go to zero, the distances

between the associated persistence diagrams go to zero as well. Another formulation of this stability is given

in [89]; using a related approach, we show continuity of the mapping of point cloud to persistence diagram

under the 32? distance. This analysis provides insight into how the cardinality of the diagrams changes with

the size of the input point clouds. First, let us recall the definition of the 32? distance.

Definition 4.1. Let �1 and �2 be two persistence diagrams with cardinalities = and < respectively such that

= ≤ < and denoted �1 = {G1, . . . , G=}, �2 = {H1, . . . , H<}. Let 2 > 0 and 1 ≤ ? < ∞ be fixed parameters.

The 32? distance between two persistence diagrams �1 and �2 is

32? (�1, �2) =
(

1
<

(
min
c∈Π<

=∑
ℓ=1

min(2, ‖Gℓ − Hc (ℓ) ‖∞) ? + 2? |< − =|
)) 1

?

, (4.1.1)

where Π< is the set of permutations of (1, . . . , <). If < < =, define 32? (�1, �2) := 32? (�2, �1).

Considering discrete point clouds whose distances shrink to zero, Theorem 4.1 shows that the distance

between persistence diagrams goes to zero as well.

Theorem 4.1 (Stability Theorem). Consider 2 > 0 and 1 ≤ ? < ∞. Let � be a finite nonempty point cloud

in R3 . Suppose that {�8}8∈N is a sequence of finite nonempty point clouds such that 32? (�, �8) → 0 as

8 →∞. Let �:0=3 �:
8
be the :-dim persistence diagrams created from the Vietoris-Rips complex for � and

�8 respectively. Then 32? (�: , �:8 ) → 0 as 8 →∞.

Note that Theorem 4.1 does not depend on a function created from the points such as a kernel density

estimator as in [33], but simply on the points themselves and the Vietoris-Rips complex generated from these

points. In fact, Theorem 4.1 shows that the mapping from a point cloud to the persistence diagram of its
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Vietoris-Rips complex is continuous under the 32? distance. This continuous-type stability result is weaker

than Lipschitz stability. In order to prove Theorem 4.1, we first show that if the 32? distance between the

underlying point clouds goes to 0, then eventually the size of the point clouds must be the same.

Lemma 4.2. Let � and �8 be as in Theorem 4.1 such that 32? (�, �8) → 0 as 8 → ∞. Then �8 and A have

the same number of points for 8 ≥ #0 for some #0 ∈ N.

Proof. Denote by |A| the number of points in the point cloud A. Suppose that |�8 | ≠ |�| infinitely often.

Since 32? (�, �8) → 0, for every n > 0, there is an # ∈ N such that 8 ≥ # implies that 32? (�, �8) < n .

Let n = 2
|� |+1 , noting that |�| is fixed. By assumption |�8 | < |�|, |�8 | > |�|, or both, infinitely often. If

|�| < |�8 |, then by Section 2.2.1

32? (�, �8) ≥
(
2?
|�8 | − |�|
|�8 |

) 1
?

≥ 2 |�8 | − |�||�8 |
. (4.1.2)

The function ℎ : N → R given by ℎ(I) = I−|� |
I

is strictly increasing. Whenever |�| < |�8 |, we have

|�8 | ≥ |�| +1. The restriction of ℎ to {|�| +1, |�| +2, |�| +3, . . .} achieves its minimum at |�| +1. This shows

that the RHS of Equation (4.1.2) is greater than or equal to 2
|� |+1 , whenever |�| < |�8 |, which by assumption

happens infinitely often. This contradicts 32? (�, �8) < n for all 8 ≥ # . The case where |�| > |�8 | follows

similarly. �

Lemma 4.3. Let � and �8 be as in Theorem 4.1. Suppose the points of each point cloud �8 are ordered

so that �8 = {0c8 (1) , 0c8 (2) , . . . , 0c8 ( |� |) }, where c8 is the permutation used to calculate the 32? distance

between �8 and � as in Equation (2.2.1). Let �� and ��8 be the distance matrices for the points of � and

�8 respectively, i.e., the :;-th entry of �� is ‖0: − 0; ‖3 . Then,

(i) ‖�� − ��8 ‖∞ → 0 as 8 →∞, and

(ii) for some #1 ∈ N, the order of the entries of the upper triangular portion of �� and ��8 is the same

for 8 ≥ #1, up to permutation when either �� or ��8 have duplicate entries.

Proof. (i) Let � = {01, . . . 0: }, �8 = {081, . . . 0
8
:
}, and _8U = ‖0U − 08c8 (U) ‖3 for the permutation c8 in the 32?

distance between �8 and �. Suppose that 32? (�, �8) → 0. Note that since 2 is fixed, then by Theorem 4.2,

there is some #2 such that eventually 32? (�8 , �) =
(

1
|� | minc8 ∈∏|�| ∑ |�|ℓ=1 ‖0ℓ − 0c8 (ℓ) ‖

?

3

) 1
? for 8 ≥ #2 . By

assumption 32? (�, �8) → 0, which shows that |�|−
1
? ‖_‖? → 0 as 8 →∞. Thus ‖_8 ‖? → 0 as 8 →∞.
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Now, let � = �� − ��8 .

‖� ‖∞ = max
:,;

��‖0: − 0; ‖3 − ‖08: − 08; ‖3 ��
= max

:,;

��‖0: − 0; ‖3 + ‖0; − 08: ‖3 − ‖0; − 08: ‖3 − ‖08: − 08; ‖3 ��
≤

��‖0: − 0; ‖3 − ‖0; − 08: ‖3 �� + ��‖08: − 08; ‖3 − ‖0; − 08: ‖3 ��
≤ ‖0: − 08: ‖3 + ‖0; − 0

8
; ‖3 (4.1.3)

The last term in Equation (4.1.3) goes to 0 as 8 →∞, proving (i).

(ii) Suppose that the < distinct upper triangular entries of �� are ordered from smallest to largest, say

3�1 < 3�2 < · · · 3�<, where < ≤ |�| ( |�| − 1)/2. For [ ∈ {1, . . . , < + 1} let ℎ[ ⊂ [0,∞) be a sequence

such that ℎ1 < 3�1 < ℎ2 < 3�2 < · · · < ℎ< < 3�< < ℎ<+1. Let ‖�� − ��8 ‖∞ < ℎ
2 , where ℎ =

min[1,[2∈{1,...,<+1}{|ℎ[1 − ℎ[2 |}. We show that there exists a sequence 6[ such that |ℎ[ − 6[ | < 2ℎ for each

[ ∈ {1, . . . , < + 1} and ℎ[ < 3�
9
< ℎ[+1 implies 6[ < 3

�8
9
≤ 6[+1. Let ℎ[ < 3�

9
< ℎ[+1, and suppose

that it is not the case that ℎ[ < 3
�8
9
≤ ℎ[+1. Since ‖�� − ��8 ‖∞ < ℎ

2 , then either 3�8
9
∈ (ℎ[−1, ℎ[] or

3
�8
9
∈ (ℎ[+1, ℎ[+2]. If the first case is true, then take 6[ = 3�9 −

ℎ
2 . If the second, then take 6[ = 3�9 +

ℎ
2 .

This proves the existence of the sequence. Now proceeding by contradiction, if the lemma does not hold for

some entries 3�
9
∈ �� and 3�8

9
∈ ��8 , then take ‖�� − ��8 ‖∞ < 1

2 |3
�
9
− 3�8

9
|. �

Proof of Theorem 4.1. By Lemma 4.2, take |�8 | = |�| without loss of generality. By Lemma 4.3 (i),

‖�� − ��8 ‖∞ → 0 as 8 → ∞. If the Vietoris-Rips complex were computed at every threshold value in

[0,∞), then the birth and death times of all features of all dimensions would be distances between points in

the underlying point cloud (including the birth time of 0 in the 0-dim diagram). Since the order of the entries

of �� and ��8 may be taken to be the same from Lemma 4.3 (ii), the same number of simplices are formed

in the complexes for � and �8 for each dimension of simplex. Also, the labels of the simplices according to

the points of � and �8 are given from the permutation c8 in Lemma 4.3 (i).

Now, for 0-dim it is clear that for the cardinalities of the persistence diagrams, |�0 | = |�0
8
| since for

the sizes of their associated point clouds, |�8 | = |�|. For a higher dimensional feature (: ≥ 1) to appear in

the complex, we must have that a certain number of the distances are less than or equal to the threshold n

and a certain number of the distances are greater than n . Lemma 4.3 (ii) shows that although the thresholds

where the features are created may be different, the same number of features are formed in the Vietoris-Rips
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complexes of � and �8 , and these features are formed in the same order and with the points that correspond

under c8 .

If �: = {G1, G2, . . . , G |�: |} and �:8 = {G1, G2, . . . , G |�:
8
|}, then we have that |�: | = |�:

8
| and that

32? (�: , �:8 ) < 2ℎ. Thus 32? (�: , �:8 ) → 0 as 8 →∞. �

To provide a practical way to control 2 in computing the 32? distance of Equation (2.2.1) and consequently

compute the possible fluctuations of the 32? distance, a probabilistic upper bound, which relies on least squares,

is provided. Specifically, the following analysis gives predictions on the number of 1-dim holes represented

in the persistence diagram, which we denote by 11. The parameter 11 relies on the number of connected

components (or equivalently the number of points in the point cloud) represented in the persistence diagram,

denoted by 10.

Definition 4.2 ([90]). The kissing number in R3 is the maximum number of nonoverlapping unit spheres

that can be arranged so that each touches another common central unit sphere.

Lemma 4.4 ([91]). For a finite point cloud with no more than d points in R3 under the Euclidean distance,

let "3 (d) denote the maximum possible number of 1-dim holes in the Vietoris-Rips complex for the point

cloud for a given threshold. Then

"3 (d) ≤ ( 3 − 1)d. (4.1.4)

Proposition 4.5. Consider a point cloud in R3 with d points and its associated persistence diagram. Let �1

denote the possible range of the number of 1-dim holes 11. Then �1 is such that {0, 1, . . . , b d2 c − 1} ⊆ �1 ⊆

{0, 1, . . . , 1
2 ( 3 − 1)d2(d − 1)}, i.e., the possible range of 11 is expanding as the number of points, 10, in

the point cloud increases.

Proof. We first show the inclusion {0, 1, . . . , b d2 c − 1} ⊆ �1. To form a point cloud with d points that has

11 = 0, simply take the d points and arrange them on a line. To form a point cloud with d points that has

11 = b d2 c − 1, arrange the d points in two rows each with b d2 c points. Set the spacing between adjacent

points in each of the rows to be 1 and then place the two rows directly beside each other so that for each point

in the first row, there is exactly one point in the second row at a distance of 1. Adding edges appropriately

creates 11 = b d2 c −1 squares with side length 1. Thus, creating the Vietoris-Rips complex and corresponding

diagram gives 11 = b d2 c − 1. For an illustration of the arrangement, see Fig. 4.3a.
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(a) (b)

Figure 4.3: An example of 8-point arrangements to visualize the proof of Proposition 4.5. (a) A 3-hole
configuration vs. (b) a 2-hole configuration.

To form a point cloud with d points that has 11 ∈ {1, 2, . . . b d2 c − 2}, arrange 2(11 + 1) points in two

rows as in Fig. 4.3a. Arrange the other d − 2(11 + 1) points in a line with the minimum distance from any

points in the line to points of the two rows such that it is greater than or equal to 1. Then exactly 11 holes are

formed from the two rows, with no holes formed by the line. For an illustration, see Fig. 4.3b.

Next, we verify the inclusion �1 ⊆ {0, 1, . . . , 1
2 ( 3 −1)d2(d−1)}. By Lemma 4.4, the number of 1-dim

holes in the Vietoris-Rips complex for a fixed radius n for the point cloud is bounded above by ( 3 − 1)d.

The homology of the Vietoris-Rips complex changes at most
(d
2
)
times as the radius n increases due to

the maximum of
(d
2
)
distinct distances between points in the point cloud. Therefore, there can be at most

1
2 ( 3 − 1)d2(d − 1) 1-dim holes formed over the entire evolution of the Vietoris-Rips complex. This gives

the desired bound of 11 ≤ 1
2 ( 3 − 1)d2(d − 1). �

Now, let # point clouds be generated from some process, and # corresponding persistence diagrams

be created. For each persistence diagram �:
8
, : ∈ {0, 1}, 8 = 1, . . . , # , record the cardinality 180 of the

0-dim diagram and the cardinality 181 of the 1-dim diagram. Let b0 ∈ R#×2 be the predictor matrix whose

rows are [1 180] and b1 ∈ R# be the vector of responses with entries 181. Proposition 4.5 gives that the

possible range of b1 is increasing as b0 grows, which yields that an increase in variance as b0 grows may

be present, i.e., heteroscedasticity exists. Thus the analysis of the change in number of 1-dim holes as the

size of the point cloud changes needs to account for heteroscedasticity in order to capture the non-constant

variance behavior. Therefore to estimate the number of 1-dim holes, we use weighted least squares as

in [51]. If W ∈ R#×# is the weight matrix W = diag(01, . . . , 0# ), then a weighted least-squares regression
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can be found for b1 = b0$ + & , where n8 ∼ N(0, f2
8
). The approximation is then given by b0$̂ = b1,

with $̂ = (b0
)Wb0)−1b0

)Wb1. In turn, Proposition 4.6 provides bounds from prediction intervals using

weighted least squares for the 32? distance.

Proposition 4.6. Suppose # point clouds are generated from a process, and # corresponding persistence

diagrams are created. For each persistence diagram �:
8
, : ∈ {0, 1}, record the cardinality of the 0-dim

diagram 180 and of the 1-dim diagram 181. Let b0 ∈ R#×2 be the predictor matrix whose rows are [1 180] and

b1 ∈ R# be the vector of responses of 181. Assume the model b1 = b0$ + & , where n8 ∼ N(0, f2
8
) depends

on the value of the input 180. Let �
1 and �̃1 be persistence diagrams generated from the same process as b0

with |�0 | = `. Considering the (1 − U) · 100%-level prediction interval for b1, the distance 32? (�1, �̃1) is

bounded above by

(
min
c∈Π<

=∑
ℓ=1

min(2, ‖31
ℓ − 3̃

1
c (ℓ) ‖∞)

? + 2?2C1−U,#−2B

√
[1 `] (b0

)Wb0)−1 [1 `]) + `
) 1
?

.

Proof. Prediction intervals can be constructed for the cardinality of a 1-dim diagram for an instance of point

cloud size 10
∗ using standard results on weighted least squares. Specifically, for level (1 − U) · 100% a

prediction interval for the new response 1̂1
∗
is sought. To calculate this interval for a new response from

the mean predicted response 1̂1
∗
= $̂10

∗, note that 1̂1
∗ − 11

∗ has the distribution 1̂1
∗−1∗1

Var(1̂1
∗−11

∗)
∼ C#−2. Also,

Var(1̂1
∗ − 11

∗) = Var(&) [1 10
∗] (b0

)Wb0)−1 [1 10
∗]) + Var(& )

F∗ , where F∗ = 1
1∗0
, the weight corresponding

to 10
∗. Prediction intervals for 1∗1 are thus 1̂1

∗ ± C1−U/2,#−2B
√
[1 10

∗] (b0
) b0)−1 [1 10

∗]) + 10
∗, where

B2 = &̂)W&̂
#−2 , the unbiased estimator for Var(&), using the residuals &̂ . Thus the cardinality difference term

in the calculation of the 32? distance as in Equation (2.2.1) is bounded above by the length of the prediction

interval with (1 − U) · 100%-level confidence. Substituting this length into Equation (2.2.1) gives the

result. �

The space of persistence diagrams endowed with the 32? metric is complete and separable [35], and so

it admits Fréchet means and variances. In the context of persistence diagrams, the Fréchet mean of any

persistence diagram minimizes the Fréchet variance, and we use these moments to create features for our

classification methodology to infer the lattice structure of the materials data.
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4.2 Classification of Materials Data

Here we describe the 32?-distance based classification of crystal structures of high-entropy alloys using data

from atom probe tomography experiments. Recall that the building blocks of HEAs are either body-centered

cubic or face-centered cubic. Topological considerations are a natural fit for this problem since BCC and

FCC crystal structures enjoy a different atomic configuration within a unit cell. Indeed, the BCC structure

has one atom at its center, but the FCC contains a void (recall Figs. 4.2a and 4.2b). This distinction is

important from the viewpoint of persistent homology.

Each of these topological features has a birth and death time associated with specific radii. These

birth and death pairs, written (18ACℎ, 340Cℎ), are recorded in a persistence diagram. Thus, each point in a

persistence diagram is generated by a topological feature whose birth and death radii are the point’s (G, H)-

coordinates respectively. The corresponding diagram for the atomic neighborhood in Figure 4.9(a) is shown

in Figure 4.9(e). The persistence diagram encodes information about the structure of each neighborhood by

providing insight about the number of atoms, the size and distance among atoms, possible configuration of

the faces, and geometric structure. The persistence diagram then functions as a proxy for data by reducing

an atomic neighborhood to its most pertinent qualities.

To study the persistent homology of atomic structures extracted by HEAs, we create spheres of increasing

radii around each atom in a neighborhood and record when homological features emerge and disappear.

Taking the atoms’ spatial positions in the GHI-coordinate system, we begin by drawing a sphere of radius

n around each atom, see Figure 4.9(a). Increasing the radii of the spheres, we note the associated radii

at which they intersect and form new topological features, e.g., a 1-dim hole has emerged as noted by the

arrow in Figure 4.9(b). Further increasing the radii, we observe that more of the spheres have merged and

see where a 2-dim void will form in Figure 4.9(c). Continuing the process, we increase the radii until all

spheres mutually intersect, i.e., all the holes are closed (the feature is said to have died), and no additional

information is gained by increasing the radii further, as seen in Figure 4.9(d). By examining homological

changes to the neighborhood for increasing radii instead of a single value, we are able to capture information

about the shape of the neighborhood itself. This type of multiscale analysis is key to bypassing the noise and

sparsity present in the data and to extract meaningful details about the configuration of the neighborhood.

The extracted persistence diagrams generated by APT experiments summarize the shape peculiarities

of each atomic neighborhood. Different types of lattice structures yield persistence diagrams with various

identifying features. Figure 4.4 displays the difference between persistence diagrams for BCC and FCC
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Figure 4.4: Sample persistence diagrams of a material from APT data of the alloys Al1.3CoCrCuFeNi and
Al0.3CoCrFeNi for the two lattice types considered here: BCC (a) and FCC (b), respectively. Notice the
distinguishing 2-dim feature, the blue square, in the diagram derived from an FCC lattice, and the diagram
generated from the BCC structure has fewer 0-dim features.

structures. The persistence diagrams capture differences in (i) the number of atoms (8 for BCC and 12 for

FCC), (ii) the spacing between neighbors i.e., packing density, and (iii) the arrangement of neighbors.

For a given configuration, the persistence diagram can be compared to a reference persistence diagram

for BCC and FCC via a similarity metric. As different crystal structures produce different size point

clouds [92], this information must be considered when creating our materials fingerprint. To properly

account for differences in the number of points when comparing two persistence diagrams, we employ

the 32? distance, introduced in [35]. This distance matches points between the persistence diagrams being

compared, and those that are unmatched are penalized by a regularization term. For a visual representation

of how the distance works, see Figure 4.9(f). In developing our materials fingerprint, we compute the 32?
distance between persistence diagrams with respect to 0, 1, and 2−dim homological features, i.e., connected

components, holes, and voids. We then compute summary statistics (mean, variance) from these distances

to create features for the classification algorithm.

However, topology alone is insufficient to distinguish between noisy and sparse BCC and FCC lattice

structures accurately. If we count the number of atoms in a unit cell (see Figs. 4.2a and 4.2b) one may observe

that a BCC unit cell has two atoms, one at the center and 1/8Cℎ of an atom at the unit cell’s corners, as it

shares part of these corner atoms with its neighboring cells. Similarly, an FCC unit cell has four atoms; the

same 1/8Cℎ of the corner atoms plus one-half of each of the six atoms on the cell’s faces. In both cases, the
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Figure 4.5: Image of APT data with atomic neighborhoods shown in detail on the left and right. Each pixel
represents a different atom, the neighborhood of which is considered. Certain patterns with distinct crystal
structures exist, e.g., the orange region is copper-rich (left), but overall no pattern is identified. Putting a
single atomic neighborhood under a microscope, the true crystal structure of the material, which could be
either BCC (Fig. 4.2a) or FCC (Fig. 4.2b), is not revealed. This distinction is obscured due to experimental
noise and sparsity present in the dataset.

atoms on the faces and lattice points are shared with the cell’s neighbors and are only counted as a proportion

contributing to the unit cell.

Another way to see this difference in cardinality is by plotting the number of connected components

against the number of holes for both BCC and FCC crystal structures. Figs. 4.7c and 4.7d depict that FCC

structures have larger point clouds, and consequently, a greater number of connected components. Observe

in Figure 4.6 that the number of connected components and 1-dim holes are greater in the FCC diagrams

than the BCC diagrams. Consequently, we must account for more than just homological differences when

considering persistence diagrams derived from these atomic neighborhoods. Variability in the size of the

underlying point clouds must be considered, as verified in Proposition 4.6. Given the salient topological and

cardinality differences between these two crystal structures, we seek to classify their associated persistence

diagrams via these essential differences. To that end, we consider the 32? distance defined for two persistence

diagrams by Definition 4.1.

4.2.1 Classification Model

In the numerical experiments, the point clouds (atomic neighborhoods) are either extracted from a sample

containing approximately 107 atoms, or created to model the real APT data for a sensitivity analysis. In the
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latter case, we remove atoms, to create spasity, and add Gaussian noise to the larger sample mirroring those

levels found in true APT experimental data. In each case, to create these neighborhoods, we consider a fixed

volume around each atom in the perturbed sample and those atoms within the volume are recorded for our

classification methodology.

We write �8 as the persistence diagram generated by atom positions in an atomic neighborhood retrieved

by the APT experiment as seen in Figure 4.5. Note that the number of atoms in a neighborhood is not

constant, but varies between atomic neighborhoods in a sample. For our classification problem, we are

interested in modeling the conditional probability c(-) = P(. = 1 | -) for a given input - , and associated

response. . We write. = −1 or. = 1 to denote a BCC or FCC lattice respectively. To that end, we consider

a generalized additive regression model [48, 49]. Choosing this type of model gives us the flexibility to

let our data determine the correct functional form, as opposed to imposing a linear model as in traditional

logistic regression. Our model is thus written

log
(
c(-)

1 − c(-)

)
=

%∑
9=1

5 9 (- 9), (4.2.1)

where 5 9 is some pertinent smooth function and - = (-1, . . . , -%) is a random vector, i.e., that is a vector

where each entry is a random variable. Concatenating the random vectors we create our feature matrix,

X ∈ R#×%, where # = #1 + #2. Here #1 is the number of BCC persistence diagrams and #2 denotes the

number of FCC diagrams, for % = 4(: + 1). Indeed, an arbitrary row of X is

-8 = (E0
8,�,E

1
8,�,E

2
8,�,Var0

8,�,Var1
8,�,Var2

8,�,E
0
8,� ,E

1
8,� ,E

2
8,� ,Var0

8,� ,Var1
8,� ,Var2

8,� ). (4.2.2)

for any persistence diagram with :−dim homology, : = {0, 1, 2}. We write E:
8,�

= 1
#1

∑#1
9=1 3

2
? (�:8 , �:9 )

and Var:
8,�

= 1
#1−1

∑#1
9=1 (3

2
? (�:8 , �:9 ) − E:8,�)2 as the mean and variance respectively, as measured by the

32? distance given in Definition 4.1, between any diagram �:
8
and the collection of all BCC persistence

diagrams. Similarly, we write E:
8,�

and Var:
8,�

as the mean and variance of any diagram compared with all

diagrams in the FCC collection.

Having the persistence diagrams, we next compute the feature matrix according to Equation (4.2.2).

This matrix is used as input to the AdaBoost algorithm as implemented in the scikit-learn library [93]. The

pseudo-code for our fingerprinting method is shown in Algorithm 4.1. Having computed the feature matrix,

we employ 10-fold cross validation on the entire dataset to control for overfitting and to obtain an estimate of

the generalization ability of our model. To do this, we split the dataset into 10 partitions. For each partition,
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g 2-value Accuracy

0.0 0.01 99%
0.25 0.05 99.4%
0.75 0.03 96.5%
1.0 0.13 96.4%

Table 4.1: The atomic positions in the APT data isN(0, g2) distributed with 67% of the atoms missing. We
employ the 32? classifier, where 2 has been optimized in each noise level case. The accuracy in the 10-fold
cross validation is listed in the third column.

we create a classification rule from the other 9 partitions, and use the remaining one as a test set. Our

accuracy, defined here as (1 - Misclassification rate), is recorded for each partition as it is used as the test set.

Each partition is used for the testing phase only once, and the accuracy rate is averaged over all 10 partitions.

For each persistence diagram in the training set, we compute the 32? distance among all diagrams with :−dim

homology, (: = 0, 1, 2), and the associated moments according to Equation (4.2.2). These moments are

used to create the ensemble classifier. Next, for any unknown crystal structure in the test set, the associated

feature vector is computed according to Equation (4.2.2) and used as input to the ensemble classifier. The

classifier finds the best fit for the unknown crystal structure from our additive model and returns the class

probabilities of the unknown structure.

4.2.2 Sensitivity Analysis

For our numerical experiments, the persistence diagrams are constructed using the C++ Ripser software, and

the scikit-learn decision tree implementation. The studies [25, 1] estimate that approximately 65% of the

data is missing. However, an estimate of the experimental noise is not provided. In fact, as noted by [22, 23],

the noise varies between experiments and specimens. The data used in our sensitivity analysis replicates this

resolution by drawing from a Gaussian [27, 94, 69], N(0, g2), with four different levels of variance to give

a more representative approximation of true APT datasets. Computing the 32? distances for 0- and 1-dim

homology with ? = 2 to imitate typical Euclidean distance, we find different values of 2 via a grid search

for these four different levels of variance, g2, for both 0- and 1-dim homology, employing a different dataset

than is used for the classification. In each case, a geometric sequence of 10 values between 0.01 and 1 is

taken into account. The results and the associated algorithmic accuracy are presented in Table 4.1.

As a comparison the feature matrix in Equation (4.2.2) is also calculated using the Wasserstein distance,

choosing ? = 2. Moreover, we adopt a counting classifier which takes into account only the number of

points in an atomic neighborhood as the input feature in the tree classifier. Our 32? classifier successfully
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Algorithm 4.1 Materials Fingerprinting
Training Step

1: Read in labeled APT data (training set), both FCC and BCC, and compute persistence diagrams in the
training set DCA08=, which has #1 diagrams from BCC data and #2 diagrams from FCC data.

2: Read in response vector . = (−1, 1)) where −1 is a vector of -1’s in R#1 and analogously for 1 ∈ R#2 .
3: for 8 = 1, . . . , #1 + #2 do
4: Compute feature matrix X according to Equation (4.2.2)

X8 = (E0
8,�,E

1
8,�,E

2
8,�,Var0

8,�,Var1
8,�,Var2

8,�,E
0
8,� ,E

1
8,� ,E

2
8,� ,Var0

8,� ,Var1
8,� ,Var2

8,� ),

where

E:8,� =
1
#1

#1∑
9=1

32? (�:8 , �:9 ), E:8,� =
1
#2

#1+#2∑
9=#1+1

32? (�:8 , �:9 ),

Var:8,� =
1

#1 − 1

#1∑
9=1
(32? (�:8 , �:9 ) − E:8,�)2,

Var:8,� =
1

#2 − 1

#1+#2∑
9=#1+1

(32? (�:8 , �:9 ) − E:8,� )2,

for : = {0, 1, 2}.
5: end for
6: C(X) = ADABOOST(X, . ) ⊲ Obtain a classification rule C from AdaBoost ensemble classification

algorithm
Testing Step

7: Read in unlabeled APT point cloud data and compute persistence diagrams DC4BC = {�̂ 9}�9=1.
8: for 8 = 1, . . . , � do
9: Compute

X̂8 = (Ê0
8,�, Ê

1
8,�, Ê

2
8,�, V̂ar

0
8,�, V̂ar

1
8,�, V̂ar

2
8,�, Ê

0
8,� , Ê

1
8,� , Ê

2
8,� , V̂ar

0
8,� , V̂ar

1
8,� , V̂ar

2
8,� )

where

Ê:8,� =
1
#1

#1∑
9=1

32? (�̂:8 , �:9 ), Ê:8,� =
1
#2

#1+#2∑
9=#1+1

32? (�̂:8 , �:9 ),

V̂ar
:

8,� =
1

#1 − 1

#1∑
9=1
(32? (�̂:8 , �:9 ) − Ê:8,�)2,

V̂ar
:

8,� =
1

#2 − 1

#1+#2∑
9=#1+1

(32? (�̂:8 , �:9 ) − Ê:8,� )2,

for : = {0, 1, 2}.
10: end for

Classify unlabeled APT data
11: .̂ = C(X̂) ⊲ Yields class labels for DC4BC as .̂ ∈ {−1, 1}� .
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(a) (b)

Figure 4.6: Example of persistence diagrams generated by (a) a BCC lattice, and (b) FCC lattice. The data
has a noise standard deviation of g = 0.75 and 67% of the atoms are missing. Note that the BCC diagram
has two prominent (far from the diagonal) points representing 1-dim holes and fewer connected components
and 1-dim holes than does the FCC diagram.

(a) (b)

(c) (d)

Figure 4.7: Top: Number of connected components (in this case atoms), b0, against the number of 1-dim
homological features, b1, of the persistence diagrams. One can see the presence of heteroscedasticity since
the variance of b1 increases as b0 increases. Bottom: Same as in top but using a quadratic transformation of
the predictor variable, along with the weighted least squares fit line and 95% prediction intervals provided
by Proposition 4.6.
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Figure 4.8: 10-fold cross validation accuracy scores for 32? (red), Wasserstein (blue), and counting (green)
classifiers, plotted against different standard deviations, g, (see Table 4.1) of the normally distributed noise
of the atomic positions. In each instance, the sparsity has been fixed at 67% of the atoms missing, as in a
true APT experiment.
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dichotomizes these 1,000 persistence diagrams generated by BCC and FCC lattice structures at better than

96% accuracy, where accuracy is measured as (1 - Misclassification rate). The 32? classifier outperforms

both the Wasserstein and the counting classifier, see Figure 4.8. These results demonstrate that using just the

differences in cardinality between the two classes of crystal structures is insufficient to distinguish between

them.

As demonstrated in Proposition 4.6, there is a relationship between the number of connected components,

b0, (number of atoms in this case) and the number of 1-dim homological features, b1, in the persistence

diagrams Figs. 4.7a and 4.7b demonstrate this relationship, as well as the presence of heteroscedasticity

between b0 and b1, also verified by the Breusch-Pagan test [95] with a ?−value of 9.3 × 10−54 for FCC cells

and a ?−value of 2.01 × 10−47 for BCC cells. Figs. 4.7a and 4.7b also provide 95% prediction intervals for

b1 based on the weighted least squares regression analysis of Proposition 4.6. Additionally, these statistics

on the diagram’s cardinality generates corresponding prediction intervals, which give probabilistic bounds

on the 32? distances between persistence diagrams, and we see that point clouds generated from the same

process have small variability with respect to cardinality of the persistence diagrams. To that end, this exact

fine balance between the number of atoms in a neighborhood and the associated topology created by the

positions of these atoms in the cubic cell is captured by the 32? distance.

4.3 Materials Fingerprinting

In this section, we describe our novel machine-learning approach, a materials fingerprint, to classify the

crystal structure of a material by looking at local atomic neighborhoods through the lens of topological

data analysis. As previously discussed, TDA is a field that uses topological features within data for machine

learning tasks. It has found other applications in materials science, such as the characterization of amorphous

solids [96], equilibrium phase transitions [97], and similarity of pore-geometry in nanomaterials [98]. Our

motivation is to encode the geometric peculiarities of HEAs by considering atomic positions within a

neighborhood and looking at the neighborhood’s topology.

Our fingerprinting process allows us to see the lattice structure of a noisy and sparse dataset. Particularly,

key differences between atomic neighborhoods are encoded in the empty space, e.g., holes and voids, between

atoms, as well as clusters of atoms in the neighborhood. These clusters of atoms, holes, and voids in an atomic

neighborhood can be calculated through the concept of homology, which is the mathematical study of ‘holes’

in different dimensions. Extracting this homological information from each atomic neighborhood, we can

distinguish between the different lattice structures we consider. These topological features differentiate the
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Figure 4.9: Atomic neighborhood from an APT experiment (Figure 4.5); for the alloy Al1.3CoCrCuFeNi
where the atomic type is illustrated by the color. (a) shows each atom as a point cloud in R3. As the radius
of the sphere centered at each atom increases in (b), a 1-dim hole forms in the atomic structure. Increasing
the radii further, in (c) the formation of a 2-dim hole, a void, is evident. Continuing to increase the radii, in
(d) the radii have increased such that all atoms form one cluster. The persistence diagram for this structure
is shown in (e). In (f) the 32? metric computes the distance between two persistence diagrams. Consider two
1-dim persistence diagrams generated by atomic neighborhoods, one shown by the pink triangles, the other
by the green triangles. The 32? metric measures the distance between the diagrams by first finding the best
matching between points. Any unmatched points are then penalized by the regularization term 2.
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shape and structure of the neighborhoods and often retain this property even in the presence of experimental

noise. Adopting this approach, we are able to classify the crystal structure of HEAs from the APT data with

accuracy approaching 100%.

Experimental APT Data

We are interested in developing an automated methodology for classifying the crystal structure of disordered

metallic alloys from the APT datasets to inform our registration process. APT is an experimental

characterization technique used to determine the local elemental structure. Indeed, the technique produces

a dataset of approximately 108 atoms [25], from which fundamental information about the structure of a

material can be obtained. Combining the elemental information from an APT experiment with the lattice

structure provided by our methodology yields an unambiguous representation of local neighborhoods at the

atomic level.

Researchers are actively working to improve the APT detection process [24, 25], but the state-of-the-art

APT method captures at most 60% of the atoms in a sample [25]. This estimate is perhaps optimistic, as

a previous work analyzed an HEA via APT and found that only 37% of the atoms were registered by the

process [1]. Additionally, the spatial coordinates of the atoms recorded from a typical APT experiment have

added experimental noise. For our problem, the data consists of spatial coordinates of approximately 108

atoms with elemental type [25], which compose a highly-disordered metallic alloy that is either BCC or FCC

in its lattice structure. We consider these crystal types as they are the building blocks of HEAs, our ultimate

object of interest [99, 13, 9].

Our BCC sample under investigation here was chosen because it has been previously well-

characterized [1]. It consists of three phases, a Cu-rich FCC phase, an Fe-Cr rich BCC phase and a

remaining phase that incorporates all six elements, though the proportions of Cu, Fe and Cr are depleted due

to segregation in the other phases. Importantly all three phases are present in the APT sample. When viewing

this entire data set with atoms identified by color, some nanoscale information is immediately evident to

the eye, see Figure 4.5. The eye perceives elemental segregation of the Cu-rich and Fe-Cr rich phases

into nanoscale domains. However, one cannot infer any meaningful structure at a finer scale when viewing

the entire dataset from a typical APT experiment. Instead, further scrutiny requires that individual atomic

neighborhoods be extracted from the larger sample. Viewing each neighborhood individually, we can see

that they contain a wealth of information about the shape of the material under investigation, despite the

noise and sparsity present in a typical APT experiment.
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Figure 4.10: The materials fingerprinting methodology through which the APT data is processed. Individual
atomic neighborhoods are extracted from an APT dataset. From these neighborhoods, we create a collection
of persistence diagrams, each diagram associated with an atomic neighborhood. We then compute the 32?
distance between all diagrams in the training set. We create a feature matrix composed of the summary
statistics of these distances, which is used as input to the classification algorithm. The algorithm returns the
class label for the atomic neighborhood associated to the persistence diagram �8 as either BCC or FCC in
its structure, which is subsequently applied to new, unlabeled samples to automatically fingerprint them.

We first present our results on 200,000 atomic neighborhoods extracted from APT experiments. Then we

conduct a sensitivity analysis of our method using synthetic datasets having varying percentages of sparsity,

additive noise, or combinations of both. In these experiments with synthetic data, we compare our results

using the same levels of experimental noise and sparsity as the neural net of [75] for our tests. In each of the

experiments presented, we perform 10-fold cross validation on the entire dataset to control for overfitting of

the model. For a schematic of our materials fingerprinting scheme, see Figure 4.10.

4.3.1 Numerical Results

We now turn to our original problem of determining the local lattice structure of an HEA from experimental

APT data. Toward this end, we apply the materials fingerprinting method to APT experimental data from two

HEAs, Al1.3CoCrCuFeNi and Al0.3CoCrFeNi (FCC). The former was previously studied through various

diffraction techniques in [1] and was conclusively found through X-ray diffraction to have an FCC and BCC

phase. The FCC phase is almost exclusively copper, so by excluding the copper-rich regions, we have an
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alloy that is BCC in its structure. The latter HEA was also determined to be FCC through X-ray diffraction

experiments.

As previously noted, these APT datasets are missing a significant proportion of the atoms from a sample,

and the data that is recovered has spatial coordinates corrupted by additive noise. An example atomic

neighborhood can be seen in Figure 4.1(c). Additionally, the sparsity is unevenly distributed throughout the

sample [69]. Each atomic neighborhood contains a different number of atoms so that the overall effect is

to have approximately 65% of the atoms missing, but consecutive neighborhoods contain different numbers

of atoms. The challenge is to uncover the true atomic-level structure amid the noise and missing data, thus

giving material scientists an unambiguous description of the lattice structure of these novel alloys. Using

our materials fingerprinting methodology, we are able to classify the lattice structure of 200,000 atomic

neighborhoods, split evenly between BCC and FCC lattice types, from these APT datasets at 99% accuracy

with 10-fold cross validation.

4.3.2 Sensitivity Analysis

In order to better understand the effect of differing levels of noise and sparsity in the data, the materials

fingerprint was applied to synthetic data having different levels of sparsity or noise, and combinations thereof.

Such computational experiments guide the development of the fingerprinting process since APT data has

experimental noise and a significant percentage of the atoms missing. The synthetic datasets serve as a

sensitivity analysis for the fingerprinting process and for determining optimal values of 2 and ?, the two

parameters of the 32? distance.

Fingerprinting was applied to a dataset of 10,000 synthetic crystal structures split evenly between BCC

and FCC structures, varying individually the amount of additive noise or percentage sparsity in each instance.

In all cases, the degree of accuracy was greater than 99%. Accuracy scores reflect 10-fold cross validation

for datasets with varying standard deviations of Gaussian additive noise, N(0, f2) (f of 0.04, 0.06, 0.08

and 0.1 Å) or various percentages of sparsity (40%, 50%, 60% and 70%). Fingerprinting was also applied

to synthetic datasets containing a combination of noise and sparsity (f, sparsity) of (0.08, 60%), (0.1, 60%),

(0.08, 70%) and (0.1, 70%). All accuracy scores exceed 99%.

Computational and Storage Considerations

Computing entries of the feature matrix X, Equation (4.2.2), requires computing the mean and variance

of 32? distances with :−dim persistence homology, (: = 0, 1, 2). For each BCC persistence diagram,

each E:
8,�

computation requires #1 steps, while for FCC, it is #2 steps. Similarly, computing the variance
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accurately in a numerically stable fashion, e.g., when the size of the dataset is large and the variance is

small, for each BCC diagram takes 2 × #1 steps for the two pass algorithm [100]. In total, each row

of X has complexity O8 (#1, #2) = 9 × (#1 + #2) and the entire feature matrix ends up with quadratic

complexity: O(#1, #2) = 9 × (#1 + #2)2. With the atomic counts on the order of hundreds of thousands:

#1, #2 ≈ O(105), the quadratic component clearly dominates with 1010 computational steps. Each of these

steps requires the 32? distance computation given by Equation (2.2.1), which is computationally non-trivial

for the majority of the diagrams due to the identification of the optimal permutation between the diagrams

being compared. In order to reduce the total elapsed time of the computation, we used over 1000 x86 cores

that ranged from Intel Westmere to Intel Skylake, ranging in cores per socket from 8 to 36 with up to 72

cores per node. Additional speedup of about 20% came from porting the code for computing the feature

matrix from Python to C.

4.4 Variational Atomic Sequencing

Recall that our primary object of study is the atomic structure of HEAs, and our goal is to detect patterns

from their noisy and sparse representation. From these patterns, we seek to derive meaningful statistical

information about their composition and atomic-level structure. To infer the fundamental characteristics of

these alloys, we define a transformation from the observed atoms to a static reference, which we have a priori

determined through our materials fingerprinting process, see Section 4.1 and [92, 101].

Recall that the point set registration problem that seeks to spatially align two point clouds, called the

reference and observed, and make point-wise correspondences between the two point sets. We choose to

model each of these sets by a Gaussian Mixture Model (GMM), and pose the registration problem as one

where we seek to minimize the distance between distributions, specifically two GMMS. Our formulation is

not the first one to use GMMs for the point set registration problem [102, 103, 104, 105]. However, to our

knowledge, we present the first proof of convergence for the point set registration problem using GMMs and

give guidance on choosing a convergence criterion for the algorithm.

Our proposed algorithmic solution to this problem accounts for the points in our observation set being

labeled by atomic type. This contrasts starkly with all other settings where the points are unlabeled, and

any assignment is possible, but not necessarily favorable. The labeling of points in the reference lattice

are precisely what we seek, and yields invaluable information to material science researchers. Thus we not

only seek to align, and make point-wise correspondences between the point sets, we additionally seek the

one yielding the lowest energy configuration of the atoms. In the present section, we present a statistical
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formulation of the labeled point set registration problem, an algorithmic solution, and proof of convergence

for our algorithm.

4.4.1 Statistical Model

Before presenting the details of our methodology, first recall our statistical model from Chapter 3. We

assumed that

. = �T (G; \) + Γ, (4.4.1)

for a rigid transformation T parameterized by \ for �, \, and Γ independent. Here we relax the requirement

that T is a rigid motion and assume that it describes some affine motion, which allows for scaling, shearing,

and rotations. We also defined a matrix of correspondences � ∈ {0, 1}"×# , such that
∑#
:=1 � 9: = 1, 1 ≤

9 ≤ " , and each observation point corresponds to only one reference point. We now want to devise an

algorithm to simultaneously infer both \ and � where previously � was not labeled, but now the points are

labeled with their atomic identity. To do so, we will introduce a binary latent variable I< ∈ {0, 1}# that

is a 1-of-# binary vector with elements I<=, such that
∑#
==1 I<= = 1, for each 1 ≤ < ≤ " and make the

assumption that both the reference and observed point sets may be represented by Gaussian mixture models.

Following these assumptions, we pose the point set registration problem as a minimization problem

where we seek to minimize the the Kullback-Leibler divergence between two distributions, which is given

by

KL(P ‖ Q) =
∫
Ω

?(G) log
?(G)
@(G) dG,

AGMM is written as a linear sum of say � Gaussian densities, each with their own mean, ` 9 , and covariance,

Λ 9 .

?(G) =
�∑
9=1

l 9N(G | ` 9 ,Λ 9),

with mixing coefficient {l 9}�9=1, such that 0 ≤ l 9 ≤ 1 for all 1 ≤ 9 ≤ �, and ∑�
9=1 l 9 = 1.

In our labeled point set registration problem, we seek to spatially align and find the correspondence

between two GMMs and label the points in the observation mixture model. . To do this, for each observation

.<, we introduce a corresponding latent variable I< ∈ {0, 1}# that is a 1-of-# binary vector with elements

I<= for each 1 ≤ < ≤ " . This formulation leads us to consider a variational approach, as this methodology

allows us to more readily explore different models and is well-suited to large data sets, as are typically

retrieved from APT experiments.
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Defining a joint distribution ?(., /) = ?(. | /)?(/) and considering the marginal distribution over /

with respect to the mixing coefficients of the GMM we see that

?(I< = 1) = l<, (4.4.2)

where 0 ≤ l< ≤ 1 and
∑"
<=1 l< = 1, in order for the marginal, Equation (4.4.2), to be a valid probability.

Thus we may write

?(/) =
"∏
<=1

lI<< , (4.4.3)

and by the binary construction of I<

?(. | I< = 1) = N(. | `<,Λ<),

which yields the conditional

?(. | /) =
"∏
<=1
N(. | `<,Λ<)I< . (4.4.4)

Recall we have the observed data . = {.1, . . . , ." } and to each .< ∈ . we associate a latent variable

/< ∈ / where / = {I1, . . . , I" }, / ∈ {0, 1}"×# . From these and an expectation-maximization procedure

we may construct an explicit representation of the correspondence matrix. Assuming some prior information

on the latent variables given by ?(I<= = 1) = l<= and for each individual observation .< ∈ . we have an

associated mixing weight l<. Thus, the conditional probability of a matching, given the prior information

8 is

?(/ | l) =
"∏
<=1

#∏
==1

lI<== (4.4.5)

and, suppressing the dependence on - , our likelihood model is

?(., / | `,Λ) =
"∏
<=1

#∏
==1

lI<== N(.< | `=,Λ−1
= )I<= (4.4.6)

where Λ = {Λ8}#8=1 is the set of precision matrices of the Gaussian mixture model, and ` = {`8}#8=1 are the

associated means. Also note that `8 = [�T (-; \)]8 , which follows from our assumption that the reference is

a GMM with components centered at the lattice points, and . is a transformed version of the reference. We

will show in the following section how we may explicitly construct� and an estimate of \ using a variational

Bayesian approach.
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4.5 Variational Posterior

We adopt a Bayesian viewpoint and incorporating the chemical ordering of the atoms in the neighborhood,

denoted by _, we want to sample from

?(/, l, `,Λ, _ | -,. ) ∝ L(. | -, /, `,Λ, _)?(_ |l, /)?(/ |l)?(l)?(` |Λ)?(Λ). (4.5.1)

Comparing Equation (4.5.1) with Equation (2.5.15), we see the pertinent difference is the inclusion here

of the chemical ordering, i.e., the dependence on _ in the above posterior. To define this additional term

accounting for the energy in a given configuration, we denote the set of individual elemental types present

in a material by A = {�, �, . . . }. Then ?(_) ∝ exp{−� (_)}, where � (_(A)) = ∑
�,�∈A F��?�� is the

Helmholtz free energy and A is the set of all atoms present in a neighborhood. In the energy function

� (_(A)), F�� is the interaction potential between atoms � and �, and ?�� denotes the probability of

finding an �� elemental neighbor pair in the neighborhood. In the following derivation, we will simply

write the chemical ordering as _ and suppress the A in the notation unless we want to make the functional

dependence explicit.

4.5.1 Optimal @(/) (Variational E-Step)

We again make the standard variational Bayesian assumption on the form of our approximation, that we seek

a density in the family of all densities Q that factor as @(/, l, `,Λ, _) = @(/)@(l, `,Λ, _). Taking the log

of the optimal distribution @∗ yields

log(@∗(/)) = El,`,Λ,_ [log(?(/, l, `,Λ, _ | -,. ))]

log(@∗(/)) =
"∑
<=1

#∑
==1

I<= log(d<=) + Z,

by incorporating all terms independent of / into Z , and by defining

log(d<=) := E[log(l=)]+
1
2
E[log |Λ= |]−

3

2
log 2c−1

2
E[‖.<−T (-=; \)‖2Λ=]−E[log(?(_ |l, /))] . (4.5.2)

We have previously evaluated a similar expression, Equation (2.5.19), which is identical save for the

last term. This final expectation accounts for the elemental type of each atom in the configuration. Now

the probability of finding an �� elemental pair as first neighbors is ?�� and we write the interaction

potential between them as F��. From the statistical thermodynamic lattice model, i.e., the quasi-chemical
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approximation [2], these terms are related by the expression

?�� =
1
Z exp

{
−F��
:)

}
=

#��∑
�,�∈A

#��
, (4.5.3)

for a given pressure : and temperature ) , andZ is the partition function in the first equality. It is clear that

we can estimate the interaction potential between atoms � and � by the relation

F�� ∝ − log(#��), (4.5.4)

assuming that the atomic compositions of � and � are equal, and we assume that :) = 1 without loss of

generality. This approximation is hindered by the sparsity present in the APT data. We will discuss a method

of successive approximation to refine our approximations of both the interaction potentials and the sufficient

statistics of the GMM governing the atomic environment.

To evaluate this final expectation in Equation (4.5.2) and recalling that I<= = {0, 1}

E[log(?(_(A) |l, /))] = E
[
",#∑
<,==1

I<=

∑
A

log(?(_(A) |l, /))
]
, (4.5.5)

= −E
[
",#∑
<,==1

I<=

∑
A
� (_(A))

]
(4.5.6)

We recognize Equation (4.5.6) as the expectation of the Helmholtz free energy, which is just the average

internal energy of the system, given that the <=-th position in the lattice is occupied and its elemental type

is known. This expectation can be easily evaluated via standard Monte Carlo integration techniques, i.e.,

Equation (2.3.1) or its variants [54].

4.5.2 Optimal @(l, `,Λ, _) (Variational M-Step)

Having defined the factor @(/), we now consider the remaining term @(l, `,Λ, _) in the variational

approximation. Taking the log of the optimized distribution we have

log @∗(l, `,Λ, _) =
#∑
8=1

log(P(`8 ,Λ8)) + E[log(P(_ | /, l))] + log(P(l))+

#∑
8=1

"∑
9=1
E[2 98] log

(
N(. 9 | `8 ,Λ−1

8 )
)
+ const.

(4.5.7)
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Observing that the right-hand side of Equation (4.5.2) decomposes into terms with either l, `, or Λ,

the variational posterior then factors as @(l, `,Λ, _) = @(_ |l)@(l)@(` |Λ)@(Λ). Furthermore, the

expectations involving ` and Λ are composed of a sum over all # components of the reference, which

implies that

@(_, l, `,Λ) = @(_ |l)@(l)
#∏
8=1

@(`8 ,Λ8) (4.5.8)

= @(_ |l)@(l)
#∏
8=1

@(`8 |Λ8)@(Λ8). (4.5.9)

Parameter Update

To update the model parameters in the algorithm, we first compute the sufficient statistics of the observed

data, given the correspondence. These are given by

"8 =

"∑
9=1

2 98 (4.5.10)

. 8 =
1
"8

"∑
9=1

2 98. 9 (4.5.11)

(8 =
1
"8

"∑
9=1

2 98 (. 9 − .̄8) (. 9 − .̄8)) , (4.5.12)

for 1 ≤ 8 ≤ # . By our choice of conjugate prior densities, we find the update equations for each of the model

parameters are given by

@∗(`8 ,Λ8) = N(`8 |<8 , (V8Λ8)−1)W(Λ8 |,8 , a8) (4.5.13)

by the update formulas

V8 = V0 + "8 (4.5.14)

<8 =
1
V8
(V0<0 + "8. 8) (4.5.15)

,−1
8 = ,−1

0 + "8(8 +
V0"8

V0 + "8
(. 8 − <0) (. 8 − <0)) (4.5.16)

a8 = a0 + "8 , (4.5.17)
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where the pertinent parameters for the priors are as defined in Equations (2.5.12)–(2.5.14). Each of these

update equations depends on the correspondence matrix�. Recalling Equation (4.5.2), we must compute the

normalizing constant for the d<=, and the individual terms are given below in Equations (4.5.18)–(4.5.20)

and Equation (4.5.6).

E[‖.< − T (-=; \)‖2Λ=] =
3

V=
+ a= (.< − -=)),= (.< − -=) (4.5.18)

E[log |Λ= |] =
3∑
8=1

(
a= + 1 − 8

2

)
+ 3 log(2) + log |,= | (4.5.19)

E[log(l=)] =k(U=) − k(Û), (4.5.20)

where k(·) is the digamma function, Û =
∑
:=1 U: , and Equations (4.5.19)–(4.5.20) follow from properties

of the Wishart and Dirichlet distributions respectively [53, 59].

By construction of the variational posterior and priors distributions as given in Equations (4.4.3)–(4.4.4),

the optimization involves iterating between finding the optimal correspondence matrix and evaluating the

variational distribution over themodel parameters. These iterations are equivalent to themaximum likelihood

expectation-maximization (EM) algorithm [52, 55, 54] targeting our posterior Equation (4.5.1). We are now

ready to present our variational Bayesian registration algorithm.

Algorithm 4.2 Variational Atomic Sequencing

1: Set initial values: ,0 = diag(1, 1, 5), V0 = 0.1, [0 =
1
3
, <0 = -

2: for all : > 0 do
3: E-Step: Compute correspondence matrix � (:)
4: 2<= =

d<=∑#
8=1 d<8

, where log d<= is given in eq. (4.5.2).
5: M-Step:
6: Compute #̂ = 1)� (:)1, `- = 1

#̂
-) (� (:) )) 1, `. = 1

#̂
.)� (:)1

7: -̂ = - − 1`- , .̂ = . − 1`.
8: Update means {< (:)

8
}"
8=1

9: Solve � = (.̂)� (:) -̂) ( -̂) diag(1) · � (:) ) -̂))−1

10: Set < (:)
8

= T −1(\8) = -8�)

11: Update Precisions {, (:)
8
}"
8=1 per eq. (4.5.16)

12: Update _ via simulated annealing to find argmin_ � (_(A))
13: Update model parameters and sufficient statistics per eqs. (4.5.10)–(4.5.17)
14: Compute 3 (:) := 1

" (:)
∑" (:)
9=1 ‖T −1(� (:)). ; \) 9 − -8 ( 9) ‖, where 8( 9) denotes that -8 matches . 9

15: if 3 (:−1) − 3 (:) < n then Break
16: end if
17: end for
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In line 3 of our algorithm 4.2, we compute the correspondence matrix, given the current parameter

estimates, and the parameters are updated in the M-step. We try and find the best affine transformation to fit

the data, but if such a transformation is not invertible, i.e., rank(�) < 3, where*�+� = SVD(�), then we

instead find the best rigid rotation and translation. These parameters have an optimal closed-form solution

given by [106] in the case where - and. have the same number of points. If they do not, as is often the cases

we consider with APT data, we use the correspondence matrix computed in the previous E-step to determine

the point matching. Lastly, to find the lowest energy configuration in line 12, we employ the simulated

annealing methodology of [107, 54], which is globally convergent under certain assumptions [108].

4.5.3 Convergence

While in general, as discussed in Section 2.5.1, checking for convergence involves maximizing a lower

bound on the marginal likelihood, which is equivalent to minimizing the KL-divergence between our

approximation and the target posterior. In our setting however, we can directly check for convergence by

noting a few important facts. First, if one wants to measure the KL-divergence between two Gaussian

densities, one only needs to consider the first two moments [109, 110]. In fact, [109] gives closed-from

updates to the mean and variance to find the optimal parameters to minimize the KL-divergence. We can use

this equivalence of minimizing the divergence to a moment matching problem to find the optimal parameters

for our minimization process. However in the case of GMMs, this moment matching is not applicable, and the

KL-divergence does not admit an analytical solution [111]. Although our model is a GMM, we can bypass

lack of a closed-form solution by noting that the correspondence matrix� assigns each observed density to a

corresponding one in the reference. Thus we may equivalently match moments between associated densities

as a test of convergence. This does not alleviate all issues however, while the means of the GMM are the

points themselves, the covariance matrices remain unknown, and the closed form solutions for the optimal

values remain intractable.

We will now prove a convergence theorem for our method.

Theorem 4.7. The variational point-set registration algorithm, Algorithm 4.2, converges montonically, as

measured by the Kullback-Leiber divergence, to a global minimum.

Proof. Given the reference {-8}#8=1 = -, -8 ∈ R3 and observation {.8}"8=1 = .,.8 ∈ R
3 , " ≤ # GMMs,

compute an initial correspondence matrix � (0) ∈ {0, 1}"×# . Denote -8 ( 9) as the point in - matched to

. 9 ∈ . . Write {`8}#8=1, and {Λ8}
#
8=1 as the set of means and variances of the GMM for the reference. Similarly
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write {< (:)
8
}"
8=1, and {(

(:)
8
}"
8=1 as the set of estimated means and variances for the observed GMM at iteration

: . Define the error between approximated and ground-truth moments at iteration : as

4 (:) := max


1
" (:)

" (:)∑
9=1
‖< (:)

9
− `8 ( 9) ‖,

1
" (:)

" (:)∑
9=1
‖, (:)

9
− Λ8 ( 9) ‖

 ,
where " (:) = 1) · � (:) · 1. Lastly, define the mean-square error of the transformation as

3 (:) :=
1

" (:)

" (:)∑
9=1
‖ [T −1(� (:) )). ; \ (:) ] 9 − -8 ( 9) ‖.

Now it is the case that 3 (:) ≤ 4 (:) ,∀: . To see this, suppose that

4 (:) =
1

" (:+1)

" (:+1)∑
9=1
‖, (:)

9
− Λ8 ( 9) ‖

≥ 1
" (:)

" (:)∑
9=1
‖< (:)

9
− `8 ( 9) ‖

= 3 (:) ,

where the last line follows from the assumption that - is a GMM with components at each -8 ∈ - . If it is

the case that 4 (:) = 1
" (:)

∑" (:)
9=1 ‖<

(:)
9
− `8 ( 9) ‖, then equality holds.

We claim that 3 (:+1) ≤ 4 (:+1) ≤ 3 (:) ≤ 4 (:) . At each iteration the correspondence matrix � and

transformation parameters are updated, each yielding the conditional distribution for the latent variables,

in the E-step, or the maximum likelihood estimate, in the M-step. Now let < (:+1) = ) (-; \:+1) and if

� (:+1) = � (:) , then 3 (:+1) = 3 (:) , as the transformation parameters \ are maximized at each M-step of

algorithm. We also obtain an update < (:+1) , and it then follows that

‖`8 ( 9) − < (:+1)9
‖ ≤ ‖`8 ( 9) − < (:)9 ‖ ∀ 9 (4.5.21)

and that

‖Λ8 ( 9) −, (:+1)9
‖ ≤ ‖Λ8 ( 9) −, (:)9 ‖ ∀ 9 (4.5.22)

as the algorithmmonotonically decreases the KL-divergence, which is equivalent to moment matching. Now

it is clear that if 4 (:+1) is the difference between means, that 4 (:+1) ≤ 3 (:) . Consider the case where 4 (:+1) is

the difference between precision matrices. Then since 4 (:+1) ≤ 4 (:) = 3 (:) , the error sequences must obey
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the desired inequality

0 ≤ 3 (:+1) ≤ 4 (:+1) ≤ 3 (:) ≤ 4 (:) (4.5.23)

for all iterations : . The lower bound occurs since norms are positive semi-definite operators, and the

algorithm converges monotonically to the global minimum. �

Iterating through our methodology not only yields the lowest energy configuration of the observed

atoms, and the best alignment between the observation and reference point sets, but we can extract additional

information as well. If we recall Equation (4.5.3)

?�� =
1
Z exp

{
−F��
:)

}
=

#��∑
�,�∈A

#��
,

from this relationship we can extract an approximation of the interaction potential as well. That is,

F�� ∝ − log(#��), (4.5.24)

assuming elements � and � have the same compositional proportion. Now this potential F�� is a global

parameter governing the material, and due to the sparsity present in the data, we cannot find an accurate

value by examining a single configuration. Instead, we compute a single iteration of Algorithm 4.2, and

find the average pair-wise composition of each neighborhood. We then refine this average composition in

subsequent iterations for computing the lowest energy configuration of each observed point set.

4.5.4 Estimating Interaction Potentials

In addition to inferring the occupied positions in the lattice and the lattice spacing, we can gain additional

information about the material in question by considering a quasi-chemical approximation for a lattice model.

Recalling Equation (4.5.4), we see that the neighborhood composition is proportional to the negative log of

the pairwise interaction between atoms present in a neighborhood. The interaction potential F�� is a global

parameter that governs how atoms in the entire HEA sample interact, and is directly related to the unknown

chemical ordering. This estimate is affected by the sparsity present in the data, and by taking a sufficiently

large sample, we may recover a sufficiently accurate estimate of this global parameter. To approximate these

parameters we employ an iterative approximation method. To be concrete, we iterate through the entire

dataset, computing one iteration of Algorithm 4.2 for each atomic neighborhood. We then find the average

number of pairs in each neighborhood, and from this average, we estimate the interaction potentials according
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N(0, 0) N (0, 0.252) N (0, 12)

0%

33%

67%

Table 4.2: �0 analysis of varying levels of sparsity and Gaussian noise to inform our choice of radii in the
atomic neighborhoods we consider.

to Equation (4.5.4). Continuing in the same fashion, we loop over the entire data set to find the composition

and neighbor types present in each configuration. We then update average composition of each neighborhood

and use this empirical mean to estimate the unknown potentials. We will iterate this local-to-global process

until convergence of both the interaction potentials and the labeled registration process.

4.6 Variational Atomic Sequencing Numerics

In this section we will present the results of numerical experiments using our methodology for synthetic APT

data. Primarily, to verify the correctness of our method, observe the neighbor analysis in Figure 4.11.

4.6.1 Atomic Neighborhood Volume

Before proceeding with results from our algorithm, there is a parameter that impacts all aspects of our

variational method that requires more discussion. We choose all points within some radius for the atomic

neighborhoods that we map onto a reference lattice and find the chemical ordering. This parameter did
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not impact the results in previous sections since we did not consider elemental type of the atoms, only

their geometric coordinates. Indeed, we proposed a Bayesian formulation of the point-set registration

problem Chapter 3 and developed a topologically-informed classification algorithm Section 4.1, neither of

which considered elemental type. In both of these settings, the volume of these atomic neighborhoods was

selected by the ‘Goldilocks’ criteria: to be large enough to yield sufficient information about the material, but

not so large as to be computationally inefficient. In the present section, we would like these neighborhoods

to capture first and second neighbor relationships, but not more. Recalling the fact that the neighborhood’s

volume ha a direct relationship on the interaction potential estimate Equation (4.5.3). Recall that this

relationship from statistical mechanics implies

F�� ∝ − log(#��). (4.6.1)

From the above relation, we can clearly see how the interaction potential between two atoms of type � and

� is a function of the number of atoms in a neighborhood. What we can see in the barcode plots of the �0

features Table 4.2. The longest barcode at the top of each plot may be safely ignored, as it persists over all

length scales and describes the connectedness of the complete simplicial complex, i.e., the complex formed

when all data points are connected.

Recalling the definitions and notions of TDA from Section 2.2, the �0 barcodes yield the connectivity

of the 0-dim features, the connected components, which are the atoms themselves. This multiscale analysis

provides a topological signature of the material which encodes the homology of the neighborhood for all

n-balls created by the Vietoris-Rips complex over all values of n . As the radii of the balls increases and the

balls intersect, this death time is noted and the associated barcode ceases to increase. Hence, wemay quantify

connections between the atoms, and begin to understand neighbor relationships. The plots in Table 4.2 show

the connectivity of the datasets, and from which we may see first and second neighbor relationships. These

are clearly seen in the first column, which has no noise added to the atoms. In the plots with 33% and 67%

sparsity, we can clearly see the first, second, and third neighbor distances between the atoms in a material.

These relationships are obfuscated by the noise present in the other columns where we have added some

Gaussian noise to the points. Notice is that the lattice parameter, 2.4Å, is revealed by looking at the second

neighbor distances in the first column plots with either 33% or 67% sparsity. Also, note that the distances

between points increases as the noise increases for a fixed sparsity. This topological perspective guides our

selection of radii of the atomic neighborhoods that we map onto the reference lattice. If we choose too large
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Figure 4.11: Variational inference applied to synthetic APT data of a binary NiAl alloy. The process is able
to recover the chemical ordering, i.e., the aluminium center has only nickel first neighbors and aluminium
second neighbors, and vise versa when nickel is the center atom.

a volume, we will be unable to map, in a one-to-one fashion, onto the reference, and conversely, if there are

too few, we will not have enough information for the interaction potential calculation.

4.6.2 Sensitivity Analysis

These results for the sensitivity analysis were obtained from our method using chemically ordered complete,

noiseless data. By chemically ordered we mean that each neighborhood with aluminium at its center has

only nickel first neighbors and aluminium second neighbors, see Figure 4.12 for a visual representation. It

follows then that the neighbor relationships are reversed if nickel is at the center of the neighborhood. This

relationship is perfectly preserved in the case of an aluminium or nickel center, see Figure 4.11.

We now consider another asymptotic case, one in which elemental ordering is not present. This data

was originally ordered BCC, as in Figure 4.11, but importantly, we set all interaction potentials to zero,

for the entire simulation, indicating no preference for either element between neighbor shells. Upon first

glance, one might expect the probabilities all to equal 0.5 in Figure 4.13. This is reasonable, if the number
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Figure 4.12: Example of a chemically ordered BCC lattice used in our sensitivity analysis, where color
denotes elemental type. The first neighbors of the center atom are exclusively the other type, whereas the
second neighbors are of the same species.

Figure 4.13: Variational inference applied to synthetic APT data of a binary NiAl alloy, without preferential
ordering. As expected, the process is not able to recover the chemical ordering as in Figure 4.11, and the
elemental distribution is random. The total number of atoms, not counting the center, in the aluminium
neighborhoods is 1551: 615 aluminium and 936 nickel. Similarly the nickel neighborhoods contained 1564
atoms, 935 were aluminium a and 629 were nickel.
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N(0, 0) N (0, 0.252) N (0, 12)

0%

33%

67%

Table 4.3: Neighbor analysis with varying levels of sparsity and Gaussian noise.

of atoms in the neighborhood are equal. Since the data is initially ordered, we must consider the atomic

proportions in each neighborhood. Considering only the first and second neighbors, of which there are 8

and 6 respectively, per BCC unit cell, we immediately see that if we have an aluminium atom at the center,

there are then 8 nickel atoms and 6 additional aluminium in the neighborhood. In our process, we do not

perturb the center atom in each neighborhood, and so there are 14 atoms to vary. Consequently, if we assume

perfect mixing and no elemental preference, there is a 4/7 ≈ 58% chance of finding an atom of the opposite

type, opposite of the center atom, at either the first or second neighbor positions and a 3/7 ≈ 42% chance of

finding a like type as either a first or second neighbor. Our empirical results agree with these percentages.

We found that the aluminium neighborhoods were approximately 40% aluminium and 60% nickel, and the

nickel neighborhoods we considered are approximately 59% aluminium and 41% nickel. Comparing these

compositional proportions with the histograms in Figure 4.13, we see that our method does not impose

chemical ordering if none exists.

Proceeding now with synthetic data more representative of that retrieved from an APT experiment, we

see in the second and third columns of Table 4.3 that the process is in fact able to infer the chemical ordering

from the noisy and sparse dataset. Two important issues require comment at this juncture. Primarily, this

result is not by chance, as multiple runs with the same synthetic data yielded a similar plot, showing evidence
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Figure 4.14: Extracted interaction potentials from our method applied to synthetic data with 33% missing
and N(0, 0.252) added noise.

.

of a chemically ordered alloy. Secondly, if we compare Figure 4.11 with Figure 4.13, it is immediately

apparent that the result in Figure 4.13 yields an incorrect result. This plot was generated from the same

synthetic data, but in our algorithm, we did not account for elemental type. To be explicit, we omitted the

final expectation in Equation (4.5.1) and Line 12 of Algorithm 4.2.

In Figure 4.15 we see a convergence plot detailing the mean-squared error, mean-squared difference

between precision matrices, and energy calculation. We observe for the mean difference between precision

Mean Variance

Lattice parameter 3.041262 0.357354
Initial MSE 1.067046 0.029515
Final MSE 0.998185 0.023943
Error reduction 0.068861 0.017893

Table 4.4: Error Statistics, synthetic APT data with 33% missing and N(0, 0.252) added noise, for 250
neighborhoods. The true lattice parameter is 2.8.
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Figure 4.15: Variational inference applied to synthetic data with 33% missing andN(0, 0.252) added noise.

matrices and mean-squared error, that we have a decreasing sequence, as predicted by Section 4.5.3.

Furthermore, the energy is decreasing as well, as expected. A plot of the estimated interaction potentials is

shown in Figure 4.14. Summary statistics of our methodology are presented in Table 4.4. as applied to 250

atomic neighborhoods that compose a subset of synthetic data with 33%missing and haveN(0, 0.252) added

to each point. We can clearly see here the average decrease in mean-squared error and that the methodology

inferred the lattice parameter to less than one standard deviation.

4.6.3 Real APT Data

We apply our variational Bayesian methodology both with and without consideration of chemical ordering

on two different datasets and comment on the results.

If we first apply the variational registration methodology, as described in Section 2.5, without

consideration of chemical ordering to the 100,000 atomic neighborhoods extracted from themulti-component

alloy Al1.3CoCrCuFeNi. We chose this alloy as it has been well-characterized in previous studies [1], and has

some interesting features that we seek to infer from the data. The results of our variational registration and

corresponding neighbor analysis is shown in Figure 4.16. We see that the bulk stoichiometry is preserved
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Mean Variance

Lattice parameter 3.682982 0.4935562
Initial MSE 1.59352 0.114241
Final MSE 0.910836 0.290026
Error reduction 0.682685 0.353127

Table 4.5: Error Statistics, real APT data.

and some larger-scale trends can be seen. As previously analyzed in [1], the copper has almost entirely

accumulated in an FCC phase, we extracted the BCC phase for this study, and we see the presence of a

chromium-iron preference. The previous work [1] corroborates these findings, but our methodology is unable

to see finer details of the chemical arrangements due to the noise and sparsity of the data. We find that the

lattice parameter is 3.17Å with a standard deviation of 0.2565, which has not been previously reported.

Lastly, we applied our method, including elemental type, to APT data that is a chemically ordered Ni3Al

FCC alloy. In choosing the radii for our atomic neighborhood, we again considered the connectivity of the

�0 barcodes, shown in Figure 4.17. The barcode plot here looks very similar to the synthetic data case of

67% missing and N(0, 1) added noise, so we chose a similar radius as in the synthetic data test. The true

lattice parameter for this alloy is 3.58Å [112].

The Ni3Al alloy analyzed in Figure 4.18 has no aluminium first neighbors with aluminium at the center,

and should have 33% aluminium first neighbors with nickel at the center.

95



Figure 4.16: Neighbor analysis of the BCC phases in the multi-component alloy Al1.3CoCrCuFeNi[1]
considering only the geometry of the two point sets.
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Figure 4.17: �0 homology of real APT data.

Figure 4.18: Variational inference applied to real APT data of aNi3Al alloy that exhibits preferential ordering.
The method is unable to recover the ordering due to the noise and sparsity of the data.
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Chapter 5

Conclusions

In this final chapter, we give a summary of the previous chapters to place it in context of our motivating

problem. We conclude and present directions for further research.

5.1 Chapter Summaries

5.1.1 Introduction

In Chapter 1, we presented our motivation for developing the methodologies presented herein. Our goal is to

discover the nanoscale atomic structure of a disordered material given a noisy and sparse representation, such

as is typically collected via atomic probe tomography experiments. This process yields geometric coordinates

in R3 in addition to elemental type for each atom registered by the detector. From these datasets large scale

trends, such as areas of elemental accumulation may be seen. However, in order for materials scientists to

accurately make structure-property predictions, further investigation and analysis are required. Specifically,

we seek to infer the presence, or absence, of any chemical ordering, the crystal lattice type, and its spacing.

From such fundamental information about a material, materials scientists may use these experimentally-

validated structures to develop the unknown interaction potentials for multi-component systems as input to

molecular dynamics simulations, which in turn lead to unique insight into the functional mechanisms in

these materials.

Chapter 2 gives general mathematical details about the methods we used in our analysis of the APT data.

We discuss the fundamentals of MCMC sampling and variational Bayesian methods for Gaussian mixture

models. We give the necessary definitions from topological data analysis, and background material for the

classification scheme used in our materials fingerprinting methodology. As presented, these definitions and
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notions are somewhat general, and give only the necessary background for our specific methodologies

presented in subsequent chapters. The interested reader is referred to the references provided in the

appropriate sections for further investigation.

5.1.2 Known Reference

Our statistical methodology for the case of a known reference is presented in Chapter 3, where our goal is to

find the optimal mapping between noisy observations from an APT experiment and a known reference lattice

structure. In this section, we derive a Bayesian formulation of the classical point set registration problem,

and detail a Markov chain Monte Carlo (MCMC) sampling scheme to find the optimal transformation, as

measured by the mean-squared distance, mapping the reference onto the observed points. We employed

a gradient-based MCMC sampling scheme to efficiently locate the mode of our target distribution, which

by construction, is the global minimizer of our objective function. We are able to recover a good estimate

of the correspondence and spatial alignment between synthetic materials datasets despite missing data and

added noise. As a continuation of this work, we could extend the Bayesian framework presented in section

to incorporate the case of an unknown reference. In such a setting, we would seek not only the correct spatial

alignment and correspondence, but the reference point set as well. The efficiency of our algorithm could be

improved through a tempering scheme, allowing for easier transitions between modes, or an adaptive HMC

scheme, where the chain learns about the sample space in order to make more efficient moves.

In the formulation presented in Chapter 3, we did not consider elemental type, nor did we explicitly

construct the correspondence matrix between the observed and reference point sets. Rather, it was inferred

through the point set registration process. We provided ideas for how it may be constructed, via an assignment

algorithm or a closest point process, if an explicit form is needed for further analysis.

5.1.3 Unknown Reference

The Markov chain Monte Carlo based approach of Chapter 3 requires a priori knowledge of the reference

structure. While such information may be gained via X-ray diffraction or neutron scattering experiments and

their subsequent analysis, the datasets provided by APT contain more information than an XRD experiment,

that may be leveraged into further insights. From these information-rich materials descriptors that we may

construct a richer picture of the nanoscale structure of a material. We explored the idea of employing the

geometry of a crystal lattice to create a topologically-informed machine learning approach to infer the true

crystal lattice structure directly from the APT data.
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We have developed an automated methodology for classifying the crystal structure of the HEA APT

data with near-perfect accuracy. Starting from a collection of atomic neighborhoods generated by an

APT experiment, from which extract atomic neighborhoods, i.e., atoms within a fixed volume forming a

point cloud, and apply the machinery of topological data analysis to these point clouds. TDA extracts the

fundamental topology of the structure and record the information in a persistence diagram. These diagrams

succinctly encode the essential topology of an atomic neighborhood over different length scales in different

dimensions. It is by computing the persistent homology of the data that we are able to see through the

noise and fill in the sparsity to see where these lattice structures are connected and where they are not.

Basing our materials fingerprint on topological features such as connected components, holes, and voids,

in conjunction with the number of atoms in each neighborhood, we represent the essential topological

and numeric information necessary to differentiate between the lattice structures considered here, with the

appropriate choice of metric.

Our machine learning methodology leverages the fundamental differences between the primary building

blocks of high-entropy alloys: the topology and cardinality of their unit cells. We use a distance on the

space of persistence diagrams that incorporates both of these elements, specifically the 32? metric. We

proved a stability result for this metric, implying continuity of the Vietoris-Rips complex, which describes

the mapping from point cloud to persistence diagram. Our materials fingerprinting methodology uses the

mean and variance of the 32? distance between persistence diagrams derived from both body-centered and

face-centered cubic lattices as to create features for a classification algorithm input for a machine learning

algorithm. This distance not only measures differences in the diagrams but accounts for different numbers

of points between diagrams being compared. This latter point is salient, as BCC and FCC unit cells each

contain a different number of atoms, and this distinction must be taken into account. Using this distance,

we are able to classify persistence diagrams as being created from either BCC or FCC lattice structures with

better than 93% accuracy, considering both synthetic and real APT data.

Lastly, in Section 4.4, we seek to infer not only the mapping, including any scaling, of the noisy APT data

onto the reference lattice, but the correspondence between points as well. Into this correspondence matrix

we include the elemental type of each atom, information we have until this point not used. We construct the

correspondence between the point sets by introducing a latent variable into our model, then take the marginal

over this variable to recover the correspondence between the point sets. From this labeled correspondence

matrix, we seek to infer the presence of any short-range chemical ordering within the constituent elements

of the alloy.
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Adopting a Bayesian perspective, we view the inference problem as one of minimizing the relative

entropy between two Gaussian mixture models, the reference and the observation, the latter of which we

assume to be a transformed version of the reference. The restriction imposed in Chapter 3 that we assume

the transformation to be a rigid rotation and translation is relaxed to allow for affine transformations, thus

allowing for more flexibility to find the best mapping, in the mean-squared error sense, between the point

sets. We construct a novel algorithm for this inference problem, and provide the first proof of convergence to

our knowledge for this setting of the point set registration algorithm. Additionally, we construct an explicit

representation of the correspondence matrix between the reference and observation that accounts for the

elemental types present in the data.

Through this construction, we define a distribution over the lattice scaling between point sets. This

distribution is pertinent, as HEAs do not enjoy a uniform lattice spacing due to the distribution of atoms

throughout the material, thus giving rise to the deformed lattice structure. Lastly, we are able to self-

consistently identify the ordering of atoms, despite the noisy and sparsity present in the data. Identification

of such ordering leads directly to pairwise interaction potentials from the quasi-chemical lattice model in

statistical thermodynamics. To our knowledge, no such previous approximations have been reported for

HEAs.

5.2 Conclusions

We have developed novel statistical methodologies and implementations to extract fundamental information

from APT data that had not been previously reported. Relying on the methodologies presented herein, one

may infer the crystal structure, lattice parameter, first and second neighbors of an atomic neighborhood, and

identify short-range ordering of the component elements in a material. Being able to infer such fundamental

information about a material provides materials science researchers with an invaluable tool to bridge the gap

between theory and experiment. While our primary object of study is APT data of HEAs, our methodologies

are not specific to these materials. They may be applied to any material open to characterization via APT,

such as entropy-stabilized oxides [19].

Our methodology not only finds the mapping from the noisy and sparse APT data onto the reference

lattice, it yields a first approximation of the interaction potentials between the multiple elemental types

present in HEAs. Presently, the bottleneck for understanding materials with nano-scale engineered disorder

is the lack of appropriate interaction potentials. Consequently, researchers are unable to perform relevant

modeling of these materials, and the property-structure relationships present in these materials remain
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unknown. While the promise of HEAs remains great for society, we have yet to unlock these relationships

and thus cannot tailor an alloy to any specific application. Furthermore, the methodologies presented herein

may serve as a guide to researchers working to improve the resolution of the atom probe tomography

technique. Our sensitivity analysis yields quantitative bounds on the necessary resolution to quantify first

and second neighbor relationships within a material.

Outside the field of materials science, our Bayesian point set methodology may be applied to computer

vision problems arising in medical imaging and autonomous driving (LiDAR), to problems arising in

chemistry, such as molecule representation, which may lead to new drug discoveries, or in bioinformatics

for protein visualization.

5.3 Future Research

The primary area of future work with our methodologies is to improve the inference of short-range ordering

within the variational Bayesian registration methodology. To model the chemical ordering, we employ the

quasi-chemical lattice model. More sophisticated models for the interaction potentials exist, and should be

explored, such as the embedded-atom type potentials, which are commonly used to describe metallic systems

composed of at most, three different atomic types [113, 114], whereas the HEA systems we consider contain

at least five different atomic types.

The quasi-chemical model employed herein accounts for pairwise interactions between all of the atoms in

a neighborhood, and is a reasonable first approximation. An accurate estimation of the interaction potentials

is dependent on a representative number of atoms in the configurations. In the real APT data though, we

have seen configurations that are exclusively composed of a single atomic type. Note however that we did not

however consider any single element alloy in our studies. In order to construct the approximate interaction

potentials, we should employ some outlier detection and exclude such neighborhoods from the potential

calculations.

The energy term in our Bayesian formulation is the Helmholtz free energy, � = *−)(,with temperature

) , entropy (, and enthalpy *. We compute this term at at ) = 0 K, and consequently do not account for the

entropic term, but only consider the enthalpy. Recall that these alloys are designed with some configurational

entropy, which influences the mixing of the component elements. Thus it is reasonable that we should

account for the entropic term in some fashion. Finding the correct temperature to properly weigh the energy

and mixing terms merits further investigation, and may help to refine our model, and potentially leading to

a more robust algorithmic process against the noise and sparsity present.
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The variational Bayesian framework of Section 4.4 yields a predictive density for new data and could

be used to impute the missing atoms and their position within the lattice. Indeed, by adopting our Bayesian

approach, we can construct the predictive posterior density for new data .̂ and its associated latent variable

Î by

?(.̂ |. ) =
∑̂
I

∑
_

∫
?(.̂ | Î, `,Λ, _)?(_ |l, Î)?( Î |l)?(l)?(l, `,Λ, _ |. )dld`dΛ.

By employing our approximation @ to the true posterior, we obtain

?(.̂ |. ) =
#∑
8=1

∑
_

∫
l=N(.̂ | `=,Λ−1

= )@(l)@(`=,Λ=)?(_ |l=, Î)dld`=dΛ=.

Without the energy term, the above distribution has a closed-form expression which yields a mixture of

Student’s C-distributions [53, 45]. Including the energetic contribution, it is not clear that an analytic solution

exists, and we would have to estimate the quantity via MCMC methods.

Our methodology may also be used to give direction to APT instrument scientists actively working to

improve the technique. Indeed, by performing a sensitivity analysis by varying either the noise present or

sparsity of the data, we may readily quantify the error present in the resulting data from an APT experiment

and say to what level the resolution needs to be increased to obtain a specific level of accuracy in our

registration process.

Lastly, this work yields an unprecedented atomic-level view of HEAs for material science researchers. By

providing a probabilistic solution, we may provide to materials science researchers a definitive distribution

of configurations from APT experiments that quantify both spatial and compositional distributions of the

data. By providing the empirical probability of any state, compositional or spatial, in an alloy, materials

scientists can use these probabilites as input to an optimization routine, such as GARFfield [115], to generate

interaction potentials. From these interaction potentials, materials science researchers may run molecular

dynamics simulations, thus accelerating the materials discovery process for these transformative, complex

materials. The methodologies described herein bring their goal of understanding HEAs at the atomic level

within reach, furthering their understanding, and making structure-property relationships within our grasp.
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