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ABSTRACT 
 

Knowledge of spatiotemporal disparities in myocardial infarction (MI) risk and the 
determinants of those disparities is critical for guiding health planning and resource 
allocation. Therefore, the aims of this study were to: (i) investigate the spatial distribution 
and clusters of MI hospitalization (MIHosp) and MI mortality (MIMort) risks in Florida over 
time to identify communities with consistently high MI burdens, (ii) assess temporal trends 
in geographic disparities in MIHosp and MIMort risks, and (iii) identify predictors of 
MIHosp risks. 

Retrospective MIHosp and MIMort data for Florida for 2005-2014 and 2000-2014 
periods, respectively, were used. Kulldorff’s circular and Tango’s flexible spatial scan 
statistics were used to identify spatial clusters, and counties with persistently high or low 
MIHosp and MIMort risks were identified. Global and local negative binomial models were 
used to identify predictors of MIHosp risks. 

MIHosp and MIMort risks declined by 15%-20% and 48% respectively, but there 
were substantial disparities in space and over time. Persistent clustering of high MIHosp 
risks occurred in the Big Bend area, South Central, and Southeast Florida. Persistent 
clustering of low risks occurred in Southeast and Southwest Florida. Clustering of MIMort 
risks occurred in the same areas as MIHosp risks, but there was no clustering of high 
MIMort risks in South Central Florida. The risks declined overall in all clusters over the 
study period. However, they decreased more rapidly in high-risk clusters during the first 
four to eight years of study, leading to reduced disparities in the short term. Nevertheless, 
both MIHosp and MIMort risks for high-risk clusters lagged behind those for low-risk 
clusters by at least a decade. Significant predictors of MIHosp risks included race, marital 
status, education level, rural residence and lack of health insurance. The impacts of 
education level and lack of health insurance varied geographically, with the strongest 
associations in southern Florida.  

In conclusion, MI interventions need to target high-risk clusters to reduce the MI 
burden and improve population health in Florida. Moreover, the interventions need to 
consider social contexts, allocating resources based on empirical evidence from global 
and local models to maximize their efficiency and effectiveness.  
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CHAPTER 1 
INTRODUCTION  
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1.1 Background and Justification  
  

Cardiovascular disease (CVD) is the leading cause of morbidity and preventable 
premature deaths in the US, accounting for more hospital discharges than any other 
disease category each year, and one in every four fatalities in the country [1,2]. Acute 
myocardial infarction (MI), or heart attack, contributes significantly to this burden, with an 
estimated annual incidence of 550,000 new attacks and 200,000 recurrent attacks, 15% 
of which end in a fatality. An additional 160,000 silent MIs occur each year [3]. 
Additionally, MI is an economically burdensome disease, with annual direct and indirect 
costs associated with MI mortality and morbidity estimated at $177.1 billion [4]. Moreover, 
after three decades of steady decline [5], the countervailing trends in major MI risk factors 
such as obesity, hypertension, type 2 diabetes [6], and population aging [7,8] are 
expected to exacerbate the MI burden, which makes MI prevention a continuing priority 
[6,9]. 

Since MI is largely preventable, there are concerted efforts to reduce its health and 
economic impacts through a combination of improved prevention of modifiable risk 
factors, and treatment of established risk factors at the individual level. Recent studies of 
temporal trends of MI morbidity [10-20] and mortality [21,22] suggest that interventions 
targeted to individual-level risk factors may contribute to substantial reductions in the 
burden of MI and other CVD with similar risk factors as MI [10,23,24]. However, the MI 
burden remains a major public health challenge in states in the Southeastern US 
compared to other parts of the country [25,26]. Additionally, there are substantial and 
persistent spatiotemporal disparities in the distribution of CVD risk factors [26-31] and 
primary and secondary preventive strategies [32-37] that may lead to widening 
geographic disparities in cardiovascular health over time, despite overall reductions in the 
MI burden in all US regions [26,38]. In spite of this, only a few ecologic studies have 
comprehensively examined changes in geographic disparities in CVD events in the US 
over time simultaneously [39-46]. Moreover, these studies disregard cases with a 
secondary MI discharge diagnosis; thus, they may overstate rates of MI declines, thereby 
underestimating the full MI burden [47]. Thus, additional studies are needed to enhance 
our knowledge of the extent of geographic disparities, including hot spots of MI morbidity 
and mortality risks, and the temporal changes in those disparities. This may aid with 
identification of populations that may have persistently higher MI burdens, and inform 
planning, implementation, and evaluation of interventions designed to eliminate health 
disparities and improve the health of all groups, the two overarching goals of the Healthy 
People 2020 national public health agenda [4].  

Individual-level, potentially-modifiable, biological risk factors, such as 
hypertension, high cholesterol levels, obesity, and diabetes mellitus and behavioral risk 
factors, such as diet, exercise, smoking, and alcohol intake [48], account for more than 
90% of the population-attributable risk for MI [49]. Thus, intervention strategies for CVD 
prevention have traditionally focused primarily on these risk factors, often without regard 
for the social environment/contexts in which these risk factors developed [50]. While this 
prevention strategy focused on downstream MI determinants may have contributed to 
substantial reductions in the burden of MI and other CVD [10,23,24], the persistence of 
high MI burden and its risk factors in the Southeastern US [25,26], coupled with the 
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projected increase by 2030 [6,9] indicate the need for an understanding of the social and 
economic factors that promote the development of risk factors determining access to 
preventive and control strategies. 

Overwhelming evidence in the literature indicates that the prevalence of 
population-level factors known as socioeconomic determinants of health (SDoH) can 
affect the types of exposures and/or access to healthcare, and hence the health of 
individuals and populations [51]. These include factors such as place of residence; 
demographic factors such as age, gender, and race; and socioeconomic factors such as 
marital status, education attainment level, income/poverty level, federal poverty level, 
home ownership, and unemployment and health insurance rates [2,15,18,44,51-66], 
among other factors. According to Bookse et al. [67], SDoH are responsible for shaping 
40% of the health of a population [67], and they also influence the effectiveness of 
individually-targeted interventions, specifically as it applies to the initiation of behavior 
change and adherence [50,68]. Thus, SDoH are largely responsible for pervasive 
geographic disparities in CVD morbidity and mortality and related risk factors [26,69]. 
Accordingly, knowledge of, and intervening on, SDoH may hold the greatest prospects 
for reducing health inequalities and improving cardiovascular health of all populations at 
the lowest cost [51]. 

Relationships between health outcomes and SDoH are traditionally investigated 
using aspatial global models. These models implicitly assume constant effects of 
explanatory variables across an entire study area. As such, they estimate a single 
coefficient for each explanatory variable averaged over the entire study area. However, 
given the inequities in geographic distribution of factors influencing MI risks [26-30,32-
37], associations between MI outcomes and SDoH factors would not be realistically 
reflected by global models. Rather, the influence of SDoH are more likely to vary by 
geographic location, with some factors being more important determinants at certain 
locations and less important at other locations [70]. Thus, neglecting the influence of 
geographic differences in impacts of SDoH factors can lead to inaccurate generalizations. 
On the other hand, identifying the most important MI determinants for different geographic 
areas may aid in the development of comprehensive, evidence-driven, location-specific, 
public health strategies, which is critical for efficient allocation of scarce resources geared 
towards decreasing the individual, societal, and economic burden of CVD. 
 

1.2 Study Objectives 
 
1.2.1 Overall Objective 
 

The overall goal of this study was to obtain a better understanding of geographic 
and sociodemographic factors potentially responsible for persistently high MI burden in 
Florida, and to inform public health planning and the development of needs-based, place-
specific strategies for reducing/eliminating health inequities and for improving population 
health.   
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1.2.2 Specific Objectives 
 
The specific aims of the study were to: 

i. Identify geographic patterns, including clusters, of MI hospitalization risks in Florida 
between 2000-2014 to identify populations with persistently high MI morbidity; 

ii. Assess temporal changes in geographic disparities in MI hospitalization risks;  
iii. Estimate the extent to which principal MI hospitalizations may underestimate the 

disease burden attributable to MI;  
iv. Identify geographic patterns, including clusters of MI mortality risks in Florida 

between 2000-2014 to identify populations with persistently high MI mortality; 
v. Assess temporal changes in geographic disparities in MI mortality risks; and  
vi. Identify sociodemographic determinants of MI hospitalization risks and explore 

whether the strength of associations between MI hospitalizations its determinants 
vary with geographic location in Florida. 

 
1.2.3 Organization 
 
 This dissertation comprises three separate but related essays, hence it is 
organized as a multipart, manuscript format to assist in maintaining consistent format for 
journal articles. The first is the introductory chapter, which provides an overview of the 
study, and it comprises background information and the objectives of the study. Chapters 
2, 3, and 4 describe the methods and results of studies addressing the specific aims of 
the study. Chapter 5, the concluding chapter, summarizes major contributions of the 
dissertation and discusses future research directions.  
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CHAPTER 2 
GEOGRAPHIC CLUSTERS, HEALTH DISPARITIES, AND BURDENS OF 

PRINCIPAL AND ANY MYOCARDIAL INFARCTION 
HOSPITALIZATIONS IN FLORIDA, 2005-2014 

  



6 

A version of this chapter “Disparities in Temporal and Geographic Patterns of 
Myocardial Infarction Hospitalization Risks in Florida, 2005-2014” has been published in 
Int. J. Environ. Res. Public Health 2019, 16(23), 4734; 
https://doi.org/10.3390/ijerph16234734 
 

The material presented in this chapter differs substantially from the material 
submitted for publication. The article only discusses spatiotemporal disparities in 
hospitalizations with a principal MI discharge diagnosis, but this chapter includes 
hospitalizations with any (i.e., principal or secondary) MI discharge diagnoses. Moreover, 
this chapter incudes an estimation of the extent to which the burden of disease attributable 
to MI may be underestimated by excluding secondary MI cases. 
 

The use of “we” in this chapter refers to co-authors Drs. Nicholas Nagle and 
Kristina Kintziger, Chris DuClos and myself. As the first author, I designed the study, 
processed and analyzed the data and wrote the manuscript. Dr. Kintziger was also 
involved in the design of the study. All authors read and critically revised the manuscript. 
 

2.1 Abstract 
 
Background: Knowledge of geographical disparities in myocardial infarction (MI) is 
critical for guiding health planning and resource allocation, regardless of whether MI is 
the primary or secondary cause for hospitalization. The objectives of this study were to (i) 
identify geographic disparities in hospitalization risks for MI with either principal or 
principal and secondary (any MI) discharge diagnosis in Florida and (ii) assess temporal 
changes in MI disparities between 2005 and 2014 (iii) estimate the extent to which 
principal MI hospitalizations may underestimate disease burden compared to any MI 
hospitalizations. 
Methods: This study used retrospective data on MI principal and secondary 
hospitalizations that occurred among Florida residents between 2005 and 2014. We 
identified spatial clusters of MI hospitalization risks using Kulldorff’s circular and Tango’s 
flexible spatial scan statistics. Counties with persistently high- or low- hospitalization risks 
were identified.  
Results: There was a 20% and 15% decline in hospitalizations with a principal and any 
MI discharge diagnoses, respectively, during the study period. However, we found 
persistent clustering of high risks in the Big Bend region, South Central, and Southeast 
Florida, and persistent clustering of low risks primarily in the south. Risks decreased by 
7-21% and 4.6-32% in high-risk clusters of principal and any MI hospitalizations, 
respectively, and by 10-28% and 6.5-31.6% in principal and any MI low-risk clusters, 
respectively. Further, MI risks for the high-risk cluster in southeast Florida decreased 
throughout the study period, while those for the persistent high-risk cluster in the Big Bend 
area increased during the last four years of study. MI risks in high-risk clusters in the 
2013-2014 period were on par with risks in low-risk clusters in the 2005-2006 period. 
Overall, risks in high-risk clusters lagged behind those of low-risk clusters by at least a 
decade. Hospitalizations with a principal discharge diagnoses of MI underestimated MI 
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burden in identified clusters by 13.46 cases/10,000 persons in 2005-2006 and by 10.56 
cases/10,000 persons in the 2013-2014 periods. 
Conclusion: MI hospitalization risks declined overall during the 10-year study period, but 
disparities persist geographically and over time. Interventions need to be targeted to 
counties within high-risk clusters to achieve broader reduction goals and improved health 
equity. Moreover, studies of MI disparities need to account for secondary MI cases to 
obtain true estimates of the magnitude of health disparities and MI burden, to achieve 
broader reduction goals and improved health equity. 
Key Words: myocardial Infarction burden; hospitalization risks; geographic disparities; 
temporal patterns; Kulldorff and Tango’s flexible spatial scan statistics 
 

2.2 Introduction 
 

Preventive efforts for myocardial infarction (MI) have resulted in substantial 
declines in the overall burden of MI hospitalizations among several population groups 
across the US [11,12,17-19,38,55]. For instance, MI hospitalization rates for individuals 
aged 35 years and older decreased by at least 20% for 19 out of 20 states in the Centers 
for Disease Control and Prevention (CDC) Tracking Network between 2000 and 2008, 
with Florida being the lone state where the rates increased overall. A more recent study 
found an overall decline in MI hospitalization rates among Florida adults aged 18 years 
and older from 2000-2013, but the study by Talbott et al. [19] suggests that not all 
populations have benefited equitably from preventive and control efforts. Moreover, MI 
remains a leading cause of hospital admissions in Florida, and the US in general, 
accounting for 42,835 and 608,800 and hospital discharges/stays in Florida and the US, 
respectively, in 2014 [71-73]. The burden is projected to get worse as major MI risk factors 
such as diabetes mellitus, obesity, and population aging [12,74,75] become increasingly 
prevalent in the future [76], ensuring that MI prevention will continue to be a public health 
priority.  

Existing literature shows that the risks of cardiovascular diseases (CVD), including 
MI [39,40,42,77,78], and major CVD risk factors [26-31], tend to cluster in minority and 
rural populations in the Southeastern US [28,29,31]. The higher CVD and CVD risk factor 
burdens notwithstanding, primary and secondary preventive interventions [32,33,35-
37,79-81] disproportionately benefit urban and socioeconomically-advantaged 
communities [32-37,79,82]. Moreover, in addition to being implemented in select places, 
preventive measures, such as public smoking bans, have not been implemented or 
adopted at the same time. These spatiotemporal disparities in the prevalence of factors 
influencing MI hospitalizations risks may lead to widening geographic disparities in 
cardiovascular health among sub-groups defined by geography and other characteristics, 
despite overall reductions in the incidence of hospitalized MI in all sub-groups [38]. For 
instance, Yeh et al. found a 37% increase in geographic disparities in the incidence of 
hospitalized MIs among Medicare fee-for-service enrollees in US Census Divisions 
between 2000-2008, despite overall reductions in MI incidence in all regions during the 
same period [38]. Thus, MI hospitalization risks may vary geographically in Florida and 
disparities may be widening over time.  
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Despite the potential for spatiotemporal disparities in MI hospitalization risks, only 
a few ecologic studies [38,42,43,83] have characterized the geographic and temporal 
disparities in MI hospitalizations simultaneously. Moreover, those studies excluded 
hospitalizations with a secondary discharge diagnoses of MI, yet some MIs occur 
subsequent to admission for other illnesses, rather than being the cause of hospitalization 
[6]. Further, elderly patients often present with several major comorbidities, complicating 
the selection of the single most likely underlying cause of hospitalization [6]. Additionally, 
non-clinical considerations, such as reimbursement, may influence which condition gets 
coded as principal diagnosis [47]. For these reasons, studies that fail to account for 
secondary MIs may underestimate the true burden of MI and overstate the success of 
preventive and control efforts in reducing the health disparities [47]. Secondary MIs were 
shown to present a substantial and increasing proportion of total MIs [47].  

It is strategically advantageous to estimate the extent of morbidity attributable to 
MI, identify geographic disparities in MI hospitalizations, and investigate how the 
disparities change over time, regardless of whether MI is the principal or secondary cause 
of hospitalization. Identifying areas with consistently high MI burdens would enable 
targeting of intervention strategies to the most affected populations, leading to improved 
health of all groups and reduced health disparities, which are the overarching goals of the 
Healthy People 2020 national public health agenda [4]. Monitoring trends in MI disparities 
over time can provide key insights into the effectiveness of prevention efforts. Moreover, 
MI overlaps geographically with other cardiovascular diseases, such as stroke, and 
several of their risk factors, such as hypertension, diabetes mellitus, obesity, etc. 
[78,84,85]. Consequently, interventions targeting areas with high MI risks may also 
decrease the burdens of other chronic diseases contributing to the large and growing 
geographic disparities in life expectancy in Florida [86,87]. Therefore, our objectives were 
to: (a) identify geographic disparities in hospitalizations with principal and any MI 
discharge diagnoses in Florida, (b) monitor temporal trends in disparities in MI 
hospitalization risks from 2005 to 2014, and (c) assess the extent that exclusion of 
secondary MI cases may underestimate the disease burden attributable to MI. 
 

2.3 Methods 
 
2.3.1 Study Design and Population 
 

This retrospective ecologic study used MI inpatient hospital admissions data for in 
Florida for the period between 1/1/2005 and 12/31/2014. The study population included 
all Florida residents with a primary or any (i.e., principal or secondary) discharge 
diagnosis of acute MI based on the International Classification of Diseases, Ninth 
Revision, Clinical Modification: ICD-9-CM diagnostic code 410.  
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2.3.2 Data Sources and Data Preparation 
 
2.3.2.1 Hospital Discharge Data 
 

We obtained individual-level MI hospitalization data collected by the Florida 
Agency for Health Care Administration (AHCA) from the Florida Department of Health 
(DOH). The AHCA data includes discharge claims from all Florida hospitals except 
Veterans Affairs, Indian Health Services, and prison or state-owned facilities; hence, it 
represents surveillance with 100% coverage among noninstitutionalized hospitals.  

We extracted the following variables: ICD-9 codes 410 in the primary field, up to 
30 secondary diagnoses to enable extraction of cases with a secondary MI diagnosis, 
admission date, discharge date, patient age, sex, race, and county of residence. 
 
2.3.2.2 Population Data 
 

We obtained annual county-level population estimates for sex and age categories 
matching hospitalization data (i.e., 0-34, 35-44, 45-54, 55-64 and ≥65 year-olds) from 
DOH [88] and used them as denominator data for calculating sex- and age-specific 
annual MI hospitalization risks. Although the 2000 US standard population is 
recommended for age-adjustment of age-dependent health events [89], the 2010 US 
standard population reflects the most recent actual age compositions of the US 
population, and it also falls within the time period of our included data. Moreover, since 
the risk of MI increases with age, using a younger population with a lower proportion of 
older ages (i.e., the 2000 US standard population) could yield lower age-adjusted risks. 
Therefore, we used the decennial data for 2010 US population from the American 
FactFinder website [90] for direct age adjustment, as it may provide us with more realistic 
and more current risk estimates [91], and compared this to the age-adjusted rates using 
the widely-accepted 2000 US standard population. 
 
2.3.2.3 Cartographic Boundary Files 
 
 County-level base maps used for mapping were downloaded from the US Census 
Bureau website [92]. 
 
2.3.3 Descriptive Statistics 
 

We used the county as the geographic unit of analysis. We aggregated the MI data 
for each county by sex and age (i.e., 0-34, 35-44, 45-54, 55-64 and 65 years and older) 
by 2-year increments. We then used these counts along with county population estimates 
and both the 2000 and 2010 US standard populations to calculate sex- and age 
standardized (per 10,000 population) MI hospitalization risks [89]. We also stratified state-
level MI hospitalization data at the beginning (2005-2006) and end of study (2013-2014) 
by sex, race (non-Hispanic White, non-Hispanic Black, Other), and ethnicity (Hispanic, 
non-Hispanic) and age-standardized them to both the 2000 and the 2010 US standard 
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populations. All summary statistical analyses were performed in SAS version 9.4 (SAS 
Institute; Cary Inc, NC). 
 
2.3.4 Identification of Geographic Clusters 
 

Circular geographic clusters of high or low MI hospitalization risks were detected 
and identified during each of the 2-year time intervals using Kulldorff’s circular spatial 
scan statistics (CSSS) in SaTScan software version 9.4.0 [93]. Model specifications were: 
(a) a discrete Poisson probability model; (b) adjustment for both age and sex as 
confounders; and (c) use of non-overlapping, circular, purely spatial windows. We used 
a maximum spatial window size of 13.4% of Florida’s population. This was chosen to 
ensure that identified clusters were not unusually large and that the largest county (Miami-
Dade) had a chance of being part of a cluster. Likelihood ratio test (LRT) was used to 
assess statistical significance of potential clusters whose p-values were generated using 
999 Monte Carlo replications. We assessed statistical significance of potential clusters 
using a critical p-value of 0.05. 

Irregularly-shaped (non-circular) spatial clusters were detected and identified 
using Tango’s flexible spatial scan statistics (FSSS) in FleXScan  software version 3.1.2 
[94]. These clusters would not be detected by Kulldorff’s CSSS. Model specifications were 
as follows: (a) age- and sex-adjusted counts; (b) a Poisson probability model; (c) 
restricted likelihood ratio test (RLRT) to ensure that counties with non-elevated risks were 
not absorbed into high-risk clusters [95]; (d) alpha of 0.2 [96]; and (e) maximum 
geographic cluster size of 34 counties (equivalent to approximately 50% of the number of 
counties in Florida). 
 
2.3.5 Mapping of Hospitalization Risks and Clusters 
 

All computed MI hospitalization risks and identified geographical clusters were 
mapped using ArcGIS Version 10.6.1 [97]. Jenk’s optimization classification scheme was 
used to determine break-points for hospitalization risk maps. Only statistically significant 
(p<0.05) high-risk clusters with relative risks (RR) ≥1.2 (for rural areas) and ≥1.1 (for 
urban areas) were mapped based on findings by Prates et al. [98]. Similarly, only 
statistically significant (p<0.05) low-risk clusters with RR ≤ 0.8 (for rural areas) and ≤ 0.9 
(for urban areas) were mapped. 
 
2.3.6 Temporal Trends 
 

Temporal trends in MI hospitalization risks were investigated using plots of the 
annual MI hospitalization risks vs. time (in years) for counties within persistent high- or 
low-risk clusters during the study period. We calculated percentage change in MI 
hospitalization risks between the time periods 2013-2014 and 2005-2006.  
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2.3.7 Changes in Geographic Health Disparities 
 

To assess whether geographic disparities in MI hospitalization risks between 
persistent high- and low-risk clusters widened or narrowed over the study period, we 
calculated the risk difference (RD) between high-risk clusters and the low-risk cluster with 
the lowest MI hospitalization risks. We compared the RDs for the 2005-2006 and 2013-
2014 study periods. 
 
2.3.8 Comparison of Principal MI and Any MI Burdens  
 

A paired-samples t-test was conducted to compare cluster MI risks for 
hospitalizations with principal vs. any MI discharge diagnoses, both at the beginning 
(2005-2006) and end study (2013-2014) periods. We did this to estimate the extent to 
which exclusion of cases with a secondary discharge diagnosis of MI would 
underestimate the disease burden attributable to MI. 
 

2.4 Results 
 
2.4.1 Descriptive Analyses of MI Hospitalizations 
 
2.4.1.1 Principal MI Hospitalizations 
 

There were 428,275 inpatient principal MI hospitalization cases in Florida between 
2005 and 2014. State-wide, overall, annual, age- and sex-adjusted MI hospitalization 
risks as estimated using the 2010 US standard were 22.0 (2005-2006), 19.8 (2007-2008), 
18.4 (2009-2010), 18.0 (2011-2012), and 17.7 (2013-2014) cases/10,000 population. 
Those estimated using the 2000 US standard population were 19.9 (2005-2006), 17.9 
(2007-2008), 16.6 (2009-2010), 16.3 (2011-2012), and 15.8 (2013-2014) cases/10,000 
population. Thus, MI hospitalization risks decreased overall by 20% during the 10-year 
study period.  

Tables 2.1 and 2.2 show state-level MI hospitalization risks adjusted to the age 
distributions of the 2010 and 2000 US standard populations, respectively, by sex, age 
group, race, ethnicity, and rurality at the beginning and at the end of the study periods. 
The highest risks were observed for males, those aged 65 years or older, and non-
Hispanic and rural residents both at the beginning (2005-2006) and at the end (2013-
2014) of the study periods.  

The risks adjusted to the age distributions of the 2010 standard population were 
higher by 0.9 cases/10,000 persons among White compared to Black residents during 
the 2005-2006 period, but they were higher by a similar magnitude among Blacks during 
the 2013-2014 period. 

The risks among all groups but the “Other” race category were lower by between 
11-24% during the 2013-2014 period compared to the 2005-2006 period. However, MI 
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Table 2.1. State-level principal myocardial infarction hospitalization risks adjusted to the 2010 US census 
population age distributions (2005–2006 and 2013–2014). 

 
% of Total Cases Age-Adjusted Risks/10,000 persons (95% CI)  

2005-2006 2013-2014 2005-2006 2013-2014 % Change 

Total MI cases 92261 84172 22.0 17.7 20 

Sex  
Male  
Female 

 
60 
40 

 
61.7 
38.3

 
29.7 (29.4, 29.9) 
15.7 (15.6, 15.9)

 
23.9 (23.7, 24.1) 
12.1 (12.0, 12.2)

 
  -20 
 -23

1Age (years) 
0–34 
35–44  
45–54  
55–64  
≥65 

 
  1 
  5 
13 
19 
63 

 
  0.7 
  3.7 
12.9 
21.8 
61.0

 
  0.41 (0.38, 0.45) 
  8.1 (7.8, 8.3) 
23.3 (22.9, 23.7) 
43.2 (42.5, 43.8) 
95.4 (94.7, 96.2)

 
  0.35 (0.32, 0.38) 
  6.5 (6.2, 6.7) 
19.8 (19.4, 20.1) 
36.9 (36.4, 37.4) 
71.8 (71.1, 72.3)

 
  -15 
  -20 
  -15 
  -15 
 -25

2Race 
White 
Black  
All other races 

 
88 
  9 
  2 

 
80.9 
10.7 
 7.2

 
21.1 (22.0, 22.3) 
20.2 (19.7, 20.6) 
21.7 (20.8, 22.6)

 
 16.5 (16.4, 16.6) 
17.4 (17.0, 17.8) 
41.4 (403, 42.4)

 
  -26 
  -14 
 +91

3Ethnicity 
Hispanic 
Non-Hispanic  

 
12 
87 

 
15.3 
82.2

 
19.5 (19.2, 19.9) 
22.4 (22.2, 22.6)

 
16.8 (16.5, 17.1) 
17.4 (17.3, 17.5)

 
  -14 
 -22

Rural/Urban 
Rural 
Urban 

 
  6 
94 

 
  6.8 
93.2

 
24.7 (24.0, 25.4) 
22.1 (21.9, 22.2)

 
21.9 (21.3, 22.5) 
17.4 (17.3, 17.5)

 
  -12 
 -21

1Age-specific risks; 2Missing race: 2005-2006 = 1248 cases, 2013-2014 = 984 cases; 3Missing ethnicity: 2005-2006 = 1248 cases, 2013-2014 = 
2162 cases.  
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Table 2.2. State-level principal myocardial infarction hospitalization risks adjusted to the 2000 US census 
population age distributions (2005–2006 and 2013–2014). 

 
% of total cases Age-adjusted Risks/10,000 persons (95% CI)  

2005-2006 2013-2014 2005-2006 2013-2014 % Change 

Total MI cases 92261 84172 20.0 16.0 20 

Sex  
Male  
Female 

 
60 
40 

 
61.7 
38.3

 
26.9 (26.6, 27.1) 
14.4 (14.3, 14.6)

 
21.5 (21.3, 21.66) 
11.1 (10.9, 11.2)

 
  -20 
 -23

1Age (years) 
0–34 
35–44  
45–54  
55–64  
≥65 

 
  1 
  5 
13 
19 
63 

 
  0.7 
  3.7 
12.9 
21.8 
61.0

 
  0.4 (0.4, 0. 5) 
  8.1 (7.8, 8.3) 
23.3 (22.9, 23.7) 
43.2 (42.5, 43.8) 
95.4 (94.7, 96.2)

 
  0.4 (0.3, 0.4) 
  6.5 (6.2, 6.7) 
19.8 (19.4, 20.1) 
36.9 (36.4, 37.4) 
71.7 (71.1, 72.3)

 
  -15 
  -20 
  -15 
  -15 
 -25

2Race 
White 
Black  
All other races 

 
88 
  9 
  2 

 
80.9 
10.7 
 7.2

 
20.1 (20.0, 20.3) 
18.3 (17.9, 18.8) 
19.8 (19.0, 20.6)

 
14.9 (14.8, 15.0) 
15.8 (15.5, 16.1) 
37.6 (36.7, 38.6)

 
  -26 
  -14 
 +90

3Ethnicity 
Hispanic 
Non-Hispanic  

 
12 
87 

 
15.3 
82.2

 
17.7 (17.4, 18.1) 
20.4 (20.3, 20.6)

 
15.2 (14.9, 15.4) 
15.8 (15.7, 15.9)

 
  -14 
 -23

Rural/Urban 
Rural 
Urban 

 
  6 
94 

 
  6.8 
93.2

 
22.4 (21.8, 23.0) 
20.1 (20.0, 20.2)

 
19.8 (19.2, 20.3) 
15.7 (15.6, 15.9)

 
  -12 
 -22

1Age-specific risks; 2Missing race 2005-2006 = 1248 cases, 2013-2014 = 984 cases; 3Missing ethnicity 2005-2006 = 1248 cases; 2013-2014 = 
2162 cases. 
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risks adjusted to the 2000 standard population age distributions were lower than those 
adjusted to the 2010 US standard population by 1.0-3.8 cases/10,000 persons. 
 
2.4.1.2 Any MI Hospitalizations 
 

There were a total of 645,935 hospitalizations with any MI discharge diagnosis in 
Florida between 2005-2014. Of these, 217,660 cases had a secondary discharge 
diagnosis of MI. Thus, hospitalizations with a comorbid diagnosis of MI accounted for 34% 
of total MIs over the study period. The proportion of MIs with a secondary diagnosis 
increased from 30% in 2005-2006 to 34% in 2013-2014, which represents a 13% increase 
over the study period. 

Table 2.3 shows the distribution of any MI hospitalization risks by sex, age, race, 
ethnicity, and rurality at the beginning and at the end of the study periods, adjusted to the 
2010 US standard population. The patterns amongst the various demographic groups, as 
well as the changes in MI risks in between 2005-2006 and 2013-2014 periods are similar 
to the patterns obtained for principal MIs (Tables 2.1 and 2.2). However, any MI risks 
were higher than principal MIs by 0.29-48.9 cases/10,000 persons in 2005-2006 and by 
0.25-45.5 cases/10,000 persons in 2013-2014. 

The largest difference between any and principal MIs was observed in the 65 years 
and older age group. As a consequence, the percent change in MI risks between 2005-
2006 and 2013-2014 were lower for any MIs compared to principal MIs (Tables 2.2 and 
2.3). 

The risks among all groups with the exception of the “Other” race category were 
lower by between 6-22% during the 2013-2014 period compared to the 2005-2006 period. 

Similar to principal MIs, any MI risks were higher among White residents compared 
to Black residents in 2005-2006 but the opposite was true during the 2013-2014 period. 
 
2.4.2 Spatial Patterns 
 
2.4.2.1 Age- and Sex-adjusted MI Risks 
 
2.4.2.1.1 Principal MI Hospitalizations 
 

County-specific principal MI hospitalization risks adjusted to the age- and sex-
distributions of either the 2000 or the 2010 US standard populations are shown in Figures 
2.1 and 2.2, respectively. The highest risks occurred in predominantly rural counties in 
the Big Bend and South Central regions of Florida, while the lowest risks occurred in 
mostly urban counties in southern Florida. The risks declined by between 1-42% in most 
of the counties, but they increased by between 3-51% in 15 primarily rural counties 
scattered across the northern and middle parts of the state. 

MI risks adjusted to the 2010 US population census age- and sex distributions 
ranged from 12.0-38.7 cases/10,000 population at the beginning of the study to 9.6-56.4 
cases/10,000 population at the end of the study. Risks adjusted to the 2000 US census  
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Table 2.3. State-level any myocardial infarction hospitalization risks adjusted to the 2010 US census population 
age distributions (2005–2006 and 2013–2014). 

 
% of total cases  Age-adjusted MI Risks/10,000 persons (95% CI)   

2005-2006 2013-2014  2005-2006 2013-2014  % Change 

Total MI Cases 132152 127937  31.0 26.4  15 

Sex  
Male  
Female 

 
58 
42 

 
59.0 
41.0

 
 
36.9 (36.68, 37.2) 
21.6 (21.41, 21.77)

 
30.9 (30.7, 31.1) 
17.8 (17.7, 18.0)

 
 
  -16 
 -18

1Age (years) 
0–34 
35–44  
45–54  
55–64  
≥65 

 
  1 
  39 
11 
17 
67 

 
  0.75 
  3.12 
10.86 
19.63 
65.65

 

 
0.7 (0.6, 0.7) 
10.1 (9.8, 10.4) 
29.1 (28.6, 29.5) 
57.1 (56.3, 57.8) 
144.4 (143.5, 145.4) 

 
0.6 (0.5, 0.6) 
8.3 (8.0, 8.6) 
25.3 (24.9, 25.8) 
50.5 (49.9, 51.2) 
117.3 (116.5, 18.1)

 

 
  -14 
  -18 
  -13 
  -12 
 -19

2Race 
White 
Black  
All other races 

 
88 
  9 
  2 

 
81.0 
11.0 
 6.9

 

 
28.5 (28.4, 28.7) 
27.5 (26.9, 28.0) 
26.6 (25.7, 27.6)

 
22.3 (22.2, 22.5) 
25.0 (24.6, 25.4) 
55.8 (54.6, 56.9)

 

 
  -22 
    -9 
+109.8

3Ethnicity 
Hispanic 
Non-Hispanic  

 
11 
88 

 
14.7 
82.9

 
 
23.9 (23.5, 24.2) 
29.2 (29.1, 29.4)

 
22.4 (22.1, 22.7) 
23.8 (23.7, 24.0)

 
 
    -6 
 -19

Rural/Urban 
Rural 
Urban 

 
  6 
95 

 
  6.1 
93.9

 
 
31.6 (30.9, 32.4) 
28.6 (28.4, 28.7)

 
29.6 (28.9, 30.2) 
23.7 (23.5, 23.8)

 
 
    -6 
 -17

1Age-specific risks; 2Missing race 2005-2006 = 1539 cases, 2013-2014 = 1374 cases; 3Missing ethnicity 2005-2006 = 1539 cases; 2013-2014 = 
30662162 cases.
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age- and sex distributions ranged from 10.7-34.9 cases/10,000 population at the 
beginning of the study to 8.8-51.4 cases/10,000 population at the end of the study. Thus, 
MI risks standardized to the 2010 standard population were higher by between 0.8-5.0 
cases/10,000 population than those standardized to the 2000 standard population. 
However, the spatial patterns of MI risks appeared to be similar for both standard 
populations (Figures 2.1 and 2.2). Thus, the 2010 US standard population was used in 
all subsequent adjustments. 
 
2.4.2.1.2 Any MI Hospitalization Risks 
 

County-specific, any MI hospitalization risks adjusted to the age- and sex-
distributions of the 2010 US standard populations are shown in Figure 2.3. The risks 
ranged from 17.6-54.7 cases/10,000 population at the beginning of the study to 18.5-69.5 
cases/10,000 population at the end of the study. 

Similar to the spatial patterns observed for MI hospitalizations with a principal 
discharge diagnosis, the highest risks occurred in predominantly rural counties in the Big 
Bend and South Central regions of Florida, while the lowest risks occurred in mostly urban 
counties in southern Florida. These patterns persisted throughout the study period. 
 
2.4.2.2 Kulldorff’s Circular Spatial Scan Statistics (CSSS) Clusters 
 
2.4.2.2.1 Principal MI Hospitalizations Clusters 
 

The geographic location of Kulldorff’s CSSS high- and low-risk MI hospitalization 
clusters, as well as the rural-urban designation of Florida’s counties based on DOH Office 
of Rural Health definition of rural county (i.e., density of less than 100 persons per square 
mile) [99] are shown in Figure 2.4.  

Similar to the visual patterns for age- and sex-adjusted risks (Figures 2.1 and 2.2), 
we identified three to four large persistent high-risk clusters in Southeast Florida and in 
predominantly rural counties in the Big Bend area, and two large persistent low-risk 
clusters in predominantly coastal urban counties designated as retirement designations 
in Southeast and Southwest Florida.  

Over 85% of counties in low-risk clusters in southern Florida and 88% of counties 
in high-risk counties in 2005-2006 retained their cluster status in 2013-2014. Persistent 
high-risk clusters in Southeast Florida, the Big Bend area, and South Central Florida 
accounted for 13%, 11%, and 5% of the total population in the state (Table 2.4), 
respectively. Persistent low-risk clusters comprised 5-8% of the state’s population (Table 
2.5). 

While some counties retained their status in either low- or high-risk clusters over 
the study period, a number of counties experienced distinct changes in their risk status 
by the 2013-2014 period. These changes were most evident in Northwest and Northeast 
Florida, where 93% of counties in low-risk clusters in the 2005-2006 period transitioned 
to no cluster status in the 2013-2014 period. Four South Florida counties transitioned from 
no cluster status in 2005-2006 to low-risk clusters in 2013-2014. Only two counties in 
South Central Florida transitioned from high-risk to no cluster and vice versa. One county  
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Figure 2.1. Spatial patterns of principal myocardial infarction hospitalization risks 
adjusted to the age and sex distributions of the 2000 US census population. 
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Figure 2.2. Spatial patterns of principal myocardial infarction hospitalization risks 
adjusted to the age and sex distributions of the 2010 US census population.
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transitioned from high- to low-risk cluster, but no county transitioned from low to high-risk 
status. The RRs for high-risk clusters ranged from 1.1 to 3.3, and from 0.5 to 0.9 among 
low-risk clusters. 
 
2.4.2.2.2 Any MI Hospitalization Clusters 
 

Figure 2.5 shows the location of Kulldorff’s CSSS high- and low-risk clusters for 
hospitalizations with any MI discharge diagnosis. The distribution of clusters generally 
mirrored the patterns for principal MI clusters (Figure 2.4), with persistent clustering of 
high risks occurring in the Big Bend, South Central, and Southeast regions of the state, 
and persistent clustering of low risks occurring in Southeast and Southwest Florida. The 
RRs for high-risk clusters ranged from 1.1 to 3.5, and from 0.7 to 0.9 among low-risk 
clusters. A few notable differences between principal and any MI clusters include: 
 

(i) The transition of the low-risk cluster identified in northwest Florida between 
2005-2010 into a high-risk cluster between 2011-2014. 

(ii) The absence of clustering of high risks of any MI hospitalizations in Miami-
Dade County during the 2007-2008 period.  

(iii) Persistent clustering of high any MI hospitalizations risks in Polk and 
Hardee Counties in South Central Florida throughout the study period. 

 
2.4.2.3 Tango’s Flexible Spatial Scan Statistics (FSSS) Clusters 
 

The distributions of Tango’s FSSS circular and non-circular clusters for 
hospitalizations with principal and any MI discharge diagnosis are shown in Figures 2.6 
and 2.7, respectively. The spatial patterns of clustering of principal and any MI risks were 
not different. However, larger primary clusters and more secondary clusters were 
identified for any MIs than for principal MIs, particularly in Northwest and North Central 
Florida. For instance, Columbia, Suwannee and Union counties all constituted a single 
principal MI secondary high-risk cluster in North Central Florida throughout the study 
period. However, the three counties comprised the secondary any MI cluster in the 2005-
2006 period, but they belonged to different clusters in the 2013-2014 period; Columbia 
and Union counties were a part of a primary cluster, while Suwannee was a part of a 
secondary cluster. 

A comparison of FSSS clusters identified in 2005-2006 with those identified in 
2013-2014 shows that 78% (14/18) and 77% (17/22) of counties in high-risk principal and 
any MI clusters, respectively, in 2005-2006 retained their status in 2013-2014. Most of 
those counties were located in the middle part of the state. Thirteen and 15 counties 
transitioned into high-risk principal and any MI hospitalization clusters by the 2013-2014 
period, and most of those counties were located in the Panhandle. 

The location and the general patterns of clustering of high MI risks for Tango’s 
FSSS clusters were not substantially different than those for Kulldorff’s CSSS high-risk 
clusters (Figures 2.4 and 2.5). However, Tango’s FSSS clusters comprised all counties 
identified using Kulldorff’s CSSS, plus additional counties; hence, they tended to be larger
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Figure 2.3. Spatial patterns of any myocardial infarction hospitalization risks adjusted to the age and sex 
distributions of the 2010 US census population. 
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Figure 2.4. Spatial circular clusters of high and low principal myocardial infarction hospitalization risks in Florida 
between 2005-2014, as well as rural/urban classification of Florida counties. 
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Table 2.4. Summary statistics for circular high-risk clusters of hospitalizations with a principal myocardial 
infarction discharge diagnosis in Florida, 2005-2014. 

Time 
Interval 

 
Cluster 

 
County 

Cluster population 
(% of FL population) 

Observed 
# of MIs 

Expected # 
of MIs 

MI Cases 
/10,000 persons 

p-value 

2005-2006 

1 86 4828792 (13.4) 11961 10467.24 28.6 <0.00001 

2 75, 17, 41, 29, 53, 1, 83, 67, 119, 
101, 121, 125, 123, 7, 23, 69, 107

3883180 (10.8) 13360 11928.25 26.6 <0.00001 

3 49, 27, 55, 105 1427730 (4.0) 4843 3979.55 31.1 <0.00001 

4 93     77985 (0.2) 319 190.53 42.8 <0.00001 

5 81   620203 (1.7) 2214 1984.07 28.5   0.00013 

2007-2008 

1 75, 17, 41, 29, 53, 1, 83, 67, 119, 
101, 121, 125, 123, 7, 23, 69, 107 

4093374 (11.0) 13047 11445.77 26.6 <0.00001 

2 86 4931242 (13.3) 11042 9887.13 26.1 <0.00001 

3 55, 93   278730 (0.8) 1266 902.22 32.7 <0.00001 

4 103, 81, 57 4894293 (13.2) 12315 11451.80 25.1 <0.00001 

5 127    997928 (2.7) 3009 2729.53 25.7 <0.00001 

2009-2010 

1 93     79951 (0.2) 392 167.89 51.4 <0.00001 

2 75, 17, 41, 29, 53, 1, 83, 67, 119, 
101, 121, 125, 123, 7, 23, 69, 107 

4154803 (11.1) 12149 10791.06 24.8 <0.00001 

3 105, 49, 97, 57 4241326 (11.3) 9068 7893.89 25.3 <0.00001 

4 86 4982221 (13.3) 10704 9501.80 24.8 <0.00001 

2011-2012 

1 93     79765 (0.2) 532 163.13 70.6 <0.00001 

2 17, 53, 75, 101, 119, 83, 69 3116403 (8.2) 10296 8600.95 25.9 <0.00001 

3 105, 49, 97 1828195 (4.8) 4359 3630.45 26.0 <0.00001 

4 86 5056071 (13.3) 10495 9565.79 23.8 <0.00001 

5 47, 121, 23, 79, 67, 3, 125   393872 (1.0) 1007 776.93 28.1 <0.00001 

6 103 1836685 (4.8) 5225 4764.21 23.6 <0.00001 

7 91, 131, 113   790131 (2.0) 1730 1498.07 25.0 <0.00001 

2013-2014 

1 93     79952 (0.2) 532 162.99 70.7 <0.00001 

2 75, 17, 41, 29, 53, 1, 83, 67, 119, 
101, 121, 125, 123, 7, 23, 69, 107 

4276132 (11.0) 13006 10812.73 26.1 <0.00001 

3 105, 49, 97 1887107 (4.9) 4645 3729.85 27.0 <0.00001 

4 86 5198431 (13.4) 10440 9840.38 23.0 <0.00001 

5 127 1003522 (2.6) 2818 2528.09 24.2    0.00013 
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Table 2.5. Summary statistics for circular low-risk clusters of hospitalizations with a principal myocardial infarction 
discharge diagnosis in Florida, 2005-2014. 

 

Time 
Interval 

Cluster County Cluster Population 
(% of FL population) 

# Observed 
MI Cases 

# Expected 
MI Cases 

MI Cases/10,000 
Persons 

p-value 

2005-2006 

1 51, 43, 21, 71 1853327 (5.1) 4290 5816.98 18.9 <0.00001 

2 63, 13, 133, 59, 39, 77, 5, 
131, 45, 73 

1308614 (3.6) 1988 2690.58 18.9 <0.00001 

3 117, 95 2977058 (8.2) 4719 5259.91 22.9 <0.00001 

4 85, 111, 99 3353826 (9.3) 9590 10269.14 23.9 <0.00001 

5 31, 89, 19, 109 2487636 (6.9) 4555 4987.02 23.4 <0.00001 

2007-2008 

1 71, 15, 51, 27, 21, 43, 115 3085443 (8.3) 8078 9688.30 19.5 <0.00001 

2 63, 13, 133, 59, 39, 77, 5, 
131, 45, 73

1345777 (3.6) 1940 2582.27 17.5 <0.00001 

3 9, 97, 95, 61, 117 4954523 (13.3) 8728 9708.59 21.0 <0.00001 

4 31, 89, 19, 109 2580453 (6.9) 4141 4843.12 20.0 <0.00001 

5 99, 85 2902376 (7.8) 7241 8075.73 20.9 <0.00001 

2009-2010 

1 71, 15, 51, 27, 21, 43, 115 3127273 (8.3) 7227 9173.95 17.4 <0.00001 

2 99, 85 2926434 (7.8) 6304 7649.28 18.2 <0.00001 

3 117   844417 (2.2) 1154 1492.38 17.0 <0.00001 

4 133, 59, 5, 63, 131   636666 (1.7) 1029 1327.01 17.1 <0.00001 

5 31, 89 1870728 (5.0) 2890 3234.16 19.7 <0.00001 

6 73   550260 (1.5) 668 805.64 18.3 <0.00001 

2011-2012 

1 99, 85 2954576 (7.8) 5936 7615.18 16.9 <0.00001 

2 71, 15, 51, 27, 21, 43, 115 3173919 (8.4) 7448 9106.19 17.7 <0.00001 

3 117, 95 3184374 (8.4) 4187 5050.44 18.0 <0.00001 

4 109   391071 (1.0) 659 821.37 17.4 <0.00001 

5 65, 73   582855 (1.5) 725 882.46 17.8   0.00002 

6 63   100092 (0.3) 145 205.78 15.3   0.0022 

2013-2014 

1 99, 85 3011105 (7.7) 5839 7661.46 16.5 <0.00001 

2 71, 15, 51, 27, 21, 43, 115 3270757 (8.4) 7391 9290.84 17.2 <0.00001 

3 117   868598 (2.2) 1163 1569.40 16.1 <0.00001 

4 11 3582137 (9.2) 6301 7146.82 19.1 <0.00001 

5 63   100080 (0.3) 117 207.34 12.2 <0.00001 
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fewer, and had lower RRs (1.1-1.7) than Kulldorff’s CSSS high-risk (RR=1.1-3.5) clusters. 
Other notable distinctions between Kulldorff’s CSSS and Tango’s FSSS clusters include: 

 
(i) The identification of two high-risk circular and non-circular clusters in the 

Panhandle at the end of the study period (2013-2014). Kulldorff’s method 
identified a large low-risk cluster in those counties during the 2005-2006 
period.  

(ii) The identification of two distinct FSSS high-risk clusters in the Big Bend 
area and perisitent clustering of high-risks in DeSoto, Hardee, Highlands, 
Polk, and Okeechobee Counties in South Central Florida throughout the 10-
year study period. In contrast, Kulldorff’s method identified one large cluster 
in the Big Bend area in three out of five of the 2-year intervals assessed, 
and persistent clustering of high risks in South Central Florida in Polk and 
Okeechobee Counties only. 

(iii) The FSSS high-risk clusters only included counties with elevated risks. 
Kulldorff’s clusters, on the other hand, still included a few counties with 
elevated risks in low-risk clusters and counties with unelevated risks in high-
risk clusters despite using a window with a maximum size of 13.4% of 
Florida’s population. For instance, Hendry County was a part of the 
persistent low-risk cluster in southeast Florida despite having elevated 
relative risks ranging from 1.1-1.7 during the study period. Likewise, Sumter 
County was a constituent of the persistent high-risk cluster in the Big Bend 
area despite having unelevated relative risks of between 0.98-1.0 during the 
study period. 

 
2.4.3 Temporal Trends 
 
2.4.3.1 Principal MI Hospitalizations 
 

The temporal trends in principal MI hospitalization risks among select Kulldorff’s 
CSSS and Tango’s FSSS clusters that persisted from 2005-2014 are shown in Figure 
2.8. The risks in CSSS clusters declined modestly overall, by 9-21% and 9-28% in high- 
and low-risk clusters, respectively, between 2005-2006 and 2013-2014. Overall, we 
observed average rates of decline of 0.9-2.1% per year and 0.9-2.8% per year in high- 
and low-risk clusters, respectively, with clusters in southeastern Florida showing the 
largest declines. However, MI risks did not decline uniformly over the 10-year study 
period. Rather, the risks declined more rapidly during the first six to eight years of study. 
Thereafter, the rates of decline levelled in low- and high-risk clusters in Southeast Florida, 
while the trajectory reversed and the risks increased slightly in the high-risk clusters in 
the Big Bend region.  

The risks in persistent Tango’s FSSS clusters declined by a similar magnitude (7-
21%) as Kulldorff’s CSSS high-risk clusters. The temporal trends for risks in FSSS 
clusters were also similar to those for CSSS clusters, but the upward trend observed for  
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Figure 2.5. Spatial circular clusters of high and low any myocardial infarction hospitalization risks in Florida 
between 2005-2014. 
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Figure 2.6. Tangos’ spatial circular and non-circular high-risk clusters for hospitalizations with principal myocardial 
infarction discharge diagnosis in Florida, 2005-2014. 
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Figure 2.7. Tangos’ spatial circular and non-circular high-risk clusters for hospitalizations with any myocardial 
infarction discharge diagnosis in Florida, 2005-2014. 
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high-risk clusters in North Central and West Central Florida during the last 4 years of 
study was more pronounced for FSSS clusters. 
 
2.4.3.2 Any MI Hospitalizations 
 

The changes in any MI risks in persistent in CSSS and FSSS clusters over the 
study period are displayed in Figure 2.9. The risks decreased by 5%, 16%, and 32% in 
high-risk CSSS clusters in West Central, South Central, and North Central Florida, 
respectively, and by 7% and 31% in low-risk clusters in Southwest and Southeast Florida, 
respectively. Similar to risks for the principal MI clusters, the risks only decreased during 
the first six to eight years of study, after which no more declines occurred, or the risks 
actually increased slightly in parts of Northern Florida.  

The risks in FSSS clusters decreased overall by 5%, 11%, and 34% in high-risk 
clusters in West Central, Southeast, and North Central Florida, respectively, but there 
were disparities in rates of declines in MI risks amongst clusters and over time. The 
temporal trends in MI risks over the study period generally mirrored the patterns for CSSS 
high-risk clusters. 
 
2.4.4 Changes in Health Disparities 
 

The low-risk cluster in Southwest Florida (Figures 2.4 and 2.5) had the lowest MI 
hospitalization risks. Therefore, MI risks for this cluster were used as the 
baseline/reference for assessing changes in health disparities between circular high- and 
low-risk clusters at the end of the study (2013-2014) compared to the beginning of the 
study (2005-2006).  

The RD between principal MI risks in the high-risk clusters in North Central, West 
Central, and Southeast Florida and the referent low-risk cluster were 9.8 cases/10,000 
persons, in 2005-2006, and 9.1 cases/10,000 persons in 2013-2014. This resulted in a 
7% reduction in health disparities at the end compared to the beginning of the study 
period. The RD between principal MI risks in the high-risk clusters in Southeast Florida 
and the referent low-risk cluster were 10.8 cases/10,000 persons in 2005-2006, and 6.4 
cases/10,000 persons in 2013-2014, resulting in 41% reduction in heath disparities in the 
2013-2014 compared to 2005-2006 periods.  

The RD between any MI risks in the high-risk clusters in North Central, South 
Central, and West Central Florida and the referent low-risk cluster were 27, 11.5, and 
16.8 cases/10,000 persons, respectively, in 2005-2006, and 11.5 cases/10,000 persons 
in 2013-2014. The RD between any MI risks in the high-risk clusters in Southeast Florida 
and the referent low-risk cluster was 13 cases/10,000 persons in 2005-2006 and 10.2 
cases/10,000 persons in 2013-2014. Thus, disparities between high-risk clusters in North 
Central and South Central and Southeast Florida and the referent low-risk cluster were 
lower by 57%, 32%, and 22%, respectively, at the end of the study compared to the 
beginning of the study. However, disparities between the high-risk cluster in West Central 
Florida and the referent low-risk cluster did not change over the study period.  
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Figure 2.8. Changes in risks of hospitalizations with principal myocardial infarction discharge diagnosis among 
persistent (i) Kulldorff’s circular and (ii) Tango’s circular and non-circular clusters in Florida from 2005-2014. 
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Figure 2.9. Changes in risks for hospitalizations with any myocardial infarction discharge diagnosis among 
persistent (i) Kulldorff’s circular and (ii) Tango’s circular and non-circular clusters in Florida from 2005-2014. 
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Principal and any MI hospitalization risks for the persistent high-risk clusters in 
Southeast Florida at the end of the study period (23.3 and 36.3 cases/10,000 persons) 
matched the risks for persistent low-risk clusters at the beginning of the study period 
(18.7-34.8 and cases/10,000 persons). However, the risks for persistent high-risk clusters 
in the Big Bend area and South Central Florida at the end of the study period (25.7-114.2 
cases/10,000 persons) were equivalent or greater than those for persistent low-risk 
clusters at the beginning of the study period (18.7-34.8 cases/10,000 persons). Thus, 
both principal and any M hospitalization risks for counties in high-risk clusters are at least 
10 years behind those for counties in low-risk clusters. 
 
2.4.5 Disease Burden Attributable to Principal Versus Any MI Hospitalizations 
 

Hospitalization risks with a principal MI discharge diagnosis compared to those 
with any MI discharge diagnoses amongst persistent low- and high-risk clusters both at 
the beginning (2005-2006) and at the end (2013-2014) of study periods are presented in 
(Table 2.6). Risks for MIs with any discharge diagnoses were higher by between 9.2-26.4 
cases/10,000 persons in the 2005-2006 period and by 6.1-13.0 cases/10,000 persons in 
the 2013-2014 period. The mean difference (i.e. any MI – principal MI) amongst persistent 
clusters was 13.46 cases/10,000 persons in 2005-2006 (standard error [SE]=1.59; 
t(9)=8.46, p < 0.0001) and 10.56 cases/10,000 persons in 2013-2014 (SE=0.77; 
t(9)=13.68, p < 0.0001). 
 

2.5 Discussion 
 

We investigated geographic patterns, spatial clusters, and temporal trends of 
hospitalization with principal and any MI discharge diagnoses in Florida between 2005-
2014 to identify communities with consistently high MI burden, so they may be prioritized 
for interventions to reduce/eliminate health disparities and improve population health for 
all Floridians. This is amongst a few area-level studies that have comprehensively 
investigated geographic and temporal disparities in MI/CVD-related hospitalization risks 
in the US simultaneously [38,42,43,83]. 
 
2.5.1 Descriptive Analysis 
 

Our results showing lower MI hospitalization risks for Black residents compared to 
their White counterparts at the beginning of the study (2005-2006) period but higher risks 
for Blacks at the end of the study (2013-2014) are consistent with previous studies. For 
instance, Sacks et al. found higher MI hospitalization risks for Whites than Blacks in a 
Medicare population in the US between 2002-2006 but higher risks for Blacks by 2011 
[55]. Singh et al. [15] examined the temporal trends in MI hospitalization rates among US 
Medicare beneficiaries hospitalized with MI between 1992 and 2010. They found higher 
MI hospitalization rates for White women compared to Black women between 1992-1993 
but lower rates for White women between 2009-2010. However, MI hospitalization rates  
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Table 2.6. Hospitalization risks for myocardial infarction hospitalizations with principal versus any discharge 
diagnoses for persistent low- and high-risk clusters at the beginning (2005-2006) and end (2013-2014) of the study 
period. 

Time Period  2005-2006  2013-2014 

Discharge Diagnoses 
 Principal MI Any MI   Principal MI Any MI  

 Cases/10,000 population 1Difference  Cases/10,000 population 1Difference 
2CSSS high-risk clusters 

North Central Florida 
West Central Florida 
South Central Florida 
Southeast Florida 

 

 
28.5 
28.5 
31.0 
29.5 

 
54.9 
39.4 
44.7 
40.9 

 
26.4 
10.9 
13.6 
11.7 

 

 
25.7 
25.7 
27.0 
23.3 

 
37.6 
37.6 
37.6 
36.3 

 
11.6 
11.6 
10.6 
13.3 

2CSSS low-risk clusters 
Southwest Florida 
Southeast Florida 

 
 
18.7 
23.9 

 
27.9 
34.8 

 
9.2 
10.9 

 
 
16.9 
16.6 

 
26.1 
24.1 

 
9.2 
7.5 

3FSSS high-risk clusters 
North Central Florida 
West Central Florida 
South Central Florida 
Southeast Florida 

 

 
40.5 
29.1 
29.1 
29.1 

 
58.0 
40.6 
40.6 
40.6 

 
17.3 
11.6 
11.6  
11.4  

 

 
32.4 
26.9 
26.9 
23.3 

 
38.5 
38.5 
38.5 
36.3 

 
5.6 
11.6 
11.6 
13.0 

1Any MI risk-Principal MI risk; 2Circular spatial scan statistics; 3Flexible spatial scan statistics
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for Black men were consistently lower than those for White men throughout the 18-year 
study period. 

Given that MI is a life-threatening health condition requiring immediate 
catherization within 90 minutes of first medical contact [100], MI hospitalization risk may 
serve as a proxy for MI morbidity, in which case our results would suggest lower MI 
morbidity risks for Blacks compared to Whites at the beginning of the study period. 
However, this interpretation contradicts the well-documented historic racial disparities in 
the prevalence of ideal cardiovascular health, burdens of CVD and associated risk 
factors, and prevention and treatment of coronary artery disease, with Blacks having 
poorer metrics [101-107]. These have been linked to poorer outcomes in Blacks as 
compared to Whites [108-110]. Area-level factors such as limited access to healthy foods 
such as fruits and vegetables [36,111,112], high levels of pollution and poor enforcement 
of environmental regulations [113], low SES, low neighborhood walkability, crime, limited 
access to green spaces and quality cardiovascular health care [114], and low social 
cohesion [50] in Black neighborhoods are also related to high MI morbidity risks. 
Therefore, the lower MI hospitalization risks we observed for Blacks compared to Whites 
at the beginning of the study do not signify lower MI morbidity risks for Blacks than Whites. 
Rather, they are indicative of an under-diagnosis of MI among Blacks in the pre-hospital 
setting due to lower utilization rates for time-sensitive MI care. Underuse of MI care 
services may be attributed to limited knowledge regarding MI symptoms [115,116], lack 
of transport and health insurance [117,118], and mistrust of the healthcare system due to 
negative experiences such as the Tuskegee syphilis study and perceived racial bias that 
continues to this day [51,119].  
 
2.5.2 Temporal and Spatial Patterns 
 

The encouraging declines we observed in Florida overall and in all demographic 
groups but the race category coded as “Other” are consistent with other studies of the 
temporal patterns of MI hospital admissions in disparate US populations [10-20]. The 
increase in MI hospitalization risks in the “Other” race category suggests that differences 
in coding ethnicity data within Florida may have affected the trends we observed among 
racial groups. Potential explanations for the declines in MI hospitalization risks during the 
study period include changes in the sensitivity of ICD-9-CM codes for MI, increase in out-
of-hospital sudden cardiac death, and a decrease in incident and recurrent MIs. However, 
Chen et al. [10] found concomitant declines in MI and other cardiac conditions that may 
be coded instead of MI, suggesting no dramatic shifts in coding hospitalizations away 
from MI to other cardiac conditions. Moreover, the incidence of sudden cardiac death has 
fallen over time, in parallel with the decline in coronary heart disease mortality [120,121], 
making this an unlikely explanation for the reductions in MI hospitalization risks. 
Furthermore, the downward trajectory occurred during a period of increased use of more 
sensitive troponin biomarker assays, which would be expected to increase the diagnosis 
of MI and MI discharges [122]. 

Studies conducted prior to ours showed improvements in awareness, treatment, 
and control of major CVD risk factors, such as low-density lipoprotein cholesterol, 
hypertension, and diabetes in US counties [123-127]. A substantial increase in the 
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utilization of interventional procedures after MI, such as Percutaneous Coronary 
Intervention (PCI), over the last decade may also have contributed to improved care of 
MI patients leading to improved outcomes [15,128]. For instance, a self-organizing 
system based on American College of Cardiology and the American Heart Association 
(ACC/AHA) guidelines increased the proportion of EMS-transported ST segment 
elevation MI (STEMI) patients admitted directly to high volume PCI-centers in Florida from 
62.4% in 2001 to 89.7% by the first half of 2009 [128]. Based on a study by De Luca et 
al. [129], this may have led to significantly lower reinfarctions, among other positive 
outcomes. 

The reduction in MI hospitalization risks in our study also coincides with favorable 
temporal trends noted for behavioral risk factors, such as levels of sufficient physical 
activity and the prevalence of smoking [130-133]. Additionally, the consistency of the 
trend over the 10-year study period adds evidence that this is not a statistical artifact. 
Thus, the progressively lower MI hospitalization risks we observed in Florida over the 10-
year study period likely represents a true decrease in incident and recurrent MIs 
[58,134,135], reflecting gains from improvements in cardiac care through primary and 
secondary prevention efforts [23]. 

Despite the overall decrease in MI hospitalization risks in Florida, the striking 
geographical disparities in MI hospitalization risks we observed across the state, with 
high-risk clusters occurring in predominantly rural counties in the Big Bend area and 
South Central Florida, and low-risk clusters in predominantly urban counties in southern 
Florida, suggested that communities have not benefited equitably from preventive and 
control efforts. These results corroborate existing research showing place of residence to 
be an important determinant of cardiovascular health [50,51].  

The concentration of high-risk clusters in rural counties, coupled with persistent 
clustering of high-risks in northern Florida counties, is consistent with clustering of high 
prevalence rates of MI hospitalizations [26], and historically high stroke and heart disease 
hospitalization and mortality rates in socioeconomically-deprived areas in the 
southeastern US, a region that has had persistently high stroke and heart disease rates 
compared to the rest of the country [15,39,136,137]. This is not coincidental, since 
northern Florida is demographically and geographically similar to much of the 
southeastern US. Moreover, the spatial patterns for MI hospitalization risks we observed 
in this study generally mirror the patterns of clustering previously observed for stroke, 
heart disease, diabetes, and hypertension rates in various county-level ecologic studies 
in the US [39,41,42,78,85,138]. The spatial location of clusters with persistently low or 
high MI hospitalization risks are also remarkably similar to the location of persistent MI 
mortality risk clusters we identified in Florida between 2000-2014 [77]. The only notable 
discrepancies between MI hospitalization and mortality clusters were persistent clustering 
of MI hospitalization risks in South Central Florida and lack of persistent clustering of high 
MI hospitalization risks in Northwest Florida. Taken together, the concentration of high 
burdens of MI mortality and hospitalizations in counties previously identified as also 
having elevated rates of stroke, diabetes, and hypertension suggest that MI preventive 
and control efforts targeted to those counties would result in reductions in MI-related 
health disparities, as well as disparities related to stroke, diabetes, and hypertension. 
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Clustering of high-risk MI hospitalization risks coupled with the lack of clustering of high 
MI mortality risks in South Central Florida likely reflects improved survival [139].  

The clustering of high MI hospitalization risks in rural counties likely reflects several 
challenges to improving cardiovascular outcomes in those counties including: financial 
constraints and long travel times due to lower government spending on infrastructural 
resources in sparsely populated areas compared to more densely-populated areas [140]; 
unavailability of high-speed broadband internet services [141,142]; lack of health 
insurance coverage [143]; and inadequate supply of primary care providers [144], 
cardiologists [80], and PCI-capable hospitals [81]. Consequently, rural counties have 
limited capacity to implement policies and programs designed to prevent and manage 
CVD [145,146]. For instance, while the burden of tobacco use is higher in rural counties 
compared to urban counties [29], tobacco cessation programs and tobacco control 
policies, such as smoke-free air laws and regulations, sales tax, raising the minimum legal 
sales age, and restricting the advertising and sale of tobacco products, have limited 
geographic coverage, with rural populations receiving lower levels of protection 
[79,82,147]. Accordingly, the prevalence of cigarette use and other CVD risk factors is 
declining more quickly among high-income urban populations than low-income rural 
populations [12,43,75,132,148]. Rural communities also tend to have lower prevalence 
of protective health-related behaviors compared to their urban counterparts [149]. Cultural 
attitudes towards seeking health care, lower literacy levels, higher unemployment rates, 
inadequate social support, and higher levels of chronic stress in rural areas may also 
increase the risk of CVD [51,150] and attenuate the effects of efforts to improve 
cardiovascular health [151,152]. Variations in exposures such as extreme cold or hot 
temperature, air pollution, and influenza vaccination may also have contributed to the 
disparities in MI hospitalization risks [153-155]. 

Potential causes for persistent clustering of high- or low MI hospitalization risks, or 
lower rates of decline in MI risks in rural counties in northern Florida during the 10-year 
study period were not investigated. However, based on similarity of the spatial patterns 
for MI risks with the geographic patterns for MI risk factors such as cigarette smoking 
[132], hypertension [156], obesity, and physical inactivity [131] in US counties over time, 
persistence in MI hospitalization risks may be related to lack of temporal changes in the 
spatial patterns for MI risk factors. Additionally, recent economic shifts in different regions 
may contribute to the lag between high- and low-risk clusters [157]. Fueled by agricultural 
and industrial growth, tourism, retiree migration, and an expanding transportation system, 
southern Florida counties have undergone rapid urbanization and economic development 
in recent years, but North Florida has not kept pace [157,158]. Further, urban counties in 
southern Florida have more resources to invest in the physical and social health 
environment due to higher levels of government spending in more densely-populated 
counties. Thus, these counties may have a greater capacity to quickly adopt new models 
of care delivery, join campaigns for MI prevention, and implement evidence-based 
primary and secondary prevention strategies. In contrast, counties in the more rural north 
tend to be chronically under resourced, which could diminish the uptake of new 
interventions [159]. Thus, cardiovascular risk has been shown to decrease in all US 
counties, but a low-income level generates latency in this trend [43]. Not coincidentally, 
we observed persistent clustering of high MI hospitalization risks in counties with 
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consistently low ranks for health factors and perisitent clustering of low MI risks in counties 
with consistently high ranks for health factors [160]. In agreement with our study, Schieb 
et al. [42] found most favorable socioeconomic and healthcare profiles for counties in 
persistently low-rate clusters of stroke hospitalizations, and least favorable profiles for 
persistently high-rate counties. Hobbs et al. [161] reported an association of clusters of 
health behaviors in Queensland adults with different socio-demographic characteristics, 
with low-risk clusters having the healthiest profile, elevated risk-clusters having a several 
unhealthy behaviors and moderate-risk clusters having some unhealthy behaviors. White 
et al. [162] described a cluster of low prevalence for hypertension, which was related to 
availability of preventive primary care [150]. 

The identification of the lone high-risk cluster in Miami-Dade County in Southeast 
Florida, though unexpected, may be attributed to high prevalence of major risk factors for 
MI including hypertension (32.6%), cholesterol (32.2%) overweight/obesity (87.2%), and 
physical inactivity (56.7%) [163]. Additionally, Miami-Dade County has large proportions 
of socioeconomically-disadvantaged Hispanic and Haitian immigrant populations 
[164,165]. Low social capital is a well-established risk factor MI [51]. Furthermore, 
utilization rates for low-cost healthcare programs for preventive care, such as the 
Federally Qualified Health Centers, are very low [165]. 

Taking MI hospitalization risk as a proxy for morbidity, our results showing 
clustering of low MI hospitalization risks in rural counties in Northwest Florida between 
2005-2010 are suggestive of low prevalence of MI in Northwest Florida during that period. 
This is inconsistent with the persistent clustering of high MI mortality risks we recently 
observed throughout most rural counties in northern Florida between 2000 and 2014 [77]. 
Therefore, the clustering of low MI hospitalization risks we observed in rural counties in 
Northwest Florida during the first six years of study does not imply lower MI morbidity 
risks for residents in those counties. Rather, they are likely indicative of higher pre-
hospital MI death risks in Northwest Florida, resulting in an under-diagnosis of MI in the 
pre-hospital setting. Factors that may lead to underuse of cardiac care services, and 
hence low MI hospitalization risks, in rural counties in Northwest Florida include lack of 
health insurance due to limited Medicaid eligibility [166,167], scarcity of cardiac 
specialists [80], lack of emergency medical services to conduct lengthy patient transport 
on a 24-hour basis [168,169], and poor availability of medical technologies such as 
broadband internet services [141]. Moreover, as is typical throughout the US [170], high-
volume PCI-capable hospitals are clustered in metropolitan and large urban areas on the 
coastline and along the major interstate highways, with 100% (n=21) of rural/nonmetro 
counties in Florida lacking a high-volume PCI center [81]. These may result in less 
frequent interaction with the healthcare system, decreasing the likelihood for diagnosing 
MI among rural residents. Additionally, mistrust of the healthcare system due to historical 
events such as the Tuskegee syphilis study [171], perceived racial bias, and 
discrimination that continues to this day may affect health care-seeking behaviors and 
lead to underuse of available services [51].  

Ironically, the transition of the low-risk cluster we identified in Northwest Florida 
between 2005-2010 into a high-risk cluster between 2011-2014 may be a reflection of 
improvements in access to, and utilization of, cardiac care due to mitigation of the above-
mentioned barriers over time, thus reducing the risk of sudden cardiac death before 
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hospitalization and increasing the likelihood for rural residents to be hospitalized when 
they experience MI [172,173]. These improvements may be attributed to the concerted 
efforts by Florida Blue Center for Rural Health Research and Policy to improve health 
care access among underserved communities in rural northern Florida. Efforts of local 
coalitions throughout Florida have also reduced logistical barriers to timely access to PCI-
based reperfusion over time, increasing the proportion of rural MI patients admitted 
directly to high volume PCI hospitals in Florida [128]. Additionally, increased awareness 
of and response to heart attack symptoms among high risk groups [174] through 
educational campaigns by federal agencies such as the CDC and nonfederal partners, 
such as the American Heart Association, may have reduced pre-hospital delays in 
seeking timely cardiac care, thereby reducing pre-hospital MI death risks [175-177]. 

Despite the encouraging modest reductions in MI hospitalization risks in both low- 
and high-risk clusters, the levelling of MI hospitalization risks in the high-risk cluster in 
Southeast Florida after an initial period of decline is concerning because it suggests that 
the Healthy People 2020 [4] target of eliminating health disparities and improving health 
for all groups by 2020 may not be reached if current trends continue. Moreover, the 
reversal of the favorable temporal trends in the high-risk clusters in North and West 
Central Florida in the latter four years of study has the potential to unravel the gains that 
have been achieved from primary and secondary prevention efforts during recent 
decades. We observed remarkably similar temporal patterns for MI mortality risks in North 
Central Florida between 2000-2014 [77]. 

The reasons for the spatiotemporal trends in MI hospitalization risks discussed 
above are not clear. However, the trends mirror the slowing in the decline of CVD risk 
factors and slowing in increase of protective factors for CVD that have been observed in 
the US. For instance, the management and control of hypertension in the 
noninstitutionalized US population improved between 1999-2006, but no improvements 
occurred from 2007 to 2010 [125]. The percentage of US adults with controlled low-
density lipoprotein cholesterol increased from 45% in 1999-2000 to 65% in 2005-2006, 
but it decreased to 64% by 2009-2010 [126]. The prevalence of sufficient physical activity 
in US counties increased from 2001 to 2009, but there was little progress between 2009 
and 2011. Moreover, the increase in level of sufficient physical activity was matched by 
an increase in prevalence of obesity in almost all counties [131]. An increase in the 
prevalence of diabetes mellitus may also have contributed to the unfavorable MI trends 
[12,75,76]. These trends in risk factor management provide circumstantial evidence that 
the unfavorable trends in MI hospitalizations risks in the high-risk counties in northern 
Florida in the latter years of study may be due to deteriorating risk factor profiles in some 
population groups. Moreover, our results showing increasing MI risks in rural counties in 
North Central and West Central Florida during the last four years of study are consistent 
with Yeh et al. [12] who showed that the growth of certain CVD risk factors, including 
obesity and diabetes mellitus, has disproportionately impacted certain geographic 
regions, particularly rural counties in Southern and Southeastern US. The great economic 
recession of 2008-2009 may also have resulted in higher unemployment rates in 
socioeconomically-disadvantaged areas than in areas with high SES, further 
exacerbating the MI burden in rural areas in Northwest and North Central Florida. Li et al. 
showed an upward trend in MI occurrences in low-income but not in the high-income in 
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Raritan Bay region, New Jersey after the onset of the 2008-2009 great recession [178]. 
More years of data and continued population-based surveillance of MI hospitalizations in 
those counties are warranted to confirm these trends. Appropriate strategies can then be 
implemented to prevent a reversal of many of the public health gains of the past decades.  
 
2.5.3 Health Disparities in High-Risk Clusters in 2013-2014 Versus 2005-2006 Time 
Periods 
 

The fact that MI hospitalization risks for high-risk clusters at the end of the study 
(2013-2014) were on par with or higher than the risks in low-risk clusters at the beginning 
of the study (2005-2006) indicates that counties in high-risk clusters would require at least 
10 additional years to achieve hospitalization risks seen in low-risk counties during the 
2013-2014 period. Delayed declines in MI hospitalization risks in high-risk clusters in the 
north may be reflective of inequities in the timing of delivery, initiation, and implementation 
of primary and secondary prevention of MI [179].  
 
2.5.4 Disease Burden of Principal versus Any MI Hospitalizations 
 

Our results showing significantly higher risks in spatial clusters of any MIs than for 
principal both at the beginning and at the end of the study period suggest that studies that 
exclude secondary MI hospitalizations may underestimate the current MI burden. In this 
study, using principal MIs only, on average, underestimated the MI burden by 13.46 
cases/10,000 persons in the 2005-2006 period, and by 10.56 cases/10,000 person in the 
2013-2014 period. Moreover, the proportion of secondary MIs increased over the study 
period. Sacks et al. [47] also reported higher disease burden for any MI compared to 
principal MI hospitalizations in a study of Fee-for-Service Medicare population aged 65 
years and older between 2002 and 2011. 
 
2.5.5 Strengths and Limitations 
 

Most recent studies of temporal trends of MI hospitalization risks in the US are 
typically limited to hospitalizations with a principal MI discharge diagnosis in select 
populations defined by age or specific socioeconomic, geographic, and racial/ethnic 
characteristic [10,11,13,18,19,38,83]. Our study included hospitalizations with principal or 
secondary MI discharge diagnoses for all noninstitutionalized Florida residents. 
Therefore, our results can be generalized to nearly all patients in Florida and in other 
southern US states with similar demographic characteristics and healthcare systems as 
Florida. Moreover, Florida’s present racial/ethnic composition, age structure, and 
healthcare challenges portend the demographic shifts and potential healthcare 
challenges anticipated for the US by 2030 [180,181]. Therefore, our findings have 
potential implications for future health care system planning for cardiac care for the rest 
of the US. 

We used MI hospitalization data collected before 2015 (9th Revision Clinical 
Modification, ICD-9-CM) because subsequent data were collected using ICD 10th 
Revision Clinical Modification (ICD-10-CM). While our data may not represent the 
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“current” MI burden in Florida, restricting our study population to the period prior to 2015 
ensured that any temporal changes in MI hospitalization risks would be due to changes 
in disease trends and not due to changes in coding practices. Moreover, using 
hospitalized cases with principal or any discharge diagnosis for MI allowed us to 
characterize the burden of MI hospitalizations more fully, and to estimate the extent to 
which principal MIs may underestimate the disease burden attributable to MI. 

The rigorous analytic methods we used enabled us to obtain a more 
accurate/realistic understanding of disparities in the MI burden in Florida. For instance, 
the use of a SaTScan window size based on the county accounting for the largest 
population in Florida instead of the default window size of 50% of the population of Florida 
reduced the false positive rate, which would result in better targeting, hence more efficient 
use of scarce resources for MI prevention and control efforts. The use of a flexible spatial 
scan statistic with a restricted likelihood ratio [182] resulted in the identification of both 
circular and irregularly-shaped clusters of MI hospitalization risks. Irregularly-shaped 
clusters would not be identified by Kulldorff’s circular spatial scan statistic, which is the 
standard method for detecting and identifying spatial clusters. All high risk clusters, 
regardless of their shape, would be of interest to public health practitioners; hence, the 
identification of non-circular clusters will reduce the false negative rate [183] and lead to 
improved control of MI. Thus, while we have confidence in the Kulldorff’s CSS statistic to 
identify the existence of specific clusters, we have less confidence that it can precisely 
identify the boundaries of each cluster. 

This study has some limitations that suggest important areas for further research. 
The first limitation arises from the ecologic study design. Although the county is the 
preferred spatial unit of analysis where public health action is being considered, the study 
design is prone to ecologic fallacy. Thus, interpretations of specific associations between 
contextual effects, such as rural residence, and MI hospitalization risks should be made 
with caution, recognizing that inferences based on aggregate data do not apply to 
comparable individual-level data [184]. Additionally, geographic analysis of the MI burden 
at the county-level does not identify within county disparities, which can be large. 
Therefore, local health planning could benefit from small-area studies at a lower spatial 
scale, such as the ZIP code, and our study may be used to guide such studies. 

Second, it was not possible to differentiate between MI hospital admissions that 
represent incident cases and those that do not. Therefore, we based MI hospitalization 
risks on number of hospital discharges rather than patients, hence the data may include 
multiple admissions for the same individual (i.e., recurrent cases) or the same event (i.e., 
transfer cases), if the person had more than one hospitalization. Additionally, the AHCA 
data do not include MI patients who did not seek care, died before hospitalization, or were 
hospitalized out of state, hence there is potential for selection bias.  

Third, we did not investigate the clinical, behavioral, sociodemographic, 
environmental, and healthcare service factors that might be associated with the 
spatiotemporal disparities in MI hospitalization risks in Florida. Therefore, follow-up 
studies will need to identify locally relevant determinants of the MI disparities to enable 
policy makers to design more effective evidence-based interventions for reducing the MI 
burden in the most disadvantaged regions. Moreover, investigations of the drivers of MI 
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risks in counties within persistent low-risk clusters may provide insights regarding the 
protective factors contributing to low MI hospitalization risks in those counties. 

Lastly, the Tango’s spatial scan statistic uses a one-tail test, hence it does not 
detect irregularly-shaped low-risk circular and non-circular clusters. The statistic needs 
further development to address this shortcoming. 
 

2.6 Conclusions 
 

In general, MI hospitalization risks decreased modestly across Florida over the 10-
year study period. However, there are pervasive spatiotemporal disparities, with rural 
counties in the Big Bend area and South Central Florida having persistently higher MI 
hospitalization risks and urban counties in southeastern and southwestern Florida having 
persistently lower risks. Moreover, counties within high-risk clusters in the north lag 
behind those within low-risk clusters in the south by at least a decade, and there are early 
signs that the temporal trends have reversed in rural counties in the Big Bend area. Thus, 
prevention and control strategies should be targeted to high-risk counties to optimize 
efficiency of interventions geared towards reducing health disparities and improving 
health for all Floridians.  
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CHAPTER 3 
GEOGRAPHIC DISPARITIES AND TEMPORAL CHANGES IN RISK OF 
DEATH FROM MYOCARDIAL INFARCTION IN FLORIDA, 2000-2014
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A version of this chapter is published online in BMC Public Health, 2019, 19:505: 
https://doi.org/10.1186/s12889-019-6850-x).  

The use of “we” in this chapter refers to co-authors Drs. Nicholas Nagle and 
Kristina W. Kintziger, Shamarial Roberson and myself. As the first author, I participated 
in study design, and performed data processing and analysis, interpretation of results and 
drafted the manuscript. All authors read and critically revised the manuscript. 
 

3.1 Abstract 
 
Background: Identifying disparities in myocardial infarction (MI) burden and assessing 
its temporal changes are critical for guiding resource allocation and policies geared 
towards reducing/eliminating health disparities. Our objectives were to: (a) investigate the 
spatial distribution and clusters of MI mortality risk in Florida; and (b) assess temporal 
changes in geographic disparities in MI mortality risks in Florida from 2000 to 2014. 
Methods: This is a retrospective ecologic study with county as the spatial unit of analysis. 
We obtained data for MI deaths occurring among Florida residents between 2000 and 
2014 from the Florida Department of Health, and calculated county-level age-adjusted MI 
mortality risks and Spatial Empirical Bayesian smoothed MI mortality risks. We used 
Kulldorff’s circular spatial scan statistics and Tango’s flexible spatial scan statistics to 
identify spatial clusters.  
Results: There was an overall decline of 48% in MI mortality risks between 2000 and 
2014. However, we found substantial, persistent disparities in MI mortality risks, with high-
risk clusters occurring primarily in rural northern counties and low-risk clusters occurring 
exclusively in urban southern counties. MI mortality risks declined in both low- and high-
risk clusters, but the latter showed more dramatic decreases during the first nine years of 
the study period. Consequently, the risk difference between the high- and low-risk clusters 
was smaller at the end than at the beginning of the study period. However, the rates of 
decline levelled off during the last six years of the study, and there are signs that the risks 
may be on an upward trend in parts of North Florida. Moreover, MI mortality risks for high-
risk clusters at the end of the study period were on par with or above those for low-risk 
clusters at the beginning of the study period. Thus, high-risk clusters lagged behind low-
risk clusters by at least 1.5 decades. 
Conclusion: Myocardial infarction mortality risks have decreased substantially during the 
last 15 years, but persistent disparities in MI mortality burden still exist across Florida. 
Efforts to reduce these disparities will need to target prevention programs to counties in 
the high-risk clusters. 
 
Key Words: myocardial infarction mortality, geographic clusters, disparities, temporal 
trend 

3.2 Background 
 

The rates of deaths from cardiovascular diseases (CVD), such as coronary heart 
disease (CHD) and myocardial infarction (MI), have decreased in the US in the last five 
decades [185]. However, CVD remain the leading cause of preventable premature deaths 
in the US, accounting for one in every four fatalities in the country [74]. MI, or heart attack, 



43 

contributes significantly to this burden, with approximately 14% of the 790,000 people 
who experience an MI in the US each year dying from it [1]. 

Cardiovascular diseases also represent a serious economic burden to the US 
healthcare system, constituting 17% of national health expenditures in 2014 [1], with MI 
being the most expensive condition to treat [186]. The burden of MI is particularly high in 
the southeastern US states, including Florida, where 5% and 12% of the adult and elderly 
(≥65 years) populations, respectively, reported a history of acute MI in 2014 [187]. 
Moreover, the increase in mean age of the population coupled with an upsurge in risks of 
obesity and type 2 diabetes [74] are expected to exacerbate the burden of MI and 
increase its public health and economic costs [9].  

Consistent with the trends seen nationally [185], an overall decline in MI/ischemic 
heart disease mortality risks has been observed in Florida [5,41]. However, it has been 
shown that population subgroups defined by geography and other factors may show 
widening disparities in cardiovascular health, despite reductions in overall CVD mortality 
risks [188]. Additionally, previous studies showing geographic disparities of MI mortality 
risks at county- [39] and census tract-levels [60,62], suggest that geographic hotspots of 
MI mortality risks may exist in Florida. Therefore, it is strategically advantageous to 
identify populations with high MI burdens and investigate how the MI burdens change 
over time to guide control programs geared towards reducing/eliminating disparities and 
improving population health. Moreover, understanding how MI burdens change over time 
may reveal the effectiveness of intervention programs and can be used to guide policy 
decisions and resource allocation. Unfortunately, no rigorous population-level studies 
have been conducted to determine if the decreases in MI mortality risks have occurred 
equitably across all communities in the state. Therefore, our objectives were to: (a) 
investigate the spatial distribution and clusters of MI mortality risk in Florida; and (b) 
assess temporal changes in geographic disparities in MI mortality risks in Florida from 
2000 to 2014.  
 

3.3 Methods 
 
3.3.1 Study Design and Study Population 
 

This is a retrospective ecologic study using Florida MI mortality data for the period 
January 1, 2005, to December 31, 2014. The study population included all deceased 
Florida residents whose underlying cause of death was listed as MI, according to the 
International Classification of Diseases, tenth revision: ICD-10 Code(s): I21 (acute 
myocardial infarction) and I22 (subsequent myocardial infarction). The variables of 
interest included age, county of residence, and year of death. We used the county as the 
geographic unit of analysis. 
 
3.3.2 Data Sources and Data Preparation 
 

We obtained county-level MI mortality data for the age-groups 0-34, 35-44, 45-54, 
55-64 and ≥65 year-olds covering the 2000-2014 time period from the Florida Department 
of Health (DOH) website [5]. Due to a small number of deaths (<25 events) in some 
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counties, DOH routinely pools age-specific MI death counts by three-year intervals to help 
stabilize death risks and to maintain patient anonymity and confidentiality.  

We also obtained county-level annual population estimates for age categories 
matching the MI mortality data (i.e., 0-34, 35-44, 45-54, 55-64 and ≥65 year-olds) from 
DOH [88] and used this as denominator data for calculating age-specific mortality risks. 
We downloaded county-level cartographic boundary shape files for all cartographic 
displays from the US Census Bureau website [92]. 
 
3.3.3 Descriptive Statistics 
 

MI mortality risks per 100,000 population were calculated and directly age-
standardized to the 2000 US Standard Population [89] in SAS v.9.4 (SAS Institute; Cary, 
NC). Despite pooling death counts by three-year intervals to address the small number 
problem, a number of rural counties still had <25 MI deaths. According to Curtin and Klien 
[189], such areas are considered small areas; hence, unsmoothed age-adjusted risks 
from these areas would be highly unstable due to high variances. Therefore, to minimize 
the impact of the high variances and adjust for spatial autocorrelation (i.e., clustering), we 
computed Spatial Empirical Bayes (SEB) smoothed risks using 1st order queen weights 
in GeoDa [190]. All descriptive analyses were done in SAS v.9.4 (SAS Institute; Cary, 
NC). 
 
3.3.4 Investigation of Spatial Clusters 
 

We investigated circular spatial clusters of high MI mortality risks using Kulldorff’s 
circular spatial scan statistics (CSSS) implemented in FleXScan v 3.1.2 software, using 
age-adjusted MI mortality counts and a Poisson probability model specifying restricted 
likelihood ratio test (RLRT) to preclude absorption of counties with non-elevated risks into 
high-risk clusters [95]. We specified an alpha of 0.2 [96] and a maximum spatial cluster 
size of 34 counties, which corresponds to about half the number of counties in Florida. 
Additionally, we identified non-circular spatial clusters using Tango’s flexible spatial scan 
statistics (FSSS) specifying a Poisson probability model again with a RLRT [182], an 
alpha of 0.2 and 34 counties as the maximum spatial cluster size. The FSSS generates 
irregularly shaped windows and is well-suited for irregularly shaped areas such as along 
Florida’s rivers, lakes, and coastline. Clusters occurring in such areas would not be 
detected by the CSSS. We computed the mortality risks in significant (p < 0.05) clusters 
as the product of standardized mortality ratios and the crude MI mortality risk for Florida. 

We investigated circular spatial clusters of low MI mortality risks using CSSS, 
implemented in SaTScan v 8.0 software. We used a discrete Poisson probability model 
while adjusting for age as a confounder and specifying non-overlapping, circular, purely 
spatial clusters of low risks. A maximum window size of 13.4% of Florida’s population was 
used. This choice was based on the population of the largest county (Miami-Dade) to 
ensure that every county had a chance of being a cluster, while also minimizing the 
chance of identifying unrealistically large clusters that could comprise counties with high 
and/or non-elevated risks. Statistical inference was based on likelihood ratio test (LRT), 
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and the p-value was obtained through 999 Monte Carlo replications. Statistical 
significance was assessed at an alpha of 0.05. 
 
3.3.5 Cartographic Display 
 

We used ArcGIS Version 10.3.1 (ESRI, 2010) to perform all GIS manipulations, 
and to display all significant biologically meaningful clusters. Jenk’s optimization 
classification scheme was used to determine the intervals for displaying SEB risks as 
choropleth maps. According to Prates et al. [98], spatial scan statistics has low power to 
detect clusters in low population density areas. Consequently, the relative risks (RR) for 
the spatial scan statistic may have an upward (for high-risk clusters) or downward (for low 
risk-clusters) bias, particularly when the population at risk is small. Accordingly, sparsely 
populated rural areas require a high RR to accurately detect the correct high-risk cluster, 
and a low RR to correctly detect low-risk cluster. Therefore, we considered significant 
high-risk clusters identified in rural and urban counties to be meaningful if the RR value 
was ≥1.3 and ≥1.2, respectively. On the other hand, we considered significant low-risk 
clusters identified in rural and urban counties to be meaningful if the RR value was ≤ 0.7 
and ≤ 0.8, respectively. 
 
3.3.6 Temporal Changes 
 

We plotted mortality risks against time to examine the temporal trends, and 
calculated percentage change in mortality risks during the study period by computing the 
difference between the 2000 and 2014 risks and dividing the result by the 2000 risk. We 
assessed spatial disparities in MI mortality risks by comparing the magnitude of excess 
risks (i.e. the risk difference) in high-risk clusters at the beginning and at the end of the 
study, using the low-risk cluster with the lowest MI mortality risks as the baseline. 
 

3.4 Results 
 
3.4.1 Age-adjusted Risks  
 

There were 58,198 MI deaths in Florida between 2000 and 2014. The overall 
annual age-adjusted MI mortality risks were 55.5 (2000-2002), 43.8 (2003-2005), 33.1 
(2006-2008), 29.8 (2009-2011), and 28.1 (2012-2014) deaths/100,000 population over 
the study period. This represented an overall decrease of 48% in MI mortality risks during 
the period of interest. 
 
3.4.2 Spatial Patterns 
 
3.4.2.1 Sex and Age Adjusted Risks 
 

The temporal changes in geographic distribution of SEB risks are shown in Figure 
3.1. The risks declined during the study period and ranged from 28.1-149.6 
deaths/100,000 population at the beginning of the study to 17.7-56.7 deaths/100,000 
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population at the end of the study. Although the risks decreased throughout the state 
during the study period, counties in the north had consistently higher MI mortality risks 
than those in the south. There was also a clear urban-rural divide, with the rural north 
having the highest risks and the urban south having the lowest risks throughout the study 
period. Moreover, the proportion of northern counties in the two highest quintiles 
increased from 16% in 2000-2002 to 36% in 2012-2014. No such changes were visible in 
the south. 
 
3.4.2.2 Kulldorff’s Circular Spatial Clusters (CSSS) 
 

Figures 3.2 and 3.3 show the geographic distribution circular spatial clusters of 
high and low MI mortality risks. Consistent with the visual patterns of SEB smoothed risks 
(Figure 3.1), the Kulldorff’s CSSS identified large clusters of high MI mortality risks 
predominantly in the north (Figure 3.2) and large low-risk clusters predominantly in South 
Florida (Figure 3.3). A total of 6-11 high-risk clusters were identified during each of the 
three-year time intervals between 2000 and 2014. The largest high-risk clusters were 
located in northwest and north central parts of Florida (Figure 3.2), which are 
predominantly rural (Figure 3.4) based on the Florida Department of Health Office of Rural 
Health definition of rural areas (i.e. population density < 100 people/sq. mile) [191]. Smaller 
high-risk clusters were identified in Central, West Central, Northeast, and Southeast 
Florida, with the urban high-risk cluster in Miami-Dade County being the most prominent 
(Figure 3.2). A total of 3-6 low-risk clusters, were identified. Large low-risk clusters were 
located mostly in urban counties in the southeast and southwest (Figures 3.2 and 3.3). A 
few smaller clusters were identified in Northwest, Northeast, Central, and West Central 
Florida. 

Figures 3.2 and 3.3 also show that 4-5 high-risk clusters and 2 low-risk clusters 
persisted throughout the study period. Clusters with persistently high mortality risks were 
located in the Northwest, North Central, and Southeast Florida. Counties that persisted 
in the high-risk clusters in the northwest included Holmes, Jackson, and Washington 
counties. Walton County was part of that cluster in all the three-year time intervals with 
the exception of the 2006-2008 period. Two persistent high-risk clusters were identified 
in North Central Florida. The larger cluster comprised Columbia, Dixie, Gilchrist, 
Hamilton, and Suwannee counties, and the smaller cluster comprised Citrus and Levy 
counties. The Miami-Dade cluster also persisted throughout the study period. Counties 
that persisted in the low-risk cluster in Southeast Florida included Indian River, St. Lucie, 
Martin, and Palm Beach. Collier, Hendry, and Lee counties persisted in the low-risk 
cluster in Southwest Florida. 

Substantial changes in cluster status occurred in North and Central Florida, with 
several counties that were not a part of any cluster at the beginning of the study 
transitioning to high-risk clusters by the end of the study. These included Calhoun, Duval, 
Escambia, Gulf, Lafayette, Madison, Nassau, Okaloosa, and Wakulla counties in North 
Florida and Lake, Okeechobee, and Volusia counties in Central Florida. The opposite 
trend was also observed, where some counties in Central (Brevard, Osceola, and Sumter) 
and Southeast Florida (Broward) transitioned from high-risk clusters at the beginning to 
not being part of any cluster at the end of the study. Transitions of counties to low-risk  
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Figure 3.1. County-level age-adjusted Spatial Empirical Bayes smoothed myocardial infarction mortality risks in 
Florida, 2000-2014. 
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clusters were less frequent, with only Seminole County in Central Florida transitioning 
from a high- to low-risk cluster, and Charlotte, DeSoto, Glades, and Sarasota counties in 
Southwest Florida transitioning from no-cluster to low-risk cluster. The lone low-risk 
cluster identified in Northwest Florida in Bay County in the 2000-2002 period transitioned 
to a high-risk cluster by the 2012-2014 period. 

There were considerable variations in RRs among the clusters, ranging from 1.2 
to 2.4 among the high-risk clusters, and from 0.5 to 0.8 among low-risk clusters. 
 
3.4.2.3 Tango’s Circular and Non-circular Spatial Clusters (FSSS) 
 

The geographic distributions of high-risk circular and non-circular clusters 
identified using Tango’s flexible spatial scan statistics are presented in Figure 3.5. While 
the location of clusters and the general patterns of clustering of MI risks identified using 
Tango’s FSSS (Figure 3.5) mirrored those of clusters identified using Kulldorff’s CSSS 
(Figure 3.2), fewer clusters were identified using FSSS (3-5 clusters) than CSSS (6-11 
clusters). The FSSS also resulted in larger clusters, often comprising all counties 
identified using CSSS plus additional counties. The RRs among clusters identified using 
FSSS were lower than those identified using CSSS (Figure 3.5). 
 
3.4.3 Temporal Changes 
 

The temporal changes in MI mortality risks among persistent CSSS clusters are 
shown in Figure 3.6. Overall, MI mortality risks decreased by 48%, which is equivalent to 
an average rate of decline of 3.2%/year. MI mortality risks decreased more rapidly 
(4.1%/year) between 2000 and 2008, after which (2009-2014) they decreased by a 
meagre 0.8%/year. 

Declines in MI mortality risks showed considerable variation among clusters and 
ranged from 35% to 42% in low-risk clusters and from 30% to 61% in high-risk clusters. 
This resulted in average rates of decline of 2.3-2.8%/year and 2.0-4.1% per year in low- 
and high-risk clusters, respectively. It is interesting to note that mortality risks in the high-
risk cluster in North Central Florida decreased at a lower rate (2.0%/year) than in the two 
low-risk clusters (2.3%-2.8%). Similar to the temporal pattern observed for the entire, 
state, there were more dramatic declines in mortality risks in both high- (2.7-4.6%/year) 
and low-risk (2.3-4.3%/year) clusters during the first nine years of the study. Thereafter, 
the rates of decline slowed to 0.4-2.3%/year, with the high-risk cluster in North Central 
Florida showing the slowest rate of decline despite having the highest MI mortality risk. 
The patterns of temporal changes in MI mortality risks in high-risk circular and non-circular 
FSSS clusters that persisted during the study period (Figure 3.6) are generally similar to 
the patterns observed for high-risk CSSS circular clusters. The largest decline occurred 
in the high-risk cluster in Northwest Florida (59%), followed by the high-risk cluster in 
Southeast Florida (51%) and then the high-risk cluster in North Central Florida (42%). As 
with CSSS clusters, MI mortality risks decreased rapidly during the first nine years of the 
study, after which they declined at a substantially lower rate. There are early signs that 
MI mortality risks in the high-risk cluster in North Central Florida could be on an upward 
trend.   
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Figure 3.2. Spatial circular clusters of high myocardial infarction mortality risks in 
Florida, 2000-2014.  
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Figure 3.3. Spatial circular clusters of low myocardial infarction mortality risks in 
Florida, 2000-2014.  
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Figure 3.4. Florida counties and their rural/urban classification based on Florida 
Department of Health Office of Rural Health definition of rural county. 
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Figure 3.5. Circular and non-circular spatial clusters of high myocardial infarction 
mortality risks in Florida, 2000-2014. 
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Figure 3.6. Changes in annual myocardial infarction mortality risks in persistent high- and low-risk (i) Kulldorff’s 
circular and (ii) Tango’s circular and non-circular spatial clusters, Florida 2000-2014. 
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Generally, MI mortality risks decreased more rapidly in high- than in low-risk 
clusters during the early portion of the study (2000-2008), and at a similar rate in both 
high- and low-risk clusters thereafter (2009-2014). This resulted in lower disparities in MI 
mortality risks between high- and low-risk clusters at the end than at the beginning of the 
study period (Figure 3.6). For instance, the risk difference (RD) between the high-risk 
cluster in Northwest Florida and the referent low-risk cluster in the Southwest Florida 
decreased by 73% from 92.9 deaths/100,000 persons in 2000-2002 to 25.5 
deaths/100,000 persons in 2012-2014. The RD between the high-risk cluster in Southeast 
Florida and the referent low-risk cluster showed a relatively similar reduction, decreasing 
by 65% from 63 deaths/100,000 persons at the beginning of the study to 22.1 
deaths/100,000 persons at the end of the study. The RD between the high-risk cluster in 
North Central Florida and the low-risk cluster in Southwest Florida decreased by 26% 
from 64.8 deaths/100,000 persons at the beginning of the study period to 47.7 
deaths/100,000 persons at the end the study.  

In spite of the impressive declines, annual MI mortality risks for the high-risk 
clusters in Northwest and Southeast Florida at the end of the study period (47.4-50.8 
deaths/100,000 persons) were at par with mortality risks observed in the low-risk clusters 
at the beginning of the study period (39.0-54.5 deaths/100,000 persons). This implies that 
MI mortality risks for counties in high-risk clusters lagged behind those for counties in low-
risk clusters by 1.5 decades. Moreover, the annual MI mortality risk observed in the high-
risk cluster in North Central Florida at the end of the study period (73 deaths/100,000 
persons) was substantially higher than the risk for the referent low-risk clusters (39 
deaths/100,000 persons) at the beginning of the study period. Thus, counties in the high-
risk cluster in North Central Florida lagged behind counties in the low-risk clusters by over 
1.5 decades. 
 

3.5 Discussion 
 

We investigated geographic distribution and spatial clusters of MI mortality risks in 
Florida over a period of 15 years. We also identified communities with consistently high 
MI burden over the study period. Study findings will be useful for guiding resource 
allocation for intervention programs. Florida has a racially and ethnically diverse 
population with large proportions of minority, immigrant, and elderly populations; hence, 
it foreshadows the demographic structure projected for the US population by the year 
2030 [192]. Therefore, Florida’s strategy to address the high MI burden will not only be 
critical to Florida’s future, but it will be instructive for the rest of the US. 

Similar to other studies using county-level data to assess cardiovascular mortality 
disparities across the US [39,41], this study found disparities in the burden of MI across 
Florida, with the north having the highest mortality risks while the south had the lowest 
risks. This is consistent with the shift in the concentration of counties with high rates of 
heart disease-related mortality from Northeastern US to socioeconomically 
disadvantaged areas in the Deep South that was observed by Casper et al. [39] over a 
40-year period. 

The identification of high-risk clusters mainly in rural north and low-risk clusters 
almost exclusively in urban south suggests that different segments of Florida’s population 
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have not benefitted equitably from preventive and treatment efforts. Moreover, these 
findings mirror those of stroke mortality risks in Florida between 1992 and 2012 [78]. Other 
studies have also reported disparities in MI/heart disease-related mortality risks in 
southeastern US based on rurality. For instance, Casper et al. [39] also identified a large 
persistent low-rate cluster of heart disease mortality in urban counties in southern Florida 
and 1-2 high-rate clusters in the rural north between 1972 and 2010. Roth et al. [41], also 
reported clustering of low risks of CVD and ischemic heart disease mortality in South 
Florida counties and clustering of high risks in North Florida counties in 2014. Odoi and 
Busigye [60] reported higher MI-mortality risks in rural than in urban neighborhoods in 
middle Tennessee. Higher mortality rates for CHD, the principal cause for MI, have also 
been reported for rural/non-metro areas compared to urban/metro areas in southern US 
[193]. By contrast, Pedigo et al. [62] reported higher odds of urban and suburban 
neighborhoods being in a high-risk cluster than rural neighborhoods.  

We did not investigate the determinants of the identified geographic disparities. 
However, based on findings from previous studies, the disparities may be associated with 
disparities in distribution of MI risk factors and access to preventive and treatment 
services. For instance, rural communities generally have lower prevalence of physical 
activity [194] and good dietary habits [195] compared to urban populations. Moreover, 
increased mechanization and automation of farm work has reduced the amount of 
physically demanding occupations in rural areas [196], making rural lifestyle more 
sedentary [197]. These contribute to higher risks of obesity, hypertension and diabetes, 
which lead to higher MI-mortality risks in rural than urban areas. By contrast, the 
prevalence of nonsmoking, normal body weight, and physical activity, etc., are higher in 
urban than rural counties in US [149]. 

Most North Florida counties are rural, sparsely populated, medically underserved 
[198,199], and have low rates of health insurance coverage [200]. Since health funding 
is allocated based on population, rural counties tend to have limited resources for 
adequate prevention and management of CVD and its risk factors [201]. The distribution 
of health workforce is also geographically skewed, with rural counties having inadequate 
supply of general practitioners [202] and cardiac specialist [80]. Moreover, cardiac centers 
tend to be clustered in urban centers [170], leading to long travel times and poor MI 
outcomes.  

Socioeconomic status (SES) is one of the most reliable predictors of 
cardiovascular health disparities, with people of low SES experiencing higher mortality 
from MI and other cardiovascular health outcome [66]. Clustering of CVD risk factors has 
been reported among US residents with low SES [203]. Socioeconomic status may also 
contribute to disparities in MI mortality risks by shaping exposure to unhealthy behaviors 
during childhood [204]. Since a majority of counties in North Florida have poor 
socioeconomic conditions [205], it is likely that lower SES for rural residents made them 
less likely to adopt and, therefore, benefit from improvements in prevention and control 
programs for MI [206], contributing to higher MI mortality risks in rural areas.  

The composition of the populations in the different geographic regions is an 
important factor that may have also contributed to the disparities in MI mortality risks. 
North Florida has a higher proportion of African Americans than the rest of Florida [207]. 
African Americans tend to have higher burdens of MI [208] because they are less likely 
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to receive certain cardiovascular interventions than Whites [209] and as a result of 
stressors associated with systematic segregation in socioeconomically deprived 
neighborhoods during critical life stages [210]. In addition to traditional MI risk factors, 
environmental exposures such as higher, more variable temperatures in the north than 
the south [211], may have contributed to higher MI mortality risks in the north [212]. 

The identification of the lone high-risk cluster in Miami-Dade County was surprising 
because, unlike other persistent high-risk clusters, it occurred in an urban county with a 
relatively younger population compared to Florida. Additionally, unlike the other persistent 
high-risk clusters, the Miami-Dade cluster was not identified in earlier county-level studies 
investigating geographic disparities in heart disease [39] and ischemic heart disease [41] 
in the US. However, the county has a high prevalence of other major risk factors for MI 
including hypertension (32.6%), high blood cholesterol (32.2%) overweight/obesity 
(87.2%), and physical inactivity (56.7%) [163]. Additionally, Miami-Dade County has a 
high proportion of socioeconomically-disadvantaged, immigrant, minority, 
uninsured/underinsured population [165]. However, despite the high prevalence of MI risk 
factors and high under/uninsured rates, utilization rates for low-cost health care programs, 
such as the Federally Qualified Health Centers, are very low [165]. Therefore, low levels 
of utilization healthcare services and poorer control of hypertension and other modifiable 
risk factors for MI may also explain the presence of this cluster. 

The reasons for the persistence of some counties in high- or low-risk clusters 
throughout the 15-year study period are not clear. However, persistence may be reflective 
of a lack of temporal changes in the geographic patterns for MI risk factors such as 
prevalence of cigarette smoking [132], hypertension [156], obesity, physical inactivity 
[131], and socioeconomic factors [213] reported in US counties.  

The observed declines in MI mortality risks during the study period imply that 
population-wide preventive and control efforts to reduce the MI burden have had positive 
impacts across Florida [23]. These findings are consistent with those of other studies in 
the US that have shown steady declines in overall MI/CHD-related deaths at the national 
[21] and regional levels [22]. That a reduction in the prevalence of major risk factors 
contributed to reduced MI mortality risks in Florida was partly corroborated by a study that 
reported an 8.8% reduction in MI mortality rates in the state in 2004 following the 
implementation of the smoke-free ordinance in 2003. Three years prior to the ordinance, 
the rates declined at only 6.4% per year [214]. However, persistent clustering of MI-
mortality risks, coupled with differences in rates of declines among clusters and over time 
indicate that geographic disparities still exist. 

Disparities in geographic patterns and magnitude of rates of declines in MI 
mortality risks suggest that factors influencing the rates of MI mortality decline are not 
equitable across the state. According to Phelan et al. [206], the differential rates of decline 
in MI mortality risks among clusters may be related to disparities in access to social 
resources that influence adoption and/or the ability to benefit from improvements in MI 
prevention and control strategies. 

The observed decline in MI mortality risks represents remarkable progress in 
reducing the burden of MI across Florida and is encouraging. However, in light of the fact 
that elimination of health disparities is one of the goals of the Healthy People 2020 
national public health agenda [4], the levelling off of rates of declines from 2009-2014 is 
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concerning. Thus, the goal of reducing CVD deaths by 20% by 2020 appears elusive. It 
is interesting to note that these results mirror the recent temporal trends reported for heart 
disease deaths in the US. For instance, Ma et al. [215] reported an annual rate of decline 
of heart disease deaths of 3.9% from 2000-2010, and a much slower annual rate of 1.4% 
from 2010-2013. Sidney et al. [216] reported annual rates of decline of CVD mortality of 
3.8% and 0.7% between 2000-2011 and 2011-2014, respectively. Cardiovascular 
disease death rates decreased at an average of 3.7% per year between 2000 and 2011 
and at less than 1%/year between 2012 and 2014, after which the rates actually increased 
by 1% in 2015 [186]. A deceleration in decrease in CHD mortality rates in the US was 
also reported between 2012-2015 [24]. These changes in the trajectory of MI and heart 
disease burden may be due to slowed progression in the favorable trends of MI prevention 
and/or treatment, coupled with an aging population and dramatic increases in the risks of 
obesity, hypertension, and diabetes mellitus over the past 25 years [74]. Capewell et al. 
[217] showed that improvements in survival among CHD patients in the US associated 
with decreases in the prevalence of CHD risk factors in the wider population were partially 
offset by increases in the prevalence of obesity and diabetes.  
 The fact that MI mortality risks for high-risk clusters at the end of the study (2012-
2014) were at par with, or higher than the risks in low-risk clusters at the beginning of the 
study (2000-2002 period) indicates that counties in high-risk clusters lagged behind those 
in low-risk clusters in the south by at least 1.5 decades in reducing MI-mortality risks. 
Assuming a continuing downward trend, this implies that high-risk counties would require 
at least 15 additional years to achieve mortality risks seen in low-risk counties during the 
2012-2014 period.  
 

3.6 Strengths and Limitations 
 

This study uses novel analytic methods to obtain a more complete understanding 
of disparities in the MI burden in Florida. Using SEBs age-adjusted MI mortality risks 
allows for adjustments for county-level sample size resulting in more stable estimates of 
MI mortality risks. The use of a FSSS with a restricted likelihood ratio [182] results in the 
detection of both circular and non-circular clusters. Non-circular clusters would otherwise 
not be detected by the more common and widely used CSSS. Thus, use of FSSS reduces 
false negatives in cluster identification [183], and hence potentially results in better 
targeting of control efforts. Additionally, using a restricted log likelihood ratio test instead 
of log likelihood ratio limited the number of false positives, which also results in better 
targeting of preventive and control efforts. 

This study is not without limitations. First, we chose to study counties rather than 
smaller geographic areas such as ZIP codes because the county is the smallest 
geographic area for which annual population estimates are available from the Florida 
Legislature’s Office of Economic and Demographic Research. The county is also more 
relevant to policy action steps. However, the choice of the county as the sampling unit 
means that study design is prone to ecologic fallacy. Thus, study findings need to be 
interpreted with caution, ensuring that all causal inferences are made at the county level 
and not at the individual level. Additionally, counties are heterogenous with respect to 
geographic, socio-demographic, and environmental factors, hence summarizing the data 
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by county may have masked intra-county disparities in MI mortality risks, which could be 
large [218]. Therefore, local health planning could benefit from analyses at lower 
geographic units such as 5-digit zip code or Census tracts or blocks, and this study may 
be used to guide future small-area studies. 

Second, there is potential for geographic variation in diagnosis and reporting of MI 
as the underlying cause of death, which could lead to misclassification bias [219]. Third, 
the study did not capture the full burden of MI mortality in Florida, since the analysis was 
limited to Florida residents, as denominator data were not available to estimate the non-
resident population.  

Fourth, the study did not investigate the determinants of the observed 
spatiotemporal disparities in MI-mortality risks. Therefore, follow-up studies will need to 
identify those factors especially in the high-risk clusters, and to investigate the drivers of 
the worrisome trends reflecting a stagnation or even a decrease in rates of decline in MI 
mortality risks in parts of North Florida. Identification of these determinants would provide 
crucial information for planning and guiding future health policy and control programs for 
MI and other CVD with similar risk factors as MI. Moreover, investigations of counties 
within low-risk clusters may provide insights regarding the protective factors contributing 
to lower than expected MI mortality risks in those counties. 

Fifth, due to rapidly changing demographic trends including population aging, 
changes in racial and ethnic composition of the population, shifts in household and family 
structures, and rapid population growth, the study results may not accurately reflect the 
current reality in the State of Florida. Unfortunately, the most current MI mortality data 
were not available when the study was initiated. 

Lastly, the use of the likelihood ratio test to identify low-risk clusters may have 
resulted in clusters with higher relative risks than would otherwise be obtained with the 
restricted likelihood ratio test. This implies that the disparities in MI mortality risks between 
high- and low-risk clusters could actually be larger than estimated. The methodology for 
detecting circular and non-circular spatial clusters within the FleXScan software needs 
further development to mitigate this limitation.  
 

3.7 Conclusions 
 

There was substantial progress in reducing the overall MI burden and disparities 
in MI mortality risks in Florida over time. However, there are persistent geographical 
disparities, with high-risk clusters occurring primarily in rural northern counties and low-
risk clusters occurring exclusively in urban southern counties. Moreover, the reduction in 
MI death risks in the north lagged behind that in the south by at least 1.5 decades. Since 
counties within high-risk clusters account for a sizeable proportion of the total population 
in Florida, prevention and control strategies should be targeted to those counties to 
maximize efficiency and effectiveness of interventions geared towards reducing health 
disparities and improving health for all Floridians. Moreover, MI shares similar risk factors 
with other CVD such as stroke; hence, these health conditions tend to have similar 
geographic distribution. Thus, public efforts targeting those counties we identified as 
having persistently high MI risks would address not only MI disparities but also stroke and 
several of their risk factors such as diabetes, high blood pressure, etc. It is critical that 
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planning and public health programs need to be guided by empirical evidence such as 
findings from this study so as to better address issues of health inequity and improve 
health for all.  
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CHAPTER 4 
SOCIODEMOGRAPHIC DETERMINANTS OF ACUTE MYOCARDIAL 

INFARCTION HOSPITALIZATION RISKS IN FLORIDA 
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A version of this chapter was revised and re-submitted to the Journal of American 
Heart Association on November 7, 2019, and is currently under the second round of 
review. The abstract is also published in Circulation and is available in: Circulation. Vol 
139, Issue Suppl_1: AP208 https://doi.org/10.1161/circ.139.suppl_1.P208. 
 

The use of “we” in this chapter refers to Drs. Nicholas Nagle, Russell Zaretzki and 
Kristina Kintziger, Melissa Jordan, Chris Duclos, and myself. As the first author, I 
participated in study design, and performed statistical analyses, interpreted the results 
and drafted the manuscript. Dr. Kintziger also helped with study design. All authors 
critically reviewed the study design and analysis plans, as well as the manuscript and 
provided helpful feedback. 
 

4.1 Abstract 
 
Background: Identifying determinants of myocardial infarction (MI) risks is crucial for 
guiding efforts to reduce MI disparities. Therefore, our objectives were to identify 
sociodemographic determinants of MI hospitalization risks and to assess if the impacts of 
these determinants vary by geographic location in Florida.  
Methods: We obtained data for principal and secondary MI hospitalizations that occurred 
among Florida residents between 2005 and 2014 from the Florida Department of Health, 
and calculated county-level age-and sex-adjusted MI hospitalization risks. We used a 
multivariable global negative binomial model to identify sociodemographic determinants 
of MI hospitalization risks, and then used a local geographically weighted negative 
binomial model to assess if regression coefficients vary by geographical location.  
Results: MI hospitalization risks were significantly greater in counties with high 
proportions of residents with less than high school education level (p<0.0001) and 
divorced residents (p=0.018). However, they were significantly lower in counties with high 
proportions of rural (p<0.0001), African American (p=0.032), and uninsured residents 
(p=0.040). The regression coefficients for proportions of uninsured residents and 
population with less than high school education level varied geographically, with the 
strongest associations occurring in southern Florida counties.  
Conclusions: Race, marital status, education level, rural residence, and lack of health 
insurance were significant determinants of MI hospitalization risks, but the impacts of 
education level and lack of health insurance were stronger in southern Florida. Thus, 
policies and interventions for reducing MI morbidity and improving access to MI care in 
Florida need to consider social contexts and allocate resources based on empirical 
evidence from global and local models to maximize their efficiency and effectiveness. 
Key Words: myocardial infarction, hospitalization risks, socioeconomic determinants, 
geographically weighted regression. 
 

4.2 Background 
 

Cardiovascular disease (CVD) is the leading cause of morbidity in the US [1]. 
Acute myocardial infarction (MI), or heart attack, contributes significantly to this burden, 
particularly in southeastern US [26,220], such as Florida, where 6.0 and 12% of the state’s 
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adult and older adult (over 65 years old) populations, respectively, reported a history of 
acute MI in 2018 [130,187]. By comparison, 5% of the US adult population reported a 
history of acute MI in 2018 [48,130,221]. 

Past MI prevention and treatment efforts have resulted in substantial reductions in 
the overall burden of MI hospitalizations among various population groups across the US 
[12,17-19,38]. In Florida, age-adjusted MI hospitalization risks decreased by 33% 
between 2000 and 2014 [222]. However, these declines may overstate the success of 
preventive and control efforts in reducing the burden of MI morbidity, since the analyses 
did not consider cases where MI was coded as secondary discharge diagnosis [47]. It is 
useful to know the extent of morbidity attributable to MI, regardless of whether it is the 
primary or secondary cause of hospitalization. 

Mounting evidence from ecologic studies indicate that the prevalence of area-level 
socioeconomic determinants of health (SDoH) can affect the types of exposures and/or 
access to healthcare that one experiences, and hence the risk of MI in a given population 
[223,224]. According to Bookse et al. [67], SDoH are responsible for shaping 40% of the 
health of a population, and they also strongly influence health behaviors, the second 
greatest contributor to health and longevity. Therefore, SDoH are fundamental drivers of 
persistent health disparities, and are the underlying causes of geographic disparities in 
MI prevention and treatment [26]. Accordingly, it has been suggested that identifying and 
dealing with SDoH offers the greatest opportunities for reducing morbidity, deaths and 
disability from MI and other CVD, and achieving lasting improvements in population health 
at the lowest cost [223]. Therefore, identifying specific SDoH predictors of MI 
hospitalizations may provide clues regarding the distal causes of MI and aid in the 
development of evidence-based strategies for MI prevention leading to reduced health 
disparities and improved population health. 

Studies of associations of health events and SDoH factors are traditionally 
performed using aspatial global models that implicitly assume constant effects of 
explanatory variables across the study area. As such, they estimate a single coefficient 
for each explanatory variable averaged over the entire study area. However, a number of 
studies have shown that the influence of SDoH factors on the risks of cardiovascular 
health outcomes [60,225,226] vary by geographic location. Therefore, it is highly unlikely 
that associations between MI hospitalization risks and SDoH factors would be realistically 
reflected by global models. Rather, due to substantial local variations in the 
sociodemographic characteristics of the population in Florida, it is more plausible for the 
influence of SDoH factors to vary geographically, with some factors being more important 
determinants of MI hospitalization risks at certain locations but less important at other 
locations [70]. Therefore, identifying the most important determinants of MI hospitalization 
risks for different geographic areas may aid in the development of location-specific 
strategies for MI prevention, which is critical for efficient allocation of scarce resources. 
Therefore, the objectives of this study were to identify sociodemographic determinants of 
disparities in MI hospitalization risks and to assess if the effect of these determinants vary 
by geographic location in Florida.  
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4.3 Methods  
 
4.3.1 Study Design and Population 
 

This was a retrospective ecologic study using Florida MI hospitalization data for 
the period January 1, 2005, to December 31, 2014. The study population included all 
Florida residents with in-patient hospitalizations admitted with any MI discharge diagnosis 
(i.e., principal or a secondary) International Classification of Diseases, ninth revision (ICD-
9-CM) diagnostic code 410, but it did not include Veterans Affairs, Indian Health Services, 
prison populations, or state-owned facilities. 
 
4.3.2 Data Sources and Data Preparation 
 
4.3.2.1 Hospital Discharge Data 
 

Individual-level MI hospitalization data, collected by the Florida Agency for Health 
Care Administration (AHCA), were obtained from the Florida Department of Health 
(DOH). We extracted the following variables: admission date, discharge date, primary 
diagnosis and up to 30 secondary diagnoses to enable extraction of cases with a 
secondary MI diagnosis, patient age, sex, race/ethnicity, and county of residence. We 
used the county as the geographic unit of analysis.  

The MI data for Florida and each county were aggregated by sex and age (i.e., 0-
34, 35-44, 45-54, 55-64 and ≥65 years) for each year and for the entire 10-year study 
period, respectively. These data were used as numerator data for calculating both sex- 
and age-specific MI hospitalization risks and for risk-adjustment. To assess seasonal 
trends, the state-level MI data for each year were also aggregated by season and year. 
 
4.3.2.2 Population Data 
 

We downloaded annual population estimates by sex, race/ethnicity, and age 
groups matching the MI hospitalization data from DOH [88]. We used these as 
denominator data for calculating attribute-specific MI hospitalization risks for Florida for 
the entire study period. Annual county-level population estimates for age and sex 
categories matching hospitalization data (i.e., 0-34, 35-44, 45-54, 55-64 and ≥65 year-
olds) were also obtained from DOH [88] and used as denominator data for calculating 
age- and sex-adjusted annual MI hospitalization risks. We downloaded 2000 and 2010 
decennial data for the US population from US Census Bureau, American FactFinder 
website [90]. 
 
4.3.2.3 Cartographic Boundary Files 
 
 We downloaded county-level cartographic boundary shape files for 2010 from the 
US Census Bureau website [92]. These were used as base maps for all cartographic 
displays.  
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4.3.2.4 Socioeconomic and Demographic Data 
 

Five-year (2008-2012) American Community Survey estimates for several 
sociodemographic variables related to race/ethnicity, marital status, place of residence, 
education level, health insurance, employment and economic status of the population in 
each county were also pulled from the US Census Bureau via the American FactFinder 
website [227]. We used 5-year estimates for the 2008-2012 period because it is in the 
middle of our study period, hence we deemed data for this period best suited to match 
the MI hospitalization data. 
 
4.3.3 Conceptual Model Used to Guide Selection of Potential Determinants of MI 
 

We built a conceptual causal web model (Figure 4.1) to guide the selection of 
potential SDoH study variables. The variables of interest were selected based on 
hypothesized associations with MI hospitalization risks and they included: proportion of 
population with less than high school education; proportion of population living below 
poverty level; median income; proportion of population living in owner-occupied housing; 
unemployment rate for population aged ≥16 years old; proportion of uninsured population; 
proportion of population classified as rural/urban; proportion of population aged 65 years 
and older; proportion of population classified as White, African American or Hispanic; 
proportion of widowed, married, divorced, separated, and never married populations; and 
proportion male population. 
 
4.3.4 Statistical Analysis 
 
4.3.4.1 Summary Statistics 
 

We computed the percent of MI hospitalizations by age (0–34, 35–44, 45–54, 55–
64, and ≥65 years), gender (male and female), and ethnicity (White, Hispanic and Black), 
as well as factor-specific MI hospitalization risks for the different demographic groups. 
We also computed summary statistics including median or mean, minimum and maximum 
values for all SDoH variables. All descriptive statistics were done in SAS v.9.4 (SAS 
Institute Inc., Cary, NC).  

Myocardial infarction hospitalization risks were age- and sex-adjusted to the 2010 
US Census standard population [89] to allow for valid comparisons of risks across 
different counties and years. We used the 2010 US census population for risk adjustment. 
This is because while the 2000 US population is recommended for age-adjustment of 
age-dependent health events [89], the 2010 US population represents the most recent 
actual age compositions of the US population, and it also falls within the range of our data 
collection. Moreover, since the risk of MI increases with age, using a standard population 
with a lower proportion of older ages could yield lower age-adjusted risks [91]. Thus, 2010 
US census population may provide us with more realistic and more current risk estimates. 

Finally, we computed seasonal MI hospitalization risks by defining seasons: winter 
(December 1 to Feb 28/29); spring (March 1 to May 31); summer (June 1 to August 31); 
fall (September 1 to November 30). 
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Figure 4.1. Causal web model used to guide selection of sociodemographic determinants of myocardial infarction 
hospitalization risks. 
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4.3.4.2 Model Building Process to Identify Sociodemographic Determinants of MI 
Hospitalizations Risks 
 

Spearman’s rank pairwise correlations were used to screen highly correlated 
(r≥0.7) SDoH variables to avoid multicollinearity issues. We chose a cut-off correlation 
coefficient of 0.7 or higher based on a study by Fotheringham et al. [228] showing 
geographically weighted regression to be highly robust to moderate levels of collinearity 
between explanatory variables. Only one variable of a pair of highly correlated variables 
was retained for subsequent analysis. The choice of variable for retention was based on 
statistical and biological considerations. 

Uncorrelated variables were then investigated for potential associations with MI 
hospitalization risks in two steps. First, the relationship between MI risks and all potential 
predictors of interest was assessed by fitting univariable ordinary Poisson regression 
models to the data using the generalized linear model procedure, PROC GENMOD in 
SAS v.9.4 (SAS Institute Inc.; Cary, NC). The dependent variable was the expected MI 
hospitalization count in each county based on age and sex adjustment, and the offset 
was the natural log of the 2005-2014 period county population estimates. Second, 
variables which had potentially significant associations with MI hospitalizations based on 
a liberal p-value of 0.15 in the univariable model were included for assessment in a 
multivariable Poisson regression model. The multivariable model was built using a 
manual backward elimination approach, specifying a 5% significance level. 
Overdispersion of the final model was assessed using the ratio of deviance to degrees of 
freedom of the final model. Ratios >1 imply significant overdispersion. The value of the 
overdispersion parameter was 95.93 indicating overdispersion.  

Since the Poisson regression model had significant overdispersion, a negative 
binomial (NB) model was fit to the data, using PROC GENMOD. As with the Poisson 
regression model, the dependent variable was the expected MI hospitalization count 
obtained from the direct age and sex standardization of risks in each county, and the 
offset was the natural log of the 2005-2014 period population for each county. Significant 
SDoH variables from the multivariable Poisson model were entered into a full global NB 
model, and manual backward elimination was used to select significant (p<0.05) 
determinants, using the likelihood ratio test to assess variable significance. Confounders 
were identified by assessing the change of parameter estimates of variables in the model 
with and without the suspected confounder. Variables whose removal resulted in a 
change of at least 20% in the parameter estimates of any significant variable in the model 
were considered as important confounders and were retained in the model. All 
biologically-plausible, two-way interaction terms between significant variables in the final 
model were explored, and significant ones retained.  

We assessed multicollinearity in the final model through the variance inflation 
factor and tolerance using PROC REG and the natural log of age- and sex-adjusted MI 
hospitalization risks as the dependent variable. Variance inflation factor above 10 and 
tolerance values < 0.1 indicate presence of multicollinearity. Goodness-of-fit for the final 
NB model was assessed using the deviance and Pearson Χ2 goodness-of-fit tests. 
Standardized Pearson’s residuals and Cook’s Distance were used to assess for presence 
of outliers and influential points, respectively. Standardized Pearson residuals were 
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assessed for spatial autocorrelation using Global Moran’s I in Geoda [190], specifying 1st 
order queen spatial weights. The conceptual model for potential sociodemographic 
determinants of MI hospitalizations was revised based on the results of the global NB 
model. 
 
4.3.4.3 Geographically Weighted Negative Binomial (GWNB) Regression 
 

Global models, such as the multivariable NB regression model above, estimate a 
single coefficient averaged over all locations for each of the explanatory variables. As 
such, they have limited ability to take local variations into account. By contrast, the 
Geographically Weighted Negative Binomial (GWNB) regression model [229], estimates 
as many regression coefficients as the number of geographic locations in the study area. 
Thus, it enables the investigator to assess whether relationships between the dependent 
and explanatory variable(s) vary with geographic location. Thus, we used the GWNB 
regression model proposed by Silva and Rodrigues [229], to assess if the strength of 
relationships between MI hospitalization risks and significant SDoH determinants varied 
by geographic location. This was implemented in SAS using a set of SAS/IML© macros 
developed by Silva and Rodrigues [230]. Briefly, the procedure accounts for spatial 
dependency and overdispersion of residuals by fitting a Geographically Weighted 
Negative Binomial regression model (i) with spatially varying regression coefficients (s) 
and a single global overdispersion parameter, (α), which is equivalent to the α value in 
the non-spatial NB regression model. Here, 

𝐸 𝑦 ~ 𝑁𝐵 𝑡  𝑒𝑥𝑝 ∑ 𝛽 𝜇 , 𝜐 𝑥 , 𝛼 ……………………………………. (i) 

where: 

yj is the j-th dependent variable for j = 1, ……………………………………….…, n, 

NB represents Negative Binomial, 

tj is an offset variable, 

βk is the parameter related to the SDoH variable, 𝑥k, for k = 1,…………………., K, 

(j,j) are the location coordinates of data points j, for j = 1,………….……., n, and  

α is the overdispersion parameter. 

Similar to the global NB model, the dependent variable in the GWNB model was 
the age- and sex-adjusted MI hospitalization count, 𝐸 𝑦 , with j indicating one of the 67 
counties, and the log of 2005-2014 period population for each county was used as the 
offset, 𝑡 , as noted above. The biquadratic kernel weighting function was used to 
determine the geographical weighting to estimate local coefficients; see Silva and 
Rodrigues [230].  

A major concern when applying a biquadratic kernel weighting function is the 
choice of bandwidth. According to Fotheringham et al. [231], a small bandwidth would 
result in large standard errors for the coefficients, and make spatial patterns difficult to 
detect. A large bandwidth, on the other hand, would yield over-smoothed local extremes, 
and lead to biased local estimates [232]. Since Florida comprises both densely populated 
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urban counties and sparsely populated rural counties, the adaptive method, where the 
size of the bandwidth varies to adapt to the variations in the density of observations, was 
used to adjust for the differences in population density, shapes, and sizes of counties in 
the state. The optimum kernel bandwidth was determined by minimizing the bias-
corrected Akaike Information Criteria (AICc). The AICc was also used to compare the 
performance of the global NB and GWNB regression models. Mean absolute deviance 
(MAD) and mean absolute percentage error (MAPE) were also used to compare the 
model fits. These were computed as: 

𝑀𝐴𝐷
1
𝑛 |𝑦 𝑦 | 

𝑀𝐴𝑃𝐸
1
𝑛 |

𝑦  𝑦
𝑦

| 

Where:  
n is the number of counties in Florida,  
yi

obs and yi
pred are the observed and expected number of hospitalizations respectively, in 

each county. Lower AICc, MAD or MAPE values all indicate a better model fit. 
As with the NB model, the Pearson standardized residuals for the GWNB were 

assessed for spatial autocorrelation using Global Moran’s I in Geoda [190]. Non-
stationarity of the coefficients for the GWNB model was assessed using the 
randomization non-stationarity test [233] based on 999 replications. This was also 
implemented in SAS v.9.4 using the macros developed by Silva and Rodrigues [230]. A 
family-wise error rate was used to correct for multiple testing [234]. The non-stationarity 
of the local regression coefficients for the GWNB were also assessed by comparing the 
interquartile range (IQR) of the local regression coefficients with the standard error 
estimates of the global NB model. Any local regression coefficient whose IQR was larger 
than twice the standard error of the regression coefficient from the global NB model was 
considered non-stationary across the study area [70,231]. The regression coefficients for 
non-stationary SDoH variables were displayed as choropleth maps in ArcGIS using 
Jenk’s classification scheme to determine the break-points.  
 
4.3.5 Mapping of Spatial Patterns 
 

We used ArcGIS Version 10.3.1 (ESRI, 2010) to perform all GIS manipulations, 
and to display the spatial distributions of MI hospitalization risks, SDoH factors and 
regression coefficients for non-stationary SDoH variables. Jenk’s optimization 
classification scheme was used to determine the intervals for displaying MI hospitalization 
risks and SDoH factors as choropleth maps. 
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4.4 Results  
 
4.4.1 Descriptive Statistics 
 

There was a total of 645,935 MI hospitalizations in Florida during the 10-year study 
period, of which 66% had a principal MI discharge diagnosis, with the rest being 
secondary diagnoses. Males accounted for a larger (58%) proportion of total MI 
hospitalizations than females (42) (Table 4.1). The MI hospitalization risks for men (40.9 
cases/10,000 persons) were significantly greater (p< 0.0001) than those for women (28 
cases per 10,000 persons). Among the different ethnic groups, Whites accounted for the 
largest (74%) proportion of MI-related hospitalizations followed by Hispanics (12%) and 
then Blacks (10%) (Table 4.1). Whites had the highest MI hospitalization risks, followed 
by Blacks and Hispanics, respectively. The median age of hospitalized patients was 72 
years (Interquartile Range=22 years), and 66% of hospitalizations occurred in individuals 
65 years and older. The highest MI hospitalization risks (130.2 cases per 10,000 persons) 
was observed in the ≥65-year age group while the lowest (0.6 cases per 10,000 persons) 
was observed in the 0–34-year-old age group.  

There were gradual declines in annual MI hospitalization risks (Figure 4.2), with 
risks for MI with any and principal discharge diagnoses declining by 15% and 20%, 
respectively. There was a distinct seasonal pattern, with highest risks occurring in winter 
and lowest risks occurring in summer seasons throughout the 10-year study period. 
Winter, spring, summer, and fall seasons accounted for 27%, 26%, 23% and 24% of total 
MI hospitalizations, respectively. 

Summary statistics for the 23 SDoH variables considered potential determinants 
of MI hospitalization risks are presented in Table 4.2, and the spatial distributions of MI 
hospitalization risks and selected SDoH factors are shown in Figure 4.3. Age- and sex-
adjusted MI hospitalization risks (Figure 4.3) varied widely across Florida, ranging from 
18.49 cases per 10,000 persons in Jackson County to 69.48 cases per 10,000 persons 
in Okeechobee County. The median MI hospitalization risk was 28.18 cases/10,000 
persons. In general, high MI hospitalization risks were observed in counties in northern 
central, western, and southern central parts of Florida.  

With respect to demographic factors, 50% of the counties had at least 16% of their 
population aged 65 years and older. The distributions of male and female residents 
across the state were relatively similar. 

Florida is predominantly white, with 50% of the counties having at least 74% of 
their population being white. However, a number of counties in the north and south have 
large proportions of minority populations (Figure 4.3). Most of the state’s population reside 
in urban counties, with 50% of the counties having at least 76% of their population 
classified as urban (Table 4.2). A large proportion of the urban population reside in 
counties in southern Florida, while Northern and south-central Florida counties comprised 
mostly rural populations (Figure 4.3). The proportion of the population with less than high 
school education level varied widely across the state (7-37%) (Table 4.2), but it was 
highest in rural counties in the Panhandle, north-central and south-central Florida (Figure 
4.3). On average 18% of the population in Florida counties live below the federal poverty 
level. The unemployment rates and proportion of the population without health insurance  
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Table 4.1. Myocardial infarction attribute-specific hospitalization risks for Florida, 
2005-2014. 

 
Variable 

Percentage of 
cases

Hospitalization risk 
(per 10,000 persons) 

Sex  
Male  
Female 

 
58 
42

 
40.9 (40.8-41.0)1 
28.2 (28.1-28.3) 

Age-group (years) 
0–34 
35–44  
45–54  
55–64  
≥65 

 
  1 
  4 
11 
18 
66

 
0.6 (0.6-0.7) 
9.2 (9.1-9.2) 
27.0 (26.8-27.2) 
52.0 (51.7-52.3) 
130.2 (129.9-130.6) 

2Race/Ethnicity 
Non-Hispanic White  
Hispanic Latino 
Non-Hispanic Black 
All other races 

 
74 
12 
10 
 3

 
43.3 (43.3-43.5) 
18.9 (18.8-19.0) 
21.4 (21.3-21.6) 
23.6 (23.2-23.9) 

195% confidence limit of the mean; 2Cases with missing Race/Ethnicity = 10645.  
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Figure 4.2. Temporal trends of age- and sex-adjusted myocardial infarction hospitalization risks with any and 
principal discharge diagnosis, Florida, 2005-2014.  
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Table 4.2. Summary statistics for sociodemographic assessed for potential associations with myocardial infarction 
hospitalization risks. 

 
Category 

 
1Sociodemographic Variable 

Mea
n  

Std 
Dev 

Median Min  Max 

Age ≥ 65 years old (Pop ≥ 65 years) 0.18 0.07 0.16 0.09 0.43 

Gender Male (Male Pop) 0.51 0.04 0.49 0.48 0.65 

Race/ethnicity 
African American (Black Pop) 
Hispanic (Hispanic Pop) 
White (White Pop)

0.14 
0.14 
0.70

0.09 
0.12 
0.15

0.11 
0.10 
0.74

0.03 
0.03 
0.16

0.55 
0.65 
0.90

Marital status 

Divorced (Divorced Pop) 
Separated (Separated Pop) 
Widows (Widowed Pop) 
Never married (Never Married Pop)

0.13 
0.02 
0.07 
0.28

0.02 
0.01 
0.02 
0.06

0.13 
0.02 
0.07 
0.28

0.07 
0.01 
0.02 
0.15

0.21 
0.04 
0.11 
0.47

Rural/urban status 
Rural (Rural Pop) 
Urban (Urban Pop)

0.38 
0.62

0.32 
0.32

0.24 
0.76

0.00 
0.00 

1.00 
1.00

Education level  

< High school education (< High Sch. Educ. Pop) 
High school education (High Sch. Educ. Pop) 
Some college education (Some Coll. Educ. Pop) 
Associate degree (Associate Deg. Pop) 
Bachelor’s degree (Bachelor’s Deg. Pop) 
Graduate degree (Graduate Deg. Pop)

0.17 
0.34 
0.22 
0.08 
0.13 
0.07

0.07 
0.06 
0.03 
0.02 
0.05 
0.04

0.15 
0.35 
0.22 
0.08 
0.13 
0.06

0.07 
0.20 
0.16 
0.16 
0.05 
0.02

0.37 
0.48 
0.26 
0.26 
0.27 
0.20

Economic status 
Median income $ (/10,000) 
Living below poverty (Below Poverty Pop) 
Owner-occupied housing units (Owner-occupied Pop)

4.39 
0.18 
0.73

0.74 
0.05 
0.07

4.38 
0.17 
0.75

3.25 
0.10 
0.55

6.43 
0.30 
0.90

Employment rate Unemployment rate for ≥16 years old (Unemployment Rate) 0.12 0.03 0.12 0.07 0.23 

Health insurance Uninsured rate for ≤ 64 years old (Uninsured Pop) 0.13 0.03 0.12 0.07 0.22 
1All variables but median income are expressed as proportions of county population 
Data source: US Census Bureau, 2010 and American Community Survey (2005-2008).
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Figure 4.3. Spatial distribution of myocardial infarction hospitalization risks and 
selected sociodemographic determinants in Florida, 2005-2014.  
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varied widely across the state, with some counties having up to 23% and 22% of their 
population being unemployed and lacking health insurance, respectively. These counties 
were predominantly located in southern Florida (Table 4.2, Figure 4.3). 

Counties with a high prevalence of risk factors (Figure 4.3) also appeared to have 
high MI hospitalization risks, suggesting potential associations between MI hospitalization 
risks and SDoH factors. 
 
4.4.2 Spearman Rank Correlations and Simple Associations 
 

Several SDoH variables had high (r≥0.70) pairwise correlations. The proportion of 
the population with less than high school education level was highly correlated with 
several variables including all variables related to education attainment (r=-0.72 to -0.86), 
the proportion of population living below poverty (r=0.78) and the median income (r=-
0.81). 

Other highly correlated variables included the proportion of widows and the 
proportion of population ≥65 years old (r=0.82), proportion of male population and 
proportion of population living in rural areas (r=0.72), the median house value and 
unemployment rate (r=-0.71), proportions of never married and married populations (r=-
0.91), and the proportion of population living in rural and those living in urban areas (r=-
1). 

Only 12 out of the 23 initial sociodemographic variables considered as potential 
determinants of MI hospitalization risks were uncorrelated and had potentially significant 
(p<0.15) univariable associations with MI hospitalization risks (Table 4.3). 
 
4.4.3 Sociodemographic Determinants of MI Hospitalizations Risks 
 
4.4.3.1 Global Multivariable Negative Binomial (NB) Regression model  
 

The coefficients for the final multivariable NB model for the estimated global 
relationship between MI hospitalization risks and significant SDoH variables are 
presented in Table 4.4. There were significant positive associations between MI 
hospitalization risks and proportions of divorced residents (p<0.018) and population with 
less than high school education (p<0.0001). Surprisingly, counties with high proportions 
of rural and African American populations tended to have significantly lower (p<0.0001 
and p=0.032, respectively) MI hospitalization risks than counties with low proportions of 
these. Counties with high proportions of population lacking health insurance were 
marginally (p<0.040) associated with low MI hospitalization risks. 

Based on the results of the global NB model, the conceptual causal model for 
sociodemographic determinants of MI was revised to show only those variables that were 
significantly associated with MI hospitalization risks in Florida (Figure 4.4). 

The tolerance values and the variance inflation factors for all the explanatory 
variables in the final NB model (Table 4.4) were above 0.1 and below 10, respectively, 
indicating lack of multicollinearity. The p-values for both the Pearson and Deviance Chi-
Square goodness-of-fit tests were large (0.22572 and 0.27616, respectively) indicating a 
good fit for the NB model. 
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Table 4.3. Univariable associations of uncorrelated sociodemographic determinants with myocardial infarction 
hospitalization risks in Florida. 

1Sociodemographic variable 
 
Coefficient (CI)2

3LRT p-value 

Male (Male Pop)   1.27 (1.08 - 1.46) <0.0001 

≥65 years old (≥65 years Pop)  -0.23 (-0.27 - 0.18) <0.0001 

African American (Black Pop)  -0.17 (-0.20 - 0.13) <0.0001 

Hispanic (Hispanic Pop)    0.17 (0.15 - 0.19) <0.0001 

Divorced (Divorced Pop)    1.43 (1.22 - 1.63) <0.0001 

Separated (Separated Pop)    9.18 (8.67 - 9.68) <0.0001 

Rural (Rural Pop)    0.18 (0.16 - 0.19) <0.0001 

<High school education (<High Sch. Educ. Pop)    1.64 (1.58 - 1.70) <0.0001 

Some college education (Some Coll. Educ. Pop)   -0.96 (-1.05 - -0.86) <0.0001 

Owner occupied housing (Owner-occupied Pop)   -0.14 (-0.17 - -0.10) <0.0001 

Unemployment rate for ≥16 years old (Unemployment Rate)     2.64 (2.47 - 2.81) <0.0001 

Health uninsured rate for ≤ 64 years old (Uninsured Pop)     0.76 (0.69 - 0.84)  <0.0001 

Univariable results are for a model with Poisson error distribution. 
1All variables except median income are expressed as proportions of county population 
295% Confidence limit of the coefficient estimate 
3Log Likelihood Ratio  
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Table 4.4. Final negative binomial model showing significant sociodemographic determinants of myocardial 
infarction hospitalization risks in Florida. 

Sociodemographic  
Variable 

Coefficient (CI)1 
2LRT 
p-value

3VIF 
 
Tolerance

< High Sch. Educ. Pop.   3.23 (2.30, 4.18)    <0.0001 2.559 0.391 

Divorced Pop.   2.53 (0.44, 4.64)       0.0181 1.176 0.850 

Rural Pop.  -0.38 (-0.56, -0.19)      0.0001 2.309 0.433 

Uninsured Pop  -1.76 (-3.41, -0.09)      0.0395 1.506 0.664 

Black Pop.  -0.50 (-0.93, -0.04)       0.0323 1.119 0.895 

Intercept  -6.27 (-6.62, -5.95)   4<0.0001 0 . 
1CI = Confidence Interval; 2Likelihood Ratio Test; 3Variance Inflation Factor; 4Wald P value. 
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Figure 4.4. Conceptual causal model for sociodemographic determinants of myocardial infarction hospitalization 
risks in Florida based on the final global multivariable negative binomial model.
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4.4.3.2 Local Geographically Weighted Negative Binomial (GWNB) Model 
 
4.4.3.2.1 Stationarity of Regression Coefficients 
 

The results for assessment of stationarity of GWNB model regression coefficients 
are shown in Table 4.5. There is evidence of non-stationarity of relationships between MI 
hospitalization risks and the proportions of population with less than high school 
education level and population with no health insurance coverage (p<0.05). However, the 
coefficients for proportions of divorced, African American, and rural populations were 
stationary (p>0.05).  

The interquartile ranges of local coefficients for proportions population with less 
than high school education level and population with no health insurance coverage were 
larger than twice the standard error of the coefficients of the global NB model, but those 
for the proportions of divorced, African American, and rural populations were not (Table 
4.5). This provided corroborating statistical evidence to reject the null hypothesis of 
stationarity of associations between MI hospitalization risks and its SDoH predictors 
across Florida. Thus, the associations between MI hospitalization risks and the 
proportions of population with less than high school education level and uninsured 
population varied based on location in Florida. 
 
4.4.3.2.2 Spatial Distribution of Non-stationary Regression Coefficients 
 

The spatial distribution of the local regression coefficients provides visual evidence 
for variability of the local relationships between MI hospitalization risks and proportions of 
population without high school diploma and uninsured population (Figure 4.5). Thus, the 
effects of education level and lack of health insurance varied considerably across Florida, 
with a strong north-south gradient. Low education levels were significantly associated 
with high MI hospitalization risks throughout Florida, but stronger associations were 
observed in southern Florida. On the other hand, counties with high proportions of 
uninsured population tended to have low MI hospitalization risks, but this association was 
only significant in southern Florida. 
 
4.4.3.2.3 Performances of Global and Local Regression Models 
 

The AICc, MAD, and MAPE values used to compare the performances of global 
and local models are presented in Table 4.6. Moran’s I statistics indicating the extent of 
spatial autocorrelation of residuals are also presented in Table 4.6. According to 
Fotheringham et al. [231,235], the difference between AICc scores for any two models 
needs to be at least 3 units for the performance the two models to be considered different. 
Based on this rule, the Poisson regression model had the worst fit, but the NB and GWNB 
models had similar fit. However, based on MAD and MAPE criteria, the spatial GWNB 
model outperformed the global Poisson and NB models. Moreover, minimal clustering of 
residuals for the GWNB model (Moran’s I statistic=-0.102, p=0.116), coupled with non-
stationarity of education level and lack of health insurance coefficients indicate that the 
GWNB model is more appropriate for modeling of these data than the global NB model. 
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Table 4.5. Results of assessment of stationarity of coefficients of Geographically Weighted Negative Binomial 
model. 

 
 
 
Variable 

 
 
1NB 
3SE 

 
 
1NB 
3SE*2

 
 
2GWNB 
4IQR

Is regression 
coefficient for 
2GWNB non-
stationary?

 
 
2GWNB 
5P-value

< High Sch. Educ. 0.4735 0.947 1.178 Yes 0.043 

Divorced Pop 1.0556 2.1112 0.298 No 0.776 

Rural Pop 0.0934 0.1868 0.045 No 0.766 

Uninsured Pop 0.8360 1.672 2.351 Yes 0.001 

Black Pop 0.2242 0.4484 0.092 No 0.559 

Intercept 0.1697 0.3394 0.069 No 0.751 
1NB = Global Negative Binomial Regression Model. 
2GWNB = Geographically Weighted Negative Binomial Model fitted with a global overdispersion parameter (α = 0.0256). 
3SE = Standard Error of the coefficients for the Negative Binomial Regression model. 
4IQR = Interquartile range for the coefficients for the Geographically Weighted Negative Binomial models. An IQR of local regression 
coefficients > 2*SE of global NB model is evidence for non-stationarity. 
5P-value based on randomization test (m = 999 replications).
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Figure 4.5. Spatial distributions of non-stationary regression coefficients and 
associated family-wise p-values.
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Table 4.6. Goodness-of-fit and Moran’s I statistics for global Poisson, global Negative Binomial (NB), and 
Geographically Weighted Negative Binomial Regression (GWNB) models. 

Model Bandwidth 
Number of 
Parameters

1AICc  2MAD 
3MAPE 
(%)

Moran’s I (4p-value)

Poisson - 10 5865.3  714.1  13.5 0.156 (0.023) 

5NB - 6 1034.9  613.2 12.4 -0.113 (0.1) 

6GWNB 65 10.09 1032.0  580.8  11.4 -0.102 (0.116) 
1Small sample bias-corrected Akaike’s Information Criteria. 
2Mean absolute deviance 
3Mean absolute percentage error 
4p-value based on Monte Carlo simulations (rep = 9999) 
5Global Negative Binomial Regression model 
6Geographically Weighted Negative Binomial Regression model fitted with a global overdispersion parameter, α = 0.0256
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4.5 Discussion 
 

4.5.1 Descriptive Statistics  
 

In this study, we identified the sociodemographic determinants of myocardial 
infarction (MI) hospitalization risks among Florida residents from 2005-2014. We then 
assessed if model regression coefficients varied by geographic location to identify the 
most important determinants of MI hospitalization risks for different geographic areas in 
Florida. Since SDoH factors are responsible for shaping 40% of the health of a population 
[67], study findings will aid in the development of evidence-based, location-specific 
strategies for reducing the high MI burden in Florida. Moreover, MI shares similar risk 
factors with other CVD such as stroke, hence these health conditions tend occur together 
geographically. Thus, public efforts targeting MI risk factors would address the burdens 
of MI and stroke and several of their risk factors such as diabetes, high blood pressure 
etc. Additionally, since Florida’s current age structure and race/ethnic composition 
portend the changes projected for the US population by the year 2030 [192], Florida’s 
strategy to address the high MI burden will also be instructive for the rest of the US. 

We found that 66% of the MI hospitalizations had a principal MI discharge 
diagnosis, with the rest being coded as secondary MI. Thus, including only MI cases with 
a principal diagnosis in the analysis would have excluded a substantial burden of MI 
hospitalizations from the study. Sacks et al. [47] also reported a similar proportion of 
principal MI hospitalizations in a study of Fee-for-Service Medicare population aged 65 
years and older. Acute MI is a serious clinical condition requiring percutaneous coronary 
intervention (PCI) in a specialized cardiac center within 90 minutes of disease onset to 
prevent adverse consequences on patient outcomes [100]. Therefore, hospitalization 
may be used as a proxy of morbidity, in which case the decline in MI hospitalization risks 
observed during the 10-year study period may represent declining MI morbidity risks in 
Florida over time. These secular decreases are consistent with decreases in the 
prevalence of CVD risk factors at the individual and community levels, primarily smoking 
[132], exposure to secondhand smoke [236]. and physical inactivity [131]. Broad 
application of evidence-based primary prevention measures for CHD with aspirin and 
statins [237] and improvements in air quality [238] may also have contributed to reduced 
MI morbidity risks. However, MI hospitalization is not necessarily equivalent to a morbidity 
measure [239], particularly for populations with limited access to resources for 
appropriate cardiac care such as to PCI-capable hospitals and health insurance 
coverage. In this instance, MI hospitalization risks are a proxy of utilization rates for MI 
care, in which case declining MI hospitalization risks would be reflective of reduced rates 
of utilization for MI care.  

The annual rate of decline in MI hospitalization risks with any discharge diagnoses 
reported in our study (1.6% per year) is lower than the 2.5% annual rate reported for a 
Medicare population aged ≥65 years [47]. However, the annual rate of decline of MI 
hospitalization risks with a principal discharge diagnosis in our study (2.3% per year) is 
close to rates reported in recent studies considering only acute MI hospitalizations with a 
principal MI diagnoses. For instance, age- and sex-adjusted incidence rates of acute MI 
hospitalization decreased by an average of 3.8% per year among US adults aged >25 
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years [17]. Yeh et al. [12] found a 2.75% per year rate of decline of incident MI 
hospitalizations in a ≥30 years old community-based population over a 10-year period. In 
contrast, Talbott et al. [19] reported an overall 7.6% increase in principal MI hospitalization 
risks among Florida residents 35+ years of age between 2000 and 2008. In general, our 
results, together with those of other studies, suggest that studies that consider only a 
section of the population, or fail to account for both principal and secondary MI 
hospitalizations may underestimate the current MI burden. 
 

4.5.2 Seasonal Trends 

 
Myocardial infarction hospitalization risks showed seasonal fluctuations, with 

highest hospitalization risks during the winter months and lowest risks during the summer. 
Seasonality of MI hospitalizations with winter peaks and summer troughs have been 
observed in other studies. Spencer et al. [240] observed a marked winter increase or 
summer decrease, or both, in the number of acute MI cases reported in a large, 
prospective US registry of acute MI cases, irrespective of geographic area, age or gender. 
Bhaskaran et al. [241] reported elevated risks of MI morbidity at colder temperature in 
eight out of 12 studies with data from the winter season. 

The higher MI hospitalization risks we observed during winter than summer 
seasons may partly be attributable to the “snowbird” phenomenon, whereby elderly 
individuals, who experience more morbidity from MI, migrate from the Northern 
hemisphere into Florida and other states on east coast of the US during the winter and 
migrate out during the summer [242]. This is corroborated by a nation-wide study showing 
a predominance of inpatient NSTEMI admissions during winter in warmer southern states 
but not in cooler northern states [243]. However, there is evidence that the seasonal 
migration of elderly individuals may not substantially contribute to the seasonal variations 
we observed. For instance, similar temporal patterns as those we observed have been 
reported for coronary heart disease (CHD) deaths in Los Angeles County, California, 
where the “snowbird” phenomenon is not prevalent and temperatures tend to be mild 
throughout the year [242-244]. Moreover, higher MI hospital admission rates during winter 
compared to summer seasons have also been observed for younger (<70 years old) and 
older (≥70 years old) groups in both northern (snowbird source states) and southern 
(snowbird destination states) states [245]. Other potential explanations for the seasonal 
patterns we observed include higher respiratory infections, such as the influenza 
[242,246,247], and increased cardiac workload caused by increased blood pressure, 
hemoconcentration and vascular thromboses during the winter season [153]. 
 
4.5.3 Spatial Distribution of MI Hospitalization Risks and its Sociodemographic 
Determinants 
 

This study shows that MI hospitalization risks were high in counties with large 
proportions of population with less than high school education level and high divorce 
rates, and low in counties with large proportions of rural, African American, and uninsured 
populations. However, only the effects of education attainment and uninsured rate varied 



84 

with geographic location, with stronger impacts being observed in southern compared to 
northern counties.  
 
4.5.3.1 Education Level 
 

Our results showing higher MI hospitalization risks in counties with high 
proportions of population with less than high school education are consistent with 
previous area-level studies showing higher CVD risks in areas with low education 
attainment [54,57,62,248]. These results may be attributable to higher burdens of CVD 
risk factors such as hypertension [249]. diabetes mellitus [250], and obesity [251], and 
risky behaviors such as unhealthy southern dietary patterns [252], cigarette smoking and 
alcohol consumption [253]; and lower prevalence of protective healthy behaviors such as 
fruit/vegetable consumption [254,255], non-smoking [256], and regular exercise [257] in 
counties with low education levels. This is not unexpected since health literacy has been 
shown to mediate the association between education level and health behaviors 
[258,259]. In fact, low education attainment may confer a cardiovascular risk that is 
equivalent to traditional risk factors [260,261]. Accordingly,  counties with low education 
levels may have low health literacy levels, resulting in a large proportion of their population 
having limited ability to obtain, process, and understand basic health-related information 
needed to communicate, navigate health systems and to make decisions regarding 
lifestyle and personal health behaviors [262,263].  

Education level is a proxy for socioeconomic status (SES) [264], and low 
neighborhood SES is an independent risk factor for a higher MI incidence and CVD risk 
factors [68]. Thus, the higher MI hospitalization risks in counties with low education levels 
may be related to lower accumulation of, and access to, material, economic and social 
resources for MI prevention in those counties [213,265]. For instance, supermarkets, 
which offer a wide variety of healthy foods at lower prices, tend to be concentrated in 
affluent neighborhoods. Living in a socioeconomically advantaged area is associated with 
greater fruit and vegetable consumption [254], which is inversely associated with the risk 
of CVD [266]. On the other hand, fast food outlets and small corner grocery convenience 
stores offering limited selections of lower quality foods and at substantially higher prices 
predominate in poor neighborhoods [112]. Thus, low SES neighborhoods devoid of 
supermarkets, referred to as ‘Food desserts’, may lack equal access to the variety of 
healthy food choices that are available to wealthy communities [36]. Furthermore, 
residents in low SES neighborhoods lack transport, hence they are less likely to travel to 
a supermarket outside of their neighborhood [36]. 

The distribution of physical activity resources, such as walking trails, is also 
skewed, with resources being concentrated in neighborhoods with high SES [33]. Long-
term exposure to environments with limited access to physical activity resources and 
healthy nutritious food has been linked to higher incidence/prevalence of chronic diseases 
that are precursors of MI such as diabetes, obesity and hypertension [68,267]. 
Additionally, low SES neighborhoods tend to have high income inequality, which is 
associated with disinvestment in social capital, which is in turn linked with increased 
deaths from CHD, among other causes [268-270]. Low social capital has also been linked 
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with elevated biological stress i.e. allostatic load [57,251,271] and subsequently poor 
CVD outcomes [270]. 
 
4.5.3.2 Marital Status 
 

The high MI hospitalization risks we observed for counties with a high proportion 
of divorced residents is consistent with previous reports of negative impacts of divorce, 
and other disruptive events such as separation or being widowed on cardiovascular 
health, including increased risk of MI [272]. Venters et al. found higher rates of 
hospitalization for MI/stroke for separated/divorced persons than for married and widowed 
persons [273]. A recent study found that multiple divorce experiences increased the risks 
of MI, and especially in women with multiple divorces [274]. 

Divorce is a stressful event that often involves adjustments to a new social role, 
identity, and living arrangement, and is associated with increased psychological distress 
and a decline in the availability of financial and social capital [275]. Therefore, the high MI 
hospitalization risks we observed in counties with a high proportion of divorced residents 
may be attributable to losses of income and health insurance, resulting in decreased 
ability to prevent, detect, and treat illness [276,277]. The acute and chronic stress 
associated with divorce may also play a role [278]. Moreover, many individuals respond 
to stress and depression with unhealthy coping habits/behaviors such as smoking and 
alcohol use, among others further exacerbating the risk of MI [276]. By contrast, married 
individuals tend to have stronger social support, less stress, better mental health status, 
healthier lifestyles [279], and greater access to medical insurance, prescription drugs, and 
overall higher quality of health care [280]. 

At the ecologic level, neighborhood social capital, defined as social resources 
inherent within community networks, and consisting of social support, social leverage, 
informal social control, and neighborhood organization and participation [281]. may exert 
a contextual effect on cardiovascular health by: promoting more rapid diffusion of health 
information thereby increasing the likelihood for  healthy norms of behavior to be  adopted; 
exerting social control over deviant and unhealthy behavior; providing emotional or 
material support and mutual respect based on social network and participation, and 
promoting access to local services and amenities [282]. Thus, neighborhood social 
cohesion is recognized as an important neighborhood social environment indicator [223]. 

Marital and family disruption may decrease informal social controls at the 
community level and lead to more disorder and lower social capital or social cohesion 
[269]. Thus, counties with a large proportion of divorced residents may lack collective 
social control which has been linked to higher alcohol consumption, smoking and crime 
rates [283]. These can increase social disorganization and are associated with 
depression, lower levels of physical activity [284-286] reduced access to preventive care 
[287]. and decreased efficiency and effectiveness of intervention programs [282]. All 
these are associated with adverse health outcomes, including diabetes mellitus 
[68,288,289] and higher CVD risks [290]. Thus, low social capital may have contributed 
to the high MI hospitalization risks in counties with high divorce rates. On the other hand, 
based on a study by Saudquist et al. [291], that showed protective effects of social capital 
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on hospitalizations for CHD, the contextual protective effects of social capital may have 
contributed to lower MI hospitalization risks in counties with low divorce rates.  
 
4.5.3.3 Rural Population 
 

Our results showing lower MI hospitalization risks in counties with high proportions 
of rural populations compared to those with low proportions of rural populations are 
inconsistent with recent ecologic studies showing higher mortality risks from MI [77], and 
heart disease and ischemic heart disease in rural counties compared to urban counties 
in Florida [39,41] and in southeastern US in general [292]. Our results are also 
inconsistent with lower SES [141,143] lower prevalence of protective health-related 
behaviors [149] and higher prevalence of several MI risk factors reported for rural counties 
in Florida and in US in general compared to urban counties. These include unhealthy 
behaviors/lifestyles such as smoking, physical inactivity and unhealthy eating patterns 
[29,30,111,194,195]; being overweight and/or obese [27,197,293,294]; hypertension 
[295]; and diabetes [28,296]. It is worth noting that food deserts tend to be concentrated 
in rural neighborhoods, which together with the low SES of these neighborhoods limits 
accessibility of healthy foods to rural communities [36,111,112]. Additionally, despite the 
additional burden of risk factors in rural areas, area-level primary and secondary 
interventions for MI, such regulations around taxation or smoking restrictions, the sale 
and marketing of tobacco products [82,297,298], distribution of primary care providers 
[144] and cardiologists [80], disproportionately benefit urban areas [82,297,298]. 
Moreover, targeted marketing of tobacco products in rural areas can reinforce pro-
tobacco norms in those areas [299]. 

The foregoing discussion suggests that it is highly unlikely that the lower MI 
hospitalization risks we observed for counties with high proportions of rural residents 
compared to those with low proportions these reflect low MI morbidity risks for rural 
populations. Rather, similar to undiagnosed hypertension which has been reported to be 
more prevalent in some rural western Panhandle counties [85], undiagnosed MI may be 
more prevalent in rural counties where the level of knowledge regarding the five classic 
symptoms of heart attack [115], tend to be lower. Furthermore, cardiac centers/PCI-
capable hospitals tend to be clustered in metropolitan and large urban areas [81], thereby 
impeding timely access to emergency cardiac care [300]. These factors may exacerbate 
tendencies for rural residents to delay or forgo health care altogether and contribute to 
the lower MI hospitalization risks and disproportionately higher pre-hospital MI death rates 
in rural counties compared to urban counties [301,302]. Thus, higher out-of-hospital MI 
death risks may potentially explain the lower MI hospitalization risks we estimated in 
counties with high proportions of rural populations.  
 
4.5.3.4 African American Population 
 

The lower MI hospitalization risks we observed for counties with higher proportions 
of Black residents are inconsistent with previous reports of higher burdens of CVD and 
traditional CVD risk factors [303], and lower prevalence of ideal cardiovascular health 
metrics among non-Hispanic Black compared to White populations [48,304]. 
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Furthermore, these risk factors often cluster in African Americans, due to generally low 
SES for that population [303]. Additionally, African American populations are 
disproportionately and adversely impacted by unfavorable neighborhood features such 
as limited access to healthy foods such as fruits and vegetables [36,111,112], racial 
segregation [305], high levels of industrial pollution and poor enforcement of 
environmental regulations [113], high crime leading to low neighborhood walkability, 
limited access to green spaces and quality cardiovascular health care [114], and low 
social cohesion [50]. All these factors would be expected to increase MI morbidity risks in 
predominantly Black counties. Moreover, disproportionate burdens of pre-hospital 
mortality from MI/coronary heart disease [301] and CVD in general [292,306], have been 
reported among non-Hispanic Black compared to White populations. Therefore, lower MI 
hospitalization risks for counties with high proportions of Black residents may be due to 
an under-diagnosis of MI in Blacks in the pre-hospital setting due to lower rates of 
utilization for cardiac care services. Lower rates of utilization for cardiac care by Black 
residents may be attributed to limited knowledge regarding symptom recognition 
[115,116], lack of access to quality cardiac care [81,117,118], and mistrust of the health 
care system stemming from historical events such as the Tuskegee syphilis study [171], 
and is reinforced by perceived racial discrimination [307]. 
 
4.5.3.5 Lack of Health Insurance 
 

The lower MI hospitalization risks observed for counties with high proportions of 
uninsured population are consistent with the findings of a study by Talbott et al. [19] which 
found a positive association between health care coverage and acute MI hospitalization 
rates. In that study, a large proportion of the population in the New England/Mid-Atlantic 
region reported that they had health insurance, yet they had the highest acute MI 
hospitalization rates. Talbott et al. [19] also found a negative association between acute 
MI mortality rates and health care coverage.  

Taking MI hospitalization risk as a proxy for MI morbidity, the lower MI 
hospitalization risks for counties with high proportion of uninsured population would 
suggest lower MI morbidity risks for those counties. However, this is highly unlikely, since 
lack of health insurance not only impedes timely access to cardiac care when needed, 
but also reduces access to necessary preventive and therapeutic care to minimize future 
illness [308]. On the other hand, having health insurance leads to higher rates of MI 
diagnoses and therapeutic cardiac procedures [309,310], thereby reducing the risks of 
major cardiac events. Thus, the disease is more likely to be identified/diagnosed and 
controlled among the insured. Moreover, it is more difficult to obtain off-site specialty 
cardiovascular services, including referrals, for the uninsured compared to those with 
health insurance [311]. Therefore, the association of low MI hospitalization risks with high  
uninsured rates is a reflection of lower rates of utilization of cardiac care services in 
counties with high proportions of uninsured populations [308]. 

The stronger association between the proportion of population lacking health 
insurance and MI hospitalization risks in southern Florida counties may be due to a large 
proportion of low-income minority population, particularly Haitian, Non-Hispanic Blacks 
and Hispanic immigrants, in that part of the state [165,312,313]. These demographic 
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groups have been disproportionately impacted by Florida’s decision not to expand 
Medicaid under the Affordable Care Act, hence they have double the likelihood to fall into 
the “coverage gap” compared to their uninsured White counterparts [117]. Community 
health centers, such as Federally Qualified Health Centers (FQHCs) provide a safety net 
for the under and uninsured on income-based sliding-fee scales [314], but they are highly 
underutilized [311,313], hence they have not been successful in reducing socioeconomic 
barriers to advanced treatment for heart disease for the under and uninsured in southern 
Florida. 

To summarize, the results from the NB model suggest that for certain populations, 
MI hospitalization is not necessarily equivalent to a morbidity measure [239]. Rather, MI 
hospitalization risks are a proxy of utilization rates for MI care. In our study, this was 
particularly true for Black, rural, and uninsured populations, due to limited access to 
resources for cardiovascular health such as health insurance and specialized cardiac 
centers. 
 
4.5.4 Non-Stationarity of Regression Coefficients 
 

The local GWNB model allowed geographically varying relationships between MI 
hospitalization risks and its sociodemographic determinants to be modelled through 
spatially varying parameter estimates. Our results showing geographic variations of 
associations between MI hospitalization risks and education and health uninsured rates 
corroborate findings from previous ecologic studies [60,225,226,315] that showed that 
the impacts of SDoH factors on the risks of cardiovascular health outcomes vary based 
on geographic location. For instance, all the coefficients for the relationships between 
sex, race, age, education and rural residence and MI/stroke mortality risks varied with 
location in middle Tennessee [60]. Ford and Highfield [315] showed significant spatial 
association between CVD mortality and social deprivation in Harris County in Texas.  

Stationarity of regression coefficients for proportions of rural, African American and 
divorced residents suggest that global relationships between MI hospitalization risks and 
these determinants may be generalized to every county in Florida (the effects of these 
three determinants were constant across Florida). Conversely, variation in the 
associations between MI hospitalization risks and the proportion of population with less 
than high school education and uninsured rates based on geographic location suggest 
that a global relationship between MI hospitalization risks and these determinants cannot 
be generalized to every county in Florida.  

These findings have several policy implications. First, the results imply that “one 
size fits all” approaches would not be suitable for addressing high MI morbidity risks and 
inequitable utilization of MI care services in Florida. Rather, different parts of the state 
require slightly different strategies. Therefore, planning for MI control and prevention 
efforts will need to use a needs-based approach informed by empirical evidence from 
global regression models supplemented with local models. Specifically, policies for 
addressing inequitable utilization of MI care services by improving health insurance 
coverage rates need to focus on Southern Florida counties where low MI hospitalization 
risks may reflect low utilization rates for MI care services. Likewise, policies focusing on 
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reducing MI hospitalization risks by improving literacy levels should pay extra attention to 
counties within southern Florida which have low education attainment.  
 
4.5.5 Strengths and Limitations 
 

The data we used were collected using a consistent set of case definitions and 
included MI admissions for all institutionalized hospitals in the state of Florida, thus 
allowing us to explore temporal trends and assess geographic variation of MI risks for the 
entire state of Florida. In this study, secondary MIs accounted for a 1/3 of MI-related 
hospital admissions in Florida. Thus, using hospitalized cases with principal or secondary 
discharge diagnosis for MI allowed us to characterize the burden of MI hospitalizations 
more fully, regardless of whether MI was the principal or secondary diagnosis. 

The use of a geographically weighted regression model to account for potential 
local variations in the strength of associations between MI hospitalization risks and its 
sociodemographic determinants enabled identification of location-specific strategies that 
may be used to reduce the burden of MI and to increase equitable utilization of MI care 
in Florida. Without the place-specific perspective of GWNB model, the local associations 
between MI hospitalization risks and education level and uninsured rates would not be 
apparent, which would suggest a uniform/“one size fits all” control strategy for the entire 
state. This is an unrealistic proposition, given the wide variabilities in socioeconomic and 
environmental conditions that exist within Florida. Moreover, correction for multiple 
hypothesis testing avoided false positives in geographically weighted regression. 

The findings of this study have some limitations that suggest important areas for 
future research. This being an ecologic study, there is potential for ecological fallacy, 
since individuals diagnosed with MI may not be the same people who were exposed to 
the SDoH factors we investigated at the county level. Therefore, interpretations of specific 
associations between contextual variables and MI hospitalization risks should be made 
with caution, recognizing that inferences based on aggregate data do not apply to 
comparable individual-level data [184]. Moreover, there is potential for substantial within-
county variations in sociodemographic factors due to the heterogeneous nature of the 
counties. Thus, a change in spatial unit of analysis (e.g. ZIP code or census tract) may 
alter our findings due to the modifiable areal unit problem [316]. Nonetheless, we chose 
to study counties rather than a smaller geographic area such as a 5-digit zip code or US 
census tracts or blocks because the former is more relevant to policy action steps. 

We based MI hospitalization risks on events rather than individuals due to lack of 
personal identifiers in the data. As such, multiple admissions for the same individual for 
the same event may be included in the data. Additionally, we lacked statistically robust 
data at the county level to adjust for important behavioral, clinical, and environmental 
factors, and our MI data do not include subclinical MIs, patients who never sought care 
or may have died before hospitalization. Accordingly, there is potential for confounding 
and selection bias, which may result in inaccurate estimation of the true associations 
between MI hospitalization risks and its sociodemographic predictors.  

The American Community Survey (ACS) has collected 1-, 3- and 5-year estimates 
for sociodemographic data since 2005. We selected a time frame for SDoH data based 
on what was available. Although people may have been exposed much earlier and could 
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have resided in a different county than where the first signs of the MI occur, our analysis 
did not consider the lag-time between potential exposure and the occurrence of the 
disease symptoms. This may have results in misclassification of some exposures, with 
consequent underestimation or overestimation of associations between SDoH factors 
and MI risks.  

These limitations notwithstanding, our results are consistent with a broad range of 
causal biological processes, and with studies showing strong associations between 
cardiovascular events and area-level sociodemographic predictors even after adjusting 
for relevant confounders [54,68]. Thus, study findings may be useful for guiding policies 
directed toward reducing disparities related to education attainment, lack of health 
insurance coverage, divorce rates, rural residence and race. This would go a long way 
towards reducing MI morbidity risks or increasing utilization rates for cardiovascular care 
in Florida. Moreover, the results identify specific areas that may benefit most from place-
based public health interventions that address low education levels and high uninsured 
rates to improve cardiovascular health in Florida. 
 

4.6 Conclusions 
 

Race, marital status, rurality, education level, and lack of health insurance were 
significant predictors of MI hospitalization risks in Florida. The influence of race, divorce 
rate and rurality were constant across Florida. However, the influence of education level 
and uninsured rate varied based on geographic location in the state, with their influence 
being strongest in counties in the south. These results indicate that global models 
supplemented with local models are more appropriate for exploring the associations 
between MI hospitalization risks and its demographic and socioeconomic predictors. 
Study findings may help state and local public health entities allocate scarce resources 
more efficiently to reduce cardiovascular health disparities and improve population health 
for all Floridians.  
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CHAPTER 5 
CONCLUSIONS  
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5.1 Summary of Dissertation Research 
 

This dissertation addresses issues related to spatiotemporal disparities and 
burden of myocardial infarction (MI) in Florida using geospatial methods. Understanding 
these disparities has great relevance for public health because MI remains the leading 
cause of morbidity and premature mortality in Florida, despite overall reductions in MI 
risks in the state over time.  

An innovative contribution of this work is the integration of spatial scan statistics, 
spatial modeling, and Geographic Information System (GIS) to investigate spatiotemporal 
disparities in risks of principal and any (i.e. principal or secondary) myocardial infarction 
hospitalizations and mortality, and the contextual social demographic factors that may be 
related to MI hospitalizations. Specifically, my dissertation is composed of three major 
themes. 
 
5.1.1 Theme 1. Investigation of Geographic Distribution and Spatial Clusters of MI 
Hospitalization and Mortality Risks Over Time 
 

Identifying areas that may have consistently high MI burdens is the first step 
towards understanding the MI burden in Florida. Both Kulldorff’’s and Tango’s circular 
and flexible spatial scan statistics were used for cluster detection and identification. The 
use of the flexible spatial scan statistic was important because it enabled the identification 
of irregularly-shaped high-risk clusters that were otherwise excluded by the circular 
spatial scan statistic, which is the standard methodology for detection of geographic 
clusters. All high-risk clusters, regardless of their shape, would be of interest to public 
health practitioners interested in health disparities, hence the identification of irregularly-
shaped clusters is expected to result in improved control of MI. Additionally, basing 
statistical inference on a restricted log likelihood ratio test, instead of a log likelihood ratio 
test, resulted in identification of more homogenous clusters, which may lead to more 
precise targeting of strategies for MI control, allowing more efficient use of scarce public 
health resources. The results indicated substantial geographic disparities in MI 
hospitalization and mortality risks in Florida, with persistent clustering of high MI 
hospitalization risks occurring in the Big Bend area and in South Central and Southeast 
Florida, and persistent clustering of low risks occurring in Southeast and Southwest 
Florida. Low and high MI mortality clusters occurred in the same areas as MI 
hospitalization clusters, but there were no high-risk clusters of MI mortality in South 
Central Florida. Thus, high-risk clusters need to be prioritized for interventions to achieve 
health equity and broader reduction goals.  
 
5.1.2 Theme 2. Investigation of the Temporal Changes in MI Hospitalization and 
Mortality Risks in Persistent Clusters 
 

Monitoring trends in MI risks may reveal whether health disparities have widened 
or narrowed over time, thereby providing insights into the effectiveness of prevention 
efforts. Disparities in MI hospitalization and mortality risks were assessed by computing 
the risk difference between the high-risk clusters and the low-risk cluster with the lowest 
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MI hospitalization risk, both at the beginning and at the end of the study periods. The 
results showed that disparities narrowed in the short term, but counties in perisitent high-
risk clusters are only now achieving MI risks seen in low-risk counties at the beginning of 
the study. Concerning trends, where risks appeared to trend upwards in parts of northern 
Florida during the latter years of study, were identified. The results indicate the need for 
acceleration of intervention efforts in counties within high-risk clusters. 
 
5.1.3 Theme 3. Investigation of Potential Sociodemographic Determinants of MI 
Hospitalization Risks 
 

Identifying the most important determinants of MI for different geographic areas 
may lead to the development of evidence-driven strategies for reducing/elimination health 
disparities and improved population health. These factors account for 40% of the health 
of a population; hence, their identification offers the greatest opportunities for reducing 
morbidity and disability from MI and achieving lasting improvements in population health 
at the lowest cost.  

A global negative binomial model identified that race, marital status, education 
level, lack of health insurance, and rural residence were important sociodemographic 
drivers of MI hospitalization risks in the state. A geographically weighted negative 
binomial model showed that the impacts of education and health insurance varied by 
geographic location, with the impacts being strongest in southern Florida.  

Geographic differences in the impacts of education and health insurance signify 
that the negative binomial model, and other global regression models that estimate a 
single coefficient for each predictor for the entire study area, may not capture the unique 
health needs at the local level in Florida. Thus, a “one size fits all” strategy would not be 
sufficient for addressing MI disparities in Florida. Rather, different parts of the state 
require slightly different strategies, informed by empirical evidence from global regression 
models supplemented with local models.  

The findings in this dissertation will be used to target resources for MI control to 
high-risk areas as a part of a needs-driven prevention/control strategy geared towards 
reducing the MI burden in Florida. Thus, the findings have direct relevance to public health 
efforts aimed at addressing MI-related health disparities in Florida, and can be expected 
to have a significant impact on resource allocation, health program planning, and 
advocacy for high risk populations. Moreover, MI shares common risk factors with other 
cardiovascular diseases such as stroke, and also tends to overlap geographically with 
these health conditions. Thus, interventions targeting MI risk factors would address the 
burdens of MI and stroke and several of their associated risk factors (e.g., diabetes, high 
blood pressure) and lead to reduced cardiovascular health inequities and improved 
population health for all communities in Florida. Furthermore, Florida’s current 
demographics and healthcare challenges mirror those for states in the southern US such 
as Alabama, Mississippi, Oklahoma, and Tennessee, given their failure to expand 
Medicaid [117]. They also foreshadow the changes projected for the US population in the 
future. Thus, the results for this study have important implications for local, regional and 
national health policy. 
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5.2 Future Research Directions 
 

The findings and the limitations identified in chapters 2, 3 and 4 in this dissertation 
suggest potential avenues for further research. 

An ecological study design was used because the interest was to investigate 
spatiotemporal patterns and burdens of MI hospitalization and mortality, as well as 
potential sociodemographic predictors of MI hospitalization risks at the county level. The 
county is more relevant to policy action steps. However, geographic analysis of the MI 
burden at the county-level does not identify within county differences which can be large. 
For instance, while perisitent clustering of high MI risks in predominantly rural counties 
argue convincingly for the need for additional research and intervention efforts in these 
specific areas, some areas within rural counties could have low MI risks. Thus, additional 
studies limited to high-risk clusters, with high-risk counties partitioned further into ZIP 
codes may help identify specific ZIP codes within high-risk counties that have highest risk 
for MI deaths. Interventions may then be targeted to those ZIP codes and these may have 
a higher success rate in improving cardiovascular health than generalized interventions 
targeted at the county level. Additionally, perisitent clustering of low-risks in urban 
counties may mask high risks in socioeconomically-disadvantaged inner-city populations 
in those counties, which do not appear as hot spots in county-level maps. Thus, public 
health officials or policy makers using these data may not identify or target these inner-
city populations as needing intervention to reduce MI risk. Therefore, health programs 
could benefit from small-area studies at the ZIP code or the census tract levels.  

Contextual sociodemographic features of county populations were investigated for 
potential associations with MI hospitalization risks across Florida counties. However, 
there is potential for substantial within-county variations in sociodemographic factors due 
to the heterogeneous nature of the counties. Thus, a change in spatial unit of analysis 
may alter the spatial patterns due to the modifiable areal unit problem. From a research 
policy perspective, this is good cause to avail individual-level data to designated 
researchers, with appropriate safe guards for confidentiality, to investigate the role of 
geography in the etiology of MI. 

Potential confounding factors such as clinical (obesity, diabetes, and 
hypertension), behavioral (lack of physical activity, poor diet, smoking, and alcohol 
consumption), physical environmental (built environment, safety, walkability) and 
healthcare access factors (i.e. location of primary care physicians and cardiac specialists, 
transportation system, and travel distance to cardiac centers) that might be associated 
with the spatiotemporal disparities in MI-hospitalization risks in Florida were not 
investigated this study. Therefore, future studies will need to include these variables, to 
enable policy makers to design more effective evidence-driven interventions for reducing 
the MI burden in the most disadvantaged regions. Moreover, investigations of the drivers 
of MI risks in counties within persistent low-risk clusters may provide us with insights 
regarding the protective factors responsible for the lower than expected MI risks in those 
counties. 

The distinct seasonal patterns observed for MI hospitalizations, with higher risks 
for winter months than for summer months suggest that weather may contribute 
substantially to MI burden/morbidity in Florida. Additional studies of associations of heat 
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and cold exposure and MI, adjusting for PM2.5 and O3 levels and other confounding 
effects, may lead to improved strategies for MI prevention.  
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