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ABSTRACT 

 

The emergence of new sensors and data sources provides large scale high-resolution 

big data from instantaneous vehicular movements, driver decision and states, 

surrounding environment, roadway characteristics, weather condition, etc. Such a big 

data can be served to expand our understanding regarding the current state of the 

transportation and help us to proactively evaluate and monitor the system performance.  

The key idea behind this dissertation is to identify the moments and locations where 

drivers are exhibiting different behavior comparing to the normal behavior. The concept 

of driving volatility is utilized which quantifies deviation from normal driving in terms of 

variations in speed, acceleration/deceleration, and vehicular jerk. This idea is utilized to 

explore the association of volatility in different hierarchies of transportation system, i.e.: 

1) Instance level; 2) Event level; 3) Driver level; 4) Intersection level; and 5) Network level. 

In summary, the main contribution of this dissertation is exploring the association of 

variations in driving behavior in terms of driving volatility at different levels by harnessing 

big data generated from emerging data sources under real-world condition, which is 

applicable to the intelligent transportation systems and smart cities. By analyzing real-

world crashes/near-crashes and predicting occurrence of extreme event, proactive 

warnings and feedback can be generated to warn drivers and adjacent vehicles regarding 

potential hazard. Furthermore, the results of this study help agencies to proactively 

monitor and evaluate safety performance of the network and identify locations where 

crashes are waiting to happen. The main objective of this dissertation is to integrate big 

data generated from emerging sources into safety analysis by considering different levels 

in the system. To this end, several data sources including Connected Vehicles data (with 
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more than 2.2 billion seconds of observations), naturalistic driving data (with more than 2 

million seconds of observations from vehicular kinematics and driver behavior), 

conventional data on roadway factors and crash data are integrated.  
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CHAPTER 1 : Introduction 
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Summary 

 

The emergence of new sensors and data sources provides large scale high-resolution 

big data from instantaneous vehicular movements, driver decision and states, roadway 

characteristics, weather condition, etc. With mandating automobile companies to install 

communication equipment, enormous data will be available ranging from microscopic 

driver decisions to instantaneous traffic flow condition. Such a big data can be served to 

expand our understanding regarding the current state of the transportation and help us to 

proactively evaluate and monitor the system performance. Transportation safety is one 

of the main challenges with more than 37 thousand fatalities and more than 2 million 

injuries across the United States. The main question that might arises is whether the new 

large-scale data can be incorporated into safety analysis.  

 

As such, this research attempts to answer this question from several perspectives. From 

the big data perspective, this research developed a framework to pre-process 

unstructured raw data, assemble, extract additional engineering features (e.g. driving 

volatility, traffic exposure, roadway geometry features, traffic flow condition) and integrate 

this information with traditional transportation data sources. The data contains rich 

information on instantaneous driving behavior in naturalistic and connected 

environments, roadway/environmental characteristics, driver state, and biometrics (i.e. 

distraction). From the conceptual perspective, this dissertation developed the concepts 

of temporal driving volatility and unintentional volatility in order to quantify variations in 

each driving instance. Furthermore, this study extends the concept of location-based 
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driving volatility by developing several volatility measures and incorporate lateral 

movements into analysis. From the methodological perspective, this study is employed 

several innovative methods including heterogeneity-based simulation-assisted statistical 

models, Geographically Weighted Regression analysis, Machine Learning, and Deep 

Learning methods to model association of extracted features from the raw big data with 

crash risk (in terms of frequency of crashes, type of crashes, probability of occurrence, 

and crash propensity).  

 

The key idea behind this dissertation is to identify the moments and locations where 

drivers exhibit different behavior comparing to the normal behavior. The concept of driving 

volatility is utilized which quantifies deviation from normal driving in terms of variations in 

speed, acceleration/deceleration, and vehicular jerk. This idea is utilized to explore the 

association of volatility in different hierarchies of transportation system, i.e.: 1) Instance 

level; 2) Event level; 3) Driver level; 4) Intersection level; and 5) Network level.  

 

At the instance level, the concept of temporal driving volatility is developed which 

quantify variations in each instance of driving and applied to the Connected Vehicle data 

and NDS data. This concept will help us to identify instances when drivers exhibit 

abnormal behavior and explore the factors associated with this behavior to reduce it. By 

matching micro information on driving behavior with roadway/environmental factors, 

driver state and biometrics, we explored their association with crash risk. This dissertation 

characterizes the probability of crash occurrence in real-time by applying rigorous deep 

learning methods. Referring to event level, this study analyzed the association 15 

seconds of pre-crash driving volatility with crash intensity, simultaneously modeling 
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association of driver state and roadway/environmental factors with event volatility itself.  

At the driver level, the study explores all trips taken by each individual driver commuting 

in the study area and quantifies longitudinal and lateral driving volatilities. These 

measures are utilized to group system users to calm, normal, and aggressive drivers. The 

driver level volatility has several applications in real-life such as Advanced Driving 

Assistance Systems, scoring driver risk for insurance companies, and safety-based route 

guidance. At the network level, the dissertation incorporates the concepts of location-

based and temporal driving volatility to explore the association of variations in longitudinal 

and lateral vehicular movements with crash frequency and type at the intersections and 

network level. Large scale data from the Safety Pilot Model Deployment study is utilized 

and processed more than 2.2 billion of BSM observations to calculate several volatility 

measures. Also, additional features on traffic flow and roadway geometry are extracted 

from the CV data. This information is fused with crash and traditional data (e.g. roadway 

geometry, traffic volume) and association of driver behavior (in terms of driving volatility) 

with crash frequency and type is explored. The results are utilized to proactively identify 

hotspot locations in the network where driving volatility is high, while crash frequency is 

low and crashes are waiting to happen.  

 

In summary, the main contribution of this dissertation is exploring the association of 

variations in driving behavior in terms of driving volatility at different levels by harnessing 

big data generated from emerging data sources under real-world condition, which is 

applicable to the intelligent transportation systems and smart cities. By analyzing real-

world crashes/near-crashes and predicting occurrence of extreme event, proactive 

warnings and feedback can be generated to warn drivers and adjacent vehicles regarding 
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potential hazard. Furthermore, the results of this study help agencies to proactively 

monitor and evaluate safety performance of the network and identify locations where 

crashes are waiting to happen.  

 

The analyses under this dissertation led to the following articles: 

 

1. Arvin, R., Khattak, A. (2019). Harnessing big data generated by connected 

vehicles to proactively monitor safety performance of the network: Application of 

Geographically Weighted Negative Binomial Regression.  

• Peer-reviewed conference paper: Presented at the 98th Transportation 

Research Board Annual Meeting 2020, Washington DC. 

• Journal article: Under review in Accident Analysis and Prevention 

 
2. Arvin, R., Kamrani, M., & Khattak, A. J. (2019). How instantaneous driving 

behavior contributes to crashes at intersections: extracting useful information 

from connected vehicle message data.  

• Journal article: Published in Accident Analysis & Prevention. 

• Peer-reviewed conference paper: Presented at the 97th Transportation 

Research Board Annual Meeting 2019, Washington DC. 

 
3. Hosseinzadeh, N., Arvin, R.1, Khattak, A., & Han, L. (2019). Integrating safety 

and mobility for pathfinding using big data generated by connected vehicles. 

• Journal article: Published in Journal of Intelligent Transportation Systems 

 
1 The contribution of the first and second author is equal 
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• Peer-reviewed conference paper: Presented at the 97th Transportation 

Research Board Annual Meeting 2018, Washington DC. 

 
4. Arvin, R., Kamrani, M., & Khattak, A. J. (2019). The role of pre-crash driving 

instability in contributing to crash intensity using naturalistic driving data.  

• Journal article: Published in Accident Analysis & Prevention. 

• Peer-reviewed conference paper: Presented at the 97th Transportation 

Research Board Annual Meeting 2018, Washington DC. 

 
5. Arvin, R., Khattak, A. (2020). Driving impairments and Duration of distractions: 

Assessing Crash Risk by Harnessing Microscopic Naturalistic Driving Data. 

• Peer-reviewed conference paper: Presented at the 98th Transportation 

Research Board Annual Meeting 2020, Washington DC. 

• Journal article: Under second-stage review in Accident Analysis and 

Prevention 

6. Arvin, R., Khattak, A., & Qi, H. (2020). Real-time crash prediction through unified 

analysis of driver and vehicle volatilities: Application of 1D-Convolutional Neural 

Network - Long Short-Term Memory. 

• Journal article: Under review in Engineering Application of Artificial 

Intelligence 

 

The outline of the dissertation is provided in the Figure 1.1. The main objective of this 

dissertation is to integrate big data generated from emerging sources into safety analysis 

by considering different levels in the system. To this end, several data sources including 
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Connected Vehicles data (with more than 2.2 billion seconds of observations), naturalistic 

driving data (with more than 2 million seconds of observations from vehicular kinematics 

and driver behavior), conventional data on roadway factors and crash data are integrated. 

Data cleaning protocols are applied to remove erroneous data from the analysis. Next, 

this research develops several volatility indices such as temporal and unintentional driving 

volatility to quantify instantaneous variations in driving behavior. Furthermore, multiple 

location-based volatility measures are developed to explore association of driving 

behavior and crash risk at locations. Then, additional information is extracted from raw 

big data including volatility indices and network characteristics.  

 

In terms of analysis, this dissertation performs analysis at different levels including macro-

level (frequency of crashes at the network), meso-level (crash frequency and type at 

intersections), and micro-level (probability of a crash occurrence and severity). Different 

statistical, spatial analysis, machine learning, and deep learning methods are utilized to 

untangle the association of extracted features from the data and crash risk at different 

levels.  
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Figure 1.1 Outline of the dissertation 
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Problem justification 

It is estimated that the traffic incident costs across the US is more than $836 billion with 

more than 7.2 million crashes, 2.1 million injuries, and 35,000 fatalities across the country. 

Generally, driver behavior is identified as the main contributing factor in traffic crashes 

across the United States. It has shown that 94 percent of crashes involving some types 

of human error prior to the crash occurrence (Anon 2008). Therefore, it is obvious that 

further investigation is needed regarding driver behavior, specifically prior to crash 

occurrence. In the literature, researchers are studying the association of different factors 

on driver behavior and their correlation with safety outcome. However, their analysis is 

mainly relying on police-reported crash data. It is worth noting that based on the report 

by National Highway Traffic Safety Administration (NHTSA) (NHTSA 2009), 50% of 

property damage only crashes and 25% of minor injury crashes are not reported to the 

police and not recorded. Also, these crashes may be truncated due to states monetary 

threshold (Hauer 2006).  

 

On the other hand, emergence of new data sources provides a new broad range of 

opportunities for researchers to think out of the box and apply new concepts and methods 

in the transportation. Transportation safety can greatly get benefits by incorporating big 

data to evaluate and monitor the performance of drivers and infrastructure. Big data in 

transportation might generated from different sources such as Basic Safety Messages 

generated by Connected Vehicles, naturalistic driving data, Bluetooth, cellular phones, 

traffic surveillance systems, etc. As an illustration, automotive companies will be 

mandated to equip their vehicles to be able to communicate with other vehicles and 
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infrastructures (NHTSA) and enormous data generated by CVs will be available. 

Furthermore, emergence of naturalistic driving data helps us to study microscopic 

decisions of drivers, vehicle state, and roadway/environmental condition prior to crash 

occurrence. On the contrary to the traditional police-reported data which suffering from 

unreported crashes and information, NDS data contains all crashes and near-crashes 

with rich information on driver behavior, vehicle movements and roadway condition.  

 

Given such rich datasets and ongoing generation of data streams, there is a great need 

to incorporate this information in the transportation analysis. Currently, other traditional 

transportation data sources such as crash data, geometric characteristics, traffic volume, 

weather condition, sociodemographic factors, etc. extensively used in transportation 

safety studies. The main question that this dissertation is trying to answer is how we can 

develop methodological framework to harness big data generated by emerging sources 

and incorporate this information into transportation safety analysis.  
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Literature review, gaps and contributions 

Monitoring safety performance of the network 

Literature review 

The majority of studies analyzed historical crash data, roadway and geometric factors, 

tried to suggest safety countermeasures by developing safety performance models (Farid 

et al. 2018, Wali et al. 2018d, Ahmad et al. 2019, Farid et al. 2019, Ulak et al. 2020). In 

order to model the frequency of crashes, mainly location characteristics are considered 

in the modeling, including density (Huang et al. 2010), skew angle (Nightingale et al. 

2017), traffic volume and flow (Wang et al. 2009, Stipancic et al. 2017). On the other 

hand, although review of transportation safety literature suggest that driver behavior and 

human errors are the leading cause of crashes (Akamatsu et al. 2003, Curry et al. 2011, 

Dingus et al. 2016), human behavioral part received less attention. As an illustration, it 

has shown that aggressive driving is contributing to more than 50 percent of fatal crashes 

across the U.S. (AAA 2009). It can be inferred that the main limitation of these studies is 

ignorance of human behavioral side and reactively focusing on roadway and geometric 

factors which is mainly due to intrinsic data structure of traditional crash data which does 

not contain information on driver behavior and performance prior to crash involvement. 

As an alternative to traditional hotspot identification methods, several researchers utilized 

surrogate safety measures to quantify the crash risk (Essa and Sayed 2018, Rahman and 

Abdel-Aty 2018, Rahman et al. 2018), which are mainly rely on information of the subject 

and front vehicle. The main challenge in this context is limitation on information of front 

vehicle which needs to be obtained via computer vision techniques (Ismail et al. 2009, 

Xie et al. 2016) or other sensors (Xie et al. 2018). Furthermore, by emergence of various 
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sources of data (e.g. surveillance systems and Global Positioning System data), 

researchers tried to investigate the association of driving behavior and safety 

performance of intersections or segments. Quddus (Quddus 2013) investigated the 

association of speed and crash frequency at freeways using 1-hour average speed data. 

Another study by Pei et al (Pei et al. 2012) studied the association of travelling speed and 

crash frequency using GPS taxi data.  

 

Emergence of connected vehicles potentially can help to alleviate the issues in the 

literature by targeting human factors elements and incorporate this information into safety 

analysis by analyzing large scale data. Recently, the concept of driving volatility is utilized 

as a surrogate safety measure to quantify variations in driving behavior and explored the 

association of driving behavior and crash risk at intersections (Kamrani et al. 2018b, Wali 

et al. 2018a, Arvin et al. 2019c). However, their effort is limited to intersections and their 

sample size in terms of study area is relatively small. Therefore, the results might not be 

generalizable to other locations.  

 

From the methodological standpoint, due to complexity of traffic crashes and driving 

behavior and considering that we are only using CV data as a proxy of driver behavior 

and traffic condition, it is obvious that all factors that might affect occurrence of crashes 

are not observed. In addition, spatial data such as crash count typically (Mannering et al. 

2016) are not independent, and spatial dependency needs to be taken into account 

(Hadayeghi et al. 2010b). While in the literature some methods including Conditional 

Autoregression (CAR), Simultaneous Autoregression (SAR), and Spatial Lag models are 

widely used (see (Aguero-Valverde et al. 2006, Wang et al. 2006, Hadayeghi 2009) ) they 
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are not thought as local models (Hadayeghi et al. 2010b). On the other hand, in the recent 

crash modeling literature, GWR techniques are used to develop statistical models. This 

approach allows the parameters to vary across the space which accounts for spatial 

heterogeneity (Xu and Huang 2015). Several studies have utilized Geographically 

Weighted Poisson Regression to model crash frequency (Hadayeghi et al. 2010b, Xu and 

Huang 2015, Arvin et al. 2019c). While it has shown that GWPR model outperform the 

traditional Poisson and Negative Binomial methods (Fotheringham et al. 2003, Arvin et 

al. 2019c), the main limitation of this methodology is  not accounting for overdispersion in 

the modeling crash frequency, which usually is not the case in crash frequency analysis. 

 

Research gap 

By reviewing the literature, several gaps are identified. First, the study area is mainly 

limited to segments or intersections, but a proactive network-based framework is not 

available. Second, the sample sizes are relatively small, and the results might not be 

widely generalizable. Third, these studies mainly considered longitudinal vehicular 

movements in order to quantify crash risk. Finally, the spatial heterogeneity among 

observations are ignored in the analysis.  

 

Objectives and contribution 

Given the gaps in the literature, the key objectives of this paper can be summarized in 

four main points: 

 

1) To develop a fundamental method to quantify variations in instantaneous driving 

behavior in terms of speed, and longitudinal/lateral/vertical acceleration. 
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2) To understand the spatiotemporal driving behavior in real-time and study its 

correlation with traffic crashes. 

3) To proactively monitor the network performance by understanding the correlation 

of driving behavior and traffic crashes to identify hotspots. 

4) To account for spatial heterogeneity by developing Geographically Weighted 

Poisson and Negative Binomial Regression (GWPR and GWNBR). 

 

The contribution is introducing the concept of temporal driving volatility and developed a 

methodological framework to process big data generated by more than 2800 CVs in real-

world condition to explore the association of driving volatility and crash risk at the network 

level. Furthermore, variations in vehicular movements in three dimensions (longitudinal, 

lateral, and vertical) are explored. A systematic approach is proposed to monitor safety 

performance of the network and identify the hotspot locations for proactive treatment. In 

addition, from the methodological standpoint, this study utilized Geographically Weighted 

Negative Binomial Regression to address spatial heterogeneity and overdispersion in the 

data. In this paper, our main hypothesis is variations in vehicular movement in terms of 

driving volatility is associated with the crash frequency at the network level, and whether 

big data generated by CVs can be incorporated to proactively identify hotspot locations 

in the network. Considering emergence of CAVs and high-resolution big data generated 

in real-time, this study is timely and original by incorporating this data into safety 

management problem to proactively identify hotspot locations in the network where 

crashes are waiting to happen. 
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Analyzing crash frequency and types at intersections 

Literature review 

Numerous studies have focused on capturing associations between crash frequency and 

the geometric characteristics and traffic factors at intersections or road segments. The 

most favorable method for finding relationships between these variables are statistical 

count models due to the non-negative, discrete, and randomness nature of crashes.  

 

Focusing on modeling, various methods were utilized for capturing the impact of 

explanatory variables on crash frequencies, among which fixed parameter models are the 

simplest. In this approach, the estimated parameters are not allowed to vary across the 

data (e.g., the effect of Average Annual Daily Traffic (AADT) is constant across all the 

intersections). However, due to presence of unobserved variations among intersections, 

one might expect that some of the estimated coefficients vary across intersections, 

elaborating the model estimation process (Anastasopoulos and Mannering 2009, 

Washington et al. 2010). To address this issue, different promising approaches were 

developed by researchers such as random-effect and random-parameter models that 

have been widely used in crash frequency modeling (El-Basyouny and Sayed 2009, 

Castro et al. 2012, Wu et al. 2013). The main objective of these approaches is to handle 

temporal and spatial correlations and account for unobserved heterogeneity among 

observations (Wali et al. 2018b, Wali et al. 2018c). However, models might not be 

transferrable to other datasets (Lord and Mannering 2010). Geographically Weighted 

Poisson Regression (GWPR) is another method for capturing the spatial variations across 

observations. This method has the same spirit and methodology as local generalized 

linear regression method, but there is a different process for determining the weights 
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(Loader 2006). It has shown that GWPR models outperformed traditional statistical 

models (i.e. the Poisson model) in terms of capturing spatial variations among crash 

counts and independent variables (Fotheringham et al. 2003). In the literature, most 

papers consider spatial variations in all of the predicting factors, while in some cases, 

degrees of variation for some parameters might be negligible. Therefore, it is necessary 

to apply semi-parametric Geographically Weighted Regression (S-GWPR) models in 

which some of the factors are global (Xu and Huang 2015). It should be noted that 

Random Parameter (RP) Poisson regression and GWPR methods are intrinsically 

different. The coefficients in RP Poisson models are drawn independently from a 

univariate distribution, disregarding the locations of the observations, while in GWPR the 

coefficients are derived from coordinates in the geographical space (Xu and Huang 2015).  

 

In the literature, while various location characteristic were considered in crash frequency 

modeling such as intersection density (Huang et al. 2010), skew angle (Nightingale et al. 

2017), congestion and traffic flow (Wang et al. 2009, Stipancic et al. 2017), traffic patterns 

(Noland and Quddus 2005), environmental and weather conditions (Lee and Abdel-Aty 

2005, Ghasemzadeh and Ahmed 2018b), and signal characteristics (Agbelie and 

Roshandeh 2015), driver behavior factors received less attention. In the U.S., more than 

50 percent of all fatal crashes were caused by aggressive driving behaviors such as 

speeding, reckless driving, and failure to yield the right of way (AAA 2009). In the 

literature, in order to quantify the variations in normal driving behavior, common vehicle 

kinematics are widely used (Ghasemzadeh and Ahmed 2017, Ahmed and Ghasemzadeh 

2018, Ghasemzadeh and Ahmed 2018c). Recently, the term “driving volatility” was 

introduced (Wang et al. 2015a) which attempts to describe the driving behavior 
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performance. In order to define volatility, researchers have applied different 

measurements to the kinematic features of vehicles such as speed (Arvin et al., Wang et 

al. 2015a, Kamrani et al. 2017, Kamrani et al. 2018b, a, Arvin et al. 2019b, Kamrani et al. 

2019) , acceleration (Arvin et al., Wang et al. 2015a, Kamrani et al. 2018b, Arvin et al. 

2019b, Kamrani et al. 2019)  and jerk (Wang et al. 2015a, Kamrani et al. 2018b). 

Moreover, some studies (Kamrani et al. 2017) have looked at the impact of volatility on 

the safety performance of traffic networks. 

 

Research gap 

In the previous studies several gaps exist. First, the aforementioned studies ignored the 

variations in lateral movement of the vehicle and only focused on longitudinal volatility. 

Second, the volatility measures that they were using were limited and might not truly 

represent the variations in driving behavior. Third, they modeled total number of crashes 

at intersections, while the impact of driving volatility might vary among different crash 

types. Finally, they ignored the spatial heterogeneity is not addressed. 

 

Objectives and contribution 

The main goals of this research are to: 

 

1) Develop a framework for capturing and quantifying longitudinal and lateral driving 

volatilities using real-world instantaneous driving data.  

2) Evaluate correlations between longitudinal and lateral volatilities with frequency of 

multiple crash types at intersections. 

3) Account for unobserved heterogeneity by utilizing random parameter and semi-
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parametric geographically weighted Poisson regression models. 

 

The contribution of this paper is addressing the aforementioned gaps by extending the 

concept of volatility to longitudinal and lateral volatilities in order to quantify the variations 

in longitudinal and lateral control of the vehicle. By incorporating large scale Basic Safety 

Messages (BSM) data transmitted between CVs in real-world environment, 30 measures 

of volatilities were developed to explore the impact of these measures on the frequency 

of rear-end, sideswipe, angle and head-on crashes. Our hypothesis is variations in 

longitudinal and lateral vehicle movement is associated with the frequency of various 

crash types, controlling for other variables (e.g. traffic exposure, number of legs, number 

of lanes, etc.). To address the unobserved heterogeneity and spatial correlation, the 

random parameter and S-GWPR model was employed, and the performance of the 

models were compared with the fixed parameter Poisson regression. 

 

The role of instability in driving on crash intensity 

Literature review 

Considerable studies in the literature focused on the investigation of speed, driver 

behavior, roadway, and environmental factors which are mainly based on police crash 

reports, which might not be precise and truly represents the crash circumstances. With 

the emergence of Naturalistic Driving Study (NDS) data, it enabled researchers to perform 

an in-depth analysis regarding the contributing factors just before a crash. 

 

Various studies have investigated the human-errors and impact of driver behavior on the 
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severity outcome of a crash such as distracted driving (Neyens and Boyle 2008, Donmez 

and Liu 2015), aggressive driving (Paleti et al. 2010, Lambert-Bélanger et al. 2012), 

impaired driving (Behnood et al. 2014, Behnood and Mannering 2017), etc. In the United 

States, aggressive driving (such as speeding, failure to yield the right of way, and 

reckless) are accounted as contributing factor in more than 50 percent of fatal crashes 

(AAA 2009). On the other hand, the impact of distracted and aggressive driving on the 

driving stability performance is explored by different studies (Beede and Kass 2006, 

Horberry et al. 2006, Hamdar et al. 2008, Stavrinos et al. 2013). Various measurements 

are incorporated to explain stability performance of driving such as speed (Beede and 

Kass 2006, Ghasemzadeh et al. 2018), speed variability (Rakauskas et al. 2004, Beede 

and Kass 2006), lane position maintenance (Rakauskas et al. 2004), lateral control 

(Beede and Kass 2006), time to collision (Papazikou et al. 2017), reaction time 

(Rakauskas et al. 2004, Sheng et al. 2019), etc. In this study, the concept of “driving 

volatility” is utilized as an indicator for driving stability performance prior to a crash 

occurrence. In order to define driving volatility, various measures are applied to 

kinematics of vehicles such as speed (Kamrani et al. 2018b, a, Arvin et al. 2019c), 

acceleration and deceleration (Kamrani et al. 2018b, Arvin et al. 2019c), and vehicular 

jerk (Kamrani et al. 2018b). In addition, research has shown that driving volatility is highly 

correlated with the crash frequency (Kamrani et al. 2017, Kamrani et al. 2018b, Arvin et 

al. 2019c).  

 

On the other hand, the association of roadway/environmental factors on the severity 

outcome of crashes are investigated by several studies. As an illustration, the impact of 

traffic flow (Theofilatos and Yannis 2014), weather condition (Ghasemzadeh and Ahmed 
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2018a, Jalayer et al. 2018), surface condition (Wang and Zhang 2017), roadway 

alignment (Wang and Zhang 2017, Haghighi et al. 2018), and time of day 

(Mokhtarimousavi et al. 2020) on the crash severity have studied. Furthermore, 

researchers have investigated the impact of these factors on driving stability such as 

traffic density (Shakouri et al. 2014, Teh et al. 2014), road geometry (Wang et al. 2015b, 

Hamdar et al. 2016), work zone (Shakouri et al. 2014, Mokhtarimousavi et al. 2019), 

adverse weather (Ghasemzadeh and Ahmed 2017, 2018c), surface condition (Kircher 

and Thorslund 2009), vehicle type (Rahimi et al.), etc. 

 

Research gap 

An obvious limitation in the literature is the vast majority of studies have not explored the 

impact of driving volatility on crash severity while investigating the association of driver 

behavior and roadway/environmental factors on both severity and driving stability. Driver 

behavior and roadway/environmental factors likely are contributing to the driving stability 

and might have both direct and indirect contribution to the intensity of crashes. In addition, 

most of the crash datasets are suffering from unreported property damaged only crashes, 

while this study takes advantage of the second Strategic Highway Research Program 

(SHRP 2) data contains detail information on extreme safety situations, including minor 

crashes leading us to investigate an in-depth analysis of PDO crashes. 

 

 

Objectives and contribution 

To summarize, the questions that this paper is trying to answer are: 
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• How can we extract useful information about enhancing safety from recently 

available microscopic vehicle kinematics data? 

• How is crash intensity related to pre-crash driving volatility (or driving instability)? 

 

 

In summary, the contributions of this study are: 

 

1. Extract useful information by developing a framework for safe speed and 

movement, and by analyzing stability performance as a leading indicator prior to 

crash occurrence. 

2. Exploring pathways that can intensify risky and unsafe events. This task is done 

by developing measures of driving volatility. The study explores the correlates of 

volatility itself and influence of volatility on crash intensity.  

3. Instead of analyzing conventional police-reported crashes that do not contain 

microscopic vehicle kinematic information, this study analyzes pre-crash kinematic 

data and extracts a different set of contributing factors.  

 

Association of driving impairment/distraction on crash risk 

Literature review 

The impact of distracted driving on driving performance has been widely studied in the 

literature. It has shown that deviation of attention from the driving task can lead to delay 

in reaction time (Horrey and Wickens 2004, Drews et al. 2009, Gao and Davis 2017), 

deteriorate vehicle control (Choi et al. 2013, Young et al. 2014, Arvin et al. 2019b, 

Kamrani et al. 2019), and miss events (Fitch et al. 2009, Hosking et al. 2009). The 



 

22 
 

availability of microscopic naturalistic driving data enabled researches to study driving 

behavior prior to critical events and study their associations. In the literature, several 

studies have investigated the association of distracted driving on crash risk (Dingus et al. 

2011, Dingus et al. 2016, Kamrani et al. 2019, Nasr Esfahani et al. 2019) and its severity 

(Arvin et al. 2019b).  

 

Recent studies are focusing on drivers secondary task in terms of removing eyes from 

the forward roadway, and established a relation between eye-off-road and crash risk 

(Klauer et al. 2006, Victor et al. 2015).  Glance location can be utilized to infer whether 

the driver is fully engaged in the driving task or not (Wickens et al. 2003, Taylor et al. 

2013). It has shown that drivers are not tending to hold their glances away from the 

roadway for more than 1.6-2 seconds (Sodhi et al. 2002, Liang et al. 2014), instead, they 

increase the number of times looking away from the road (Victor et al. 2005). Using safety 

surrogate measures, it has shown that higher percentage of the times that drivers have 

eyes off the road is associated with increase in probability of safety critical event (Ahlstrom 

et al. 2013).  

 

Along with distracted and impaired driving, literature suggests that roadway and 

environmental factors such as weather condition (Ghasemzadeh and Ahmed 2016, 

Haghighi et al. 2018), road characteristics (Manan et al. 2017), surface condition (Wang 

and Zhang 2017), traffic flow (Theofilatos and Yannis 2014, Kamrani et al. 2019), etc. are 

associated with the crash risk.  
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Research gap 

An obvious limitation in the literature is the vast majority of studies have not explored the 

impact of driving instability on crash severity while investigating the association of driver 

behavior and roadway/environmental factors on both severity and driving stability. Driver 

behavior and roadway/environmental factors likely are contributing to the driving stability 

and might have both direct and indirect contribution to the intensity of crashes. In addition, 

most of the crash datasets are suffering from unreported property damaged only crashes, 

while this study takes advantage of the second Strategic Highway Research Program 

(SHRP 2) data contains detail information on extreme safety situations, including minor 

crashes leading us to investigate an in-depth analysis of PDO crashes. 

 

Objectives and contribution  

This study contributes to the literature, by: 

 
1- Developing an understanding regarding the influence of duration of distracted 

driving, categorized by different sources, on the probability of extreme event 

occurrence, while controlling for other driving behavior and roadway/environmental 

factors.  

2- Providing in-depth analysis of impact of distraction duration by different secondary 

tasks during 15 seconds before crash and near-crash involvement.  

3- Investigating the role of impaired (alcohol and drug) driving on crash risk. 
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Real-time crash prediction 

Literature review 

Numerous studies have explored the association of driving behavior, vehicle factors, and 

roadway/environmental characteristics on the probability of crash risk using statistical 

methods (add reference). Although most of these researchers are rely on police-reported 

data, they provide insightful inference regarding the association of driving behavior and 

crash risk. Emergence of naturalistic driving data and high-resolution driving decisions 

opened new area to explore microscopic driving behavior prior to crash occurrence. In 

our previous researches (insert references), we have shown that instability in driving not 

only increase the likelihood of a crash involvement but also severity of a crash. In order 

to quantify instability in driving, we have introduced the concept of driving volatility and 

we have shown that it can be served as a leading contributing factor.  

 

On the other hand, deep learning methods recently have received lots of attention due to 

emergence of big data generated by multiple sources and availability of computational 

power. It has shown that deep learning methods are great tool for representation learning 

with little effort for manually feature extraction (Goodfellow et al. 2016). Referring to the 

transportation field, deep learning has applied to several fields including demand 

prediction (Lin et al. 2018, Xu et al. 2018a, Bao et al. 2019b), transportation safety (Li et 

al. 2018, Bao et al. 2019a), travel time prediction and reliability (Ghanim and Abu-Lebdeh 

2015, Tang et al. 2019), driver behavior prediction (de Naurois et al. 2017, Liu and Shi 

2019, Osman et al. 2019), signal control (Jeon et al. 2018, Xu et al. 2018b), driver 

impairment detection (Ye et al. 2017, de Naurois et al. 2018), vehicle classification 

(Nezafat et al. 2019), etc. the main advantage of deep learning architecture over 
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traditional statistical methods is modeling complex non-linear relations between 

associated factors and dependent variable by incorporating distributed and hierarchical 

features (Ma et al. 2015).  

 

In terms of real-time crash prediction, we can identify two groups of studies attempted to 

address this issue in the literature. The first group, which real-time crash prediction mainly 

refers to, focuses on macro-level prediction of a crash in a network or segment (Shi and 

Abdel-Aty 2015, Basso et al. 2018, Yang et al. 2018, Parsa et al. 2019). In other words, 

these models are trying to predict the time and location of crashes that might occur in the 

network in order to support the monitoring the traffic data and network performance. 

Several studies have applied machine learning and deep learning methods including 

Bayesian network (Hossain and Muromachi 2012, Sun and Sun 2015), Support vector 

machine (Sun and Sun 2016, Wang et al. 2019b), CNN (Bao et al. 2019a), and LSTM 

(Ren et al. 2017, Bao et al. 2019a) to predict occurrence of a crash at the aggregate level. 

 

Referring to micro-level analysis, few studies attempted to identify crash risk level in a 

real-time manner. Shi et al (Shi et al. 2019) performed discrete Fourier transform and 

performed XGBoost and K-mean clustering in order to detect critical events. Kluger et al. 

(Kluger et al. 2016) performed Discrete Fourier Transform and K-means on longitudinal 

acceleration to detect critical events on the 49 crashes and 42 near-crashes. Perez et al 

(Perez et al. 2017) utilized thresholds to identify boundaries for the detection of 

crash/near-crash events. Gao et al. (Gao et al. 2018) predict the longitudinal conflicts 

between vehicles with CNN using vehicle kinematics and front-camera videos. However, 

their analysis is only capturing a commercial truck fleet, and the results might not be 
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generalizable to other drivers and vehicle types. One of the few studies which attempted 

to classify the crash and near-crash events is performed by Osman et al. (Osman et al. 

2018). They tried to predict the crash and near-crash events based on the vehicle 

kinematics data. They have tested multiple machine learning approaches including 

Random Forest, support Vector Machine, K Nearest Neighbor, Quadratic Discrimination 

Analysis and they reached 88 percent accuracy. However, they have not mentioned that 

whether they are excluding the seconds that the vehicles were involved in a crash or they 

are using the vehicle kinematics after the occurrence. On the other hand, from the 

methodological standpoint, it seems that their method cannot capture the complexity 

embedded in the data, which potentially can be improved by Deep Learning methods. 

Bugusa et al (Patil) tried to predict the real-time safety risk based on driver behavior and 

environment using Elastic Net regularized logistic regression. In this paper, they only 

discussed the possible framework that can be applied to the data and they did not discuss 

the modeling outcome. 

 

Research gap 

By reviewing the literature, it can be understood that there are several gaps. First, the 

previous studies mainly incorporate raw vehicular movements in the analysis, while driver 

behavior and instability in driving is mainly ignored. Second, the temporal nature of the 

dataset is ignored, and simple machine learning or neural network models are used, 

which might not fully address the time dependency between observations. Finally, the 

proposed models might not perfectly capture the non-linearity relationships between the 

input and output of the model. 
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Objectives and contribution 

In this study, the main contribution is developing a deep learning framework to integrate 

multiple data streams including vehicular kinematics in terms of speed, longitudinal and 

lateral accelerations, driving stability, and driver behavior to predict the occurrence of a 

crash/near-crash. The developed framework has several advantages: 

 

1- The architecture configuration of the model is compact, making the model easy 

to be implemented for real-time safety performance monitoring and failure 

detection. 

2- Its ability to capture temporal variations in the input data generated from 

multiple sensors. 

3- The capability of the model to efficiently train the model using limited training 

dataset and back-propagation iterations (Eren et al. 2019). 

 

Methodological framework 

The main goal of this study is to harness big data generated by emerging data sources 

and integrate this information with traditional transportation data in order to perform safety 

analysis at different levels. This dissertation develops a unique framework to integrate 

different big data sources and harness this information to perform safety analysis. The 

overall framework of the dissertation is provided in the Figure 1.2.  

 

From the data perspective, three groups of data are considered in this framework: 1- 

conventional transportation data (including roadway inventory, traffic data, and historical 
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crash data), 2- emerging data sources (connected vehicle, naturalistic driving, and on-

board unit data), and 3- driver biometrics data (distraction profile, heartrate, and 

brainwave).  

 

These data sets are pre-processed, manipulated and integrated to create our final big 

data. In order to incorporate this data into analysis, first several features are extracted 

from raw data to gain more information regarding transportation system state and 

performance. These features represent geometric data, exposure of traffic, and traffic 

flow state. Next, the concept of driving volatility is extended by introducing the concepts 

of temporal and unintentional volatilities and expanding the location-based volatility 

measures. These measures aim to quantify instantaneous variations in driving behavior. 

Finally, initial analysis on the data is performed and correlation of safety metrics and 

extracted features (e.g. driving volatilities) are quantified.  

 

From the safety analysis perspective, once the big data is established and pre-processed, 

the dependent and independent variables are identified. Referring to the dependent 

variables, this dissertation focused on frequency of crashes, type of crashes, risk of crash, 

severity of crashes and instability in driving. On the other hand, several independent 

variables are identified to present driving volatility, driver behavior, and 

roadway/environmental factors. Several modeling approaches including statistical 

modeling, spatial analysis, heterogeneity-based modeling, machine learning, and deep 

learning methods are utilized to explore the association of independent variables with 

dependent variables. 
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Figure 1.2 Framework of the dissertation 
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CHAPTER 2 : HARNESSING BIG DATA GENERATED BY CONNECTED 

VEHICLES TO PROACTIVELY MONITOR SAFETY PERFORMANCE OF 

THE NETWORK: APPLICATION OF GEOGRAPHICALLY WEIGHTED 

NEGATIVE BINOMIAL REGRESSION 
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This chapter is a modified version of a research article by Ramin Arvin and Asad J. 

Khattak. “Harnessing big data generated by connected vehicles to monitor safety 

performance of network: Application of Geographically Weighted Negative Binomial 

Regression.” The manuscript presented at the 99th Annual Meeting of Transportation 

Research Board Conference at Washington DC, and it is currently under review in 

Accident Analysis and Prevention. 

 

Abstract 

The emergence of high-frequency and high-resolution big data generated by connected 

and automated vehicles provides promising opportunities to monitor and evaluate the 

transportation systems performance. This study develops a conceptual framework that 

harnesses such a big data to monitor the safety performance of the system by 

incorporating human behavior to identify high risk locations in the network. The main 

advantage of this framework is proactively monitoring system safety performance 

whereas traditional methods reactively identify high risk locations. More than 2.2 billion 

Basic Safety Messages transmitted between more than 2800 CVs collected in Ann Arbor, 

MI through the Safety Pilot Model Deployment are processed, analyzed and linked with 

crash data. This study captures the temporal dimension of driving volatility by quantifying 

variations in instantaneous driving behavior and decisions. Several measures of volatility 

are applied to vehicular speed, lateral, longitudinal, and vertical acceleration, and their 

correlations with observed crash frequency are explored. To address unobserved 

heterogeneity in safety performance and spatial correlations, Geographically Weighted 

Poisson and Negative Binomial models are estimated and their goodness of fit are 
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compared. Results reveal that driving volatility is positively and significantly correlated 

with frequency of crashes, and these associations vary substantially across space. 

Variations in longitudinal vehicle movements (speed and longitudinal acceleration 

volatility), and lateral movements (in terms of lateral acceleration) are associated with 

higher crash frequencies. In order to identify hotspot locations, k-means and Gaussian 

Mixture Model (GMM) clustering is performed, and the grids are clustered into low, 

medium and high volatility groups. Grids with high volatility and low crash frequency are 

potential hotspot locations. Further examinations are needed to identify reasons why 

drivers exhibit volatile driving behavior and to develop countermeasures that decrease 

crash risk by reducing driving volatility. 

 

Introduction 

 

In order to effectively allocate resources, precisely identifying hotspot locations in the 

transportation network is crucial. Traditional hotspot identification methods mainly rely on 

historical crash data by monitoring number of crashes to reach a sufficient threshold for 

further investigations and treatments. As an alternative to traditional methods, several 

studies utilized surrogate safety measures in order to assess and mitigate crash risk 

(Rahman and Abdel-Aty 2018, Rahman et al. 2018) by proactively applying 

countermeasures in advance. The emergence of Connected and Automated Vehicles 

(CAV), however, provides large scale high-resolution big data that was previously 

unavailable, ranging from macro-decisions such as origin and destination decision of a 

trip to micro-decisions including instantaneous driving behavior reflected in vehicular 
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movements. Useful information can be extracted from this big data to improve the 

performance of the network system in terms of mobility, operation, and safety. The main 

expected deliveries through the implementation of connectivity to vehicles and 

infrastructures are improvements in efficiency and safety performance (Lu et al. 2014). 

 

In the near future, when automotive companies are mandated to equip their vehicles with 

technology that enables them to communicate with other vehicles and infrastructures 

(NHTSA), enormous data generated by CVs will be available. Therefore, there is an 

opportunity to harness this data in order to create innovative ways to monitor and improve 

the network performance. In this regard, the United States Department of Transportation 

(USDOT) conducted the Safety Pilot Model Deployment (SPMD) in order to advance the 

deployment of connected vehicles, which is known as one of the largest and most 

successful studies. The SPMD enabled vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication, involving more than 2800 vehicles and implemented 

Road Side Units (RSU) on more than 70 roadway miles in Michigan (Henclewood et al. 

2014). The SPMD utilized Dedicated Short-Range Communication (DSRC) which 

enabled vehicles to communicate with other CVs and infrastructure at the frequency of 

10 Hz to establish the largest communication testbed in the United States. It should be 

noted that collected data during the two months of this study contains more than 2.2 billion 

observations. In the future with implementation of connectivity between all vehicles in the 

network, an enormous amount of data will be available which can be harnessed and 

incorporated into safety management studies.  

 

In recent literature, driving volatility, taken from the economic field, is one of the safety 



 

34 
 

surrogate measures that aimed to assess crash risk. Driving volatility captures and 

quantifies variations in driving behavior by measuring vehicular movements such as 

speed, acceleration, and jerk (Kamrani et al. 2018b, Arvin et al. 2019c). From a safety 

perspective, driving volatility has been shown to be a leading indicator of crash 

occurrence and crash severity (Arvin et al. 2019a, Kamrani et al. 2019). This concept can 

be utilized on big data collected by CVs and integrated with crash data to study the 

association of instantaneous driving behavior with frequency of crashes.  

 

This paper develops a unique methodological framework that harnesses big data 

generated by CVs in order to monitor and evaluate the safety performance of 

transportation systems. We introduce the concept of temporal driving volatility, which 

quantifies variations in each instance of driving behavior, in order to extract useful 

information from large-scale raw data. From the methodological perspective, rigorous 

spatial modeling techniques are utilized to address spatial heterogeneity. Finally, a 

systematic approach is presented that proactively identifies hotspot locations in the 

system for further examination, treatment and the development of countermeasures that 

will decrease driving volatility.   

 

Data 

 

This study takes advantage of big data generated by two months of connected vehicle 

data from the SPMD dataset, contains information from about 2800 CVs and 30 roadside 

equipment (RSE) covering more than 73 lane-miles, traversing Ann Arbor, Michigan 

(Bezzina and Sayer 2014). The SPMD is known as one of the most comprehensive real-
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world CV data collection efforts containing multimodal traffic and vehicles which were able 

to communicate to vehicles and infrastructures via V2V and V2I communication devices 

(Bezzina and Sayer 2014). The main objective of undertaking the SPMD by the USDOT 

was to support and advance the evaluation of DSRC for V2V safety applications (Bezzina 

and Sayer 2014). A subset of the data is publicly available which were collected on two 

months (October 2012 and April 2013) (N~2.2 billion observations) via the Intelligent 

Transportation system data hub of USDOT (https://www.its.dot.gov/data/). In this study, 

the full two-month Basic Safety Messages (BSM) transmitted between more than 2800 

CVs is used and integrated with historical crash data. The CV data generates high-

frequency and high-resolution information about location and motions of vehicle, and 

driving context factors. Figure 2.1 illustrates the study area and trajectory of vehicles 

passing the network. It can be inferred that data has high resolution and the trajectories 

are covering the entire city. The crash data is retrieved from the Michigan Data Poral 

(http://gis-mdot.opendata.arcgis.com/). Erroneous data observations were removed from 

the dataset using the procedure developed by Xie et al (Xie et al. 2018) and Kamrani et 

al (Kamrani et al. 2018b).  

https://www.its.dot.gov/data/
http://gis-mdot.opendata.arcgis.com/
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Methodology 

In this section, we will discuss the conceptual framework of the study, definition of volatility 

measures and the algorithm to calculate these measures, the modeling approach and 

model comparison, and finally unsupervised clustering approach for proactive hotspot 

identification. 

 

Figure 2.1 Study area and generated map by connected vehicles 
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Conceptual framework 

In order to develop the methodological framework, high resolution microscopic vehicular 

movements of vehicles are required. In this study, this information is obtained from SPMD 

study. The conceptual framework of the paper is shown in the Figure 2.2. In this study, 

on the contrary to the traditional methods where we manually collect information of 

roadway, we are extracting features and information from the raw CV data. These 

features consist of network and volatility features. Network features focusing on general 

geometric information of the system (such as elevation, radius of the curve, number of 

BSM observations (as a proxy of AADT)), and vehicular movements in terms of average 

of speed, acceleration and yaw rate of vehicles passing each location. Focusing on 

volatility features, this study developed the concept of temporal volatility and coupled it 

with location-based volatility to add the drivers’ behavioral aspect to the model. this 

information is added to the modeling framework, and the significant variables are fed to 

the unsupervised classifier (i.e. K-means and GMM) to identify hotspot locations where 

driving volatility is high, while number of crashes are low.  
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Figure 2.3 provides the workflow of the paper. There are five major steps: 

 

1- Data pre-processing: The goal of this step is to pre-process raw data extracted 

from connected vehicles in order to prepare for further analysis. First, the data is 

filtered on the study area (i.e. Ann Arbor, MI). Next, errors and outliers are removed 

from the data. Finally, zero speeds are excluded from the analysis. These values 

potentially affect volatility measures, especially at intersections (Arvin et al. 2019c). 

The output of this step is a clean and processed dataset of vehicle trajectories and 

kinematics. 

2- Calculating temporal volatility: In this step, we need to extract the trajectories of 

each individual trip taken by each driver and calculate temporal driving volatility 

(discussed in detail in section 4.3.2). This step outputs a dataset containing 

Figure 2.2 Conceptual framework 
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information on instantaneous driving volatility in the longitudinal, lateral, and 

vertical directions for each instance of a trip.  

3- Mapping volatility on the network: Given the temporal volatility measures for all 

drivers and trips, this information is averaged on each pair of (x, y). By defining a 

grid network in the study area, crash data and volatility indices are mapped on 

grids. Finally, for each grid, the location-based volatility measures are calculated 

(discussed in detail in section 4.3.1). The output of this step is the final dataset 

used in the modeling.  

4- Modeling framework: After finalizing the dataset in the previous steps, the 

correlation of developed volatility measures with crash frequency is studied by 

developing fixed and Geographically Weighted Regression models to identify 

measures that have the highest correlation with crash frequency. Next, given these 

significant volatility measures, an unsupervised clustering approach is developed 

to identify grids with high driving volatility. 

5- Hotspot identification: In the last step, after finding the contributing volatility 

measures, k-means and GMM clustering is performed. Next, locations with high 

volatility are identified and these locations where the number of crashes is also low 

are identified as potential hotspot locations. 
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Measures of driving volatility 

In the literature, driving volatility quantifies variations in driving behavior from norm. It has 

been shown that these measures can represent the driving behavior of the majority of 

users in the study area (Arvin et al. 2019c). In previous studies, several functions are 

proposed to quantify variations in vehicular control including speed (Kamrani et al. 2018b, 

Arvin et al. 2019c, Kamrani et al. 2019), longitudinal acceleration (Kamrani et al. 2018b, 

Arvin et al. 2019c, Kamrani et al. 2019), lateral acceleration (Arvin et al. 2019c), and 

vehicular jerk (Kamrani et al. 2018b). This paper also investigates the association of 

vertical movements of vehicle in terms of vertical acceleration volatility. This study applies 

several mathematical functions on CV data to develop four groups of volatilities:  

 

1- Speed volatility  

2- Longitudinal acceleration volatility  

3- Lateral acceleration volatility  

Figure 2.3 Workflow of the paper 
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4- Vertical acceleration volatility. 

 

For each group of volatility, volatility measures are calculated at two levels: Level 

1: Location-based volatility, and Level 2: Temporal driving volatility. In the section 4.3, the 

calculation procedure for each group will be discussed in detail. In the following., the 

formulation for each volatility function will be discussed in detail. 

 

Time-varying stochastic volatility 

This measure quantifies variations in vehicular movements by capturing changes in the 

ratio of observations. We can write (Figlewski 1994): 

 

𝑉𝑓 = √
1

𝑛 − 1
∑(𝑟𝑖 − 𝑟̅)

𝑛

𝑖=1

         𝑓𝑟𝑜𝑚 𝑡 = 1 𝑡𝑜 𝑛                                   (2.1) 

 

where 𝑉𝑓 is the time-varying stochastic volatility, n is number of observations, and 𝑟𝑖 can 

be defined as: 

 

𝑟𝑖 = 𝑙𝑛 (
𝑥𝑡

𝑥𝑡−1
)                                                                   (2.2) 

 

where ln is the natural logarithm, 𝑥𝑡 and 𝑥𝑡−1 represent the observations at time 𝑡 and 𝑡 −

1 , respectively. Considering this volatility measure requires positive time-series 

observations, this function only applies to vehicle speed. 
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Coefficient of Variation 

It quantifies variations by calculating the ratio of standard deviation over mean (Everitt 

and Skrondal 2002), and was applied to all four groups of volatility.  

 
 

𝐶𝑣 =
𝑆𝑑𝑒𝑣

|𝑥̅|
                                                                           (2.3) 

 

where 𝑆𝑑𝑒𝑣  is the standard deviation of the observations, and |𝑥̅|  is the mean of 

observations. 

 

Quartile Coefficient of Variation 

In cases where the data is not following the normal distribution, quartile coefficient of 

variation is one of the desirable measures (Zwillinger and Kokoska 2000), which can be 

written as (Bonett 2006): 

 

𝑄𝐶𝑉  =
𝑄𝑢𝑎𝑟𝑡3 − 𝑄𝑢𝑎𝑟𝑡1

𝑄𝑢𝑎𝑟𝑡3 + 𝑄𝑢𝑎𝑟𝑡1
                                                                 (2.4) 

 

where 𝑄𝑢𝑎𝑟𝑡1  and 𝑄𝑢𝑎𝑟𝑡3  represent the 25th and 75th percentiles of observations, 

respectively.  

 

Mean absolute deviation 

This measure quantify dispersion in the observations by calculating the distance between 
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each individual with central tendency (mean in this paper). We can write (Huber 2005): 

 

𝑀𝐴𝐷 =  
1

𝑛
∑|𝑥𝑖 − 𝑥̅|

𝑛

𝑖=1

                                                                   (2.5) 

 

Count of extreme values 

This measure tries to count extreme observations that lie in the data by defining certain 

thresholds. We can write (Kamrani et al. 2018b): 

 

𝐸𝑥𝑡𝑟𝑒𝑚𝑒 =
𝑐 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛
× 100                                              (2.6)  

 

where 𝑐 is the number of extreme points lying out of the threshold, and n is total number 

of observations. The threshold can be defined as (Kamrani et al. 2018b): 

 
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑥̅ ± 2 × 𝑆𝑑𝑒𝑣                                                       (2.7) 

 

 

Calculation of volatility measures 

In the previous section, four groups of volatility measures are defined (speed, longitudinal, 

lateral, and vertical acceleration) and mathematical functions that applied on each group 

is discussed. In this study, volatility measures for each volatility group are calculated at 

two levels.  

1- Location-based volatility 

2- Temporal driving volatility  

In the following, each level will be discussed in detail. 
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Level 1: Location based volatility 

In this approach, in order to calculate volatility measures, passings undertaken by each 

individual are disregarded and all the CV data in each grid is treated as a bulk. For each 

grid, CV message data are filtered, and volatility functions are applied on the data to 

obtain volatility indices. In terms of computational sources, this approach needs much 

lower processing units compared to temporal driving volatility measures. For further 

information, please refer to (Kamrani et al. 2018b). 

 

1.4.3.2 Level 2: Temporal driving volatility 

This study introduces the concept of temporal volatility, which attempts to quantify 

variations in instantaneous driving decisions at the micro (driver) level and creates a time-

series data. The advantage of this approach is that it captures the time dependency 

between observations, which can help detect and identify the times that an individual 

driver is showing volatile behavior. The calculation has three main phases, which will be 

discussed in the following.  

 

Phase 1 – Calculate temporal driving volatility: Similar to the concept of moving average, 

we considered a 3-second (30 deci-seconds) time-window to calculate temporal volatility 

measures, and the values are assigned to the subject time. Figure 2.4 illustrates the 

calculation of temporal volatility utilizing the moving window.  

 

Phase 2 – Aggregate temporal volatility on points: In the previous step generates 

temporal driving volatility for each trip. Since the data is geocoded, this information can 
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be mapped on the road network. In this phase, given all the trips passing the location (x, 

y), the temporal volatility measures are aggregated and averaged on location (x, y). This 

procedure is performed for all the points on the network.  

 

Phase 3 – Averaging volatility measures on grids: In the last phase, the information on 

grids is aggregated by averaging volatilities of locations that fall in the grid. 

 

Detail information on calculation of temporal volatility measures is provided in Table 2.1. 
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Figure 2.4 Calculation of temporal driving volatility 
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Inputs 

Connected vehicle data  

Geo-referenced coded crashes 

Volatility functions 

Polygon of grid network of the city 

Outputs 

Volatility indices on each grid 

Crash frequency on each grid 

Average kinematic information of passing vehicles on each grid 

 

 

Phase 1 

For each driver, i = (1, N) 

For each trip taken by driver i,  j = (1, Mi) 

For each second of trip j taken by driver i tki,j ∈ [30, Ti,j] 

Step 1: Subset three seconds (30 deci-seconds) of data [tki,j − 30, tki,j ] 

Step 2: Record kinematic information of vehicle 
Step 3: Apply volatility functions 
Step 4: Assign calculated volatility measures and extracted kinematic information 

to time tki,j and location (xki,j
, yki,j

) Volatilityv,tki,j ,(xki,j
,yki,j

) 

Phase 2 

For each location (x, y) 

Step 5 Calculate mean Volatilityv,(x,y) =  
1

n
 σ Volatilityv,tki,j ,(xki,j

,yki,j
)(x,y)   

Phase 3 

For each grid, l = (1, G) 

Step 6: Subset from the processed data and crash data located on grid l, 𝑔𝑙 
If number of observations > 0  

Step 7: Calculate mean of volatility on grid l  𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑣,𝑔𝑙
=  σ 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑣,(𝑥,𝑦)(𝑥,𝑦)∈𝑔𝑙

 

Else 
Step 8: Remove grid l 

 

Table 2.1 Algorithm for calculation of temporal driving volatility 
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Summary of notations 

𝑖: index of drivers 

𝑗: index of trips 

𝑀𝑖: number of trips taken by driver i 

𝑇𝑖,𝑗: total travel time of trip j taken by driver i 

𝑡𝑘𝑖,𝑗
: time k of trip j taken by driver i 

(𝑥𝑘𝑖,𝑗
, 𝑦𝑘𝑖,𝑗

): location of driver i in trip j at time k  

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑣,𝑡𝑘𝑖,𝑗 ,(𝑥𝑘𝑖,𝑗
,𝑦𝑘𝑖,𝑗

): Volatility measure v at time k of trip j taken by driver i  

(𝑥,𝑦): longitude and latitude 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑣,(𝑥,𝑦): Volatility measure v at location (𝑥,𝑦) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑣,𝑔𝑙
: Volatility measure v at grid 𝑔𝑙 

 

Modeling Approach 

Once the temporal driving volatility and location-based volatility measures are calculated, 

we need to investigate the association of volatility measures and crashes. In the literature, 

considering non-negative integer values of the number of crashes in a specific period of 

time, different methods are utilized to model the dependent variable including Poisson 

regression, Negative Binomial, and Zero Inflated Models (Anastasopoulos and Mannering 

2009, Azizi and Sheikholeslami 2012, Dong et al. 2014). In this study, the fixed parameter 

Poisson/Negative Binomial model, GWPR, and GWNBR were considered for modeling 

crash frequency as a function of extracted features from CV data.  
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Poisson Model 

The Poisson regression model can be set up to estimate the probability of observing n 

crashes at grid i can be formulated as (Greene 2003): 

 

𝑃(𝑛𝑖) =
𝜆𝑖

𝑛𝑖 𝑒𝑥𝑝(−𝜆𝑖)

𝑛𝑖!
                                                                (2.8) 

 

where 𝜆𝑖 is the Poisson parameter (is equal to expected crash frequency for grid i, 𝐸(𝑛𝑖)). 

To estimate the Poisson model, the  𝜆𝑖 parameter is written in the logarithm form of a set 

of explanatory factors (Greene 2003):  

 

𝐸(𝑛𝑖) = 𝑙𝑛(𝜆𝑖) = 𝛽𝑋𝑖                                                               (2.9) 

 

where 𝑋𝑖  is the matrix of the explanatory factors and 𝛽  is a vector of the model 

parameters. In order to maximize the Poisson function, following maximum likelihood 

function is utilized (Washington et al. 2010): 

 

𝐿(𝛽) = ∏
exp[− exp(𝛽𝑋𝑖)] [exp(𝛽𝑋𝑖)]𝑛

𝑛𝑖!
𝑖

                             (2.10) 

 

Negative Binomial Model 

The main limitation of Poisson regression model is that the variance and mean of crashes 

need to be equal. In the crash data, the variance of the data is generally larger than mean, 

known as presence of over-dispersion. Therefore, in order to address this limitation, the 
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Negative Binomial model is proposed to account for over-dispersion in the data. We can 

write (Washington et al. 2010): 

 

𝜆𝑖 = 𝑒𝑥𝑝(𝛽𝑋𝑖 + 𝜀𝑖)                                                               (2.11) 

 

where exp(𝜀𝑖) follows a Gamma distribution with mean 1 and variance α. By adding this 

term, the variance can be different from the mean: 

 

𝑣𝑎𝑟(𝑦𝑖) = 𝐸(𝑦𝑖)(1 + 𝛼𝐸(𝑦𝑖)) = 𝐸(𝑦𝑖) + 𝛼𝐸(𝑦𝑖)
2                              (2.12) 

 
 

It is worth noting that by approaching α to zero, the model reduces to Poisson model. The 

distribution of negative binomial model can be written as (Washington et al. 2010): 

 

𝑃(𝑦𝑖) =

𝛤 ((
1
𝛼) + 𝑦𝑖)

𝛤 (
1
𝛼) 𝑦𝑖!

(

1
𝛼

1
𝛼 + 𝜆𝑖

)

1
𝛼

(
𝜆𝑖

1
𝛼 + 𝜆𝑖

)

𝑦𝑖

                                    (2.13) 

 

where Γ(. ) is a gamma function. The likelihood function can be written as (Washington et 

al. 2010): 

 

𝐿(𝜆𝑖) =  ∏

𝛤 ((
1
𝛼) + 𝑦𝑖)

𝛤 (
1
𝛼) 𝑦𝑖!

(

1
𝛼

1
𝛼 + 𝜆𝑖

)

1
𝛼

(
𝜆𝑖

1
𝛼 + 𝜆𝑖

)

𝑦𝑖

𝑖

                               (2.14) 
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Geographically Weighted Poisson Regression Model (GWPR) 

The availability of recent geo-referenced crash data and increased computational power 

has provided opportunities to address spatial heterogeneity through rigorous geospatial 

statistical models (Xu and Huang 2015). One of the most well-known approaches is the 

GWPR model  which is utilized to test whether the associations between the independent 

variables and dependent variable vary substantially across space (Fotheringham et al. 

2003). We can write: 

 

𝑙𝑛(𝜆𝑖) = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1(𝑢𝑖, 𝑣𝑖) 𝑙𝑛(𝐸𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝐾

𝑘=1

+ 𝜖𝑖                      (2.15) 

 

where (𝑢𝑖, 𝑣𝑖) indicates the coordinates of grid i. In GWPR,  𝛽𝑘(𝑢𝑖, 𝑣𝑖) is a function of the 

location i and not randomly distributed. In order to estimate  𝛽𝑘(𝑢𝑖, 𝑣𝑖)  we can write 

(Nakaya et al. 2005): 

 

𝛽̂(𝑢𝑖, 𝑣𝑖) = (𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝑋)−1𝑋𝑇𝑊(𝑢𝑖, 𝑣𝑖)𝑌                                   (2.16) 

 

where 𝛽̂(𝑢𝑖, 𝑣𝑖) is the n×1 vector of estimated coefficients at grid i, X denotes the matrix of 

explanatory variables, Y is the vector of crash frequency at each grid, and 𝑊(𝑢𝑖, 𝑣𝑖) is n×n spatial 

weight matrix, which can be written as: 

 

𝑊(𝑢𝑖 , 𝑣𝑖) = [

𝑤𝑖1

0
0

𝑤𝑖2

…
…

0
0

… … … …
0 … … 𝑤𝑖𝑛

]                                                (2.17) 

 

where 𝑤𝑖𝑗  reflects the weight of variable j at grid i. In the GWPR, for each grid, a 

regression equation based on nearby observations is estimated. Each area is weighted 
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based on the distance from the subject point, where closer areas obtain higher weights 

than farther areas. 

 

Geographically Weighted Negative Binomial Regression (GWNBR) 

In the literature, the majority of studies used GWPR to address spatial heterogeneity and 

model count data. While the major limitation of Poisson models is overdispersion, and it 

has shown that the overdispersion in the crash data might not be taken into account by 

the GWPR method (Yu and Xu 2018). The negative binomial approach is one of the 

alternatives to traditional Poisson models because it incorporates the overdispersion 

factor in the modeling. The negative binomial is a generalization of the Poisson 

distribution where the dispersion parameter (α) equals 0 (Hilbe 2011). Da Silva and 

Rodrigues (da Silva and Rodrigues 2014) developed a procedure to estimate the GWNBR 

model by extending the Iteratively Reweighted Least Square (IRLS) and Newton-

Raphson (NR) algorithm. The general form of the model can be written as (da Silva and 

Rodrigues 2014, Gomes et al. 2017):  

 

𝑦𝑖  ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 [𝑡𝑗 𝑒𝑥𝑝 (∑ 𝛽𝑘(𝑢𝑗 , 𝑣𝑗)𝑥𝑗𝑘

𝑘

) , 𝛼(𝑢𝑗 , 𝑣𝑗)]                        (2.18) 

 
where 𝑡𝑗 is the offset variable, and 𝛼 is the over-dispersion parameter. To estimate the 

model’s parameter 𝛽𝑘 and α, the modified version of IRLS with the maximum likelihood 

method using NR can be used (da Silva and Rodrigues 2014). The log-likelihood of the 

mode GWNBR model can be written as (da Silva and Rodrigues 2014):  
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𝐿(𝛽(𝑢𝑖 , 𝑣𝑗)|𝑥𝑗𝑘 , 𝑦𝑗 , 𝛼𝑗)

= ∑{𝑦𝑗 𝑙𝑜𝑔(𝛼𝑗𝜇𝑗) − (𝑦𝑗 +
1

𝛼𝑗
) ∗ 𝑙𝑜𝑔(1 + 𝛼𝑗𝜇𝑗) + 𝑙𝑜𝑔 [𝛤 (𝑦𝑗 +

1

𝛼𝑗
)]

𝑛

𝑗=1

− 𝑙𝑜𝑔 [𝛤 (
1

𝛼𝑗
)]

− 𝑙𝑜𝑔[𝛤(𝑦𝑗 + 1)]                                                                            (2.19) 

 

where 

 

𝜇𝑗 = 𝑡𝑗 𝑒𝑥𝑝 (∑ 𝛽𝑘(𝑢𝑗 , 𝑣𝑗)𝑥𝑗𝑘

𝑘

)                                                      (2.20) 

𝛼𝑗 = 𝛼(𝑢𝑗 , 𝑣𝑗)                                                                         (2.21) 

𝛤(𝑧) =  ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0

                                                                  (2.22) 

 

For further details, please refer to (da Silva and Rodrigues 2014). In this procedure, it is 

crucial to define the optimum bandwidth through minimization of corrected Akaike 

Information Criteria (AICc) (AICc). 

 

𝐴𝐼𝐶𝑐 = −2𝐿(𝛽, 𝛼) + 2𝑘 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
                                                  (2.23) 

 

where 𝐿(𝛽, 𝛼)  is the log likelihood of the model, and 𝑘  is the effective number of 

parameters. It has shown that in cases where overdispersion parameter is equal to zero, 

the GWNBR will be reduced to GWPR (da Silva and Rodrigues 2014).  
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Measures of Goodness of Fit 

In this study, in order to perform model selection and evaluate the performance of the 

fixed parameter and GWPR models, several criteria were used. 

1- Deviance of the model: a goodness of fit measure which quantifies deviance of the 

fitted model from a saturated model. For the Poisson model, we can write: 

 

𝐷 = 2 ∑(𝑌𝑖 𝑙𝑜𝑔 (
𝑌𝑖

𝜇𝑖
) − (𝑌𝑖 − 𝜇𝑖)) 

𝑛

𝑖=1

                                   (2.24) 

 

where 𝑌𝑖 , 𝑌𝑖̂  and 𝑦ത  are the observed, and predicted crash frequency at grid i, 

respectively.  

 

2- AIC: measures the relative goodness of fit where a lower AIC value represents a 

better model fit (Bozdogan 1987). We can write: 

 

𝐴𝐼𝐶 =  −2𝐿𝐿 + 2𝑘                                                              (2.25) 

 
where LL is the log-likelihood and k is the number of model’s parameters. For the 

GWR model, we need to calculate the effective number of parameters. We can 

write (Nakaya et al. 2005): 

 
𝐾 = 𝑡𝑟𝑎𝑐𝑒(𝑆)                                                                 (2.26) 

 

where S is the hat matrix. More details can be found (Nakaya et al. 2005). 
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3- Mean Absolute Deviation (MAD): quantifies the model performance in terms of 

deviation of predicted number of crashes from observed values. Smaller values 

imply a better goodness of fit. It can be written as: 

 

𝑀𝐴𝐷 =  
σ |𝑌̂𝑖 − 𝑌𝑖|

𝑛
𝑖=1

𝑁
                                                          (2.27) 

 
4- Mean Squared Error (MSE): Similar to MAD, MSE assess the model accuracy by 

calculating the distance between the observed and predicted values. It can be 

defined as: 

 

𝑀𝑆𝐸 =
σ (𝑌̂𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

𝑁
                                                        (2.28) 

 

where N is the total number of grids.  

 

k-means clustering 

In this research, in order to identify the hotspot locations, k-means clustering is performed. 

K-means is one the most common unsupervised machine learning methods used to 

partition observations into k groups, where k denotes the number of clusters. The goal of 

this method is to define clusters in a way where observations in each cluster have high 

similarity with each other and are dissimilar with observations in other clusters as much 

as possible.  

 

While the main idea behind k-means is to minimize the total within cluster variation, 

several methods for perform clustering have been proposed. This study utilizes the 
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method proposed by Kaufman and Rousseeuw (Kaufman and Rousseeuw 2009). In this 

method, the total variations within clusters are defined as the sum of squares of Euclidian 

distances among observations with the centroid of cluster. We can write: 

 

𝑊(𝐶𝑘) = ∑ (𝑥𝑖 − 𝜇𝑘)2

𝑥𝑖∈𝐶𝑘

                                                    (2.29) 

 
where 𝑥𝑖  is the observation falls in cluster 𝐶𝑘 , and 𝜇𝑘  is the mean of observations in 

cluster 𝐶𝑘. The assignment of observations to clusters are performed such that the total 

sum of squares of distances are minimized. We can write: 

 

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ∑ 𝑊(𝐶𝑘)

𝐾

𝑘=1

= ∑ ∑ (𝑥𝑖 − 𝜇𝑘)2

𝑥𝑖∈𝐶𝑘

𝐾

𝑘=1

                       (2.30) 

 
 
where K is the number of clusters. One of the challenges in performing k-means clustering 

is finding the optimal number of clusters. One of the common methods to find the optimal 

number of clusters (k) is the elbow method. The main idea of this method is to choose a 

k value which minimize total sum of squares error. While by increase in K, the SSE tends 

to reach zero, the elbow represents the point where return of increasing K will be 

diminished.  

 

Gaussian Mixture Model 

A major drawback of k-means clustering arisen from selecting the cluster center using the 

mean value. This can be problematic when the means of clusters are close to each other. 

In other words, k-means approach can be considered as a special case of the GMM, 

since GMM is more expressive due to grouping the data into clusters irrespective of 
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cluster shape. The advantage of GMM is considering a Gaussian density function for each 

component. Considering an independent identically distributed sample of observations 

( 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} , the distribution of each observation can be specified using a 

probability density function through G components (Scrucca, 2016 #911): 

 

𝑓(𝑥𝑖;  Ψ) =  ∑ 𝜋𝑘𝑓𝑘(𝑥𝑖; 𝜃𝑘)

𝐺

𝑘=1

                                                 (2.31) 

 
where G is the number of components, Ψ is the vector of mixture model parameters 

(which is unknown and need to be estimated), 𝑓𝑘(𝑥𝑖; 𝜃𝑘) is the density function of kth 

component for observation 𝑥𝑖, and 𝜃𝑘 is the vector pf mixing probabilities. Since GMM 

model assumes Gaussian distribution for the density function (𝑓𝑘(𝑥𝑖; 𝜃𝑘)), the clusters are 

ellipsoidal, and we can write: 

 
𝑓𝑘(𝑥𝑖; 𝜃𝑘)~𝑁(𝜇𝑘, Σ𝑘)                                                        (2.32) 

 
Where 𝜇𝑘 denotes the center of cluster k, and Σ𝑘 is the covariance matrix, determining 

the shape and geometry features of the cluster. 

 

Results 

Descriptive Statistics 

Descriptive statistics of the independent and dependent variables is provided in Table 

2.2. The table provides the descriptive information of the key variables to help 

conceptualize the variables distribution. The sample size, the number of grids in the study 

area, is 3007. Based on the descriptive statistics, the average number of crashes in 2013 
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on each grid was 0.75. Focusing on grid characteristics, the average speed in the grids 

was 12.96 m/s, and the average recorded curve radius was 850.98 m. The average 

elevation was 238.65 m, ranging from 2 to 2971 m.  

 

Descriptive statistics of the two levels of driving volatility indices are also provided. There 

is substantial variation among the volatility measures between grids. As an illustration, 

time-varying stochastic volatility of speed at both location-based and temporal levels 

range substantially across grids. Further details can be found in Table 2.2.  



 

58 
 

Variable Mean S.D. Min Max 

Crash frequency 0.75 2.36 0 27 

Elevation (m) 238.652 58.596 2.885 2971.97 

Speed (m/s) 12.956 6.392 0.180 32.374 

𝑎𝑥(𝑚/𝑠2) -0.016 0.160 -1.869 1.646 

𝑎𝑦(𝑚/𝑠2) -0.126 0.533 -9.784 3.442 

𝑎𝑧(𝑚/𝑠2) -0.730 0.997 -2.986 0.000 

Yaw rate 0.011 4.067 -32.582 115.132 

Radius of Curve (m) 850.981 912.925 -2422.05 3276.7 

Number of BSM Observations 82408 199283.1 101 4562546 

Level 1 - Location-based volatility 

L1-Speed-𝑉𝑓 4.07 2.17 0.06 27.94 

L1-Speed-MAD 0.25 0.13 0.01 1.6 

L1-Speed-𝐶𝑣 0.16 0.11 0.01 0.72 

L1-Speed-𝑄𝐶𝑉 0.05 0.02 0 0.19 

L1-Speed-2𝑆𝑑𝑒𝑣 0.59 0.25 0.09 2.84 

L1-𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝐶𝑣 0.99 0.28 0.05 3.2 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝐶𝑣 0.59 0.11 0 0.96 

L1-𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝑄𝐶𝑉 0.59 0.11 0 0.97 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝑄𝐶𝑉 0.43 0.19 0.06 1.75 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑥-MAD 0.06 0.04 0 0.36 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑥-2𝑆𝑑𝑒𝑣 0.66 0.53 0.03 5.07 

L1-𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝐶𝑣 1.35 0.72 0 6.49 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝐶𝑣 0.67 0.17 0 1 

L1-𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝑄𝐶𝑉 0.65 0.16 0 0.99 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝑄𝐶𝑉 0.43 0.4 0.02 4.96 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑦-MAD 0.06 0.06 0 0.41 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑦-2𝑆𝑑𝑒𝑣 27.75 16.52 0.98 151.78 

 

Table 2.2 Descriptive Statistics (N=3007 grids) 
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Table 2-2 Continued 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧-𝐶𝑣 1.06 0.55 0.0 4.05 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑧-MAD 0.58 0.77 0.0 4.98 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑧-2𝑆𝑑𝑒𝑣 2.92 0.99 0.0 15.61 

Level 2 – Temporal volatility 

L2-Speed-𝑉𝑓 1.86 1.43 0.1 19.5 

L2-Speed-MAD 0.81 0.36 0.15 4.19 

L2-Speed-𝐶𝑣 0.07 0.05 0 0.48 

L2-Speed-𝑄𝐶𝑉 0.06 0.04 0 0.41 

L2-Speed-2𝑆𝑑𝑒𝑣 0.02 0 0 0.05 

L2-𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝑄𝐶𝑉 0.48 0.06 0.19 0.8 

L2-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝑄𝐶𝑉 0.48 0.06 0.21 0.68 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑥-MAD 0.37 0.13 0.1 1.35 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑥-2𝑆𝑑𝑒𝑣 0.04 0.01 0.01 0.1 

L2-𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝑄𝐶𝑉 0.43 0.09 0 0.79 

L2-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝑄𝐶𝑉 0.43 0.09 0 0.7 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑦-MAD 0.18 0.11 0 1.61 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑦-2𝑆𝑑𝑒𝑣 0.03 0.01 0 0.08 

L2-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧-𝑄𝐶𝑉 0.25 0.08 0 0.63 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑧-MAD 0.07 0.05 0 0.51 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑧-2𝑆𝑑𝑒𝑣 0.03 0.01 0 0.08 

*L1: Location-based volatility measure; L2: Temporal volatility measure; (2𝑆𝑑𝑒𝑣): % of extreme points beyond mean ± two 
standard deviation; 𝐶𝑣: coefficient of variation; 𝑄𝑐𝑣: quartile coefficient of variation; 𝐷𝑚𝑒𝑎𝑛: mean absolute deviation; 
𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥: longitudinal acceleration; 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥: longitudinal deceleration; 𝐴𝑐𝑐𝐷𝑒𝑐𝑥:both longitudinal acceleration 
and deceleration; 𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦: lateral acceleration; 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦: lateral deceleration; 𝐴𝑐𝑐𝐷𝑒𝑐𝑦 : both lateral acceleration 

and deceleration; 𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧: vertical acceleration; 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧: vertical deceleration; 𝐴𝑐𝑐𝐷𝑒𝑐𝑧: both vertical 
acceleration and deceleration; 

 
 
 

Concept illustration 

This section provides a visualization of the relationship between driving volatility and 

crash frequency at each grid. As mentioned before, the main hypothesis of this research 
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is that driving volatility is associated with crash frequency. For illustration purpose, Figure 

5 depicts the heatmap of crash frequency and speed volatility in terms of L2-Speed-Vf on 

Ann Arbor’s transportation network. The volatility values range from 0.079 to 19.502 

(Figure 2.5(a)), illustrating a substantial difference across the network. Figure 2.5(b) 

depicts the crash frequency at the grid level, which ranges from zero to 48. In the figures, 

blue bubbles represent low volatility/crash frequency, while red bubbles indicate high 

volatility/crash frequency. Generally, grids with higher volatility values have a higher crash 

frequency, which supports the initial hypothesis that locations with higher volatility have 

a higher number of crashes. As an illustration, in the downtown area where the speed 

volatility in terms of L2-Speed-Vf is high, the crash frequency is also high, suggesting a 

positive correlation between crash frequency and driving volatility.  



 

 

61 
 

 

(a)                                                                                                             (b) 

 

Figure 2.5 Visualization of relationship between volatility and frequency of crashes (red points indicates higher 
volatility/crash frequency) 



 

 

62 
 

 

Modeling Results 

This paper explores the association between driving volatility and crash frequency using 

fixed-parameter Poisson, Negative Binomial, GWPR, and GWNBR models. The GWPR 

and GWNBR models help us address unobserved heterogeneity and spatial correlation 

among observations. In order to estimate the models, factors extracted from CV data in 

each grid including vehicle kinematics, two levels of driving volatility, and geographic 

information, are utilized.  While the goal of this study is not to compare modeling 

approaches, we provided model comparison results to shed light on the goodness of fit 

performances of the estimated models. Finally, the modeling results of the fixed-

parameter and geographically weighted Poisson and Negative Binomial regression 

models will be discussed. 

 

Model comparison 

Several measures can be used to compare non-spatial modeling techniques and 

geographically weighted regression models (i.e. Poisson and Negative Binomial): 

𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛
2 , AIC, MAD and MSE (Table 2.3). By taking into account the overdispersion 

parameter, it can be inferred that the non-spatial negative binomial model improved the 

performance of the Poisson model. However, the GWPR model outperformed the NB 

model. The best performance is obtained by the GWNBR model.  
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 Goodness of 
fit 

Poisson 
Negative 
Binomial 

GWPR GWNBR 

Crash 
Frequency 

Deviance 3246.8 1747.2 2110.5 1676.9 

AIC 5136.58 4495.18 5055.97 4391.66 

MAD 0.672 0.811 0.487 0.313 

MSE 2.754 9.827 1.189 1.065 

 

 

Model estimation 

As the descriptive statistics and concept illustration sections earlier depict the meaningful 

relationship between driving volatility and crash frequency, this section aims to quantify 

the association between volatility measures and frequency of crashes in the network. 

Given the count nature of crash data, this paper considers fixed parameter and 

geographically weighted regression models that model the number of crashes at each 

grid (Table 2.4), which are the level of analysis in these models (N=3007 grids). The 

model selection procedure is performed based on intuition, statistical significance, and 

model parsimony. Since the GWNBR model outperformed other models in terms of 

goodness of fit, this section only discusses that model’s coefficients. The local estimation 

of coefficients in the GWNBR model are mapped across the city by applying the Inverse 

Distance Weighted (IDW) interpolation (Figure 2.6). 

 

In the model estimation, three sets of variables were considered: (1) geometric 

information collected by CVs of each grid (average of elevation, radius, and observations 

as a proxy for traffic exposure), (2) temporal volatility measures, and (3) location-based 

volatility measures. Referring to geometric information, modeling results suggest that 

Table 2.3 Measures of goodness of fit for the fitted model 
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grids in higher elevations experience more crashes. The coefficient of elevation is 

negative in the Poisson and Negative Binomial models, while the GWNBR and GWPR 

models suggest that its association is positive at some grids (7.88 percent). However, 

they are not significant in these models. As mentioned before, the number of BSM 

observation variable can be a proxy for AADT by assuming that locations with more 

passings by CVs have higher AADT. The results suggest that grids with higher numbers 

of observations have more crashes, which is consistent with the findings of previous 

studies  (Chen and Xie 2016, Xie et al. 2018, Arvin et al. 2019c). The modeling results 

suggest that grids with higher average speed have lower number of crashes, which is in 

line with the literature (Imprialou et al. 2016, Yu et al. 2018).  

 

Referring to temporal volatility measures, speed volatility measures in terms of L2-Speed-

𝑉𝑓 and L2-Speed-𝐷𝑚𝑒𝑎𝑛 are significantly correlated with frequency of crashes, implying 

that locations with higher speed volatility have higher crash frequency. The results are 

intuitive in a sense that locations with higher variations in vehicular speed have higher 

risk of crash compared to other locations, which is consistent with the findings of previous 

studies (Vadeby and Forsman 2017, Kamrani et al. 2018b). Modeling results of GWNBR 

suggest that the strength of this association varies significantly across the study area, 

being higher south of the city. Although 4.55 percent of L2-Speed-𝑉𝑓 and 7.51 percent of 

L2-Speed-𝐷𝑚𝑒𝑎𝑛 estimations are negative, they are not significant. Furthermore, the 

results reveal that the vertical volatility measure L2- 𝐴𝑐𝑐𝐷𝑒𝑐𝑧 - 𝐷𝑚𝑒𝑎𝑛 is negatively 

associated with crash frequency (4.12 percent of the GWNBR estimations are positive 

but are not significant). Since vertical volatility is a function of vertical alignment, this 

association may be because drivers at these locations might be more cautious, leading 
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to a decrease in the number of crashes. 

 

Focusing on location-based volatility measures, modeling results reveal that speed 

volatility measures such as L1-Speed-𝑉𝑓 and L1-Speed-𝐷𝑚𝑒𝑎𝑛 are significantly correlated 

with the number of crashes, and these correlations vary significantly and substantially 

across the city. The results are in line with literature which had shown that higher speed 

volatility is correlated with crash counts (Kamrani et al. 2018b, Arvin et al. 2019c). In 

addition, variations in the location-based longitudinal deceleration (L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 -

2𝑆𝑑𝑒𝑣) and the location-based lateral deceleration volatility measure (L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦- 

𝐶𝑣) are highly correlated with crash frequency. It can be inferred that this association is 

higher north of the city where the roadway transportation network has several sharp 

curves, contrary to the structure of the downtown area (Figure 2.6). 
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 Poisson 
Negative 
Binomial 

Geographically Weighted Poisson model 
Geographically Weighted Negative Binomial 
model 

Variable β.1 Std. Err. β. Std. Err. Mean Min 1st Q Med 3rd Q Max Mean Min 1st Q Med 3rd Q Max 

Intercept -2.2728*** 0.337 -3.321*** 0.511 -3.017 -33.890 -6.788 -3.413 
-

0.103 
42.427 -3.147 -8.551 -4.856 -2.746 -1.406 1.160 

Speed 0.015* 0.008 0.0263* 0.012 0.105 -0.389 -0.028 0.105 0.205 0.554 0.048 -0.115 0.004 0.055 0.092 0.287 

Elevation -0.0056*** 0.001 -0.0049*** 0.002 -0.011 -0.191 -0.025 -0.003 0.002 0.115 -0.007 -0.025 -0.012 -0.005 -0.002 0.006 

# of BSM 
Observations 

0.823*** 0.178 1.014*** 0.034 0.942 0.299 0.757 0.912 1.086 1.800 0.001 0.001 0.001 0.001 0.001 0.001 

L1-Speed-𝑉𝑓 0.0035* 0.002 0.0028 0.003 0.0005 -0.060 -0.012 0.000 0.013 0.065 0.003 -0.021 -0.003 0.002 0.007 0.024 

L1-Speed-MAD 0.0609*** 0.009 0.0815*** 0.018 0.1122 -0.300 0.043 0.103 0.191 0.576 0.111 -0.009 0.079 0.115 0.143 0.213 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑥-2𝑆𝑑𝑒𝑣 1.9234*** 0.512 2.3452** 0.839 0.606 -21.548 -2.345 1.573 4.383 17.163 2.093 -5.486 0.786 2.092 3.834 8.570 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝐶𝑣 0.1591*** 0.027 0.1768*** 0.047 -0.025 -1.010 -0.157 0.005 0.144 0.609 0.126 -0.130 0.066 0.107 0.196 0.328 

L2-Speed-𝑉𝑓 0.1948*** 0.022 0.2259*** 0.038 0.300 -0.967 0.049 0.282 0.530 1.745 0.259 -0.169 0.134 0.242 0.405 0.750 

L2-Speed-MAD 0.8*** 0.088 0.661*** 0.144 0.875 -3.168 0.254 0.943 1.517 4.455 0.678 -0.213 0.353 0.725 1.031 1.533 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑧-MAD -9.2759*** 0.085 -5.6988*** 1.300 -5.969 -54.981 -10.197 -5.625 0.711 18.538 -6.007 -16.277 -8.284 -5.440 -2.886 2.138 

Disp. Param. - - 0.907*** 0.101 - - - - - - 0.785 0.510 0.649 0.760 0.884 1.193 

Null Deviance 8850.4  8850.4  8850.4      8850.4      

Model Deviance 3246.8  1747.2  2110.5      1676.9      

Explained Dev. 0.633  0.802  0.762      0.810      

AIC 5136.58  4495.18  5055.9      4391.6      
1 Significance at *** 1%, ** 5% and * 10% 

 

Table 2.4 Modeling results of crash frequency model 
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                     Speed                                         L2-Speed-𝑉𝑓                               L2-Speed-MAD 

        L2-Acc-Az-MAD                                    L1-Speed-𝑉𝑓                             L1-Speed-MAD 

             L1-Acc-Ax-2𝑆𝑑𝑒𝑣                                       L1-Acc-Ay- Cv 

Figure 2.6 Estimated coefficient of the GWNBR model 
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Hotspot identification 

In the modeling section, we investigated the association of driving volatility and crash risk 

in the Ann Arbor city network. The results revealed that there is a positive and significant 

correlation between driving volatility indices and crash frequency. These significant 

measures (that are highly contributing with the crash frequency) can be used to group the 

locations and to proactively identify locations where driving volatility is high but crash 

frequency is low. These locations may not receive the same amount of attention because 

of historic crash frequency statistics, but their high levels of driving volatility indicate 

possible higher crash frequencies in the future. The first step is to group the grids 

considering those volatility measures that are significant in the model. To reach this goal, 

an unsupervised learning technique (i.e. k-means and GMM clustering) is performed by 

taking the following steps: 

 

1. Find the optimum number of clusters (k) 

2. Perform k-means and GMM clustering with the optimal number of k groups 

3. Identify clusters with high volatility and find locations with low crash frequency 

 

The optimal number of clusters which minimize total intra-cluster variation in clusters need 

to be determined. In order to identify the optimal number of clusters, the elbow method is 

utilized. It can be observed that the optimal number of clusters in which the grids can be 

grouped is 3 (k=3) (Figure 2.7). 
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The optimal number of clusters which minimize total intra-cluster variation in clusters need 

to be determined. In order to identify the optimal number of clusters, the elbow method is 

utilized. It can be observed that the optimal number of clusters in which the grids can be 

grouped is 3 (k=3) (Figure 2.7). 

 

Given that optimal number of clusters is equal to three (k=3), the within clusters sum of 

squares for k-means and GMM are compared and the results revealed that GMM model 

performs better. Therefore, we have focused on the GMM clustering method. Utilizing the 

GMM, clustering analysis is performed and the grids are grouped into three categories. A 

radar plot is used to assess the level of each volatility measure in each cluster’s locations 

(Figure 2.8). Based on the results, the clusters reflect “low volatility”, “normal”, and “high 

Figure 2.7 Elbow method to find the optimal number of clusters 
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volatility” locations. It can be observed that the association of volatility measures are 

substantially higher in the “high volatility” group compared to others. Table 2.5 provides 

descriptive statistics of the volatility measures for the three extracted clusters. The 

descriptive statistics show that there is a substantial difference in the volatility measures 

among the three extracted clusters.  

 

 

  

Figure 2.8 Association of volatility measures in low, medium and high volatility 
clusters 
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Variable Low volatility 
Medium 
volatility 

High Volatility 

 Mean S.D. Mean S.D. Mean S.D. 

L2-Speed-𝑉𝑓 0.85 0.71 1.8 1.19 2.76 1.99 

L2-Speed-MAD 0.58 0.33 0.86 0.37 0.85 0.33 

L2-𝐴𝑐𝑐𝐷𝑒𝑐𝑧-MAD 0.04 0.04 0.07 0.04 0.08 0.06 

L1-Speed-𝑉𝑓 12.57 5.35 31.82 6.66 61.04 16.94 

L1-Speed-MAD 3.09 1.98 5.08 2.42 5.93 2.99 

L1-𝐴𝑐𝑐𝐷𝑒𝑐𝑥-2𝑆𝑑𝑒𝑣 0.05 0.04 0.06 0.05 0.06 0.05 

L1-𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝐶𝑣 1.2 0.78 1.36 0.72 1.33 0.73 

 

After identifying locations with high volatility, the next step is to identify hotspot locations 

where the number of accidents is low while the driving volatility measures are high. We 

can focus on the “High volatility” grids to identify potential hotspots. The plot of crash 

count vs driving volatility for the “High volatility” cluster is provided in Figure 2.9. Given 

that all of these grids have significantly higher volatility indices comparing to other grids, 

we can identify hotspot locations (shown with the red eclipse) where crashes are waiting 

to happen despite historically low crash frequencies.  

 

Table 2.5 Descriptive statistics of volatility measures for each cluster 
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Limitations 

In this study, driving volatility is utilized as the surrogate safety measure, but the literature 

has previously explored multiple different safety surrogate measures in the modeling 

process. Although different criteria were used to check for erroneous data, some errors 

might remain during the data collection. Furthermore, while police reports are the main 

source of crash data, they have a tendency to under-report certain types of crashes. 

Specifically, the National Highway Traffic Safety Administration report (NHTSA 2009) 

states that 50% of property damage only crashes and 25% of minor injury crashes are 

unreported. In addition, drivers in this study might not truly represent the driving behavior 

of population.  

 

High volatility-Low crash 

Figure 2.9 Crash frequency vs L2-Speed-V_f volatility for 
high-volatility cluster 



 

73 
 

Conclusion and future research 

While driving behavior is known as a leading cause of crashes, it has received a relatively 

small amount of attention in evaluations of transportation network safety. Due to the 

unavailability of real-world high-resolution data, historical approaches mainly consider 

exposure and geometric information and largely ignore the human behavior side. The 

emergence of big data generated by connected and automated vehicles and powerful 

computational resources have helped researchers incorporate proactive methods to 

identify hotspot locations. This paper develops a methodological framework for 

proactively monitoring the safety performance of the network by harnessing big data 

generated by CVs to bring in the human-behavior side of crash occurrence through the 

concept of driving volatility. By generating additional features from CV data, correlation of 

extracted features and crash frequency is explored.  

 

The Safety Pilot Model Deployment (SPMD) study data, which collected data on more 

than 2800 connected vehicles and contains more than 2.2 billion BSM observations, is 

utilized. Significant effort and time were taken to process and analyze such a big data to 

extract useful information and link it with crash data. To study the drivers’ behavior, this 

paper introduces the concept of temporal driving volatility which generates temporal 

volatility indices quantifying spatiotemporal variations in driving behavior. Two levels of 

driving volatility are considered in order to model crash frequency: Level 1 - location-

based volatility, and Level 2 - temporal driving volatility.  

 

From the methodological perspective, Geographically Weighted Negative Binomial 
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(GWNBR) and Poisson Regression (GWPR) models are estimated to address 

unobserved heterogeneity and spatial correlation in the data. This study overcomes the 

limitation of the GWPR model that ignores overdispersion in the crash data. Modeling 

results reveal that the GWNBR model, by incorporating spatial overdispersion, has a 

significantly better goodness of fit than other models, which is consistent with the findings 

of previous studies (da Silva and Rodrigues 2014, Gomes et al. 2017). This study is one 

of the first studies to apply the GWNBR model on crash data in order to address 

overdispersion.  Modeling results also reveal that driving volatility both at the temporal 

and location-based levels is highly correlated with crash frequency. Variations in 

longitudinal control is highly correlated with crash frequency, and volatile lateral and 

vertical movements also increase crash risk. The results suggest that the magnitude of 

this association varies significantly and substantially across space.  

 

Finally, hotspot identification is performed by applying an unsupervised classification 

approach. Given the association of driving volatility and crash frequency, k-means and 

GMM clustering identified locations in the network with high levels of driving volatility. This 

study defined hotspots where driving volatility is high, but crash frequency is low. The 

results identified grids where the behavior of drivers significantly differed from those at 

other locations, and this difference might lead to higher levels of crash risk previously 

unnoticed due to low crash frequencies. Further examinations are needed at these 

locations to find the correlates of driving volatility, such as roadway geometry design, 

traffic conflict, signal timing, etc.  

 

While this study explores the association of total number of crashes with driving volatility, 
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future studies can investigate the association of crash types with volatility in longitudinal, 

lateral, and vertical directions. Furthermore, with increases in CV penetration rates, 

researches can utilize other surrogate safety measures such as time-to-collision (TTC), 

and the rear-end crash risk and potential index (RCRI and CPI) (Essa and Sayed 2018, 

Rahman and Abdel-Aty 2018, Rahman et al. 2018, Zhao and Lee 2018) and integrate this 

information into modeling process. These measures require instantaneous information of 

the lead vehicle, which is not available in the SPMD data. 
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CHAPTER 3 : HOW INSTANTANEOUS DRIVING BEHAVIOR 

CONTRIBUTES TO CRASHES AT INTERSECTIONS: EXTRACTING 

USEFUL INFORMATION FROM CONNECTED VEHICLE MESSAGE 

DATA 
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A version of this chapter is presented at the 98th Transportation Research Board Annual 

Meeting and published in the Accident Analysis and Prevention journal. 

 
Arvin, R., Kamrani, M., & Khattak, A. J. (2019). How instantaneous driving behavior 

contributes to crashes at intersections: extracting useful information from connected 

vehicle message data. Accident Analysis & Prevention, 127, 118-133. 

 

Abstract 

Connected and automated vehicles have enabled researchers to use big data for 

development of new metrics that can enhance transportation safety. Emergence of such 

a big data coupled with computational power of modern computers have enabled us to 

obtain deeper understanding of instantaneous driving behavior by applying the concept 

of “driving volatility” to quantify variations in driving behavior. This paper brings in a 

methodology to quantify variations in vehicular movements utilizing longitudinal and 

lateral volatilities and proactively studies the impact of instantaneous driving behavior on 

type of crashes at intersections. More than 125 million Basic Safety Message data 

transmitted between more than 2800 connected vehicles were analyzed and integrated 

with historical crash and road inventory data at 167 intersections in Ann Arbor, Michigan, 

USA. Given that driving volatility represents the vehicular movement and control, it is 

expected that erratic longitudinal/lateral movements increase the risk of crash. In order to 

capture variations in vehicle control and movement, we quantified and used 30 measures 

of driving volatility by using speed, longitudinal and lateral acceleration, and yaw-rate. 

Rigorous statistical models including fixed parameter, random parameter, and 

geographically weighted Poisson regressions were developed. The results revealed that 
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controlling for intersection geometry and traffic exposure, and accounting unobserved 

factors, variations in longitudinal control of the vehicle (longitudinal volatility) are highly 

correlated with the frequency of rear-end crashes. Intersections with high variations in 

longitudinal movement are prone to have higher rear-end crash rate. Referring to 

sideswipe and angle crashes, along with speed and longitudinal volatility, lateral volatility 

is substantially correlated with the frequency of crashes. When it comes to head-on 

crashes, speed, longitudinal and lateral acceleration volatilities are highly associated with 

the frequency of crashes. Intersections with high lateral volatility have higher risk of head-

on collisions due to the risk of deviation from the centerline leading to head-on crash. The 

developed methodology and volatility measures can be used to proactively identify 

hotspot intersections where the frequency of crashes is low, but the longitudinal/lateral 

driving volatility is high. The reason that drivers exhibit higher levels of driving volatility 

when passing these intersections can be analyzed to come up with potential 

countermeasures that could reduce volatility and, consequently, crash risk.  

 

Introduction 

The need for a safer and more sustainable transportation system has pushed the public 

and private sectors to improve the performance of the network. Connected Vehicles (CV) 

provide enriched data such as instantaneous driving behavior, maneuvers, trajectory, 

individual origin and destination, and traffic data which previously were not obtainable. 

These data can be transmitted via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communication which can be incorporated to gain precise information to monitor 

and evaluate the performance of the system (Ghiasi et al. 2017, Nezafat et al. 2018). The 

National Highway Traffic Safety Administration (NHTSA) has announced that 
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communication between vehicles will become mandatory in the near future. In order to 

advance V2V and V2I technology, the U.S. Department of Transportation developed the 

Safety Pilot Model Deployment (SPMD) study. The SPMD is one of the most successful 

studies to implement V2V and V2I communication in the real-world environment 

(Henclewood et al. 2014), and is one of the largest vehicle communication test-bed by 

incorporating more than 2800 instrumented vehicles and more than 70 miles of roadway  

instrumented with Road Side Units (RSU) in Ann Arbor, MI (Henclewood et al. 2014). In 

this experiment, CVs and RSUs were capable of communicating via Dedicated Short-

Range Communication (DSRC) at a frequency of 10 Hz (Henclewood et al. 2014). The 

emergence of Big Data provided by CVs, RSUs, and other sources of information 

provides opportunities for researchers to innovate and implement new concepts aiming 

to increase safety, mobility and moves toward sustainability. 

 

From the safety perspective, previous studies reveal that rear-end and sideswipe crashes 

are the most frequent type of crash at signalized intersections (Wang and Abdel-Aty 

2006). On average, rear-end and sideswipe crashes are the least dangerous type of 

collision, while head-on and angle crashes are the most dangerous ones (Paleti et al. 

2010). According to U.S. traffic safety facts for the year 2015, while 4.1% of all crashes 

were head-on collisions, they contribute to 10.2% of fatal crashes (NHTSA 2015). As a 

result, researcher pay a great amount of attention to decrease the frequency and severity 

of head-on crashes. 

 

Given the importance of type of crashes, this study explores the impact of instantaneous 

driving behavior on multiple crash types at intersections. The study utilizes “driving 
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volatility”, a newly developed concept in transportation (Wang et al. 2015a, Kamrani et al. 

2018b, Kamrani et al. 2018c) which captures variations in vehicular movements, as an 

indicator for driving behavior at intersections. This study extends the concept of driving 

volatility to longitudinal and lateral volatilities and explores the correlation between 

volatilities with rear-end, sideswipe, angle and head-on crashes. The main goals of this 

research are to: 

 

1. Develop a framework for capturing and quantifying longitudinal and lateral driving 

volatilities using real-world instantaneous driving data.  

2. Evaluate correlations between longitudinal and lateral volatilities with frequency of 

multiple crash types at intersections. 

3. Account for unobserved heterogeneity by utilizing random parameter and semi-

parametric geographically weighted Poisson regression models. 

 

Since human-error contributes to 94 percent of crashes in the U.S (Anon 2008), findings 

from this study can help agencies proactively identify hazardous intersections where there 

is a substantial variations in driving behavior by utilizing the concept of driving volatility. 

Proactively countermeasures might apply to reduce driving volatilities to prevent future 

crashes. 

 



 

81 
 

Methodology 

Modeling Approach 

Traditionally, to model the crash frequency, the count-data models such as Poisson, 

Negative Binomial and Zero Inflated Models are commonly utilized (Abdel-Aty and 

Radwan 2000, Azizi and Sheikholeslami 2012, Jamali and Wang 2017) due to the fact 

that crash counts are non-negative integer values in a specific period of time 

(Anastasopoulos and Mannering 2009). In this study, fixed parameter Poisson regression 

model, the random parameter Poisson regression model, and the geographically 

weighted Poisson regression model (GWPR) were used to model crash frequency.  

 

Poisson Model 

In the Poisson regression model, the probability of occurrence of n crashes at intersection 

i can be written as (Greene 2003): 

 

𝑃(𝑛𝑖) =
𝜆𝑖

𝑛𝑖 𝑒𝑥𝑝(−𝜆𝑖)

𝑛𝑖!
                                                                (3.1) 

 

where 𝜆𝑖 (Poisson parameter) is the expected number of crashes for intersection i, 𝐸(𝑛𝑖). 

In order to fit the regression model, the Poisson parameter, 𝜆𝑖, is written in the logarithm 

form (Greene 2003):  

 
𝑙𝑛(𝜆𝑖) = 𝛽𝑋𝑖                                                                      (3.2) 

 

where 𝑋𝑖 is the matrix of the independent variables and 𝛽 is a vector of the estimated 

coefficients. The Poisson function defined in Equation 1 and 2 is maximized by the 
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maximum likelihood with the following function (Washington et al. 2010): 

 

𝐿(𝛽) = ∏
𝑒𝑥𝑝[− 𝑒𝑥𝑝(𝛽𝑋𝑖)] [𝑒𝑥𝑝(𝛽𝑋𝑖)]𝑛

𝑛𝑖!
𝑖

 
(3.3) 

 

It should be noted that in cases where the mean and the variance of the dependent 

variable are not equal, applying the Poisson regression might lead to misleading results. 

Therefore, in order to test the over-dispersion existence in the Poisson model, the 

Lagrange multiplier method was performed (Greene 2003). We can write: 

 

𝐿𝐿 =  (
σ ((𝑦𝑖 − 𝜇𝑖)

2 − 𝑦𝑖)
𝑁
𝑖=1

2 σ 𝜇𝑖
2𝑁

𝑖=1

)

2

                                                    (3.4) 

 

where 𝑦𝑖 and 𝜇𝑖 are the observed and predicted crash frequency at the intersection i, and 

N is the number of intersections. 

 

Random Parameter Poisson Model 

In this approach, unobserved heterogeneity, arising from unobserved contributing factors, 

is addressed by developing a random parameter model using simulated maximum 

likelihood estimation (Greene 2003). The RP Poisson regression model is an important 

method because it accounts for heterogeneity arising from factors relating to traffic 

characteristics, vehicle types, road geometry, pavement conditions, time of day and other 

unobserved factors (Anastasopoulos and Mannering 2009). The formulation for 
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estimating the coefficients of the RP Poisson model is (Greene 2003): 

 
𝛽𝑖 = 𝛽 + 𝜑𝑖                                                                      (3.5) 

 

where 𝜑𝑖 is a randomly distributed term with a specified distribution. The log-likelihood 

function is (Anastasopoulos and Mannering 2009): 

 

𝐿𝐿 = ∑ 𝑙𝑛 ∫ 𝑔(𝜑𝑖)𝑃(
𝑖

𝜑𝑖𝑖
𝑛𝑖|𝜑𝑖)𝑑𝜑𝑖                                                   (3.6) 

 

where g(.) is the pre-specified distribution of 𝜑𝑖. In this study, the Halton draws simulation 

approach is utilized, which is the most popular simulation approach as it provides a more 

efficient distribution than other methods (Train 2000a, Bhat 2003). 

 

Geographically Weighted Poisson Regression Model 

The availability of geo-referenced crashes coupled with computational power has enabled 

researchers to develop rigorous geospatial models that account for spatial heterogeneity 

by allowing parameters to vary across space (Xu and Huang 2015). The Geographically 

Weighted Poisson Regression (GWPR) can be used to test whether the relationship 

between the explanatory variables and the dependent variable substantially varies across 

space (Fotheringham et al. 2003, Liu et al. 2017). The model can be written as: 
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𝑙𝑛(𝜆𝑖) = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1(𝑢𝑖, 𝑣𝑖)𝑙𝑛 (𝐸𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝐾

𝑘=1

+ 𝜖𝑖                      (3.7) 

 

where (𝑢𝑖, 𝑣𝑖) denotes the coordinates of i. It should be noted that in GWPR,  𝛽𝑘(𝑢𝑖, 𝑣𝑖) is 

not randomly distributed, but rather is a function of the location i. The following equation 

can be used to estimate 𝛽𝑘(𝑢𝑖, 𝑣𝑖): 

 

𝛽̂(𝑢𝑖, 𝑣𝑖) = (𝑋𝑇𝑊(𝑢𝑖, 𝑣𝑖)𝑋)−1𝑋𝑇𝑊(𝑢𝑖, 𝑣𝑖)𝑌                                   (3.8) 
 

 

where 𝛽̂(𝑢𝑖, 𝑣𝑖) is the vector of estimated coefficients at location i, X is the matrix of 

independent variables, Y is the n×1 vector of the number of crashes at each intersection, 

and 𝑊(𝑢𝑖, 𝑣𝑖) is n×n spatial weight matrix: 

 

𝑊(𝑢𝑖, 𝑣𝑖) = [

𝑤𝑖1

0
0

𝑤𝑖2

…
…

0
0

… … … …
0 … … 𝑤𝑖𝑛

]                                                (3.9) 

 

where 𝑤𝑖𝑗 is the weight of variable j at location i. In this approach, based on observations 

at nearby areas, a regression equation is estimated for each location. Based on the 

distance from the regression point each area is weighted (areas that are closer have a 

higher weight than ones that are farther). The W matrix can be estimated using the 

adaptive Gaussian Kernel function: 

 

𝑤𝑖𝑗 = 𝑒𝑥𝑝 (−
𝑑𝑖𝑗

2

𝜃𝑖(𝑁)
2)                                                               (3.10) 
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where 𝑑𝑖𝑗 is the Euclidean distance between area i and j, 𝜃𝑖(𝑁) is the adaptive bandwidth 

defined by the Nth nearest neighbor. In this formulation, the Gaussian Kernel bandwidth 

is adaptive, meaning that the weight function magnitude varies across all intersections.  

 

In this study, along with the adaptive Gaussian kernel, adaptive bi-square kernel was 

considered, which can be written as: 

 

𝑤𝑖𝑗 { (1 − (
𝑑𝑖𝑗

𝑑𝑖𝑁
⁄ )

2

)

2

                      𝑖𝑓 𝑑𝑖𝑗 < 𝑑𝑖𝑁

        0                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

             (3.11) 

 

where 𝑑𝑖𝑁 denotes the distance to the Nth nearest neighbor of intersection i.  

 

It is worth mentioning that applying fixed bandwidth kernel, the local coefficients in areas 

with sparse intersections is estimated with limited points, leading to high standard error 

in estimation and unreliable results. Thus, in this study adaptive kernel was employed 

which tries to overcome this issue by letting the bandwidth vary based on the data’s 

sparsity. To determine the bandwidth of the adaptive kernel, the corrected Akaike 

Information Criteria (AICc) (Hurvich et al. 1998) was used. The best model is the one with 

the lowest AICc score (Fotheringham et al. 2003, Hadayeghi et al. 2010a).  

 

As previously mentioned, there was a probability that some of the coefficients in the model 

do not significantly vary across space. In this case, the semi-parametric GWPR (S-

GWPR) is ideal where some of the parameters vary spatially, while others are held fixed. 

We can write (Nakaya et al. 2005, Xu and Huang 2015): 



 

86 
 

𝑙𝑛(𝜆𝑖) = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1(𝑢𝑖, 𝑣𝑖) 𝑙𝑛(𝐸𝑣𝑖) + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑙

𝑗=2

+ ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝑘

𝑘=1

+ 𝜖𝑖                (3.12) 

 

where 𝛽𝑗 is the jth estimated global variable. In order to evaluate the existence of variation 

in the estimated coefficients across space (spatial variation), the non-stationarity test was 

performed. Given 167 intersections, the GWPR model suggests specific coefficients for 

each observation. The non-stationarity test calculates the difference between the upper 

and lower quartile of the estimated coefficients from GWPR and performs the evaluation. 

We can write: 

 

𝐷𝑒𝑙𝑡𝑎 = 𝛽𝑢𝑝𝑝𝑒𝑟 − 𝛽𝑙𝑜𝑤𝑒𝑟                                                     (3.13) 

{
𝐷𝑒𝑙𝑡𝑎 > 1.96 ∗ 𝑆𝐸 𝑎𝑛𝑑 𝐷𝑒𝑙𝑡𝑎 > 𝑚𝑎𝑥(|𝑡𝑖|)          𝑃𝑎𝑠𝑠 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 (𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

                        𝑖𝑓 𝑛𝑜𝑡                                                𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑜 𝑝𝑎𝑠𝑠 (𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)
     (3.14) 

 

 

where SE is the standard error of the coefficient in the global Poisson model, and |𝑡𝑖| is 

the significance t-value of the GWPR model at intersection i which can be calculated as 

|
𝛽(𝑢𝑖,𝑣𝑖)

𝑆𝐸(𝑢𝑖,𝑣𝑖)
|. If Delta is greater than 1.96*SE and max of |𝑡𝑖| is greater than 1.96, then the 

test is passed and there are substantial variations among the estimated coefficients 

across the space. Otherwise, the test failed and the coefficient is considered as the global 

coefficient. Obviously, if all the variables are estimated as local coefficients, the S-GWPR 

model is equivalent to the GWPR model. For further details regarding the S-GWPR 

calibration, please refer to (Nakaya et al. 2005). 

 

It should be noted that GWPR provides a set of local coefficients at each intersection. To 
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map the GWPR results across space, the Inverse Distance Weighted (IDW) method was 

applied (Bartier and Keller 1996). The goal of this approach is to create a continuous 

coefficient surface that interpolates and maps the results across the space. IDW assigns 

the value to unknown locations based on the estimated coefficients for the nearby areas. 

The assigned value obtained by weighting the nearby coefficients based on their distance 

from the unknown point. We can write: 

 

𝑍̂(𝑠0) =  ∑ 𝜆𝑖𝑍(𝑠𝑖)

𝑁

𝑖=1

                                                                  (3.15) 

 

where 𝑍̂(𝑠0) is the predicted coefficient at location 𝑠0, N is number of known sample points 

surrounding the location 𝑠0, 𝜆𝑖 are the assigned weights to each measured coefficient, 

and 𝑍(𝑠𝑖) is the observed coefficient at location 𝑠𝑖. To determine the weights, we can 

write: 

 

𝜆𝑖 =  
𝑑𝑖0

−2

σ 𝑑𝑖0
−2𝑁

𝑖=1

                                                                (3.16) 

 

where 𝑑𝑖0  represents the distance between point i and o. It can be inferred that by 

increasing the distance between the unknown coefficient and observed coefficient, the 

weight of the observed point will decrease.  

 

In order to estimate S-GWPR model, GWR4.0 software which is developed by Nakaya et 

al. (Nakaya et al. 2012) was used.  
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Location-based volatility, measures and calculation 

The concept of location-based volatility attempts to develop a meaningful process on 

instantaneous driving behavior and decisions in order to generate driving volatility 

measures at intersection/segment level (Wali et al. 2018a). These volatility measures can 

potentially be representative of the driving behavior of majority of drivers passing the 

study area (Wali et al. 2018a). Such volatility indices can be utilized to identify locations 

that driving behavior is different compared to driving behavior of same drivers at other 

locations. In addition, the correlation between volatility measures and frequency of 

various crash types can be investigated.  

 

Multiple volatility measures were used by researchers to capture variations in longitudinal 

control of the vehicle (Arvin et al., Wang et al. 2015a, Kamrani et al. 2017, Kamrani et al. 

2018b, Arvin et al. 2019b, Kamrani et al. 2019) and have been applied to speed, 

acceleration, and jerk. However, one of the main drawbacks of the previous studies is 

ignorance of lateral movement of vehicles which potentially could be contributing to crash 

frequency. Therefore, in this study, volatility functions were applied to speed, longitudinal, 

lateral acceleration, and yaw-rate at the level of intersections, which were available from 

connected vehicle BSM data from SPMD. The data is representative of 3-4 percent of 

total driving in Ann Arbor, MI (Shou and Di 2018). The data provides high-resolution 

microscopic driving decisions and vehicle motions in terms of position, speed, 

acceleration, and yaw-rate with a frequency of 10 Hz. Given that, three groups of 

volatilities are identified and calculated for the selected 167 intersections in Ann Arbor, 

MI (discussed later in details):  
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• Speed volatility  

• Longitudinal acceleration volatility  

• Lateral acceleration volatility.  

• Yaw-rate volatility 

 

In order to process and calculate volatility indices at intersection level, 150-ft polygons 

were established from the center of intersections,2 and BSM data was assigned to each 

intersection by processing more than 220 million BSM data. It should be noted that due 

to the difference in speed profile of vehicles at signalized and unsignalized intersections, 

and signal timing of signalized intersections, zero speeds were removed from the data 

prior to volatility calculation. For selected intersection, multiple volatility functions are 

applied on the speed, longitudinal and lateral acceleration, which presented in Table 3.1. 

For more details on volatility functions, please refer to (Kamrani et al. 2018b).  

 

 

 

 

 

 

 

 

 

 
2  Although 250-ft threshold from the center of intersection is a common threshold as an intersection 
influence area, in In this study we chose 150-ft threshold due to two main reasons. First, the network of 
Ann Arbor city is dense, and intersections are close, and using 250-ft threshold leads to overlapping 
territories. Therefore, 150-ft represents the intersection influence area. Second, the crash and road 
inventory data of Ann Arbor, which obtained from MPO of Ann Arbor, is identified based on 150-ft threshold. 
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Measures of volatility Formulation 

Standard Deviation 𝑆𝑑𝑒𝑣 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

Coefficient of Variation 𝐶𝑣 =
𝑆𝐷

𝑥̅
∗ 100 

Mean Absolute Deviation 𝐷𝑚𝑒𝑎𝑛 =  
1

𝑛
∑|𝑥𝑖 − 𝑥̅|

𝑛

𝑖=1

 

Quartile Coefficient of 
Variation 

𝑄𝑐𝑣 =
𝑄3 − 𝑄1

𝑄3 + 𝑄1
∗ 100 

Percent of extreme values 
%𝑇   =

𝑐 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛
∗ 100 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑥̅ ± 𝑧 ∗ 𝑠 

 

 

Finally, 30 measures of volatility at the aggregate level of intersections were defined 

among which six measures capture speed volatility, sixteen measures quantify 

longitudinal and lateral acceleration volatility, and 8 measures capture yaw-rate driving 

volatility. 

 

Measures of Goodness of Fit 

In order to evaluate and compare the performance of traditional Poisson regression, RP 

Table 3.1 Functions of volatility 
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Poisson, and GWPR, four statistics were utilized to measure estimation accuracy.  

 

1- R-squared for Poisson model: this statistic assesses the overall goodness of fit of 

model based on standardized residuals. Larger values of 𝑅𝑃𝑜𝑖𝑠𝑠𝑜𝑛
2  (max is 1) 

indicate better fit. It is defined as (Cameron and Windmeijer 1996): 

 

𝑅𝑃𝑜𝑖𝑠𝑠𝑜𝑛
2 = 1 −

σ
(𝑌𝑖 − 𝑌𝑖̂)

2

𝑌𝑖̂

𝑛
𝑖=1

σ
(𝑌𝑖 − 𝑌ത)2

𝑌ത
𝑛
𝑖=1

                                             (3.17) 

 
where 𝑌𝑖 and 𝑌𝑖̂ are the observed and predicted number of crashes at location i 

respectively, and 𝑦ത is the average number of crashes.  

2- AIC: a lower AIC represents a better goodness of fit (Bozdogan 1987). A three 

point decrease in an AIC value indicates a significant improvement in the goodness 

of fit (Bozdogan 1987). We can write: 

 

𝐴𝐼𝐶 =  𝐷 + 2𝑘                                                              (3.18) 

 
where D denotes the model deviance, and k is the number of parameters. In the 

S-GWPR, due to the non-parametric framework of the model, the number of 

parameters is meaningless. Therefore, an effective number of parameters should 

be calculated which can be written as (Nakaya et al. 2005): 

 

𝐾 = 𝑡𝑟𝑎𝑐𝑒(𝑆)                                                                 (3.19) 

 
where S is the hat matrix. For more details, please see (Nakaya et al. 2005). 

3- Bozdogan’s Consistent AIC (CAIC): While the AIC criteria often leads the model 
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to overfit the data, CAIC almost always select the correct model size (Bozdogan 

1987). We can write: 

 
𝐶𝐴𝐼𝐶 =  𝐷 + 𝑙𝑛(𝑁) ∗ 𝑝                                                              (3.20) 

 

where N is the sample size, and p is the number of parameters. 

4- Mean Absolute Deviation: a smaller value of MAD implies a better model 

estimation. It can be defined as: 

 

𝑀𝐴𝐷 =  
σ |𝑌̂𝑖 − 𝑌𝑖|

𝑛
𝑖=1

𝑁
                                                          (3.21) 

 
5- Mean Squared Error: assess the estimation accuracy of the model by measuring 

the distance between the observations and the estimated model. We can write: 

 

𝑀𝑆𝐸 =
σ (𝑌̂𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

𝑁
                                                        (3.22) 

 

where 𝑌𝑖 and 𝑌̂𝑖 are the actual number and estimated number of crashes, and N is 

the number of intersections. The MAD measure provides the average of 

misprediction in the method, while the MSE measure is used to assess the error 

associated in the estimation.  

 

Data 

In this study, three data sources were integrated: (1) Basic Safety Messages (BSM) data 

exchanged by connected vehicles obtained from the SPMD, (2) road inventory data and 
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(3) historical crash data. Figure 3.1 (right) shows the data process steps. BSM data were 

obtained via the Research Data Exchange website (https://www.its.dot.gov/data/). The 

data provides high-frequency information regarding vehicle location, motion, and driving 

context factors. Data were collected on October 2012 and April 2013 (N~225 million 

observations) using standard protocols by UMTRI at university of Michigan. In this paper, 

full two-months of publicly available CV data is processed. Due to the error made by 

developers during data transfer process from DSRC devices to comma separated  value 

(CSV) files, 45.4% of lateral acceleration data are stored as either -9.81, 9.81, and 19.62 

𝑚/𝑠2  which are equivalent to “-g”, “g” and “2g” in the dataset (the histogram of the lateral 

acceleration is shown in Figure 3.2). However, these values belong to 1,048 vehicles out 

of the 2,544 vehicles that passed the selected intersections. Therefore, we did not include 

the erroneous data (shown in Figure 3.2 via red eclipses) and the final dataset contains 

the information of 1,496 vehicles passing the intersections. 

 

In order to evaluate the correlation of driving volatility and crashes, we should account for 

the effect of traffic and geometric characteristics of intersections. Therefore, significant 

effort was undertaken in order to obtain road inventory data including AADT for major and 

minor approaches, speed limit, number of lanes in each direction, etc. Data were collected 

from Google Maps and the Metropolitan Planning Organization Website 

(http://semcog.org/). Among the intersections in Ann Arbor, 167 intersections were 

selected (Figure 3.3), considering AADT information availability and the availability of 

BSM data that can calculate 30 measures of driving volatility. To extract the BSM data at 

intersections, 150-ft. threshold from the center of intersections was established, and by 

processing 230 million BSMs, CV data for each intersection is extracted and linked to 

https://www.its.dot.gov/data/
http://semcog.org/
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selected 167 intersections. Next, by applying volatility functions to extracted BSMs at 

aggregate intersection level, speed, longitudinal acceleration, lateral acceleration, and 

yaw-rate volatility measures are calculated for each intersection.  

 

The historical crash data were obtained from the Metropolitan Planning Organization 

Website. One of the main challenges in this study is describing 2-month connected 

vehicle data with historical crash data. In this paper, we are assuming that drivers of CVs 

that passing the selected intersections are representative of the majority of drivers. The 

ideal approach is comparing the speed distribution of connected vehicles with the 

distribution of speed obtained from non-at-fault drivers at study area by conducting quasi-

induced method and evaluate whether the difference is acceptable (Lyles et al. 1991, 

Stamatiadis and Deacon 1997, Chandraratna and Stamatiadis 2009). However, the 

speed of vehicles prior to crash involvement is not available in the crash data. To mitigate 

this issue, we filtered the historical crash data from October 2012 to 2013 (1-year period) 

to obtain accurate inference regarding the correlation of intersection volatility and 

frequency of crashes. It is worth noting that 2-month CV data lies between the selected 

period. 
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BSM Data containing the 

time, geocodes, speed, 

acceleration, yaw rate 

(n=2,267,163,139) 

Extracting BSM data for 167 

intersections using geocodes 

(n=278,068,412) 

Applying volatility measures 

to speed and acceleration at 

intersection level 

Driving volatility 

at intersection level 

(n=167) 

Intersection 

inventory data 

(n=167)  

Crash frequency 

data  

(n=167) 

Data integration 

Final Dataset 

(n=167) 

Processing data 

Data 

Removing error-coded 

lateral acceleration 

(n=126,513,402) 

Figure 3.1 Created map from BSM data (left), Data preparation framework (right) 
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Figure 3.2 Histogram of lateral acceleration 

Figure 3.3 Location of selected intersections 
(N=167) 
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Finally, to ensure the accuracy of the manually collected data, 20% of the data was 

randomly checked and verified. In addition, the plot of the data in Figure 3.1 (left) indicates 

the high precision of the BSM data. 

 

Results 

Descriptive Statistics 

In this section, the descriptive statistics of dependent variables, calculated intersection-

based driving volatilities, and intersection related variables are shown in Table 3.2. As 

discussed before, the two-month CV data is used to calculate the volatility measures that 

attempt to capture the variations of speed, longitudinal/lateral acceleration, and yaw-rate. 

In order to help conceptualize the distribution of variables, the mean, standard deviation, 

minimum and maximum of the variables are provided for 167 intersections.  
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Variable Mean S.D. Min Max 

Dependent variables 

Rear end crashes 3.51 4.79 0 28 

Sideswipe crashes 1.54 2.22 0 13 

Angle crashes 1.38 1.77 0 9 

Head-on crashes 0.61 1.23 0 6 

Intersection related variables 

AADT major road (1000) 18.47 8.60 2.53 45.40 

AADT minor road (1000) 8.85 3.87 1.10 27.40 

Speed limit of major road (mph) 34.52 6.52 25 45 

Speed limit of minor road (mph) 29.28 4.37 15 45 

Signalized intersection (yes = 1) 0.49 0.50 0 1 

4-legged intersection (yes = 1) 0.47 0.50 0 1 

Total through lanes 4.25 1.38 2 8 

Total left turn lanes 1.38 1.37 0 6 

Total right turn lanes 0.84 0.80 0 4 

Intersection-based volatility measures 

Speed Volatility measures 

𝑆𝑝𝑒𝑒𝑑 −  𝑆𝑑𝑒𝑣 (m/s) 10.88 2.57 4.83 16.78 

𝑆𝑝𝑒𝑒𝑑 −  𝐶𝑣 (%) 44.48 16.00 12.34 80.81 

𝑆𝑝𝑒𝑒𝑑 −  𝑄𝑐𝑣 (%) 31.67 16.74 6.17 66.74 

𝑆𝑝𝑒𝑒𝑑 − 𝐷𝑚𝑒𝑎𝑛 (m/s) 7.56 2.07 3.18 12.33 

𝑆𝑝𝑒𝑒𝑑 − 1𝑆𝑑𝑒𝑣 (%) 28.74 13.30 11.35 60.28 

𝑆𝑝𝑒𝑒𝑑 − 2𝑆𝑑𝑒𝑣  (%) 3.63 2.90 0.00 11.31 

Longitudinal acceleration volatility measures 

𝐴𝑐𝑐𝐷𝑒𝑐𝑥 − 𝑆𝑑𝑒𝑣  (m/s2) 0.76 0.18 0.33 1.42 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 (%) 58.49 5.53 42.53 74.11 

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 (%) 65.44 8.54 52.30 120.13 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑄𝑐𝑣  (%) 38.47 5.64 21.84 50.00 

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑄𝑐𝑣  (%) 43.20 7.42 22.58 59.62 

𝐴𝑐𝑐𝐷𝑒𝑐𝑥 − 𝐷𝑚𝑒𝑎𝑛 (m/s2) 0.39 0.09 0.15 0.54 

𝐴𝑐𝑐𝐷𝑒𝑐𝑥 −1𝑆𝑑𝑒𝑣 (%) 23.44 4.71 6.50 35.87 

𝐴𝑐𝑐𝐷𝑒𝑐𝑥 −2𝑆𝑑𝑒𝑣 (%) 6.45 1.83 1.61 11.09 

Lateral acceleration volatility measures 

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 − 𝑆𝑑𝑒𝑣(m/s2) 1.05 0.36 0.12 2.14 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 (%) 87.34 38.25 28.64 225.62 

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 (%) 128.25 34.18 57.45 221.63 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝑄𝑐𝑣 (%) 45.80 14.02 10.00 93.01 

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝑄𝑐𝑣 (%) 57.41 20.39 15.09 92.79 

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 − 𝐷𝑚𝑒𝑎𝑛 (m/s2) 0.77 0.62 0.07 4.65 

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −1𝑆𝑑𝑒𝑣 (%) 5.80 6.10 0.0 39.57 

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣 (%) 1.92 2.17 0.0 13.16 

 

Table 3.2 Descriptive Statistics of dependents and key variables (N=167) 
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Table 3.2 Continued 

Yaw rate volatility measures 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 − 𝑆𝑑𝑒𝑣 (degree/s) 3.64 1.45 0.418 8.88 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 − 𝐶𝑣 (%) 1.64 0.54 0.22 3.13 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 − 𝐶𝑣 (%) 1.64 0.51 0.33 3.21 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 − 𝑄𝑐𝑣 (%) 0.57 0.20 0.08 0.92 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 − 𝑄𝑐𝑣 (%) 0.55 0.20 0.10 0.92 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 − 𝐷𝑚𝑒𝑎𝑛 (degree/s) 2.99 1.70 0.18 6.93 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 −1𝑆𝑑𝑒𝑣 (%) 0.10 0.08 0.00 0.40 

𝑌𝑎𝑤𝑅𝑎𝑡𝑒 −2𝑆𝑑𝑒𝑣 (%) 0.04 0.03 0.00 0.13 

* 𝑆𝑑𝑒𝑣: standard deviation; (1𝑆𝑑𝑒𝑣): % of extreme points beyond mean ± one standard deviation; (2𝑆𝑑𝑒𝑣): % of extreme 

points beyond mean ± two standard deviation; 𝐶𝑣: coefficient of variation; 𝑄𝑐𝑣: quartile coefficient of variation; 𝐷𝑚𝑒𝑎𝑛: 

mean absolute deviation; 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥: longitudinal acceleration; 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥: longitudinal deceleration; 

𝐴𝑐𝑐𝐷𝑒𝑐𝑥:both longitudinal acceleration and deceleration; 𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦: lateral acceleration; 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦: lateral 

deceleration; 𝐴𝑐𝑐𝐷𝑒𝑐𝑦: both lateral acceleration and deceleration;  

 
 

Modeling Results 

According to the aforementioned methods the Poisson regression, RP Poisson 

regression, and GWPR models were developed to explain the observed variations in 

frequency of rear-end, sideswipe, angle and head-on collisions given road inventory and 

intersection-based driving volatility factors. Although the aim of this study is not to 

compare different methodological approaches for modeling crash counts, we provide a 

model comparison in the following sections to illustrate more insights regarding their 

performance. In the following, the models performance on estimating the frequency of 

various crash types is compared. Next, the developed models are presented and 

discussed.  

 

Model comparison 

In order to estimate the fixed parameter Poisson regression models, the intersection 

related factors and driving volatility measures were incorporated.  
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In order to estimate the RP Poisson regression, 200 Halton draws was applied 

considering multiple functional form of the coefficients such as normal, lognormal, 

triangular, and uniform. Similar to previous studies (Anastasopoulos and Mannering 2009, 

El-Basyouny and Sayed 2009, Xu and Huang 2015, Kamrani et al. 2018b), for the 

random-held parameters the normal distribution had the best fit to the data, in all the crash 

type models.  

 

To estimate the S-GWPR, the study considered bi-square and Gaussian fixed and 

adaptive kernels. In all crash type models, the adaptive bi-square kernel showed the best 

fit to the data based on their AIC score. In addition, all variables are significantly varied 

across the space for rear-end crashes, leading to the basic GWPR model. On the other 

hand, the S-GWPR model performed better for sideswipe, angle and head-on crashes by 

reducing the model complexity.  

 

As discussed in the methodology section, to compare performance of the models, 

the 𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛
2 , AIC, MAD and MSE statistics are quantified. Table 3.3 shows the results for 

rear-end, sideswipe, angle, and head-on crashes. Based on the results, the RP Poisson 

regression outperformed the fixed parameter and GWPR models in all types of crashes. 

It should be noted that, both the RP and the S-GWPR models improved the fit for the 

fixed parameter models. 
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Goodness of 

fit 
Fixed 

Parameter 
Random 

Parameter 
S-GWPR 

Rear-End 

𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛
2  0.674 0.908 0.754 

AIC 376.99 215.96 338.6 
CAIC 401.934 250.258 335.144 
MAD 2.014 0.885 1.723 
MSE 8.477 1.322 6.001 

Sideswipe 

𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛
2  0.473 0.791 0.582 

AIC 279.67 190.05 258.05 
CAIC 304.614 221.230 269.704 
MAD 1.144 0.685 1.039 
MSE 2.991 0.843 2.346 

Angle 

𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛
2  0.391 0.675 0.457 

AIC 247.59 198.37 237.61 
CAIC 275.652 229.550 254.512 
MAD 0.994 0.739 0.938 
MSE 1.851 0.949 1.644 

Head-on 

𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛
2  0.446 0.584 0.509 

AIC 169.46 152.51 165.68 
CAIC 197.522 185.690 157.922 
MAD 0.539 0.459 0.508 
MSE 0.798 0.538 0.711 

 

 

Model estimation 

In order to estimate the fixed parameter models, intersection related variables were used, 

and the significant ones were kept in the model, then measures of driving volatility were 

added into the model. For model selection, the AIC, log-likelihood values, and variable 

significance were used. As discussed in the methodology section, the Lagrange Multiplier 

test was conducted to test for the over-dispersion existence (Greene 2003). Based on the 

results, the LM values for rear-end, sideswipe, angle and head-on crashes were lower 

than the critical Chi-square value for the 95 percent confidence interval, which is 3.84. 

Therefore, for all the crash type models the null hypothesis failed to reject, and it is 

appropriate to use the Poisson regression models (Washington et al. 2010).  

Table 3.3 Measures of goodness of fit for the fitted model 
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After developing the fixed parameter model, significant variables in the models were used 

to develop RP Poisson and GWPR models. The estimated parameters for the RP Poisson 

and S-GWPR are presented by the minimum, lower quartile, median, upper quartile, and 

maximum estimated coefficients. In order to check for the multicollinearity, a common rule 

of thumb suggests that if the variance of Inflation (VIF) is higher than 5, multicollinearity 

might be an issue. VIF values for included variables were checked and all of them were 

below 5. The following sections discuss modeling results for rear-end, sideswipe, angle 

and head-on collisions.  

 

 

Rear-end crashes 

The modeling result for frequency of rear-end crashes in the selected time period is shown 

in Table 3.4. As discussed before, it is evident that the RP Poisson model outperformed 

the fixed Poisson and GWPR. The models suggest that three measures of driving volatility 

are highly correlated with the number of rear-end crashes at intersections: Coefficients of 

variation in speed (Speed- 𝐶𝑣 ), number of speed points lying beyond two standard 

deviations (Speed-2𝑆𝑑𝑒𝑣 ), and coefficient of variation volatility of positive longitudinal 

acceleration (𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑄𝑐𝑣). The fixed parameter Poisson model states that the 

associations of driving volatility on rear-end crashes are fixed across the intersections. 

However, based on the RP Poisson model results, the effects of coefficients of some 

volatilities significantly vary across intersections with normal distribution. The number of 

speed points lying beyond two standard deviations (Speed-2 𝑆𝑑𝑒𝑣 ), are positively 

associated with number of rear-end crashes. They indicate that intersections with higher 

speed volatility are prone to have a higher number of rear-end crashes. Referring to partial 
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effects, it can be observed that a one percent increase in Speed-𝐶𝑣 and Speed-2𝑆𝑑𝑒𝑣 

increase the average number of rear-end crashes for 0.17 and 0.03, respectively. In 

addition, quartile coefficient of variation volatility of positive longitudinal acceleration 

(𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑄𝑐𝑣) is significant in the model with positive sign reveals that increase 

in the variation of longitudinal control of the vehicle in terms of acceleration, increases the 

expected number of rear-end crashes. Controlling for other variables, a one percent 

increase in 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑄𝑐𝑣 increases the rear-end number of crashes, on average, 

for 0.1. Considering the high variations in these volatilities, they have a substantial impact 

on the number of crashes. It is worth mentioning that all of the lateral volatilities are tested 

in the model but none of them was significant. From the model, it can be inferred that 

intersections with higher longitudinal volatility expected to have a higher number of rear 

end crashes. Based on intuition, we expect that failure in longitudinal control of the vehicle 

lead to rear-end crashes which is consistent with the results. 

 

Other factors used in the model as control variables are significant and show the expected 

sign. According to the Table 3.4, a one thousand increase in AADT in major and minor 

streets contributes to a 0.1 and 0.11 increase in the number of rear-end crashes, 

respectively. Based on the results, on average, signalized intersections have 0.88 more 

rear-end crashes than un-signalized intersections. Four-legged intersections have 0.91 

more crashes than T-intersections. 

 

Referring to the GWPR model, as shown in Table 3.4, non-stationary test and the results 

show that there is a non-stationary spatial pattern and significant variation in all of the 

estimated coefficients across space. According to the results, volatility measures are 
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positively correlated with the number of rear-end crashes in almost all locations. It should 

be noted that presence of over-dispersion in data could lead to negative coefficient signs 

at some intersections (Xu and Huang 2015). In addition, volatilities with unexpected signs 

might be insignificant in the model. Focusing on volatility measures, an estimated 

coefficient for Speed- 𝐶𝑣  varies from -0.012 to 0.029. Based on the results, 17 

intersections have negative values among which none of them are significant at a 95% 

confidence level. The Estimated coefficients for Speed-2𝑆𝑑𝑒𝑣 vary from -0.008 to 0.156, 

and 11 intersections (6.5%) have negative signs. However, none of them was significant 

in the model. Along with volatilities, as shown in Table 3.4, intersection related variables 

vary across space significantly. Although the coefficients vary from negative values to 

positive, none of the negative estimates is significant in the model. By applying IDW 

interpolation, the coefficients are mapped in the space and the results of GWPR model 

for the local estimation of volatility measures are shown in Figure 3.4. 
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Variable 
Poisson  Random Parameter GWPR 

β.1 ME Mean ME Min 1st Q Med 3rd Q Max Mean Min 1st Q Med 3rd Q Max Test2 

Constant -4.135*** - -4.837*** -      -3.518 -5.126 -3.969 -3.453 -2.864 2.369 Yes 

AADT MAJOR (1000) 0.054*** 0.19 0.053*** 0.1 0.052 0.059 0.062 0.066 0.079 0.063 0.021 0.059 0.071 0.073 0.075 Yes 

Std.  AADT Major   0.016*** -             

AADT MINOR (1000) 0.057*** 0.2 0.06*** 0.11      0.049 0.036 0.041 0.046 0.051 0.097 Yes 

SIGNALIZED (yes=1) 0.464*** 1.46 0.468*** 0.88      0.529 0.02 0.217 0.299 0.495 1.16 Yes 

4 legged intersection 0.630*** 2.15 0.494*** 0.91      0.401 0.143 0.43 0.538 0.596 1.087 Yes 

Speed-2𝑆𝑑𝑒𝑣 0.066*** 0.23 0.093*** 0.17      0.066 -0.008 0.054 0.059 0.079 0.156 Yes 

Speed-𝐶𝑣 0.009*** 0.03 0.015*** 0.03 0.0184 0.0186 0.0187 0.0188 0.0201 0.015 -0.012 0.007 0.020 0.022 0.029 Yes 

Std. Speed-𝐶𝑣   0.002*** -             

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑄𝑐𝑣 0.058*** 0.2 0.063*** 0.1 0.014 0.035 0.046 0.053 0.093 0.036 0.003 0.018 0.029 0.059 0.078 Yes 

Std. 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 −
𝑄𝑐𝑣 

  0.011*** -             

Null Deviance 878.86  878.86       878.86       

Model Deviance 360.99  193.96       294.2       

Explained Deviance 0.589  0.779       0.665       

AIC 376.99  215.96       338.6       
 1 Significance at *** 1%, ** 5%, and * 10% 

2 Non-stationary test 

 

  

Table 3.4 Modeling results for rear-end crashes (N=167 intersections) 



 

106 
 

Variable 

Poisson  Random Parameter GWPR 

β.1 ME Mean ME Min 1st Q Med 3rd Q Max Mean Min 1st Q Med 3rd Q Max 
Test

2 

Constant -6.869*** - -6.737*** -      -4.971 -8.014 -6.459 -4.176 -3.945 -3.758 Yes 

AADT MAJOR (1000) 0.002 0.00 0.004 0.00      0.001       

AADT MINOR (1000) 0.023* 0.03 0.011 0.01      0.019 -0.054 -0.007 0.034 0.043 0.049 Yes 

SIGNALIZED (yes=1) 2.337*** 3.26 2.317*** 1.98      2.067       

Speed −2𝑆𝑑𝑒𝑣 0.104*** 0.16 0.103*** 0.1      0.079 0.026 0.055 0.068 0.108 0.146 Yes 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 0.062*** 0.09 0.061*** 0.06 0.063 0.106 0.109 0.112 0.171 0.05 0.029 0.033 0.037 0.074 0.1 Yes 

Std. 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 −
𝐶𝑣 

  0.01*** -             

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 0.009*** 0.01 0.008*** 0.01      0.004       

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣 0.114*** 0.17 0.11*** 0.10 0.051 0.057 0.059 0.063 0.085 0.071 -0.006 0.012 0.022 0.09 0.348 Yes 

Std. 𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣   0.07*** -             

Null Deviance 461.86  461.86       461.86       

Model Deviance 263.67  170.05       228.76       

Explained Deviance 0.429  0.632       0.505       

AIC 279.67  190.05       258.05       
 1 Significance at *** 1%, ** 5%, and * 10% 

2 Non-stationary test 

Table 3.5 Modeling results for sideswipe crashes (N=167 intersections) 
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Figure 3.4 Local estimation of Speed – Cv (top), Speed-2 Sdev (middle), and 
Accelerationx - Qcv (bottom) on rear-end crashes 
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Sideswipe crashes 

In this section, the association of intersection-based volatilities on the frequency of 

sideswipe crashes is discussed. Table 3.5 summarizes the modeling results for fixed 

parameter, random parameter, and S-GWPR models on such crashes. In terms of 

goodness of fit, by capturing unobserved heterogeneity with RP Poisson and S-GWPR 

models, the model fits improved significantly. All the models suggest that intersection 

volatilities in terms of speed, longitudinal and lateral acceleration volatilities are highly 

associated with frequency of sideswipe crashes. That said, four intersection-based 

volatility measures are highly contributing to crash frequency: number of speed points 

lying beyond two standard deviations (Speed-2𝑆𝑑𝑒𝑣), coefficient of variation volatility of 

positive longitudinal acceleration (𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣), coefficient of variation of negative 

lateral acceleration (𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣), and number of lateral acceleration points lying 

beyond two standard deviations (𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣). However, RP Poisson and S-GWPR 

suggest that the impacts of intersection-based volatility measures are not fixed across the 

intersections. 

 

The marginal effect of the RP Poisson model reveals that a one percent increase in 

Speed-2𝑆𝑑𝑒𝑣  is correlated with 0.16 increase in sideswipe crashes, on average. The 

model also indicates that the effect of 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 is normally distributed across 

the intersections so that one percent increase in  𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 , on average, is 

associated with a 0.06 increase in sideswipe crashes. Referring to lateral acceleration 

volatilities, a one percent increase in 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 is correlated to 0.01 increase in 

the frequency of sideswipe crashes. In addition, the effect of 𝐴𝑐𝑐𝐷𝑒𝑐𝑦 − 2 𝑆𝑑𝑒𝑣  on 

sideswipe crashes is normally distributed across the selected intersections contributing 
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to 0.1 increase in the frequency of sideswipe crashes, on average, by one percent 

increase in its magnitude. It is worth noting that in order to control for intersection-related 

variables, traffic exposure and type of the signal is used in the model, which is 

summarized in Table 3.5. 

 

Coming to S-GWPR model, the results suggest that along with 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 and 

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 − 2 𝑆𝑑𝑒𝑣  volatilities, the impact of Speed-2 𝑆𝑑𝑒𝑣  is not fixed across the 

intersections. The distribution of estimated coefficients is shown in Table 3.5. One might 

notice that for some intersections, the estimation of 𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣 is negative, while 

these observations are 5.9 percent of the intersections and they are not statistically 

significant. The local estimation plots of the volatility measures are shown in Figure 3.5. 

The estimated local coefficients suggest that intersection-based volatilities are an issue 

in eastern region of the city, comparing to the west side. 
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Figure 3.5 Local estimation of Speed-2𝑺𝒅𝒆𝒗 (top), Accelerationx – Cv 
(middle), and AccDecy – 2Sdev (bottom) on sideswipe crashes 
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Angle Crashes 

Modeling results for angle crashes are summarized in Table 3.6. Compared to the fixed 

parameter model, S-GWPR and RP Poisson models fit better, indicating that unobserved 

heterogeneity is captured. It can be observed that RP Poisson outperformed S-GWPR in 

terms of AIC value.  

 

The developed models suggest that frequency of angle crashes is associated with four 

intersection-based volatility measures including speed, longitudinal, and lateral 

acceleration volatilities. In terms of speed volatility, quartile coefficient of variation in 

speed (Speed-𝑄𝑐𝑣), is significantly correlated with angle crashes. On average, a one 

percent increase in Speed-𝑄𝑐𝑣 is associated with a 0.02 increase in angle crashes. Along 

with speed volatility, intersections with higher longitudinal volatilities experienced a higher 

number of angle crashes. One percent increase in the coefficient of variation of positive 

longitudinal accelerations (𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 ) is associated with a 0.08 increase in 

number of angle crashes, on average. Intersections with higher lateral volatility are prone 

to have higher number of angle crashes. The coefficient of variation of negative lateral 

acceleration (𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣), and number of lateral acceleration points lying beyond 

two standard deviations (𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣) are statistically associated with angle crashes. 

In particular, the model suggests that coefficients of 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣  are normally 

disturbed across the intersections. On average, one percent increase in 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 −

𝐶𝑣  and 𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣  is associated with a 0.01 and 0.11 increase in angle crashes 

respectively. 
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The S-GWPR model shows a better fit than fixed parameter model and its results suggest 

that there is a spatial variation regarding the impact of lateral volatility across the 

intersections. Figure 3.6 depicts the heatmap of estimated coefficients for the lateral 

volatility (𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣). The estimated coefficients range from 0.009 to 0.018 and 

85 percent of the estimated coefficients are statistically significant.  

 

In terms of intersection-specific variables, the AADT of major road is contributing to 

frequency of angle crashes, while the AADT of minor approach is not statistically 

significant in the model. In addition, signalized and four-legged intersections have 0.55 

and 0.67 higher angle crashes compared to unsignalized and three-legged intersections, 

on average.

Figure 3.6 Local estimation of Decelerationy - Cv in angle 
crashes 
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Variable 
Poisson Regression Random Parameter S-GWPR 

β.1 ME Mean ME Min 1st Q Med 3rd Q Max Mean Min 1st Q med 3rd Q max Test2 

Constant -8.794*** - -8.988*** -      -8.891       

AADT MAJOR (1000) 0.024*** 0.03 0.026*** 0.02      0.036       

AADT MINOR (1000) 0.018 0.02 0.018 0.01      0.022       

SIGNALIZED (yes=1) 0.726*** 0.90 0.651*** 0.55      0.602       

4 legged intersection 0.791*** 1.01 0.803*** 0.67      0.783       

Speed-𝑄𝑐𝑣 0.022*** 0.03 0.024*** 0.02      0.0177       

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 0.094*** 0.13 0.096*** 0.08      0.078       

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 0.007** 0.01 0.006** 0.01 0.003 0.005 0.006 0.007 0.012 0.013 0.009 0.011 0.014 0.015 0.018 Yes 

Std. 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣   0.003*** -             

𝐴𝑐𝑐𝐷𝑒𝑐𝑦 −2𝑆𝑑𝑒𝑣 0.133*** 0.18 0.129*** 0.11      0.178       

Null Deviance 368.50  368.50       368.5       

Model Deviance 229.59  178.37       208.45       

Explained Deviance 0.377  0.516       0.434       

AIC 247.59  198.37       237.61       
 1 Significance at *** 1%, ** 5%, and * 10% 

2 Non-stationary test 

 

  

Table 3.6 Modeling results for angle crashes (N=167 intersections) 
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Variable 
Poisson Regression Random Parameter S-GWPR 

β.1 ME Mean ME Min 1st Q Med 3rd Q Max Mean Min 1st Q med 3rd Q max Test2 

Constant -13.772*** - -13.100*** -      -13.182 -14.852 -13.961 -13.127 -12.653 -11.773 No 

AADT MAJOR (1000) -0.006 0.00 -0.005 0.00             

AADT MINOR (1000) 0.042* 0.03 0.047 0.01             

SIGNALIZED (yes=1) 0.892** 0.42 0.952** 0.22      1.079 0.162 0.622 1.227 1.461 1.820 Yes 

4 legged intersection 0.694*** 0.39 0.707*** 0.17             

Speed-𝑄𝑐𝑣 0.072*** 0.05 0.065*** 0.03 0.061 0.064 0.065 0.066 0.076        

Std. Speed-𝑄𝑐𝑣   0.007*** -             

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 0.1*** 0.06 0.105** 0.02             

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝑄𝑐𝑣 0.023** 0.02 0.018* 0.01      0.024 0.002 0.015 0.02 0.033 0.056 Yes 

𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 0.009** 0.01 0.008* 0.005      0.008 0.001 0.005 0.008 0.012 0.016 Yes 

Null Deviance 279.70  279.70       279.70       

Model Deviance 151.46  134.51       137.45       

Explained Deviance 0.458  0.519       0.508       

AIC 169.46  152.51       165.68       
 1 Significance at *** 1%, ** 5%, and * 10% 

2 Non-stationary test 

Table 3.7 Modeling results for head-on crashes (N=167 intersections) 
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Head-on crashes 

Table 3.7 shows estimated fixed parameter Poisson, RP Poisson, and S-GWPR models 

for head-on crashes. Comparing goodness of fit, in terms of AIC value, the RP Poisson 

model outperformed the fixed and GWPR models. In the following, the estimated 

parameters in the RP Poisson model will be discussed. 

 

Based on the results, four measures of driving volatility are significantly associated with 

the number of head-on crashes. The coefficient of variation for speed (Speed-𝐶𝑣), which 

represents variations in vehicle speeds, is significant in the model, suggesting that 

intersections with higher speed volatility have higher numbers of head-on crashes. A one 

percent increase in Speed-𝐶𝑣, on average, increases the number of head-on crashes by 

0.03. The coefficient of variation for positive longitudinal acceleration (𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 −

𝐶𝑣), which represents variations in longitudinal control of the vehicle, is significant in the 

model with a positive sign. Based on the model, on average, a one percent increase in 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 − 𝐶𝑣 is associated with an increase in the number of head-on collisions for 

0.02. Two volatility measures capturing the variation in lateral movement of the vehicle 

( 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝑄𝑐𝑣 , and 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 ) are significant with a positive sign. 

Controlling for other variables, a one percent increase in quartile coefficient of variation 

of positive lateral acceleration ( 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝑄𝑐𝑣 ), and coefficient of variation of 

negative lateral acceleration (𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 ) increases the number of head-on 

crashes by 0.01 and 0.005. 

 

According to the results, not only variations in longitudinal control of the vehicle (in terms 

of speed and longitudinal acceleration) are positively significant but also intersections with 
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greater lateral volatility are prone to experience a higher number of head-on crashes. 

Deviation from the centerline of the road is a major cause of head-on collisions (Gårder 

2006), which is more probable at intersections with greater variations in lateral 

acceleration. In addition, higher variations in the longitudinal control of a vehicle might 

lead to deviations from the lane in order to avoid a crash (e.g. rear-end), leading to head-

on collisions with vehicles approaching from opposite direction.  

 

Intersection related variables are used in the model as control variables. Based on the 

results, AADT in major approaches is not significant in the model. However, it was kept 

in the model as a control variable. Based on the results, a 1000 increase in AADT of minor 

approach increase the frequency of head-on crashes for 0.01. Controlling for other 

variables, signalized intersections have 0.22 more head-on crashes compared to un-

signalized intersections. In terms of intersection geometry, four-legged intersections on 

average have 0.17 more head-on crashes than T-intersections.  

 

Referring to S-GWPR model, by considering the spatial variation of the coefficients, the 

model improved the AIC and explained deviance compared to the fixed parameter 

Poisson model. As shown in Table 3.7, non-stationary test was conducted on all variables 

and those that failed to pass the test are considered a global variable in the model. In the 

final model, the signalized intersection and measures of lateral acceleration volatilities 

( 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝑄𝑐𝑣 , and 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 − 𝐶𝑣 ) passed the non-stationary test and 

significantly vary across the space. By applying IDW interpolation, we mapped estimated 

lateral acceleration volatilities. Figure 3.7 displays the results. Focusing on measures of 

driving volatility, measures positively contribute to the number of head-on crashes in all 
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areas. Results revealed that in downtown areas, the estimated coefficient of driving 

volatility measures have a lower correlation with the number of head-on crashes. In the 

east side of the city, lateral acceleration volatilities have a greater contribution in crashes. 

 

Limitations and future work 

Because of the error in decoding the CV data from DSRC to csv, around 45 percent of 

Figure 3.7 Local estimation of Accelerationy – Qcv (top), and Decelerationy – Cv in 
head-on crashes 
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the lateral volatility of trips were voided. However, these errors came from specific device 

IDs, which were removed from the dataset during the cleaning process. In addition, during 

the intersection selection procedure, there might be a sample selection issue due to the 

unavailability of AADT and speed limit information for minor roads in the city. Furthermore, 

drivers in the study might not represent the population. Also, vehicles whose data was 

used to obtain driving volatilities might not be representative of the ones who were 

involved in crashes at intersections. Finally, although the data was error-checked, some 

errors might still remain from the data collection process. 

 

This study investigates the association of longitudinal and lateral volatilities on the 

frequency of rear-end and head-on crashes at intersections. The future study would 

explore the impact of volatility on other crash types, such as sideswipe, angle, and single-

vehicle crashes extending the model to multivariate random parameter and 

geographically weighted Poisson regression models. Furthermore, future studies should 

investigate contributing factors such as geometric design, traffic conditions, signal timing, 

etc., that might increase driving volatility at intersections. While in the literature, there are 

multiple surrogate safety measures such as time-to-collision (TTC), exposed time-to-

collision, time integrated time-to-collision (TIT), and rear-end crash risk index (RCRI) 

aiming to quantify the crash risk (Essa and Sayed 2018, Rahman and Abdel-Aty 2018, 

Rahman et al. 2018), calculation of such measures need relative distance and kinematic 

information of front vehicle, which was not available in the data. In future, with higher 

penetration rate of CVs and availability of data, this information can be integrated in the 

model. 
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Conclusion 

This study evaluated the impact of variations in longitudinal and lateral vehicular control 

on the frequencies of rear-end, sideswipe, angle and head-on crashes at intersections 

using the driving volatility which quantifies the degree of variations in instantaneous 

driving behavior. The goal of this study is to develop a fundamental framework to 

conceptualize and quantify variations in longitudinal and lateral control of vehicles (using 

speed, longitudinal/lateral acceleration, and yaw-rate volatilities), and explore the 

association of volatilities with type of crash. 

 

To reach these goals, the Basic Safety Messages (BSMs) data exchanged by connected 

vehicles in real-world environments obtained from the Safety Pilot Model Deployment 

(SPMD) study conducted by the US Department of Transportation in Ann Arbor, MI is 

used. Such a big and precise dataset is available, which could be incorporated with 

historical crash data in order to understand the safety performance of the system prior to 

crash occurrences. This study creates a unique dataset by integrating BSM data, 

historical crash, and road inventory data. More than 2,225,000,000 BSMs obtained from 

two months of experiments in Michigan is processed and observations (n ~ 125,000,000) 

from 167 intersections are extracted. In order to capture the variations in vehicle control, 

30 measures of driving volatility at the intersection level are calculated using speed, 

longitudinal/lateral acceleration and yaw-rate. Crash data from October 2012 to 2013 is 

linked with road inventory data including AADT of major and minor approaches, speed 

limits, and number of lanes, integrated with BSM data. Significant efforts were made to 

clean, process, and link the datasets. 
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From a methodological standpoint, rigorous modeling techniques including fixed 

parameter, random parameter (RP), and semi-parametric geographically weighted 

Poisson regression (S-GWPR) are developed to explore the impact of the measured 

volatilities on the frequency of several crash types. RP Poisson and S-GWPR allows us 

to consider the unobserved heterogeneity in the data coming from multiple unobserved 

factors. It is worth noting that RP Poisson model outperformed S-GWPR and Fixed 

Poisson models in all of the crash type models. 

 

Referring to rear-end crashes, the RP Poisson model fitted better to the data compared 

to the fixed parameter and GWPR. Based on the random parameter and GWPR results, 

variations in longitudinal control of the vehicle in terms of longitudinal acceleration and 

speed are highly correlated with the number of rear-end crashes, and the estimated 

coefficients significantly vary across intersections. None of the lateral volatilities is 

significant in the model.  

 

Focusing on sideswipe and angle crashes, modeling results suggest that along with 

longitudinal volatilities, in terms of longitudinal acceleration and speed, lateral volatility is 

highly associated with the frequency of frequency of such crashes. The results indicate 

that there is a substantial variation among the estimated coefficients for volatility indices 

at intersections level.  

 

When it comes to head-on crashes, both longitudinal and lateral volatilities are positively 

associated with the number of crashes. Based on the results, variations in speed and 
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longitudinal and lateral acceleration are statistically significant and increase the frequency 

of head-on crashes. Deviation from the centerline of the road is the main reason of head-

on crashes, and vehicles passing the intersections with higher lateral volatility are prone 

to deviate from their lane leading to head-on collision. In the S-GWPR model, 

contributions of lateral acceleration volatility vary across space. In downtown areas, it has 

a lower contribution while in the east side of the city the association is higher. 

 

Given the calculated measures of volatilities, researchers can proactively identify hotspot 

intersections where crashes are waiting to happen. These hotspots are intersections 

where the frequency of crashes is low while the driving volatility is high (Kamrani et al. 

2017). We can identify at-risk intersections where the driving behavior differs compared 

to other intersections by evaluating the driving volatility measures. In order to treat the 

intersection proactively, further examinations are needed to identify the contributing 

factors that increase the volatility of intersections such as inappropriate geometric 

designs, traffic conflicts, limited sight distances, inappropriate signal timing, etc. In 

addition, utilizing V2I communication, proactive warnings could be generated and 

transmitted by RSUs at these locations that inform drivers about potential hazards. This 

information could potentially enhance drivers’ situational awareness, leading to a 

decrease in their driving volatility (Arvin et al. 2018).  

  



 

122 
 

CHAPTER 4 : EXAMINING THE ROLE OF PRE-CRASH DRIVING 

VOLATILITY IN CONTRIBUTING TO CRASH INTENSITY 
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Arvin, R., Kamrani, M., & Khattak, A. J. (2019). The role of pre-crash driving 

instability in contributing to crash intensity using naturalistic driving data. Accident 

Analysis & Prevention. 

 

Abstract 

While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of 

high-resolution naturalistic driving data provides an opportunity for researchers to conduct 

an in-depth analysis of crash contributing factors, and design appropriate interventions. 

Although police-reported crash data provides information on crashes, this study takes 

advantage of the SHRP2 Naturalistic Driving Study (NDS) which is a unique dataset that 

allows new insights due to detailed information on driver behavior in normal, pre-crash, 

and near-crash situations, in addition to trip and vehicle performance characteristics. This 

paper investigates the role of pre-crash driving instability, or driving volatility, in crash 

intensity (measured on a 4-point scale from a tire-strike to an injury crash) by analyzing 

microscopic vehicle kinematic data. NDS data are used to investigate not only the vehicle 

movements in space but also the instability of vehicles prior to the crash and their 

contribution to crash intensity using path analysis. A subset of the data containing 617 

crash events with around 0.18 million temporal trajectories are analyzed. To quantify 

driving instability, microscopic variations or volatility in vehicular movements before a 

crash are analyzed. Specifically, nine measures of pre-crash driving volatility are 
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calculated and used to explain crash intensity. While most of the measures are 

significantly correlated with crash intensity, substantial positive correlations are observed 

for two measures representing speed and deceleration volatilities. Modeling results of the 

fixed and random parameter probit models revealed that volatility is one of the leading 

factors increasing the probability of a severe crash. Additionally, the speed prior to a crash 

is highly correlated with intensity outcomes, as expected. Interestingly, distracted and 

aggressive driving are highly correlated with driving volatility and have substantial indirect 

effects on crash intensity. With volatile driving serving as a leading indicator of crash 

intensity, given the crashes analyzed in this study, early warnings and alerts for the 

subject vehicle driver and proximate vehicles can be helpful when volatile behavior is 

observed.    

 

Introduction 

According to the National Highway Traffic Safety Administration, there were 7.27 million 

automobile crashes leading to more than 2.17 million injuries and 37,914 fatalities across 

the United States in 2016 (Anon 2018). It has shown that human-error was contributing 

in 94 percent of crashes across the U.S. (Anon 2008). These statistics suggest a great 

need and attention for research to explore the role of driving behavior on the severity 

outcome of crashes. Severities of accidents are the outcomes of complex interactions 

between multiple factors such as driver behavior, roadway and environmental factors, 

and vehicle defect. The main goal of injury severity model is to elucidate the association 

of severity outcome and these factors. Developing an understanding regarding the extent 

of contribution for each factor is the effective approach to improve the safety.  
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In the literature, a majority of methods are frequentist-based where a population is 

sampled (Savolainen et al. 2011). The data sources include police-reported crashes and 

road inventory. While the police reported data are the major source of crashes, certain 

types of crashes are under-reported in such databases. Specifically, a National Highway 

Traffic Safety Administration report (NHTSA 2009) has shown that 50% of no-injury 

crashes and 25% of minor injury crashes are unreported. This study focuses on 

developing a more complete picture of such unreported crashes by examining crash 

intensity using a unique database. Additionally, the crashes that may be truncated due to 

monetary thresholds imposed by states (Hauer 2006) are also captured in the analysis. 

The focus of this study is on crash intensity with the full range of mostly unreported 

crashes all the way to severe crashes.  

 

The emergence of high-resolution naturalistic driving data provides a great opportunity 

for researchers to develop an in-depth analysis of crashes and investigate the crash 

contributing factors by analyzing microscopic driving performance and behavior prior to 

crash involvement. It helps us to investigate not only the movement of the vehicle in space 

but also the variations of movements prior to a crash and their contribution to severity. A 

new opportunity is offered when this information is coupled with the driver behavior and 

roadway/environmental characteristics at the crash time.  

 

In this study, an in-depth analysis of crash intensity is performed by exploring driving 

instability and coupled that with driving behavior and roadway/environmental factors to 

investigate their association with crash intensity (which is the extent of harm to a person 

or property in a crash). In order to quantify instability in driving, the concept of driving 
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volatility is utilized, which captures the variations in instantaneous driving behavior. In the 

literature, the term “crash severity” is widely used to describe the severity level of a crash, 

while commonly it reflects the level of injury in the data. In this paper, the SHRP2 NDS 

data is used, which contains detailed information on extreme safety situations including 

minor crashes leading us to investigate an in-depth analysis of PDO crashes. Therefore, 

we used the term “crash intensity”. Crash intensity is characterized by several categories 

of property damage only crashes that include tire-strike, minor, police-reportable, and 

severe crashes. To summarize, the questions that this paper is trying to answer are: 

 

• How can we extract useful information about enhancing safety from recently 

available microscopic vehicle kinematics data? 

• How is crash intensity related to pre-crash driving volatility (or driving instability)? 

 

By analyzing driving stability, driver behavior, and surrounding environment, proactive 

warnings could be transmitted regarding potential hazards via infrastructure-to-vehicle 

(I2V) and vehicle-to-vehicle (V2V) communication.   

 

Methodology 

In this study, by incorporating a unique naturalistic driving data obtained from SHRP2, 

617 crash events containing around 0.18 million temporal trajectory observations are 

analyzed. The goal of this study is exploring the impact of driving instability (in terms of 

various aspects of driving volatility) on crash intensity, controlling for other factors. Here, 

we have investigated whether greater volatility prior to a crash occurrence increases the 
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probability of an intense crash. Multiple measures of driving volatility are calculated using 

vehicle kinematics (i.e., speed, acceleration and deceleration). This study differentiates 

between speed, acceleration, and deceleration volatilities expecting that speed and 

deceleration volatilities have a higher contribution on the crash intensity. Furthermore, the 

impact of driving behavior and roadway/environmental factors on driving volatility and its 

indirect correlation with crash intensity is explored using path analysis. In the following, 

the modeling approach and measures of volatility are discussed. 

 

Modeling framework 

The common approach in modeling the crash severity is linking the associated factors 

directly to the safety outcome. However, some of these associations might be more 

complicated and need further analysis to be investigated. In this study, the goal is to 

explain the associated factors of crash intensity through the influence of speed, driving 

behavior, and surrounding environment on the stability performance of the vehicle in 

terms of driving volatility. In other words, we are trying to investigate the impact of driving 

volatility on the intensity of crashes, while driving volatility is influenced by driving behavior 

and the surrounding environment. Path analysis is one of the well-known methods widely 

used by researchers to explain direct and indirect association of factors (Loehlin 2004, 

Şimşekoğlu et al. 2013, Yu et al. 2019). The conceptual framework of this study is shown 

in Figure 4.1. The associated factors include driver behavior, roadway/environmental 

factors, and vehicle-specific factors. These factors can be directly associated with the 

safety outcome, i.e., crash intensity. Furthermore, these factors can indirectly affect crash 

intensity through driving instability. Although the vehicle-specific factors can also 

potentially affect crash intensity, due to unavailability of such information in the available 
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subset of SHRP2 NDS data, relevant variables could not be included in the analysis. The 

structure of the path model can be written as: 

𝑌1 = 𝐹𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝛼1 + 𝛽1𝑋1)                                                                                                                    (4.1) 

𝑌2 = 𝐹𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝛼2 + 𝛽2𝑋2 + 𝛾𝑌1 + 𝛽3𝑉)                                                                                            (4.2) 

 

where 𝐹𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 is the driving volatility function, 𝐹𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 is the crash severity model, 𝛼1 

and 𝛼2  are the model intercept, 𝛽1 is the estimated coefficients, 𝑋1  is the matrix of 

covariates including driver behavior and roadway/environmental factors, 𝛽2  is the 

estimated coefficients for explanatory variables 𝑋2, 𝛾 is the association of driving volatility 

Figure 4.1 Conceptual framework for the pathways modeled 
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on crash intensity, V is the vehicle speed just before the crash, 𝛽3  is the estimated 

coefficients for speed.  

 

While driver behavior and roadway/environmental factors can affect the driving speed of 

vehicles, in which several studies have investigated these associations (Gargoum and El-

Basyouny 2016, Huang et al. 2018, Sadia et al. 2018, Wang et al. 2019a), the focus of 

this study remains on the investigation of these factors on driving instability and crash 

intensity. 

 

Fixed parameter modeling of pathways 

Fixed parameter model estimates one set of coefficients, which are stationary across all 

the observations. Fixed parameter model helps us to understand the whole picture of the 

correlation between driving volatility and crash intensity. In this paper, two fixed parameter 

models are estimated: 

 

1) Tobit models are used to investigate the correlations of driving instability with driving 

behavior and roadway/environmental factors. Notably, the volatility measures are 

generally left-censored at zero. Tobit model, originally proposed by Tobin (Tobin 

1958), is an appropriate modeling framework to analyze such censored variables; 

such models are widely used in the literature to analyze crash rates (Anastasopoulos 

and Mannering 2009, Anastasopoulos et al. 2012, Zeng et al. 2017a, Zeng et al. 

2017b). Given the left-censored limit of zero, we can write (Anastasopoulos et al. 

2012): 
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𝑌1,𝑖
∗ =  𝛼1 + 𝛽1𝑋1 + 𝜀𝑖 , 𝑖 = 1, 2, . . , 𝑁 

𝑌1,𝑖 = 𝑌1,𝑖
∗       𝑖𝑓  𝑌1,𝑖

∗ > 0                                                                                                                 (4.3) 

𝑌1,𝑖 = 0      𝑖𝑓  𝑌1,𝑖
∗ ≤ 0 

 

where 𝑌1  is the driving volatility, 𝛼1  is the model intercept, 𝛽1 is the estimated 

coefficients, 𝑋1  is the matrix of covariates including driver behavior and 

roadway/environmental factors, N is the number of observations, and 𝜀𝑖 is the error 

term normally distributed with mean zero and variance 𝜎2. It is worth noting that latent 

variable,  𝑌1
∗ is observed when it is positive. The likelihood function for the Tobit model 

can be written as following (Anastasopoulos et al. 2012): 

 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  ∏[1 − 𝛷 (
𝛽𝑋

𝜎
)]

0

∏ 𝜎−1𝛷[
𝑌𝑖 − 𝛽𝑋

𝜎
]

1

                                                             (4.4) 

 

where Φ represents the normal density function. 

2) Crash intensity model, which is an ordered probit model to explore the direct 

association of driving volatility, speed, driver behavior, and roadway/environmental 

factors to the crash intensity. It should be noted that due to the ordinal nature of crash 

intensity, multiple studies have suggested  using ordered-response models (Huang et 

al. 2011, Savolainen et al. 2011, Huang et al. 2014, Nickkar et al. 2019a, Azimi et al. 

2020, Rahimi et al. 2020). Crash intensity is considered as a four-level ordinal 

response variable ranging from low-risk tire strike crashes to most severe crashes (will 

be discussed in detail in section 4). Crash intensity function can be defined as 
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(Washington et al. 2010): 

 
𝑦∗ = 𝛼2 + 𝛽2𝑋2 + 𝛾𝑌1 + 𝛽3𝑉 + 𝜀                                                                                                (4.5) 

 

where 𝑦∗  is the latent variable, 𝛽2  is the estimated coefficients for explanatory 

variables 𝑋2, 𝛾 is the association of driving volatility on crash intensity, V is the vehicle 

speed just before the crash , 𝛽3 is the estimated coefficients for speed and, 𝜀 is error 

term. It should be noted that the explanatory variables in the first equation are 

indirectly associated with the crash intensity through 𝛾. The latent variable (𝑦∗) can be 

transformed to the observed ordinal response, y, as (Greene 2003): 

 

𝑦 = 1    𝑖𝑓  𝑦∗ ≤ 0                                                                                                                               (4.6) 

𝑦 = 2    𝑖𝑓  0 < 𝑦∗ ≤ 𝜇1 

𝑦 = 3    𝑖𝑓  𝜇1 < 𝑦∗ ≤ 𝜇2 

𝑦 = 4    𝑖𝑓  𝑦∗ > 𝜇2 

 

where 𝜇1 and 𝜇2 (also known as thresholds) needs to be estimated by the model. 

 

Random parameter modeling of pathways 

While traditional methods model crash severity under the assumption of fix effect of each 

parameter across all of the observations, in this study we applied random parameter 

model to address unobserved heterogeneity which arising from unobserved contributing 

factors in crashes. Although SHRP2 NDS data contains rich information on vehicle 

kinematics, driver pre-crash behavior, and driving environment, still there are some 
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factors that cannot easily be captured, such as drivers’ risk perception, cautiousness, and 

situational awareness. 

 

Random parameter model extends the fix parameter model by allowing coefficients to 

vary across observations.  

 
𝛽𝑖 = 𝛽 + 𝜔𝑖                                                                                                                                                (4.7) 

 

where 𝜔𝑖  is distributed randomly. In the literature, several studies (Train 2000b, Bhat 

2003) suggested Halton sequence method (Halton 1960) and simulated maximum 

likelihood approach to estimate model parameters. While several random parameter 

density functions, including normal, uniform, triangle, and log-normal are tested in this 

study, the normal distribution revealed the superior outcomes. It is worth noting that we 

considered random variables with significant mean and/or standard deviation. 

 

Quantifying pathway by marginal effects 

Crash intensity model explores the direct association between driving volatility, driving 

behavior, and environmental factors with intensity outcome of the crash. On the other 

hand, the driving volatility models uncover the correlation between driving instability and 

associated factors, which are indirectly associated with the crash intensity. In this context, 

path analysis is helpful in discovering direct and indirect relationship between the crash 

intensity and contributing factors. In this study, in order to quantify the direct and indirect 

association between factors and dependent variables (driving volatilities and crash 

intensity), marginal effect is used. Marginal effect represents the change in probability of 
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occurrence of dependent variable once the independent variable increase by one unit. 

The main advantage of marginal effect is providing intuitive interpretation regarding the 

associated factors and dependent variables (driving volatilities and crash intensity).  

• Direct marginal effect:  One of the practical issues in the ordered probit models is 

the interpretation of dependent variables, where the association of positive/negative 

sign is not clear (Washington et al. 2010). Thus, the marginal effect analysis, which is 

a common approach in the literature, is used to uncover the association of 

independent variables with the model outcome. In order to calculate the direct 

marginal effect of a continuous factor, we can write (Jalayer et al. 2018, Zeng et al. 

2019): 

 
 

𝜕𝑃𝑖,1

𝜕𝑥
= 𝜙(−(𝛽2

𝑡𝑥𝑡 + 𝛽2
′ 𝑋′ + 𝛾𝑌1 + 𝛽3𝑉))𝛽2                                                                             (4.8) 

𝜕𝑃𝑖,2

𝜕𝑥
= [𝜙(−(𝛽2

𝑡𝑥𝑡 + 𝛽2
′ 𝑋′ + 𝛾𝑌1 + 𝛽3𝑉)) − 𝜙(𝜇1 − (𝛽2

𝑡𝑥𝑡 + 𝛽2
′ 𝑋′ + 𝛾𝑌1 + 𝛽3𝑉))]𝛽2 

𝜕𝑃𝑖,3

𝜕𝑥
= [𝜙(𝜇1 − (𝛽2

𝑡𝑥𝑡 + 𝛽2
′ 𝑋′ + 𝛾𝑌1 + 𝛽3𝑉)) − 𝜙(𝜇2 − (𝛽2

𝑡𝑥𝑡 + 𝛽2
′ 𝑋′ + 𝛾𝑌1 + 𝛽3𝑉))]𝛽2 

𝜕𝑃𝑖,4

𝜕𝑥
= [𝜙(𝜇2 − (𝛽2

𝑡𝑥𝑡 + 𝛽2
′ 𝑋′ + 𝛾𝑌1 + 𝛽3𝑉))]𝛽2 

 
 

where 𝑃𝑖,𝑗  is the probability of intensity level of  j for observation i, ϕ(. )  is the 

cumulative standard normal function, 𝛽2
𝑡 is the estimated coefficient for the subjected 

factor, 𝑥𝑡 is the subjected factor, 𝛽2
′  is the estimated coefficients for other independent 

variables in the model, and 𝑋 ′ are is the other associated factors, 𝑌1 is the driving 

volatility, and 𝛾 the estimated coefficient for the driving volatility. 
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• Indirect marginal effect: In order to obtain the indirect association of the factors, 

estimated coefficients of the two models are integrated by calculating marginal effects 

on driving volatilities and crash intensity. The marginal effect on driving volatility can 

be written as: 

 

𝐷𝑖𝑟𝑒𝑐𝑡 𝑀𝐸 𝑜𝑛 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
= 𝑓𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝛽1

𝑡(𝑥𝑡 + 1) + 𝛽1
′𝑋′) − 𝑓𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝛽1

𝑡𝑥𝑡 + 𝛽1
′𝑋′)                       (4.9) 

 

where 𝑓𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦  is the estimated Tobit model for the driving volatility, 𝛽1
𝑡  is the 

estimated coefficient for the subjected factor, 𝑥𝑡  is the subjected factor, 𝛽1
′  is the 

estimated coefficients for other independent variables in the model, and 𝑋 ′ are is the 

other associated factors. The indirect marginal effect on severity through driving 

volatility can be written as: 

 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑀𝐸 𝑜𝑛 𝑐𝑟𝑎𝑠ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  

= 𝑓𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝛽2
𝑡𝑋 + 𝛾(𝛽1

𝑡𝑥𝑡 + 1 + 𝛽1
′𝑋′) + 𝛽3𝑉) 

−  𝑓𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝛽2
𝑡𝑋 + 𝛾𝛽1

𝑡𝑥𝑡 + 𝛽3𝑉)                                                                  (4.10) 

 

 

The total marginal effect on the crash severity is: 

Total ME on crash intensity: Direct ME + Indirect ME 

 

Measures of Volatility 

In recent literature, the concept of driving volatility is defined and utilized to capture the 
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variations in instantaneous driving behavior. Multiple driving volatility measures have 

been used by researchers (Kamrani et al. 2017, Kamrani et al. 2018b, Arvin et al. 2019c), 

which can be applied to the vehicle kinematics, including speed, 

acceleration/deceleration, and jerk. In the following, the volatility functions used in this 

study and applied to vehicle speed, acceleration, and deceleration are discussed. Further 

details are available in (Kamrani et al. 2018b). Utilizing these functions, nine volatility 

measures are calculated using vehicle kinematic data prior to crash involvement. In the 

following, the applied functions on vehicle kinematics is discussed.  

 

Standard deviation  

The first function is standard deviation, which is desirable for capturing the data variations. 

We can write: 

 

𝑆𝑑𝑒𝑣 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

                                                          (4.11) 

 

where 𝑥𝑖 is the observed value i, 𝑥̅ is the mean of observations, and n is the total number 

of observations. This function is applied on speed and acceleration/deceleration.  

Time-varying stochastic volatility 

The time-varying stochastic volatility measure  is widely used in the econometric field, 

which can be written as (Figlewski 1994):  
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𝑉𝑓 = √
1

𝑛 − 1
∑(𝑟𝑖 − 𝑟̅)

𝑛

𝑖=1

         𝑓𝑟𝑜𝑚 𝑡 = 1 𝑡𝑜 𝑛                                   (4.12) 

 

where  

 

𝑟𝑖 = 𝑙𝑛 (
𝑥𝑡

𝑥𝑡−1
)                                                                 (4.13) 

 

where 𝑥𝑡  and 𝑥𝑡−1 are the observations at time 𝑡 and 𝑡 − 1, respectively, and ln is the 

natural logarithm. Since this measure needs time-series observations with positive 

values, only vehicle speed is used (acceleration/deceleration have negative values). 

 

Coefficient of Variation 

This measure obtained by dividing the standard deviation by the mean (Everitt and 

Skrondal 2002), which applied to speed, acceleration, and deceleration, and can be 

written as: 

 

𝐶𝑣 =
𝑆𝑑𝑒𝑣

|𝑥̅|
                                                                           (4.14) 

 

Quartile Coefficient of Variation 

This measure is desirable when the data is not following a normal distribution (Zwillinger 

and Kokoska 2000), which can be defined as (Bonett 2006): 

 

𝑄𝐶𝑉  =
𝑄3 − 𝑄1

𝑄3 + 𝑄1
                                                                 (4.15) 

 

where 𝑄1 and 𝑄3 are the 25th and 75th percentiles of data, respectively.  
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Data 

In this study, the second Strategic Highway Research Program (SHRP 2) data are used. 

About 4 petabytes of data were collected under this program and it is known to be the 

most comprehensive naturalistic driving study. Referring to the effort that went in to the 

data collection, this is a high-quality data which contains information of more than 3500 

drivers participating from six states in the United States including Washington, New York, 

Pennsylvania, Florida, North Carolina, and Indiana, during three years (2010 to 2013), 

travelling more than 50 million vehicles miles and 5 million trips (Hankey et al. 2016). In 

order to collect data, onboard data acquisition system (DAS) is installed on vehicles. 

Along with DAS, various sensors (camera, alcohol sensor, forward sensor, 

accelerometers) are used to record information including vehicle kinematics (speed, 

acceleration, steering position) at 10-Hz frequency, video views, vehicle controls, offset 

from lane center, etc. (Hankey et al. 2016).  

 

The SHRP2 NDS data used in this study is a subset of data containing 617 crashes. For 

each crash-involved trip, 30 seconds of vehicle kinematics data is available. The data 

contains the seconds of evasive maneuver (taken by the driver to avoid the crash) and 

after crash occurrence. Since we are studying the impact of pre-crash behavior on crash 

intensity, we need to only include unintentional driving behavior and exclude intentional 

volatility arising from the drivers to avoid crashes in the analysis. Therefore, we need to 

exclude these seconds from our analysis, which will be discussed in the next section. 

These extracted seconds were used to calculate aforementioned measures of driving 

volatility. The final dataset is formed by linking the measured volatilities with the summary 



 

138 
 

of trip. The trip summary file contains the driver behavior and roadway/environmental 

characteristics which recorded via camera and recoded by data reductionist. In the 

dataset, the crash is defined as “any contact that the subject vehicle has with an object, 

either moving or fixed, at any speed in which kinetic energy is measurably transferred or 

dissipated”, and grouped into four categories: 

 
1- Level 1 Severe Crash: These crashes include any injury, airbag deployment, 

vehicle rollover, or a high-delta V. 

2- Level 2 Crash Moderate Severity: Not a level 1 crash. These crashes have a 

minimum $1500 damage worth. Also, the crashes where acceleration reaches 

±1.3 g are included. 

3- Level 3 Crash Minor Severity: Not a level 1 or 2 crash. In these crashes the 

vehicle contacts other objects, or they are crashes where a vehicle departs 

from the road and sustains some (minimal) damage. 

4- Level 4 Crash Tire Strike: Not a level 1, 2 or 3 crash. These crashes are the 

ones where the tire strikes an object, but there is little damage or risk element 

compared with the other categories. 

 

It should be noted that the reported intensity levels in the original SHRP2 NDS dataset is 

in descending order ranging from level 1 with the highest severity to level 4 corresponding 

to lowest intensity crashes. Therefore, in this research, the order of the crash intensity is 

reversed into ascending order, which helps us to easily interpret the sign of the estimated 

coefficients (variables with positive sign increase the probability of an intense crash and 

vice versa). 
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Exclusion of Evasive Maneuvers 

While the goal of this study is examining the role of driving stability on crash intensity, it 

is crucial to exclude the seconds of vehicle trajectories that drivers are attempting to avoid 

crashes, in order to isolate unintentional volatility (when drivers are performing normal 

driving) from intentional volatility (that drivers trying to avoid the crash) (Kamrani et al. 

2019). To shed more light on this issue, Figure 4.2 illustrates the speed and acceleration 

profile of a randomly chosen crash in which the crash occurred in the 23rd second of the 

video and the driver started to react to the situation at 22nd second of the sequence. To 

exclude the irrelevant data, we have excluded the seconds that the driver is reacting. 

Therefore, this study only uses the seconds of the data up to the moment that the drivers 

started to react. The speed and acceleration of these seconds are used to calculate nine 

Figure 4.2 Speed and acceleration profile of a randomly chosen crash 
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measures of driving volatility to quantify driving stability. It should be noted that there are 

crashes in which the driver did not react, or he/she reacted after the impact time. Thus, 

we used either the reaction time or impact time (whichever comes first).  

 

Results 

Descriptive Statistics 

The descriptive statistics of the variables used in the modeling are shown in Table 4.1. 

The table presents the statistics regarding the crash intensity, measures of stability 

performance (driving volatility), driving behavior, and roadway/environmental factors. 

Based on the descriptive statistics, 40.2% of crashes are low-risk tire strikes, 36.8% are 

minor intensity crashes, 13.6% are moderate intensity crashes, and 9.4% are severe 

crashes. As mentioned in the methodology, nine measures of driving volatility are utilized 

and calculated using seconds of the vehicle data prior to crash involvement, and the 

summary of the descriptive statistics is shown in Table 4.1. 

 

Focusing on key variables of driving behavior, the average speed of the vehicles is 8.2 

m/s, ranging from 0.13 to 34.4 m/s. prior to the crash, 9.72% of drivers are observed while 

showing the aggressive behavior, and 64.67 percent are distracted with a secondary task. 

In terms of environmental factors, most crashes happened in business/industrial (46.8%), 

and moderate residential areas (19.8%).  
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Variable Description 
Mean/ 

Percent 
S.D./ 

frequency 
Min Max 

Crash intensity 

 Low-risk Tire Strike 40.19% 248 0 1 

 Minor Crash 36.79% 227 0 1 

 Moderate Crash 13.61% 84 0 1 

 Severe Crash 9.4% 58 0 1 

Measures of performance stability 

Speed  Speed prior to the crash (m/s) 8.2 6.2 0.13 34.4 

𝑆𝑝𝑒𝑒𝑑 −  𝑆𝑑𝑒𝑣 (m/s) Standard deviation of speed 3.9 2.35 0.15 12.43 

𝑆𝑝𝑒𝑒𝑑 −  𝑉𝑓 (m/s) Time varying stochastic volatility 0.6 0.43 0.01 3.11 

𝑆𝑝𝑒𝑒𝑑 −  𝐶𝑣 (m/s) Coefficient of variation of speed 0.66 0.4 0.01 2.68 

𝑆𝑝𝑒𝑒𝑑 −  𝑄𝑐𝑣 (m/s) Quartile coefficient of variation of speed 0.51 0.3 0.01 1.00 

𝐴𝑐𝑐𝐷𝑒𝑐 − 𝑆𝑑𝑒𝑣 (m/s2) 
Standard deviation of acceleration and 
deceleration 

1.01 0.5 0.07 3.77 

𝐴𝑐𝑐𝑒𝑙 − 𝐶𝑣 (m/s2) Coefficient of variation of acceleration 0.91 0.32 0.31 2.51 

𝐷𝑒𝑐𝑒𝑙 − 𝐶𝑣 (m/s2) Coefficient of variation of deceleration 1.04 0.37 0 2.72 

𝐴𝑐𝑐𝑒𝑙 − 𝑄𝑐𝑣 (m/s2) 
Quartile coefficient of variation of 
acceleration 

0.67 0.19 0 1.00 

𝐷𝑒𝑐𝑒𝑙 − 𝑄𝑐𝑣 (m/s2) 
Quartile coefficient of variation of 
deceleration 

0.71 0.18 0 1.00 

Driving behavior 

Hand on wheel Two hands on wheel  46.52% 287 0 1 

 Other 53.48% 330 0 1 

Aggressive Aggressive driving  9.72% 60 0 1 

 None 90.28% 557 0 1 

Distracted Distracted driving  64.67% 399 0 1 

 None 35.33% 218 0 1 

Seatbelt Seatbelt used 90.6% 559 0 1 

 No 9.4% 58 0 1 

Legal Maneuver Yes 82.82% 511 0 1 

 No 17.18% 106 0 1 

Roadway/Environmental factors 

Locality Business/Industrial 46.84% 289 0 1 

 Bypass/Divided Highway with traffic signals 2.59% 16 0 1 

 Church 2.11% 13 0 1 

 Bypass/Divided Highway with no traffic signal 6.65% 41 0 1 

 Moderate residential 19.77% 122 0 1 

 Open country 1.13% 7 0 1 

 Open residential 5.19% 32 0 1 

 Playground 0.81% 5 0 1 

 School  7.78% 48 0 1 

 Urban 7.13% 44 0 1 

 

 

Table 4.1 Descriptive statistics of variables 
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Table 4.1 Continued 
Relation to 
Junction Relation to junction (base: non-junction) 

27.07% 167 0 1 

 Driveway, alley access, etc. 5.67% 35 0 1 

 Entrance/Exit ramp 2.11% 13 0 1 

 Interchange area 3.4% 21 0 1 

 Intersection 19.77% 122 0 1 

 Intersection-related 11.35% 70 0 1 

 Other 0.49% 3 0 1 

 Parking lot entrance/exit 13.94% 86 0 1 

 Parking lot, within boundary 16.21% 100 0 1 

Density Traffic density (base: LOS A) 73.42% 453 0 1 

 LOS B 18.31% 113 0 1 

 LOS C and Below 8.27% 51 0 1 

Road Alignment Straight 85.74% 529 0 1 

 Curve 14.26% 88 0 1 

Roadway type Divided (median strip or barrier) 22.69% 140 0 1 

 No lanes 17.18% 106 0 1 

 Not divided - center 2-way left turn  5.51% 34 0 1 

 Not divided - simple 2-way traffic way 48.30% 298 0 1 

Surface condition One-way traffic 6.32% 39 0 1 

 Dry 74.39% 459 0 1 

 Ice/snow 3.24% 20 0 1 

 Other 0.32% 2 0 1 

 Wet  22.04% 136 0 1 

Weather Weather (base: no adverse condition) 85.58% 528 0 1 

 Adverse Conditions 8.59% 53 0 1 

 Mist/Light Rain 5.83% 36 0 1 

Light condition Daylight 71.64% 442 0 1 

 Darkness, lighted 19.77% 122 0 1 

 Darkness, not lighted 5.02% 31 0 1 

 Dawn/Dusk 3.57% 22 0 1 

 
 

Modeling Results 

In this study, seconds of vehicle kinematic data prior to crash involvement containing 

unintentional driving behavior are used, and 9 measures of driving volatility are calculated 

by applying defined functions on vehicles speed and acceleration/deceleration. Table 4.2 

provides the Spearman's correlation matrix between the volatility measures and crash 

intensity. Based on the results, it can be observed that six measures of volatility 
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significantly correlated with crash intensity, among which 𝑆𝑝𝑒𝑒𝑑 −  𝑆𝑑𝑒𝑣, 𝐴𝑐𝑐𝐷𝑒𝑐𝑥 − 𝑆𝑑𝑒𝑣 

and 𝐷𝑒𝑐𝑒𝑙 − 𝐶𝑣 have the highest correlation. For model parsimony, two driving volatility 

measures are selected as a proxy for the stability performance measure. Therefore, 

𝑆𝑝𝑒𝑒𝑑 −  𝑆𝑑𝑒𝑣 is selected as a measure for speed volatility, and 𝐷𝑒𝑐𝑒𝑙 − 𝐶𝑣 as a measure 

for deceleration volatility. It should be mention that 𝑆𝑝𝑒𝑒𝑑 − 𝑆𝑑𝑒𝑣  and 𝐴𝑐𝑐𝐷𝑒𝑐𝑥 − 𝑆𝑑𝑒𝑣 

measures are highly correlated with each other (0.733). From the point forward, the terms 

“speed volatility” for 𝑆𝑝𝑒𝑒𝑑 −  𝑆𝑑𝑒𝑣, and “deceleration volatility” for 𝐷𝑒𝑐𝑒𝑙 − 𝐶𝑣 are used.  

 

In the following, the modeling results for three models, including speed volatility, 

deceleration volatility, and crash intensity, will be discussed. The first two models explore 

the impact of driving behavior and roadway/environmental factors on driving stability. In 

the third model, speed and deceleration volatilities along with behavioral and 

roadway/environmental variables used in the crash intensity model. Figure 4.3 illustrates 

the structure of the final model, obtained by a forward stepwise model selection, 

considering intuition, statistical significance, model fit, and parsimony. In the model 

estimation, several interactions among key variables including driving volatility, distracted 

driving, and aggressive driving were considered, but none of them were statistically 

significant at the 5% level. In the following, the modeling results for speed and 

deceleration volatilities will be discussed, and finally, their contribution on crash intensity 

will be explored. 
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Measures of driving volatility 

𝑆𝑝𝑒𝑒𝑑
−  𝑆𝑑𝑒𝑣 

𝑆𝑝𝑒𝑒𝑑
−  𝑉𝑓 

𝑆𝑝𝑒𝑒𝑑
− 𝐶𝑣 

𝑆𝑝𝑒𝑒𝑑
−  𝑄𝑐𝑣 

𝐴𝑐𝑐𝐷𝑒𝑐
− 𝑆𝑑𝑒𝑣 

𝐴𝑐𝑐𝑒𝑙
− 𝐶𝑣 

𝐷𝑒𝑐𝑒𝑙
− 𝐶𝑣 

𝐴𝑐𝑐𝑒𝑙
− 𝑄𝑐𝑣 

𝐷𝑒𝑐𝑒𝑙
− 𝑄𝑐𝑣 

Intensity 
Corr. 0.257 0.113 -0.073 -0.152 0.289 0.041 0.351 0.005 0.210 

Sig. 0.000 0.005 0.071 0.000 0.000 0.315 0.000 0.906 0.000 

 

Speed volatility 

As mentioned, we used 𝑆𝑝𝑒𝑒𝑑 − 𝑆𝑑𝑒𝑣  volatility measure to capture the variations in 

instantaneous vehicle speed prior to the crash. The Tobit model is developed to assess 

the correlated of speed volatility in terms of driver behavior and roadway/environmental 

before the crash occurrence. The modeling results for the fixed and random parameter 

Table 4.2 Correlation of volatility measures with the crash intensity 

Figure 4.3 Pathway diagram of the model 
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linear regression model is shown in Table 4.3. For the model selection, forward step-wise 

variable selection is performed. Based on the results, driver behavior factors are highly 

associated with speed volatility. Comparing AIC values, the random parameter model 

outperformed fixed parameter model. Focusing on the random parameter model, 

distracted driving is associated with 0.41 unit increase in the speed volatility comparing 

to non-distracted driving, which is consistent with previous studies which found distracted 

driving impairs the driving stability performance (Beede and Kass 2006, Hanowski et al. 

2006, Stavrinos et al. 2013). The possible reason is when the driver is distracted, the 

driver workload increases, leading to a decrease in the reactions (Horberry et al. 2006). 

Distractions can divert the drivers’ attention from monitoring the speed of the vehicle 

(Young and Salmon 2012), which can increase the driving volatility. Furthermore, it has 

shown that a higher workload and distraction level of drivers increase the variations in 

speed and deceleration (Rakauskas et al. 2004). Furthermore, controlling for other 

variables, aggressive driving is associated with a 2.18 units increase in the speed 

volatility. The results are consistent with the previous studies which had shown that 

aggressive driving impairs the driving stability (Shinar and Compton 2004, Hamdar et al. 

2008). It has shown that aggressive driving is highly associated with variations in 

acceleration, in terms of vehicular jerk (Feng et al. 2017). Aggressive driving will increase 

the workload, and due to aggressiveness, the driver performs harder accelerations and 

brakes (Liu and Lee 2005). 

 

Referring to roadway/environmental characteristics, an increase in the number of lanes 

is correlated with an increase in speed volatility. On average, one unit increase in the 

number of lanes is associated with a 0.24 units increase in the speed volatility. Controlling 
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for other variables, driving on the divided highways with traffic signals, on average is 

correlated with increases the speed volatility for 2.09 units comparing to the business 

areas. Also, driving volatility in divided highways without traffic signal is associated with 

increases the speed volatility for 1.73. Speed volatility in moderate and open residential 

are 0.48 and 1.36 units higher than the business area, controlling for other variables. 

Driving on locations that are influenced by the intersection, on average is correlated with 

a 0.54 units increase in the speed volatility. Overall, the main underlying reason might be 

the complexity in the driving environment and traffic flow condition. These locations not 

only increase the drivers’ workload but also in a more congested area, there is a higher 

oscillation in driving speed, which potentially can increase the driving volatility. Other 

location factors are not significant in the model. 
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Variable Description 
Fixed-parameter  Random parameter  

β S.E. p-value β S.E. p-value 

Number of the lanes 0.222 0.055 < 0.001 0.238 0.054 < 0.001 

Std. Number of lanes - - - 0.222 0.027 < 0.001 

Distracted with secondary task (Yes=1, No=0) 0.434 0.175 0.016 0.415 0.161 0.010 

Std. Distracted with secondary task - - - 0.409 0.092 < 0.001 

Aggressive driving (Yes=1, No=0) 2.261 0.294 < 0.001 2.185 0.241 < 0.001 

Intersection influence (Yes=1, No=0) 0.531 0.181 0.002 0.542 0.161 < 0.001 

Locality locality (base: business area)       

Bypass/Divided Highway with traffic 
signals 

2.052 0.533 < 0.001 2.095 0.427 < 0.001 

Bypass/Divided Highway with no 
traffic signal 

1.592 0.356 < 0.001 1.733 0.226 < 0.001 

Moderate residential 0.469 0.226 0.033 0.48 0.212 0.024 

Open residential 1.321 0.397 0.001 1.357 0.377 0.003 

School  -0.250 0.324 0.454 -0.216 0.369 0.557 

Urban -0.244 0.335 0.402 -0.240 0.375 0.521 

Other  0.107 0.433 0.805 0.159 0.352 0.649 

Model intercept 2.280 0.226 < 0.001 2.241 0.221 < 0.001 

Disturbance standard deviation  2.067 0.058 < 0.001 1.855 0.051 < 0.001 

Number of observations 617   617   

AIC 2672.4   2651.4   

LL at the model -1323.6   -1310.7   

LL at the null -1401.1   -1401.1   

 

Deceleration volatility 

The modeling results of the Tobit model for the deceleration volatility (𝐷𝑒𝑐𝑒𝑙 − 𝐶𝑣 ) is 

shown in Table 4.4. This measure attempts to capture the variations in the vehicle 

deceleration values prior to the crash occurrence. In order to explore the contributing 

factors on the deceleration volatility, fixed and random parameter Tobit models are 

developed. Comparing the AIC value, the random parameter model outperformed the 

fixed parameter model. Consistent with speed volatility model, driver behavior factors are 

Table 4.3 Tobit Modeling results for speed volatility (as dependent variable) 
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significantly associated with driving volatility. Distracted driving is associated with a 0.05 

units increase in the deceleration volatility, controlling for other variables. Furthermore, 

aggressive driving is correlated with a 0.09 units increase in the deceleration volatility. 

Focusing on traffic density, congested locations are positively correlated the deceleration 

volatility. Driving in locations with a level of service B and C is correlated with the driving 

volatility on average for 0.13 and 0.27 comparing to a level of service A, respectively. 

 

Crash intensity model 

In the previous sections, the correlation of driving behavior and roadway/environmental 

characteristics with the driving volatilities is explored. This section investigates the direct 

impact of driving volatilities, along with speed, driver behavior, and 

Variable Description 
Fixed parameter Random parameter 

β S. E. p-value β S. E. p-value 

Distracted with secondary task (Yes=1, No=0) 0.059 0.030 0.051 0.055 0.025 0.036 

Std. Distracted with secondary task - - - 0.211 0.013 < 0.001 

Aggressive driving (Yes=1, No=0) 0.116 0.049 0.020 0.091 0.040 0.009 

Level of 

Service 
(Base: LOS A)       

LOS B 0.137 0.038 < 0.001 0.132 0.031 < 0.001 

Std deceleration LOS B - - - 0.226 0.028 < 0.001 

LOS C and Below 0.260 0.054 < 0.001 0.267 0.044 < 0.001 

Std deceleration LOS C and Below - - - 0.291 0.035 < 0.001 

Intercept  0.942 0.027 < 0.001 0.953 0.022 < 0.001 

Sigma  0.366 0.010 < 0.001 0.287 0.007 < 0.001 

Summary 

statistics  
Number of observations 617   617   

Deviance at null model -269.8   -269.8   

Deviance at model -261.2   -230.3   

AIC 534.5   478.6   

Table 4.4 Tobit Modeling results for deceleration volatility (as dependent 
variable) 



 

149 
 

roadway/environmental factors on the crash intensity. While several studies have 

analyzed the association of driving speed, pre-crash behavior, roadway/environmental 

characteristics with crash intensity, this study also investigates the impact of driving 

instability in terms of variations in instantaneous driving behavior just prior to crash 

occurrence. The fixed-parameter and random parameter ordered probit model is 

developed based on the intuition, and significance of the variables. The modeling results 

are shown in Table 4.5. The random parameter model performed better in terms of AIC 

and pseudo R-squared.  

 

Focusing on driving instability, while previous studies examined the impact of speed 

dispersion among vehicles and its impact on the crash rate (Taylor et al. 2000, Qu et al. 

2014), this study investigates the variations in speed and deceleration of the subject 

vehicle prior to a crash and their association with crash intensity. Based on the results, 

both speed and deceleration volatilities are highly associated with crash intensity. Higher 

variations in driving speed and deceleration in terms of speed and deceleration volatilities 

is correlated with increasing the probability of a severe crash. Higher volatility indicates 

the inability of the driver to control the vehicle before the crash, which potentially increases 

the severity of the crash. Based on the results, the vehicle speed is significantly 

contributing to the intensity outcome, as expected. Similar to previous studies (Kockelman 

and Kweon 2002, Das and Abdel-Aty 2011), by increasing vehicle speed prior to the 

collision, the likelihood of an intense crash is increased. With an increase in speed, the 

vehicle has higher kinematic energy, and this released energy in a crash can increase 

the likelihood of serious severity (Hauer 2009, Pei et al. 2012). Among the driver behavior 

factors, distracted driving is significantly associated with crash intensity. 
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Focusing on roadway/environmental factors, adverse weather conditions are associated 

with crash intensity comparing to no adverse condition. Also, previous studies found 

similar results (Abdel-Aty 2003). Crashes that occurred in congested areas are more 

severe, which might be due to the fact that these locations have higher variations in 

speed, leading to a higher number of severe crashes (Vadeby and Forsman 2017). 

Comparing to non-junction locations, crashes which happened at entrance/exit ramps and 

interchange areas are more severe. While intersection and parking related crashes are 

less severe than non-junction crashes. Crashes that happened in traffic condition with 

LOS B and C and below are more severe than LOS A.  
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Variable Description 

Fixed parameter Random parameter 

β S.E. 
p-

value 
β S.E. p-value 

Intercept  -1.293 0.208 <0.001 -1.582 0.217 <0.001 

Speed  Speed prior to crash occurrence 0.021 0.010 0.044 0.032 0.011 0.004 

Speed 
volatility 

Standard deviation of speed 0.053 0.025 0.038 0.050 0.028 0.074 

Deceleratio
n volatility 

coefficient of variation of 
deceleration 

1.021 0.131 <0.001 1.261 0.147 <0.001 

Std deceleration volatility - - - 0.470 0.048 <0.001 

Distracted Distracted with secondary task 
(Yes=1, No=0) 

0.55 0.102 <0.001 0.677 0.106 <0.001 

Density Level of Service (base: LOS A)       

LOS B 0.530 0.125 <0.001 0.597 0.137 <0.001 

Std deceleration LOS B    1.132 0.048 <0.001 

LOS C and Below 0.951 0.179 <0.001 1.223 0.190 <0.001 

Std deceleration LOS C and 
Below 

   0.672 0.173 <0.001 

Relation to 
Junction 

Relation to junction (base: non-
junction) 

      

Driveway, alley access, etc. -0.321 0.216 0.137 -0.335 0.212 0.114 

Entrance/Exit ramp 0.653 0.322 0.042 0.814 0.357 0.022 

Interchange area 0.519 0.265 0.049 0.767 0.319 0.016 

Intersection -0.362 0.143 0.011 -0.417 0.154 0.007 

Intersection-related -0.353 0.165 0.032 -0.423 0.181 0.019 

Other -0.259 0.659 0.693 -0.405 0.991 0.682 

Parking lot entrance/exit -0.813 0.172 <0.001 -1.001 0.191 <0.001 

Parking lot, within boundary -0.706 0.171 <0.001 -0.760 0.176 <0.001 

Weather Weather (base: no adverse 
condition) 

      

Adverse Conditions 0.365 0.198 0.065 0.429 0.191 0.024 

Mist/Light Rain 0.138 0.169 0.414 0.199 0.190 0.293 

Crash 
intensity 

μ1 1.355 0.065 <0.001 1.652 0.098 <0.001 

μ2 2.189 0.088 <0.001 2.753 0.131 <0.001 

Summary 
Statistics 

Number of observations 617   617   

AIC 1260.8   1250.8   

Deviance at null model -757.91   
-

757.91 
  

Deviance at model -611.39   -603.4   

Pseudo-R2 0.19   0.20   

 
 
 

Table 4.5 Modeling results for crash intensity 
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Path analysis of driving volatility and crash intensity model 

One of the common methods in addressing direct and indirect association of factors is 

path analysis. As shown in Table 4.5, speed and deceleration volatilities are highly 

associated with an increase in the probability of severe crashes. The marginal effect is 

provided in Table 4.6, which illustrates the direct effect of driving volatilities on crash 

intensity. On the other hand, the contributing factors that are associated with the speed 

and deceleration volatilities are indirectly associated with the intensity outcome of the 

crash. Although some factors are not significant in the intensity model, they are 

significantly associated with driving volatilities and indirectly correlated with the intensity 

outcome. As an illustration, aggressive driving is not significant in the severity model, and 

one might conclude that it is not correlated with crash intensity, while it is significant in 

both speed and deceleration volatility models and indirectly increase the likelihood of a 

severe crash. In the following, the marginal effect analysis for severe crashes is 

discussed, and the results for other severity categories can be found in Table 4.6. 

 

As discussed in the previous section, instability in driving prior to a crash occurrence 

significantly increases the probability of a severe crash. Referring to volatility measures, 

results revealed that one-unit increase in the speed volatility is associated with a 0.4 

percent chance of severe crashes. Considering a wide range of speed volatility, its impact 

can be substantial. Furthermore, higher deceleration volatility positively and significantly 

associates with an increase the probability of a severe crash. A one-unit increase in 

deceleration volatility is associated with an increase in the chance of severe crash for 

10.9 percent. In addition, the vehicle speed is directly associated with the crash intensity 

and 1 m/s increase in the speed of the vehicle is associated with a 0.3 percent increase 
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the chance of a severe crash, which is in line with previous studies (O'donnell and Connor 

1996, Yasmin et al. 2014). 

 

Previous studies investigated the association of distracted driving on the crash intensity, 

and it was shown that distracted driving increases the probability of a severe crash 

(Neyens and Boyle 2008, Donmez and Liu 2015). Modeling results revealed that 

distracted driving increases the probability of severe crash by 11.1 percent. On the other 

hand, although aggressive driving is not significant in the crash intensity model, the 

indirect association through speed and deceleration volatilities increase the probability of 

a severe crash by 1.3 percent.  

 

Referring to the crash location, comparing to the non-junction, entrance/exit ramps and 

interchange areas increase the likelihood of a severe crash by 9 and 8.3 percent, 

respectively. On the other hand, parking lot crashes are less severe than at non-junction 

areas. Speed volatility at intersections is higher than non-intersections, indirectly 

increasing the probability of a severe crash.  
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Variable 
Direct Marginal Effect 

Indirect Marginal Effect 
via speed volatility 

Indirect Marginal Effect 
via deceleration 

volatility 
Total Marginal Effect 

Minor Moderate* Severe** Minor Mod. Severe Minor Mod. Severe Minor Mod. Severe 

Speed prior to the crash 0.3 0.3 0.3       0.3 0.3 0.3 
Speed volatility 0.5 0.4 0.4       0.5 0.4 0.4 
Deceleration volatility 11.7 11.1 10.9       11.7 11.1 10.9 
Aggressive driving (Yes=1, No=0)    0.3 0.9 1.2 0.7 0.1 0.1 1.0 1.0 1.3 
Distracted (Yes=1, No=0) 2.2 8.6 9.9 0.0 0.2 0.3 0.0 0.6 0.9 2.2 9.4 11.1 
Traffic density (base: LOS A)             

LOS B 1.6 4.7 6.9    1.1 1.5 1.6 2.7 6.2 8.5 
LOS C and Below 0.0 11.6 15.8    2.1 3.6 3.2 2.1 15.2 19.0 

Relation to junction             
Driveway, alley access, etc. -3.8 -2.7 -2.4       -3.8 -2.7 -2.3 
Entrance/Exit ramp 2.5 8 9       2.5 8 9 
Interchange area 2.7 7.5 8.3       2.7 7.5 8.3 
Intersection -4.9 -3.3 -2.9       -4.9 -3.3 -2.9 
Intersection-related -4.9 -3.4 -3.0       -4.9 -3.4 -3.0 
Other -4.7 -3.2 -2.9       -4.7 -3.2 -2.9 
Parking lot entrance/exit -13.1 -6.9 -5.7       -13.1 -6.9 -5.7 
Parking lot, within boundary -9.7 -5.6 -4.7       -9.7 -5.6 -4.7 

Weather             
Adverse Conditions 2.7 4.1 4.2       2.7 4.1 4.2 
Mist/Light Rain 1.6 1.8 1.8       1.6 1.8 1.8 

Number of the lanes    0.0 0.8 1.8    0.0 0.8 1.8 
Intersection influence (Yes=1,No=0)    0.1 0.2 0.3    0.1 0.2 0.3 
Locality (base: business area)             

Bypass/Divided Highway with 
traffic signals 

   0.3 0.9 1.2    0.3 0.9 1.2 

Bypass/Divided Highway with 
no traffic signal 

   0.3 0.7 1.0    0.3 0.7 1.0 

Moderate residential    0.0 0.2 0.3    0.0 0.2 0.3 
Open residential    0.2 0.6 0.7    0.2 0.6 0.7 
School     0.0 -0.1 -0.1    0.0 -0.1 -0.1 
Urban    0.0 -0.1 -0.1    0.0 -0.1 -0.1 
Other    0.0 0.0 0.0    0.0 0.0 0.0 

* Police reportable crash (base is tire-strike) 
** Most severe crash 

Table 4.6 Total marginal effect of random parameter model on crash intensity 
(in percent) 
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Limitations 

Although the NDS data is one of the richest datasets, it has some limitations. The drivers 

might not be representative of all drivers since they were hired with monetary incentive. 

The subset of the data used in this study does not include sociodemographic information 

of the participants, and vehicle characteristics such as vehicle type, make, year, etc. Such 

variables can potentially enhance the explanatory power of the models. In addition, the 

intensity of the crashes does not include high injury severity crashes. While there might 

be human errors and personal judgments in coding the data, the descriptive statistics 

seem reasonable. The parametric and distributions assumptions of the frequentist models 

are acknowledged.  

 

Conclusion and future research 

In general, driving behavior is known as a key contributing factor to traffic crashes. The 

emergence of high-resolution naturalistic driving data provides a promising opportunity 

for researchers to investigate the association of pre-crash behavior with crash intensity. 

This study attempted to answer the research questions by utilizing the concept of driving 

volatility to extract useful information and investigate the association of driving stability 

with crash intensity. Although previous studies have explored the impact of speed on 

crash intensity (Kockelman and Kweon 2002, Aarts and Van Schagen 2006, Das and 

Abdel-Aty 2011), the correlation of crash intensity with the instability prior to the crash 

occurrence remains largely unexplored. The key finding of this study is that instability in 

driving is associated with an increasing likelihood of more intense crashes. Specifically, 
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speed and deceleration volatilities are positively associated with crash intensity. In 

addition, results revealed that driver distraction and driving speed are positively correlated 

with the intensity outcome of the crash, as expected. Such results would not be possible 

without the availability of microscopic vehicle kinematics and driving behavior prior to 

crash involvement.  

 

The pathway framework further explored how driving volatility is influenced by driver 

behavior and roadway/environmental factors. A subset of SHRP2 NDS data containing 

617 crash events with around 0.18 million temporal observations of microscopic vehicle 

kinematics is processed and analyzed. Modeling results revealed that aggressive and 

distracted driving are highly correlated with both speed and deceleration volatilities prior 

to the crash. In other words, those drivers who were involved in aggressive or distracted 

driving showed higher variations in vehicular speeds and decelerations. Along these lines, 

correlation of other roadway factors (e.g., intersections, roadway type, and level of 

service) are also explored. While lower levels of service, increase the pre-crash driving 

volatility, drivers at intersections showed higher volatility compared with non-intersection 

areas. 

 

Focusing on driver behavior, distracted driving has emerged as a variable that both 

directly and indirectly is associated with intense crashes. Distracted driving directly and 

indirectly increases the probability of severe crash for 9.9 and 1.2 percent, respectively. 

Additionally, aggressive driving was indirectly associated with crash intensity through 

volatility, but not directly, and increase the likelihood of severe crash involvement for 1.3 

percent.  
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Given the association of driving volatility with crash intensity, and its potential to serve as 

a leading indicator, by detecting high risk driving behaviors, alerts and warnings can be 

generated and transmitted to the subject vehicle driver to encourage lowering his/her 

driving volatility, and surrounding vehicles can be warned of a potential hazard via 

vehicle-to-vehicle communication. While this study explores the association of crash 

intensity with speed, driving volatility, driver behavior, and surrounding environment, 

future research can focus on studying the correlates of driving stability in normal 

conditions, and how providing warnings might enhance driving stability. From the 

methodological standpoint, this research can be further extended by jointly modeling their 

speed and deceleration volatilities to account for the potential correlation utilizing the 

multivariate random-parameter Tobit model (Anastasopoulos 2016, Zeng et al. 2017b). 

Furthermore, the fixed thresholds estimated by the probit model may lead to biased 

estimates (Eluru et al. 2008), which can be addressed by developing generalized ordered 

probit models (Eluru et al. 2008, Balusu et al. 2018, Zeng et al. 2019). In the literature, 

several methods are proposed to generalize the probit model by overcoming the limitation 

of a fixed threshold. This study also tried to use proportional odds ratio and random 

threshold ordered probit models. However, the models’ performance in terms of AIC and 

BIC did not improve. Future studies can further extend this research from a 

methodological standpoint by applying other generalized ordered probit model, e.g., 

Bayesian spatial generalized ordered logit (Zeng et al. 2019). 
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CHAPTER 5 : DRIVING IMPAIRMENTS AND DURATION OF 

DISTRACTIONS: ASSESSING CRASH RISK BY HARNESSING 

MICROSCOPIC NATURALISTIC DRIVING DATA 
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This chapter is a modified version of a research article by Ramin Arvin and Asad J. 

Khattak. “Driving Impairments and Duration of Distractions: Assessing Crash Risk by 

Harnessing Microscopic Naturalistic Driving Data.” The manuscript presented at the 99th 

Annual Meeting of Transportation Research Board Conference at Washington DC, and it 

is currently under second-stage of review in Accident Analysis and Prevention. 

 

 

Abstract 

Distracted and impaired driving is a key contributing factor in crashes, leading to about 

35% of all transportation-related deaths in recent years. Along these lines, cognitive 

issues like inattentiveness can further increase the chances of crash involvement. Despite 

the prevalence and importance of distracted driving, little is known about how the duration 

of distractions is associated with critical events, such as crashes or near-crashes. With 

new sensors and increasing computational resources, it is possible to monitor drivers, 

vehicle performance, and roadways to extract useful information, e.g., eyes off the road, 

indicating distraction and inattention. Using high-resolution microscopic SHRP2 

naturalistic driving data, this study conducts in-depth analysis of both impairments and 

distractions. The data has more than 2 million seconds of observations of 7394 baselines 

(no event), 1237 near-crashes, and 617 crashes. The event data was processed and 

linked with driver behavior and roadway factors. The interval of distracted driving during 

the period of observation (15 seconds) were calculated; next, rigorous fixed and random 

parameter logistic regression models of crash risk was estimated. The results reveal that 

alcohol and drug impairment is associated with a substantial increase in extreme event 

involvement of 29.7%, and the highest correlations with crash risk include duration of 
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distraction by cellphones, driver reading or writing, and atypical distraction, e.g. insect in 

the car. Using detailed pre-crash data from instrumented vehicles, the study contributes 

by quantifying crash risk vis-à-vis detailed driving impairment and streams of secondary 

task involvement and discusses implications of the results.   

 

Introduction 

Human-based errors such as distracted driving, alcohol/drug impairment, fatigue driving, 

and speeding are commonly known as the main contributing cause of fatal crashes 

(Pietrasik 2018). In particular, distracted and impaired driving contributes to about 35% 

of all transportation-related deaths, e.g., 10,497 fatalities in 2016, based on US Traffic 

Safety Facts (NHTSA 2017). While the driving task requires execution of several 

cognitive, sensory, and psychomotor skills (Young et al. 2007), it is common to observe 

drivers under impairment (Fan et al. 2019) and engaged in various non-driving tasks such 

as using a cellphone, interacting with other passengers, listening to music, and even 

writing and reading (Stutts et al. 2005, Dingus et al. 2016, Kamrani et al. 2019). Impaired 

and distracted driving allocate fewer available attention of driver to driving tasks such as 

controlling vehicle position and maintaining speed (Martin et al. 2013, Verstraete et al. 

2014, Paolo Busardo et al. 2018). Distracted driving can be defined as “a diversion of 

attention from driving, because the driver is temporarily focusing on an object, person, 

task or event not related to driving, which reduces driver’s awareness, decision making 

ability and/or performance, leading to an increased risk of corrective actions, near-

crashes, or crashes” (Regan et al. 2008). Distracted driving is known as a prominent 

contributing factors in traffic crashes (Lee et al. 2008). It is estimated that driver inattention 

is contributing to around 23 percent of police reported crashes (Klauer et al. 2006). In 



 

161 
 

addition, the introduction of cellphones worsened the situation and became widely 

common (Anon 2011, Engelberg et al. 2015, Arvin et al. 2017), especially among young 

drivers (Anon 2011). While a majority of drivers are aware of the associated risks with 

distracted driving, more than 25 percent still frequently use their cellphone while driving 

(Motamedi and Wang 2016). Cellphone distracted driving is one of the great challenges 

in the transportation field, as it contributes to 18 percent of fatal and 5 percent of injury 

crashes across the U.S. based on the police-reported crash data (Overton et al. 2015). 

However, these crash databases are deficient due to unreported crashes (around 50% of 

no-injury and 25% of minor-injury crashes were not reported to the police (NHTSA 2009)). 

Furthermore, such datasets under-report prevalence of distracted driving and does not 

have information on distraction duration.  

 

On the other hand, impaired driving, in terms of alcohol/drug impairment, fatigue, 

emotional state, is widely common among drivers, Although share of alcohol-related 

traffic fatalities significantly dropped in last decades (from 48 percent in 1982 to 28% in 

2016), still it remains the main contributing factor in fatal crashes.  It is estimated that 

prevalence of alcohol related impaired driving among drivers aged 16 years and older is 

11.6 percent (Lipari et al. 2016). Impairment substantially affect drivers’ ability to control 

vehicle and increase driver-risk taking (Laude and Fillmore 2015). In terms of driver 

performance, impaired driving significantly increases number of errors (Verster et al. 

2009) and driver reaction time (Deery and Love 1996, Verster et al. 2009), worsen lateral 

(Hartman et al. 2015) and longitudinal vehicle control (Hartman et al. 2016). While these 

studies mainly investigated the correlation of distracted and impaired driving with driving 

performance using a driving simulator (Rumschlag et al. 2015, Saifuzzaman et al. 2015, 
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Li et al. 2016), it has been shown that driving simulator sickness may affect the validity 

and reliability of results (Nickkar et al. 2019b). Crash datasets suffer from unreported 

crashes and near-crashes, and lack of detail information on pre-crash driver state and 

behavior. While crash only databases can only be used for frequency and prevalence of 

specific factors with crashes (Shinar and Gurion 2019), naturalistic driving study (NDS) 

data provides an opportunity to analyze the associated risk with these factors. Emergence 

of high-resolution microscopic NDS data compensates for this limitation by collecting real 

data on real-world condition. The second Strategic Highway Research Program (SHRP2), 

which is sponsored by National Academy of Science, is the largest naturalistic driving 

data collection by collecting data on more than 3500 drivers (Dingus et al. 2015). It 

provides an opportunity for researchers to gain insight into factors leading to an extreme 

event, especially actual driver state, behavior, and performance (Dingus 2003, Dingus et 

al. 2011). Such a dataset helps researchers to overcome limitations of traditional datasets 

and explore not only minor crashes but also pre-crash driver state and behavior, 

specifically impairment and distraction profile.  

 

Overall, the goal of this study is to harness microscopic big data from multiple sources 

and link this information with driver behavior, roadway, and environmental factors in order 

to evaluate impaired driving and the association of duration of different distraction types 

on the probability of occurrence of crashes and near-crashes. Given that distracted 

driving and human error are the key contributing factors in crashes (Kludt et al. 2006, 

Arvin et al. 2017, Shinar 2017), the findings of this research identify the role of 

impairments and distraction types that are highly associated with crash risk, and explore 

how impairment and duration of distraction affect driving performance and risk of a crash. 
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Data 

Data description 

This study utilized the second Strategic Highway Research Program (SHRP2) data. More 

than 4 petabytes of various information were collected in the original data, which makes 

the SHRP2 the most comprehensive naturalistic driving study. The high-quality and high-

resolution data was captured from 2010 to 2013 via multiple sensors including a camera, 

accelerometer, alcohol sensor, forward sensor, and a data acquisition system (DAS) with 

a 10 Hz frequency (Hankey et al. 2016). The study has information on more than 3500 

drivers from six states (Washington, New York, Pennsylvania, North Carolina, Florida, 

and Indiana) across the U.S., with more than five million trips covering more than 50 

million miles travelled (Hankey et al. 2016). The NDS data includes vehicular movement 

data (e.g., speed, acceleration), along with information regarding the drivers’ behavior, 

roadway factors, and environmental factors from the videos coded by the data 

reductionist using the appropriate protocols to ensure consistency and high quality. 

 

This study considers a subset of original SHRP2 data, containing 9,239 trips taken by 

1,546 drivers with 7394 baseline events, 1228 near-crashes, and 617 crashes. In the 

data, the definition of a crash is “any contact that the subject vehicle has with an object, 

either moving or fixed, at any speed in which kinetic energy is measurably transferred or 

dissipated”. Even though near-crashes did not result in a crash, the data for crash events 

and near-crash events were combined in this study and defined as extreme events. For 

each extreme event, 30 seconds of vehicular movement data is available. It is worth 

noting that the data contains time in which the driver uses evasive maneuvers to avoid 
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the extreme event and also the seconds after the occurrence of an extreme event. Since 

this paper examines the association of distracted driving before extreme event 

occurrence, the seconds after the crash should be excluded which will be further 

discussed. Moreover, since we are investigating the association of distraction duration 

with crash risk, the information on driver distraction needs to be linked with vehicle 

kinematics.   

   

Data Pre-processing 

The data contains detailed information on baseline and extreme events coded as 

categorical variables. Furthermore, for baseline events, we have 20 seconds of vehicle 

kinematics and a distraction profile, while for extreme events 30 seconds of vehicle 

kinematics was collected. However, these 30 seconds contain the time that the vehicle is 

involved in the crash (near-crash). Therefore, the data was pre-processed to remove time 

in which the crash occurs. This is discussed in detail below. 

 

Data recoding 

As mentioned, the data contains rich and detailed information on driver behavior, roadway 

condition, and environment condition, etc., and the variable “secondary task” was coded 

into 62 different groups. However, in some groups there are similarities that allow the data 

to be merged into more intuitive and cleaner variables. To do this, the coding approach 

developed by Kamrani et al. (Kamrani et al. 2019) was used to aggregate the categories 

when considering similarity of variables and number of observations in each group. The 

original and recoded variables for the distracted driving are provided in the Table 5.1. It 

should be noted that the full description of the other variables is provided in section 5.1.  
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Variable Affected Original Values in the Variable* Coded as  

Driving 
Behavior 

Aggressive driving, other/ Aggressive driving, specific, directed menacing 
actions/ Cutting in, too close behind other vehicle/ Cutting in, too close in 
front of other vehicle/ Following too closely 

Aggressive 

 

Did not see other vehicle during lane change or merge/ Driving in other 
vehicle's blind zone/ Driving without lights or with insufficient lights/ Failed 
to signal/ Improper backing, did not see/ Improper backing, other/ 
Improper start from parked position/ Improper turn, cut corner on left/ 
Improper turn, cut corner on right/ Improper turn, other/ Improper turn, 
wide left turn/ Improper turn, wide right turn/ Making turn from wrong lane/ 
Other improper or unsafe passing/ Parking in improper or dangerous 
location/ Passing on right/ Sudden or improper braking/ Sudden or 
improper stopping on roadway 

Improper 
Action 

Driving slowly in relation to other traffic: not below speed limit/ Driving 
slowly: below speed limit 

Low Speed 

Exceeded safe speed but not speed limit/ Exceeded speed limit/ 
Speeding or other unsafe actions in work zone 

Speeding 

Illegal passing/ Other sign (e.g., Yield) violation, apparently did not see 
sign/ Other sign violation/ Signal violation, apparently did not see signal/ 
Signal violation, intentionally disregarded signal/ Signal violation, tried to 
beat signal change/ Stop sign violation, apparently did not see stop sign/ 
Stop sign violation, intentionally ran stop sign at speed/ Wrong side of 
road, not overtaking/ Stop sign violation, "rolling stop" 

Violation 

Apparent general inexperience driving/ Apparent unfamiliarity with 
roadway/ Avoiding animal/ Avoiding other vehicle/ Avoiding pedestrian 

Other 

Secondary 
Tasks  

Adjusting/monitoring climate control/Adjusting/monitoring other devices 
integral to vehicle/Adjusting/monitoring radio/Inserting/retrieving CD (or 
similar)/ Moving object in vehicle/Object dropped by driver/Object in 
vehicle, other/Reaching for object, other 

Object 
Distraction 

 

Applying make-up/Biting nails/cuticles/Brushing, flossing teeth/Combing, 
brushing, fixing hair/Other personal hygiene/Reaching for personal body-
related item/Removing/adjusting clothing/Removing/adjusting 
jewelry/Removing, inserting, adjusting contact lenses or glasses 

Body 
Related 

Distraction 

Cell phone, Browsing/Cell phone, Dialing hand-held/Cell phone, Dialing 
hand-held using quick keys/Cell phone, Dialing hands-free using voice-
activated software/Cell phone, Holding/Cell phone, Locating, reaching, 
answering/Cell phone, other/Cell phone, Talking/listening, hand-held/Cell 
phone, Talking/listening, hands-free/Cell phone, Texting/Tablet device, 
locating, reaching/Tablet device, Operating 

Cell Phone 

Child in adjacent seat – interaction/ Child in rear seat – interaction/ 
Passenger in adjacent seat – interaction/ Passenger in rear seat – 
interaction 

Interaction 

Distracted by construction/ Looking at an object external to the vehicle/ 
Looking at animal/ Looking at pedestrian/ Looking at previous crash or 
incident/ Other external distraction/ 

External 

Drinking from open container/ Drinking with lid and straw/ Drinking with 
lid, no straw/ Drinking with straw, no lid/ Eating with utensils/ Eating 
without utensils/ Extinguishing cigar/cigarette/ Lighting cigar/cigarette/ 
Reaching for cigar or cigarette/ Reaching for food-related or drink-related 
item/ Smoking cigar or cigarette 

Drink/Eat/ 
Smoke 

Cognitive, other/Dancing/ Insect in vehicle/ Other known secondary task/ 
Pet in vehicle/ Reading/ Unknown/ Unknown type (secondary task 
present)/ Writing/Other non-specific internal eye glance  

Other 

Table 5.1 Definition and list of recoded variables and their final Categories 
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Exclusion of Evasive Maneuvers 

The aim of this study is to investigate the association of duration of distracted driving on 

probability of crash occurrence utilizing microscopic data. Therefore, it is vital to consider 

only the seconds of driving that contain typical driver behavior instead of the seconds that 

drivers are reacting to a crash stimulus. In other words, we need to exclude the seconds 

that the driver is reacted to the crash and the time after the crash occurrence. To further 

demonstrate the time exclusion used, a speed profile, an acceleration profile, and a 

distraction profile of a random crash event are provided in Figure 5.1. In this event, the 

crash happened at the 24th second of the data stream, while the driver reacted to the 

stimulus at 23th second of the data. Therefore, the observations after second 23 need to 

be excluded for the purpose of this study. In other words, only the seconds of the data up 

to the second that the driver starts to react to the extreme event was considered in this 

study. It is worth noting that the data contains crashes in which the driver did not react to 

the event, or the reaction occurred after impact. Therefore, either impact time or reaction 

time was used (whichever occurred first). Next, in order to be consistent in all the events 

(both baselines and extreme events), only 15 seconds of data stream was considered in 

the analysis. For the extreme events, these 15 seconds were selected from the second 

that the driver reacted to the crash (or near crash). For example, for the example shown 

in Figure 5.1, the data from second 8 to 23 was considered in the analysis. 

 

After coding, the data was error-checked for outliers or unexpected distributions, and no 

major issues were found. The data is of good quality, given that specific protocols were 

followed in data collection and data processing, and error-checking was completed. 
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Methodology 

The main motivation of this study is to explore the association of the duration of distracted 

driving and impairment on the probability of extreme events. While significant literature 

exists on the investigation of correlation of distracted driving on crash risk and severity, 

the association of the duration of distracted driving on the probability of extreme events 

remains unknown. In order to untangle this problem, binary logistic regression approach 

Figure 5.1 Speed and acceleration profile of a randomly chosen 
crash 
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was utilized for modeling. This method is widely used in the literature in cases where the 

variable of interest has a binary nature (Dingus et al. 2016, Mokhtarimousavi et al. 2019, 

Nazari et al. 2019). Along with distraction duration, vehicular movements, driver behavior, 

roadway/environmental factors were considered as control variables. The study 

framework is shown in the Figure 5.2. 

 

Upon linking the events with other factors, descriptive statistics are provided to gain initial 

insights. Next, fixed and random parameter binary logit models are developed to quantify 

the correlation of distracted duration on crash risk. In the following, more details on the 

modeling framework is provided. 

 

Figure 5.2 Conceptual framework of the study 
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Fixed parameter logit model 

In the approach, the estimated parameters are fixed across the observations, and the 

estimations are not allowed to vary. Assuming that 𝑃𝑖 is the probability of the occurrence 

of an extreme event in observation i, the association of the response variable and 

explanatory factors can be written as (Washington et al. 2010): 

 

𝑆𝑖𝑛 = 𝛽𝑖𝑋𝑖𝑛 + 𝜀𝑖𝑛                                                                      (5.1) 
 

where 𝛽𝑖  is the estimated coefficient for event  𝑖 ; 𝑋𝑖𝑛  is the vector of independent 

variables; and 𝜀𝑖𝑛 is the error term following extreme value distribution. The probability of 

involvement in an extreme event can be written as (Washington et al. 2010): 

 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑖) = 𝑙𝑜𝑔 [
𝑃𝑖

1 − 𝑃𝑖
] = 𝛼 + 𝛽𝑋                                             (5.2) 

 

where, 𝑃𝑖  denotes the probability that event 𝑖  is an extreme event; 𝛽  is a vector of 

estimated parameters, 𝑋  is a vector of independent variables; and, 𝛼  is the model 

intercept. The likelihood can be written as (Washington et al. 2010): 

 

𝐿(𝛽) = ∏ 𝜋(𝑥𝑖)
𝑦𝑖(1 − 𝜋(𝑥𝑖))

𝑖−𝑦𝑖

𝑛

𝑖=1

                                          (5.3) 

 

where 𝑦𝑖 is the outcome of observation i, and n is the number of observations. 

Accordingly, the log-likelihood function is: 

𝐿𝐿(𝛽) = ln(𝑙(𝛽)) = ∑{𝑦𝑖 ln(𝜋(𝑥𝑖)) + (𝑖 − 𝑦𝑖) ln(1 − 𝜋(𝑥𝑖))}

𝑛

𝑖=1

            (5.4) 
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In order to ease the understanding the association of explanatory variables on the 

probability of dependent variable, marginal effects are calculated. It can be defined as 

increase in the probability of occurrence of extreme event (y=1) by one-unit change in the 

variable of interest (X). We can write (Greene 2002): 

 

𝜕𝐸[𝑃(𝑦𝑖)]

𝜕𝑋𝑖
=

𝑑𝐹(𝛽′𝑋)

𝑑(𝛽′𝑋)
𝛽 = 𝐹′(𝛽𝑋)𝛽 = 𝑓(𝛽𝑋)𝛽                                     (5) 

 

where 𝐸[𝑃(𝑦𝑖)] is the expected value of the probability, 𝐹(𝛽′𝑋) and 𝑓(𝛽𝑋) are the density 

and probability functions of 𝐸(𝑦𝑖|𝑋), respectively (Greene 2002). 

 

Random parameter (mixed) logit model 

As discussed, the fixed parameter model assumes that the variation of coefficients across 

the observations is fixed, which might not be the case. This issue must be addressed due 

to heterogeneity among events and drivers. In order to account for heterogeneity, random 

parameter models are widely used in the literature (Ukkusuri et al. 2011, Wali et al. 2017, 

Wali et al. 2018d, Azimi et al. 2019, Esfahani and Song 2019, Wali et al. 2019). This can 

be written as (Train 2009): 

 

𝑆𝑖𝑛 = 𝛽𝑖𝑋𝑖𝑛 + 𝜀𝑖𝑛 + 𝜂𝑖𝑛                                                             (5.4) 

 

where 𝜂𝑖𝑛 denotes the random term with pre-specified distribution and a mean of zero. 

Depending on the assumption of random term distribution, the outcome probability can 

be written as (Train 2009): 
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𝑃𝑖𝑛 = ∫
exp(𝛽𝑖𝑋𝑖𝑛)

σ exp(𝛽𝑖𝑋𝑖𝑛)𝑙
𝑓(𝛽|𝜑)𝑑𝛽                                           (5.5) 

 

where 𝑓(𝛽|𝜑)  is the density function of 𝛽 , and 𝜑  is a parameter vector of density 

distribution also referred to mixing distribution (Washington et al. 2010). Several 

functional forms for the parameter density are assumed including normal, log-normal, 

uniform, Weibull, and triangular distributions. To evaluate and compare the developed 

models, Akaike Information Criteria (AIC) was utilized. It should be noted that a lower AIC 

denotes a model with a better fit to the data and a three-point reduction in AIC represents 

a significant improvement in the model fit (Bozdogan 1987). 

 

Results 

This section provides an in-depth analysis of the impact of distracted driving on the 

probability of crash occurrence and the role of impaired driving. First, the descriptive 

statistics of variables for the baseline and extreme events are provided and discussed. 

Next, the modeling results are provided. Finally, the impact of distraction on the probability 

of crash occurrence probability is described in detail in the discussion section. 

 

Descriptive Statistics 

Table 5.2 provides the descriptive statistics of the key variables. The table consists of 

three sections, driver related variables, roadway/environmental factors, and vehicular 

movements. The driver variables include distraction type, driver behavior, and 

impairment. The considered roadway/environmental factors including light and weather 
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condition, density of traffic, road alignment, construction zone, intersection influence, and 

roadway type are provided in the table. The results are also separated for the baseline 

and extreme events. Descriptive statistics for the baseline and extreme events can be 

observed to have a substantial difference, especially in terms of driver factors. This 

indicates that further analysis is needed to explore the association of these factors on the 

probability of being involved in a crash/near-crash event. 

 

As shown in Table 5.2, there is substantial variation among the prevalence of secondary 

tasks when comparing extreme events to baseline events. As an illustration, the 

prevalence of cellphone use in extreme events is almost twice the usage observed in 

baseline events (15.06% vs 7.84%). A similar trend can be observed for distraction by 

objects inside the vehicle, where the drivers were nearly distracted two times than the 

baseline (7.80% vs 3.86%). Meaningful differences can be observed among baseline and 

extreme events for other types of distractions, emphasizing the importance of further 

investigation of distracted driving. Furthermore, driving impairments are generally 

associated with extreme events.   

 

Similar trends can be observed for some categories of behavioral factors. For example, 

aggressive driving is substantially higher in extreme events compared to the baselines. 

This indicates a potential positive association between aggressive driving and the chance 

of involvement in an extreme event. It can be observed that the prevalence of aggressive 

behavior in extreme events (3.09%) is considerably greater than baselines (0.7%). 

Additionally, improper action, speeding, and traffic violation illustrate the same trend. 

Further details can be retrieved in Table 5.2. 
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Variable Category 

Total  
(N = 9239) 

Baseline 
(N = 7394) 

Extreme Event 
(N = 1845) 

Perc. Freq. Perc. Freq. Perc. Freq. 

Distraction Cellphone 9.29% 858 7.84% 580 15.06% 278 

Drink/Eat/Smoke 2.89% 267 2.88% 213 2.93% 54 

External 9.43% 871 9.44% 698 9.38% 173 

Interaction 12.88% 1190 13.23% 978 11.49% 212 

None 46.76% 4321 49.24% 3641 36.86% 680 

Object Distraction 4.64% 430 3.86% 286 7.80% 144 

Other 5.01% 463 4.6% 338 14.85% 274 

Talking/singing 5.88% 544 5.88% 435 5.91% 109 

Body Related 3.19% 295 3.04% 225 3.79% 70 

Driving 
Behavior 

Aggressive 0.70% 65 0.11% 8 3.09 57 

Drowsy, sleepy 1.27% 118 1.26% 93 1.35 25 

Improper Action 4.96% 459 2.7% 200 14.03 259 

Low Speed 0.95% 88 1.13% 84 0.21 4 

None 85.32% 7885 89.99% 6654 66.72 1231 

Other 0.63% 58 0.39% 29 1.57 29 

Speeding 4.20% 388 3.03% 224 8.89 164 

Traffic violation 1.93% 178 1.38% 102 4.12 76 

Impairment Emotional state 0.50 46 0.28 21 1.36 25 

Drowsy/Fatigue 1.40 129 1.23 91 2.06 38 

Alcohol/Drug 0.24 22 0.05 4 0.98 18 

No impairment 97.60 9016 98.24 7264 94.96 1752 

Other 0.28 26 0.19 14 0.65 12 

Light Darkness, lighted 13.77% 1272 13.01% 962 16.80% 310 

Darkness, not lighted 5.57% 515 6.10% 451 3.47% 64 

Dawn/Dusk 4.54% 419 4.76% 352 3.63% 67 

Daylight 76.12% 7033 76.12% 5629 76.10% 1404 

Weather Adverse Conditions 6.13% 567 5.91% 437 7.05% 130 

Mist/Light Rain 4.09% 378 3.85% 285 5.04% 93 

No Adverse 
Conditions 

89.77% 8294 90.24% 6,672 87.91% 1622 

Density 
(Level-of-
service) 

A1 40.23% 3717 42.51% 3,143 31.11% 574 

A2 30.15% 2786 32.31% 2,389 21.52% 397 

B 20.16% 1863 18.49% 1,367 26.88% 496 

C 6.07% 561 4.56% 337 12.14% 224 

D 2.10% 194 1.27% 94 5.42% 100 

E 1.02% 94 0.72% 53 2.22% 41 

F 0.25% 23 0.14% 10 0.70% 13 

Unknown 0.01% 1 0.01% 1 0.0% 0 

Road 
Alignment 

Curve 13.60% 1256 13.97% 1034 12.03% 222 

Straight 86.40% 7983 86.03% 6,360 87.97% 1623 

Table 5.2 Descriptive statistics of the driver, vehicle, and 
roadway/environmental factors 
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Duration of distracted driving 

As discussed, this study utilized a unique method to investigate the effect of the duration 

of distracted driving on the probability of crash occurrence by analyzing the time that 

drivers were disengaged from driving and performing tasks other than driving. While 

section 5.1 presents descriptive statistics on the prevalence and presence of distraction 

among baseline and extreme events (whether it was present or not), the correlation of 

each distraction duration with the resulting crash risk is discussed here. Table 5.3 

provides the duration of distracted driving for each distraction category for both baseline 

and extreme events. Comparing the two groups, there is a significant difference between 

the duration of distraction in extreme events compared to baseline events. When 

considering overall distraction by disregarding the distraction type, drivers were distracted 

on average for 1.85 seconds within baseline events, while in the extreme events the 

distraction duration was 3.12 seconds. This time difference implies that the prevalence of 

distraction is higher, and the duration of the distraction is longer in extreme events. 

Focusing on the distraction types, a similar pattern can be observed in all the distraction 

types.  

 

Drivers were distracted by cellphones for 0.37 seconds on average, with an average 

duration of 1 second in extreme events. Distraction by objects inside the vehicle follows 

a similar pattern, indicating that on average drivers were distracted for longer compared 

to baselines (0.26 vs 0.13 second). The duration of interaction with other passengers is 

slightly higher in extreme events. Furthermore, distraction duration of the category 

“atypical” is substantially higher in extreme events compared to baseline events (0.19 vs 
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0.06 seconds). These statistics suggest that there is a significant correlation between the 

duration of distracted driving and the risk of a crash. Statistical modeling will provide more 

insights on the significance of these variables and their association with near-crash and 

crash risks, which will be discussed in the next section. 

 

In order to shed more light on the duration of distraction among drivers, the histograms 

for key distraction types are provided in Figure 5.3 below. It can be observed that there 

is a significant difference in distraction duration among different duration types. 

Cellphone use appears to have normal distribution, and the histogram of duration of 

external distraction is right skewed. However, object and atypical types of distractions 

can be observed to have a bimodal distribution.  

 

 

Variable 
Baseline (N=7394) Extreme event (N = 1845) 

Mean SD Min Max Mean SD Min Max 

Total duration of distraction 1.85 2.2 0 14 3.12 3.27 0 13.9 

Body Related 0.11 0.66 0 5 0.17 0.99 0 9.5 

Cellphone 0.37 1.29 0 5 1 2.5 0 13.9 

Drink/Eat/Smoke 0.13 0.78 0 5 0.19 1.17 0 13 

External 0.18 0.72 0 8.9 0.27 1.1 0 13 

Interaction 0.58 1.55 0 14 0.64 1.99 0 13.5 

Object Distraction 0.13 0.72 0 5 0.26 1.22 0 11.6 

Other 0.11 0.61 0 5 0.27 1.27 0 12.4 

Talking/singing 0.24 1.03 0 10.6 0.31 1.36 0 11.9 

 

Table 5.3 Descriptive statistics of the duration of distraction for 15 seconds of 
observations 
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Modeling Results 

The descriptive statistics of the data presented in the previous section revealed 

meaningful relationships between duration of distraction and crash risk. However, without 

controlling for other factors such as driving behavior and roadway/environmental factors, 

these relations might not be generalizable and conclusive. As discussed in the 

methodology section, this study utilized a fixed and a random parameter binary logistic 

regression model to explore the association of the duration of distracted driving with the 

Figure 5.3 Histogram of duration of key distraction types for extreme events 
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probability of crash occurrence. The random parameter model addresses unobserved 

heterogeneity, and a parameter is considered to be random in two different conditions: 

first, only standard deviation is significant; second, both mean and standard deviation are 

significant. Along with duration of distraction and impaired driving factors, driver behavior 

and roadway environmental variables are considered in the model as the control 

variables. To perform the model selection, intuition, variable significance, and model 

parsimony were considered and AIC was used to score model performance. The 

modeling results for the fixed and random parameter models are provided in Table 5.4. 

Also, the measured marginal effect is provided in the table for the fixed and random 

parameter models to ease the understanding the effect of each variable on the probability 

of an extreme event. The marginal effect can be defined as the effect of one unit increase 

in a factor on the probability of occurrence of an extreme event, with all other factors 

controlled at their mean values.  

 

According to the model summary, the random parameter model outperformed the fixed 

parameter model in terms of AIC, and McFadden R-Square statistics by capturing 

heterogeneity among observations. The McFadden R-square value for the random-

parameter model is 0.241, which is an acceptable value considering the sample size. All 

variables in the model are significant at the 90 percent confidence interval. Due to better 

fit of the random parameter model, only the results of the random parameter model are 

discussed.  

 

 

 



 

178 
 

Variable 
Fixed parameter Random parameter 

β 
Std. 
Err. 

p-
value 

ME 
(%) 

β 
Std. 
Err. 

p-
value 

ME 
(%) 

Intercept -1.628 0.081 <0.001 - -1.121 0.058 <0.001 - 
Duration of distraction         

Body related 0.239 0.036 <0.001 2.80 0.185 0.027 <0.001 2.88 
Cellphone 0.275 0.017 <0.001 3.23 0.219 0.013 <0.001 3.42 
Eating/Drinking/Smoking 0.172 0.032 <0.001 2.02 0.130 0.023 <0.001 2.02 
External (e.g. looking outside) 0.256 0.033 <0.001 3.01 0.198 0.025 <0.001 3.08 
Interaction (with passengers) 0.147 0.018 <0.001 1.73 0.119 0.013 <0.001 1.85 
Object distraction (e.g. GPS, 
climate control, audio control) 

0.242 0.032 <0.001 2.83 0.191 0.027 <0.001 2.98 

Singing/talking 0.163 0.026 <0.001 1.91 0.126 0.019 <0.001 1.97 
Other (e.g. reading, writing, 
insect in the vehicle 

0.329 0.034 <0.001 3.85 0.263 0.027 <0.001 4.11 

Driver impairment         
Emotional driving (Angry, 
sadness, etc.) 

0.772 0.375 0.040 10.49 0.555 0.302 0.066 8.65 

Drowsy, Fatigue 1.451 0.500 0.004 21.69 1.411 0.477 0.003 22.02 
Alcohol/Drugs 2.445 0.640 0.000 40.09 1.906 0.439 0.000 29.74 
Other 1.138 0.470 0.016 16.37 0.927 0.361 0.010 14.47 

Driving behavior         
Aggressive driving 3.589 0.405 0.000 59.08 2.854 0.273 0.000 44.53 
Drowsy or fatigued -0.436 0.541 0.420 -4.67 -0.661 0.506 0.192 -10.3 
Improper action 1.918 0.111 0.000 30.55 1.416 0.080 0.000 22.09 
Low speed driving -1.414 0.533 0.008 -12.12 -1.005 0.346 0.004 -15.7 
Other 1.772 0.306 0.000 27.60 1.293 0.177 0.000 20.18 
Speeding 2.466 0.129 0.000 40.02 1.819 0.110 0.000 28.38 

Std. Speeding    - 1.786 0.181 0.000 - 
Violation 1.260 0.170 <0.001 18.38 0.588 0.193 0.002 9.17 

Std. Violation    - 3.868 0.535 0.000 - 
Weather condition         

Adverse condition 0.148 0.122 0.224 1.79 0.126 0.093 0.175 1.96 
Rain 0.258 0.143 0.071 3.18 0.173 0.109 0.111 2.71 

Traffic density (base:         
LOS A2 0.387 0.083 <0.001 4.68 0.305 0.062 0.000 4.75 
LOS B 1.193 0.083 <0.001 15.92 0.891 0.063 0.000 13.91 
LOS C 1.664 0.115 <0.001 25.22 1.220 0.088 0.000 19.04 

Std LOS C - - - - 0.624 0.112 0.000 - 
LOS D 1.954 0.171 <0.001 30.96 1.456 0.154 0.000 22.72 

Std LOS D - - - - 2.505 0.322 0.000 - 
LOS E 1.272 0.241 <0.001 18.63 0.790 0.209 0.000 12.32 

Std LOS E - - - - 2.020 0.384 0.000 - 
LOS F 1.456 0.474 0.002 21.89 0.975 0.376 0.010 15.21 

Vehicular movement         
Average Speed over 15 sec -0.025 0.001 0.000 -0.29 -0.022 0.001 <0.001 -0.34 

Std Speed - - - - 0.010 0.001 <0.001 - 

Model Summary         
Number of observations 9239    9239    
Null Deviance -3494.21    -3480.8    
Model Deviance -4619.3    -4619.3    
McFadden R Square 0.243    0.246    
AIC 7046.4    7031.7    

Table 5.4 Fixed and random parameter modeling results 
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Discussion 

Distracted driving 

While several studies have explored the correlation of distracted driving and crash risk by 

analyzing the presence of distraction on the crash (Dingus et al. 2016, Gao and Davis 

2017, Arvin et al. 2019b), this study considers the duration of distraction by different types 

of distractions to explore their association with crash risk. The results suggest that 

duration of all types of distracted driving are positively and significantly associated with 

the probability of the occurrence of an extreme event (i.e. near-crash and crash events). 

Figure 5.4 provides the plot of the probability of an extreme event with increasing duration 

of distraction for all types of distraction. It can be observed that atypical distraction types 

(such as reading, writing, and distraction by insect) and cellphone related distraction has 

the highest impact on extreme event occurrence probability.  
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Duration of other types of distraction has the highest impact on the probability of crash 

occurrence. The marginal effect results indicate that, keeping other variables at their 

mean, one second increase in the duration of other distraction, increase the probability of 

a crash for 4.21 percent, on average. The reason might be this category contains unusual 

distraction types such as insect in the vehicle, reading, writing, etc. Therefore, it is 

expected that these types of distraction have higher impact compared to other types of 

distraction. As literature suggests (Dingus et al. 2011, Dingus et al. 2016, Kamrani et al. 

2019), distracted driving is highly correlated with the crash risk. The results revealed that 

Figure 5.4 Probability of extreme event occurrence for different types of 
distraction 
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duration of cellphone use is substantially and significantly increasing the probability of 

extreme event involvement. One second increase in the distracted driving with cellphone 

increased the likelihood of crash/near-crash for 3.51 percent. Focusing on duration of 

distraction by external stimulus, it is significantly associated with the extreme event 

occurrence. One second increase in the duration of external distraction, increase the 

probability of extreme event involvement for 3.12 percent. Seconds of distraction by 

objects inside the vehicle (such as navigation system, climate control, radio adjusting) is 

significantly associated with the probability of crash involvement. Marginal effect analysis 

indicates that one second increase in the duration of object distraction increase the 

probability of an extreme event for 3.03 percent. In line with the literature (Dingus et al. 

2011),Eating, drinking, and smoking in the car is increasing the probability of crash/near-

crash involvement in a manner that one second increase in such distractions, increases 

the extreme event probability for 2.15 percent. Singing and talking with him/herself and 

interaction with other passengers also increase the likelihood of extreme event 

involvement. One second increase in the duration of singing/talking and interaction with 

others is associated with increase in the extreme event probability for 2.04 and 1.92 

percent, respectively. Duration of interaction with passengers has less negative effect on 

driving performance since the responsibility of monitoring environment could be shared 

with passengers (Overton et al. 2015). 

 

Driver impairment and behavior 

The results of modeling reveal that all types of impairment increase the likelihood of 

extreme events. Specifically, alcohol/drug related impairments are associated with a 29.7 

percent increase in the probability of crash/near-crash involvement. The results are 
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consistent with the findings of Dingus et al (Dingus et al. 2016) who found that alcohol 

and drug impairment increases the crash risk 35.9 times. Furthermore, drowsy and 

fatigued driving are associated with increased probability of extreme event by 22 percent, 

which is in line with the literature (Klauer et al. 2006, Lee et al. 2016). In line with previous 

studies (Dingus et al. 2016), emotional driving increased the probability of involvement in 

an extreme event by 8.65 percent. Atypical impairment types are associated with 14.5 

percent higher crash risk.   

 

The results revealed that driving behavior is substantially and significantly correlated with 

the likelihood of extreme event occurrence. As an illustration, in line with the literature 

(Zhang and Chan 2016), aggressive driving was found to increase the likelihood of 

extreme event by 44.53 percent. Speeding behavior is significantly correlated with the 

likelihood of crash involvement, by increasing its likelihood by 28.4 percent. Improper 

driving action increased the likelihood of crash involvement by 22.1 percent. Violation of 

traffic law is another significant driver behavior that is positively and significantly 

associated with crash risk. Traffic violation is correlated with an increase in the likelihood 

of extreme event occurrence for 9.2 percent. 

 

Roadway/environmental factors 

Roadway and environmental factors are included in the model to control for other 

contributing factors. The modeling results suggest that higher traffic density in terms of 

level of service increase the likelihood of crash involvement. The results are in line with 

previous studies where the chance of a crash or near crash in congested traffic is higher 

compared to the free-flow state (Kamrani et al. 2019). Furthermore, driving with a higher 
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speed decreases the likelihood of an extreme event, since the vehicle has lower conflict 

with other vehicles and surrounding environment which decreases the probability of crash 

involvement. Moreover, while the fixed-parameter model suggests that weather condition 

is significantly associated with crash risk, the random parameter model suggests that it is 

marginally correlated with the increase in the likelihood of extreme event. Further details 

are provided in the Table 5.4.   

 

Limitations  

The drivers participating in SHRP2 NDS might not represent the driving population, since 

they are voluntarily hired with monetary incentives, i.e., they are self-selected. Although 

the data are collected professionally with federal support and specific protocols are used 

for data collection and coding, there still might be some human error in coding the 

information, especially from the recorded videos. The proportion of crashes and near 

crashes compared to baselines are not truly reflective of real-world conditions, as extreme 

events are relatively rare, and this fact might affect the results.  

 

Conclusions 

Generally, human error is known to be the key contributing factor in traffic crashes. 

Availability of microscopic information collected through instrumented vehicles on 

instantaneous driving behavior and instantaneous decisions of drivers has enabled the 

exploration of the association of driver behavior with the occurrence of crashes and near-

crash events. This study sheds light on the association of distracted driving on the 
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probability of a crash/near-crash by performing an in-depth analysis on pre-crash driving 

that lead to extreme event involvement. The main contributions of this paper are, first, 

linking large-scale data on instantaneous driver distraction and vehicular movements with 

the driving behavior, roadway, and environmental factors, and, second, using rigorous 

methods for exploring the association of impairments and duration of distracted driving 

by different secondary tasks on the likelihood of involvement in an extreme event—a topic 

that is very lightly investigated in the literature. The SHRP2 NDS data is used, containing 

9239 baselines and extreme events, in terms of crashes and near-crashes. A unique 

database was created by analyzing more than 1.8 million observations and creating time-

series profile of distracted driving, and linking it to the vehicle kinematics, driving behavior, 

and roadway/environmental factors. The seconds that drivers were reacting to the crash 

stimuli and the period after a crash were removed from the analysis. In this research, 15 

seconds of the data was considered for each event.  

 

The descriptive analysis shows that there is a substantial difference in prevalence of 

impaired and distracted driving between baselines and extreme events, as expected. 

Moreover, the analysis of duration of distraction revealed that the duration of distraction 

is also significantly different among these two groups. The fixed and random parameter 

binary logistic regression model is estimated to model the association of distraction 

duration on the probability of the extreme event occurrence. The modeling results 

revealed that duration of all types of distractions is one of the leading indicators of an 

extreme event occurrence and longer durations significantly and substantially increase 

the crash risk. Based on the results, cellphone distraction and atypical distraction types 
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(in terms of reading and writing) have the highest association with crash risk compared 

to other distraction types. One second increase in an atypical and cellphone distraction 

will increase chance of a crash for 4.1 and 3.4 percent, respectively. In terms of impaired 

driving, alcohol/drugs substantially increase the chances of extreme event involvement 

by 29.7 percent. It is worth noting that driving behavior and roadway/environmental 

factors are also modeled as the controlling factors. Overall, the results point to exploring 

and evaluating countermeasures that can reduce the most dangerous types of impaired 

and distracted driving.   

  



 

186 
 

CHAPTER 6 : REAL-TIME CRASH PREDICTION THROUGH UNIFIED 

ANALYSIS OF DRIVER AND VEHICLE VOLATILITIES: APPLICATION 

OF 1D-CONVOLUTIONAL NEURAL NETWORK - LONG SHORT-TERM 

MEMORY 
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This chapter is a modified version of a research article by Ramin Arvin, Asad J. Khattak, 

and Hairong Qi. “Crash prediction through unified analysis of driver and vehicle volatilities: 

Application of 1D-Convolutional Neural Network - Long Short-Term Memory.” The 

manuscript is currently under review in Engineering Application of Artificial Intelligence. 

 

Abstract 

Transportation safety is highly correlated with driving behavior, especially human error 

playing a key role in a large portion of crashes. Modern instrumentation and 

computational resources allow for the monitorization of driver, vehicle, and 

roadway/environment to extract leading indicators of crashes from multi-dimensional data 

streams. To quantify variations that are beyond normal in driver behavior and vehicle 

kinematics, the concept of volatility is applied. The study measures driver-vehicle 

volatilities using the Naturalistic Driving Study (NDS) data. By integrating and fusing 

multiple data streams, i.e., driver distraction, vehicle kinematics, and driving stability in 

real-time, this study aims to generate useful feedback to drivers and warnings to 

surrounding vehicles regarding hazards. The NDS data is used which contains detailed 

information on more than 3500 drivers (7589 normal driving events, and 2004 severe 

events i.e., crash and near-crash) in addition to vehicle kinematics and driver behavior. 

In order to capture the local dependency and volatility in time-series data 1D-

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and 1DCNN-

LSTM are applied. Vehicle kinematics, driving volatility, and impaired driving (in terms of 

distraction) are used as the input parameters. The results reveal that the 1DCNN-LSTM 

model provides the best performance, with 92.36% accuracy and prediction of 71% of 
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crashes with a precision of 93%. Additional features are extracted with the CNN layers 

and temporal dependency between observations is addressed. The model can be used 

to monitor driving behavior in real-time and provide warnings and alerts to drivers in low-

level automated vehicles, reducing their crash risk. 

 

Introduction 

In 2016, around 7.27 million vehicle crashes are recorded across the United States which 

leads to 37,914 fatalities and more than 2.17 million injuries (Administration 2018), while 

human-error is the leading cause of crashes with contribution in 94 % (Anon 2008). 

Although occurrence of a crash in an outcome of several factors, these statistics suggests 

that researchers need to provide a great attention to the human behavioral side of 

crashes, while the literature mainly focuses on the roadway and infrastructure factors. On 

the other hand, conventional data sources including police-reported crashes, are the 

major source of the literature, which suffers from the under-reported crashes. Based on 

the report by National Highway Traffic Safety Administration (NHTSA) (NHTSA 2009), 

50% of property damage only crashes and 25% of minor injury crashes are not reported 

to the police and not recorded. Also, these crashes may be truncated due to states 

monetary threshold (Hauer 2006). Given all these limitations, the police-reported data has 

limited information on the pre-crash events, vehicular movements, driver state and 

decision, and maneuvers.  

 

By the emergence of new sources for data collection, high-resolution naturalistic driving 

data is emerged which provides a great opportunity to investigate in-depth crash analysis 
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by incorporating microscopic driving performance and behavior prior to crash 

involvement. Furthermore, these datasets contain detail information not only on PDO and 

minor crashes, but also near-crash events where critical event happened but did not lead 

to a crash. This information can be coupled with driver behavior and vehicular movements 

and help us for real-time prediction of occurrence of crash or near-crash in order to 

potentially prevent their occurrence. In this context, since the prediction accuracy is vital, 

our desirable is a model that can accurately predict crash risk before its occurrence.  

 

Referring to the methodological standpoint, several studies attempted to study the 

correlates of pre-crash driving behavior and roadway/environmental factors on the crash 

risk and severity using traditional statistical approach. While these methods are very 

beneficial by providing insights regarding the association of factors, usually they suffer 

from low accuracy on the out of sample data and prediction. Therefore, in the context of 

real-time warning generation for the crash risk prediction, other supervised methods are 

needed to perform better in terms of accuracy. Furthermore, due to high dimensionality 

of data, traditional statistical methods might not be appropriate in this context.   

 

Deep learning methods have gained significant attention in the recent literature due to 

their promising performance in several fields. In this context, the convolutional neural 

networks (CNNs) (Hinton and Salakhutdinov 2006) and Recurrent Neural Networks 

(RNNs) (add reference) are mainly utilized to process visual-related and time-series 

problems. With the recent improvements in the CNN (LeCun et al. 1998, Simard et al. 

2003, Ciresan et al. 2011) and RNN (add reference), and emergence of large-scale data 

integrated with efficient implementation of computational powers (i.e. graphics processing 
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units (GPUs)), they outperformed not only conventional methods but also human 

performance (Sermanet and LeCun 2011).  

 

In this study, the main contribution is developing a deep learning framework to integrate 

multiple data streams including vehicular kinematics in terms of speed, longitudinal and 

lateral accelerations, driving stability, and driver behavior to predict the occurrence of a 

crash/near-crash. The developed framework has several advantages: 

1- The architecture configuration of the model is compact, making the model easy 

to be implemented for real-time safety performance monitoring and failure 

detection. 

2- Its ability to capture temporal variations in the input data generated from 

multiple sensors. 

3- The capability of the model to efficiently train the model using limited training 

dataset and back-propagation iterations (Eren et al. 2019). 

 

With the emergence of new data sources, this study is timely and original by harnessing 

this big data and incorporate it in the instantaneous driving behavior analysis by 

developing a deep learning framework to warn driver regarding the risk of crash 

involvement. The compact configuration of the developed model help agencies to easily 

implement it in real time applications.   
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Data description and pre-processing 

Data description 

This study utilized the second Strategic Highway Research Program (SHRP 2) naturalistic 

driving study data. The original data contains more than 4 petabytes of information, which 

known as the most comprehensive driving study. The data collection is performed from 

2010 to 2013 and contains high-quality and high-resolution data of more than 3500 drivers 

travelling more than 50 million vehicles miles and 5 million trips  from six states in the 

United States including Washington, New York, Pennsylvania, Florida, North Carolina, 

and Indiana (Hankey et al. 2016). 

 

For the data collection, onboard data acquisition system (DAS) along various sensors 

(camera, alcohol sensor, forward sensor, accelerometers) are used to record information 

including vehicular movements (speed, acceleration, steering position) at 10-Hz 

frequency, video views, vehicle controls, offset from lane center, etc. (Hankey et al. 2016).  

The dataset that we used in this study is a subset of SHRP2 NDS data containing 7566 

baseline, 1307 near-crash and 617 crashes. For each crash and near-crash-involved trip, 

30 seconds of vehicle kinematics is available. The data contains evasive maneuver 

seconds (taken by the driver to avoid the crash or near-crash) and after its occurrence.  

 

Since this paper is predicting the critical event before its occurrence, we need to only 

include unintentional driving decisions and exclude intentional behavior arising from 

drivers’ behavior to avoid these events. Thus, these seconds need to be removed from 

our analysis (which will be discussed in the next section). Furthermore, since we are using 
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the information on driver distraction, we need to extract the seconds that driver was 

distracted, which was obtained from the summary of each trip. In the dataset, crashes are 

defined as “any contact that the subject vehicle has with an object, either moving or fixed, 

at any speed in which kinetic energy is measurably transferred or dissipated”. This study 

combines the crashes, and near-crashes events in a sense that both events are critical, 

while near-crashes was eventually become a crash due to appropriate response of the 

drivers to avoid collision at the last second.  

 

Exclusion of Evasive Maneuvers 

While the goal of this study is real-time critical event detection using vehicular movements 

and distraction information, it is crucial to exclude the seconds of vehicle trajectories that 

drivers are attempting to avoid crashes. To elaborate more, speed and acceleration 

profiles of a randomly chosen crash are provided in the Figure 6.1 in which the crash 

happened at 23th second of the video, while the driver started to react to the situation at 

22th second of the data. Thus, we need to not only exclude the seconds after the crash 

occurrence but also exclude the seconds that driver is reacting to the stimuli. In other 

words, only the seconds of the data up to the moment that the drivers started to react is 

used in this study. The speed, longitudinal and lateral acceleration of 15 seconds before 

the reaction time are used to calculate measures of driving volatility (which will be 

discussed in the next section) which help us to quantify driving instability. It is worth noting 

that there are crashes in which there is no reaction by driver, or the reaction happened 

after the impact time. Thus, either the reaction time or impact time is used. 

 



 

193 
 

  

Measures of driving volatility 

The concept of driving volatility is introduced to extract useful information and features 

from microscopic vehicular kinematics to quantify variations in instantaneous driving 

decisions. I the literature, several functions are proposed to quantify these variations and 

applied to vehicle speed (Kamrani et al. 2018b, Arvin et al. 2019c, b, Kamrani et al. 2019, 

Hoseinzadeh et al. 2020), longitudinal acceleration (Kamrani et al. 2018b, Arvin et al. 

2019c, b, Kamrani et al. 2019), and lateral acceleration (Arvin et al. 2019c). This study 

applied several volatility functions to extract additional features from the data. in general, 

three volatility groups are extracted:  

1- Speed volatility  

Figure 6.1 Speed and acceleration profile of a randomly chosen crash 
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2- Longitudinal acceleration volatility  

3- Lateral acceleration volatility  

 

In the following, the mathematical formulation of each volatility function is provided and 

discussed in detail. 

 

Exponentially Weighted Moving Average Volatility (EWMA): This measure was 

introduced by RiskMetrics in 1996 (Longerstaey and Spencer 1996) which considers 

volatility as a weighted average of volatility observations over time. We can write 

(Longerstaey and Spencer 1996): 

 

𝐸𝑊𝑀𝐴 =  𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝜖𝑡−1
2                                           (6.1) 

 

where 𝜖𝑡−1 is the return at time t-1, 𝜎𝑡−1
2  is the EWMA volatility at time t-1 and lambda is 

user defined weight (assumed 0.94 in this paper).  

 

Time-varying stochastic volatility: which quantify dispersion in the vehicular movements 

by considering changes in the ratio of observations. We can write (Figlewski 1994): 

 

𝑉𝑓 = √
1

𝑛 − 1
∑(𝑟𝑖 − 𝑟̅)

𝑛

𝑖=1

         from 𝑡 = 1 to 𝑛                              (6.2) 

where 𝑉𝑓 denotes the time-varying stochastic volatility, n is number of observations, and 

𝑟𝑖 is: 
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𝑟𝑖 = ln (
𝑥𝑡

𝑥𝑡−1
)                                                                   (6.3) 

 

where ln is natural logarithm, 𝑥𝑡  and 𝑥𝑡−1  are the observations at 𝑡  and 𝑡 − 1 , 

respectively. Since this measure requires positive time-series input, it only applied to 

vehicle speed. 

 

Mean absolute deviation: which quantifies variations in the data by measuring the 

distance between observations and their central tendency (mean in this paper). We can 

write (Huber 2005): 

 

𝑀𝐴𝐷 =  
1

𝑛
∑|𝑥𝑖 − 𝑥̅|                                                          (6.4)

𝑛

𝑖=1

 

 

Standard Deviation: which is the most common and basic approach to quantify dispersion 

in the data. We can write: 

 

𝑆𝑑𝑒𝑣 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

                                                          (6.5) 

 

where 𝑥𝑖 and 𝑥̅ denotes the observed value i and the mean of observations, and n is the 

total number of observations.   

 

Next, each volatility measure is calculated at two levels: Level 1: Event-based volatility, 

Level 2: Temporal driving volatility. Event-based volatility applies the functions on 150 
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deci-second observations and returns one value as a volatility measure. On the other 

hand, temporal volatility utilizes the concept of moving average and applies 3-seconds 

(30 deci-seconds) time-window to calculate temporal volatility for each second of driving. 

Thus, the output will be temporal volatility. As an illustration, Figure 6.2 provides the L2-

Speed-Vf volatility measure for one of the critical events. 

 

Concept illustration and descriptive statistics 

This section provides some statistical analysis in order to illustrate the positive association 

of driving volatility and distracted driving on the crash risk. The previous sections have 

discussed the procedure for calculating event-based and temporal driving volatility for 

speed, longitudinal and lateral acceleration. Here, the association of the driving volatility 

on the crash risk is shown using boxplot analysis. The results are provided in Figure 6.3. 

It can be observed that there is a substantial difference in these two groups. In critical 
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Figure 6.2 Temporal speed volatility measure calculation 
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events, drivers were more distracted and volatile compared to the baseline events. 

Therefore, the question that might arise is whether this information can be used to predict 

the chance of a crash/near-crash before its occurrence.  

 

As discussed, there is a substantial difference between the baseline and critical events. 

This section provides descriptive statistics of the variables used as the feature in the 

Figure 6.3 Boxplot of distracted driving, speed, longitudinal and lateral volatilities for the 
baseline and critical events 
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models (Table 6.1). The feature space contains information on three dimensions of 

vehicular movements, seconds that driver was distracted with a secondary task, event-

based and temporal driving volatility indices for speed, longitudinal, and lateral 

accelerations. It can be observed that not only seconds of distraction but also driving 

volatility is significantly higher in the critical events compared with baselines. 

Variable (feature) 

Baseline events (N=7566) Critical events (N=1925) 

Mean SD Min Max Mean SD Min Max 

Speed (mph) 62.36 31.22 0 125.81 41.23 30.12 0 116.74 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 (𝑚/𝑠2) -0.01 0.04 -0.23 0.25 -0.01 0.06 -0.87 0.26 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 (𝑚/𝑠2) 0 0.04 -0.2 0.33 0 0.04 -0.2 0.24 

Seconds of distraction 1.852 2.19 0 14.00 3.11 3.26 0 13.90 

L1-Speed-𝑆𝑑𝑒𝑣 1.51 1.46 0 31.88 2.2 1.76 0 12.12 

L1-Speed-𝐷𝑚𝑒𝑎𝑛 1.28 1.27 0 27.05 1.88 1.58 0 11.6 

L1-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝑆𝑑𝑒𝑣 0.05 0.03 0.01 0.2 0.08 0.04 0.01 0.28 

L1-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝐷𝑚𝑒𝑎𝑛 0.04 0.03 0 0.18 0.06 0.03 0 0.22 

L1-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝑆𝑑𝑒𝑣 0.04 0.04 0.01 0.24 0.06 0.05 0 0.4 

L1-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝐷𝑚𝑒𝑎𝑛 0.03 0.03 0 0.21 0.04 0.04 0 0.31 

L2-Speed-𝑉𝑓 0.01 0.04 0 0.68 0.03 0.06 0 0.6 

L2-Speed-𝑆𝑑𝑒𝑣 2.68 2.32 0 96.22 3.72 2.52 0 20.06 

L2-Speed-𝐷𝑚𝑒𝑎𝑛 2.28 1.98 0 81.91 3.16 2.15 0 16.89 

L2-Speed-𝐶𝑣 0.04 0.07 0 1.15 0.13 0.17 0 1.16 

L2-Speed-EWMA 0.01 0.04 0 0.68 0.03 0.06 0 0.6 

L2-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝑆𝑑𝑒𝑣 0.02 0.01 0 0.12 0.04 0.02 0 0.15 

L2-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥-𝐷𝑚𝑒𝑎𝑛 0.02 0.01 0 0.1 0.03 0.02 0 0.13 

L2-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝑆𝑑𝑒𝑣 0.03 0.01 0 0.15 0.03 0.02 0 0.23 

L2-𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦-𝐷𝑚𝑒𝑎𝑛 0.02 0.01 0 0.13 0.02 0.02 0 0.19 

*L1: Event-based volatility measure; L2: Temporal volatility measure; 𝑆𝑑𝑒𝑣: Standard deviation; 𝑉𝑓: Time-

varying stochastic volatility; 𝐶𝑣: coefficient of variation; 𝐷𝑚𝑒𝑎𝑛: mean absolute deviation; 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥: 

longitudinal acceleration; 𝐴𝑐𝑐𝐷𝑒𝑐𝑥:both longitudinal acceleration and deceleration; 𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦: lateral 

acceleration; EWMA: Exponentially Weighted Moving Average Volatility 

 

Table 6.1 Descriptive statistics of the baseline and critical events 
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Technical Approaches 

Conceptual Framework 

The conceptual framework of the study is provided in Figure 6.4. It has three main phases. 

The first phase is sensing which collect driver information (i.e. in terms of distraction) and 

vehicular movements (i.e. speed, longitudinal and lateral acceleration). As discussed in 

the previous section, the data is preprocessed and cleaned by excluding the evasive 

maneuvers of critical events and considering 15 seconds for each event. Next, the raw 

data is fed to the feature extraction phase in order to obtain volatility indices at the event 

and temporal levels. Seventeen volatility indices are extracted o quantify speed, 

longitudinal and lateral acceleration variations. Finally, the raw data and extracted 

features are fed to the deep-learning phase. Deep NN, 1D-CNN and LSTM RNN models 

are developed to classify events to baseline and critical event and the performance of the 

models are evaluated. 

 

 

Figure 6.4 Conceptual framework of the study 
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Problem formulation 

As discussed, three deep-learning methods are utilized to classify events: Deep Neural 

Network, 1D-Convolutional Neural Network (1D-CNN), Long Short-Term Memory (LSTM) 

Recurrent Neural Network (RNN), and CNN-LSTM model. While the multi-layer deep 

neural network process the input data and information through interconnected neurons, 

it suffers from a main limitation where it assumes that all inputs are independent from 

each other, which is not the case in many fields, such as image classification, language 

processing, and time-series problems. Therefore, several methods are proposed to 

address the dependency in the input of the network (in this paper time dependency) by 

including local information (temporal information) in the input data.  

 

Deep NN 

A DNN model is known as a feed-forward artificial neural network, which has more than 

one hidden layer between the input and output layers (Hinton et al. 2012a). These models 

are processing the information through a series of fully connected layers and associated 

with other layers through weighted connections. Each node is called a neuron which 

transforms the input with a non-linear function to create a decision boundary. Each neuron 

can be considered as a non-linear computational unit which applies activation function 

(e.g. sigmoid function). The neurons can be defined as: 

 

𝑎𝑙+1 = 𝑓(𝑊𝑙𝑎𝑙 + 𝑏𝑙)                                                          (6.6) 

 

where 𝑎𝑙 and 𝑎𝑙+1 denotes the activation value in level l and l+1, respectively, 𝑊𝑙 is a 

weight matrix, 𝑏𝑙  is the bias, and 𝑓(. ) represents the activation function. The especial 
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case is l=1 which denotes the input layer, and we denote it by 𝑎𝑙 = 𝑥. The last layer of 

the DNN is a softmax classifier and the output is the two classes (i.e. Baseline and Critical 

events). Here, we considered a fully connected network with four dense layers with 200 

nodes on each layer, following a softmax layer. While DNN models are prone to overfit 

the data, dropout regularization is utilized to penalize the weights. Dropout is known as 

one of the powerful techniques for improvement in the generalization error of large NNs, 

introduced by Hinton et al. (Hinton et al. 2012b). The training procedure applies forward 

and backward propagations. While forward propagation computes actual classifications 

based on the input data, the backward propagation aim is to update the parameters to 

minimize the discrepancy between the predicted and observed values.  

 

1D CNN classifier 

Comparing to simple NN models that perform feature extraction by only taking a vector 

of inputs to the model, 1D CNNs allow us to operate in a multi-scale manner and further 

investigating the time-series dependency between the observations. The structure of the 

1D-CNN model used in this study is shown in the Figure 6.5. The time-series motions of 

vehicles, driver distraction profile, and driving volatility measures are the model input, and 

the output layer classified the output event. In the time-series data analysis, we can treat 

the input as a picture with the size of (n,1) pixels with v bands where v is number of input 

streams. The convolutional layers in the model are extracting additional features from the 

data. In the convolutional layer, the model applies the convolution operation on the local 

input data in order to generate the corresponding 1D features, while applying different 

convolutions will generate several features from the input data. In each convolutional 

layer of the model, 1D forward propagation is performed which can be formulized as: 
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𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1)

𝑁𝑙−1

𝑖=1

                                                   (6.7) 

 

where 𝑥𝑘
𝑙  and 𝑏𝑘

𝑙  represent the kth neuron at layer l input and bias, respectively. 𝑤𝑖𝑘
𝑙−1 is 

the kernel function in layer l-1.  

 

Since the feature map resulted from each convolutional layer is sensitive to the location 

of the features in the input and number of feature maps increase the dimensionality of 

data, a pooling layer is utilized to down-sample the feature map. Among two common 

pooling methods which are average-pooling and max-pooling, the latter is used to 

summarize the most activated node of a feature. At the end, the high-level features are 

flattened and fed into a fully connected layer to perform classification. 

 

As earlier discussed, one of the drawbacks of Deep NN is ignorance of local dependency 

between observations. On the other hand, our data is streams of time-series data which 

have one dimension with multiple channels (i.e. Speed, longitudinal, and lateral 

Figure 6.5 Representation of 1D-CNN network used in this study 
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acceleration). Thus, we used 1D-CNN to extract the features and feed the fully connected 

NN. Figure 6.5 depicts the structure of the model. 

 

While in the conventional deep neural network, a neuron is fully connected to neurons of 

a next layer, CNN structure is different in a sense that neurons are sparsely connected to 

each other based on their relative position. Therefore, in a DNN, values of the next layer 

(hidden neuron i in layer j, ℎ𝑖,𝑗) is obtained by multiplying all the neurons of the previous 

layer (ℎ𝑗−1). On the other hand, the CNN model computes each hidden activation by 

multiplying a subset of local input to the matrix of weights (W). It should be noted that 

weight matrix is shared across the entire layer which helps the model to reduce the 

number of estimated parameters and efficient training. A max-pooling layer frequently 

used after a convolutional layer.   

 

LSTM-RNN 

Recurrent Neural Network models (RNN) models are aimed to tackle this issue by using 

recurrent connection in every neuron to include temporal information and feeding back 

this information to itself with a unit of time delay (Ordóñez and Roggen 2016). This helps 

the model to learn the temporal dynamics of time-series input.  

 

The RNN model requires an input sequence 𝑎𝑙 = (𝑎1
𝑙 , 𝑎2

𝑙 , … , 𝑎𝑇
𝑙 ) where 𝑎𝑖

𝑙 is the activation 

of unit i at layer l, and T is the length of input sequence. Be performing the following 

recursive equation, a sequence of activations of the next layer, 𝑎𝑙+1 =

(𝑎1
𝑙+1, 𝑎2

𝑙+1, … , 𝑎𝑇
𝑙+1), will be obtained: 
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ℎ𝑖
𝑙 = 𝜎(𝑊𝑥ℎ

𝑙 𝑎𝑡
𝑙 + ℎ𝑡−1

𝑙 𝑊ℎℎ
𝑙 + 𝑏ℎ

𝑙 )                                                            (6.8) 

 

where 𝜎 is the activation function, 𝑊𝑥ℎ
𝑙  and 𝑊𝑥ℎ

𝑙  are the input-hidden and hidden-hidden 

weight matrix, respectively, and 𝑏ℎ
𝑙  is the vector of bias. The 𝑎𝑡

𝑙  can be obtained as 

following: 

 

𝑎𝑡
𝑙+1 = ℎ𝑡

𝑙 𝑊ℎ𝑎
𝑙 + 𝑏𝑎

𝑙                                                                        (6.9) 

 

where 𝑊ℎ𝑎
𝑙  is the hidden-activation weight matrix, and 𝑏𝑎

𝑙  is the vector of activation bias. 

Although RNN is designed to deal with time-series data,  they are suffering from the 

problem of vanishing and exploding gradient which affect the model fit for the long-time 

lag models (Hochreiter and Schmidhuber 1997, Zhao et al. 2017) and face several 

challenges in real-world sequence modeling (Gers et al. 2002).  

 

The LSTM models are attempting to extend the conventional RNN models which are 

capable of learning long-term time dependency in the input, introduced in 1997 by 

Hochreiter and Schmindhuber (Hochreiter and Schmidhuber 1997). Similar to RNN 

models, LSTM have the chain structure, while the difference is in the design of a neurons 

(Figure 6.6). While RNNs have a single learning neuron (e.g. tanh), there are three gates 

interacting with each other. The LSTM utilizes the concept of gating to provide a 

mechanism that defines the behavior of each memory cell in the network. the cell state is 

updated according to the gates’ activations. The input data of the LSTM is fed into the 

write gate (input), read gate (output), and reset gate (forget). The LSTM layer can be 
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written as: 

 
𝑖𝑡 = 𝜎𝑖(𝑊𝑎𝑖𝑎𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                                                        (6.10) 

𝑓𝑡 = 𝜎𝑖(𝑊𝑎𝑓𝑎𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                                       (6.11) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝜎𝑐(𝑊𝑎𝑐𝑎𝑡 + 𝑏𝑐)                                                       (6.12) 

𝑜𝑡 = 𝜎𝑜(𝑊𝑎𝑜𝑎𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)                                                     (6.13) 

ℎ𝑡 = 𝑜𝑡𝜎ℎ(𝑐𝑡)                                                                       (6.14) 

 
where 𝑖𝑡 , 𝑓𝑡 , and 𝑜𝑡  denotes the input, forget, and output gates, respectively, 𝑐𝑡 

represents cell activation vectors, and 𝜎 is the activation function.  

 

 

 

 

 

 

Figure 6.6 Illustration of the structure of the LSTM neural 
network 



 

206 
 

Layer type Output shape Number of parameters 

LSTM 1 (None, 150, 100) 48400 

LSTM 2 (None, 150, 100) 80400 

LSTM 3 (None, 150, 100) 80400 

Dense 1 (None, 100) 10100 

Dense 2 (None, 100) 10100 

Dense 3 (None, 2) 202 

 

 
The LSTM classifier commonly followed by dense fully connected hidden layers, and 

softmax layer. The structure of the LSTM model is provided in the Table 6.2. 

 

CNN-LSTM 

Typically, DNN and RNN models receive the raw input data, while it has shown that by 

applying feature derived layers, their accuracy can be improved significantly (Palaz and 

Collobert 2015). Convolutional layers have been suggested in order to extract additional 

features from the raw data (Yang et al. 2015). A convolution layer extracts features from 

the input data by applying a kernel (filter). By applying these kernels to different regions 

of input data, possibly additional patterns are recognized and captured by these kernels. 

It is worth noting that these kernels are optimized during the training process.  

 

The application of convolution layer mainly relies on the input dimension. Considering 

images that has two dimensions, 2D kernels typically applied in the convolution layer 

(Baghbaderani and Hairong 2019), while in a time-series analysis, 1D kernels are the 

most common approach (Ordóñez and Roggen 2016). In the 1D context, a kernel can be 

Table 6.2 Structure of the LSTM model 
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considered as a filter which can removes the outliers, feature detector, and data filtering 

(Ordóñez and Roggen 2016). Feature map extraction using one-dimensional convolution 

can be written as: 

 

𝑎𝑗
𝑙+1(𝜏) = 𝜎 (𝑏𝑗

𝑙 + ∑ 𝐾𝑗𝑓
𝑙 (𝜏) ∗ 𝑎𝑓

𝑙 (𝜏)

𝐹𝑙

𝑓=1

)                                    (6.15) 

 

where 𝑎𝑗
𝑙+1 is the feature map j in layer l+1, 𝜎 is the kernel non-linear function, 𝐹𝑙 denotes 

the feature maps of layer l, 𝐾𝑗𝑓
𝑙  is the kernel mapping f to feature map j in layer l+1.  

 

The structure of the 1DCNN-LSTM model is provided in the Table 6.3. The input data is 

fed to the two convolution layers and max-pooling layer is applied and the outputs are 

flattened. Next, the features are fed into three layers of LSTM with 100 nodes, and finally 

a dense fully connected network with a softmax classifier performs the classification.  

 

 

Figure 6.7 Structure of the CNN-LSTM model 
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Layer type Output shape Number of parameters 

1D-CNN 1 (None, None, 75, 12) 492 

1D-CNN 2 (None, None, 75, 12) 300 

LSTM 1 (None, None, 50) 190200 

LSTM 2 (None, None, 50) 20200 

LSTM 3 (None, None, 50) 20200 

LSTM 4 (None, 50) 20200 

Dense 1 (None, 100) 5100 

Dense 2 (None, 100) 10100 

Dense 3 (None, 100) 10100 

Dense 4 (None, 2) 202 

 
 

Experimental evaluation 

Training procedure 

The dataset is randomly divided to the train and test datasets. A 20 percent of the training 

data set is randomly separated for the validations. In order to initialize the training, all the 

weight matrices and bias vectors were initialized randomly. The dropout and L2 

regularization approaches are utilized to prevent overfitting of the training sample. 

Optimal dropout value for each model is obtained in a manner to prevent the risk of 

overfitting while getting the highest accuracy. To improve the efficiency, the data is 

segmented to mini-batches with the size of 256. 

 

All the models are trained by the Adam optimization approach (Kingma and Ba 2014) 

which is known for its efficient stochastic optimization approach with only requiring the 

Table 6.3 Structure of the CNN-LSTM model 
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first-order derivatives and low memory for analyzing. Moreover, it has the advantage of 

high computational efficiency, low memory requirement, straightforward implementation, 

and invariant feature to diagonal gradients rescaling, and also it is appropriate for 

problems that the data and parameters are large scale (Kingma and Ba 2014). 

Furthermore, it has the advantage of suitability problems with noisy and sparse 

derivatives and non-stationary objectives (Kingma and Ba 2014). The Adam optimizer is 

utilized to minimize the loss of objective function, which we used cross entropy function, 

by finding the optimal weights and bias terms.  

 

In order to perform training, the dataset is randomly divided to train and test datasets, and 

the break-down of the events can be found in Table 6.4. This study took advantage of 

using the Keras and TensorFlow deep learning tools. Keras and TensorFlow are open-

source python machine learning libraries developed by the Google Brain Team (Chollet 

2015, Abadi et al. 2016), which widely used in the deep learning context by several 

studies (Baghbaderani and Hairong 2019, Baghbaderani et al. 2019, Nezafat et al. 2019, 

Parsa et al. 2019). The model training and classification are run on a workstation 

computer with the TITAN RTX graphical processing unit (GPU) with 4608 cores, 1770 

MHz clock speed and 24 GB RAM. 

 

Figure 6.8 illustrates the accuracy and loss for the training and validation data vs training 

epoch for each model. It can be observed that the performance of the CNN-LSTM model 

in terms of training and test accuracy and loss is better than other models. The results 

will be discussed further in section 5.3. 

 



 

210 
 

 
Training 

sample size 
Test sample 

size 

Baseline 5623 1941 

Crash/Near crash 1376 549 

Total 6999 2490 

 

 

 

Table 6.4 Test and train datasets 

DNN 

LSTM 1D CNN-LSTM 

1D CNN 

Figure 6.8 Accuracy and loss for the training and test datasets 
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Evaluation metrics 

In order to score the performance of the models, four common metrics are utilized 

including accuracy, precision, recall, and F-measure (𝐹1). The definitions are provided in 

the following: 

1- Accuracy which measures the overall performance of the model by quantifying the 

proportion of correct predictions over all predictions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                           (6.16) 

 

where TP, TN, FP, and FN are the total true-positive, true-negative, false-positive, 

and false-negative predictions.  

2- Precision which measures the number of true positive over total predicted positive. 

The precision of class c can be obtained by:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐
                                                         (6.17) 

 

where 𝑇𝑃𝑐 and 𝐹𝑃𝑐  are the number of true-positive and false-positive of class c, 

respectively.  

3- Recall which measures number of corrected classified observations over the total 

observations in the class c. 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
                                                        (6.18) 
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where 𝐹𝑁𝐶 is the number of false-negative of class c. 

4- 𝐹1 score which applies weighted harmonic average to the precision and recall.  

 

𝐹1 = ∑ 2 ∗ 𝑤𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑖

                                          (6.19) 

 

where i represents the class index (i.e. baseline and critical events), 𝑤𝑖  is the 

proportion of class i observation (𝑤𝑖 =
𝑛𝑖

𝑁
) where 𝑛𝑖 is the number of observations 

in class i and N is the total number of observations. The advantage of 𝐹1 is its 

suitability for imbalanced data where the proportion of one of the classes is lower 

comparing to others. This measure combines precision and recall metrics and 

weighting the classes based on the proportion.  

 

Comparative results 

The comparative results of the DNN, CNN, LSTM, and CNN-LSTM models are provided 

in the Table 6.5. As discussed, several metrics are utilized to evaluate the performance 

of the models. In terms of overall goodness of fit, Accuracy and Loss metrics are utilized, 

while for each class, precision, recall, and F1 measure is used. 

 

Focusing on overall performance on the test dataset, results suggest that the accuracy of 

the DNN model is 88.51 percent. On the other hand, LSTM, 1D-CNN, and 1DCNN-LSTM 

models substantially improved the accuracy to 91.61%, 90.76%, and 92.36%. 

Furthermore, the total loss is significantly dropped from 0.31 to 0.24. It can be observed 
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that the LSTM, 1D CNN, and 1DCNN-LSTM models improved the fit by incorporating 

temporal dependency between observations. Therefore, it can be inferred that there is a 

great need to consider local dependency of time-series input in this context. Also, the 

results revealed that combining 1D-CNN and LSTM models can improve the fit by 

extracting additional features from the input data and incorporate those to a time-series 

analyzer model (i.e. LSTM model).  

 

Since the goal of this paper is prediction of a critical event occurrence, we want to assess 

the models’ performance on crash/near-crash events. Precision, recall, and 𝐹1 -score 

metrics are suggesting that consideration of time dependency in the analysis improved 

the performance comparing with DNN model. While DNN model is predicting 68 percent 

of crashes with the precision of 0.77, CNN-LSTM model improved it to 71 percent with 

the precision of 0.93. Moreover, 𝐹1-score substantially improved from 0.72 to 0.80.   

 

Referring to the baseline events, it can be observed that CNN-LSTM model improved the 

precision of the predictions from 83 percent to 92 and 93 percent, respectively. The results 

suggest that the 1D-CNN model slightly performed better than the LSTM and 1D-CNN 

models.   
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Metric 

Train Data Test Data 

DNN 1D CNN LSTM 
CNN-
LSTM 

DNN 
1D 

CNN 
LSTM 

CNN-
LSTM 

test time (millisec) - - - - 0.181 0.194 19.65 0.345 

Overall 
Accuracy (%) 93.07 94.96 93.48 93.84 88.51 91.61 90.76 92.36 

Loss 0.21 0.15 0.20 0.21 0.31 0.26 0.25 0.24 

Baseline 

Precision 0.92 0.94 0.92 0.94 0.90 0.92 0.91 0.92 

Recall 0.99 0.99 0.99 0.99 0.94 0.98 0.98 0.98 

𝐹1-Score 0.96 0.97 0.96 0.97 0.93 0.95 0.94 0.95 

Critical 
Event 

Precision 0.96 0.97 0.97 0.97 0.77 0.90 0.89 0.93 

Recall 0.67 0.76 0.66 0.76 0.68 0.69 0.66 0.71 

𝐹1-Score 0.79 0.85 0.76 0.85 0.72 0.78 0.76 0.80 

 

Importance of volatility and distraction profile 

As showed in the previous section, the 1DCNN-LSTM model performed the best in terms 

of predicting extreme events occurrence comparing to the other discussed models. In this 

section, the feature space is divided into three main blocks and contribution of adding 

each block to the model is discussed by evaluating the 1DCNN-LSTM model performance. 

Three sets of features are considered: 1- Vehicle kinematics, 2- Driving volatility, and 3- 

Distraction profile. Initially, the model is trained with vehicle kinematics, next driving 

volatility features are added to the model, and finally distraction profile is added to the 

feature space. The results for the 1DCNN-LSTM model is summarized in the Table 6.6. 

According to the results, by feeding the model only with vehicle kinematics, the model 

accuracy on the test dataset will reach 78.15 percent. By adding the extracted volatility 

features to the model, the model accuracy reaches 86.75 percent, which indicates 8.6 

percent improvement comparing to the vehicle kinematics only. Finally, adding the 

distraction profile of the driver to the model will enhance the accuracy to 92.36 percent. 

Table 6.5 Models performance evaluation 
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Overall, it can be inferred that driving volatility and distraction profile substantially improve 

the prediction accuracy of the 1DCNN-LSTM model. 

  

Conclusion 

Emergence of high-resolution big data generated by connected and automated vehicles 

and new sensors coupled with availability of high-performance computational resources, 

enabled the application of new concepts and methods. This study develops a framework 

to quantify the real-time crash occurrence risk by integrating multiple data sources and 

applying deep learning methods. The kinematic movement of vehicle and information on 

driver impairment, in terms of distraction, is obtained from second Strategic Highway 

Research Program (SHRP2) and volatility functions are employed to extract additional 

features from vehicular movements to quantify variations in instantaneous driving 

decisions. The initial statistical analysis revealed that impaired driving, in terms of 

distraction, and instability in driving can be served as the leading crash occurrence 

 Vehicle 

Kinematics 

Kinematics & 

Volatility 

Kinematics & Volatility & 

Distraction 

Performance Train Test Train Test Train Test 

Overall 
Accuracy (%) 84.19 78.15 87.09 86.75 93.84 92.36 

Loss 0.42 0.50 0.36 0.35 0.21 0.24 

Baseline 

Precision 0.87 0.86 0.88 0.87 0.94 0.92 

Recall 0.85 0.81 0.98 0.98 0.99 0.98 

𝐹1-Score 0.86 0.84 0.93 0.92 0.97 0.95 

Critical 

Event 

Precision 0.50 0.49 0.86 0.85 0.97 0.93 

Recall 0.53 0.49 0.49 0.46 0.76 0.71 

𝐹1-Score 0.52 0.43 0.62 0.60 0.85 0.80 

Table 6.6 Evaluation of feature importance in the 1DCNN-LSTM model 
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indicator. 

 

In order to perform real-time critical event prediction, several deep learning models 

including 1D-convolutional neural network (1D-CNN), Long Short-Term Memory (LSTM), 

and CNN-LSTM approaches are utilized to compare their performance with the Deep 

Neural Network (DNN) model as the baseline. Based on the results, by capturing the time 

dependency of the input data, the model performance can be improved significantly. The 

results revealed that extra features extracted by the CNN model coupled with the LSTM 

model can help us to achieve 92.36% accuracy on the test data and predicting 71 percent 

of the crashes correctly with the 93 percent precision. Furthermore, the analysis revealed 

that by adding driving volatility features and driver distraction profile, the model accuracy 

can enhance for 14.21% comparing to the LSTM CNN model feeding with vehicle 

kinematics only. 

 

The developed model in this study can be used to proactively and in real-time monitor the 

driving performance of the drivers and provide warning at the times that they exhibit 

volatile and distracted driving. This study utilized driving instability, driver distraction, and 

vehicle kinematics as the inputs of the network. In future research, other streams of data 

including roadway condition and traffic state, and information of the surrounding vehicles 

can be incorporated to improve the model performance by providing additional 

information regarding the surrounding environment.  
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CHAPTER 7 : CONCLUSION AND IMPLICATIONS 

  



 

218 
 

Emergence of new data sources opens a new window to the researchers to think out of 

the box and apply new methods into the transportation field. This dissertation aims to 

harness emerging large-scale microscopic data generated by new technologies including 

connected and automated vehicles, and naturalistic driving data, and integrate this 

information into transportation safety analysis from micro to macro level, focusing on 

driver behavior as the leading crash cause. It should be noted that driver behavior is the 

most critical and unpredictable factor in the transportation system, which has shown that 

contributing to more than 93% of crashes. Therefore, by in-depth analysis of 

instantaneous driver behavior and decision, we can apply countermeasures and 

strategies to reduce crash risk.  

 

New technologies and transportation modes ranging from connected vehicles, automated 

vehicles, roadside units, crowdsource data, and camera surveillance are generating 

enormous data which can be utilized to perform in-depth analysis of driver behavior. This 

dissertation take advantage of several data sources including real-world connected 

vehicle data collected in Safety Pilot Model Deployment study (with more than 2.2 billion 

observation), naturalistic driving and biometrics data collected via SHRP2 study (with 

more than 2 million observation), roadway inventory, and crash data. This dissertation 

develops a unique and systematic framework to integrate these multidimensional 

datasets and incorporate them into the transportation safety analysis. The developed 

framework is used to incorporate such a big data into the analysis at different levels, i.e. 

1) instance level, 2) event level, 3) Location level, and 4) Network level in order to explore 

the association of driver behavior with crash risk. A data processing approach is 
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generated to harness this big data and extract useful information to improve traditional 

safety analysis.  

 

This dissertation utilized the concept of driving volatility, which aims to quantify variations 

in driving behavior. We introduced the concepts of temporal and unintentional driving 

volatility to quantify instantaneous variations in driving behavior in terms of speed, 

acceleration/deceleration, and jerk. In addition, the concepts of intentional and 

unintentional driving volatility are developed to quantify instability in driving prior and 

during safety critical events (i.e. crashes and near-crashes). Furthermore, the concept of 

location-based driving volatility is expanded by developing several volatility measures to 

identify locations where drivers exhibit erratic behaviors. While the literature just focused 

on longitudinal vehicular movements, this dissertation extends the concept into 3D 

dimension by incorporating lateral and vertical movements into the analysis.  

 

The chapter 2 of the dissertation developed a methodological and systematic framework 

to harness and integrate big data generated by connected vehicles into safety analysis at 

the network level. The concept of temporal driving volatility is introduced to capture and 

quantify the extent of variations in each instance of driving. The driving volatility concept 

is extended to the 3D dimension by incorporating lateral and vertical volatilities into the 

analysis and utilized to quantify spatiotemporal variations in driving decisions. The CV 

data collected in the SPMD study at Ann Arbor, MI is used to illustrate the framework. 

The initial analysis revealed that there is a positive correlation between developed 

temporal driving volatility measures and crash risk. To quantify this correlation, several 

spatial modeling approaches (i.e. Geographically Weighted Poisson and Negative 
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Binomial Regressions) are developed to account for spatial heterogeneity. The modeling 

results revealed that extracted volatility measures from the CV data are significantly 

associated with crashes. Based on the results, using only CV data we can explain around 

70% of the model deviance. Given the contributing volatility measures, the unsupervised 

learning methods (i.e. k-means and Gaussian Mixture Models) are used to identify 

hotspot locations where crash frequency is low while driving volatility is high. This analysis 

will help agencies to proactively identify potential hotspots locations in the network and 

treat them by applying countermeasures to reduce driving volatility.  

 

The Chapter 3 of the dissertation focuses on the integrating CV data into the safety 

analysis of intersections. This chapter explores the association of longitudinal and lateral 

driving volatility with different crash types, i.e. rear-end, sideswipe, angle, and head-on 

crashes. The CV data collected in the SPMD study is utilized to calculate several volatility 

measures capturing variations in longitudinal and lateral movements of more than 2800 

CVs passing the intersections. In this study, 167 intersections of Ann Arbor, MI is selected, 

and several volatility measures are calculated by analyzing more than 125 million Basic 

Safety Messages transmitted between CVs. In order to capture variations in vehicle 

control and movement, 30 measures of driving volatility are calculated by using speed, 

longitudinal and lateral acceleration, and yaw-rate. Also, intersection inventory and 

historical crashes are manually extracted for the study area. In terms of modeling, fixed 

parameter, random parameter, and geographically weighted Poisson regression models 

are utilized to quantify correlation of developed volatility measures and crash risk at 

intersections. The results revealed that the developed volatility measures are significantly 

associated with crash risk and they can substantially improve model performance 
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comparing to the conventional safety methods, which only use traffic exposure and 

intersection inventory data. According to the results, controlling for intersection geometry 

and traffic exposure, and accounting unobserved factors, variations in longitudinal control 

of the vehicle (longitudinal volatility) are highly correlated with the rear-end crash 

frequency. Intersections with high variations in longitudinal movement are prone to have 

higher rear-end crash rate. Referring to sideswipe and angle crashes, along with speed 

and longitudinal volatility, lateral volatility is substantially correlated with the frequency of 

crashes. When it comes to head-on crashes, speed, longitudinal and lateral acceleration 

volatilities are highly associated with the frequency of crashes. Intersections with high 

lateral volatility have higher risk of head-on collisions due to the risk of deviation from the 

centerline leading to head-on crash. The developed methodology and volatility measures 

can be used to proactively identify hotspot intersections where the frequency of crashes 

is low, but the longitudinal/lateral driving volatility is high. The reason that drivers exhibit 

higher levels of driving volatility when passing these intersections can be analyzed to 

come up with potential countermeasures that could reduce volatility and, consequently, 

crash risk.  

 

Chapter 4 of the dissertation focuses on event-level analysis in order to perform in-depth 

analysis of crash contributing factors using high-resolution naturalistic driving data. This 

chapter studies the role of pre-crash instability in driving, in terms of driving volatility, on 

crash intensity. The crash intensity in this dataset is measured on a four-point scale from 

a tire-strike to an injury crash. The SHRP2 NDS data are used to investigate the 

movements and instability of vehicles in space prior to involvement in a crash and their 

contribution to crash intensity using path analysis. The data containing 617 crash events 
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with around 0.18 million temporal trajectories which were used to quantify instability in 

driving. To quantify driving instability, microscopic variations or volatility in vehicular 

movements before a crash are analyzed. Specifically, nine measures of pre-crash driving 

volatility are calculated and used to explain crash intensity. The fixed and random 

parameter probit models are applied to model intensity of crashes. The results revealed 

that unintentional volatility is one of the leading factors increasing the chance of a severe 

crash. Interestingly, distracted and aggressive driving are highly correlated with driving 

volatility and have substantial indirect effects on crash intensity. With volatile driving 

serving as a leading indicator of crash intensity, given the crashes analyzed in this study, 

early warnings and alerts for the subject vehicle driver and proximate vehicles can be 

helpful when volatile behavior is observed.    

 

Chapter 5 focuses on distracted and impaired driving as one of the key contributing 

factors in roadway crashes, leading to about 35% of all transportation-related deaths in 

recent years. Despite the prevalence and importance of distracted driving, little is known 

about how the duration of distractions is associated with critical events. With new sensors 

and increasing computational resources, it is possible to monitor drivers, vehicle 

performance, and roadways to extract useful information, e.g., eyes off the road, 

indicating distraction and inattention. Using high-resolution microscopic SHRP2 

naturalistic driving data, this chapter conducts in-depth analysis of both impairments and 

distractions. The data has more than 2 million seconds of observations of 7394 baselines 

(no event), 1237 near-crashes, and 617 crashes. The interval of distracted driving during 

the period of observation (15 seconds) were calculated and fixed and random parameter 

logistic regression models of crash risk was estimated. The results reveal that alcohol 
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and drug impairment is associated with a substantial increase in extreme event 

involvement of 29.7%, and the highest correlations with crash risk include duration of 

distraction by cellphones, driver reading or writing, and atypical distraction, e.g. insect in 

the car. Using detailed pre-crash data from instrumented vehicles, the study contributes 

by quantifying crash risk vis-à-vis detailed driving impairment and streams of secondary 

task involvement and discusses implications of the results.   

 

Chapter 6 take an advantage of emerging vehicle instrumentation and computational 

power which allow for the real-time monitorization of driving environment in terms of 

driver, vehicular movement, roadway, and vehicle’s surrounding to identify leading 

indicators of crashes from multi-dimensional data streams. In order to extent variations in 

driving decisions that are beyond normal in driver behavior and vehicle kinematics, the 

concepts of temporal and unintentional volatility are applied. By integrating and fusing 

multiple streams of data, this study aims to predict the probability of safety critical event 

and generate useful feedback to drivers and warnings to surrounding vehicles regarding 

hazards. To capture the local dependency and volatility in time-series data, several deep 

learning techniques including 1D-Convolutional Neural Network (CNN), Long Short-Term 

Memory (LSTM), and 1DCNN-LSTM are applied, and vehicle kinematics, driving volatility, 

and impaired driving (in terms of distraction) are used as the input parameters. The results 

reveal that the 1DCNN-LSTM model provides the best performance, with 92.5% accuracy 

and prediction of 71% of crashes with a precision of 93%. Additional features are 

extracted with the CNN layers and temporal dependency between observations is 

addressed. The model can be used to monitor driving behavior in real-time and provide 

warnings and alerts to drivers in low-level automated vehicles, reducing their crash risk. 
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Contribution 

The contribution of this dissertation is develop a unique and systematic framework to 

harness big data generated by emerging data sources into the transportation safety 

analysis at the different levels including: 1) system-level, 2) location-level, 3) driver-level, 

4) evet-level, and 5) instance-level. The developed framework can integrate 

multidimensional data generated from different sources including 1) emerging data 

sources (i.e. connected and automated vehicles, naturalistic driving, roadside units), 2) 

roadway inventory data (i.e. geometric information, traffic exposure, historical crashes), 

and 3) driver biometrics (i.e. profile of driver distraction). In order to harness this data, the 

concepts of temporal driving volatility and unintentional driving volatility are developed to 

quantify instantaneous variations in driving behavior. Furthermore, this study contributes 

the literature by extending the longitudinal driving volatility to lateral and vertical volatilities 

in order to capture vehicular movements in the 3D dimensions. Furthermore, a full review 

of volatility measures is conducted in order to find the best measures quantifying crash 

risk3. 

 

In response to each level of analysis, a safety index is utilized and the associations of 

extracted features from the big data in terms of driving volatility, network features, and 

driver distraction profile are explored. Different modeling techniques including frequentist 

approach, heterogeneity-based approach, spatial models, machine learning, and deep 

learning techniques are utilized, and the correlation of extracted features and crash risk 

 
3 This research is published in the transportation research record journal. 
Kamrani, M., Arvin, R., & Khattak, A. J. (2018). Extracting useful information from Basic Safety Message 
Data: an empirical study of driving volatility measures and crash frequency at intersections. Transportation 
Research Record, 2672(38), 290-301. 
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is studied. The results revealed that the extracted features from the big data at different 

level can significantly and substantially enhance the current literature. While currently the 

human driver, as the key contributing factor in traffic crashes, is neglected in the analysis, 

this dissertation provided the framework to quantify instantaneous driver decisions and 

incorporate it into the analysis. Developing such a framework is crucial due to disruptive 

developments in emerging technologies, especially connected and automated vehicles, 

that generates enormous data each day. This dissertation highlights the value of such a 

data and provides a framework to harness and incorporate it into safety analysis at 

different levels.  

 

Implications 

Overall, this study utilized the concept of driving volatility and extended it in several 

aspects to contribute to the analysis of real-world big data in order to produce applicable 

knowledge for intelligent transportation systems and smart cities. The developed 

framework has wide range of application in different contexts, especially in connected 

and automated vehicles. While the micro level analysis of this study can be adopted in 

low levels of automated vehicles for driver monitoring, macro level analysis can be used 

to improve the navigation capability of CAVs. In the following, some of the potential 

applications are discussed.  

 

As discussed in the chapter 2, this dissertation developed a safety map quantifying driving 

volatility across the study area. The created map using CV data can be utilized to better 

navigate the CAVs in a mixed traffic with conventional vehicles and adjust its behavior in 
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different locations based on the safety level across the space. Furthermore, additional 

map based on the CAV data can be generated which mainly models driving behavior of 

CAVs across the study area. This will help manufacturer to improve the controlling 

algorithm at unsafe locations to prevent any potential conflicts with surrounding 

environment. On the other hand, government agencies (e.g. Department of 

Transportation) can use the developed methodology to identify hotspot locations in the 

network where crashes are waiting to happen. The algorithm will help them to find 

locations where further investigations and improvements are needed to reduce driving 

volatility as a leading indicator of crashes.  

 

Focusing on conventional human-driven vehicles, the developed framework is capable to 

classify drivers based on the developed spatiotemporal driving profile for each driver in 

chapter 2 using their historical driving across the study area4. As an illustration, the CV 

data collected in the SPMD study contains information of more than 2800 drivers, which 

was used to classify drivers in different spatial and temporal contexts using unsupervised 

machine learning based on their historical driving records at different neighborhoods, i.e. 

commercial, residential, and highways. This score will help both insurance companies 

and drivers to monitor their driving performance and reduce their crash risk.  

 

The developed safety map can also be utilized to perform route choice modeling for the 

system users. As part of this dissertation, we have published a paper which suggests a 

 
4 Mohammadnazar, A., Arvin, R. & Khattak, A. (2020). “Categorizing Driving Style using Connected Vehicle 
Data: Application of unsupervised learning”. Presented at the 99th Transportation Research Board 
Conference. 
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framework to integrate mobility and safety for the pathfinding problem5. The developed 

model is capable to perform route choosing based on the historical driver behavior (in 

terms of driving volatility), safety of the alternative routes, and travel time. To illustrate the 

model, the framework is applied to the CV data in Ann Arbor, MI and the implications of 

the approach widely discussed. Further application of this approach can be safety-based 

traffic assignment. Currently, the literature has mainly considered travel time, travel cost, 

and fuel consumption to perform traffic assignment, while due to lack of data, there is no 

study that focuses on safety-based assignment. Using the developed volatility at the 

network, safety-based traffic assignment can be performed in order to increase the overall 

safety of the system.   

 

Referring to the micro-level implications of this research, instantaneous crash risk of 

drivers is quantified considering vehicular movements, driver behavior, and 

roadway/environmental factors. The developed framework is capable to monitor driving 

environment and predict crash occurrence in real-time. The deep learning framework can 

be used in Advanced Driving Assistant Systems of low level of automated vehicles, where 

the human driver still controls the vehicle but receiving some additional information from 

the system, in order to generate feedback and warnings to the drivers while their risk of 

crash is high to take safe maneuver and prevent an incident. Furthermore, the developed 

statistical models can be used to develop strategies and countermeasures to reduce 

driving volatility.  

 

 

 
5 Hoseinzadeh, N., Arvin, R., Khattak, A. J., & Han, L. D. (2020). Integrating safety and mobility for 
pathfinding using big data generated by connected vehicles. Journal of Intelligent Transportation 
Systems, 1-17. 
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