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ABSTRACT 

 

Metal hydrides are of interest for solid-state hydrogen storage and energy 

applications. Binary alkaline earth hydrides present prototypical systems for 

understanding the relationship between structure and hydrogen dynamics. 

Hydrogen transport is a key property that directly relates to the efficiency of 

devices. We have chosen three different alkaline earth metal hydrides with vastly 

different hydrogen kinetics: BaH2 [barium hydride], CaH2 [calcium hydride], and 

MgH2 [magnesium hydride]. Hydrogen transport in MgH2 is notoriously poor while 

BaH2 exhibits fast hydride ion conduction. We employ neutron scattering 

techniques to understand the role that the crystal structure plays in influencing the 

hydrogen dynamics in these materials. A structural phase transition (orthorhombic 

to hexagonal) was observed in BaH2 occurring around T = 775 K. Quasielastic 

neutron scattering measurements showed that the hydrogen diffusion coefficients 

increase by an order of magnitude following the phase transition. Hydrogen jumps 

among the shortest hydrogen-hydrogen distances were found to be restricted in 

the orthorhombic phase but become the preferred jumps in the hexagonal phase. 

Total neutron scattering measurements show evidence of dynamic structural 

fluctuations and a splitting of the deuterium sites in the hexagonal phase. High 

pressure (1.3 GPa) induces the same phase transition and increases the hydrogen 

dynamics. The orthorhombic structure of CaH2 is isomorphic to BaH2, but the 

transition to the hexagonal structure is absent. Instead, evidence of a second-order 

phase transition was found, which influences the hydrogen dynamics. Inelastic 

neutron scattering indicates that the ionic bonds in CaH2 are stronger than in BaH2, 

which hampers diffusion. The behavior of MgH2 is different due to the stronger, 

covalent-like bonds. Hydrogen diffusion was not observed preceding the sudden 

thermal decomposition around 600 K as the hydrogen remains tightly bound. This 

study served to elucidate the role that a structural phase transition plays in 

transforming a solid-state material with modest hydrogen kinetics into a fast-ionic 

conductor. Even small modifications of the structure influence the hydrogen 
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dynamics. The knowledge gained here sheds light on the intricate relationship 

between the structure and hydrogen diffusion, which can be applied to understand 

and advance the transport properties in other metal hydride systems. 

  



 

vii 
 

TABLE OF CONTENTS 

 
 Introduction .................................................................................................... 1 
1.1 Background and Motivation .................................................................... 1 
1.2 Overview of Investigation ........................................................................ 6 

 Theory of Neutron Scattering ......................................................................... 8 
2.1 Momentum and Energy Transfer ............................................................ 8 
2.2 Neutron Scattering Cross Sections ......................................................... 9 
2.3 Scattering Lengths ................................................................................ 11 
2.4 Correlation and Response Functions ................................................... 14 

2.5 Diffraction ............................................................................................. 16 
2.6 Pair Distribution Functions .................................................................... 17 

 Experimental Methods ................................................................................. 20 
3.1 Sample Environments........................................................................... 20 

3.1.1 High Temperature.......................................................................... 21 
3.1.2 High Pressure ................................................................................ 23 

3.2 Neutron Spectroscopy .......................................................................... 24 
3.2.1 Quasielastic Neutron Scattering .................................................... 25 

3.2.1.1 Temperature Dependent QENS ................................................. 28 

3.2.1.2 High Pressure QENS ................................................................. 29 

3.2.2 Inelastic Neutron Scattering .......................................................... 29 
3.3 Diffraction ............................................................................................. 30 

3.3.1 X-Ray Diffraction ........................................................................... 30 

3.3.2 Neutron Diffraction......................................................................... 31 
3.3.2.1 Temperature Dependent NPD ................................................... 31 

3.3.2.2 High Pressure NPD .................................................................... 31 
 Data Analysis Methods ................................................................................ 34 
4.1 Quasielastic Neutron Scattering ........................................................... 34 

4.1.1 QENS Data Analysis ..................................................................... 34 
4.1.2 Jump Diffusion Models .................................................................. 35 
4.1.3 Data Analysis Using QClimax ........................................................ 38 

4.1.3.1 Applying Model Constraints .................................................. 39 
4.2 Diffraction and Total Neutron Scattering ............................................... 42 

4.2.1 Rietveld Refinements .................................................................... 42 
4.2.2 PDF Analysis ................................................................................. 43 

4.3 Pressure Determination Methods ......................................................... 44 

4.3.1 SNAP Experiment with TiZr Gasket............................................... 44 
4.3.2 SNAP and BASIS Experiments with CuBe Gasket ........................ 45 

4.4 Inelastic Neutron Scattering .................................................................. 48 
 Sample Synthesis Methods ......................................................................... 50 
5.1 Hydrogen Storage and Thermodynamics ............................................. 50 

5.2 Binary Hydrides and Deuterides ........................................................... 52 

5.2.1 Magnesium Hydride (MgH2 and MgD2).......................................... 52 

5.2.2 Barium Hydride (BaH2 and BaD2) .................................................. 54 



 

viii 
 

5.2.3 Calcium Hydride (CaH2 and CaD2) ................................................ 55 
5.3 Ternary Hydrides and Deuterides ......................................................... 56 

5.3.1 Dibarium Magnesium Hexahydride (Ba2MgH6 and Ba2MgD6) ....... 56 
5.3.2 Tetracalcium Trimagnesium Tetradecahydride (Ca4Mg3H14 and 
Ca4Mg3D14) .................................................................................................. 57 

 Barium Hydride ............................................................................................ 59 
6.1 Temperature Dependence .................................................................... 59 

6.1.1 Crystal Structure ............................................................................ 59 
6.1.2 Total Neutron Scattering and Diffraction ........................................ 61 

6.2 Hydrogen Diffusion: Quasielastic Neutron Scattering ........................... 69 

6.2.1 Vibrational Density of States: Inelastic Neutron Scattering ............ 77 
6.3 Pressure Dependence .......................................................................... 79 

6.3.1 Diffraction ...................................................................................... 79 
6.3.2 Hydrogen Dynamics: Quasielastic Neutron Scattering .................. 84 

6.4 BaH2 Summary of Results .................................................................... 86 
 Calcium Hydride .......................................................................................... 89 

7.1 Crystal Structure ................................................................................... 89 
7.1.1 Total Neutron Scattering ................................................................ 90 

7.2 Hydrogen Dynamics ............................................................................. 95 
7.2.1 Quasielastic Neutron Scattering .................................................... 95 
7.2.2 Vibrational Density of States (INS) ................................................ 97 

7.3 CaH2 Summary of Results .................................................................... 98 

 Magnesium Hydride ................................................................................... 100 
8.1 Crystal Structure ................................................................................. 100 

8.1.1 Total Neutron Scattering and Diffraction ...................................... 101 

8.2 Hydrogen Dynamics ........................................................................... 104 
8.2.1 Quasielastic Neutron Scattering .................................................. 104 

8.2.2 Vibrational Density of States (INS) .............................................. 106 
8.3 MgH2 Summary of Results ................................................................. 108 

 Conclusions and Future Outlook ................................................................ 110 

9.1 Structure Summary ............................................................................. 110 
9.2 Dynamics Summary ........................................................................... 112 

9.3 High Pressure Summary ..................................................................... 115 

9.4 Concluding Remarks and Future Suggestions ................................... 115 
List of References ............................................................................................. 117 
Appendix ........................................................................................................... 125 

A.1 Quasielastic Neutron Scattering Experimental Details ....................... 126 
A.1.1 BASIS Experiments ..................................................................... 126 

A.1.2 HFBS Experiment ........................................................................ 127 
A.2 Inelastic Neutron Scattering Experimental Details .............................. 128 

A.2.1 VISION Experiments ................................................................... 128 
A.3 Neutron Diffraction Experimental Details ............................................ 128 

A.3.1 SNAP Experiments ...................................................................... 129 

A.3.2 NOMAD Experiments .................................................................. 130 



 

ix 
 

Vita .................................................................................................................... 132 
 
 

  



 

x 
 

LIST OF TABLES 

 
 
Table 1: Scattering lengths and cross sections for two of the isotopes of 

hydrogen (protium and deuterium) and an isotopic average for Mg, Ca, and 
Ba.23 The units for scattering lengths and cross sections are fm and barns, 
respectively. ................................................................................................. 14 

Table 2: Instrument parameters for QENS measurements. Values for energy 
resolution, dynamic energy range, and Q-range are given. ......................... 27 

Table 3: Hydraulic load applied to PE press and corresponding sample pressures 
for the QENS experiment at BASIS. ............................................................ 48 

Table 4. Refined lattice parameters and atomic coordinates for both phases of 
BaD2 from NPD measurements, as reported by Verbraeken et al.13 ........... 60 

Table 5: Jump lengths, residence times, and diffusion coefficients for the QENS 
fitting results of BaH2. .................................................................................. 72 

   
 



 

xi 
 

LIST OF FIGURES 

 
 
Figure 1: Volume requirements for 4 kg of hydrogen stored by different methods 

relative to the size of a car. Reprinted with permission from Schlapbach and 
Zuttel.2 ........................................................................................................... 2 

Figure 2: Wave vector and scattering vector relationship in reciprocal space. ...... 9 
Figure 3: Geometry of a neutron scattering experiment. ..................................... 10 
Figure 4: Diffraction of neutrons or X-rays by a crystal. ...................................... 17 

Figure 5: Custom stick furnace for VISION experiments. The vanadium heat 
shield is in the raised position, which is lowered for during measurements. 22 

Figure 6: Stick assembly and parts for the experiments conducted in the MICAS 
furnace at BASIS and NOMAD. ................................................................... 23 

Figure 7: Paris-Edinburgh cell with a stand assembly for QENS experiments at 
BASIS. One of the CuBe gasket halves is shown. ....................................... 24 

Figure 8: QENS spectra for plastic crystalline cyclooctanol measured at BASIS at 
Q = 1.0 Å-1 for the temperatures of 230 K and 280 K. The resolution function 
was measured at T = 20 K.32 ....................................................................... 26 

Figure 9: Q2 dependence of the HWHM of the Lorentzian broadening. A DQ2 
behavior is observed for unrestricted diffusion. The Chudley-Elliott jump 
diffusion model diverges from the DQ2 behavior with increasing Q. ............ 36 

Figure 10: Comparison of three different jump diffusion models: Chudley-Elliott, 
Singwi-Sjölander, and Hall-Ross.41, 43-45 ...................................................... 38 

Figure 11: Comparison of unconstrained vs. constrained fits using QCLIMAX for 
BaH2 at T = 850 K.45 .................................................................................... 39 

Figure 12: Unconstrained fits (red circles and solid lines) that were performed 
with DAVE compared with fits constrained to follow the Chudley-Elliott jump 
diffusion model (black circles and solid lines) for BaH2 at (a) 670 K and (b) 
750 K.45 ........................................................................................................ 41 

Figure 13: Pressure-load curve for BaD2 in a TiZr gasket. .................................. 45 

Figure 14: SNAP diffraction pattern summed over the high-angle column of the 
low angle detector bank (~ 59º – 74º)  for BaD2 in a CuBe gasket. ............. 46 

Figure 15: SNAP diffraction pattern summed over the center column of the high 
angle detector bank (~ 97º – 113º) for BaD2 in a CuBe gasket. ................... 47 

Figure 16: Van ‘t Hoff plot. The equilibrium hydrogen pressure is plotted vs. the 
hydrogen concentration. Likewise, the equivalent electrochemical potential is 
plotted vs. inverse temperature. Reprinted with permission from Schlapbach 
and Zuttel.2 .................................................................................................. 51 

Figure 17: Crystal structures of BaD2. (a) Orthorhombic (cotunnite) structure at T 
= 298 K and (b) hexagonal (Ni2In-type) structure at T = 883 K. Reprinted with 
permission from Verbraeken et al.13 ............................................................ 61 

Figure 18: PDF G(r) vs. r showing the local and global structure for BaD2 at (a) 
300 K and (b) 300K – 900 K (G(r) are translated). The calculated model uses 
the orthorhombic cotunnite structure. .......................................................... 62 



 

xii 
 

Figure 19: PDF G(r) vs. r for BaD2 at T = 300K – 900 K (G(r) are translated). The 
calculated model uses the orthorhombic cotunnite structure. ...................... 63 

Figure 20: NPD pattern for BaD2 measured at NOMAD for temperatures between 
725 K – 900 K. The orthorhombic to hexagonal phase transition can be 
observed by the extinction of the orthorhombic (112) and (210) peaks 
around d = 2.66 Å. ....................................................................................... 64 

Figure 21: Refined parameters from PDF analysis for BaD2 with the cotunnite 
structure. (a) Lattice parameters and  atomic displacement parameters (U) 
for (b) Ba, (c) D(1), and (d) D(2) atomic sites. .............................................. 65 

Figure 22: Refined special atomic coordinates x and z for the (a) Ba, (b) D(1), 
and (c) D(2). ................................................................................................. 66 

Figure 23: Comparison of G(r) for BaD2 at 900 K fit with models containing D(1) 
positioned on 2d (non-split) sites and 4f (split) sites. G(r) are translated for 
clarity. .......................................................................................................... 67 

Figure 24: Elastic intensity scan measured at BASIS. The data is averaged over 
a Q-range of 0.5 – 1.5 Å-1. ........................................................................... 70 

Figure 25: QENS spectra measured at BASIS at Q = 1.5 Å-1 at (a) T = 710 K and 
(b) T = 850 K with the fit components shown. HWHM Γ(Q) vs. Q2 of the 
Lorentzian in the (c) low temperature orthorhombic phase and (d) the high 
temperature hexagonal phase measured at BASIS. The solid lines are fits of 
the Chudley-Elliott jump diffusion model. ..................................................... 71 

Figure 26: Arrhenius diagram for BaH2 with diffusion coefficients calculated from 
QENS. Solid lines are a linear fit of the data. Activation energies and 
preexponential diffusion coefficients are reported. ....................................... 73 

Figure 27: D-D distances reported from neutron diffraction data for BaD2.13 The 
orthorhombic and hexagonal (non-split D(1) sites) phases were measured at 
T = 670 K and 883 K, respectively. .............................................................. 75 

Figure 28: Crystal structures and potential diffusion pathways in BaD2 for the (a) 
low temperature orthorhombic phase at 670 K and the (b) high temperature 
hexagonal phase at 883 K from neutron diffraction measurements.13 ......... 77 

Figure 29: INS spectra from 5 K to 650 K for BaH2 measured at VISION. The 
optical phonon modes corresponding to H(1) and H(2) sites, as well as multi-
phonon modes, are labeled. Intensities is translated for clarity.................... 78 

Figure 30: (a) Pressure dependence of the lattice parameters for the 
orthorhombic and hexagonal phases of BaD2. (b) c/a lattice parameter ratio. 
(c) Volume of a formula unit of BaD2 as a function of pressure.90 ................ 80 

Figure 31: SNAP neutron diffraction pattern for BaD2 at (a) ambient pressure 
(orthorhombic phase) and (b) P = 6.9 GPa (hexagonal phase). .................. 81 

Figure 32: Pressure dependence of the special atomic coordinates for (a) D(1) 
and (b) D(2) atoms. Horizontal lines are positioned at the value for no 
applied pressure. ......................................................................................... 83 

Figure 33: QENS spectra measured at BASIS for BaH2 up to pressures of 7.1 
GPa. All data is averaged into a single Q-bin and the intensities are 
normalized with respect to the elastic peak. ................................................ 85 



 

xiii 
 

Figure 34: PDF G(r) vs. r showing the local and global structure for CaD2 at (a) 
300 K and (b) 300K – 920 K (G(r) are translated). ....................................... 91 

Figure 35: PDF G(r) vs. r showing the temperture dependence of the local 
structure in CaD2 for a temparture range of 300 K – 920 K. PDF values are 
translated for clarity. Blue circles represent the experimental data and the 
solid red lines is the calculated model. ........................................................ 92 

Figure 36: Refined parameters from PDF analysis for CaH2. (a) Lattice 
parameters, (b) deuterium site occupancies, and atomic displacement 
parameters (U) for (c) D(1) and (d) D(2) sites. ............................................. 93 

Figure 37: Atomic coordinates x and z for the (a) Ca, (b) D(1), and (c) D(2) sites 
for CaD2. ...................................................................................................... 94 

Figure 38: Elastic scan measured at HFBS for CaH2 from T = 270 K – 800 K. ... 95 
Figure 39: QENS spectra and resolution function measured at HFBS for CaH2 at 

T = 800 K and Q = 1.2 Å-1. ........................................................................... 96 

Figure 40: INS spectra from 5 K to 750 K for CaH2 measured at VISION. 
Intensities are translated for clarity. ............................................................. 98 

Figure 41: Rutile crystal struture of MgD2. ........................................................ 101 
Figure 42: PDF G(r) vs. r for MgD2 at (a) 100 K and (b) 100K – 400 K (G(r) are 

translated). ................................................................................................. 102 
Figure 43: Temperature dependence of the lattice parameters for MgD2 from total 

neutron scattering measurements. The atomic coordinates relating to the x-
coordinate for the deuterium sites is shown in the inset. ........................... 103 

Figure 44: (a) PDF G(r) measured at NOMAD for the heat treated MgD2 sample 
at T = 100 K. (b) NPD patterns at T = 100 K for the MgD2 sample before and 
after the heat treatment. Patterns were scaled for clarity. .......................... 104 

Figure 45: Elastic scan for MgH2 from 70 K – 525 K. ........................................ 105 
Figure 46: QENS spectra measured at BASIS for MgH2 at T = 593 K and Q = 1.3 

Å-1. ............................................................................................................. 106 
Figure 47: INS spectra from 5 K to 620 K for MgH2 measured at VISION. 

Intensities are translated for clarity. ........................................................... 108 



 

1 
 

 INTRODUCTION 

 

1.1 Background and Motivation 

 

With the growing concerns of the negative environmental impact of 

greenhouse gas emissions on our climate, it is becoming increasingly important to 

reduce the dependence on fossil fuels by transitioning to cleaner renewable energy 

sources. Despite recent progress, 79% of our energy needs are still being fulfilled 

by fossil fuels in 2018.1 A promising clean energy source to harness is hydrogen. 

Hydrogen has more than 3 times the amount of chemical energy per mass than 

fossil fuels.2 When combusted with dilute mixtures of air, it is a clean burning fuel 

that generates water as the only byproduct. Currently, a true hydrogen economy 

has yet to come to fruition because the infrastructure is lacking due to technical 

barriers involving the production and storage of hydrogen. Before hydrogen can 

emerge to provide energy on a large scale, there are key issues that need to be 

solved. This research investigates the structure and hydrogen dynamics of alkaline 

earth metal hydride systems, which are potential candidates for use as solid-state 

electrolytes and hydrogen storage materials. 

Conventional methods for hydrogen storage are in the liquid and gas state. 

For many applications, and especially in the case of onboard mobile storage, there 

are strict volumetric requirements that the storage device must adhere to. For 

example, high pressure gas storage tanks would need an internal volume of about 

60 gallons for 4 kg of hydrogen storage at 200 bar.2 The relative volumes needed 

to store 4 kg of hydrogen in comparison to the size of a car is displayed in Figure 

1. Higher volumetric storage densities can be achieved using liquid storage, but 

hydrogen condenses at a temperature of 20 K at 1 bar of pressure, requiring a 

significant amount of energy. Clearly, the volumetric capacities needed for 

gaseous and liquid hydrogen storage presents a significant problem, especially 

considering the U.S. Department of Energy (DOE) goal of onboard storage of 5 – 
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13 kg H2.3 In order to compete with electric and hydrocarbon powered vehicles, 

this is the amount of hydrogen needed to achieve ranges greater than 300 miles. 

Recently, high-pressure gas storage tanks have been greatly improved with 

carbon fiber reinforcements, allowing for higher pressures of 700 bar to be 

routinely achieved. This type of storage system is currently used in hydrogen fuel 

cell vehicles, such as the Toyota Mirai.4 However, higher pressure fuel tanks 

present increased safety concerns. Beyond fuel cell vehicles, other mobile 

applications with less stringent volumetric/gravimetric restraints, such as cargo 

ships and ferries, can benefit from hydrogen power.5 In the field of hydrogen 

storage, improving high pressure gas storage tanks is viewed as the short-term 

solution to meet the U.S. DOE goals, while the long-term solution likely lies in 

materials-based hydrogen storage technologies.   

 

Figure 1: Volume requirements for 4 kg of hydrogen stored by different methods relative to the size 

of a car. Reprinted with permission from Schlapbach and Zuttel.2 

 
 

The alternative to gas and liquid storage methods is solid-state storage. 

Many metals and alloys can store large quantities of hydrogen, which are 
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collectively known as metal hydrides. Solid-state hydrogen storage is promising 

because many of the metal hydrides have high volumetric and gravimetric storage 

densities. This allows large amounts of hydrogen to be stored at low pressures in 

a compact manner. For example, Figure 1 shows the volumetric reduction 

achieved using the metal hydride Mg2NiH4 when compared to both the liquid and 

gas storage methods.2 This compound was chosen as the storage medium for a 

hydrogen-powered bus built by Daimler-Benz, along with an additional two tanks 

containing iron-titanium hydride.6 A significant amount of research has been 

conducted in the decades following this early prototype, which is summarized in 

the comprehensive review on the use of metal hydrides for fuel cell applications 

reported by Lototskyy et al.7 Based on the storage densities alone, metal hydrides 

may seem like the ideal storage material, but major drawbacks have so far 

prevented their widespread use. For most applications, the metal hydride should 

possess excellent dehydrogenation/rehydrogenation kinetics, large volumetric and 

gravimetric storage densities, fast refueling rates, resistance to degradation during 

thermal cycling, and a reasonably low decomposition temperature, amongst other 

criteria. The ability to transport hydrogen quickly and efficiently through the 

material is a crucial factor that directly influences the ease of hydrogen storage 

and retrieval in functional devices. While hydrides consisting of light-weight metals 

(Li, Na, Mg, etc.) have high storage densities, the hydrogen is often stored 

irreversibly and/or with poor kinetics. On the other hand, the heavier elements have 

the immediate drawback of low gravimetric storage densities and tend to have high 

decomposition temperatures, but they can offer excellent kinetics and reversibility. 

Immense efforts have been devoted to tailoring metal hydrides for onboard 

applications, with most of this research focused on lowering the decomposition 

temperatures, increasing the storage densities, and improving the kinetics. 

Common techniques to alter these properties are nanostructuring (ball milling), 

catalyst addition, aliovalent doping, and/or alloying the material.8, 9 In practice, a 

combination of these techniques is typically used. While combining multiple 

methods often leads to the most significant improvement in the properties, it can 
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be difficult to separate the underlying mechanism causing the improvement. 

Despite these efforts, the ideal metal hydride system that satisfies all the DOE 

goals has remained elusive. In addition to the mobile applications, metal hydrides 

may prove useful for high temperature, stationary applications where high thermal 

stability is desired, such as neutron moderators in nuclear reactors,10, 11 tritium 

sequestration systems (getterers) in next generation nuclear plants,11 or chemical 

heat storage materials for solar applications.12 Better yet, some of the metal 

hydrides have been found to exhibit fast ionic conduction of hydride ions, making 

them intriguing candidates for solid-state electrolytes in a wide range of energy-

related applications.13 

Our research is focused on the metal hydrides from the alkaline earth metal 

group. This group forms binary hydrides with the general formula AeH2 with Ae = 

Be, Mg, Ca, Sr, Ba, and Ra. These compounds are known as saline hydrides 

because of the ionic nature of the bonding, except for Mg and Be. The chemical 

bonding in BeH2 is covalent while MgH2 bridges the gap between covalent and 

ionic, which is why it is sometimes referred to as an intermediate hydride. Our 

investigation will focus on three of the alkaline earth hydrides: MgH2, BaH2, and 

CaH2. MgH2 has been studied extensively for mobile applications due to the high 

hydrogen storage density (7.6 wt%) and the intermediate decomposition 

temperature, Tdec ≈ 600 K.14, 15  Additionally, the high abundance of Mg in the 

Earth’s crust makes this a very appealing element for manufacturing. 

Unfortunately, poor hydrogen kinetics and reversibility has largely hampered the 

potential use for this material in mobile applications. BaH2 and CaH2 both have 

high decomposition temperatures (Tdec ≈ 940 K) and modest storage densities 

(1.44 wt% for BaH2, 4.75 wt% for CaH2), which resulted in these materials being 

largely ignored by the scientific community so far.15 Nonetheless, BaH2 is an 

intriguing material because it exhibits fast ionic conduction of hydride ions at 

elevated temperatures (0.2 S∙cm-1 at T = 903 K), which is faster than the typical 

oxide and proton conductors in use today.13 In addition, the crystal structure of 

CaH2 (and SrH2) is isomorphic with that of BaH2, but these materials experience 
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slower hydrogen dynamics. Therefore, information gained about one of these 

materials can be largely applied to understand the other compounds. In summary, 

MgH2 is a light-weight metal hydride with slow hydrogen kinetics, CaH2 is middle-

weight with intermediate hydrogen kinetics, and BaH2 is heavy-weight with fast 

hydrogen kinetics. This study seeks to understand what causes such drastic 

differences in the hydrogen transport properties in these materials. Most kinetics 

studies have focused on measuring the macroscopic dehydrogenation and 

rehydrogenation rates due to its direct relation to refueling times and the ease of 

hydrogen retrieval for device operations. To our knowledge, no experimental 

investigations have been devoted to determining the microscopic nature of the 

diffusion mechanism in any of these three materials. A few studies have reported 

the ionic conductivity extracted from electrochemical impedance spectroscopy 

(EIS) measurements.13, 16, 17 However, this technique yields bulk diffusion rates 

and does not provide information about the microscopic nature of the diffusion 

process, such as diffusion pathways and hydrogen jump lengths. In addition, there 

have been some computational investigations focused on the hydrogen 

dynamics.16, 18  

In addition to the binary hydrides, we planned to study two different ternary 

hydrides: dibarium magnesium hexahydride (Ba2MgH6) and tetracalcium 

trimagnesium tetradecahydride (Ca4Mg3H14). However, difficulties in the sample 

synthesis process prevented a proper investigation of these two materials. As 

mentioned previously, alloying a material is a common technique to alter and 

improve the properties of materials. Currently, investigations of Ba2MgH6 and Ca-

4Mg3H14 have only been focused on sample synthesis methods and structural 

characterization.19, 20 Therefore, the hydrogen transport properties are unknown. 

Alloying a HAEH with the lighter weight Mg atoms could be a unique method to 

increase the storage densities while maintaining adequate hydrogen transport 

properties.  

We will use neutron scattering to understand the nature of the hydrogen 

diffusion mechanism in alkaline earth hydrides and how the bonding and structure 
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influences this process. Fast ionic conduction of hydride ions has immense 

commercial appeal and fundamental knowledge of this process can lead to a better 

understanding of how to improve the transport of hydrogen in other metal hydride 

systems. 

1.2 Overview of Investigation 

    
Neutron scattering is the main technique used in this investigation to study 

these metal hydride systems. Many experimental techniques have difficulty 

measuring signals from hydrogen. However, the large incoherent neutron 

scattering cross section of hydrogen allows neutron scattering to successfully 

probe hydrogen, making it the ideal technique for our investigation. In Chapter 2, 

a general introduction to the theory of neutron scattering will be presented. In 

Chapter 3, an overview of the experimental methods and sample environments will 

be discussed. This includes incoherent quasielastic neutron scattering (QENS), 

powder inelastic neutron scattering (INS), neutron powder diffraction (NPD) and 

total neutron scattering. QENS measures the diffusion of hydrogen through the 

crystal structure, giving insight into the diffusion mechanism and energy 

landscape. INS, also known as neutron vibrational spectroscopy, measures the 

vibrational density of states. This provides information about chemical bonding, 

local atomic structure, and the hydrogen release mechanism. NPD and total 

neutron scattering are employed to characterize the local vs. global crystal 

structure and to examine its role in processes such as hydrogen release and 

diffusion. To safely measure pyrophoric samples at high temperatures, custom 

sample environments were designed and fabricated. In addition to high 

temperature experiments, the effect of pressure on the material properties was 

also explored. Details of the various sample environments will be presented in 

detail. Additional experimental details will be given in the Appendix. Chapter 4 will 

cover the data analysis methods used in the investigation. This includes everything 

from data reduction and analysis, calculations, and methods for pressure 

determinations. Next, Chapter 5 will give a thorough account of the synthesis 
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methods used to produce the protonated and deuterated metal hydride samples. 

Most of the metal hydrides studied in this investigation are not commercially 

available. Lastly, a complete summary and detailed analysis of the results for 

BaH2, CaH2, and MgH2 will be presented and discussed in Chapters 6 – 8 followed 

by a conclusion and future outlook discussion in Chapter 9. The main focus of this 

research was to obtain a complete description about the structure and dynamics 

of BaH2 due to its unique behavior and interesting hydrogen transport properties. 

Second to this, the hydrides of CaH2 and MgH2 were investigated with the same 

techniques for comparison to BaH2.  
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 THEORY OF NEUTRON SCATTERING 

         
 

A rigorous derivation of neutron scattering theory is beyond the scope of 

this chapter and can be found elsewhere.21, 22 The focus here is to highlight and 

introduce the main features of neutron scattering theory that are needed to 

understand the results in this investigation. 

2.1 Momentum and Energy Transfer 

 
Consider the case of a monochromatic neutron beam of wavelength λ 

incident on a single atom whose position is fixed in space. The incident neutron is 

unable to transfer energy to the atom, resulting in an elastic scattering event. Later, 

this constraint will be removed, and a finite amount of energy will be transferred to 

the sample, known as inelastic scattering. During the elastic scattering process, 

the incident and final wavevectors, 𝑘 and 𝑘′, remain unchanged: 

 𝑘 = 𝑘′ =
2𝜋

𝜆
 (2.1) 

We can then define the difference in wavevectors as the scattering vector Q. 

 𝑄 = 𝑘′ − 𝑘 (2.2) 

As displayed in Figure 2, the scattering angle dependence of the scattering vector 

is given by: 

 𝑄 = √𝑘2 + 𝑘′2 − 2𝑘𝑘′cos (2𝜃) =
4𝜋

𝜆
sin(𝜃) (2.3) 

 

The momentum transfer, ħQ, along with the energy transfer, ħω, are two concepts 

that are central to neutron scattering theory. The energy transfer and momentum 

transfer are related through: 

 ℏ𝜔 = 𝐸 =
ℏ2𝑄2

2𝑚
 (2.4) 
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Figure 2: Wave vector and scattering vector relationship in reciprocal space. 
 
 

2.2 Neutron Scattering Cross Sections 

 
The geometry of a typical scattering experiment is displayed in Figure 3. 

The incident beam with wave vector k is scattered by the sample and is measured 

by a detector with a final wave vector of 𝑘′. The quantity that is measured in a 

neutron scattering experiment is the fraction of neutrons with incident energy E 

scattered into a solid angle dΩ in the direction of 2θ and ϕ (as seen by the detector) 

with a final energy between 𝐸′  and 𝐸′ + 𝑑𝐸′ .21, 22 The partial differential cross 

section is thus given by: 

 
𝑑2𝜎

𝑑Ω𝑑𝐸′
=

𝑛′𝑑2𝜎

𝑗𝑑Ω𝑑𝐸′
 (2.5) 

where 𝑛′ is the number of neutrons scattered into the detector, j is the incident 

neutron flux, and σ is the total cross section. For the case of elastic scattering (or 

if energy transfer is not determined during the measurement), we can use the 

following notation:21  

 ⟨𝑘′|�̂�|𝑘⟩ = (
𝑚

2𝜋ℏ2
) ∫ 𝑒−𝑖𝑘′∙𝑟�̂�𝑒−𝑖𝑘∙𝑟𝑑𝑟 (2.6) 

to express the differential cross section as: 

 
𝑑𝜎

𝑑Ω
= |𝑓(𝑄)|2 = |⟨𝑘′|�̂�|𝑘⟩|

2
 (2.7) 

where f(Q) is the scattering amplitude, and �̂� is the interaction potential between 

the incident neutron and the sample. The differential cross section is the quantity 
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that is measured during an experiment that counts all the neutrons scattered into 

the solid angle dΩ, i.e. no energy determination.  

 

 

 

Figure 3: Geometry of a neutron scattering experiment. 

 
 

Now we can expand this to the case of inelastic scattering where both the 

initial and final neutron energies are determined. This type of measurement yields 

information known as the partial differential cross section, which is sometimes 

referred to as the double differential cross section. The initial state of the sample 

is described by an eigenvector, |𝜆⟩. Upon interaction with the sample, the incident 

neutron energy changes by ħω through the rearrangement of the target states. 

During the transition from initial state λ to final state λ′, the target energy changes 

by the amount: 

 ℏ𝜔 = 𝐸𝜆′ − 𝐸𝜆 (2.8) 

The differential cross section can then be expressed as: 

 
𝑑𝜎

𝑑Ω
=

𝑘′

𝑘
|⟨𝑘′𝜆′|�̂�|𝑘𝜆⟩|

2

 (2.9) 
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Including energy conservation through the use of a delta function, the partial 

differential cross section can be written as:  

 
𝑑2𝜎

𝑑Ω𝑑𝐸′
=

𝑘′

𝑘
∑ 𝑝𝜆

𝜆𝜆′

|⟨𝑘′𝜆′|�̂�|𝑘𝜆⟩|
2

𝛿(ℏ𝜔 + 𝐸𝜆 − 𝐸𝜆′)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (2.10) 

where 𝑝𝜆  is a weighting parameter used to normalize the range of accessible 

states. In practice, instrumental effects cause the delta function to broaden. 

Therefore, the resolution of the instrument needs to be measured and accounted 

for carefully during the data reduction and analysis of neutron scattering data.  

2.3 Scattering Lengths 

 
Again, assume the case of a neutron interacting with a single, bound 

nucleus. Due to the nature of the neutron-nucleon interaction, the scattering is 

isotropic and can be described by a single parameter, b, known as the scattering 

length. The scattering length is a complex parameter, with real values representing 

the neutron-nucleon scattering and imaginary values for absorption. A suitable 

form of �̂�(𝑟) can be achieved using Fermi’s golden rule, which also satisfies the 

Born approximation since both are based on first-order perturbation theories.22 The 

resulting Fermi pseudopotential takes the form of a delta function:  

 �̂�(𝑟) =
2𝜋ℏ2

𝑚
𝑏𝛿(𝑟 − 𝑅) (2.11) 

and is used to describe the interaction potential for an incident neutron scattering 

from a nucleus at position R.23 Substituting Eq. (2.11) into Eq. (2.6) and setting R 

= 0 gives the expression: 

 ⟨𝑘′|�̂�|𝑘⟩ = 𝑏 (2.12) 

Therefore, Eq. (2.7) takes the form: 

 
𝑑𝜎

𝑑Ω
= |𝑏|2 (2.13) 

The total cross section is then: 
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 𝜎 = 4𝜋|𝑏|2 (2.14) 

Cross sections are conventionally reported in the units of barns, where 1 barn = 

10-24 cm2. One can observe that the cross section has a unit of area. Therefore, 

the cross section can be viewed as an impenetrable sphere that presents a cross 

sectional area with radius b to the incoming neutron. A larger positive scattering 

length provides a larger target for the neutron to interact with, hence increasing the 

probability of a scattering event occurring. An atom with a large cross section will 

scatter neutrons more efficiently than an atom with a smaller cross section.  

 Expanding this from the case of a single nucleus to a rigid array of N nuclei, 

we can investigate interference effects that arise from the scattering process. 

Defining the scattering length of the jth nucleus as bj, Eq. (2.11) can be written as: 

 �̂�(𝑟) =
2𝜋ℏ2

𝑚
∑ 𝑏𝑗

𝑗

𝛿(𝑟 − 𝑅𝑗) (2.15) 

From this, it can be shown that the differential cross section takes the form: 

 
𝑑𝜎

𝑑Ω
= ∑ 𝑒

𝑖𝑄⋅(𝑅𝑗−𝑅
𝑗′)

𝑏𝑗′
∗ 𝑏𝑗

̅̅ ̅̅ ̅̅

𝑗𝑗′

 (2.16) 

The relationship between the scattering lengths is: 

 𝑏𝑗′
∗ 𝑏𝑗

̅̅ ̅̅ ̅̅ =  |�̅�|
2

     𝑖𝑓     𝑗 ≠ 𝑗′ (2.17a) 

 𝑏𝑗′
∗ 𝑏𝑗

̅̅ ̅̅ ̅̅ =  |𝑏|2̅̅ ̅̅ ̅     𝑖𝑓     𝑗 = 𝑗′ (2.17b) 

Combining Eq. (2.17a) and Eq. (2.17b) gives: 

 𝑏𝑗′
∗ 𝑏𝑗

̅̅ ̅̅ ̅̅ = |�̅�|
2

+ 𝛿𝑗𝑗′ (|𝑏|2̅̅ ̅̅ ̅ − |�̅�|
2

) (2.18) 

Substitution of (2.18) into Eq. (2.16) yields the final expression: 

 
𝑑𝜎

𝑑Ω
= (

𝑑𝜎

𝑑Ω
)

𝑐𝑜ℎ
+ (

𝑑𝜎

𝑑Ω
)

𝑖𝑛𝑐
 (2.19) 

The coherent cross section is then:  

 (
𝑑𝜎

𝑑Ω
)

𝑐𝑜ℎ
= |�̅�|

2
|∑ 𝑒𝑖𝑄⋅𝑅𝑗

𝑗

|

2

 (2.20) 
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and the incoherent cross section: 

 (
𝑑𝜎

𝑑Ω
)

𝑖𝑛𝑐
= 𝑁|𝑏 − �̅�|

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.21) 

From this, a simple relationship between the total, incoherent, and coherent cross 

sections is observed: 

 𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑐𝑜ℎ + 𝜎𝑖𝑛𝑐 (2.22) 

Coherent scattering involves strong interference of the scattered wave as the 

particle interacts with multiple nuclei in the sample. As will be discussed in Section 

2.5, coherent scattering only occurs in a crystal when strict geometrical 

requirements are satisfied, i.e. Q corresponds to a reciprocal lattice vector. Hence, 

coherent scattering yields information about the structural arrangement of atoms 

in the crystal. While the coherent cross section (Eq. (2.20)) contains a phase factor 

describing the interference, the incoherent cross section (Eq. (2.21)) contains no 

such phase relationship. Therefore, incoherent scattering contains information 

about single particle dynamics. In other words, it measures a correlation between 

the position of a particle R(0) at t = 0 compared to the position of the particle at a 

later time R(t). Incoherent scattering provides information about both the temporal 

and spatial (geometrical) motion of the atoms in the sample. 

The cross section can be different for isotopes of the same element. The 

scattering lengths and cross sections of the two most abundant isotopes of 

hydrogen (protium and deuterium) are listed in Table 1.23 It can be observed that 

protium scatters primarily incoherently with a very large cross section of σinc = 

80.27(6).  Due to this feature, neutron spectroscopy (or more specifically 

quasielastic neutron scattering) is an extremely powerful technique to probe the 

diffusive motion of hydrogen. On the other hand, σcoh for deuterium is almost three 

times bigger than σinc, meaning deuterium primarily scatters coherently. Therefore, 

protonated samples are used for hydrogen dynamics investigations while 

deuterated samples are used for structural measurements. In addition, both σcoh 

and σinc are notably larger for hydrogen when compared to the cross sections of 

Mg, Ca, and Ba (the only other elements studied in this investigation). Therefore, 



 

14 
 

the signal measured using neutron scattering on the metal hydride samples 

studied here is strongly weighted to show only the contributions from hydrogen. 

This means that the contributions from the metal atoms can largely be ignored. 

Note, this statement mostly applies to the spectroscopy techniques, as the 

diffraction methods still use the scattered signal from the metal atoms to determine 

their respective positions.  

 

 

Table 1: Scattering lengths and cross sections for two of the isotopes of hydrogen (protium and 

deuterium) and an isotopic average for Mg, Ca, and Ba.23 The units for scattering lengths and cross 

sections are fm and barns, respectively.  

Element Isotope bcoh binc σtotal σcoh σinc σabs 

H H1 (protium) -3.7406(11) 25.274(9) 82.03(6) 1.7583(10) 80.27(6) 0.3326(7) 

H2 

(deuterium) 

6.671(4) 4.04(3) 7.64(3) 5.592(7) 2.05(3) 0.000519(7) 

Mg  5.375(4)  3.71(4) 3.631(5) 0.08(6) 0.063(3) 

Ca  4.70(2)  2.83(2) 2.78(2) 0.05(3) 0.43(2) 

Ba  5.07(3)  3.38(10) 3.23(4) 0.15(11) 1.1(1) 

 
 

2.4 Correlation and Response Functions  

 
From the previous section, the differential cross takes the form:22, 24 

 

𝑑2𝜎

𝑑Ω𝑑𝐸′
=

𝑘′

𝑘

1

2𝜋ℏ
[|�̅�|

2
∑ ∫ 𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞𝑗𝑗′

𝑒−𝑖𝑄𝑅𝑗(0)𝑒−𝑖𝑄𝑅𝑗′(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ |𝑏 − �̅�|
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 ∫ 𝑒−𝑖𝜔𝑡𝑑𝑡 ∑ 𝑒−𝑖𝑄𝑅𝑗(0)𝑒−𝑖𝑄𝑅𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗

∞

−∞

]      

(2.23) 

 

We can simplify the expression by defining the (coherent) intermediate scattering 

function I(Q,t) and (incoherent) self-intermediate scattering function Is(Q,t).  
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𝑑2𝜎

𝑑Ω𝑑𝐸′
=

𝑘′

𝑘

1

2𝜋ℏ
[|�̅�|

2
∫ 𝐼(𝑄, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

+ |𝑏 − �̅�|
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 ∫ 𝐼𝑠(𝑄, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

]      

(2.24) 

The intermediate scattering functions are often referred to as correlation functions. 

We can then define the coherent scattering function S(Q,ω) and the incoherent 

scattering function Si(Q,ω): 

 𝑆(𝑄, 𝜔) =
1

2𝜋ℏ
∫ 𝐼(𝑄, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 (2.25a) 

 𝑆𝑖(𝑄, 𝜔) =
1

2𝜋ℏ
∫ 𝐼𝑠(𝑄, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 (2.25b) 

The scattering functions are known as response functions. S(Q,ω) is simply just a 

Fourier transform I(Q,t) with respect to time. We expand the relation of S(Q,ω) with 

space in Section 2.6.  The scattering function is directly related to the differential 

cross sections through: 

 (
𝑑2𝜎

𝑑Ω𝑑𝐸′
)

𝑐𝑜ℎ

=
𝑘′

𝑘

𝜎𝑐𝑜ℎ

4𝜋
𝑁𝑆(𝑄, 𝜔) (2.26a) 

 (
𝑑2𝜎

𝑑Ω𝑑𝐸′
)

𝑖𝑛𝑐

=
𝑘′

𝑘

𝜎𝑖𝑛𝑐

4𝜋
𝑁𝑆𝑖(𝑄, 𝜔) (2.26b) 

These expressions have two main components: a cross section, σ, and the 

scattering function S(Q,ω). The cross section only describes the interaction 

potential between the neutron and atoms in the system. The scattering function 

does not depend on the interaction properties of the neutron-nucleon interaction. 

Instead, S(Q,ω) depends only on the relative atomic positions and respective 

motions of the atoms in the scattering system. Hence, by measuring S(Q,ω) in a 

neutron scattering experiment, we probe information about both the spatial and 

temporal arrangement of atoms simultaneously. Neutron scattering provides the 
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unique ability to access both the structure and dynamics of a material with a single 

measurement.  

2.5 Diffraction 

 
Consider a monochromatic beam that is incident on a crystal at an angle ϴ 

with respect to a crystal plane. The beam is scattered elastically at an angle ϴ, as 

illustrated in Figure 4. As the incident radiation is scattered from the crystal, a 

phase shift will occur between waves that are scattered from atoms on different 

crystal planes. Comparing a wave scattered from an atom on plane 1 to an atom 

located on plane 2, the second wave will have a longer path length. The path length 

difference is: 

 𝐿 = 𝐴𝐵 + 𝐵𝐶 = 2𝑑 𝑠𝑖𝑛𝜃 (2.27) 

where d is the distance between the planes. For complete constructive interference 

to occur between these two waves, the wavelength needs to be an integer value 

n of this path length difference. Therefore, we arrive at the well-known Bragg’s law. 

 𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃 (2.28) 

Bragg scattering only occurs when Q corresponds to a reciprocal lattice vector. 

Even small deviations from the reciprocal lattice vector will cause the scattered 

waves to destructively interfere, resulting in rapid decay in the Bragg peak. A 

diffraction experiment measures the amount of scattered radiation (for example 

neutrons or X-rays) as a function of scattering angle. A diffraction experiment is a 

technique can be used to determine the spatial arrangement of atoms in reciprocal 

space, which can then be transformed to obtain the real space crystal structure. 

The long-range, time-averaged crystal structures are obtained by performing a 

Rietveld refinement to model the experimental diffraction pattern. This allows for 

the determination of many parameters, such as the atomic positions, atomic lattice 

parameters, displacement parameters, and site occupancy factors. The long-

range structure is determined by fitting the Bragg peaks while the diffuse scattering 



 

17 
 

located in between the Bragg peaks is removed using a background subtraction. 

A further discussion of Rietveld refinements is given in Section 4.2.1.  

 

Figure 4: Diffraction of neutrons or X-rays by a crystal. 

 

2.6 Pair Distribution Functions 

 
In addition to Bragg scattering, there is a vast amount of information in the 

diffuse scattering signal that is often ignored while performing Rietveld refinements 

on diffraction data. The diffuse scattering is observed in the diffraction pattern as 

a weak signal in between the Bragg peaks. Unfortunately, the information 

contained in the diffuse scattering signal is typically lost during a Rietveld 

refinement because it is subtracted out by fitting a background to the diffraction 

pattern. Total neutron scattering experiments aim to collect and analyze all the 

coherent scattering signal, which is produced by Bragg peaks (global structure), 

elastic diffuse scattering (static local structure), and inelastic diffuse scattering 

(atomic motion). By performing a Fourier transform of the total scattering structure 

factor, S(Q), the reduced pair distribution function (PDF) G(r) is obtained.25, 26 

 𝐺(𝑟) =
2

𝜋
∫ ((𝑆(𝑄) − 1) sin(𝑄𝑟) 𝑄𝑑𝑄

∞

0

 (2.29) 
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An example of a PDF is shown in Figure 18 in Chapter 6. The atomic structure is 

represented by G(r) through the relation:26 

 𝐺(𝑟) = 4𝜋𝑟(𝜌(𝑟) − 𝜌0(𝑟)) (2.30) 

where ρ0(r) is the atomic number density. The atomic pair density, ρ(r), takes the 

form: 

 𝜌(𝑟) =
1

4𝜋𝑟2𝑁
∑

𝑏𝑖𝑏𝑗

〈𝑏2〉
𝑖,𝑗≠𝑖

𝛿(𝑟 − 𝑟𝑖𝑗) (2.31) 

where summation over indices i and j is carried out across all the atoms in the 

material and rij is the distance between atom i and atom j. Using this expression 

for ρ(r), one can observe that the PDF (G(r)) represents a weighted density of the 

distribution of atoms in real space. In other words, G(r) is a representation of how 

many atoms are located at a distance r from an atom at the origin. Note, the 

expression for G(r) is not dependent on time. For the diffraction scenario described 

in Section 2.5, the static approximation can be applied when the two incoming 

waves are moving so fast that the atoms in the sample do not move during the 

time of the scattering event. In reality, the energy of thermal neutrons is on the 

order of the relaxation times in materials, which does not make the static 

approximation completely valid (but it is still a very useful property for dynamics 

measurements). By including the diffuse scattering signal with the Bragg peaks in 

S(Q), G(r) therefore provides the ability to take a ‘snapshot’ in time of the local 

atomic structure. Information about the global structure is extracted from the Bragg 

peaks to determine the time-averaged, long range structure. G(r) therefore 

contains structural information on both the local and global length scales, giving 

you a complete description of the crystal structure. While the time averaged 

structure can appear to be highly ordered, the local structure may be disordered, 

which can have profound effects on the material properties. The most interesting 

material properties are often governed by the defects or local structure. The 

method to model total neutron scattering data is known as PDF analysis, which will 

be described in Section 4.2.2. PDF analysis and total neutron scattering was 
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originally developed to model highly disordered systems, such as liquids and 

glasses, but can also be expanded to examine the local structure of crystalline 

materials.  

 As a closing remark, a connection between the various correlation functions 

should be given. Ignoring small differences in constants, S(Q,ω) is the Fourier 

transform of I(Q,t) with respect to time while I(Q,t) is the Fourier transform of G(r,t) 

in space. Therefore, S(Q,ω) is the Fourier transform of G(r,t) with respect to both 

space and time. These functions are central to the understanding of neutron 

scattering and will be referred to heavily throughout this manuscript.  
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 EXPERIMENTAL METHODS 

 
 The energy and wavelength of cold/thermal neutrons makes them an ideal 

probe for studying the structure and dynamics of materials. The energies, typically 

on the order of a few meV, coincide perfectly with the energy levels of various 

dynamic processes in condensed matter, such as diffusion, rotational motion, 

phonons, etc. Likewise, the neutron wavelengths are on the order of interatomic 

distances, which allows diffraction to occur. Neutron scattering experiments 

simultaneously reveal information about the spatial arrangement of atoms as well 

as how the atoms are behaving. Neutron diffraction and total neutron scattering 

techniques use elastic scattering to investigate the local vs. global crystal structure. 

On the other hand, neutron spectroscopy uses quasielastic and inelastic scattering 

to understand the dynamic motion of atoms. In addition, the weak interaction of 

neutrons with the target atoms allows for deep sample penetration to measure the 

bulk properties. This feature also allows for the neutron beam to penetrate through 

bulky sample environments.  

 The neutron scattering experiments were conducted at BASIS,27 

VISION,28 SNAP,29 and NOMAD30 at the Spallation Neutron Source (SNS) at 

Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN, and HFBS31 at the 

National Institute of Standards and Technology (NIST) in Gaithersburg, MD. 

 The following is a general overview of the instruments, experimental 

techniques, and sample environments used in this investigation. For a more 

detailed account of the experimental details of each experiment, such as sample 

masses, temperature and pressure measurement details, etc., the reader is 

referred to the Appendix for a complete description.  

3.1 Sample Environments 

  
The neutron scattering experiments conducted in this investigation required 

both standard and specialized sample environments due to the reactive nature of 

the samples and the extreme conditions (low and high temperature, high 
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pressure). For many of the experiments, the required sample environments did not 

previously exist at the facilities and had to be designed and fabricated. For 

example, the samples are pyrophoric and must be handled in an inert gas 

environment (or vacuum) at all times. Many furnaces use unsealed sample 

containers at high temperature, which is insufficient for pyrophoric samples. In 

addition to a sealed sample can, the can needs to be vented to an expansion 

volume to prevent over-pressurization during heating and thermal decomposition. 

The expansion volume also stores the evolved hydrogen and deuterium gas for 

safe disposal. For measurements at less extreme conditions, standard sample 

environments were used. Due to the standard practice of using closed-cycle 

refrigerators (CCRs) and vacuum furnaces in neutron facilities, these sample 

environments will not be explained here. Instead, only the less common and 

customized sample environments that were modified for these experiments will 

explained in this section. 

3.1.1 High Temperature 

 
Two furnaces were used for high temperature experiments: a stick furnace  

and a MICAS furnace. The stick furnace, shown in Figure 5, was built specifically 

for high temperature experiments at the VISION beamline. The highest 

temperature reached with this sample environment was approximately T = 920 K. 

This consisted of a stick with gas ventilation that ran from the sample can through 

the stick and exited at the top. This was connected to a gas cabinet to allow for 

gas exchange, vacuum capabilities, and to vent the sample to an expansion 

volume. A cylindrical steel sample container was used. Annular heating blocks fit 

over the top and the bottom of the cell to heat the sample. Heating cartridges were 

embedded inside the heating blocks to produce the heat. A variety of cartridge 

heaters (diameter, length, resistance, etc.) were used in the experiments. 

Connecting the sample to a large expansion volume allowed the sample pressure 

to remain at atmospheric pressure for the entirety of the experiment, despite 
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heating and sample decomposition. The system also allowed for evacuation of the 

sample and backfilling with helium gas. 

 

Figure 5: Custom stick furnace for VISION experiments. The vanadium heat shield is in the raised 

position, which is lowered for during measurements.  

 
 
 A MICAS furnace and stick was modified to measure pyrophoric samples 

at high temperatures for the experiments at BASIS and NOMAD. This type of 

furnace is common at SNS and can be installed at other beamlines around the 

facility. The stick assembly with sample holder (5 mm diameter quartz NMR tubes) 

are shown in Figure 6. The sample was vented to a gas cart with a 5L expansion 

tank. The NMR tubes were then connected to the stick using a Swagelok fitting. 

Due to the lower melting temperature of the quartz-metal interface, the NMR tubes 

were specially designed with extended lengths to keep the quartz-metal interface 

away from the heating elements. 
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Figure 6: Stick assembly and parts for the experiments conducted in the MICAS furnace at BASIS 

and NOMAD. 

 

3.1.2 High Pressure 

 
High pressure experiments were performed at SNAP and BASIS. Paris-

Edinburgh (PE) cells were used to apply the pressure for experiments at both 

beamlines. PE cells are a device that compresses a sample between two anvils at 

high pressures. Standard single toroidal cubic boron nitride anvils were used. For 

experiments at SNAP, the larger VX3-PE press was used while the smaller VX5 

PE press was used at BASIS. The experiments can be divided into two main 

categories depending on the type of gasket used: (1) a standard encapsulated TiZr 

gasket and (2) a special split gasket made from CuBe in which the sample is 

loaded into a toroidal sample chamber. More details about the gaskets are given 

in Section 3.3.2.2. Since sample loading needs to be performed in an inert 

environment, loading was performed in a helium glovebox using a specially 

designed PE clamp system that surrounds the gasket-anvil assembly, as shown in 
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Figure 7. A load of approximately 5 tons was applied to the assembly using a 

hydraulic press and sealed under pressure in the glovebox. The entire clamp 

system was then removed and inserted into the PE press at the beamline.  

For the QENS experiments at BASIS, an adapter was designed to lower the 

PE cell to the correct height in the neutron beam. This adapter can be observed in 

Figure 7, where the PE cell is connected to a modified vacuum flange with four 

long rods that supports the weight of the PE cell. An aluminum blast shield 

surrounds the PE cell to protect the instrument in the case of a gasket blowout. 

Cadmium foil was applied to the outside of the anvils to reduce background. 

 

Figure 7: Paris-Edinburgh cell with a stand assembly for QENS experiments at BASIS. One of the 

CuBe gasket halves is shown. 

 

3.2 Neutron Spectroscopy 

 
Two different neutron spectroscopy techniques are used in this 

investigation to observe dynamic processes: quasielastic neutron scattering 
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(QENS) and inelastic neutron scattering (INS). INS in this case refers to powder-

averaged measurements at a vibrational spectrometer. This should not to be 

confused with single crystal INS, i.e. triple axis spectroscopy. In this investigation, 

QENS is used to measure the diffusion of hydrogen while INS is used to probe the 

vibrational density of states (DOS). 

3.2.1 Quasielastic Neutron Scattering 

  
QENS instruments are specifically designed to measure very small 

energy transfers, on the order of µeV to a few meV. The energies associated 

with solid state diffusion are usually on the smaller end of this range. This 

corresponds to timescales of approximately the nanosecond (ns) to picosecond 

(ps) range, which is on the order of jump rates for solid state diffusion. In order 

to resolve energy transfers in this range, high resolution spectrometers are 

required. The most common quasielastic spectrometer for high resolution 

measurements are backscattering spectrometers. The QENS measurements 

were performed at BASIS and HFBS. These spectrometers are designed to be 

highly sensitive to low energy, incoherent processes, making it the ideal tool to 

probe the motion of hydrogen.  

As the name suggests, quasielastic scattering is scattering that is almost 

elastic. A typical QENS spectra is shown in Figure 8. The spectra are centered 

around an energy transfer of zero, representing the elastic peak. The elastic 

peak is due to elastic scattering arising from the sample, instrument, and 

sample environment. To approximate the instrument resolution function,  a low 

temperature measurement can be used. Low temperature measurements are 

preferred to model the elastic peak because the dynamics are ‘frozen’ on the 

time scale of the instrument. Vanadium standards can serve as alternatives for 

the resolution function if low temperature measurements were not possible. 

When a diffusive motion becomes observable on the time scale of the 

instrument, the elastic peak will lose intensity and begin to broaden. This 

broadening is the quasielastic signal that is measured and analyzed by a QENS 
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experiment. The elastic intensity and the quasielastic intensity are therefore 

coupled. The broadening is directly proportional to the energy of the motion, 

and hence a time scale. As the diffusive motion speeds up, the broadening of 

the elastic peak will increase. Details about QENS data analysis can be found 

in Chapter 4.  

 

Figure 8: QENS spectra for plastic crystalline cyclooctanol measured at BASIS at Q = 1.0 Å-1 for 

the temperatures of 230 K and 280 K. The resolution function was measured at T = 20 K.32 

 
 

Two different measurement configurations were used at BASIS by using the 

Si(111) and Si(311) analyzers to access different energy and Q ranges. Due to the 

higher resolution and narrower energy range, the Si(111) analyzers were used to 

observe slower diffusive motions on the ns timescale. However, if the motion 

became too fast for the Si(111) analyzers, a broader energy range was used which 

required use of the Si(311) analyzers. Instrument parameters including dynamic 

energy range, Q-range, and energy resolution (FWHM) are displayed in Table 2 

for BASIS and HFBS. At BASIS, the instrumental resolution function was 

measured at T = 30 K for the CCR and 300 K for the furnace. For even slower 
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motions, HFBS provides a finer energy resolution compared to BASIS with a 

FWHM = 0.8 µeV. At HFBS, the measurements were conducted using the 

standard instrument configuration with an accessible Q-range from 0.25 to 1.75 Å-

1 and an energy range of ± 16 µeV. Resolution function measurements were 

performed on empty vanadium cans. For QENS experiments, vanadium is also  

typically measured for detector normalization. Data reduction was performed using 

Mantid.33 

 

Table 2: Instrument parameters for QENS measurements. Values for energy resolution, dynamic 

energy range, and Q-range are given.  

Instrument Energy Resolution (µeV) Energy Range (µeV) Q Range 

HFBS 0.8 ± 16 0.25 - 1.75 

BASIS Si(111) Analyzers 3.5 ± 100 0.2 - 2.0 

BASIS Si(111) Analyzers 15 ± 740 0.4 - 3.8 

 

 

Many QENS experiments begin by performing an elastic energy window 

scan, commonly referred to as just an elastic scan.  During an elastic scan, shorter 

QENS measurements (on the order of minutes) are taken as the temperature is 

slowly increased. For example, the elastic scan at BASIS consisted of short 

measurements taken in 10 K steps between 300 K and 880 K. In addition to 

temperature, elastic scans can also be conducted with increasing pressure. The 

elastic intensity can be fit by integrating a narrow area under the elastic peak at 

each individual temperature. An example of an elastic scan is shown in Figure 24 

in Section 6.2. Plotting the elastic intensity vs. T will indicate changes in the 

observable dynamics. For example, a change in the slope of the elastic intensity 

may indicate the onset of observable hydrogen dynamics. In addition, a drastic 

discontinuity in the elastic intensity is an indication of a phase transition. Note, the 

exact method that elastic scans are measured is different at the various 

instruments. For example, doppler driven backscattering spectrometers at nuclear 

reactor sources (HFBS) are better suited than a time-of-flight backscattering 
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spectrometer at a spallation source (BASIS) for measuring elastic scans. During 

the QENS experiments, various sample environments were used: CCR, furnace, 

and high-pressure PE cell.  

3.2.1.1 Temperature Dependent QENS 

 
For the CCR experiment at BASIS, samples were loaded into aluminum foil 

and formed into a thin packet of annular geometry to reduce multiple scattering 

effects. Annular aluminum foil packets are a common practice in neutron scattering 

measurements of hydrogenated materials. These samples were then loaded into 

cylindrical aluminum cans with aluminum foil seals. Resolution functions were 

measured at 30 K. All measurements were performed using the Si(111) analyzers. 

Elastic scans were performed between 30 K to 690 K. Longer QENS 

measurements (approx. 3 hours) were conducted at various temperatures 

between 300 K – 690 K.  

The second BASIS experiment was performed in a MICAS furnace that was 

modified for measurements of pyrophoric samples. Samples were loaded into 5 

mm diameter quartz NRM tubes. Resolution functions were measured at 300 K. 

Elastic scans and longer QENS measurements (approximately 3 hours long) were 

taken between 300 K and 920 K. All sample cans were evacuated in the furnace 

and backfilled to atmospheric pressure using helium. A large expansion volume 

hooked up to the sample stick allowed the pressure to remain constant throughout 

the entire experiment, i.e. during heating and gas evolution.  

An additional QENS experiment was conducted at HFBS for higher 

resolution measurements. A bottom-loading CCR was used for BaH2 and CaH2 

while a top-loading CCR was used for MgH2. Titanium sample cans were used with 

gold O-ring seals (lead seal for MgH2). Samples were loaded into aluminum foil 

packets in annular geometry. Elastic scans were performed for each sample. 

Longer QENS measurements were taken from up to a maximum temperature of 

800 K. This experiment used the ± 15 µeV energy range configuration for all 

measurements.  
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3.2.1.2 High Pressure QENS 
 

Two high pressure BASIS experiments were conducted on BaH2. Both 

experiments used the same measurement configurations and sample 

environment. The experiments were conducted in a single-toroidal VX5 Paris-

Edinburgh (PE) press. The sample environment is described in detail in Section 

3.1.2. Samples were loaded into CuBe gaskets and sealed in the PE cell at a 

pressure of approximately 5 tons. Due to the reactive nature of the sample, a 

pressure transmitting medium was not used. All measurements were conducted at 

room temperature. An elastic scan was performed during the first experiment up 

to a maximum pressure of approximately 5 GPa. Measurements were 

approximately 50 minutes for each pressure and pressure increases were 

conducted in 5 ton steps.  The second experiment consisted of longer QENS 

measurements of approximately 22 hours at each pressure up to a maximum 

pressure of 7.1 GPa. The resolution function was measured at ambient conditions. 

Pressures were estimated from previous diffraction experiments at SNAP, as 

described in Section 4.3.  

3.2.2 Inelastic Neutron Scattering 

 
 Powder inelastic neutron scattering is a type of vibrational spectroscopy that 

probes the vibrational DOS of a material. This provides information about lattice 

dynamics, such as phonon mode energies, chemical bonding, molecular structure, 

etc. INS spectra can be used to determine the contributions of the lattice vibrations 

to the heat capacity, which in turn can be used to calculate thermodynamic 

potentials. INS is complimentary to the light scattering techniques of Raman and 

infrared (IR) spectroscopy. However, unlike their phonon counterparts, INS is not 

governed by selection rules. This makes analysis and modeling of INS spectra a 

relatively straightforward process. As was also the case for incoherent QENS, INS 

instruments are incredibly sensitive to hydrogen. This allows the spectra to be 
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heavily weighted in favor of hydrogen vibrations, which are difficult to measure 

using other techniques.  

 The INS experiments conducted in this investigation were performed at 

VISION at SNS, ORNL.28 VISION has an accessible energy range from the elastic 

limit up to 500 meV with an energy resolution of ∆E/E ≈ 1-2% across the entire 

energy range. The energy region of interest for the metal hydrides in this 

investigation is located between approximately 50 – 250 meV. Sample 

environments included a CCR for low temperature measurements and a custom 

stick furnace for high temperature measurements. The stick furnace is described 

in more detail below in Section 3.1.1. Data reduction was performed using 

Mantid.33 

3.3 Diffraction 

 
 X-ray and neutron diffraction are traditional techniques to determine the 

crystal structure of materials. Three different diffraction techniques were used in 

this investigation: X-ray diffraction (XRD), neutron powder diffraction (NPD), and 

total neutron scattering. XRD and NPD probe the long range (global) crystal 

structure while total neutron scattering examines both the short (local) and long 

(global) range crystal structures.  

3.3.1 X-Ray Diffraction 

 
XRD was primarily used in this investigation for sample characterization and 

quality determination during sample synthesis. Rietveld refinements were rarely 

performed on the XRD data sets. Diffraction patterns were compared to previously 

reported results to guide and verify our synthesis methods. XRD measurements 

were performed on a PANalytical X’Pert PRO diffractometer with Cu Kα 

radiation. Due to the pyrophoric nature of the sample, the powder was covered 

with parafilm on a glass slide to reduce exposure to air. Measurements were 

conducted in the standard Bragg-Brentano geometry, typically with a scan 
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range of 2ϴ = 25º – 70º and average measurement times of approximately 45 

minutes. 

3.3.2 Neutron Diffraction 

 
 NPD measurements were conducted at NOMAD and SNAP.  NOMAD is an 

instrument that specializes in providing high resolution neutron PDF 

measurements. In addition to the PDF measurements, NOMAD also provides 

neutron diffraction data. SNAP is an instrument designed specifically for high 

pressure NPD experiments. The experiments can be divided into two main groups: 

a temperature dependent study at NOMAD and a pressure dependent study at 

SNAP. 

3.3.2.1 Temperature Dependent NPD 
 

A series of temperature dependent experiments were conducted at NOMAD 

to obtain high quality PDF and NPD data. Two different sample environments were 

used: a cryostream sample shifter between 100 K – 500 K and a MICAS furnace 

with a specially designed sample stick for measurements of pyrophoric samples 

up to 920 K. The cryostream sample shifter measures higher quality (lower 

instrument background) data. Samples were measured in vanadium PAC cans (6 

mm diameter) with a copper seal. For the MICAS furnace measurements at 

NOMAD, samples were loaded into 5mm diameter quartz NMR tubes. Empty 

sample holders, silicon, diamond, and vanadium were used for data normalization 

and generating instrument parameter files for all the experiments. Measurements 

were approximately 1.5 hours at each temperature. Add more information about 

Q-range, etc. once data analysis is complete. 

3.3.2.2 High Pressure NPD 
 

Two high pressure neutron diffraction experiments were performed at 

SNAP. The experiments can be divided into two main categories depending on the 

type of gasket used: (1) a standard encapsulated TiZr gasket and (2) a special split 

gasket made from CuBe that allows for sample loading into the toroidal chamber. 
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No pressure transmitting medium was used in these experiments. Sample loading 

was performed in a helium glove box using a specifically designed PE clamp 

system that surrounds the gasket-anvil assembly, as shown in Figure 7. A load of 

approximately 5 tons is applied to the assembly using a hydraulic press and sealed 

under pressure in the glovebox. The entire clamp system can then be removed 

and inserted into the PE press at the beamline.  

A detailed description with illustrations of the TiZr encapsulated gasket 

design for single toroidal anvils and the PE cell assembly is presented in the 

reports by Marshall and Francis34 and by Klotz et al.35 As for the vast majority of 

gaskets, the sample sits in the center opening of the gasket. Encapsulation is 

ensured through two cups of TiZr that cover the sample at bottom and top.  The 

powder samples are first pressed into a pellet before being transferred inside the 

TiZr gaskets and sealed.  

The other type of gasket is made from CuBe. For these experiments, we 

again adapted a specialized setup that was designed for QENS experiments by 

Klotz and Bove et al.36, 37 Here we use a split gasket where the sample space is 

located inside the toroid to form a fully encapsulated annulus. One of the CuBe 

gasket halves is shown in Figure 7. However, the sample space in our experiment 

was increased compared to the original design by Klotz and Bove et al.36, 37 The 

dimensions of our CuBe gasket are 13.2 mm outer diameter, 10.4 mm inner 

diameter, and a groove of 0.79 mm depth, which forms a toroidal pressure 

chamber volume of 81.6 mm3 once the two parts are put together. This CuBe 

gasket was used in the high pressure QENS measurements to reduce multiple 

scattering. The purpose of measuring this gasket at SNAP was to obtain a 

pressure-load curve to determine the pressures measured in the QENS 

experiments. While the TiZr gaskets are zero (null) scattering, CuBe scatters 

strongly and produces a large signal in the data. 

All measurements were conducted at room temperature. Instrument 

specific parameters for the refinements were determined by measuring a nickel 

sample in the same position and sample configuration as the sample. Empty 
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sample containers and vanadium samples were also measured for data reduction 

and normalization. Measurements times ranged from 2 – 6 hours at each pressure 

for the TiZr gasket measurements and approximately 1 – 2 hours for the CuBe 

gasket measurements. Details about pressure determination methods can be 

found in Section 4.3. Data reduction was performed using Mantid33 and Rietveld 

refinements were conducted using GSAS-II.38  
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 DATA ANALYSIS METHODS 

 
 The methods of data analysis used in this investigation range from 

qualitative observations to complex, novel approaches. The general approach will 

be outlined in this chapter with more specific details given in the results and 

discussion of Chapters 6 – 8. 

4.1 Quasielastic Neutron Scattering 

  

The QENS fitting procedure performed in this investigation was 

conducted using the QCLIMAX package within ICE-MAN, the Integrated 

Computational Environment-Modeling & Analysis for Neutrons.39 ICE-MAN has 

been recently developed at ORNL for analysis of neutron scattering data. Many 

other facilities use other software packages, of which the most common is 

arguably DAVE.40 This investigation is one of the earliest studies to report results 

using QCLIMAX. Here, we employ a novel approach to extend the traditional fitting 

procedure by applying constraints to the fitting model.  

The following sections will introduce the general approach to QENS data 

fitting for solid state diffusion. This will include a discussion of the various jump 

diffusion models and how to apply to extract useful information. The general fitting 

procedure will then be expanded to include model constraints using QCLIMAX.  

4.1.1 QENS Data Analysis 

 
The following is the typical data fitting procedure used for QENS data. The 

measured signal at a QENS experiment, S(Q,E), can be fit using the following 

equation: 

 
𝑆(𝑄, 𝐸) = 𝑓[𝑋(𝑄)𝛿(𝐸) + (1 − 𝑋(𝑄))𝑆𝑞𝑒(𝑄, 𝐸)] ⊗ 𝑅(𝑄, 𝐸)

+ 𝐵(𝑄, 𝐸) 
(4.1) 

where, X(Q) is the fraction of elastic scattering, known as the elastic incoherent 

structure factor (EISF), δ(E) is the elastic signal, and Sqe(Q,E) is the model 



 

35 
 

representing the quasielastic scattering. These terms are numerically convoluted 

with the resolution function R(Q,E) and B(Q,E) is the linear background term. Each 

distinct dynamic process observed in the spectra is modeled by a Lorentzian 

function.  For a data set consisting of two distinct dynamic processes, a two 

Lorentzian expression is used: 

 𝑆𝑞𝑒(𝑄, 𝐸) = (1 − 𝑃(𝑄))
1

𝜋

𝛤1(𝑄)

𝐸2 + 𝛤1
2(𝑄)

+ 𝑃(𝑄)
1

𝜋

𝛤2(𝑄)

𝐸2 + 𝛤2
2(𝑄)

 (4.2) 

where (1–P(Q)) and P(Q) represent the spectral weights of the broad and narrow 

Lorentzian terms of half-width at half maxima (HWHM) Γ1 and Γ2, respectively. 

The HWHM is inversely proportional to the characteristic time-scale of the 

measured dynamic process. Note, only the first term is used for the one 

Lorentzian model. 

After fitting the data using Eq. (4.1) and Eq. (4.2), the Lorentzian widths 

can be plotted as a function of momentum transfer, i.e. Γ(Q) vs. Q or Q2, as 

displayed in Figure 9. By examining the HWHM as a function of momentum 

transfer, the nature of the observed dynamic process can be determined, i .e. 

translational diffusion, diffusion in confinement, rotational motion, etc.  Solid 

state diffusion typically occurs in distinct jumps. Therefore, the concept of jump 

diffusion models will be explained in detail below.  

4.1.2 Jump Diffusion Models 

 
A discussion on solid state diffusion is incomplete without a description of 

jump diffusion models. Early diffusion models sought to describe the diffusive 

motions observed in some liquids and gasses. This resembled an unrestricted, 

continuous diffusion process (Brownian motion) that is described by Fick’s Law. 

However, solid state hydrogen diffusion diverges from this description and instead 

involves jump diffusion amongst well defined lattice sites. Multiple jump diffusion 

models have been developed over the years, of which the most common are 

the Chudley-Elliott,41, 42 Singwi-Sjölander,43 and the Hall-Ross44 models.  
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Figure 9: Q2 dependence of the HWHM of the Lorentzian broadening. A DQ2 behavior is observed 

for unrestricted diffusion. The Chudley-Elliott jump diffusion model diverges from the DQ2 behavior 

with increasing Q.  

 
 

For a diffusive motion observed with QENS, the broadening of the 

Lorentzian function at low momentum transfers follows the characteristic DQ2 

dependence associated with long-range translational diffusion, as seen in 

Figure 9. At high Q (shorter distances), the broadening deviates from the DQ2 

dependence, which yields information about the nature of the elementary 

diffusion process. The Q-dependence of the intermediate and high Q regions is 

where the distinction can be made between the different jump diffusion models. 

The QENS broadening for the Chudley-Elliott (Eq. (4.3a)), Singwi-Sjölander 

(Eq. (4.3b)), and Hall-Ross (Eq. (4.3c)) models are described by, 41-44 
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 ∆𝐸(𝑄) = 𝛤(𝑄) =
ħ

𝜏
[1 −

𝑠𝑖𝑛 𝑄𝐿

𝑄𝐿
] (4.3a) 

 ∆𝐸(𝑄) = 𝛤(𝑄) =
ħ𝐷𝑄2

1 + 𝐷𝑄2𝜏
 (4.3b) 

 ∆𝐸(𝑄) = 𝛤(𝑄) =
ħ

𝜏
[1 − 𝑒−𝐷𝑄2𝜏] (4.3c) 

 

where L is the jump length, τ is the residence time, and D is the diffusion 

coefficient. Two of the three parameters are extracted from the fitting procedure 

and can be used to calculate the third through the following relation. 

 𝐷 =
𝐿2

6𝜏
 (4.4) 

The Singwi-Sjölander jump diffusion model describes a combination of 

oscillatory motion with directed jumps, while the Hall-Ross model uses a 

distribution of jump lengths. As will be demonstrated later, the solid-state 

diffusion process in the metal hydrides studied in this investigation are best 

described by the Chudley-Elliott model. This model describes discrete jumps on 

a lattice. It is assumed that the particle resides in the same average position for 

a characteristic residence time (τ), only undergoing small amplitude thermal 

oscillations. After remaining in that position for the residence time, the particle 

rapidly jumps over a discrete distance to another available site. A comparison 

of the Q-dependence of the quasielastic broadening for the Chudley-Elliott, 

Singwi-Sjölander43 and Hall-Ross44 models for a metal hydride (BaH2) is shown 

in Figure 10. The Q-dependence is clearly different between the models across 

the Q-range and the best fit is provided by the Chudley-Elliott model. The 

microscopic origin of each model needs to be considered carefully to determine 

if it is applicable to the system being investigated. In our case, the choice of the 

Chudley-Elliott jump diffusion model is justified because this model is designed 

to describe diffusive jumps among lattice sites in a crystal.  
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Figure 10: Comparison of three different jump diffusion models: Chudley-Elliott, Singwi-Sjölander, 

and Hall-Ross.41, 43-45 

 

4.1.3 Data Analysis Using QClimax 

 
As mentioned previously, the QENS data fits in this investigation were 

performed using the QCLIMAX package within ICE-MAN, the Integrated 

Computational Environment-Modeling & Analysis for Neutrons.39 The purpose of 

the following sections is to introduce the QCLIMAX data fitting process used in 

this investigation. Since QCLIMAX is a relatively new program that is still being 

developed, we have included a section that compares the results from 

QCLIMAX to the tried-and-true software package DAVE in order to justify our 

data analysis methods and validate our results.   
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4.1.3.1 Applying Model Constraints 
 

The fitting procedure begins with a so-called unconstrained fit, where the 

Lorentzian widths can assume any value. In other words, the data is fit using 

Eq. (4.1) with the quasielastic scattering term described by Eq. (4.2). It is 

necessary to perform an unconstrained fit first (before adding constraints) to 

understand what type of dynamics are occurring in the material. An example of 

the HWHM for BaH2 at T = 850 K is shown in Figure 11. The unconstrained 

model is shown in the black circles and the resulting fit of the Chudley-Elliott 

model is shown as the solid black line. The initial unconstrained fit clearly shows 

a diffusive motion that is described by the Chudley-Elliott model. Now that the 

underlying behavior is understood, we can further improve the fitting procedure 

by introducing constraints to the model. 

 

 

Figure 11: Comparison of unconstrained vs. constrained fits using QCLIMAX for BaH2 at T = 850 

K.45 
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As seen with the unconstrained data (black circles) in Figure 11, the 

widths have some noticeable deviations from the ideal Chudley-Elliott 

relationship. These deviations occur for many reasons, such as coherent 

scattering effects (Bragg peaks) and statistical uncertainty. As will be discussed 

later in this section, these deviations can greatly complicate data analysis using 

only unconstrained fitting models. A method to improve the accuracy and to 

reduce the errors is to apply constraints to the fitting procedure.  

Since the motion is clearly explained by the Chudley-Elliott jump diffusion 

model, the Lorentzian widths should follow a well-described relationship with Q. 

Therefore, we can use QCLIMAX to constrain the Lorentzian widths to follow 

the Chudley-Elliott model. The software simultaneously fits the data to the 

equations as a function of Q, effectively fitting Sqe(Q,E) to the following 

quasielastic model:  

 𝑆𝑞𝑒(𝑄, 𝐸) =
1

𝜋

ħ
𝜏 [1 −

𝑠𝑖𝑛 𝑄𝐿
𝑄𝐿 ]          

𝐸2 + (
ħ
𝜏 [1 −

𝑠𝑖𝑛 𝑄𝐿
𝑄𝐿 ]   )

2 (4.5) 

and determining by minimization the parameters L and τ. Eq. (4.5) is just a 

modification of Eq. (4.2) (first term only) by plugging in Eq. (4.3a) for the half-

widths, Γ(Q). By systematically fitting all the Q values simultaneously, the 

weight on the outlier data points is reduced and the fitting procedure converges 

on a more accurate value for the parameters. The constrained fit is shown in 

red (circles and solid line) in Figure 11. It can be observed that the overall fit is 

very similar to the unconstrained fit, but the errors for L and τ have been reduced 

by introducing the constraints. 

The power of having the ability to add constraints to a model using 

QCLIMAX is fully appreciated for lower quality data or for very weak, narrow QENS 

signals. Figure 12 shows a comparison of unconstrained fits that were performed 

with DAVE to the constrained fits performed with QCLIMAX for BaH2 at 670 K and 

750 K. The higher temperature data in Figure 12b is easier to fit because of the 

larger QE intensity and broader Lorentzian widths at the higher temperature when 
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compared to the 670 K data. Therefore, both the unconstrained and constrained 

models yield the same results. However, the lower temperature data is very difficult 

to fit accurately using the unconstrained model because of the low intensity and 

narrow broadening. The fit of the Chudley-Elliott model (black solid line) does not 

adequately describe the widths, which will yield vastly different jump lengths, 

residence times, and diffusion coefficients. On the other hand, the constrained fit 

is a better description of the unconstrained widths. Therefore, adding model 

constraints is a great method to increase the accuracy of QENS results, especially 

for poorer quality data. 

 

 

Figure 12: Unconstrained fits (red circles and solid lines) that were performed with DAVE compared 

with fits constrained to follow the Chudley-Elliott jump diffusion model (black circles and solid lines) 

for BaH2 at (a) 670 K and (b) 750 K.45 
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4.2 Diffraction and Total Neutron Scattering 

 
 X-ray diffraction was primarily used in this study for sample characterization 

after synthesis to verify sample purity. As a result, the diffraction patterns were 

compared to previously reported results. Full Rietveld refinements were rarely 

carried out for the XRD data but were performed for the neutron powder diffraction 

experiments at NOMAD and SNAP. For the total scattering experiments at 

NOMAD, PDF analysis was performed. 

4.2.1 Rietveld Refinements 

 
The crystallographic calculations performed in this study for neutron 

diffraction data were carried out using Rietveld refinements in the software 

program GSAS-II.38 Rietveld refinements are the traditional method for structural 

analysis and complete details of this technique can be found elsewhere.46 In a 

basic summary, a Rietveld refinement is a method that uses a least squares 

approach to refine parameters in a theoretical structural model until the theoretical 

diffraction pattern matches an experimentally measured diffraction pattern.  

The refinements performed in this investigation were relatively basic 

structural determinations. Refined parameters for the phases consisted of lattice 

parameters, phase fractions, histogram scale factors, atomic coordinates, 

anisotropic atomic displacement factors (U), and pseudo-Voigt profile  parameters. 

In all of the refinements, effort was made to minimize the amount of refinable (free) 

parameters in the calculations. Introducing too many free parameters into a model 

often provides an excellent fit to the data, but the result can be meaningless. For 

example, preferred orientation corrections were not applied even though it could 

improve the data. In addition, full refinements were not carried out on impurity 

phases and signals arising from sample environments (i.e. anvils at SNAP) to 

reduce the number of free parameters. Typically, only lattice parameters and 

phase fractions were refined for these phases. 
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To conduct a successful refinement on diffraction data, instrument specific 

parameters need to be determined with accuracy. If the instrument is not properly 

aligned and calibrated, this error will be reflected in the data, i.e. wrong peak 

widths, peak intensities, scattering angles, and the results will be meaningless. 

Therefore, a refinement of a standard reference sample (Si, LaB6, etc.) is used to 

determine the instrument dependent parameters. At a high throughput neutron 

diffraction instrument, an instrument parameter file will often be provided by the 

instrument team. However, due to the unique sample environments used at 

NOMAD and SNAP for our experiments, we had to make our own instrument 

parameter files. A detailed description of how to produce the instrument parameter 

files for a calibration sample is explained in the tutorials for GSAS-II (https:// 

subversion.xray.aps.anl.gov/pyGSAS/Tutorials). Calibration samples were nickel 

at SNAP and silicon (SRM Si640e) at NOMAD. 

4.2.2 PDF Analysis 

 
PDF analysis on the NOMAD data was performed using the software 

package PDFGUI.26 Complete details about the software program and the PDF 

method can be found in the previous reference. The PDF analysis method is in 

many ways similar to the Rietveld refinements. For example, various parameters 

in a theoretical model structure are refined to generate a theoretical PDF pattern 

that matches an experimentally measured PDF. Refined parameters included 

lattice constants, scale factors, atomic coordinates, anisotropic atomic 

displacement parameters (U), site occupancies, and parameters accounting for 

correlated atomic motion (delta1 or delta2 depending on temperature). In some 

cases, the deuterium site occupancies were fixed if they varied unreliably with 

temperature. A main difference is that PDF analysis calculates a model in real 

space while Rietveld refinements are calculated in reciprocal space.  

As was the same for the traditional neutron diffraction experiments, a 

calibration sample needs to be measured to account for the instrument specific 

parameters at NOMAD. This was conducted by measuring a silicon (SRM Si640e) 
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calibration sample or diamond and modeling the PDF data in PDFGUI. Values for 

Qdamp and Qbroad were determined from this calculation, which accounts for 

instrument resolution effects. Qdamp is a term that accounts for damping of the 

PDF pattern due to limited Q resolution. Qbroad is a term that corrects for peak 

broadening effects due to increased noise at higher Q values. 

4.3 Pressure Determination Methods 

 
The following sections will give a detailed overview of the methods used to 

determine the sample pressures for the high pressure experiments. Different 

methods were used to estimate the pressures depending on what type of gasket 

was used. Therefore, this section is divided into two partss: (1) SNAP experiment 

with the TiZr gasket and (2) SNAP and BASIS experiments with CuBe gasket.  

4.3.1 SNAP Experiment with TiZr Gasket 

 
The first experiment was performed at SNAP by measuring BaD2 in a TiZr 

gasket. Pressure was estimated using a third order Birch-Murnaghan equation of 

state of the form,47 

 𝑃(𝑉) =
3𝐵0

2
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𝑉0

𝑉
)
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3

− (
𝑉0

𝑉
)
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4
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where B0 is the bulk modulus, 𝐵′ = (
𝜕𝐵

𝜕𝑃
)

𝑃=0
, and V0 is the reference volume. This 

calculation was carried out using calculated parameters determined for BaH2.48 

Actual values for BaD2 are not expected to differ significantly from those of BaH2. 

For the orthorhombic phase, B0 = 31.2 GPa, 𝐵′= 3.2, and V0 = 221.5 Å3. For the 

hexagonal phase, B0 = 34.7 GPa, 𝐵′= 3.6, and V0 = 103.24 Å3. In addition, 

calculated and experimental values reported from Smith et al. were also tested and 

yielded similar results.49 A comparison of the load applied to the PE press and the 

corresponding sample pressure is shown in Figure 13. The structural phase 

transition to a higher density phase causes a sharp increase in the sample 
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pressure despite a small difference in the applied pressure range. The highest 

pressure achieved in this experiment with the TiZr gasket is approximately 11.3 

GPa.  

 

Figure 13: Pressure-load curve for BaD2 in a TiZr gasket.  

 

4.3.2 SNAP and BASIS Experiments with CuBe Gasket 

 
Two different experiments were conducted using the CuBe gasket: a 

diffraction experiment at SNAP and a QENS experiment at BASIS. The diffraction 

experiment was necessary to obtain a pressure-load curve for the CuBe gasket so 

that the pressures measured at BASIS could be estimated. For experiments at 

SNAP, the larger VX3-PE press was used while the smaller VX5 PE press was 

used at BASIS.  

For the SNAP experiment using the CuBe gasket, diffraction patterns were 

measured at a series of 22 pressures ranging from 7.5 tons to 75 tons to obtain a 

pressure load curve. By observing the pressure dependence of the CuBe Bragg 

peaks, the gasket began deforming under an applied load of roughly 24 tons, as 
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shown with the (311) CuBe peak in Figure 14a. Likewise, the BaD2 peaks started 

to shift at the same pressure (24 tons), as evidenced by the (211), (112), and (210) 

peaks displayed in Figure 14b. Therefore, 24 tons is the load that was needed to 

start deforming the gasket and begin applying pressure to the sample. CuBe is a 

stiffer gasket compared to TiZr, which explains in the large difference in applied 

loads needed to begin gasket deformation. In addition, Figure 14a shows how 

strong the scattering signal is from the CuBe gasket compared to the BaD2 sample. 

 

 

Figure 14: SNAP diffraction pattern summed over the high-angle column of the low angle detector 

bank (~ 59º – 74º)  for BaD2 in a CuBe gasket. 

 

 

 Diffraction patterns corresponding to loads between the range of 40 – 75 

tons is displayed in Figure 15. When comparing the 40 ton and 50 ton patterns, 

the emergence of a series of Bragg peaks can be observed. These Bragg peaks 

correspond to the hexagonal phase of BaD2. Therefore, the structural phase 

transition occurs between these two pressures. We therefore assign this 50 ton 

data set as the point where the hexagonal phase is completely formed. This allows 

us to determine the correlation between the pressure-load curve for this CuBe 

gasket with the pressure-load curve for the TiZr gasket shown in Figure 13. Namely, 

for the TiZr gasket at a load of 25 tons (or 5 GPa), most of the sample was 
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transformed into the hexagonal phase as only 11 mol% of the orthorhombic phase 

remained. Thus, while using a conservative estimation, the pressure at a load of  

50 ton for the CuBe gasket is equivalent to the pressure at the load of 25 ton for 

the TiZr gasket.  We therefore set this pressure as the V0 point for the hexagonal 

phase. Next, V/V0 was calculated for the TiZr gasket data as a function of pressure 

and a polynomial was fit to this data. Likewise, the (202) and (110) peaks for BaD2 

were used to calculate the cell volumes for the CuBe gasket, which was again 

converted into V/V0. The values determined from the polynomial were applied to 

the CuBe cell volumes to determine the corresponding sample pressures, as 

displayed in Table 3. However, the SNAP experiment only reached an applied load 

of 75 tons while the BASIS experiment reached a maximum load of 90 tons. 

Therefore, a second polynomial was fit to the V/V0 values for the CuBe gasket as 

a function of pressure in order to extrapolate our pressure-load curve. Using the 

second polynomial values, the corresponding cell volume could be determined by 

extrapolating the pressure up to 90 tons. Comparing this cell volume to the TiZr 

experiment yielded a maximum sample pressure of approximately 7.1 GPa.  

 

Figure 15: SNAP diffraction pattern summed over the center column of the high angle detector 

bank (~ 97º – 113º) for BaD2 in a CuBe gasket. 
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Table 3: Hydraulic load applied to PE press and corresponding sample pressures for the QENS 
experiment at BASIS. 

Applied Load (tons) Sample Pressure (GPa) 

10 0 

50 4.9 

75 6.2 

90 7.1 

 
 

4.4 Inelastic Neutron Scattering 
 

The data analysis methods for the INS measurements in this investigation 

are mostly qualitative (visual). The traditional way to model INS data is to compute 

the vibrational DOS by computational methods, such as density functional theory 

(DFT) and molecular dynamics (MD). However, these calculations are typically 

carried out only at low temperatures (a few Kelvin) and not at the high temperatures 

investigated in this work. Nonetheless, the lattice dynamics of the systems in this 

investigation (BaH2, CaH2, and MgH2) have been studied previously through 

theoretical and experimental methods.50-57 

Temperature dependent INS is an excellent technique to investigate how 

structure plays a role in hydrogen dynamics. Diffusion is inherently a phonon driven 

process. Therefore, it is important to understand the temperature evolution of these 

modes. The measurements at neutron powder vibrational spectrometers, such as 

VISION at ORNL, are averaged over a wide Q-range. To study specific modes in 

great detail to observe effects such as dispersion, a higher Q-resolution instrument 

would be needed, such as triple axis spectrometers. Nonetheless, powder 

averaged INS can provide plenty of information about the temperature evolution of 

the vibrational modes. The coherent coupling of phonons and hydrogen has been 

known to aid in the diffusion process in metal hydride systems through phonon-

assisted tunneling.58 The theory of acoustic and optical phonon-assisted 

tunneling/diffusion of light interstitials in metals and metal hydrides has been 

discussed previously.59-62 Particles that lack the thermal energy to overcome a 

barrier can gain the extra energy by coupling with a phonon and subsequently 
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jump over the barrier. With the ability for phonons to reduce the energy barrier 

heights, it is important to understand how the lattice dynamics change with 

temperature.  

It is a common feature for the hydrogen atoms to be positioned on 

multiple, crystallographically distinct sites in metal hydride systems. Different 

hydrogen sites produce distinct vibrational modes, which allows INS to 

distinguish between the various hydrogen sites. By tracking the temperature 

dependence of the vibrational DOS, insight into the hydrogen release 

mechanism can be obtained. For example, a softening of the vibrational modes 

associated with that hydrogen site will begin as the hydrogen-metal bond 

weakens. Subsequently, the mode will decrease in intensity and merge with the 

background as the hydrogen is released from that site and begins diffusing. An 

example of this type of behavior in complex hydrides is discussed in the report 

by Sato et al.63 Complex hydrides often have multi-step decomposition 

reactions, and temperature dependent INS is a helpful technique to uncover the 

decomposition reaction route. INS and total neutron scattering are often 

complimentary techniques since they both probe the local structure and can 

observe contributions from specific atomic sites.   
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 SAMPLE SYNTHESIS METHODS 

 
Metal hydrides are pyrophoric and emit hydrogen gas when exposed to 

water or air. Therefore, caution should be taken when handling these materials. 

Due to the highly reactive nature, sample handling was performed in a glove box 

under an inert gas atmosphere. This prevents possible contamination of the 

sample where hydroxide and oxide phases form upon reaction with air/water. The 

only commercially available material used for some of the experiments was BaH2. 

The other materials were either not commercially available or were found to be of 

poor quality once purchased. The following is a thorough explanation of the 

methods used to synthesize the metal hydride materials. It should be noted that 

the methods used were not fully optimized for efficiency. In other words, some 

samples were reacted for five days, when two days may have been sufficient to 

complete the reaction. The goal was simply to synthesize a high-quality sample to 

be used in the neutron scattering experiments. As will be discussed in the following 

sections, all binary samples synthesized successfully, but the ternary samples 

were only partially successful. The ternary hydrides often had multiple phases 

present in the final product, which is not ideal for experiments since the hydrogen 

dynamics are unable to be assigned to a specific phase. Therefore, we will briefly 

report the synthesis methods used to produce the ternary hydrides but will not 

discuss them any further in the experimental results sections. 

5.1 Hydrogen Storage and Thermodynamics 

 
Hydrogen can be reversibly stored in a metal M by forming metal hydrides 

according to the general reaction, 

 𝑀 +
𝑥

2
𝐻2 ↔ 𝑀𝐻𝑥 + 𝑄 (5.1) 

where x is the hydrogen to metal ratio, MHx is the hydride that is formed, and Q is 

the heat of formation. This shows that a relatively large amount of heat is generated 

as the hydride is formed in the exothermic reaction. On the other hand, as the 
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hydrogen is withdrawn from the system, the reaction is endothermic and the 

temperature decreases.  

 

Figure 16: Van ‘t Hoff plot. The equilibrium hydrogen pressure is plotted vs. the hydrogen 

concentration. Likewise, the equivalent electrochemical potential is plotted vs. inverse temperature. 

Reprinted with permission from Schlapbach and Zuttel.2 

 

The enthalpies (∆H) and entropies (∆S) for absorption/desorption of 

hydrogen are typically determined using pressure – composition – temperature 

(PCT) measurements using a Sievert’s apparatus.64 When the hydrogen pressure 

is plotted against the concentration for various temperatures, three distinct regions 

emerge, as seen in Figure 16. The first region is at low hydrogen pressures where 

a small amount of hydrogen is absorbed and forms a solid solution, denoted as the 

α-phase. The hydrogen in the α-phase occupies the interstitial octahedral and 

tetrahedral sites in the metal host lattice. In the second region, the nucleation of 

the hydride phase begins, denoted as the β-phase, and both the α- and β-phases 

coexist simultaneously. In this region, the pressure plateaus as the concentration 

of hydrogen increases. Given enough time, the solid solution will be completely 
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transformed into the β-hydride phase, but at a sub-stochiometric concentration. In 

the third region, the pressure needs to be increased once again to produce the 

fully hydrogenated state. A van ‘t Hoff plot can be created by plotting the 

equilibrium pressure in the plateau region vs. inverse temperature, as seen in 

Figure 16. The enthalpy of hydride formation can be determined using the slope 

while the entropy is yielded by the y-intercept, as given by the van ‘t Hoff equation.2  

 ln (
𝑝𝑒𝑞

𝑝𝑒𝑞
0 ) = (−

∆𝐻

𝑅𝑇
) +

∆𝑆

𝑅
 (5.2) 

5.2 Binary Hydrides and Deuterides 

 
 This investigation focuses on binary hydrides of the form AeH2 where Ae is 

a metal from the alkaline earth metal group. The chemical bonding in the alkaline 

earth metal group has a wide range of behaviors. The heavy alkaline earth 

hydrides (HAEHs) consisting of CaH2, SrH2, and  BaH2 form ionic compounds. 

However, BeH2 forms a covalent compound and MgH2 forms an intermediate 

compound that bridges the gap between ionic and covalent. These differences in 

bonding have immense effects on the material properties. As a result, the 

synthesis methods are very different between the ionic compounds of CaH2 and 

BaH2, and the covalent-like compound of MgH2. 

5.2.1 Magnesium Hydride (MgH2 and MgD2) 

 
MgH2 can be directly synthesized by reacting elemental Mg with hydrogen 

gas. However, the kinetics of this process are extremely slow, requiring long 

reaction times even when subjected extreme temperatures and hydrogen 

pressures. This is attributed to both the low dissociation rate of hydrogen on the 

Mg surface and the slow diffusion of H atoms into the bulk. Alternatively, MgH2 can 

be synthesized under mild conditions using Grignard reagents or by catalytic 

activation.65-67 Both methods were tested, with the catalytic method producing the 

best results. For this reason, only the catalytic method will be explained below.  
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 Transition metals are highly effective catalysts for use in the synthesis of 

MgH2. We followed the general procedure previously reported by Bogdanović et 

al.67  This method uses the organic compound, anthracene, in combination with 

transition metal halides in a tetrahydrofuran (THF) solution.  Chromium, titanium, 

or iron halides were recommended for the transition metal catalyst. For our 

synthesis, we tried both molybdenum pentachloride (MoCl5) and chromium 

trichloride (CrCl3), with MoCl5 yielding the best result. Bogdanović also reports that 

polycyclic arenes or amines may be added to enhance the activation. We found 

that 1-bromopropane works better than their recommendation of ethyl bromide. 

The best result was a product of the following procedure: 

Under an argon atmosphere, 6.1 g Mg (Alfa Aesar, -325 mesh powder, 

99.8%) was added to a boiling flask containing 30 mL anhydrous THF and 90 µL 

1-bromopropane, along with a magnetic stirring rod. This was stirred for 30 minutes 

at room temperature followed by the addition of 0.45 g anthracene, which was then 

stirred for 2 hours at 60°C and then cooled. Next, 0.7 g anhydrous MoCl5 was 

added and stirred at room temperatures for 30 min. The solution was left stirring 

overnight at this step, which is not necessary since the slightly exothermic reaction 

is completed after approximately 15-30 min. The solution is then transferred to an 

autoclave containing a magnetic stirring rod. The solution is hydrogenated at a 

temperature of 80°C and a hydrogen pressure of 80 bar. Bogdanović reports that 

the Mg is fully converted to MgH2 after approximately 14 hours. We used longer 

reaction times of 24 hours or longer (over the weekend) to ensure that the sample 

has been completely converted to MgH2.  Upon completion, the solution was 

filtered using a 150 mL coarse filter (C, pore size 25-50 µm). The light grey powder 

was rinsed with THF three times followed by a thorough rinse with n-pentane to 

remove the THF. The powder was then dried with a vacuum at room temperature. 

This produced high purity MgH2 with a yield of 5.8 grams. Some additional MgH2 

could potentially be recovered by filtering an additional time with a finer filter.  

The deuterated samples were synthesized following the same procedure 

with deuterium gas. Following an experiment at NOMAD, protium (not deuterium) 
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was observed in the MgD2 sample. This was observed as a large incoherent 

background in the diffraction pattern. Fourier-transform infrared spectroscopy 

(FTIR), INS, and XRD measurements were performed to determine the source of 

the protium. These results suggested that protonated solvents and/or anthracene 

remained in the sample, even after filtering with THF and pentane under vacuum. 

The sample was heated up to 145ºC for a day in a quartz tube to extract the 

remaining solvent from the sample. A yellowish-green film was evaporated and 

deposited on the wall of the quartz tube. FTIR of this film suggested that it was 

anthracene and another unknown compound. A subsequent NOMAD experiment 

on this heat-treated sample still showed signs of protium. The sample was 

subsequently heated at 120ºC for 9 days under vacuum. FTIR measurements 

showed that most of the protium was removed from the sample. However, 

additional PDF measurements on this sample still showed the presence of protium. 

It also appeared that the extreme heating treatment had altered the sample, which 

is described more in Section 8.1.1. 

5.2.2 Barium Hydride (BaH2 and BaD2) 

 
Commercially available barium hydride powder was purchased from 

American Elements with a reported purity of 99.7% metals basis, which was 

verified using XRD. In contrast to MgH2, BaH2 can be easily formed by a direct 

reaction between elemental Ba and H2 gas. However, Ba powder is difficult to 

make and is generally not available commercially.  

For the BaD2 synthesis, a large chunk of Ba metal was cut into smaller 

pieces and ball milled to create a powder. A combination of 2 mm and 5 mm 

stainless steel balls were added to an air-tight stainless steel vessel. Ba metal of 

approximately 1/5 the weight of the steel balls was added to the vessel. This was 

cooled using liquid nitrogen and ball milled for 15 minutes. Subsequently, it was 

cooled for another 15 minutes in liquid nitrogen before a 30-minute balling 

procedure. After warming to room temperature, the material was ball milled for an 

additional 30 minutes. This entire ball milling procedure was repeated a second 
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time.  Due to the rather ductile nature of Ba, the ball milling efforts were only 

partially successful. A small amount of powder was produced, but most of the Ba 

formed balls of a few millimeters in diameter. Approximately 6 grams of ball-milled 

Ba were placed inside an autoclave and sealed in a glovebox. The autoclave was 

heated to 180ºC and subjected to a pressure of 27 bar D2 gas. The reaction was 

performed for 24 hours. The product was light grey in color and reactive to water. 

Approximately 1.4 g of powder was generated along with 4.7 g of reacted BaD2 

chunks. The chunks were then crushed into a powder using a mortar and pestle to 

yield 5.5 g of powder. The remaining mass was unreacted Ba metal, which was 

removed. This produced high purity BaD2.  

Additional batches of BaH2 and BaD2 were synthesized using custom 

ordered Ba beads of particle size 0.5 – 2.0 mm from Sigma Aldrich with a purity of 

99% (trace metals basis). Ba was reacted in an autoclave for 24 hours at P = 50 

bar of H2 (D2). Following the reaction, the beads were changed from silver in color 

to a series of colors ranging from purple to gray to white. The beads were easily 

crushed into a powder using a mortar and pestle. The range in colors are likely 

due to defects in the material. XRD measurements showed only BaH2 (BaD2) 

peaks. Ba has a strong affinity for oxygen and will slowly convert to BaO over time 

if the helium glovebox has small concentrations of oxygen present. 

5.2.3 Calcium Hydride (CaH2 and CaD2) 

 
Commercially available calcium hydride powder was purchased from 

Sigma-Aldrich with a reported purity of 99.99% metals basis. However, XRD 

measurements showed that the sample had significant levels of contamination 

present, as indicated by the observation of multiple unknown phases. Therefore, 

we proceeded with synthesizing a purer sample of calcium hydride and deuteride.  

 5 g of calcium powder (Alfa Aesar, -16 mesh granules, 99.5%) was reacted 

directly with H2 gas in a Parr autoclave. This was heated to 350ºC where it was 

reacted with 7 bars of H2. The pressure immediately dropped to about 0 bar and 

this cycle was repeated approximately five times before the pressure stabilized. 
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Calcium hydride is known to “cake up” and form a solid ball if reacted with hydrogen 

too quickly. Therefore, we attempted to avoid this by reacting the surface of the 

powder slowly at the lower temperature of 350ºC. After this, the sample was heated 

to 450ºC and reacted with 10 bar of H2 overnight (approx. 15 hours). The pressure 

did not drop overnight which suggests that the reaction had been completed during 

the hydrogenation step at 350 ºC. The sample produced was still “caked up” and 

formed a large ball. This was crushed up with a mortar and pestle and x-rayed. 

This revealed that some additional Ca metal remained unreacted but that CaH2 

was produced. The powder was reacted a second time in the autoclave at 480ºC 

and 150 psi for 1.5 days. During this time, the pressure decreased to 115 psi 

indicating that a reaction occurred. The product was a fine white powder. XRD 

suggests that a very small amount of Ca metal is still present. 

 

5.3 Ternary Hydrides and Deuterides 

 
In addition to the binary hydrides, two different ternary hydrides consisting 

of alkaline earth metals were synthesized: dibarium magnesium hexahydride and 

tetracalcium trimagnesium tetradecahydride. These materials have largely not 

been studied, except for a limited amount of investigations reporting the synthesis 

methods and structural characterization.19, 20 Alloying the HAEHs with lighter 

weight cations, such as Mg, could be an interesting method to increase the 

gravimetric storage densities while maintaining the desirable hydrogen transport 

properties provided by the HAEHs. 

5.3.1 Dibarium Magnesium Hexahydride (Ba2MgH6 and Ba2MgD6) 

 

Ba2MgH6 and Ba2MgD6 were first synthesized and reported by Kadir and 

Noréus.19 The synthesis was performed by pressing a 0.15 g pellet of a 2:1 

stoichiometric mixture of BaH2 and MgH2 and reacted in an H2 (D2) atmosphere at 

P = 70 bar and T = 480ºC for 6 days. Following this procedure but scaling it up to 

a 1.094 g pellet and reacting at a pressure of 50 bar, we observed only a small 
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amount of Ba2MgH6 that was formed. The remaining phases consisted of BaH2 

and MgH2. The pellet was grinded, repressed, and reacted again under the same 

conditions. However, the Ba2MgH6 phase completely disappeared. It is possible 

that a higher pressure of 70 bar and smaller sample masses are needed to produce 

Ba2MgH6 through this method. However, there were no diffraction patterns 

included in the report by Kadir et al. so it is impossible to determine if a pure 

Ba2MgH6 sample was synthesized using their method. As with many of the ternary 

alkaline earth hydrides, pure samples are difficult to synthesis and typically they 

exist in equilibrium with multiple phases.20, 68-72  

 Instead of pressing a pellet of the respective hydrides, an alloy of Ba2Mg 

was formed by melting a 2:1 ratio of Ba beads (0.5 mm to 2 mm diameter) and Mg 

powder (-325 mesh) in an alumina crucible under an argon atmosphere. The 

sample was heated to 630ºC for one hour and then cooled below the eutectic point 

(358ºC) reported in the Ba-Mg phase diagram.73 The sample was then cycled up 

to 400ºC and then cooled below the eutectic point three times to ensure mixing. 

The alumina crucible containing the alloy was transferred to an autoclave and 

reacted at 400ºC and 95 bar for 18 hours. A two phase mixture of Ba2MgH6 and 

BaH2 was confirmed using XRD. The powder was yellowish-green and white in 

color. Various reaction times were tested, with the general trend of creating less of 

the Ba2MgH6 phase and more of BaH2, MgH2, and BaMgH4 with longer reaction 

times.  

5.3.2 Tetracalcium Trimagnesium Tetradecahydride (Ca4Mg3H14 and Ca-

4Mg3D14) 

 
Ca4Mg3H14 and Ca4Mg3D14 were first synthesized by Gingl et al.20 As in the 

case of Ba2MgH6, attempts were made to synthesize the ternary compound from 

mixtures of their hydride counterparts (CaH2 and MgH2). However, this method 

produced many impurity phases. Hence, an alloy was formed instead by melting a 

1:1 mixture of Ca and Mg to form a two-phase mixture of CaMg2 and Ca.  The alloy 

was reacted under H2 at P = 55 bar and T = 420ºC for 6 days. XRD showed that a 
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significant amount of Ca4Mg3H14 was formed, but MgH2, CaH2, and Mg are also 

present in small amounts.  

The difficulty in synthesizing Ca4Mg3H14 from an alloy of Ca and Mg is that 

Ca4Mg3 is not a phase that exists on the Ca-Mg phase diagram.74 Gingl et al. 

attempted to synthesis the sample using a 1:1 mixture of Ca and Mg which will 

inherently produce a multi-phase sample. We melted a 4:3 stoichiometric ratio of 

Ca and Mg (5 g total mass) was melted at 680ºC in a helium atmosphere for 

approximately 12 hours and cooled to room temperature. This process was cycled 

three times to ensure adequate mixing. XRD of the alloy showed mostly Mg2Ca, 

with Ca and CaO present in small amounts. The alloy was reacted in an autoclave 

for 10 days at 420ºC and 55 bar H2. XRD showed Ca4Mg3H14 present in large 

amounts with small amounts of MgH2 and Mg present.  
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 BARIUM HYDRIDE 

 
The main focus of this work is to investigate the structure and dynamics of 

BaH2. This material is important to study because it exhibits unique hydrogen 

transport properties, i.e. fast ionic conduction of hydride ions. Both temperature 

and pressure are known to cause a phase transition which influences the hydrogen 

transport properties. First, the temperature dependence of the local and global 

crystal structure and hydrogen dynamics will be discussed, followed by the 

pressure dependence.   

6.1 Temperature Dependence 

6.1.1 Crystal Structure 

 
The crystal structure of barium hydride has been well studied.13, 49, 75-77  Two 

distinct phases are observed upon heating from room temperature: (1) low-

temperature orthorhombic phase and (2) a high-temperature hexagonal phase.  

The cell parameters and special fractional coordinates for both phases are listed 

in Table 4.13 The hydrogen (specifically deuterium for our structural studies) in both 

phases reside on two crystallographically distinct sites, referred to as D(1) and 

D(2). In addition, the HAEH group has been reported to have significant hydrogen 

substoichiometries, with x~1.8 for BaDx.13, 17 A large concentration of vacancies 

can be beneficial for hydrogen diffusion. 

At ambient conditions, BaD2 crystallizes in the cotunnite structure with 

orthorhombic symmetry (space group Pnma (62)). Lattice parameters for BaD2 are 

a = 6.7824 Å, b = 4.1605 Å, and c = 7.8432 Å at T = 298 K.13 For the orthorhombic 

phase, Ba, D(1) and D(2) are all positioned on 4c sites (x. ¼, z). A structural phase 

transition occurring around 775 K transforms the orthorhombic phase into a high 

symmetry hexagonal phase (Ni2In-type, space group P63/mmc (194)).13, 75 The 

hexagonal unit cell has lattice parameters of a = 4.457 Å and c = 6.723 Å at T = 

883 K.13 Previous NPD measurements have suggested that the D(1) site is split. 



 

60 
 

Rather than residing on the high symmetry 2d sites, the deuterium is slightly shifted 

to the lower symmetry 4f sites. 

 

Table 4. Refined lattice parameters and atomic coordinates for both phases of BaD2 from NPD 

measurements, as reported by Verbraeken et al.13 

Phase 

Parameters 

T = 298K Phase 

Parameters 

T = 883 K 

D1 on 4f 

Phase 

Parameters 

T = 883 K 

D1 on 2d 

a (Å) 6.7824(1)  4.4571(2)  4.4566(2) 

b (Å) 4.1605(1)  4.4571(2)  4.4566(2) 

c (Å) 7.8432(1)  6.7230(4)  6.7219(5) 

Ba, 4c (x, 1/4, z) Ba, 2b (1/3, 2/3, 1/4) Ba, 2b (1/3, 2/3, 1/4) 

x 0.2393(3)     

z 0.1112(2)     

D1, 4c (x, 1/4, z) D1, 4f (1/3, 2/3, z) D1, 2d (1/3, 2/3, 3/4) 

x 0.3514(2)     

z 0.4282(2)  0.8288(5)   

D2, 4c (x, 1/4, z) D2, 2a (0, 0, 0) D2, 2a (0, 0, 0) 

x 0.9733(2)     

z 0.6828(2)     

 
 

The cotunnite to Ni2In-type phase transition has been known to occur in 

many types of materials, such as the fluorite-type compounds and Na2S.78, 79 The 

cotunnite and Ni2In-type phases are similar structurally. Comparisons between 

these two structures have been described in detail previously.49, 78, 79 Briefly, the 

cations in the cotunnite phase are positioned on a slightly distorted hexagonal 

close packed (hcp) lattice. Despite the hexagonal arrangement, the unit cell is 

properly described using an orthorhombic symmetry. In both phases, six anions 

surround the cation forming a trigonal prism. In the cotunnite structure, three 

additional anions surround the cation (coordination number (CN) = 9) while five 

additional anions are surround the cations (CN = 11) in the Ni2In-type structure. 

The disorder in the cation positions in the cotunnite structure causes the adjacent 
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anionic prisms to be tilted 25° with respect to each other. Following the phase 

transition, the cations become properly aligned on the hcp sites and the tilt is 

removed, resulting in a higher symmetry hexagonal phase. This structure consists 

of alternating layers of Ba with D(1) and layers of D(2) alone. Both crystal 

structures are displayed in Figure 17. 

 

 

Figure 17: Crystal structures of BaD2. (a) Orthorhombic (cotunnite) structure at T = 298 K and (b) 

hexagonal (Ni2In-type) structure at T = 883 K. Reprinted with permission from Verbraeken et al.13  

 

6.1.2 Total Neutron Scattering and Diffraction 

 
Total neutron scattering measurements were performed at NOMAD on 

BaD2 from T = 300 K – 900 K, with the PDFs displayed in Figure 18. The 

experimental data is well described by the cotunnite structure across the local and 

global regions (r = 1.5 – 35 Å in this case) up to the phase transition. Minor 

deviations can be observed, mostly in the local structure. The pattern begins with 

a broad peak located between r = 2.6 Å – 3.3 Å, which is a superposition of many 

different atomic distances of type Ba-D and D-D.  The shortest Ba-Ba distances 

begin around 4.03 Å. As expected with increasing temperature, the sharp peaks 

at 300 K gradually become more smeared out and weaken in intensity due to the 

Debye-Waller effect. A more detailed look at the temperature dependence of the 

local vs. global regions is shown in Figure 19. The pattern can be divided into three 
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distinct regions: (1) the local structure up to roughly 6 Å, (2) a transition region 

between 6 Å – 13 Å, and (3) the global structure above 13 Å. As the temperature 

is increased, the local structure remains largely unchanged. The length scales for 

this region roughly corresponds to the size of one unit cell of BaD2. On the other 

hand, drastic changes can be observed beginning around 775 K in the 

intermediate transition region between 6 Å – 13 Å, which is due to the orthorhombic 

to hexagonal phase transition. The sharp peaks become significantly smeared out 

by the 825 K measurement, indicating that this region is rather disordered. Further 

explanation of the transition region will follow shortly. The global structure is 

located above r = 13 Å, which is observed as a series of sharp peaks at 300 K. As 

temperature increases, the numerous peaks merge into a lesser series of broad 

peaks with considerable intensity, i.e. four main peaks located between 13 Å – 22 

Å. The reduction in peaks can be viewed as a transition to a higher symmetry 

phase, which is indeed what happens in the cotunnite to Ni2In-type transition. 

 

Figure 18: PDF G(r) vs. r showing the local and global structure for BaD2 at (a) 300 K and (b) 300K 

– 900 K (G(r) are translated). The calculated model uses the orthorhombic cotunnite structure.  
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Figure 19: PDF G(r) vs. r for BaD2 at T = 300K – 900 K (G(r) are translated). The calculated model 

uses the orthorhombic cotunnite structure.  

 
 

The structural phase transition has been reported to be of first order in 

nature, but arguments can be made for it to be of second-order.13 For one, the 

structural change only involves minor changes in the unit cell parameters and 

atomic coordinates. It is basically a slight rearrangement of the atomic positions to 

produce the proper hcp structure. However, Verbraeken et al. argues that the 

volume contraction at the transition temperature causes a large enough 

discontinuity in the cell volume vs. temperature to be considered first-order. Our 

NPD measurements show that the phase transition occurs slowly, with both 

phases coexisting simultaneously over a large temperature range. This can be 

observed in the temperature evolution of the orthorhombic (112) and (210) peaks 

from our NPD measurements in Figure 20. The phase transition begins around 

775 K and is not completed until somewhere between 850 K – 900 K.  
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Figure 20: NPD pattern for BaD2 measured at NOMAD for temperatures between 725 K – 900 K. 

The orthorhombic to hexagonal phase transition can be observed by the extinction of the 

orthorhombic (112) and (210) peaks around d = 2.66 Å. 

 
 
 Lattice parameters and anisotropic atomic displacement parameters (U) 

extracted from PDF analysis are displayed in Figure 20. The lattice parameters 

show a clear change around 775 K that indicates the onset of the structural phase 

transition. This type of transition should have the following relation: aortho = chex and 

bortho = ahex.13 Previous NPD results report the hexagonal lattice parameters at T = 

883 K to be a = 4.4571(2) Å and c = 6.7230(4) Å.13 Using the orthorhombic 

cotunnite structure at 825 K, the lattice parameters (converted into the 

corresponding hexagonal lattice parameters) were determined to be a =  4.42(1) 

Å and c = 6.68(1) Å. Therefore, the relation is satisfied since the orthorhombic 

lattice parameters have deviated from the orthorhombic values and are 

approaching the expected hexagonal values. Initially, it is surprising to observe 

how well the cotunnite structure describes the data at 825 K (Figure 19), especially 

considering that this measurement is 50 K over the reported transition 

temperature. For one, this may be due to some of the orthorhombic phase 

remaining in the sample. The more likely reason is that the theoretical 
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orthorhombic structural model has been modified during the PDF analysis process 

as it begins to converge on the proper hexagonal structure. Again, both structures 

are very similar and only involves minor changes in the lattice parameters and 

atomic positions. The atomic displacement parameters in Figure 21 show that both 

D(1) and D(2) are behaving in a similar manner in the orthorhombic phase. Note, 

the deuterium site fractional occupancies were fixed in the cotunnite structure at 

0.877843 and 0.857965 for D(1) and D(2), respectively. These values were 

determined in the 300 K measurement and fixed for the subsequent 

measurements. Refining these values with temperature was attempted but led to 

unreliable results. Figure 22 shows the temperature dependence of the special 

atomic coordinates for the 4c sites of Ba, D(1), and D(2). Changes can be seen in 

all the atomic positions at temperatures well below the phase transition, with the 

most significant changes occurring in Ba and D(2). The D(1) sites appear to be 

more stable until a drastic change occurs at 775 K.  

 

Figure 21: Refined parameters from PDF analysis for BaD2 with the cotunnite structure. (a) Lattice 

parameters and  atomic displacement parameters (U) for (b) Ba, (c) D(1), and (d) D(2) atomic sites. 
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 Figure 22: Refined special atomic coordinates x and z for the (a) Ba, (b) D(1), and (c) D(2). 

 

 

Accurate modeling of PDF patterns in the two-phase region between 775 K 

and 850 K was difficult due to the similarity of the two crystal structures and many 

refinable parameters. Therefore, the 900 K measurement was used for accurate 

modeling of the hexagonal Ni2In-type structure since the orthorhombic phase no 

longer exists. As mentioned previously, the D(1) site has been reported to be split 

in this structure for BaD2.13 Rather than residing on the high-symmetry 2d site, D(1) 

is instead positioned on the lower symmetry 4f site. Figure 23 shows a comparison 

of G(r) at 900 K fit with calculated models for D(1) positioned on the 2d and 4f 

sites. Both models are clearly very similar, but the split-site model does provide a 

slightly better fit to the observed data. The Rw values are 0.2717 and 0.2495 for 

D(1) positioned on the 2d (non-split) sites and the 4f (split) sites, respectively. The 

site splitting occurs along the c-axis in the structure. Justification for the split site 

can be observed in the atomic displacement along this axis, where U33 = 0.445 Å2 
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for the non-split site model. This is a very large atomic displacement parameter, 

which suggests that the D(1) atoms are highly mobile along the z-axis. It is a 

common practice in crystallography to model an atomic site with large 

displacements as a split site. Using the 4f (split) site model, U33 assumes a more 

reasonable value of 0.125 Å2. The distance between the split D(1) sites was 

determined to be 1.014 Å at 900 K. 

 

 

Figure 23: Comparison of G(r) for BaD2 at 900 K fit with models containing D(1) positioned on 2d 

(non-split) sites and 4f (split) sites. G(r) are translated for clarity. 

 

 

We are now ready to elaborate on the origin of the intermediate transition 

region observed in Figure 19. As mentioned in previously, the slight disorder in 

the Ba positions causes the anionic polyhedra in the cotunnite phase to be 

slightly tilted with respect to each other. This tilt is largely frozen in place in the 
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orthorhombic structure but is removed in the hexagonal structure. While the long 

range, time-averaged structure determined from Rietveld refinements would 

suggest the tilt no longer remains, the PDF results suggest that the anionic 

polyhedra in the hexagonal phase have some degree of reorientational freedom. 

The local structure (< 6 Å) resembles the unit cell of BaD2, which has largely 

maintained the same local structure through the phase transition. But rather than 

the neighboring anionic polyhedral being tilted at 25º with respect to each other, it 

can be argued they can now assume various tilted configurations. This type of 

dynamic fluctuation would allow the local structure to remain the same but 

produces a disordered region that bridges the gap between the local and global 

structure (Figure 19). Over the distance of roughly 2 to 3 unit cells, these correlated 

motions are averaged-out to yield the high symmetry hexagonal structure. In other 

words, the PDF measurements have shown that the hexagonal structure can be 

considered a short-range dynamic mosaic of the orthorhombic phase.  

These dynamic structural fluctuations also provide further explanation for 

the existence of the split H(1) site and would be beneficial to the diffusion process 

by shortening the hydrogen jump length. In addition, cooperative rearrangements 

of the lattice can help aid in diffusion by increasing the free volume for the hydrogen 

to diffuse through. This motion can modify the energy landscape and reduce the 

energy barriers for diffusion. Anionic reorientational motion has been reported in 

complex hydrides, which serves to unlock fast ionic diffusion of cations in these 

materials.80-82 These results have interesting ramifications for the lighter weight 

HAEHs of CaH2 and SrH2 because they possess the same cotunnite structure as 

BaH2. However, neither CaH2 or SrH2 exhibit a temperature induced cotunnite to 

Ni2In-type phase transition (an unidentified phase transition occurs in SrH2 around 

850°C)83, but a pressure induced transition of this type has been previously 

observed.84-86 Therefore, it could be possible to induce this type of phase transition 

through doping or other techniques. This could potentially unlock fast hydrogen 

diffusion in the lighter weight hydrides that would have more suitable hydrogen 

storage densities for applications. 



 

69 
 

6.2 Hydrogen Diffusion: Quasielastic Neutron Scattering 

 
As mentioned previously, BaH2 exhibits fast ionic conduction of hydride ions 

at elevated temperatures. The ionic conduction is modest in the orthorhombic 

phase, but the diffusion increases by over an order of magnitude following the 

phase transition. The best available technique to study this diffusive motion on the 

atomic scale is quasielastic neutron scattering. We investigate the diffusion 

process in both phases of BaH2 to understand what changes in the diffusion 

pathways to unlock the faster motion. 

First, we conducted an elastic scan at BASIS to obtain a general 

understanding of what temperature range the observable hydrogen dynamics are 

expected to occur on the timescale of the instrument. The elastic san was 

performed up  to a maximum temperature of 880 K, as shown in Figure 24. By 

examining the slope of the elastic intensity vs. temperature, three distinct regions 

were observed: (1) low-T region (from 300 K up to about 650 K), (2) intermediate-

T region (from about 650 K up to about 775 K), (3) and the high-T region (T > 775 

K). The low-T region has a gradual decrease and resembles a typical Debye-

Waller type behavior. Beginning around 650 K, the elastic intensity begins to 

decrease more rapidly. A decrease in the elastic intensity is an indication of the 

onset of observable hydrogen dynamics. Therefore, a quasielastic signal should 

be observable beginning around 650 K. The third region begins with a sudden 

decrease in the elastic intensity around 775 K, corresponding to the phase 

transition. After the phase transition, the elastic intensity flattens out to a very small 

value, suggesting that the hydrogen in the structure has become highly mobile. 

The following sections will demonstrate that the hydride ions have very distinct 

dynamics in these three different temperature regions.  

Following the results from the elastic scan, longer QENS measurements 

were performed to carry out enable a detailed QENS data analysis. The data 

analysis methods for these measurements has been outlined in Chapter 4. 

Quasielastic broadening is first observed in the QENS spectra at 600 K. However, 
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the combination of a very weak intensity and narrow broadening makes the 

quasielastic signal unable to be fit reliably below 670K at both spectrometers 

(BASIS and HFBS). This temperature perfectly corresponds to the intermediate-T 

region in the elastic scan, where the elastic intensity indicated the onset of 

observable hydrogen dynamics. Upon the phase transition at 775 K, the 

quasielastic component increases drastically in both intensity and width. The 

QENS spectra measured at BASIS is shown in Figure 25a for 710 K (orthorhombic 

phase) and Figure 25b for 850 K (hexagonal phase). Measurements were 

conducted using the Si(111) analyzers (smaller energy range, ±100 µeV) for the 

orthorhombic phase while Si(311) analyzers (larger energy range, ±740 µeV) were 

used for the hexagonal phase in order to observe the full spectral broadening.  

 

 

 
Figure 24: Elastic intensity scan measured at BASIS. The data is averaged over a Q-range of 0.5 
– 1.5 Å-1. 
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Figure 25: QENS spectra measured at BASIS at Q = 1.5 Å-1 at (a) T = 710 K and (b) T = 850 K with 

the fit components shown. HWHM Γ(Q) vs. Q2 of the Lorentzian in the (c) low temperature 

orthorhombic phase and (d) the high temperature hexagonal phase measured at BASIS. The solid 

lines are fits of the Chudley-Elliott jump diffusion model. 

 
 

The QENS spectra were first fit using an unconstrained model with 

Lorentzian functions representing the quasielastic signal (Eq. (4.1) with the 

quasielastic term given by Eq. (4.2)). The orthorhombic phase is reproduced with 

two Lorentzian functions while only one Lorentzian function was needed for the 

hexagonal phase. Despite the use of two Lorentzian functions for the orthorhombic 

phase, there is only one distinct dynamical process arising from the sample. The 

dynamic process is evident as a narrow Lorentzian with a HWHM on the order of 

a few µeV. The second Lorentzian is very broad, on the order of tens to hundreds 

of µeV, with no Q-dependence. This signal is likely an artifact of the instrumental 

background. Proof that this signal does not originate from the sample is that the 
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broad component is only present in the data using the Si(111) analyzers and 

disappears after switching to the Si(311) analyzers. If this broad component truly 

was originating from the sample, it should be easily observable using the Si(311) 

analyzers. 

 

Table 5: Jump lengths, residence times, and diffusion coefficients for the QENS fitting results of 

BaH2. 

 

 

The Lorentzian widths in the unconstrained fits showed a clear Chudley-

Elliott diffusive behavior.41, 42  Other models, such as Singwi-Sjölander43 and Hall-

Ross,44 were tested as well but could not reproduce the experimental data with 

similar quality as the Chudley-Elliott model.41, 42 An example of the three jump 

diffusion models for the data at T = 850 K was shown in Figure 10 in Chapter 4. 

Therefore, the Lorentzian widths (quasielastic broadening) was further constrained 

to follow the Chudley-Elliott model as a function of Q, as explained in Section 

4.1.3.1. The resulting constrained HWHM (Γ(Q)) as a function of Q2 for the 

Orthogonal Phase T (K) L (Å) τ (ns) D (10-7 cm2/s) 

HFBS CCR 670 4.2 ± 0.2 1.7 ± 0.08 1.7 ± 0.2 

720 4.1 ± 0.1 1.0 ± 0.03 2.7 ± 0.2 

750 4.0 ± 0.1 0.7 ± 0.02 3.8 ± 0.2 

BASIS Si(111) CCR 670 3.7 ± 0.1 0.8 ± 0.02 2.9 ± 0.1 
 690 4.1 ± 0.1 0.7 ± 0.01 3.9 ± 0.2 

BASIS Si(111) Furnace 690 3.9 ± 0.02 0.6 ± 0.002 4.4 ± 0.04 
 710 3.8 ± 0.01 0.4 ± 0.001 6.0 ± 0.03 

 730 3.7 ± 0.01 0.3 ± 0.0008 7.2 ± 0.04 
 750 3.6 ± 0.01 0.2 ± 0.0004 9.7 ± 0.05 

Hexagonal Phase T (K) L (Å) τ (ps) D (10-5 cm2/s) 

BASIS Si(111) Furnace 770 3.0 ± 0.03 18.5 ± 0.2 0.8 ± 0.02 

BASIS Si(311) Furnace 770 3.1 ± 0.02 20.7 ± 0.1 0.8 ± 0.009 

790 3.1 ± 0.01 17.2 ± 0.07 0.9 ± 0.006 

810 3.1 ± 0.01 14.7 ± 0.06 1.1 ± 0.008 

830 3.1 ± 0.01 13.1 ± 0.04 1.2 ± 0.006 

850 3.1 ± 0.01 11.7 ± 0.05 1.4 ± 0.01 

870 3.1 ± 0.03 9.5 ± 0.07 1.7 ± 0.03 

920 3.1 ± 0.01 9.0 ± 0.04 1.8 ± 0.01 
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orthorhombic and hexagonal phases are shown in Figure 25c and Figure 25d, 

respectively.  Γ(Q) has values on the order of few μeV in the orthorhombic phase 

while values are more than order of magnitude larger in the hexagonal phase. 

Since the motion is well described by the Chudley-Elliott jump diffusion model, it 

can be attributed to the long-range translational diffusion of the hydride ions. Jump 

lengths and residence times were extracted from the data using the Chudley-Elliott 

model and used to calculate diffusion coefficients with Eq. (4.4). A summary of the 

fit parameters is displayed in Table 5. The diffusion coefficients are displayed in 

the Arrhenius plot in Figure 26 along with activation energies, Ea, and the 

temperature independent preexponential diffusion coefficient, D0.  

 

 

Figure 26: Arrhenius diagram for BaH2 with diffusion coefficients calculated from QENS. Solid lines 

are a linear fit of the data. Activation energies and preexponential diffusion coefficients are reported. 

 

First, the diffusive motion in the orthorhombic phase will be discussed. 

Again, this signal is first observed at T = 600 K but can only be reliably fit starting 
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at 670 K. This motion can be measured using BASIS, but the narrow broadening 

is close to the resolution limit of Γ = 1.75 µeV. To better resolve this motion, HFBS 

with higher resolution (Γ = 0.4 µeV) was used. As seen in Table 5, the jump lengths 

at HFBS yield values around L = 4.2 Å while the jump lengths from BASIS reside 

over a range of L = 3.6 – 4.2 Å.  To compare this with the structural data, deuterium-

deuterium (D-D) distances in BaD2 reported from neutron diffraction 

measurements for both phases are displayed in Figure 27.13 The actual protium-

protium (H-H) distances in BaH2 are not expected to be significantly different than 

D-D distances in BaD2.13, 77 For clarity in this section, we will no longer dissociate 

between protium and deuterium, instead referring to both as hydrogen. Figure 27 

shows that the shortest H-H distances in the orthorhombic structure can be 

separated into three main regions of approximately 3.1 Å, 3.6 Å, and 4.2 Å.   The 

first region contains the shortest distances (3.1 Å), which corresponds to both H(1)-

H(2) and H(1)-H(1) distances. The second region contains the next shortest 

distances (3.6 Å) due exclusively to H(2)-H(2) distances. The third region (4.2 Å) 

corresponds to both H(1)-H(1) and H(2)-H(2) distances. Therefore, the observed 

jump lengths from QENS (L = 3.6 – 4.2 Å) relate to the distances in the second 

and third regions. Thus, the possible jumps in the orthorhombic phase are from 

H(1) to H(1) or from H(2) to H(2) sites. Potential diffusion pathways corresponding 

to these types of jumps are illustrated in Figure 28. The fact that the BASIS 

measurements show jump distances ranging between 3.6 Å and 4.2 Å could be 

interpreted as a combination of jumps in the second and third regions on a similar 

time scale. In this case, the jump lengths would assume an averaged value 

between these two distances. Since the shorter distances of 3.6 Å only correspond 

to the H(2)-H(2) distances, H(2) may be the more important contributor to the ionic 

conductivity since it can undergo long range diffusion through a series of 3.6 Å and 

4.2 Å jumps. However, the previous PDF measurements did not show a significant 

difference between the atomic displacement parameters for either site. The 

diffusion pathway had been previously assumed to be along the (102) plane, where 

the H-H distances are the shortest, i.e. 3.1 – 3.2 Å.13 However, our QENS results 
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suggest that the hydride ions are not diffusing along the shortest available paths. 

In addition, these results suggest that H(1)-H(2) jumps are not occurring readily in 

the orthorhombic phase, since these types of jumps correspond to the shortest 

distances of roughly 3.1 Å. As seen in the Arrhenius diagram (Figure 26), the 

activation energy measured at HFBS is lower than at BASIS, 453 meV and 572 

meV, respectively. Due to the different energy resolution and energy transfer 

ranges at these spectrometers, it is possible that we observed a single jump 

process (4.2 Å jump length) at HFBS and a combination of two processes (3.6 Å 

and 4.2 Å jump lengths) at BASIS, which explains the difference in the obtained 

activation energies. The average of the two values from HFBS and BASIS is very 

close to the experimental activation energy of 520 meV reported by Verbraeken et 

al. using EIS.13 While computational modelling could shed some light on the energy 

landscape, the significant hydrogen substoichiometry makes the modelling very 

difficult, if not impossible.  

 

 

Figure 27: D-D distances reported from neutron diffraction data for BaD2.13 The orthorhombic and 

hexagonal (non-split D(1) sites) phases were measured at T = 670 K and 883 K, respectively.  
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Next, we will discuss the diffusive motion in the hexagonal phase. The 

phase transition is clearly observed in the Arrhenius plot (Figure 26) where the 

diffusion coefficients increase by approximately an order of magnitude around T = 

775 K. The diffusion process in the hexagonal phase has an activation energy of 

418 meV, which is lower than both values calculated for the orthorhombic phase. 

A reduction in the activation energy for ionic transport is common following a 

transition to a higher symmetry phase. However, both the orthorhombic and 

hexagonal phases were reported to have the same activation energy from previous 

EIS measurements (520 meV).13 The QENS value is notably lower than that from 

EIS for the hexagonal phase. The activation energies calculated using these two 

techniques may be different because of the difference in time and length scales 

that each technique probes. For example, EIS probes bulk diffusion over 

macroscopic length scales while QENS reveals information about diffusive 

motions on the angstrom scale. The jump lengths extracted from QENS are all 

very close to 3.1 Å, which is in perfect agreement with the shortest H-H distance, 

as seen in Figure 27. This distance corresponds to the H(1)-H(2) sites which were 

previously restricted in the orthorhombic structure. The H(1) sites now act as a 

‘steppingstone’ for the diffusion process, allowing the hydrogen to diffuse in 

virtually any direction through the crystal structure along 3.1 Å jumps. Hence, the 

phase transition reduces the energy barrier that restricted the H(1)-H(2) jumps in 

the orthorhombic phase. As a result, the hydrogen is now allowed to diffuse along 

using the shortest H-H distances in the structure. As expected, this produces  

residence times that are significantly shorter in the hexagonal phase, i.e. tens of 

picoseconds compared to nanoseconds. These results also agree with the PDF 

results, where the atomic displacement factors were very large along the c-axis for 

the D(1) sites, indicating transport along this direction. The site splitting would 

further reduce the jump length from 3.1 Å to 2.8 Å (or increase it to 3.4 Å). However, 

the QENS measurements consistently yield jump lengths of approximately 3.1 Å, 

which indicates that QENS just observes the average jump length from this site.  
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Figure 28: Crystal structures and potential diffusion pathways in BaD2 for the (a) low temperature 

orthorhombic phase at 670 K and the (b) high temperature hexagonal phase at 883 K from neutron 

diffraction measurements.13 

 

6.2.1 Vibrational Density of States: Inelastic Neutron Scattering 

 
The vibrational density of states can be measured by INS to examine how 

bonding and local structure influences dynamic processes, such as the hydrogen 

release mechanism and diffusion. Since diffusion is a thermally activated process, 

it is highly dependent on the collective dynamics of the host lattice. With the 

hydrogen residing on two distinct crystallographic sites, their contributions to the 

INS spectra can be separated because they produce distinct vibrational modes at 

different energies. This can provide insight into which hydrogen site releases first 

and can begin participating in the diffusive motion. For example, if the H(1) 

vibrational modes disappear first upon increasing temperature while the H(2) 

modes remain intact, we could conclude that the H(1) site released first and began 

diffusing through the system. Therefore, we conducted a temperature dependent 

INS investigation of BaH2 at VISION,28 with the spectra shown in Figure 29. The 

neutron vibrational spectra of BaH2 has been studied previously.53, 54, 57  The 

spectra can be divided into four distinct regions: (1) the acoustic phonons below 

50 meV, (2) the optical phonons of H(2) atoms from approximately 50 meV to 85 
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meV (3) the optical phonons of H(1) atoms from approximately 85 meV to 125 meV 

and (4) the multi-phonon modes at energies above 125 meV. The sharp distinct 

modes at 5 K begin to decrease in intensity and broaden as temperature increases, 

as expected with Debye-Waller behavior. There is a small excess contribution still 

present in the spectra at 450 K for both the H(1) and H(2) optical modes, but it is 

very broad. This suggests that the Ba-H bonds remain intact at 450 K, but that the 

hydrogen is weakly bound. By the next measurement at 600 K, the modes have 

completely disappeared, and the hydrogen is now undergoing long-range 

translational diffusion. This is the same temperature that a quasielastic signal is 

first observed using QENS. In agreement with the QENS and PDF results, both 

the H(1) and H(2) modes are equally decaying in the orthorhombic phase, 

suggesting that both hydrogen sites are mobile and behaving in a similar way.  

 

 

Figure 29: INS spectra from 5 K to 650 K for BaH2 measured at VISION. The optical phonon modes 

corresponding to H(1) and H(2) sites, as well as multi-phonon modes, are labeled. Intensities is 

translated for clarity.                          
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6.3 Pressure Dependence 

 

The temperature dependent properties of barium hydride are now rather 

well understood, but knowledge about the pressure dependence remains 

incomplete. Previously, BaH2 has been studied at high pressures previously using 

XRD,49, 87 EIS,16 and ab-initio computational methods.16, 48 These investigations 

have discovered that the orthorhombic to hexagonal phase transition can be 

induced using pressure over a pressure range of P = 1.6 – 4.0 GPa at room 

temperature.16, 48, 49, 87 The EIS measurements showed that the high pressure 

hexagonal phase also exhibits high ionic conduction and that it increases with 

pressure.16 In addition, a second phase transition has been observed in BaH2 

around P = 50 GPa which forms the AlB2 structure (space group P6/mmm 

(191)).87 Since XRD is unable to observe hydrogen in the presence of heavier 

atoms, i.e. Ba, we used high pressure NPD to characterize the pressure dependent 

structure with the goal of determining the deuterium positions. Secondly, we 

investigated the hydrogen dynamics in the hexagonal phase using high pressure 

QENS. Details of the experimental and data analysis methods for the high 

pressure experiments can be found in Chapters 3 and 4 (and Appendix), while the 

pressure determination methods are described in Section 4.3. 

6.3.1 Diffraction 

 
Refined parameters for the BaD2 phases consisted of phase fractions, 

lattice parameters, atomic coordinates, anisotropic atomic displacement 

parameters (U), and pseudo-Voigt profile  parameters. The fractional occupancies 

were determined to be 0.85 and 0.88 for the D(1) and D(2) sites respectively and 

kept fixed for all pressures. Approximately 8 mol% of BaO has been observed as 

an impurity phase in the sample. The pressure dependent structure of BaO has 

been reported previously.88, 89  
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Figure 30: (a) Pressure dependence of the lattice parameters for the orthorhombic and hexagonal 

phases of BaD2. (b) c/a lattice parameter ratio. (c) Volume of a formula unit of BaD2 as a function 

of pressure.90  

 
 

With no applied pressure, the lattice parameters for BaD2 were determined 

to be a = 6.782(2) Å, b = 4.159(1) Å, and c = 7.851(2) Å, which agrees well with 

previous NPD measurements.13 The pressure dependence of the unit cell volume 

is displayed in Figure 30. The orthorhombic phase exists up to a pressure of 

approximately 1.3 GPa. At this pressure, the hexagonal phase begins to form (12 

mol% at 1.3 GPa) and coexists with the orthorhombic phase up to a pressure of 

4.9 GPa. At 4.9 GPa, only 11 mol% of the orthorhombic phase remains and is 

essentially fully converted by the next pressure point (5.5 GPa). Previous reports 

on BaH2 report the phase transition occurring over a wide pressure range from P 

= 1.6 – 4.0 GPa.16, 48, 49, 87 Our investigation verifies these previous reports, clearly 

showing that both phases coexist over this wide pressure range. This is similar to 

our temperature dependent NPD/PDF experiment on BaD2, where both phases 

coexisted over a large temperature range (Figure 20). The pressure-load curve, 

previously displayed in Figure 13, shows that the phase transition actually occurred 
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across a narrow applied load. The large increase in the observed sample pressure 

is due to the sample transitioning from a lower to higher density phase. The volume 

contraction allows the gasket to compress more easily for the same applied load.  

For the hexagonal phase at 4.2 GPa, the lattice parameters were 

determined to be a = b = 4.309(8) Å and c = 5.805(6) Å. The pressure dependence 

of the lattice parameters is displayed in Figure 30a. A gradual decrease is 

observed for all the cell parameters in both phases. Consistent with previous 

studies on BaH2, the a-axis in the orthorhombic phase, which converts to the c-

axis in the hexagonal phase, shows the most compressibility.87 For the 

orthorhombic phase, compressibilities (β) were determined to be 0.112(1) GPa-1, 

0.026(2) GPa-1, and 0.0549(6) GPa-1 along the a-, b-, and c-axes, respectively. 

Likewise, values for the hexagonal phase are 0.01505(4) GPa-1 and 0.054(1) GPa-

1 for the a- and c-axes.   

 

Figure 31: SNAP neutron diffraction pattern for BaD2 at (a) ambient pressure (orthorhombic phase) 

and (b) P = 6.9 GPa (hexagonal phase).  
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The observed and calculated NPD patterns for both phases of BaD2 are 

displayed in Figure 31. At ambient pressure, the refinement yielded Rwp = 4.12%, 

Rexp = 0.49%, and the reduced χ2
 = 77.3. At P = 6.9 GPa, the values are Rwp = 

5.08%, Rexp = 0.5%, and χ2
 = 104.6. While the residual values are rather large, 

visually there is an excellent agreement with the experimental data for both 

phases. The large residual values can be attributed to multiple factors. First, the 

background varies significantly across the entire diffraction pattern and changes 

as a function of pressure. Therefore, the background was fit manually using 

Chebyshev polynomials with 8 to 15 coefficients for an adequate fit. Second, there 

is a slight intensity mismatch observed in some of the hexagonal BaD2 peaks which 

becomes more prominent at higher pressures (Figure 31b). This is likely due to 

preferred orientation, a very common feature in non-hydrostatic high-pressure 

experiments, i.e. those conducted without a pressure transmitting medium. 

Preferred orientation corrections were not applied in order to minimize the number 

of free parameters in the refinements. Third, noticeable deviations are observed in 

the peak profile associated with the BaO impurity phase. This is expected since 

only lattice parameters and phase fractions were refined for this phase to reduce 

the number of parameters. Many investigations would use a Lebail fit for the BaO 

phase, which can greatly underestimate the residual values. Despite the large 

residual values, the cotunnite and Ni2In-type phases successfully describe the 

experimental data across the entire pressure range and the extracted parameters 

are reliable.   

One of the goals of this investigation was to confirm the hydrogen positions 

suggested from the previous XRD and NPD experiments.13, 49 All of the atoms in 

the orthorhombic phase are located on special 4c (x, 0.25, z) positions. At ambient 

conditions, x = 0.350(1) and z = 0.425(2) for the D(1) atoms, x = 0.961(2) and z = 

0.6896(9) for D(2), and x = 0.250(2) and z =0.104(1) for Ba. All of these values 

agree with a previous NPD study of BaD2.13 The pressure evolution of the atomic 

coordinates in the orthorhombic phase is displayed in Figure 32. No drastic 

changes occur leading up to the phase transition. The x-coordinates remain mostly 
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constant as pressure increases but the z-coordinates increase slightly in both 

deuterium sites. For the hexagonal phase, the Ba is located on 2b sites (0.33, 0.66, 

0.25), D(1) on 2d sites (0.33, 0.66, 0.75), and D(2) on 2a sites (0, 0, 0) for the 

entire pressure range up to 11.3 GPa. Note, the non-split D(1) site model was used 

because the results did not indicate site splitting with pressure. It is possible that 

these dynamic fluctuations require significant thermal activation to occur.  

 

 

Figure 32: Pressure dependence of the special atomic coordinates for (a) D(1) and (b) D(2) atoms. 

Horizontal lines are positioned at the value for no applied pressure. 

 

Many ionic AX2-type compounds (A = metal), including the HAEH group, 

crystallize in the cotunnite structure at ambient conditions and transition into the 

Ni2In-type structure at higher pressures. These compounds possess similar 

properties and an interesting trend has been observed in the lattice parameter 

ratios for both phases: for the cotunnite phase, values for c/a and (c + a)/b are 

around 1.15 and 3.5, respectively. In addition, the c/a ratio in the Ni2In-type 



 

84 
 

structure is approximately 1.34 just following the phase transition.48, 49, 87 In 

agreement with the trend, the values for BaD2 were determined to be 1.158 (c/a) 

and 3.518 ((c + a)/b) for the orthorhombic phase and 1.347 (c/a) for the hexagonal 

phase. Similarly to BaH2, the (c/a) ratio in the hexagonal phase reduces with 

increasing pressure to a value of 1.289 at 11.3 GPa.49 Interestingly, this is in 

contrast with the Ni2In-type structure of BaF2, where the c/a ratio increases slightly 

with pressure.79 This is noteworthy since BaF2 has been a popular compound in 

the past for isostructural comparisons to the HAEHs.49, 79  

6.3.2 Hydrogen Dynamics: Quasielastic Neutron Scattering 

 
Now that the pressure dependence of the crystal structure is well-

characterized, the nature of the pressure induced hydrogen dynamics can be 

investigated. We conducted high pressure QENS measurements to probe the 

hydrogen diffusion process under applied pressure. We report here high pressure 

QENS measurements on BaH2 up to a maximum pressure of 7.1 GPa. For these 

experiments, we adapted the Klotz and Bove set-up.36, 37 Further details can be 

found in those reports. QENS spectra ranging from ambient conditions (instrument 

resolution function) up to 7.1 GPa are displayed in Figure 33. Quasielastic 

broadening is observed compared to the resolution function and it increases with 

pressure. Previous electrochemical impedance spectroscopy measurements have 

shown that the ionic conductivity increases in the hexagonal phase with increasing 

pressure.16 Our results also indicate faster hydrogen dynamics with pressure. The 

QENS data is averaged over the entire measured angular range because the 

statistics were not suitable for a detailed Q-dependent study. By fitting the 

quasielastic broadening with a Lorentzian function, the Q-averaged HWHM is 

determined to be 27 ± 5 µeV and 39 ± 8 µeV for the pressures of 6.2 GPa and 7.1 

GPa, respectively. This corresponds to timescales of 24.4 ps (6.2 GPa) and 16.9 

ps (7.1 GPa). All three measurements shown here are in the hexagonal phase of 

BaH2. However, the P = 4.9 GPa signal has too little intensity to accurately 

determine the HWHM and there may still be some remaining orthorhombic phase 
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in this measurement. A more detailed QENS analysis unveiling the atomic scale 

origins of hydrogen diffusion in BaH2 at elevated pressure will follow in a 

subsequent report pending additional measurements.  

 

 

Figure 33: QENS spectra measured at BASIS for BaH2 up to pressures of 7.1 GPa. All data is 

averaged into a single Q-bin and the intensities are normalized with respect to the elastic peak.  

 

 

High pressure QENS in the GPa range is a relatively new field of study that 

is still being actively developed. Understanding single particle dynamics in 

materials under pressure is an excellent way to expand our knowledge about the 

behavior of materials in extreme environments. While high pressure QENS 

experiments in the MPa range are rather common, only a limited amount of 

investigations have achieved pressures in the GPa range.36, 37, 91 To our 

knowledge, the highest sample pressure achieved in a QENS experiment was an 

investigation of water dynamics up to 3.3 GPa by Klotz, Bove et al.36, 37 Therefore, 
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our investigation has greatly improved on the current high pressure QENS 

capabilities by achieving a new maximum pressure of 7.1 GPa. Despite the lack of 

a proper Q-dependent study of BaH2 with high pressure QENS, these results 

demonstrate the exciting new capabilities that are being developed as we push the 

current boundaries in the field of high pressure QENS. 

6.4 BaH2 Summary of Results 

 
The temperature and pressure dependence of the local and global crystal 

structure of BaD2 using NPD and total neutron scattering. The orthorhombic 

cotunnite structure correctly describes the PDFs up to the phase transition at 775 

K. Changes in the atomic coordinates are observed for the Ba, D(1), and D(2) sites 

preceding the phase transition. At 775 K, the hexagonal phase begins to form and 

coexists with the orthorhombic phase until the transition is completed around 850 

K – 900 K. The phase transition resembles a first-order transition with respect to 

the significant decrease in cell volume vs. temperature. However, the gradual 

structural change involving small modifications of the lattice parameters and 

atomic coordinates over a large temperature range suggests a possible second-

order nature. The hexagonal phase is well described by the Ni2In-type structure. 

Large atomic displacement factors associated with displacement of D(1) atoms 

along the c-axis suggests that the D(1) site is split and resides on the lower 

symmetry 4f sites. The PDF showed that the local structure remains mostly 

unchanged following the phase transition while the global structure transitions into 

a higher symmetry phase. However, there is an intermediate transition region 

bridging the gap between the local and global structures (r = 6 Å – 13 Å) that is 

highly disordered in the hexagonal phase. This can be attributed to rotational 

degrees of freedom with respect to the anionic polyhedra in the structure. These 

dynamic fluctuations can greatly assist the hydrogen diffusion process. In addition 

to temperature, pressure has been found to also induce the orthorhombic to 

hexagonal phase transition. Similar to the temperature dependent study, the phase 

transition occurred over a wide pressure range (P = 1.3 – 4.9 GPa). Both the low 
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pressure orthorhombic and high pressure hexagonal phases are well described by 

the cotunnite and Ni2In-type models, respectively.  

The temperature and pressure dependence of the hydrogen dynamics was 

investigated in barium hydride using QENS. The temperature dependent study 

showed that the hydride ions undergo jump diffusion between various hydrogen 

lattice sites, as explained by the Chudley-Elliott jump diffusion model. We have 

determined the preferred jumps in the lattice for both the orthorhombic and 

hexagonal phases, with each phase showing very different dynamics. In the 

orthorhombic phase, two distinct jump lengths of approximately 3.6 Å and 4.2 Å 

were found. The first one (3.6 Å) corresponds to a distance between H(2)-H(2) 

sites. The second one (4.2 Å) corresponds to distances between both H(2)-H(2) 

and H(1)-H(1) sites. Despite the shorter distance (3.1 Å) between H(1)-H(2) sites, 

we do not observe such jumps in the QENS measurements. Following the phase 

transition, jump lengths were found to be around 3.1 Å in the hexagonal phase, 

which corresponds to jumps between H(1)-H(2) sites. The phase transition enables 

the previously restricted H(1)-H(2) jumps in the orthorhombic phase. This change 

allows the hydrogen to diffuse efficiently through 3.1 Å jumps with an activation 

energy of 418 meV, which is significantly lower than in the orthorhombic phase, 

512 meV. Furthermore, the jump rate increases by an order of magnitude upon the 

phase transition promoting the faster diffusion. The dynamic fluctuations observed 

in our structural study cause the D(1) site to be split, a feature that is key for 

unlocking the fast hydrogen diffusion in the hexagonal phase. As mentioned 

before, the same phase transition that occurs in BaH2 at high temperature can be 

induced at high pressures. Recent reports suggest that ionic conduction in BaH2 

increases with pressure in the hexagonal phase. We performed high pressure 

QENS measurements on BaH2 up to a maximum pressure of 7.1 GPa. Our 

preliminary results show that there is a quasielastic signal that increases with 

pressure with a HWHM broadening of approximately 39 ± 8 µeV at 7.1 GPa. To 

our knowledge, this is the highest pressure currently achieved in a QENS 

experiment. We plan to expand this study in future experiments to obtain better 
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statistics for a proper Q-dependent investigation to unveil the diffusive pathways 

in this high-pressure phase. In addition to the QENS measurements, the lattice 

dynamics and vibrational density of states was probed over a temperature range 

of 5 K to 650 K using INS. The weakening of the hydrogen bonds was observed 

as a gradual decrease in the intensity and a softening of the vibrational modes. 

The modes associated with the H(1) and H(2) sites had a similar temperature 

dependence, which suggests that both sites contribute equally to the ionic 

conduction in the cotunnite phase. A similar trend was observed in the atomic 

displacement parameters extracted from the PDF measurements. Lastly, 

hydrogen release was observed around 600 K, which is the temperature that 

diffusion begins to be observable in the QENS measurements. 
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 CALCIUM HYDRIDE 

 
Calcium hydride is a HAEH that crystallizes in the same cotunnite crystal 

structure as BaH2. As a result, these materials share similar materials properties, 

such as a high decomposition temperature of Tdec ≈ 940 K. CaH2 is intriguing for 

applications due to ability to store larger densities of hydrogen (4.75 wt%) 

compared to BaH2 (1.44 wt%).15 However, the hydrogen transport becomes 

increasingly slower in the HAEH group as the size of the cation decreases, i.e. 

BaH2 > SrH2 > CaH2. The fast-ionic conduction in BaH2 is unlocked following a 

structural phase transition. However, a similar phase transition has not been 

observed with temperature in CaH2 and hence the hydrogen transport remains 

modest. Our goal is to investigate the temperature dependent structure of CaD2 

using total neutron scattering to observe how the local and global structures 

change in this material. Despite the lack of a first-order phase transition, there may 

be subtle rearrangements of the atomic positions that can be exploited in the future 

to induce the phase transition in this material, with the ultimate goal of increasing 

the hydrogen transport properties. Second, we will use QENS to investigate the 

hydrogen diffusion mechanism and INS to probe the lattice dynamics.   

7.1 Crystal Structure 

 
The crystal structure of calcium hydride has been studied previously.17, 55, 92 

Again, this material crystallizes in the cotunnite structure (orthorhombic, space 

group Pnma (62)), which makes it isomorphic to BaD2 (cotunnite crystal structure 

displayed in Figure 17a for BaD2). The lattice parameters of CaD2 at ambient 

conditions are a = 5.9455(1) Å, b = 3.5917(1) Å, and c = 6.7997(1) Å.17 This is a 

significantly smaller unit cell than BaD2 (a = 6.782 Å, b = 4.159 Å, and c = 7.851 

Å). The Ca, D(1), and D(2) sites are all positioned on 4c sites (x, 0.25, z). The 

values for x and z are 0.2407(3) and 0.1094(2) for Ca, 0.3553(2) and 0.4265(2) for 

D(1), and 0.9749(2) and 0.6756(2) for D(2).17 Similar to BaD2, CaDx has been 

reported to have significant deuterium sub-stoichiometries with x ~ 1.91.  
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The decomposition temperature has been determined to be approximately 

940 K, which means that the thermal stability is similar to BaD2.13, 17 Unlike BaD2, 

no first-order phase transitions occur in CaD2 upon heating from room 

temperature. However, previous differential thermal analysis (DTA) and EIS 

measurements have indicated a second-order phase transition occurring in CaH2 

above 700 K.93 They attributed this to an order-disorder transformation, potentially 

with respect to the hydrogen sites. At low temperatures, the hydrogen is ordered 

and a gradual disordering occurs as the sample is heated. There is a noticeable 

discrepancy between the EIS and DTA measurements in that work: the EIS 

measurements suggests the transition occurs around 733 K (value is not reported 

for CaD2), while the DTA results suggest it begins around 808 K for CaH2 and 832 

K for CaD2. The EIS measurements show a decrease in the activation energy 

corresponding to the bulk conductivity beginning at 733 K, which indicates a 

structural (order-disorder) transition. The DTA measurements show an exothermic 

process beginning around 808 K that is observed as a gradual change in the slope 

of the DTA measurement over a large temperature range. This behavior is typically 

indicative of a second-order phase transition. The EIS and DTA measurements 

show that there are clearly some structural and dynamical changes occurring 

around 733 K and again above 800 K in this material. 

7.1.1 Total Neutron Scattering 

 
A temperature dependent total neutron scattering investigation was 

conducted on CaD2 over a temperature range of 300 K to 920 K. The experimental 

and calculated PDFs are shown in Figure 34. Overall, there is an excellent 

agreement between the experimental data and the theoretical model using the 

cotunnite structure. It can be observed that this model correctly describes both the 

local and global atomic structures over the distance range of r = 1.5 – 35 Å. An 

interesting feature is observed around the length scales of 15 Å – 23 Å as the 

sample is heated. The modes in this region seem to broaden and increase in 

intensity more than the rest of the pattern, which could be a sign of a disordered 
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structure. This looks very similar to the disordered transition region observed in 

BaH2 (see Section 6.1.2). This would also agree with the order-disorder transition 

that has been suggested to occur roughly around 832 K in CaD2. 

 

Figure 34: PDF G(r) vs. r showing the local and global structure for CaD2 at (a) 300 K and (b) 300K 

– 920 K (G(r) are translated). 

 

 

The local structure is shown in greater detail in Figure 35 for the same 

temperature range. Apart from a few minor deviations from the experimental data, 

the model clearly describes the data. Some interesting changes begin to appear 

with temperature, such as the emergence of extra peaks.  For example, there is a 

double peak in the lowest r region (approx. 2 – 3 angstroms) in the 300 K data. We 

will refer to this as a doublet for clarity, but it is actually a superposition of many 

atomic distances. As the sample is heated, two additional peaks begin to emerge 
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on the shoulders of this doublet: one around 2.1 Å and a second around 3 Å. The 

theoretical model struggles to capture these distinct peaks in the lowest r region 

as the temperature is increased.  The other peaks in this pattern, i.e. 4 – 11 Å, 

have the general trend of broadening and decreasing in intensity upon heating. 

This is expected since the atomic displacement parameters also increase with 

temperature. As the atoms become increasingly mobile and the bonding weakens, 

the bond distances are less defined, and the peaks are smeared out.  

 

Figure 35: PDF G(r) vs. r showing the temperture dependence of the local structure in CaD2 for a 

temparture range of 300 K – 920 K. PDF values are translated for clarity. Blue circles represent the 

experimental data and the solid red lines is the calculated model.  

 
 
 Refined parameters including lattice parameters, deuterium site 

occupancies, and anisotropic atomic displacement parameters (U) are displayed 

in Figure 36. The lattice parameters all increase with temperature with no 

unexpected features. The deuterium site occupancies increased slightly for D(2) 

but decreased significantly for the D(1) sites above 800 K. This suggests that the 
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D(1) atoms release from the site at a lower temperature compared to the D(2) sites, 

indicating it may be the more important hydrogen site for ionic conduction. 

Interestingly, this temperature corresponds to the thermal process observed in the 

DTA measurements.93 There is no sign of a release occurring in the D(2) sites up 

to 920 K, which means it likely releases at the decomposition temperature of 940 

K. Interestingly, the atomic displacement parameters for the D(1) sites are smaller 

by about half when compared to the D(2) sites. Previous NPD measurements at 

ambient conditions also reported larger displacement parameters for D(2) 

compared to D(1).17 Interestingly, a sharp increase is observed in some of the 

atomic displacement parameters beginning around 850 K, which corresponds with 

the order-disorder temperature from DTA. This change is most prominent in the 

directions along the a and b-axes (U11 and U22).  

 

Figure 36: Refined parameters from PDF analysis for CaH2. (a) Lattice parameters, (b) deuterium 

site occupancies, and atomic displacement parameters (U) for (c) D(1) and (d) D(2) sites. 

 

 The refined special atomic coordinates for all of the atomic positions  (4c 

sites (x, 0.25, z)) are displayed in Figure 37. Again, previous EIS and DTA 
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measurements indicate that structural/dynamical changes occur in the sample 

around 733 K (EIS for CaH2) and at 832 K (DTA for CaD2, 808 K for CaH2).93 Upon 

heating from room temperature, there is a noticeable decrease in the z-coordinates 

with temperature for both the Ca and D(1) sites while the other positions remain 

relatively constant. Around 600 – 700 K, the x-coordinate for Ca and the z-

coordinate for D(1) begins to decrease more rapidly. This closely corresponds to 

the 733 K temperature from the EIS measurements. The EIS measurements were 

conducted in large ∆T = 50 K steps, meaning there may be a large variation in the 

exact transition temperature. Also, an isotopic shift in the transition temperature is 

possible since only EIS values were reported for CaH2. Upon additional heating, 

changes occur in all the atomic sites beginning around 800 K – 850 K, with the Ca 

and D(2) sites appearing to be most affected by this structural change. The 

additional peaks appearing in the PDF patterns as temperature increases suggests 

that there may be a more complex structure following this order-disorder transition 

that isn’t fully captured with the cotunnite structure.  

 

Figure 37: Atomic coordinates x and z for the (a) Ca, (b) D(1), and (c) D(2) sites for CaD2.  
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7.2 Hydrogen Dynamics 

 

7.2.1 Quasielastic Neutron Scattering 

 
An elastic scan was conducted on CaH2 over a temperature range of 270 K 

– 800 K at HFBS, as shown in Figure 38. A gradual decrease associated with 

Debye-Waller behavior is observed up to 680 K. At this temperature, a sudden 

increase in the elastic intensity is observed. Above 680 K, the elastic intensity 

continues to decrease and appears to do so more rapidly beginning around 780 K.  

 

 

Figure 38: Elastic scan measured at HFBS for CaH2 from T = 270 K – 800 K.  

 
 

A sudden discontinuity in an elastic scan typically indicates a structural 

phase transition, where the hydrogen dynamics are different in the two phases. 

With no first-order phase transitions observed in this material, this might be due to 

a second-order phase transition.93 As shown in the PDF results, the atomic 

coordinates for the Ca and D(1) sites begin to change around this temperature. 
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This slight modification could be significant enough to influence the hydrogen 

dynamics. The EIS measurements show a decrease in the activation energy 

corresponding to the bulk conductivity beginning at 733 K, which indicates a 

structural modification may have occurred. The increase in the elastic intensity in 

the elastic scan suggests that the motion initially slows down following this 

transition. This occurs at a lower temperature (680 K) compared to the EIS 

measurements (733 K). As mentioned previously, the EIS measurements were 

conducted in large temperature step sizes (~ 50 K steps) which means that the 

real transition temperature may be closer to 680 K. Heating rates and 

measurement times can also affect the reported transition temperatures. 

 

 

Figure 39: QENS spectra and resolution function measured at HFBS for CaH2 at T = 800 K and Q 

= 1.2 Å-1. 

 
 

A longer QENS measurement was conducted at T = 800 K for CaH2, with 

the spectra shown in Figure 39. As can be observed, there is no appreciable 

quasielastic broadening to the elastic peak. This indicates that the hydrogen is not 
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diffusing on the timescale of the instrument (HFBS) at 800 K. The conductivity 

values from EIS suggest that the motion should become observable just above this 

temperature.17, 93 However, measurements were limited to a maximum 

temperature of 800 K due to the sample environment used at the time. Studying 

the dynamics above 800 K would be an interesting future work considering the 

DTA measurements suggest a change in the sample occurs beginning around 832 

K. In addition, the PDF results show that the D(1) site occupancy begins to 

decrease around this temperature as well. Likewise, the elastic scan shows a more 

pronounced decrease approaching 800 K. 

7.2.2 Vibrational Density of States (INS) 

 
INS spectra for CaH2 were measured over a temperature range from T = 5 

K to 750 K CaH2, as shown in Figure 40. The 5K measurement was conducted in 

a CCR while the higher temperatures were measured in a furnace. A detailed 

account of the vibrational DOS for CaH2 has been discussed elsewhere.53-57 Since 

the structure of CaH2 is isomorphic to the cotunnite structure of BaH2, the 

vibrational DOS are practically identical, but with the modes in CaH2 shifted to 

higher energies by ~15 – 20 meV (INS spectra for BaH2 is shown in Figure 29). 

The H(2) modes are located in the energy region between 65 meV – 105 meV, the 

H(1) modes between 105 meV – 145 meV, and multi-phonon modes above 145 

meV. This suggests that the Ca-H bonds in CaH2 is notably stronger than those in 

BaH2. Further evidence of this is the temperature evolution of the modes. In BaH2, 

the modes were smeared out and almost completely merged with the background 

by the measurement at 450 K. Likewise, the 600 K measurement for CaH2 shows 

this similar feature. In addition, the modes in CaH2 are much more pronounced at 

room temperature when compared to BaH2. Figure 40 shows that the modes 

merge with the background completely by the 700 K measurement. Therefore, the 

temperature dependence of the vibrational modes behaves in a similar manner to 

BaH2, but is shifted to higher temperatures by roughly 100 – 150 K. This gives us 

a hint as to why no diffusive signal was observed in the QENS measurements up 
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to 800 K. It is likely that the observable hydrogen diffusion would soon become 

observable at BASIS and HFBS above 800 K. In addition, the PDF results 

suggested that the H(2) site may release before the H(1) sites. Both sites seem to 

behave similarly with temperature in the INS spectra. However, the intensity 

reduction in the H(2) modes seems to be more pronounced than the H(1) modes 

between the 450 K and 600 K measurements, which could support the reasoning 

that this site releases at a lower temperature.  

 
 

Figure 40: INS spectra from 5 K to 750 K for CaH2 measured at VISION. Intensities are translated 

for clarity. 

 

7.3 CaH2 Summary of Results 

 
The structure of CaD2 was investigated with total neutron scattering over a 

large temperature range of 300 K – 920 K. While no first-order structural phase 

transitions were observed, an indication of a second-order phase transition was 

detected. There is a noticeable change in the atomic positions with temperature 
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for both the Ca and D(1) sites between 600 – 700 K. This roughly corresponds to 

the temperature range in which a change in the activation energy was previously 

observed using EIS.93 Upon additional heating, changes occur in the positions of 

all the atomic sites beginning around 800 K, which agrees with previous DTA 

measurements for a second order transition. The Ca and D(2) sites appear to be 

most affected by this structural change. These results suggest that there may be 

two distinct structural changes occurring in this material: the first between 600 K – 

700 K and the second beginning above 800 K. QENS measurements were 

performed on CaH2 to investigate the hydrogen dynamics. An elastic scan showed 

a sharp discontinuity around 680 K. This is typically indicative of a phase transition 

and occurs in a similar temperature range to the changes observed in the PDF and 

EIS measurements. The elastic intensity increased which suggests that the 

hydrogen dynamics initially slow down following this transition. Longer QENS 

measurements at T = 800 K did not show appreciable quasielastic broadening. 

However, our results suggest that a QENS signal would likely be observable above 

800 K. The INS spectra also indicates that the hydrogen should be sufficiently 

mobile above 700 K and that the H(2) site may release at a lower temperature than 

the H(1) sites.   
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 MAGNESIUM HYDRIDE 

 
Up to this point, we have focused on the HAEHs of BaH2 and CaH2, which 

both possess similar materials properties. MgH2 is a light-weight alkaline earth 

hydride that behaves quite differently than the HAEHs. For example, MgH2 

crystallizes in the rutile structure at ambient conditions, rather than adopting the 

cotunnite crystal structure of the HAEHs. The difference in the materials behavior 

is largely due to the nature of the metal-hydrogen bonds in these materials: the 

HAEHs are ionicly bonded while MgH2 has covalent-like bonds. The strong 

covalent-like bonding leads to poor kinetic reversibility and causes the hydrogen 

transport to be extremely sluggish. This is unfortunate because the high hydrogen 

storage density (7.6 wt%) and the intermediate decomposition temperature (Tdec ≈ 

600 K) makes magnesium hydride very appealing for various applications.14, 15  We 

employ here high temperature total neutron scattering, QENS, and INS 

measurements to characterize the local and global structures and to investigate 

the hydrogen dynamics.  

8.1 Crystal Structure 

 
The crystal structure of magnesium hydride has been previously 

determined through XRD and NPD.94-96 MgD2 crystallizes with tetragonal 

symmetry in the rutile-type structure with a = b = 4.5010(1) Å and c = 3.0100(1) 

Å at 260 K.96 The space group is P42/mnm (136), where Mg is located on the 2b 

sites at (0,0,0) and D is positioned on the 4f sites at (x, x, 0) with x = 0.3040(2). 

Unlike BaD2 and CaD2, there is only one distinct hydrogen site in this structure. 

The Mg atoms are centered inside deuterium octahedra which run straight along 

the c-axis, as seen in the crystal structure shown in Figure 41. The rutile phase 

is stable until decomposition around 600 K. With pressure, MgH2 undergoes a 

series of phase transitions that ultimately transforms the rutile structure into the 

cotunnite structure around 17 GPa. The cotunnite phase is stable up to 57 
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GPa.97 Therefore, magnesium hydride may behave similar to the HAEHs at 

elevated pressures in the cotunnite phase.  

 

 

 Figure 41: Rutile crystal struture of MgD2.  

 

8.1.1 Total Neutron Scattering and Diffraction 

 
The local and global crystal structure of MgD2 was investigated with total 

neutron scattering measurements over a temperature range of 100 K – 400 K, with 

the PDFs shown in Figure 42. The calculated pattern using the rutile structure well 

describes both the local and global structures. Most of the observed deviations are 

in the local region, which is largely due to differences in intensity. The peak 

positions are well reproduced by the rutile structure. The PDFs show almost no 

changes as the material is heated from 100 K to 400 K, as shown in Figure 42b. 

Likewise, the lattice parameters and atomic coordinates displayed in Figure 43 

show only slight modifications with temperature. The lattice parameters at T = 300 

K were determined to be a = b = 4.509(3) Å and c = 3.004(3) Å, which agree well 

with previous reports.96 In addition, the atomic displacement parameters assume 
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the modest values of U11 = 0.033 Å2 and U33 = 0.017 Å2  at T = 400 K, indicating 

that the covalent-like bonds in MgD2 are strong and the deuterium atoms remain 

tightly bound. Therefore, the structure of MgD2 is not changing significantly across 

the measured temperature range. There is a noticeable deviation in the lattice 

parameters and atomic coordinates at T = 100 K when compared to the trend 

established in the higher temperature measurements. It is unclear why this occurs, 

but it is possible that there is a small structural modification at low temperatures in 

this material. Since the atomic coordinates for the deuterium sites also display this 

change, it is possible that there is a redistribution of the deuterium sites. In addition, 

the fractional deuterium occupancies could not be properly determined and were 

fixed at 1.0. The refined occupancies were yielding a value around 1.06 which is 

not realistic. In addition, our study was limited to 400 K due to the sealed sample 

containers used at the time. Future studies could expand this structural study up 

to the decomposition temperature at 600 K to understand what changes occur 

proceeding the decomposition. 

 

Figure 42: PDF G(r) vs. r for MgD2 at (a) 100 K and (b) 100K – 400 K (G(r) are translated). 
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Figure 43: Temperature dependence of the lattice parameters for MgD2 from total neutron 

scattering measurements. The atomic coordinates relating to the x-coordinate for the deuterium 

sites is shown in the inset.  

 
 

While the PDF measurements shown in Figure 42 for MgD2 are sufficient 

for a structural investigation, a signal was observed in the measurements arising 

from the presence of protium (not deuterium) in the sample, as described in 

Section 5.2.1. The presence of protium created large incoherent backgrounds in 

the diffraction patterns. This could be a reason why there are intensity mismatches 

in the low-r region of the pattern. The source of the hydrogen is most likely leftover 

precursor chemicals used to synthesize the MgD2, i.e. anthracene and protonated 

solvents. Attempts were made to remove the remaining impurities by heating the 

sample under vacuum. FTIR measurements showed a decrease in the signal 

arising from the solvents following the heat treatment. However, this process 

appears to have drastically changed the sample. The PDF for MgD2 at T = 100 K 

is shown in Figure 44. Clearly, there are major disagreements with the calculated 

model, especially in the low-r region. However, the global structure above 

approximately 20 Å is still relatively well described. The NPD pattern before and 
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after the heat treatment at T = 100 K is shown in Figure 44b. The Bragg peaks 

appear to be exceptionally broadened following this heat treatment. In addition, 

there appears to be extra peaks that emerge, most notably at d = 2.1 Å. The heat 

treatment under vacuum likely decomposed parts of the sample in a non-uniform 

manner. This would cause a distribution of lattice parameters across the sample 

which broadens the peaks.  A purer sample for neutron diffraction investigations 

would need to be synthesized in a different manner, or by using the same process 

used here with completely deuterated reactants, which may be cost prohibitive. 

 

 

Figure 44: (a) PDF G(r) measured at NOMAD for the heat treated MgD2 sample at T = 100 K. (b) 

NPD patterns at T = 100 K for the MgD2 sample before and after the heat treatment. Patterns were 

scaled for clarity. 

 

8.2 Hydrogen Dynamics 

 

8.2.1 Quasielastic Neutron Scattering 

 
An elastic scan was measured at HFBS for MgH2 over a temperature range 

from T = 70 K – 525 K. Typical Debye-Waller behavior is observed over the entire 

temperature range, as indicted as a gradual decrease in the elastic intensity. There 
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is no indication of the onset of observable hydrogen dynamics on the timescale of 

the instrument (HFBS) up to 525 K. The sample was measured in a closed sample 

container, which limited measurements to 525 K, since higher temperatures would 

risk sample decomposition and over-pressurizing the sample container. A longer 

QENS measurement at 525 K showed no quasielastic broadening.  

 

 

Figure 45: Elastic scan for MgH2 from 70 K – 525 K. 

 

 
 Longer QENS measurements were performed at BASIS for T = 553 K, 573 

K, 593 K, 613 K, and 633 K. The QENS spectra at T = 593 K and the resolution 

function measured at room temperature are displayed in Figure 46 for Q = 1.3 Å-1. 

No appreciable quasielastic broadening was observed at any of the measured 

temperatures. Sample decomposition began during the 613 K measurement, as 

detected by a strong decrease in the neutron count rate and spectral intensity. The 

fact that we do not observe a quasielastic signal demonstrates that hydrogen 

transport in MgH2 is notoriously sluggish, which significantly hinders its potential 
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for many applications. These results indicate that no appreciable diffusion occurs 

leading up to the sudden decomposition above 600 K. Any diffusion that occurs is 

likely too slow to be observed at a current QENS instrument, but may be 

observable using other techniques, such as EIS. This also highlights the strength 

of the covalent Mg-H bonds in MgH2.  

 

 

Figure 46: QENS spectra measured at BASIS for MgH2 at T = 593 K and Q = 1.3 Å-1. 

  

8.2.2 Vibrational Density of States (INS) 

 

INS spectra for CaH2 were measured over a temperature range from T = 5 

K to 620 K in MgH2, as displayed in Figure 47. As expected, the INS spectra modes 

are different compared to BaH2 and CaH2 due to the different crystal structure. The 

vibrational DOS has been investigated with INS and ab-initio modeling 

previously.50-52 Again, the INS spectra is heavily weighted towards hydrogen 
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vibrations. At 5 K, the spectra consists of acoustic modes below 40 meV and 

optical modes between 40 meV – 190 meV. The first feature is a double peak with 

strong intensity followed by a shoulder at higher energies. The double peak is at 

70 meV and 78 meV while the shoulder is at roughly 92 meV. This is followed by 

a band of peaks between 105 meV – 190 meV. The first peak is located at 124 

meV and has a shoulder located around 134 meV. This is followed by two more 

broad peaks at 148 meV and 175 meV. All the optical modes described here, 

except for the last one centered at 175 meV, are due to single phonon mode 

contributions. The peak at 175 meV is a combination of both one- and two-phonon 

modes. Above this, notably the peak centered at 250 meV, are due to multi-phonon 

contributions. The grouping of modes centered around 70 meV are due to the H-

Mg-H wagging motion while the higher energy peaks between 100 meV – 200 meV 

are mainly due to bending and stretching modes.98 The lower end of this band 

corresponds to the bending modes while the higher end relates to the stretching 

modes. Modes in the center of the band correspond to a hybrid of the bending-

stretching modes.   

The temperature dependence of the vibrational modes shows the expected 

behavior of a gradual broadening and reduction in intensity from 5 K to 580 K. 

However, there clearly are excess intensities still visible in the 580 K 

measurement, a feature which disappears by the next measurement at 600 K. 

Therefore, the hydrogen is released from the sample (decomposed) suddenly 

around 580 – 600 K. This generally agrees with the decomposition temperatures 

from other investigations.9, 50, 99 The decomposition temperatures in metal hydrides 

are known to vary significantly due to many factors including phase purity, 

hydrogen concentration, particle size, etc. For example, the reported 

decomposition temperatures for MgH2 can be found to range from roughly 550 K 

to 623 K.9, 50, 99 After the sample decomposed, the detected scattered neutron 

count rate at VISION decreased significantly due to the hydrogen release and the 

INS spectra did not recover upon cooling to room temperature, verifying that the 

sample decomposed.  
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Figure 47: INS spectra from 5 K to 620 K for MgH2 measured at VISION. Intensities are translated 

for clarity. 

 

8.3 MgH2 Summary of Results 

 

The structure of MgD2 was investigated using NPD and total neutron 

scattering. The experimental data is well described using the tetragonal rutile 

structure for both the local and global structures. No phase transitions were 

observed and only minor changes in the lattice parameters and atomic coordinates 

occurred. The atomic displacement parameters assumed modest values of U11 = 

0.033 Å2 and U33 = 0.017 Å2  at T = 400 K, indicating that the deuterium atoms are 

tightly bound up to 400 K. The diffusion of hydrogen was probed using QENS at 

elevated temperatures. An elastic window scan and longer QENS measurements 

did not reveal any appreciable diffusive motions on the timescale of the instrument. 

This is not completely surprising considering the notorious reputation for sluggish 

hydrogen transport in MgH2. The hydrogen does not appear to diffuse significantly 

preceding the sudden decomposition around 600 K. Lastly, the vibrational DOS 
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were investigated using INS from 5 K to 620 K. The energies of the modes at 5 K 

agree with previous reports and the vibrational modes were found to gradually 

broaden and decrease in intensity until sample decomposition at 600 K.  
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 CONCLUSIONS AND FUTURE OUTLOOK 

 
This work used neutron scattering techniques to investigate the structure 

and dynamics of three different alkaline earth metal hydrides: BaH2, CaH2, and 

MgH2. These materials were studied in extreme environments, including low- and 

high-temperatures and under high-pressures. The diffraction and total neutron 

scattering studies focused on characterizing the temperature and pressure 

evolution of the crystal structure, both globally and locally. Structural phase 

transitions of first and second order nature were observed and deuterium positions 

were determined. Quasielastic neutron scattering was used to investigate the 

diffusive motions of hydride ions through the crystal structures. Atomic scale 

details regarding the diffusion pathways and energy landscape were uncovered, 

leading to a greater understanding of hydrogen transport in these materials. The 

temperature dependence of the vibrational density of states and its relation to the 

hydrogen release and bonding was determined using inelastic powder neutron 

scattering.  

9.1 Structure Summary 

 
Both BaD2 and CaD2 crystallize in the orthorhombic cotunnite structure at 

ambient conditions. This structure resembles a hexagonal close packed lattice 

(hcp), but the cation positions deviate slightly from the proper hcp positions. This 

causes the neighboring anionic polyhedra surrounding the cations to be tilted 25º 

with respect to each other.  

At T = 775 K, the cotunnite phase of BaD2 begins transitioning into a higher 

symmetry hexagonal phase with the Ni2In-type structure. NPD measurements 

showed that both the orthorhombic and hexagonal phases exist simultaneously 

until the transition is completed around 850 K – 900 K. Changes in the atomic 

coordinates are observed for the Ba, D(1), and D(2) sites preceding the phase 

transition. In the hexagonal phase, the cations are now positioned on the proper 

hcp positions and the tilt is removed. The total neutron scattering results in our 
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investigation showed that the local structure largely remains the same in this 

structure following the transition, but that there is disorder introduced in the 

intermediate region bridging the gap between the local and global structure. This 

disordered intermediate transition region corresponds to PDF length scales of 

roughly 6 Å – 13 Å. We attribute this disorder to a degree of reorientational freedom 

with respect to the anionic polyhedra. While the global structure suggests the tilt is 

removed, it is possible that these domains can dynamically assume various tilt 

configurations. This correlated motion is averaged out over the length of 2 – 3 unit 

cells to yield the highly ordered, global hexagonal structure. These dynamic 

fluctuations cause the D(1) site to be split in the structure, where the deuterium 

atoms deviate from the high symmetry 2d site and instead reside on the lower 

symmetry 4f sites. Dynamic fluctuations of this type can be beneficial to the 

hydrogen diffusion process by decreasing the hydrogen jump lengths and reducing 

the energy barriers by increasing the free volume for the hydrogen to diffuse 

through.  

The orthorhombic to hexagonal phase transition observed in BaD2 does not 

occur with temperature in CaD2. Rather, we detected the existence of second order 

transitions occurring in this structure with PDF analysis. There is a noticeable 

change in the atomic positions with temperature for both the Ca and D(1) sites 

between 600 – 700 K. This minor structural modification roughly corresponds to 

the temperature range in which a change in the activation energy observed in 

previous EIS measurements.93 Upon additional heating, changes are observed in 

all the atomic sites beginning around 800 K, which agrees with previous DTA 

measurements for a second order transition. The Ca and D(2) sites appear to be 

most affected by this structural change.  

The final metal hydride investigated in this work is MgD2, which does not 

crystallize in the cotunnite structure at ambient conditions and instead assumes 

the tetragonal rutile structure. The bonding in this material is covalent-like, which 

causes the hydrogen to be bound tighter to the metal atoms when compared to the 

ionic nature of the HAEH bonds. The observed PDF patterns over the temperature 
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range of 100 K – 400 K are well described using the tetragonal rutile structure for 

both the local and global structures. No phase transitions were observed and only 

minor changes in the lattice parameters and atomic coordinates occurred. The 

atomic displacement parameters assumed the modest values of U11 = 0.033 Å2 

and U33 = 0.017 Å2  at T = 400 K, supporting the reasoning that the deuterium 

atoms are tightly bound in this structure up to 400 K.  

9.2 Dynamics Summary 

 
Quasielastic neutron scattering was used to investigate the atomic scale 

hydrogen diffusion mechanism in these materials. The three hydrides chosen for 

this investigation possess distinct hydrogen transport properties: BaH2 exhibits fast 

ionic conduction, CaH2 has intermediate hydrogen kinetics, and the transport in 

MgH2 is extremely sluggish.  

The temperature dependent study of BaH2 showed that the hydride ions 

undergo jump diffusion between various hydrogen lattice sites, as explained by the 

Chudley-Elliott jump diffusion model. We have determined the preferred jumps in 

the lattice for both the orthorhombic and hexagonal phases, with each phase 

showing distinct dynamics. In the orthorhombic phase, two distinct jump lengths of 

approximately 3.6 Å and 4.2 Å were found. The first one (3.6 Å) corresponds to a 

distance between H(2)-H(2) sites. The second one (4.2 Å) corresponds to 

distances between both H(2)-H(2) and H(1)-H(1) sites. Despite the shorter 

distance (3.1 Å) between H(1)-H(2) sites, such jumps are not observed in the 

QENS measurements. Following the phase transition, jump lengths were found to 

be around 3.1 Å in the hexagonal phase, which corresponds to jumps between 

H(1)-H(2) sites. The phase transition unlocks the previously restricted H(1)-H(2) 

jumps in the orthorhombic phase. This change allows the hydrogen to diffuse 

efficiently through 3.1 Å jumps with an activation energy of 418 meV, which is 

significantly lower than 512 meV in the orthorhombic phase. The jump rate 

increases by an order of magnitude upon the phase transition, promoting the faster 

diffusion. The dynamic fluctuations observed in our structural study cause the D(1) 
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site to be split, a feature that is key for unlocking the fast hydrogen diffusion in the 

hexagonal phase.  

The QENS investigation on CaH2 began with an elastic scan that showed a 

sharp discontinuity in the elastic intensity around 680 K. This type of feature is 

typically indicative of a phase transition. This feature occurs in the same 

temperature range as the structural changes in the Ca and D(1) sites observed in 

our PDF study. In addition, the feature at 680 K is close to the temperature at which 

a change in the activation energy was observed a previous EIS study. The elastic 

intensity increased at 680 K, which suggests that the hydrogen dynamics initially 

slow down following this transition. Longer QENS measurements at T = 800 K did 

not show appreciable quasielastic broadening. While EIS shows that the hydrogen 

is diffusing at this temperature, the motion is too slow to be seen with QENS. 

However, the elastic scan suggests that diffusion would likely be observable above 

800 K because the elastic intensity begins to decrease more rapidly approaching 

this temperature.  

For the QENS investigation of MgH2, an elastic scan was measured from T 

= 70 K – 525 K. Typical Debye-Waller behavior was observed over the entire 

temperature range, as indicted as a gradual decrease in the elastic intensity. There 

is no indication of the onset of observable hydrogen dynamics on the timescale of 

the instrument (HFBS) up to 525 K. Longer QENS measurements were performed 

at BASIS between T = 553 K – 633 K. No quasielastic broadening was observed 

and the sample began decomposing during the 613 K measurement. The 

hydrogen in MgH2 does not appear to diffuse significantly preceding the sudden 

decomposition around 600 K. This is not surprising considering the notorious 

reputation for sluggish hydrogen transport in MgH2.  

Inelastic powder neutron scattering was employed to measure the 

vibrational density of states, which yields information about the bonding, hydrogen 

release mechanism, and the vibrational energies. While most INS investigations in 

metal hydrides are conducted at low temperatures, our measurements covered a 

wide range from 5 K to 850 K.  In all three hydrides, the weakening of the hydrogen 
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bonds was observed as a gradual decrease in the intensity and a softening of the 

vibrational modes.  

Due to the existence of two distinct hydrogen sites in the cotunnite structure 

of BaH2 and CaH2, the vibrational contributions of these two sites can be separated 

since they occur at different energies.  The modes associated with the H(1) and 

H(2) sites had a similar temperature dependence, which suggests that both sites 

behave similarly and contribute equally to the ionic conduction. An argument could 

be made that the H(2) site releases at a slightly lower temperature than the H(1) 

sites in CaH2. The INS spectra of both materials are similar, but the modes in CaH2 

are shifted to higher energies by ~15 – 20 meV. This suggests that the bonds in 

CaH2 are notably stronger than those in BaH2. Further evidence of this is the 

temperature evolution of the modes. In BaH2, the modes are smeared out and 

almost completely merged with the background by the measurement at 450 K. 

Likewise, the 600 K measurement for CaH2 shows this similar feature. The 

hydrogen release is ultimately observed around 600 K for BaH2 and 700 K for 

CaH2. This is the temperature in which the hydrogen begins to readily diffuse 

through the system. While this motion was observed with QENS at 600 K for BaH2, 

it was not observed up to 800 K for CaH2. In summary, the lattice dynamics in 

these two materials behave in a similar manner with temperature, but the behavior 

is shifted to higher temperatures by roughly 100 – 150 K in CaH2 when compared 

to BaH2.  

On the other hand, the lattice dynamics are notably different in MgH2. The 

modes remain rather sharp and distinct up to 580 K, indicating that the hydrogen 

remains tightly bound to the Mg atoms up to this temperature. The modes 

disappear completely at 600 K and the resulting decrease in the neutron count rate 

detected at VISION indicated the evolution of hydrogen from the sample (sample 

decomposed). This shows that the hydrogen does not release and diffuse 

significantly before sample decomposition occurs, which is the opposite of what is 

observed in the HAEHs.  
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9.3 High Pressure Summary 

 
In addition to the temperature dependent studies described above, the 

structure and dynamics of barium hydride was investigated under high pressure. 

The same phase transition (orthorhombic to hexagonal) was observed over a wide 

pressure range (P = 1.3 – 4.9 GPa). Both the low pressure orthorhombic and high 

pressure hexagonal phases are well described by the cotunnite and Ni2In-type 

models, respectively. Recent reports suggest that ionic conduction in BaH2 

increases with pressure in the hexagonal phase.16 We performed high pressure 

QENS measurements on BaH2 up to a maximum pressure of 7.1 GPa. Our 

preliminary results show that there is a quasielastic signal that increases with 

pressure. This signal has a HWHM broadening of approximately 39 ± 8 µeV at 7.1 

GPa. To our knowledge, this is the highest pressure currently achieved in a QENS 

experiment. We plan to expand this study in future experiments to obtain better 

statistics for a proper Q-dependent investigation to unveil the diffusive pathways 

in this high-pressure phase. It would be interesting to observe how the pressure 

dependent diffusion process compares to the temperature dependent dynamics.  

9.4 Concluding Remarks and Future Suggestions 

 
These results have interesting implications for the lighter weight hydrides, 

especially ones that crystallize in the cotunnite structure at ambient conditions, 

such as CaH2 and SrH2. The calcium hydride system is an ideal candidate for 

future work in which attempts should be focused on inducing a structural phase 

transition from the cotunnite phase into the Ni2In-type phase with temperature, 

perhaps through doping techniques. These results suggest that even small 

modifications of the structure in CaH2 can have an impact on the hydrogen 

dynamics, as observed in the discontinuity in the elastic scan and the previous EIS 

results. This phase transition has already been observed to occur under pressure 

in this material around 15 GPa.84, 85 If successful, this could greatly improve the 

hydrogen transport properties in calcium hydride, making it better suited for energy 
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related applications. The same outlook is applicable to the MgH2 system, where 

an induced phase transition could have the potential to improve the hydrogen 

transport properties. With pressure, MgH2 transforms into the cotunnite structure 

around 17 GPa.97 Therefore, MgH2 may behave similar to the HAEHs at 

elevated pressures in the cotunnite phase. However, it is still likely that the 

hydrogen transport would remain too slow for most applications.  

This work improves the current understanding of how the crystal structure 

affects the solid-state diffusion of hydride ions in alkaline earth-based metal 

hydride systems. These results serve to demystify the role that a structural phase 

transition plays in transforming a solid-state material with modest kinetics into a 

fast-ionic conductor of hydrogen. Even small modifications of the lattice 

parameters and atomic coordinates were found to influence the hydrogen 

dynamics. The knowledge gained here sheds light on the intricate relationship 

between the atomic structure and the corresponding diffusion mechanism in 

alkaline earth hydrides, which can be applied to understand and further advance 

the hydrogen transport properties in other metal hydride systems. 
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A.1 Quasielastic Neutron Scattering Experimental Details 

 
The QENS experiments consisted of five different beam times (excluding 

SPHERES): four at BASIS (CCR, furnace, two in high pressure PE cell) and one 

at HFBS (CCR). Technical details for each experiment are included in this section. 

A.1.1 BASIS Experiments 

 
The first BASIS experiment occurred in Sept. 2016 using a CCR. This 

experiment was performed before I joined the group and some technical details 

are unknown. Samples were loaded into aluminum foil and formed into a packet of 

annular geometry to reduce multiple scattering effects. Annular aluminum foil 

packets are a common practice in neutron scattering measurements of 

hydrogenated materials. These samples were then loaded into cylindrical 

aluminum cans with aluminum foil seals. Two samples were measured: BaH2 (0.46 

g) and CaH2 (unknown mass). Vanadium was measured for detector 

normalization. Resolution functions were measured at 30 K. All measurements 

were performed using the Si(111) analyzers. Elastic scans were performed 

between 30 K to 690 K. Longer QENS measurements (approx. 3 hours) were 

conducted between 300 K – 690 K for higher statistics suitable for QENS data 

fitting.  

The second BASIS experiment occurred in March 2019 using a MICAS 

furnace that was modified for pyrophoric samples, as explained in detail in Section 

3.1.1. Samples were loaded into 5 mm diameter quartz NRM tubes. Vanadium, 

BaH2 (0.97 g for long QENS measurements, 1.11 g for elastic scan), MgH2 (0.42 

g) samples were measured. Resolution functions were measured at 300 K. Long 

scans of approximately 3 hours were taken between 300 K and 920 K for BaH2 

and 300 K to 630 K for MgH2. An elastic scan was performed for BaH2 from 300 K 

to 920 K. All sample cans were evacuated in the furnace and backfilled to 

atmospheric pressure using helium. A 5 liter expansion volume was hooked up to 
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the sample stick to allow the pressure to remain constant throughout the entire 

experiment, i.e. during heating and gas evolution.  

The third and fourth BASIS experiments were conducted in November 2019 

and January 2020. These were both high-pressure experiments that used the 

same measurement configurations and sample environments. The experiments 

were conducted in a single-toroidal VX5 Paris-Edinburgh (PE) press. The sample 

environment is described in detail in Section 3.1.2. Samples of approximately 300 

mg of BaH2 were loaded into CuBe gaskets. This was sealed in the PE cell at a 

pressure of approximately 5 tons. Due to the reactive nature of the sample, a 

pressure transmitting medium was not used. All measurements were conducted at 

room temperature. An elastic scan was performed during the first experiment up 

to a maximum pressure of approximately 5 GPa. Measurements were 

approximately 50 minutes for each pressure and pressure steps conducted in 5 

ton steps.  The second experiment were for longer QENS measurements of 

approximately 22 hours at each pressure up to a maximum pressure of 6 GPa. 

The resolution function was measured at ambient conditions. Pressures were 

estimated from previous diffraction experiments at SNAP, as described in Section 

4.3.  

A.1.2 HFBS Experiment 

 
A QENS experiment was conducted at HFBS in December 2018. A bottom-

loading CCR was used for BaH2 and CaH2 while a top-loading CCR was used for 

MgH2. Titanium sample cans were used with gold O-ring seals (lead seal for MgH-

2). Samples were loaded into aluminum foil packets in annular geometry. Sample 

masses were 1.5 g for BaH2, 0.62 g for CaH2, and 0.43 g for MgH2. Elastic scans 

were performed for each sample: T = 250 K to 800 K for BaH2, 300 K to 800 K for 

CaH2, and 60 K to 525 K for MgH2. Longer QENS measurements were taken from 

T = 600 K to 800 K for BaH2, 800 K for CaH2, and 500 K to 525 K for MgH2. This 

experiment used the ± 15 µeV energy range configuration for all measurements. 
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An instrumental issue would not allow for measurements with ± 36 µeV energy 

range to be conducted reliably. 

A.2 Inelastic Neutron Scattering Experimental Details 

 

INS measurements were conducted in a series of experiments at the 

VISION beamline using a CCR and a stick furnace.  

A.2.1 VISION Experiments 

 
The first experiment was conducted in June 2018 using a CCR. BaH2 and 

MgH2 were measured in annular aluminum foil packets in cylindrical aluminum 

sample holders. However, sample environment problems were encountered 

regarding temperature sensors and heating capabilities, which made the data 

unreliable. BaH2, CaH2, and MgH2 were measured at a later time in the CCR for 5 

K measurements. Sample masses were approximately 0.9 g for BaH2, 0.6 g for 

CaH2, and 0.4 g for MgH2. 

The next experiment was conducted using a custom designed stick furnace 

that is described in Section 3.1.1. Samples were loaded into copper foil annular 

packets and measured inside stainless steel sample holders. The samples were 

empty cells, BaH2 (1.4 g), CaH2 (0.495 g), and MgH2 (0.215 g). Measurements 

were typically around 1 hour at each temperature. Temperature ranges were 300 

K to 850 K for BaH2, 300 K to 780 K for CaH2, and 300 K to 620 K for MgH2. Empty 

cells were measured at various temperatures.  

The last experiment was conducted in February 2020 with a 0.53 g BaH2 

sample in an 8mm diameter vanadium PAC can in the CCR. Measurements were 

performed between 5 K and 300 K for 1 hour at each temperature. 

A.3 Neutron Diffraction Experimental Details 

 
Neutron diffraction experiments were conducted at two SNS beamlines: 

SNAP and NOMAD. The SNAP measurements were conducted in two different 
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experiments at high pressure with two different types gaskets. The NOMAD 

measurements were at low and high temperatures over the course of five different 

beam times. 

A.3.1 SNAP Experiments 

 
Two high pressure neutron diffraction experiments were performed at 

SNAP. The experiments can be divided into two main categories depending on the 

type of gasket used: (1) a standard encapsulated TiZr gasket (February 2019) and 

(2) a special split gasket made from CuBe that allows for sample loading into the 

toroidal chamber (November 2019). No pressure transmitting medium was used in 

these experiments. Sample loading was performed in a helium glove box using a 

specifically designed PE clamp system that surrounds the gasket-anvil assembly, 

as shown in Figure 7. A load of approximately 5 tons is applied to the assembly 

using a hydraulic press and sealed under pressure in the glovebox. The entire 

clamp system can then be removed and inserted into the PE press at the beamline.  

A detailed description with illustrations of the TiZr encapsulated gasket 

design for single toroidal anvils and the PE cell assembly is presented in the 

reports by Marshall and Francis34 and by Klotz et al.35 As for the vast majority of 

gaskets, the sample sits in the center opening of the gasket. Encapsulation is 

ensured through two cups of TiZr that cover the sample at bottom and top.  The 

powder samples are first pressed into a pellet (m = 180 mg) before being 

transferred inside the TiZr gaskets and sealed.  

The other type of gasket is made from CuBe. For these experiments, we 

again adapted a specialized setup that was designed for QENS experiments by 

Klotz and Bove et al.36, 37 Here we use a split gasket where the sample space is 

located inside the toroid to form a fully encapsulated annulus. One of the CuBe 

gasket halves is shown in Figure 7. However, the sample space in our experiment 

was increased compared to the original design by Klotz and Bove et al.36, 37 The 

dimensions of our CuBe gasket is 13.2 mm outer diameter, 10.4 mm inner 

diameter, and a groove of 0.79 mm depth, which forms a toroidal pressure 
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chamber volume of 81.6 mm3 once the two parts are put together. This geometry 

was chosen to minimize multiple scattering effects for the high pressure QENS 

experiments. The PE cell assembly with the CuBe gaskets are displayed in Figure 

7. The sample mass was approximately 300 mg.  

SNAP is equipped with two detector banks with each bank divided into three 

columns. For the TiZr gasket experiments, the low-angle detector bank was 

centered at 65° while the high-angle detector bank was centered at 105° to 

optimize Q-coverage. For the experiment with the CuBe gasket, the low- and high- 

angle detector banks were centered at 50° and 105°, respectively.  A center 

wavelength of 2.1 Å at standard 60 Hz were used and SNAP was operated with its 

guide in place. The VX3 PE cell was placed in the standard geometry into SNAP, 

i.e. standing upright for a beam-through-gasket geometry. To optimize the sample 

signal and reduce background, an incident beam collimator 3D-printed from B4C 

powder was placed between the anvils. This collimator reduced the beam-size to 

1.5 mm wide and 0.75 mm tall. Details of these collimators will be provided 

elsewhere.100 

All measurements were conducted at room temperature. Instrument 

specific parameters for the refinements were determined by measuring a nickel 

sample in the same position and sample configuration as BaD2. Empty sample 

containers and vanadium samples were also measured for data reduction and 

normalization. Measurements times ranged from 2 – 6 hours at each pressure for 

the TiZr gasket measurements and approximately 1 – 2 hours for the CuBe gasket 

measurements. Details about pressure determination methods can be found in 

Section 4.3. Data reduction was performed using Mantid33 and Rietveld 

refinements were conducted using GSAS-II.38 

A.3.2 NOMAD Experiments 

 

The NOMAD experiments were conducted over the series of five 

experiments from March to November 2019. Some of the experiments ended 
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prematurely due to unexpected facility outages and sample environment issues. 

BaD2, CaD2, and MgD2 were measured in two different sample environments: 

cryostream sample shifter and a MICAS furnace.  

The cryostream sample shifter measures higher quality (lower instrument 

background) data. Samples were measured in vanadium PAC cans (6 mm 

diameter) with a copper seal over a temperature range of 100 K to 500 K. Sample 

masses were 2.53 g for BaD2, 1.09 g for CaD2, and 1.1 g MgD2. Empty sample 

holders, silicon, diamond, and vanadium were used for data normalization and 

generating instrument parameter files. 

The MICAS furnace measurements were performed using the modified 

furnace and stick described in Section 3.1.1. Samples were loaded into 5mm 

diameter quartz NMR tubes with sample masses of 0.925 g for BaD2, 0.56 g for 

CaD2, and 0.420 g MgD2. Measurements were performed from 300 K to 900 K for 

BaD2, 300 K to 920 K for CaD2, and 300 K to 650 K for MgD2. Again, empty sample 

holders, silicon, diamond, and vanadium were used for data normalization and 

generating instrument parameter files. Measurements were approximately 1.5 

hours at each temperature.  
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