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ABSTRACT 

 
The normal flow of traffic is impeded by abnormal events and the impacts of the events extend 

over time and space. In recent years, with the rapid growth of multi-source data, traffic 

researchers seek to leverage those data to identify the spatial-temporal dynamics of traffic flow 

and proactively manage abnormal traffic conditions. However, the characteristics of data 

collected by different techniques have not been fully understood. To this end, this study presents 

a series of studies to provide insight to data from different sources and to dynamically detect 

real-time traffic states utilizing those data. 

 Speed is one of the three traffic fundamental parameters in traffic flow theory that 

describe traffic flow states. While the speed collection techniques evolve over the past decades, 

the average speed calculation method has not been updated. The first section of this study 

pointed out the traditional harmonic mean-based average speed calculation method can produce 

erroneous results for probe-based data. A new speed calculation method based on the 

fundamental definition was proposed instead. The second section evaluated the spatial-temporal 

accuracy of a different type of crowdsourced data - crowdsourced user reports and revealed 

Waze user behavior. Based on the evaluation results, a traffic detection system was developed to 

support the dynamic detection of incidents and traffic queues. A critical problem with current 

automatic incident detection algorithms (AIDs) which limits their application in practice is their 

heavy calibration requirements. The third section solved this problem by proposing a self-

evaluation module that determines the occurrence of traffic incidents and serves as an auto-

calibration procedure. Following the incident detection, the fourth section proposed a clustering 

algorithm to detect the spatial-temporal movements of congestion by clustering crowdsource 

reports.  

This study contributes to the understanding of fundamental parameters and expands the 

knowledge of multi-source data. It has implications for future speed, flow, and density 

calculation with data collection technique advancements. Additionally, the proposed dynamic 

algorithms allow the system to run automatically with minimum human intervention thus 

promote the intelligence of the traffic operation system. The algorithms not only apply to 

incident and queue detection but also apply to a variety of detection systems. 
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INTRODUCTION 
 

The smooth movement of traffic is disturbed by abnormal events frequently. The impacts 

of the disturbance expand and lead to traffic congestion. Dynamic evaluation of traffic 

states and the identification of abnormal events as well as subsequent congestion can 

reduce the impacts and improve transport network efficiency and safety. This study aims 

to better describe traffic states and identify the change in the traffic state with multi-

source data. 

Traffic state is represented by speed, flow, and density, the three fundamental 

macroscopic traffic parameters. It is always of traffic researcher and practitioners’ 

interests to obtain more complete and accurate information of the three parameters. The 

techniques to collect the three traffic features evolve over the past several decades. 

Traditionally, traffic researchers mainly rely on roadside sensors to obtain average speed, 

flow, and density, along with CCTV and highway patrol program to visually identify 

congestion or abnormal events on roads. In recent years, with the advancement in GPS-

based mobile devices and sensing technologies, traffic features can be collected in 

multiples ways, including average speed calculated from continuous location 

information, road user reports about congestion or abnormal events, and potentially 

microscopic features from connected and autonomous vehicles in the future. One of the 

concerns with multi-sourced data is their consistency and reliability. The data collected 

by GPS devices are inherently different from data collected by traditional roadside 

sensors. How to correctly obtain fundamental parameters from collected information is 

critical to ensure data consistencies and accuracy. Also, data reported from road users 

could have inaccurate or even incorrect information and need to be validated before being 

incorporated into any real-time management and operation system.  

The movement of traffic streams is represented by the change of traffic state over 

time and space. Incident and queue detection identify the change in traffic flow and 

recognize abnormal traffic behavior. It is a fundamental step to monitor the current traffic 

states and provide knowledge for road users and traffic practitioners. In recent years, a 

series of data-driven techniques and models have been developed to detect the change 

traffic states over time and space. The existing incident and queue detection system has 

limitations in two aspects. First, the limited transferability of detection models restricts 

their application in practice. Second, the established detection system applies to the urban 

area but not the rural area where limited monitoring devices were installed. 

The purpose of this dissertation is essentially twofold: first, evaluate emerging 

data sources and understand how they contribute to traffic state knowledge; Second, 

harness the available data sources and develop a system that can detect abnormal traffic 

flow patterns dynamically. Four research papers were therefore compiled to address the 

purpose, each of which is presented in a single chapter. Figure 1 demonstrates the 

framework of this dissertation. This dissertation combines both traditional data and 

emerging data and presents a framework composed of both data evaluation section and 

traffic assessment and detection section. The first chapter and the second chapter assess 

emerging crowdsources data. Chapter I aims to clarify how speed shall be accurately 

calculated with probe-based data. Chapter II then evaluates the reliability of  
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Figure 1. Data sources and dissertation framework. 
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crowdsourced user reports with a focus on spatial and temporal accuracy. The third 

chapter and fourth chapter propose dynamic detection algorithms that separately detect 

the start of abnormal congestion and its movement using both traditional data and 

emerging crowdsourced user reports. The data sources and their applications in each 

chapter are identified in Figure 1. In the data section, solid circles with chapter numbers 

inside represent that the data were used in the corresponding chapters; dotted circles 

indicate that the data sources can be used to address the problem to be solved in each 

chapter. The data sources are further detailed in Table 1 with a summary of their 

strengths and limitations. The four chapters are organized in a journal article format: 

• Chapter I tackles average speed, one of the three fundamental characteristics in 

traffic flow theory. In this chapter, it is pointed out that the speed data collected 

by probe vehicles are inherently different from speed collected by traditional 

roadside sensors and shall be aggregated differently. Instead of employing a well-

recognized method, this chapter proposes a calculation method follows the 

definition of speed for probe-based data. A comparison between different 

aggregation approaches shows that the proposed method can produce unbiased 

results.  

• Chapter II evaluates the temporal and spatial accuracy of crowdsourced reports 

(Waze reports) on interstate highways. A matching criterion is proposed to pair 

Waze abnormal traffic event reports with official reports collected by TDOT, 

which serves as the ground truth. Then the location and temporal accuracy are 

evaluated.  

• Chapter III proposes a self-learning abnormal traffic event detection algorithm. 

The proposed algorithm incorporated a self-evaluation module that can assess the 

detection results to support the adaptive selection of thresholds at different 

locations and different times of day. The algorithm is tested with real incident 

data and the detection results are compared to the detection results of a 

benchmark model.  

• Chapter IV proposes a congestion detection and end of queue identification 

algorithm that dynamically cluster crowdsourced reports based on the road 

geometry to track the movement of congestion. The algorithm is tested with a 

case study and the detection results are compared to the detection results based on 

road-side sensor data.  
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Table 1. A summary of multi-source data. 

 

Data Description Chapter Strengths & Limitation 

Public Sector Data (Traditional data sources) 

RTMS 

(Remote 

Traffic 

Microwave 

Sensor) data 

Roadside 

sensor data 

Chapter 

IIIChapter 

IV 

Strength 

• Covers urban area.  

• Provide flow and density information 

Limitation 

• High installation and maintenance fee 

• Limited spatial coverage  

LocateIM 
Official 

incident records 

Chapter II 

Chapter III 

Strength 

• High location accuracy 

• Validated incident report 

Limitation 

• Report timeliness 

• Does not cover all incident records 

Private Sector Data (Emerging data sources) 

NGSIM 

(Next 

Generation 

Simulation) 

Vehicle 

trajectories 
Chapter I 

Strength 

• Provide most detailed information (1) 

Limitation 

• Not available at other locations.  

WAZE 

speed 

Crowdsource 

speed 

Chapter I 

& IV 

Strength 

• High spatial coverage 

Limitation 

• Accuracy varies with penetration rate and 

reporting frequency (2-4) 

• Does not provide flow and density 

WAZE 

reports 

Crowdsource 

user reports 

 

Chapter II 

& IV 

Strength 

• Timeliness. 

• Covers incidents that not reported in official 

record.(5-7) 

Limitation 

• Duplicate reports 

• Reliability (6) 
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CHAPTER I. AN UNBIASED METHOD FOR PROBE VEHICLE 

AVERAGE SPEED CALCULATIONS – METHODOLOGY AND 

DEMONSTRATIONS WITH SIMULATED PROBE-BASED DATA   
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A version of this chapter was originally presented at TRB 2019 by Yuandong Liu, Yang 

Zhang and Lee D. Han. The paper has been submitted to Journal of Applied Statistics. 

 

Abstract  

 

Traffic engineers are often interested in measuring speed along a stretch of roadway for a 

given period of time. Typically, in the past, speed values are measured at a given location 

over some duration. After some initial confusions, traffic engineers correctly determined 

that harmonic means, instead of arithmetic means, should be used to calculate the average 

speed of the traffic stream. In the modern age of ubiquitous devices of mobile phones, 

vehicle speed data can be collected along a stretch of roadway frequently. The speed 

calculations, however, have not always been performed correctly with these data. Many 

users are under the impression that as long as individual speed data were aggregated 

using the harmonic mean method, the result would be correct, or at least “close enough.”  

This, as is shown in this paper, is far from the truth. This paper examines calculation 

methods for the mean speed of probe vehicle data using different sampling strategies. It is 

demonstrated that average speed can be accurately obtained by taking the arithmetic 

mean of vehicle spot speeds if the sampling is done by time. Real-world vehicle 

trajectory data from the NGSIM database were used to verify and demonstrate that the 

traditional harmonic mean-based calculation can be quite erroneous and the average 

speed should be computed using simple arithmetic means if time-based sampling strategy 

is used. Aggregating the vehicle speeds by taking harmonic means usually leads to an 

underestimate of the mean speed, compared to the arithmetic mean approach. 

 

Introduction and Literature Review 

 

Mean speed and travel time for a road section over a time period are critical information 

at all levels of traffic operation, travel planning, and transportation policy. Techniques to 

measure speed and travel time have changed over the past 60 years. The basic approach 

to measure speed is to use roadside speed detection instrumentations (e.g., in-pavement 

loop detectors and pole-mounted detectors). Roadside sensors are widely deployed and 

have been the most commonly used traffic data collection methods for decades in the US. 

Loop detectors capture the time when the vehicle passed the loop and compute the speed 

as the ratio of loop width and vehicle effective length to crossing time. Other speed 

measurement techniques include aerial photographs, Bluetooth sensors, and License Plate 

Recognition (LPR) sensors. Aerial photographs provide valuable spatial data along a road 

segment. Density can be directly measured, if several continuous frames are available, 

allowing for vehicle tracking; speed can be obtained as well. In practice, cameras are 

used instead of aerial photographs, and due to the immaturity of video processing 

techniques, cameras are mostly used as surveillance devices instead of speed collection 

methods. Bluetooth sensor is a special kind of roadside sensor; it is placed both at the 

start and end of a road segment and collects travel time information of passing vehicles. 
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Speed can then be derived using distance divided by travel time(8). The advantage is that 

Bluetooth sensors directly measure the vehicle travel time along a segment, the speed of 

that vehicle traverses the segment can be obtained as well, as opposed to spot speed that 

ordinary roadside sensor measures. Therefore, travel time collected by Bluetooth is 

always regarded as ground truth. Similar to Bluetooth sensors, LPR devices record the 

time and plate number of passing vehicles, and the travel time of the vehicle on a specific 

road segment can be obtained by matching the license plate number(9). The concern with 

Bluetooth and LPR technologies is that they require costly installation of devices as well 

as maintenance fees. Taking both the advantages and limitations into account, Bluetooth 

and LPR devices are mostly adopted as supplemental measurements to validate speed 

collected by other devices, and so are not widely deployed by government agencies on 

roadways. 

It is crucial to review all the data collection techniques because mean speed 

aggregation methods rely on how speed is measured. In this paper, the authors discuss 

various studies on how to correctly aggregate vehicle speed data. Most of these studies 

are based on two concepts brought up by Wardrop (10), who describe two types of speed 

aggregation in his research; One is based on the distribution of speed in time and the 

other is based on the distribution of speed in space. These two mean speed concepts, 

space mean speed and time mean speed, have been widely adopted by subsequent 

researchers. 

Both the time- and the space-mean speed can be obtained if it is known how speeds were 

collected. For example, space mean speed measured by a roadside detector is calculated 

by taking the harmonic mean of vehicle speeds, and time-mean speed is computed by 

taking the arithmetic mean of vehicle speeds. When using aerial photographs, space mean 

speed is calculated as the arithmetic mean of vehicle speeds. However, because speeds 

are mostly measured by roadside sensors, some users and researchers are under the 

impression that as long as individual speed data were aggregated using the harmonic 

mean method, the result would be correct, or at least “close enough.”  This, as is shown 

in this paper, is far from the truth. 

Researchers and practitioners agree that space mean speed, but not time mean 

speed, should always be used in speed, flow, and density relationships to describe speed 

along a road segment instead of at a certain location. Despite the basic definition, space 

mean speed for a road segment during a time period has been defined in multiple ways in 

the literature, but two main groups of definitions have emerged (11). The first group 

defines space mean speed as the arithmetic mean of speeds of all vehicles in a road 

section in a short time interval (12). The second group of authors defines space mean 

speed as total distances traversed inside a road segment divided by total time each vehicle 

spent inside the segment (13). In this study, to avoid confusion, we will use mean speed, 

instead of ‘space mean speed,’ in subsequent discussions. This term represents the 

average speed when the correct aggregation method is adopted regardless of the data 

collection techniques.  

Probe Vehicle Data and Mean Speed 

In recent years, with the ubiquitous use of mobile phones and GPS devices, probe vehicle 

data has become one of the main data sources in transportation. Currently, probe vehicle 
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data are mostly provided by commercial private vendors, such as INRIX, TomTom, and 

HERE. Each data provider uses a driver network, comprising vehicles, smartphones, and 

other GPS-enabled devices, to monitor basic location and speed attributes of the vehicle. 

There are multiple advantages of using vehicle trajectory data. Unlike stationary point 

sensors, it avoids high installation and maintenance costs. Moreover, probe vehicle data 

has better spatial coverage. The probe vehicle vendors now can generate link speeds and 

travel times for almost all the primary roadways, and update them at certain time rates 

(2). For instance, Google map and WAZE map are now able to update traffic conditions 

every one or two minutes, thus have the potential to be used for real-time traffic 

management and control (14). Because of these advantages, especially the improved 

spatial coverage, NPMRDS data becomes the official probe vehicle data set that was 

designated by FHWA for the computation of multiple travel time reliability measures for 

long-range planning purposes; it provides a five minute aggregated historical speed data 

at the beginning of every month (15). 

Probe vehicle data has been one of the most prevalent data sources for traffic 

speed collection. However, the speed accuracy provided by these vendors is doubtful. 

Many previous studies evaluated the speed collected by probe vehicles and compared it 

with speed collected by either Bluetooth devices or roadside sensors (3; 9; 16). FHWA 

also requests NPMRDS data vendors to submit quarterly data quality reports that 

compare probe vehicle data to Bluetooth data at selected locations to control the quality 

of probe vehicle data. A prerequisite of this comparison is that the same mean should be 

used throughout any investigation so that all comparisons are fair. However, how the 

GPS-based vehicle speeds are aggregated by these private companies is still unclear. 

According to the description of NPMRDS data v2 (https://npmrds.ritis.org/analytics/), the 

average speed for a segment during a time interval is computed in the following manner. 

First, find the first and last observations of a certain vehicle during the time period of 

interest, then determine the distance traveled and time spent between the two 

observations. The average travel speed for each vehicle on the segment is expressed as 

the ratio of the traveled distance by the time of travel. By taking the harmonic mean of all 

the vehicle speeds on the segment within a specific time period, the average speed for the 

segment is available. This aggregation methodology is supported and adopted in several 

other papers (17-19). Wenjing claimed that harmonic mean speed should be used when 

averaging probe vehicle speeds (17). Hongyan, similarly, calculated the average travel 

speed of a segment during the time period by taking the harmonic mean of all individual 

vehicles (18).  

As mentioned, the aggregation methods rely on data collection techniques. In the 

case of probe-based traffic data, it is important to clarify how the speed data are 

collected. Typically, there are two main sampling strategies for probe vehicle data: time-

based sampling, where the vehicle trajectory is sampled at certain time intervals, and 

space-based sampling, where the vehicle trajectory is sampled at certain distance 

intervals(20; 21). Sometimes the sampling strategy is a mixture of those two basic 

protocols (22). Several papers discuss how to estimate the average speed with respect to 

different sampling strategies. Westgate recommends using the harmonic mean of the GPS 

speeds to estimate the travel time and proved it is an unbiased estimator for the true mean 
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travel time if GPS points are sampled by distance. However, if GPS points are sampled 

by time, the harmonic mean method overestimates the mean travel time (22). Juan 

proposes that if all vehicles sampled traverse the entire length of the arterial segment of 

interest, which is similar to the case that samples by distance, the average speed can be 

expressed as the harmonic mean of vehicle speeds (7). According to these researchers, 

ignoring the data collection techniques either by taking the arithmetic mean of travel time 

or taking the harmonic mean of vehicle speeds may lead to an overestimation or 

underestimation of mean speed. 

Objective 

The purpose of this paper is to investigate mean speed aggregation methods for probe 

vehicle-based traffic data. This paper is organized as follows: the second section briefly 

introduces the definition of generalized mean speed and proposes aggregation methods of 

mean speed for probe vehicle data according to different sampling schemes. The third 

section employs NGSIM data and investigates the errors introduced if the incorrect speed 

aggregation method is used. The final section concludes this paper and suggests 

directions for future research.  

 

Mean Speed Calculation Methods 

 

Little research has been done to address the speed aggregation method for probe vehicle 

data although it has become one of the most prevalent data sources for speed on road. As 

outlined earlier, the speed aggregation techniques are determined by the data collection 

methods, therefore in this section, we adopt the generalized definitions of flow, speed, 

and density that introduced by Edie(13), distinguish two types of data collection 

techniques for probe vehicle data and provide the correct speed aggregation methods. 

Background on Generalized Fundamental Variables 

Considering an arbitrarily shaped region A within a time-space diagram as shown in 

Figure 2. Part of the trajectory of vehicles (𝑖 = 1,2, … 𝑛) is enclosed by area A, thus the 

total distance traveled and time spent by vehicle 𝑖 in this region are separately the 

projection of trajectory to distance and time axes. We use 𝑑𝑖 , 𝑡𝑖 to denote them. Then, the 

generalized flow and density of region A is given by, 

 

𝑞𝐴 =  
σ 𝑑𝑖

𝑛
𝑖=1

ȁ𝐴ȁ
   

(1) 

𝑘𝐴 =
σ 𝑡𝑖

𝑛
𝑖=1

ȁ𝐴ȁ
 

(2) 
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Figure 2. Vehicle trajectories enclosed in region A. 

 

 

 

Where 𝑛 is the number of vehicle trajectories enclosed in region A. ȁ𝐴ȁ is area of 

time-space domain. According to relations among three fundamental variables: 𝑣ҧ = 𝑞/𝑘, 

the average speed in area A is given by, 

 

𝑣𝐴 =  
σ 𝑑𝑖

𝑛
𝑖=1

σ 𝑡𝑖
𝑛
𝑖=1

 
(3) 

 

This is the generalized definition of speed. The formula can be understood 

intuitively; it means the average speed in a region is the ratio of aggregated distance 

traveled by all vehicles to aggregated time spent in traversing the corresponding distance.  

It can be demonstrated that if all the vehicles crossed the full section, D, the average 

speed in region A is calculated by taking the harmonic mean of all vehicle speeds,   
 

𝑣𝐴 =  
𝑛 ∗ 𝐷

σ 𝑡𝑖
𝑛
𝑖=1

=
1

1
𝑛

σ
𝑡𝑖

𝐷
𝑛
𝑖=1

=
1

1
𝑛

σ
1
𝑣𝑖

𝑛
𝑖=1

 
(4) 

 

This is the special case of roadside sensors. However, for a time-space region, 

there will always be some vehicles that have not completed the crossing, therefore 

directly taking harmonic mean of vehicle speeds may lead to inaccurate results.   
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Mean Speed for Probe Vehicles 

 

Probe vehicle speed data is collected by sampling vehicle trajectories. Vehicle location, 

time and sometimes the instantaneous speed are recorded for subsequent speed 

calculation and other analysis. Thus, we don’t have the complete vehicle trajectory, 

different methods used to aggregate sampled vehicle trajectory data are discussed in this 

section. 

Harmonic Mean Approach  

As explained in the introduction section, the harmonic mean speed aggregation method 

has been adopted by some researchers, practitioners and data vendors, including INRIX 

company who supply NPMRDS data to FHWA (Federal Highway Administrative). 

According to the description of NPMRDS data v2(Figure 3), the average speed for a 

segment during a time interval is computed in the following manner: 

 

𝑣𝑖 =  
𝑑𝑖

𝑡𝑖
 (5) 

 

𝑣ҧ𝐴 =  
𝑛

σ
1
𝑣𝑖

𝑛
𝑖=1

 
(6) 

 

𝑖 represents each vehicle,  𝑑𝑖 and 𝑡𝑖 separately represents the distance traveled and 

time spent in the time-space region for vehicle 𝑖 , 𝑣𝑖 is the average speed for vehicle 𝑖. 
Then, the average speed 𝑣ҧ𝐴 in region A is computed as the harmonic mean of vehicle 

speeds for all sampled vehicles traveling a specific section during the examined period. 

Proposed Approach 

There are typically two sampling strategies for probe vehicle data, temporal sampling and 

spatial sampling. The speed aggregation approach for each sampling strategy is provided 

below. 

Temporal Sampling (Sampled by time) 

The vehicle trajectory is sampled at a fixed time interval from the previous sample time 

or at a certain time. In this case, equipped vehicles report their information at fixed time 

intervals 𝑇, regardless of their positions. This is the simplest and most commonly adopted 

sampling method. Figure 4 illustrates an idealized time-based sampling procedure. 

Figure 4(a) is a set of vehicle trajectories traveling a road segment of 1100 feet for a 

duration of 20 seconds. A total of 16 trajectories are enclosed in the time space region. 

Assuming that all vehicles in this region report their position and time at a fixed time 

interval 𝑇(0.44 seconds in this example), as shown in Figure 4(b), each small circle on 

the trajectory indicates a sampled point of the corresponding vehicle. Table 2 

summarizes the information of each vehicle: the total distance traversed, total time used, 

and average speed of an individual vehicle in this region. The vehicle is numbered from 

upper left corner to lower right corner.  
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Figure 3. INRIX path processing method (NPMRDS data v2. 

(https://npmrds.ritis.org/analytics/)). 

 

 

 

Then, according to the generalized definition of mean speed of a region, the 

ground truth mean speed within this time-space region can be calculated as, 

  

𝑣ҧ𝐴 =  
σ 𝑑𝑖

𝑛
𝑖=1

σ 𝑡𝑖
𝑛
𝑖=1

=
σ 𝑑𝑖

16
𝑖=1

σ 𝑡𝑖
16
𝑖=1

= 32.96𝑚𝑝ℎ 
(7) 

 

Where 𝑖 represents each vehicle, n is the total number of vehicles in the time-

space region. In the above example, 𝑛 equals 16. The mean speed of the time-space 

region is 32.96mph. However, if using the harmonic mean approach and take the 

harmonic mean of each vehicle speed, the mean speed for this region is, 

 

𝑣ҧ𝐴 =  
𝑛

σ
1
𝑣𝑖

𝑛
𝑖=1

=  29.00𝑚𝑝ℎ (8) 

 

Where 𝑖 represents each vehicle, 𝑣𝑖 represent the speed of each vehicle traveling 

this segment during the time period, that is the last column of Table 2. This is lower than 

the ground truth speed.  

As shown in Figure 4(b), the vehicle reports its position at fixed time interval 𝑇. 

Each vehicle 𝑖 traveled distance 𝑑𝑖 during 𝑇. Mean speed of this region can also be 

computed as, 

 

 

https://npmrds.ritis.org/analytics/)
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Figure 4. Digitized vehicle trajectories and time-based sampling. 
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Table 2.Vehicle traveling information. 

 

Vehicle No. Total distance 𝑑 

(feet) 

Total time 𝑡 

(second) 

Speed 𝑣  

(mph) 

1 189.20 10.22 12.62 

2 396.00 14.67 18.40 

3 781.00 18.22 29.23 

4 855.80 20.00 29.18 

5 883.30 20.00 30.11 

6 943.80 20.00 32.18 

7 976.80 19.56 34.05 

8 902.00 18.22 33.75 

9 838.20 15.11 37.82 

10 816.20 13.78 40.38 

11 715.00 10.22 47.70 

12 611.60 8.44 49.41 

13 451.00 5.78 53.20 

14 297.00 3.56 56.88 

15 35.20 0.44 54.55 

16 189.20 10.22 12.62 

Total 9732.80 201.33 32.96 
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𝑣ҧ𝐴 =  
σ 𝑑𝑖

𝑛
𝑖=1

σ 𝑡𝑖
𝑛
𝑖=1

=  
σ σ 𝑑𝑖𝑗

𝑁𝑖
𝑗=1

𝑛
𝑖=1

σ σ 𝑇
𝑁𝑖

𝑗=1
𝑛
𝑖=1

=  
σ σ

𝑑𝑖𝑗

𝑇
𝑁𝑖
𝑗=1

𝑛
𝑖=1

σ σ 1
𝑁𝑖

𝑗=1
𝑛
𝑖=1

=  
σ σ 𝑣𝑖𝑗

𝑁𝑖
𝑗=1

𝑛
𝑖=1

σ σ 1
𝑁𝑖

𝑗=1
𝑛
𝑖=1

= 32.96𝑚𝑝ℎ 

 

(9) 

 

𝑣𝑖𝑗 denotes the speed of vehicle 𝑖 when making report 𝑗. 𝑛 is the number of 

vehicles traveling in this region, 𝑁𝑖 is the number of reports that vehicle 𝑖 made within 

this region. σ σ 1
𝑁𝑖
𝑗=1

𝑛
𝑖=1  is the total number of reports received for all vehicles in this 

region. Therefore, the mean speed in region A can be expressed as the arithmetic means 

of all spot speeds in that region.  

One limitation in many previous studies is that probe data is assumed to have 

homogeneous sample rates. In practice, probe vehicles may provide irregularly spaced or 

discontinued data (23). Experimental data collected from multiple providers feature 

heterogeneous characteristics, such as having a mixture of high- and low-frequency probe 

data (2). For instance, INRIX uses a broad collection of commercial and consumer GPS 

probe data as the source data, which are composed of data with different sampling 

intervals. Some data are provided to INRIX at one-second update rates while some 

sources can have as much as three minutes between data reports. Most data are provided 

to INRIX by sources with temporal granularity between 15 seconds and one minute. 

Estimating speed with a heterogeneous sampling rate is more complicated because it 

lacks detailed information about the irregularity of the sample. In this case, the most 

suitable method to obtain mean speed is according to the basic definition, total distance 

traveled by vehicles inside the spatiotemporal region divided by total time of travel.  

Spatial Sampling (Sampled by distance) 

Vehicle trajectory is sampled at a certain distance from a previous sample point or at 

certain locations. In this case, equipped vehicles report their information as they cross 

some spatially defined sampling locations, which is similar to a roadside sensor (24). 

This strategy has the advantage that the phone is forced to send data from a given 

location of interest. This type of sampling strategy is rarely implemented in practice. Two 

examples are found in the literature. The first one is the Mobile Century field experiment 

(24). Taking privacy issues into account, the experiment implemented a virtual trip lines 

sampling strategy, which acts as a spatial trigger for phones to collect measurements and 

send updates. Another example is recorded ambulance GPS information (22). In this 

case, the GPS readings are stored every 200 meters or 240 seconds, whichever comes 

first. This is a combination of temporal sampling and spatial sampling.  

Assuming the 16 vehicle trajectories in Figure 4 are sampled by distance. Each 

vehicle reports its location and time at fixed distance 𝐷. According to the generalized 

definition of speed, the mean speed is the distance traversed by all vehicles divided by the 

total time spent. Because the distance traversed for each report is the same, that is 𝐷, the 

mean speed calculation method can be formulated as below,  

 

𝑣ҧ𝐴 =  
σ 𝑑𝑖

𝑛
𝑖=1

σ 𝑡𝑖
𝑛
𝑖=1

=  
σ σ 𝐷

𝑁𝑖
𝑗=1

𝑛
𝑖=1

σ σ 𝑡𝑖𝑗
𝑁𝑖

𝑗=1
𝑛
𝑖=1

=  
σ σ 1

𝑁𝑖
𝑗=1

𝑛
𝑖=1

σ σ
𝑡𝑖𝑗

D
𝑁𝑖

𝑗=1
𝑛
𝑖=1

=
σ σ 1

𝑁𝑖
𝑗=1

𝑛
𝑖=1

σ σ
1

𝑣𝑖𝑗

𝑁𝑖

𝑗=1
𝑛
𝑖=1

=  32.96𝑚𝑝ℎ  
 

(10) 
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The time needed to traverse the distance 𝐷 is 𝑡𝑖𝑗, where 𝑗 =  1,2, . . . , 𝑁𝑖 represents 

the 𝑗𝑡ℎ report made within this region for each vehicle 𝑖. 𝑣𝑖𝑗 denotes the speed of vehicle 

𝑖 when making the 𝑗𝑡ℎ report. 𝑛 is the number of vehicles traveling in the time-space 

region, 𝑁𝑖 is the number of reports that vehicle 𝑖 made within this region. σ σ 1
𝑁𝑖
𝑗=1

𝑛
𝑖=1  

represents the total number of reports received for all vehicles in this region. Therefore, if 

GPS points are sampled at fixed distance intervals, the mean speed of a time-space region 

is expressed as the harmonic mean of all vehicle spot speeds within that region.  

 

Evaluation of Accuracy 

 

This section presents two case studies that apply the harmonic mean method and 

proposed methodology to compute mean probe vehicle speeds to demonstrate the 

accuracy of different methods.  The two case studies represent two different traffic flow 

conditions - interrupted flow and uninterrupted flow, respectively. Because most probe 

data vendors collect GPS data at a constant time interval, we focus on examining time-

based sampling strategy in this section. The analysis procedure can be easily applied to 

spatial sampling in future research. 

Evaluation Method 

To fully understand the errors caused by different speed aggregation methods, the 

trajectory data from the Next Generation Simulation (NGSIM) project (1) were adopted 

to simulate the probe vehicle sampling mechanism. The dataset provides complete 

vehicle trajectories traversing a road segment (Figure 5), thus ground truth speed is 

available for validation purposes. 

Before the simulation, two concepts are adopted, which were introduced in this 

paper(4).  Because not all vehicles on the road are equipped with GPS devices and act as 

probe vehicles, we assume that a proportion of the vehicles are probes. Penetration rate 

is used to measure the proportion, which describes the percent of vehicles that are probes. 

For example, 1% penetration rate indicates 1 of 100 vehicles acts as probes on average.  

In addition, reporting frequency also affects the data amount received and thus 

have an impact on the mean speed accuracy. We introduce another concept to describe 

reporting frequency: sampling frequency. It is how often the selected probe vehicle 

reports its positions. We use sampling interval to measure sampling frequency. 

Specifically, under time-based sampling strategy, sampling interval denotes sampling 

time interval. A sampling interval of 30 seconds indicates that the probe vehicle reports 

their location every 30 seconds.  

 



17 

 

 

Figure 5. Vehicle trajectories of US 101 Highway, third lane. 

 

 

 

Sampling Procedure 

Step1: divide the entire time-space region into smaller regions. For each region, 

repeat step 2 to step 5. 

Step 2: compute the number of vehicles to be sampled in each time-space region.  

Step 3: randomly sample vehicles from the population.  

Step 4: randomly generate timestamp that each sampled vehicle starts to report its 

location. 

Step 5: collect the total sampled data points and compute average speed. 

 

To assess the accuracy of different approaches, we adopted mean percentage error 

(MPE), and 10th percentile error: 

𝑀𝑃𝐸𝐴  =
σ

𝑣𝑖ഥ − 𝑣𝐴

𝑣𝐴

𝑁
𝑖=1

𝑁
∗ 100% 

 

(11) 

 

𝑀𝑃𝐸 =
σ 𝑀𝑃𝐸𝑖

𝑀
𝑖=1

𝑀
∗ 100% 

 

(12) 

 

For each time-space region 𝐴, the error varies if a different set of vehicles are 

sampled, thus 𝑁 is used to represent the number of sampling cases for a specific time-

space region. 𝑣𝐴 represents the ground truth speed for sampling case 𝑖 for region  A, 𝑣𝑖ഥ  is 

the computed mean speed using either the arithmetic mean method or harmonic mean 

method. 𝑀𝑃𝐸𝐴 is the mean percentage error for region A. Next, we average the mean 
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percentage error and obtain the mean percentage error for all time-space regions. In 

equation (12), 𝑀 represents the number of time-space regions.   

10𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑒𝑟𝑟𝑜𝑟𝐴 = ൜
𝑣𝑖ഥ − 𝑣𝐴

𝑣𝐴
ൠ

10𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

∗ 100% 
 

(13) 

 

10𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑒𝑟𝑟𝑜𝑟 =
σ 110𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑒𝑟𝑟𝑜𝑟𝑖

𝑀
𝑖=1

𝑀
∗ 100% 

 

(14) 

 

MPE demonstrates on average, the expected percentage error, 10th percentile error 

demonstrates the possible error range. Variance was not used because the results suggest 

the error is generally skewed towards the lower part, a 10th percentile error shows the 

possible variance more clearly. 

Freeway 

 Eight video cameras were deployed on US Highway 101 to collect vehicle trajectories, 

covering a 2100 feet highway section during the congestions (7:50 a.m. to 8:35 a.m.). 

This road section has five lanes as demonstrated in Figure 5. The NGSIM data have been 

extracted from video recordings, consisting of trajectories of 6101 vehicles that traveled 

this section during the monitored period. Speed and position of each vehicle are available 

every 0.1 s. Figure 5 is an illustration of the road segment being monitored as well as the 

vehicle trajectories traveling the segment from 7:05 to 8:20 in the middle lane. The color 

indicates different vehicle speeds, ranges from 0 mph to 60 mph.  

Taking both the penetration rate and the sampling frequency into account, 96 

scenarios were designed. The penetration rate ranges from 5% to 100%, 100% of the 

vehicles indicate that all vehicles are probes, 5% of the vehicles ensure that at least two 

vehicles are sampled during the time period. The sampling interval ranges from 0.1 

seconds to 40 seconds. 0.1 second is the finest sampling interval because it is the 

resolution of the trajectory data. 40 seconds is the largest sampling interval because some 

vehicles traverse the segment within 40 seconds, a longer sampling interval results in 

zero reports and makes no sense. Next, we analyzed the errors caused by the harmonic 

mean aggregation approach under different combinations of penetration rate and 

sampling interval.  

Because the best data resolution that many probe vendors can provide is 1 minute. 

We divided the time-space diagram into 45 regions, each region is composed of a 1-

minute time extent and a 2000 feet spatial extent. The mean speed was computed with 

respect to each region. For each combination of a penetration rate, a sampling interval, 

and a time-space region, the sampling procedure was performed 100 times and the error 

was computed for each run. Next, the errors were averaged to obtain the mean error for 

the specific time-space region. 

Computation Results and Some Discussions 

The mean percentage errors of different approaches are shown in Figure 6. In the 

subfigures, each column represents a different sampling interval, ranges from 40s to 0.1s, 

each row represents a probe vehicle penetration rate, ranges from 5% to 100%. (a) and 

(b) separately demonstrate the MPE of the arithmetic mean approach and the harmonic  
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Figure 6. Mean percentage error of two methods. (a), arithmetic mean approach; 

(b), harmonic mean approach. 

 

 

 

mean approach. On average, the MPE of the arithmetic mean and harmonic mean does 

not demonstrate a signification change with the increase in the penetration rate but  

improves with finer sampling interval. From both (a) and (b), it appears that the mean 

speed collected based on temporal tends to be consistently lower than the ground truth. 

This is partly caused by the time-based sampling strategy. Vehicles with lower speed are 

more likely to be sampled compared to the high-speed vehicles if time-based sampling 

strategy is implemented. Especially in the case of low-frequency probe vehicle data, 

regardless of the penetration rate. An extreme example is, considering several vehicles 

that traverse a short segment, if the traverse time for high-speed vehicles is shorter than 

the sampling interval, then the speed of these vehicles will not be recorded, thus only  

those vehicles with traverse times that shorter than sampling interval (that is lower speed 

vehicles) are sampled. Therefore, without considering the GPS measurement errors, a 

time-based sampling strategy is likely to underestimate the mean speed for a segment in a 

certain time period. The impacts of the underestimation on mean speed depends on the 

length of the segment as well as the report time interval.  

By comparing (a) with (b), the errors of the harmonic mean method tend to be 

higher than that of the arithmetic mean method. It is demonstrated that, as expected, the 

average speed estimated by harmonic mean is less accurate than that estimated by the 

arithmetic mean approach, the harmonic mean approach constantly underestimates the 

mean speed from 0% percent to 8% compared to the arithmetic mean method. In Figure 

6, The lower right corner represents the perfect case, when the penetration rate is 100% 

and the sampling interval is the finest, 0.1 seconds, indicating we have complete 

information for each vehicle within the time-space region. In this case, the arithmetic 

mean estimation error is zero and the harmonic mean estimation error is -4.1%. The 
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estimation errors are largest when the sampling interval is around 30~40 seconds. In 

reality, the estimation error differences are influenced by many factors, such as the ratio 

of the road segment length to the aggregation interval, a long segment length and a short 

aggregation interval might introduce more errors because fewer vehicles completely 

traverse the entire road segment. Moreover, the speed range and variation could also 

affect the accuracy as well. 

Figure 7 demonstrate the 10th percentile accuracy for both speed aggregation 

methods. Again, the arithmetic mean approach constantly outperforms harmonic mean 

approach. Indicating the arithmetic mean approach is more reliable compared to the 

harmonic mean approach.  

Signalized Intersections 

Data used for signalized intersections represent travel on Peachtree Street, an arterial 

running primarily north-south in Atlanta, Georgia. The speed limit on Peachtree Street is 

35mph. Eight video cameras were deployed to collect vehicle trajectories, covering a 

2100 feet road segment (4:00 p.m. to 4:15 p.m.). The NGSIM data consist of trajectories 

of 325 vehicles that traveled this section during the monitored period. Speed and position 

of each vehicle are available every 0.1 s. Figure 8 is an illustration of the vehicle 

trajectories extracted from the video. The color indicates different vehicle speeds, ranges 

from 0 mph to 50 mph. There are five intersections along this road segment, four can be 

easily identified on the trajectory figure as vehicles slow down and queue up.  

Computation Results and Some Discussions 

The time-space diagram is divided into 15 regions, each region is composed of a 1-

minute time extent and a 2000 feet spatial extent. The time-space region ranges from 

4:00pm to 4:01pm, 4:01pm to 4:02pm, till 4:14pm to 4:15pm for the entire segment.  The 

mean speed was computed with respect to each region. 
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Figure 7. 10th percentile percentage error of two methods. (a), arithmetic mean 

approach; (b), harmonic mean approach.  

 

 

 

 

Figure 8. Vehicle trajectories on Peachtree Street, northbound. 
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Similar to the previous case study, 96 scenarios were designed based on the 

penetration rate and sampling interval. The penetration rate ranges from 5% to 100%, 5% 

is the smallest penetration rate which ensures that at least one vehicle is sampled during 

the time period. The sampling interval ranges from 0.1 seconds to 40 seconds. The 

sampling procedure was performed 25 times for each time-space region to ensure every 

vehicle is at least sampled once. Then, the error was computed for each time-space region 

and each run. The errors were then averaged to obtain the mean error. 

Figure 9 demonstrates the mean percentage error for different combinations of 

penetration rate and sampling interval. Comparing Figure 9(a) with Figure 9(b), it is 

apparent that in general, the arithmetic mean method is more accurate than the harmonic 

mean methods. Both methods tend to underestimate vehicle speed, especially for large 

sampling intervals. For the arithmetic mean method, the accuracy decreases with the 

increase of the sampling interval. For the harmonic mean method, the accuracy varies and 

does not have an obvious pattern. In general, the higher the penetration rate, the lower the 

accuracy. This is because the harmonic mean estimation is biased, the higher the 

penetration rate, the calculated average speed approaches the true harmonic mean speed 

but deviates from the true mean speed. As demonstrated, the error can be as high as 70% 

lower than the ground truth if the harmonic mean method is adopted (when the 

penetration rate is 100% and the sampling interval is 5 to 10 seconds. In the meanwhile, 

the arithmetic mean method can achieve less than 10% errors.  

Figure 10 demonstrates a 10th percentile percentage error for different 

combinations of penetration rate and sampling interval to illustrate the error range 

introduced by different methods. Comparing Figure 10(a) with Figure 9(a), similar  

 

 

 

Figure 9. Mean percentage error of two methods. (a), arithmetic mean approach;  

(b), harmonic mean method. 
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Figure 10. 10th percentile error of two methods. (a), arithmetic mean approach;  

(b), harmonic mean method. 

 

 

 

patterns can be observed that with the increase of sampling interval, the less accurate the 

speed average results. Also, with the decrease of penetration rate, while the mean error 

(Figure 9(a)) does not change much, the 10th percentile accuracy decreases obviously. 

For example, for the 15s sampling interval, the accuracy decreases from -26% to -75%. 

Comparing Figure 10(a) with Figure 10(b), the 10th percentile error for the arithmetic 

mean method is still smaller than that of a harmonic mean method, demonstrating that the 

proposed method is not only more accurate on average but also more reliable. 

Both case studies demonstrate the harmonic mean approach is a biased estimation 

of the true speed, and the proposed arithmetic mean method is more accurate and more 

reliable than the harmonic mean method. Interestingly, Comparing the error of signalized 

intersections to that of a freeway, while the error for the arithmetic mean method does not 

deviate much, the error for the harmonic mean method are quite different from each 

other. The errors introduced by the harmonic mean method for signalized intersections is 

higher than that for a freeway. This can be partially explained that vehicle trajectories for 

a freeway are more homogeneous than that for signalized intersections in the case study.  

 

Conclusions 

 

So far, the mean speed computation method for probe vehicle data has received little 

attention. The practice that harmonic mean is typically used for roadside sensor  

speed aggregation sometimes leads to a misunderstanding that associates the mean speed 

with harmonic mean of traffic streams. Because of this, some commercial probe data 
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providers developed speed aggregation method by taking the harmonic mean of 

individual vehicle speeds in the aggregation period. We demonstrate in this study that; 

the harmonic mean approach is a biased estimator and may cause erroneous results. It is 

later shown that, for data obtained from probe vehicles, the mean speed aggregation 

method depends on the data sampling strategy. If the sampling is done by distance, 

harmonic mean should be used to aggregate spot vehicle speeds. Conversely, if the 

sampling is done by time, the arithmetic mean approach should be used to aggregate spot 

vehicle speeds. Moreover, regardless of the sampling schemes, total distances traveled 

within the time-space region divided by total times of travel is always the correct way to 

compute mean vehicle speeds, this is particularly preferred when the GPS data received 

have irregular reporting frequencies.  

The case study adopted NGSIM data to demonstrate the possible errors if 

different aggregation method is used. The results show that the time-based sampling 

strategy prone to sample low-speed vehicles than high-speed vehicles and leads to an 

underestimation of the mean speed. Additionally, compared to the arithmetic mean 

method, the harmonic mean approach under a time-based sampling strategy is likely to 

result in a lower estimation of the mean speed. In the case study, the harmonic mean 

approach results in a lower estimation of 0% to 8% compared to the arithmetic mean 

approach for the freeway case and as high as 76% for the signalized intersection case. 

The results have implications for both practitioners and researchers. Since the average 

speed calculation methods for many crowdsource-based speeds data remain unclear, the 

case study section offers practitioners and researchers an understanding of the error range 

if the traditional calculation method were adopted. In addition, this study also has 

implications for future speed, flow, and density calculation. Regardless of the data collection 

technologies, the key point is to derive the calculation method based on the definition, 

instead of directly employing an existing method.  

This study focused on aggregating average speed based on individual data points. 

One of the future research directions is to investigate how to correctly aggregate the 

‘average’ speed. For example, aggregate the average speed for continuous road segments 

to obtain the average speed for a road facility. Another future research direction is to 

estimate speed variance from average speed over time. In this study, it is demonstrated 

that while the mean speeds are close, the variances could be quite different. The variance 

provides further insights into the traffic states.    
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CHAPTER II. EVALUATION OF CROWDSOURCED EVENT 

REPORTS FOR REAL-TIME IMPLEMENTATION – SPATIAL 

AND TEMPORAL ACCURACY ANALYSIS  
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A version of this chapter was presented at TRB 2020 by Yuandong Liu, Nima 

Hoseinzadeh, Lee D. Han, and Candace Brakewood.  

 

Abstract 

 

With the ubiquitous use of mobile devices, road users can contribute to traffic knowledge 

via multiple ways, such as sharing location information and posting traffic conditions on 

social media. Traffic monitoring agencies are increasingly aware of the importance of 

crowdsourced data and consider them as a possible complementary data source for real-

time operations. However, the data might have redundant, inaccurate, and incorrect 

information that needs to be validated before being incorporated into real-time 

applications.  

The validity of crowdsourced data involves multiple aspects, and this study 

focused on report timeliness and location accuracy of Waze data. We retrieved the data 

from five months of Waze reports on the interstate highway in Tennessee and compared 

them with existing official records. The results indicate that 67% of the crash reports 

(85% of the stopped-vehicle report) in official records can be matched in Waze. Among 

all official records, 40% crash reports (57% stopped-vehicle reports) are reported sooner 

on Waze than in official records. On average, Waze reports a crash 2.2 minutes earlier 

and report a stopped vehicle 8 minutes earlier, which highlights the potential application 

of Waze reports in real-time event detection. Also, the results reveal the high location 

accuracy of Waze reports. On average, the distance difference between Waze reports and 

official records is less than 0.001-mi for all crash reports. The finding suggests that users 

tend to make a report at the exact location, which has implications for several other types 

of reports, whose location is hard to be evaluated directly.   

 

Introduction 

 

The vast number of mobile devices in use has allowed people to contribute to the 

collective knowledge by sharing locations or directly posting traffic information on social 

media. The crowdsource-based applications can now effectively collect a variety of 

traffic information with a high degree of accuracy.  

In general, there are two types of crowdsourced data. First, users allow their 

location information to be collected while do not share any information actively. Some 

navigation applications are able to integrate those passive data collected from users who 

have activated the application and provide traffic speed. Second, users actively report the 

traffic conditions they observed on social media such as Twitter. The first type of 

crowdsourced data is collected on a routine basis and forms the foundation of probe-

vehicle based speed data, the accuracy and reliability of which has been comprehensively 

evaluated. The second type, posting traffic condition related information on social media 

relies on users’ active participation, and the accuracy and reliability depend on user 

behavior, which has not been thoroughly evaluated.  
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Traffic managers strive for the most accurate information about road hazards 

(crashes, roadside vehicles, etc.) to actively respond to these incidences. Timely response 

to those events can improve the efficiency, safety, and reliability of the transportation 

system. In general, hazard information comes from public reports, law enforcement, 

traffic monitoring devices such as CCTV, and automated event detection algorithms 

based on real-time data. The high cost, sparsity, and limited spatial coverages of physical 

roadside sensors and devices raise considerable challenges to effectively detect traffic 

events in a timely manner, especially in rural areas. In contrast, users’ prompt reporting is 

low cost and plays an important role.  

Traditionally, users can make reports to 511 or the police, but with the prevalence 

of crowdsourced data, users can contribute in multiple ways, not only making a phone 

call but also posting information on social media. The Waze app was developed to allow 

users to post traffic conditions on its platform and is then disseminated to Waze users. In 

recent years, Waze has established partnerships with numerous transportation agencies 

and provides them rich information, including traffic speed and user reports. Reports are 

made by Waze users once they observe something on the road. Waze supports multiple 

reports categories including traffic jams, crashes, road hazards. Traffic agencies are eager 

to incorporate this information into their traffic management and operation systems, 

especially the users’ reports. Compared to the operation and maintenance cost of other 

traveler information and hazard detection systems, Waze is free. Several states have 

attempted to use Waze reports as a source of incident detection (6; 25). However, 

transportation agencies are hesitant to incorporate the data into their system before the 

reliability and accuracy of Waze reports are evaluated. Therefore, validating the accuracy 

of Waze data to ensure its credibility and quality is crucial. 

 

Literature Review 

 

Social media data have demonstrated potential in detecting special event occurrences 

such as earthquakes promptly (26). In recent years, a variety of research has been 

conducted to mine and analyze twitter data to extract traffic event information that will 

aid in real-time event detection. Most of these studies focused on developing a model to 

extract the traffic related information (27-30). The paper proposed a general approach to 

mining twitter data and concluded that mining tweets hold great potentials to complement 

existing traffic incident data in a very inexpensive way (27). Some interesting facts 

related to social media traffic event data have been revealed in these studies. Overall, 

individuals tend to report incidents more frequently during the daytime than at night, 

especially during traffic peak hours. Within a given week, social media data are posted 

more often on weekends than on weekdays. Also, in terms of spatial distribution, arterials 

receive more extensive coverage on social media. Previous studies provide a general 

discussion of the extracted information, but did not provide much insight into the traffic 

information, such as its timeliness, its reliability etc. 

Whereas extracting social media data has been a hot topic in recent years, limited 

research has been found to evaluate Waze data. Jussara provides a general understanding 
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of Waze data and identifies its spatial coverage as well as its limitations (31). Three 

recent papers evaluate Waze crash reports by comparing them with official data.  

One of the papers estimates traffic crash counts using Waze crash counts. It links 

Waze events to official reports and develops a random forest model to estimate the 

number of police-reported crashes. The estimated crashes from the models have similar 

spatial and temporal patterns compared to the observed police reported crashes. The 

models appear to capture unreported crashes, including minor crashes that might not 

require a police presence but can seriously impact congestion (32). The paper is an 

application of Waze data and does not directly address the reliability issues.  

The second paper focuses on the comprehensive assessment of the event reports 

(incident reports and traffic jam reports), including reliability and coverage, and 

developed a methodology to find the added value of Waze reports (6). This paper 

comprehensively evaluates the Waze reports; it states that the reports are reasonably 

accurate geographically, but do not provide detailed information about the accuracy of 

the location. Also, the paper does not distinguish urban roads and interstate highways. 

Analysis of Waze reports might show urban roads and interstates with different patterns.  

The third paper (5) compares Waze crash and disabled vehicle records with video 

ground truth; it is the first paper to evaluate Waze data with ground truth data, although 

the conclusion is limited by the sample size, which may be because extracting ground 

truth from video is strenuous. It is interesting to see that the false alarm rates for incidents 

are much lower than those for disabled vehicles. The study also found that the Traffic 

Operation Center was generally aware of crashes and disabled vehicles before they were 

reported in Waze, which contradicts the findings of the earlier paper.  

In summary, previous research found that Waze reports are usually a reliable 

source for monitoring road conditions during the daytime. Waze could capture unreported 

events and is reasonably accurate in terms of time and location. This suggests that Waze 

is a promising data source for real-time event detection. 

Research Question 

The reliability of Waze has two implications. First, if there is an event, what is the 

possibility it will trigger a report? Analyzing the percentage of total events reported by 

Waze can provide insights into this. As shown in this paper (6), 43% of ATMS crash and 

congestion reports are covered by Waze reports, in other words, the likelihood of having 

a Waze report is 43%. Second, if a report is made, does it represent an actual event? We 

discuss the second aspect in detail below. 

1. If a report is made, does it represent an actual event? There are several cases 

where a report does not indicate an actual event.  

• False alarm. Some reports do not denote an actual event, an error that a user 

could make either intentionally or unintentionally. Verification of the event 

reports will need information from other sources such as roadside sensors and 

video cameras. In his study, Mostafa (6) uses cameras and finds that 0.3% of the 

reports were false alarms. Noah, in his study, found 5% of 40 crashes were false 

alarms. This false alarm rate is lower than expected and suggests that false alarms 

might not be a predominant problem for Waze.  
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• Duplicate reports. One characteristic of Waze data is that users might make 

multiple reports about the same event at different times and locations. For 

example, for a crash lasts for hours and causes long delay, users keep making 

reports until the crash is cleared. The reports could be made at the location where 

the crash occurred or made within the traffic queue caused by the crash. It is an 

arduous task for traffic practitioners to determine whether the report is a duplicate 

of an earlier report or it indicates a new accident.  

• Cleared event and retained reports. Waze may continue to show events in 

locations after events have been cleared. This is not an issue for practitioners 

since the report is validated after it is made, but more of an issue to Waze users: If 

reports are not cleared in time, they can be regarded as false information to the 

users and erode user trust in Waze reports.  

2. How accurate are Waze event reports in terms of time and space? This means how 

well an event report matches the time-space existence of an actual event.  

• Temporal accuracy. Temporal accuracy means the start time and end time of a 

report match the start and end times of the corresponding event. Transportation 

agencies are generally more interested in the consistency of start times because 

end times are known to transportation agencies, and they can provide that 

information to Waze. However, the exact occurrence time is usually unknown.  

• Spatial accuracy. Because the reports are made by users, several factors might 

affect location accuracy. A user could make reports before they reach the location 

or after they pass the location. The location accuracy shall be examined to provide 

traffic practitioners a sense of where the event is when getting a report.    

This study examined the spatial and temporal accuracy of Waze reports. In Waze, a 

variety of report types are provided, including crash, weather hazard, traffic congestion, 

stopped vehicle, police, and closure, etc. Among the nine types of reports, only reports 

concerning crashes and stopped vehicle occurrences at a fixed location are maintained as 

official records. Therefore, these two types of reports were selected and examined for this 

paper. The results could have implications for other types of reports, such as traffic jam 

reports. This study evaluates Waze reports on interstate highways, which has not been 

looked at in many previous studies. Tennessee Department of Transportation (TDOT) 

maintains official documentation for crashes and abandoned vehicles on freeways. A 

matching criterion is then developed to link Waze reports to official records to evaluate 

the temporal and spatial accuracy. Researchers can use the same process to analyze the 

reports on urban road networks. In addition, the study discussed several challenges to 

incorporate Waze data into real-time operations.  

 

Methodology 

 

Data 

The data used in this study are Waze report data and LocateIM incident data.  
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Waze data: Waze (https://www.Waze.com/about) is a navigation application that 

leverages crowdsourced user reports to provide service to its users. Users can report 

traffic crashes, congestion, and road hazards. In 2016, TDOT established a partnership 

with Waze to share traffic information. The data provided to TDOT is user reports feed. 

Each report provides type, location, time, and measurements of reliability. 

(https://support.google.com/Waze/partners/answer/6324421?hl=en). 

LocateIM data: TDOT records traffic events on the interstate highway, including 

location, time, and duration. The dataset is validated by TDOT operators and thus serves 

as a reference to evaluate Waze data. However, the events recorded in this dataset may 

not cover all cases. For example, some crashes do not involve the police or transportation 

agencies but still exist and have an impact on traffic. 

The Waze data used in this study covers five months of crash and stopped vehicle 

reports on all of I-40 in Tennessee from August 1st to December 27th,2017. So does the 

LocateIM. The number of reports retrieved for each data type are shown in Table 3. In 

LocateIM, the location of a report is represented by milepost, while in Waze, the location 

of a report is represented by longitude and latitude. The location of Waze reports is first 

converted to milepost for future analysis.   

Matching Methodology 

This study matches Waze reports to LocateIM records and evaluates the temporal and 

spatial accuracy of Waze reports. If two records are close enough in both time and space, 

a match is established. The proximity of the two data sources is determined in terms of 

both temporal and spatial differences.  

LocateIM and Waze use different terminologies for traffic events; for example, 

Waze provides two types of stopped vehicle reports, vehicle stopped on road and vehicle 

stopped on roadside. Correspondingly, LocateIM has two types of records that can be 

matched to the Waze stopped vehicle reports, separately disabled vehicle and abandoned 

vehicle. Waze denotes crashes as accident reports while LocateIM uses single vehicle 

crash, multi-vehicle crash, etc. We first match Waze terminologies to LocateIM 

terminologies. It is expected that stopped vehicle on road has a similar pattern to accident 

reports while stopped vehicle on roadside might manifest different patterns. However, in 

LocateIM, the two types of reports cannot be differentiated, therefore we combined them 

for future analysis. Table 4 shows the terminology match used in this study.  

 

 

 

Table 3. Number of reports for each data type. 

 

 Waze LocateIM 

Accident 8,068 2,052 

Stopped vehicle 93,707 5,459 

 

 

 

https://support.google.com/waze/partners/answer/6324421?hl=en
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Table 4. Terminology match. 

 

Waze LocateIM 

Accident Crash, Overturned vehicle, Vehicle on fire 

Stopped vehicle Disabled vehicle, abandoned vehicle 

 

 

 

The report time and location for LocateIM records are separately denoted as 

T𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀, D𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀. The report time and location for Waze reports are denoted as 

T𝑊𝐴𝑍𝐸 , D𝑊𝐴𝑍𝐸. The time difference between LocateIM and Waze report is ∆T =
 T𝑊𝐴𝑍𝐸 − T𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀. The distance difference between LocateIM and Waze report is ∆D =
 D𝑊𝐴𝑍𝐸 − D𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀.If the time different ∆T and spatial difference ∆D are within a 

threshold, T𝑡ℎ𝑟𝑒, D𝑡ℎ𝑟𝑒, Then a potential match is established.  

Road name is a possible matching criterion, but because all the events happened 

on I-40, road name is not one of the matching criteria in this study. Also, it happens 

sometimes that a Waze user observes an event (especially a crash) traveling in the 

opposite direction and reports it. The proposed matching criteria take this into account 

and match reports traveling in both directions. The matching algorithm pseudocode is 

shown in Table 5. 

Each LocateIM report keeps a matching list to store matched Waze reports. 

Following the previous steps, one Waze report could be matched to more than one 

LocateIM report while one LocateIM could have multiple Waze matches. To eliminate 

some unlikely matches and improve the accuracy of the matching results, we propose 

additional matching criteria. Table 6 demonstrates two different scenarios and 

corresponding matching criteria.  

In summary, if the Waze report is downstream from LocateIM records, that 

is ∆D > 0, then, abs(∆D /∆T) < max vehicle speed, if abs(∆D /∆T)  >max vehicle speed, 

means that Waze user need to travel at a speed that is higher than the max vehicle speed 

to make the reports at the current location, which is unlikely. Similarly, If the Waze 

report is 

 

 

 

Table 5. Pseudocode. 

 

For each report in LocateIM: 

For each report in Waze: 

     Compute ∆T =  T𝑊𝐴𝑍𝐸 − T𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀 

     If abs(∆T) < T𝑡ℎ𝑟𝑒: 

         Compute ∆D =  D𝑊𝐴𝑍𝐸 − D𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀 

             If abs(∆D) < D𝑡ℎ𝑟𝑒: 

                 Add the Waze reports to the matching list of LocateIM reports 
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Table 6. Matching criteria for different scenarios. 

 
Scenario1 Scenario 2 

∗ ∆D >0 ∆D <0 

Abs (∆D /∆T) < max vehicle speed Abs (∆D /∆T) < max shockwave speed 

 

Note*:  

• ∆D =  D𝑊𝐴𝑍𝐸 − D𝐿𝑜𝑐𝑎𝑡𝑒𝐼𝑀. ∆D > 0, indicates Waze report is downstream to LocateIM report, 

otherwise, Waze report is upstream to LocateIM report.  

 

 

 

upstream from LocateIM records, that is ∆D < 0, then abs (∆D /∆T) < max shockwave 

speed. If abs (∆D /∆T)> max shockwave speed, means Waze user makes report about the 

event even the queue hasn’t backed up to his/her current location. Which is also unlikely. 

The maximum vehicle speed and maximum shockwave speed are set to 90mph and 

15mph based on our experience. 

 

Results  

 

This section includes three subsections. First, we discuss the process to establish the 

temporal-spatial threshold. Then, the matching results, as well as temporal-spatial 

accuracy of crash reports and stopped vehicle reports, are presented.  

Establish a Threshold 

The matching criteria require a reasonable threshold for time and distance differences. A 

group of threshold combinations is evaluated, as shown in Figure 11, which demonstrates 

the matching rate with different time and distance thresholds.  

According to the matching methodology and thresholds determined in the previous 

section, the Waze crash reports are linked to LocateIM crash records reports. Each crash 

record could have more than one Waze match. Among all the matched Waze reports, only 

the earliest report is taken into consideration in the time and distance differences analysis 

because it is the first Waze report made for the crash; it is called the first match.  

Figure 11 (a) shows that the matching rate increases with the increase of time 

threshold, but the increment in matching rate decreases with the increase of time threshold. 

When the threshold exceeds 30 minutes, the increased matching rate is not obvious. 

Similarly, the increase in matching rate levels off when the distance threshold exceeds 1.5 

miles. Therefore, 30 minutes and 1.5 miles are selected as the threshold for crash matches; 

any reports within this range will be matched to LocateIM records. The threshold results 

in 67% matching rates, meaning that 67% of the crashes in LocateIM have at least one 

match in Waze. Figure 11 (b) illustrates a slightly different pattern. The distance threshold 

is chosen as 1.0 mile, and the matching rate does change much with the increase of distance.  



33 

 

 
(a) 

 

(b) 

Figure 11. Matching rate with different combinations of thresholds. (a) crashes (b) 

stopped vehicles. 
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The time threshold is also different. The pattern shows that when the time threshold 

reaches 50 minutes, the matching rate begins to stabilize. Therefore, 50 minutes is chosen 

as the threshold. The longer time threshold can be intuitively explained. Unlike crash, it 

takes a longer time for traffic agencies to respond to disabled vehicles or abandoned 

vehicles on roadside. Spatial and Temporal Accuracy for Crash Reports. 

Spatial and Temporal Accuracy for Accident Reports 

This section presents the spatial-temporal accuracy for accident reports. Figure 12 shows 

the characteristics of the first match. The time difference is the time between Waze 

reports and LocateIM reports. It is a heatmap plot that shows the distribution of time and 

distance differences between the two sources. Negative time suggests that a Waze report 

occurred earlier than a LocateIM report. Distance difference is the distance between 

Waze reports and LocateIM reports. Negative distance suggests that a Waze report is 

upstream of a LocateIM report.  

As shown in Figure 12, Waze report time is, on average, 2.2 minutes earlier than 

that of LocateIM. This does not suggest an obvious gain. Table 7 displays in detail the 

number and percentage of reports that Wazers made sooner than LocateIM users. It can 

be observed that, among all LocateIM reports that can be matched, over 60% of them 

were reported sooner on Waze. It is often the case that traffic engineers are aware of the 

crash several minutes before a report is verified and log it into the system. In that sense, 

the percentage of reports that were made 0~ 20 minutes sooner than LocateIM is 

presented in Table 7 as well. For example, Waze reports that were made five minutes 

earlier than LocateIM reports constitute 35% of all the LocateIM records being matched. 

This suggests that Waze has the potential to be used as one of the real-time sources for 

crash detection and may help to decrease crash identification time. However, a high 

percentage of the early reports are within -10 ~ 0 minutes, a mechanism that can quickly 

verify Waze reports is needed to take advantage of the short time difference. 

Figure 13(b) shows the distance differences between the two sources. On 

average, the distance between Waze and LocateIM reports is -0.001miles (less than 6 

feet), which suggests a high location accuracy of Waze crash reports. A normality test 

was conducted, and the results show that the distance between Waze and LocateIM 

reports does not follow a normal distribution; the distance is more concentrated compared 

to normal distribution. Figure 13(a) demonstrates the cumulative distribution of absolute 

distance difference. Forty percent of the crash reports from Waze is within 0.1 miles of 

the exact location. Sixty percent of those are within 0.2 miles. While on average, users 

tend to make reports at the exact location, some variance exists. It is worth noticing that 

the LocateIM reports location precision is 0.1 miles, which might have impact on the 

final accuracy. 
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Figure 12. Heatmap of the spatial and temporal differences between Waze reports 

and LocateIM records. 

 

 

 

Table 7. Number and percentage of Waze report made earlier than LocateIM.  

 

Time difference 

(min) 

Number Percentage 

 

-0* 832 60.9% 

-3 611 44.7% 

-5 479 35.0% 

-10 287 21.0% 

-15 167 12.2% 

-20 96 7.0% 

Note: *, -3 indicate Waze reports 3 minutes earlier than LocateIM.  
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Figure 13. (a) Cumulative distribution of absolute distance differences. (b) 

Cumulative distribution of time differences. 
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Location accuracy has some implications. As mentioned, for a certain type of 

reports, such as traffic jam reports and police reports, it is usually hard to determine the 

exact location (e.g., a police car is moving, traffic jam is growing) and no official record 

is maintained. This study reveals user behavior and gives some implications of the 

location accuracy for those types of reports. The location accuracy analysis also helps 

Waze to determine the user alert distance. Waze usually alerts its users 0.5 miles in 

advance of the reports. However, some Waze users complain that the alert distance is too 

short to take any 

action(https://www.waze.com/forum/viewforum.php?f=657&sid=458b46071de8cb7 

2d1d7dc13fb613286). Our results suggest that around 53% of the crash reports are 

downstream from the exact location, which should be considered by Waze when setting 

up user alert distances. 

Spatial and Temporal Accuracy for Stopped Vehicle Reports 

In a previous section, we examined the spatial and temporal accuracy of crash reports. In 

this section, the same analysis was performed to evaluate the stopped vehicle reports. 

Stopped vehicle reports are evaluated independently because traffic agencies take prompt 

reacts to crashes but not stopped vehicles unless it is reported especially for vehicle 

stopped on roadside, thus the time and location difference may demonstrate different 

patterns. According to matching methodology and threshold determined, the Waze 

stopped reports are linked to LocateIM records. Each crash record could have more than 

one Waze match. Using the selected threshold, 86% of crashes in LocateIM have at least 

one corresponding report in Waze. The coverage for stopped vehicle reports is higher 

than that of accident reports.  

Similarly, to examine the spatial and temporal accuracy, only the earliest match in 

Waze is taken into consideration. All remaining matches are regarded as duplicate 

reports. Figure 14 shows the characteristics of the matched reports. Figure 14 is a 

heatmap plot that shows the distribution of time difference and distance difference 

between the two sources. on average, Waze report time is eight minutes earlier than that 

of LocateIM for stopped vehicles. Table 8 shows in detail the number and percentage of 

reports that Wazers made sooner than LocateIM users. It can be observed that, among all 

the matched reports, over 66% of the time Waze generates reports in advance of 

LocateIM among all LocateIM records.  The percentage of reports that made 5~45 

minutes earlier than LocateIM is presented in Table 8 as well. For example, Waze reports 

that is 5 minutes earlier than LocateIM reports constitute 53% of all the LocateIM 

records. 

The distance differences between the two sources are shown in Figure 14(b). On 

average, the distance between Waze and LocateIM reports is -0.025miles (less than 140 

feet); while this difference is higher than that of crash reports, this still suggests 

comparatively high accuracy. Figure 15 displays the cumulative distribution of absolute 

distance difference. Sixty-five percent of the stopped vehicle reports from Waze is within 

0.1 miles of the exact location. Seventy-one percent of those are within 0.2miles.  

 

https://www.waze.com/forum/viewforum.php?f=657&sid=458b46071de8cb7%202d1d7dc13fb613286
https://www.waze.com/forum/viewforum.php?f=657&sid=458b46071de8cb7%202d1d7dc13fb613286
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Table 8. Number and percentage of Waze report earlier than LocateIM.  

 

Time difference 

(min) 

Number Percentage 

(matched reports) 

-0* 3090 66% 

-5 2498 53% 

-15 1618 35% 

-20 1003 21% 

-35 533 11% 

-45 172 4% 

* Note: -5 indicate Waze reports 5 minutes earlier than LocateIM.  

  

 

 

Figure 14. Heatmap of the spatial and temporal differences between Waze reports 

and LocateIM records. 
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Figure 15. Cumulative distribution of absolute distance differences. 

 

 

 

Real-Time Implementation 

 

This section discusses some applications and challenges of real-time implementation of 

Waze event reports. Previous sections thoroughly analyze the timeliness of the Waze 

reports. The analysis shows that incorporating Waze into real-time operation and 

management has the potential to shorten the event detection time and response time. Two 

possible applications of Waze data are:   

• Early Indicator. Traffic agencies take the Waze event report as an early indicator 

of a possible event.  

• Feeds for AID (automatic incident detection). Many automatic incident 

detection algorithms have been proposed throughout the years, and most of them 

require off-line training. If the training is incorrect or not thorough, the performance 

of the algorithm might be harmed. With the availability of Waze incident reports, on-

line training algorithms can be proposed to take advantage of the real-time 

information. 

Also, there exist many same events that being reported at different times and 

locations, which brings in redundant information and causes extra work for practitioners 

to differentiate those reports from an actual event in real-time incident detection. Table 9 

shows the number of matched reports and the percentage of the matched reports among 

total reports. The matched reports account for only 26% of the total crash reports and 

14% of the total stopped vehicle reports. Figure 16 further shows a Venn diagram of all 

accidents and accidents covered by WAZE and LocateIM. This study focused on 

identifying the intersection of Waze reports and LocateIM records. For those reports 

reported by WAZE that are not covered by LocateIM, a high percentage of which could  
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Table 9. Total records vs. matched records. 

 

 WAZE LocateIM 

 Crash Stopped vehicle Crash Stopped vehicle 

Total Records 8068 93707 2052 5459 

Matched 2066 13203 1374 4674 

Percentage 26% 14% 67% 85% 

 

 

 

 

 

Figure 16. Venn diagram.  
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be duplicate reports. Once the duplicate reports are removed, the events that not captured 

by LocateIM can be estimated. 

Suggestions are given to handle those two problems.  

• False alarm. For operation agencies, once an event report is received, according 

to its location and time, the incident can be verified or confirmed using additional 

data sources such as traffic speed, traffic monitoring cameras, etc.  

• Duplicate report. For the same event, the reports related to it should be within 

some time and distance range. It will be interesting to develop a clustering algorithm 

that can cluster the event reports related to the same event and the same group.  

To address these two challenges, Waze may adopt some strategies to preprocess 

the data and make it easier for transportation agencies to use. Waze can offer the reports 

along with the vehicle speed as an indicator of the vehicle status when it makes the 

report.  

 

Conclusion 

 

Crowdsourced data are typically provided at low cost to traffic management 

administrators. While other data sources (sensors, third-party probe data, or even law 

enforcement reports) require high installation and maintenance costs, Waze data are 

available for free. Incorporating Waze data into real-time implementation has been a hot 

topic in recent years.  

However, there are challenges in working with Waze data. One of the biggest 

concerns is its reliability. The reliability contains two aspects, the existence of the event 

and the accuracy of reports. This research evaluated the temporal and spatial accuracy of 

crowdsourced reports on interstate highways. Results suggest that 67% of the official 

crash records were reported by Waze, as were 85% of the stopped vehicle records. On 

average, Waze reports are made 2.2 minutes sooner than LocateIM reports (7.8 minutes 

for stopped vehicle). Forty percent of the crash reports (57% of stopped vehicle reports) 

in LocateIM are reported earlier by Waze than LocateIM, although different states may 

have different incident detection systems and the exact percentage may vary.  

In addition, the analysis demonstrates the high location accuracy of the crash reports. On 

average, the distance between LocateIM reports and Waze reports is -0.001 miles for 

crashes and -0.025 miles for stopped vehicles. For many report types, such as police 

reports and traffic jam reports, the location accuracy is hard to validate, the analysis of 

crash reports and stopped vehicle reports reveals people’s behavior and implies the 

reports for those events shall be pretty accurate as well. The high location accuracy and 

its timeliness suggest Waze reports can be a supplemental resource for real-time highway 

operation and management, especially incident detection.  

Waze users can generate multiple reports for the same road hazards at different 

locations and times, especially for road hazards that exist for a long time. For example, a 

crash that is not cleared for a while and holds up traffic causes people in the traffic queue 

to report the crash though they are still some distances from the crash location. Result 

suggests that a high percentage of Waze reports cannot be matched to official incident 
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records. Among those reports, the percentage of redundancies and false alarms remains 

unclear. The future direction of this study is to propose a mechanism to atomically 

remove duplicate reports and false alarms. If the duplicate reports and false reports can be 

identified and removed, the remaining reports shall be incidents covered by WAZE that 

not reported officially. This helps us to investigate the contribution of Waze data and 

build a more complete incident dataset.   
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CHAPTER III. A CALIBRATION-FREE FREEWAY INCIDENT 

DETECTION ALGORITHM BASED ON REAL-TIME TRAFFIC 

STATUS SELF-ASSESSMENT 
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The chapter presents a modified version of a research paper by Yuandong Liu, Bumjoon 

Bae, and Lee D. Han.  

 

Abstract 

 

Existing automatic incident detection algorithms achieve good performance if calibrated 

properly. However, those algorithms may yield unacceptable false alarm rates without 

proper calibration, which restricts their implementations in practice. This study proposed 

a self-learning incident detection algorithm that is free of calibration. The proposed 

algorithm can train a detection model dynamically by evaluating the detection results on 

a regular basis without labeled incident data. The training is performed by estimating 

typical traffic conditions using both historical data and real-time data. If the real-time 

traffic pattern deviates from the estimated normal traffic pattern, an incident alarm is 

raised. Multilevel of deviations are maintained to detect the abnormal traffic at different 

levels. A self-evaluation module is then proposed to assess the traffic states over a period 

and determines the occurrence of an abnormal event. The self-evaluation module serves 

as a calibration procedure to support the selection of an appropriate deviation level at 

different times of the day and different locations. The performance of the proposed 

algorithm is compared to the performance of a benchmark model with 31 incident cases 

from Knoxville, Tennessee. Results suggest that the proposed algorithm outperforms the 

benchmark model, which has been proved to perform better than existing models in the 

literature.  

 

Introduction  

 

Incident detection is an essential component of traffic operation and management 

systems. Quick incident detection reduces the response time and thus reduces the impacts 

of an accident. In general, Traffic Management Centers (TMCs) rely on the following 

methods to detect an incident on highway: 1) CCTV monitoring; 2) highway emergency 

local patrol (HELP); 3) witness report, and 4) automatic incident detection algorithm 

(AID). The first three methods depend on visual identification and human report which 

suffers from unreliable detection time and detection rate, while the fourth one, AID, 

ideally only depends on field data and has the potential to detect incidents in real-time 

with high reliability. Much effort has been made in the past decades to develop automatic 

incident detection algorithms, many of those are reported to have good performance.  

Despite substantial research, the implementation of incident detection algorithms 

has been limited due to restricted performance reliability, considerable calibration needs, 

and strong data requirements(33). A survey conducted by interviewing 32 Traffic 

Management Center throughout the US in 2007 shows that most TMC remains hesitant to 

rely on AID algorithms as key components of TMC operations(34), 87.5% of the centers 

claimed to have not been using a fully functional AID algorithm, among the TMCs that 

equipped with AID unit, More than 60% of the centers disabled their AID algorithm. The 
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primary reason for disabling the AID algorithms is that they yield unacceptable false 

alarm rates. Besides, the initial and ongoing calibrations for those methods are usually 

complicated and time-consuming. A thorough investigation into existing AID algorithms 

and how they are implemented reveals that most of the algorithms. while perform 

adequately theoretically, need to be properly calibrated site by site. This requires a level 

of understanding of the algorithm details, which is not attainable for local TMC 

personnel.  

Some TMCs develop their algorithms for local traffic conditions, which has little 

connection with the algorithms described in the literature. The developed incident 

detection systems are effective principally for major incidents or for incidents that occur 

near a sensor. Generally, the incident is reported from other (non-automatic) sources 

first(35). Therefore, CCTV and witness reports remain to be the primary methods of 

incident detection and verification. 

Literature Review 

Incident detection is a classification problem with two classes: normal traffic conditions 

and abnormal traffic conditions. Most incident detection or abnormal traffic event 

detection algorithms can be categorized into two groups, the first group defines the 

normal traffic conditions and set up thresholds, any pattern that exceeds the threshold are 

labeled as incidents. The second group adopts advanced machine learning techniques and 

categorizes traffic conditions based on fully trained models. 

The first type of traffic incident detection algorithm attempts to estimate the 

behavior of normal traffic and classify the current traffic status as normal or abnormal 

based on preset thresholds. The developed algorithms fall into three categories: 

comparative algorithm, statistical algorithm, and macroscopic algorithm: 

Comparative algorithm 

The comparative algorithm is one of the earliest developed algorithms. Most of the 

algorithms are variations of the California algorithm(36). The algorithm uses the lane 

occupancy values (either raw or smoothed) at a single station or between two adjacent 

stations as input, a set of thresholds values are set to characterize the state of the traffic 

flow(36; 37). The comparative algorithm has the advantage that it is straightforward but 

its use is limited since it generally requires laborious calculations of a threshold for each 

location where it is installed.  

Statistical algorithms 

Filtering algorithm 

The representative algorithms in this category include a double exponential smoothing 

algorithm, a low-pass filter algorithm, etc. The Minnesota algorithm uses a low-pass filter 

to smooth data series, the 5-min occupancies are stored, large differences between the 

consecutive occupancy values indicate an incident(38; 39). This logic gets rid of the 

laborious calibration process from site to site. The drawback, however, is the 

considerable amount of time it takes to detect incidents due to the time needed to smooth 

the data(40). 
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Time series analysis  

Time-series techniques were adopted to predict short term traffic patterns if the present 

traffic values deviate significantly from the prediction results, an alarm is triggered. The 

simplest method in this category is the standard normal deviate algorithm. The algorithm 

computes the mean 𝑢 and standard deviations 𝜎 of some measurements such as 

occupancy based on historical data and predicts the normal traffic pattern to be 𝑢 + 𝑘 ∗ 𝜎, 

𝑘 is a parameter that needs to be set in advance. The algorithm is simple and produces 

acceptable results and is widely adopted for comparison in other studies. Several 

variations for this algorithm exists(41), Ying(41) proposed a spatial-temporal mining 

algorithm based on SND method, it updates the threshold with incoming traffic data and 

is adaptable to environmental changes. However, the detection rate, false alarm rates and 

mean time to detection of the algorithm remains to be further analyzed. Other models 

include autoregressive integrated moving average (ARIMA) model(42), double 

exponential smoothing(DES) algorithm(43), those algorithms are similar to SND but use 

more complicated forecasting methods. The absolute error between the predicted and 

observed value is used as an incident indicator.  

Macroscopic algorithm (theoretical algorithm) 

This type of approach uses macroscopic traffic-flow modeling to describe the evolution 

of traffic variables and identify incidents. McMaster is an example (44; 45). It is 

composed of two stages; the first stage uses the fundamental diagram to detect congestion 

and the second stage distinguishes incident-related congestion from recurrent congestion 

based on upstream sensors. It defines congestion to be caused by incident if the 

downstream sensor is in uncongested status while the upstream detector is in congested 

status. The thresholds in both stages need to be calibrated for specific stations. 

Comparative algorithms, statistical algorithms, and macroscopic algorithms are 

classified into the same group because all of them contain a critical part: establishing a 

threshold. Because the incident conditions vary with road geometry, weather condition, 

and traffic conditions, the thresholds fluctuate at different locations and different times of 

the day. Setting the thresholds is usually time-consuming. The complexity of setting the 

threshold varies with the algorithm, but in general, it demands a good understanding of 

the algorithm as well as local traffic patterns.  

The second group of algorithms utilize advanced machine learning techniques and 

categorizes traffic conditions based on fully trained models. 

Machine learning algorithms 

Machine learning techniques are suitable for classifying data points into different 

categories and are widely adopted in incident detection algorithms. Many advanced 

machine learning techniques have been adopted and proved to have good performance, 

such as Artificial Neural network (ANN), Support Vector Machine (SVM), decision trees 

and naïve Bayes. 

Most the proposed machine learning models are supervised learning algorithms 

and require correct labeled training dataset to properly train the model, which involves a 

substantial amount of manual work to provide complete and accurate information for the 

incidents.  
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Balke(46) reviewed some of the algorithms and noticed that improper calibration 

appears to be the most prevalent reason for high false alarm rates. The performance of the 

same algorithm can differ considerably in different environments and that the algorithm 

could not be properly calibrated unless an incident affects every detection zone. 

Therefore, although many of the algorithms demonstrate high performance with well-

performed calibrating procedures and comprehensive dataset, the transferability of those 

algorithms is greatly limited. In this study, we aim to propose a calibration-free algorithm 

that can adaptively adjust the threshold from site to site and from time to time. Thus, an 

additional step is proposed to assist the algorithm to evaluate the detection results and 

select a proper threshold at different locations and different time.  

 

Methodology  

 

To detect an incident, proper traffic features shall be selected. A previous study(47) 

shows that the occupancy difference between upstream and downstream detectors is one 

of the best traffic features to differentiate abnormal traffic from normal traffic. In this 

study, the occupancy difference ∆𝑜𝑡 between upstream and downstream detectors is 

adopted as the input parameter: ∆𝑜𝑡  = ∆𝑜𝑢𝑝 − ∆𝑜𝑑𝑜𝑤𝑛. If an incident occurred between 

two detectors, the traffic flow is disturbed. The downstream density(occupancy) 

decreases because of less flow while the upstream density increases because of the queue 

building up, thus ∆𝑜𝑡 will decrease. We assume during any 5 minutes from time 𝑡 to 𝑡 +
5𝑚𝑖𝑛, The 30-s occupancy difference ∆𝑜𝑡 follows normal distribution ∆𝑜𝑡~𝑁(𝜇𝑡 , 𝜎𝑡

2), 

this assumption is tested in an earlier study(48). The basic idea behind the proposed 

algorithm is to estimate normal traffic condition parameters 𝜇𝑡 , 𝜎𝑡
2 use historical data for 

each 5-min period. Then if the current traffic state deviates from the normal condition 

significantly, an incident alarm will be triggered. Multi-thresholds are kept to represent 

the ‘significant level’ of the deviation. The adaptive selection of threshold is based on an 

evaluation module. The proposed model is composed of three modules: Incident 

Detection, Self-evaluation and Training, and Threshold Selection. The three modules are 

explained in detail below. 

Incident Detection 

The goal of this step is to detect incident based on the estimated parameters 𝜇𝑡 , 𝜎𝑡
2. 

• Step1: initialize/update parameters 

This step initializes the 𝜇𝑡
0, 𝜎𝑡

0. If historical data is available, then 

𝜇𝑡
0 =  𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑣𝑡) 

𝜎𝑡
0 =  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(∆𝑣𝑡) 

Instead of using the mean value to estimate 𝜇𝑡
0 and standard deviation to estimate 

𝜎𝑡
0. We use median and absolute deviation to estimate the two parameters since the mean 

and standard deviation values are sensitivity to outliers as suggested by Leys(49). 

• Step2: detection 
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With the estimated 𝜇𝑡 and 𝜎𝑡
2, a threshold ℎ𝑡 from 𝑡 to 𝑡 + 5𝑚𝑖𝑛 can be 

established: 𝑡ℎ𝑡 =  𝜇𝑡 + 𝑘𝜎𝑡
2(the selection of 𝑘 will be discussed in Threshold Selection 

Module),  If the incoming data point  ∆𝑜𝑡 exceeds the threshold 𝑡ℎ𝑡(∆𝑜𝑡 < 𝑡ℎ𝑡), an 

incident alarm is triggered. 

Self-evaluation and Training 

This step independently evaluates the traffic status every 15-min after detection is 

performed. We assume the 15-min average speed ∆𝑜തതതത
𝑡 also follows a normal distribution 

∆𝑜തതതത
𝑡 ~𝑁(𝜇𝑡ഥ , 𝜎𝑡

2തതത). ∆𝑜തതതത
𝑡=1

15ൗ σ ∆𝑜𝑡+𝑖
15
𝑖=1 . 

• Step1: Evaluate detection results 

The occurrence of an incident is confirmed if the average occupancy difference ∆𝑜തതതത
𝑡  

during a 15-min period differs from normal traffic condition: ∆𝑜തതതത
𝑡 >  𝜇𝑡ഥ + 2 ∗ 𝜎𝑡

2തതത. Then, 

the detection results from the incident detection step can be classified into two categories 

by comparing it with the evaluation results: true detection and false detection. The 

definition of the category is shown in Table 10.  

True detection means the self-evaluation module confirms an abnormal event 

while the event is detected by the incident detection module. False detection means the 

self-evaluation step cannot confirm the detection results. For a threshold 𝑡ℎ𝑡, the number 

of true detections and false detections can be accumulated over time.   

• Step2: Update parameters 

Based on the classification results in step 1, 𝜇𝑡 and 𝜎𝑡
2 are updated with the 

following equations. for all data points during the 𝑡 to t + 5min period, if the data point 

does not exceed the threshold 𝑡ℎ𝑡, it is classified into the normal traffic condition group. 

Then the 𝜇𝑡 and 𝜎𝑡
2 is updated with the normal data set. 

 

𝑢𝑡
𝑛𝑒𝑤 =  

𝑢𝑡
𝑜𝑙𝑑 ∗ 𝑛 + σ ∆𝑜𝑡+𝑖

𝑚
𝑖=1

𝑛 + 𝑚
 (15) 

 

 

(𝜎𝑡
𝑛𝑒𝑤)2 =  

(𝜎𝑡
𝑜𝑙𝑑)2 + σ ൫∆𝑜𝑡

𝑖൯
2𝑛+𝑚

𝑖=𝑛 −
1

𝑛 + 𝑚 ൫(𝑛 + 𝑚)𝑢𝑡
𝑜𝑙𝑑 + σ ∆𝑜𝑡

𝑖𝑛+𝑚
𝑖=𝑛 ൯

2

𝑛 + 𝑚
 

(16) 

 

 

 

Table 10. Correctness label.  

 

  Self-evaluation and Training 

  Positive Negative 

Incident 

Detection 

Positive True Detection False Detection 

Negative False Detection / 
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𝑛 denotes the number of historical data points during the corresponding 5min 

period that is classified as normal; 𝑚  demotes the number of data points during the 5-

min period that is classified as normal. The sum of square values (𝜎𝑡
𝑜𝑙𝑑)2 and the 𝑢𝑡

𝑜𝑙𝑑 

shall be stored to update the two parameters.  Equation (15) updates the mean value. It 

allows us to update the parameter by storing the counts and the historical mean value 

instead of storing all the normal traffic data, which saves memory space. Equation (16) 

updates the standard deviation. To update the standard deviation, only one extra 

measurement needs to be stored: (𝜎𝑡
𝑜𝑙𝑑)2, which is the variance of historical normal data. 

The derivation of equation (15) and equation (16) can be found in the Appendix. 

With the self-evaluate and training step, the proposed algorithm not only detects 

crashes on road but also detects abnormal events that have obvious impacts on traffic 

which might not be recorded because of no property damage or injuries.  

Adaptive Threshold Selection 

Choosing a proper threshold is a crucial step in the automatic incident algorithm. The 

setup of thresholds generally involves burdensome calibration processes and is performed 

manually. This study proposes an automatic threshold selection process. For each 5-min 

period, a group of thresholds is maintained: 𝑡ℎ𝑡
𝑖 =  𝜇𝑡 + 𝑘𝑖𝜎𝑡

2, 𝑖 =  {1,2, 3 … 𝑛}.  At the 

self-evaluation and training step, the number of true detections and false detections is 

calculated. With the true detection counts and false detection counts, the detection rate, 

false-alarm rates for each threshold 𝑡ℎ𝑡
𝑖  can be calculated. The one produces the highest 

true alarm rate or lowest false alarm rate is selected as the threshold to detect incident in 

the next step. The threshold selection criteria vary with the needs for the detection. For 

example, if high detection rates are desired, then, the threshold produces a higher 

detection rate shall be selected.  

A flow chart of the proposed model is presented in Figure 17 to demonstrate how 

the three modules are connected. A detailed explanation of each step of the model is 

provided below. 

 

Case Study 

 

The proposed algorithm was tested with accident cases from Oct. 1st, 2017 to December 

31st, 2017 on westbound I-40 from milepost 374(west end) to milepost 394(east end) in 

the Knoxville area, Tennessee. This site was selected as a testbed because it has high 

traffic volumes and encounters traffic accidents frequently. Totally 115 accidents 

happened on Tuesday, Wednesday and Thursday were extracted in this area. Among the 

115 accidents, 84 were removed either because of detector failure or cannot be visually 

identified. The algorithm was evaluated on the remaining 31 accident cases. The 

performance of the algorithm is compared with a benchmark model (48). Figure 18 

shows a map that demonstrates the study area and functional detector locations.  Totally 

44 detectors are installed on this stretch of highway with an average spacing of 0.5miles.   
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Figure 17. Flow chart of the proposed model. 
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Figure 18. Case study location in Knoxville, Tennessee.  
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Data Preparation 

Sensor Data: The data used in this study is Remote Traffic Microwave Sensors (RTMS) 

data collected by the Tennessee Department of Transportation (TDOT). RTMS reports 

average speed, flow, and occupancy every 30-second. Speed relative differences between 

upstream and downstream detectors were adopted to perform the detection. One year of 

RTMS data was used in this study for training purposes.  

Incident Data: TDOT maintains official incident records in the LocateIM system, 

which details the location and the report time of each incident. The logs are used to 

validate the detection results. Because the start time recorded in the LocateIM system is 

the time that the incident is reported instead of the true occurrence time, we visually 

inspect the 30-s roadside sensor data and choose the start time as one interval(30-

seconds) before the traffic disturbance started. 

Evaluation Metrics 

Generally, three measurements are used to evaluate the performance of automatic 

incident detection algorithm: 

 

• Detection Rate (DR) 

𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
∗ 100% (17) 

 

• False Alarm Rate (FAR) 

𝐹𝐴𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100% (18) 

 

• Mean Time to Detection (MTTD) 

𝑀𝑇𝑇𝐷 =
1

𝑛
෍ 𝑇𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑇𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

𝑛

𝑖=1

 (19) 

 

𝑇𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is the time the incident is detected. 𝑇𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 is the time when the incident 

happens. 𝑛 denotes the total number of true detections. In general, high detection rate, low 

false alarm rate and short mean time to detection are desired. However, the three 

measurements cannot achieve the best performance at the same time. The final criterion is 

usually a trade-off among the three measurements.  

Model Evaluation 

In this section, the detection algorithm is evaluated with the four criteria. A self-

evaluation module and threshold selection module were proposed in the methodology 

section to support the adaptive selection of the thresholds. To demonstrate the advantage 

of the inclusion of the self-evaluation and threshold selection modules, the detection 

results of the proposed model are comparing to the detection results of the model without 
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the adaptive threshold selection process. The model to be compared to is described in 

detail in this paper(48). A brief introduction of the algorithm is presented below.  

Training-free-algorithm 

Similar to the proposed algorithm, the Training-free-algorithm assumes the 5-min 

occupancy difference between upstream and downstream detectors follows the normal 

distribution. Based on the assumption, the normal traffic pattern every five minutes is 

estimated with historical data. Then, a threshold can be established every 5-min to detect 

the incident. For comparison purposes, different threshold levels for the Training-free-

algorithm were used. The detection results from multiple thresholds are compared to the 

detection results of the proposed calibration-free algorithm. 

Threshold Selection  

Figure 19 demonstrates how the threshold is selected to avoid false alarms. The figure 

shows the occupancy difference for two detectors separately locate at I-40 milepost 384.1 

and I-40 milepost 384.5.  Six threshold levels are maintained for demonstration purposes, 

separately level 1(T1, k = 2), level 2(T2, k = 2.5), level 3(T3, k = 3), level 4(T4, k = 3.5), 

level 5(T5, k = 4), and level 6(T6, k = 4.5), represented by six parallel lines in the figure. 

The blue line that fluctuates represents the occupancy difference between two 

neighboring detectors. 

As can be seen in the figure, the threshold changes every five minutes to adapt to 

the traffic conditions at different times of the day. The occupancy difference between the 

two dotted lines exceeds threshold level 1 to level 3 and an incident alarm is raised. In the 

meanwhile, the thresholds above level 3 do not detect any abnormal patterns. The 

evaluation results with 15-min average speed data show that the ‘detected incident’ is just 

a disturbance instead of an actual accident. Thus, for level 1, level 2 and level 3, the false 

detection counts are increased by one, while for level 4, level 5 and level 6, the false 

detection counts remain the same. On the contrary, if the detection is proved to be an 

accident based on the evaluation process, the true detection counts for level 1 to level 3 

will increase by 1while remain the same for level 4 to level 6. Over time, the true 

detection counts and false detection counts of multiple threshold levels are accumulated 

to determine the threshold with the best performance. The best performance can either be 

a high detection rate, or a low false alarm rate or a combination of both.  

Model Comparison 

The previous section demonstrates how the evaluation module and threshold selection 

module work. In this section, the comparison results between the proposed algorithm and 

Training-free-algorithm are demonstrated. For the Training-free-algorithm, six levels of 

threshold were used, separately k = 2, 2.5, 3, 3.5, 4 and 4.5(recalling that k is the value 

multiplies standard deviation). The proposed algorithm selects an appropriate threshold 

after a detection among multiple thresholds, while the Training-free-algorithm does not 

support  
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Figure 19. Demonstration of the threshold selection process. 

 

 

 

threshold selection. Therefore, the performance of the Training-free-algorithm with six 

different threshold levels is compared to the performance of the proposed algorithm.   

In Table 11 & Figure 20, T1 to T6 represents different threshold levels for the 

Training-free-algorithm, k values are demonstrated in the parentheses. The theoretical 

false alarm rate is determined based on the confidence interval. For example, if k = 2, 

then based on the normal distribution table, the chances that the normal traffic conditions 

exceed the threshold is 5%. Therefore, the theoretical false alarm rate is 5%. The true-

false alarm rate is demonstrated as well, which is calculated based on equation (18). As 

illustrated in the table, the detection rate of the Training-free-algorithm decreases with 

the decrease of the false alarm rate. The mean time to detection increases at the same 

time. When k = 2.5 and 3, while the detection rate is high, the Training-free-algorithm 

produces high false alarm rates (notice that while 1.1% false alarm rate seems not to be 

high, but it denotes 30 false alarms every day for each site). When k = 3, the threshold 

achieves an acceptable false alarm rate as well as a comparatively high detection rate. 

The proposed model, on the other hand, produces a higher detection rate (84% as 

compared to 71%) with a lower mean time to detection and similar false alarm rate thus 

outperforms the Training-free-algorithm. 

In addition to DR, FAR and MTTD, the transferability of the algorithm shall be 

considered as a measurement of performance. 

• Ease of implementation/transferability (EI) 

The ease of implementation evaluates the effort needed to generalize or transfer 

the incident detection algorithm to other contexts of settings. 𝐸𝐼 is evaluated in 

terms of both data requirements and training complexity.  

The proposed model is transferable to any traffic situation because it only requires 

traffic data and adaptively learns the typical traffic pattern over time at different 

locations. The basic logic behind the proposed algorithm is a two-level comparison: First,  
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Table 11. Comparison of proposed algorithm and Training-free algorithm. 

   

Algorithm 
Threshold 

level 
FAR 

False 

Detection/day 

Proposed 

Algorithm 

Adaptive 

Selection 
0.4% 12/day 

Training-free 

Algorithm 

with Multiple 

Threshold 

T1(k = 2) 4.3% 124/day 

T2(k = 2.5) 1.1% 32/day 

T3(k=3) 0.4% 11/day 

T4(k=3.5) 0.2% 6/day 

T5(k = 4) 0% 0/day 

T6(k = 4.5) 0% 0/day 

 

 

 

 

Figure 20. Comparison of proposed algorithm and Training-free algorithm. 
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the algorithm compares the 30-s data with the 30-s threshold to detect an incident. Then 

15-min average data is compared to the 15-min threshold to validate the detection results. 

The model is not as complex as machine learning models such as ANN (artificial neural 

network) or SVM (support vector machine) model which is hard to understand by 

personnel at traffic operation agencies and limits the application of those algorithms. 

Incident not Detected 

Several incident cases were not detected by the proposed algorithm. By looking into the 

incident data and the traffic sensor data, it can be observed that the incidents that cannot 

be detected are generally incidents hidden in peak hours. The traffic conditions 

demonstrate high variances during the peak period and the threshold level is usually high. 

A lower threshold will generate high false alarm rates and is not selected by the 

algorithm. Figure 21 demonstrates a typical incident case that cannot be detected by the 

algorithm. The traffic features between the two dotted black lines dropped because of an 

accident. However, the traffic typically demonstrates high variance during peak hours at 

this location and result in a high threshold level. Solely by comparing the traffic features 

with historical patterns is not enough to detect the accident.  In future research, the 

occupancy difference between nearby period will be taken into consideration to detect the 

abnormal traffic changes over time at the same location. 

  

 

 

 

Figure 21. An example of an incident that cannot be detected by the proposed 

algorithm. 
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Conclusion and Future Work 

 

Incident detection is an essential component of traffic operation and management 

systems. Quick incident detection reduces the response time and also the impacts of an 

accident. Numerous automatic incident detection algorithms have been established with 

excellent performance. But the implementations of those algorithm have been limited 

because of considerable calibration requirements. In this study, a self-evaluation module 

is proposed which compares the average speed data with historical data to justify the 

occurrence of an abnormal event thus eliminate the needs of calibration. While this 

method does not guarantee to find all the abnormal events-some minor events that do not 

have an obvious impact on the traffic thus cannot be detected by the evaluation process, 

results suggest on average it has good performance and improves the detection rate.   

The proposed algorithm is composed of three main modules: incident detection, 

self-evaluation and training, and threshold selection. The incident detection module 

performs incident detection based on an established method. Then, the detection results 

are reevaluated under the self-evaluation and training module. Finally, based on the 

accumulated evaluation results over time, the threshold selection module picks a 

threshold that produces the best result. The best result can be either a high detection rate 

or a low false alarm rate or a combination of both.  

The case study tested the proposed algorithm with 31 incident cases in the 

Knoxville area. The algorithm was compared with a benchmark model that performs 

better than many existing algorithms. The proposed algorithm outperforms the 

benchmark model in terms of detection rate, and mean time to detection. The false alarm 

rate is at the same level. Compared to other existing algorithms, the proposed self-

learning algorithm requires no additional dataset and can be easily transferred to different 

sites. 

In future research, other traffic parameters such as speed, flow, and traffic flow 

fundamentals will be tested and incorporated to enhance the performance of the algorithm 

during peak hours.  
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CHAPTER IV. DYNAMIC TRAFFIC QUEUE-END DETECTION 

USING WAZE JAM REPORTS  
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The chapter presents a modified version of a research paper by Yuandong Liu, Zhihua 

Zhang, Lee D. Han and Candace Brakewood. The paper has been submitted to 

International Journal of Geographical Information Science. 

 

Abstract 

 

Traffic queues, especially queues caused by non-recurrent events such as incidents, are 

unexpected to high-speed drivers approaching the end of queue (EOQ) and become safety 

concerns. Though the topic has been extensively studied, the identification of EOQ has 

been limited by the spatial-temporal resolution of traditional data sources. This study 

explores the potential of location-based crowdsourced data, specifically Waze user 

reports. It presents a dynamic clustering algorithm that can group the location-based 

reports in real-time and identify the spatial-temporal extent of congestion as well as the 

end of queue. The algorithm is a spatial-temporal extension of DBSCAN (density-based 

spatial clustering of applications with noise) algorithm for real-time streaming data. A 

dynamic spatial-temporal threshold selection approach is proposed to automatically 

determine the threshold for the algorithm. The proposed algorithm was tested with 34 

traffic congestion cases in the Knoxville, Tennessee area. It is demonstrated that the 

algorithm can effectively group Waze reports and identify traffic congestion. The EOQ 

identification results are compared to the detection results from roadside sensor data. The 

results are promising. The EOQ identification time of Waze is similar to the EOQ 

detection time of traffic sensor data, with only 1.1 minutes difference on average. In 

addition, Waze generates 1.9 EOQ detection points every mile, compared to 1.8 detection 

points generated by traffic sensor data, suggesting the two data sources are comparable in 

terms of reporting frequency. The results demonstrate that Waze is a valuable 

complementary source for end of queue detection where no traffic sensors are installed.  
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Introduction and Literature Review 

 

Introduction  

Traffic congestion, especially nonrecurring congestion such as congestion that caused 

incidents, is a major source of uncertainty in freeway operations. It leads to much longer 

delays as well as increases the likelihood of rear-end crashes. To protect the drivers 

approach the congestion, an end of queue warning system is generally deployed. The 

system alerts drivers of slowdown traffic ahead using devices such as variable message 

signs. Proper deployment of an end of queue (EOQ) warning system, can reduce crashes 

by up to 45%(50). The warning system requires accurate information about the spatial-

temporal movement of the slowdown traffic on a real-time basis.  

Prior research has been conducted to identify or predict queue movement in real-

time (51-55) with a focus on signalized intersections and freeway work zones. Limited 

studies have been dedicated to the more general analysis of freeway traffic queues(56; 

57). Most of the developed methodologies rely on fixed traffic sensors data to estimate 

the temporal and spatial extent of congestion and identify queue locations (57-59). The 

detection accuracy of those methodologies is restricted by the spatial and temporal 

resolutions of traffic sensors.  

Recently, a number of studies have explored the potential of new location-based 

data sources in estimating queue movement and detecting traffic events and 

congestion(29; 52; 53; 60-66). The results have shown that incorporating traffic 

information from location-based data, especially probe vehicle data has great potential for 

improving the estimation accuracy of traffic situations, especially where no traffic 

detectors are installed. However, many probe data are averaged every 5-min, 10-min, 

which is insufficient for real-time traffic queue detection. Higher time resolution probe 

data are still not available to most traffic agencies.  

Waze, a GPS-based application, is one of the most popular navigation applications 

used by drivers in the United States. It collects users’ speed and GPS location information 

to detect the current traffic status and provide route guidance to users. A distinctive 

feature of Waze is it allows users to report traffic information by adding geometry points 

on a Waze map to indicate hazards, accidents, traffic jams, or police appearances. Each 

individual report provides the exact location and time, and thus can be viewed as a piece 

of location-based probe vehicle information. Waze has established partnerships with local 

government agencies through the Connected Citizen Program and provides real-time 

feeds for those reports to government agencies. 

Compared to the traditional data sources, an advantage of Waze reports is that 

they provide real-time data and have high road network coverage. Waze reports provide 

data that covers interstate and urban roads where no traffic surveillance system is 

installed and thus can be a valuable data source for traffic operation. However, before 

incorporating the Waze reports into any real-time application system, it is important to 

evaluate the data quality. Previous research has been conducted to evaluate the quality 

and accuracy of Waze reports(5; 6). It was found that 0.3% of the reports were false 
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reports(6). The low false alarm rates, as well as high spatial-temporal accuracy(6), proves 

that Waze reports are reliable sources for real-time operation systems.  

This study proposes a clustering algorithm to identify congestion and end of 

queue using Waze reports. Space-time interaction arises when nearby reports occur at 

about the same time. Two reports that are spatially and temporally close to each other 

may indicate that two drivers are within the same queue caused by a particular incident 

and thus can be associated with one another. By recursively associating and clustering the 

Waze reports in both spatial and temporal dimensions, we are able to identify the spatial-

temporal extent of congestion and track the movement of traffic queues. It is expected 

that the ability to accurately identify shock wave locations and speeds can serve as the 

foundation of queue movement prediction.  

The rest of the paper is organized as follows. The next section presents a review 

of relevant literature. This is followed by a comparison of Waze jam reports with traffic 

sensor data. Then, a real-time spatial-temporal DBSCAN algorithm is proposed to cluster 

geometry point data with its timestamp. The next section presents a case study that 

utilizes the proposed methodology to cluster Waze jam reports and identify the end of 

queue in real-time. And then the detection results are compared with detections from 

traditional traffic sensor data. Finally, the last section concludes this article and provides 

directions for future work.  

Literature Review 

Spatial-temporal (ST) clustering has been a major research field of spatial-temporal data 

mining and knowledge discovery. Spatial-temporal studies aim to find spatial-temporal 

patterns and identify spatial-temporal clusters. Compared to a conventional one-

dimension cluster, clusters with an additional time dimension can be used to track the 

evolution of clusters over time and reveal both spatial and temporal trend patterns of data. 

Traffic on roads exhibits obvious spatial-temporal patterns; traffic queue formation and 

dissipation is a typical spatial-temporal motion that contains interesting patterns to be 

mined (67).  

In general, spatial-temporal data are classified into five different types(68): 

spatial-temporal event, geo-referenced variables, geo-referenced time series, moving 

objects and trajectories. The Waze report belongs to the basic type: spatial-temporal event 

(ST event). Each event is static and associated with the location where it was recorded 

and a corresponding timestamp. Finding a cluster among ST events is to discover groups 

of elements that lie close both in time and in space, and possibly share other non-spatial 

properties (68).  

Existing ST event spatial-temporal clustering methods can be classified into three 

different types: spatial scan methods(69), distance-based methods(70), and density-based 

methods(71; 72). Spatial scan statistics search spatial-temporal cylinders (radius 

determined by spatial distance and height determined by time interval) where the density 

of events of the same type is higher than the density of events outside the cylinders(73). 

The results of this type of method are highly affected by the choice of scanning windows. 

Distance-based methods usually define a single distance measure that combines both 

spatial and temporal distances between spatial-temporal objects and uses traditional 

clustering methods to detect spatial-temporal clusters. However, the single distance 
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measure on many occasions is hard to define(74). Another type of distance-based method 

defines a spatial-temporal proximity relationship from spatial and temporal aspects 

respectively by pre-defined parameters. It begins with assuming the times of occurrence 

of the ST events are distributed randomly across the case location and assumes the time-

space event follows a certain distribution(75). This is not applicable in Waze case since 

Waze reports are not randomly distributed; it is highly correlated with the traffic status. 

The third type, density-based method, intends to find densely clustered objects. It is 

usually derived from classical density-based spatial clustering of applications with noise 

(DBSCAN) algorithm. For instance, ST-DBSCAN(spatial-temporal DBSCAN), an 

extension of DBSCAN to handle spatial-temporal events, was proposed in multiple 

different studies for analysis of spatial-temporal events (71; 76).  

This paper presented a real-time application of ST-DBSCAN. Among different clustering 

algorithms, ST-DBSCAN is selected because it has the ability to discover clusters with 

arbitrary shapes, which is suitable for identifying congestion since the time-space region 

of congestion may exhibit various shapes. In this study, we improved the conventional 

ST-DBSCAN clustering algorithms in three important aspects. First of all, the current 

clustering algorithm is static and does not meet real-time clustering requirements; 

therefore, a real-time implementation of ST-DBSCAN algorithms is proposed to cluster 

streaming data. Second, the algorithm parameters are generally determined based on 

domain knowledge; in this study, an approach is developed to discover Waze users report 

spatial-temporal patterns and automatically select threshold parameters. Third, instead of 

using Euclidean distance that is adopted by most DBSCAN-based clustering algorithms, 

the road network connection is considered and the realistic road network distance is 

adopted to measure the distance among reports. 

 

Methodology 

 

Data Description 

Waze establishes partnerships with government agencies and provides partners with real-

time, anonymous, Waze-generated incident and slowdown traffic information feeds 

through the Connected Citizen Program(https://www.waze.com/ccp). The information 

contained in each incident or jam report includes the location (longitude and latitude 

coordinates), a timestamp (report time to the nearest seconds), type (incident, and jam), 

and multiple other variables that are not used in this study.  

In this study, both Waze accident reports and jam reports are used to identify the 

end of queue. For simplicity, jam report will be used in the later on context to represent 

both accident and jam reports. The accident reports are used because they often indicate 

the start of a queue. Typically, Waze jam reports are composed of three levels: moderate 

traffic, heavy traffic and standstill traffic. All three types of jam reports are used in this 

study.   

https://www.waze.com/ccp
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Algorithm 

In order to support two-dimensional spatial data clustering, Derya(2010) proposed a 

spatial-temporal DBSCAN (ST-DBSCAN) algorithm that extends the conventional 

DBSCAN algorithm by adding a temporal dimension to take into account the temporal 

correlations among objects (71; 76). Detailed descriptions of the algorithm can be found 

in Derya(71). 

The main difference between spatial-temporal DBSCAN and DBSCAN is that the 

neighborhood radius 𝜀 in DBSCAN is separated into two radii: the spatial neighborhood 

radius 𝜀𝑠 and temporal neighborhood radius 𝜀𝑡 in ST-DBSCAN. Therefore, three 

parameters will be used in ST-DBSCAN algorithms. 𝜀𝑠, 𝜀𝑡 , and minPts. 𝜀𝑠, 𝜀𝑡  specify the 

temporal and spatial thresholds. A point 𝑝 is the eps-neighborhood of point 𝑞 if and only 

if the point 𝑝 is within the 𝜀𝑠-neighborhood and 𝜀𝑡-neighborhood of point 𝑞. minPts 

specifies the minimum number of eps-neighborhoods needed for a point 𝑞 to be a core 

point. If 𝑞 has more than minPts eps-neighborhood, 𝑞 is called core point. Similarly, the 

other concepts in spatial-temporal DBSCAN should also be extended accordingly based 

on DBSCAN.  

ST-DBSCAN starts with obtaining the eps (𝜀𝑡, 𝜀𝑠) neighbors of each data point 

and identifying the core points with more than minPts neighbors. Then, it finds the 

connected components of core points on the neighbor graph, ignoring all non-core points. 

Last, it assigns each non-core point to a nearby cluster if the cluster is an eps (𝜀𝑡, 𝜀𝑠) 

neighbor; otherwise assign it to noise.  

Application of ST-DBSCAN to Waze Data 

In this study, the proximity of two reports is defined at both the spatial and temporal 

levels. The construction of distance function and real-time implementation of ST-

DBSCAN using Waze data is demonstrated as follows.  

Temporal distances (∆𝑡) 

The temporal distance is computed as the report time differences between every two 

Waze reports 𝑖 and 𝑗 in seconds.  

 

∆𝑡𝑖,𝑗 = 𝑡𝑖 − 𝑡𝑗 (20) 

 

If ∆𝑡𝑖,𝑗is greater than zero, meaning report 𝑗 occurred after event 𝑖, and vice versa. 

 

Spatial distances (∆𝑠) 

The spatial distance is mostly measured by Manhattan distance, Euclidean distance, or 

Minkowski distance given coordinates in spatial clustering studies(71). However, directly 

measuring the spatial distances between two geometry points may result in clusters that 

have small Euclidean distances but do not have road connections among elements(77). 

To this end, we use the actual road network distance to measure the spatial distance in 

this study. The conventional Dijkstra shortest path algorithm is implemented to obtain the 

shortest path between two reports, and the distance of the shortest path represents the 

spatial distances. 
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∆𝑠𝑖,𝑗 = 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝑖, 𝑗) (21) 

 

∆𝑠𝑖,𝑗 represents the spatial distance between two reports. If ∆𝑠𝑖,𝑗 is greater than zero, 

meaning report 𝑗 is located downstream of report 𝑖, and vice versa. 

Dynamic ST-DBSCAN Algorithm 

While ST-DBSCAN extends DBSCAN by adding a temporal dimension, it is still a static 

clustering procedure. Our problem demands an algorithm that can be implemented in 

real-time. In addition, the ST-DBSCAN algorithm has difficulties in distinguishing two 

different clusters that start at different times and locations but propagate and merge into 

each other over time. In order to differentiate clusters from one another in this situation, 

we propose a real-time implementation of ST-DBSCAN. The algorithm forms clusters 

dynamically and can differentiate clusters that start at different locations and times. 

In real-time ST-DBSCAN, there are two distance parameters, spatial 

neighborhood radius 𝜀𝑠 and temporal neighborhood radius 𝜀𝑡 . A point 𝑝 is the 𝜀-

neighborhood of point 𝑞 if and only if the point 𝑝 is within the 𝜀𝑠-neighborhood and 𝜀𝑡-

neighborhood of point 𝑞.  

The pseudocode of the algorithm is described in detail in Figure 22. 𝐷 is a 

streaming dataset composed of jam reports that iarecontinuously updated by Waze. The 

algorithm starts with retrieving the eps (𝜀𝑡, 𝜀𝑠) neighbors of each new coming point (the 

point that has not been labeled with any cluster). If the point has more than minPts 

neighbors, each neighbor is assigned to either a labeled dataset (𝑁_𝑙𝑎𝑏𝑒𝑙) or an unlabeled 

dataset (𝑁_𝑢𝑛𝑙𝑎𝑏𝑒𝑙) based on its current label status. If all neighbors of this point are not 

labeled earlier, then a new cluster starts and the neighbors are assigned to the new cluster. 

If all the labeled neighbors belong to the same cluster 𝐴, all the unlabeled neighbors are 

assigned to cluster 𝐴 as well. If the neighbors belong to different clusters, each point in 

the unlabeled dataset is assigned to a specific cluster according to the Assign_cluster 

function. Assign_cluster is a function used if the neighbors of the subjected point are 

associate with two or more clusters.  

Automatic Threshold Selection  

One of the critical problems in the clustering algorithm is selecting reasonable thresholds 

to form meaningful clusters. In ST-DBSCAN, two thresholds, temporal distance 𝜀𝑡 and 

spatial distance 𝜀𝑠 are to be determined. The two parameters are generally determined 

based on domain knowledge or based on k-distance plot(78), where k represents minPts. 

It is expected that the core points and border points k-distance are within a certain range, 

while noise points can have much greater k-distance, thus an elbow pattern can be 

observed in the k-distance plot. However, in this study, the k-distance plot is rather 

smooth and does not show an obvious elbow pattern. In this section, an automatic 

threshold selection approach is proposed. Before showing the automatic threshold 

selection procedure, two concepts are introduced: 
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Figure 22. Real-time DBSCAN implementation. 
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Closer: for a report A, and two reports B and C, if abs(∆s𝐴,𝐶) < abs(∆s𝐴,𝐵) and 

abs(∆t𝐴,𝐶) < 𝑎𝑏𝑠(∆t𝐴,𝐵), then report C is closer to report A than report B in space and in 

distance. 

 

Nearest report: for reports A and C, if there exists no other report that is closer to C than 

A, then report C is one of the nearest reports of A. 

 

Figure 23 demonstrates the concept of closer and nearest report. The temporal and spatial 

absolute distance for each report to report 𝐴 is identified in the figure. In Figure 23(a), 

report C is closer to report 𝐴 than 𝐵, since ∆s𝐴,𝐶 < ∆s𝐴,𝐵and ∆t𝐴,𝐶 < ∆t𝐴,𝐵. Similarly, 

report C is closer to report 𝐴 than 𝐷. Therefore, report A has only one nearest report, 

which is C. However, in Figure 23(b), there does not exist a report that is closer to report 

𝐴 than 𝐵 and 𝐷. Therefore, report A has two nearest reports: 𝐵 and 𝐷. Based on the 

nearest report concept, the proposed automatic threshold selection is demonstrated below. 

In the automatic ST-threshold selection module (Figure 24), the Waze user report 

patterns are explored. The dynamic clustering is performed with a large temporal-spatial 

threshold initially. Then, based on the clustering results, for each report 𝐴 in the cluster, 

the nearest report 𝐵 and its temporal and spatial distance to 𝐴 is identified and stored in a 

list named ST-Distance-List. 

ST-Distance-List reveals Waze user behavior of their report frequency and distance as 

well as the correlation between report distance and report frequency. In this paper, we do 

not consider the correlation of report frequency and distance when setting the threshold. 

That is, the report frequency and distance are considered as independent from each other. 

For all ∆t𝑖,𝑗 stored in ST-Distance-List, we compute the (1 − 𝛼)% values and set it as 

time threshold. That is, (1 − 𝛼) % percent of Waze users will make reports within the 

 

 

 

 

Figure 23. Closer and Nearest report.  
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Automatic ST-threshold Selection 

Initialize a large threshold ε𝑠, ε𝑡 

Call Real-Time ST-DBSCAN  

Return clustering results 

Create a ST-Distance-List list 

For each cluster 𝐶: 

For each report 𝑖 in 𝐶: 

    Identify Nearest Report set NR. 

        For each report 𝑗 in NR 

Compute ∆t𝑖,𝑗 , ∆s𝑖,𝑗 and append (∆t𝑖,𝑗 , ∆s𝑖,𝑗) to ST-Distance-List 

Update the large threshold ε𝑠, ε𝑡: 

𝜀𝑠 is calculated as (1 − 𝛼)% values for all temporal distances stored in ST-Distance-List 

𝜀𝑡  is calculated as (1 − β)% values for all spatial distances stored in ST-Distance-List 

 

Figure 24. Automatic thresholds election pseudocode. 

 

 

 

time threshold if congestion occurred. For all ∆s𝑖,𝑗 stored in ST-Distance-List, we 

compute the (1 − 𝛽)% values and set it as the distance threshold. that is, (1 − 𝛽) % 

percent of Waze users will make reports within the distance threshold if congestion 

occurred.    

End of Queue Identification 

While clustering the jam reports, the following procedure is implemented to identify the 

end of queue dynamically. The ‘term’ queue has been defined in various ways in the 

literature. The most commonly adopted is vehicle speed less than some predefined 

threshold. For instance, a vehicle speed lower than 60km/h(38mph) is regarded as the end 

of queue in this paper(64). Since no speed information is associated with each Waze jam 

report, each report is regarded as within queue status. Identifying the end of queue is, 

therefore, identifying the jam reports that comprise the boundary of each cluster. 

In this section, we focus on the queues that propagate upstream and define a 

backward forming shock wave front. As shown in  

Figure 25, ∆𝑑0,𝑖, and ∆𝑡0,𝑖 separately represent the spatial distance and temporal 

distance from the first report to the 𝑖𝑡ℎ report (red point represents the first report in this 

cluster and green point represent the 𝑖𝑡ℎ report). Note that ∆𝑑0,𝑖 is less than zero, and 

∆𝑡0,𝑖 is greater than zero in the example. 

Backward forming shock wavefront: a set of reports that for any report 𝑖, if there does 

not exist another report 𝑗 in the same cluster that ∆𝑡0,𝑗 < ∆𝑡0,𝑖 and ∆𝑑0,𝑗 < ∆𝑑0,𝑖, then 

report 𝑖 is defined as backward forming shock wavefront, or in other words, end of queue 

at the time report 𝑖 is made.  
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Figure 25. Backward forming shock wave. 

 

 

Application: Case Study of Knoxville 

 

The city of Knoxville is conveniently located just off I-40 and I-75, minutes from I-81, 

and is within a day’s drive of half the continental U.S. Since the roads in Knoxville are 

always under excessive pressure at peak-hours and the likelihood of incidents and 

congestion is high, the accurate detection of traffic congestion is important to 

transportation agencies, engineers, researchers, and planners.  

The Waze jam reports used in this study were collected from Aug. 2017 to Dec. 

2017 in the Knoxville region. Figure 26 is an overview of the selected region as well as 

the spatial distribution of jam reports on the road network. In the figure, the color scale of 

road segment represents Waze reports density; Red represent highest density level; 

Yellow represents middle density level; Green represent low density level. a layer of heat-

map is added to show the naturally formed clusters without considering the temporal 

dimension. In this section, we demonstrate an implementation of our algorithm using 

streaming Waze data and present the clustering results, as summarized: 

(1) Parameters selection. 

We implement the dynamic ST-DBSCAN algorithm as well as the dynamic 

parameter selection approach.  

(2) Comparison of static ST-DBSCAN and dynamic ST-DBSCAN. 
The detection results from dynamic ST-DBSCAN is compared to that of static 

ST-DBSCAN algorithm. 

(3) End of queue identification. 

The end of queue in each cluster is located in real-time based on the proposed 

EOQ identification method. 



69 

 

 

Figure 26. The spatial distribution of Waze jam reports, Knoxville. 

 

 

 

(4) Benchmarking. 

This section compares the EOQ identification results with detection results 

from road side sensor data.  

 

Results 

 

This section first presents the parameter selection of the proposed algorithm.  Then, the 

proposed dynamic algorithm is compared with the static algorithm. Finally, the end of 

queue identification module is implemented and the detection results are compared to the 

results of a well-established method. 

Parameter Selection 

There are three parameters to be determined separately: minPts, a temporal threshold 𝜀𝑡, 

and a spatial threshold 𝜀𝑠. There is no general way of choosing minPts; it typically 

requires the knowledge of the dataset. In this study, because the reports are located on the 

roadway, sometimes clusters reveal linear patterns (on a straight line like on an Interstate 

Highway) in which case the core point is occasionally surrounded by only two points. 

Therefore, the minPts should not be larger than 3.  

Using the automatic threshold selection procedure developed in the methodology 

section, temporal radius 𝜀𝑡 and spatial radius 𝜀𝑠 can be determined. Figure 27 

demonstrates the distribution of the spatial and temporal distance of two nearest reports. 

In the figure, it can be observed that the spatial-temporal distance can be as high one hour  
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Figure 27. The temporal and spatial distance of two nearest reports. 

 

 

 

and 6 miles. Therefore, it is necessary to choose appropriate thresholds to produce 

meaningful clusters.  

Figure 28(a) and Figure 28(b) show the change of temporal and spatial threshold 

over time. The thresholds are computed using the 90th percentile values. The 𝑥 axis is the 

number of clusters identified over time. Figure 28(a) shows that the temporal threshold 

started at 34-min and changed with different number of clusters. After some initial 

fluctuations, the threshold got stable and was around 28-min. Similarly, the spatial 

threshold got stable at around 1.7 miles (Figure 28(b)).  

The 28-min time threshold is reasonable since Waze keeps a report from a user for 

at least 30 minutes unless it is confirmed as a false alarm. Therefore, the majority of 

Waze reports remain in the system for at least 30 minutes. If there is a report already in 

place, people are less likely to make another report during the same period; instead, they 

are more likely to confirm the report with thumbs up or communicate under the existing 

report which further prolonged the existence duration of the report. The 1.6-mile distance 

threshold is reasonable as well because sometimes the queue propagates quickly, 

especially queue caused by crashes. It only takes several minutes for a queue to move 1.6 

miles. Therefore, the distance between any two nearest reports belongs to the same 

cluster can be as long as 1.6 miles.  
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Figure 28. Threshold selection. (a) temporal threshold changes over time; (b) spatial 

threshold change over time. 
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Comparison of Static ST-DBSCAN Algorithm and Dynamic ST-DBSCAN Algorithm 

Next, a comparison is made between the static clustering method and the dynamic 

clustering method. We run the static and dynamic algorithms respectively on the same 

dataset; the results are shown in the following figure. Figure 29 is composed of three 

examples: Aug. 21th 2017, Sept 15th, 2017 and Oct 8th, 2017 on I-40 westbound. The left 

column plots consist of three clusters identified using static DBSCAN and the right 

column plot shows the clusters identified using dynamic DBSCAN.  

In Figure 29, different colors/shapes represent different clusters. As shown in the 

figure, the data are grouped in the same cluster using a static algorithm (same color: 

purple), while they are classified into different clusters that feature different start time 

and location using a dynamic DBSCAN algorithm. For example, on September 15th, the 

static algorithm identifies one congestion that colored with purple; The dynamic 

algorithm identifies two clusters separately colored with red and green. The dynamic 

algorithm is more reasonable. The congestion featured with red color is different from the 

congestion featured with green color since they started at different locations and different 

times and merged over time. 

 End of Queue Identification and Benchmarking 

The end of queue identification method is applied. Figure 30 demonstrates the 

identification results for a specific case. All the points in this figure belong to the same 

cluster. The congestion started at around 3:10 PM and milepost 377.5. The queue 

propagated upstream over time. Points colored with green represent the identified end of 

queue for this cluster. Each point represents the end of queue location when the report 

was generated. 

For further assessment, the proposed algorithm is compared to the speed threshold 

algorithm developed in a previous study(79). The speed threshold method is often 

employed as a benchmarking method in traffic queue detection algorithms(57). The 

thresholds of this algorithm have been identified as a range between 30 mph and 40 mph 

for the freeways in Portland and San Diego, U.S, respectively(79; 80). In this study, 

30mph is selected as the threshold to detect congestion based on roadside sensor data and 

the detection results based on two data sources are compared.  
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Figure 29. Clusters discovered using the static and dynamic algorithm. 
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Figure 30. Example of backward forming shock wave detection. 
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Figure 31 is a demonstration of the comparison of the end of queue detection 

results using Waze and remote traffic microwave sensor (RTMS) data. Two remote 

traffic microwave detectors separately locate at 𝑑1 and 𝑑2. The purple points denote 

where and when the EOQ is detected by the detectors using the Speed Threshold method. 

The red point denotes where and when the EOQ is detected by the proposed method 

based on Waze reports. Assuming there is another detector located at 𝑑𝐴, where the red 

point is located. The detection results for this virtual detector are estimated using linear 

interpolation: 

𝑡𝐴′ =  
𝑡2 − 𝑡1

𝑑2 − 𝑑1
∗ (𝑑𝐴 − 𝑑1) + 𝑡1 

 

(22) 

𝑡1, 𝑑1 separately represent the end of queue detection time and location of the first 

detector. Similarly, 𝑡2, 𝑑2 separately represent the end of queue detection time and 

location of the second detector. 𝑡𝐴 ,𝑑𝐴 represent the detection time and location of the 

proposed method based on Waze data.  𝑡𝐴′ represents the estimated detection time of 

speed threshold method assuming a detector locates at 𝑑𝐴. Then, the difference between 

the proposed method and speed threshold method is Δt=  𝑡𝐴 − 𝑡𝐴′. 

Severe congestion which has remarkable impacts on traffic from Aug. 1st to Dec. 

27th in the Knoxville are identified with more than a certain number of Waze reports, 

resulting in 43 cases. 9 cases were then removed either because of no obvious backward 

queuing pattern or because of questionable roadside sensor data. The detection results of 

the speed threshold method and the proposed method for the 34 cases are compared. 

Table 12 shows the end of queue detection frequency for both datasets. For 

RTMS data, on average, 1.8 points are reported every mile of congestion. For Waze data, 

on average, 1.9 points are reported every mile. The results suggest that Waze has 

comparable end of queue reporting frequency with roadside sensor data. Then, for each  

 

 

 

 

Figure 31.Comparison of end of queue detection results based on Waze data and 

roadside detector data. 
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Table 12. Detection statistics for RTMS data and WAZE data for the 43 cases. 

 

 # of Detections 
Total 

distance(mile) 

Average detection 

per mile 

 RTMS data 276 152 1.8 

 Waze data 286 152 1.9 

 

 

 

of the 385 Waze EOQ reporting points, the detection time difference between the 

proposed method and speed threshold method is computed based on Equation (3). The 

average detection time differences for the 385 Waze EOQ reporting points between the 

speed threshold method and the proposed method are 1.1 minutes, with a standard 

deviation of 7.2. That is, the speed threshold method based on traffic detector data reports 

the end of queue 1.1 minutes earlier than the proposed method based on Waze data. The 

small detection time difference between the two data sources suggest they are comparable 

in terms of timeliness.  

 

Conclusion and Future Work 

 

Knowledge of the location of traffic queues after non-recurring events such as incidents 

serves as the foundation of managing and protecting the queue in real-time to reduce 

delays as well as decrease the occurrence of rear-end collisions. The objective of this 

study is to take advantage of location-based crowdsourced data from Waze reports to 

develop an automatic clustering algorithm and tracking the movement of the queue.  

In this study, we propose an algorithm that clusters the live Waze reports, 

specifically, incident reports and jam reports. The algorithm is a real-time extension of 

the traditional spatial-temporal DBSCAN algorithm. It dynamically forms clusters with 

incoming Waze reports and tracks the movement of congestion as well as end of queue 

over time. A dynamic threshold selection approach is developed by characterizing the 

Waze user reports spatial-temporal distributions under congestion. 

The proposed algorithm was tested in the Knoxville area with 34 severe 

traffic congestion cases. Both the static and dynamic ST-DBSCAN algorithm was 

executed with the automatic threshold selection approach. Results demonstrate the 

proposed dynamic algorithm outperforms the static algorithm as it can distinguish 

clusters that start at different times and locations.  

A comparison of the proposed algorithm with the speed threshold method based 

on roadside sensor data was performed. On average, the detection results of the proposed 

method and speed threshold method are quite close. The detection time difference is only 

1.1 minutes. In addition, the reporting frequency of Waze and traffic sensor data is close  

as well. Waze reports 1.9 end of queue detection points every mile, while the traffic 

detector generates 1.8 detection points every mile.  The comparison demonstrates that 
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Waze data is similar for congestion and end of queue detection. This is particularly 

valuable for the many stretches of roadway without traffic sensors.   

This research mainly assessed the performance of the EOQ detection during 

severe congestion, under which the queue is propagating quickly and is most dangerous 

to drivers. In future research, the performance shall be evaluated for different traffic jam 

conditions.  Moreover, despite the information directly provided in each record, all Waze 

reports have reliability scores and existence-interval (the time duration the Waze reports 

present on the application). In this study, we only consider the timestamp that the report 

is made but not the time duration that the report presents. In future research, the duration 

information, as well as reliability, shall be considered to improve the detection results.   
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CONCLUSION 
 

This dissertation compiled a series of studies promote the understanding of data collected 

by various sources and abnormal traffic movements s in a spatial-temporal domain to 

support real-time traffic operations. These studies were conducted to propose multiple 

applications to propose data aggregation method for probe vehicle-based data, evaluate 

the reliability of crowdsourced user reports, detect abnormal events on freeway, and the 

evaluate the possibility of detecting the spatial-temporal impact of congestion with a 

complementary data source. 

First, a sampling strategy-based aggregation method for probe vehicle speed data 

was proposed. Two sapling strategy: time-based sapling and distance-based sapling 

strategy discussed in this paper. The proposed aggregation method is evaluated with real-

word NGSIM data. Results shows that the speed estimation accuracy of the proposed 

method is consistence higher comparing to the harmonic mean method under different 

traffic conditions. 

Second, the crowdsourced user reports were evaluated by comparing them with 

official records in both spatial and temporal dimension. The comparison results suggest 

Waze users, on average, tend to make reports at the exact location. In addition, the Waze 

user reports are made sooner than the official records, and thus can be incorporated in the 

real time system to reduce the abnormal event detection time. This study can be furthered 

by modeling Waze user behavior in both temporal and spatial dimension to improve the 

estimation accuracy of the location and occurrence time of an event.  

Third, a self-learning freeway incident detection algorithm is proposed which 

requires no calibration. The algorithm is composed of two modules: self-training and 

self-evaluation. In the training module, the proposed algorithm outperformed the 

benchmark algorithm is in terms of detection rate, false alarm rate, and mean time to 

detection. Further study is recommended to enhance the detection ability during peak 

period.  

Finally, a queue-end detection algorithm was proposed to detect the spatial-

temporal impacts of abnormal events to warn unaware approaching drivers.  A dynamic 

clustering algorithm was developed to cluster Waze reports and determine the impact 

region. A case study was performed to demonstrate the ability of the proposed algorithm. 

The detection results were compared to a benchmark method that uses road slide sensor 

data. results suggest that Waze data is a reliable alternative for roadside sensor data in the 

application of queue-end detection.   

Altogether, this dissertation provides a real-time traffic state assessment and 

detection framework that consists of data quality evaluation tools and algorithms for 

traffic operations of highway facilities.  

This dissertation contributes to the understanding of fundamental traffic 

parameters and provides innovative algorithms to promote the dynamic detection of 

abnormal traffic status. Speed, flow and density are the three fundamental parameters in 

traffic flow theory and are involved in every aspect of traffic analysis. Incorrect speed, 

flow and density measurements may shake the foundation of the research based on those 

parameters. Therefore, one of the key contributions of this dissertation is that it clarifies 
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how the mean speed shall be correctly calculated for prevalent probe vehicle-based data 

and points out the direct employment of a traditional method leads to biased results. The 

study has implications for the calculation of speed, flow and density in the long run. 

Suitable calculation methods shall be derived from the basic definition of the 

fundamental parameters if innovative data collection techniques emerge, such as 

autonomous and connected vehicle technologies.  

Building on the first chapter, the dissertation proposed a detection algorithm and a 

dynamic clustering algorithm. The proposed algorithms are readily usable to traffic 

practitioners. The algorithm proposed in Chapter III addresses the limited transferability 

issue of current incident detection algorithms and proposes an evaluation module. The 

module can be adopted by future researchers and serves as a calibration process to 

improve the transferability of their own incident detection algorithms. The concept of 

using long term performance to evaluate and verify the detection results applies to 

different detection systems as well. The algorithm proposed in Chapter IV cluster 

streaming data in real-time to find meaningful patterns. While the algorithm is developed 

specifically for WAZE data, a modification of it applies to other data sources. The two 

studies represent a step towards the ‘fully intelligent’ traffic operation system since both 

algorithms were designed to achieve good performance with minimum human 

interventions.  

The dissertation focused on traffic detection utilizing various data sources. The 

detection system provides real-time traffic states for strategy making. In addition to the 

future research potentials addressed at the end of individual chapters, the future research 

direction of the entire dissertation is to include a prediction and decision-making system. 

Figure 32 provides a diagram that incorporates future studies into the current dissertation 

structure. The prediction system takes both the fundamental parameters and the detection 

results as input and predicts the queue movement. The prediction results feed into a 

proactive management system to support practitioners’ decision making. The operational 

strategies such as queue mitigation, traffic diverting further change the traffic flow 

movement, and reversely affect the prediction.  
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Figure 32. Future study.  
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Derivation of Equation (15): 

 

𝑢𝑡
𝑛𝑒𝑤 =  

𝑢𝑡
𝑜𝑙𝑑 ∗ 𝑛 + σ ∆𝑜𝑡+𝑖

𝑚
𝑖=𝑛

𝑛 + 𝑚
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Derivation of Equation (16): 

 

(𝜎𝑡
𝑛𝑒𝑤)2 =  
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