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ABSTRACT

Data is often composed of structured and unstructured data. Both forms
of data have information that can be leveraged by machine learning models to
increase their prediction performance on a task. However, integrating the features
from both these data forms is a hard and complicated task. This an even more
true for models which operate under time-constraints. Time-constrained models
are machine learning models that work on input where time causality has to be
maintained, such as predicting something in the future based on past data. Most
previous work does not have a dedicated pipeline that is generalizable to different
tasks and domains, especially under time constraints.

In this work, we present a systematic, domain-agnostic pipeline for integrating
features from structured and unstructured data while maintaining time causality
for building models. We focus on the healthcare and consumer market domain
and perform experiments, preprocess data, and build models to demonstrate the
generalizability of the pipeline. In particular, we focus on identifying patients who
are at risk of imminent ICU admission. We use our pipeline to solve this task and
show how combining structured data and unstructured data machine learning
improves model performance by up to 8.5%.
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CHAPTER 1

INTRODUCTION

Data is the raw material for building machine learning (ML) models for solving
different tasks [1]–[5]. The data can belong to any domain ranging from consumer
businesses, to stock markets, to healthcare. The tasks themselves, while different,
are often tied to the specific domain.

Data can predominantly be categorized into structured and unstructured data
[6]. Structured data includes information with a high degree of organization.
Examples of structured data include a product category, values of vital signs, or
clinical lab tests. In contrast, unstructured data is unorganized and does not hew
to conventional data models. Free-text such as the description of a product or a
clinical note written by a doctor are examples of unstructured data. Finally, data
can also have a time component where the meanings of data recorded in the past
are different than those recorded in the future.

Integrating heterogeneous data while preserving information and time causality
from different sources is complicated. Despite this complexity, one could
contemplate that building ML models by combining the information contained in
both forms of data, would boost performance and result in a more robust ML
model, as these models have access to additional information. In particular, we are
addressing the problem of developing a ML pipeline for incorporating temporal
constraints across structured and unstructured data.

While there are many business projects and Kaggle competition solutions that
use different data sources to build their ML models, there is a lack of a systematic
pipeline that goes from raw data to a finished task that is generalizable across
different domains.

This is especially true in the medical domain where there is an abundance of
all forms of data in the form of electronic health records (EHR) which include
both structured data in the form of diagnosis codes, vital signs, and lab tests and
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unstructured data in the form of clinical notes written by healthcare providers
during or after patient encounters [7]–[10].

While data is abundant in one field for one task, it is also possible for data to
be sparse in another field or another task. Data sparsity results in models being
underfit and not generalizable. A popular attempt to solve this problem is using
transfer learning. Transfer learning is a research probem in machine learning
where the knowledge gained from solving one problem is transferred and applied
to another problem in a different but related domain [11]–[14]. In transfer learning
models are trained on a particular task or data and these trained models are reused
directly or by training them further on a target task or data. This is based on the
assumption that the source and target are related in some form. This technique is
especially useful when the data distribution of the source and target domains are
drastically different in terms of positive class representation.

In this work, we build a systematic pipeline for integrating features from both
structured and unstructured data while maintaining time causality to train and
evaluate ML models for different tasks. We show that this pipeline is generalizable
to different domains by applying it to different tasks from the medical field and the
e-commerce field. Furthermore, we define cross training which is a type of transfer
learning where we train ML models on a source dataset, further train the models on
a portion of the target dataset, and then test them on the remaining portion of the
target dataset.

We define the important medical task of predicting imminent intensive care unit
(ICU) admission and build models to accomplish this task. Predicting imminent
ICU admissions have important implications in critical care medicine. We do
this by using two different datasets and using structured data such as vital signs
and lab tests along with unstructured data consisting of clinical notes written
by healthcare professionals. We show that by augmenting the clinical notes
with structured data, we can get comparable or better performance and more
importantly gain insights into the modeling process. Finally, we perform transfer
learning between the two datasets and show we can get increased performance on
a very imbalanced dataset by transferring knowledge from a model trained in a
different dataset.

In the same vein, we use a consumer dataset from a shopping chain to predict
the listing price of an item based on the structured information about the item
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along with the unstructured free-text description of the item. We use the same
ML pipeline for both the tasks to test the generalizability of the pipeline and its
application to different domains.

Our contribution in this work is developing a robust ML pipeline for
incorporating time constraints across structured and unstructured data. We
demonstrate this pipeline by predicting imminent ICU admission that uses both
structured and unstructured data. We demonstrate the generalizability of the
pipeline by performing a task from the e-commerce fields. Finally, we demonstrate
a transfer learning approach to help increase performance in imbalanced datasets.

This dissertation is organized as follows: In chapter 2 we present background
work and related literature. In chapter 3 we talk about the various methodologies
that we use in this work along with various evaluation metrics. We also define
several algorithms which are used for building and evaluating our models. In
chapter 4, we show the potential of building machine learning models using
multimodal data by applying our pipeline to a consumer market task of predicting
the price of an item given its characteristics as structured information and user-
defined item description as unstructured data. We then move on to the healthcare
domain in chapter 5, where we define the important task of predicting imminent
ICU admission and describe our novel way of integrating time-based structured and
unstructured data. In chapter 6, we demonstrate the power of transfer learning as
part of on-going work where we train our models on a source dataset and further
train them on a portion of the target dataset and test them on the remaining
portion. Finally, we conclude our work in chapter 7 and describe ideas for future
work in this research.
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CHAPTER 2

LITERATURE OVERVIEW

In this chapter, we provide a literature overview of recent work pertaining to our
research. We review work that uses structured data and unstructured data, how
it has been integrated in the past, and how that is different from our approach.
We also review work on transfer learning. Finally, we review previous work from
the healthcare domain specifically tied to our task of imminent ICU admission
prediction.

While the specific type of data we are looking at exists in different domains,
there is a lack of published research in non-healthcare domains. Much of the work
in non-healthcare domains such as retail, sales, marketing, and business can be
found as part of Kaggle [15] competition solutions where competitors voluntarily
publish their work in the form of code and explanations. This is true especially for
data that contains a mixture of structured and unstructured data as this type of
data is scarce in non-healthcare domains.

2.1 Structured Data
Structured data use in machine learning is ubiquitous. Most industry have some

form of structured data associated with their domain and use them with machine
learning to build predictive models. Furthermore, we can find a lot of work in terms
of explanation blogs and code from Kaggle that fit the structured data modality.
As such, the amount of work that use machine learning on structured data is vast
and reviewing them would be out of the scope of this dissertation. For a good
review of use of machine learning algorithms on structured data please refer to
[16]–[19]. Our main focus for this section of the literature review will be the use
of structured data in the healthcare domain.

This is because, there is a lack of published work that uses only structured data
outside of the healthcare domain. As mentioned earlier,
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Electronic health records (EHR) data readily falls into the format of structured
and unstructured data and there has been a lot of published work in this area
indicating a higher impact of our research in the healthcare domain. Hospitals
generate large volumes of data which include discharge summaries, records of
medicines administered, laboratory results, and treatments provided which are
stored in the form of EHRs [20]. There has been a lot of interest in applying data
analytics in healthcare [21]–[23] and EHR data mining [24]–[26]. With the success
of deep learning [27] techniques in other domains, there has been a tremendous
effort to bring it to healthcare [7], [28]. State-of-the-art techniques have been
applied to get great results to pieces of EHR for various tasks. However, only a
hand full of work has been done in utilizing both structured (e.g., diagnosis codes)
data and unstructured (e.g., clinical notes) data together for target tasks.

In [29], only structured data in the form of continuous variables were used to
diagnose patients. Diagnosis is done by predicting diagnostic codes assigned to each
patient during their visit given their history of 13 continuous variables during each
episode for all patients. The input data is considered as a clinical time series and
the problem of diagnosis is formulated as a multi-label classification problem. They
use Long Short-Term Memory (LSTM) networks, a variant of recurrent neural
networks (RNN), for modeling the frequently but irregularly sampled time series
of the input variables. They evaluate their system’s performance by comparing
it to other techniques for predicting diagnostic codes. With a similar objective of
predicting clinical codes, in [30], the authors develop DoctorAI which uses another
variant of RNN called the Gated Recurrent Unit (GRU). Each patient’s visit is
time-stamped with clinical codes and these are the inputs to their system along
with the duration since the last visit. The system is trained in a single supervised
learning scheme where the outputs are possible clinical codes for the next visit and
the time to next visit. In particular, the clinical codes for each patient during each
visit are embedded into a lower-dimensional space from both a multi-hot encoding
and by using a matrix generated by the skip-gram algorithm. The weights from the
embedding layer are fed into a recurrent layer with a GRU and finally, there are
two independent layers, one with a softmax with a multi-label output to predict the
clinical code and rectified linear unit (ReLU) for predicting the time to next visit.

In [31], clinical codes from EHR data are represented by embedding them into
a low-dimensional vector space. Their system eNRBM uses modified Restricted
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Boltzmann Machines (RBM) to model EHR using the demographics, admission,
diagnosis, and intervention codes as input. Their representation is evaluated on
a suicide risk assessment task based on a 48-month history. The history is split
into disjoint intervals of predefined lengths, where each interval contains time-
stamped variables. These input variables are fed into a “representation layer” whose
dimensions are less than the number of input variables, and the output of this layer
serves as the representation of the input variables, which is then fed as input to the
target task.

In [32], a deep learning framework called DeepCare is presented which reads
medical records consisting of clinical codes and uses a modified LSTM network
for predicting future medical outcomes. In particular, diagnosis and intervention
codes are embedded into a vector space and these embeddings are learned as part
of the training process. The input to the system is a sequence of admissions, where
each admission contains embeddings for the codes, admission method (planned
or unplanned), and the time elapsed since the previous admission. They modify
the standard LSTM to handle irregular timings found in EHRs and enhancing the
effect of admission and intervention type. They evaluate their system by predicting
the risk of unplanned readmission of patients suffering from diabetes.

In [33], a deep neural network for predicting the mortality of a patient within
3-12 months from a prediction date is presented. The objective is to automatically
identify patients who are likely to benefit from palliative care services and
short-term mortality prediction is considered as a proxy for the target task. An
observation window of 12 months before the prediction date is divided into 4
unequal slices and clinical code counts for each window along with summary
statistics of the counts are taken and concatenated together to form a feature
vector. These are then fed as input to deep neural networks for a supervised binary
classification problem of mortality prediction. Furthermore, to facilitate the
interpretation of the decision made by the model, they develop a technique wherein
they ablate each code category and run the model to the modified input to note the
probability drop of the prediction. They reason that those codes which were
ablated that resulting in a high drop in probability has a higher influence in the
model’s decision for that patient.

The literature we reviewed so far uses structured data (or a subset of it) of
the EHR and discards the information hidden in the clinical text. The difference
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between our approach and the ones we have seen above is we do not use deep
learning approaches and we also combine the structured data with unstructured
textual data. Our approach is more systematic and can potentially be applied to
other domains as an algorithm.

2.2 Unstructured Data
Unstructured data mainly contains free-text and is often highly heterogeneous.

This is especially true for clinical notes which are rich in author and domain-
specific idiosyncrasies, abundant abbreviations, rich medical jargon, and spelling
and typing errors [24].

For any task involving text, representation of that text in a suitable format that
can be fed into a ML model is required. One of the ways to represent clinical texts
is to represent clinical concepts such as clinical codes embedded in the texts. These
concepts have unique identifiers called CUIs. In [34], the free text is converted to
concept sequences and embeddings for the concept unique identifiers (CUI) are
learned using word2vec’s skip-gram model [35], corresponding to predicting nearby
CUIs from each other in the given context of medical journals. In [36], clinical
texts from insurance claims and publicly available EHRs are used to create concept
embeddings. After the clinical concepts are extracted, they are preprocessed into a
form suitable to be fed into word2vec. In particular, they time-stamp each concept
and combine each time-stamped concept into a “sentence” to create embeddings
for the concept. Similar to this work is [37], where they present a framework called
cui2vec to create concept embeddings from a combination of clinical notes from
EHRs, information from an insurance claims database, and text from biomedical
journal articles. Unlike previous works, here once the CUIs are extracted a CUI-
CUI co-occurrence matrix is constructed for each data source. Once the master co-
occurrence matrix is created, it is directly used to create GloVe [38] or word2vec
style embeddings. These pre-trained CUI embeddings are publicly available.

Topic models [39] are used in [40], again for patient mortality prediction with
notes from the MIMIC-II [41] dataset. They use Latent Dirichlet Allocation
(LDA) [42] to create the topics from the notes and then build a linear support
vector machine (SVM) [43] model to predict mortality outcomes. Unlike previous
work, where the discharge summary was discarded from the input to prevent
data leakage, here all the notes were included. A non-parametric topic modeling
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technique known as the Hierarchical Dirichlet Process (HDP) is applied for the
same task using only the nursing notes from the MIMIC-II dataset in [44]. For
each patient, a “document” was created representing a collection of UMLS code,
representing either a disease, symptom, medication, or procedure. Once the topics
were obtained, multivariate logistic regression was used to find the association
between each topic and hospital mortality where the proportion of words assigned
to each topic was used as input [45]. Finally, in [46], the authors present TopicRNN
that combines latent topic models and RNN based language models for capturing
global semantic meaning relating words in a document.

In [47], convolutional neural networks (CNN) based neural document
embeddings are used for patient mortality prediction. Word embeddings of
sentences from clinical notes in the MIMIC-III [48] dataset are fed into a 2-layer
CNN, whose first layer maps the sentences to sentence vectors and second layer
combines the sentence vectors into a single patient representation. In addition, they
map the 14 types of note categories into vector space and concatenate the note type
vector with the input word embedding vector. By doing this, the authors claim
that this information access how important are the individual sentences to the
target task. Similarly, in [49] LSTM networks are combined with topic models to
predict mortality. Here the notes are represented by a bag-of-words model instead
of word embeddings. For each patient, the time elapsed since admission in 12
hour-long segments is defined as time points, and clinical notes within a time point
are aggregated into one document. The topics are represented in a layer in the
LSTM network and are either trained using LDA or using encoders and decoders.
The authors acknowledge topic interpretability and quality is bad with the top
words in topics being rare words or medical jargon.

In this section we reviewed literature that use unstructured free-text as the
single source of data into their ML models, discarding the associated structured
data. Furthermore, some of these work use advanced representation techniques for
the free-text which tend to take too long to train. In our work, we use standard
NLP techniques for processing text, while also affording a way to swap in more
advanced methods via our generalized pipeline and framework. Our framework
also provides a way to integrate structured data to the features extracted from
unstructured data.
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2.3 Multimodal Data
The idea behind combining structured and unstructured data is to use the

information from both to inform the final model that is being trained on an
application. While there are different ways to do this, the inherent complexity of
combining different data sources makes this task difficult, even more so in the case
of EHRs. Here we present some of the work that has been done in this realm.

In [50], the authors built a manual pipeline to identify cohorts of ICU patients
who received dialysis. Basic information retrieval tools are used to extract
information from both forms of data. In particular, SQL queries are used on the
MIMIC-II dataset to search the database for codes and terms codes for information
associated with ICU dialysis. These were then manually reviewed without any
machine learning procedure involved. Their main conclusion is that using data from
both sources gives maximum performance. In [51], the authors manually extract
features from discharge summaries and augmented with structured information
extracted from EHRs to identify whether any complications occurred during the
length of stay of the patient. Here a machine learning model was built using the
manually extracted features. From structured data, they extract information
related to medications, clinical events, culture reports, and radiology reports.
Clinical texts were preprocessed to extract disease mentions, negations, uncertainty
modifiers, or correlated words and phrases. All these features were then fed into a
binary logistic regression model to classify the length of stay. They compare the
relative performance of models with both types of input, i.e., only clinical text
features and both text and extracted features. Their results indicate that using
features from both forms of data increased performance.

Scheurwegs et al. combine structured and unstructured textual data to assign
clinical diagnostic and procedural codes to patient stays [52]. Structured data
included lab results, inpatient medication prescriptions, pathology, procedure,
and medication codes. Categorical variables are represented by counting the
number of occurrences of distinct assigned codes. Also, another set of features
from the structured data consists of multiple “meta-features” such as the average
amount of assigned codes per day and the total amount of unique codes per stay.
Unstructured data included letters, notes, protocols, and attestations. These were
processed using a combined bag-of-words (BOW) of all documents of a certain
type associated with a specific stay. The data is combined using either early data
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which consists of integrating the features of different sources before training the
model or late data integration where prediction results from separate models,
trained on each distinct source, are used as input for a second classifier. They do
a comparison study and find that late integration with both forms of data performs
best in assigning codes to patient stays. While this work is similar in objective to
ours, their methodology uses traditional ML techniques and feature engineering.
Furthermore, they do not provide a united representation of the data.

In [53], Bai et al. learn a joint representation of medical concepts using
diagnostic codes from structured data and extracted words from clinical notes.
They introduce a JointSkip-gram model, which is a variant of the skip-gram model
from word2vec [35], where the diagnostic codes and word sequences from clinical
notes are used to predict neighboring codes and sequences. This way they are able
to learn a relationship between the medical codes and words in clinical notes. They
evaluate their algorithm using the MIMIC-III dataset by training vector
representations of the codes and words and testing them on a task of predicting
diagnosis on a future visit. Unlike our work, they do not utilize the real valued
information from the structured data and they consider the diagnostic codes as a
“bag” of codes thereby losing the information about when these were recorded.

In [54], a deep learning framework called DeepPatient where each patient is
described by a single vector or by a sequence of vectors computed in predefined
temporal windows. In particular, from the structured data demographic details
(such as age, race, and gender), and common clinical descriptors (such as medical
codes) were taken along with the free-text clinical notes. The structured data was
processed by simply counting the presence of medical codes. The clinical notes
were preprocessed to remove identified negated tags, flagging and differentiating
family-related and patient-related tags. The authors use topic modeling [55] to
represent each note with a vector of 300 topic probabilities. All these feature values
are then normalized and fed into a 3-layer stacked denoising autoencoder (SDA),
where the middle layer once trained would hold the representation of each patient.
They evaluate the performance of their system by predicting the probability that
a patient might develop a certain disease in the future given their current clinical
status. They build a random forest classifier by feeding it as input, their deep
representation along with raw EHR and alternate representations (such as PCA)
and show that their representation gives better predictions.
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In [56], information from both data is combined to predict health outcomes
for patients with Congestive Heart Failure (CHF) using the MIMIC-II dataset
[41]. In particular, the structured data is embedded into a 10-dimensional vector
space with the embeddings being learned as part of the training process. The
clinical notes are represented using word2vec which was pre-trained on Wikipedia
articles with a 150-dimensional semantic representation. In addition, waveform
data from the electrocardiogram (ECG) signal for patients are computed using
standard time-series analysis and are also included as part of the input. All these
components are then fed into a hidden layer which is then passed to a softmax layer
that predicts the health outcome of the patient. Health outcome is determined as
improving if the patient is discharged from the ICU with clinician approval and as
not improving if the patient is transferred to specialized facilities or if the patient
dies.

Rajkomar et al. propose a method to represent a patient’s entire raw EHR
record in a single data structure that can then be used for predictive tasks [57].
The representation is based on the Fast Healthcare Interoperability Resources
(FHIR) [58] format. In their work, they take EHR data as input and produce FHIR
outputs by mapping various FHIR resources including time (by using the difference
to the time of prediction) to tokens and representing them by embeddings. Both
the structured data and the clinical notes are represented by unique “tokens”
which are obtained by preprocessing the data. These tokens are then fed into an
embedding layer to create embeddings. These embeddings are fed into an LSTM
recurrent neural network for various downstream applications and are learned
during training. In particular, the authors devise a single data structure to make
predictions for mortality, 30-day readmission, length of stay, and a full diagnosis of
the patient.

In [59], the authors propose a general multi-task framework for forecasting the
onset of diseases prior to diagnosis time using both clinical notes and structured
data. They focus on CHF, kidney failure, and stroke with the raw text of clinical
notes, lab, and vital sign data recovered from them, and structured demographics
data serving as input. Different deep learning architectures are built and compared
against each other to assess the contribution of the information in the clinical notes
to the overall performance. They consider clinical notes over a period of 3 years
with training data over a year with a 3-month gap after which they predict disease
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over a 6-month window. In addition to training new word embeddings on their
data initialized with pre-trained embeddings, they also detect negation and replace
negated words with the negative of the corresponding word embedding. They build
3 models: a CNN, a bidirectional LSTM (BiLSTM), and a hierarchical model that
uses a CNN and a LSTM together. Their results show that the BiLSTM model
with features including demographics, lab, and vital sign data, clinical notes, and
negated word embeddings outperforms all other models.

In [60], the authors tackle the problem of predicting ICD-10 diagnostic codes
by using multimodal data. In particular, they build individual models trained
on different forms of data including unstructured text, semi-structured text, and
structured tabular data, and use an average model ensembling strategy to predict
the ICD-10 codes based on the input. They use various forms of CNN for building
models on unstructured text and semi-structured text and use a classical decision
tree on the structured data. They report that their best performing ensemble
model significantly outperforms the baseline models which only use textual data.
While this work is similar to ours, a key difference is in the way the multimodal
data is leveraged. In our work, we integrate both structured and unstructured
data before feeding it to single ML model. This strategy affords us to get a unique
representation of the entire data as opposed to building individual models for
different types of data. Furthermore, their approach is not directly applicable to
time-based data as different data points might be taken at different time intervals.
This might enable models trained on certain data to have access to information
that other models might not have.

As we have seen in this section there has been several approaches in integrating
structured data and unstructured data. However, these approaches lack in two
key areas: 1) they are task-specific and domain-specific; 2) they are not directly
applicable to time-based data which are recorded at varying frequencies and time
intervals. In this work, we present a novel way of combining time-based data and
present a generalized pipeline that can potentially be applied to different tasks
across different domains.

2.4 Transfer Learning using Healthcare Text
Transfer learning is used to improve a model in one domain by transferring

information from a related domain [12], [13]. Typically, the source domain contains
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easily obtained data, while the target domain contains insufficient data. This is
especially useful for clinical notes, which often have access restrictions and require
domain expertise to label the notes properly.

Transfer learning in NLP has gained traction in recent years. Subsequently, its
use in healthcare was just a matter of time. In [61], the effectiveness of transfer
learning using contextualized embeddings for clinical concept extraction is explored.
In particular, the authors compare the use of word2vec, GloVe, and fasttext [62],
[63] embeddings against the more advanced embedding methods and
representations provided by ELMo [64] and BERT [65]. They hypothesize that
certain types of diseases or conditions normally appear in specific contexts with
similar grammar structures, emphasizing the need to take advantage of
contextualized entity representations. Furthermore, they compare the effects of
pre-training, a form of transfer learning, on a large amount of open-domain data
versus clinical notes from MIMIC-III. They compare different embeddings based on
the performance of the end model’s target task, which is a sequence labeling
bidirectional LSTM with a final conditional random field (CRF) layer (Bi-LSTM
CRF). Their results show that the best model performance was achieved using
BERT pre-trained with clinical domain embeddings. This emphasizes the fact that,
for certain focused task, contextualized embeddings outperform traditional
embeddings and large improvements can be achieved by pre-training a model from
a large corpus, followed by task-specific fine-tuning.

In [66], researchers analyze the effectiveness of using transfer learning to conduct
efficient patient-level clinical note medical concept representations. They achieve
this by using these representations for predicting future clinical events of interest,
such as mortality, inpatient admissions, and emergency room visits. The aim is
to use data-driven methods to reduce the need for extensive feature engineering
by automatically learning how to summarize a sequence of clinical notes about a
given patient. For this purpose, two approaches are explored. One entails using
GloVe to learn embeddings for biomedical concepts mentioned in the clinical text.
These embeddings are then aggregated to form a representation of a single note for
a particular patient, obtained by further aggregating representations of these notes.
The other approach uses RNNs to simultaneously learn representations of concepts,
notes, and patients, achieved by training the model on a proxy source task of
predicting diagnosis codes for each patient. GloVe and RNNs create embeddings
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from biomedical terms, which are then used as input features to a logistic regression
model for the target tasks. Along with concept embeddings, the authors build
simple BOW models with Term Frequency-Inverse Document Frequency (TF-IDF)
representations. They compare the model performance across using embeddings
that were learned with differing amounts of training set size. They show that
transfer learning can be used as an effective way to engineer task-specific features
when training data is limited.

In [67] the authors explore the use of transfer learning to automatically assign
ICD-9 codes to discharge summaries of patients from MIMIC-III by first training
a deep learning model on a much larger but related dataset, the BioASQ [68].
The objective here is to assign relevant MeSH terms based on a manual reading
of scholarly publications by human indexers. The parameters of this trained model
are then transferred and fine-tuned for predicting the ICD-9 codes on the target
dataset. The authors argue that the discharge summaries in MIMIC-III database
have the following drawbacks: 1) the distribution of ICD-9 code is highly biased;
2) there is a large variation in the cardinality of each code; 3) the average number
of discharge summaries per code is small; 4) and finally, there is a large variation
in the length of the discharge summary. Conversely, the MeSH data from the
BioASQ3 dataset has more samples and labels and the average samples per label
are much larger. They hypothesize that training a model on this large dataset will
capture features relevant to assigning codes to medical terms and that transferring
this knowledge will improve performance. They build multi-scale CNNs where the
input is fed to different convolutional kernels at the same time and the outputs
of these kernels are concatenated in the next layer. This is an efficient method to
combine different features for classification and to obtain multiple local contextual
feature maps. The input is the word embeddings of the medical free text and the
output is a sigmoid activation function to predict the probability of a label. To
test the efficacy of multi-scale CNN, they also build a sequential CNN model for
the transfer learning task. Additionally, to see how the number of training samples
impacted the effectiveness of transfer learning, they build multiple multi-scale CNN
models that use a varying amount of samples from the source dataset. Their results
indicate that the multi-scale CNN with transfer learning built with 100% of the
samples from the source dataset outperformed all other models.
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Transfer learning is a powerful approach to train ML models in scenarios
where there is a lack of sufficient data. As we have seen, this is especially true for
healthcare domains, in which privacy concerns restrict the amount of data available
for analysis. Following in the footsteps of the previous work in transfer learning, we
implement transfer learning between different datasets for the same task. While we
currently only use only clinical notes in this work due to the lack of access to the
entire data, our framework can easily be extended to include structured data, which
could potentially lead to better model performance.
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CHAPTER 3

METHODOLOGY & IMPLEMENTATION

Building machine learning models involves preprocessing the data, applying
the appropriate machine learning algorithm, and interpreting the results. There
different methods of preprocessing data, different types of data, and different
algorithms that we can try. In this chapter, we highlight some of the preprocessing
techniques and machine learning algorithms that we used in this work.

3.1 Preprocessing Techniques for Text
When it comes to natural language processing (NLP), there are two standard

steps of preprocessing to prepare the data for modeling. The first step is
tokenization, where a string of words is segmented by dividing the string into its
component words called tokens. The next step is vectorization, where these tokens
are used to represent the document into vectors of numbers.

3.1.1 Tokenization
Tokenization is the process where a string of words is segmented into its

component words. This is an important step for preparing the text to be fed into
machine learning algorithms. There are many ways to tokenize text with varying
degrees of complexity.

One of the most basic ways to tokenize text is to just split the words based
on whitespace. This method is incredibly simple which is both its advantage and
disadvantage. Another disadvantage is that similar words will appear as distinct
tokens. For example, the last word in a sentence is not normally separated by
a space from the period at the end of the sentence. By splitting on whitespace,
the word along with the period is considered as a distinct token than the word
itself which can lead to increased vocabulary size. Splitting on whitespace and
considering each word as a unique token is known as unigram tokenization. A more
general method is the n-gram tokenization, where n words are grouped together
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and split by whitespace. Using n-gram tokenization, it is possible to capture n-word
phrases as unique tokens.

3.1.2 Vectorization
Vectorization involves converting tokens into numbers which can then be

processed by machine learning algorithms. Similar to tokenization schemes, there
are many ways to vectorize a token that vary in complexity. One of the most basic
ways of vectorizing a corpus of tokens is to replace each token with its count of
occurrence in the document. This is known as count vectorization. While simple, it
has a disadvantage of creating sparse representations and giving equal importance
to all words in the corpus ignoring their relative importance.

Term Frequency Inverse Document Frequency (TF-IDF) is a “numerical statistic
that is intended to reflect how important a word is in a corpus”1. It is composed
of two components the term frequency (TF) and the inverse document frequency
(IDF) and the final score is a product of these two values. The TF of a token
depends on the number of occurrences of the term in a document, while the IDF
depends on the number of documents that contain that token. More information
about TF-IDF weighting can be found in [69]. Each document is then represented
by a vector of the TF-IDF scores of each token in the document. Although this
method also produces sparse representations, the values of the TF-IDF take into
account the relative importance of each word.

3.2 Machine Learning Algorithms
In order to effectively gauge the strengths and weaknesses of the models that

we build, we need to compare them against different baselines. We built multiple
models for the tasks using different machine learning algorithms which we highlight
here.

3.2.1 Logistic Regression
Logistic regression (LR) is one of the most basic and simplest modeling

technique that is used to model the probability of a certain event or class. LR is a
statistical model that in its basic form uses a sigmoid function to model a binary
dependent variable. A sample sigmoid function is shown in figure 3-1.

1https://en.wikipedia.org/wiki/Tf-idf

17

https://en.wikipedia.org/wiki/Tf-idf


−6 −4 −2 0 2 4 6

0.5

1

Figure 3-1. Sigmoid Function

LR is a linear model in that it does not include any nonlinear components and
is a linear combination of one or more independent variables. Until very recently,
LR has been very widely used in medical applications due to its simplicity and
the use of model coefficients can be interpreted as odds ratios that are clinically
meaningful [70]. However, this simplicity also serves as a disadvantage as LR being
a generalized linear model cannot capture complex and nonlinear relationships in
the data. For our implementation of LR, we use the Scikit-Learn library [71].

3.2.2 Random Forests
Random Forests (RF) [72] are an ensemble learning method used for

classification, regression, and other tasks. They are trained by constructing multiple
decision trees and during inference they output the class that receives the
maximum vote in case of a classification problem or the mean prediction of the
outputs in case of a regression problem. They combine multiple decision tree
predictions, such that each tree depends on the values of a random vector sampled
independently and with the same distribution.

RF’s have several advantages. First, it uses a technique known as bagging [73],
which is a method for generating multiple versions of a predictor and using these
to get an aggregated predictor. This tackles overfitting by reducing the variance
of the predictors. They do not require any feature scaling and handle nonlinear
parameters efficiently. RF’s are robust to outliers and are very fast to train. Their
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disadvantage includes their complexity and longer prediction time. Furthermore,
more accurate ensembles require more trees, which means using the model becomes
slower. For our implementation of RF, we use the Scikit-Learn library [71].

3.2.3 Gradient Boosting Machines
Gradient boosting machines (GBM) [74] are another type of tree-based

algorithm. GBM uses a technique known as boosting, in which a set of weak
learners creates a single strong learner. Due to boosting, GBM does not overfit the
data. Furthermore, while GBM takes slightly longer to train, they work much faster
than RF during test time. The longer training time is due to the fact that GBMs
use stochastic gradient descent to train. Unlike RF, GBM trees are trained in
sequence. Furthermore, GBM’s are harder to train due to the requirement of
careful hyperparameter tuning. In our implementation for GBM we used
LightGBM [75].

3.2.4 Ensembling
Ensembling is the process of creating multiple models and combining them to

produce an output. More specifically, ensemble learning is an umbrella term for
methods that combine multiple learners to make a decision, typically in supervised
machine learning tasks [76]. In particular, multiple models are trained separately
using different algorithms and their outputs on the test set are combined using an
ensemble strategy. This is distinct from ensembling techniques such as bagging
where ensembling is done during training and use the same algorithm. Simple
ensembling involves either taking the average of results output by the different
algorithms or using a maximum vote.

3.2.5 Deep Learning
As we saw earlier in chapter 2, deep learning (DL) techniques are widely being

used in various ML problems and have shown success in different areas such as
computer vision and natural language processing. Deep learning models are based
on artificial neural networks and can have highly complex architectures that help
them accomplishing highly complex tasks with great performance. However, DL
models require lots of data and compute power. In our work, we built standard
feedforward neural network models for our tasks. However, given the amount of
training time taken to build the models, they yielded results that are comparable to
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those models that had a shorter running time. We, therefore, did not experiment
with them further and have not included those results as part of this work. We
speculate that this low performance could be due to the scarcity of the our data, in
particular, our unstructured data. It is important to note that, despite the fact we
have not used DL models, our generalized pipeline can be used with any ML model.

3.3 Model Building and Evaluation
In our work, we will be building multiple models using different algorithms for

the same task. While the no free lunch (NLF) theorem [77] states that “any two
optimization algorithms are equivalent when their performance is averaged across
all possible problems”, we can still compare the performances of the models tuned
to the task and data. Algorithms 1 and 2 show how we build and evaluate our
models respectively.

We first split the data into a training and testing set, perform training, and then
select optimal threshold and optimum hyperparameters in the model building stage.

We also perform model ensembling using two ensembling strategies: average
and maximum. Algorithm 3 shows this ensembling algorithm. The ensembling
algorithm is run on multiple test sets (same number as the one in algorithm 2)
and the results of each individual model is aggregated based on the ensembling
function.

Algorithm 1: Model Building Algorithm
Data: Dataset S = {X,P ′} and modelM
Result: Model hyperparameters H and discrimination threshold δ

1 Split the dataset S into training data Strain and testing data Stest with a
85%-15% split using a fixed seed

2 Train model using examples from Strain
3 Get probabilities of the positive class P using examples from Stest
4 Select optimal discrimination threshold δ
5 Get predictions P by comparing probabilities P with discrimination threshold δ
6 Compare predictions P with ground truth P ′ to compute performance metrics
T

7 Perform hyperparameter optimization to get the optimal hypterparameters H
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Algorithm 2: Model Evaluation Algorithm
Data: Dataset S = {X,P ′}, modelM, hyperparameters H, discrimination

threshold δ, start seed seed, and number of trials n
Result: Mean performance metrics T

1 for s← seed to seed+ n do
2 Split the dataset S into training data Strain and testing data Stest with a

85%-15% split using seed s
3 Initialize modelM with hyperparameters H
4 Train model using examples from Strain
5 Get probabilities of the positive class P using examples from Stest
6 Get predictions P by comparing probabilities P with discrimination

threshold δ
7 Compare predictions P with ground truth P ′ to compute performance

metrics Ts
8 end

9 Compute mean performance metrics T =

n∑
s=1

Ts

n

Algorithm 3: Ensemble Algorithm
Data: Test Dataset Stest = {X,P ′}, model arrayME = [M1,M2, . . . ,Mn],

discrimination threshold array δE = [δ1, δ2, . . . , δn], ensembling function
F

Result: Ensemble prediction PE

1 Initialize empty array PE

2 for all subsetsMs and δs ofME and δE with length(Ms) > 1 do
3 Compute ensemble threshold δe = F(δs)
4 Get probabilities of the positive class Ps for each model inMs in test set

Stest
5 Compute ensemble probabilities Pe = F(Ps)

6 Compute ensemble predictions Pe by comparing probabilities Pe with
discrimination thresholds δe

7 and append it to PE

8 end

3.4 Model Performance Metrics
In order to compare and rate the performances of various models, we need a

method to evaluate them. These are usually done using metrics. Metrics vary for
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classification and regression problems. In a binary classification problem, there are
standard metrics and guidelines on reading those metrics that we will review in this
section.

3.4.1 Confusion Matrix
A confusion matrix is a table used to describe the performance of a classification

model on a set of test data for which we have ground truth. It acts as a summary
of how the model did on the test data. A simple confusion matrix and its
components for a binary classification task are shown in figure 3-2.
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Figure 3-2. A simple confusion matrix for binary classification task

Here,

• P ′ and N ′ are the ground truth value and P and N are the outcome
predicted by the model.

• True positives (TP) are outcomes where the model correctly predicts the
positive class.

• True negatives (TN) are outcomes where the model correctly predicts the
negative class.

• False positives (FP) are outcomes where the model incorrectly predicts the
positive class.
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• False negatives (FN) are outcomes where the model incorrectly predicts the
negative class.

Ideally, we want to maximize the true positives and true negatives and minimize
false positives and false negatives. The type of problem dictates which outcome is
more important.

3.4.2 Accuracy
Accuracy is a standard metric for used classification and is the fraction of the

predictions that the model correctly predicted. Equation 3.1 shows the formula for
calculating accuracy in a binary classification problem.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

While accuracy is a standard metric, it does not lend itself well for measuring
model performance in unbalanced datasets commonly encountered in the medical
domain [78], [79]. For example, if one class is 90% more prevalent than another
class, a model can just predict the frequent class to get an accuracy of 90%. For
this reason, we do not use accuracy as a primary metric for our tasks.

3.4.3 Sensitivity
Sensitivity (also called recall) measures the proportion of actual positives that

are correctly identified. Equation 3.2 shows the formula for calculating sensitivity
in a binary classification problem.

Sensitivity =
TP

TP + FN
(3.2)

In general, if correctly identifying positives is important to us, we would use a
model that had high sensitivity.

3.4.4 Specificity
Specificity measures the proportion of actual negatives that are correctly

identified. Specificity can be thought of as sensitivity for the negative class.
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Equation 3.2 shows the formula for calculating specificity in a binary classification
problem.

Specificity =
TN

TN + FP
(3.3)

In general, if correctly identifying positives is important to us, we would use a
model that had high specificity.

3.4.5 Positive Predictive Value
Positive Predictive Value (PPV) (also called precision) measures the proportion

of correctly identified positives. Equation 3.4 shows the formula for calculating
PPV in a binary classification problem.

PPV =
TP

TP + FP
(3.4)

We can trust the predictions of a model with higher PPV than the predictions of
a model with lower PPV, as the model with higher PPV is more likely to be correct
in its predictions of the positive class.

3.4.6 Area Under the Receiver Operating Characteristics
Binary classification models, in general, output a probability that a particular

data point belongs to a particular class. By comparing that probability against a
discrimination threshold, we can predict which class that data point belongs to.

A natural choice for a discrimination threshold is 0.5, as it falls right in the
middle of either extreme of the probability range. However, this discrimination
threshold is dependent on the task. Furthermore, the value of this threshold
determines all of our other metrics. The receiver operating characteristic (ROC)
curve illustrates the diagnostic ability of a binary classifier as its discrimination
threshold is varied.

The ROC curve contains the false positive rate (FPR) on its x-axis and
sensitivity on its y-axis. Here, FPR = 1 − Specificity. The area under the ROC
(AUC) curve is a value between 0.5 and 1 which makes it easy to compare multiple
ROC curves. A higher AUC score implies better model performance.
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3.4.7 Regression
All of the metrics seen in the above sections are for classification problems

and are not applicable to regression problems, where a target variable is a real
number. In this case, we want to use an error function that measures how different
the predicted value is from the target value. Unlike some of the previous metrics,
when we use an error function, we desire lower values, as a lower value of error
corresponds to better model prediction and model performance.

Root mean square error (RMSE) is a commonly used metric that takes the
square root of the average error squared between the predicted value and the actual
value. This is given by equation 3.5

RMSE =

√√√√ 1

n

n∑
i=1

(pi − ai)2 (3.5)

In some cases for numerical stability, the logarithm of the predicted and actual
values are given instead of the original values. This is known as root mean square
log error (RMSLE) given by equation 3.6.

RMSLE =

√
1

n

∑
(log(pi + 1)− log(ai + 1))2 (3.6)

3.5 Discrimination Threshold Selection
As mentioned earlier, the discrimination threshold is the single most

hyperparameter for a binary classification model, as its value determines the values
of all other metrics and hence the performance of our model. Unfortunately, the
selection of the discrimination threshold is highly dependent on the task. While the
ROC curve gives us a graphical view of our model’s performance as the
discrimination threshold is varied, it does not provide an optimal discrimination
threshold. Koyejo et al. [80] propose two algorithms to find the “optimal classifiers
as the sign of the thresholded conditional probability of the positive class, with a
performance metric-dependent threshold”. However, in their work, each metric is
dependent on a separate threshold and there is not a global threshold, which would
be more ideal.
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For binary classification tasks predominantly seen in the medical domain,
sensitivity, specificity, and PPV are the primary metrics. Thus, we want a
discrimination threshold that maximizes these values. A common approach is to fix
the desired value for sensitivity and vary the threshold to maximize the specificity
for that value of sensitivity.

If sensitivity and specificity are both equally important, a more sophisticated
approach is to use the Youden index [81]–[84]. The Youden index [J] is given by
equation

J =Maxc(Sensitivityc + Specificityc − 1) (3.7)

where, c is the discrimination threshold. The maximum value of the Youden
index is 1, which is a perfect test, and the minimum value is 0 when the test has
no predictive value. The minimum occurs when Sensitivity = 1 − Specificity,
i.e., represented by the equal line in the ROC curve. The optimal outcome of a
classifier is when both sensitivity and specificity are 1. “The point representing this
combination will be in the upper left corner of the ROC curve. The closer a ROC
curve is to this ideal situation, the better the classifier performs, given that both
sensitivity and specificity are of equal importance” [83].

While, the Youden index balances sensitivity and specificity, the F1 score
balances sensitivity and PPV. In our work, we use the Youden index as a guide
to determine the optimal discrimination threshold while striving to achieve the
maximum sensitivity. Given that we are interested in sensitivity, specificity,
and PPV, it would be interesting to see how they vary as a function of the
discrimination threshold. As such, we also see how these scores vary with the
discrimination threshold as an additional guideline for selecting an optimal value.
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CHAPTER 4

CASE STUDY: MERCARI PRICE SUGGESTION

To showcase the potential of leveraging both structured and unstructured data,
we start with a case study involving a task from the consumer market domain.
It is important to note that while our inspiration for this work comes from the
healthcare domain, we want to demonstrate the generalizability of our framework
by applying it to a non-healthcare domain.

We use a Kaggle 1 dataset that was published as part of a competition and
contains both structured and unstructured data. The dataset belongs to a company
Mercari and is available as part of the Mercari Price Suggestion Challenge. Mercari
is Japan’s biggest community-powered shopping app. Sellers post items that they
want to sell along with an asking price. Mercari offers pricing suggestions to them.
The objective of this task is to build a model that automatically suggests the right
item prices based on input data. Throughout this chapter, we refer to this dataset
as the Mercari dataset.

4.1 Mercari Dataset
The dataset provided by Mercari for this task is available for download from

the Kaggle website. The dataset is provided in two tab-separated files. One is the
training set and consists of all input data along with the price of the item which is
the dependent variable. Another file is the testing set that contains only the input
data and does not include the price of the items.

This dataset contains both structured and unstructured data. Structured data
contains categorical variables. Categorical variables represent a category usually
expressed as strings in the data which has to be preprocessed so that it can be used
by the model. Table 4-1 provides an overview of the dataset.

1https://www.kaggle.com/
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Table 4-1. Overview of the Mercari Dataset

Name Cardinality Missing Details (from Kaggle)
train_id N/A 0 The ID of the listing
name N/A 0 The title of the listing.

item_condition_id 5 0 The condition of the items
provided by the seller

category_name 1287 6327 Category of the listing
brand_name 4809 632682 N/A
shipping 2 0 1 if shipping fee is paid by seller

and 0 by buyer
item_description N/A 4 The full description of the item.

price N/A 0 The price that the item was sold
for. This is the target variable
that you will predict. The unit is
USD.

Since this is a regression problem the root mean squared logarithmic error
(RMSLE) given by equation 3.6 is the primary metric to evaluate the model. We
repeat it here for convenience,

ε =

√
1

n

∑
(log(pi + 1)− log(ai + 1))2 (4.1)

where,

• ε is the RMSLE value (score)

• n is the total number of observations in the dataset

• pi is the price predicted by the model for item i

• ai is the actual sale price of item i

• log(x) is the natural logarithm of x

In order to evaluate our model on the test set, we upload our code (also known
as a kernel) to the Kaggle server and commit it. This runs our code directly on the
server and outputs a prediction file. This prediction file is then scored according to
the RMSLE and a final score is provided.
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While we are interested in the performance of our model in the held-out test set,
we also want to evaluate statistically the performance of the model over multiple
iterations of the training set. Thus, in addition to providing the RMSLE of the
model on the held-out test set, we also provide the average RMSLE of the model
over 100 iterations of the training and validation set split with an 85%-15% split.

4.2 Data Exploration and Preprocessing
In order to understand the dataset, we perform explanatory data analysis on

each variable. Note that for those analyses which depend on the price of an item,
we can only use the training set as the testing set does not contain the price
variable. For those analyses which do not depend on the price of the item, all
details reported were based on the entire available dataset including the training
and testing datasets.

We also need to preprocess the data in order for it to be used by the model. We
report the preprocessing of the variables as we explore it.

4.2.1 Price
This is the target variable that must be predicted by our model. The price is

listed in USD. Mercari does not allow postings less than $3 and there only 3 values
that are over $2000 which are likely shipping costs. Thus we only include entries
that have prices within the $3 and $2000 range. Furthermore, since the competition
is judged based on the RMSLE, we apply a log one plus (log1p) to the target
variable. The one is added for numerical stability.

It should be noted that by doing this, our model is trained to predict a value
in the log1p range, thus to get the actual price of the item, we need to apply na
exponential minus one (expm1). Figure 4-1 shows the distribution of the prices
across all the items from the training set. We can see that most of prices fall less
than $100. As expected the log1p distribution is similar to the original distribution.

4.2.2 Shipping
Shipping can either be paid by the seller or the buyer. This value is represented

by a 0 or a 1. In case the shipping is unspecified in the dataset, we assume that
it was paid by the buyer. We found that the shipping variable was almost evenly
split across all the datasets. Shipping was paid by the seller for about 55.2% items
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Figure 4-1. Price distribution of the items: (Left)
Price value in USD. (Right) Log 1 plus of price value

and was paid by the buyer for about 44.8% items. In general, the average price
paid by the users who have to pay for shipping fees is lower than those that do
not require an additional shipping cost. This can be seen in figure 4-2 and matches
our perception that the sellers need a lower price to compensate for the additional
shipping cost.

4.2.3 Item Category
Item categories are represented as strings and include a main category and two

sub-categories separated by a backward slash. For example the string
Beauty/Makeup/Face or Lips has Beauty as the main category and Makeup and
Face or Lips as subcategories. During our preprocessing, we split the item category
into main_cat, sub_cat1, and sub_cat2. If any item category is missing, we just
replace them with a string “missing“ to indicate it.

There are 1287 unique item categories which include 11 main categories, 114
first subcategory and, 905 second subcategory. Figures 4-3, 4-4, and 4-5 show the
distribution of the main category and top 15 of the first and second subcategories
respectively across all items. We can see that most of the items belong to the main
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Figure 4-2. Price distribution of the items grouped by shipping

category Women thus being skewed to the left, while both the subcategories are
more diversely distributed across a range of categories.

In order to convert categorical variables into numerical features, we used mean
target encoding. Mean target encoding uses the target variable as the bases to
generate the new encoded feature. In other words, mean target encoding represents
the probability of the target variable, conditional on each value of the feature. This
is done by assigning a value for a categorical variable that is a function of the mean
of the target variable for that category. For more details about how mean target
encoding is applied to this dataset, please refer to listing A.1 and A.2 in appendix
A. All the categories are converted to numerical values using this method.

4.2.4 Brand Name
Brand names are given as strings and there are 6312 unique brand names across

all items. The training dataset has only 4791 unique brands indicating that there
are unseen brands in the testing sets. For items with no brand names, we replace it
with the string “missing“ to indicate it. Figure 4-6 shows the distribution of the top
15 brands across all items. It is clear that brands that are not available or missing
account for a large percentage of brand category. The brand name is a categorical
variable and is encoded into a numerical value using mean target encoding. It is
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Figure 4-3. Distribution of main category across all items

Figure 4-4. Distribution of the top 15 first subcategories across all items
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Figure 4-5. Distribution of the top 15 second subcategories across all items

clear that brands that are not available or missing account for a large percentage of
brand category.

4.2.5 Item Name and Description
Item names and descriptions are user input text and are treated as unstructured

data. For simplicity, item names and descriptions are concatenated together.
Missing names or descriptions are replaced by empty strings. Figure 4-7 shows
the distribution of the item description length across all items. As expected the
majority of item descriptions are short, running less than 30 characters long.

In order to vectorize the item description, we applied a bi-gram TF-IDF
vectorizer [69] provided by the Scikit-Learn library [71]. We used a maximum
vocabulary size of 60000. It is important to note that, we did not perform
commonly used preprocessing such as removing punctuations or replacing words
with their lemmas. Our experiments showed that using raw data gave better
performance.
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Figure 4-6. Distribution of the top 15 brands across all items
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Figure 4-7. Distribution of the item description length across all items
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4.3 Results
We built a gradient boosting model [74] using the LightGBM [75] software

library. We used the training dataset to split it into a training and validation set
with an 85%-15% split. We used this training subset for training our model and the
validation set to evaluate the model’s performance and to perform cross-validation
to tune the hyperparameters of the model. Please refer to listing appendix section
A.3 for model details.

Once we chose the hyperparameters, we ran 10 iterations where we used a
distinct seed to split the data into a training set and test set, built models on the
training set, and obtained the RMSLE on the test set. We did this for 3 subsets of
the data, one using only structured data, one using only unstructured data, and one
using both structured and unstructured data. The average RMSLE out of the 10
iterations for each type of data is shown in figure 4-8 as a point plot.

A word cloud of all the tokens that the model thinks are important and the
feature importance of the structured data relative to the most important feature
is shown in figures 4-9 and 4-10 respectively.

4.4 Discussion
We notice that using only the structured data gives us an average RMSLE of

0.541 over 10 iterations. However, using only the unstructured data decreases
the RMSLE by over 13% to 0.469. This shows that the information held in
unstructured free text is valuable and adding it to the structured data could
enhance model performance. This is demonstrated by the fact that by using both
types of data we are able to get an RMSLE of 0.439 which is over 20% less than
using only structured data and 8.5% less than using only unstructured data. These
results indicate the potential of integrating multimodal data in increasing model
performance.

Figure 4-10 indicates that brand_name is the most important feature to the
model. This is reinforced by the word cloud where phrases such as lularoe and
lululemon are rated as important which are top-rated brands of clothes. Despite the
majority of the items having the brand name as unavailable or missing, we can see
brand names is a very important factor to determine the price of the time, which
is both supported by the relative feature importance given to them by the model
in both the structured data and the item description. It is important to note that
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analyzing word clouds and feature importances are an informal and non-scientific
way to understand what the model thinks is important.

To conclude, in this case study we were able to use our pipeline in a consumer
market domain to explore the potential of integrating multimodal data and how it
can affect machine learning model performance. Furthermore, the generalizability
of the pipeline will be emphasized when we apply it to a medical domain in the
upcoming chapters.

Figure 4-9. Word Cloud of the top 500 tokens produced by the model
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CHAPTER 5

CASE STUDY: PREDICTING IMMINENT ICU
ADMISSION USING MIMIC DATASET

In this chapter, we switch gears from the consumer market domain to the
healthcare domain in applying our pipeline for building ML models integrating
multimodal data. Compared to the previous task, healthcare data is more
complicated as there is a distinct time component. Specifically, a patient’s status is
heavily dependent on their medical history, which has to be accounted for while
building ML models for a particular task.

5.1 Imminent ICU Admission Prediction
Critically ill patients requiring acute care management are admitted to the

Intensive Care Unit (ICU). A myriad of parallel processes occurs well before
the patient is admitted to the ICU. Each of these processes generates significant
volumes of data, namely a variety of records usually consisting of vital signs
recordings, any laboratory values, and the clinical staff assessments, recorded as
unstructured text which, in turn, informs further clinical decision making. The
evidence-informed decision making involved in the admission of a critically ill
patient to the ICU can be dynamic and complex.

Recent data, however, has indicated that most patients experience delays in
ICU admission [85], [86]. Indeed, for hospitalized patients who rapidly deteriorate,
slow transfers to the ICU has been associated with increased risk of death, cost,
and such patients were less likely to receive physician bed-side evaluation within 3-
hours of documented deterioration [87]. Delayed patients were also found to have
a greater requirement for advanced respiratory support, often experiencing longer
ventilator days [88]. Each hour of delay in the ICU admission was associated with
a 1.5% increase in the risk of ICU death [89]. Therefore, earlier identification of
patients who meet criteria for admission to the ICU may reduce the likelihood of
death, costs, and improve long term patient outcomes. The use of unstructured
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data may identify novel features of deterioration that complement clinical intuition
at the bedside.

Clinical notes constitute the majority of unstructured data. These are written
by healthcare providers during patient visits. The clinical language in these notes
reflects the medical status of the patient. Natural language processing (NLP)
enable terms in notes to be included in models [90]. Traditional indicators of ICU
admission related tasks have largely been physiological indicators [91] or clinical
observations [92]. Common laboratory test results have been used to predict
imminent emergency team calls and ICU admission, ICU readmission [93], or
death [94]. Severity scores such as quick Sepsis-related Organ Failure Assessment
(qSOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) II
have also been used to predict ICU admission in patients with clinically diagnosed
infection [85], [95], [96]. While most of the data used in these studies are part of
the structured data stream [86], [97], there is less known about the use of clinical
notes for predicting imminent ICU admissions. Clinical notes, however, have
been effectively used in compliment tasks to imminent ICU admission prediction,
although they have been used for tasks that occur after ICU admissions such as
[40], [98], [99], and prolonged length of stay prediction [100].

Following the same structure as the previous task, in this work, we use both
structured data in the form of vital signs measurements taken for the patients,
as well as unstructured data in the form of clinical notes that were recorded by
healthcare professionals to predict whether the patient is likely to be admitted to
the ICU in the next 24-48 hours. Specifically, we define imminent ICU admission as
a condition that may require an ICU admission in the next 24-48 hours.

5.2 MIMIC Dataset
Medical Information Mart for Intensive Care version 31(MIMIC-III) [48] is a

large, single-center database comprising information relating to patients admitted
to critical care units (ICU) at Beth Israel Deaconess Medical Center in Boston,
Massachusetts. It contains data associated with 58,976 distinct hospital encounters
for 46,520 patients admitted to critical care units between 2001 and 2012. MIMIC
III has been used as a research dataset for a wide variety of clinical tasks including

1https://mimic.physionet.org/
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predicting length of stay [101], [102], mortality prediction [47], [49], [103], [104] and
clinical time series analysis [105]–[107].

The dataset is stored in a relational database consisting of 26 tables with
information regarding admissions, discharges, patients, procedures, prescriptions,
and diagnosis (table 4 of [48]). Information about associated code can be found
in [108] and is available in Github2. The dataset contains both structured and
unstructured data. Structured data includes information such as patient vitals,
chemical levels, and lab test results. Clinical notes grouped by categories written
by nurses, physicians, and other healthcare personal account for unstructured data.
We will refer to this dataset as the MIMIC dataset.

In this chapter, using the MIMIC dataset, we determine whether the health
of a patient admitted to a hospital has deteriorated to an extent that requires
immediate ICU admission. In particular, we perform 3 different experiments.
First, we use only structured data (vitals) to build ML models, then we use
unstructured data (clinical notes), and finally, we integrate both these types of
data and feed in the multimodal data to build a classifier to predict the same task.
By comparing the performances of the models across a wide range of metrics over
different iterations, we are able to demonstrate the strength and potential of using
multimodal data to build predictive models.

5.3 Data Setup
We start by defining certain terminologies. An encounter for a patient is defined

as any situation where the patient visits a hospital. The patient may stay at the
hospital for many days and have data gathered about their stays such as clinical
notes, vital signs, and lab results, etc at multiple times. All these belong to the
same encounter. Each unique encounter contains details about a single patient. An
encounter is the basic unit of the identity of the data, and all subsets (including
training and testing sets) are partitioned according to encounters.

During a single encounter, the patient may have to be admitted to the ICU. This
is known as an ICU admission. There may be multiple ICU admissions during a
single encounter, however, for this work, we only consider the first ICU admission
of an encounter.

2https://github.com/MIT-LCP/mimic-code
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5.3.1 Data Labeling
In order to obtain a labeled dataset for our task, we partition the time between

hospital encounter and first ICU admission and label each partition. In particular,
we consider the time of ICU admission as time t = 0 days. All data recorded
24 hours prior to the ICU admission is discarded. This is because our objective
is to predict whether there is imminent ICU admission in the next 24-48 hours.
The data recorded between time −3 ≤ t ≤ −1 days belong to the positive class
pertaining to an imminent ICU admission. Next, the data recorded between time
−5 ≤ t ≤ −3 days are discarded due to potential data leakage between the two
classes. Finally, all the data recorded before −5 ≤ t ≤ −15 days belong to the
negative class pertaining to delayed ICU admission. Figure 5-1, shows an overview
of how the data is labeled.

5.3.2 Data Filtering
In order to form a cohort for our tasks, we applied exclusions on the patients,

encounters, and the notes.

Figure 5-2 shows a flow chart of the filtering process. We only include patients
who are older than 15 years and exclude those encounters that occur within 30 days
for the same patient. This is because, if a patient gets admitted to the hospital
within 30 days, the likelihood of the second admission being due to the same
problem as the first admission is higher. Since we want our models to generalize
over a wide array of medical problems, we have decided to exclude hospital
encounters that occurred within 30 days of the previous encounter, since it is likely
that the new encounter might be for the same medical problem.

Figure 5-1. Timeline showing data labeling recorded
between hospital encounter and first ICU admission
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MIMIC Dataset
# Encounters = 57,398, # Patients = 46,098, # Rows = 2,121,379

Exclude
1. Patients whose age at admission is less than 15 years

2. Encounters of same patients that happened within 30 days

# Encounters = 47,060, # Patients = 38,351, # Rows = 1,097,129

Exclude
All data recorded after the first ICU admission

# Encounters = 12,947, # Patients = 11,874, # Rows = 78,530

Process
1. Remove duplicate data

2. Merge data taken at the same time for the same encounter

# Encounters = 12,923, # Patients = 11,874 , # Rows = 64,761

Imminent ICU Admission
Label 1

# Rows = 9,424

Delayed ICU Admission
Label 0

# Rows = 28,677
Unused

# Rows = 26,660

Figure 5-2. Flow chart of how the data is filtered
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As mentioned earlier, we are only interested in predicting whether there is an
imminent ICU admission for the first ICU admission. Thus all the data recorded
after the first ICU admission is irrelevant, which can be excluded. Finally, we
found out there were some duplicate data recorded for patients and some data
recorded at the same time for the same encounter. This is mainly true for clinical
notes. The duplicate data were removed and the data taken at the same time were
either merged or discarded depending on the type of data. In order to compare
performances between different subsets of the entire datasets corresponding to the
subset of data use, we created 3 different data subsets for building the models.
These are called structured, unstructured, and multimodal data respectively
corresponding to the type of data utilized by the models.

5.4 Data Exploration
We do some preliminary explanatory data analysis to explore the data. One

of the important characters of text, in general, is its length. Figure 5-3 shows a
histogram of the length of notes in characters. We can see that the majority of the
notes are less than 2000 characters in length.

Our data labeling involves partitioning the time between note record time and
ICU admission time. Figure 5-4 shows the distribution of time between note record
time and ICU admission time. We can see that most of the notes were recorded
within 10 days prior to ICU admission.

We represent this same data in a different view in figure 5-5. This figure shows
the distribution of notes as a function of time to ICU admission. We can see
that the majority of the notes were recorded within 24 hours prior to the ICU
admission. This is not surprising as the health of patients deteriorates and they are
being treated more aggressively, more data about their medical state is recorded.
These notes are not used for modeling giving the model the ability to detect and
predict the language showing health deterioration.

We also note that a significant amount of data was recorded prior to over 15
days before ICU admission. Please note that all those notes were not charted
during a single day but over a period of time. We chose to clump them together
at the 15-day mark for this graphic.
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Figure 5-3. Histogram of Note Length
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Finally, figure 5-6 shows the histogram of notes by the class label. Note that the
Unused label pertains to those notes that fall outside the boundaries of the time
limits we defined. These notes will not be included in building the model.

As noted earlier, we exclude data that were recorded in certain time limits.
Specifically, data recorded 1 day prior to ICU admission and between 3 to 5 days
prior to ICU admission are not included during modeling due to potential data
leakage. Consequently, encounters that have data only in this time frame are
discarded. Table 5-1 shows the characteristics of this cohort.
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Figure 5-4. Histogram of time between note record time and ICU admission time
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Figure 5-6. Histogram of notes by class label

5.5 Data Processing
In this section, we describe how different subsets of the data are processed.

Specifically, we have 3 different processing paradigms that are enacted to this data,
one each for the type of data subset.

5.5.1 Structured Data
Structured data can be in the form of category variables or real values. In this

work, we include those structured variables that are represented only by real values,
although the approach is easily extendable to other types of structured data. While
there are many different structured variables that are routinely collected about
the patient in terms of physiological indicators and clinical observations, for this
work, we focus on the vital signs that were recorded for the patient as part of the
structured data. Table 5-2 shows a description of the these variables.

Since healthcare data is predominantly time-based and there is a chance that not
all of the variables are taken at the same time. This leads to a lot of missing data.
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Table 5-1. Characteristics of the MIMIC cohort excluding unused notes

Characteristics Value
Patients 5,289
Deaths, Number (%) 2,810 (53.1)
Male, Number (%) 3,087 (58.4)
Age, mean (SD) [IQR], y 66.3 (15.9) [56.0 – 77.9]
Time to ICU admission, mean (SD) [IQR], d 19.8 (18.3) [8.8 – 24.5]

Encounter Type, Number (%) 5,451 (100)
Elective 632 (11.6)
Emergency 4,617 (84.5)
Urgent 213 (3.9)

Ethnicity, Number (%)
Asian 112 (2.1)
Black 367 (6.9)
Hispanic 166 (3.1)
Unknown 789 (14.9)
White 3,856 (72.9)

Average number of clinical notes per encounter 7.0
Clinical Note Length, mean [SD] [IQR] 2,665.2 [4,683.3] (996.0 - 2,310.0)

Clinical Note Category, Number (%) 38,101 (100)
Case Management 20 (0.1)
Consult 6 (0.0)
General 204 (0.5)
Nursing 2,897 (7.6)
Nursing/Other 13,025 (34.2)
Nutrition 291 (0.8)
Pharmacy 4 (0.0)
Physician 1,933 (5.1)
Radiology 18,438 (48.4)
Rehab Services 155 (0.4)
Respiratory 1,081 (2.8)
Social Work 57 (0.1)
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Table 5-2. Vital Signs

Variable Description (units)
HR Heart rate (beats per minute)

O2Sat Pulse Oximetry (%)
Temp Temperature (Deg C)
SBP Systolic BP (mm Hg)
MAP Mean arterial pressure (mm Hg)
DBP Diastolic BP (mm Hg)
Resp Respiration Rate (breaths per minute)

Glucose Serum glucose (mg/dL)

These are processed using standard data science techniques. In particular, for each
encounter, missing data for each variable is forward-filled i.e., subsequent missing
values are replaced with the latest recorded value. In case there are missing values
for any variable before their first value, they are replaced by the population median
which is standard for healthcare data.

In addition to the values of the structured variables, we also included change
statistics of the variables over the last 24 hour period. Change statistics tracks
how each variable changes and enable the model to track patient dynamics. For
our work, we used the following 5 statistics: minimum, mean, median, standard
deviation, and maximum. Thus each variable recorded at a particular time was
accompanied by 5 additional values indicating how the variable had changed over
the past 24 hours. In total, we have 8 vital sign data along with 5 change statistics
for each variable for a total of 40 variables as part of structured data.

5.5.2 Unstructured Data
Unstructured data is composed of clinical notes written by healthcare

professionals after examining a patient. It is important to note that, since these are
hand-written notes their frequency is far less than those of structured data, which
are often recorded by machines and are more frequently sampled.

Processing text involves two steps. First, the text is split into individual tokens
in a process called tokenization. The tokens can consist of single words or multi-
word phrases. These tokens are then converted to numbers in a process called
vectroization. For this work, we used a simple whitespace bigram tokenizer. Here,
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we just split the tokens based on whitespace separation, and each token can consist
of up to two words. This method is very simple to implement. We then used the
TF-IDF vectorizer to vectorize the notes with a maximum vocabulary of 60,000
tokens. We also tried more advanced techniques of tokenization and vectorization,
but a simple whitespace tokenizer gave us the best performance on the end model.

5.5.3 Multimodal Data Integration
Individual subsets that we have seen are unimodal in nature i.e., they only

contain the same type of data. However, when we integrate different data
modalities, we get multimodal data. However, integrating these structured and
unstructured data, in this case, poses a significant challenge.

Both the vital signs data and clinical notes are sampled at different frequencies
and have different time intervals between each sample. Our objective is to preserve
as much information from both the data sources as possible while integrating them
and preparing them in a way that can be used to build ML models.

As an example, figure 5-7 shows how the different types of data are recorded in a
typical encounter. The document icon represents clinical notes, while the geometric
shapes represent different vital signs. As we can see, we have data that is collected
at different frequencies, and within the same type of data, the time intervals are
vastly different.

We are trying to solve the problem of how to integrate both these data sources
into one input data that can be used to train our ML models. There are a couple
of different approaches we can take to solve this problem. One approach is to

Figure 5-7. Example illustrating the complexity of integrating multimodal data
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retain all the structured data. For this approach, we would need to impute all the
unstructured data which can either be done by filling in empty strings for missing
notes or by forward filling missing notes. However, both of these approaches
resulted in very bad performances. When missing notes are replaced with empty
strings, it resulted in a very sparse input data source. Furthermore, adding a lot
of empty strings as clinical notes changed the distribution of data decreasing the
prevalence of the positive class and artificially inflating the importance of the
structured data. On the other hand, forward filling clinical notes resulted in very
large feature space as clinical notes are dense and packed with information with a
60,000 dimension feature representation.

We believe that unstructured data holds more vital information than structured,
thus we were willing to compromise on structured data if we could gather all the
clinical notes. In order to accomplish this, we used the time each clinical note
was recorded as pivot point. In particular, at this time point, we gather the latest
value of the vital signs data along with their corresponding change statistics in
addition to the clinical note data. In this way, the latest value of the vital signs we
get access to is the latest status of the patient. Furthermore, through the change
statistics, we get an idea of how the patient medical history has changed over the
last 24 hours. Finally, the clinical note provides a doctor’s viewpoint of the patient
status that may include both history and current status.

For each encounter, we collect all the data for that encounter and merge them
according to the technique described above. This is a novel way of combining
structured and unstructured data that are sampled at different frequencies
and which have different time intervals between previously recorded data. By
integrating both these two types of data into an input source, we are able to
build ML models that can utilize the maximum amount of information about an
encounter to classifier whether the patient’s status has deteriorated to such an
extent that the patient has to be admitted to the ICU.

5.6 Model Development
We built 3 models for this task: logistic regression (LR), random forests (RF),

and gradient boosting machines (GBM). We used the algorithms for building the
models and for evaluating the models iterating over 100 splits between training and
test sets. For the model parameters please see appendix B.
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Figure 5-8. Youden Index variation for gradient
boosting machines model across discrimination thresholds
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Figure 5-9. Performance metrics variation for gradient
boosting machines model across discrimination thresholds
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We used the Youden index to select an optimal discrimination threshold, for all
the models. As part of selecting this threshold we plotted the value of the Youden
index as the threshold was varied from 0 to 1 for each model and each data subset.
As an example, figures 5-8 and 5-9 show how the Youden index and the sensitivity,
specificity, and PPV vary as the threshold changes from 0 to 1 for all three subsets
of data using the gradient boosting machine (GBM) model. We can see that there
is some instability for higher thresholds when using only structured data, while
when using either unstructured or multimodal data, the plots are similar. This
indicates that the model seems to extract more discriminatory information from
the unstructured data. Please see appendix B for figures indicating the variation of
Youden index and metrics for all models using all subsets of data.

In addition to the 3 models described above, we also built prediction ensembles
of combinations of the three models where we aggregate the predictions made
by the three models using an ensembling strategy. In particular, we use two
different methods of ensembling: average and maximum. For average ensembling,
the probabilities of the positive class predicted by each model, along with their
discrimination threshold are averaged and used to get the final predictions.
Similarly, for maximum ensembling, we take the maximum of the probability by
each model, along with the maximum discrimination threshold and use it to get
the final predictions. Average ensembling is done for each pair of models while
maximum ensembling is done across all 3 models.

5.7 Results
The prevalence of the positive class in this dataset is 24.7%. The prevalence was

maintained during splitting the data in a training set and a testing set.

Figures 5-10, 5-11, 5-12, and 5-13 shows the sensitivity, specificity, PPV, and
AUC respectively results for all models over 100 iterations of different partitions of
the test set. The figures show the box plot for using structured, unstructured, and
multimodal data.
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Figure 5-10. Sensitivity Results of all models using different subsets of data
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Figure 5-11. Specificity Results of all models using different subsets of data
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Figure 5-12. PPV Results of all models using different subsets of data
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Figure 5-14. Mean ROC curve for the best models

Figure 5-14, shows the mean ROC curve of the best performing model over 100
trials using all modes of data. The mean ROC curves for all models using all modes
of data is shown in appendix B. Please also refer to the appendix for the mean
confusion matrices for this task for all the models.

Figures 5-15 and 5-16 show the feature importances of the structured and
unstructured data respectively. This is an informal way of peaking into what the
model thinks are important features in determining imminent ICU admission.
Tables 5-3, 5-4, and 5-5 shows the performance metrics of all the models over 100
iterations using structured, unstructured, and multimodal data respectively.
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Figure 5-15. Feature importance relative to the most important feature

61



62

Top Tokens

30Figure 5-16. Word Cloud of the top 500 tokens produced by the model



63

Table 5-3. Performance results of models using structured data

Metrics (95% CI) Sensitivity Specificity PPV AUC

LR 71.6 (71.1 - 72.2) 55.8 (54.9 - 56.8) 32.1 (31.5 - 32.6) 67.9 (67.4 - 68.4)

RF 70.1 (69.6 - 70.6) 58.5 (57.8 - 59.3) 32.9 (32.4 - 33.5) 69.2 (68.7 - 69.7)

GBM 71.2 (70.7 - 71.7) 57.4 (56.6 - 58.3) 32.7 (32.2 - 33.2) 70.8 (70.4 - 71.2)

AVG-LR-RF 72.1 (71.6 - 72.6) 56.1 (55.3 - 56.9) 32.3 (31.8 - 32.8) 69.9 (69.4 - 70.4)

AVG-LR-GBM 71.9 (71.3 - 72.4) 56.9 (56.0 - 57.8) 32.6 (32.1 - 33.2) 70.9 (70.5 - 71.3)

AVG-RF-GBM 71.5 (71.0 - 72.0) 57.1 (56.4 - 57.9) 32.7 (32.1 - 33.2) 70.2 (69.8 - 70.7)

AVG-ALL 72.3 (71.8 - 72.8) 56.5 (55.7 - 57.3) 32.6 (32.0 - 33.1) 70.6 (70.2 - 71.1)

MAX-ALL 78.8 (78.36 - 79.3) 49.5 (48.5 - 50.4) 31.2 (30.7 - 31.7) 39.4 (69.0 - 69.9)
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Table 5-4. Performance results of models using unstructured data

Metrics (95% CI) Sensitivity Specificity PPV AUC

LR 80.2 (79.8 - 80.6) 58.3 (57.6 - 58.9) 35.8 (35.4 - 36.1) 76.3 (76.0 - 76.6)

RF 79.1 (78.7 - 79.6) 59.4 (58.8 - 59.9) 36.1 (35.7 - 36.4) 76.0 (75.7 - 76.3)

GBM 79.2 (78.8 - 79.6) 60.2 (59.6 - 60.8) 36.6 (36.2 - 36.9) 76.6 (76.3 - 77.0)

AVG-LR-RF 81.0 (80.6 - 81.4) 58.4 (57.8 - 59.0) 36.1 (35.7 - 36.4) 76.9 (76.6 - 77.2)

AVG-LR-GBM 80.9 (80.5 - 81.3) 59.2 (58.6 - 59.8) 36.5 (36.1 - 36.8) 77.2 (76.9 - 77.6)

AVG-RF-GBM 79.8 (79.5 - 80.2) 60.0 (59.4 - 60.6) 36.6 (36.3 - 37.0) 76.9 (76.6 - 77.2)

AVG-ALL 81.0 (80.6 - 81.4) 59.1 (58.5 - 59.7) 36.4 (36.1 - 36.8) 77.3 (77.0 - 77.6)

MAX-ALL 83.7 (83.3 - 84.1) 55.4 (54.8 - 56.1) 35.2 (34.9 - 35.6) 76.9 (76.6 - 77.3)
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Table 5-5. Performance results of models using multimodal data

Metrics (95% CI) Sensitivity Specificity PPV AUC

LR 80.3 (79.9 - 80.8) 59.7 (59.0 - 60.4) 36.6 (36.3 - 37.0) 76.8 (76.4 - 77.1)

RF 78.7 (78.3 - 79.2) 62.1 (61.6 - 62.7) 37.6 (37.3 - 38.0) 77.0 (76.6 - 77.3)

GBM 80.2 (79.8 - 80.7) 60.7 (60.1 - 61.3) 37.2 (36.8 - 37.5) 77.5 (77.1 - 77.8)

AVG-LR-RF 81.2 (80.8 - 81.6) 60.2 (59.5 - 60.8) 37.1 (36.8 - 37.5) 77.7 (77.3 - 78.0)

AVG-LR-GBM 81.5 (81.1 - 82.0) 60.2 (59.5 - 60.9) 37.3 (36.9 - 37.6) 78.0 (77.7 - 77.6)

AVG-RF-GBM 80.4 (80.0 - 80.9) 61.3 (60.7 - 61.9) 37.6 (37.2 - 37.9) 77.8 (77.4 - 78.1)

AVG-ALL 81.6 (81.1 - 82.0) 60.5 (59.9 - 61.2) 37.5 (37.1 - 37.8) 78.1 (77.8 - 78.4)

MAX-ALL 86.4 (86.0 - 86.8) 53.2 (52.5 - 53.9) 34.9 (34.5 - 35.2) 77.6 (77.2 - 77.9)



5.8 Discussion
Our objective is to integrate multimodal data that consists of both structured

and unstructured data and build machine learning models and evaluate them to
see how augmenting unstructured data with structured data helps or hinders the
model’s performance. The results provided in the previous section give us some
interesting insights.

The first thing we notice is that the models that solely use only structured data
perform worse than those that use unstructured data or multimodal data across
all metrics. This could be due to several reasons. First, in our dataset, we noticed
that a large percentage of the structured data was recorded after the last note of a
particular encounter. Since we are using the note record time as a pivot point and
discarding data taken after the last note, we ended up with those structured data
points. Second, there are a total of 51 structured variables enabling 51 dimension
vector compared to the 60000 dimension vector representing a single clinical note.
Due to this, the unstructured data has more rich and dense information that can be
exploited by the model. Finally, currently, we only use the vital signs as part of the
structured data and do not include lab results and other types of structured EHR
data that could contain more information indicating patient status. This could
limit the scope of the contribution of structured data.

Most gains in performance are realized when using unstructured data as input.
The best performing models using unstructured data have better performances
across all metrics. In particular, we can see significant increases of 6.21% in
sensitivity, 2.9% in specificity, 11.25% in PPV, and 9.18% in AUC. This can be
attributed to the richness of the information contained in the clinical notes. We
noticed this same phenomenon in the previous chapter when we were using only
item descriptions for consumer items.

Finally, we can see that across all metrics we have increases in the best
performing models when using multimodal data. In particular, in figure 5-14, where
we can see that using both structured and unstructured data gives us the best AUC
results. While performance gains are significant when comparing the models using
only structured data to those using multimodal data, the performance gains are
only incremental when comparing against models using unstructured data. In
particular, we only get performance increases of 3.22% in sensitivity, 3.16% in
specificity, 2.73% in PPV, and 1.03% in AUC.
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Sensitivity and specificity are characteristics of the task, while PPV is the
clinical relevance of the test. More specifically, PPV is dependent on the prevalence
of the positive class, while both sensitivity and specificity are independent of the
prevalence. A model with high sensitivity is able to correctly predict imminent ICU
admission, while a model with high specificity is able to correctly predict delayed
ICU admission. A model with high PPV can be considered more trustworthy in its
prediction of imminent ICU admission. Finally, a model with a high AUC has a
better capability of distinguishing between both the classes. The trade-off between
these metrics is determined by the discrimination threshold.

Our results seem to indicate that the structured data only adds marginal value
to the model predictions. However, in a tight and complex scenario such as a
hospital ICU where patient’s lives are at stake, these small improvements may
prove important to the outcome of the patient’s medical status. We believe that we
can improve these performance gains by adding in the lab information and further
processing of clinical notes.

In order to understand which features are important to the model, we extracted
the most relevant features considered by the models for the task. While this is
an informal non-scientific way of interpreting the model’s feature importance, it
nonetheless offers some interesting insights. Figure 5-15 shows the top 20 features
sorted according to their relative importance to the most important feature. We
see that both the top two features comprise of change statistics of the respiratory
rate namely the maximum value and the standard deviation over the last 24 hours.
This is supported by evidence that respiratory rate variability is a useful predictor
of the deterioration of patients [109] which is captured by the maximum, standard
deviation, and median. Temperature and glucose variation are also significant
factors in determining potential ICU admissions.

We also plotted a word cloud of the top 500 important tokens from the clinical
notes show in figure 5-16. For the positive class we can see terms such as sepsis,
intubated, and endotracheal appearing with higher weights. Again these terms are
associated with the respiratory system which we saw earlier with the structured
data. Furthermore, most of the terms associated with the positive class have a
sense of “urgency“ in them. On the other hand, the words associated with the
negative class is indicative of a non-critical scenario.
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We developed multiple machine learning models to predict an imminent ICU
admission in the next 24-48 hours, by integrating structured and unstructured data.
Structured data were extracted from electronic health records, while unstructured
data consisted of notes written by healthcare professionals. Leveraging standard
NLP techniques such as TF-IDF vectorization, the machine learning models were
able to implicitly identify and extract clinical terms to yield good performance for
imminent ICU admission prediction task. This indicates that clinical notes can be
used to build prediction models to predict imminent ICU admission in the next 24-
48 hours. Our approach to predicting imminent ICU admission is distinct from
previous work, which primarily uses structured data such as severity scores for
predicting the admission outcome. While the performance gains might be marginal,
the results still reinforce our hypothesis that integrating multimodal data leads to
improved model performance.
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CHAPTER 6

CASE STUDY: PREDICTING IMMINENT ICU
ADMISSION USING TRANSFER LEARNING
WITH CLINICAL NOTES

The MIMIC-III dataset consists of patients admitted to critical care units.
Due to the nature of the dataset, there is an inherent bias for the imminent ICU
admission task, as most of the patients in the dataset eventually end up in the ICU.
A question that arises then is, how would a model perform on this task, when the
input data consists of patients that do not go to the ICU at all? To answer this
question, we needed a different dataset.

Methodist Le Bonheur Healthcare (MLH) is a hospital that is located in
Memphis, TN which routinely sees multiple patients with different conditions.
This dataset includes a mix of patients who do not get admitted to the ICU and
who get admitted to the ICU. Using this dataset, we try to predict an imminent
ICU admission of a patient. We call this dataset MLH datset. Currently, we only
have access to the clinical notes in this dataset and do not have access to the
structured data. As such, we want to focus on on-going work on transfer learning
with unstructured data where we train on a dataset and test on a different dataset.
In this chapter, we describe this work and preliminary results.

6.1 Data Setup & Exploration
We follow the same procedure for filtering and labeling the data as specified

in the previous chapter. The characteristics of the cohort after filtering by the
exclusion criteria are given in table 6-1.

Figure 6-1 shows the distribution of the note lengths in characters. We can see
that most of the notes are within 2000 characters. Compared to the 38,112 notes in
the MIMIC dataset, the MLH dataset has 116,400 notes.

Figure 6-2 figure shows the distribution of notes as a function of time to ICU
admission. The distribution is similar to the one shown in figure 5-5 for the MIMIC
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Table 6-1. Characteristics of MLH cohort cohort excluding unused notes

Characteristics Value
Patients 2,508
Male, No. (%) 1,276 (50.9)
Age, mean (SD) [IQR], y 61.8 (17.5) [54.0 – 74.0]
Time to ICU admission, mean (SD) [IQR], d 17.6 (20.0) [7.4 – 19.2]

Ethnicity, No (%)
Asian 12 (0.5)
Black or African American 1396 (55.7)
Other/Unknown 67 (2.7)
White 1,023 (40.8)

Average number of clinical notes per encounter 43.0
Clinical Note Length, mean [SD] [IQR] 4,333.4 [6818.0] (667.0 - 6,094.0)
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Figure 6-1. Histogram of Note Length
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dataset, in that the majority of the notes were recorded within 24 hours before the
ICU admission. This gives us the confidence that both the datasets have a similar
data distribution.
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Finally, figure 6-3 shows the histogram of notes by class label. Note that the
Unused label pertains to those notes that fall outside the boundaries of the time
limits we defined. These notes will not be included in building the model. We can
see that the dataset is highly imbalanced with the prevalence of the positive class
being only 3.4%.
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Figure 6-3. Histogram of notes by class label

6.2 Model Development
Our main focus in this chapter is transfer learning and how it can be exploited

to get performance from our models. To facilitate that, we perform three different
experiments and compare the results. First, we performed an experiment using the
clinical notes in the MLH dataset to predict imminent ICU admission. Next, we
performed two types of transfer learning: cross-testing and cross-training. Cross-
testing refers to training a model on one dataset and testing it without any further
training on another dataset, while cross-training refers to training a model on one
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dataset and then further training it on a portion of another dataset and testing it
on the remaining portion.

For this task, we chose the clinical notes in the MLH dataset as the source data
and the clinical notes in the MIMIC dataset as the target data. We chose this setup
because of two reasons: 1) the MLH dataset is far bigger than the MIMIC dataset
with more than double the number notes; 2) the MLH dataset is more diverse as
it contains patients who do not go to the ICU at all. In particular, we chose to
train on 10% on the target data for the cross-training stage of the transfer learning
experiment.

Similar to previous chapters we build 3 models: logistic regression (LR), random
forests (RF), and gradient boosting machines (GBM) and associated ensembles. For
how the Youden index and performance metrics vary across different discrimination
thresholds please see appendix C.

6.3 Results

6.3.1 Imminent ICU admission prediction using only MLH clinical notes
Figures 6-4, 6-5, 6-6, and 6-7 provide a box plot of the sensitivity, specificity,

PPV, and AUC results of all models over 100 iterations of the test subset
respectively.
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Figure 6-8 shows the mean ROC curve for all models over 100 iterations of the
test subset. Similar to the previous chapter, we plotted a word cloud identifying the
top 500 tokens that the model considered as important for both the classes. This is
shown in figure 6-9.
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Figure 6-8. Mean ROC curve for all models
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Table 6-2. Performance results of models using clinical notes from MLH dataset

Metrics (95% CI) Sensitivity Specificity PPV AUC

LR 62 (61.4 - 62.7) 69.7 (69.5 - 70) 6.7 (6.5 - 6.8) 72 (71.6 - 72.3)

RF 61.2 (60.7 - 61.7) 59.6 (59.4 - 59.8) 5 (4.9 - 5.1) 63.7 (63.4 - 64)

GBM 65.6 (65 - 66.3) 66.3 (66 - 66.5) 6.3 (6.2 - 6.5) 72.1 (71.8 - 72.5)

AVG-LR-RF 64.6 (63.9 - 65.2) 67.7 (67.4 - 68) 6.5 (6.3 - 6.7) 72 (71.6 - 72.3)

AVG-LR-GBM 66.4 (65.7 - 67.1) 68.5 (68.2 - 68.8) 6.8 (6.7 - 7) 74 (73.7 - 74.4)

AVG-RF-GBM 65.7 (65.1 - 66.3) 65.1 (64.8 - 65.3) 6.1 (6 - 6.3) 70.8 (70.4 - 71.1)

AVG-ALL 67.1 (66.4 - 67.8) 67.4 (67.1 - 67.6) 6.7 (6.5 - 6.8) 73.5 (73.1 - 73.8)

MAX-ALL 75.8 (75.2 - 76.5) 57.7 (57.4 - 58) 5.9 (5.7 - 6) 73.3 (72.9 - 73.6)



Table 6-3 shows the performance metrics of the models by cross testing and cross
training.
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Table 6-3. Performance metrics of models after transfer learning from MLH dataset to MIMIC dataset

Metrics Sensitivity Specificity PPV AUC

Type of Transfer Cross Testing Cross Training Cross Testing Cross Training Cross Testing Cross Training Cross Testing Cross Training

LR 54.3 71.7 (32.04%) 61.5 62.9 (2.28%) 31.6 38.8 (22.78%) 61 74.1 (21.48%)

RF 66.5 72.6 (9.17%) 46.5 61.1 (31.4%) 29 38 (31.03%) 58.1 73.7 (26.85%)

GBM 67.3 71.6 (6.39%) 52.1 61.9 (18.81%) 31.6 38.1 (20.57%) 63.1 73.2 (16.01%)

AVG-LR-RF 57.1 72.9 (27.67%) 58.7 62.2 (5.96%) 31.2 38.8 (24.36%) 61.4 74.4 (21.17%)

AVG-LR-GBM 60.4 72.9 (20.7%) 59.1 62.4 (5.58%) 31.1 38.9 (25.08%) 60.6 74.4 (22.77%)

AVG-RF-GBM 68.2 73.1 (7.18%) 50.9 62 (21.81%) 31.3 38.7 (23.64%) 62.5 74.2 (18.72%)

AVG-ALL 62.2 73.5 (18.17%) 56.9 62.2 (9.31%) 32.1 39 (21.5%) 63.2 74.6 (18.04%)

MAX-ALL 68.9 78.2 (13.5%) 50.5 56.9 (12.67%) 31.4 37.3 (18.79%) 63.2 74.2 (17.41%)



6.4 Discussion
We built the same models from the previous chapter on the new MLH data and

measured their performance using the same metrics. Fundamentally, the MLH
dataset is different than the MIMIC dataset in three ways. First, it is a much
bigger dataset with over double the number of clinical notes compared to the
MIMIC dataset. Second, it is more diverse as it includes data of patients who do
not go to the ICU. Finally, it is a highly imbalanced dataset with the prevalence of
the positive class being only 3.4% compared to over 20% prevalence in the MIMIC
dataset.

We notice from table 6-2 that performance across all the metrics and all the
models are worse compared to the performances using the MIMIC dataset. These
could be attributed to the differences in the datasets. Second, we can see that
all the models have very poor PPV with the highest PPV of only 6.8%. This is
expected since PPV is dependent on the prevalence of the positive class. In the
case of sensitivity, the maximum ensemble has the highest value. The maximum
ensemble acts like an OR gate, where if any of the individual models have a
probability value over the discrimination threshold, the sample is classified as
positive. Since all the other models have a very low sensitivity compared to the
maximum ensemble, this indicates that each model classifies different samples as
positive resulting in a diverse set of models. This is akin to boosting many weak
learners to get a strong predictor. Despite the large imbalance, the AUC score is
in the lower 70s for all the models. This can bee seen in figure 6-7. Recall that the
AUC score is independent of the discrimination threshold and serves as an objective
metric to compare model performance. This indicates that all 3 models and their
ensembles perform similarly on different datasets.

Similar to the word cloud plotted in 5-16, we plotted a word cloud from the
models using the clinical notes in the MLH datasets shown in figure 6-9. This
is a non-scientific way of accessing what tokens the model deems important. In
the positive class, respiratory failure, pleurovac, intubated, and apcial are tokens
with high weights. Pleurovac is a type of chest drainage system which is used
in emergencies. Again we can see that these tokens induce a sense of urgency.
However, some tokens do not directly correlate to urgency such as discharge and
incision. Similarly, for the negative class, we have a lot of generic tokens that do
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not mean anything out of context. These differences could be attributed to the
diverse differences between the MIMIC and MLH datasets.

We also performed cross-testing and cross-training experiments with the clinical
notes from MLH dataset as the source and the clinical notes from the MIMIC
dataset as the target. These results are shown in table 6-3. Through cross-
training, we trained ML models on the entire MLH dataset and tested them on
the entire MIMIC dataset. Cross-testing gives us marginal performances which are
understandable due to the vase differences in the dataset. However, when we cross-
train, where we train our models on the entire MLH dataset and then further train
them on only 10% of the MIMIC dataset and test them on the remaining 90%, we
get significant improvements. In particular, we can see that we have improved the
sensitivity by 13.5%, PPV by 21.5%, and AUC by 18.04%. However, our specificity
only increases by 2.28% percent. This is due to the sensitivity specificity trade-off
and is dependent on the task. While we have not shown it here, we also performed
the same experiments with the MIMIC dataset as the source and the MLH dataset
as the target. This did not perform well owing to the differences in the dataset
since the MIMIC dataset is both smaller and homogeneous.

The significant improvements achieved by cross-training show us the power
of transfer learning where we only train on a very small portion of the target
dataset. The results shown here are only using clinical notes from the datasets.
We believe that incorporating structured data will yield better model performance.
Transfer learning is especially useful in situations where we have limited data or
data is protected due to privacy concerns. By training models on a large dataset
and training them further on a portion of a different but similar dataset, we can
transfer knowledge effectively and help build better ML models.
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CHAPTER 7

CONCLUSIONS & FUTURE WORK

Our objective in this research is to build a generalized machine learning pipeline
that can integrate multimodal data and build models for various downstream
tasks. We showed generalizability by applying our pipeline to different domains.
We showed the potential of multimodal data by combining both structured and
unstructured data and demonstrated how this led to increased model performance.

We first showed the potential of integrating structured and unstructured in a
consumer market environment. We applied our pipeline to predict the potential
price of an item given its characteristics through structured variables and user-
defined item descriptions which served as unstructured data. We showed by
using both structured and unstructured data we were able to get performance
improvements over 8%.

We then switched gears to the healthcare domain to showcase the
generalizability of the pipeline. We tackled the very important problem of
predicting an imminent ICU admission, where we build ML models to determine
whether a patient’s health has deteriorated to an extent that warrants an ICU
admission in the next 24-48 hours. We used two different medical datasets for this
task: MIMIC dataset that is publicly available and MLH dataset that is from a
private hospital.

We used both structured data in terms of vital signs and unstructured data in
terms of clinical notes written by healthcare providers from the MIMIC dataset
to build models. The healthcare domain presented new challenges in terms of
the complexity of the data. We had data that was taken at different frequencies
and had different time intervals between them. We presented a novel approach to
integrating structured and unstructured data taken at different time intervals. In
particular, we created an integration framework that retained all the information
from clinical notes while capturing patient status informed through structured data
by using change statistics taken over the last 24 hour period.
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We performed extensive experiments using structured data, unstructured
data, and multimodal data. We build 3 different models each offering different
capabilities from the linear logistic regression to the complex gradient boosting
machines. We also built ensemble models that could combine the individual models
in a very simple manner. Our results indicated that by integrating both structured
and unstructured data we were able to achieve better model performance across a
wide range of metrics.

We also showed how transfer learning could assist in situations where we have a
dearth of data. We showed two forms of transfer learning: cross-testing and cross-
training. In cross-testing, we trained our models on the clinical notes from the
MLH dataset and tested them on the clinical notes from the MIMIC dataset. In
cross-training, we trained our models using clinical notes from the MLH dataset
and then further trained them on a small portion of the MIMIC dataset and tested
them on the rest of the MIMIC dataset. We demonstrated significantly improved
performance using cross-training across all metrics and models.

We are looking at several avenues for our future work. First and foremost, as
soon as we get access to the entire MLH dataset, we want to apply our pipeline
to both the structured and unstructured data. This includes both building and
evaluating our models only on the MLH datasets and transfer learning using cross-
testing and cross-training from the MLH dataset to the MIMIC dataset. Second,
we want to add more structured variables as part of our structured data. Currently,
we have only vital signs as part of our structured data. However, we believe that
adding lab data will improve performance, as it will contain information that is
closely associated with the patient’s health. Third, we would like to perform more
advanced domain-specific processing of our unstructured data. For example, we
think that using clinical dictionaries and medical concept extraction will help
extract more pertinent information from clinical texts. Finally, we would like
to use deep learning methods and models in addition to the classical machine
learning models that we have used in this research. Deep learning has shown a
lot of promise in NLP. However, their use of multimodal data has been limited.
We believe that using deep learning in our framework would improve our task
performance.
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APPENDIX A

MERCARI PRICE SUGGESTION APPENDIX

For the training set, we gather the mean price for each categorical variable, sort
it in descending order and give each category a unique ID. Then the value of the
corresponding numeric value of the category is the proportion of its occurrence
within the dataset. For example, the brand_name categorical variable is encoded
as follows:

Listing A.1: Train Data Mean Target Encoding

brands = train_df.groupby(’brand_name’)[’price’].mean().sort_values(

ascending=False).to_frame()

brands[’id’] = brands.reset_index().index.values

brand_names = brands.index.values

train_brand_data = brands.loc[train_df[’brand_name’]]

train_df.loc[:, ’brand_val’] = train_brand_data[’id’].values/len(

brand_names)

For the test set, we do the same thing, but we use the brand indices calculated
with the training data. Any unseen brands are considered "missing".

Listing A.2: Test Data Mean Target Encoding

test_brand_data = brands.loc[test_df[’brand_name’]]

test_df.loc[:, ’brand_val’] = test_brand_data[’id’].values/len(

brand_names)

We built a gradient boosting model using LightGBM. We built two models:
1) one model that used only the item description and 2) that used the item
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description and the structured data available about the item. The parameters of
the model are as follows:

Listing A.3: GBM Model Parameters

params = {

’num_leaves’: 400,

’learning_rate’: 0.05,

’feature_fraction’: 0.9,

’bagging_fraction’: 0.7,

’bagging_freq’: 5,

’metric’: ’rmse’,

’num_threads’: 32,

’max_bin’: 32,

’objective’: ’regression’,

}

We used a 1000 iteration boost round, evaluating against the validation set to
induce early stopping if the validation error did not reduce after 10 rounds. For the
final model, we just had a 1000 iteration boost round on the entire training data.

Table A-1. RMSLE of the model with the
second test dataset as reported by Kaggle

Data RMSLE
Item description only 0.47

Item description & structured data 0.43
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APPENDIX B

PREDICTING IMMINENT ICU ADMISSION
USING MIMIC DATASET APPENDIX

Listing B.1: Model Parameters

lr_params = {

’class_weight’: ’balanced’,

}

rf_params = {

’n_estimators’: 400,

’min_samples_leaf’: 3,

’oob_score’: True,

’class_weight’: ’balanced’,

’n_jobs’: -1,

}

lgb_params = {

’objective’: ’binary’,

’metric’: ’binary_logloss’,

’is_unbalance’: True,

’learning_rate’: 0.05,

’max_bin’: 16,

’feature_fraction’: 0.5,

}
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Figure B-2. Youden Index variation across
discrimination thresholds using structured data
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Figure B-3. Youden Index variation across
discrimination thresholds using unstructured data
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Figure B-4. Youden Index variation across
discrimination thresholds using multimodal data
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Figure B-5. Performance metrics variation across discrimination
thresholds across discrimination thresholds using structured data
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(c)Gradient Boosting Machines

Figure B-6. Performance metrics variation across discrimination
thresholds across discrimination thresholds using unstructured data
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(a)Logistic Regression
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(b)Random Forests
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Figure B-7. Performance metrics variation across discrimination
thresholds across discrimination thresholds using multimodal data
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Figure B-8. Mean ROC curve for all models using structured data
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Figure B-9. Mean ROC curve for all models using unstructured data
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Figure B-10. Mean ROC curve for all models using multimodal data
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Figure B-11. Mean confusion matrix for logistic regression model using structured data
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Figure B-12. Mean confusion matrix for logistic regression model using unstructured data



115

Dela
ye

d

Im
mine

nt

Predicted label

Delayed

Imminent
Tr

ue
 la

be
l

2379 1588

225 916

Dela
ye

d

Im
mine

nt
Predicted label

Delayed

Imminent

Tr
ue

 la
be

l

0.60 0.40

0.20 0.80

250

500

750

1000

1250

1500

1750

2000

2250

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure B-13. Mean confusion matrix for logistic regression model using multimodal data
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Figure B-14. Mean confusion matrix for random forests model using structured data
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Figure B-15. Mean confusion matrix for random forests model using unstructured data
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Figure B-16. Mean confusion matrix for random forests model using multimodal data
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Figure B-17. Mean confusion matrix for gradient boosting machines model using structured data
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Figure B-18. Mean confusion matrix for gradient boosting machines model using unstructured data
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Figure B-19. Mean confusion matrix for gradient boosting machines model using multimodal data



APPENDIX C

PREDICTING IMMINENT ICU ADMISSION
USING MIMIC DATASET APPENDIX

Figure C-1 shows how the Youden index varies for the main 3 models across
different discrimination thresholds. Recall that the MLH dataset is a highly
imbalanced dataset with the prevalence of the positive class only 3.4%. We can
see that each model has drastic variations in their Youden index, thus resulting
in different optimum thresholds. This is reflected in figure C-2 which plots the
main three performance metrics across discrimination thresholds. We can see that
random forests have a very unstable PPV that shoots up towards the end with a
drastic decrease in sensitivity. Random forests are built on decision trees that are
sensitive to class imbalance.

Figures C-3, C-4, and C-5 shows the average values of the confusion matrices
across 100 iterations of the test set. In this, the true negative values do not mean
much due to the very high prevalence of the negative value. Thus, if the model
just guesses negative all the time, it will have high true negatives. GBM results in
the highest percentage of true positives which correctly identifies those in need of
imminent ICU admission in the next 24-48 hours. RF results in high false positives
which increases worker fatigue and false negatives which results in missing positive
classes.
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Figure C-1. Youden Index variation for
all models across discrimination thresholds
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Figure C-2. Performance metrics variation
for all models across discrimination thresholds
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Figure C-3. Mean confusion matrix for logistic regression
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Figure C-4. Mean confusion matrix for random forests
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Figure C-5. Mean confusion matrix for gradient boosting machines
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