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Preface 

“Without data you’re just another person with an opinion.” 

W. Edwards Deming 

While there are many fine introductory statistics books, undergraduate students often 

continue to view statistics courses negatively.  And many fear they will be unable to master the 

basic level of understanding that is essential to progress in their majors.  The present text is an 

attempt to rethink what students majoring in the behavioral sciences absolutely must learn in an 

introductory statistics course and how best to organize the presentation of this material so they can 

succeed in their chosen field of study. 

Every book is written from some perspective.  The perspective of this book is that a first 

course in applied statistics is an introduction to a form of critical thinking as much as it is an 

introduction to a series of mathematically-based procedures.  And this book emphasizes what a 

student will need to remember semesters, even years, in the future rather than focusing upon a 

cursory introduction to numerous techniques, many of which will soon be forgotten.  Finally, this 

book is designed to provide a foundation upon which students can build if they take further 

statistics or methodology courses. 

As a consequence, while this book covers many of the same topics as other texts, the 

presentation, and in some cases the content, differs in significant ways.  First, the text is organized 

to assist students in understanding the logic of statistical procedures and how these procedures are 

related to each other.  And the order the material is presented has been chosen so that students 

gain confidence in their ability to master this subject.  For instance, the mathematically less 

challenging procedures that are employed with nominal data are presented before the more 

involved procedures that are used with interval and ratio data.  And concepts build upon earlier 

material so that by the end of the book readers will have gained a clear comprehension of the goals, 

basic techniques and the limitations of statistical analysis.  Second, an aim of the text is to have the 

reader not only be exposed to fundamental concepts such as variability, but also to come to 

appreciate that these concepts re-occur in a variety of contexts.  Repetition and an emphasis upon 

the use of definitional equations enhance gaining a deeper understanding.  A third major thrust is 

that this text emphasizes the mastery of SPSS through the use of step-by-step directions and 

numerous figures, all integrated with the statistical procedures being learned.  As a result, students 

see how mastery of SPSS complements their learning of statistical procedures.  Fourth, a concerted 

effort has been made to integrate the study of statistics with numerous disciplines as well as by 

including brief historical sections and incorporating relevant quotations.  While it is unlikely that 

each of these will resonate with every reader, the goal is to present statistics in a manner that 

appeals to students with diverse backgrounds and interests. 
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The result is, I believe, a text that will assist students in appreciating the value of statistical 

analyses as well as mastering a set of commonly employed statistical procedures.  By following a 

logical progression of topics, focusing upon just the statistical concepts and procedures that are 

absolutely indispensable for students to master, and presenting the material in an easy to read 

manner, this text is enhancing the success of my students.  And many actually come to enjoy the 

material.   
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Chapter 1 
Why You Need To Understand Statistical Reasoning  

 

“Few things mislead us more than failure to grasp simple statistical principles.” 

Sharon Begley 

Introduction 
 

Statistics is a general term that has a number of meanings and uses.  For instance, statistics 

can refer to a variety of procedures that have been found to be helpful, even essential, in fields such 

as psychology, economics, sociology, and political science, as well as many others.  In addition, 

newspapers are filled with statistical summaries.  Politicians turn to statistics for support of their 

policies as well as to attack their opponents.  And what would sports be without statistical 

analyses?  Our high standard of living would not be possible without the use of statistics in business 

and finance.  Our health has been immeasurably enhanced by employing statistical procedures.  

And, when we die, though it is a time of sadness and reflection for family and friends, we will 

become another statistic in census books.  You cannot avoid statistics and you should not try to.   

Statistics are useful and ubiquitous.   

Overview and Mathematics Review 
 
 Statistics is an example of a field that has had an impact far beyond what any of its early 

founders could have imagined.  Before the late 1800s there was no recognizable discipline of 

statistics.  Now, knowledge of statistical procedures is seen as essential for undergraduates 

majoring in any of the natural or social sciences, and specialized statistics courses are offered in 

most college mathematics departments.  For many careers a knowledge of statistics has become 

essential.   

 Rudimentary forms of statistical analysis began many centuries ago with empires that were 

interested in measuring trade and enhancing efficient taxation.  This use of statistics continued and 

gradually expanded.  In the 16th and 17th centuries early studies of probability provided a new 

perspective.  For example, Gerolamo Cardana (1501–1576), in the first book on probability, noted 

that if a die (singular of dice) is fair then each face will have an equal chance of occurring.  And 

Jacques Bernoulli (1654–1705) showed that the greater the number of times a die is tossed, the 

more closely the results come to the predicted probabilities.  This understanding of probability was 
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first put to practical use by wealthy aristocrats who wanted to optimize their likelihood of success 

in games of chance.  

The use of statistics continued to expand, and the knowledge of the field grew.  For instance, 

John Graunt (1620–1674) estimated the population of London based upon mortality figures in a 

1662 book entitled ‘Natural and Political Observations Upon Bills of Mortality’.  He checked his 

predictions by collecting data from three parishes, which was the first instance of representative 

sampling.  And during the late 18th century Pierre-Simon Laplace (1749-1827) described what is 

now known as the normal distribution.  Much of this text focuses upon learning to use procedures 

that are appropriate for data that are ‘normal’.  Also, William Playfair (1759-1823) introduced the 

bar chart, histogram and pie chart to summarize data.  We will be reviewing these presentations of 

data in Chapters 2 and 3.   

 The field of statistics expanded dramatically in the late 19th and early 20th centuries.  

Florence Nightingale (1820–1910), a widely known reformer, employed statistics to support her 

campaign to improve hospital care.  Francis Galton (1822–1911) introduced the concept of the 

correlation, though it was his student Karl Pearson (1857–1936) who developed the equation that 

is used to this day.  In honor of Pearson’s accomplishment, this procedure is known as the Pearson 

correlation.  You will learn about this procedure in Chapter 14.  Pearson also developed what is 

known as the chi-square (pronounced ki square) goodness-of-fit test, the topic of Chapter 7, and 

was the first to use the term ‘standard deviation’, a concept reviewed in Chapter 3.  During the same 

period, William Gosset (1876–1937) proposed the t test, a procedure covered in Chapters 9 and 10, 

to assist in making decisions based upon small samples.  At the time, Gosset worked for the 

Guinness brewery in Dublin and was prevented from publishing the procedure under his own 

name.  As a result, he published his paper using the name ‘Student’, and to this day the procedure is 

sometimes referred to as Student’s t test.  Somewhat later, Sir Ronald Fisher (1890–1962) made 

numerous contributions to the field of statistics, but he is probably most famous for his 

foundational work leading to the Analysis of Variance (ANOVA).  Much of the latter part of this book 

(Chapters 11 – 13) is devoted to describing this set of useful procedures.   

While this review of the history of statistics is obviously brief, no survey of statistics should 

omit mentioning Egon Pearson (1895-1980, the son of Karl Pearson) and Jerzy Neyman (1894-

1981).  Among their contributions are an emphasis upon Type II error and power, concepts which 

are introduced in Chapter 6, as well as a focus upon confidence intervals, which are first discussed 

in Chapter 9. 

The Definition Of Statistics 

 
 We have seen in our brief introduction that statistics have been found to be useful in a wide 

variety of fields and that there have been numerous contributors to the growth of this discipline.  
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But what, exactly, is it?  The quickest answer is to provide a definition.  A common definition 

indicates that the term statistics is used in two ways.  First, it is “the mathematics of the collection, 

organization, and interpretation of numerical data, especially the analysis of population 

characteristics by inference from sampling”.  And second, it is used as a shorthand for “numerical 

data”.  This is a complex definition.  And you may not feel that it has provided much clarification.  

This may be due to the inclusion of a number of terms that are probably somewhat familiar, but you 

may not know their precise meanings.  For instance, the above definition assumes you know the 

meaning of words such as data, population, inference and sampling.  Do not be concerned if your 

understanding of any (or even all) of these terms is somewhat ‘hazy’.  We will be reviewing the 

definitions of each of these terms, as well as many others, as we progress through the text.  We 

begin by making a fundamental distinction. 

The Two Uses Of Statistics 

 
As you will see, there are numerous statistical procedures.  Fortunately, however, each is 

used in one of two related ways.  First, they assist us in seeing the world around us more clearly.  

And, second, they are an aid in thinking more accurately.   

Seeing Clearly Can Be Harder Than It Appears  

 
We tend to be confident that we can rely upon our senses.  After all, we are able to recognize 

our friends, we can drive our cars without hitting anything, and we can tell when someone is happy 

or sad.  Unfortunately, while each of these statements is usually true, we all know that there are 

exceptions.  Sometimes we have difficulty recognizing even people we know well if we meet them 

in a novel situation.  Sometimes, due to rain, snow or fog, we cannot see well enough to drive safely.  

And sometimes we are mistaken when we try to read another person’s emotions.   

A famous example of inaccurate perception is what psychologists call the Attractiveness 

Bias – we have a tendency to attribute good qualities to attractive people and bad qualities to 

unattractive people.  This is certainly not a new situation, for the witches in folktales are always 

ugly, and the hero and heroine are attractive.  What you may not be aware of is how pervasive this 

bias is.  For instance, research has indicated that attractive defendants are less likely to be found 

guilty by a jury and, if they are convicted, they receive lighter sentences!  That is wonderful news 

for those of you who are good looking, but not helpful for the rest of us. 

Thinking Clearly is Also Harder Than It Appears 

 
Psychologists have also found that people don’t think as accurately as they suppose they do.  

For instance, when people estimate risks they frequently rely upon personal experience, and 
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especially recent news reports.  Thus, when asked which is more dangerous, taking a trip by flying 

in a plane or riding in a car, many people base their judgment on what they have heard in the news 

and respond that flying in a plane is more dangerous.  Actually, riding in a car is much more 

dangerous, but car accidents are less likely to receive spectacular coverage in the news than aircraft 

mishaps.  This is known as the Availability Bias.   

Knowledge Of Statistics Can Help You See And Think More Accurately 

 
 We have mentioned only a few examples of not seeing or thinking effectively.  Cognitive 

scientists have demonstrated many ways that we tend to make errors.  Fortunately, there are a 

variety of statistical procedures to help us see more clearly and think more accurately.  Since no one 

wants to be wrong, these are very valuable techniques indeed.   

So why aren’t you thinking statistically now?  Perhaps you never had an opportunity to 

learn to use statistics.  Then this is your lucky day!  Your study of statistics will have many rewards.  

Perhaps you have avoided learning statistics because you think that statistics are scary.  Actually 

the vast majority of students are able to master the statistical procedures covered in this text in one 

semester, and many even come to appreciate the logic of these procedures.  Of course, there are lots 

of numbers, but if you apply yourself you will do fine.  You may also fear that statistics are boring.  

However, since the procedures you will be learning will help you gain a better understanding of the 

world and the people in it, statistics will make your life more interesting, not less.   

Plan Of This Book 

 
This book is designed to assist you in using statistics, first to see more clearly and then to 

think more accurately.  Using statistics to see information more clearly is called descriptive 

statistics.  Specifically, descriptive statistics include a number of techniques that enable you to 

summarize a set of observations or numbers so they are easily understood.  In the study of 

statistics, factual information, often in the form of numbers, is called data (plural of datum).  Thus, 

the early part of this book will teach you procedures that will enable you to ‘see’ a set of data more 

accurately. 

Descriptive statistics – Techniques that are used to summarize data.  These procedures lead  

 to a better understanding of the data. 

Data (plural of datum) –  Observations or factual information, often in the form of  

 numbers. 

 

The remainder of the book will show you how to use statistical procedures to think more 

clearly about data.  This is called inferential statistics.  When you make an inference, you are 
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making a decision based upon your data.  Specifically, in the part of the book covering inferential 

statistics you will learn a set of procedures which will assist you in making better decisions.  For 

instance, you will discover how we can be confident with the conclusion that attractive people are 

treated more favorably by juries than are less attractive people.   

Inferential statistics – Techniques that are used in making decisions based upon data. 

 

Descriptive statistics and inferential statistics – that’s all there is to this book.  What could 

be simpler? 

Goal Of This Book 

 

 In life most of us find that it is a good idea to have both breadth and depth of knowledge.  It 

is important to know some area or skill well (depth), but it is also important to have some 

knowledge of many things (breadth).  For instance, in college you select a major that will provide 

you with the depth of knowledge necessary for your chosen career.  At the same time you are often 

expected to take a variety of other courses to broaden your education.  It is the goal of this book to 

introduce you to both the breadth and depth of statistics.  As with home or auto repair, you will 

need to be able to pick the right ‘tool’ among many that are available (breadth), and know how to 

use it well (depth).   

Taking One Step At A Time 

 
The techniques and logic of statistics cannot be mastered all at once.  Instead, this book is 

designed as a progressive process so that you can learn statistics in as efficient a manner as is 

possible.  It is also my goal to make this process reasonably enjoyable.  So let’s get started!!! 

Progress Check 

 
1. The two uses of statistics assist us in _____ and _____ more clearly. 

2. Using statistics to see more clearly is called _____ statistics. 

3. Using statistics to assist us in making decisions is called _____ statistics. 

Answers:  1. seeing; thinking   2. descriptive   3. inferential 

A Brief Review Of Mathematics  

 
This book’s goal is to assist you in understanding and learning how to use statistics.  Thus, 

you will be reading about a variety of procedures that have been found to be useful in a range of 

settings.  The book will not be explaining how these procedures were developed or why they take 
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the specific form that they do.  Thus this book, though mathematical, will likely have a very different 

focus from any mathematical book you have previously read.  Obviously for most people, including 

me, the manipulation of numbers is not a favorite pastime.  In fact, it is even possible that at least 

some readers may find mathematics to be aversive, and you may be concerned about the prospect 

of learning about this mathematical discipline.  If you are one of these readers you should know that 

it is a major goal of this text to alter that view.  By the end of this book you should feel a sense of 

pride in mastering an introduction to a mathematical discipline and, further, you should have 

gained an appreciation for the usefulness of this field.  You may even find that your view of 

mathematics in general has changed!   

No doubt about it, statistics is mathematical. If you leaf through the pages of this, or any, 

statistics text, you will see graphs, tables filled with numbers, and some very impressive-looking 

equations.  You may even feel intimidated.  Do not be.  You will see that the only background in 

mathematics you need is knowledge through basic algebra and the ability to use graphs.  Since your 

mathematics may be quite ‘rusty’ we will now turn to a brief review of the procedures required for 

this book.  You will probably be relieved to learn that they are quite modest. 

The Need For Math To Follow Rules 

 
Numbers are simply symbols.  They take the place of something else.  For instance, if you 

were asked how many newspapers or magazines you have read in the last year, by using 

mathematics you do not have to actually produce each of them.  Instead, you just state a number.  

Clearly, saying a number is much more convenient than carting around a load of old newspapers.  

Further, just as we can manipulate another type of symbol, the letters of the alphabet, to make 

words, we can also manipulate numbers.  In both cases, however, we must follow rules in order to 

be understood.  It would not be helpful to you if I had used my own, unique system for spelling 

when this book was written.  Similarly, it would not be helpful if each of us followed our own 

unique system for manipulating numbers.  There have to be some agreed-upon rules.  Fortunately, 

to master the material of this book there are surprisingly few mathematical rules.  However, they 

will be used repeatedly and thus it is critical that you understand them.   

Numbers frequently signify the magnitude of something.  For example, we all know that 10 

apples are more than 5 apples.  This concept of magnitude can be linked to what is called a number 

line.  A number line is simply a line upon which all possible numbers can be located.  It stretches 

from negative infinity (–∞) through 0 to positive infinity (+∞, commonly symbolized as just ∞) 

which is shown in Figure 1.1.  It should be clear that the farther to the right of 0 you go, the larger 

the positive number and the farther to the left of 0 you go, the larger the negative number.  And, for 

every possible positive number there is a corresponding negative number.  The line is, therefore, 

symmetrical.  When a pair of numbers that are identical, except for their sign, are added together, 
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the result is 0.  For instance, the sum of +7 and –7 is 0.  And with the number line it is clear that the 

result of adding +10 with –4 equals +6, or just 6.  And if you sum –7 and +3, the answer would be –

4.   

You should also remember that if you multiply or divide two positive numbers, the result is 

a positive number.  Thus, 8 X 4, which can also be written as (8)(4), equals 32, and 6 ÷ 3 equals 2.  

If you multiply or divide two negative numbers, the result is also positive.  For instance, (–3) X (–4) 

equals 12, not –12, and (–8) ÷ (–4) equals 2.  Finally, the result of multiplying or dividing one 

number that is positive and another number that is negative is a negative number.  Thus, (–3) X (2) 

is equal to –6, not 6, and (–4) ÷ (2) equals –2. 

Figure 1.1 The Number Line 

 
   ________________________________________________________ 

     –∞   0   ∞ 

  

 You also need to understand that when you square a number, you are multiplying the 

number by itself.  Thus, 7 squared, which is written 72, is equivalent to 7 X 7 which equals 49, and it 

is important for you to remember that (–4)2 equals 16, not –16.  Similarly, the square root of a 

number is the number that when multiplied by itself would equal the number with which we are 

concerned.  This course will only be dealing with the positive square roots.  Therefore, the square 

root of 49, which is written 49, is equivalent to 7.  To check this, 7 X 7 equals 49.  As we will 

frequently be squaring and finding the square root of numbers, it is essential that you have a 

calculator with these functions.  However, to use this book it is not necessary that you have a 

sophisticated statistical calculator. 

Two additional mathematical concepts that you will be using are the inequalities ‘less than’ 

and ‘greater than’.  These concepts are symbolized by < and >, respectively.  Writing X < 10 

indicates that the value of X must be less than 10.  It might be 9.99 or 0 or –20 or any other number 

less than 10.  We do not know the precise value of X, but we know that it must be less than 10.  

Similarly, X > 4 indicates that X must have a value greater than 4.  We do not know the precise 

value, but we do know that it cannot be 4 or less than 4. 

 You also must be familiar with proportions and percentages.  For instance, a proportion of 

.50 is equal to one half, which is equivalent to 50%.  And a proportion of .10 is equal to one tenth, 

which is equivalent to 10%.  In addition, it should be obvious that if there were 100 people and the 

proportion who had visited Europe was .25, then the number of these people who had visited 

Europe is 25.  This is shown with the equation .25 X 100 = 25.  Similarly, if the number of people 

was 1000, then the number of these people who had visited Europe would be 250.  This is shown 

with the equation .25 X 1000 = 250.   
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The next mathematical concept in this brief review is the absolute value.  The absolute value 

is the magnitude of a number irrespective of whether it is positive or negative.  Thus the absolute 

value of  –3 is 3.  And the absolute value of +3 is also 3. 

   Absolute value – The magnitude of a number irrespective of whether it is positive or  

  negative. 

 

 Finally, it is essential that you remember the order in which mathematical operations are 

performed:  begin with items within parentheses, then exponents and roots, then multiplication 

and division, and lastly addition and subtraction (Table 1.1).  Thus (2 + 3)2 is equal to 52 which is 

25, but 2 + 32 is equal to 2 + 9 which is equal to 11.  And you proceed from left to right.  For 

example, remembering that we are only dealing with positive square roots, we find: 

√(52 – 16) – 4  

= √(25 – 16) – 4  

= √9 – 4  

= 3 – 4  

= –1. 

Table 1.1 Order of Mathematical Operations 

1 Operations within parentheses 

2 Exponents and roots 

3 Multiplication and division 

4 Addition and subtraction 

And remember, proceed from left to right. 

It Is Time To Learn Some Greek 

 
  Many of the mathematical procedures that you will see in this text involve adding numbers 

together and then manipulating the total in some manner.  For instance, we could add all of the 

heights of the members of a softball team and then divide by the number of players.  This would 

give us what you probably learned is called the average of the heights.  In statistics, this is called the 

mean of the heights.  It is the same procedure, just with a different name.  Unfortunately, describing 

how to calculate a mean takes a lot of words.  In order to keep the length of this text tolerable, we 

need to agree upon some simple definitions.  Instead of “add all of the heights” or “add all of the 

scores” we will write X.  The symbol  (the Greek letter capital sigma) indicates that we are to add 

all the examples of something, and the X stands for a single score or datum (datum is the singular of 

data, which is always plural).  Thus, X says the same thing as “sum each of the scores”, but it takes 

less space.  It is read as ‘sum of X’.  And the mean can thus be written as X / N, where N is the total 
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number of scores.  Similarly, X2 says the same thing as “sum each of the squared scores”.   It is 

read as ‘sum of X squared’.  But be careful.  In mathematics the precise symbols, and the order in 

which they occur, are important.  Just as “Susan, please give the paper to Howard” does not mean 

the same thing as “Howard, please give the paper to Susan”, X2 is not equivalent to (X)2.  In the 

case of X2, we are being told to sum all of the X2 values.  In other words, we first square each score 

and then add the resulting numbers together (remember, exponents before addition).  This is 

illustrated with a set of numbers given in Table 1.2.  Note that X2 is equal to 110.  On the other 

hand, the expression (X)2, which is read as ‘sum of X, quantity squared’, indicates that we are first 

to sum all of the X scores and then square the result (remember, operations within parentheses 

before exponents).  In our case, this would be 182, which equals 324.  Obviously 110 is not the same 

as 324!  It will be important to remember as you read this text to pay careful attention to the details 

of the mathematical statements.  While I have done my best to present concepts clearly, this is not 

material that can be ‘skimmed’. 

Mean – Sum of the scores divided by the total number of scores. 

 

Table 1.2 Computing (X)2 and X2    

  
      X  X2 

 5  25 

 6  36 

 7  49 

        X = 18       X2 = 110 

(X)2 = (18)2 = 324 

Using Algebraic Expressions 

 

 It is also important to point out that you need to be familiar with the manipulations 

conducted with algebraic equations.  For instance, if you are given the rather impressive equation rs 

= 1 – [(6D2) / n(n2 – 1)] and are told that D2 equals 10, and n equals 5, you need to be able to 

determine the value of rs .  To do so, simply substitute the value 10 where D2 appears in the 

numerator of the fraction and substitute the value 5 where n appears in the denominator: 

 rs = 1– 
𝟔𝐃𝟐

𝒏(𝒏𝟐 − 𝟏)
 

      = 1 – 
𝟔(𝟏𝟎)

𝟓(𝟓𝟐 – 𝟏)
   

     = 1 – 
𝟔𝟎

𝟓(𝟐𝟓 – 𝟏)
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     = 1 – 
𝟔𝟎

𝟓(𝟐𝟒)
 

     = 1 – 
𝟔𝟎

𝟏𝟐𝟎
 

       = 1 – 0.5 

     = 0.5 

If you successfully followed this calculation the algebraic expressions in this book should 

not be a problem.  By the way, you just calculated your first Spearman correlation, a statistic 

reviewed in the appendix.  Congratulations!   

Graphs 

 
You will be seeing many graphs is this book.  Graphs are used in statistics because they 

often simplify complex situations – they allow us to ‘see’ a relationship more clearly, or at least 

more easily, than would be the case if expressed only in words or equations. 

The graphs in this book consist of two lines (called axes), which are labeled X and Y.  They 

are arranged at right angles to each other (Figure 1.2). 

Figure 1.2 Basic Form of a Simple Graph 

 

 

 

 

 

 

 

             For instance, a simple graph might indicate the number (frequency) of women and men 

taking a statistics course (Figure 1.3).  In this graph the X-axis consists of two categories, women 

and men, while the Y-axis consists of frequencies.  At a glance it is evident from the heights of the 

two columns that somewhat more women (30) are taking the course than men (20). 

Figure 1.3 Frequencies of Women and Men Taking a Course 
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 A slightly more complex graph might continue to have frequencies on the Y-axis but now 

has a series of values on the X-axis.  For instance, a graph of the weights of students taking a 

statistics course might look like Figure 1.4.  This graph indicates that most students’ weights would 

be between approximately 120 and 180 pounds, with fewer having lower or higher weights. 

Figure 1.4 Weights of Students Taking a Course 

 

 

 

 

It is important to understand the general organization of this graph as you will be seeing 

numerous variations throughout this book (Figure 1.5).  We have just seen that a variable, weight, 

was placed on the X-axis.  Other variables we might place on the X-axis would include height, IQ 

scores, exam scores, and grade point average, to name just a few.  And in each case we often (but 

certainly not always) find that most values occur in the middle of the distribution with 

progressively fewer examples as we move away in either direction.  This is illustrated with the 

curve in Figure 1.5. 

Figure 1.5 Commonly Used Organization for a Graph 

 
 It is also important to understand a couple of additional terms which are associated with 

graphs.  For instance, in Figure 1.6 the region of the curve to the left of a point on the X-axis (I have 

called it XA) would be said to be ‘below’ XA.  This region is shaded in Figure 1.6.  Naturally, the 

region of the curve to the right of this point would be said to be ‘above’ XA.   

Figure 1.6 Illustration of the Meaning of ‘Below’ and ‘Above’ 
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 Finally, please note that in Figures 1.3 and 1.4 specific frequencies were identified on the Y-

axis.  However, in Figures 1.5 and 1.6 this was not the case.  Instead we just had a continuum of 

frequencies from ‘low’ to ‘high’.  In fact, it is so common not to have specific values of the 

frequencies that the vertical line and label representing the Y-axis are often simply deleted from the 

graph (Figure 1.7).  Additional examples of this occur throughout the text.   

Figure 1.7 Reproduction of Figure 1.6 but with the Label for the Y-Axis Omitted 

 

 Hopefully this review of graphs has confirmed that they are easy to use.  And you will see 

that graphs can be a great help in illustrating relationships that would otherwise be difficult to 

describe. 

Conclusion 
 
 In order to be proficient with statistics you need to understand which statistical procedure 

to utilize, and why.  This book is designed, therefore, to focus upon the ideas that are essential to 

the understanding of statistical reasoning.  You will also need to make accurate calculations but, as 

you will later see, much of the tedium of number crunching can be eliminated by utilizing a 

statistical computer package such as SPSS.  Finally, you will need to be proficient using graphs. 

Glossary Of Terms 
 
Absolute value – The magnitude of a number irrespective of whether it is positive or negative. 

Data  (plural of datum) –  Observations or factual information, often in the form of numbers. 
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Descriptive statistics – Techniques that are used to summarize data.  These procedures lead  

 to a better understanding of the data. 

Inferential statistics – Techniques that are used in making decisions based upon data. 

Mean – Sum of the scores divided by the total number of scores. 

Questions – Chapter 1 

 
(Answers are provided in Appendix J.) 

1. Knowledge of probabilities was initially used with _____. 
a.     Scientific studies 
b.     Voyages of discovery 
c.     Games of chance 
d.     Voting in elections 

 
2. The most rapid period of change in the field of statistics occurred in the _____ centuries. 

a. Late 17th and early 18th 
b. Late 18th and early 19th 
c. Late 19th and early 20th 
d. Late 20th and early 21st 

 
3. Basing decisions upon limited exposure to the relevant information is known as the _____ 

bias. 
a. Availability 
b. Probability 
c. Limited exposure 
d. Information 

 
4. What does (–2) / (–4) equal? 

a. .5  
b. 8 
c. –.5 
d. –8 

 
5. What does 2X + Y2 equal if X is 3 and Y is 6? 

a. 21 
b. 28 
c. 42  
d. 95 

 
6. What does –2(36) equal? 

a. –72  
b. –18 
c. 34 
d. 118 

 
7. I have a large set of data and wish to present it to an audience in a form that is easy for 

them to understand.  This is an example of _____. 
a. inferential statistics 
b. descriptive statistics  
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8. What is X and X2 for the set of numbers consisting of 2, 3 and 4? 
a. 9 and 81 
b. 24 and 29 
c. 9 and 29  
d. 9 and 9 

 
9. What is X and X2 for the set of numbers consisting of  –2, 3 and 4? 

a. –9 and 81 
b. 5 and 29  
c. 9 and 29 
d. –9 and –9 

 
10. The procedures that are used to describe large amounts of data in quickly 

understandable ways are called _____. 
a. inferential statistics 
b. descriptive statistics  

 
11. What does (–2) / 4 equal? 

a. 0.5 
b. 8 
c. –0.5  
d. –8 

 
12. What does (–3) – (–5) equal? 

a. –8 
b. –2 
c. 2  
d. 15 

 
13. What does (–6) (–3) equal? 

a. 18  
b. –9 
c. –3 
d. –18 

 
14. What is the positive square root of 144? 

a. 10 
b. 11 
c. 12 
d. 13 

 
15. Which of the following statements is equivalent to X > 6 and Y < 22? 

a. X is less than 6; Y is greater than 22 
b. X is greater than 6; Y is less than 22 
c. X is less than 6; Y is less than 22 
d. X is greater than 6; Y is greater than 22 

 
16. The equation for the variance of a population (this will be covered in Chapter 3, don’t 

worry about the definition of the symbols) is 2 = ( (X – )2) / N.  If ( (X – )2 is equal 
to 8, and N is equal to 3, what does 2  equal? 
a. 2.67 
b. .375 
c. 24 
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d. 10.26 
 

17. What does (–6) / (–3) equal? 
a. –2 
b. –18 
c. 18 
d. 2 

 
18. What does 36 / (–2) equal? 

a. –2 
b. –18 
c. 18 
d. 2 

 
19. If the proportion of people who like to eat apples is .42, and there are 2000 people, how 

many people like to eat apples? 
a. 420 
b. 840 
c. 4200 
d. 8400 

 
20. The absolute value of 36 is _____. 

a. 36 
b. 362 
c. 36 
d. –36 

 
21. The absolute value of –14 is _____. 

a. 14 
b. 142 
c. 14 
d. –14 

 
22. Assume we asked people to indicate whether they would prefer a cat or a dog as a pet, 

and then created a graph.  The preferences could be indicated with two columns, one for 
preference for cats, the other for preference for dogs.  The height of each column would 
indicate the _____ of the preference.  
a. Value 
b. Wisdom 
c. Certainty  
d. Frequency 

 
23. In a graph, if you are to the right of a particular point on the X-axis we would say you are 

_____ this point. 
a. Above 
b. Below 
c. Under 



33 
 

DESCRIPTIVE STATISTICS – SEEING YOUR DATA MORE 
CLEARLY 

 
Chapter 2 – Describing Nominal and Ordinal Data        

  The Descriptive Statistics Used with Nominal and Ordinal Data 

Chapter 3 – Describing Interval and Ratio Data – I       

  An Introduction to the Descriptive Statistics Used with Interval/Ratio Data 

Chapter 4 – Describing Interval and Ratio Data – II       

  Further Descriptive Statistics Used with Interval/Ratio Data 



34 
 

Chapter 2  
Describing Nominal and Ordinal Data:   

The Descriptive Statistics Used with Nominal and 
Ordinal Data  

 

“Whenever you can, count.” 

Sir Francis Galton 

All Numbers Are Not Equal  

 
We are all familiar with measuring things.  In the United States, the gas you use to fill the 

tank of your car is measured in gallons.  Your height is measured in feet and inches.  Your weight is 

measured in pounds.  In most of the world, you would have used liters, centimeters, and kilograms 

for these measurements.  Obviously, we often find that what we measure varies.  For instance, cars 

have gas tanks of different sizes, and heights as well as weights of people vary.  When what we are 

measuring can vary, we call it a variable.   

Variable – Any characteristic that can vary. 

 

It is likely that you have not given much thought to the implications of how we measure 

variables.  For instance, at the Olympics it does not matter if we know precisely how quickly three 

runners completed a race.  As long as we know their order of finishing we can hand out the medals 

properly.  However, for statistics it matters a great deal.  You will learn that whether you simply 

measure the order, or instead the elapsed durations, of runners has implications for the proper 

choice of statistical technique to employ.   

Sometimes A Number Is Just A Name Or Category 

 
 The nominal scale of measurement provides the least amount of information.  As the word 

nominal implies, with a variable measured on a nominal scale we are using a number in place of a 

name, and thus the number serves as a label.  Put another way, with a nominal scale of 

measurement we are using numbers to assign individuals to categories.  For instance, we 

commonly describe a child as being either a boy or a girl.  And we could arbitrarily assign the 

number 1 to each boy and the number 2 to each girl.  In this case, the number simply indicates the 

group to which each individual belongs.  The only data that are meaningful would be how many 

individuals are members of each group.  Thus, it might be important for a school to know how many 

boys and how many girls are enrolled each semester.  Notice that it makes no sense to argue that 
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because a boy is a ‘one’ and a girl is a ‘two’, a girl is twice what a boy is.  In other words, 

multiplication or division, for instance, cannot be used with these data.  Since the labels of the 

groups were assigned arbitrarily, we could have instead assigned the number ‘one’ to each girl and 

the number ‘two’ to each boy.  Alternatively, we could have given each boy a label of ‘zero’ and each 

girl a label of ‘nine’.  It does not matter.  With a nominal scale of measurement the number is just a 

label; the magnitude of the actual label is not meaningful.  All that is meaningful is the frequency of 

individuals in each group. 

 Nominal scale of measurement – A measurement scale in which numbers serve as names of  

  categories.  In this level of measurement, the magnitude of the number is arbitrary.   

Sometimes A Number Tells Us The Order Of Events  

 
With the ordinal scale of measurement we know the order in which events occurred.  Thus 

we have more information than with a nominal scale.  For instance, where a person places at the 

conclusion of a footrace is an example of ordinal data.  With ordinal data we know that whoever 

came in first had to get to the finish before whoever came in second.  What we do not know is how 

much sooner the first place finisher completed the race compared to the second place finisher.  It 

might have been a photo finish, or there may have been enough time for the first place runner to 

shower and go home before the runner in second place completed the race.  In other words, with 

ordinal data we know the order of events, but we do not know the magnitude of the difference 

between events.   

Ordinal scale of measurement – A measurement scale in which the magnitude of the  

 numbers indicates the order in which events occurred.  In this level of  

 measurement, the magnitude of the number is meaningful.  

Sometimes We Can Add And Subtract Numbers 

 
Data on an interval scale of measurement, in contrast, not only indicate the order of events 

but also the magnitude of the difference between events.  As a result, interval data provide more 

information than ordinal data.  It is now appropriate, for the first time, to use addition and 

subtraction.  For instance, we can now say not only that one day is colder than another day, we can 

use subtraction to find how many degrees colder.  However, as you will see, with data measured on 

an interval scale it is still not appropriate to multiply or divide the scores.    

The two most popular temperature scales, Fahrenheit and Centigrade, are examples of 

interval scales of measurement.  A characteristic of interval scales is that though they may have a 

zero point this does not indicate the complete absence of whatever is being measured.  Thus, there 

is a 0 degrees Fahrenheit, but it does not indicate that this is the coldest possible temperature.  I live 

near Buffalo, New York, and can attest to the fact that it may drop below 0 degrees Fahrenheit 
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during the winter.  On those occasions the temperature is measured in negative numbers.  The 

same situation occurs for the Centigrade scale.  In the Centigrade scale, 0 degrees is defined as the 

freezing point of water.  Your refrigerator’s freezer should have a temperature below 0 degrees 

Centigrade.  Since there is no absolute zero point in either the Fahrenheit or Centigrade scales it is 

not appropriate to multiply or divide these numbers.  Thus, a day with a temperature of 90 degrees 

Fahrenheit is not three times as hot as a day that has a temperature of 30 degrees.  However, as it is 

appropriate to add or subtract with an interval scale of measurement, we can say that the 90 degree 

day is 60 degrees warmer than the 30 degree day. 

Interval scale of measurement – A measurement scale in which the magnitude of the  

 difference between numbers is meaningful, and thus addition and subtraction are  

 possible.  However, there is no true zero and thus multiplication and division are not  

 meaningful.  

Some Numbers Can Be Multiplied And Divided  

 
The last of the four scales is the ratio scale of measurement.  In addition to having the 

characteristics of an interval scale, a ratio scale also has an absolute zero point.  Those of you who 

have taken chemistry may recall that with the Kelvin scale there is a true zero point below which it 

cannot get colder.  Therefore, the Kelvin scale is a ratio scale.  Time is another example of a variable 

measured with a ratio scale.  A race starts at time zero and proceeds to the finish.  Since there is a 

true zero with time, we can not only subtract runners’ times to look at differences, we can also 

meaningfully multiply and divide their times.  Thus, if one runner completes a race in 2 minutes and 

another finishes in 4 minutes, we can say that the first runner was twice as fast as the second.  It is 

only with data on a ratio scale that we can meaningfully say that one number is a multiple of 

another. 

Ratio scale of measurement – A measurement scale in which the magnitude of the difference  

 between numbers is meaningful, and there is a true zero.  Thus, multiplication and  

 division as well as addition and subtraction are meaningful. 

 

The Big Picture 

 
 We have just learned that there are four measurement scales.  From having the least to most 

information, the order of these scales is: nominal, ordinal, interval and ratio.  The data in a scale 

with more information can be converted into a scale with less information, but not the reverse.  For 

instance, if you use a stopwatch to time a race (ratio scale), you could then compare the times to 

assign medals (ordinal scale).  But if all you record is the order that the runners finished the race 
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(ordinal scale) you cannot subsequently establish each runner’s actual time (ratio scale).  And you 

should recognize that whenever data measured on a more informative scale are converted to a less 

informative scale, information is being lost. 

From our perspective, the distinction between scales of measurement is important because 

choosing the appropriate statistical procedure depends, in part, upon the scale of measurement that 

was utilized.  Thus, the statistical procedures utilized with nominal data differ from those used with 

ordinal data.  And while the same statistical procedures are used with interval and ratio data, these 

procedures are distinct from those used with either nominal or ordinal data.  Also, in Chapter 1 you 

learned that the two major functions of statistics are to assist you in seeing and thinking about data 

more clearly.  You will recall that these uses are referred to as descriptive and inferential statistics, 

respectively.  This is important because the question you are asking – are you trying to see or think 

about data more clearly – is also important in determining the appropriate statistical procedure.  

How the question you are asking (descriptive or inferential statistics) and the measurement scale 

you utilize interact can easily be illustrated (Table 2.1) and would provide a logical basis for the 

order of coverage of topics in an ideal statistics course.  Unfortunately, time constraints require that 

some topics be omitted in a brief coverage of statistical procedures.  As a result, the order that 

topics will actually be covered in this text is illustrated in Table 2.2. 

Table 2.1 A Logical Order of Coverage of Topics in a Statistics Course 

       Type of Data 

          Nominal         Ordinal      Interval/Ratio 

   Descriptive  1  2  3 

 Type of Statistics 

   Inferential  4  5  6 

 

 

Table 2.2 Actual Order of Coverage in this Text 

       Type of Data 

          Nominal         Ordinal      Interval/Ratio 

   Descriptive  1  2  3 

 Type of Statistics 

   Inferential  4       Appendix  5 

 

A Further Distinction: Discrete Versus Continuous Data 

 
 You have just learned that nominal data refer to categories and ordinal data deal with 

ordered events.  In both cases there can only be particular values.  With nominal data, an individual 
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is either included in a category, or not.  With ordinal data, a runner comes in first, second, or third, 

not some intermediate value.  When a variable can only have particular values, it is said to be 

discrete.  By contrast, some variables, such as distance, can take on any value.  You can go 5.0 miles, 

or 5.2361 miles.  There are not limited magnitudes that the variable is restricted to, at least within 

some overall range of possible values.  In these cases, in which the magnitude of the variable is not 

restricted to particular values, the variable is said to be continuous.  Most examples of interval and 

ratio data are continuous.   However, in some cases data can only take on particular values and yet 

are considered to be continuous.  For instance, the score you receive on a 100-point multiple choice 

exam can only consist of whole numbers, such as 85 or 91.  You cannot have an intermediate score, 

such as 74.92.  Nevertheless, this would be treated as being a continuous variable as there are 

numerous possible values.    

  Discrete variable – A variable that can only have particular values. 

 Continuous variable – A variable that can be of any magnitude, though it might be  

  limited to a particular range. 

“In god we trust.  All others must bring data.” 

Attributed to W. Edwards Deming 

Seeing Clearly With Nominal Data:  An Introduction To Descriptive 
Statistics  

 

It’s Time To Begin Learning To See Better 

 
 We will now begin to learn how to see or understand data more accurately.  We will start 

with nominal data, those data that are used as names or categories.  We are, therefore, beginning 

with position ‘1’ in Table 2.2, the descriptive statistics of nominal data.  Remember, these data are 

discrete, and with nominal data you cannot meaningfully add, subtract, multiply or divide.  All you 

have are the frequencies for each category. 

 Let’s assume that we have asked the members of a college class to identify their political 

party affiliations.  The students are found to be Democrats (D), Libertarians (L), Republicans (R), 

Socialists (S), or to have no party affiliation (N).  The hypothetical results for the 25 students are 

indicated in Table 2.3. 

Table 2.3 Data of Students’ Political Party Affiliations  

   N R D D N 

    L N N R D 
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    R N D S N 

    N D R N D 

    R N L N D 

 

 In this form, it is not easy to quickly understand the students’ party affiliations.  About all 

one can rapidly discern is that most students appear to be Democrats (D), Republicans (R) or they 

have no party affiliation (N).  If the data are organized so that the frequency of each party affiliation 

is recorded, then we have what is called a frequency distribution (Table 2.4, in this example the 

party affiliations are listed alphabetically).  With a frequency distribution it is easy to quickly gain 

an overview of the data. 

Table 2.4 Frequency Distribution of Student Political Party Affiliation 

   Party Affiliation  Frequency  

 Democrat     7 

 Libertarian     2 

 No Affiliation   10 

Republican     5 

 Socialist     1  

 Total    25 

 

 I think you will agree that simply organizing the scores into a frequency distribution aids in 

the rapid understanding of the data.  In other words, you are beginning to see the data more clearly.   

 Frequency distribution – A listing of the different values or categories of the observations  

  along with the frequency with which each occurred. 

 

 Once a frequency distribution has been constructed it is then easy to determine the relative 

frequency for any category.  To do so, we divide the frequency of a category by the total frequency.  

Referring to Table 2.4, the relative frequency of Republicans would be 5 / 25 which is equivalent to 

1 / 5 or 0.20. 

 Relative frequency – The frequency of a category divided by the total frequency. 

 

Using Graphs And Charts To See Nominal Data More Clearly 

 
For nominal data, two of the most commonly used techniques for summarizing findings are 

the bar graph and the pie chart.  With a bar graph each category of response is usually identified on 

the X-axis, and the frequency with which it occurred is usually noted on the Y-axis.  As we are 
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dealing with separate categories, in the bar graph the ‘bars’ representing the frequencies are drawn 

so that they do not touch each other.  A bar graph for our hypothetical political affiliation data is 

indicated in Figure 2.1. 

Figure 2.1   Bar Graph of Student Political Party Affiliation 

 

Note: D, Democrat; L, Libertarian; N, no affiliation; R, Republican; S, Socialist 

 

With a bar graph the reader can quickly ‘see’ the political party preferences of the students.  

Because bar graphs are an effective way to present summary data you will commonly see them in 

newspaper articles as well as in magazines.  However, the bar graph is not the only choice for 

representing a set of nominal data. 

 Bar graph – A graph in which the frequency of each category or class of observation is  

  indicated by the length of its associated bar. 

 

 The pie chart is also sometimes used to summarize nominal data.  With a pie chart the 

frequency of each category of responses is first converted into a relative frequency.  As was noted 

previously, this is accomplished by dividing the frequency for each category of response by the total 

number of responses (the total of all of the frequencies for all of the categories), in our case 25.  For 

instance, 10 students indicated that they do not have a party affiliation.  To find the relative 

frequency of these 10 students, we would divide 10 by 25, the total number of responses.  This 

would be 0.40, which is equivalent to 40%.  The result of the calculations for each category is shown 

in Table 2.5. 

Table 2.5 Frequency Distribution of Student Political Party Affiliation With Associated 

Relative Frequencies 

  Party Affiliation  Frequency Relative Frequency 

Democrat     7  .28 

Libertarian     2  .08 

No Affiliation   10  .40 
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Republican     5  .20 

Socialist     1  .04 

Total    25             1.00 

 

Once the relative frequencies are calculated, the area of a circle is divided into slices.  There 

are as many slices as there are categories of response in the frequency distribution, and the area of 

each slice corresponds to the relative frequency of each category (Figure 2.2). 

Figure 2.2   Pie Chart of Student Political Affiliation     

 

D, Democrat; L, Libertarian; NA, No Affiliation; R, Republican; S, Socialist 

 

The pie chart can be an effective way to describe the data.  However, its effectiveness is 

compromised if there are too many categories.  Remember, the goal is to convey information 

efficiently, not to create a visually impressive, but overwhelming, presentation. 

 Pie chart – A presentation of categorical data in which the area of a slice of a circle is  

  indicative of the relative frequency with which the category occurs. 

 

 We have just reviewed how bar graphs and pie charts can be beneficial in summarizing a set 

of nominal data.  In addition to these depictions of the frequency distribution, a reader can also 

benefit from a single measure that summarizes the entire set of responses.  This would be what 

statisticians call a measure of central tendency.  An average is an example, so you are familiar with 

this concept. 

 Measure of central tendency – A single number that is chosen to best summarize an entire  

  set of numbers. 

 

With nominal data, the mode is the most appropriate measure of central tendency.  The 

mode is simply the category with the highest frequency.  With our data of student party affiliations, 
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the ‘no affiliation’ response would be the mode, as more of our hypothetical students chose this 

option than any other.  The mode has the advantage that it is very easy to calculate and understand.  

However, it has a major limitation; it is unstable.  In many instances if only a few responses were to 

change, then the mode would change to a different category.  Thus, if only two of the students who 

had indicated that they did not have a party affiliation had, instead, chosen Democrat, then the 

mode would have shifted to this new category.   

Mode – A measure of central tendency.  It is the most common category or score. 

Unstable – A term used to describe a measure, such as of central tendency, that can vary  

 significantly with only a few changes to the original set of data.  This is an  

 undesirable quality. 

 

If one category has the highest frequency, we have a unimodal distribution.  It is also 

possible that two, or more, categories will have the same highest frequency.  If two categories are 

tied for the highest frequency, both categories would be modes and the distribution would be said 

to be bimodal.  If three categories were tied for the highest frequency, the distribution would be 

said to be trimodal, and so on. 

Unimodal – A descriptive term for a distribution that has one mode. 

Bimodal – A descriptive term for a distribution that has two modes. 

 

There is no adequate measure of variability for use with nominal data.  Variability refers to 

how much scores differ or deviate from each other.  The closest you could come with nominal data 

would be to simply indicate how many response categories the subjects in a sample had either 

chosen or been assigned to.  With our example, students identified five political party affiliations. 

Variability – How much scores differ or deviate from each other. 

Summary Of The Descriptive Statistics Of Nominal Data 

 
From this brief review it should be evident that there is nothing particularly challenging 

about the descriptive statistics of nominal data.  Once a frequency distribution is constructed, a bar 

graph or pie chart and the mode(s) are easy to obtain.   

The following table will clarify what you have learned so far in this chapter (Table 2.6). 

Table 2.6 Descriptive Statistics of Nominal Data 

   _______________ Type of Data __________________ 
     Nominal 
     (Frequency)    

Descriptive Procedures  
(Summarizing the Data) 
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Frequency Distribution   Bar Graph     

       or Pie Chart  

      
Central Tendency    Mode      

 
Variability     –  –  –  –  –    

         
 

Progress Check 

 
1. In this measurement scale all that is meaningful is the frequency of events or individuals in 

each category. 

2. In this measurement scale there is a zero, but it is not a true, or absolute zero. 

3. When you list the frequency associated with each value or category, you have created a  

_____. 

Answers:  1. Nominal  2. Interval  3. Frequency distribution 

 

Seeing Clearly With Ordinal Data:  Continuing With Descriptive 
Statistics  

 
 With ordinal data you are able to rank a set of data along some dimension.  For instance, 

you might know the order in which runners finished a race, or it might be possible to rank 25 

students from most to least outgoing.  Thus you know who is first, second, and so on, but with data 

in this form there is nothing further that can be done to increase a reader’s understanding.  All that 

is known, or knowable, is the ranking of the runners or that a total of 25 students were ranked on 

how outgoing they were.   

However, if instead of being ranked individually each of the 25 students was assigned to one 

of five ranked levels, from ‘very shy’ to ‘very outgoing’, we could then create a frequency 

distribution as shown in Table 2.7. 

Table 2.7 Frequency Distribution of Being Outgoing 

   Response Category   Frequency 

Very Outgoing    5  

   Somewhat Outgoing   8 

   Neither Outgoing nor Shy  6 
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   Somewhat Shy    4 

   Very Shy                  2 

   Total                25 

 

 This frequency distribution allows us to ‘see’ the data more clearly.  And, just as was the 

case with nominal data, with ordinal data it is simple to create a bar graph once a frequency 

distribution has been made.  However, while the order in which the categories are presented is 

arbitrary with nominal data, the order is meaningful with ordinal data.  Therefore, when ordinal 

data are assigned to ranked categories, in our case from ‘very shy’ to ‘very outgoing’, the bar graph 

should be organized to reflect this order, as is shown in Figure 2.3. 

Figure 2.3 Bar Graph of Ratings of How Outgoing Students Are 

 

Note: VS, Very Shy; SS, Somewhat Shy; NONS, Neither Outgoing Nor Shy;  

SO, Somewhat Outgoing; VO, Very Outgoing 

 

 Clearly, a properly constructed bar graph permits a rapid understanding of the data.   

With ordinal data a pie chart is not appropriate.  The problem is that the categories would 

wrap around the circle so that the two most extreme categories would end up side by side.  Thus, 

the ‘very shy’ category would be next to the ‘very outgoing’ category, which would make it more 

difficult to recognize the order in the responses. 

As ordinal data involve ranks, it is now possible to specify relative standings.  The percentile 

rank is the percentage of the distribution within or below a category.  For instance, referring to 

Table 2.7 will indicate that 20 of the 25 students, or 80%, indicated that they were either 

‘somewhat outgoing’ or less than ‘somewhat outgoing’.  Thus a student who was somewhat 

outgoing would be at the 80th percentile.  And the percentile rank for ‘neither outgoing nor shy’ 

would be almost 50% (12 / 25 = 48%). 

Percentile rank – The percentage of the data at or below a category or score. 
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The median is the measure of central tendency employed with ordinal data.  The median 

can be defined in a number of ways.  Perhaps the simplest is that the median is the value that has as 

many scores above it as below it.  In other words, it is the value that divides the distribution into 

two equal parts.  It follows that this value will have a percentile rank of 50% and thus is at the 50th 

percentile.  In our example with 25 subjects, the median would be the value associated with the 13th 

individual from either end of the distribution.  This individual is at the midpoint of the distribution, 

with 12 entries above, and 12 below.  From our frequency distribution, it is evident that this 

individual would be in the ‘somewhat outgoing’ category.   

If the distribution had an even number of ranks the procedure for finding the median is 

slightly more involved.  For instance, if the distribution consisted of four ranks, 2, 4, 6, and 9, there 

is no rank at the midpoint of the distribution.  In such a situation, the median would be the value 

halfway between the two mid-most ranks.  These ranks are 4 and 6 and the rank halfway between 

them is 5.  (Calculation of the median when used with interval or ratio data is discussed in Chapter 

3.) 

Median – A measure of central tendency.  It is the mid-most score in a distribution.  In other  

 words, the median splits a distribution in half, with just as many scores above it as  

 below it.  It is at the 50th percentile. 

 

Unlike the case with nominal data, with ordinal data there are measures of variability.  The 

simplest is the range.  The range is based on the two most extreme data points.  For the data 

provided in Table 2.7, each student was assigned to one of five categories, with the range being 

from ‘very shy’ to ‘very outgoing’.  If there was another set of data which consisted of the numerical 

ranks in an athletic contest, the range would be determined by finding the difference between the 

lowest and highest ranks.  Thus, if a high school swimming team obtained the ranks of 2, 4, and 12 

in a race, the range would be 12 – 2 = 10.  Two additional measures of variability that are also 

sometimes used with ordinal data, the interquartile range and the semi-interquartile range, will be 

discussed in the next chapter. 

Range – A measure of variability for ordinal data.  It is obtained by subtracting the lowest  

 rank from the highest rank. 

 

Conclusion 
 
 Table 2.8 reviews the descriptive statistics used with nominal data and ordinal data. 
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Table 2.8 Descriptive Statistics of Nominal and Ordinal Data 

 
   __________________ Type of Data ____________________ 
    Nominal  Ordinal  
    (Frequency)  (Ranked)  

Descriptive Procedures  
(Summarizing the Data) 

 
Frequency Distribution  Bar Graph   Bar Graph   

     or Pie Chart  

       
Central Tendency   Mode   Median 

     

Variability    –  –  –  –  –  Range    

          
 

Hopefully you will agree once again that there is nothing challenging about these 

descriptive statistics.  Once a frequency distribution is made, appropriate measures of central 

tendency and variability (for ordinal data) are easy to obtain.   

Glossary Of Terms 
 
Bar graph – A graph in which the frequency of each category or class of observation is indicated by  

 the length of its associated bar. 

Bimodal – A descriptive term for a distribution that has two modes. 

Continuous variable – A variable that can be of any magnitude, though it might be limited to a  

 particular range. 

Discrete variable – A variable that can only have particular values. 

Frequency distribution – A listing of the different values or categories of the observations along  

 with the frequency with which each occurred. 

Interval scale of measurement – A measurement scale in which the magnitude of the difference  

 between numbers is meaningful, and thus addition and subtraction are possible.  However,  

 there is no true zero and thus multiplication and division are not meaningful.  

Measure of central tendency – A single number that is chosen to best summarize an entire set of  

 numbers. 

Median – A measure of central tendency.  It is the mid-most score in a distribution.  In other words,  

 the median splits a distribution in half, with just as many scores above it as below it.  It is at  

 the 50th percentile. 
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Mode – A measure of central tendency.  It is the most common category or score. 

Nominal scale of measurement – A measurement scale in which numbers serve as names of  

 categories.  In this level of measurement, the magnitude of the number is arbitrary.   

Ordinal scale of measurement – A measurement scale in which the magnitude of the numbers  

 indicates the order in which events occurred.  In this level of measurement, the magnitude  

 of the number is meaningful.  

Percentile rank – The percentage of the data at or below a category or score. 

Pie chart – A presentation of categorical data in which the area of a slice of a circle is  indicative of  

 the relative frequency with which the category occurs. 

Range – A measure of variability for ordinal data.  It is obtained by subtracting the lowest rank from  

 the highest rank. 

Ratio scale of measurement – A measurement scale in which the magnitude of the difference  

 between numbers is meaningful, and there is a true zero.  Thus, multiplication and division  

 as well as addition and subtraction are meaningful. 

Relative frequency – The frequency of a category divided by the total frequency. 

Unimodal – A descriptive term for a distribution that has one mode. 

Unstable – A term used to describe a measure, such as of central tendency, that can vary  

 significantly with only a few changes to the original set of data.  This is an undesirable  

 quality. 

Variability – How much scores differ or deviate from each other. 

Questions – Chapter 2 
(Answers are provided in Appendix J.) 

1. The number of correct answers on an exam with 50 items would be an example of 
which scale of measurement? 
a.     nominal 
b.     ordinal 
c.     interval 
d.     ratio  

 
2. In a history course you learn that World War II began in 1939.  The year is an example 

of which scale of measurement? 
a.     nominal 
b.     ordinal 
c.     interval  
d.     ratio 

 
3. Over a summer, a tourist travels 3,000 miles visiting national parks in the Western 

United States.  Miles are an example of which scale of measurement? 
a.     nominal 
b.     ordinal 
c.     interval  
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d.     ratio  
 

4. At a car show awards are given for the best, second best and third best automobiles.  
This is an example of which scale of measurement? 
a.     nominal  
b.     ordinal  
c.     interval  
d.     ratio  

 
5. A bar graph is used with _____ and _____ data. 

a.     nominal and ordinal  
b.     ordinal and interval 
c.     interval and ratio 
d.     nominal and ratio 

 
6. A pie chart is used with _____ data. 

a.     nominal  
b.     ordinal 
c.     interval 
d.     ratio 

 
7.       For ordinal data the _____ is the measure of central tendency. 

a.     mean 
b.     median  
c.     mode  

 
8. If we graphed the heights of a large group of men and women, we might expect to find a 

distribution with two peaks, one corresponding to the most frequent height of men and 
the other corresponding to the most frequent height of women.  This would be an 
example of a _____ distribution. 
a. Unimodal 
b. Bimodal  
c. Trimodal 

 
9. In addition to giving a measure of central tendency, such as the median, a measure of 

how much a set of scores differ is also commonly provided.  This second piece of 
information is called a measure of _____. 
a. variability  
b. indecisiveness 
c. incompleteness 

 
10. Do nominal data have an adequate measure of variability? 

a. Yes 
b. No  

 
11. The measure of central tendency for nominal data is the _____. 

a. Mean 
b.   Median 
c. Mode  

 
12     This is the only scale in which multiplication and division are meaningful. 

a. nominal 
b. ordinal  
c. interval 
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d. ratio 
 

13 The only information provided with nominal data is _____. 
a. the frequency of events within each category  
b. the order that events occurred, such as in an athletic competition 
c. greater than, or less than, but not by how much 
 

14. A measure of variability for ordinal data is the _____. 
a. range  
b. mode 
c. median 
d. there isn’t a measure of variability for ordinal data. 

 
15.  A measure, such as the range, which can vary substantially when only a few scores’    

      values change is said to be _____. 
a.     preferable to a measure which doesn’t vary substantially 
b.     never to be used 
c.     unstable  

 
16. The median of the ranks 1, 4, 5, 6, and 17 is _____.  

a.     4 
b.     5  
c.     5.5 
d.     6 

 
17. The range of the ranks in question 16 is _____. 

a. 4 
b. 5   
c. 16  
d. 18 

 
18.  The median of the ranks 4, 5, 6, and 17 is _____. 

a. 4 
b. 5  
c. 5.5  
d. 6 

 
19.  The range of the ranks in question 18 is _____. 

a. 3 
b. 4  
c. 13  
d. 17 

 
20.  Which measurement scale provides the least information? 

a.     Nominal 
b.     Ordinal 
c.     Interval 
d.     Ratio 



50 
 

Chapter 3  
Describing Interval And Ratio Data – I:   

An Introduction To The Descriptive Statistics Used 
With Interval And Ratio Data  

 

“Statistical thinking will one day be as necessary for efficient citizenship 

as the ability to read and write.” 

H. G.  Wells 

Introduction 
 

Chapter 2 ended with a review of the descriptive statistical procedures used with ordinal 

data.  Recall that these data are discrete.  We now turn to a discussion of interval and ratio data.  

These data can be discrete or continuous.  For instance, the number of runs scored in a baseball 

game would be an example of a discrete variable.  You score 0, 1, 2 etc. runs.  You cannot score 2.3 

runs.  By contrast, height and weight are examples of continuous variables as intermediate values 

are possible.   

A useful way to gain an overview of a set of interval or ratio data is with what is called the 

stem-and-leaf display.  For example, let’s assume we list the scores of 24 students on an exam 

(Table 3.1).  This is an example of ratio data as the order as well as the magnitude of the difference 

between scores is known, and there is a true zero (a student could have gotten no answers correct).   

Table 3.1 Twenty four Scores on an Exam 

 92, 76, 83, 88, 67, 94, 83, 74, 70, 64, 42, 81, 83, 90, 75, 87, 77, 82, 97, 46, 85, 71, 63, 79 

 

 Stem-and-leaf display – A commonly used summary of interval or ratio data in which each  

  original score is separated into two parts, a stem and a leaf.    

 

In this form it is not easy to immediately gain an understanding of the entire set of data.  A 

first step would be to arrange all of the scores in ascending order.  The lowest score would be 42, 

and we would proceed until we reached 97, which is the highest score.  While helpful, this would 

still result in a long row of numbers that is difficult to entirely grasp (Table 3.2).   

Table 3.2 Twenty four Scores on an Exam in Ascending Order 

 42, 46, 63, 64, 67, 70, 71, 74, 75, 76, 77, 79, 81, 82, 83, 83, 83, 85, 87, 88, 90, 92, 94, 97 
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With a stem-and-leaf display we enhance the presentation by separating each number into 

two parts, the last digit(s), called a leaf (in our example this would be the digit in the ones position) 

and the preceding digit(s) called a stem (in our case the number in the 10s position).  For our 

example there would only be five stem values, 4, 6, 7, 8 and 9.  These would be arranged in a 

column (Table 3.3). 

Table 3.3 Stem Values of the Original Data 

 9 

 8 

 7 

 6 

 4 

 

 Leaf  – The last digit(s) of a score.  With a stem-and-leaf display each leaf is paired  

  with the appropriate stem value and the leaves are listed in ascending order in each  

  row of the display. 

Stem – With a stem-and-leaf display, a list of the different values of the data once the last  

  digit(s) of each score is removed.   

 

 It is preferable to keep the intervals equal, so Table 3.3 could be improved by including a 

stem value of 5 even though there were no scores with this stem (Table 3.4). 

Table 3.4 Complete List of Stem Values 

 9 

 8 

 7 

 6 

 5 

 4 

 

 Of course, a great deal of information has been lost by providing only the stem values.  

However, if the values of the digits in Table 3.2 that were dropped were now included (remember 

each of these values is called a leaf) then none of the original information would have been lost 

(Table 3.5).  For example, the first row, which begins with the stem value of 9,  consists of the leaves 

of 0, 2, 4, and 7.  These correspond to the original scores of 90, 92, 94, and 97.      

Table 3.5 Stem and Leaves 

 Stem  Leaf 
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 9  0, 2, 4, 7 

 8 1, 2, 3, 3, 3, 5, 7, 8 

 7 0, 1, 4, 5, 6, 7, 9 

 6 3, 4, 7 

 5 

 4 2, 6 

 

 In this form a great deal of information can be understood quickly.  For instance, it is 

obvious that most students scored in the 70s and 80s, that three students had scores of 83, and that 

no students scored between 50 and 59.    

Clearly, data can be summarized very effectively with a the stem-and-leaf display.  However, 

there are additional techniques that are commonly used for summarizing interval and ratio data.  

For instance, let’s assume that Table 3.6 lists the hypothetical incomes of 10 students in a college 

statistics class, rounded to the nearest thousand dollars.  Once again, this is an example of data 

measured at the ratio level as the order as well as the magnitude of the difference between scores is 

known, and there is a true zero (a student could have earned nothing).   

Table 3.6 Income of 10 College Students 

   Student   Income in Dollars 

1 20,000 

2   3,000 

3   1,000 

4   2,000 

5   4,000 

6   3,000 

7 10,000 

8   3,000 

9   4,000 

10   7,000 

 

In this form, the data are hard to understand.  However, for greater clarity they can be 

rearranged in descending order (Table 3.7) or, even better, also converted into a frequency 

distribution, as shown in Table 3.8. 

Table 3.7 Income of 10 College Students in Descending Order 

  Student  Income in Dollars 

    1   20,000 
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    7   10,000     

  10     7,000     

    5     4,000     

    9     4,000 

  2     3,000     

    6     3,000 

    8     3,000 

  4     2,000     

  3     1,000     

 

Table 3.8 Frequency Distribution for Student Income Data 

  Income   Frequency 

  20,000   1 

  10,000   1 

    7,000   1 

    4,000   2 

    3,000   3 

    2,000   1 

    1,000   1 

  

Once a frequency distribution has been created it is easy to graph the data.  With interval or 

ratio data that are continuous, the graph we would use is either a histogram or a frequency polygon.   

A histogram for the data in Table 3.8 is shown in Figure 3.1.  Clearly, a histogram looks very much 

like a bar graph.  On both a bar graph and a histogram the values of the responses are usually 

depicted on the X-axis and the frequencies of the responses are on the Y-axis.  However, there are 

some important differences between the two types of graphs.  First, the vertical ‘bars’ in a bar graph 

are separated, while the vertical bars in a histogram are positioned side-by-side so that they touch.  

Further, on the X-axis of a bar graph there are distinct categories, while the intervals on the X-axis 

of a histogram are specified by what are called real limits.  The income labeled $2,000, for example, 

has the lower real limit of $1,500 and the upper real limit of $2,500 because we rounded off to the 

nearest one thousand dollars and any value from $1,500 to $2,500 was included in the $2,000 

category.  When there is a score that has the same value as a real limit, it should be randomly 

assigned to one of the two intervals associated with that limit.  In our example, an income of exactly 

$2,500 could be included in the interval from $1,500 to $2,500, or the interval from $2,500 to 

$3,500, depending on the flip of a coin.  Finally, for some intervals, such as from $8,500 to $9,500, 

there were no student incomes and thus there is no vertical ‘bar’.   
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Figure 3.1   Histogram of the Student Income Data 

 

 

              

                        Histogram – A graph used with interval/ratio data.  As with the bar graph,  

 frequencies are indicated by the length of the associated bars.  However, as  

 the data are continuous in a histogram the bars are positioned side-by-side. 

 

It also would be appropriate for these data to be graphed with a frequency polygon.  A 

frequency polygon of the data in Table 3.8 is shown in Figure 3.2.  As with a histogram, a frequency 

polygon is quite easy to construct once a frequency distribution has been constructed.  Though a 

frequency polygon looks somewhat different than a histogram, they are actually closely related.  In 

fact, a frequency polygon can be constructed by simply connecting the center points of each of the 

vertical ‘bars’ in a histogram, as is shown in Figure 3.3.  With a set of data that has a large number of 

possible X values a frequency polygon will be easier to construct and read than a histogram. 

Figure 3.2   Frequency Polygon of the Student Income Data 

 

        

             Frequency polygon – A graphic presentation for use with interval or ratio data.  It is similar  

 to a histogram except that the frequency is indicated by the height of a point rather  
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 than the height of a bar.  The points are connected by  straight lines. 

Real limits – With interval or ratio data, the actual limits used in assigning a measurement.   

 These are halfway between adjacent scores, and are called the upper and lower real  

 limits. 

 

Figure 3.3 Comparison of a Histogram and a Frequency Polygon 

 

    

Summary To This Point 

 

 Thus far in this chapter we have learned how a stem-and-leaf display can provide a useful 

summary of interval and ratio data, and we have reviewed the advantages of creating a histogram 

or frequency polygon.  We will now turn to a discussion of measures of central tendency. 

Measures Of Central Tendency And How The Shape Of The Distribution 
Affects Their Choice 

 

We have seen that with interval or ratio data constructing a stem-and-leaf display and 

either a histogram or a frequency polygon are straightforward and useful ways to summarize a set 

of numbers.  Calculating a measure of central tendency is also easy.  The mean is generally the 

preferred measure of central tendency when there are interval or ratio data.  Recall that the mean is 

what most people call an average.  To calculate a mean we add all the scores and then divide by the 

total number of scores.  This is symbolized by (X) / N, where N equals the total number of scores.  

The mean for our 10 student incomes would be $57,000 / 10, which equals $5,700.  

Mean – A measure of central tendency for use with interval or ratio data.  It is what is  

 commonly called an average.  The mean is the sum of the scores divided by the  

 number of scores.   
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The mean is not as easy to conceptualize as the mode or the median.  The mean is the 

balance point of a distribution.  In other words, if you made a copy of the frequency polygon in 

Figure 3.2 out of metal or wood, the point along the X-axis where it would balance would be the 

mean.  The mean is the most frequently used measure of central tendency for interval and ratio 

data.  It has the major advantage that it is used in further statistical procedures that you will learn 

in later chapters.  One unfortunate characteristic, however, is that the mean can be greatly affected 

by extreme scores.  In our set of income data, for instance, the $20,000 response is $10,000 higher 

than the next highest income.  Removing this one income would have a dramatic effect upon the 

mean.  The mean of all ten incomes was $5,700.  Without the single $20,000 income, the mean 

would be $37,000 / 9, or only $4,111.  Thus, in this case removing one extreme score results in the 

mean dropping by over $1,500, or about 28%.   

This limitation of the mean can be further understood by looking at either the histogram 

(Figure 3.1) or the frequency polygon (Figure 3.2).  The mean does not appear to be a particularly 

good single measure of these data.  Most of the scores are grouped around $3,000 and $4,000, not 

around the mean value of $5,700.  This is due to the extreme score of $20,000 pulling the mean 

toward a higher value.  This effect of an extreme score will happen whenever the frequency polygon 

is not symmetrical.  In a symmetrical distribution, the right half of the distribution is the mirror 

image of the left half.  Figure 3.4 is an example of a symmetrical distribution.  In a symmetrical 

distribution there is a low score that balances the effect that each high score has on the mean.    

Figure 3.4   Graph of a Symmetrical Distribution 

 

 

 

               

               Symmetrical distribution – A distribution in which the right half is the mirror image  

  of the left half.  In such a distribution, there is a high score corresponding to each  

low score. 

 

The curve depicted in Figure 3.4 is a special type of symmetrical distribution referred to as 

a bell-shaped curve.  The frequencies are high near the middle, and scores become progressively 

Mean 
Median 
Mode 
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less frequent the farther they are from the middle.  One of the characteristics of a bell-shaped 

distribution is that the balance point (mean), the middle score (median) and the most frequent 

score (mode) all have the same value. 

Bell-shaped curve – A symmetrical distribution in which the highest frequency scores are  

 located near the middle and the frequency drops the farther a score is from the  

 middle. 

 

The data in Table 3.8 do not form a symmetrical distribution, and are thus said to be 

skewed.  More specifically, the distribution appears to look more like Figure 3.5, a nonsymmetrical 

distribution that points to the right.  Such a distribution is called positively skewed.  The word 

‘positive’ in this context does not indicate ‘good’, just as the ‘positive’ terminal of a battery is not 

‘good’.  In both cases, ‘positive’ is being used to identify an option.  In the case of a battery, it is a 

particular electrical charge.  In the case of a graph, it is a direction, the direction of the higher or 

more positive numbers on a number line.  

Figure 3.5 Graph of a Positively Skewed Distribution 

 

 

 

 

 

 

 

Skewed – A  distribution in which one tail is larger than the other.  As a result, the  

 distribution is not symmetrical.     

Positively skewed – A nonsymmetrical distribution in which the tail pointing to the right is  

 larger than the tail pointing to the left. 

 

In a positively skewed distribution the mean, median and mode do not all fall at the same 

point.  Instead, there is characteristic pattern, as indicated in Figure 3.5.  The mode is at the point 

on the X-axis where the frequency is greatest, the mean is ‘pulled’ to the right by the extreme scores 

and the median is located between the mode and the mean.  The income distribution in America is 

an example of a positively skewed distribution.  Many people have modest incomes while a few 

have very large incomes.   
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It is also possible for a distribution to be negatively skewed, as is shown in Figure 3.6.  In a 

negatively skewed distribution the larger tail is pointing toward lower or more negative numbers 

on a number line.  Once again, the mean is being ‘pulled’ by the extreme scores, except this time to 

the left; the mode is the value with the highest frequency; and the median is between the mean and 

the mode.  The distribution of scores on an easy exam is an example of a negatively skewed 

distribution.  Many students will do very well, but a few still find the exam to be difficult. 

Figure 3.6 Graph of a Negatively Skewed Distribution 

 

 

  

 

 

 

              

Negatively skewed – A nonsymmetrical distribution in which the tail pointing to the left is  

 larger than the tail pointing to the right. 

 

The distributions that have been reviewed thus far are all unimodal, in other words they 

have only one mode.  A symmetrical, bimodal distribution is depicted in Figure 3.7.  In a 

symmetrical, bi-modal distribution, there are two modes, and the mean and the median are located 

at the same point between these modes.  A distribution of heights might be an example of a bimodal 

distribution, with one mode indicating the most common height for women and the other mode 

indicating the most common height for men. 

Figure 3.7 Graph of a Symmetrical, Bimodal Distribution 
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                          and Mean 
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 We have seen that with interval or ratio data the graph of the frequency distribution can 

take a number of forms.  Whether it is symmetrical or skewed is important, for it affects our choice 

of statistical procedure.  Some statistical procedures assume that the data form a specific bell-

shaped curve called a normal distribution.  With interval or ratio data that are normally distributed 

the mean is the optimal measure of central tendency.  We will see later in the book that the mean 

has the advantage that it can be used in a variety of flexible statistical procedures.  However, when 

the distribution is not normal, but instead is skewed, we have seen that the mean is ‘pulled’ by the 

extreme scores.  In that case, the mean would be a poor choice as the measure of central tendency.  

The median, defined as the midmost score, is less affected by extreme scores and would be a better 

choice with skewed data.  For example, the data presented in Tables 3.7 and 3.8, and graphed in 

Figure 3.1, are skewed.  This is evident as there is a distinctive tail pointing to the right.  With these 

data, even though they were collected at the ratio level, you would probably want to calculate a 

median rather than a mean as a measure of central tendency.     

 Normal distribution – A specific, bell-shaped distribution.  Many statistical procedures  

  assume that the data are distributed normally. 

 

 Calculation of the median with interval or ratio data is straightforward: 

  Median = the value of the score at the 
𝐍 + 𝟏

𝟐
 position. 

 If a distribution has an odd number of entries, this equation will result in the median being 

the middle number in the distribution.  For instance, if there were income data from 9 workers, the 

median would be equal to the income of the worker in the (9 + 1) / 2 position.  This would be 10 / 

2, which equals 5.  In other words, the median would be the income of the fifth worker from the 

bottom, or top, of the distribution.    

 The situation is somewhat more complex if there is an even number of entries.  With our 

data there were incomes from 10 students.  The median would be the value associated with the (10 

+ 1) / 2 position on the frequency distribution.  This equals 11 / 2, or 5.5.  Obviously, there is no 

5.5th position.  However, we proceed as if there were.  The 5th lowest income was $3,000.  The 6th 

lowest income was $4,000.  We calculate the mean of these two incomes to find the income of the 

5.5th position.  In our case this would be ($3,000 + $4,000) / 2.  Thus the median income of the 10 

student is $3,500.  It is important to note that the value of this median differs substantially from the 

value we previously calculated for the mean of the entire set of data, which was $5,700.  This 

difference is due to the distribution being skewed and, consequently, the mean being affected by an 

extreme income(s).  Finally, recognize that in this example the median value of $3,500 is more 

representative of the incomes of the 10 students than is the value of the mean. 

Summary To This Point 
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I think you will agree that this introduction to the descriptive statistics of interval and ratio 

data is not any more challenging than the descriptive statistics of nominal or ordinal data.  

Constructing a stem-and-leaf display is not difficult, and once a frequency distribution is 

constructed then the histogram or frequency polygon can be constructed easily.  And finding the 

mean is straightforward.  Finally, if the data are clearly skewed we discussed that the median would 

be a better choice as a measure of central tendency than the mean since it is less affected by 

extreme scores.   

Reviewing Table 3.9 may make what you have learned in this chapter clearer as it compares 

the descriptive statistics used with nominal and ordinal data, which were reviewed in Chapter 2, 

with the descriptive statistics we have just reviewed for interval and ratio data (underlined in the 

table).  The italicized items in Table 3.9 are additional concepts that will be reviewed in this 

chapter.  

Table 3.9 Overview of Descriptive Statistics  

 
         ____________________________________Type of Data ________________________________________ 

                        Nominal  Ordinal    Interval/Ratio  
           (Frequency) (Ranked)   (Score) 
          ___________________________________________________________________________________________ 

 

Frequency Dist  Bar Graph  Bar Graph Histogram or Frequency Polygon  

   or Pie Chart  

 

       IF NOT NORMAL    IF NORMAL  
Central Tendency Mode  Median  Median      Mean  
           (Median – less  
                common)  
   
      
Variability  –  –  –  –   Range  Interquartile Range    Standard Deviation    
                   z Scorea    
 
 
Summary Presentation    Stem-and-leaf display    Stem-and-leaf display 

            and           and 

        Boxplot     Boxplot 

        

a   This procedure is reviewed in Chapter 4 

Progress Check 
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1. To graph the frequency distribution of interval or ratio data we would use either a _____ or a 

_____. 

2. If we measure the duration of a foot race in seconds, then the real limits for a time of 36 

seconds would be _____ and _____ seconds. 

3. In most soccer games even the winning team ends with a modest score.  However, there are 

exceptions where the winning team has a high score.  This is an example of a _____ skewed 

distribution. 

 

Answers:  1. Histogram; frequency polygon  2. 35.5; 36.5  3. Positively 

 

Measuring The Variability Of Interval And Ratio Data 
 

“Then there is the man who drowned crossing a stream with an average depth of six inches.” 

W. I. E. Gates 

 

 We next turn to another way to provide a summary presentation of interval and ratio data.  

This is the boxplot, which is based upon the interquartile range, a commonly used measure of 

variability for interval and ratio data.   

Following the discussion of the boxplot, and continuing in the next chapter, we will be 

focusing on two additional measures of variability that are commonly used with normally 

distributed, interval and ratio data.  These are the standard deviation and the z score.  Each is based 

upon the mean.  This chapter will introduce the standard deviation; Chapter 4 will describe the z 

score.       

The Boxplot 

 
A straightforward measure of variability used with interval and ratio data is the range.  We 

have briefly discussed the range previously.  It is simply the spread of the scores.  More specifically, 

with interval or ratio data the range is commonly defined as the difference between the highest and 

lowest scores.*  In the case of our income data (Table 3.8), the highest value that was reported was 

$20,000, and the lowest recorded income was $1,000.  The range of the incomes is, therefore, 

$20,000 – $1,000, which is $19,000.  That is all that is involved with calculating the range. 

Range – A measure of variability.  It is commonly defined as the value which is obtained  
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 when the lowest score is subtracted from the highest score.* 

 

*More precisely, the range is defined as the interval that includes all of the scores.  Thus, 

with interval or ratio data it actually equals the difference between the upper real limit of 

the highest score or category and the lower real limit of the lowest score or category.  

However, this more precise definition is rarely used in the social sciences. 

 

A more informative way to visualize the variability of a distribution is the boxplot (also 

called a box and whiskers plot).  The boxplot utilizes the median and the range, and also includes a 

central box delineating the 25th and 75th percentiles.  

 Boxplot – A summary of a distribution which includes the median, a central box with the  

  25th and 75th percentiles as limits, and the range.  Another name for a boxplot is a  

  box and whiskers plot. 

 Box and whiskers plot – Another name for a boxplot. 

  

Recall that the median divides a distribution so that half (50%) of the scores are below it, 

and half (50%) are above it.  It is, therefore, at the 50th percentile.  We are now going to divide a 

distribution into four regions so that each consists of a quarter (25%) of the scores.  If the 

distribution is rectangular, the result would appear as is shown in top portion of Figure 3.8.   

Figure 3.8  Illustration of the Relationship of the Range, Interquartile Range, Median, 

Percentiles and Quartiles for a Rectangular Distribution 

   

 

 

 

                   

 

 

 

               

 

As an example of a boxplot, assume that ten students took an exam.  Their scores are shown in 

Table 3.10.  

Table 3.10 Ten Scores on an Exam 

68 70 72 73 74 76 79 83 94 97 

25% 25% 25% 25% 

25th Percentile                50th Percentile                75th Percentile 
First Quartile                 Second Quartile               Third Quartile 
                                                   Median 

Interquartile Range 
 

Range 
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The range of these scores would be found by subtracting the value of the lowest score from 

the highest, which would be 97 – 68 which is equal to 29.  The median is found by determining the 

value corresponding to the (N + 1) / 2 position.  This would be (10 + 1) / 2 which equals 5.5.  

There is no 5.5th value, so we find the mean of the 5th and 6th values, which would be (74 + 76) / 2 

which equals 75.  And we know that the median is at the 50th percentile.  The value of the score at 

the 50th percentile is also called the second quartile (Figure 3.8).   

Second quartile – The value of the score at the 50th percentile in a distribution.  It is the  

 median. 

 

The value with 25% of the distribution below it (25th percentile) would correspond to the 

median of the bottom half of the distribution.  In other words, for our example it is the median of 

the scores of 68, 70, 72, 73 and 74.  The median of these five scores is 72.  This value is at the 25th 

percentile, and is called the first quartile (Figures 3.8 and 3.9). 

First quartile – The value of the score at the 25th percentile in a distribution.   

 

The value with 75% of the distribution below it (75th percentile) would correspond to the 

median of the upper half of the distribution.  In other words, for our example it is the median of the 

scores of 76, 79, 83, 94 and 97.  The median of these five scores is 83.  This value is at the 75th 

percentile, and is called the third quartile (Figures 3.8 and 3.9). 

 Third quartile – The value of the score at the 75th percentile in a distribution.   

     

In other words, the central 50% of the exam scores would fall between 72 (25th percentile or first 

quartile) and 83 (75th percentile or third quartile).  This central 50% of the distribution is called 

the interquartile range or IQR (Figures 3.8 and 3.9).  It is also represented by the ‘box’ in Figure 3.9.  

Lines, called whiskers, extend from the edges of this box (the 25th and 75th percentiles) to the limits 

of the data (the range) (Figure 3.9).  A boxplot is also often drawn vertically, which is shown in 

Figure 3.10.  (Note that some descriptions of the boxplot emphasize that the whiskers do not 

include any data points that are identified as outliers in the distribution.  As this is an introductory 

text, a discussion of outliers has not been included.) 

 Interquartile range (IQR) – A measure of variability based upon the median that  

  includes the middle 50% of the data.  It is the range of values in a distribution  

  between the 25th and 75th percentiles.   

 Whisker – In a boxplot, a line extending from an edge of the box (either the 25th or 75th  
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  percentiles) to the limits of the data.  The two whiskers thus extend as far as the  

  range of the data. 

 

Figure 3.9 Boxplot of the Student Exam Scores 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Alternative Presentation of the Boxplot of the Student Exam Scores 
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A great deal of information is conveyed by Figure 3.9 or 3.10.  First, while the range of the 

scores extends from 68 to 97, half of the scores occur within a much smaller ‘box’ with limits of 72 

and 83.  Second, the median, which is the value with half of the incomes above it and half below it, is 

not located near the middle of the distribution of exam scores.  Instead, with a value of 75 it is 

considerably below the physical middle of the range of values.  This indicates that the distribution 

is positively skewed, with the larger tail for higher scores.  This conclusion is confirmed by the third 

observation which is that the distance from the median to the upper limit of the IQR is greater than 

the distance from the median to the lower limit of the IQR.  If the distribution had been 

symmetrical, the median would have been located at the physical middle of the IQR. 

 In the literature you will often see figures with more than one boxplot.  This allows a quick, 

informative comparison of multiple sets of data. 

 It is also important to note that an advantage of the interquartile range as a measure of 

variability compared to the range is that, unlike the range, the interquartile range is not sensitive to 

a change in an extreme score.  It is thus more stable, which is a beneficial characteristic for a 

statistical measure. 

 Once the first quartile and third quartile have been determined it is easy to calculate 

another commonly used measure of variability, the semi-interquartile range.  The semi-

interquartile range, or SIQR, is simply half of the interquartile range.  In other words, 

   SIQR = 
𝐢𝐧𝐭𝐞𝐫𝐪𝐮𝐚𝐫𝐭𝐢𝐥𝐞 𝐫𝐚𝐧𝐠𝐞

𝟐
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          = 
𝟕𝟓𝐭𝐡 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥𝐞 − 𝟐𝟓𝐭𝐡 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥𝐞

𝟐
 

In our example: 

SIQR = 
𝟖𝟑 − 𝟕𝟐

𝟐
 

          = 
𝟏𝟏

𝟐
 

          = 5.5 

 The semi-interquartile range is an informative and commonly used measure of variability 

for interval or ratio data, particularly when the distribution is skewed. 

Semi-interquartile range (SIQR) – A commonly used measure of variability, particularly for  

 skewed data.  It is equal to half of the interquartile range. 

 

 To be certain you understand the calculations that go into creating a boxplot we will now 

assume that one additional student’s score is included in the previously described exam.  This 

student scored 67.  There would now be eleven scores on the exam (Table 3.11).  

Table 3.11 Eleven Scores on an Exam 

67 68 70 72 73 74 76 79 83 94 97 

 

The range of these scores would be found by subtracting the lowest score from the highest, 

which would now be 97 – 67 which is equal to 30.  The median is found by determining the value 

corresponding to the (N + 1) / 2 position.  This would be the value corresponding to (11 + 1) / 2, 

which equals the 6th position.  This equals a score of 74.  This score is at the 50th percentile, which is 

also called the second quartile.   

The value with 25% of the distribution below it (25th percentile or first quartile) would 

correspond to the median of the bottom half of the distribution.  When there is an uneven number 

of data points in the total distribution, as is the case in our example, the overall median is not 

included when calculating the first or third quartiles.  In other words, for the current example the 

first quartile would be found by calculating the median of the scores of 67, 68, 70, 72 and 73.  The 

median of these five scores is 70.   

The value with 75% of the distribution below it (75th percentile) would correspond to the 

median of the upper half of the distribution.  As was just noted, when there is an uneven number of 

data points in the total distribution, the overall median is not included in the calculation of the third 

quartile.  In other words, for our example the third quartile would be the median of the scores of 76, 

79, 83, 94 and 97.  The median of these five scores is 83.   
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 Thus, the central 50% of the eleven exam scores would fall between 70 (25th percentile or 

first quartile) and 83 (75th percentile or third quartile).  This central 50% of the distribution would 

be the interquartile range or IQR.   

 With this information we could now construct a boxplot.  Hopefully you agree that a boxplot 

is a useful way to describe a set of data, and that the calculations needed in order to create a 

boxplot are not difficult. 

 Finally, the semi-interquartile range, or SIQR, which is simply half of the interquartile range, 

would be: 

   SIQR = 
𝐢𝐧𝐭𝐞𝐫𝐪𝐮𝐚𝐫𝐭𝐢𝐥𝐞 𝐫𝐚𝐧𝐠𝐞

𝟐
 

          = 
𝟕𝟓𝐭𝐡 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥𝐞 − 𝟐𝟓𝐭𝐡 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥𝐞

𝟐
 

In our example: 

SIQR = 
𝟖𝟑 − 𝟕𝟎

𝟐
 

          = 
𝟏𝟑

𝟐
 

          = 6.5 

   

When The Data Are Normally Distributed 

 
Much of this text deals with interval or ratio data that are normally distributed.  A boxplot 

can also be a very informative way to present these data.  However, much of the remainder of the 

book is based upon a critical concept, the deviation.  In everyday use, ‘deviant’ indicates that there 

is a difference, and the word has a rather negative connotation.  In statistics, it just indicates a 

difference, usually from the mean.  There isn’t any value judgment.  In fact, we are all deviant.  No 

one has the mean score for all traits.  Each of us is a little heavier, or shorter, or smarter, or quieter, 

or happier than the mean.   

A related concept, the standard deviation, can be thought of as the amount that a score is  

expected to vary from its mean.  However, before proceeding with a discussion of deviations, we 

need to make a short detour to understand the difference between a population and a sample.   

Population And Sample: Statisticians’ Way Of Saying ‘All’ And ‘Some’  

 
In statistics, the entire group that is of interest is called a population.  Any part or sub–set of 

a population is called a sample.  An example should make the distinction clear.  Assume that you are 

a teacher.  If the entire group that is of interest to you consists of the members of your class, then 

the members of your class would be a population and any sub-set of it, such as the students who are 

sitting in the front row, would be a sample.  However, if all of the students who attend your school 
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are the group that is of interest, then your class would now be a sample of this much larger group.  

In other words, whether a group should be considered a population or a sample depends upon the 

specific situation.   

 Population – The entire group that is of interest. 

 Sample – A subset of a population. 

 

Introducing The Variance And Standard Deviation Of A Population  

 
Now we can return to our discussion of the standard deviation.  This will at first seem 

strange, but the best way to introduce the standard deviation is to begin with a discussion of a 

closely related statistical measure, the variance.  Both the standard deviation and the variance are 

measures of variability.  The variance is defined as the average of the sum of the squared deviations 

from the mean.  This is, admittedly, not a particularly enlightening definition.  Fortunately, this is a 

case where the mathematical equation is much clearer than the verbal definition, even though the 

symbols may appear peculiar at first.  For a population (not a sample), the equation for the variance 

is:  

 Variance of a population = 2 = 
(X – )2

N
  

 Hopefully you recognize that this is actually a very simple equation.  It is just necessary to 

break it down into its parts and learn the meaning of the new symbols.  First, the symbol 2 

(pronounced sigma squared) is just another way of saying that we are dealing with a variance of a 

population.  (Note that  is the lower case of the Greek letter sigma.  This needs to be distinguished 

from , the upper case of sigma, which is the symbol for summation.  And now you are probably 

beginning to gain an appreciation of why the phrase ‘it is all Greek to me’ is sometimes linked with 

statistics.)  Next, the (X – ) section of the equation indicates that we are to take a score, symbolized 

by the letter X, and subtract the population mean, symbolized by the Greek letter  (pronounced 

mu).  This difference between a score and its mean is called a deviation.  The (X – )2  part of the 

equation indicates that we are to square this deviation.  Next, the numerator, (X – )2, indicates 

that we are to sum the squared deviations of all of our scores.  This term is called, appropriately, the 

‘sum of the squared deviations’.  Finally, the / N indicates that we are to divide the sum of the 

squared deviations that we just found by the total number of scores.  This is a complex paragraph, 

but I am confident that an example will make the steps clear. 

Variance – A measure of variability; the average of the sum of the squared deviations of  

 scores from their mean.  The symbol for the population variance is 2.   

 Deviation – The difference between a score and its mean.  Thus, with population data the  

  deviation equals X – .  
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 Let us assume that you are a member of a very select group that consists of only three 

individuals.  (I have chosen an unrealistically small data set to assist you in understanding the 

calculations.)  Someone is interested in determining how the group is doing and collects data from 

each person on a quiz.  The scores are listed in Table 3.12.  As this is the only group that is of 

interest these three individuals constitute a population, not a sample. 

We can now proceed to calculate the variance.  The first step is to calculate the population 

mean.  The sum of the three scores is 24.  To find the mean we divide the sum of the scores by the 

total number of scores, which in this case is three.  The mean thus equals 24 / 3, which is 8.  We 

now turn to finding the deviations.  The deviation of the first quiz score, symbolized by (X – ), 

would equal 6 – 8.  This is –2, and it is indicated in the first entry of the third column by being 

bolded.  When we square –2, we obtain 4, the deviation squared, which is the first entry in the 

fourth column.  We would then proceed to the second and third quiz scores.   

Table 3.12 Initial Steps in Calculating the Variance 

 
Subject  Score  Deviation Deviation Squared  

(X – )  (X – )2  
  

1    6  –2  4 

  2    8    0  0 

  3               10    2                4 

   =               24    0  8 

 
Calculating the variance is now just a matter of substituting into the equation: 

 

Variance of a population = 2 = 
 (X – )2

N
   

                 = 
8

3
 

                 = 2.67 

The good news is that we have just calculated a variance.  Unlike the range, which is based 

solely on the two most extreme scores and is thus unstable, the variance is affected by all of the 

scores and is, therefore, more stable.  This is a good feature.  The bad news is that the variance is 

not a particularly useful descriptive statistic.  The reason is that the variance is measured in 

squared units, as is indicated by the symbol 2.  In other words, while the variance is providing a 

measure of variability, in this case it is 2.67 points squared, which is probably not the easiest 

concept to grasp.    

 There are two obvious solutions to the problem of the variance being measured in squared 

units.  First, you might suggest that we simplify the entire process and base our measure of 
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variability on the deviation scores.  In other words, if we do not square the deviations, then our 

measure of variability will not be in squared units.  Unfortunately, while it is true that you will have 

solved one problem, you will have created another.  If you refer to Table 3.12, you will see that the 

sum of the column of deviations equals zero.  This will always be the case.  No matter what set of 

numbers is being examined, the sum of the deviations from the mean will always equal zero.  

Clearly, the sum of the deviations from the mean will not work as a measure of variability. 

 The other obvious solution to our problem with the squared units of the variance is to 

simply take the square root.  This puts the measure of variability back into the original units.  The 

result is a measure of variability known as the standard deviation, which has the symbol .  In other 

words: 

 Standard deviation =  variance 

and  

 Variance = (standard deviation)2  

  

Referring to our example of three scores on a quiz (Table 3.12), the standard deviation 

would equal the square root of 2.67 points squared, which is 1.63 points.  This measure of 

variability is back in the original units of measurement, points on the quiz.  And you will see that it 

is a very useful measure for it indicates how much we expect a score to vary from its mean.  We can, 

therefore, succinctly summarize the central tendency and variability of a set of interval or ratio 

scores by providing the mean and the standard deviation.  With our example of the three quiz 

scores, the mean is 8 points and the standard deviation is 1.63 points.   

 Standard deviation – A measure of variability; the expected deviation of a score from its  

  mean.  It is defined as the square root of the variance.  The symbol for the  

  population standard deviation is .   

  

 You will see in this text that with interval and ratio data the standard deviation is the most 

frequently used measure of variability with descriptive statistics, while the variance is the most 

frequently used measure of variability with inferential statistics.   

A Few More Symbols 

 
 We have just learned that the difference between a score and its population mean (X – ) is 

called a deviation.  The concept of a deviation is used so commonly in statistics that it is given its 

own symbol, x.  (Note that a capital X is used to represent a score and a lower case x is used to 

represent a deviation.  It is important to keep this distinction clear.)  Similarly, the sum of the 
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squared deviations [ (X – )2 ] is used so commonly that it also has its own abbreviation, SS.  It 

should be clear that another way to express SS is x2. 

 Sum of the squared deviations – For a population, it is equal to (X – )2 or x2.  It is often  

  abbreviated as ‘sum of squares’ which is shortened even further to SS. 

 

 Since the sum of the squared deviations can be abbreviated in a variety of ways, it follows 

that the equation for the variance can also be written in a number of forms.  We have already seen 

that the variance of a population has the symbol 2, and is defined as (X – )2 / N.  In addition, it 

was just pointed out that the sum of the squared deviations [(X – )2] is abbreviated as SS.  

Therefore, the population variance also could be written as SS / N.  Further, as (X – )2 is also 

abbreviated as x 2, the population variance can be written as x 2 / N.  And the standard deviation 

is equal to the square root of each of these forms of the variance equation, as is indicated in Table 

3.13. 

Table 3.13 Equations for the Population Variance and Standard Deviation 
 
  Variance    Standard Deviation 

  2 = 
(X – )2

N
      =  

(X – )2

N
    

  2 = 
SS

N
       =  

SS

N
  

  2 = 
x2

N
      =  

x2

N
 

  

A further example may assist in clarifying the use of these symbols and equations. 

 Let us assume that we have an interest in the heights of basketball players on a college 

team.  Specifically, we want to determine the mean and standard deviation of the heights of the five 

starting players.  Their heights in inches are listed in Table 3.14.  As these are all of the players that 

we are interested in, this group of five individuals is a population. 

Table 3.14 Heights of Five Basketball Players in Inches 

 
Player Height (X) 

   1    70 

   2    72 

   3    76 

   4    80 

   5                  81 

              X = 379 
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 The mean of the five heights would be found using the following equation: 

  Mean = 
X

N
 

           = 
379

5
  

           = 75.8 inches 

 We can now use the equation,   =  [((X – )2) / N], from Table 3.13, to find the standard 

deviation.  The first step is to find the deviation, (X – ), which can also be written as x, for each of 

the five heights.  We then square these values.  This outcome can be written as (X – )2 or x 2.  These 

steps are illustrated in Table 3.15. 

Table 3.15 Initial Steps in Calculation of the Standard Deviation 
 

X      (X – ) or x         (X – )2 or x2 

70  (70 – 75.8) = –5.8  33.64 

72  (72 – 75.8) = –3.8  14.44 

76  (76 – 75.8) =   0.2     0.04 

80  (80 – 75.8) =   4.2  17.64 

                              81  (81 – 75.8) =   5.2  27.04 

         = 379           = 0           = 92.80 

 

 As a check on our arithmetic, we confirm that the sum of the deviations, (X – ), which can 

also be written as x, is zero.  We now proceed to find the sum of the squared deviations, (X – )2, 

which can also be written as x2 or SS.  This is equal to 92.80 inches squared (Table 3.15). 

 The next step, as is evident from the equations in Table 3.13, is to divide 92.80 inches 

squared by N.  As a result, we find that (X – )2 / N (which is equivalent to SS / N or x2 / N) is 

equal to 92.80 divided by 5, which in turn equals 18.56 inches squared.  We have just found the 

variance of the heights of the basketball players.  Notice again that this variance is measured in 

inches squared.  This is not a particularly meaningful number, so we now take the square root, 

which will give us the standard deviation of 4.31 inches.   

We have just used the three equations for the variance and standard deviation in Table 3.13.  

They are simply different ways to write the definitional equations for these two measures of 

variability.   

Reporting The Calculated Values Of The Mean And Standard Deviation 

 
 If we wanted to report the results, we would say, “The mean of the heights of the five 

basketball players, in inches, as well as the standard deviation were calculated ( = 75.8, SD = 

4.31).”  This would indicate to the reader that the players were tall, 75.8 inches or almost 6 feet 4 
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inches on average, and that the typical or ‘standard’ difference between each height and the mean 

was slightly over 4 inches.   A great deal of information has been conveyed with only two numbers.  

This efficient summary of data is the goal of descriptive statistics. 

Progress Check 

 
Assume a population consisting of four soccer players scores 6, 8, 9 and 12 goals during a season. 

1. What is the mean? 

2. What is the variance? 

3. What is the standard deviation? 

 

Answers:  1.  8.75 goals  2.  4.69 goals squared  3.  2.17 goals 

 

Effect On The Variance And Standard Deviation Of Adding Or Multiplying Every Score In A 
Distribution By A Constant 

 
 There are times when a constant number is added to every score in a set of data, such as 

when a professor curves the scores on a test.  It is important to understand how adding or 

multiplying by a constant will affect the mean and standard deviation of the set of scores.  Using our 

previous example, imagine that each basketball player started playing on stilts that were 12 inches 

high; then each player’s height would increase by 12 inches.  This would, in turn, increase the mean 

height by 12 inches.  But how would it affect the standard deviation?  The situation is summarized 

in Table 3.16.    

Table 3.16 Illustration of the Effect of Adding a Constant to Every Score 

  
    Original Score       New Score        Deviation        Deviation Squared 

OS         OS + 12 = X      (X – ) or x          (X – )2 or x2 

70  82  (82 – 87.8) = –5.8  33.64 

72  84  (84 – 87.8) = –3.8  14.44 

76  88  (88 – 87.8) =   0.2    0.04 

80  92  (92 – 87.8) =   4.2  17.64 

               81                93    (93 – 87.8) =   5.2  27.04 

       = 379                = 439           = 0           = 92.80 

       = 75.8         = 87.8 

  

 The original mean height was 379 / 5, or 75.8 inches.  The mean of the new heights is 439 

/5 or 87.8 inches, 12 inches greater than the original mean.  We then confirm, using the new mean, 

that (X – ) equals zero.  Next, we note that the sum of (X – )2, which can also be written as (X – 
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)2, x2 or SS has not changed.  It is still equal to 92.80 inches squared.  Since the N, which is 5, has 

not changed, this will lead to a variance and standard deviation that are also the same as was 

calculated with the previous example.  In other words, if you add a constant value to every score in 

a set of data, the mean will increase by this constant but the standard deviation and variance will 

not change.  All that you have done by adding a constant value to every score is to shift the 

distribution to the right on the number line, as is indicated in Figure 3.11.  The mean of the 

distribution increases by the constant, but as the shape of the distribution and the spread of the 

scores do not change, neither do the variance or the standard deviation. 

Figure 3.11 Effect of Adding a Constant to Each Score 

 

 Similarly, if you subtract a constant value from every score in a set of data the mean will 

decrease by the amount of the constant but, once again, the shape of distribution as well as the 

variance and standard deviation will not be altered.  You can verify that the variance and standard 

deviation do not change by using the data for basketball players’ heights and subtracting a constant.  

But what happens if you multiply or divide each score by a constant?   

 The situation that would result from multiplying each basketball player’s height by 3 is 

indicated in Table 3.17 (This would result in a very tall team!). 

 Table 3.17 Illustration of the Effect of Multiplying Each Score by a Constant 

                 Original Score        New Score        Deviation        Deviation Squared 
OS         3(OS) = X           (X – ) or x          (X – )2 or x2 

 

70  210  (210 – 227.4) = –17.4  302.76 

72  216  (216 – 227.4) = –11.4  129.96 

76  228  (228 – 227.4) =      0.6        0.36 

80  240  (240 – 227.4) =   12.6  158.76 

               81  243  (243 – 227.4) =   15.6  243.36 

      = 379         = 1137                = 0            = 835.20  

          = 75.8         = 227.4 

 

 The new mean of the heights would be found by dividing the total of the heights, 1137 

inches, by 5.  This would equal 227.4 inches, three times the original mean which was 75.8 inches.  

In other words, multiplying each player’s height by three also results in a mean height that is three 
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times as large as the original mean height.  To find the effect on variability of multiplying each 

height by three we need to find the sum of the squared deviations which, you recall, can be written 

as (X – )2, x2 or SS.  Before doing so, we check that (X – ), which can also be written as x, is 

zero.  Having determined this, we proceed to find that (X – )2 equals 835.20 inches squared.  

Substituting into the equation 2 = (X – )2 / N from Table 3.13, we obtain our variance which 

equals 835.20 / 5, or 167.04 inches squared.  The standard deviation is the square root of the 

variance, which in this case would be 167.04, or 12.92 inches.  This is, except for a small rounding 

difference, three times the standard deviation of 4.31 inches that we obtained previously.  In other 

words, if all of the scores in a set of data are multiplied by a constant, the mean and the standard 

deviation (but not the variance) will also be multiplied by that constant.  This can be illustrated in 

Figure 3.12, which shows that our distribution not only moved to the right due to the value of each 

score tripling, it also became three times as spread out.  You are encouraged to divide each score in 

a set of data by a constant and verify that in this case the mean and the standard deviation (but not 

the variance) will each be divided by your constant. 

Figure 3.12 Effect of Multiplying Each Score by Three 

 

 

Comparing Measures Of Variability For Populations and Samples 

 
Thus far in this chapter we have dealt with the variance and standard deviation (SD) of a 

population.  Fortunately, the situation is virtually identical if you are dealing with a sample.  As you 

recall, a sample is a subset of a population.  In our example with the basketball players that began 

with Table 3.14 we were only interested in the heights of the five starting players.  They thus 

constituted a population.  Let us assume, instead, that there were 20 basketball players on a team 

and our 5 players were chosen from this group.  Our 5 players would now constitute a sample of 

this population of 20 basketball players.  If we remain interested in simply summarizing the data by 

calculating the mean, variance and standard deviation you will see that very little changes.   

 Nevertheless, when discussing data it is important to keep the distinction between a 

population and a sample clear.  Measures of characteristics of a population, such as its mean and 

standard deviation, are called parameters.  Measures of characteristics of a sample, such as its mean 

and standard deviation, are called statistics.  As this book deals with a discipline called statistics, 

not parameters, it should be obvious that we will be working with samples much more often than 
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populations.  In order to assist the readers (and writers) of statistics texts and scientific articles in 

keeping the distinction between a population and a sample clear, different symbols are used.  Table 

3.18 lists some of the common symbols.  It may be helpful to recognize that population parameters 

are usually signified by Greek letters while sample statistics are signified by Roman letters. 

 Parameter – A measure of a characteristic of a population, such as its mean or its variance.   

 Statistic – A measure of a characteristic of a sample, such as its mean or its variance.   

 

Table 3.18 Symbols Used when Describing Population Parameters and Sample Statistics 

 

    Population Parameter  Sample Statistic  

Size of Data Set   N    n  

 Mean        M 

 Variance   2    s2 

 Standard Deviation      s 

 

 We have previously defined the deviation of a score from its population mean as X – .  

From Table 3.18, it is evident that the symbol for the mean changes when we are dealing with a 

sample.  Consequently, the deviation of a score from its sample mean would be written as X – M.  

Similarly, from Table 3.13 you will see that the equation for the population variance is 2 = (X – 

)2 / N.  It would be reasonable to assume that by substituting the symbols listed in Table 3.18 we 

would then have the equations for the sample variance and the sample standard deviation.   

It is important to note that if this were the case then with descriptive statistics while the 

symbols used in the equations for populations and samples would have changed, they would lead to 

identical outcomes.  This would be logical because with descriptive statistics we are only interested 

in the data set we are currently examining.  In other words, if we are dealing with the descriptive 

statistics of a sample, the observed data are all that we are concerned with and thus, conceptually, 

these data would essentially be treated in the same way as if they constituted a population.  In other 

words, it would be reasonable to assume that the standard deviation describing a set of data would 

be the same regardless of whether we are dealing with a population or a sample.  However, later in 

the text you will see that with inferential statistics it is necessary to make a minor change to these 

equations.  And inferential statistical procedures are used much more commonly than descriptive 

procedures.  Thus, it is not surprising that we would want to avoid the use of two sets of almost 

identical equations which lead to very similar, but nevertheless somewhat different, results.  

Consequently, when calculating the variance or standard deviation of a sample we commonly use 

the equations developed for inferential statistics even if we are actually asking a descriptive 

question.  Fortunately, the only difference is that we now divide by n – 1 instead of n.  (The reason 
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for this modification will be explained later in the text.)  Thus the equation for the sample variance 

becomes s2 = ((X – M)2) / (n – 1).  And the equation for the sample standard deviation would then 

be s = [((X – M)2) / (n – 1)].  The different forms of the equations used to calculate the standard 

deviation, for both populations and samples, are provided in Table 3.19. 

Table 3.19 Equations for the Standard Deviation when Describing Populations and Samples 

 
  Population    Sample 

    =  
(X – )2

N
    s  =  

(X – M)2

n − 1
 

    =  
SS

N
    s  =  

SS

n − 1
 

    =  
 x2

N
    s  =  

 x2

n − 1
 

 

 So, what is the effect of this change from using N in the denominator to using n – 1?  In Table 

3.14 we were given the heights of 5 basketball players.  As these were the only players of interest, 

they constituted a population.  We subsequently found that the variance was equal to 18.56 inches 

squared and the standard deviation for these data was equal to 4.31 inches.  If our 5 players were 

instead a sample from a population of basketball players, the mean and the sum of the squared 

deviations from the mean would not change.  However, we would now divide the sum of the 

squared deviations from the mean, which we calculated to be 92.80 inches squared, by n – 1 instead 

of N.  As a result, we find that the variance, which is now written as (X – M)2 / (n – 1), is equal to 

92.80 divided by 5 – 1, which in turn equals 23.20 inches squared.  And to find the standard 

deviation we would take the square root, which will give us a value of 4.82 inches.  These values 

differ substantially from 18.56 inches squared and 4.31 inches which we calculated previously.  

However, a sample consisting of only five subjects is unusually small, and with larger sample sizes 

the difference between dividing by n – 1 instead of N quickly becomes negligible. 

Conclusion 
 
 This chapter has begun the review of the descriptive statistics utilized with interval or ratio 

data.  It was noted that there are a variety of procedures to assist in gaining an overview, including 

the stem-and-leaf display, the histogram, the frequency polygon and the boxplot.  A distinction was 

also made between skewed and symmetrical distributions.  If the data are clearly skewed the 

appropriate measures for central tendency and variability would be the median and the 

interquartile or semi-interquartile range, respectably.  However, as this text will be emphasizing 

the analysis of normally distributed data, and these are symmetrically distributed, the descriptive 

statistics for central tendency and variability that we will most commonly be using will be the mean 
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and the standard deviation.  The relation between these statistics and the statistics utilized with 

nominal and ordinal data are summarized in Table 3.9.  Though the calculations involved with 

finding the descriptive statistics for normally distributed interval or ratio data are somewhat more 

involved, you will see in the next chapter that the amount of information gained is substantially 

greater. 

Glossary of Terms 
 
Bell-shaped curve – A symmetrical distribution in which the highest frequency scores are located 

near the middle and the frequency drops the farther a score is from the middle. 

Box and whiskers plot – Another name for a boxplot. 

Boxplot – A summary of a distribution which includes the median, a central box with the 25th and  

 75th percentiles as limits, and the range.  Another name for a boxplot is a box and whiskers  

 plot. 

Deviation – The difference between a score and its mean.  Thus, with  population data the deviation  

 equals X – .  The symbol for a deviation is x. 

First quartile – The value of the score at the 25th percentile in a distribution.   

Frequency polygon – A graphic presentation for use with interval or ratio data.  It is similar to a 

histogram except that the frequency is indicated by the height of a point rather than the 

height of a bar.  The points are connected by straight lines. 

Histogram – A graph used with interval/ratio data.  As with the bar graph, frequencies are indicated 

by the length of the associated bars.  However, as the data are continuous in a histogram the 

bars are positioned side-by-side. 

Interquartile range (IQR) – A measure of variability based upon the median that includes the  

 middle 50% of the data.  It is the range of values in a distribution between the 25th and 75th  

 percentiles.   

Leaf  – The last digit(s) of a score.  With a stem-and-leaf display each leaf is paired with the  

appropriate stem value and the leaves are listed in ascending order in each row of the 

display. 

Mean – A measure of central tendency for use with interval or ratio data.  It is what is commonly 

called an average.  The mean is the sum of the scores divided by the number of scores.   

Negatively skewed – A nonsymmetrical distribution in which the tail pointing to the left is larger 

than the tail pointing to the right. 

Normal distribution – A specific, bell-shaped distribution.  Many statistical procedures assume that  

 the data are distributed normally. 

Parameter – A measure of a characteristic of a population, such as its mean or its variance.   
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Population – The entire group that is of interest. 

Positively skewed – A nonsymmetrical distribution in which the tail pointing to the right is larger 

than the tail pointing to the left. 

Range – A measure of variability.  It is commonly defined as the value which is obtained when the  

 lowest score is subtracted from the highest score. 

Real limits – With interval or ratio data, the actual limits used in assigning a measurement.   

 These are halfway between adjacent scores, and are called the upper and lower real  

 limits. 

Sample – A subset of a population. 

Second quartile – The value of the score at the 50th percentile in a distribution.  It is the median. 

Semi-interquartile range (SIQR) – A commonly used measure of variability, particularly for  

 skewed data.  It is equal to half of the interquartile range. 

Skewed – A  distribution in which one tail is larger than the other.  As a result, the distribution is not  

 symmetrical.    

Standard deviation – A measure of variability; the expected deviation of a score from its mean.  It is  

 defined as the square root of the variance.  The symbol for the population standard  

 deviation is .   

Statistic – A measure of a characteristic of a sample, such as its mean or its variance.   

Stem – With a stem-and-leaf display, a list of the different values of the data once the last digit(s) of  

 each score is removed.   

Stem-and-leaf display – A commonly used summary of interval or ratio data in which each original  

 score is separated into two parts, a stem and a leaf.    

Sum of the squared deviations – For a population, it is equal to (X – )2 or x2.  It is often  

 abbreviated as ‘sum of squares’ which is shortened even further to SS. 

Symmetrical distribution – A distribution in which the right half is the mirror image of the left half.  

In such a distribution, there is a high score corresponding to each low score. 

Third quartile – The value of the score at the 75th percentile in a distribution.   

Variance – A measure of variability; the average of the sum of the squared deviations of scores from 

their mean.  The symbol for the population variance is 2.   

Whisker – In a boxplot, a line extending from an edge of the box (either the 25th or 75th percentiles)  

 to the limits of the data.  The two whiskers thus extend as far as the range of the data. 

Questions – Chapter 3 

 
(Answers are provided in Appendix J.) 

1. With a stem-and-leaf display, a row with a stem of 12 and leaves of 0, 2 and 6 would  
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 be equivalent to scores of _____, ______, and _____. 
 a. 12, 14 and 18 
 b. 0, 24 and 72 
 c. 120, 122 and 126 
 d. 1200, 1222 and 1266 
 
2. A frequency polygon is preferred to a histogram when there are (a) _____. 

a.     Small number of possible X values 
b.     Many values of Y for each value of X 
c.     Large number of possible X values  
d.     Few values of Y for each value of X 

 
3. If a person reports that their height is 5 feet 8 inches, the ‘real limits’ were actually _____ and 

_____. 
a.     5 feet 7 ½ inches; 5 feet 8 ½ inches  
b.     5 feet 7 inches; 5 feet 9 inches 
c.     5 feet 8 inches exactly 

 
4. The most obvious difference between a bar graph and a histogram is that _____. 

a.     The bars touch in a bar graph but are separated in a histogram 
b.     The bars touch in a histogram but are separated in a bar graph  
c.     A bar graph is used for interval or ratio data whereas a histogram is only used  

 with nominal data. 
d.     A bar graph will always have more bars than a histogram will have. 

 
5. What is the mean of 96, 92, 98 and 90? 

a.     93 
b.     93.5 
c.     94.5 
d.     94  

 
6. A serious problem with the mean as a measure of central tendency is that _____. 

a.     It is too difficult to calculate 
b.     It cannot be used if the set of numbers is large 
c.     It is affected by extreme scores  

 
7. The two most commonly used measures of variability with normally distributed interval 

and ratio data are _____ and _____. 
a.     Standard deviation; variance  
b.     Range; standard deviation 
c.     Variance; range 

 
8. In a distribution, the sum of the deviations from the mean will always equal _____. 

a.     3 
b.     0  
c.     6.5 
d.     It varies depending upon the set of numbers. 

 
9. If you have a distribution consisting of 13 scores, the median would be the _____ score. 

a.     1st 
b.     3rd 
c.     7th  
d.     13th 
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10. What are the median and range for temperatures of 91, 92, 93, and 94?   
a.     92; 2 
b.     92.5; 3 
c.     92.5; 4  
d.     93; 5 

 
11. If I am solely interested in the views of my statistics class, I am considering the class to be a 

_____.  However, if I am interested in using the statistics students’ views to learn about all 
college students’ opinions, I am considering the class to be a _____. 
a.     Population; sample  
b.     Sample; population 

 
12. We use the _____ or _____ to graph interval or ratio data. 

a.     Histogram; pie chart 
b.     Bar graph; frequency polygon 
c.     Pie chart; bar graph 
d.     Histogram; frequency polygon  

 
13. What is the median and range of heights, measured in inches, of 72, 81, 85, and 91? 

a.     83; 19 
b.     83; 20  
c.     81; 19 
d.     85; 20 

 
For questions 14 – 17, assume there are 12 scores: 
  
               2 3 3 5 6 7 9 10 12 16 22 60 
 
14.         What is the range? 

a. 57 
b. 58 
c. 59 
d. 60 

 
15.        What is the median (second quartile)? 

a. 6 
b. 7 
c. 8 
d. 9 

 
16.        What is the value of the first quartile? 

a. 2 
b. 3 
c. 4 
d. 5 

 
17.        What is the value of the third quartile? 

a. 12 
b. 13 
c. 14 
d. 15 
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For questions 18 – 21, assume we add a score of one to the previous set of numbers.  There are now 
13 scores: 
 
1 2 3 3 5 6 7 9 10 12 16 22 60 
 
18.        What is the range? 

a. 57 
b. 58 
c. 59 
d. 60 
 

19.        What is the median (second quartile)? 
a. 6 
b. 7 
c. 8 
d. 9 

 
20.        What is the value of the first quartile? 

a. 2 
b. 3 
c. 4 
d. 5 

 
21.        What is the value of the third quartile? 

a. 12 
b. 13 
c. 14 
d. 15 
 

22.        If a distribution is symmetrical, the median will be located _____. 
a. closer to the high end of the distribution 
b. closer to the low end of the distribution 
c. below the mode 
d. at the middle of the interquartile range 
 

23.        What percentage of scores fall within the interquartile range? 
a. 25 
b. 50 
c. 75 
d. 100 

 
24.       If the interquartile range is equal to 10, the semi-interquartile range would equal _____. 

a.           0 
               b.          10 
               c.          20   
               d.          5    

 
25.        The concept of ‘real limits’ occurs with _____ and _____ measurement scales. 

a.     Nominal; ordinal 
b.     Interval; ratio  
c.     Nominal; interval 
d.     Ordinal; ratio 

 
26.         A bell-shaped curve is _____ and _____. 
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a.     Bimodal; symmetrical 
b.     Unimodal; skewed 
c.     Bimodal; skewed 
d.     Unimodal; symmetrical  

 
27.        The mean is the most common measure of central tendency for _____ and _____ measurement     
               scales. 

a.     Interval; ratio  
b.     Nominal; interval 
c.     Ordinal; ratio 
d.     Nominal; ordinal 

 
28.        The difference between a score and its mean is called a _____. 

a.     Range 
b.     Real limit 
c.     Deviation  
d.     Modality 

 
29.         A distribution that is non–symmetrical and has a prominent tail that points to the left is  
              called  _____. 

a.     Negatively skewed  
b.     Positively skewed 
c.     Bimodal 

 
30.         The variance for the population consisting of the scores 2, 4, 6, 3, and 5 is _____ and the  
               standard deviation is _____. 

a.     2.5; 1.58 
b.     1.4; 2 
c.     20; 4.5 
d.     2; 1.4  

 
31.         The variance for the sample consisting of the scores 2, 4, 6, 3, and 5 is _____ and the standard  
               deviation is _____. 

a. 2.5; 1.58 
b. 1.4; 2 
c.     20; 4.5 
d. 2; 1.4  

 
32.        Adding or subtracting a constant (such as 5) to every score in a distribution will change the  
              _____ but not the _____ or _____. 

a.     Mean; mode; median 
b.     Mean; variance; standard deviation  
c.     Standard deviation; variance; mean 
d.     Variance; mean; standard deviation 

 
33.         If all of the scores in a distribution are multiplied by 10, the mean will be _____ times larger  
               and the standard deviation will be _____ times larger. 

a.    5; 10 
b.    10; 5 
c.       10; 10  
d.       5; 5 
 

34.        The standard deviation will equal 0 when _____. 
a.    the range is less than 20 
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b.    every score in the distribution is the same  
c.    the mean is negative 
d.    the variance is greater than 6 

 
35.        If the mean of a distribution is to the right of the median, the distribution is probably ____.    
              a.        Negatively skewed 
              b.        Positively skewed  
              c.        Symmetrical  
              d.        Any of the above are equally likely 
 
36.      The more varied the scores in a distribution, ____. 
            a.         The larger the standard deviation will be   
            b.         The smaller the standard deviation will be 
            c.          Variation of scores does not affect the standard deviation 
 
37.      For a football team, if the mean yards gained per play were the same for their running and  
            passing plays, but the standard deviation was greater for the passing plays, then _____. 
            a.         They would have a greater chance of making a large gain with a running play 
            b.         They would have a greater chance of making a large gain with a passing play  
            c.         The chance of making a large gain would be the same for a running or a passing play. 

 
38.       The variance is equal to the _____. 
             a.        Square root of the standard deviation 
             b.        Standard deviation 
             c.        Square of the standard deviation  
             d.       None of the above 
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Chapter 4  
Describing Interval and Ratio Data – II:   

Further Descriptive Statistics Used with Interval and 
Ratio Data  

 

“The most important questions of life are, for the most part, really only problems of probability.” 

Pierre Simon, Marquis de Laplace 

Introduction 
 In Chapter 3 we learned that the standard deviation is the most commonly used descriptive 

measure of variability for interval or ratio data that are normally distributed.  We have also seen 

how to find the value of the standard deviation for both populations and samples.  In addition, it 

was noted that unlike the range, the standard deviation makes use of all of the data and will, 

therefore, tend to be more stable.  There are other characteristics of the standard deviation that 

make it particularly useful as a descriptive statistic. 

 We previously noted that if interval or ratio data are normally distributed they form a 

symmetrical, bell-shaped distribution, as is shown in Figure 4.1.  If you start at the far left on the 

graph and follow it to the right, you will see that the direction of the curve changes at point ‘a’.  To 

the left of point ‘a’ the curve is concave, like the inside of a circle; to the right of point ‘a’ the curve is 

convex, like the outside of a circle.  As you continue to the right from point ‘a’ the line continues to 

form a convex curve until you get to point ‘b’.  At point ‘b’ the direction changes again and the line 

begins to form another concave curve.  Points ‘a’ and ‘b’ are called inflection points. 

Inflection point – A point on a graph where the curvature changes from concave to convex  

 or from convex to concave.  

 

Figure 4.1 Inflection Points on a Normal Curve 
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It should be evident from examining Figure 4.1 that points ‘a’ and ‘b’ are equidistant from 

the mean.  It is also the case that with a normal distribution point ‘a’ is located 1 standard deviation 

(SD) below the mean and point ‘b’ is located 1 SD above the mean.  Further, it has been found that 

the proportion of the normal curve between point ‘a’ and the mean is approximately 0.34 or about 

34%.  Similarly, since the curve is symmetrical, the proportion of the curve between point ‘b’ and 

the mean is also approximately 0.34 or about 34%.  Put another way, if there is a normal 

distribution of 100 scores, then approximately 34 will be in the region between the mean and 1 SD 

below the mean (point ‘a’) and another 34 scores will be in the region between the mean and one 

standard deviation above the mean (point ‘b’).  In other words, approximately 68% of the total 

cases will fall within +/–1 SD of the mean when we are dealing with a normal distribution.  This 

relationship between proportions or areas and the normal distribution is illustrated in Figure 4.2.   

Figure 4.2   Proportion of the Curve Between the Mean and the Inflection Points 
 

 

What You Always Wanted To Know About The IQ, But No One Told You 

 
  The critical concept to recognize is that so long as the variable is normally distributed there 

is a precise relationship between the distance (number of standard deviations) a score is from the 

mean, and the corresponding proportion.  For instance, the IQ test is approximately normally 

distributed and has a mean of 100 and a standard deviation of 15.  You now know that if 100 people 

took the test, then we expect that approximately 34 will score between 85 (1 SD below the mean) 

and 100 (the mean).  Another 34 will score between 100 (the mean) and 115 (1 SD above the 

mean).  Thus, approximately 68, or about two-thirds, of the individuals will have IQ scores between 

85 (1 SD below the mean) and 115 (1 SD above the mean). 

 Through the use of calculus we also know the proportion of the distribution between the 

mean and either plus or minus 2 SD.  This proportion is approximately .48, which is shown in 

Figure 4.3.  Using our IQ example, approximately 48 of the 100 individuals who took the test would 

be expected to fall between 70 (2 SD below the mean) and 100 (the mean).  Similarly, 

approximately 48 of the 100 individuals who took the test would be expected to fall between 100 

(the mean) and 130 (2 SD above the mean).  In other words, about 96 of the 100 people who took 

the IQ test would be expected to have scores between 70 and 130.  Converting to percentages, 
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slightly over 95% of the cases will fall within 2 SD of the mean.  What this indicates is that for any 

normal distribution there is less than a 5% chance that a score will be more than 2 SD from the 

mean.  Later in this book you will learn that the areas associated with all the standard deviations, 

not just for 1 and 2 SD, have been calculated.  For now, we will continue to deal with the values that 

we have already described.  

Figure 4.3   Proportion of the Curve Between the Mean and Plus or Minus Two Standard  

  Deviations 

 

  

By drawing a new figure and referring to Figures 4.2 and 4.3 it is easy to determine the 

answers to a number of additional questions.  For instance, how many of 100 individuals would be 

expected to have IQ scores that would fall below 85?  In order to determine this number, the first 

step is to recognize that an IQ of 85 is equivalent to 1 SD below the mean.  Next we would draw a 

figure indicating what is being asked.  This is shown in Figure 4.4.  By referring to Figure 4.2 we 

note that 0.34 of the total area falls between the mean and 1 SD below the mean.  What we are 

looking for, however, is the region more than one standard deviation below the mean.  Since the 

normal distribution is symmetrical, the entire area below the mean represents 50%, or 0.50 of the 

curve.  The region that we seek is thus 0.50 – 0.34, which equals 0.16.  Since we were asked how 

many individuals out of 100 would be in this region of the distribution, we multiply 0.16 X 100 and 

obtain 16.  I hope you agree that as long as you draw a figure, working with the proportions and 

percentages associated with a standard deviation is not particularly difficult. 

Figure 4.4   Region of the Curve Below an IQ Score of 85 
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 For our final example, let us find what proportion of the IQ scores would be less than 130.  

The first step is to recognize that an IQ of 130 is 2 SD above the mean.  Then we draw a figure 

showing the area that is of interest.  This is shown in Figure 4.5.   From Figure 4.3 we find that the 

area between the mean and a point 2 SD above the mean is 0.48 of the total area under the curve.  

Since half, or 0.50, of a symmetrical distribution is below the mean, the region that we are searching 

for would be equal to 0.48 + 0.50, or 0.98.   

Figure 4.5   Region of the Curve Below an IQ of 130 

 
             
 
               
  

Alternatively, we could have found the proportion of scores above an IQ of 130 and 

subtracted that amount from the total area under the curve.  To do this we could have subtracted 

0.48 from the total area to the right of the mean, which is 0.50.  This would give us 0.02.  We could 

then subtract this proportion from the total area of the curve, which is 1.0 or 100%.  This would 

give us 1.00 – 0.02 or 0.98, the same value we obtained previously.  What this shows is that there 

may be more than one way to find the desired answer.  To be successful, begin by drawing the area 

you are seeking and, when you finish your calculations, check to make certain that you have 

provided the answer in the desired form.  If the question asks for a proportion, be certain that you 

answer with the proportion.  On the other hand, if the question requests a number of subjects, be 

sure to convert the proportion or percentage into the desired number.   

 It should be evident that the standard deviation can be particularly useful when you are 

dealing with a normal curve.  Once the standard deviation is determined, the probabilities 

.50 .48 

Standard Deviation                      0                    +2 
IQ Score                                         100                  130 
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associated with different outcomes can be determined.  However, the verbal descriptions that we 

have been using are rather awkward.  Expressions such as ‘2 SD below the mean’ or ‘the area 

between the mean and 1 SD above the mean’ require some careful attention to be understood.  

Fortunately, the field of statistics uses a much simpler alternative, the z score.   

 Later in this chapter you will be given the mathematical definition of a z score.  For now, 

just think of it as the number of standard deviations above or below the mean.  For example, an IQ 

score of 115 is 1 SD above the mean.  Because it is 1 SD above the mean, it is equivalent to a z score 

of +1.  Similarly, an IQ score of 70 is 2 SD below the mean, which is the same as saying an IQ of 70 

has a z score of –2.  Thus the magnitude of the z score is simply the number of standard deviations 

you are away from the mean and the sign, either positive or negative, indicates the direction.  For 

instance, a z score of –1 indicates that the point is 1 SD below the mean.  In terms of IQ scores, this 

would be a score of 85.  Further, just as the area between the mean and 1 SD above the mean is 

equal to 0.34 (Figure 4.2), the area between the mean and a z score of +1 is also 0.34.  The other 

areas in Figures 4.2 and 4.3 would also correspond to the associated z scores.  Remember, the z 

score is simply a shorthand way of indicating the number of standard deviations a score is from the 

mean along with the direction it is from the mean (Figure 4.6).   

z score – A conversion of raw data so that the deviation is measured in standard deviation  

 units and the sign, positive or negative, indicates the direction of  the deviation. 

 
Figure 4.6   Relationship Between Standard Deviations, IQ Scores and z Scores     
 

 
 
 

 
 

Progress Check 

 
1.  A parameter is a characteristic of a _____ while a statistic is a characteristic of a _____. 

2.  If there are 100 people, how many would you expect to score between the mean and one 

standard deviation above the mean? 

3.  If you score 2.3 standard deviations above the mean, your z score would be _____. 

 

Answers:  1. Population; sample   2. 34  3.  +2.3 

Standard Deviation         -2         -1        0          +1       +2 
IQ Score                             70         85     100      115      130 
z Score                                -2         -1        0          +1       +2 
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“It is the nature of probability that improbable things will happen.” 

Aristotle 

Descriptive Statistics – The z Score  
 

We will now be focusing on a further discussion of the descriptive measure known as the z 

score, which is underlined in Table 4.1.   

Table 4.1 Overview of Descriptive Statistics (Summarizing Data) 
 

         ____________________________________Type of Data ________________________________________ 
                        Nominal  Ordinal    Interval/Ratio  
           (Frequency) (Ranked)   (Score) 
          ___________________________________________________________________________________________ 

 

Frequency Dist  Bar Graph  Bar Graph Histogram or Frequency Polygon  

   or Pie Chart  

 

       IF NOT NORMAL    IF NORMAL  
Central Tendency Mode  Median  Median      Mean  
           (Median – less  
                common)  
   
      
Variability  –  –  –  –   Range  Interquartile Range    Standard Deviation    
                   z Score   
 
 
Summary Presentation    Stem-and-leaf display    Stem-and-leaf display 

            and           and 

        Boxplot     Boxplot 

        

 
 

A Little History And A Very Impressive Equation 

 
As Table 4.1 shows, the z score is used when there are interval or ratio data.  In addition, 

you have just seen that the z score is particularly useful in those situations in which the data are 

normally distributed.   

The concept of a normal curve was developed when it was noticed that many, but certainly 

not all, variables tend to exhibit what we call a bell-shaped distribution.  For instance, if we were to 
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plot the weights of adult males we would find that many have moderate weights and that 

progressively fewer would have either extremely low or extremely high weights.  This pattern, with 

a high frequency of events surrounding the mean and progressively fewer occurrences as you move 

in either direction, attracted the interest of mathematicians.  In 1733, Abraham DeMoivre proposed 

an equation for the normal distribution.  It is not something that is likely to be appreciated when 

first encountered: 

 
 

Fortunately, it is not necessary for you to memorize or even be able to work with this equation.  

What is important is that you have a modest understanding of the pieces that make up the equation 

for the normal distribution. 

 The equation indicates that the likelihood of a score (P(X)) is dependent upon two 

constants as well as three variables.  You may be familiar with the two constants, the natural 

logarithm ‘e’, which is approximately 2.18, and , which is approximately 3.14 (Don’t worry, you 

won’t be using these numbers.  Remember, we’re keeping things simple).  The three variables were 

introduced previously in this text and are the population mean, , population standard deviation, , 

and the population variance, 2.   As there are an infinite number of possible combinations of  and 

, there are also an infinite number of normal curves.  However, they all share a number of 

characteristics, some of which were introduced in Chapter 3: 

1. Unimodal: all normal curves have a single peak or mode. 

2. Symmetrical: all normal curves have mirror image shapes to the left and right of the 

mean. 

3. Bell-shaped: all normal curves have shapes that can be described as resembling a 

bell. 

4. The inflection points of this curve occur exactly one standard deviation above and 

below the mean. 

5. All normal curves can be transformed into what can be called a standard normal 

curve.  The standard normal curve has a  of 0 and a  of 1.   

6. When dealing with the standard normal curve we utilize what are called z scores. 

The Standard, Very Important, z Score 
 

The z score was defined as the number of standard deviations that a score differs from its 

mean.  We are now ready for the equation for the z score, which is, z = (X – ) / .   This equation is 

quite simple.  It defines the value of the z score that corresponds to the value of an individual score 
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(signified with the letter X).  Thus any score can be converted into its z score equivalent.  From 

Chapter 3, you will recall that the numerator, (X – ), is a deviation.  It is the difference between a 

score and its population mean.  The equation for z indicates that this deviation is then divided by 

the population standard deviation, .  What this last step accomplishes is to convert a deviation, 

which was measured in units such as feet or the number of correct answers on an exam, into 

standard deviation units.  You are familiar with doing similar transformations.  For instance, if you 

find that the length of a rug is 15 feet, and then divide by 3 feet, you will have converted the length 

into yards.  Dividing by the population standard deviation, , converts the original deviation into 

standard deviation units.  Thus, regardless of what the original measurement unit was, dividing by 

 converts the deviation between the original score and the population mean into a deviation 

measured in standard deviation units.  Because of this uniformity of measurement, the z score is 

also called a standard score.   

As an example, consider the most commonly used IQ tests, which have a mean of 100 and a 

standard deviation of 15.  Remember, the equation is z = (X – ) / .   If an individual obtained an 

IQ score of 145, that person’s deviation from the mean would be 145 – 100.  The z score would then 

equal (145 – 100) / 15.  This is 45 / 15, or 3 (which is equivalent to +3).  Thus, an IQ score of 145 is 

3 SD above the mean and is equivalent to a z score of +3.  An IQ of 70 would be equal to (70 – 100) 

/ 15.  This is  –30 / 15, which equals –2.  This indicates that an IQ of 70 is 2 SD below the mean and 

is equivalent to a z score of –2.   

It is important to note the positive or negative sign of the z score.  Whenever the z score is 

positive, we are dealing with an original score that is above, or greater than, its mean.  Whenever 

the z score is negative, we are dealing with an original score that is below, or less than, the mean.  

Thus, an IQ of 145 results in a positive z score because 145 is greater than the mean of the IQ 

distribution, which is 100.  Similarly, we found that with an IQ of 70, the z score is negative because 

70 is less than the mean of 100.  To reiterate, the magnitude of the z score is simply the number of 

standard deviations that a score falls from the mean, and its sign indicates the direction. 

Standard score – A measure indicating whether a score is above or below the mean as well  

 as how many standard deviations it is from the mean.  Also called a z score.   

 

Who Says You Can’t Compare Apples And Oranges? 

 
Converting our initial data, which are called raw scores, into z scores permits us to make 

comparisons that would otherwise not be meaningful.  For instance, if you scored 9 out of 10 on a 

music audition and 85 out of 100 on a statistics exam, on which test did you do better?  To answer 

this question your first thought might be to convert one of the scales so it had the same upper limit 
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as the other.  For instance, you could multiply your music audition score by 10.  This would put it on 

a 100-point scale.  Then, you might conclude that you did better on the music audition since your 

transformed score, which is now 90, is higher than the statistics score of 85.  However, it might also 

occur to you that this is not a very satisfactory solution.  What if most of the scores on the music 

audition tended to be very high and most of the scores on the statistics exam tended to be lower?  In 

this case it is possible that you had the lowest score on the music audition but the highest score on 

the statistics exam.  Of course, the opposite is also possible.  Your score of 90 on the audition might 

have been the highest score obtained, while your score of 85 on the statistics exam might have been 

the lowest grade on the exam.  As the original measurement scales were different you are now in 

the situation where you are comparing apples to oranges.  What is needed is a standard 

measurement scale, and this is a situation where the z score can be of great value. 

Raw score – Your data as they are originally measured, before any transformation. 

 

If you know the mean and standard deviation of the music audition and statistics exam, and 

that the two distributions are normal, you can convert each of the raw scores into z scores and then 

make a meaningful comparison.  For instance, if the mean of the music audition scores was 8 and 

the standard deviation was 0.50, while the mean of the statistics scores was 81 and the standard 

deviation was 4, then the corresponding z scores could be calculated as shown below: 

z score for music audition = 
(𝐗 – ) 


  

      = 
(𝟗 – 𝟖) 

𝟎.𝟓𝟎 
   

      = 
𝟏

𝟎.𝟓𝟎
    

     = +2 

z score for statistics exam = 
(𝐗 – ) 


   

         = 
(𝟖𝟓 – 𝟖𝟏) 

𝟒 
   

         = 
𝟒

𝟒
   

         = +1 

These results show that you had a z score of +2 for the music audition and a z score of +1 

for the statistics exam.  In both cases the z scores are positive, so in each situation you were above 

the mean.  However, you did relatively better on the music audition, for you scored 2 SD above the 

mean on the music audition and only 1 SD above the mean on the statistics exam.  

 Clearly, by standardizing the scores, in other words by converting the raw scores into z 

scores, you are able to make comparisons that would otherwise not be meaningful.  Put differently, 

with z scores you actually can compare apples to oranges! 
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 Just as you can convert a raw score into a z score, it is also possible to do the reverse.  For 

instance, you can find the raw score that is equivalent to a z score of +1.50 on the music audition.  

This can be accomplished using the original equation for the z score: 

z score for music audition = 
(𝐗 – ) 


  

Substituting the value we are given for the z score, plus the mean and standard deviation from 

before, leads to the following equation: 

 +1.50 = 
(𝐗 – 𝟖) 

𝟎.𝟓𝟎
   

Multiplying each side of the equation by 0.50 gives us: 

 0.75 = X – 8 

Adding 8 to each side of the equation leads to the answer: 

 8.75 = X 

We conclude that a a z score of +1.50 is equivalent to raw score of 8.75. 

 If solving this type of equation is awkward for you, the original equation for z can be 

rearranged so that the X value is presented alone on the left.  This is shown below:   

 X = z +  

Substituting the values for z,  and  from the previous example would give us: 

 X = [(1.50) (0.50)] + 8 

    = 0.75 + 8 

    = 8.75 

This is the same outcome as we obtained before. 

 To be certain that you feel comfortable converting from z scores to raw scores we will do 

one more example.  What raw score is equivalent to a z score of –3 on the statistics exam?  Using the 

definitional equation for z we would have the following: 

z score for statistics exam = 
(𝐗 – ) 


   

Substituting the values that we know leads to:  

    –3 = 
(𝐗 – 𝟖𝟏) 

𝟒
   

We then multiply by 4 to give: 

     –12 = X – 81 

To find X, we now add 81 to both sides: 

   69 = X 

 Alternatively, we could use the version of the equation that has X on the left side of the 

equation.  In this case, we have: 

X = z +  

Substituting the values that we know leads to:  
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  X = [(–3) (4)] + 81 

     = –12 + 81 

     = 69 

The answer is the same.  You can choose whichever equation you find easier to use. 

 To this point we have converted a raw score into a z score, and we have converted a z score 

into a raw score.  In addition, we have seen that converting raw scores into z scores permits us to 

make comparisons that would not otherwise be meaningful.  We will now see that it can be very 

useful to convert an entire distribution of raw scores into z scores.  Before we do this, it is 

important to understand that transforming raw scores into z scores does not change the shape of 

the distribution of your scores.  If your original data formed a positively skewed distribution, then 

the distribution of their z scores will remain positively skewed.  The same will happen for 

negatively skewed distributions, or normal distributions.  Converting all of the scores to z scores 

does not affect the shape of the distribution.  This is important, for if your data are positively or 

negatively skewed you should generally not convert the distribution to z scores.  However, if the 

data are normally distributed, then converting the distribution into z scores permits some valuable 

comparisons and insights. 

 Let’s return to the example of the IQ test.  The IQ test is approximately normally distributed 

with a mean of 100 and a standard deviation of 15.  Converting the mean of 100 to a z score is 

accomplished with the same equation used previously: 

z score for mean IQ = 
(𝐗 – ) 


  

Substituting the known quantities leads to:  

 z = 
(𝟏𝟎𝟎 – 𝟏𝟎𝟎) 

𝟏𝟓
    

This, in turn leads to:  

 z = 0 / 15 

    = 0 

Therefore, the mean of the z distribution is 0.  This is the case regardless of the variable 

being considered.    

 Previously in this chapter it was pointed out that the standard deviation of the common IQ 

test is 15.  And, if we calculated the z score equivalent of an IQ of 115 we would obtain an answer of 

+1 (you are encouraged to do this calculation).  In other words, an IQ of 115 is 1 SD above the 

mean.  In fact, when an entire set of raw scores is converted into z scores the standard deviation 

will always be converted to 1.  Further, as we found in the previous paragraph, the mean of a 

distribution of z scores will always be 0, regardless of the variable being measured.  In other words, 

regardless of whether we are dealing with the IQ distribution, or the distribution of points on an 
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exam, or any other distribution, when it is converted to z scores, the mean of the new distribution 

will be 0 and the standard deviation will be 1.  This is very important to remember! 

The z Table – Who Would Have Thought That A Few Numbers Could Be So Useful? 

 
We just discussed that with a normal distribution there is a relationship between how many 

standard deviations a score is from its mean and its precise location on the normal curve.  For 

instance, the inflection points of the normal curve occur at precisely 1 SD from the mean.  Further, it 

was noted that the proportion of the normal curve between the mean and a standard deviation of 1 

is always approximately 0.34.  We will now see that once any score’s location on the normal curve is 

determined, it is possible to specify a series of proportions or probabilities. 

We previously noted that the z score associated with an IQ of 70 is –2.0 because an IQ of 70 

is equivalent to scoring 2 SD below the mean.  By referring to the z table (Appendix K, Table 1a for 

negative values of z) you will see that the entry associated with a z of –2.00 is .02.  This is the 

proportion of the curve below the z score of –2.00 (you are encouraged to draw a figure 

representing this proportion of the curve).  In other words, only 2% of individuals, or 2 people out 

of 100, would be expected to have an IQ below 70.  Of course, then 0.98 is the proportion of the 

curve that is above our z score of –2.00.  Thus, we would expect 98% or 98 people out of 100 to 

have IQ scores greater than 70.  This last proportion is found by subtracting .02, the proportion 

expected to score below an IQ of 70, from 1.00, the proportion equivalent to the entire distribution. 

 In our IQ example, it was also noted that a test score of 115 is equivalent to a z score of 

+1.00.  By referring to the z table (Appendix K, Table 1b for positive values of z), you will see that 

the entry associated with a z score of +1.00 is .84, which is the area or proportion of the curve 

below a z score of +1.00 (Figure 4.7).  This indicates that 84% or 84 people out of 100 will score 

below the z score of +1.00, which corresponds to having an IQ below 115.  As you learned in 

Chapter 2, this percentage, the percentage of scores at or below a particular value, is called the 

percentile rank.   

Figure 4.7   Region Below a z Score of +1 

 

 

 

 0       +1 
         z Scores 
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You might wonder why the area of the curve below a z of +1.00 is equal to .84.  We know 

that the normal curve is symmetrical and that the z score of the mean will equal 0.  Thus, 50% or 

.50 of the curve will fall below the mean of 0.  And, as we discussed previously, .34 of the 

distribution will fall between the mean and 1 SD above the mean (a z score of +1.00) (Figure 4.2).  

Thus, the proportion of the curve below a z score of +1.00 is equal to .50 + .34 which is .84 (Figure 

4.8).   

Figure 4.8   Determination of the Proportion of the Normal Curve Below a z Score of +1.00          

 

 

                                    

 

 

It should also be evident that 1.00 – .84, which is .16, is the proportion of the curve that is 

above our z score of +1.00 (Figure 4.9).  In other words, we would expect 16% or 16 people out of 

100 to have IQ scores greater than 115.  Clearly, if you are dealing with a normal distribution, once 

the z score is known, a great deal of additional information is easily obtained. 

Figure 4.9   Region Above a z Score of +1 

 

 

 

 We have limited our discussion to z scores of + or –1, or + or –2.  However, it should be 

evident that by using z tables (Appendix K, Tables 1a and 1b) you can convert any z score into a 

proportion.  For instance, the proportion of the curve falling below a z of –.67 is .25.  And if .25 of 

the distribution falls below a z of –.67, then it follows that .75 of the distribution is above this value 

of z.  Thus you can easily find two proportions associated with any z score so long as you are 

dealing with a normal distribution.  These are the proportion of the curve below the z score, and the 

0 +1 
        z Scores 

.50 
 

.34 
 

                                  0         +1 
                         z Scores 
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proportion of the curve above the z score.  Once a proportion is known the percentage is also 

known, and the number of individuals out of some total can also be determined.  In other words, 

when you are given the raw score, you use the z equation to convert it into a z score and then use 

the z table to find the corresponding proportion: 

raw score > z equation > z score > z table > proportion 

And once the proportion is known it can be converted into a percentage, etc. 

 It is also possible to find the proportion or percentage of the distribution that is between 

two z scores.  For instance, what is the proportion of the distribution that is between a z score of +1 

and a z score of +2?  In order to solve this problem it is best to draw what you are looking for.  This 

is shown in Figure 4.10. 

Figure 4.10   Region Between z Scores of +1 and +2 

 

 

 

The easiest way to solve this problem is to find the area to the left of a z score of +2 (Figure 

4.11), which is .98, and subtract from it the area to the left of a z score of +1 (Figure 4.7), which is 

.84.  The result is .14, the area we are looking for (Figure 4. 10).   

Figure 4.11   Region Below a z Score of +2 

 

 

In the examples we just completed you were given the z scores.  Now let’s do a complete 

example, beginning with the raw scores.  The scores on the SAT exam are approximately normally 

distributed and have a mean of 500 and a standard deviation of 100.  How many people, out of 

1000, would be expected to score between 350 and 575?   

The first step is to convert the two raw scores into z scores.  This is shown below: 

       0        +1     +2 
 z Scores 

                        0         +1       +2 
                  z Scores 
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z = 
(𝐗 – ) 


  

 z for an SAT score of 350 = 
(𝟑𝟓𝟎 – 𝟓𝟎𝟎) 

𝟏𝟎𝟎
   

       = 
–𝟏𝟓𝟎 

𝟏𝟎𝟎
   

       = –1.50 

z for an SAT score of 575 = 
(𝟓𝟕𝟓 – 𝟓𝟎𝟎) 

𝟏𝟎𝟎
   

       = 
𝟕𝟓 

𝟏𝟎𝟎
   

       = +.75 

 We now can draw the region of the normal curve, using SAT scores as well as z scores, that 

is of interest to us.  This is shown in Figure 4.12. 

Figure 4.12 Region Between SAT Scores of 350 and 575 

 

 

 

              Once the z scores that are equivalent to SAT scores of 350 and 575 have been calculated, the 

easiest way to find the desired region is to find the proportion of the curve that is below a z score of 

+.75 and subtract from this the proportion of the curve that lies below a z score of –1.50. 

 By referring to the z table (Appendix K, Table 1b), you will see that the entry associated 

with a z score of +.75 is .77 which, you recall, is the proportion of the curve below this z score.  

From this we subtract the proportion of the curve which is below a z score of –1.50, which is .07 

(Appendix K, Table 1a).  The result, .70, is the proportion of the curve that falls between z scores of 

–1.50 and +.75, the z scores equivalent to SAT scores of 350 and 575.   

While essential to finding the answer, this is not what the question asked us to find.  The 

problem was to find how many people, out of 1000, would be expected to have SAT scores between 

350 and 575.  To find this we must multiply our proportion of .70 by 1000, the total number of 

people. This results in 700 people out of 1000 being expected to have SAT scores between 350 and 

575. 

Progress Check 

 

z Score             -1.5              0    +.75 
SAT Score       350                      575 
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1.  The magnitude of a z score indicates the number of _____ that a score falls from the mean, 

and the _____ indicates whether the score is larger or smaller than the mean. 

 

Use the following information for the next two problems:  SAT exam scores are normally 

distributed.  The mean is 500 and the standard deviation is 100. 

2.  What is the z score that is equivalent to an SAT score of 700? 

3.  What proportion of SAT scores would fall below an SAT score of 350? 

 

Answers:   1. standard deviations; sign  2.  +2.00  3.  .07 

 

We will conclude this chapter by discussing two additional types of problems that utilize z 

scores.  The first deals with finding the raw score that is associated with a particular proportion of 

the curve.  We know that a z score of 0 is at the mean of a distribution and, since the normal 

distribution is symmetrical, half of the area is below the mean and half the area is above the mean.  

But what about other proportions, such as .40?  What z score has .40 of the curve below it?  In other 

words, what z score has a percentile rank of 40%?                                        

The solution is found by first noting that if 40% of the distribution falls below our z score, 

then we are to the left of the mean since 50% of the distribution falls below the mean of a 

symmetrical distribution.  The region of the distribution that we are interested in is illustrated in 

Figure 4.13.  And we know that our z score will be negative.  We now refer to the body of the z table 

(Appendix K, Table 1a) and look for the proportion .40.  The proportion .40 occurs twice in the z 

table, and is associated with a z score of –.25 or –.26.  (Either value is accurate enough for our 

purposes.  We will choose –.25 for our calculations.)  In other words, approximately .40, or 40%, of 

the distribution occurs below a z score of –.25.   Alternatively, we could say that the percentile rank 

of a z score of –.25 is 40%. 

Figure 4.13 Region with a Percentile Rank of .40 (40%) 

 

 

 

 However, what if the problem did not ask for the z score, but instead it asked for the 

equivalent raw score?  This requires some additional calculation, but is not difficult.  For instance, 

           0 
     z Scores 

.40 
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using the example of SAT scores, it is easy to convert the z score with a percentile rank of 40% 

(which we just determined was –.25) into an SAT score.  To do this we use either the definitional 

equation for the z score or the rearranged equation that was illustrated earlier.  The solution, using 

both forms of the equation, is presented below: 

z = 
(𝐗 – ) 


   

–.25 = 
(𝐗 – 𝟓𝟎𝟎) 

𝟏𝟎𝟎
   

–25 = X – 500 

475 = X 

or 

X = z +  

   = [(–.25)(100)] + 500 

   = –25 + 500 

   = 475 

Thus, we have found that a percentile rank of 40% is equivalent to a z score of –.25, which in turn is 

equivalent to an SAT score of 475.  In other words, when you are given the percentile rank you 

convert it into a z score using the z table and then use the z equation to find the corresponding raw 

score: 

percentile rank > z table > z score > z equation > raw score 

 For our second example, what IQ score would have 80% of the population above it?  Since 

our z table only gives the proportions below a z score you need to recognize that this is equivalent 

to asking what score would have 20% or .20 of the distribution below it.  (I suggest you drawn 

this.)  We now need to convert the proportion .20 into a z score and, since this z score will fall to the 

left of the mean, it will be found to be negative.  Next we refer to the body of the z table (Appendix 

K, Table 1a) and look for the proportion closest to .20.  The value of .20 occurs four times in the 

table.  You could turn to a table with more precise values of z or, alternatively, pick the middle value 

of z from our table.  This would be –.84 or –.85.  Either value is sufficiently accurate for us.  I have 

chosen –.84 for the calculations.  To find the IQ score that is equivalent to a z score of –.84 recall 

that the mean of an IQ test is 100 and the standard deviation is 15.  We then substitute into the 

definitional equation (or the rearranged equation given previously): 

z = 
(𝐗 – ) 


  

   –.84 = 
(𝐗 – 𝟏𝟎𝟎)

𝟏𝟓
   

–12.6 = X – 100 

   87.4 = X 

or 
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X = z +  

   = [(–.84)(15)] + 100 

   = –12.6 + 100 

   = 87.4 

To summarize our steps, we first recognized that an IQ score with 80% of the population 

above it must have 20% of the population below it.  And 20% is equivalent to .20, which 

corresponds to a z score of –.84.  Finally, we found a z score of –.84 is equivalent to an IQ score of 

87.4. 

 

Conclusion 
 

This chapter focused on the z score, which is used with interval or ratio data.  The z score is 

known as a standard score, and is defined as the number of standard deviations that a score differs 

from its mean.  The equation for the z score is, therefore, z = (X – ) / . 

We found that converting a distribution into z scores results in a distribution with a mean of 

0 and a standard deviation of 1.  However, this conversion does not change the distribution’s shape.  

If the distribution was skewed originally, it remains skewed.  If the original distribution was 

normal, then it remains normal.  Once normally distributed scores are converted to z scores it is 

possible, using the z table (Appendix K, Tables 1a and 1b), to ascertain the proportions of the 

distribution that are associated with any particular z score.  This is valuable in answering a variety 

of questions about IQ, SAT, or other normally distributed sets of scores.  For instance, we learned 

that we could easily find the proportion of the curve located between two scores, as well as the 

percentile rank of a score.  In addition, by converting raw scores into z scores it is possible to 

compare outcomes measured on different scales.  For instance, it is possible with z scores to 

compare outcomes on a 10-point quiz and a 100-point exam, even though the measurement scales 

differ dramatically.  It is also possible to convert a z score back to a raw score.  

It should come as no surprise that the z score is a commonly used descriptive measure of 

variability. 

 

Glossary Of Terms 
 
Inflection point – A point on a graph where the curvature changes from concave to convex or from  

convex to concave. 

Raw score – Your data as they are originally measured, before any transformation. 
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Standard score – A measure indicating whether a score is above or below the mean as well as how  

many standard deviations it is from the mean.  Also called a z score.   

z score – Conversion of raw data so that the deviation is measured in standard deviation units and  

the sign, positive or negative, indicates the direction of the deviation. 

 

Questions – Chapter 4 

 
(Answers are provided in Appendix J.) 

1. A z score of  –2 indicates that the point is _____. 
a.  2 standard deviations below the mean  
b. 2 standard deviations above the mean 
c.  twice the mean 
d. half the mean 

 
2.  A ‘standard’ normal curve has a mean of _____ and a standard deviation of _____. 
 a. 1; 0 
 b. 100; 10 
 c. 0; 1  
 d. 10; 100 
 
3. In a normal curve, the inflection points occur at _____ standard deviation(s) from the  mean. 
 a. +/ –10 
 b. +/ –1  
 c. 0 
 d. depends upon the specific curve 
 
4. Another name for the z score is the _____ score. 
 a. normal 
 b. special 
 c. independent  

 d. standard  
 

5. If a distribution of scores is positively skewed, converting each score into a z score will 
result in a distribution which is _____. 

 a. positively skewed  
 b. negatively skewed 
 c. normal 
 d. cannot be answered without additional information 
 

6. What percent of scores fall below an IQ of 85? 
 a. 8 
 b. 10 
 c. 16  
 d.  25 
 

7. On the IQ test, what percent of people score below 90? 
 a. 14 
 b. 16 
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 c. 21 
 d. 25  
 

8. On the IQ test, what percent of people score between 90 and 130? 
 a. 82 
 b. 73  
 c. 61 
 d. 50 
 

9. On the IQ test, what percent of people score above 110? 
 a. 25  
 b. 27 
 c. 29 
 d. 31 
 

10. Out of a population of 1000 individuals, how many would you expect to have an IQ greater 
than 85? 

 a. 670 
 b. 734 
 c. 803 
 d. 840  
 

11. Assuming a normally distributed population with a mean of 50 and a standard deviation of 
5, how many people, out of 100, would you expect to score higher than 58 or lower than 48? 

 a. 30 
 b. 39  
 c. 52 
 d. 66 
 

12. What IQ score results in 20% of the population scoring above it? 
 a. 100 
 b. 130 
 c. 112.6  
 d. 119.2 
 

13. What score results in 40% of the population scoring below it, assuming a mean of 25  
and a standard deviation of 4? 

 a. 21 
 b. 22 
 c. 23 
 d. 24  
 

14. What score results in 65% of the population scoring below it, assuming a mean of 10 and a 
standard deviation of 5? 

 a. 11.9  
 b. 10.5 
 c. 11.2 
 d.  12.7 
 

15. On any normal distribution, the 50th percentile corresponds to a z score of _____. 
a. 0  
b. +2 
c. +1 
d. –1 
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16. A z score of +2 indicates that the raw score is _____. 

a. 2 standard deviations below the mean 
b. 2 percentage points below the mean 
c. 2 standard deviations above the mean  
d. 2 percentage points above the mean 

 
17. With a normal curve, the probability of a score occurring above the mean is _____. 

a.  0 
b.  0.5  
c.. 75 
d. Cannot be determined  

 
18. On an exam, a student would prefer their outcome to be equivalent to a z score of _____. 

 a. –1 
 b. +1  
 c. +0.25 
 d. 0 

 

19. With a normal distribution, how many people, out of 100, would you expect to score  

 between –1 and +2 standard deviations from the mean?  

a.     82 

b.     16 

c.     66 

d.     84 

 

20. The SAT exam has a mean of 500 and a standard deviation of 100.  What is the z  

score for an SAT exam score of 415? 

a. +.15 

b. –.15 

c. +.85 

d. –.85 
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COMPUTER ASSISTED STATISTICAL ANALYSIS 
 
Chapter 5 – Using IBM SPSS Statistics 26  
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Chapter 5  
Using IBM SPSS Statistics 26 

 
 

“The saddest aspect of life right now is that science gathers knowledge faster  

than society gathers wisdom.” 

Isaac Asimov 

Introduction 
 The calculations involved in solving statistical problems can become tedious, particularly if 

there is a large set of data.  The initial response in the field of statistics was to derive a series of 

what are called Computational Equations.  These equations made analyzing large data sets 

somewhat easier, however this text relegates them to the appendixes.  This is because during the 

past few decades the availability of computers and powerful statistical software has become 

commonplace.  The result has been a revolution in how statistical problems are actually solved.  

Though it is still important for statistics students to learn how to calculate answers, preferably 

using definitional equations so you understand what you are calculating, it is also important for 

students to learn to use a statistical software package.  One of the most widely used of these 

software packages is called SPSS.   

 Computational equations – Equations developed to aid in statistical calculations.  They were  

  useful with large data sets, but now researchers would employ computer software  

  packages instead.  

SPSS – A powerful, commonly-used statistical computer package.  The letters ‘SPSS’  

 originally were an abbreviation for ‘statistical package for the social sciences’. 

  

SPSS has undergone numerous revisions.  The result is a flexible, user-friendly program.  In 

this chapter you will be introduced to this very important tool.  More specifically, we will be 

utilizing examples from previous chapters so you can become acquainted with labeling variables, 

entering data and creating bar graphs, pie charts and histograms.  In subsequent chapters you will 

learn additional features of SPSS.  Do not be concerned if you are not a computer expert, basic SPSS 

is very easy to master. 

 SPSS is organized so that each column is a variable and each row consists of a subject’s data 

(Figure 5.1).  There can be as many variables (columns) or subjects (rows) as desired.  You do not 

need to worry about having too many of either. 

Figure 5.1 Organization of Data in SPSS 
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       Columns 

    Variable 1 Variable 2 Variable 3 Variable 4 Etc. 

  Subject 1 

 Rows Subject 2 

  Subject 3 

  Etc. 

 

Our First Example (A) Using SPSS 

To Begin SPSS 

 
 Step A.1 The first step is to activate the program.  You can accomplish this by double 

clicking on the SPSS icon on the computer’s desktop or, if this icon is not evident, by clicking on 

‘Program’ and then on SPSS.  You will see the window displayed in Figure 5.2.  (This text uses SPSS 

version 26.  Other versions of SPSS will have a very similar window.)  At this point you have a 

number of options.  If you click on the ‘Get started with tutorials’ you will be guided through a very 

informative, general introduction to using SPSS.  The current chapter’s goal is more limited – you 

will learn how to define variables, enter data by hand and conduct the descriptive statistics that you 

have learned in Chapters 1 – 4.  Therefore, click on the ‘X’ at the top right of the central window, or 

the ‘Close’ button at the bottom right of the central window.  (Unfortunately, the ‘Close’ button is 

cut off in Figure 5.2.) 

Figure 5.2 The Initial SPSS Window 
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Step A.2 The blank screen shown in Figure 5.3 appears.  SPSS utilizes two windows.  At the 

bottom left of the current window are two ‘switches’, one labeled Data View, the other Variable 

View.  As the name suggests, the Data View window shows the data that the SPSS program is 

currently using.  The Variable View window provides information concerning the variables that are 

listed in the Data View window. 

 Data view – SPSS window in which the data are displayed. 

 Variable view – SPSS window in which variables are defined. 

 

Figure 5.3 The Data View Window 

 

 

 Step A.3 Click on ‘Variable View’.  This brings up a window that superficially looks like the 

Data View window (you can switch back and forth between them).  Near the top of this page is a 

row of column headings, beginning with ‘Name’, then ‘Type’, and proceeding to ‘Role’.  For the 

present we will only be dealing with the columns headed by ‘Name’, ‘Label’, ‘Values’ and ‘Measure’. 

 Step A.4 Click on the first empty rectangle (called a ‘cell’) under the column heading ‘Name’.  

The upper left ‘cell’ will turn yellow.  You now type the name of the first variable for which you have 

data.  We are going to utilize the same data and labels as were previously employed in Table 2.3.  As 

these data dealt with the political preferences of a group of hypothetical subjects we have only one 

variable which I call ‘polparty’.   
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 Step A.5 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell you can 

type a more extensive description of your variable.  In our case, type ‘Political Party Affiliation’.  

Note that in order to see the entire label you may need to expand the size of this cell by placing your 

cursor on the right border of the Label heading and moving to the right. 

 Step A.6 Click on the first empty ‘cell’ under the column heading ‘Values’.  A box will appear 

as in Figure 5.4.  For most analyses SPSS utilizes numbers.  Thus, we will need to assign a number 

for each political party affiliation.  In the blank space to the right of ‘Value’, type the number ‘1’.  

Then type a brief description of this value of the variable in the blank space to the right of ‘Label’.  In 

our case, type ‘Democrat’.  Finally, click on ‘Add’.  Your label for a value of 1 will appear in the large 

white region in the center of the window.  Now repeat the above steps in this section for each of the 

values in the data set as listed in Table 2.4.  Figure 5.5 illustrates what you will see immediately 

before clicking on ‘Add’ after defining all of the values of the data set.  After clicking on ‘Add’, then 

click on ‘OK’. 

Figure 5.4 The Value Labels Box of the Variable View Window 

 

 

Figure 5.5 The Assignment of Value Labels 
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 Step A.7 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are 

dealing with nominal data, select ‘Nominal’ as is shown in Figure 5.6.  You have now completed the 

‘Variable View’ window for the data we are interested in.   

Figure 5.6 The Completed Variable View Window 

 

 

Step A.8 Click on the ‘Data View’ option at the lower left corner of the window.  The label 

‘polparty’ will be present in the first variable column. 

 Step A.9 Click on the first empty ‘cell’ under ‘polparty’ and, while referring to Table 2.3,  

type in the number corresponding to the political affiliation of the first subject, in this case ‘3’ as 

they did not indicate a party affiliation.  Continue adding data by clicking on the next empty ‘cell’ in 

the column under ‘polparty’ until all 25 values have been entered (the first 23 values are shown in 

Figure 5.7).  Note that I entered the data by going down the columns in Table 2.3, but entering the 

data by going across the rows would have worked just as well.  You are now ready to use SPSS to 

describe the data you have entered. 

Figure 5.7        Data View Window 
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To Find Frequencies 

 
 Step A.10 Click on ‘Analyze’ at the top of the window as is shown in Figure 5.8. 

Figure 5.8 The Analyze Function 
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 Step A.11 Move your cursor down to ‘Descriptive Statistics’.  When you do so, an additional 

window will appear (Figure 5.9). 

Figure 5.9 The Descriptive Statistics Function 
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 Step A.12 Click on ‘Frequencies’ and the window shown in Figure 5.10 will appear. 

Figure 5.10 The Frequencies Window 

 

                               

 Step A.13 Click on the arrow symbol pointing to the right to move the variable label, 

‘Political Party Affiliation’ to the rectangle with the heading ‘Variable(s)’ (Figure 5.11).  (As we only 

have one variable this may seem un-necessary, but when you have numerous variables this is how 

to indicate to SPSS which variables are currently of interest.) 

Figure 5.11 Using the Frequencies Window 
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Step A.14 Click on ‘OK’.  The result is the output shown in Figure 5.12, which includes the 

frequencies previously shown in Table 2.4 as well as additional information that may be of interest.  

This output can be printed and/or saved, if desired. 

Figure 5.12 An Example of SPSS Output 

 
                 
 

 Step A.15 Exit from this output (not from SPSS).  You will be prompted whether you want to 

save the output.  As this is just an exercise, you do not have to save it. 

To Create A Bar Graph 
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 Step A.16 You will have been returned to the ‘Data View’ window.  Once again, click on 

‘Analyze’ at the top of the window, move your cursor down to ‘Descriptive Statistics’, and then click 

on ‘Frequencies’.  You should return to the window shown in Figure 5.11.  Click your cursor on 

‘Charts’, and indicate which of the charts or graphs is wanted.  As we desire a bar graph, ‘Bar charts’ 

has been selected in Figure 5.13.   

Figure 5.13 Selecting a Bar Graph 

 

                           

 Step A.17 Click on ‘Continue’.  If you do not want to see the frequency distribution again, 

click on the check in front of the phrase ‘Display frequency tables’, and then ‘OK’ and you will see 

just the bar graph shown in Figure 5.14. 

Figure 5.14 The Bar Graph  
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 Step A.18 Exit from this output (not from SPSS) by clicking on the X in the upper right 

corner.  You will be prompted whether you want to save the output.  As this is just an exercise, you 

do not have to save this graph. 

To Create A Pie Chart 

 
 Step A.19 To create a pie chart of your frequencies, we repeat the steps used for creating a 

bar graph except that when we reach Figure 5.13 we select ‘Pie charts’.   

Step A.20 Click on ‘Continue’.  If you do not want to see the frequency distribution again, 

click on the check in front of the phrase ‘Display frequency tables’, and then click ‘OK’ and you will 

see just the pie chart shown in Figure 5.15.   

Figure 5.15 The Pie Chart 

 

                      
Step A.21  Exit from this output by clicking on the X in the upper right corner.  You will be 

prompted whether you want to save the output.  Once again, as this is just an exercise, you do not 

have to save this chart.  If you continue exiting you will return to the Data View window.  Exiting 

from this window will result in another prompt asking if you want to save the data.  As this is just 

an example, there is no need to save the data unless you feel you might want to practice making bar 

graphs and pie charts using these data in the future. 

A Second Example (B) Using SPSS 

To Begin SPSS Proceed As In The Previous Example: 
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 Step B.1 This is the same as step A.1. 

Step B.2 This is the same as step A.2. 

 Step B.3 This is the same as step A.3. 

 Step B.4 Click on the first empty cell under the column heading ‘Name’.  We are going to 

utilize the same data and labels as were previously employed in Table 3.6.  As these data dealt with 

the incomes of 10 hypothetical students, we have only one variable which I call ‘income’.   

 Step B.5 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell I have 

typed ‘Income of College Students’ as a more extensive description of our variable.  Note that in 

order to see the entire label you will need to expand the size of this cell by placing your cursor on 

the right border of the Label heading and moving to the right. 

 Step B.6 In the current example all of the data are expressed in dollars.  There is not, 

therefore, any need to label ‘Values’ of your variable.   

 Step B.7 Under the column heading ‘Measure’, choose ‘Scale’.  In SPSS, ‘Scale’ indicates that 

the data are at either the interval or ratio level of measurement.  As our data are measured in 

dollars, and this is a ratio level of measurement, ‘Scale’ is the appropriate entry.  You have now 

completed the ‘Variable View’ window for the data we are interested in (Figure 5.16).   

Figure 5.16 Defining a Label Within the Variable View Window 

 

 

 Step B.8 Click on the ‘Data View’ option at the lower left corner of the window.  The variable 

‘income’ will now be present. 

 Step B.9 Click on the first empty ‘cell’ under ‘income’ and type in the number corresponding 

to the income of the first student, in this case 20000.  Continue adding data by clicking on the next 

empty ‘cell’ in the column under ‘income’ until all 10 values have been entered (Figure 5.17).  You 

are now ready to use SPSS to describe the data you have entered. 

Figure 5.17 Entering Data in the Data View Window 
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To Find Frequencies 

 
 Step B.10 Click on ‘Analyze’ at the top of the Data View window. 

 Step B.11 Move your cursor down to ‘Descriptive Statistics’.  When you do so, an additional 

window will appear (Figure 5.18). 

Figure 5.18 The Descriptive Statistics Function 
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Step B.12 Click on ‘Frequencies’ and the window shown in Figure 5.19 will appear. 

Figure 5.19 The Frequencies Window 

 

  

Step B.13 Click on the arrow symbol pointing to the right to move the variable label, ‘Income 

of College Students’, to the rectangle with the heading ‘Variable(s)’ (Figure 5.20).   

Figure 5.20 Using the Frequencies Window 

                                 

  

Step B.14 Click on ‘OK’.  The result is the output shown in Figure 5.21, which includes the 

frequencies previously shown in Table 3.7 (the order is reversed) as well as additional information 

that may be of interest.  This output can be printed and/or saved, if desired. 

Figure 5.21 An Example of SPSS Output 
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 Step B.15 Exit from this output (not from SPSS).  You will be prompted whether you want to 

save the output.  As this is just an exercise, you do not have to save this output.  You will have been 

returned to the window shown in Figure 5.17. 

To Create A Histogram 

 
 Redo Steps B.10, B.11, B.12 and B.13.    

Step B.16 Click on ‘Charts’ and then ‘Histograms’ and then ‘Continue’.  If you do not want to 

see the frequency distribution again, click on the check in front of the phrase ‘Display frequency 

tables’.   

Step B.17 Click ‘OK’ and just the histogram in Figure 5.22 will appear.  This is a somewhat 

condensed version of the histogram in Figure 3.1. 

Figure 5.22 The SPSS Histogram 
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Step B.18 Exit from this output by clicking on the X in the upper right corner.  You will be 

prompted whether you want to save the output.  Once again, as this is just an exercise, you do not 

have to save this chart.  If you continue exiting you will return to the Data View window.  Exiting 

from this window will result in another prompt asking if you want to save the data.  As this is just 

an example there is no need to save the data unless you feel you might want to use these data in the 

future. 

A Third Example (C) Using SPSS 

To Begin SPSS Proceed As In The Previous Example: 

 
 Step C.1 This is the same as step A.1. 

Step C.2 This is the same as step A.2. 

 Step C.3 This is the same as step A.3. 

 Step C.4 Click on the first empty cell under the column heading ‘Name’.  We are going to 

utilize the same data and labels as were previously employed in Table 3.10.  As these data dealt 

with the exam scores of 10 hypothetical students, we have only one variable which I call ‘scores’.  

 Step C.5 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell I have 

typed ‘Exam Score of College Students’ as a more extensive description of our variable.  Note that in 

order to see the entire label you will need to expand the size of this cell by placing your cursor on 

the right border of the Label heading and moving to the right. 
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 Step C.6 In the current example all of the data are expressed as points on an exam.  There is 

not, therefore, any need to label ‘Values’ of your variable.   

 Step C.7 Under the column heading ‘Measure’, choose ‘Scale’.  In SPSS, ‘Scale’ indicates that 

the data are at either the interval or ratio level of measurement.  As our example deals with points 

on an exam, this is a ratio level of measurement and ‘Scale’ is the appropriate entry even though the 

data are discrete, not continuous.  You have now completed the ‘Variable View’ window for the data 

we are interested in (Figure 5.23).   

Figure 5.23 Defining a Label Within the Variable View Window 

 

 

 Step C.8 Click on the ‘Data View’ option at the lower left corner of the window.  The variable 

‘scores’ will now be visible. 

 Step C.9 Click on the first empty ‘cell’ under ‘scores’ and type in the number corresponding 

to the exam score of the first student, in this case 68.  Continue adding data by clicking on the next 

empty ‘cell’ in the column under ‘income’ until all 10 values have been entered (Figure 5.24).  You 

are now ready to use SPSS to describe the data you have entered. 

Figure 5.24 Entering Data in the Data View Window 

                                                     

To Find Frequencies 

 
 Step C.10 Click on ‘Analyze’ at the top of the Data View window. 

 Step C.11 Move your cursor down to ‘Descriptive Statistics’.  When you do so, an additional 

window will appear (Figure 5.25). 
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Figure 5.25 The Descriptive Statistics Function 

 

 

 Step C.12 Click on ‘Frequencies’ and the window shown in Figure 5.26 will appear. 

Figure 5.26 The Frequencies Window 

                                 

 

 Step C.13 Click on the arrow symbol pointing to the right to move the variable label, ‘Exam 

Scores of Coll…’, to the rectangle with the heading ‘Variable(s)’ (Figure 5.27).   

Figure 5.27 Using the Frequencies Window 
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 Step C.14 Click on ‘OK’.  The result is the output shown in Figure 5.28.  This output can be 

printed if desired. 

Figure 5.28 An Example of SPSS Output 

                          

 

 Step C.15 Exit from this output (but not the SPSS program).  You will be prompted whether 

you want to save the output.  As this is just an exercise, you do not have to save this output.  You 

will have returned to the window shown in Figure 5.24. 

To Find Median And Quartiles 
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We will continue to use the same exam score data as previously. 

 Step C.16  Click on ‘Analyze’, ‘Descriptive Statistics’ and then ‘Frequencies’.  The window 

shown in Figure 5.26 will appear. 

 Step C.17 Click on the blue box ‘Statistics’.  A new window will appear (Figure 5.29).   

Figure 5.29 The Frequencies: Statistics Window 

                                    

 

Step C.18  Now check the small boxes besides ‘Quartiles’, ‘Range’, ‘Minimum’, ‘Maximum’ 

and ‘Median’.  The result will be Figure 5.30. 

Figure 5.30 Calculation of the Quartiles and Median 
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 Step C.19  Press ‘Continue’.  This will return you to Figure 5.27.  Now press ‘OK’.  The output 

is shown in Figure 5.31.   

Figure 5.31 Output of Calculating the Quartiles and Median 

                                                            

 

It is important to note that the range, minimum and maximum calculated by SPSS will be the same 

as we found previously in Chapter 3.  However, the 25th percentile (first quartile), 50th percentile 

(second quartile or median) and the 75th percentile (third quartile) may differ from what we 

obtained before.  This is because SPSS uses the original method proposed by Tukey for calculating 

these values while most of the field has gone to the simpler method that was described in Chapter 3.  

For problems in this text that you calculate by hand use the method described previously in Chapter 

3.  With problems solved using SPSS provide the values given by the computer package.  Finally, if 
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you are publishing the results of a study you have conducted, indicate that SPSS was used and then 

report the values from the program. 

 Step C.20  Exit from SPSS. 

Conclusion 
 

Hopefully you will agree that there isn’t anything difficult about creating frequencies, bar 

graphs or pie charts with SPSS, or finding means, medians, modes, ranges, minimum and maximum 

values, or quartiles.  The important points to remember are: 

1. Each column in SPSS is a different variable. 

2. Each row is a different subject. 

3. Use the ‘Variable View’ window to name and label variables. 

4. Use the ‘Data View’ window to enter data. 

5. Use ‘Analyze’ to find descriptive statistics. 

6. Use ‘Charts’ to create bar graphs, pie charts, and histograms.  But remember, we use bar 

graphs with nominal or ordinal data, pie charts only with nominal data, and histograms 

with interval or ratio data. 

7. Use ‘Statistics’ to calculate values for means, medians, modes, ranges, quartiles as well as 

minimum and maximum values.  In the future you will learn that SPSS can also be used to 

find the standard deviation or variance of samples.   

 

Glossary Of Terms 
 
Computational equations – Equations developed to aid in statistical calculations.  They were useful  

with large data sets, but now researchers would employ computer software packages 

instead.  

Data view – SPSS window in which the data are displayed. 

SPSS – A powerful, commonly-used statistical computer package.  The letters ‘SPSS’ originally were  

 an abbreviation for ‘statistical package for the social sciences’. 

Variable view – SPSS window in which variables are defined. 

 

Questions – Chapter 5 

 
(Answers are provided in Appendix J.) 

1. In order to make calculation of large data sets easier, statisticians created _____. 
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a. a special, easily read type 
b. computational equations  
c. a unique form of slide rule 
d. a rule to round off all decimals to whole numbers 

 
2. If you were using SPSS and wanted to enter data to an already existing data file, you would 

go to the _____ window to enter a subject’s responses. 
a. Variable 
b. Output 
c. Data 
d. Graphing 

 
3. If you had already entered your data and now wanted to create a pie chart, which SPSS 

command would you begin with if you were at the data view window? 
 a. Analyze 
 b. Graphs 
 c. Compute 
 d. Pie Chart  
 
4. Each column in the SPSS Data View window signifies a _____. 
 a. subject 
 b. experimental condition 
 c. different type of statistical analysis 
 d. variable  
 
5. Each row in the SPSS Data View window signifies a _____. 
 a. subject  
 b. experimental condition 
 c. different type of statistical analysis 
 d. variable 
 
6. In order to provide labels to clarify the meaning of the data, you would go to the _____. 
 a. Data View window 
 b. Variable View window  
 c. Analyze function 
 d. Graphs function 
 

Problems 7 – 12 utilize SPSS 

SPSS  

With the following 13 scores, use SPSS to determine the range, as well as the first, second,  

and third quartiles: 

1     2     3     3     5     6     7     9     10     12     16     22     60 

7. The range is _____. 
 a. 13 
 b. 58 
 c. 59 
 d. 60 
 
8.  The first quartile is _____. 
 a. 3 
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 b. 7 
 c. 14 
 d. 16 
 
9.  The second quartile is _____. 

a. 3 
 b. 7 
 c. 14 
 d. 16 
 
10.  The third quartile is _____. 

a. 3 
 b. 7 
 c. 14 
 d. 16 
 
11. Twenty students take an exam in statistics and receive the following grades: 
  B  B  B  C 
  A  A  B  A 
  C  C  E  B 
  A  D  A  B 
  B  C  C  D 
 
Enter these data in SPSS (using A = 4, B = 3, C = 2, D = 1 and E = 0) and then find the frequencies 
and make a bar graph.  
 
12. Twenty five students report how many movies they have seen in the past week: 
  5  4  2  0  4 
  10  2  1  1  0 
  0  2  3  3  1 
  6  0  4  2  3 
  3  5  8  1  2  
 

Enter your data in SPSS and then find the frequencies and make a histogram.  
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INFERENTIAL STATISTICS – MAKING DECISIONS 
BASED UPON YOUR DATA: 

 

Chapter 6 – The Logic of Inferential Statistics       

  The Distinction between Difference and Association Questions 

Chapter 7 – Finding Differences with Nominal Data – I      

The Goodness-of-fit Chi-square 

Chapter 8 – Finding Differences with Nominal Data – II      

The Chi-square Test of Independence 

Chapter 9 – Finding Differences with Interval and Ratio Data – I    

The One-Sample z Test and the One-Sample t Test 

Chapter 10 – Finding Differences with Interval and Ratio Data – II    

  The Independent Samples t and Dependent Samples t Tests 

Chapter 11 – Finding Differences with Interval and Ratio Data – III    

The One-way Between-subjects ANOVA 

Chapter 12 – Finding Differences with Interval and Ratio Data – IV    

The One-way Within-subjects ANOVA 

Chapter 13 – Finding Differences with Interval and Ratio Data – V     

  The Two-way Between-subjects ANOVA 

Chapter 14 – Identifying Associations with Interval and Ratio Data   

  The Pearson Correlation and Regression 
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Chapter 6  
The Logic of Inferential Statistics:   

The Distinction between Difference and Association 
Questions  

 

“By a small sample, we may judge of the whole piece.” 

Miquel de Cervantes, from Don Quixote 

Where We Have Been 
 
 To this point in the book we have dealt with descriptive statistics, the procedures used to 

summarize data.  More specifically, we have reviewed a number of procedures including how to 

construct frequency distributions, as well as how to calculate the measures that are employed for 

central tendency and variability.  As you will recall, the frequency distribution provides an 

overview of the entire set of data, while the measures of central tendency and variability are single 

numbers that best summarize the data set’s location and spread, respectively.  As Table 6.1 

indicates, the specific procedure chosen depends upon whether you are dealing with nominal, 

ordinal, or interval/ratio data.  With the procedures that have been reviewed you are now in an 

excellent position to communicate a maximum amount of information in an efficient manner. 

Table 6.1 An Overview of Descriptive Statistics (Summarizing Data) 
 

         ____________________________________Type of Data ________________________________________ 
                        Nominal  Ordinal    Interval/Ratio  
           (Frequency) (Ranked)   (Score) 
          ___________________________________________________________________________________________ 

 

Frequency Dist  Bar Graph  Bar Graph Histogram or Frequency Polygon  

   or Pie Chart  

 

       IF NOT NORMAL    IF NORMAL  
Central Tendency Mode  Median  Median      Mean  
           (Median – less  
                common)  
   
      
Variability  –  –  –  –   Range  Interquartile Range    Standard Deviation    
                   z Score   
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Summary Presentation    Stem-and-leaf display    Stem-and-leaf display 

            and           and 

        Boxplot     Boxplot 

        

 
          

Where We Are Going 
 
 The remainder of the text deals with inferential statistics.  These procedures are used when 

making data-based decisions.  Specifically, we will be concerned with whether the evidence for a 

relationship or pattern that is observed in a sample is sufficient to warrant concluding that the 

same relationship also exists in a population.  In other words, we will be dealing with the question 

of whether a finding is likely to generalize.  By the end of the book it will be evident that inferential 

statistical procedures are very powerful tools that can be used in a wide variety of situations. 

 Before beginning our discussion of inferential statistics it may be helpful to briefly review 

the distinction between a sample and a population.  Recall that a population consists of all of the 

individuals that are potentially of interest.  For instance, if we were interested in the effectiveness 

of a cancer therapy, the population would be all of the individuals who have cancer.  Clearly, it is 

impractical to conduct a study that would examine every member of such a large population.  

Instead, we commonly select a sub-set of a population to examine.  This sub-set is called a sample.   

 The sample should be chosen carefully.  The goal is to select the members of the sample in 

such a way that any observed relationship in the sample can be generalized to the population that is 

of interest.  For instance, let us assume that we are interested in what effect reducing legroom will 

have on passenger satisfaction on intercontinental airline flights.  If the sample consists only of 

professional basketball players then it is questionable whether the findings will generalize to the 

population of all passengers.  Usually, the optimal procedure for choosing a representative sample 

is to randomly select the subjects.  In a random sample every member of the population has an 

equal chance of being chosen to be in the sample.   

 Random sample – A sample in which every member of the population has an equal chance  

  of being chosen. 

Decisions, Decisions, Decisions 

 
 For the remainder of the book you will be using samples to make decisions concerning 

populations.  More specifically, you will be learning a set of agreed-upon procedures for making 

these decisions.  Which procedure is appropriate depends upon the type of research design 
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employed, as well as the type of data collected.  As Table 6.2 indicates there are, fundamentally, two 

types of research questions, and therefore two broad types of research designs.  Difference designs 

examine whether an observed difference between samples is likely to have been the result of 

chance or, instead, provides evidence of a real or systematic effect.  If the experiment is properly 

designed and conducted, findings will generalize to the populations.  This means that conclusions 

can be drawn regarding the populations based on sample data.  There are a large number of 

difference designs.  In addition, some difference designs provide a measure of interaction.  We will 

be discussing this concept later.   

 Difference design – A research procedure designed to determine whether a difference  

  observed between samples is likely to generalize to the populations. 

 

Association designs are the other major type of research design.  They examine whether an 

association observed in a sample is likely to have been the result of chance or, instead, provides 

evidence of a systematic effect.  Once again, if the research is properly designed and conducted the 

findings based upon a sample will generalize to the corresponding population.    

Association design – A research procedure designed to determine whether an association  

 observed in a sample is likely to generalize to the population. 

 

As Table 6.2 indicates, the choice of the appropriate statistical procedure is not only 

dependent on the research design, it is also a function of the measurement scale that was utilized.  

In other words, for inferential statistics, as for descriptive statistics, whether the data are nominal, 

ordinal, or interval/ratio is important in choosing the appropriate statistical procedure. 

Finally, in Chapter 8 you will learn that the distinction between difference and association 

designs is not as clear when utilizing nominal data.  Consequently, the same statistical procedure, 

the chi-square test of independence, can be utilized for either design (Table 6.2). 

Table 6.2 An Overview of Inferential Statistics 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 

 
When the Focus is on the Statistical Significance of a Difference: 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
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           One IV With Two Or      Kruskal–Wallis Ha One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   
___________________________________________________________________________________________________________________________________________ 
       

 
When the focus is on Characteristics and Statistical Significance of an Association: 
Research 
Question 

 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi rb          Spearman rc  Pearson r 
               Multiple Correlationd 

    
Regression:         Regression   

Multiple Regressiond 

 
__________________________________________________________________________________________________________________________________________ 
 

Italicized items are reviewed in the following appendixes: 

a. Appendix A 
b. Appendix B 
c. Appendix C 
d. Appendix D 

 

 You may feel intimidated by Table 6.2.  Don’t be.  The chapters that follow will walk you 

through each procedure.  You mastered descriptive statistics and you will master inferential 

statistics.  The goals of the remainder of this book are to assist you in understanding when it is 

appropriate to use each procedure, to illustrate how to conduct each of them, and to show how they 

are related.   

A Little History 

 
 To appreciate the role of inferential statistics it is important to recognize that these 

procedures are a critical component of a process that has culminated in what we call the scientific 

method.  Before the scientific method was developed there were other approaches for making 

decisions.  Probably the most common is tradition, you do what has been done in the past.  A major 

advance occurred with what is sometimes called intrinsic plausibility.  In this system, alternative 

explanations are identified and then the explanation that is judged to be the most plausible or 
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logical is accepted as being true.  In many cases this approach is effective.  Unfortunately, it is also 

likely that incorrect decisions will be made using this method.  One of the major problems is that 

this method is susceptible to bias.  At one time it was ‘known’ that the earth was the center of the 

universe and that the sun went around it.  This was the most plausible explanation for the 

observation that the sun rose in the east every morning and set in the west every evening.  

Unfortunately, though plausible, it was incorrect.  In addition, views of racial and sexual superiority 

and inferiority were, in the not too distant past, almost universally accepted.  Those views seemed 

plausible to most people at the time.  We no longer accept those views as logically defensible, and 

they are not supported by the relevant data.  Numerous other examples could be cited. 

 Intrinsic plausibility – Decision-making process in which the alternative that seems most  

  reasonable is accepted as being true. 

 

 By the end of the seventeenth century, a different approach to finding truth was evident in 

Western Europe.  It is what we now call the scientific method.  It has been refined into such a 

powerful approach that it may well be the most significant western contribution to world 

civilization.  The scientific method seeks to identify relationships and express them mathematically.  

It relies upon a foundation of rigorous logic, but careful observation is the ultimate authority for 

determining truth.  In other words, no matter how elegant the idea, if observations of nature do not 

provide support for it, the idea is rejected. 

 Scientific method – An approach to understanding that emphasizes rigorous logic, but also  

  that careful observation is the ultimate authority for determining truth.  It is a self- 

  correcting approach that limits bias. 

 

 The scientific method does not ensure that every conclusion will be correct.  However, a 

valuable feature of the scientific method is that it is self-correcting.  What this means is that even if 

a conclusion is incorrect, or only partially correct, the process of scientific inquiry will, in time, 

provide a more adequate explanation.  An example of this is the revolution that occurred in physics 

early in the 20th century.  Newton’s laws of motion had been proposed in the 17th century.  They 

adequately accounted for everyday experience.  However, the behavior of events at very high 

speeds, such as the speed of light, required a different explanation.  This was provided by Einstein.  

Einstein’s theory is able to account for more than Newton’s.  However, neither Newton’s nor 

Einstein’s theory can account for the behavior of very small, sub-atomic particles.  As a result a 

great deal of effort is currently being devoted to developing an even more general theory. 

 Along with being self-corrective, the scientific method is efficient.  One of the greatest 

advantages of this approach is that a researcher does not have to begin each inquiry from scratch.  

Instead, new research builds upon what has already been discovered.  Research directions that are 
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not productive are not pursued.  Thus, effort is focused upon areas with the greatest potential for 

success.  It is this economy of effort that has led to our increasingly rapid technological advances, 

increased life spans, higher standards of living and, unfortunately, the threat of nuclear war and 

global warming.  

How Science Works 

 
 A critical component of the scientific method is making a comparison.  Comparisons often 

involve two groups, or one group versus some standard.  For instance, if we wanted to know if a 

coin was fair we would compare the results of tossing it a number of times to the expected outcome 

of an equal number of heads and tails.  In this case, there would be only one set of data and we 

would compare it against what the data would be expected to be if the coin was fair.   

It is important to note that some difference from the expected 50:50 ratio of heads and tails 

might have occurred even with a fair coin.  After all, by chance we would expect to see some 

deviation from the predicted 50:50 ratio.  So, how can we determine whether a difference that we 

observe in this ratio is the result of having an unfair coin, or is simply due to chance variation?  

Statisticians focus upon how great this difference is.  Differences in ratios of heads and tails due to 

chance alone would be expected to be small.  On the other hand, it is at least possible that an unfair 

coin would lead to a ratio of heads and tails that is substantially different from the expected 50:50 

ratio.   

Alternatively, let’s assume we were interested in learning whether listening to a 

motivational speech would affect listeners’ scores on an exam.  We could begin by using random 

selection to obtain two samples of subjects which are likely to be equivalent.  Then we could have 

the subjects in only one of the samples listen to the motivational speech.  Finally, we would 

determine the scores on the exam for all of the subjects and check to see if there was now a 

difference between the two groups.  In this between-groups study there would be two sets of data 

that would be compared.  This experimental design can be summarized as the following: 

Group 1 – no treatment  

Group 2 – treatment 

The group of subjects that does not receive the treatment is called the control group.  The group of 

subjects that does receive the treatment is called the experimental group.  While some difference 

between the two groups would be expected by chance, a large difference in the exam scores of the 

two groups would be evidence that the treatment had an effect.   

Control group – In a between-groups design, the group of subjects that does not receive the  

 treatment. 

Experimental group  – In a between-groups design, the group of subjects that does receive  

 the treatment. 
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In this example, the researcher is in control of who listens to the motivational speech.  The 

researcher then examines the subsequent exam scores.  Thus two things are varying in this simple 

experiment.  One variable, the presence or absence of the motivational speech, is determined or 

manipulated by the experimenter and is called the independent variable (IV).  The experimenter 

wishes to make a decision whether the magnitude of the other variable, in this case the exam 

scores, is dependent upon the value of the IV that the subject receives.  This second variable, which 

is not directly controlled by the experimenter, is called the dependent variable (DV).   

Manipulate – The researcher determines which condition of the independent variable each  

 subject receives. 

Independent variable (IV) – In an experiment, the variable the experimenter manipulates or  

 directly controls.   

Dependent variable (DV) – In an experiment, the variable whose value is not directly  

 controlled by the researcher.  Its value may be changed by the independent variable  

 (IV).   

 

Making An Experimentally-Based Decision 

                   “The only relevant test of the validity of a hypothesis is comparison of its 

               predictions with experience.” 

Milton Friedman 

 

 We just noted that a treatment might, or might not have an effect.  When designing a study 

we describe these possible outcomes by defining hypotheses.  More specifically, with a difference 

design, the null hypothesis, symbolized as HO, is usually that the treatment does not have an effect 

(the motivational speech does not have an effect on the exam scores).  The alternative hypothesis, 

symbolized as H1, is that the treatment does have an effect (the motivational speech does change 

the exam scores).  The goal of an experiment is to permit the researcher to choose between these 

two mutually exclusive alternatives. 

  Hypothesis – A scientifically-based statement about some condition in the environment or  

  population.   

 Null hypothesis (H0) – When used with a difference design, the statement that the  

  treatment does not have an effect.   

Alternative hypothesis (H1) – When used with a difference design, the statement that the  

 treatment does have an effect.   
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 To understand how a statistical procedure can assist in hypothesis testing, in other words in 

determining whether the null or alternative hypothesis is supported, let us return to our example of 

the experiment examining the effect of a motivational speech on exam scores.  As explained 

previously, we would not be surprised if the mean exam scores of the control and experimental 

groups differed slightly.  The question remains, how discrepant do the two means have to be in 

order to reject the null hypothesis that any difference is due to chance variation?  In other words, 

how large a difference must be observed for the experimenter to conclude that the treatment had 

an effect on the exam scores?  There is no absolute answer to this question.  Statisticians provide an 

answer based upon the likelihood or probability of the null hypothesis being true.  In most fields it 

has come to be accepted that if an outcome would be expected to occur, by chance, less than 1 time 

in 20 if the null hypothesis were true, then we reject the null hypothesis and accept the alternative 

hypothesis.  One time in 20 is equivalent to .05 or 5%.  There is nothing magical about .05.  A 

different criterion such as .01 can be, and sometimes is, chosen.  A criterion of .01 is equivalent to 

an outcome occurring only 1 time in 100 by chance.  If a criterion of .01 is chosen, then we retain 

the null hypothesis unless an outcome is so unlikely that it would be expected to occur in less than 

1 out of 100 cases by chance.  We will discuss the reasons for using different criteria shortly.  For 

now, it is important to understand that choosing a probability to differentiate between the null and 

alternative hypotheses is a critical part of experimentation.  In fact, it is so important that the value 

that is chosen is given a name, the alpha level or significance level.  Its symbol is the Greek letter 

alpha, .  As was just pointed out, the alpha level is commonly set at .05, but it could be some other 

value, such as .01.   

 Hypothesis testing – Statistically analyzing data to evaluate whether the null hypothesis  

should be retained or rejected.   

 Alpha level – Criterion set for rejecting the null hypothesis.  This is usually .05.  

 Significance level – Another term for alpha level, the criterion set for rejecting the null  

  hypothesis.  This is usually .05. 

 

 In the example just given, the null hypothesis was that the treatment would not have an 

effect.  The alternative hypothesis was that the treatment would have an effect.  The null hypothesis 

would be rejected, therefore, if the mean for the experimental group’s exam scores differs 

substantially from the mean of the control group.  If we reject the null hypothesis, the alternative 

hypothesis will be accepted.  However, if the mean of the experimental group is not so different 

from the mean of the control group, then the null hypothesis will be retained.   

Whew, That Was A Lot To Remember 
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 Summarizing to this point, when conducting an experiment we begin by defining a null 

hypothesis and an alternative hypothesis.  These are mutually exclusive views of what the true 

situation is.  We tentatively accept that the null hypothesis is true unless there is sufficient evidence 

from the experiment to indicate that this is unlikely.  The criterion for deciding how unlikely the 

outcome must be in order to reject the null hypothesis is set by the experimenter when the alpha 

level is chosen.  If the null hypothesis is rejected, we then tentatively accept that the alternative 

hypothesis is correct.  We use the word ‘tentatively’ because it is important to recognize that with 

statistics we do not ‘prove’ that a difference that is observed between our samples will also exist 

between the corresponding populations.  It is possible, in making an inference, that we have made 

an error.  However, use of proper experimental and statistical procedures will minimize the 

likelihood of this happening. 

  

Progress Check 

 
1. In an experiment, the variable that the experimenter directly controls or manipulates is 

called the _____. 

2. The possible outcome of an experiment that indicates that the treatment does have an effect 

is called the _____. 

3. The criterion the experimenter sets for rejecting the null hypothesis is called the _____, and it 

is usually set at 1 chance in 20, or .05. 

 

Answers:   1. independent variable   2. alternative hypothesis   3. alpha level 

 

Probability, Error, And Power 

“Absolute certainty is a privilege of uneducated minds – and fanatics.   

It is, for scientific folk, an unattainable ideal.” 

Cassius J. Keyser 

 

 The decision-making process that we have been reviewing is based on the probabilities of 

outcomes.  If an outcome is unlikely to have happened by chance we reject the null and accept the 

alternative hypothesis.  Remember, by rejecting the null hypothesis we have not proven that it is 

incorrect.  We are simply stating that, assuming alpha was set to .05, the odds are less than 5% that 

the observed difference happened by chance.  It is possible, therefore, that we could be making an 
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error when we reject the null hypothesis.  In fact, we know the probability of rejecting the null 

hypothesis when it is actually true.  That probability is alpha, which is usually 5%.  In other words, 

if alpha is set at .05, then in 1 comparison out of 20 we will mistakenly reject the null hypothesis 

when it is in fact true.  This is called Type I error.   

 Type I error – The probability of rejecting the null hypothesis when it is in fact true.  This  

  probability is equal to alpha, α, which is usually 5%. 

 

 No one likes to make errors.  It might occur to you that it would be possible to reduce the 

probability of making a Type I error by simply reducing the size of alpha from .05 to .01.  It is true 

that this step would reduce the Type I error rate.  Unfortunately it would also have the unintended 

effect of increasing the probability of another type of error.  By decreasing the Type I error rate, 

such as by setting alpha to .01 instead of .05, you make it harder to reject the null hypothesis.  This 

is good if the null hypothesis is true.  However, by decreasing alpha to .01 you simultaneously 

increase the likelihood that you will fail to reject the null hypothesis when it is in fact false.  Failing 

to reject the null hypothesis when it is false is known as Type II error.  Thus, as the probability of 

making a Type I error decreases, the probability of making a Type II error increases.  The choice of 

the alpha level, therefore, is a compromise between these two types of error.  And this choice is 

affected by which of these errors is felt to be most critical.  Clearly, the consequences of failing to 

detect that a nuclear plant is unsafe are quite different than failing to detect that a new method of 

teaching chess is effective. 

The probability of making a Type II error is called beta, and its symbol is the Greek letter .  

The exact value of beta is usually not known.  However, as was just discussed, what is known is that 

assuming nothing else in the experiment changes, if you reduce Type I error you will 

simultaneously increase Type II error.  The reverse is also true.   

  Type II error – The probability of retaining the null hypothesis when it is in fact false.  This  

  probability is equal to beta, .  The probability of  is usually not known. 

 

 The relationship between Type I and Type II errors is shown in the top portion of Table 6.3.   

 

Table 6.3 Relationship Between Type I and Type II Errors, and Power 
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Experimenter’s Decision 

     Rejects the Null   Retains the Null 

     Hypothesis   Hypothesis 

     Type I error (α)   Type II error (β) 

 If Decision is Incorrect  Incorrectly rejected   Incorrectly retained 

     a true null   a false null 

Truth of the Decision (Which is not known.) 

     Power (1 – β)    

If Decision is Correct   Correctly rejected  Correctly retained 

a false null   a true null 

 

 

Box dealing with Similarities Between Hypothesis Testing and Jury Decision Making 

  

The material presented thus far in the chapter has been quite theoretical.  You may find it 

helpful to realize that hypothesis testing is logically very similar to the decision-making process 

employed by juries (Feinberg, 1971).  With each we have a system designed to lead to an informed 

conclusion.  And each, broadly speaking, follows the same steps.  As Table 6.4 indicates, we start 

with an initial assumption, then set a criterion for making our decision, have a selection process, 

define a basis for our decision, actually make a decision and, finally, we realize that we could have 

made an error.  Concerning the errors, you should recognize that if a jury convicts an innocent 

defendant, then the jury has incorrectly rejected their initial assumption which was that the 

defendant was innocent.  In hypothesis testing terms this would be an example of making a Type I 

error.  Alternatively, if a jury finds a defendant not guilty when in fact the defendant committed the 

crime, then the initial assumption would have been incorrectly retained.  In hypothesis testing 

terms this would be an example a making a Type II error.   

You will see that with hypothesis testing we have additional terms to learn, and they will 

require attention in order to be mastered.  But hopefully you recognize that the logic of hypothesis 

testing has parallels to a process that you may already be familiar with from watching TV and 

reading the news.  Just be cautious not to overstate the similarities (Martin, 2003).   

 
Table 6.4 Comparison of Jury Decision Making with Hypothesis Testing 
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  Step 1  Step 2  Step 3  Step 4  Step 5  Step 6 
  Initial  Criterion for  Selection   Basis for   Decision  Not a  

Assumption Decision  Process   Making     Proof 
Decision     

___________________________________________________________________________________________________________________________________ 
            

 
Jury  defendant  beyond  impartial   testimony  defendant  incorrect 
Decision  assumed  reasonable  jury   in court  found  decision 
Making  to be  doubt  chosen    innocent  is possible 
  innocent        or guilty 
 
 
 
Hypothesis null  alpha  randomly   data from  accept or  Type I or 
Testing  hypothesis level  selected   samples  reject null  Type II 

assumed     samples    hypothesis error is 
to be true          possible 

 

 
 

 Since errors can occur with scientific hypothesis testing we are faced with a dilemma.  We 

want to make the correct decision, of course, but if we reduce one type of error, we simultaneously 

increase the probability of the other type.  Is there anything that we can do to increase the 

likelihood of coming to a correct decision?  When statisticians address this issue, they introduce the 

concept of power.  Power is simply the probability of correctly rejecting a false null hypothesis.  

Fundamentally, the goal of experimentation is to conduct as powerful a study as possible.   

The probability of power is 1 – .  Of course, we just learned that we rarely know the precise 

probability of , so we usually do not know the probability of 1 –  either.  However, the concept of 

power is still very useful.  How power is related to an experimenter’s research decision is 

illustrated in Table 6.3.  (The fourth cell in the table, the probability of correctly retaining a true null 

hypothesis is not of interest to us at this point).  It is important to recognize that even though we 

usually do not know the probability of β, we can nevertheless take steps to increase the probability 

of correctly rejecting a false null hypothesis, in other words to increase the power of our study.  

Some of these steps are listed in Table 6.5. 

Power – The probability of correctly rejecting a false null hypothesis.  The probability is  

1 – . 

 

Table 6.5   Some Steps That Will Increase Power 

1. Pick a treatment that is likely to have a large effect. 

2. Choose a measurement scale that has as much information as possible.   

3. Increase the alpha level (e.g., from .01 to .05).  

4. Increase the sample size. 

5. Conduct the study so that sources of unwanted variability are minimized. 

 



144 
 

As Table 6.5 indicates, one step that the researcher can take to increase the power of an 

experiment is to choose a treatment level that is likely to cause a noticeable effect.  In some cases 

this can be determined from previous, successful studies.  In other cases the researcher will have to 

make an educated guess.  For instance, if you are studying the effect of sleep deprivation on the 

ability to do math calculations, it is not likely that you will find an effect if the sleep deprivation 

consisted of only a loss of 15 minutes of sleep.  You would be more likely to find an effect if the size 

of this intervention were much greater.  Perhaps a deprivation of 2 or 3 hours would be a better 

choice. 

 A second step that you may be able to take is to choose a measure that uses interval or ratio 

data.  The statistical tests that are employed with interval or ratio data are more efficient than those 

that use nominal or ordinal data.  This means that you will not need as many subjects to detect the 

same size effect if you use interval or ratio data.  If you cannot use interval or ratio data, your next 

best choice would be to use ordinal rather than nominal data. 

Choosing alpha to be .05 rather than .01 will also increase the likelihood of rejecting the null 

hypothesis when in fact it is false.  Of course, by taking this action you will increase the probability 

of making a Type I error, but 5% is usually an acceptable level for this type of error in the social 

sciences.    

All else being equal, having larger samples will make rejecting the null hypothesis easier.  

For instance, with interval or ratio data the means of larger samples are expected to vary less from 

each other, by chance, than the means of smaller samples.  As you will see later in the book, a 

consequence is that with large samples you do not need as large a difference between the 

experimental and control groups in order to reject the null hypothesis. 

Finally, any steps that you can take to reduce unwanted variability while conducting the 

study will increase the power of your study.  Among the steps to be considered are using consistent 

procedures with all of the subjects and controlling conditions during testing, such as the 

temperature and humidity, that might affect the outcome. 

Real-World Limitations 

 
 As the previous overview of the scientific method indicated, the optimal features of an 

experiment include random assignment of subjects and manipulation of the independent variable 

by the researcher.  When both random assignment and manipulation of the independent variable 

have occurred we have what is called a true experiment.  And assuming the research has been 

carefully conducted, the experimenter is justified in rejecting the null hypothesis and accepting the 

alternative hypothesis based upon the outcome of the study.  More specifically, the researcher can 

come to what is called a cause-and-effect conclusion; the change in the value of the independent 

variable resulted in a change in the value of the dependent variable.  Of course, as was noted 
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previously, this is a probabilistic decision.  It is always possible that a Type I error has occurred.  

However, the probability of making a Type I error, called alpha, is known and is small.   

An example of a true experiment is the classic Bobo doll research begun by Bandura (1961).  

This research, which has involved a number of studies, examined imitation of aggression in 

children.  In these studies children were randomly assigned to either the control group or one of 

several experimental groups.  The experimenter controlled whether the child observed aggressive 

or non-aggressive behavior (there were a number of conditions).  Then, the behavior of each child 

was recorded.  It was found that when they were frustrated many of the children imitated the 

specific aggressive behavior they had previously witnessed.  This is an example of a true 

experiment for there is random assignment of the subjects and experimenter manipulation of the 

independent variable.   

 True experiment – An experiment in which the researcher randomly assigns the subjects  

  and also manipulates the value of the independent variable.  As a result, at the  

  conclusion of the study the researcher is justified in reaching a cause-and-effect  

  conclusion concerning the relationship between the independent and dependent  

  variables. 

 Cause-and-effect conclusion – Decision that the change in the value of the independent  

  variable resulted in a change in the value of the dependent variable.  This is justified  

  with a well-conducted, true experiment.  

 

 However, in many real-world situations it is not possible for an experimenter to randomly 

assign subjects and manipulate the variable that is of interest.  In these cases the scientific method 

can still be employed, but the strength of the conclusion that the researcher is justified in making is 

reduced.  For instance, if the researcher can manipulate the independent variable but cannot 

randomly assign the subjects, then the study has some, but not all, of the characteristics of a true 

experiment.  Accordingly, it is called a quasi-experiment.  Compared to a true experiment we are 

now less confident that a difference found at the conclusion of the study is due to the manipulation 

of the independent variable.  For example, in a classic series of studies Gazzaniga (1967) examined 

people whose corpus callosum (a band of neurons connecting the two hemispheres of the brain) 

had been surgically cut in order to prevent the spread of seizure activity.  These subjects were 

asked to identify objects placed in either of their hands while they were prevented from looking.  

When the object was placed in the right hand, the subjects could name it.  However, when the object 

was placed in the left hand, they could not name it.  As the neural inputs to the brain cross this is 

evidence that the ability to verbally name objects is lateralized to the left hemisphere.  You should 

recognize that this is a quasi-experimental design.  The subjects were not being randomly assigned.  

Instead, they came to the study with or without having had their corpus callosum cut.  However, the 
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experimenter was in control of the independent variable, the placement of the objects to be named.  

The results of these studies were dramatic.  And no one is going to seriously suggest that Gazzaniga 

should instead have conducted a true experiment, for this would have required random assignment 

of subjects to undergo surgery!   

 Quasi-experiment – An experiment in which some characteristic of a true experiment is  

  missing.  Most commonly, the researcher manipulates the value of the independent  

  variable but does not randomly assign the subjects.  As a result, at the conclusion of  

  the study the researcher has less confidence in concluding that there is a cause-and- 

  effect relationship between the independent and dependent variables than would be  

  the case with a true experiment. 

 

 Alternatively, it may not be possible for the researcher to either randomly assign the 

subjects or to manipulate a variable.  This is called a correlational study.  Due to the lack of control 

we have even less confidence concerning the cause of any obtained relationship.  As the researcher 

did not manipulate any variable there is not an independent variable, or a dependent variable.  

Either variable could be causing a change in the other, both could be affecting each other, or some 

other variable(s) could be affecting them both.  For example, it is commonly noted that football 

teams that have a propensity to turn the ball over to the other team are also more likely to lose the 

game.  This may seem to be an obvious cause-and-effect relationship; repeatedly giving the ball to 

the opponent causes an increase in the likelihood of losing the game.  However, it is important to 

recognize that this is a correlation, for there is neither random assignment nor experimenter 

control of a variable.  And upon closer inspection the interpretation of the relationship becomes 

somewhat less certain.  For instance, the likelihood of turnovers increases if a team is passing 

rather than running when they have possession of the ball.  And teams that are already far behind 

are more likely to rely upon passing the ball as a desperate means to score quickly.  In other words, 

what seemed initially like an obvious cause-and-effect relationship, turnovers cause teams to lose, 

is more complex as teams that are already losing are also more likely to have turnovers! 

Correlational study – A study in which the researcher does not randomly assign the  

 subjects and does not manipulate the value of a variable.  As a result, at the  

 conclusion of the study the researcher has little confidence that there is a  

 cause-and-effect relationship between the variables. 

  

Conclusion 
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 The first section of this book dealt with descriptive statistics.  These are the procedures that 

we use to summarize a set of data.  This chapter introduced inferential statistics.  Inferential 

statistics are a set of procedures that assist us in determining whether a relationship or pattern 

observed with a sample(s) is likely to generalize to a population(s).  The remainder of the book will 

be dealing with inferential statistical procedures. 

No new statistical procedures were introduced in this chapter.  Instead, the emphasis was 

on reviewing the logic of hypothesis testing.  The remainder of the text will build upon this 

foundation.  It is important, therefore, that you master the concepts and the associated terms 

described in this chapter.  Specifically, the null and alternative hypotheses were defined in the 

context of a between-groups experiment.  Then, the rationale for making probabilistic decisions, 

and thus the necessity of choosing an alpha level, was covered.  It was noted that statistical 

procedures assist in the decision-making process but do not ensure that every conclusion will be 

correct.  This led to a discussion of Type I and Type II errors.  The steps that a researcher can take 

that will increase the power of a study were then briefly described.  Finally, the distinctions 

between a true experiment, quasi-experiment, and a correlational study were reviewed. 

It should be noted that the logic of hypothesis testing applies equally well to studies that 

employ nominal, ordinal or interval/ratio measurement scales.  In the next chapter we will turn our 

attention to the inferential procedures that are used with nominal data.  Subsequent chapters will 

describe the procedures utilized with interval/ratio data (procedures utilized with ordinal data are 

reviewed in the appendixes).  We are, therefore, continuing with the same general organization that 

we employed with our discussion of descriptive statistics. 

 

Glossary Of Terms 
 
Alpha level – Criterion set for rejecting the null hypothesis.  This is usually .05.   

Alternative hypothesis (H1) – When used with a difference design, the statement that the  

 treatment does have an effect. 

Association design – A research procedure designed to determine whether an association observed  

 in a sample is likely to generalize to the population. 

Cause-and-effect conclusion – Decision that the change in the value of the independent variable  

 resulted in a change in the value of the dependent variable.  This is justified with a well- 

 conducted, true experiment.  

Control group – In a between-groups design, the group of subjects that does not receive the  

 treatment. 

Correlational study – A study in which the researcher does not randomly assign the subjects and  
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 does not manipulate the value of a variable.  As a result, at the conclusion of the study the  

 researcher has little confidence that there is a cause-and-effect relationship between the  

 variables. 

Dependent variable (DV) – In an experiment, the variable whose value is not directly controlled by  

 the researcher.  Its value may be changed by the independent variable (IV).   

Difference design – A research procedure designed to determine whether a difference observed  

 between samples is likely to generalize to the populations. 

Experimental group  – In a between-groups design, the group of subjects that does receive the  

 treatment. 

Hypothesis – A scientifically-based statement about some condition in the environment or  

 population.   

Hypothesis testing – Statistically analyzing data to evaluate whether the null hypothesis should be  

retained or rejected.   

Independent variable (IV) – In an experiment, the variable the experimenter manipulates or  

 directly controls.   

Intrinsic plausibility – Decision-making process in which the alternative that seems most  

 reasonable is accepted as being true. 

Manipulate – The researcher determines which condition of the independent variable each subject  

 receives. 

Null hypothesis (H0) – When used with a difference design, the statement that the treatment does  

 not have an effect.  

Power – The probability of correctly rejecting a false null hypothesis.  This probability is 1 – . 

Quasi-experiment – An experiment in which some characteristic of a true experiment is missing.   

 Most commonly, the researcher manipulates the value of the independent variable but does  

 not randomly assign the subjects.  As a result, at the conclusion of the study the researcher  

 has less confidence in concluding that there is a cause-and-effect relationship between the  

 independent and dependent variables than would be the case with a true experiment. . 

Random sample – A sample in which every member of the population has an equal chance of being  

 chosen. 

Scientific method – An approach to understanding that emphasizes rigorous logic, but also that  

 careful  observation is the ultimate authority for determining truth.  It is a self-correcting  

 approach that limits bias. 

Significance level – Another term for alpha level, the criterion set for rejecting the null hypothesis.   

 This is usually .05. 

True experiment – An experiment in which the researcher randomly assigns the subjects and also  

 manipulates the value of the independent variable.  As a result, at the conclusion of the  
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 study the researcher is justified in reaching a cause-and-effect conclusion concerning the  

 relationship between the independent and dependent variables. 

Type I error – The probability of rejecting the null hypothesis when it is in fact true.  This  

 probability is equal to alpha, α, which is usually 5%. 

Type II error – The probability of retaining the null hypothesis when it is in fact false.  This  

 probability is equal to beta, .  The probability of  is usually not known. 

 

References 

 
Bandura, A., Ross, D., & Ross, S. A. (1961).  Transmission of aggression through imitation of  

 aggressive models.  Journal of Abnormal and Social Psychology, 63, 575-582. 

Feinberg, W. E. (1971).  Teaching type I and type II errors: The judicial process. The  

 American Statistician, 25(3), 30-32.   

Gazzaniga, M. S. (1967).  The split brain in man.  Scientific American, 217(2), 24-29.    

Martin, M. A. (2003).  “It’s like … you know”: The use of analogies and heuristics in teaching  

 introductory statistical methods.  The Journal of Statistics Education, 11(2)  

 (www.amstat.org/publications/jse/v11n2/martin.html) 

 

Questions – Chapter 6 

 
(Answers are provided in Appendix J.) 

1. In an experiment, the group that does not receive the treatment is called the _____ group. 

a.     alpha 
b.     benign 
c.     control  
d.     critical 

 
2. The probability of correctly rejecting a false null hypothesis is called _____. 

a.     alpha 
b.     beta 
c.     error rate 
d.     power  

 
3. The essential feature of random assignment is that _____. 

a.     every member of a population has an equal probability of being chosen  
b.     no one knows who will be chosen 
c.     subjects are clueless as to the purpose of the experiment 
d.     only volunteers take part in a study 

 
4. In an experiment, the _____ is that the treatment does have an effect and the _____ is that it 

does not have an effect. 
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a.     null hypothesis; alternative hypothesis 
b.     alternative hypothesis; null hypothesis  

 
5. The experimenter sets the probability of _____ but usually does not know the probability of 

_____. 
a.     alpha; beta  
b.     Type II error; Type I error 
c.     beta; alpha 
d.     Type I error; alpha 

 
6. If you reject the null hypothesis when in fact it is true, you have _____. 

a.     made a Type I error  
b.     broken the law and will need a lawyer 
c.     made a Type II error 
d.     shown that you  have mastered experimental methodology 

 
7. To increase power, an experimenter would _____. 

a.     decrease the sample size. 
b.     choose a nominal rather than an interval measurement scale.    
c.     increase the alpha level (e.g., from .01 to .05).  
d.     not use any of the above options. 

 

8. The criterion for rejecting the null hypothesis is set by the experimenter and in the social 
sciences is usually equal to _____. 
a.     .10 
b.     .05  
c.     .01 
d.     .001 

 

9. Critical features of the scientific method include all of the following except _____. 
a.     ultimately relies upon observation  
b.     requires careful, rational thought 
c.     never is in error  
d.     often makes use of experiments 

 

10. The experimenter usually will not know which of the following? 
a.     significance level 
b.     alpha level 
c.     value of beta  
d.     the number of subjects in the experiment 

 

11. There are, fundamentally, two types of research questions, and therefore two types of 
research designs.  These are called _____ and _____ designs. 

 a.      error prone; truthful 
 b.      small scale; large scale 
 c.      plausible; implausible 
 d.      difference; association  
 
12. The ancient Greeks are famous for employing _____ to determine truth. 

a.     intrinsic plausibility  
b.     the scientific method 
c.     statistical analysis 
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d.     difference designs 
 

13. The probability of making a Type II error is _____. 
a.     alpha 
b.     the criterion set by the experimenter 
c.     equal to the region of rejection 
d.     beta  

 
14. A basic goal of experimentation is to conduct _____. 

a.      as complex a study as possible 
b.      as powerful a study as possible  
c.      a study with a criterion of .10. 
d.      a study where Type I error has been eliminated 

 
15.       A professor is interested in improving her students’ grades, and tests whether having the 

students engage in light exercise will be beneficial.  In this example, the independent 
variable is _____ and the dependent variable is _____. 

 a.      students’ grades; exercise 
 b.      exercise; students’ grades 
 
16. In a quasi-experiment the experimenter commonly manipulates the _____ but does not _____. 
 a.      dependent variable; manipulate the independent variable 
 b.      independent variable; randomly assign the subjects 
 c.      control group; manipulate the experimental group 
 
17. In a correlational study the experimenter _____. 
 a.      does not manipulate the independent variable or randomly assign the subjects 
 b.      does manipulate the independent variable and does randomly assign the  
  subjects 
 c.      never makes a Type I error 
 d.      never makes a Type II error 
 
18. In a true experiment the researcher _____. 
 a.      manipulates the independent variable 
 b.      randomly assigns the subjects 
 c.      always rejects the null hypothesis 
 d.      both a and b, but not c 
 
19.  Assuming no other aspect of the experiment changes, if the probability of Type I error is 

decreased from .05 to .01, the probability of Type II error will _____. 
a.     decrease 
b.     stay the same 
c.     increase 

 
20.       The strongest statement concerning the relationship of two variables can be made by a 

researcher following a _____. 
 a.     true experiment 
 b.     quasi-experiment 
 c.     correlational study 
 d.     all lead to statements of equivalent strength 
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Chapter 7   
Finding Differences with Nominal Data – I:   

The Goodness-of-Fit Chi-Square  
 

Statistics may be defined as “a body of methods for making  

wise decisions in the face of uncertainty.” 

W. A. Wallis 

Introduction 
 We begin our exploration of inferential statistical procedures with a focus upon the simplest 

level of measurement.  Recall that nominal data are discrete and refer to categories.  These data 

consist only of frequencies.  An example of nominal data would be if you were to determine how 

many members of a group consider themselves to be Republicans, how many consider themselves 

to be Democrats, how many have some other party affiliation, and how many have no political 

affiliation at all.  You would simply determine the frequency in each category.   

In this and the next chapter we will be utilizing procedures that do not make assumptions 

about a population’s parameters, such as its variability, and do not assume that the population is 

normally distributed.  They are thus nonparametric as well as distribution-free, but we will follow 

convention and simply refer to them as nonparametric procedures.  Later, when we are dealing 

with interval and ratio data, we will study tests that do make assumptions about population 

parameters and distributions.  They are called parametric procedures.  In this chapter we will begin 

our discussion of the nonparametric inferential procedures with the goodness-of-fit chi-square test.  

This test is underlined in Table 7.1.   

Nonparametric procedure – Statistical procedure that does not make assumptions about the  

 population’s parameters and does not assume that the population is normally  

 distributed. 

Parametric procedure – Statistical procedure that does make assumptions about the  

 population’s parameters and does assume that the population is normally  

 distributed. 

 

Table 7.1 Overview Table of Inferential Statistical Procedures For Finding if there is a  

  Difference 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
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        Measure)
 ______________________________________________________________________________________________ 

 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   

 
 

The Italicized procedure is reviewed in Appendix A 

 

Goodness-of-Fit Chi-Square  
 
 Assume that you have a coin and you want to determine whether it is ‘fair’.  Of course a fair 

coin should land heads 50 percent of the time and tails 50 percent of the time.  However, some 

deviation from the expected 50:50 split would not be surprising.  After all, if you tossed a coin a 

hundred times and found that there were 49 heads and 51 tails, most observers would say that this 

is close enough to the expected 50:50 proportion.  But this raises the question of how far from 

50:50 you would have to be in order to reject the view that the coin is fair and accept the alternative 

that the coin is biased.  Hopefully you recognize that we have just stated a null and an alternative 

hypothesis.  In Chapter 6, we learned that the null hypothesis is a statement of no effect.  In our 

current case we assume that there will be no difference in the number of heads and tails for the 

population consisting of all tosses of the coin.  The coin will thus land with a 50:50 split in a long 

series of tosses.  The alternative hypothesis is that there is a difference in the number of heads and 

tails for the population consisting of all tosses of the coin.  In this case there will be a difference in 

the number of heads and tails in our sample, and thus the proportion of heads to tails will deviate 

from the expected 50:50 ratio.  The question for us is how great the difference must be in a sample 

in order for us to reject the null hypothesis that this difference is due to chance, and instead accept 

the alternative hypothesis that the discrepancy is indicative of the coin being biased.  In science we 
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want a process that will lead to a consistent decision regardless of who the decision-maker is.  In 

other words, we cannot just leave it up to each individual to decide whether a particular conclusion 

is plausible.   

 This may all seem unnecessary, even unimportant, but it is not.  Decisions matter and the 

process by which they are derived is critical.  In everyday life we are used to being rather ‘sloppy’ in 

our decision making.  We are all affected by our emotions and on occasion we make decisions based 

on too little information.  As a result we make mistakes.  Several approaches have been developed 

to reduce the likelihood of coming to erroneous decisions.  In philosophy this includes the study of 

logic.  In science there are a set of procedures known collectively as the scientific method.  A critical 

component of the scientific process is that we base our decisions upon the evidence that we have 

collected.  We then employ accepted statistical procedures to assist in arriving at a decision.  Thus, 

an advantage of the scientific approach is that it assures an outcome that is more than just 

someone’s opinion.   

 For example, let’s assume that your kind, thoughtful professor meets you in the hall one day 

before class.  As both of you have come to class early there is time to engage in stimulating 

intellectual conversation.  Instead, and hopefully unrealistically, your professor suggests that you 

pass the time by wagering on the outcome of coin tosses, and he/she just happens to have a favorite 

coin to use.  You, of course, cannot imagine that your professor would be anything less than 

scrupulously honest, so you accept the offer to bet your hard-earned lunch money.  Your professor 

indicates that he/she is rather partial to heads.  You do not mind.  Why should you?  After all, tails 

should come up as often as heads, assuming of course that the coin is fair.   

 At the end of 10 tosses, you note that while you have won 3 times, your professor has won 7 

times.  What should you think?  While hopefully not a likely situation, the implications of your 

decision should be clear.  If you retain the null hypothesis, which in this case would be that any 

discrepancy from the expected 50:50 outcome is due to chance, then you might continue to play the 

game and there would be no reason to accuse your professor of engaging in dishonest behavior.  

However, if you accept the alternative hypothesis that the obtained proportion of heads and tails 

differs from what would be expected if the coin was fair, then you might conclude that your 

professor has knowingly engaged in dishonest behavior.  It would be very awkward for you to 

accuse your professor of dishonesty based simply upon your personal opinion.  You would want to 

be on firmer footing just in case the department chair or the dean happened to get involved.  The 

issue is straightforward.  Quite simply, is a 7 to 3 outcome different enough from the expected 5 to 5 

outcome to warrant the conclusion that your professor is using a biased coin? 

 To answer this question we must employ an inferential statistical procedure appropriate for 

finding if there is a difference.  As the overview table (Table 7.1) indicates, there are a number of 

procedures to choose from.   
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Fortunately, the process for choosing the correct procedure is straightforward.  We first 

note that we have nominal data and that there is only one variable of interest (the outcome of 

flipping the coin).  Further, this variable has two possible outcomes, either heads or tails.  Thus, 

referring to Table 7.1 we find that the goodness-of-fit chi-square test (which has the symbol 2 ) 

would be appropriate (this procedure is underlined in the table).  Specifically, the goodness-of-fit 

chi-square test uses frequency data from one variable, in this case the outcome of flipping a single 

coin, to test whether the proportion that has been obtained differs from the proportion that would 

be expected if the null hypothesis were correct.  With our example we expect there to be 5 heads 

and 5 tails in 10 tosses of a fair coin.   

Goodness-of-fit chi-square test – An inferential procedure that tests whether observed  

 frequencies differ from expected frequencies.   

 

Step 1:  State the null and alternative hypotheses, and specify the alpha level (In an 

experiment this step would occur before any data are collected.): 

H0 – The coin is not biased (it is fair); any observed deviation from the expected  

 50:50 outcome is due to chance.   

H1 – The coin is biased; any observed deviation from the expected 50:50 outcome is  

 not due to chance.   

Alpha is set to .05. 

Our data can be summarized using a bar graph (Figure 7.1).  

Figure 7.1 Example 1:  Bar Graph of Coin Tosses 

 

  

Inferential statistical procedures, such as the goodness-of-fit chi-square test, are based upon 

assumptions.  One of the assumptions of the chi-square test is that no observed event influences 

another.  This assumption is reasonable with our example for it is simply indicating that the test 

requires that the outcome of one flip of the coin does not affect the outcome of any other flip.  In 

statistical terms, we would say that the outcomes are independent.  (This concept will be discussed 

in more detail in Chapter 8.)    
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 Independent – Two events, samples or variables are independent if knowing the outcome of  

  one does not enhance our prediction of the other. 

 

 The goodness-of-fit chi-square test compares the observed frequencies with the expected 

frequencies.  If the null hypothesis of no difference in the observed and expected frequencies is 

correct, then there should be a close correspondence between these two sets of frequencies in our 

data.  Specifically, in our example of the coin toss we should get a proportion close to 50:50.  Of 

course, some discrepancy is likely.  The issue is whether our result of 7 heads and 3 tails is so 

unlikely to have happened by chance that we should reject the null and accept the alternative 

hypothesis that the coin is biased. 

 Observed frequencies – With nominal data, the actual data that were collected. 

 Expected frequencies – With nominal data, the outcome that would be expected if  

  the null hypothesis were true. 

 

 The calculation of the goodness-of-fit chi-square is straightforward, though it may not 

appear to be at first glance: 

  Chi-square = 2 =  
(Frequency observed – Frequency expected)2

Frequency expected
 = 

(fo − fe)2

fe
   

where fo = frequency observed, and fe = frequency expected. 

 Though this equation may look intimidating it is simply a mathematical statement that 

specifies what arithmetic operations are to be undertaken and in what order.  I assure you that this 

is not difficult.  More specifically, after stating your null and alternative hypotheses you just need to 

proceed through the following additional steps in the correct order: 

 Step 2:  We must determine what the expected frequencies are.  We have already 

accomplished this.  With 10 tosses of a coin the expected frequencies, assuming the coin is not 

biased, are 5 heads and 5 tails. 

Step 3:  The equation indicates that you are to find the difference between an observed 

frequency and the corresponding expected frequency, (fo – fe).  In our case, there are two observed 

frequencies, 7 heads and 3 tails.  The expected frequency for each is 5.  You, therefore, calculate the 

first difference, which is 7 – 5.  This equals 2. 

 Step 4:  You then square the difference that you have just obtained, (fo – fe)2.  In our case, 

this would be 2 squared which equals 4. 

 Step 5:  Next, you divide the squared difference that you have just calculated by its 

frequency expected which in this case is 5.  The result of this division, (fo – fe)2 / fe, would be 4 / 5 

which equals 0.8. 
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 Step 6:  You continue by repeating Steps 2 through 5 for each of your categories.  In our 

example, there is only one additional category, tails.  We, therefore, go back to Step 2 and confirm 

that the expected frequency for tails is 5.  Next, in Step 3 we calculate 3 – 5 (the number of tails we 

observed minus the expected number of tails if the null hypothesis is correct), which equals –2.  

Then, as indicated in Step 4, we square –2 to obtain 4.  Next, as Step 5 indicates, we divide our 

outcome of 4 by the expected frequency of 5 and obtain 0.8.  Table 7.2 summarizes these steps.   

 As a check on our work, the sum of the differences between the observed and expected 

frequencies (obtained in Step 3) should equal 0.  In our example, we have differences of +2 and –2.  

Their sum, as expected, is 0. 

Step 7:  Finally, we sum the values that we have calculated.  In this case there are two 

categories, heads and tails, so we sum two numbers, 0.8 + 0.8 to obtain 1.6 (Table 7.2).   

Congratulations!  You have just calculated your first goodness-of-fit chi-square.  While there 

are a number of steps I hope that you will agree that each is mathematically simple.  Now you are 

ready to make your first statistical decision, to decide whether there is sufficient evidence to reject 

the null hypothesis that the coin is not biased (is fair).   

Step 8:  To complete the process, we must interpret what our chi-square value of 1.6 

indicates.  After all, 1.6 light years is a great many miles, but 1.6 inches is only a small distance.  

How do we interpret a chi-square of 1.6?  In order to answer this we will need to consult the 

appropriate statistical table.  Before doing so, however, let’s reexamine the steps that we have just 

completed and see what they indicate. 

Table 7.2 Example 1:  Steps in Calculating a Goodness-of-fit Chi-square 
 

 Values  fo fe (fo – fe)   (fo – fe)2  
(𝐟𝐨 − 𝐟𝐞)𝟐

𝐟𝐞
  

  
 Heads  7 5     2  4  0.8  

 Tails  3 5   –2  4  0.8 

      = 0               = 1.6 

 

With Step 1 we state the null and alternative hypotheses. 

In Step 2 we find the expected frequencies.  These are derived from our null hypothesis.   

In Step 3 the difference between each observed frequency and its expected frequency is 

calculated.  Clearly, the closer our data match what is predicted from the null hypothesis, the 

smaller this difference will be.  For instance, if we had obtained 5 heads and 5 tails in the 10 tosses, 

then the observed frequencies would have perfectly matched the expected frequencies and the 

differences would have each been zero.  Alternatively, if our outcome had been 9 heads and only 1 

tail, then the differences calculated in Step 3 would have been considerably greater than those that 

we generated. 
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 In Step 4 we square the differences we calculated in Step 3.  As a result, the outcome has a 

positive sign regardless of the sign of the difference that was obtained from Step 3.  This was 

evident when we looked at our outcome of 3 tails, and from Step 3 calculated a difference of –2.  

This was then squared to give 4, not –4.  Therefore, all of the numbers generated in Step 4 will be 

positive.  Further, a large outcome indicates that there is a large discrepancy between our observed 

and our expected frequencies, while a small outcome indicates that there is only a small 

discrepancy. 

In Step 5 we divide each category’s squared difference by the expected frequency for that 

category.  With this division we put each of the squared differences that we calculated into 

perspective.  Fundamentally, the numerator of the chi-square equation provides a measure of how 

big the discrepancy is between our observed and our expected frequencies.  The denominator 

provides a standard against which to measure this deviation.  For instance, in Step 3 we found 

deviations of +2 and –2.  Each of these outcomes was squared in Step 4, and each of these squared 

deviations was related to an expected frequency of 5 in Step 5.  Any particular deviation is more 

impressive when compared against a small rather than a large standard.  For instance, losing 10 

pounds with a diet is more noticeable if your starting weight was 120 pounds than if it was 320 

pounds. 

We now understand that the outcome of Step 7, in our example this is 1.6, is necessarily 

positive, and we have some intuitive feel for its size.  But we are still unable to conclude whether 

the coin the professor tossed was not biased (was fair).  In order to make a decision (Step 8) we 

need to consult the appropriate table, in this case the chi-square table (Appendix K, Table 2).  A 

cursory inspection of the chi-square table reveals a surprisingly large number of entries arranged 

into rows and columns.  From previous chapters you are familiar with the distinction between Type 

I and Type II errors and how, as a compromise, scientists commonly set alpha at .05.  In our case, 

we are following this convention, and thus we will be dealing with the column headed by α = .05.  

We are still left with the issue of why there are so many rows of numbers in the table, and 

why each row is preceded by a number associated with the two letters, df.  The answer is that if 

there was only one chi-square distribution then there would only be a need for one row of critical 

values in the table.  As there are many rows of values in the chi-square table this implies there is a 

series of chi-square distributions.  Now we will explain why this is the case. 

In order to calculate a chi-square value there must be at least two possible outcomes to 

whatever we are examining.  In our example, these were either a head or tail for each toss of the 

coin.  Clearly, if only one outcome were possible, as with a coin with two heads, then the observed 

frequency and the expected frequency would have to match perfectly.  No matter how many times 

you tossed this special coin, the outcome would always be heads.  But in our case of a coin with both 

heads and tails, there are two possible outcomes.  But, can both of these outcomes vary?  You might 
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be inclined to say that as there are two outcomes that are possible, the number of heads and the 

number of tails, then each could vary.  However, when looking at the data set as a whole we will see 

that there is actually only one outcome that is free to vary.  

On any single toss of a coin you can obtain either a head or a tail.  In our example, there 

were 10 tosses.  And once you know that 7 of these tosses were heads, then you also know that the 

number of tails has to be 3.  It cannot be any other number.  The number of tails is not free to vary.  

Thus, in a study with two possible outcomes there is actually only one outcome that is free to vary.  

Statisticians use the term degrees of freedom (df) to indicate the number of outcomes that are free 

to vary.     

Degrees of freedom (df) – The number of outcomes out of the total that are free to vary.   

  

For the goodness-of-fit chi-square test, the degrees of freedom are equal to the number of 

categories possible for the outcome minus one (df = c – 1, where ‘c’ is the number of categories).  

For our example, the degrees of freedom would equal one.  This is because there were two 

categories of the outcome (heads or tails), from which we subtract one.  This is the smallest number 

of degrees of freedom that is possible.  However, higher numbers of degrees of freedom are also 

possible.  For instance, in tossing a die (singular of dice), there are six possible outcomes and thus 

there are five degrees of freedom.  Once you know the number of total tosses and the number of 

times that five of the six sides came up, then the value of the last side is fixed.  Thus, if there were a 

total of 10 tosses, and the numbers 1 through 5 came up eight times, then you would know that the 

number 6 came up two times.  In other words, there are six possible outcomes, but only five 

degrees of freedom.  Once five of the frequencies are specified, the sixth is determined.   

The reason degrees of freedom matter is that the shape of the chi-square distribution varies 

depending upon the number of degrees of freedom.  This is a consequence of the mathematical 

equation for chi-square.  In this book we will simply accept that there is not a single chi-square 

distribution, but rather a family of distributions with the shape of each dependent upon the number 

of categories of data or, more precisely, upon the number of degrees of freedom.  The shapes of 

representative chi-square distributions are illustrated in Figure 7.2. 

Figure 7.2   Shapes of Representative Chi-square Distributions  
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Since in our example of 7 heads and 3 tails there is only one degree of freedom, we will, for 

now, concentrate upon the chi-square distribution that corresponds to one degree of freedom, as is 

shown in Figure 7.3.  The distribution illustrates the chi-square values that would be expected if the 

null hypothesis were in fact true.  This is a theoretical distribution.  It is a plot assuming that we 

have calculated an infinite number of chi-square values.  On the X-axis are the chi-square values, on 

the Y-axis are the corresponding relative frequencies.  It should be evident that the highest 

frequencies are associated with small values of chi-square, and lower frequencies are associated 

with larger values of chi-square. 

Figure 7.3  Chi-square Distribution with 1 df 

 

 

 

 

As was just stated, Figure 7.3 is an example of a theoretical distribution.  No one actually 

collected an infinite number of chi-square outcomes.  However, through a set of mathematical 

procedures collectively known as calculus the areas associated with different regions of this 

distribution have been obtained.  Happily, you do not need to know any calculus to understand 

what is to follow.  We are just going to benefit from the efforts of those who do.  Thus, the situation 

is analogous to using a computer or a car.  Most of us really do not understand how a computer or a 

car works, but that does not in any way preclude us from using computers and cars.   
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The vertical distance between a point on the X-axis and the chi-square curve indicates the 

relative likelihood of a particular chi-square value occurring.  And the total area enclosed between 

the X-axis and the chi-square curve corresponds to the likelihood of all of the possible outcomes, 

which is 100%.  Further, through calculus it has been determined that 95% of the area of the chi-

square distribution with 1 df falls to the left of, and thus less than, a chi-square value of 3.84.  It then 

follows, of course, that 5% of the area falls to the right of, or above, a chi-square value of 3.84.  This 

latter area is given two names, the critical region and the area of rejection.  In other words, if the 

null hypothesis is correct, then only 5% of the time will we obtain a value of chi-square by chance 

that is greater than 3.84 and thus so extreme that it falls in the critical region or area of rejection.  

The remaining 95% of the time we will obtain a value less than 3.84.  Put differently, if we set alpha 

equal to .05, as we agreed to do previously, then we will reject the null hypothesis if the obtained 

chi-square value with 1 df is greater than 3.84, for 5% of the area of the distribution is above this 

point.  Thus, 3.84 is an example of the concept of a critical value.  By using this critical value we can 

be confident that when we reject the null hypothesis and accept the alternative hypothesis the 

likelihood of having made a Type I error is only 5%.  In other words, in only 5% of the cases will we 

reject the null hypothesis when it is in fact correct.  (This critical value of 3.84 is found in Appendix 

K, Table 2 by going across the row for 1 df to the first entry in the column for α = .05.) 

Critical region – Area of the distribution equal to the alpha level.  It is also called the Area of  

 Rejection. 

Area of rejection – Area of the distribution equal to the alpha level.  It is also called the  

 Critical Region. 

Critical value – A value for a statistical test which is used to determine whether to reject or  

 retain the null hypothesis. 

 

Now, going back to our example of 10 coin tosses with an outcome of 7 heads and 3 tails, 

you will recall that we obtained a chi-square value of 1.6.  This value is less than the critical value 

that we have determined for 1 df, which is 3.84.  Therefore, the outcome of 10 tosses with 7 heads 

and 3 tails does not deviate enough from the 5 heads and 5 tails that was expected, if the coin was 

not biased (was fair), to justify the rejection of the null hypothesis.  Or, put another way, we do not 

conclude that the professor is using a biased coin.  Instead, we accept that the outcome is simply the 

result of chance and thus our conclusion is to retain the null hypothesis. 

It is important to recognize that we have not proven that the coin is fair (not biased).  There 

is just insufficient evidence to conclude that it is biased.  And we also recognize the we could have 

made a Type II error.  We will discuss this more shortly. 

Another Example 
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In order to be certain that you understand the material that has just been covered we will 

now do another example.  In this case, let us assume that the outcome of the 10 coin tosses had 

been 9 heads and 1 tail.  This outcome is illustrated with a bar graph in Figure 7.4.   

Figure 7.4 Example 2:  Bar Graph of Coin Tosses 

 

 

What would you now conclude if alpha is set equal to .05?  Each of the steps is shown below, 

and the calculations are summarized in Table 7.3.   

Step 1:  We start by stating the null and alternative hypotheses, and we specify our alpha 

level.  As always, the null hypothesis is signified by H0 and the alternative hypothesis by H1.  For this 

example with 10 tosses of the coin: 

H0 – The coin is not biased (it is fair); any observed deviation from the expected 50:50  

 outcome is due to chance.   

H1 – The coin is biased; any observed deviation from the expected 50:50 outcome is not due  

 to chance.   

We set alpha to .05. 

 

 Recall that the equation for the goodness-of-fit chi-square is 

     2 = 
(fo − fe)2

fe
 

You proceed as in the previous example.   

Step 2:  You determine the expected frequencies.  With 10 tosses of a fair coin the expected 

frequencies are 5 heads and 5 tails. 

Step 3:  Next you find the difference between an observed frequency and the corresponding 

expected frequency, (fo – fe).  The difference for the first category, heads, is 9 – 5 = 4.   

Step 4:  Then square the difference that you just obtained, (fo – fe)2.   This gives us 42 = 16.   

Step 5:  The value from Step 4 is then divided by its expected frequency.  This gives us (fo – 

fe)2 / fe = 16 / 5 = 3.2.   

Step 6:  You continue by repeating Steps 1 through 4 for the second category, tails.  This 

obtained value is also 3.2.   
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As a check on your work, you then find that the sum of the differences between the 

observed and expected frequencies, in this case +4 and –4, is 0.   

Step 7:  Finally, to obtain your chi square, sum the two values you have calculated, 3.2 + 3.2 

= 6.4.   

Step 8:  You are now ready to make your decision.  Once again, we have 1 df, for there are 

two categories and df = c – 1.  We now compare our obtained outcome of 6.4 with the critical value 

of chi-square with 1 df, which is 3.84 (Appendix K, Table 2).  As our outcome is greater than the 

critical value (falls to the right of the critical value in Figure 7.3) and thus represents a highly 

unlikely outcome, we reject the null hypothesis and accept the alternative hypothesis.  In other 

words, our outcome has fallen in the area of rejection, so we have sufficient grounds to conclude 

that it is unlikely that the coin is fair (not biased).   

Table 7.3 Example 2:  Steps in Calculating a Goodness-of-fit Chi-square 

 

Values  fo fe (fo – fe)   (fo – fe)2  
(fo − fe)2

fe
  

 
  
 Heads  9 5     4  16  3.2 
  
 Tails  1 5   –4  16  3.2 

      = 0              = 6.4 

 
 
  

Congratulations again!  You have calculated another goodness-of-fit chi-square test and 

have come to another decision concerning a relationship; but be careful interpreting the outcome.  

You can now be reasonably confident that the coin is biased, but you have not proven that it is 

biased.  Remember that it is possible that you have made a Type I error and have rejected the null 

hypothesis when in fact it is true.  We indicate this by stating that we have found a statistically 

significant outcome.  We do not say that we are certain of our decision. 

The term significant has a very precise meaning in statistics.  It simply indicates that an 

outcome was unlikely to have occurred by chance.  In the example that we have just completed we 

know how unlikely, for alpha was set at .05.  Thus, the probability is only 1 in 20 that, by chance 

alone, we could have obtained results this divergent from what was expected.  We conclude, 

therefore, that this outcome is so unlikely to have been due solely to chance that we reject the null 

hypothesis that the coin is not biased (is fair) and, instead, accept the alternative hypothesis that 

the coin is biased.  This is all that statistical significance indicates.  

Significant – In statistics, the conclusion that an outcome is unlikely to have occurred by  

 chance.  
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Thus, statistical significance refers to a probability.  It is dealing solely with the likelihood of 

an outcome.  By rejecting the null hypothesis we are indicating that the discrepancy between the 

frequencies that were observed in our sample and what would have been expected if the null 

hypothesis were true is unlikely to have happened by chance.  Instead, we conclude that this 

discrepancy is likely to be indicative of a consistent quality of the coin and thus would be expected 

to reoccur in the future.  Put another way, we have used the data from a sample (our 10 tosses of 

the coin) to infer a characteristic of the population (consists of all possible tosses of the coin).  Thus 

this is an example of inferential statistics.  And, our conclusion is that the coin is biased.   

It is important to note that how we are now using the word significance is not what the 

term significance implies in our everyday conversations.  When we use the term significant in a 

conversation we are generally interested in how meaningful or important an outcome is, not how 

likely or unlikely it is.  No statistical procedure can completely capture how meaningful or 

important an outcome is, for these judgments are subjective and relative.  However, later in this 

text we will see that there are statistical procedures that will assist you in coming to a conclusion 

concerning these qualities.   

It is also important to remember that the statistical procedures that you are learning in this 

course do not ensure that you will always come to the correct conclusion.  What they do instead is 

provide you with an accepted system for making decisions, and with this system you will know the 

probability of making a Type I error.  For instance, in our second example we rejected the null 

hypothesis.  Since we had specified that alpha was equal to .05, there is only a 5% chance that we 

made a Type I error and rejected the null hypothesis when in fact it was correct.   

Progress Check 

 
Assume you toss a coin 10 times and obtain 8 heads and 2 tails.  

1. What would the value of the chi-square be? 

2. How many degrees of freedom are there? 

3. Would you conclude the coin is biased if alpha is set at .05? 

 
Answers:  1.  3.6  2.  One  3.  No 
 

A Final Example Of The Goodness-of-fit Chi-Square 

 
Our examples to this point have utilized one degree of freedom.  However, as was noted 

previously, there are actually a series of chi-square distributions, each associated with its unique 

degree of freedom.   Returning to Figure 7.2 you will note that the chi-square distributions are all 

positively skewed.  However, the specific shape depends upon the number of degrees of freedom.     
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This turns out to be critically important.  For instance, Figure 7.5 indicates that with one 

degree of freedom 5% of the area of the distribution is located to the right of a chi-square value of 

3.84.  Thus, in only 5% of the cases would you expect to obtain a chi-square value greater than 3.84 

with one degree of freedom, if the null hypothesis is in fact true.  Put another way, the odds of 

obtaining a chi-square value greater than 3.84 with one degree of freedom is one chance in twenty 

if the null hypothesis is in fact true.  This also means that in 95% of the cases we would expect to 

obtain a chi-square value of less than 3.84 with one degree of freedom if the null hypothesis is true.  

This is indicated by the area to the left of the value of 3.84.  The logic is exactly the same for other 

degrees of freedom, but with the chi-square the critical value associated with the 5% area becomes 

larger as the degrees of freedom increase.  This is evident from an inspection of Figure 7.5.  It is also 

evident from an inspection of the chi-square table (Appendix K, Table 2).  Proceeding down the 

column headed by the value of α = .05, for 1 df the critical value is 3.84; for 5 df it is 11.07; and for 

10 df it is 18.31. 

Figure 7.5  Comparing Areas of Rejection for 1, 5 and 10 Degrees of Freedom 

 

 

 

 

 

To illustrate, if we return to our initial example where we determined that with 10 tosses 

there were 7 heads but only 3 tails, you will remember that we calculated a chi-square value of 

1.60.  By turning to the chi-square table and using the row labeled 1 df and the column labeled .05, 

we find the critical value of 3.84.  Our outcome of 1.60 is less than 3.84.  By referring to Figure 7.3 

or 7.5, we can see that our outcome is to the left of the value of 3.84 and does not fall in the region 

of rejection.  Thus, it represents an outcome that is expected to occur more frequently than 5% of 

the time.  In other words, we do not have sufficient evidence to warrant the rejection of the null 

hypothesis.  Accordingly, based upon these data we tentatively accepted that the coin is fair and 

concluded that we have just had a string of bad luck.  

You are now ready to deal with problems that have larger degrees of freedom.  For instance, 

let us assume that you want to know if a die is fair.  A die has six sides.  Your null hypothesis is that 
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for the population consisting of all tosses of the die there is no difference in the likelihood of these 

six outcomes.  Thus, the probability is 1:6 for each outcome.  The alternative hypothesis is that the 

probability is not 1:6 for each outcome.  In other words, the alternative hypothesis is that the die is 

biased.   

Step 1:  State the null and alternative hypotheses, and specify the alpha level: 

H0 – The die is not biased (it is fair); any observed deviation from the expected 1:6  

 probability for each outcome is due to chance.   

H1 – The die is biased; any observed deviation from the expected 1:6 probability for  

 each outcome is not due to chance.   

Alpha is set to .05. 

You then toss the die 100 times and obtain the observed frequencies in Table 7.4 (They are 

illustrated with a bar graph in Figure 7.6).  In order to calculate the goodness-of-fit chi-square we 

use the same steps as previously.   

Figure 7.6 Example 3:  Bar Graph of Tosses of a Die 

 

Step 2:  Calculate the expected frequencies.  Based upon the null hypothesis we simply 

divide 100, the total number of tosses, by the number of possible outcomes.  This would be 100 / 6 

= 16.67.  Of course, 16.67 is not a frequency that could actually happen, but for the purposes of 

calculating the chi-square it is the expected frequency that we would use.   

Step 3:  Find the difference between an observed frequency and the corresponding expected 

frequency.   

Step 4:  Square the difference that was just obtained.   

Step 5:  Divide this squared difference by its expected frequency.   

Step 6:  Repeat Steps 1 through 5 for each of the additional outcomes of the die.   

Step 7:  Add up the six values that were just obtained.  The result is 0.67 + 0.43 + 0.17 + 

0.11 + 1.31 + 1.12 = 3.81.  The results of these steps are illustrated in Table 7.4.   

Table 7.4 Example 3:  Steps in Calculating a Goodness-of-fit Chi-square 

Values  fo               fe  (fo – fe)   (fo – fe)2  
(fo − fe)2

fe
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 1  20      16.67     3.33  11.09    .67  

 2  14      16.67   –2.67    7.13    .43 

 3  15      16.67   –1.67    2.79    .17 

 4  18      16.67     1.33    1.77    .11 

 5  12      16.67   –4.67  21.81  1.31 

 6  21      16.67     4.33  18.75  1.12 

         = 0              = 3.81 

 
Step 8:  Make your decision.  Our degrees of freedom are equal to the number of categories 

minus one (df = c – 1).  In this case, df would equal 6 – 1 = 5.  Referring to the chi-square table 

(Appendix K, Table 2) and looking across the row for 5 df and down the column for α = .05 (this is 

the criterion we set for rejecting the null hypothesis), we find that the critical value is 11.07.  The 

critical value indicates that, by chance, the outcome of a chi-square test with 5 df will be greater 

than 11.07 only 5% of the time.  Thus, in order to reject the null hypothesis with α = .05 we would 

need to obtain a chi-square value greater than 11.07.  Our chi-square value is 3.81, which is less 

than 11.07, and thus we retain the null hypothesis that the die is not biased (is fair).   

 If the outcome had been large enough to warrant rejecting the null, we would then examine 

the actual frequencies that were obtained to determine in what manner the die was biased.  

 

Reporting The Results Of The Goodness-Of-Fit Chi-Square 

 
 If you were to report the results of the chi-square test that was just completed it would be 

important for the reader to be given sufficient information to fully understand the outcome.  While 

there are a number of conventions in use, fortunately they are quite similar.  In this text we will 

utilize the style of the American Psychological Association (APA).  Until recently, you would have 

stated something to the effect of “the results of the testing of the die did not provide sufficient 

evidence to reject the null hypothesis that the die was not biased (2 (5, N = 100) = 3.81, p > .05)”.  

The symbol for a chi-square is 2.  The degrees of freedom are indicated by the value 5.  The n is the 

total number of tosses, in this case 100.  The value of the obtained chi-square is 3.81 and the p > .05 

indicates that the probability of this or a more extreme outcome is greater than the alpha level of 

.05 or 5%.  Be careful.  Our obtained chi-square value was less than the critical value listed in the 

chi-square table.  Thus the probability of our, or a more extreme, outcome is greater than our alpha, 

which was set equal to .05.  Our decision is, therefore, to retain the null hypothesis that the die is 

fair.   

Purpose And Limitations Of Using The Goodness-of-Fit Chi-Square Test 



168 
 

 
1. Uses sample data to make an inference about a population.  The goodness-of-fit chi-square 

is an inferential statistical procedure.  The proportions obtained from a sample are being 

used to test an hypothesis about the proportions expected in a population.  Stated 

differently, the goodness-of-fit chi-square is testing whether the observed frequencies differ 

statistically from the frequencies that would be expected if the null hypothesis is correct. 

2. Overall test of significance.  The chi-square test indicates whether a significant difference in 

the relative frequencies exists.  In designs with more than 1 df a goodness-of-fit chi-square 

test with a statistically significant outcome does not indicate where the difference(s) is 

(are).  Generally, inspection of the observed frequencies is all that is needed to indicate 

where the difference(s) is (are) located. 

3. No measure of effect size.  The chi-square is a test of significance.  It indicates whether or 

not the obtained frequencies are likely to have occurred by chance if the null hypothesis is 

correct.  With the goodness-of-fit chi-square test, no measure of effect size is commonly 

calculated.  This concept will be explained later in the book. 

Assumptions Of The Goodness-of-Fit Chi-Square Test 

 
1. Nominal data.  The data are in the form of frequencies or can be converted to frequencies. 

2. Observations are independent.  In other words, a subject or event is only counted once, and 

is not matched with or affected by another subject or event in the study. 

3. Expected frequencies cannot be too small.  For the goodness-of-fit chi-square, the minimum 

acceptable size of any expected frequency is 5.  If any expected frequency is less than 5 then 

either an alternative statistical procedure should be utilized (refer to a more advanced 

statistical text) or additional data would need to be collected. 

Conclusion 
 
 The goodness-of-fit chi-square is used when you have nominal data and one variable.  More 

specifically, this procedure is used when you want to determine whether the observed frequencies 

obtained from a sample differ significantly from the frequencies that would be expected if the null 

hypothesis is true.  As the chi-square test is using nominal data, or data that have been converted 

into nominal data, it is a nonparametric procedure.  No assumptions are being made about the 

shape of a population distribution or the values of any population parameter, such as the mean or 

variability.  In fact, as you know, neither a mean nor a measure of variability is calculated with 

nominal data.    
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As we have seen, the procedure to calculate the goodness-of-fit chi-square is 

straightforward, though there are a number of steps.  It is important, however, to remember that 

the critical value necessary to decide whether to reject the null hypothesis varies depending upon 

the degrees of freedom of the study.  As the course progresses you will see that this characteristic is 

shared with most other statistical procedures. 

Glossary Of Terms 
 
Area of rejection – Area of the distribution equal to the alpha level.  It is also called the Critical  

 Region. 

Critical region – Area of the distribution equal to the alpha level.  It is also called the Area of  

 Rejection. 

Critical value – A value for a statistical test which is used to determine whether to reject or retain  

 the null hypothesis. 

Degrees of freedom (df) – The number of outcomes out of the total that are free to vary.   

Expected frequencies – With nominal data, the outcome that would be expected if the null  

 hypothesis were true. 

Goodness-of-fit chi-square test – An inferential procedure that tests whether observed frequencies  

 differ from expected frequencies.   

Independent – Two events, samples or variables are independent if knowing the outcome of one  

 does not enhance our prediction of the other. 

Observed frequencies – With nominal data, the actual data that were collected. 

Nonparametric procedure – Statistical procedure that does not make assumptions about the  

 population’s parameters and does not assume that the population is normally distributed. 

Parametric procedure – Statistical procedure that does make assumptions about the population’s  

 parameters and does assume that the population is normally  distributed. 

Significant – In statistics, the conclusion that an outcome is unlikely to have occurred by chance.  

 

Questions – Chapter 7 
(Answers are provided in Appendix J.) 

 
1. Rejecting the null hypothesis when in fact it is true is a _____. 

 a.       Type I error  
 b.       Type II error 
 c.       Type III error 
 d.       Type IV error 
  

2. The goodness-of-fit chi-square test deals with _____ data. 
 a. Nominal  
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 b. Ordinal 
 c. Interval 
 d. Ratio 
 

3. The data in a goodness-of-fit chi-square test consist of _____. 
a. Observed frequencies  
b. Expected frequencies 
c. Degrees of freedom 
d. None of the above 

 
4. In the statistical statement 2 (5, n = 100) = 3.81, p > .05, the degrees of freedom are equal 

to _____. 
a.     5  
b.     99 
c.     100 
d.     3.81 

 
5. With a goodness-of-fit chi-square test, the degrees of freedom are equal to the _____. 

a.     number of categories 
b.     number of subjects 
c.     number of categories minus one  
d.     highest frequency minus two 

 
6. If it is reported that a goodness-of-fit chi-square test has a p > .05.  This indicates that the 

results are _____. 
a. not possible 
b. not statistically significant  
c. statistically significant 
d. not of interest 

 
7. Practically speaking, degrees of freedom are important because they are _____. 

a.     used in calculating the chi-square value 
b.     used in collecting the chi-square data 
c.     used in interpreting the chi-square value  
d.     none of the above 

 
8. The critical region is _____. 

a. equal to the alpha level 
b. equal to the size of beta 
c. the same as the region of rejection 
d. both ‘a’ and ‘c’  

 
9. If  knowing that the Buffalo Bills won a football game last weekend does not aid in 

predicting whether they will win next weekend, statisticians would say the two events are     
_____. 
a. Free 
b. Independent  
c. Expected 
d. Critical 

 
For questions 10 to 16 use the following information: suppose you toss a coin 100 times and 
observe 40 heads and 60 tails. 
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10. What is the null hypothesis? 
a. The coin is not biased. 
b. The coin is biased 
c. The observed 40:60 frequencies are not statistically different from the expected  

50:50 ratio. 
d. The observed 40:60 frequencies are statistically different from the expected  

50:50 ratio. 
e. Both a and c are correct.  

 
11. What is the calculated value of chi-square? 

a. 1  
b. 2 
c. 3 
d. 4  
e. 5 

 
12. How many degrees of freedom are there? 

 a. 1  
 b. 2 
 c. 3 
 d. 4 
 e. 5 
 

13. Assuming alpha is equal to .05, what is the critical value? 
 a. 2.68 
 b. 3.84  
 c. 4.00 
 d. 4.32 
 e. 6.64 
 

14. What is your decision? 
 a. Accept the null hypothesis. 
 b. Reject the null hypothesis.  
 c. Neither accept nor reject the null hypothesis as there is insufficient data to  
  come to a decision. 
 

15. What is the probability of having made a Type I error? 
 a. 50% 
 b. 10% 
 c. 5%  
 d. 1% 
 e. The probability of Type I error is not known. 
 

16. What is the probability of having made a Type II error? 
 a. 50% 
 b. 10% 
 c. 5%  
 d. 1% 
 e. The probability of Type II error is not known.  
 
 
For questions 17 – 23 use the following information: suppose we toss a die 144 times and we 
observe that the number 1 occurs 36 times.  (Hint – while a die has 6 sides, we have now reduced 
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the data to just 2 categories, and we also now know that the other category, consisting of outcomes 
2 through 6, must have occurred 108 times.) 
 

17. What is the null hypothesis? 
 a. The die is not biased. 
 b. The die is biased 
 c. The observed 36 out of 144 total tosses is not statistically different from the 

 expected 1:6 ratio. 
d.  The observed 36 out of 144 total tosses is statistically different from the  

expected 1:6 ratio. 
 e. Both a and c are correct.  
 

18. What is the calculated value of chi-square? 
a. 1  
b. 4.2 
c. 5.7 
d. 7.2  
e. 9.1 

 
19. How many degrees of freedom are there? 

 a. 1  
 b. 2 
 c. 3 
 d. 4 
 e. 5 
 

20. Assuming alpha is equal to .01, what is the critical value? 
 a. 2.68 
 b. 3.84  
 c. 4.00 
 d. 4.32 
 e. 6.64  
 

21. What is your decision? 
 a. Accept the null hypothesis. 
 b. Reject the null hypothesis.  
 c. Neither accept nor reject the null hypothesis as there is insufficient data to  
  come to a decision. 
 

22. What is the probability of having made a Type I error? 
 a. 50% 
 b. 10% 
 c. 5%  
 d. 1%  
 e. The probability of Type I error is not known. 
 

23. What is the probability of having made a Type II error? 
 a. 50% 
 b. 10% 
 c. 5%  
 d. 1% 
 e. The probability of Type II error is not known.  
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Use the following information in questions 24 to 30.  Riniolo, Koledin, Drakulic and Payne (2003) 
noted that 15 of 20 eyewitnesses to the sinking of the Titanic reported that the ship was breaking 
apart before it actually sank.   
 

24. What is the null hypothesis? 
a. The observed frequencies are not statistically different from the expected 50:50 

ratio.  
b. The observed frequencies are statistically different from the expected 50:50 ratio.  

 
25. What is the calculated value of goodness-of-fit chi-square? 

a. 1  
b. 3.2 
c. 5  
d. 7.2  

 
26. How many degrees of freedom are there? 

 a. 1  
 b. 2 
 c. 3 
 d. 4 
 e. 5 
 

27. Assuming alpha is equal to .05, what is the critical value? 
 a. 2.68 
 b. 3.84  
 c. 4.00 
 d. 4.32 
 e. 6.64  
 

28. What is your decision? 
 a. Accept the null hypothesis. 
 b. Reject the null hypothesis.  
 c. Neither accept nor reject the null hypothesis as there is insufficient data to  
  come to a decision. 
 

29. What is the probability of having made a Type I error? 
 a. 50% 
 b. 10% 
 c. 5%  
 d. 1%  
 e. The probability of Type I error is not known. 
 

30. What is the probability of having made a Type II error? 
 a. 50% 
 b. 10% 
 c. 5%  
 d. 1% 
 e. The probability of Type II error is not known.  
 
 

The text does not describe how to use of SPSS with the goodness-of-fit chi-square test as this test is 

not as commonly encountered as other procedures that we will be reviewing. 
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Chapter 8   
Finding Differences with Nominal Data – II:   

The Chi-square Test of Independence   
 

 
“Science is not a collection of facts but a way of interrogating the world.” 

Sharon Begley 

Introduction 
 The chi-square statistic is not limited to analyzing frequencies obtained with a single 

variable, as was the case in the previous chapter.  Another form of the chi-square statistic, the chi-

square test of independence, is used when we have a design that involves nominal data and two 

variables.  This test is underlined in Table 8.1.   

Chi-square test of independence – An inferential procedure for analyzing whether  

  the pattern of observed frequencies differs among the groups. 

 
Table 8.1 Overview Table of Inferential Statistical Procedures For Finding if there is a 

Difference 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   
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The Italicized procedure is reviewed in Appendix A 

 

Analyzing A Difference Design With Two Variables, 
Each With At Least Two Outcomes 

 
In Chapter 7 we noted that in the field of statistics ‘independent’ has a very specific meaning 

for it signifies that two events, samples or variables are not related in a predicable fashion.  The 

term dependent is used if there is a predictable relationship.  Thus, if a coin is fair, then the outcome 

of the tosses will be independent.  In other words, whether or not a head or tail was just tossed 

does not affect the outcome of the next flip.  And if a coin is fair, then the likelihood of observing a 

head or tail on any one toss is 50%, regardless of what the outcomes of the previous tosses were.  

Unfortunately, many individuals do not understand the concept of statistical independence and 

instead assume that if tails has come up a number of times in a row then it is now more likely that 

the next toss will be a head.  This is known as the gambler’s fallacy; it has undoubtedly been 

responsible for the loss of a great deal of money. 

Dependent – Two events, samples or variables are dependent if knowing the outcome of  

 one enhances our prediction of the other. 

Gambler’s fallacy – The incorrect assumption that if an event has not occurred recently,  

 then the probability of it occurring in the future increases. 

 

 In the scientific literature there are numerous reports of studies with nominal data using 

two variables.  For example, Sandson, Bachna and Morin (2000) examined the relationship between 

Attention Deficit Hyperactivity Disorder (ADHD) and omission errors in vision.  More specifically 

they examined on which side, the left or right, a person is less likely to see a stimulus.  Neglecting to 

see a stimulus is known as an omission error.   

 The steps in conducting a chi-square test of independence closely parallel the steps that 

were used in Chapter 7 with the goodness-of-fit chi-square test. 

 Step 1:  State the null and alternative hypotheses, and specify our alpha level:  

H0 – There is no difference in the distribution of omission errors between the  

 populations of subjects diagnosed with or without ADHD. 

H1 – There is a difference in the distribution of omission errors between the  

 populations of subjects diagnosed with or without ADHD. 

As usual, we set alpha equal to .05. 

In this study, each subject was assigned to either the ADHD or the no ADHD condition 

depending upon whether they had previously been diagnosed with ADHD.  Note that the 



176 
 

assignment for a particular subject is independent of the assignment of any other subject.  The 

likelihood of each subject making omission errors was then assessed and, as no subject’s outcome 

affects any others, these data are also independent.   

It is important to understand that each of the 87 subjects in the study provided only a single 

datum (this is the singular of data, which is plural).  The data, therefore, consist of joint frequencies.  

For instance, 36 subjects who had been diagnosed with ADHD exhibited more omissions on the 

right side, and 22 had more omission errors on the left side.   

The data for this study are presented in Table 8.2. 

Table 8.2 Example 1:  Summary of the Data  

Was the Subject Diagnosed with ADHD? 

      Yes  No   

    Right  36  25 

 Side with More Omission Errors   

    Left  22    4   

   

As we have nominal data and there are two variables (ADHD diagnosis and omission side), 

each with two outcomes, Table 8.1 indicates that a chi-square test of independence should be 

employed.  With two possible outcomes for each variable there are two columns and two rows of 

data in Table 8.2 and, consequently, this is called a 2 X 2 chi-square test of independence.   

The name of this chi-square test may come as a surprise.  After all, we already know that 

each subject’s data are independent.  Why, then, is the test called a test for independence?  What 

independence is there to test for?   

The chi-square test of independence examines whether the subjects diagnosed with ADHD 

show a different pattern of omission errors than do subjects without the diagnosis.  More 

specifically, it is testing whether the relative frequencies of right and left omission errors differ if 

you were, or were not, diagnosed with ADHD.  If diagnosis is not related to side of mission errors 

then the relative frequencies of the two groups should be similar.  In that case, the outcome of the 

chi-square test will not be statistically significant and we would say the two variables are 

independent.  However, if the relative frequencies differ enough, the outcome of the chi-square test 

will be statistically significant and we would say that the two variables are not independent.  As was 

the case in Chapter 7, we cannot leave this decision to individual opinion.  Instead, we employ an 

agreed-upon statistical procedure in order to come to a decision concerning whether the data 

indicate that a relationship exists.   

The equation for the chi-square test of independence is the same as the equation we used in 

the previous chapter for the goodness-of-fit chi-square.  And, as before, we compare the outcome 

we calculate with the critical value listed in the chi-square table (Appendix K, Table 2).  With the 
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chi-square test of independence there are a few more calculations involved, however none are 

challenging.   

Step 2:  As before, we begin our calculations by determining the expected frequencies.  In 

the goodness-of-fit chi-square which was discussed in Chapter 7, the expected frequencies were a 

direct consequence of how the null hypothesis was stated.  For instance, if the null hypothesis was 

that a coin was not biased (it was fair), then it followed that heads and tails would be expected to 

occur equally in a series of tosses.  With the chi-square test of independence the situation is not 

quite as straightforward.  Specifically, each expected frequency is calculated using the following 

equation: 

Expected frequency of a cell = 
(Frequency of its row) (Frequency of its column)

Total n
  

 

The first issue is to understand the concept of a ‘cell’.  In a 2 X 2 chi-square the data consist 

of four frequencies.  Thus, the 2 X 2 chi-square can be thought of as having four places, or cells, for 

the data (Table 8.2).  The chi-square test will determine whether the observed pattern of 

frequencies in the four cells differ significantly from what would be expected by chance.  As is clear 

from the above equation, before calculating the expected frequency for a cell it is first necessary to 

calculate the row totals, the column totals, and the total number of subjects.  These are called 

marginal totals.  Thus, the marginal total for the first row of our example is 36 + 25 which equals 

61.  Similarly, the marginal total for the first column is 36 + 22 which equals 58.  For our 2 X 2 

study all of the marginal totals, including the total number of subjects, are shown in Table 8.3.   

Table 8.3  Example 1:  Original Data with Marginal Totals 

Diagnosed with ADHD 

      Yes  No  Marginal Total  

    Right  36  25  61 

 Side with More Omission Errors   

    Left  22    4  26 

      _______________________________________ 

   Marginal Total  58  29  87  

 

We now must calculate the expected frequency for each cell.  The order in which these 

expected frequencies are calculated is irrelevant.  However, some logical pattern should be followed 

so that no cell is omitted or counted twice.  We will begin with the upper left cell.  This cell has a 

row total of 61 and a column total of 58.  The total number of subjects in the study is 87.  Therefore, 

using the above equation, the expected frequency for this cell is [(61)(58)] / 87.  This equals 40.67.   

We now calculate the expected frequency of the next cell in the first row.  For this cell we would 
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have a row total of 61 and a column total of 29.   We substitute these values into the equation given 

above and divide by the total number of subjects in the study to obtain the expected frequency of 

20.33.   We then proceed with the two cells of the second row.  The results are shown in Table 8.4. 

Table 8.4 Example 1:  Expected Frequencies 

Diagnosed with ADHD 

      Yes  No    

    Right  40.67  20.33 

 Side with More Omission Errors   

    Left  17.33    8.67   

 

Steps 3 - 7:  We could then proceed by constructing a table that incorporates the steps 

needed to calculate a chi-square test of independence (Table 8.5).  This table is identical to the table 

used in calculating the value of the goodness-of-fit chi-square and utilizes steps 3 - 7 described in 

Chapter 7. 

Table 8.5 Example 1:  Steps in Calculating a Chi-square Test of Independence 
 

Cells      fo             fe  (fo – fe)   (fo – fe)2  
(𝐟𝐨 − 𝐟𝐞)𝟐

𝐟𝐞
  

  
 1  36      40.67   –4.67  21.81  0.54  

 2  25      20.33     4.67  21.81  1.07 

 3  22      17.33     4.67  21.81  1.26 

 4    4        8.67  –4.67  21.81  2.52 

       = 0              = 5.39 

   

Alternatively, you may find it is more efficient to directly calculate the chi-square:   

2 =  
(Frequency observed – Frequency expected)2

Frequency expected
    

This can be written as:   

2 = 
(fo − fe)2

fe
  

 

For our example:  

2 = 
(36 – 40.67)2

40.67
 + 

(25 – 20.33)2

20.33
 + 

(22 – 17.33)2

17.33
 + 

(4 – 8.67)2

8.67
   

     = 0.54 + 1.07 + 1.26 + 2.52  

     = 5.39 

 The outcome is the same with either approach. 
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Step 8:  As with the goodness-of-fit chi-square, we must now consult the chi-square table 

(Appendix K, Table 2) in order to compare our outcome with the critical value.  In order to do so we 

must first determine our degrees of freedom.  For the chi-square test of independence,  

Degrees of freedom (df) = (Number of rows – 1)(Number of columns – 1) 

For our example, since we have 2 rows and 2 columns, we have df = (2 – 1)(2 – 1) which 

equals  1 X 1 or 1.  (Having 1 df for a 2 X 2 chi-square is logical.  If the marginal totals are known, 

then only one cell frequency is free to vary.  Once any cell frequency is chosen, the other three cell 

frequencies are fixed.)  With alpha equal to .05, the critical value found in the chi-square table 

(Table 2 in Appendix K) is 3.84.  As our obtained chi-square, 5.39, is larger than the critical value, 

we reject the null hypothesis that the two samples came from populations with the same 

proportions for side of omission, and accept the alternative hypothesis that the samples came from 

populations with proportions that differed for side of omission.  Specifically, inspection of Table 8.2 

indicates that the pattern of frequencies for individuals with and without the ADHD diagnosis 

differed – the individuals without the ADHD diagnosis were less likely to omit stimuli presented to 

the left side than were those individuals with the ADHD diagnosis. 

  It may be helpful to review what we have just accomplished.  We began with two samples 

and utilized a chi-square statistic to come to a decision concerning the populations from which they 

were drawn.  The procedure we used has several advantages over simply looking at the data and 

jumping to a conclusion.  First, the steps are agreed upon and thus others will proceed as we did 

and will come to the same decision.  Personal opinion is not the basis for our conclusion.  Second, by 

setting alpha at a particular value, in this case .05, we have defined the magnitude of our Type I 

error rate.  Remember, there is no guarantee that we made the correct decision when we rejected 

the null hypothesis.  It is possible that, by chance, we obtained two very unlikely samples.  At least 

we know, though, that the probability of having rejected the null hypothesis when in fact it was true 

is only .05 or 5% since this was the value we chose for our alpha level.   

We would report our finding in a journal article in the same way that we would report a 

goodness-of-fit chi-square, giving the df, the number of subjects, the calculated chi-square value, 

and whether the probability of the outcome is less than or greater than the alpha level.  Based upon 

our calculations we would report 2 (1, N = 87) = 5.39, p < .05.  However, as you will see, with 

SPSS we can obtain a more accurate determination for the chi-square.  And SPSS provides a p-value, 

the probability of our, or a more extreme, outcome occurring by chance assuming the null 

hypothesis is correct.  Thus we would report (2 (1, N = 87) = 5.38, p = .020).  Note that the p-

value of .020 is less than our α of .05, confirming that we would reject the null hypothesis. 

p-value – The probability of an outcome, or a more extreme outcome, occurring by chance  

 assuming the null hypothesis is correct.  To be statistically significant, the p-value  
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 must be less than the alpha level, which is usually .05. 

 

An Important Observation 

 
 The chi-square test of independence has thus far been discussed as a procedure for 

determining whether the distribution or pattern of frequencies observed for each group differ.  

Stated another way, we have been testing whether a difference observed in the pattern of the 

observed frequencies is likely to generalize to the corresponding populations.  It is important to 

note, however, that with nominal data the distinction between studies looking for a difference and 

studies looking for an association is often not as clear as with designs utilizing ordinal, interval or 

ratio data.  Consequently, the chi-square test of independence is also commonly used with studies 

examining whether there is likely to be an association between the variables in the corresponding 

populations (underlined in Table 8.6).  Thus, the chi-square test of independence is also often called 

the chi-square test of association.  For example, it was reported in the Buffalo News that if the 

quarterback of the Buffalo Bills threw two or more interceptions in a game the win-loss ratio was a 

disappointing 1 to 13.  In contrast, in those games in which there were none or only one 

interception, the win-loss ratio improved to 8 to 8.  These data would often be analyzed with a chi-

square test of independence.  And it would be appropriate to say either that there was a difference 

in the pattern of wins and losses, or that there was an association between the number of 

interceptions and the likelihood of losing the game.  (These are two ways of saying the same thing.)  

However, due to the lack of random assignment of subjects or experimental control of an IV, it 

would not be appropriate to say that throwing interceptions caused the team to lose.     

Chi-square test of association – Another name for the chi-square test of independence. 

 

Table 8.6 Overview Table of Procedures For Finding if there is an Association 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
Research 
Question 
 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi ra          Spearman rb   Pearson r 
               Multiple Correlationc 
    
Regression:         Regression   

Multiple Regressionc 

__________________________________________________________________________________________________________________________________________ 
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Italicized items are reviewed in the following appendixes: 

a. Appendix B 
b. Appendix C 

c. Appendix D 
 

A Second Example 

 
Another example may be helpful to be certain that you understand how to calculate a chi-

square test of independence, and to show that with nominal data the same study can be analyzed as 

either focusing upon a difference or an association.  It has been reported that men are generally 

more distressed by the sexual infidelity than the emotional infidelity of their partners, whereas 

women are more distressed by the emotional infidelity than the sexual infidelity of their partners.  

Mathes (2003) re-examined this issue.  His results are summarized in Table 8.7.   

Table 8.7 Example 2:  Summary of the Data for the Second Example 

 
        Women Men   

  More distressed by emotional infidelity 42  12   

  More distressed by sexual infidelity  17  48   

 
 

Each of the steps will be shown below, but it is strongly suggested that you try this example 

on your own and use the text as a check on the accuracy of your work.  At the end of this example 

we will discuss what statistical significance indicates as well as what it does not indicate. 

Step 1:  We begin by stating the null and alternative hypotheses, and we specify our alpha 

level: 

H0 – There is no difference in the distribution of answers for women and men.  (There is no  

 association between the answers of men and women.) 

H1 – There is a difference in the distribution of answers for women and men.  (There is an 

 association between the answers of men and women.) 

As usual, we have set our alpha level to .05.  

Step 2:  The next step is to determine the expected frequencies using the following equation: 

Expected frequency of a cell = 
(Frequency of its row) (Frequency of its column)

Total n
 

 

Before we can calculate the expected frequency for each cell it is first necessary to calculate 

the row totals, the column totals, and the total number of subjects.  For our 2 X 2 study, these 

marginal totals are indicated in Table 8.8.   

Table 8.8 Example 2:  Original Data with Marginal Totals 
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                    Marginal 

        Women Men  Total  

  More distressed by emotional infidelity 42  12  54  

  More distressed by sexual infidelity  17  48  65  

        _________________________________________ 

  Marginal Total     59  60  119 

We now can calculate the expected frequency for each cell, which is given by [(Row total) 

(Column total)] / Total n.  Thus, for the upper left cell the expected frequency would be [(54)(59)] 

/ 119.  This equals 26.77.  The same procedure would be followed to find the remaining three 

expected frequencies.  The result of these calculations is shown in Table 8.9. 

Table 8.9 Example 2:  Expected Frequencies 

        Women Men   

  More distressed by emotional infidelity 26.77  27.23   

  More distressed by sexual infidelity  32.23  32.77   

 

Steps 3 - 7:  We could then proceed by constructing a table summarizing the calculations 

needed to obtain a value for the chi-square test of independence (Table 8.10). 

Table 8.10 Example 2:  Steps in Calculating a Chi-square Test of Independence 

 

Cells      fo              fe  (fo – fe)   (fo – fe)2  
(fo − fe)2

fe
  

  
 1  42      26.77     15.23 231.95  8.66 
  
 2  12      27.23  –15.23  231.95  8.52 
 
 3  17      32.23  –15.23  231.95  7.20 
 
 4  48      32.77    15.23  231.95  7.08 
          = 0             = 31.46 
   

 

 Alternatively, we could determine the value of the chi-square by calculating [(Frequency 

observed – Frequency expected)2 / Frequency expected] directly for each of the four cells, and then 

adding the results together: 

2 = 
(fo − fe)2

fe
  

     = 
(42 – 26.77)2

26.77
 + 

(12 – 27.23)2

27.23
 + 

(17 – 32.23)2

32.23
 + 

(48 – 32.77)2

32.77
   

      = 8.66 + 8.52 + 7.20 + 7.08 

     = 31.46 
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The outcome is the same using either method. 

Step 8:  We make our decision.  To do so we must find our degrees of freedom.  For a 2 X 2 

chi-square the degrees of freedom would equal (2 – 1)(2 – 1), or 1 X 1 = 1.  Referring to the chi-

square table (Table 2 in Appendix K) we find that the critical value for 1 df with alpha set at .05 is 

3.84.  As our obtained chi-square of 31.46 is greater than this critical value we reject the null and 

accept the alternative hypothesis.  In fact, a chi-square of 31.46 has a likelihood of happening, by 

chance, of less than .001, or 1 chance in 1000.  We recognize, nevertheless, that we may have made 

a Type I error, and thus have not proven that there is a difference in the patterns of the proportions 

between the two populations.   

Researchers would indicate that the calculated chi-square was substantially greater than 

the critical value of 3.84 by showing that the probability of the outcome was considerably less than 

.05.  In a journal, the outcome would be reported as 2 = (1, N = 119) = 31.46, p < .001.  As you will 

see shortly, use of a computer package such as SPSS permits a more accurate report. 

 We have just completed our second chi-square test of independence.  Hopefully you agree 

that there is nothing particularly challenging about analyzing data with this statistical test.  It is, of 

course, important to proceed through each step in a careful manner, but no step is mathematically 

or conceptually difficult.    

Progress Check 

 
1. With the goodness-of-fit chi-square the expected frequencies are determined from the 

_____, whereas with a chi-square test of independence they must be _____. 

2. With the chi-square test of independence, if the pattern of the frequencies is similar the 

outcome will _____ statistically significant. 

3. The equation for the chi-square test of independence is _____ as the equation for the 

goodness-of-fit chi-square. 

 

Answers:  1. null hypothesis; calculated  2. not be  3. the same 

 

This is a good time to examine in more detail what we have and have not found.  In our just-

completed chi-square test of independence, our calculated outcome was greater than the critical 

value that we obtained from the chi-square table (Table 2 in Appendix K).  Thus we concluded that 

there was a statistically significant difference between the genders (there was an association) for 

what causes distress within a relationship.  This indicates that the pattern of the observed 

frequencies was unlikely to have occurred by chance.  However, it is important to understand how 
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statistical significance in a chi-square is dependent upon two characteristics of the data, (1) the 

distribution of the observed frequencies and (2) the sample size.   

In order to see how sample size affects the chi-square, we will, for illustration purposes, 

simply double each of the numbers in Table 8.7, which also doubles the marginal totals.  This is 

illustrated in Table 8.11.  By doing so, we have not changed the pattern of the observed frequencies; 

we have simply doubled the size of the study.  Please check that the new value of the chi-square 

would be 62.87.  Thus, while the pattern of the frequencies within the chi-square tables (Tables 8.7 

and 8.11) has stayed the same, as has the degrees of freedom, the magnitude of the calculated chi-

square has doubled!  (If you do the calculations, you will notice that there is a very minor 

discrepancy due to rounding error.)  This means that we now have an even less likely outcome than 

was previously found.  Why would this be the case?  Actually, a moment’s thought will confirm that 

this is exactly what one would expect to happen.  The chi-square test of independence indicates the 

likelihood that an outcome would occur by chance if the null hypothesis were true.  Though the 

obtained relative frequencies have remained the same, the new outcome is less likely because it is 

now based upon twice the data.  You would be more confident that you are a good student in a 

course if you have obtained four ‘A’ grades instead of just two.  The chi-square is influenced in the 

same manner – the magnitude of the chi-square increases if it is based upon more data.   

Table 8.11 Illustration of Data Being Doubled   

                  Marginal 

       Women Men  Total  

 More distressed by emotional infidelity 84  24  108  

 More distressed by sexual infidelity  34  96  130  

       ________________________________________ 

 Marginal Total     118  120  238 

 

 If you have followed the logic of the argument then it should be clear that this raises a 

problem for how we interpret a significant statistical outcome.  We have found that the size of the 

calculated chi-square is affected by the size of the set of data in the study.  It follows, then, that 

while a significant outcome could occur from having a large effect with a moderately-sized data set, 

as in our example (Table 8.7), it could also occur by either having a very large effect in a small data 

set, or by having only a small effect in a very large data set.  Therefore, a statistically significant chi-

square based upon a small data set may actually be more impressive than a significant chi-square 

that is based on a much larger sample!  This is true because to have a statistically significant 

outcome with only modest sample sizes indicates that your independent variable must have had a 

large effect, and having a large effect is closer to what we generally mean by the word ‘significance’ 

in our everyday conversations.  Fortunately, there is a statistical measure of effect size for use with 
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a 2 X 2 chi-square test; it is the phi-coefficient (pronounced fie), which is usually just called phi.  Phi 

is the Greek letter .  [The relationship between the chi-square test of independence, the phi-

coefficient, and the phi correlation (phi r) is discussed in Appendix B.]  A measure of effect size is 

usually only calculated after a statistically significant outcome has been found.  Assuming that your 

study had sufficient power (reviewed in Appendix E) in most cases it would not make sense to find 

a measure for how strong an effect is unless you first found evidence that the effect existed.  

Fortunately, the phi-coefficient can easily be obtained once a statistically significant 2 X 2 chi-

square has been calculated, as is evident with the following equation: 

 Phi =  =  
𝟐

𝒏
  

 Effect size – A measure of how ‘strong’ a statistically significant outcome is. 

Phi – Measure of effect size for the 2 X 2 chi square tests of independence. 

  

A phi-coefficient with a value of approximately .50 or larger is considered to be indicative of 

a large effect, a phi-coefficient of approximately .30 is considered to be indicative of a medium-sized 

effect and a value of approximately .10 is indicative of a small effect (Table 8.12).  

Table 8.12 Interpretation of Phi 

     Small Effect       Medium Effect  Large Effect 

   .10        .30    .50 

 

One of the advantages of the phi-coefficient is that, unlike the chi-square, it is not affected by 

the sample size.  You can confirm this by calculating the phi-coefficient based upon the data 

presented in Table 8.7 and calculating it again for the doubling of these data, which is illustrated in 

Table 8.11.  As the following calculations show, the two phi-coefficients are identical: 

  = 
31.46 

119
  

    = .51     

 

  = 
62.87 

238
   

    = .51 

The pattern of the observed frequencies, which are indicative of the effect sizes, remained 

the same within the two tables and thus the phi-coefficients remained the same.  Our calculated phi- 

coefficient of .51 indicates a large-sized effect. 

Reporting The Results Of A 2 X 2 Chi-Square Test Of Independence 

 
Journals commonly require that a measure of effect size be reported along with the results 

of a test of significance.  For the data in Table 8.7 we would state that the null hypothesis was 
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rejected and that the effect size was large (2 = (1, N = 119) = 31.46, p < .001,  = .51).  We would 

then state that women are more distressed by the emotional infidelity of their partners whereas 

men are more distressed by their partners’ sexual infidelity.  With a statistical package such as SPSS 

we are able to more accurately indicate our findings and would write (2 = (1, N = 119) = 31.45, p 

< .001,  = .51).  Note how close our calculations are to what is found with SPSS. 

Review  

 
 Before proceeding with a more complex design using the chi-square test of independence it 

might be good to pause and review what we have covered in Chapters 7 and 8.  In Chapter 7 we 

introduced the chi-square goodness-of-fit test.  This test is utilized when there are frequency 

(nominal) date.  More specifically, it examines whether there is a statistically significant difference 

between the observed and expected frequencies when there is one variable.  Chapter 8 introduced 

the chi-square test of independence.  It is also used with frequency (nominal) data, but now there 

are two variables.  We began our introduction to the chi-square test of independence as a 

continuation of our discussion of the procedures used with difference designs (Table 8.1).  We then 

noted that the distinction between difference and association designs is not as evident with 

nominal data as it is with ordinal, interval or ratio data, and that the chi-square test of 

independence can also be utilized with association designs (Table 8.6).  As a consequence we 

learned that this test is also called the chi-square test of association. 

 There has also been a discussion of degrees of freedom, how to determine a critical value 

from a statistical table and why it is important to also report the effect size, as measured by the phi-

coefficient.  You will see that the same general approach applies to the statistical tests utilized with 

ordinal as well as interval or ratio data.   

A Third Example:  This Time of a Larger Chi-Square 

 
We will now continue our exploration of the chi-square test of independence by turning to a 

more complex example.  Fortunately, much of what you have just learned about analyzing data with 

a 2 X 2 chi-square carries over to situations which require larger chi-squares.  However, as you will 

see there are also important differences (Table 8.13). 

Table 8.13 Comparison of 2 X 2 Chi-Square with Larger Chi-Squares 

 Chi-square  Equation  Effect Size  Post Hoc Test 

 2 X 2   2 = 
(fo − fe)2

fe
  Phi   None 

 Larger than 2 X 2 Same   Cramer’s V  Bonferroni Method 
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We conclude our discussion of the chi-square test of independence with a review of a study 

by Perfect (2003).  He examined factors that might influence the accuracy of witness identification 

of suspects in a police lineup.  Previous work had found, surprisingly, that if an eyewitness 

described a perpetrator they were subsequently less accurate in picking the perpetrator out of a 

subsequent lineup.  The study by Perfect (2003) tested undergraduates to determine how different 

types of intervening activity would affect their subsequent success with a lineup.  For the control 

condition, the intervening activity was simply reading a magazine article for 10 minutes.  One 

experimental condition was engaging in a task that required concentration on the details of a series 

of stimuli.  A second experimental condition was engaging in a task that required concentration on 

more global aspects of stimuli.  Note that in this study each condition was independent; no subject 

was in more than one condition, nor were the subjects in one condition related in any way with the 

subjects in the other two conditions.  Further, the data are nominal; each subject was either 

successful or not successful with the lineup identification.   

Step 1:  State the null and alternative hypotheses, as well as the alpha level: 

H0 – There is no difference between the conditions in the distribution of successful and not  

 successful answers.  (There is no association between type of task and eyewitness  

 success.) 

H1 – There is a difference between the conditions in the distribution of successful and not  

 successful answers.  (There is an association between type of task and eyewitness  

 success.) 

In this study, alpha was set at .05. 

An advantage of all chi-square procedures is that the data can be represented simply.  The 

data for the Perfect (2003) study are shown in Table 8.14. 

Table 8.14 Example 3:  Summary of the Data  

       Experimental Condition 

Control  Detail  Global 

  Successful ID   21  24  13 

  Not successful ID    9    6  17 

 

As there are two rows (each undergraduate was either successful or not successful with 

their identification) and 3 columns (each undergraduate was assigned to one of three conditions), 

this is a 2 X 3 design.  More specifically, as there are nominal data we would utilize a 2 X 3 chi-

square test of independence.   

Step 2:  The expected frequencies are found by using the same equation as for a 2 X 2 chi-

square: 
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Expected frequency of a cell = 
(Frequency of its row) (Frequency of its column)

Total n
 

 

Once again, before calculating the expected frequency for a cell it is first necessary to 

calculate the row totals, the column totals and the total number of subjects.  For our 2 X 3 study, 

these marginal totals are indicated in Table 8.15.   

Table 8.15 Example 3:  Original Data with Marginal Totals     

           Marginal 

Control  Detail  Global  Total 

  Successful ID  21  24  13  58 

  Not successful ID   9    6  17  32 

     __________________________________________________________ 

  Marginal Total  30  30  30  90 

We now must calculate the expected frequency for each cell.  Beginning with the upper left cell we 

have a row total of 58 and a column total of 30.  The total number of subjects in the study is 90.  

Therefore, using the above equation the expected frequency for this cell is [(58)(30)] / 90,  which 

equals 19.33.  We now calculate the expected frequency of each of the other cells.  The results are 

shown in Table 8.16. 

Table 8.16 Example 3:  Expected Frequencies 

Control  Detail  Global 

  Successful ID   19.33  19.33  19.33 

  Not successful ID  10.67  10.67  10.67 

 

Steps 3 - 7:  We could then proceed to calculate the value of the chi-square by constructing a 

table as we did previously (Table 8.17). 

Table 8.17 Example 3:  Steps in Calculating a Chi-square 

 

Cells       fo               fe  (fo – fe)   (fo – fe) 2  
(𝐟𝐨 − 𝐟𝐞)𝟐

𝐟𝐞
  

  
 1 21      19.33    1.67    2.79  0.14  

 2 24      19.33    4.67  21.81  1.13 

 3 13      19.33 –6.33  40.07  2.07 

 4   9      10.67 –1.67    2.79  0.26 

 5   6      10.67 –4.67  21.81  2.04 

 6 17      10.67  6.33  40.07  3.76 

      = 0               = 9.40 
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Alternatively we could directly calculate our chi-square:  

  2 = 
(fo − fe)2

fe
  

       = 
(21 – 19.33)2

19.33
 + 

(24 – 19.33)2

19.33
 + 

(13 – 19.33)2

19.33
 + 

(9 – 10.67)2

10.67
 +  

(6 – 10.67)2

10.67
 + 

(17 – 10.67)2

10.67
 

       = 0.14 + 1.13 + 2.07 + 0.26 + 2.04 + 3.76  

       = 9.40 

The outcomes are identical. 

 Step 8:  We now consult the chi-square table (Appendix K, Table 2) in order to compare our 

outcome with the critical value.  In order to do so we must determine our degrees of freedom.  For 

the chi-square test of independence:  

 df = (Number of rows – 1)(Number of columns – 1) 

For our example, since we have 2 rows and 3 columns, we have df = (2 – 1)(3 – 1) which 

equals 1 X 2, or 2.  With alpha equal to .05, the critical value, found in the chi-square table (Table2 

in Appendix K), is 5.99.  As our obtained chi-square, 9.40, is larger than the critical value we reject 

the null hypothesis that the type of task does not affect eyewitness success, and accept the 

alternative hypothesis that the type of task does affect eyewitness success.  We could instead state 

that the samples came from populations with different proportions, and thus the two variables are 

not independent.  Or, we could note that there is an association between type of task and 

eyewitness success.   

We are still faced with two issues.  First, we have not yet calculated a measure for effect size.  

Second, the chi-square procedure provides an overall test of significance for the entire study but 

does not indicate where the significant difference(s) is (are).  With a 2 X 2 chi-square this is not an 

issue for there are only two conditions and thus, if there is a significant outcome, the difference has 

to be between the two categories.  With three or more conditions the issue is not so clear.  For 

instance, in our case there are three conditions (Control, Detailed and Global).  The significant 

difference(s) in the obtained proportions could be between a pair of conditions (between condition 

1 and condition 2, between condition 1 and condition 3, or between condition 2 and condition 3), 

any two of these comparisons, or all three of these comparisons.  In addition, more complex 

comparisons could be involved, such as condition 1 versus a combination of conditions 2 and 3, or 

condition 2 versus a combination of conditions 1 and 3, or condition 3 versus a combination of 

conditions 1 and 2.  In this book we will deal only with what are called pairwise comparisons, the 

comparisons involving the initial conditions, not any of the more complex combinations.  The chi-

square test that we have just completed does not specify which of these outcomes is statistically 

significant.  It simply indicates that at least one comparison within the data is expected to be 

significant.  We will examine the issue of effect size first, and then describe a procedure for 

specifying where a difference(s) within a significant chi-square is (are) located. 
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 With a 2 X 2 chi-square, we have seen that the phi-coefficient provides a measure of effect 

size.  Fortunately, only a minor modification is required to calculate a measure of effect size for any 

size chi-square.  This measure of effect size is called Cramer’s V: 

 Cramer’s V =  
2

n(df)
   

  where df = the smaller of (r – 1) or (c – 1) 

Cramer’s V – Measure of effect size for chi square tests of independence larger than 2 X 2. 

 

This equation is very similar to the equation provided earlier for the phi-coefficient.  In fact, 

the only difference is the inclusion of the degrees of freedom.  (However, note that the definition of 

degrees of freedom has changed, it is not the same as the definition used with the overall chi-

square.  Also, note that in the situation where there is one df, the phi-coefficient and Cramer’s V are 

identical.  In our case the df for Cramer’s V = 1 as the smaller of the rows – 1 or columns – 1 is equal 

to 2 – 1 = 1.) 

We calculate Cramer’s V as follows:  

 Cramer’s V =  
9.4 

(90)(1)
   

     =  
9.4 

90
  

     = 0.32  

 The interpretation of Cramer’s V is slightly more complex than the interpretation was for 

the phi coefficient.  As Table 8.17 indicates, the interpretation of the effect size will vary depending 

upon the degrees of freedom that were used in the calculation of Cramer’s V (Cohen, 1988).  Note 

that the degrees of freedom used in Table 8.18 are for Cramer’s V and are not necessarily the same 

as the degrees of freedom from the overall chi-square.   

Table 8.18 Interpretation of Cramer’s V 

Cramer’s V df   Small Effect      Medium Effect Large Effect 

1   .10   .30    .50 

2   .07    .21   .35 

3   .06    .17    .29 

4   .05   .15   .25 

5   .04   .13   .22 

 

By checking Table 8.18, you will see that, with 1 df the interpretation of Cramer’s V is the 

same as was previously given for the phi-coefficient.  This is what one would expect, for they 

provide the same outcome when there is 1 df.  In our case, we obtained a Cramer’s V of .32 with 1 

df, which would be a medium-sized effect.   
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 We now turn to our second question: How do we identify the specific samples that differ 

when a chi-square with more than two conditions has been found to be statistically significant?  

What we are dealing with here are called post hoc comparisons.  Post hoc comparisons are 

employed when the overall test of significance involves more than two conditions or samples.  (In 

Chapter 12 we will expand this definition.)  From Table 8.1 (or Appendix L) you will see that 

studies with more than two conditions (samples) can occur not only with chi-square designs but 

also following a significant Kruskal-Wallis H test when there are ordinal data (reviewed in 

Appendix A), and with ANOVAs when there are interval or ratio data.   

Post hoc comparisons – Statistical procedures utilized following an initial, overall test of  

 significance in order to identify the specific conditions (samples) that differ. 

 

In our current example we have a statistically significant 2 X 3 chi-square.  If it were not 

significant we would not conduct any post hoc test.  However, since it is significant and we want to 

know where the difference(s) is (are), we would conduct every pairwise comparison.  With three 

conditions (2 df in the overall chi-square), there are three possible pairwise comparisons.  As we 

noted previously these are between condition 1 and condition 2; between condition 1 and condition 

3; and between condition 2 and condition 3.  Inspection of Table 8.1 indicates that with these data 

we would compute three additional 2 X 2 chi-square statistics, each testing one of the above 

comparisons.  Thus, one 2 X 2 chi-square would compare the proportions obtained from the 

‘Control’ condition with the proportions obtained from the ‘Detail’ condition.  Another would 

compare the proportions obtained from the ‘Control’ condition with the proportions obtained from 

the ‘Global’ condition.  The final chi-square would compare the proportions obtained from the 

‘Detail’ condition with the proportions obtained from the ‘Global’ condition.    

There is a potential problem, however, when you conduct multiple comparisons.  If you 

keep alpha equal to .05 for each comparison then when you conduct a large number of comparisons 

you increase the likelihood of finding statistical significance when, in fact, there is no relationship in 

the populations.  Here is why.  With alpha set at .05 for a comparison you know there is a 5% 

chance of making a Type I error.  In other words, with this one comparison there is one chance in 

twenty that you will reject the null hypothesis when in fact it is correct.  But what happens if you 

conduct a series of statistical comparisons, each with their alpha set at .05?  Clearly, since each 

comparison has one chance in twenty of leading to a Type I error, if you conduct numerous 

comparisons it will become increasingly likely that you will commit at least one Type I error.  The 

problem is that alpha is being set per comparison.  Earlier we found that studies with very large 

sample sizes may lead to statistically significant, but potentially meaningless outcomes, and you 

learned that by using the phi-coefficient or Cramer’s V we can interpret the effect size independent 
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of the sample size.  As you might expect there is also a solution for the problem of increased error 

rate that arises from conducting more than one post hoc comparison.   

One of the easiest methods is to divide the overall alpha rate that you want to maintain by 

the number of post hoc comparisons you will make.  In our example, as usual, the overall alpha was 

set at .05.  We would then divide .05 by the number of post hoc chi-square tests that we will 

conduct, and use this more stringent requirement when determining our critical values.  By doing 

so we maintain the overall, or experimentwise, error rate at .05.  This is known as the Bonferroni 

method of controlling the error rate.   

Bonferroni method – A procedure to control the Type I error rate when making numerous  

 comparisons.  In this procedure the alpha level that the experimenter has set is  

 divided by the number of comparisons.  

 

In the current example we would conduct all three of the possible pairwise comparisons, as 

shown below.  And using the Bonferroni method we would divide our initial alpha of .05 by three, 

since we are making three comparisons.  Thus, we would be using the critical value associated with 

an alpha equal to .05 / 3 = .0167.  Since the chi-square table (Appendix K, Table 2) that we have 

used previously does not include this particular alpha we would need to turn to a more extensive 

table, or utilize a computer program.  For an alpha of .0167 with 1 df the critical value is 5.73.  If the 

Bonferroni method had not been utilized our critical value, with 1 df, would have been 3.84.  Let us 

see what difference this makes. 

For each of the three post hoc comparisons the expected frequencies will need to be re-

calculated. 

The data and marginal totals for the comparison between the ‘Control’ and ‘Detail’ 

conditions are shown in Table 8.19. 

Table 8.19 Post Hoc Comparison for the Control and Detail Conditions:  Original Data with 

Marginal Totals 

     Control  Detail  Marginal Total 

  Successful ID  21  24  45 

  Not successful ID   9    6  15 

     _______________________________________ 

  Marginal Total  30  30  60 

 

 The expected frequencies are shown in Table 8.20. 

Table 8.20  Expected Frequencies for the Post Hoc Comparison of the Control and Detail  

  Conditions  
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Control  Detail   

  Successful ID   22.5  22.5   

  Not successful ID    7.5    7.5   

 

 You should confirm that the chi-square value for this comparison is 0.80. 

 

The data and marginal totals for the comparison between the ‘Control’ and ‘Global’ 

conditions are shown in Table 8.21. 

Table 8.21 Post Hoc Comparison for the Control and Global Conditions:  Original Data with 

Marginal Totals 

     Control  Global  Marginal Total 

  Successful ID  21  13  34 

  Not successful ID   9  17  26 

     _______________________________________ 

  Marginal Total  30  30  60 

 

 The expected frequencies are shown in Table 8.22. 

Table 8.22  Expected Frequencies for the Post Hoc Comparison of the Control and Global  

  Conditions  

Control  Global   

  Successful ID   17  17   

  Not successful ID  13  13   

 

 You should confirm that the chi-square value for this comparison is 4.34. 

 

Finally, the data and marginal totals for the comparison between the ‘Detail’ and ‘Global’ 

conditions are shown in Table 8.23. 

Table 8.23 Post Hoc Comparison for the Detail and Global Conditions:  Original Data with 

Marginal Totals 

     Detail  Global  Marginal Total 

  Successful ID  24  13  37 

  Not successful ID   6  17  23 

     _______________________________________ 

  Marginal Total  30  30  60 
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 The expected frequencies are shown in Table 8.24. 

Table 8.24  Expected Frequencies for the Post Hoc Comparison of the Detail and Global  

  Conditions  

Detail  Global   

  Successful ID   18.5  18.5   

  Not successful ID  11.5  11.5   

 You should confirm that the chi-square value for this comparison is 8.54. 

 

 Note that each of these three 2 X 2 chi-square tests has one degree of freedom.  Therefore, 

two of these three post hoc comparisons would be statistically significant at the .05 level, if the 

Bonferroni method were not used, as two of the outcomes are greater than the critical value of 3.84.  

However, note that only one of our three post hoc tests met the more conservative criterion of 5.73 

set by the Bonferroni method.  When reporting our finding, we use the 5.73 criterion, but report p 

< .05 since with the Bonferroni method this is what we set as the ‘Experimentwise’ Type I error 

rate. 

Reporting The Results Of A Chi-Square Test Of Independence Larger Than 2 X 2 

 
 For the data in the overall 2 X 3 chi-square in Table 8.14 we would report that the null 

hypothesis was rejected.  This indicates that the intervening activity affected the rate of successful 

identification.  And we would include our measure of effect size.  Based upon our calculations we 

would indicate this by writing (2 (2, N = 90) = 9.40, p < .01, Cramer’s V = .32).  We can indicate 

the chi-square value more precisely and include a p-value by using a statistical packages such as 

SPSS (2 (2, N = 90) = 9.41, p = .009, Cramer’s V = .32).  (Note that the p-value of .009 is less than 

our α of .05, confirming that we would reject the null hypothesis.)  This would be followed by a 

statement indicating that three post hoc pairwise comparisons, using the Bonferroni method, were 

then conducted and only the comparison of the ‘Detail’ condition with the ‘Global’ condition was 

found to be significant (2 (1, N = 60) = 8.54, p < .05).  With these statements we have provided 

the reader with a great deal of information.  We indicated that we conducted an overall chi-square 

test for an independent samples experiment; we told the reader the number of degrees of freedom 

in the design, as well as the number of participants in the study; and we indicated the value of the 

chi-square and noted that it was statistically significant.  Further, we provided a measure of effect 

size so that the readers can judge the strength of the relationship.  The readers are thus in a 

position to make an informed decision about how meaningful the outcome is.  Finally, we indicated 

where, within the study, this significant effect occurred.  All of this was communicated efficiently, 

using a minimum number of words.    
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Purpose And Limitations Of The Chi-Square Test Of Independence (Chi-
Square Test of Association) 

 
1. It is a test for whether there is a difference (or an association) among the proportions.  The 

null hypothesis is that the observed frequencies are distributed similarly within each of the 

populations.  In other words, the relative frequencies are expected to be the same for each 

of the conditions and thus any difference in the pattern of observed proportions is due to 

chance.  

2. It provides an overall test of significance.  In designs that are larger than 2 X 2, a statistically 

significant outcome indicates that a difference in the relative frequencies exists between the 

conditions, but the overall chi-square test does not indicate where the difference(s) is (are).  

Subsequent post hoc chi-square tests are conducted to identify the specific conditions that 

differ. 

3. The test does not provide a measure of effect size.  The chi-square is a test of statistical 

significance.  It indicates whether or not an outcome is likely to have occurred by chance if 

the null hypothesis is correct.  If the chi-square statistic is significant, a measure of effect 

size, phi or Cramer’s V, should then calculated. 

Assumptions Of The Chi-Square Test Of Independence 

 
 The assumptions of the chi-square test of independence (chi-square test of association) are 

similar to those of the goodness-of-fit chi square. 

1. Nominal data.  The data are in the form of frequencies or can be converted to frequencies. 

2. Observations are independent.  In other words, a subject or event is only counted once, and 

is not matched with or affected by another subject or event in the study.   

3. Expected frequencies cannot be too small.  There is some disagreement as to what the 

minimum expected frequencies can be.  A conservative rule is that the minimum acceptable 

expected frequency for any cell is 5.  If the data do not meet this requirement more data 

should be collected or a different statistical procedure could be used.  (Turn to a more 

advanced text for a discussion of this topic.)  Alternatively, in the case of larger chi-square 

designs, rows or columns could be combined in a meaningful manner so that the expected 

frequencies are increased. 

Conclusion 
 

We have now completed the section of the book dealing with the chi-square statistic.  Before 

continuing with the study of additional statistical procedures it may be helpful to take a few 
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moments to review what we have accomplished and to put it into perspective.  You learned in 

Chapter 7 that the goodness-of-fit chi-square test is used when there is one variable and we are 

examining whether the observed frequencies differ from what was expected based upon the null 

hypothesis.  We then turned in Chapter 8 to the chi-square test of independence.  It is also used 

with frequency data but now there are two variables.  In addition, we found that the null hypothesis 

can be stated as a difference (do the pattern of the frequencies differ) or as an association (are the 

variables associated). 

Fortunately, much that you have learned thus far will be of use when learning the additional 

procedures reviewed in this book.  For instance, degrees of freedom, critical values, the distinction 

between statistical significance and effect size, and the issue of post hoc tests will all be seen again 

when we review the procedures used with interval or ratio data.  Accordingly, this chapter and 

Chapter 7 had a dual purpose.  First, they served as an introduction to two statistical procedures 

that are employed with nominal data.  Second, Chapters 7 and 8 served as a general introduction to 

inferential statistical procedures.  It is important as you master the use of specific statistical 

procedures that you also learn how each new test is related to the others.  It is only when you have 

gained this perspective that you will truly be knowledgeable of statistics. 

Glossary Of Terms 
 
Bonferroni method – A procedure to control the Type I error rate when making numerous  

 comparisons.  In this procedure the alpha level that the experimenter has set is divided  

 by the number of comparisons.  

Chi-square test of association – Another name for the chi-square test of independence. 

Chi-square test of independence – An inferential procedure for analyzing whether the pattern of  

 observed frequencies differs among the groups. 

Cramer’s V – Measure of effect size for chi square tests of independence larger than 2 X 2. 

Dependent – Two events, samples or variables are dependent if knowing the outcome of one 

enhances our prediction of the other. 

Effect size – A measure of how ‘strong’ a statistically significant outcome is. 

Gambler’s fallacy – The incorrect assumption that if an event has not occurred recently, then the  

 probability of it occurring in the future increases. 

p-value – The probability of an outcome, or a more extreme outcome, occurring by chance 

 assuming the null hypothesis is correct.  To be statistically significant, the p-value must be  

less than the alpha level, which is usually .05. 

Phi – Measure of effect size for the 2 X 2 chi square tests of independence. 

Post hoc comparisons – Statistical procedures utilized following an initial, overall test of  
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 significance in order to identify the specific conditions (samples) that differ. 
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Questions – Chapter 8 

 
(Answers are provided in Appendix J.) 

1. When an experimenter concludes that the results of a statistical test are significant, this  
indicates that _____. 

 a. The outcome is especially important 
 b. The outcome is unlikely to have occurred by chance  
 c. The experimenter has made an error 
 
2. With a 2 X 2 chi-square, the minimum expected frequency that can occur in any cell is _____. 
 a. 1 
 b. 3 
 c. 5  
 d. 7 
 
3. If a chi-square test is found to be significant, what measure of effect size should then be 

utilized? 
 a. Phi 
 b. Bonferroni 
 c. Cramer’s V 
 d. Both ‘a’ and ‘b’ would always be appropriate 
 e. Either ‘a’ or ‘c’ would be correct depending upon the specific chi-square  
 
4. The chi-square test of independence is a test for _____. 
 a. Difference or Association  
 b. Effect size 
 c. Importance 
 d. None of the above 
 
5. If there is no difference in the pattern of the observed frequencies, then a 2 X 2 chi-square  

will _____. 
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 a. Be statistically significant 
 b. Not be statistically significant  
 c. Not have to meet the assumptions of the test in order to be used 
 d. Be more difficult to calculate 
 
6. George, a particularly poor statistics student, notes that the last three times a coin has been 

tossed it has come up heads.  He therefore concludes that it is time for it to come up tails.  
This is an example of the _____. 

 a. Gambler’s fallacy  
 b. Bonferroni Method 
 c. Statistical significance 
 d. None of the above 
 
7. Following a significant 2 X 4 chi-square test, the researcher would _____. 
 a. Utilize the Bonferroni Method 
 b. Employ phi 
 c. Check that all of the cells have a sample size of at least 25 
 d. Conduct Cramer’s V 
 e. Both ‘a’ and ‘d’  
 
8. If the frequency within each cell in a 2 X 2 chi-square test is tripled, what happens to the  

size of the chi-square outcome? 
 a. It stays the same 
 b. It doubles 
 c. It triples  
 d. It cannot be determined 
 
9. If the frequency within each cell in a 2 X 2 chi-square is tripled, what happens to the size of 

the subsequent Phi? 
 a. It stays the same  
 b. It doubles 
 c. It triples 
 d. It cannot be determined 
 
10. The Bonferroni Method would be utilized following a statistically significant _____. 
 a. 2 X 2 chi-square 
 b. 2 X 3 chi-square  
 c. Phi 
 d. All of the above 
 
11. With a 2 X 2 chi-square, _____ provides a measure of effect size.   
 a. the Bonferroni procedure 
 b. largest cell frequency  
 c. the phi–coefficient  
 d. none of the above 
 

We ask freshmen and sophomores if they would like to take an arts course, and collect the following 
data:   
       
     Freshmen Sophomores 
 
   Yes    2    6 
   No  14  10 
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12. How many degrees of freedom do you have? 
 a. 1 
 b. 2 
 c. 3 
 d. 4 
 
13. What is the value of the chi-square? 
 a. 2.67 
 b. 1.46 
 c. 2.44 
 d. 3.05  
 
14. Does the preference for taking an arts course differ significantly between freshmen and  
 sophomores, assuming an alpha of .05? 
 a. Yes 
 b. No 
 
Now assume that the study includes juniors: 
        
     Freshmen  Sophomores  Juniors 
 
   Yes    2    6  9 
   No  14  10  7 
 
15. How many degrees of freedom do you have? 
 a. 1 
 b. 2 
 c. 3 
 d. 4 
 
16. What is the value of the chi-square? 
 a. 3.11 
 b. 5.42 
 c. 6.74 
 d. 9.00 
 
17. Which of the groups differs? 
 a. Freshmen vs Sophomores 
 b. Freshmen vs Juniors 
 c. Sophomores vs Juniors 
 d. Both Freshmen vs Juniors and Sophomores vs Juniors 
 

Problems 18 – 23 utilize SPSS. 

 

Our First Example Using SPSS With The Chi-Square 
Test Of Independence 

 

To Begin SPSS 
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 Step 1 The first step is to activate the program (Figure 5.2).  Other versions of SPSS will 

have a very similar window.  Then close the central window. 

 Step 2 You will see that at the bottom left of the window there are two ‘switches’, one 

labeled Data View, which is highlighted in yellow, the other Variable View (Figure 5.3).   

 Step 3 Click on ‘Variable View’ at the lower left corner of the window.  Near the top of the 

new page is a row of column headings beginning with ‘Name’, then ‘Type’, and proceeding to ‘Role’.  

For the present we will only be dealing with the columns headed by ‘Name’, ‘Label’, ‘Values’ and 

‘Measure’. 

 Step 4 Click on the first empty rectangle (called a ‘cell’) under the column heading ‘Name’.  

You now type the name of the first variable for which you have data.  We are going to utilize the 

same data and labels as were previously employed in Table 8.2.  These data dealt with the question 

of whether there is an association between whether an individual had been diagnosed with ADHD 

and the side of omission errors.  We have called these variables ‘ADHD’ and ‘omission’.  Therefore, 

type ‘ADHD’ in the first empty cell under ‘Name’. 

 Step 5 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell you can 

type a more extensive description of your variable.  In our case, type ‘Diagnosed with ADHD?’.  Note 

that in order to see the entire label you may need to expand the size of this cell by placing your 

cursor on the right border of the Label heading and moving to the right. 

 Step 6 Click on the first empty ‘cell’ under the column heading ‘Values’.  Then click on the 

small blue square.  A box will appear.  In the blank space to the right of ‘Value’ type the number ‘1’.  

Then type a brief description of this value of the variable in the blank space to the right of ‘Label’.  In 

our case, type ‘yes’.  Finally, click on ‘Add’.  Your label for a value of 1 will appear in the large white 

region in the center of the window.  Now repeat the above steps in this section for the value ‘2’, 

which is given the label ‘no’ (Figure 8.1).  Click ‘Add’ and then click on ‘OK’. 

Figure 8.1 The Value Labels Window 
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 Step 7 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with nominal data, select ‘Nominal’ as is shown in Figure 8.2.   

Figure 8.2 The Variable View Window 

 

 

Step 8 Repeat Steps 4 – 7 except that you type ‘omission’ in the first empty cell under 

‘Name’.  Then type ‘Side with more omission errors’ for the ‘Label’, and the value labels are now 

‘right’ and ‘left’ instead of ‘yes’ and ‘no’.  As before, select ‘Nominal’ under the column heading 

‘Measure’.  The result is shown in Figure 8.2.  You could now shift to the data window and 

sequentially enter the data for each subject.  However, this can quickly become tedious.  SPSS 

permits the rapid construction of the chi-square data table.  In order to do so we need to create 

another variable so that SPSS can be instructed that the numbers stand for the frequencies that 

occurred.     

 Step 9 In the empty ‘cell’ directly under ‘omission’ type the name of this new variable.  I 

have chosen ‘Frequency’.   

 Step 10 Move across the row and click twice on the empty ‘cell’ under the column heading 

‘Label’.  In this cell you can type a more extensive description of your variable.  In our case, there is 

no need for an extensive label, so we type ‘Frequency’.   

 Step 11 Continue to move across the row and click on the empty ‘cell’ under the column 

heading ‘Measure’.  As we are dealing with frequencies, select ‘Nominal’, which is the SPSS 

designation for nominal data.  This is shown in Figure 8.3.  We have now completed the SPSS 

‘Variable View’ window. 

Figure 8.3 The Completed Variable View Window 

 

To Enter Data In SPSS 

 
Step 12 Click on the ‘Data View’ option at the lower left corner of the window.  The variables 

‘ADHD’, ‘omission’ and ‘Frequency’ will be present. 
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Step 13 Type in the values of ‘1’ and ‘2’ for ‘ADHD’ and ‘omission’ as shown in Figure 8.4.  

Each combination of these numbers specifies a chi-square cell.   We need to indicate in the third 

column which frequency is associated with each cell of the chi-square table.  The upper left cell of 

the chi-square table (Table 8.2) includes the data from those subjects who indicated they had been 

diagnosed with ADHD (condition 1 for ADHD) and who also had more omission errors on the right 

side (condition 1 for omission).  The frequency recorded for this cell in Figure 8.4 is 36.  The second 

cell in the first column (lower left cell of Table 8.2) includes the data from those subjects who 

indicated they had been diagnosed with ADHD (condition 1 of ADHD) and who also had more 

omission errors on the left side (condition 2 for omission).  The frequency recorded for this cell in 

Figure 8.4 is 22.  The appropriate frequencies for the remaining two cells are also indicated in 

Figure 8.4.  It is very important that the correct frequencies are associated with each chi-square cell 

as is shown in Figure 8.4. 

Figure 8.4 Entering Data 

 

To Conduct A Chi-Square Test Of Independence  

 
Step 14 Click your cursor on ‘Data’ along the row of SPSS commands above the numbers you 

have entered and then move all the way down the column and click on ‘Weight cases’.   

Step 15 In the new window, click on the small circle just to the left of ‘Weight cases by’ and 

then highlight ‘Frequency’ (Figure 8.5).  Now click on the arrow in the center of the window.  The 

result will look like Figure 8.6.  Then click on ‘OK’.  (You have just indicated to SPSS that the 

numbers in the variable ‘Frequencies’ are not scores but rather are frequencies.) 

Exit the window with the statement ‘WEIGHT BY frequency’.  Do not save this output.   

Figure 8.5 The Weight Cases Window 
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Figure 8.6 The Weight Cases Window 

 

 

Step 16 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘Descriptive Statistics’, then click on ‘Crosstabs’.  (With SPSS you do not use 

the Nonparametric Statistics command with a chi-square test of independence.) 

Step 17 A new window will appear.  In order to recreate the rows and columns in the 

original data table (Table 8.2) click on ‘Side with more omission’ and then move ‘Side with more 

omission’ to the box under ‘Row(s)’ by clicking on the top arrow.  Now move ‘Diagnosed with 

ADHD?’ to the box under ‘Column(s)’ by clicking on ‘Diagnosed with ADHD?’ and then clicking on 

the second arrow.  The result will be that each label will move to the appropriate box on the right–

hand side of the window, as is shown in Figure 8.7.  Then click on ‘Statistics’ which is located in the 

top, right corner of the window.   

Figure 8.7 Defining Crosstabs 



204 
 

 

 

Step 18 A new window will appear.  This window provides a number of statistical options 

that are available with SPSS.  In this book we will limit ourselves to just a few of these, so click on 

the small boxes to the left of ‘Chi-square’, and ‘Phi and Cramer’s V’ as is shown in Figure 8.8.  Then 

click ‘Continue’. 

Figure 8.8 Defining Crosstabs 
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Step 19  Click on ‘Cells’ which is located in the top, right corner of the window shown in 

Figure 8.8.  Within the new window, be sure both ‘Observed’ and ‘Expected’ are checked, as shown 

in Figure 8.9.  Then click on ‘Continue’.  Now click on ‘OK’.  SPSS provides an extensive output.  We 

are interested in the obtained, expected and marginal frequencies (Table 8.25), the desired chi-

square (Table 8.26) (SPSS calls it the Pearson Chi-square, we can ignore the other rows of the 

output) and finally, the effect size which is shown in Table 8.27.   

Figure 8.9 Continuing to Define Crosstabs 

 

 

Table 8.25 SPSS Output; Obtained, Expected and Marginal Frequencies 

                

 
Table 8.26 SPSS Output; The Summary Chi-square Table 
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Table 8.27 SPSS Output; Effect Size 
 

 
                              
 

You should confirm that these are the same results for the chi-square as was found earlier 

in this chapter except for minor rounding error when we did the calculations.   

Step 20  Exit SPSS.  There is no need to save your work. 

 

Our Second Example Using SPSS With The Chi-Square Test Of Independence 

 

To Begin SPSS 

 
 Steps 1, 2 and 3 These are the same as for the previous example.   

 Step 4 Click on the first empty rectangle (called a ‘cell’) under the column heading ‘Name’.  

You now type the name of the first variable for which you have data.  We are going to utilize the 

same data and labels as were previously employed in Table 8.14.  These data dealt with the 

question of whether there is an association between the experimental condition an individual had 

been assigned to and their success at making a correct identification.  I have called these variables 

‘subgroup’ and ‘ID’.  Therefore, type ‘subgroup’ in the first empty cell under ‘Name’. 

 Step 5 Click on the first empty cell under the column heading ‘Label’.  In this cell you can 

type a more extensive description of your variable.  In our case, type ‘Subject Group’.    
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Step 6 Click on the first empty ‘cell’ under the column heading ‘Values’.  A box will appear.  

In the blank space to the right of ‘Value’, type the number ‘1’.  Then type a brief description of this 

value of the variable in the blank space to the right of ‘Label’.  In our case, type ‘control’.  Finally, 

click on ‘Add’.  Your label for a value of 1 will appear in the large white region in the center of the 

window.  Now repeat the above steps in this section for the value ‘2’, which is given the label 

‘detail’.  For the value ‘3’, give the label ‘global’ (Figure 8.10).  Click ‘Add’ and then click on ‘OK’. 

Figure 8.10 The Value Labels Window 

 

 

 Step 7 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with nominal data, select ‘Nominal’.   

Step 8 Repeat Steps 4 – 7 except that you type ‘ID’ in the first empty cell under ‘Name’, type 

‘Eyewitness Success’ for the ‘Label’, and you now have two value labels, ‘successful’ and ‘not 

successful’, instead of ‘control’, ‘detail’ and ‘global’ (Figure 8.11).  As before, select ‘Nominal’ in the 

column under the column heading ‘Measure’.  You could now shift to the data window and 

sequentially enter the data for each subject.  However, this can quickly become tedious.  As before, 

we need to create another variable so that SPSS can be instructed that the numbers stand for the 

frequencies that occurred.     

Figure 8.11 The Value Labels Window 
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 Step 9 In the empty ‘cell’ directly under ‘ID’ type the name of this new variable.  Once again, 

I chose ‘frequency’.   

 Step 10 Move across the row and click twice on the empty ‘cell’ under the column heading 

‘Label’.  In this cell you can type a more extensive description of your variable.  In our case there is 

no need for an extensive label, so we type ‘Frequency’.   

 Step 11 Continue to move across the row and click on the empty ‘cell’ under the column 

heading ‘Measure’.  As we are dealing with frequencies, select ‘Nominal’, which is the SPSS 

designation for nominal data.  This is shown in Figure 8.12.  We have now completed the SPSS 

‘Variable View’ window. 

Figure 8.12 The Variable View Window 

 

To Enter Data In SPSS 

 
Step 12 Click on the ‘Data View’ option at the lower left corner of the window.  The variables 

‘subgroup’, ‘ID’ and ‘frequency’ will be present. 

Step 13 Type in the values of ‘1’, ‘2’ and ‘3’ for ‘subgroup’ and the values ‘1’ and ‘2’ for ‘ID’ as 

shown in Figure 8.13.  Each combination of these numbers specifies a chi-square cell (there are 6 

cells in this study) for which data in the form of a frequency are now entered in the third column.  It 

is important that the correct frequencies are associated with each cell of Table 8.14.  The result is 

shown in Figure 8.13. 
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Figure 8.13 Entering Data 

            

To Conduct A Chi-Square Test Of Independence  

 

Step 14 Click your cursor on ‘Data’ along the row of SPSS commands above the numbers you 

have entered and then move down and click on ‘Weight cases’.   

Step 15 In the new window click on the small circle just to the left of ‘Weight cases by’ and 

then highlight ‘Frequency’ (Figure 8.14).  Now click on the arrow in the center of the window.  The 

result will look like Figure 8.15.  Then click on ‘OK’.  (You have just indicated to SPSS that the 

numbers in the variable ‘Frequencies’ are not scores but rather are frequencies.)  Exit the window 

with the statement ‘WEIGHT BY frequency’.  Do not save this output. 

Figure 8.14 The Weight Cases Window 

 

 

Figure 8.15 The Weight Cases Window 
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Step 16 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘Descriptive Statistics’, then click on ‘Crosstabs’. 

Step 17 A new window will appear.  In order to recreate the original rows and columns of 

the data (Table 8.14) move ‘Eyewitness Success (ID)’ to the box under ‘Row(s)’ by clicking on 

‘Eyewitness Success (ID)’ and then clicking on the top arrow.  Next, move ‘Subject Group 

(subgroup)’ to the box under ‘Column(s)’ by clicking on ‘Subject Group (subgroup)’ and then 

clicking on the second arrow.  The result will be that each label will move to the appropriate box on 

the right–hand side of the window, as is shown in Figure 8.16.  Then click on ‘Statistics’ which is 

located in the top, right-hand corner of the window.   

Figure 8.16 Defining Crosstabs 
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Step 18 A new window will appear.  This window provides a number of statistical options 

that are available with SPSS.  In this book we will limit ourselves to just a few of these, so click on 

the small boxes to the left of ‘Chi-square’, and ‘Phi and Cramer’s V’ as is shown in Figure 8.17.  Then 

click on ‘Continue’.   

Figure 8.17 Defining Crosstabs 

 

 

Step 19  Click on ‘Cells’, which is located in the top, right corner of the window shown in 

Figure 8.17.  Within the new window click on ‘Observed’ and ‘Expected’ as shown in Figure 8.18.  

Then click on ‘Continue’.  Now click on ‘OK’.  SPSS provides an extensive output.  We are interested 

in the obtained, expected and marginal frequencies (Table 8.28), the desired chi-square (Table 

8.29) (it is called Pearson Chi-square in SPSS, we can ignore the other rows of this output) and 

finally, the effect size which is shown in Table 8.30.     

Figure 8.18 Continuing to Define Crosstabs 
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Table 8.28 SPSS Output; Crosstabs – Obtained, Expected and Marginal Frequencies  

 

 

Table 8.29 SPSS Output; Summary Chi-square Table 
 

 
                                 

 



213 
 

Table 8.30 SPSS Output; Crosstabs – Effect Size 
 

                                  
 
 

Once again, you should confirm that this is the same result for the chi-square as was found 

earlier in this chapter except for minor rounding error when we did the calculations.   

Step 20  Exit SPSS.  There is no need to save your work. 

 

 To confirm that you understand how to use SPSS, I suggest you redo the chi-squares that 

were calculated in the text for the data in Table 8.7 and Table 8.11, but this time using SPSS. 

 

SPSS Problems – Chapter 8 

 
Problems 18 – 23 are based upon a study by Chou, Ho and Chi (2006) which reported the frequency 
of depressive symptoms for Chinese older adults who were living alone or not living alone.   
 

18. For the 90 men who lived alone, 23 reported depressive symptoms.  The remainder did not 
report depressive symptoms.  For the 851 men who did not live alone, 152 reported 
depressive symptoms.  The remainder did not report depressive symptoms. We are 
interested in whether the proportions differ for these two groups of men.  What is the value 
of the 2 X 2 chi-square? 

 a. 3.183 
 b. 4.791 
 c. 5.482 
 d. 9.236 
 
19. How many degrees of freedom are there? 
 a. 1 
 b. 2 
 c. 3 
 d. 4 
 
20. Is the result statistically significant if we are using a 5% region of rejection? 

a. yes 
b. no 
 

21.  For the 91 women who lived alone, 29 reported depressive symptoms.  The remainder did 
not report depressive symptoms.  For the 971 women who did not live alone, 206 reported 
depressive symptoms.  The remainder did not report depressive symptoms.  We are 
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interested in whether the proportions differ for these two groups of women.  What is the 
value of the 2 X 2 chi-square? 

 a. 3.183 
 b. 4.791 
 c. 5.482 
 d. 9.236 
 
 22. How many degrees of freedom are there? 
 a. 1 
 b. 2 
 c. 3 
 d. 4 
 
23. Is the result statistically significant if we are using a 5% region of rejection? 

a. yes 
b. no 
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       Chapter 9   
Finding Differences with Interval and Ratio Data – I:   

The One Sample z test and the One Sample t test  
 

“Maturity is the capacity to endure uncertainty.” 

John Finley 

Introduction 
 

Chapter 6 introduced the scientific method.  In Chapters 7 and 8 we began our discussion of 

inferential statistical procedures with the chi-square test, which utilizes nominal data.  In the 

current chapter we will begin the examination of the inferential statistical procedures used with 

interval and ratio data (the discussion of two inferential statistical procedures used with ordinal 

data is given in Appendixes A and C).  Our review of the inferential statistical procedures for 

interval and ratio data will be proceeding down the final column of Table 9.1.  With interval and 

ratio (as well as ordinal) data you are more likely to encounter designs where there is a clear 

distinction between independent and dependent variables than you are when using nominal data.  

This difference is indicated in Table 9.1 by the separation between the columns under nominal data, 

and the columns under ordinal, and interval or ratio data. 

We begin with the difference design that has one independent variable and only one sample 

of subjects.  With interval or ratio data this design employs two very similar procedures, either the 

one-sample z test or the one-sample t test.  These tests are underlined in Table 9.1.  These two 

procedures examine the same question:  Do the data collected from a single sample match what 

would be expected from a known or hypothesized population?  Later chapters will examine designs 

that involve interval or ratio data and comparisons between experimental and control groups.   

One-sample z test – An inferential procedure for comparing a sample mean with a  

 population mean when the population standard deviation is known. 

One-sample t test – An inferential procedure for comparing a sample mean with a  

population mean when the population standard deviation is not known.   

 

Table 9.1 Overview of Inferential Statistical Procedures For Finding if there is a Difference 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
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        Measure)
 ______________________________________________________________________________________________ 

 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   
___________________________________________________________________________________________________________________________________________ 

The italicized procedure is reviewed in Appendix A. 

 
 

The first procedure that we will review is the one-sample z test.  Then we will turn to a 

closely related procedure, the one-sample t test.   

One-Sample z Test 
 
 You are already familiar from Chapters 3 and 4 with the use of a z score as a descriptive 

statistic, and much of what you learned will be applicable here.  As you recall, a z score is simply the 

number of standard deviations (SDs) a datum is from its mean.  Furthermore, if the distribution of 

scores is normal then the probability of outcomes can be determined.  For example, the intelligence 

quotient (IQ) is normally distributed and the most commonly used IQ tests have a  of 100 and a SD 

of 15.  An IQ score of 130 is thus 2 SDs greater than the mean, and the z score corresponding to an 

IQ of 130 has a value of +2 [remember, z = (X – ) /  ].  Use of the z table enables you to determine 

that approximately 98% of individuals will have an IQ less than 130.  Thus 98 individuals out of 100 

would be expected to have IQ scores less than 130, and only 2 out of 100 people would be expected 

to have IQ scores greater than 130.   

 We now turn to the one-sample z test.  This is an inferential procedure.  It requires that a 

sample is drawn randomly from a normally distributed population, and then we examine whether 

the obtained sample mean differs from a known or hypothetical value.  For instance, let us assume 

that we are interested in whether engaging in a series of mental exercises will change IQ scores.  
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The null hypothesis would be that mental exercises will not change IQ scores (the mean of the 

sample would not differ significantly from the population mean which is 100).  The alternative 

hypothesis would be that mental exercises will change IQ scores (the sample mean will differ from 

the population mean of 100).   

This may appear to be just another example of the procedures that you learned for 

calculating a z score in Chapters 3 and 4, combined with some hypothesis testing concepts from 

Chapter 6.  To a certain extent this is correct.  However, our current use of the z test differs from our 

previous use of the z score in a critical way, though at first it may seem minor.  The critical 

difference is that in our current example we are dealing with the mean of a sample of scores 

whereas Chapters 3 and 4 dealt with a single score.   

In Chapters 3 and 4 you learned that a raw score can be converted into a z score with the 

following equation: 

z = 
𝐗 – 


   

What this equation accomplishes is to take the difference between a score and its 

population mean and then divide this difference by the population standard deviation.  The result is 

that a deviation in the original units of measurement is converted into a deviation in standard 

deviation units.  This, in turn, permits us to determine probabilities using the z table (Appendix K, 

Tables 1a and 1b), assuming, of course, that the original population was normally distributed.   

 The equation can be rewritten as: 

  z = 
𝐗 – 

𝐗
   

Nothing has actually changed.  We have just substituted X for .  These symbols are equivalent, but 

with X it is evident that we are referring to the variability of scores. 

 In our example of the IQs of a sample of subjects who have engaged in mental exercises we 

are not dealing with a single score.  Instead we are dealing with the mean of a sample of scores.  

However, the logic of converting a deviation in the original units of measurement into a deviation in 

standard deviation units, and then referring to the z table, remains the same.  The equation is 

simply modified to reflect that we are now comparing a sample mean (M), instead of a single score 

(X), to the population mean (µ).  This requires, in turn, that we divide this difference by a measure 

of how much sample means are expected to vary.  The result is as follows: 

z = 
𝐌 – 

𝐌
    

We have a new symbol, M, in this equation.  Its definition can be stated in a number of 

ways.  Perhaps the easiest definition to grasp is that it is a measure of how much sample means are 

expected to vary.  More precisely, though probably not as clearly, it is the standard deviation of the 

means of samples of a given size selected from a single population.  Alternatively, it can be defined 
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as the standard deviation of the sampling distribution of means, which is equivalent to saying it is 

the standard deviation of the population of sample means.  It is encountered so frequently that it 

has its own name, the standard error of the mean (SEM).   

Standard error of the mean (SEM) – The standard deviation of the sampling distribution of  

means. 

 

It is important that you recognize the parallel between obtaining a z score, which was 

described in Chapters 3 and 4, and conducting a z test: 

To find a z score   To conduct a z test 

z = 
𝐗 – 

𝐗
    z = 

𝐌 – 

𝐌
   

In each case we are converting a deviation, either (X – ) or (M – ), into standard deviation 

units.  This requires that we divide the obtained deviation by the appropriate measure for the 

standard deviation.  In the case of X –  we are dealing with how much a score deviates from its 

population mean and so we divide by the standard deviation of scores (X).  In the case of M –  we 

are dealing with how much a sample mean deviates from its population mean and so we divide by 

the standard deviation of sample means, which is also called the standard error of the mean (SEM) 

which also has the symbol M.  In either case we then refer to the z table.  However, before actually 

conducting a one-sample z test we need to first gain a better understanding of the standard error of 

the mean (M).    

The Standard Error Of The Mean (SEM) 
In our current example, which is examining the effect of mental exercises upon IQ, we began 

by randomly selecting a sample.  We would not be surprised if the mean IQ score of our sample 

differed slightly from the population mean of 100 even before experiencing the mental exercises.  

Though the sample was randomly selected, some variation would be expected.  This discrepancy 

between a population’s mean and the mean of a sample drawn from it was not caused by any action 

of the experimenter.  Instead it was due to chance.  And in statistics we would identify this 

difference as being an example of error.  This does not signify that someone made a mistake.  It 

simply indicates that the outcome is due to chance events.   

Error – An outcome due to chance. 

 

Since we have shown that it is not surprising if a sample’s mean differed from the 

population mean, it follows that if we selected a large number of samples, all of the same size and 

from the same population, we would also expect to find variability among their means and the 

population mean.  But how much variability?  While small variations would be expected, large 
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variations would be less likely.  The reason for this is that in order to obtain a large difference a 

sample would have to have a preponderance of subjects with either very low or very high IQs.  

Since the samples are being selected randomly, this is not likely to occur.  Consequently, if we 

graphed the means of a large number of samples, all of the same size, we would expect to obtain a 

distribution such as in Figure 9.1.  This distribution is called the sampling distribution of the mean. 

 Sampling distribution of the mean – A theoretical probability distribution of sample means.   

 The samples are all of the same size and are randomly selected from the same  

 population. 

 

Figure 9.1 The Sampling Distribution of the Mean 

 

 

 

 

 Notice again that the sampling distribution of the mean is a graph of sample means (M).  

Thus each point in the distribution is an M.  If we wanted to find the ‘average’ of the sample means 

we could, of course, find the mean of these sample means.  This probably sounds a bit strange, but 

the mean of these sample means, or the grand mean, which is represented in Figure 9.1 by the 

symbol MG, provides an excellent estimate of the population mean which, you recall, has the symbol 

.  Furthermore, it can be shown mathematically that if the samples are being selected from a 

normally distributed population, such as IQ, then the sampling distribution of the mean is also 

normally distributed.  Thus it is symmetrical as well as bell-shaped, with most of the sample means 

grouped near the middle of the distribution (Figure 9.1).    

 Grand mean (MG) – The mean of the sample means.   

 

One- And Two-Tailed Tests 
 

We have just noted that sample means are expected to vary from the population mean and 

from each other, even without the experimenter introducing a treatment.  This raises a question, 

how discrepant do the sample and population means have to be after a treatment is introduced in 

order to reject the null hypothesis that an observed difference is simply due to chance variation?  In 

                   MG 
         Sample Means 
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other words, using our example, how large a difference must be observed to conclude that the 

mental exercises had an effect on the IQ scores?  There is no absolute answer to this question.  

However, if the difference between the sample and population means is due to chance then it is 

expected that in most cases this difference will be small.  In only a few cases would a large 

discrepancy be expected to happen just by chance.  Thus, the larger the difference between the 

sample and population means, the less likely this difference is due to chance, and the more likely it 

is due to the effect of the treatment.   

As was noted in Chapter 6, in most fields it has come to be accepted that if an outcome 

would be expected to occur, by chance, less than 1 time in 20 we reject the null hypothesis and 

accept the alternative hypothesis.  One time in 20 is equivalent to .05 or 5%.  It was also pointed out 

that there is nothing magical about .05.  A different criterion such as .01 can be, and sometimes is, 

chosen.  If a criterion of .01 is chosen, then we retain the null hypothesis unless an outcome is so 

unlikely that it would be expected to occur in less than 1 out of 100 cases by chance.  The criterion 

chosen is, of course, the alpha level and its symbol is the Greek letter, .  Recall from Chapter 7 that 

the critical region encompasses the most extreme possible outcomes.  In the current example the 

critical region would be divided into two portions of the sampling distribution of the mean.  This is 

because our null hypothesis does not state whether the treatment (engaging in a series of mental 

exercises) is expected to increase or decrease the IQ scores of the sample.  Consequently, as our 

total area of rejection is equal to α, the probability of each of the two critical regions is equal to  / 

2 (Figure 9.2).   

Figure 9.2   Two-Tailed Test 

 

 

 

                                    

 In the current example, the null hypothesis was that the treatment (mental exercises) 

would not have an effect.  The alternative hypothesis was that the treatment would have an effect.  

The null hypothesis could be rejected, therefore, if the sample’s mean IQ was either much lower or 

much higher than the population’s mean IQ.  Because an extreme outcome in either direction would 

result in the rejection of the null hypothesis, this is called a two-tailed or nondirectional test.  In a 

few moments we will see that a directional, or one-tailed test, is also possible.  For now, it is 

important you understand that with a two-tailed test, if the mean of the sample is so different from 

/2      /2 

r                                      a                                      r 
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the population mean that it falls in the region or area of rejection on the sampling distribution of 

the mean, indicated by the letter ‘r’ in each tail of Figure 9.2, then the null hypothesis will be 

rejected.  And if we reject the null hypothesis then the alternative hypothesis will be accepted.  Of 

course, the sample mean might not differ so much from the population mean that it falls in the 

extreme tails represented by the letter ‘r’.  In this case it would fall in region ‘a’ of Figure 9.2 and the 

null hypothesis would not be rejected.  Instead the null hypothesis would be accepted or retained.   

 Two-tailed or nondirectional test – An analysis in which the null hypothesis will be rejected  

  if an extreme outcome occurs in either direction.  In such a test, the area of rejection  

  is divided into two parts, each equal to α / 2.  

 

 If the alternative hypothesis in our IQ study had been that the mental exercises would 

increase the mean IQ of the sample, we would now have a directional prediction.  In this case, the 

entire region of rejection would be put in the upper tail of the sampling distribution of the mean.  

This is illustrated in Figure 9.3.  Similarly, if the original alternative hypothesis had been that the 

mental exercises would decrease the mean IQ of the sample, this would also be a directional 

prediction.  In this case, however, the entire region of rejection would be put in the lower tail of the 

distribution, as is illustrated in Figure 9.4.  As will be shown shortly, putting the entire region of 

rejection in one tail has the advantage that a smaller difference between the sample and population 

means is needed in order for us to reject the null hypothesis.  However, in order to reject the null 

hypothesis the result must be in the predicted direction.  With a directional prediction, no matter 

how large the observed difference, if it is in the direction opposite to what was predicted the null 

hypothesis is retained.  In other words, if you use a one-tailed or directional test you are ‘putting all 

of your eggs in one basket’.  For this reason, one-tailed tests are much less commonly used than 

two-tailed tests.  It is also important to note that the decision whether you have a directional or 

non-directional hypothesis is based upon the results of previous research and must be made before 

you collect any data.  It would be unethical to collect your data, determine the direction of the 

difference and then decide to use a one-tailed test. 

 One-tailed or directional test – An analysis in which the null hypothesis will only be  

  rejected if an extreme outcome occurs in the predicted direction.  In such a test, the  

  single area of rejection is equal to alpha and it is located in one tail of the sampling  

  distribution.  

 

Figure 9.3 One-Tailed Test with the Area Of Rejection in the Upper Tail 
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Figure 9.4 One-Tailed Test with the Area Of Rejection in the Lower Tail 

 

 

As was just noted, if you have enough information from previous research to choose a one-

tailed test this will make it more likely you will reject the null hypothesis compared to using a two-

tailed test, and thus will increase the statistical power.  Of course, this assumes that your results 

actually turn out to be in the predicted direction.  If they don’t, your only recourse is to conduct the 

entire study over again, this time using a two-tailed test.  Remember, you have put ‘all of your eggs 

in one basket’ with a one-tailed test.    

Summarizing to this point, when conducting an experiment we tentatively accept that the 

null hypothesis is true unless there is sufficient evidence from the experiment to indicate that this is 

unlikely.  The criterion for deciding how unlikely the outcome must be in order to reject the null 

hypothesis is set by the experimenter when the alpha level is chosen.  If the null hypothesis is 

rejected, we then tentatively accept that the alternative hypothesis is correct.  Remember, with 

statistics we have not ‘proven’ that the alternative hypothesis is correct.  And though we are making 

informed decisions we recognize that making an error is still possible.  However, the use of the 

statistical procedures outlined in this text will reduce the likelihood of making an incorrect 

decision. 

To determine whether there is sufficient evidence to reject the null hypothesis we need to 

locate the position of our sample’s mean on the theoretical frequency distribution of all possible 

sample means which, you recall, is called the sampling distribution of the mean.  This requires that 

we have a measure of the variability of this distribution. 

It should be obvious that the sample means will differ from each other less than the 

individual scores will differ in the population from which these samples are drawn.  For instance, it 

is possible that a single score randomly selected from a population will be extreme, and thus differ 
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substantially from the population mean; but it is unlikely that even a relatively small sample would 

consist entirely of extreme scores and all of them in the same direction.  As a result, the means of 

samples will be grouped more closely around the population mean than the original scores were.  

Furthermore, the larger the sample, the less likely it is that it would consist entirely of an extreme 

group of subjects.  Thus, the larger the randomly selected samples, the closer their means are 

expected to be to the population mean.  This is an example of what is known in the field of statistics 

as the law of large numbers.  It states that the larger the size of the random sample the better the 

estimate of population parameters such as the mean.  How much the variability of sample means 

(M) is reduced as the sample size increases is determined with the following equation: 

M = 
𝐗

𝐧
 

The equation states that M , the standard error of the mean, which is the standard deviation 

of sample means, is equal to X, the standard deviation of scores, divided by n, the square root of 

the sample size.  Thus, as the sample size increases, M will decrease, just as we reasoned.     

Law of large numbers – The larger the sample size, the better the estimate of population  

 parameters such as . 

 

The equation M = X/n indicates that there is a relationship between the variability of the 

sample means (M), the variability of the scores (X), and the sample size (n).  Specifically, the 

variability of sample means, also called the standard error (M), will increase as the variability of 

the scores (X) increases or the sample size (n) decreases.  Alternatively, the variability of sample 

means (M) will decrease as the variability of the scores (X) decreases or the sample size (n) 

increases.  These relationships will be clearer with some examples.  We will begin by varying the 

sample size, n. 

Let us assume that our sample consisted of 4 subjects.  How will M and X be related? 

Remember: 

M = 
𝐗

𝐧
 

With a sample size of 4 this becomes: 

  M = 
𝑿

𝟒
   

        = 
𝑿

𝟐
  

Thus, if the sample size is 4, M (the variability of sample means) will be equal to only 1/2 of X  

(the variability of scores).  Put another way, if the sample size is 4, the means of these samples are 

expected to vary only half as much as the scores vary. 

What if our sample consisted of 9 subjects?  Now how will M and X be related? 
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M = 
𝐗

𝐧
 

      = 
𝑿

𝟗
   

      = 
𝑿

𝟑
  

Thus, if the sample size is 9, M (the variability of sample means) will be equal to only 1/3 of X  

(the variability of scores).  Put another way, if the sample size is 9 the means of these samples are 

expected to vary only one third as much as the scores vary. 

What if the sample size was increased to 25? 

M = 
𝐗

𝐧
 

      = 
𝑿

𝟐𝟓
   

      = 
𝑿

𝟓
 

Thus, if the sample size is 25, M will be reduced to only 1/5 of X.    

The relationship between the sample size and the magnitude of the standard error is shown 

in Figure 9.5.  Clearly, as the sample size increases, the variability of M is decreasing.  And 

remember, M is due to chance events, what we call error.  It is not due to our treatment.  So, 

increasing the sample size will decrease the error that is expected.  But, most of the decrease in the 

error occurs by the time you get to a sample size of 25 or 30.  And increasing the sample size 

beyond 100 has almost no effect.  In other words there is virtually no improvement in how well a 

sample mean matches the population mean with samples greater than 100. 

Figure 9.5 Relationship Between the Standard Deviation, Standard Error and the Sample Size 
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Now we will explore what happens to the magnitude of the standard error when the 

variability of the scores, in other words the value of X, is increased.  Specifically, if X is doubled 

from 15 to 30 while the sample size remains constant with an n of 9, how does M change?  

When X = 15 and n = 9: 

M = 
𝐗

𝐧
 

      = 
𝟏𝟓

𝟗
   

      = 
𝟏𝟓

𝟑
  

     = 5 

And when X = 30 and n = 9: 

M = 
𝐗

𝐧
 

      = 
𝟑𝟎

𝟗
   

     = 
𝟑𝟎

𝟑
  

     = 10 

Thus, as the variability of the scores doubles, in other words as the value of X doubles, so does the 

magnitude of M.  Put another way, samples drawn from more variable populations are expected to 

vary more than samples drawn from less variable populations. 

 As was previously noted, it can be proven mathematically that if you randomly select a large 

number of samples, all of the same size, from a normally distributed population, the distribution of 

these sample means (the sampling distribution of means) will also be normally distributed.  It is 

unlikely that you would ever do this, but the conclusion is important.  Further, you have learned 

that the mean of these sample means (MG) would be an excellent predictor of the population mean 

().  And the standard deviation of the sampling distribution of means (the standard error, M) will 

equal the standard deviation of population scores (X) divided by the square root of the sample size 

(n).  These critically important conclusions are summarized in what is known as the central limit 

theorem. 

The Central Limit Theorem 

 
 Many inferential procedures assume that a sample is being drawn from a normally 

distributed population.  This assumption is necessary because these tests are based upon sampling 

distributions.  In the case of the one-sample z test this is the sampling distribution of the mean.  And 

we have noted that if the underlying population of scores from which the sample is drawn is 



226 
 

normally distributed, then the sampling distribution of the mean will also be normal.  It may have 

occurred to you, however, that this raises a problem, for how would a researcher possibly know if 

the population they are interested in actually has a normal distribution unless, as with the IQ test 

and SAT, this has been previously determined?   

Fortunately, it can be shown mathematically that as the sample size increases, the shape of 

the distribution of sample means (the sampling distribution of the mean) rapidly approximates the 

normal distribution irrespective of the shape of the population from which it is drawn.  If the 

population is normally distributed, then the shape of the distribution of sample means will be 

normal regardless of the sample size.  Furthermore, if the population closely approximates being 

normal, then even with a small sample size the shape of the distribution of sample means will be 

close to normal.  However, if the population is markedly non-normal, then the sample size will have 

to be larger before the shape of the distribution of sample means will approach being normal. 

Unfortunately, since we often don’t know what the shape of the original population is, we don’t 

know precisely how large our sample needs to be in order to result in a sampling distribution of the 

mean that is approximately normally distributed.  As a general rule of thumb, so long as the sample 

has 30 or more subjects you can safely assume the sampling distribution is essentially normal.  In 

addition, according to the central limit theorem, the mean of the sample means making up a 

sampling distribution (MG) is an excellent predictor of the population mean ().  Finally, the 

standard deviation of the sampling distribution (M) is equal to X/n.   

Central limit theorem –  

   –With increasing sample sizes, the shape of the distribution of sample means (sampling  

  distribution of the mean) rapidly approximates the normal distribution irrespective  

  of the shape of the population from which it is drawn.   

   –The mean of the distribution of sample means (MG) is an unbiased estimator of the  

  population mean.  

   –And the standard deviation of the distribution of sample means (M) will equal X /n . 

   

Conducting A One-Sample z Test 

 
 Returning to our example of whether mental exercises affect IQ, let us assume that, based 

upon a sample size of 25, the mean of the sample of IQ scores was 105.  Recall that IQ scores are 

essentially normally distributed, the mean of the population of IQ scores is known to be 100, and 

the standard deviation of IQ scores is 15.  The null hypothesis would state that any difference 

between the sample and population means is due to chance.  The alternative hypothesis is that this 

observed difference is indicative of a true difference existing between the sample and population 
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means.  The one-sample z test can be used to decide between these two hypotheses.  As is common 

we set alpha equal to .05.  Since no direction for the outcome has been predicted, this is a two-tailed 

test and thus one half of the area of rejection will be located in each tail of the theoretical frequency 

distribution (the sampling distribution of the mean).  In other words, the area of rejection will 

consist of .05 / 2, which equals .025, in each tail (Figure 9.6).  From the z table we ascertain that an 

area of .025 in the lower tail of the distribution is equivalent to a z of –1.96 (Appendix K, Table 1a), 

and the area of .025 (which is equivalent to a percentile rank of 0.975) in the upper tail is 

equivalent to a z of +1.96 (Appendix K, Table 1b).  In order to reject the null hypothesis our 

outcome would need to be more extreme than one of these z scores.   

Figure 9.6 The Two-tailed Test  

 
 
 

 We can now conduct our z test: 

 z = 
𝐌 – 

𝐌
   

M and  are known and can be substituted directly into the equation: 

z = 
𝟏𝟎𝟓 – 𝟏𝟎𝟎

𝐌
    

However, M needs to be calculated from the equation: 

M = 
𝐗

𝐧
 

      = 
𝟏𝟓

𝟐𝟓
   

      = 
𝟏𝟓

𝟓
  

      = 3 

We can now substitute this value into our equation for z: 

z = 
𝟏𝟎𝟓 – 𝟏𝟎𝟎

𝐌
   

   = 
𝟏𝟎𝟓 – 𝟏𝟎𝟎

𝟑
   

   = 
𝟓

𝟑
  

   = 1.67 

 Recall that we previously determined that an area of .025 in the tails of the distribution is 

equivalent to a critical value of + or –1.96 (Appendix K, Tables 1a and 1b).  Thus an obtained z 

beyond +/ – 1.96 leads us to reject the null hypothesis.  With an obtained value within +/– 1.96 we 

  .025     .025 
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do not reject the null hypothesis.  In our example the obtained z of 1.67 is less than the critical value 

of 1.96, so we retain the null hypothesis.  Stated differently, our obtained sample mean of 105 is 

1.67 standard units from the population mean of 100.  Since we are dealing with the deviation of a 

sample mean from the population mean we could also say that the sample mean of 105 is 1.67 

standard errors from the population mean of 100.  However, to reject the null hypothesis we would 

need a sample mean more than 1.96 standard errors from the population mean.   

Reporting The Results Of An Insignificant One-Sample z Test 

 

In an article we would state, “There was not sufficient evidence that the IQ scores of 

subjects who had engaged in mental exercise (M = 105, SEM = 3) differed from the expected 

population value (z = 1.67, p > .05)”.  It is important to note the direction of the > symbol. 

Examining The Effect Of Using A One-Tailed Test 

 
 It is instructive to reexamine the previous example assuming that a one-tailed test had been 

appropriate.  Remember, choosing a one-tailed test would need to have occurred before the data 

were collected, but for illustration purposes let us assume that prior research had suggested that 

mental exercises would have increased IQ scores.  If so, we would have been justified in utilizing a 

one-tailed test with all of the rejection area in the high end of the curve.  The critical value of z, with 

alpha equal to .05, would be found by looking for an area of .95 in the body of the z table (Appendix 

K, Table 1b).  The middle of the range of critical values would be +1.64 or +1.65.  As this is a one-

tailed test the direction of the outcome is important.  The null hypothesis would now be that mental 

exercises would increase IQ and thus we would reject the null only if the obtained value of z was 

greater than the new critical value.  As our obtained z of +1.67 is greater than the critical value, and 

is in the predicted direction, we would now have a statistically significant difference.  Clearly, 

whether you initially choose to conduct a one- or two-tailed test can matter. 

Another Example Of The One-Sample z Test 

 
To be certain that you understand the use of the one-sample z test we will review another 

example.  Let us assume that we are interested in ascertaining whether high school students with 

low grade point averages have the same SAT scores as the general population of students who took 

the test.  The null hypothesis would be that the mean SAT of these students is the same as the mean 

SAT for the general population, which is 500.  The alternative hypothesis would be that the mean 

SAT score of these students differs from what is found with the general population.  As no direction 

has been specified for an outcome this is a two-tailed test and, as usual, we set alpha equal to .05.  In 

order to differentiate between the null and alternative hypotheses we collect SAT scores from a 



229 
 

random sample of 49 high school students who have low grade point averages.  We find that the 

mean SAT of this sample is 467.  As it is known that the standard deviation of the SAT test is 100, 

and that the SAT test is normally distributed, we can now conduct our one-sample z test: 

 z = 
𝐌 – 

𝐌
    

 M and  are known and can be substituted directly into the equation: 

z = 
𝟒𝟔𝟕 – 𝟓𝟎𝟎

𝐌
   

As before, M needs to be calculated from the equation: 

M = 
𝐗

𝐧
 

      = 
𝟏𝟎𝟎

𝟒𝟗
   

      = 
𝟏𝟎𝟎

𝟕
  

      = 14.29 

We can now substitute this value for the standard error into our equation for z: 

z = 
𝟒𝟔𝟕 – 𝟓𝟎𝟎

𝐌
   

   = 
𝟒𝟔𝟕 – 𝟓𝟎𝟎

𝟏𝟒.𝟐𝟗
   

   = 
−𝟑𝟑

𝟏𝟒.𝟐𝟗
  

   = –2.31 

 Recall that for a two-tailed test with an alpha equal to .05 the critical value is + or –1.96.  As 

our obtained z of –2.31 is beyond (more extreme than) the critical value, we reject the null 

hypothesis that there is no difference between the SAT scores of high school students with low 

grade point averages and the SAT scores of the general population, and we accept the alternative 

hypothesis that there is a difference.   

Reporting The Results Of A Significant One-Sample z Test 

 
In an article, we could say, “There was evidence that high school students who had low 

grade point averages had lower SAT scores (M = 467, SEM = 14.29) than the general population of 

students who have taken the exam (z = –2.31, p < .05)”.  

Finding A Confidence Interval For z 

 
 The one-sample z test deals with whether the difference between the sample and  

population means is sufficient to reject the null hypothesis.  Alternatively, we could take the data 

from our sample and instead ask what is the range of values that has a known probability of 

including the population mean.  For instance, let us assume that a sample of 9 students taking a 
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statistics course has a mean IQ of 120.  We could now use this information to estimate the value of 

their population mean.  For instance, we could ask what range of values has a 60% probability of 

including the population mean.  This is an example of what statisticians call a confidence interval. 

 Confidence interval – The range of values that has a known probability of including the  

  population parameter, usually the mean. 

 

We begin with a figure so we can visualize what we are seeking (Figure 9.7).  This is the 

region of the distribution that is closest to the .  Thus, for our example 60% of the area of the 

distribution has been divided into two equal regions, each of 30%, around . 

Figure 9.7 Illustration of a 60% Confidence Interval 
 

 
            

 

 

 

 Next, we turn to the z table to ascertain the two values of z that will include 30% of the 

distribution above and below the mean.  The lower value is approximately –0.84.  [You can 

determine this value by looking in the z table (Appendix K, Table 1a) for the z score equivalent to a 

proportion of 0.20, which is the area in the lower tail.  This is found through subtraction:  .50, the 

total proportion of the curve below the mean, minus .30, the proportion already specified.]  The 

upper value is approximately +0.84.  (You can determine this value by looking in Table 1b of 

Appendix K for the z score equivalent of a proportion 0.80, which is 0.50, the area below the mean, 

plus 0.30, the area indicated above the mean.)  Thus we will be looking for an interval that extends 

from –0.84 to +0.84 standard errors from the population mean.  This is shown in Figure 9.8.   

Figure 9.8 Identification of the Equivalent z Scores for a 60% Confidence Interval 
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We now need to convert these critical values of z (–0.84 and +0.84) obtained from the z 

table into the equivalent mean IQ scores based upon samples of size 9.  To do so we calculate the 

following interval: 

M – zc (M) ≤    ≤ M + zc (M) 

 
where zc is the critical value for z we obtained from the z table.  Note, however, that when entering 

values we are ignoring the sign, + or –, of the critical values of z we have just obtained.  Thus zc is an 

absolute value, in this case 0.84.  The lower limit of the confidence interval is M – zc (M), and the 

upper limit is M + zc (M).  This is shown in Figure 9.9. 

Figure 9.9 Determining the Lower and Upper Confidence Interval Limits  

 
 
 
 
 

                      
 In our example the values of M and zc have already been determined and can be substituted 

directly into the confidence interval.  However, M needs to be calculated from the equation: 

M = 
𝐗

𝐧
 

The standard deviation of the IQ test is 15, and our sample size is 9, therefore: 

M = 
𝟏𝟓

𝟗
   

      = 
𝟏𝟓

𝟑
  

      = 5 

Substituting we obtain: 

120 – 0.84(5) ≤    ≤ 120 + 0.84(5) 

120 – 4.2 ≤    ≤ 120 + 4.2 

115.8 ≤    ≤ 124.2 

Based upon our sample of size 9 with a mean of 120 and a standard error of 5, we can say 

that the probability is .60 that a confidence interval with a range of 115.8 to 124.2 will include the 

population mean IQ of the statistics students *.  This interval is illustrated in Figure 9.10.   

Figure 9.10 Illustration of a 60% Confidence Interval 
 

       M – zc (M)            M + zc (M) 
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*The meaning of a confidence interval may be clearer if you look at the situation from two 

perspectives: 

1. From the standpoint of the population mean.  The population mean is either included 

within the confidence interval, or not.  The probability is thus 1 if it is within, and 0 if it does 

not fall within the confidence interval.  And since the population mean is fixed and thus not 

varying, repeatedly asking if the population mean is within the same confidence interval 

will lead to the same answer – the probability remains 1 or 0.  Thus the probability of the 

population mean falling within a confidence interval derived from a single sample is either 1 

or 0.   

2.  From the standpoint of the confidence intervals.  If we take a series of samples and 

construct confidence intervals we will find, with alpha equal to .05, that 95% of these 

confidence intervals will include the population mean, and 5% will not.  Thus there is a 95% 

probability that a particular confidence interval includes the population mean if alpha 

equals .05.  The same logic is used with other values of alpha. 

  

What is the effect if you kept all the other values of our example the same, but changed from 

a 60% confidence interval to a 95% confidence interval?  You would begin, as before, by dividing 

0.95 by 2 to obtain 0.475.  This is the proportion of the curve desired on each side of the population 

mean.  Recall that the total area on each side of the population mean with a symmetrical 

distribution is 0.50.  The difference between 0.50 and 0.475 is 0.025, which is the area of the curve 

in each extreme tail.  We previously determined that a proportion of 0.025 is equivalent to a z score 

of –1.96, and a proportion of 0.975 (this is found by adding 0.50, the area below the mean, plus 

0.475, the area above the mean) is equivalent to a z score of +1.96.  Therefore, we would be looking 

for an interval that extends from 1.96 SD units below the mean to 1.96 SD units above the mean.  

This is illustrated in Figure 9.11. 

Figure 9.11 Determining a 95% Confidence Interval 
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The confidence interval would again be calculated as follows: 

M – zc (M) ≤    ≤ M + zc (M) 

120 – 1.96(5) ≤    ≤ 120 + 1.96(5) 

120 – 9.8 ≤    ≤ 120 + 9.8 

110.2 ≤    ≤ 129.8 

This confidence interval is illustrated in Figure 9.12.   

Figure 9.12 Illustration of a 95% Confidence Interval 

 
 

 

 

 

As you would expect, the 95% confidence interval is considerably larger than the 60% confidence 

interval we calculated previously (you need a wider range of values to have a .95 probability that a 

confidence interval will include the population mean than only a .60 probability). 

 The vast majority of confidence intervals are two-sided, as in the previous examples.  It is 

possible, however, to calculate a one-sided confidence interval when you are making a directional 

prediction (a one-tailed test).  Since this is an introductory text we will limit our discussion of 

confidence intervals to situations where we have a two-tailed, and thus non-directional, hypothesis. 

We have now nearly finished our introduction to the one-sample z test.  In closing, we will 

list the purpose and limitations, and then the assumptions, of the one-sample z test, followed by a 

brief summary. 

Purpose And Limitations Of Using The One-sample z Test 
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1. Test for difference.  The one-sample z test is employed to determine whether the difference 

between a sample mean and an hypothesized or known population mean is due to chance 

or is instead indicative of a reliable difference.  Directional and non-directional hypotheses 

can be tested.  

2. Does not provide a measure of effect size.  The one-sample z test is a test of significance.  It 

indicates whether or not an outcome is likely to have occurred by chance if the null 

hypothesis is correct.  If the z test is significant a measure of effect size such as Cohen’s d 

should then be calculated.  However, as the one-sample z test is not as frequently used as 

other procedures that will be reviewed in this text a discussion of a measure of effect size 

for this test was not included. 

Assumptions Of The One-sample z Test 

 
1. Interval or ratio data.  The data are on an interval or ratio scale of measurement. 

2. Random sample.  The sample is drawn at random from the population. 

3. Normally distributed population.  The population from which the sample is drawn has a 

normal distribution of scores.  However, as stated in the Central Limit Theorem, the one-

sample z test is accurate (is robust) even if the underlying population is not normally 

distributed so long as the sample size is at least 30. 

4. The population standard deviation is known. 

Summary Of The One-sample z Test  
 

The one-sample z test is an inferential statistical procedure used to differentiate between 

null and alternative hypotheses.  In order to use the one-sample z test it is assumed that the 

population from which the sample is drawn is normally distributed and that its standard deviation 

is known.  (The central limit theorem extends the use of the z test to include situations where the 

shape of the population distribution is not known so long as the sample size is at least 30.)  If these 

conditions are met it is then the case that the sampling distribution of the mean will also be 

normally distributed and will have a standard error (M) equal to X / n.  The one-sample z test 

can then be conducted and the z table consulted to determine whether to accept the null hypothesis 

or, instead, to reject the null and accept the alternative hypothesis.  Alternatively, a confidence 

interval can be created. 

Progress Check 

 
Assume we are interested in whether an SAT review course actually increases SAT scores.  To 

determine this we randomly select 100 individuals from the general population who then take the 



235 
 

SAT review course.  At the conclusion of the course they take the SAT exam.  Their mean SAT score 

is 517.  (Recall that the SAT is normally distributed with a mean of 500 and the standard deviation 

is 100.) 

1.    Is this a one- or two-tailed test? 

2.    What is the obtained value for z? 

3.    What is your decision? 

 
 

Answers:  1. One-tailed   2. 1.7   3.  Reject the null hypothesis 
 

The One-Sample t Test 
 
 Although the one-sample z test can be very useful, it is limited to situations in which the 

value of the population standard deviation is known.  As a consequence in many situations it is not 

possible to utilize a z test.  Fortunately, when we do not know the value of the population standard 

deviation we can estimate it from the sample data.  Then we can use a very similar statistical 

procedure to the one-sample z test that is called the one-sample t test.    

In Chapter 3 you learned how to calculate the sample standard deviation.  We will see 

shortly that the equation we have used for the sample standard deviation can serve as the basis for 

estimating the population standard deviation (X).  The symbol for the sample standard deviation 

used in Chapter 3 was s.  However, just as we added the subscript x to the symbol  to clarify that 

we are referring to the standard deviation of scores, we will now use sX in the place of s.   

 To reacquaint you with the definitions and calculations that you previously learned, the 

symbols when describing population parameters and sample statistics are presented in Table 9.2 

and the equations that were covered in Chapter 3 are shown in Table 9.3.  

Table 9.2  Symbols Used when Describing Population Parameters and Sample Statistics 

 
    Population Parameter   Sample Statistic 
 
 Size of Data Set   N     n  

 Mean         M 

 Variance   X2     sX2 

 Standard Deviation of Scores X     sX 

 
Table 9.3  Equations for the Standard Deviation when Describing Populations and Samples 

 
    Population    Sample 

    X  =  
 (X – )2

N
    sX  =  

 (X – M)2

n − 1
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    X  =  
SS

N
    sX  =  

SS

n − 1
 

    X  =  
 x2

N
    sX  =  

 x2

n − 1
 

  

It was pointed out in Chapter 3 that the equations for the variance and standard deviation of 

sample data use n – 1 rather than n in the denominator.  Though dividing by n when calculating a 

standard deviation would provide an accurate measure of sample variability when used as a 

descriptive statistic, when used as an inferential statistic it consistently underestimates the value of 

X.  In other words, sX is a biased estimator of X if n instead of n – 1 is used in the denominator.  A 

biased estimator does not accurately predict what it is intended to because of systematic error.  sX 

is biased because a sample consists of a subset of a population and is likely, therefore, not to include 

the low frequency scores that tend to be more extreme.  This becomes an increasingly important 

issue as the sample size gets smaller.  Fortunately, as we have seen, there is a simple solution.  

Instead of dividing the sum of the squared deviations from the sample mean by the sample size, n, 

we instead divide by n – 1.  When we do this, the systematic error is eliminated.  In other words, we 

actually could compute two different measures of the standard deviation from any sample.  One 

would use n in the denominator and would be appropriate if we were solely interested in the 

variability of the sample (descriptive statistic).  This is a relatively rare situation.  The other option 

uses n – 1 in the denominator and is appropriate if we are interested in using the sample to 

estimate the variability of the population from which it was chosen (inferential statistic).  This is 

the much more common situation and in order to prevent confusion most texts, including this one, 

always use n – 1 in the denominator when calculating variances and standard deviations of 

samples.  Thus we do not need to constantly be considering whether we are calculating a standard 

deviation as a descriptive statistic, or as an inferential statistic.  And fortunately the sample mean is 

an unbiased estimator of the population mean and as a consequence we do not need to consider 

any correction to its calculation. 

 Biased estimator – An estimator that does not accurately predict what it is intended to  

  because of systematic error. 

 

 By using sX we have seen that we have an unbiased estimator of X.  However, when we use 

sX to estimate X we no longer use the one-sample z test.  Instead we use the one-sample t test.  As 

the following equations indicate, the one-sample z and t tests are very closely related: 

 One-sample z Test     One-sample t Test 

z = 
𝐌 – 

𝐌
      t = 

𝐌 – 

𝐬𝐌
 

where the standard error, M = 
𝐗

𝐧
   where the standard error, sM  = 

𝐬𝐗

𝐧
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Clearly, the only difference between the equations is that with the t test we use sM, an 

estimate of the standard error of the population which is derived from the sample data, whereas for 

the z test we use M, the standard error of the population.  

 It would be reasonable, but unfortunately incorrect, to assume that we could calculate the t 

statistic and then enter the z table to find the appropriate proportions.  The problem is that while 

the distribution of z is normal, the shape of the distribution of t varies depending upon the sample 

size (more precisely upon the degrees of freedom) and is only truly normal when the number of 

degrees of freedom is infinite.  The reason the sample size (degrees of freedom) matters is as 

follows. 

With both the z and t tests we are dividing by a standard error.  In the case of the z test, this 

is M, which is derived from X.  In the case of the t test, this is sM, which is derived from sX.  As was 

noted previously, sX is an unbiased estimator for X.  However, while X is a fixed characteristic of a 

population, sX is derived from sample data and thus varies.  The consequence is an increased 

variability in the t distribution, and the smaller the sample the greater the divergence from normal.  

This, in turn, affects the interpretation of sample data.  Specifically, the probabilities found with the 

normal distribution (used with z) to interpret M –  differences will be inaccurate if based upon sM, 

slightly for moderately sized samples, more dramatically for small samples.  And as a result, there is 

not a single distribution for use with the t test; there is a series or family of distributions, a different 

distribution for each degree of freedom.  When the sample size is small, the difference between the t 

distribution and the normal distribution (used with z) is substantial.  As the sample size increases, 

the difference between the two distributions becomes smaller.  With an infinite sample size the t 

distribution is normal.  Practically speaking, with samples larger than 30 there is little difference 

between the distributions.  The relationship of the family of t distributions to the normal or z 

distribution is illustrated in Figure 9.13. 

Figure 9.13 Relationship Between Sample Size and the t Distribution 

 
 
 
 
 From an inspection of Figure 9.13 it is evident that with small sample sizes the t 

distributions have a greater proportion of their areas located in the extreme tails than occurs with 

Normal Distribution 

Large Sample 

Small Sample 
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the normal distribution.  This means that to include a particular percentage of the curve, such as 

95%, we will have to move farther out into the tails.  In other words, while we have found from the 

z table that +/– 1.96 SD from the mean will include 95% of the area of the normal curve, it will be 

necessary to move farther from the mean to include 95% when we are using a t distribution.  How 

much farther will depend upon the specific sample size or, more precisely, the degrees of freedom.   

In other words, just as with the chi-square table there will be a different value for each different 

degrees of freedom.  In the case of the t distribution, df = n – 1, where n is the sample size.   

Turning to the t table for a two-tailed test (Appendix K, Table 3b), (note the change from z 

to t tables) we will begin by assuming we have set alpha at .05.  Proceeding to the bottom of the 

column headed by .05 we find a value of 1.96.  This is the same value as in the z table and indicates 

that if the degrees of freedom were infinite the t distribution would be normal and thus the critical 

value would be the same as with the z distribution.  As you go up this column, in other words as the 

number of degrees of freedom (and thus the sample size) decreases, the critical values of t increase.  

With 60 degrees of freedom, corresponding to a sample size of 61, the value of t is 2.00.  This is only 

slightly larger than 1.96.  However, with 10 degrees of freedom, corresponding to a sample size of 

11, the critical value of t has increased to 2.23 and with 1 degree of freedom, corresponding to a 

sample size of only 2, it has increased dramatically to 12.71.  The increase in the size of the critical 

value for t as the degrees of freedom decreases is the consequence of the shapes of the family of t 

distributions illustrated in Figure 9.13.   

The effect of degrees of freedom on the critical value of the t distribution can be illustrated 

with an example.  Let us assume that we have a sample of 6 subjects randomly selected from a 

normally distributed population with a μ of 10.  The null hypothesis is that the treatment did not 

have an effect.  The alternative hypothesis is that the treatment did have an effect.  This is a non-

directional (two-tailed) test and we set alpha equal to .05.   Following the treatment these subjects 

have been found to have a M of 14.40 and a SD of 4.90.  The standard error, sM, is therefore: 

sM  = 
𝐬𝐗

𝐧
 

      = 
𝟒.𝟗𝟎

𝟔
 

      = 
𝟒.𝟗𝟎

𝟐.𝟒𝟓
 

      = 2.00 

The equation for t is: 

t = 
𝐌 – 

𝐬𝐌
       

Substituting, we have t = 
14.40 – 10

2.00
   

 

        = 
𝟒.𝟒𝟎

𝟐.𝟎𝟎
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        = 2.20  

and  

   df = n – 1 

        = 6 – 1 

        = 5 

Referring to the t table for a two-tailed test (Appendix K, Table 3b), we find that the critical 

value with alpha equal to .05 and with 5 degrees of freedom is +/– 2.57.  As our obtained t of +2.20 

is less than the critical value of +2.57 we retain the null hypothesis.  This outcome is illustrated in 

Figure 9.14.  However, it is important to recognize that if the degrees of freedom had been 12 or 

larger then we would have rejected the null hypothesis. 

Figure 9.14 Comparison of Obtained and Critical Values for t 
 

 
            
 
 

Reporting The Results Of An Insignificant One-Sample t Test 

 
In an article, we would say, “There was insufficient evidence to reject the hypothesis that 

the sample (M = 14.40, SD = 4.90) was drawn from a population with a mean of 10 (t (5) = 2.20, p 

> .05)”.  It is important to note the direction of the > symbol and that no measure of effect size is 

included since our outcome was not statistically significant. 

The Effect Of Increasing Degrees Of Freedom 

 
It was just pointed out that if we had had 12 or more degrees of freedom in the previous 

example then the outcome would have been statistically significant.  Thus, a disadvantage with a 

small sample size is that you will need a larger experimental effect in order to find a statistically 

significant difference.  In other words, with a small sample size the power of the statistical test is 

low.  This issue is discussed in more detail in Appendix E. 

A Measure Of Effect Size For The One-Sample t Test 

 
With the previous example, assuming everything stayed the same except that we had 12 

degrees of freedom, then the one-sample t test would be significant which would indicate that the 

 
critical value of -2.57          0          critical value of +2.57 

obtained t of +2.20 
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outcome was unlikely to be due to chance.  However, as was the case with the one-sample z test, the 

one-sample t test does not indicate the effect size.   Fortunately, the percent of variance explained 

by the treatment can easily be found by calculating a commonly used measure, eta squared (2): 

2 = 
𝐭𝟐

𝐭𝟐 + 𝐝𝐟
  

For our example assuming there were 12 df this would be: 
 

 2 = 
𝟐.𝟐𝟎𝟐

𝟐.𝟐𝟎𝟐 + 𝟏𝟐
  

      = 
𝟒.𝟖𝟒 

𝟒.𝟖𝟒 + 𝟏𝟐
   

      = 
𝟒.𝟖𝟒 

𝟏𝟔.𝟖𝟒
   

      = .287 or 28.7% 

Thus, in this example with 12 degrees of freedom the treatment would have accounted for 

28.7% of the total variance.  In an article, after reporting the significant t, we would say, “2 equaled 

.287”. 

Eta squared (ƞ2) – A commonly used measure of effect size that indicates the percentage of  

 variation in the dependent variable that is explained or accounted for by the  

 independent variable. 

Confidence Interval For t 

 
 Just as with z, we can also find a confidence interval for t.  And, fortunately, the procedure 

for finding the confidence interval for a one-sample t statistic is almost identical to the procedure 

used with z: 

M – tc (sM ) ≤    ≤ M + tc (sM ) 

In this equation, M is the sample mean and tc is the absolute value of the critical value of t found in 

the t table (Appendix K, Table 3b).  Finally, sM is the estimate of the population standard error 

derived from the sample data. 

For our example with a sample size of 6, we would have: 

14.40 – (2.57) (2.00) ≤    ≤ 14.40 + (2.57) (2.00) 

this equals: 

14.40 – 5.14 ≤    ≤ 14.40 + 5.14 

or: 

9.26 ≤    ≤ 19.54 

We would state that with a sample size of 6 (and thus 5 df) there is a 95% probability that a 

confidence interval with values between 9.26 and 19.54 will include the population mean.  

(However, recognize that the same clarification that was noted in the discussion of the confidence 
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interval when using z also is true for t.)  It is also important to note that in this example the interval 

includes the hypothetical population mean of 10, which indicates that our t test was not statistically 

significant.  However, if we had used a larger sample the confidence interval would be smaller.  If 

you recalculate the confidence interval, except this time assuming a larger sample size of 13 (and 

thus 12 df), you will see that the population mean of 10 is no longer included within the confidence 

interval. 

 We have now nearly finished our introduction to the one-sample t test.  In closing, we will 

list the purpose and limitations, and then the assumptions, of the one-sample t test, followed by a 

brief conclusion. 

Purpose And Limitations Of Using The One-sample t Test 

 
1. Test for difference.  With a two-tailed test the null hypothesis is that the treatment does not 

have an effect.  Therefore, any difference between the sample mean and hypothesized 

population mean is due to chance.  The alternative hypothesis is that the treatment does 

have an effect and, therefore, the difference observed between the two means is not due to 

chance.  The one-sample t test is employed to differentiate between these two hypotheses.  

2. Does not provide a measure of effect size.  The one-sample t test is a test of significance.  It 

indicates whether or not an outcome is likely to have occurred by chance if the null 

hypothesis is correct.  If the t test is significant a measure of effect size such as eta squared 

(2) should then be calculated. 

Assumptions Of The One-sample t Test 

 
1. Interval or ratio data.  The data are on an interval or ratio scale of measurement. 

2. Random sample.  The sample is drawn at random from the population. 

3. Normally distributed population.  The population has a normal distribution of scores.  

However, as stated in the Central Limit Theorem, the probabilities associated with using the 

one-sample t test will be accurate even if the underlying population is not normally 

distributed so long as the sample size is at least 30.  If the sample size is less than 30, then 

the underlying population must be normally distributed.  If you cannot collect a larger 

sample and do not know if the assumption of normality has been met it is best to turn to an 

alternative test on the same row of Table 9.1.  

Conclusion 
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The one-sample t test is much like the one-sample z test that was covered previously in this 

chapter.  Both assume that the sample is drawn from a normally distributed population.  And each 

can be used to test an hypothesis and to construct a confidence interval.  The fundamental 

difference is that whereas the z test requires that we know the population standard deviation, X, in 

order to calculate the standard error, M, the t test is more flexible because it uses an estimate of X 

derived from the sample (sX).  A consequence of using sX to estimate X is that, particularly with 

small degrees of freedom, the t distribution differs substantially from the normal distribution.  In 

order to account for this discrepancy there is a family of t distributions.  

We have now completed the section of the book dealing with the one-sample z and t tests.  

Before continuing with the study of additional statistical procedures it may be helpful to take a few 

moments to review what we have accomplished and to put it into perspective.  By referring to Table 

9.1 (or Appendix L), you will see that we have begun our review of difference designs for use with 

interval or ratio data.  Specifically, we have learned how to analyze data from a design that uses 

only one sample.  We will soon be discussing more complex designs for use with independent 

samples as well as designs that use repeated measures.  Before doing so, please review Table 9.1 

(or Appendix L) in order to once again see the relationships among the statistical procedures.   

Glossary Of Terms 
 
Biased estimator – An estimator that does not accurately predict what it is intended to because of  

 systematic error. 

Central limit theorem –  

   –With increasing sample sizes, the shape of the distribution of sample means (sampling  

 distribution of the mean) rapidly approximates the normal distribution irrespective of the  

 shape of the population from which it is drawn.   

   –The mean of the distribution of sample means (MG) is an unbiased estimator of the  

 population mean.  

   –And the standard deviation of the distribution of sample means (M) will equal X /n . 

Confidence interval – The range of values that has a known probability of including the population  

 parameter, usually the mean. 

Error – An outcome due to chance. 

Eta squared (ƞ2) – A commonly used measure of effect size that indicates the percentage of  

 variation in the dependent variable that is explained or accounted for by the  

 independent variable. 

Grand mean (MG) – The mean of the sample means.   

Law of large numbers – The larger the sample size, the better the estimate of population  
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 parameters such as . 

One-sample t test – An inferential procedure for comparing a sample mean with a population mean  

 when the population standard deviation is not known.   

One-sample z test – An inferential procedure for comparing a sample mean with a population mean  

 when the population standard deviation is known. 

One-tailed or directional test – An analysis in which the null hypothesis will only be  rejected if an  

 extreme outcome occurs in the predicted direction.  In such a test, the single area of  

 rejection is equal to alpha and it is located in one tail of the sampling distribution.  

Two-tailed or nondirectional test – An analysis in which the null hypothesis will be rejected if an  

 extreme outcome occurs in either direction.  In such a test, the area of rejection is divided  

 into two parts, each equal to α / 2.  

Sampling distribution of the mean – A theoretical probability distribution of sample means.  The  

 samples are all of the same size and are randomly selected from the same population. 

Standard error of the mean (SEM) – The standard deviation of the sampling distribution of means. 
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Questions – Chapter 9 

 
(Answers are provided in Appendix J.) 

 
1. Which of the following is not true of the sampling distribution of the mean? 

a. distribution is symmetrical 
b. distribution is normal 
c. distribution is uni–modal 
d. distribution is skewed  

 
2.  In a _____ all of the region of rejection is placed in one end of the distribution. 

a. two-tailed test 
b. one-tailed test  
c. non-directional test 
d. none of the above 

 
3.  An experimenter wants to test whether a particular intervention will change students’ 

grades.  This is an example of a _____ test. 
a. one-tailed 
b.       two-tailed  
c.       three-tailed 

 
4.        In a one-tailed test, the area of rejection is _____. 
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a.       placed in one tail, but it does not matter which tail 
b.       divided equally in the two tails 
c.       placed in one tail based upon the previous literature  

 
5. The one-sample t test is used instead of the one-sample z test when _____ is not known. 
 a. The population mean 
 b. The population size 
 c. The population standard deviation  
 
6. The outcome of the one-sample z test is a number measured in _____. 
 a. The units of the original data, such as meters or pounds. 
 b. Standard error units  
 c. Units that vary with each problem 
 d. None of the above 
 
7. With a t test, the _____ must be estimated. 
 a. Population mean 
 b. Population size 
 c. Population standard deviation  
 
8. Degrees of freedom are used with the _____. 
 a. One-sample z test 
 b. One-sample t test  
 c. Both the one-sample z and t tests 
 
9. If we compare the z and t tables, assuming the criterion remains .05 the critical value for z 

will be _____ the critical value of t. 
 a. Smaller than  
 b. Larger than 
 c. The same as 
 
10. The statement that “the shape of the distribution of sample means (sampling distribution of 

the mean) rapidly approximates the normal distribution irrespective of the shape of the 
population from which it is drawn” is a part of the definition of _____.   

 a. a confidence interval 
 b. degrees of freedom 
 c. the central limit theorem  
 d. the law of large numbers  
 
11. The mean of a large sample provides a better estimate of the population mean than the 

mean of a small sample.  This is an example of _____. 
a. a confidence interval 

 b. degrees of freedom 
 c. the central limit theorem  

d. the law of large numbers 
 

12. Another name for the standard deviation of the sampling distribution of means is  
the _____. 
a. ultimate standard deviation 
b. positive standard deviation 
c. standard error  
d. maximum standard error 
 

13. The Confidence Interval has a known probability of including the _____. 
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a. population parameter  
b. sample statistic 
c. either the population parameter or the sample statistic 

  

For questions 14 to 19, use the following information:  A researcher is interested in whether 
drinking orange juice will have an effect on IQ.  Accordingly, 25 randomly selected subjects drink 
orange juice and the group is subsequently found to have a mean IQ of 102.  Is this a sufficient 
difference to conclude that drinking orange juice affects IQ?  Set alpha equal to .05.  (Remember, the 
mean of the commonly used IQ tests is 100 and the standard deviation is 15.) 
 
14. What is the null hypothesis? 

a. orange juice affects IQ 
b. orange juice does not affect IQ  

 
15. What is the standard error? 

a. 15 
b. 3  
c. 9 
d. 1 

 
16. What is the value of z for these data? 

a. 0.67  
b. 1.0 
c. 1.8 
d. 3.0 

 
17. Is this a one- or two-tailed test? 

a. one-tailed test 
b. two-tailed test  

 
18. What is the critical value from the z table? 

a. 1.96  
b. 2.58 
c. 1.64 or 1.65 
d. 1.00 

 
19. What conclusion do you make? 

a. retain the null hypothesis – there is not sufficient evidence to conclude  
that orange juice affects IQ  

b. reject the null hypothesis – there is sufficient evidence to conclude that  
orange juice affects IQ 

 c. there is not sufficient evidence to come to any decision 
 

For questions 20 to 25, use the following information:  A researcher is interested in whether giving 
rats a particular diet will have an effect on how fast they run a maze.  Accordingly, 20 randomly 
selected subjects are given the experimental diet and this group is subsequently found to have a 
mean run time of 130 seconds.  Is there sufficient evidence to conclude that the diet has had an 
effect on running speed if it is known that the mean of the population of rats without the special 
diet is 125 seconds and the standard deviation of the population is 10.5 seconds?  Use alpha equal 
to .05. 
 
20. What is the null hypothesis? 

a.       The experimental diet affects running speed 



246 
 

b.       The experimental diet does not affect running speed  
 

21. What is the standard error? 
a.       10.5 
b.       20 
c.       4.47 
d.       2.35  

 
22. What is the value of z for these data? 

a.       5 
b.       1.96 
c.       2.13  
d.       3.0 

 
23. Is this a one- or two-tailed test? 

a.       one-tailed test 
b.       two-tailed test  

 
24. What is the critical value from the z table? 

a.       1.96  
b.       2.58 
c.       1.64 or 1.65 
d.       1.00 

 
25. What conclusion do you make? 

a.       retain the null hypothesis – there is not sufficient evidence to conclude  
that the diet affects running speed 

b.       reject the null hypothesis  – there is sufficient evidence to conclude that  
the diet affects running speed  

 c. there is not sufficient evidence to come to any decision 
 
 
For questions 26 to 33, use the following information:  A researcher is interested in whether 
applying a particular fertilizer will have an effect on crop production.  Accordingly, 20 randomly 
selected plants are given the experimental fertilizer and this group is subsequently found to 
produce a mean of 30 pounds of fruit.  Is there sufficient evidence to conclude that the fertilizer has 
had an effect if it is hypothesized that the mean production without the fertilizer is 25 pounds and 
the estimate of the population standard error, derived from the sample, is 2.13 pounds?  Use alpha 
equal to .05. 
 
26. What is the null hypothesis? 

a.       The experimental fertilizer affects crop production 
b.       The experimental fertilizer does not affect crop production  

 
27. Would you employ a z or a t test for these data? 

a. z test 
b. t test  

 
28. What is the value of the statistical test for these data? 

a.       2.35  
b.       1.96 
c.       2.19  
d.       3.06 
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29. Is this a one- or two-tailed test? 
a.       one-tailed test 
b.       two-tailed test  

 
30. How many degrees of freedom are there? 

a. 18 
b. 19  
c. 20 
d. 21 
e. It is not possible to determine the degrees of freedom for these data. 

 
31. What is the critical value from the appropriate table, assuming alpha is set at .05? 

a.       1.96  
b.       2.58 
c.       2.093  
d.       3.441 

 
32. What conclusion do you make? 
 a. retain the null hypothesis – there is not sufficient evidence to conclude  

that the fertilizer affects crop production 
b. reject the null hypothesis  – there is sufficient evidence to conclude that  

the fertilizer affects crop production  
c.       there is not sufficient evidence to come to any decision 

 
33. What is the confidence interval that has a 95% probability of including the population 
 mean?   

a. 24.77 ≤  ≤ 35.23 
b. 28.52 ≤  ≤ 31.48 
c. 26.54 ≤  ≤ 33.46 
d. 20.15 ≤  ≤ 39.85 
e. 25.54 ≤  ≤ 34.46  

 
For questions 34 - 36 assume that a sample of 16 students taking a statistics course has a mean IQ 
of 108.  What interval has a 95% probability of including the population mean?   Remember, σX = 
15 for the IQ test. 
 
34. What is the standard error? 

a.       3.75  
b.       15 
c.       4 
d.       16 

 
35. What is the critical value from the z table? 

a.       1.96  
b.       2.58 
c.       1.64 or 1.65 
d.       .67 

 
36. What is the confidence interval that has a 95% probability of including the population 
 mean? 
 a.         105.49 ≤  ≤ 110.51 
 b.         103.5 ≤  ≤ 112.5 
 c.         100.65 ≤  ≤ 115.35  
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 d.         100 ≤  ≤ 116 
 
 
For questions 37 – 39 use the same information as in the previous questions (34 – 36) except 
answer what interval has a 50% probability of including the population mean.    
 
37. What is the standard error? 

a.        3.75  
b.        15 
c.        4 
d.       16 

 
38. What is the critical value from the z table? 

a.       1.96  
b.       2.58 
c.       1.64 or 1.65 
d.       .67  

 
39. What is the confidence interval that has a 50% probability of including the population 
 mean? 
 a.         105.49 ≤  ≤ 110.51  
 b.         103.5 ≤  ≤ 112.5 
 c.         100.65 ≤  ≤ 115.35  
 d.         100 ≤  ≤ 116 
 

SPSS procedures are rarely use for the statistical tests described in this chapter. 
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Chapter 10   
Finding Differences with Interval and Ratio Data – II:   
The Independent Samples t and Dependent Samples t 

Tests 
 

“Science is simply common sense at its best, that is, rigidly accurate in observation,  

and merciless to fallacy in logic.” 

Thomas Huxley 

Introduction 
  

This chapter will discuss two of the most commonly employed statistical tests.  Both are 

conceptually similar and, as you will see, each is closely related to the one-sample t test that was 

reviewed in Chapter 9.  The first of these tests is called the independent samples t test.  After 

discussing this procedure we will turn to the dependent samples t test.  These tests are underlined 

in Table 10.1. 

Independent samples t test – An inferential procedure for comparing two means from  

 unrelated samples. 

 
 

Table 10.1 Overview of Inferential Statistical Procedures for Finding if there is a Difference 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 

 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
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Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   
___________________________________________________________________________________________________________________________________________ 

The italicized procedure is reviewed in Appendix A. 

Independent Samples t Test 
 

We often see studies that compare one group of subjects that receives a treatment with 

another group that serves as a control and does not receive the treatment.  For instance, we could 

study the effect of background noise on learning and memory by randomly assigning subjects to 

either read a passage in a quiet classroom or while listening to loud music.  Subsequently we could 

compare their retention of the passage’s information.  Alternatively, two preexisting groups, such as 

men and women, might be compared on some measure, such as their reaction to bright light.  These 

are both examples of the two independent samples design.  Studies that compare two independent 

groups are very popular and, if the data are interval or ratio, and assumptions are met, can be 

analyzed with a form of the t test that is called the independent samples t test, the t test for 

independent samples, or just the independent t test.   

 Table 10.1 indicates that with this experimental design and ordinal data we would use the 

Kruskal-Wallis H test which is reviewed in Appendix A (there are other alternatives).  With interval 

or ratio data either the independent samples t test or the one-way between-subjects ANOVA 

(analysis of variance, reviewed in Chapter 11) is appropriate.  The advantage of the independent 

samples t test compared to the ANOVA is that it is somewhat easier to calculate.  However, the one-

way between-subjects ANOVA is more flexible as it can be used with designs that have more than 

two samples.   

 As was just noted, the t test for two independent samples (independent samples t test) is 

conceptually very similar to the t test for one sample of subjects which was reviewed in Chapter 9.  

As you recall, when there is only one sample, the t test examines whether a difference between the 

sample mean (M) and the population mean () is likely to have happened by chance.  This is 

accomplished by converting this difference into standard deviation units.  And what distinguishes 

the one-sample t test from the one-sample z test is that with the t test we do not need to know the 

value of the population standard deviation.  Instead we substitute an estimate of the population 

standard deviation (σX) derived from the sample (sX).  This estimated standard deviation is then 

used to calculate the standard error of the mean (sM).  Dividing the difference between the sample 

mean and the population mean (M – ) by sM leads to an outcome measured in standard deviation 

units. Specifically, for a one-sample study: 



251 
 

t = 
𝐌 – 

𝐬𝐌
        

where the standard error, sM  = 
𝐬𝐗

𝐧
   

As there are a series of t distributions, the degrees of freedom, which for the one-sample t 

test are equal to n – 1, must then be calculated.  Finally, the value obtained for t is compared with 

the critical value found in the t table (Appendix K, Tables 3a and b). 

With the independent samples t test the logic is essentially the same.  However, as we are 

now dealing with two sample means, not one, we are no longer examining whether a difference 

between a single sample mean and a population mean (M – ) is likely to have happened by chance.  

Instead we are comparing the difference of a pair of sample means (M1 – M2) to the hypothesized 

difference between the corresponding pair of population means (1 – 2).  More specifically, we are 

examining whether this difference [(M1 – M2) – (1 – 2)] is likely to have happened by chance.  To 

do so we substitute a difference between means for each mean in the above one-sample t equation.  

Thus instead of a single sample mean (M) we substitute the difference between sample means (M1 

– M2).  And instead of a single population mean () we substitute the difference between two 

population means (1 – 2).  Finally, instead of dividing by a standard error of the mean (sM), we 

substitute the standard error of the difference between sample means (𝐬(𝐌𝟏− 𝐌𝟐)).  (Note that 

𝐬(𝐌𝟏− 𝐌𝟐) is a single number.)  Thus, for an independent samples t test the equation becomes: 

    t = 
(𝐌𝟏− 𝐌𝟐) – (𝛍𝟏 − 𝛍𝟐)

𝐬(𝐌𝟏− 𝐌𝟐)
 

Standard error of the difference between sample means (𝐬(𝑴𝟏− 𝑴𝟐)) – The standard  

 deviation of the sampling distribution of the difference between sample means. 

 

The parallels between the one-sample t test and the independent samples t test may 

become clearer by referring to Table 10.2. 

Table 10.2 Parallels Between the One Sample t Test and the Independent Samples t Test 

  One Sample t Test    Independent Samples t Test 

Sample mean  M  Difference between sample means  M1 – M2 

Population mean     Hypothesized difference between  

           population means    1 – 2 

Standard error of        Standard error of the difference between 

            the mean  sM       sample means               𝐬(𝐌𝟏− 𝐌𝟐) 

Equation for t  t = 
𝐌 – 

𝐬𝐌
         t = 

(𝐌𝟏− 𝐌𝟐) – (𝛍𝟏 − 𝛍𝟐)

𝐬(𝐌𝟏− 𝐌𝟐)
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As you will see, the equation for the independent samples t test is easy to use.  However, 

before turning to an example we will first review what this equation is accomplishing and then turn 

to an explanation of the logic underlying this form of the t test. 

What The Equation For The Independent Samples t Test Accomplishes 

 
 The numerator of the independent samples t test indicates that we are to find the difference 

between our two sample means and from this subtract the hypothesized difference between the 

corresponding population means.  Finding sample means is not difficult and, clearly, neither is 

finding their difference.   

The proposed difference between the two population means is a reflection of the null 

hypothesis.  For instance, if the null hypothesis is that the treatment will not have an effect, then the 

control and experimental population means are assumed to be equal and thus their difference (1 – 

2) is predicted to be zero.  In this case, which is quite common, the numerator of the equation for t 

reduces to simply the difference between the two sample means.  On the other hand, the null 

hypothesis might state that 1 – 2 is not zero.  For instance, previous research may suggest that 

there is a pre-existing difference between two groups.  An example would be that men are generally 

a few inches taller than women, and thus the hypothesized difference between the heights of men 

and women would not be zero.   

The difference between the two sample means and the two population means is then 

divided by the appropriate standard deviation measure.  In the case of the independent samples t 

test this is the standard error of difference between sample means (𝐬(𝐌𝟏− 𝐌𝟐)) .  This will convert 

the difference found in the numerator into standard deviation units.  Then the outcome is 

interpreted by referring to the t table. 

The Logic Of The Independent Samples t Test 
 

Before turning to an example it is important to understand how the independent samples t 

test is related to previous procedures we have discussed.  We will begin with a review of the logic of 

the z score and then turn to the one-sample z and one-sample t tests as these form the basis for the 

independent samples t test.  This discussion is somewhat theoretical, but it is useful in 

understanding the logic of these statistical tests. 

In Chapter 4 it was noted that to convert a score (X) into a z score we use the  

equation z = (X – ) / X .  In this equation we are dividing the difference (X – ) by a standard 

deviation (X ) in order to convert this difference into standard deviation units.  If the distribution 
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of the population of scores (X) is normal we can then use the z table to determine the probabilities 

associated with this difference. 

The logic for the one-sample z test is the same:  we take a difference, this time (M – ), and 

divide by a standard deviation.  However, as we are now dealing with a sample mean (M) rather 

than a score (X), we need to divide by a measure of the variability of sample means.  This measure 

of variability is called the standard error of the mean and has the symbol M.  Thus the equation for 

a z test becomes z = (M – ) / M.  Since it is known that the theoretical distribution of sample 

means, which is called the sampling distribution of the mean, is normal when the population of 

scores from which the sample was drawn was normal, we can then turn to the z table and compare 

our outcome to the critical value. 

Recall that to conduct a z test we need to know the standard deviation of the population 

(X) from which the sample was drawn.  We can then calculate the standard error of the mean, as 

M = X / n.  Unfortunately, in most cases we do not know X and thus we cannot find the value of  

M.  However, in Chapter 9 you learned that M can be estimated from the variability in the sample 

(sX).  Specifically, sM  = sX / n.  The equation for the one-sample t test is t = (M – ) / sM  which is 

identical to the equation for the one-sample z test except that we are using sM as an estimate of M.  

Finally, we do not use the z table with a t test but instead turn to the t table and take the sample size 

into account by calculating the degrees of freedom. 

The logic for the independent samples t test (two independent samples t test) parallels 

what was just said for the one-sample t test.  Once again we have a difference being converted into 

standard deviation units.  And once again we must use the appropriate estimate of the variability to 

do so.  Finally, we must utilize the t table rather than the z table and take into account the degrees 

of freedom.  What is new is that we are now comparing the difference of two sample means (M1 – 

M2) to the predicted difference of the corresponding population means (1 – 2).  And to convert 

this difference of sample and population means into standard deviation units we must divide by an 

appropriate measure of variability, in this case the standard error of the difference between sample 

means (𝐬(𝐌𝟏− 𝐌𝟐)).  The result, as was noted previously, is that the equation for the independent 

samples t test closely parallels the equation for the one-sample t test. 

And it was noted previously in the discussion of the logic of the z test that if the population 

of scores from which the sample was drawn was normally distributed, then the sampling 

distribution of the mean would also be normally distributed.  Similarly, it can be shown that the 

sampling distribution of the difference between sample means is also normally distributed if each 

of the populations from which the samples are drawn are normally distributed.  However, because 

we are utilizing an estimate of the standard deviation of the difference between means which is 
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derived from the samples, we must once again use the t table rather than the z table.  Thus, the logic 

of the independent samples t test directly parallels the logic of the one-sample t test.   

An example illustrating the calculation of an independent samples t test will assist you in 

seeing the parallel between this statistical procedure and the one-sample t test which was 

discussed in Chapter 9. 

Conducting An Independent Samples t Test  

 
An example of a two independent samples design would be a fictitious comparison of the 

effectiveness of two methods for teaching statistics.  To conduct the study, each subject would be 

randomly assigned to either the standard teaching procedure or an alternative procedure (the 

sample sizes do not have to be equal but they should be similar – and in this example very small 

samples were chosen to aid in the calculations).  The standard procedure would be considered the 

control condition, and the alternative procedure would be the experimental condition.  As is often 

the case, the null hypothesis is that there is no difference between the conditions.  The alternative 

hypothesis is that there is a difference.  After exposure to either the standard or alternative 

teaching procedure each subject would then be tested to determine their mastery of statistics.  This 

is a two-tailed test and assuming that alpha was set to .05, what should the researcher decide about 

the effectiveness of the teaching procedures if the scores in Table 10.3 were obtained on a 15-item 

quiz? 

Table 10.3 Example 1:  Two Samples of Ratio Data and the Initial Calculations 

 Experimental Condition             Control Condition 

X1  (X1 – M1) (X1 – M1)2  X2       (X2 – M2)         (X2 – M2)2 

13      3  9   6      2  4 

12      2  4   6      2  4 

11      1  1   4      0  0 

  9    –1  1   2    –2  4 

  8    –2  4                 2    –2                4 

  7    –3                9          

X1 = 60         x1 = 0          x1
2 = 28            X2 = 20             x2 = 0         x2

2 = 16 

n1 = 6          n2 = 5 

M1 = 60 / 6        M2 = 20 / 5 

      = 10              = 4 

 

 Recall that the equation for t with two independent samples was given previously as: 
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 t = 
(𝐌𝟏 − 𝐌𝟐) – (𝛍𝟏 − 𝛍𝟐)

𝐬(𝐌𝟏 −  𝐌𝟐)
  

 As the difference between the population means (1 – 2) in our example was hypothesized 

to be zero, the equation for t becomes: 

t = 
(𝐌𝟏 − 𝐌𝟐) – 𝟎

𝐬(𝐌𝟏 −  𝐌𝟐)
  

Substituting we have: 

  = 
(𝟏𝟎 − 𝟒) − 𝟎 

𝐬(𝐌𝟏 −  𝐌𝟐) 
   

  = 
𝟔

𝐬(𝐌𝟏 −  𝐌𝟐)
   

To find the value of the denominator of this equation, 𝐬(𝐌𝟏− 𝐌𝟐) (the standard error of the 

difference between sample means), we first must find the values of the variance for each sample 

(𝐬𝐗𝟏

𝟐  and 𝐬𝐗𝟐

𝟐 ).  The variance of the experimental group (Condition 1) is: 

𝐬𝐗𝟏

𝟐  = 
𝚺(𝐗𝟏 − 𝐌𝟏)𝟐 

𝐧𝟏 – 𝟏
    

       = 
𝚺𝐱𝟏

𝟐

𝐧𝟏 – 𝟏
 

        = 
𝟐𝟖

𝟔 − 𝟏
 

        = 
𝟐𝟖

𝟓
  

        = 5.60 (Thus the SD = 2.37) 

For the control group (Condition 2) the variance is: 

𝐬𝐗𝟐

𝟐  = 
𝚺(𝐗𝟐 − 𝐌𝟐)𝟐 

𝐧𝟐 – 𝟏
    

       = 
𝚺𝐱𝟐

𝟐

𝐧𝟐 – 𝟏
 

        = 
𝟏𝟔

𝟓 − 𝟏
 

        = 
𝟏𝟔

𝟒
  

        = 4.00 (Thus the SD = 2.00) 

The standard error of the difference between sample means is found with the following 

particularly impressive looking equation.  (This equation works for samples with equal or unequal 

sample sizes.)  Fortunately, as you will see, it is easy to use:  

𝐬(𝐌𝟏− 𝐌𝟐) =  [ 
(𝒏𝟏 – 𝟏) 𝒔𝑿𝟏

𝟐 + (𝒏𝟐 – 𝟏) 𝒔𝑿𝟐
𝟐

𝐧𝟏 + 𝐧𝟐 – 𝟐
 (

𝟏

𝐧𝟏
 + 

𝟏

𝐧𝟐
)] 

     = [
(𝟔 − 𝟏)(𝟓.𝟔𝟎) + (𝟓 − 𝟏)(𝟒.𝟎𝟎)

𝟔 + 𝟓 − 𝟐
(

𝟏

𝟔
 + 

𝟏

𝟓
)] 

     = [
(𝟓)(𝟓.𝟔𝟎) + (𝟒)(𝟒.𝟎𝟎)

𝟏𝟏 − 𝟐
(𝟎. 𝟏𝟕 + 𝟎. 𝟐𝟎)] 

     = [
𝟐𝟖 + 𝟏𝟔

𝟗
(𝟎. 𝟑𝟕)] 
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     = [(4.89)(0.37)] 

     = 1.81 

     = 1.35 

The value for t is therefore: 

t =  
𝟔

𝐬(𝐌𝟏 − 𝐌𝟐)
   

   = 
𝟔

𝟏.𝟑𝟓
  

   = 4.44 

where df = n1
 + n2 – 2 

    = 6 + 5 – 2 

    = 11 – 2 

    = 9 

 The critical value of t obtained from the t table for a two-tailed test with 9 df and alpha 

equal to .05 is found to be 2.26 (Appendix K, Table 3b).  Thus we will reject the null hypothesis if 

our calculated t is either less than –2.26 or greater than +2.26.  As our calculated value of +4.44 is 

more standard deviation units from the mean than is the critical value of +2.26 we reject the null 

hypothesis that the control and experimental groups come from populations with equal means and 

accept the alternative hypothesis that the population means are different.  In other words, we 

conclude that the treatment had an effect.  More specifically, we note that as the mean score for the 

experimental condition is greater than the mean score for the control condition there is evidence 

that the alternate teaching procedure increased students’ scores.   

Of course, we still do not know how large the effect was.  In order to ascertain the percent of 

variance explained by the treatment we once again calculate eta squared (2) (there are other 

options).  For the independent samples t test, eta squared is found with the same equation as is 

used with the one-sample t test: 

2 = 
𝐭𝟐

𝐭𝟐 + 𝐝𝐟
     

For our example with 9 df, this would be: 

 2 = 
𝟒.𝟒𝟒𝟐

𝟒.𝟒𝟒𝟐 + 𝟗
   

      = 
𝟏𝟗.𝟕𝟏

𝟏𝟗.𝟕𝟏 + 𝟗
  

      = 
𝟏𝟗.𝟕𝟏

𝟐𝟖.𝟕𝟏
 

      = .69 or 69% 

Thus, in this example the treatment accounted for 69% of the total variance, which is a very large 

effect.   
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Confidence Interval For An Experiment That Could Have Utilized The 
Independent Samples t Test 

 
 With an independent samples design a researcher could determine a confidence interval 

either instead of conducting the t test or as a supplement to the t test.  

The procedure for finding the confidence interval for a two-sample t (independent samples 

t) statistic is similar to what was used with a one-sample t: 

For one-sample t: 

M – tc (sM ) ≤    ≤ M + tc (sM ) 

 

For two-sample t (independent samples t): 

[(M1 – M2) – tc (𝐬(𝐌𝟏 − 𝐌𝟐))] ≤  (1 – 2)  ≤ [(M1 – M2) + tc (𝐬(𝐌𝟏 − 𝐌𝟐))] 

 

For our example we would have: 

[(10 – 4) – (2.26)(1.35)] ≤  (1 – 2)  ≤ [(10 – 4) + (2.26)(1.35)] 

This equals: 

6 – 3.05 ≤  (1 – 2)  ≤  6 + 3.05 

2.95 ≤  (1 – 2)  ≤ 9.05 

We would state that with 9 df  there is a 95% probability that a confidence interval with 

values between 2.95 and 9.05 will include the difference between the experimental population 

mean and the control population mean.  (However, refer to the clarification included with the 

discussion of the confidence interval when using z.) 

Reporting The Results Of An Independent Samples t Test 

 
In an article until recently we would have reported, “There was sufficient evidence to reject 

the null hypothesis that the teaching techniques were equivalent.  Mastery of statistics was found to 

be greater in the experimental condition (M = 10, SD = 2.37) than in the control condition (M = 4, 

SD = 2.00) (t (9) = 4.44, p < .05, 2 = .69)”.  At the end of this chapter we redo this problem using 

SPSS.  This allows us to give a more accurate value for t, and provides the p-value and confidence 

interval.  Using SPSS we would now report, (t (9) = 4.48, p = .002, 2 = .69, 95% CI [2.97, 9.03].  

Note that the p-value of .002 is less than our α of .05, confirming that we would reject the null 

hypothesis and that our calculations by hand were accurate except for minor rounding error. 

Summary To This Point 
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To summarize to this point, the two-sample t (independent samples t) test is much like the 

one-sample t test.  Both assume that the sample(s) is (are) drawn from a normally distributed 

population(s).  And each t test is flexible because, unlike the z test, each uses an estimate derived 

from the sample(s) to determine the necessary standard error.  Finally, the one-sample z test, one-

sample t test and the two-sample t test can be used to test an hypothesis and/or to construct a 

confidence interval.   

Second Example Of An Independent Samples t Test  

 
 In the previous example of the t test each subject was randomly assigned to either the 

control or the experimental group.  The t test is also commonly used when the subjects cannot be 

randomly assigned.  For instance, a researcher might want to study why there are fewer women 

than men engineers.  One way to examine this question would be to determine how attractive 

engineering fields are to men and women.  Let us assume that an initial study found that men rated 

engineering fields as being 10 points more attractive on some measure than women did.  The 

researcher might then want to determine the effect of an intervention designed to increase 

women’s interest in engineering.  In this hypothetical study there would be two groups, men and 

women.  Obviously, however, a subject cannot be randomly assigned to be either a man or a 

woman.  A subject comes to the experiment already being a man or a woman.  Nevertheless, a t test 

can be used to analyze the results. 

 Specifically, in this example let us assume that the researcher wanted to test the 

effectiveness of an intervention for women consisting of a talk, several readings and a meeting with 

a successful woman engineer.  The null hypothesis is that the intervention would not decrease the 

difference between men and women and, therefore, the women would continue to rate engineering 

fields as being 10 points less attractive than men do.  The alternative hypothesis is that the 

intervention would decrease the difference in the ratings of interest in engineering.  This is a one-

tailed hypothesis as a directional prediction is being made.  As usual, we assume that alpha was set 

to .05.  The researcher planned to include equal numbers of men and women but, as is often the 

case, several subjects dropped out of the study for various reasons.  As a result at the end of the 

study there were only 7 women and 5 men.  (Note that these very small samples were chosen to 

simplify the calculations.)  Their hypothetical ratings of the attractiveness of engineering, along 

with the initial calculations, are listed in Table 10.4. 

Table 10.4 Example 2:  Using the t Test with Nonrandom Assignment of Subjects 

   Men      Women 

 X1  (X1 – M1) (X1 – M1)2  X2           (X2 – M2)            (X2 – M2)2 

 90       13.4    179.56  87    14.71  216.38 
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 82         5.4      29.16  80       7.71    59.44 

 76      –0.6         0.36  76        3.71    13.76 

 72      –4.6      21.16  74       1.71      2.92 

 63    –13.6   184.96   70    –2.29      5.24 

       65    –7.29    53.14 

                     54  –18.29  334.52 

X1 = 383 x1 = 0      x1
2 = 415.20        X2 = 506              x2 = 0         x2

2 = 685.40 

n1 = 5             n2 = 7 

M1 = 383 / 5           M2 = 506 / 7 

      = 76.60                 = 72.29 

  

 Recall that the equation for the independent samples t test is:  

 t = 
(𝐌𝟏 − 𝐌𝟐) – (𝛍𝟏 − 𝛍𝟐)

𝐬(𝐌𝟏 − 𝐌𝟐)
 

where 𝐬(𝐌𝟏− 𝐌𝟐) is the standard error of the difference between sample means. 

As the difference between the population means was hypothesized to be 10 points this 

equation becomes: 

t = 
(𝐌𝟏 − 𝐌𝟐) – 𝟏𝟎

𝐬(𝐌𝟏 − 𝐌𝟐)
 

Substituting we have: 

     = 
(𝟕𝟔.𝟔𝟎 – 𝟕𝟐.𝟐𝟗) – 𝟏𝟎 

𝐬(𝐌𝟏 − 𝐌𝟐)
  

     = 
𝟒.𝟑𝟏 – 𝟏𝟎

𝐬(𝐌𝟏 − 𝐌𝟐)
  

     =  
−𝟓.𝟔𝟗

𝐬(𝐌𝟏 − 𝐌𝟐)
   

To find the value of the standard error, 𝐬(𝐌𝟏− 𝐌𝟐), we must first find the variances 𝐬𝐗𝟏

𝟐 and 

𝐬𝐗𝟐

𝟐 .  The estimate of the population variance for the men (Group 1) is: 

𝐬𝐗𝟏

𝟐  = 
𝐱𝟏

𝟐

𝐧𝟏 – 𝟏
   

        = 
𝟒𝟏𝟓.𝟐𝟎

𝟓 − 𝟏
  

        = 
𝟒𝟏𝟓.𝟐𝟎

𝟒
  

        = 103.80 

For the women (Group 2) the estimate of the population variance is: 

𝐬𝐗𝟐

𝟐  = 
𝐱𝟐

𝟐

𝐧𝟐 – 𝟏
    

        = 
𝟔𝟖𝟓.𝟒𝟎

𝟕 − 𝟏
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        = 
𝟔𝟖𝟓.𝟒𝟎

𝟔
  

      = 114.23 

We can now find the standard error of the difference between sample means: 

𝐬(𝐌𝟏− 𝐌𝟐) =  [ 
(𝒏𝟏 – 𝟏) 𝐬𝐗𝟏

𝟐 + (𝒏𝟐 – 𝟏) 𝐬𝐗𝟐
𝟐

𝐧𝟏 + 𝐧𝟐 – 𝟐
 (

𝟏

𝐧𝟏
 + 

𝟏

𝐧𝟐
)] 

    = [
(𝟓 − 𝟏)(𝟏𝟎𝟑.𝟖𝟎) + (𝟕 − 𝟏)(𝟏𝟏𝟒.𝟐𝟑)

𝟓 + 𝟕 − 𝟐
 (

𝟏

𝟓
 + 

𝟏

𝟕
)] 

    = [
(𝟒)(𝟏𝟎𝟑.𝟖𝟎) + (𝟔)(𝟏𝟏𝟒.𝟐𝟑)

𝟏𝟎
(𝟎. 𝟐𝟎 + 𝟎. 𝟏𝟒)]   

    = [
𝟒𝟏𝟓.𝟐𝟎 + 𝟔𝟖𝟓.𝟑𝟖

𝟏𝟎
(𝟎. 𝟑𝟒)] 

    = [(110.06)(0.34)] 

    = 37.42 

    = 6.12 

The value for t is therefore: 

 t = 
–𝟓.𝟔𝟗 

𝟔.𝟏𝟐
     

   =  –0.93 

where df = n1
 + n2 – 2 

    = 5 + 7 – 2 

    = 12 – 2 

    = 10 

 From the t table the critical value of a one-tailed t with 10 df and with alpha equal to .05 is 

found to be 1.81 (Appendix K, Table 3a).  As we are predicting a decrease in the difference of the 

ratings our critical value becomes –1.81.  We note that our outcome is in the predicted direction (be 

careful of the meaning of the obtained t).  However, since our obtained value of –0.93 is fewer 

standard deviation units from the mean than is the critical value, we do not reject the null 

hypothesis.  Instead, we conclude that there is not sufficient evidence that the intervention affected 

the women’s interest in engineering relative to the men’s interest.  Of course, the researcher should 

recognize that the samples are much too small.  A measure of effect size, such as eta squared, is 

usually not calculated because a significant outcome was not obtained.  Finally, a one-sided 

confidence interval could be calculated, but this is not common. 

Purpose And Limitations Of Using The Independent Samples t Test 
 

1. Test for difference.  The null hypothesis is usually that the treatment does not have an 

effect.  Therefore, if the null is retained any difference between the sample means is 

assumed to be due to chance.  The alternative hypothesis is that the treatment does 

have an effect and, therefore, that the two samples are drawn from populations with 
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different means.  The independent samples t test is employed to differentiate between 

these two hypotheses.  

2. Does not provide a measure of effect size.  The independent samples t test is a test of 

significance.  It indicates whether or not an outcome is likely to have occurred by chance 

if the null hypothesis is correct.  If the t test is significant, a measure of effect size, such 

as eta squared (2), should then be calculated. 

3. Compares two sample means.  The independent samples t test is limited to comparing 

two sample means. 

Assumptions Of The Independent Samples t Test 

 
1.  Interval or ratio data.  The data are on an interval or a ratio scale of measurement. 

2.  Random samples.  Each sample is drawn at random from a population. 

3.  Data within each treatment level are independent.  The datum from one subject is    

      not affecting the datum from another.   

4.  Normally distributed populations.  Each population from which a sample is drawn has a  

normal distribution of scores.  However, as stated in the Central Limit Theorem, the t 

test will be accurate (is robust) so long as each sample size is at least 30.  If a sample 

size is less than 30 then it is important that the underlying population be normally 

distributed.  If you cannot collect a larger sample and do not know if the assumption of 

normality has been met, it may be best to convert the data to an ordinal scale and turn 

to an alternative test on the same row of Table 10.1.  

4. Population variances are equal.  The two populations from which samples are drawn  

have equal variances.  With SPSS, this assumption is examined with Levene’s test of 

equality of variances (also called Levene’s test of homogeneity of variances). 

Levene’s test of equality of variances – Procedure used with SPSS to test the  

assumption that samples are drawn from populations which have equal variances.   

Effect Of Violating The Assumptions 

 
 The independent samples t test has been found to be robust.  This means that it leads to 

accurate decisions even when some assumptions are violated.  However, if the sample sizes are 

dramatically unequal, the sample distributions have obviously different shapes or the sample 

variances are clearly not equal, you should not use the t test.  Instead, you might consider 

converting your interval or ratio data into ordinal data and then turning to an appropriate test for 

the same experimental design in Table 10.1.  
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Conclusion 
 
 The independent samples t test is a commonly used statistical procedure.  It compares two 

sample means and is easy to calculate.  As you will see in Chapter 11, the independent samples t test 

is a special case of the one-way between-subjects ANOVA and any time you could use the two-tailed 

independent samples t test you could have used the more flexible one-way between-subjects 

ANOVA.  However, the calculations for the one-way between-subjects ANOVA are somewhat more 

involved. 

Progress Check 

 In a hypothetical study a researcher is interested in whether taking a motorcycle driving 

safety course decreases the subsequent number of accidents experienced by motorcycle drivers.  To 

determine this, the researcher checks the driving statistics for a 10-year period for motorcycle 

drivers who either did, or did not, attend a safety course.  The mean number of accidents reported 

for the drivers who took the course was 1.24.  The mean number of accidents reported for the 

drivers who did not take the course was 1.62.  And the standard error of the difference between 

sample means was 0.30.  There were 22 degrees of freedom and the alpha was set at .05.    

1. Is this a one- or two-tailed test? 

2. What is the value of t? 

3. What is your decision? 

 

Answers:  1. One-tailed  2.  +/–1.27 (The sign depends upon the order the sample means are 

entered into the equation.)  3.  Accept the null hypothesis.   

 

Dependent Samples t Test 

Introduction 
 
 You have just learned that the independent samples t test is appropriate for experimental 

designs that have two independent samples, and one dependent variable which is measured at the 

interval or ratio level.  It was also shown that the independent samples t test was closely related to 

the one-sample t test that was covered in Chapter 9.    

The fundamental difference when using the dependent samples t test instead of the 

independent samples t test is that we no longer have independent samples.  Instead, the subjects 

assigned to each value of the treatment are related or paired in some manner.  Most commonly 
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there are repeated measures on the same subjects.  The dependent samples t test is underlined in 

Table 10.1.    

Dependent samples t test – An inferential procedure for comparing two sample means  

 based upon repeated measures of the same subjects, or measures from pairs of  

 subjects who are related in some way.   

Repeated measures design – A research design in which each subject is tested more than  

 once.   

 

The dependent samples t test is also closely related to the one-sample t test.  As you recall, 

when there is only one sample the t test converts a deviation between the sample mean (M) and the  

population mean () into standard deviation units by dividing the difference between these means 

by the estimate of the standard deviation of sample means.  This estimated standard deviation is 

called the standard error of the mean (sM).  Specifically, for a study utilizing a one-sample t test: 

t = 
𝐌 – 

𝐬𝐌
 

where the standard error, sM  = 
𝐬𝐗

𝐧
   

This standard error could be rewritten as sM  = 
𝐬𝐗

𝐧𝐗
 to emphasize that n is referring to the number of 

scores. 

The essential difference when employing the dependent samples t test is that instead of 

considering a mean of a set of scores (M) we are now dealing with the mean of a set of difference 

scores (MD).  Each of these difference scores (D) is based upon either two measurements from the 

same individual (repeated measures design) or, less commonly, two measurements from pairs of 

related or matched subjects (matched subjects design).  It is important to note that in both of these 

situations the two measurements are of the same dependent variable.  The mean of the differences 

between the measurements (MD) is then compared to the expected value of this mean (D).  The 

result is that the numerator of the dependent t test (MD – D) looks quite similar to the numerator 

of the one-sample t test (M – ) .   

In the one-sample t test the difference between sample and population means obtained in 

the numerator is then divided by an estimate of the variability of sample means (sM).  This converts 

the deviation in the numerator into standard deviation units.  The outcome is then compared to the 

critical value obtained from the t table.  Similarly, with the dependent samples t test the value 

obtained in the numerator is then divided by an estimate of the variability of means, but in this case 

it is the estimate of the variability of means of difference scores, not means of scores as was the case 

with the one-sample t test.  This new measure of variability is called the standard error of the mean 

difference (𝐬𝐌𝐃
).  And as we are employing an estimate of this measure of variability derived from 
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the data we must continue to use the t table rather than the z table.  Thus, we must also account for 

the degrees of freedom.   

Difference score (D) – The difference between two measurements from the same  

 individual (repeated measures design) or two measurements from pairs of  

 matched subjects (matched subjects design). 

Matched subjects design – A research design in which equivalent subjects are paired and  

 then one of the subjects is randomly assigned to each group. 

Standard error of the mean difference (𝒔𝑴𝑫
) – The standard deviation of the means of  

 difference scores.  More precisely, the standard deviation of the sampling  

 distribution of the means of difference scores. 

 

Of course, use of the t table with the dependent t test assumes that the theoretical frequency 

distribution of the means of difference scores is normally distributed, just as with the one-sample t 

test it was assumed that the theoretical frequency distribution of sample means was normally 

distributed.  Fortunately, it is known that so long as the distributions of the two samples of original 

scores are normal, then the distribution of the means of their differences will also be normal.  The 

logic for the dependent samples t test therefore closely parallels the logic of the one-sample t test.  

And, not surprisingly, the equation for the dependent samples t test will also look very much like 

the equation for the one-sample t test that was reviewed in Chapter 9.   

  The parallels between the one-sample t test and the dependent samples t test may become 

clearer by referring to Table 10.5. 

Table 10.5 Parallels Between the One-Sample t Test and the Dependent Samples t Test 

    One Sample t   Dependent Samples t 

Sample mean  M  (could be written as MX)  MD 

Population mean   (could be written as X )  D 

Standard error  𝐬𝐌 (could be written as 𝐬𝐌𝐗
)  𝐬𝐌𝐃

  

Equations for t  t = 
𝐌 – 

𝐬𝐌
        

Could be written as  t = 
𝐌𝐗  − 𝐗

𝐬𝐌𝐗

  t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

  

Relationship of standard error and standard deviation 

   𝐬𝐌 = 
𝐬𝐗

𝐧
      

Could be written as  𝐬𝐌𝐗
 = 

𝐬𝐗

𝐧𝐗
       𝐬𝐌𝐃

 = 
𝐬𝐃

𝐧𝐃
   

where  

 𝐬𝐗 = standard deviation of   𝐬𝐃 = standard deviation of 
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  a set of scores    a set of difference scores 

𝐧𝐗 = the number of scores  𝐧𝐃 = the number of difference scores, 

which is equal to the number 

of pairs of scores 

df = 𝐧𝐗 – 1    df = 𝐧𝐃 – 1 

 

To summarize to this point, in both the one-sample t test and the dependent samples t test, 

a measure of difference found in the numerator is being converted into standard deviation units by 

dividing by a standard error.  Then the outcome is interpreted by referring to the t table.  Thus, the 

logic of the dependent samples t test directly parallels the logic of the one-sample t test. 

Conducting The Dependent Samples t Test 

 
For an example of a repeated measures study let us assume that you are interested in 

testing whether a fuel additive will change a car’s gas mileage as claimed in an advertisement.  One 

option would be for you to randomly assign each vehicle to either the control (no additive) or 

experimental (additive) condition, and subsequently use an independent samples t test to compare 

their mileages.  Alternatively, you could compare the mileage of the same vehicles with and without 

the additive.  In this case there would be two measures of fuel economy for each vehicle.  If the null 

hypothesis was that the additive would have no effect, then the population mean mileage without 

the additive (WO) would be predicted to equal the population mean mileage with the additive 

(W).  Thus, the null hypothesis would state that W – WO = 0.   The alternative hypothesis would 

be that W – WO ≠ 0.  This is a two-tailed test and, as usual, we set  = .05.  The very small, 

hypothetical data set and initial computations for our dependent samples t test are shown in Table 

10.6.   

Table 10.6 Example 1:  Repeated Measures Data and Initial Calculations 

Vehicle  Mileage   Mileage    Difference  

  With  Without   Scores 

  Additive Additive   D  (D – MD) (D – MD)2 

 

1  13  12    1     0.50    0.25 

2  15  13    2     1.50    2.25 

3  14  15  –1  –1.50    2.25 

4  17  17    0   –0.50    0.25 

5  24  20    4     3.50  12.25 

6  22  25  –3  –3.50  12.25 
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             D = 3         (D – MD) = 0        (D – MD)2 = 29.50 

             MD = 
𝐃

𝐧𝐃 
  where 𝐧𝐃 = the number of difference  

                        = 
𝟑

𝟔
   scores, which is equal to the  

                              = 0.50  number of pairs of scores 

 

 It is important to note that while there are two sets of mileage data there is only one sample 

of vehicles and thus only one set of difference scores (D).   

 In our example, the null hypothesis is that the fuel additive does not have an effect.  In other 

words, the null hypothesis is that there is no difference between the population means, and thus D 

is equal to 0.  The equation to determine t therefore becomes: 

  t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

  = 
𝐌𝐃  − 𝟎

𝐬𝐌𝐃

  =  
𝐌𝐃

𝐬𝐌𝐃

 

The numerator of this equation, MD, is simply D / 𝐧𝐃, where 𝐧𝐃 is equal to the number of 

difference scores, which is equal to the number of pairs of scores.  As is indicated in Table 10.6, MD 

for our example equals 3 / 6 or  0.5.  It is important to recognize that this positive value of 0.5 

indicates mileage is higher with an additive.  The question we now need to address is whether this 

change of 0.5 miles per gallon is statistically significant, and thus indicative of a reliable effect, or 

whether it should simply be considered to be the result of chance. 

 To find the standard error, 𝐬𝐌𝐃
, we note that 𝐬𝐌𝐃

 = sD / 𝐧𝐃.  And, just as the equation for 

the standard deviation of scores when estimating the population standard deviation (sX) can be 

written as: 

sX =   
(𝐗 – 𝐌𝐗)𝟐

𝐧𝐗 − 𝟏
  

sD, the estimate of the population standard deviation of a set of difference scores (which can 

alternatively be defined as the estimate of the population standard deviation of the differences 

between pairs of scores), is equal to:   

sD =  
(𝐃 – 𝐌𝐃)𝟐

𝐧𝐃  − 𝟏
 

where 𝐧𝐃 is equal to the number of difference scores, and is also equal to the number of pairs of 

scores. 

Substituting from Table 10.6 we have: 

sD =  
𝟐𝟗.𝟓𝟎

𝟔 − 𝟏
   

      =  
𝟐𝟗.𝟓𝟎

𝟓
   

      =  5.90 

      = 2.43 
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We can now determine the standard error, 𝐬𝐌𝐃
, by noting that: 

 𝐬𝐌𝐃
 =  

𝐬𝐃

𝐧𝐃
  

          = 
𝟐.𝟒𝟑

𝟔
   

          = 
𝟐.𝟒𝟑

𝟐.𝟒𝟓
  

          = 0.99 

This is the denominator that we were seeking. 

 The equation for t therefore becomes: 

t = 
𝐌𝐃

𝐬𝐌𝐃

 

    = 
𝟎.𝟓𝟎

𝟎.𝟗𝟗
   

    = 0.51 

 The df are 𝐧𝐃 – l, where 𝐧𝐃 is the number of difference scores.  We therefore have 6 – 1 or 5 

degrees of freedom. 

 The critical value from the t table for a two-tailed test with  equal to .05 and 5 df is 2.57 

(Appendix K, Table 3b).  Recall that as this is a two-tailed test the critical values are thus –2.57 and 

+2.57.  As our obtained value for t is equal to +0.51, which is fewer standard deviation units from 

the mean than +2.57, we retain the null hypothesis and conclude that there is not enough evidence 

to support the view that the fuel additive changed the gas mileage of the vehicles tested.  If the null 

hypothesis had been rejected, we would have then calculated eta squared (2) to indicate the effect 

size, where 2 = t2 / (t2 + df). 

Second Example Of A Dependent Samples t Test 

 
 It was stated earlier in this chapter that while repeated measures is the most commonly 

used design with the dependent samples t test, you can also use this test with the matched samples 

design as well.  For instance, let us assume that you continued to be interested in achieving better 

fuel economy.  This time, instead of trying a fuel additive, you decide to test what effect appropriate 

vehicle maintenance would have.  Your null hypothesis, based upon claims of advertisements, is 

that recommended maintenance increases fuel economy by 1 mile per gallon.  Your alternative 

hypothesis is that it does not increase the gas mileage by this amount.   

 It is important to note that you need to be careful interpreting this null hypothesis.  As it 

includes the word ‘increases’ you might assume that this is a one-tailed test.  However, this is not 

the case.  The word ‘increases’ refers to a specific standard, 1 mile per gallon, that the outcome will 

be compared against.  The null hypothesis would be rejected if either the outcome is significantly 

higher or lower than this standard.  Therefore, this is still a two-tailed test. 
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We begin by selecting pairs of different types of vehicles (large sedans, small sedans, SUVs, 

minivans, sports cars, etc.), all of the same approximate age.  A member of each pair of vehicles is 

then randomly assigned to each of two groups.  One group of vehicles serves as the control group.  

Each vehicle of the other group, the experimental vehicles, receives a tune-up.  Then the gas mileage 

of each vehicle is determined, as is shown in Table 10.7.  As usual, we will set  = .05. 

Table 10.7 Example 2:  Matched Samples and Initial Calculations 

   Vehicle Mileage of  Mileage of Difference   

    Pair  Exp  Control  Scores   

  Vehicles Vehicles   D  (D – MD) (D – MD)2 

 

1  16  12    4     2  4 

2  15  13    2     0  0 

3  14  15  –1   –3  9 

4  19  17    2     0  0 

5  24  20    4      2  4 

6  25  25    0   –2  4 

7  27  26    1   –1  1 

8  30  28    2     0  0 

9  33  29    4        2                4 

             D =  18       (D – MD) = 0      (D – MD)2 = 26  

             MD = 
𝐃

𝐧𝐃
  where 𝐧𝐃 = the number of difference  

             = 
𝟏𝟖

𝟗
   scores, which is equal to  

             =  2.00  the number of pairs of scores 

   

As with the repeated measures design, with the matched samples design we begin with two 

sets of data but end with one set of difference scores.  To test whether the null hypothesis should be 

rejected we once again conduct the dependent samples t test.  The current null hypothesis is that 

the vehicles with a tune-up will have a 1 mile per gallon greater fuel economy than the vehicles 

without a tune-up, and thus D, which reflects the hypothesized effect of the experimental 

treatment, is equal to +1.  Since D is not equal to 0 we must use the more complete version of the 

dependent t test equation: 

  t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

 

where the standard error,  𝐬𝐌𝐃
 = sD / 𝐧𝐃  
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 There are two terms in the numerator of the t equation, and since we have a value for each 

you might reasonably assume that all we have to do is to simply substitute them into the 

numerator.  However, using a dependent t test requires understanding as well as the ability to 

calculate.  We have indicated that the null hypothesis is that fuel economy will increase by 1 mile 

per gallon with proper maintenance.  Thus, D is equal to +1.  In other words, increased fuel 

economy is associated with an increase in scores.  Inspection of Table 10.7 also indicates that an 

increase in fuel economy in the experimental vehicles is associated with positive values for D.  Thus, 

we have been consistent, as an improvement in mileage corresponds to a positive value for MD, not 

a decrease.  However, whether MD is positive or negative simply reflects the order in which the 

treatment conditions were listed in the table.  Thus the researcher has to be careful that they have 

been consistent.  We have been, so MD is entered into the equation for t as 2, not –2.   The 

numerator is, therefore, 2 – 1: 

t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

 

  = 
𝟐 − 𝟏 

𝐬𝐌𝐃

 

 The denominator, 𝐬𝐌𝐃
, is equal to sD / 𝐧𝐃 .  To determine the standard deviation, sD, we 

once again utilize the following equation: 

sD =  
(𝐃 – 𝐌𝐃)𝟐

𝐧𝐃  − 𝟏
 

where 𝐧𝐃 is equal to the number of difference scores, and is also equal to the number of pairs of 

scores. 

Substituting from Table 10.7 we have 

sD =  
𝟐𝟔

𝟗 − 𝟏
   

      =  
𝟐𝟔

𝟖
   

      =  3.25 

      = 1.80 

We can now determine the standard error of the mean difference (𝐬𝐌𝐃
) by noting that: 

 𝐬𝐌𝐃
 =  

𝐬𝐃

𝐧𝐃
  

          = 
𝟏.𝟖𝟎

𝟗
   

          = 
𝟏.𝟖𝟎

𝟑
  

          = 0.60 

This is the denominator of the equation for t. 

 The calculation of t therefore becomes: 
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t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

 

  = 
𝟐 − 𝟏 

𝟎.𝟔𝟎
 

  = 
𝟏

𝟎.𝟔𝟎
 

    = 1.67 

The df are 𝐧𝐃 – l where 𝐧𝐃 is the number of difference scores.  We therefore have 9 – 1 or 8 df. 

 The critical value from the t table for a two-tailed test with  = .05 and 8 df is 2.31 

(Appendix K, Table 3b).  As this is a two-tailed test the critical values are thus –2.31 and +2.31.  

Since our obtained t is equal to +1.67, which is less than +2.31, we retain the null hypothesis and 

conclude that there is not enough evidence to support the claim that the maintenance changed the 

gas mileage of the vehicles tested by other than 1 mile per gallon.  However, we would recognize 

that the sample size is very small. 

In order to illustrate how the specification of the null hypothesis can affect the outcome of a 

study, let us assume that the original null hypothesis had been that vehicle maintenance does not 

affect fuel economy.  (Note that this example is solely for illustration purposes.  In a research 

situation you cannot re-state your null hypothesis once you have started to collect data.  To do so 

would be unethical.)  

In this case, the hypothesized difference between the population means for the vehicle fuel 

economies would have been zero.  We could, therefore, use the shorter version of the dependent t 

equation, or simply substitute 0 for D in the numerator of the longer version: 

t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

 

The numerator now becomes 2 – 0 which is equal to 2.  (Remember, we are using a positive 

number to indicate an increase in fuel economy.)  As none of the scores have changed, the 

denominator remains unchanged.  The t equation thus becomes: 

  t = 
𝟐.𝟎𝟎

𝟎.𝟔𝟎
  

    = 3.33 

The df remain 𝐧𝐃 – l where 𝐧𝐃 is the number of difference scores.  We therefore continue to have 9 

– 1 or 8 df. 

 We found previously that the critical value from the t table for a two-tailed test with  = .05 

and 8 df is 2.31.  As this is a two-tailed test the critical values are thus –2.31 and +2.31.  Our 

obtained t is equal to +3.33, which is greater than +2.31.  Thus, we would now reject the null 

hypothesis that maintenance does not affect mileage and conclude that the maintenance changed 

the gas mileage of the vehicles tested.  Clearly, how the null hypothesis is stated matters! 

If this had been our original null hypothesis, we would proceed by calculating eta squared 

to indicate the effect size: 
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2 = 
𝐭𝟐

𝐭𝟐 + 𝐝𝐟
     

where 2 is the percent of variance explained by the treatment. 

For our example with 8 df, this would be: 

  2 = 
𝟑.𝟑𝟑𝟐

𝟑.𝟑𝟑𝟐 + 𝟖
   

       = 
𝟏𝟏.𝟎𝟗

𝟏𝟏.𝟎𝟗 + 𝟖
  

     = 
𝟏𝟏.𝟎𝟗

𝟏𝟗.𝟎𝟗
 

       = .58 or 58% 

Thus, in this example the treatment would have accounted for 58% of the total variance.   

Confidence Interval for an Experiment that could have utilized the Dependent 
Samples t Test 

 
 If, instead, a researcher was interested in estimating the population value for the change in 

miles per gallon for vehicles with proper maintenance they would calculate a confidence interval.  

The procedure for finding a confidence interval for a dependent samples design is almost identical 

to what was used with a design appropriate for a one-sample t: 

For one-sample t: 

M – tc (sM)  ≤    ≤  M + tc (sM) 

 

For dependent samples t: 

MD – tc (𝐬𝐌𝐃
)  ≤  D  ≤  MD +  tc (𝐬𝐌𝐃

) 

 

For our just completed example we would have: 

2.00 – (2.31) (0.60)  ≤  D  ≤  2.00 + (2.31) (0.60) 

this equals: 

2.00 – 1.39  ≤  D  ≤  2.00 + 1.39 

0.61  ≤  D  ≤  3.39 

In other words, with 8 df there is a 95% probability that a confidence interval with values 

between 0.61 and 3.39 miles per gallon increase in fuel economy will include the experimental 

population mean.  (However, refer to the clarification included with the discussion of the 

confidence interval when using z.) 

Reporting The Results Of A Dependent Samples t Test 
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If the original null hypothesis had been that maintenance does not affect mileage, then in an 

article we would report that performing maintenance on a vehicle resulted in a statistically 

significant increase in the gas mileage (M = 2.00, SD = 1.80).  We could report that t (8) = 3.33, p < 

.05, 2 = .58).  However, now we can use statistical packages to specify the p-value, and it is 

expected that the confidence interval would also be included.  Using SPSS we would say that t (8) = 

3.33, p = .010, 2 = .58, CI [0.61, 3.39].  Note that the p-value of .010 is less than our α of .05, 

confirming that we would reject the null hypothesis, and that the other values are the same as we 

obtained in our calculations. 

Purpose And Limitations Of Using The Dependent Samples t Test 

 
1. Test for difference.  The null hypothesis is usually that the treatment does not have an 

effect.  Thus if the null is correct any difference between the treatment condition means is 

due to chance.  The alternative hypothesis is that the treatment does have an effect and the 

difference is not due to chance.  The dependent samples t test is employed to differentiate 

between these two hypotheses.  

2. Does not provide a measure of effect size.  The dependent samples t test is a test of 

significance.  It indicates whether or not an outcome is likely to have occurred by chance if 

the null hypothesis is correct.  If the t test is significant, a measure of effect size, such as eta 

squared, should then be calculated. 

3. Compares a difference mean to a hypothetical difference.  With the repeated measures 

design the difference being analyzed is obtained from two measures from the same subject.  

With the matched samples design the difference is obtained from two subjects paired on 

some important variable.  In both cases the dependent samples t test compares this 

obtained difference with the difference specified in the null hypothesis. 

4. Carryover effects are a concern.  A repeated measures design is a type of longitudinal study.  

In a longitudinal study subjects are measured repeatedly across time.  A concern with any 

longitudinal study is that the effect of a treatment or intervention at one point in time may 

have an effect or carry over to another point in time.  For instance, for most of us running 5 

miles in the morning is likely to affect how quickly we can climb stairs in the afternoon.  One 

solution to control for carryover effects is to employ counterbalancingcoun.  In 

counterbalancing, half of the subjects are exposed to condition A first, and then later to 

condition B.  The other half of the subjects are first exposed to condition B, and 

subsequently to condition A.  With our example, half of us would run in the morning and 

climb stairs in the afternoon.  The other half would climb stairs in the morning and run in 

the afternoon.  You should note that counterbalancing will not always be effective.  An 
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improvement in our example with running and climbing stairs would be to use 

counterbalancing but also to have a more lengthy rest period between the running and the 

climbing.   

Longitudinal study – A study in which subjects are measured repeatedly across time.  A  

 repeated-measures design is a type of longitudinal study. 

Carryover effect – A treatment or intervention at one point in time may affect or  

carry over to another point in time. 

Counterbalancing – A method used to control for carryover effects.  In  

 counterbalancing, the order of the treatments or interventions is balanced so  

 that an equal number of subjects will experience each order of presentation. 

Assumptions Of The Dependent Samples t Test 

 
1. Interval or ratio data.  The data are on either an interval or a ratio scale of measurement. 

2. Random sample(s).  The sample in a repeated measures design is drawn at random from a 

population.  The samples in a matched samples design are determined by randomly 

assigning a member of each pair to each of the two conditions. 

3. Data within each treatment level are independent.  The datum from one subject is not 

affecting the datum from another.   

4. Normal distribution.  The population of difference scores (D) (refer to Tables 10.6 and 10.7) 

is normally distributed.  However, as stated in the Central Limit Theorem, the probabilities 

in the t table will be accurate so long as the sample size is at least 30.  If the sample size is 

less than 30, then it is important that the underlying population be normally distributed.  If 

you cannot collect a larger sample and do not know if the assumption of normality has been 

met, it would be best to turn to an alternative test.  

 

Effect Of Violating The Assumptions 

 
 The assumption that is most likely to be violated is that the underlying population of 

difference scores is normally distributed.  However, the t test continues to lead to accurate 

decisions even when this assumption is violated so long as the sample size is at least 30.  If the 

sample size is small and you are unsure the population is normal, then you should not use the 

dependent samples t test.  Instead, you should consider converting your interval or ratio data into 

an ordinal measurement and then turn to an appropriate test for the same experimental design.  
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Conclusion 
 

The dependent samples t test is much like the one-sample t test.  Both assume that the 

samples are drawn from normally distributed populations and their research designs can each be 

used to test an hypothesis or to construct a confidence interval.  Finally, the steps involved in 

calculating both t tests are very similar.   

The benefit of the dependent samples t test over the independent samples t is that by 

utilizing repeated measures or matched samples variability is likely to be reduced and thus the 

resulting t statistic is likely to be larger.  However, degrees of freedom are lost.  And, as you will see 

in Chapter 12, compared to the one-way within-subjects ANOVA, the dependent samples t test is 

probably somewhat easier to calculate than the ANOVA but it is more limited. 

Comparison Of The Dependent Samples t Test And The 
Independent Samples t Test 

 
 The beginning of this chapter described the independent samples t test.  This was followed 

with a review of the dependent samples t test.  While the independent samples t test is used more 

frequently there are definite advantages to repeated-measures or matched-samples designs which 

employ the dependent t test.  And there are disadvantages. 

 There are fundamentally three disadvantages to the repeated measures and matched 

samples designs.  First, these studies frequently entail more work to conduct.  With matched-

samples studies, for instance, you need to identify the variable on which to match (e.g., intelligence 

quotient, height, personality, age, etc.), measure each subject on this variable, form pairs of similar 

subjects, and then randomly assign a member of each pair to each of the two groups.  These steps 

can be time-consuming. 

Second, there is an increased risk of losing subjects.  With repeated-measures studies you 

may need the subjects to return for a second test.  This may lead to the loss of subjects.  And with 

matched-samples designs, if one member of a pair drops out of the study, you lose the data from 

both.    

Third, in a sense you lose half of your degrees of freedom compared to an independent 

samples design.  For a dependent samples t test, the degrees of freedom are determined by 𝐧𝐃 – 1, 

where 𝐧𝐃 is equal to the number of difference scores, which is equal to the number of pairs of 

scores.  Thus you have one degree of freedom for every two scores that you collect because it takes 

a pair of scores to obtain one difference measure.  With the independent samples t test the degrees 

of freedom are also determined by an n – 1, but in this case n is equal to the number of scores.  

Inspection of the t table will indicate that a reduction in the number of degrees of freedom will 
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translate into a larger critical value for t, and thus with a dependent samples t test a larger 

difference is required for the null hypothesis to be rejected. 

Considering these drawbacks it may seem surprising that the dependent samples t test is 

ever used.  However, there are substantial advantages to offset the disadvantages just listed.  One of 

the major advantages of the repeated measures design is that you get more information from each 

subject than you would with an independent samples design.  This becomes critical if you are 

dealing with hard-to-obtain subjects.  For instance, if you were interested in the efficacy of an 

intervention with males between 13 and 16 years of age who are undergoing a specific form of 

therapy for a particular condition, your subject pool is likely to be severely limited.  It makes sense, 

therefore, to obtain as much data as possible from each subject. 

Another reason to employ a repeated measures or matched subjects design is to reduce the 

amount of variability in the denominator of the t equation.  If the standard error (the denominator) 

is reduced, the value of the obtained t will increase (assuming the magnitude of the numerator 

stayed the same).  Both repeated measures, which in a sense uses a subject as their own control, 

and matched samples, where a subject is paired with someone who is similar on some measure, are 

techniques that are likely to reduce the size of the standard error.    

In effect, therefore, choice of the dependent samples t test is a balancing act.  The researcher 

gains by increasing the amount of information obtained from each subject and by the potential to 

reduce the standard error which will likely lead to an increase in the size of the t ratio.  But the 

researcher pays a price in added work, greater risk of losing subjects and the loss of degrees of 

freedom.   

Glossary Of Terms 
 
Carryover effect – A treatment or intervention at one point in time may affect or carry over to  

 another point in time. 

Counterbalancing – A method used to control for carryover effects.  In counterbalancing, the order  

 of the treatments or interventions is balanced so that an equal number of subjects will  

 experience each order of presentation. 

Dependent samples t test – An inferential procedure for comparing two sample means based upon  

 repeated measures of the same subjects, or measures from pairs of subjects who are related  

 in some way.   

Difference score (D) – The difference between two measurements from the same individual  

 (repeated measures design) or two measurements from pairs of matched subjects  

 (matched subjects design). 

Independent samples t test – An inferential procedure for comparing two means from unrelated  
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 samples. 

Levene’s test of equality of variances – Procedure used with SPSS to test the assumption that  

samples are drawn from populations which have equal variances.   

Longitudinal study – A study in which subjects are measured repeatedly across time.  A repeated-

measures design is a type of longitudinal study. 

Matched subjects design – A research design in which equivalent subjects are paired and then one  

 of the subjects is randomly assigned to each group. 

Repeated measures design – A research design in which each subject is tested more than once.   

Standard error of the difference between sample means (𝐬(𝑴𝟏− 𝑴𝟐)) – The standard deviation of the  

 sampling distribution of the difference between sample means. 

Standard error of the mean difference (𝒔𝑴𝑫
) – The standard deviation of the means of difference  

 scores.  More precisely, the standard deviation of the sampling distribution of the means of  

 difference scores. 

Questions – Chapter 10 - Independent Samples t 

 
(Answers are provided in Appendix J.) 

1. The independent samples t test compares _____ groups of _____ data.   
a. Two; nominal 
b. Two or more; interval/ratio 
c. Two; interval/ratio  
d. Two or more; ordinal 
 

2. The advantage of the independent samples t test is that it is relatively easy to calculate.  
However, the one-way between-subjects ANOVA is _____.   

 a. Even easier to calculate 
 b. More flexible  
 c. Able to deal with ordinal data 
 d. None of the above 
 
3. The logic of the independent samples t test directly parallels the logic of the one sample t 

test, for a measure of difference found in the numerator is converted into _____ by dividing 
by a standard error.   

 a. Standard deviation units  
 b. An F ratio 
 c. A correlation 
 d. A measure of effect size 
 
4. Following a significant t test we would calculate _____. 

a. Post hoc tests 
b. eta squared (2)  
c. a linear regression 
d. we don’t calculate anything, we’re finished 
 

5. All else being equal, the means of larger samples would be expected to vary _____ the means 
of smaller samples. 
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 a. More than 
 b. The same as 
 c. Less than 
 

 
For questions 6 to 19 use the following information:  An experimenter is interested in whether 
drinking warm milk before going to bed will change how people sleep.  The experimenter randomly 
assigns each subject to one of two groups.  The data consist of subjects’ ratings of how well they 
slept, with higher ratings indicating better sleep: 
 
 Control group: 3, 4, 6, 5, 2 
 Experimental group: 5, 9, 6, 8 
 
6. What is the null hypothesis? 
 a. Drinking warm milk will change how people sleep. 
 b. Drinking warm milk will not change how people sleep.  
 
7. What is the alternative hypothesis? 

a. Drinking warm milk will change how people sleep.  
 b. Drinking warm milk will not change how people sleep.  
 
8. Is this a one- or two-tailed test? 
 a. One-tailed  
 b. Two-tailed 
 
9. What is the mean of the control group? 
 a. 2.00 
 b. 3.50 
 c. 4.00  
 d. 6.67 
 
10. What is the mean of the experimental group? 
 a. 3.60 
 b. 7.00  
 c. 8.00 
 d. 8.20 
 
11. What is the variance (sX2 ) of the control group? 
 a. 1.13 

b. 2.50  
 c. 3.33 
 d. 4.67 
 
12. What is the variance (sX2 ) of the experimental group? 
 a. 1.13 

b. 2.50  
 c. 3.33  
 d. 4.67 
 
13. What is the standard error of the difference between means? 

a. 1.13  
b. 2.50  

 c. 3.33  
 d. 4.67 
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14. What is the value of t?  (Ignore the sign if your value is the same as an answer below, but 

negative.  This would simply indicate that the order, which is arbitrary, of the experimental 
and control group means was reversed in the t equation.)  

 a. 2.65  
 b. 2.95 
 c. 3.14 
 d. 5.20 
 
15. How many degrees of freedom are there? 
 a. 9 
 b. 7  
 c. 5 
 d. 3 
 
16. What is the critical value of t from the table with alpha set to .05? 
 a. 3.67 
 b. 1.46 
 c. 1.99 
 d. 2.37  
 
17. The outcome is _____. 
 a. Statistically significant  
 b. Not statistically significant 
 
18. The value of eta squared (2) is _____. 
 a. .00 
 b. .23 
 c. .36 
 d. .50  
 
19. The 95% confidence interval would be from _____ to _____. 
 a. 4.00; 7.00 
 b. 2.50; 3.33 
 c. 0.33; 5.67  

d. 1.13; 2.65  
 

Questions – Chapter 10 - Dependent Samples t 

 
20. The dependent samples t test is a procedure that a researcher can use to increase the 

magnitude of t by reducing the variability, thereby reducing the size of the _____. 
a.       Numerator 
b.       Denominator  
c.       Difference between means 

 
21. If pairs of similar subjects are chosen, and then one member of each pair is randomly assigned 

to each condition, this is called a (an) _____ design.   
a.       Repeated measures  
b.       Independent samples 
c.       Matched-samples  
d.       Inappropriate  
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22. Compared to an independent samples design, with repeated measures you are gathering _____ 

information from each subject. 
a.       More  
b.       Less 
c.       Exactly the same amount of 
d.       Approximately the same amount of  
 

23. If the dependent samples t test is found to be significant, we then _____. 
a.      Conduct Tukey HSD tests 
b.      Calculate eta squared (2) to indicate the effect size  
c.      Use a chi-square test to determine where the significance is 
d.      Stop – we are finished 
 

24. There are disadvantages to the repeated–measures and matched-samples designs.  Which of the 
following is not a disadvantage? 

a.       They frequently entail more work.   
b.       They can be time consuming. 
c.       There is an increased risk of losing subjects.   
d.       You lose degrees of freedom 
e.       All of the above are disadvantages  
 

25. A concern(s) with any longitudinal study is (are) _____. 
a.      That the study will always take many years to complete 
b.      Carryover effects  
c.      Need to employ additional experimenters 
d.      All of the above 

 
 
For questions 26 – 35 use the following information:  A faculty member wishes to determine 
whether exercise will influence the number of classes statistics students miss.  There are four 
subjects.  In the control condition the students do not exercise, while in the experimental condition 
they do exercise.  The following data indicate the number of classes missed in each condition: 
 
  Subject  Control Condition Experimental Condition 
  1   6   5 
  2   4   3 
  3   2   4 
  4   7   8 
 
26. What is the null hypothesis? 
 a. Exercise has no effect  
 b. Exercise has an effect 
 
27. What is the alternative hypothesis 

a.  Exercise has no effect  
 b.  Exercise has an effect  
 
28. Is this a one- or two-tailed test? 

a. One-tailed 
 b. Two-tailed  
 
29. What is the mean of the difference scores? 
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 a. –2.10 
 b.  –0.25  
 c. –2.70 
 d. 3.00 
 
30. What is the value of sD ? 
 a. 2.25 
 b. 0.75 
 c. 1.50  
 d. –.333 
 
31. What is the value of sMD

? 

a. 2.25 
 b. 0.75  
 c. 1.50  
 d. –.333 
 
32. What is the value of t? 

a. 2.25 
 b. 0.75 
 c. 1.50  
 d. –.333  

 
33. How many degrees of freedom are there? 
 a. 4 
 b. 3 

 c. 2 
 d. 1 
 

34. What is the critical value of t from the table with alpha set to .05? 
 a. 1.89 
 b. 2.33 
 c. 3.18  
 d. 4.41 
 
35. Is the outcome statistically significant? 
 a. Yes 
 b. No  

  
 
Problems 36-42 utilize SPSS. 
 

Using SPSS With The Independent Samples t Test 
 

To Begin SPSS 

 
 Step 1 Activate the program, close the central window, and click on the Variable View 

option at the bottom left of the window.   
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 Step 2 Click on the first empty rectangle (called a ‘cell’) under the column heading ‘Name’ 

and type the name of the first variable for which you have data.  We are going to utilize the same 

data and labels as were previously employed in Table 10.3.  These data dealt with a fictitious 

comparison of the effectiveness of two methods for teaching statistics.  We have called these 

procedures ‘Experimental’ and ‘Control’.  Therefore, type ‘Procedure’ in the first empty cell under 

‘Name’. 

 Step 3 Click on the first empty ‘cell’ under the column heading ‘Label’ and type ‘Procedure of 

the Study’.  Note that in order to see the entire label you may need to expand the size of this cell by 

placing your cursor on the right border of the Label heading and moving to the right. 

 Step 4 Click on the first empty ‘cell’ under the column heading ‘Values’.  A box will appear.  

In the blank space to the right of ‘Value’, type the number ‘1’.  Then type a brief description of this 

value of the variable in the blank space to the right of ‘Label’.  In our case type ‘Experimental’.  

Finally, click on ‘Add’.  Your label for a value of 1 will appear in the large white region in the center 

of the window.  Now repeat the initial steps in this section for the value ‘2’, which is given the label 

‘Control’ (Figure 10.1).  Click ‘Add’ and then click on ‘OK’. 

Figure 10.1 The Value Labels Window 

 

 

 Step 5 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with labels for groups, select ‘Nominal’.   

Step 6 Repeat Steps 2, 3 and 5 except that you type ‘Data’ in the first empty cell under 

‘Name’ and for the label.  Finally, select ‘Scale’ in the column under the column heading ‘Measure’ as 

we have ratio data.  The result is shown in Figure 10.2.  We must now shift to the data window and 

sequentially enter the data for each subject.   

Figure 10.2 The Variable View Window 
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To Enter Data In SPSS 

 
Step 7 Click on the ‘Data View’ option at the lower left corner of the variable view window.   

Step 8 For each subject in the experimental condition, type the value ‘1’ in the column 

‘Procedure’ and their test score in the column ‘Data’.  Continue by entering ‘2’ for each subject in the 

control condition.  Then enter each subject’s data (Figure 10.3).   

Figure 10.3 Completed Data Entry 

 

To Conduct An Independent Samples t Test 

 

Step 9 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, and then move to ‘Compare Means’.  Then click on ‘Independent Samples T Test’. 

Step 10 A new window will appear.  The test variable and the grouping variable need to be 

identified.  In our case, Procedure is the label of the grouping variable.  This is indicated by moving 

‘Procedure’ to the box under ‘Grouping Variable’ by clicking on the word Procedure and then on the 

bottom arrow.  The result is shown in Figure 10.4.   

Figure 10.4 The Independent Samples t Test Window 
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Step 11  Notice that there are now two question marks following the name of our grouping 

variable.  Click on Define Groups and identify the numbers associated with our experimental and 

control conditions, in this case 1 and 2 (Figure 10.5).  Then click ‘Continue’. 

Figure 10.5 The Defining Groups Window 

 

 

The result will be Figure 10.6.   

Figure 10.6 The Independent Samples T Test Window 

 

 

Step 12  Click the word ‘Data’ which will then be highlighted.  Now click on the top arrow in 

the middle of the window.  The result is shown in Figure 10.7.   

Figure 10.7 Completed Independent Samples T Test Window 
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Step 13  Now click ‘OK’ and SPSS will conduct the independent samples t test.  The summary 

of the descriptive statistics are shown in Table 10.8.  The values for the experimental and control 

group means are the same as we calculated previously.  The standard deviations given in Table 10.8 

are also equal to the square roots of the variances we previously calculated except for minor 

rounding error in our calculations. 

Table 10.8 SPSS Output; Independent Samples T Test  – Descriptive Statistics 

               

 

The summary of the inferential statistics are shown in Table 10.9. 

Table 10.9 SPSS Output; Independent Samples T Test – Summary Table 

 

 

This is a complex table.  Refer to the first row, ‘Equal variances assumed’.  The first two 

entries, F and Sig, refer to Levene’s test for equality of variances.  An assumption of the independent 

samples t test is that the two samples are drawn from populations which have equal variances.  If 

the significance (p-value) of the Levene’s test for equality of variances is less than .05 then we reject 
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that the two samples come from populations with equal variances.  If this were the case we would 

report the values presented in the second row of Table 10.9.  In our case, the significance value for 

Levene’s test is .479.  This value is larger than .05.  We can, therefore, retain the assumption that the 

variances of the populations are equal and proceed to the remainder of the row ‘Equal variances 

assumed’.  The next value, which is t equals 4.481, is similar to the value of 4.44 that we calculated 

previously except for our rounding error, and the value of 9 for the df is the same as we calculated.  

The value for the ‘Sig (2-tailed)’ (or p-value) agrees with our decision to reject the null hypothesis 

as .002 is less than .05.  The ‘Mean Difference’ of 6.0 is the same as we found earlier.  The ‘Std Error 

Difference’, which is 1.33888, also closely matches the value of 1.35 we found, except for some 

rounding error in our calculation.  Finally, the values for the 95% confidence interval also closely 

match what we calculated. 

Step 14  Exit SPSS.  There is no need to save your work. 

A Limitation Using SPSS With The Independent Samples t Test  

 
In the just completed example the null hypothesis was that there was no difference between 

the population means from which the samples were drawn.  In the second example of the 

independent samples t test that was described previously in the chapter the null hypothesis was 

that the difference between the population means was 10 (data are given in Table 10.4).  The SPSS 

procedure that we have just reviewed cannot account for a situation where the null hypothesis is 

not 0.  Fortunately, in the vast majority of cases the null hypothesis for an independent t test is that 

the difference between the population means is 0 so this is not a serious limitation.  

 

Using SPSS With The Dependent Samples t Test 
 
(Note that SPSS calls this the paired samples t test.) 

To Begin SPSS 

 
 Step 1 Activate the program, close the central window, and click on the Variable View 

option at the bottom left of the window.   

 Step 2 Click on the first empty rectangle (called a ‘cell’) under the column heading ‘Name’ 

and type the name of the first variable for which you have data.  We are going to utilize the same 

data as we previously employed in Table 10.6.  These data dealt with a fictitious comparison of the 

effectiveness of a fuel additive.  Click on the first empty cell under the column heading ‘Name’.  You 

now type a descriptive name of the first measure for vehicle number 1.  I have chosen ‘wadditive’ 

for the mileage of a vehicle with a fuel additive. 
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 Step 3 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell I typed a 

more extensive description of the variable, ‘Mileage with additive’.  Note that in order to see the 

entire label you may need to expand the size of this cell by placing your cursor on the right border 

of the Label heading and moving to the right. 

 Step 4 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with mileages, which are examples of ratio data, select ‘Scale’.   

Step 5 Repeat Steps 2 – 4 except that you type ‘woadditive’ in the first empty cell under 

‘Name’ and for the label type ‘Mileage without additive’.  Finally, select ‘Scale’ in the column under 

the column heading ‘Measure’ as we have ratio data.  The result is shown in Figure 10.8.  We must 

now shift to the data window and sequentially enter the data for each subject.   

Figure 10.8 The Variable View Window  

 

To Enter Data In SPSS 

 
Step 6 Click on the ‘Data View’ option at the lower left corner of the variable view window.   

Step 7 For each vehicle, type the mileage with and without an additive in the appropriate 

column (Figure 10.9).   

Figure 10.9 Completed Data Entry 

 

To Conduct A Dependent Samples t Test 

 
Step 8 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘Compare Means’.  Finally, click on ‘Paired-Samples T Test’. 

Step 9 A new window will appear (Figure 10.10).   

Figure 10.10 Paired-Samples T Test Window 
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Step 10 We have only two measures for each vehicle.  The first one selected will be moved 

to the right side of the figure under Variable 1.  The second measure selected will be positioned 

under Variable 2.  Our measure ‘Mileage with additiv…’ is highlighted and clicking on the arrow will 

copy it to the right under Variable 1.  Our second measure, ‘Mileage without add…’ then needs to be 

highlighted and clicking on the arrow will copy it to the right under Variable 2.  This is shown in 

Figure 10.11.  Now click ‘OK’ and SPSS will conduct a dependent samples t test.   

Figure 10.11 Completed Paired-Samples t Test Window 

              

 

 The summary of the descriptive statistics are shown in Table 10.10.  We did not previously 

calculate the mean and standard deviations, but these are easy to check if you would like to do so.   

Table 10.10 SPSS Output; Dependent Samples t Test – Descriptive Statistics 
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The next portion of the output provides information about the degree to which the two 

measures of mileage for each vehicle are related to each other (Table 10.11).  In other words, if a 

particular vehicle gets a high mileage without an additive does it also tend to have a high mileage 

when it has an additive?  This topic will be covered in detail in Chapter 14 when we review 

correlations.  

Table 10.11 SPSS Output; Relationship Between the Measures of Mileage 

             

 

The summary of the remainder of the inferential statistics are shown in Table 10.12. 

Table 10.12 SPSS Output; Dependent Samples t Test – Summary Table 

 

 

There is a great deal of information given in Table 10.12.  The mean difference between the 

mileage with and without an additive is 0.50 miles per gallon.  This is the same value we obtained.  

Then the standard deviation of the difference in mileage is given.  We calculated this value to be 

2.43 which is the same as in Table 10.12 except for our minor rounding error.  Further, our 

calculated value for the standard error was 0.99, which is essentially the same as provided in the 

table.  SPSS then provides the lower and upper limits of the 95% confidence interval.  We are also 

given the value of t with its df .  These later values agree closely with what we calculated, and the 

‘Sig (2-tailed)’ (or p-value) corresponds with our decision to not reject the null hypothesis as .636 

is greater than our α of .05.  Finally, if you compare Table 10.9, which provides the output for the 

Independent Samples T test, with Table 10.12, which provides the output for the Dependent 
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Samples T test, you will see that Levene’s test is not included with the Dependent Samples T test.  

This is because Levene’s test is only utilized when samples are independent.   

Step 11  Exit SPSS.  There is no need to save your work. 

 

SPSS Problems: Chapter 10 

 

An Example Of An Independent Samples t Test 

 
Questions 36 – 39 are based on the following hypothetical study: 
 
A physics professor is disturbed to learn that many students apparently do not have a good 
understanding of facts related to motion.  For instance, many do not understand that on a moving 
carousel the riders on the inside are traveling more slowly than those nearer the outside edge.  
The professor decides to examine whether passing a college-level physics class affects students’ 
understanding of motion.  Specifically, the professor compares two groups, one consisting of 
students who have passed an introductory physics course and the other consisting of students 
who have not taken such a course.  (Note that this is a quasi-experimental design.)  The professor 
measures knowledge of motion on a 50-point scale, with higher numbers indicating better 
knowledge of motion.  Do the data indicate that the physics course has had a statistically 
significant impact on student understanding?  (Use a two-tailed test with alpha equal to .05.)  
 
Scores for students who have passed a  Scores for students who have not taken a  
physics course     physics course 
 

45       40 
47       38 
41       36 
38       35 
46       38 
44       42 
42       45 
42       31 

         35 
         47 
 

 
36. What is the significance value (Sig.) for Levene’s test for equality of variances? 
 a. .002 
 b. .083 
 c. .197 
 d. .359  
 
37. What is the value of t? 
 a. 1.445 
 b. 2.242 
 c. 3.739 
 d. 4.127 
 
38. What are the degrees of freedom? 
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 a. 12 
 b. 14 
 c. 16 
 d. 18 
 
39. Is the outcome statistically significant? 
 a. yes 
 b. no 

 

An Example Of A Dependent Samples t Test 

 
Questions 40 - 42 are based on the following hypothetical study: 
 

A number of studies have indicated that conservatives are more anxious than liberals.  In order to 
test whether an increase in anxiety changes views of conservatism/liberalism, a faculty member 
measures the political views of students early in a semester (Assessment 1) and again just before 
they take an important, cumulative final exam in a required course with a reputation for being 
difficult (Assessment 2).  The scale goes from 0 (very liberal) to 10 (very conservative).  Assuming 
that the following results are obtained, is there a significant shift of the political views in this 
hypothetical study?  (Use a two-tailed test with alpha equal to .05.) 
 

Student  Assessment 1  Assessment 2 
  1   6     6 
  2   6     7 
  3   4     5 
  4   3     4 
  5   5     6 
  6   5     7 
  7   9     8 
  8   9   10 
  9   6     5 
10   7     6 

 

40. What is the value of t? 
 a. -1.177 
 b. -2.361 
 c. -3.904 
 d. -4.846 
 
41. What are the degrees of freedom? 
 a. 6 
 b. 7 
 c. 8 
 d. 9 
 
42. Is the outcome statistically significant? 
 a. yes 
 b. no  
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Chapter 11   
Finding Differences with Interval/Ratio Data – III:   

The One-way Between-subjects ANOVA 
 

“Enter to grow in wisdom.” 

Inscription on the outside of the 1890 gate to Harvard Yard 

Introduction 
 As Table 11.1 indicates, when testing for a difference with interval or ratio data a commonly 

used set of procedures is the analysis of variance (abbreviated ANOVA).  It is important to 

recognize that the ANOVAs are a general approach to analyzing data that can be used with a variety 

of experimental designs.   

Analysis of variance (ANOVA) – A set of flexible, closely related, inferential procedures for  

 comparing sample means by examining variances.   

 

In order to discuss the ANOVAs we first need to master some additional vocabulary.  When 

using the ANOVAs an independent variable (IV) is called a factor, and each value of a factor (IV) is 

called a level.  In other words, if we are studying the effect of hours of sleep then each different 

amount of sleep to which subjects are assigned is a level.  ANOVAs are particularly useful because 

they can deal simultaneously with more than one factor (IV), and each factor can have two, or more, 

levels.  When the design includes more than one factor we have what is called a factorial ANOVA.  

However, in this chapter we are only dealing with one factor (one IV).  Thus, we will be reviewing 

what could be described as the single-factor ANOVA.  Instead of single-factor, often the phrase ‘one-

way’ is used.  This chapter will, therefore, be introducing the one-way ANOVA.  Further, when each 

subject is assigned to only one of the levels, this is a between-subjects design (this issue will be 

discussed further in the next chapter).  Thus, the name one-way between-subjects ANOVA (this 

design is underlined in Table 11.1) conveys a great deal of information to a statistician.  First, the 

phrase one-way identifies that we are dealing with a research design that has only one IV.  Second, 

the phrase ‘between-subjects’ indicates that different subjects are assigned to each of the 

experimental conditions.   

Factor – With an ANOVA, the term ‘Factor’ is often used instead of independent variable.  

Level – With an ANOVA, the number of values of an independent variable. 

Factorial ANOVA – An ANOVA with more than one factor.   

Between-subjects design – With an ANOVA, those designs in which each subject  

 experiences only a single level of a factor. 
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One-way between-subjects ANOVA – An inferential procedure for comparing two or  more  

 means from independent samples when there is one independent variable.   

 

The ANOVAs can analyze data from both true and quasi-experimental designs.  In a true 

experiment each subject is randomly assigned to a level of the IV.  In the case of a quasi-experiment 

the subjects cannot be randomly assigned to the levels of the IV.  For instance, if there are two levels 

of the IV, one consisting of men and the other consisting of women, the researcher cannot randomly 

assign which gender a subject will be, and thus does not control the membership of the two 

samples.   

Table 11.1   Overview of Inferential Statistical Procedures For Finding if there is a Difference 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 

 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   

 
 

The Italicized procedure is reviewed in Appendix A 

 
  

The ANOVA is not the only procedure that can be used when looking for a difference 

between subjects when there are interval or ratio data.  In Chapter 10 you learned that the 

independent samples t test is also commonly employed, but it can only be used with designs that 

have one IV with two samples of subjects.  In contrast, the one-way between-subjects ANOVA can 

simultaneously analyze the data from studies with two, or more, values (levels) of its IV.  For 
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instance, instead of only having a control group and one experimental group, as is the case with the 

independent samples t test, we could now have a control group and a number of experimental 

groups.  Thus, while the independent samples t test examines the difference between two sample 

means, the one-way between-subjects ANOVA provides an overall test of the significance of the 

differences between all of the sample means.  In doing so the ANOVA controls for the 

experimentwise error rate.  In other words, if  is set at .05, with an ANOVA there is only one 

chance in 20 of making a Type I error for the entire set of comparisons of sample means.   

 It is critical to understand what the last sentence indicates.  When a single statistical test is 

calculated to determine if a difference exits between two groups, with  set to .05 there is a 5% 

chance of rejecting the null hypothesis when, in fact, it is correct.  This is the probability of making a 

Type I error.  As the number of comparisons is increased, with a procedure such as the independent 

samples t test the probability of making a Type I error for each comparison remains at .05.  This is 

the pairwise error rate.  However, the likelihood of making a Type I error across all the 

comparisons increases rapidly.  Put another way, the probability of making a Type I error remains 

.05 for each pairwise comparison but the experimentwise error rate increases dramatically as the 

number of pairwise comparisons increases (Table 11.2).  (We encountered a similar situation when 

discussing post hoc comparisons for the chi-square test of independence.)   

Experimentwise error rate – The likelihood of making at least one Type I error with any of  

 the experiment’s comparisons. 

Pairwise error rate – The likelihood of making a Type I error for a single comparison  

 between sample means.  This is equal to , which is usually .05 or .01.  

Pairwise comparison – Comparison between two sample means. 

  

Table 11.2 Likelihood of Making at Least one Type I Error 

Number of Groups or 
Samples 

Number of Pairwise 
Comparisons 

Pairwise Error Rate Likelihood of at 
Least one Type I 
Error 

2 1 .05 .05 

6 15 .05 .54 

12 66 .05 .97 

 

As Table 11.2 indicates, as the number of groups or samples rises, the number of pairwise 

comparisons increases rapidly.  With two groups there is only one pairwise comparison.  However, 

with 12 samples there would be 66 pairwise comparisons.  This raises two concerns.  First, while 

calculating a single independent samples t test is not difficult, calculation of 66 t tests is definitely a 
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chore.  Second, and more important, the likelihood of making a Type I error increases dramatically 

when numerous t tests are calculated.  It follows that the null hypothesis, which states that all of the 

sample means are equal, will almost certainly be rejected if a large series of t tests is conducted 

(Table 11.2).  Clearly, what is needed is a method to control the experimentwise error rate as the 

number of pairwise comparisons increases, and the ANOVA accomplishes this elegantly.   

Logic of a One-Way Between-Subjects ANOVA 
 

As the name analysis of variance implies, the ANOVA is based upon a comparison of 

variances.  It may at first seem peculiar to test differences between means by examining variances, 

but this has turned out to be a very useful approach.  Fortunately, the logic of the ANOVA is 

straightforward.  Specifically, the between-subjects ANOVA is examining whether the variability 

observed among the scores within the treatment groups is sufficient to account for the variability 

observed among the means of these groups.  This can be made clearer with an example.  Let’s 

assume we take two random samples from a population.  We record the height of each subject and 

then calculate the mean height and variance of each sample.  Since both samples are randomly 

drawn from the same population, we would expect these two sample means to be similar and the 

two variances to also be similar.   

Now let us assume that we add a treatment effect to one of our groups.  In this case, the 

control group’s mean and standard deviation would not change as we have not influenced them in 

any way.  However, if the intervention for each member of the treatment group was to stand on a 

chair 2 feet tall, the mean height of this group would now increase by 2 feet.  Since adding a 

constant to every score does not change the standard deviation or variance of a sample, (this was 

discussed in Chapter 3) the variance (sX
2) of the treatment group would not change and would, 

therefore, remain approximately the same as the control group’s.  In other words, the addition of a 

treatment effect does not change the variability within a group.  However, the addition of this 

treatment effect would cause the sample means to diverge since the mean of the treatment group 

has increased by 2 feet.  Thus the variability of treatment means will have increased but the 

variability of scores within each of the groups will have remained unchanged.  Consequently, the 

variability of the scores within the groups would no longer be sufficient to account for the 

variability observed between the group means.  And, as you will see, the ANOVA will detect this 

inequality which is indicative of a treatment effect occurring (in this case standing on a chair).  We 

now turn to an in-depth explanation. 

The word ‘analysis’ can be defined as the examination of the parts that make up some 

whole.  In an ANOVA it is the variance that will be analyzed.  A one-way ANOVA starts with the 

assumption that the treatment (IV) does not have an effect and, consequently, the different groups 
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are essentially random samples from a single population.  The ANOVA then estimates the variance 

of this population in two different ways.  Fortunately, you are familiar with both approaches. 

Treatment – With ANOVA, another term for the independent variable. 

 

We learned in Chapter 9 that if we randomly select a sample from a population the standard 

deviation of the sample (sX) can be used to estimate the population standard deviation (X) where: 

 sX =  
(X – M)2

n − 1
   

It follows, therefore, that the variance derived from a sample (sX2) can be used to estimate 

the population variance (X2) where : 

 sX
2 = 

(X – M)2

n − 1
    

And if we continue to randomly select samples from this population we can combine or pool 

the variance estimate from each of these samples to find an even more precise estimate of X
2.   

Stated differently, in calculating an ANOVA one estimate of the population variance (X2) comes 

from looking at the variability within each of the samples.  If the scores within each sample do not 

vary substantially it suggests that X
2 is small.  In contrast, if the scores within each sample do vary 

substantially it suggests that X
2 is large.  This estimate of X

2 is called the mean square within 

(MSW).    

 Mean square within (MSW) – The estimate of the population variance (X2) based upon the  

  variability within each of the samples.  More specifically, it is obtained by pooling  

  the variances of the scores within each of the samples.   

 

 Alternatively, we could estimate the population variability by examining how much the 

sample means vary from each other.  If the sample means do not vary substantially it suggests that 

the population variance (X
2) is small (you would also have to account for the size of the sample).  

However, if the sample means do vary substantially it suggests that X
2 is large.  This estimate of 

X
2 is called the mean square between (MSBet).  (Please note that we are not calling this MSB.  The 

term MSB is used in more complex ANOVAs and has a different definition than MSBet.) 

 Mean square between (MSBet) – The estimate of the population variance (X2) based upon  

  the variability between the sample means.  More specifically, it is obtained from the  

  deviations of the sample means from the grand mean.   

 

What is essential to note is that we now have two methods for estimating X
2.  We can find 

one estimate by pooling the variability of scores within each of the samples, and we can find 
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another estimate based upon the variability of the sample means.  These two estimates of X
2 may, 

or may not, be similar. 

The key to understanding ANOVA is that if the samples are all drawn from the same 

population these two estimates of X
2 are expected to be approximately the same.  However, if the 

samples are drawn from populations with different means the two estimates of X
2 may differ 

substantially.  An example will clarify the reasoning. 

Let us assume that from a population we randomly select a sample of 30 subjects and obtain 

a variance (sX
2) of 2.5.  This is an indication of how much the sample scores vary from each other.  

And, as we have seen, sX
2 provides us with an estimate of X

2.  Of course, if we were to draw 

another sample from the same population we would expect the variance of this sample to also be 

approximately 2.5.  However, we would not be surprised if the variance differed somewhat from 

2.5.  And this second sample’s sX
2 would also provide us with an estimate of X

2.  An even better 

estimate of X
2 would be determined by combining the sX

2 of the first sample with the sX
2 of the 

second sample.  As we just reviewed, this results in what is called the mean square within (MSW).  It 

is important to note that the MSW is based upon the variability within each sample.  And since each 

subject within a sample is treated the same (receives the same treatment level of the independent 

variable) then the MSW does not reflect any effect of the treatment.  Since this variability is not due 

to treatment, it is called error.  But realize that this does not signify that any mistake occurred.  It is 

simply the variability among the subjects that is not due to the independent variable.   

Error – With ANOVA, the variability not due to treatment. 

 

Alternatively, as we previously noted, the population variance (X
2) could also be estimated 

by examining how much the sample means vary.  Specifically, we have learned in Chapter 9 that sM  

(a measure of the variability of sample means) equals sX/n.  It follows, therefore, that sM
2

 equals 

sX
2/n.  Thus from the sample means we can once again determine a value for sX

2 which can be used 

as an estimate of X
2.  And we just noted that this second estimate of X

2 is called the mean square 

between (MSBet).  This estimate of X
2 is affected by two sources of variability.  As was the case for 

MSW, the magnitude of MSBet is affected by the amount of variability, called error, within each of the 

samples.  The larger this variability, the more we would expect the sample means to diverge just by 

chance.  In addition, since the magnitudes of the sample means reflect the effect of the independent 

variable (treatment), MSBet (unlike MSW) is also affected by the treatment.  Thus MSBet is affected by 

both the treatment and the error, while MSW only reflects the amount of error. 

As was stated previously, it can be shown mathematically that if there is no treatment effect, 

these two estimates of the population variability (X2) are expected to be approximately equal.  In 
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other words, if there is no treatment effect then both the mean square within (MSW) estimate of X2 

and the mean square between (MSBet) estimate are based solely upon what we are calling error, 

and they are expected to be approximately equal.  Put another way, the ratio of (MSBet) / (MSW) 

should be approximately 1 if there is no treatment effect.  In other words, if MSW is approximately 

equal to MSBet then the variability of the scores within the groups is sufficient to account for the 

variability of the group means. 

The ratio of (MSBet) / (MSW) is given a name in statistics.  (As you have learned, everything 

in statistics seems to have a name.)  It is called the F ratio in honor of Sir Ronald Fisher who made 

major contributions to the development of the ANOVA.  It is the ratio of two estimates of the 

population variance: 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
 = 

𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐠𝐫𝐨𝐮𝐩𝐬 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐

𝐰𝐢𝐭𝐡𝐢𝐧 𝐠𝐫𝐨𝐮𝐩𝐬 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  = 

𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐞𝐫𝐫𝐨𝐫

𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐮𝐩𝐨𝐧 𝐞𝐫𝐫𝐨𝐫

   

 

As you just learned, if there is no treatment effect this ratio should be approximately 1.  This 

is because if there is no treatment then both the numerator and denominator are solely estimates of 

error (variability not due to any treatment).  Thus, when there is no treatment effect the F ratio 

would become: 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
 = 

𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐠𝐫𝐨𝐮𝐩𝐬 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐

𝐰𝐢𝐭𝐡𝐢𝐧 𝐠𝐫𝐨𝐮𝐩𝐬 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  = 

𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐞𝐫𝐫𝐨𝐫

𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐮𝐩𝐨𝐧 𝐞𝐫𝐫𝐨𝐫

 = 1 

On the other hand, if there is a treatment effect the size of the numerator would increase but the 

size of the denominator would not change.  And thus the F ratio would be greater than 1.  Therefore, 

in order to determine if there is a treatment effect we first have to calculate the F ratio and then 

refer to the appropriate table to determine if the outcome is greater than would be expected to have 

occurred by chance.  Fortunately, while our discussion has been based upon the one-way between-

subjects ANOVA, the logic remains substantially the same with more complex designs.   

Conducting A One-Way Between-Subjects ANOVA  

 
 While the between-subjects ANOVA can deal with more than two groups our first example 

will have just two in order to simplify the computations.  The data deal with a comparison of quiz 

grades for a control group and an experimental group.  These data are indicated in Table 11.3, along 

with the calculation of the sample means and sum of the squared deviations from each of the 

means.  Note that for the entries in the experimental condition a value of 3 has been added to each 

score in the control condition.  As expected, this increases the value of the experimental sample’s 

mean by 3, but does not affect its variability.  

Table 11.3 Example 1:  Initial Calculations  
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 Control Condition (X1)             Experimental Condition (X2) 

X1  (X1 – M1) (X1 – M1)2  X2       (X2 – M2)      (X2 – M2)2 

 

  7      2  4   10      2  4 

  6      1  1     9      1  1 

  5      0  0     8      0  0 

  4    –1  1     7    –1  1 

  3    –2               4     6    –2                4 

X1 = 25 x1 = 0        x1
2 = 10              X2 = 40            x2 = 0        x2

2 = 10 

n = 5              n = 5 

M1 = 25 / 5            M2 = 40 / 5 

      = 5                   = 8 

 

It is critical when using ANOVAs that you know what you are calculating and that you keep 

your calculations clearly defined.  The nine values that must be calculated in a one-way between-

subjects ANOVA are underlined in Table 11.4. 

Table 11.4 Summary Table for the One-way Between-subjects ANOVA 

Source of Variation SS  df  MS  F 

Between Groups SSBet  dfBet       MSBet  F ratio   

Within Groups  SSW   dfW   MSW 

Total   SST   dfT  

   

 We will begin our analysis of the quiz grades by entering the three values for SS, then 

calculating three values for df, two values for MS and finally one F ratio.  As you will see no step is 

difficult.  It is essential, however, that you clearly identify each item you are calculating so that you 

do not become confused. 

Calculating The Sums Of Squares 

 
 The first values in Table 11.4 that must be filled in are the sums of squares (SS).  The 

calculations are easiest if we begin by calculating the sum of squares total (SST).  This value is found 

by first calculating the mean of all of our scores (to keep the computations brief, in this example 

there are only 10 quiz scores), which is known as the grand mean, and then determining the sum of 

the squared deviations of each score from this grand mean.  This can be represented as:  

SST = (𝐗 – 𝐌𝐆)𝟐   
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where MG is the mean of all of the scores, in other words the grand mean.  It is found using the 

following equation: 

MG  = 
𝐗

𝐍
   

where, in a one-way between-subjects ANOVA, N is the total number of subjects (note that in this 

calculation N is not referring to the size of a population). 

 Sum of squares total (SST) – The sum of the squared deviations from the mean for all of the  

scores. 

Grand mean (MG)  – The mean of all of the scores. 

 

For our example with 10 quiz scores the calculation of MG and SST are shown in Table 11.5.  

Note that all of the scores from both groups are included. 

Table 11.5 Example 1:  Calculation of the Sums of Squares Total  

  X  (X – MG)   (X – MG)2 

  7      0.50     0.25 

  6    –0.50     0.25 

  5    –1.50     2.25 

  4    –2.50     6.25 

  3    –3.50   12.25 

10      3.50   12.25 

  9      2.50     6.25 

  8      1.50     2.25 

  7      0.50     0.25 

  6    –0.50     0.25 

X = 65 (X – MG) = 0         (X – MG)2 = 42.50 = SST 

N = 10         

MG  = 
𝟔𝟓

𝟏𝟎
           

       = 6.50  

 

This value of SST is then entered in our ANOVA summary table.  It is a measure of the total 

variability in the data. 

 

 The sum of squares between groups (SSBet) is found by determining the square of the 

deviation of each sample mean (M) from the grand mean (MG), then multiplying by the sample size 

(n), and finally finding the sum for all of the samples.  Thus, conceptually: 
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 SSBet =  [(𝐌 – 𝐌𝐆)𝟐𝐧]   

We have already determined that MG = 6.50 (Table 11.5).  From Table 11.3 we find that n, the size 

of each sample (note that n ≠ N), is equal to 5 and that the two sample means (M) are 5 and 8.  For 

our example the calculations for determining SSBet are shown in Table 11.6. 

Sum of squares between groups (SSBet) – The sum of the squared deviations of each  

treatment mean from the grand mean. 

 

Table 11.6 Example 1:  Calculation of SSBet  

             M     (M – MG)  (M – MG)2  (M – MG)2n_________ 

                             Becomes:    (M – 6.50)  (M – 6.50)2  (M – 6.50)2(5)_____ 

Control             5.00       –1.50    2.25   (2.25)(5) = 11.25 

Exp             8.00         1.50    2.25   (2.25)(5) = 11.25 

        (M – MG)2 n = 22.50 = SSBet 

 

Alternatively, the same calculations can be presented as follows: 

 SSBet =  [(𝐌 – 𝐌𝐆)𝟐𝐧] 

          = [(5 – 6.50 )2 (5)] + [(8 – 6.50)2 (5)] 

           = [(–1.50)2 (5)] + [(1.50)2 (5)] 

           = (2.25)(5) + (2.25)(5) 

           = 11.25 + 11.25 

           = 22.50 

 

This value is then entered in our ANOVA summary table.  It is a measure of the variability of 

the group means. 

 

The sum of squares within groups (SSW) can be found by taking each score (X), subtracting 

its sample mean (M), and squaring this deviation.  The sum of these squared deviations for all of the 

scores in each of the groups would be SSW.  Thus, conceptually:  

SSW  = [(X – M)2]   

where M is the mean of a group or sample. 

In other words, with only two groups: 

SSW = x1
2 + x2

2  

Fortunately, we have already calculated these values in Table 11.3.  Therefore: 

SSW = 10 + 10 
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  = 20 

This value is then entered into our ANOVA summary table.  It is a measure of the variability 

within each of the groups. 

Sum of squares within groups (SSW) – The sum across all conditions, of the sum of the  

squared deviations of each score from its treatment mean. 

 

In order to check our calculations, we make use of the fact that: 

SST = SSBet + SSW 

42.50 = 22.50 + 20 

42.50 = 42.50 

 Calculating the three SS is the most challenging step in completing the ANOVA summary 

table.  It is important that you understand what you have accomplished, and why the next steps are 

necessary.  A SS is a measure of variability.  Unfortunately neither the SSBet nor the SSW is a 

completely adequate measure of variability as the magnitude of SSBet is affected by the number of 

groups and the magnitude of SSW is affected by the number of subjects.  By dividing each SS by the 

appropriate degrees of freedom we control for the number of groups and the number of subjects.  

The result in each case is what is called a mean square (MS).  This is another term for variance.  And 

then these two variances are directly compared in what is called an F ratio.  That’s all there is to 

calculating a one-way between-subjects ANOVA. 

Calculating The Degrees Of Freedom 

 
We now must calculate three values of degrees of freedom; the degrees of freedom for 

between groups, within groups, and total.  For a one-way between-subjects ANOVA the degrees of 

freedom for between groups is equal to the number of groups minus 1.  Thus: 

 dfBet = k – 1  

where k is the number of levels of the IV.  In our example: 

 dfBet = 2 – 1 

           = 1   

This value is then entered in our ANOVA summary table. 

 

 To find the degrees of freedom for within groups we first subtract 1 from the total number 

of subjects in each group and then sum the resulting values across all of the groups.  Thus: 

 dfW = (n – 1)   

where n is the number of subjects in each group or sample.  In our example: 

 dfW = (5 – 1) + (5 – 1) 
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         = 4 + 4  

         = 8 

Alternatively, the following equation can be used to calculate dfW: 

dfW = N – k  

where N is the total number of subjects in all the groups or samples and where k is the number of 

groups or samples.  For our example: 

               dfW = 10 – 2 

                      = 8 

The value for dfW is then entered in our ANOVA summary table. 

 

 To find the degrees of freedom total, we subtract 1 from the total number of subjects.  Thus: 

 dfT = N – 1  

where N is the total number of subjects in all the groups or samples.  In our example: 

 dfT = 10 – 1 

        = 9 

This value is then entered in our ANOVA summary table. 

 

 As a check on our calculations:  

 dfT = dfBet + dfW 

    9 = 1 + 8 

    9 = 9 

Calculating The Mean Squares 

 
 Two mean squares (MS) now need to be calculated. The MS between groups and the MS 

within groups are found by dividing the appropriate SS by its degrees of freedom.  Thus: 

 MSBet = 
𝐒𝐒𝐁𝐞𝐭

𝐝𝐟𝐁𝐞𝐭
   MSW = 

𝐒𝐒𝐖

𝐝𝐟𝐖
 

             = 
𝟐𝟐.𝟓𝟎

𝟏
             = 

𝟐𝟎.𝟎𝟎

𝟖
 

             = 22.50             = 2.50 

 

These values are then entered in our ANOVA summary table.  Recall that each MS is an estimate of 

the population variability (remember, each is a variance).  However, each estimate is derived from 

a different perspective, from looking at the variability between the group means (MSBet), and from 

looking at the variability within each of the groups (MSW).  And recall that MSBet reflects both 

treatment and error while MSW only reflects error. 
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Mean square (MS) – In an ANOVA, an estimate of the population variance (X2).  

Calculating The F Ratio 

 
 Finally, we calculate our F ratio:  

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
   

   = 
𝟐𝟐.𝟓𝟎

𝟐.𝟓𝟎
 

   = 9.00 

This value is then entered in our summary table, and the ANOVA table is complete (Table 

11.7).  We will later calculate the value listed in the final column of this table. 

Table 11.7 Example 1:  Completed Summary Table for the One-way Between-subjects ANOVA, 

with the Value for Eta Squared (2) 

Source of Variation SS  df          MS      F      2  

 Between Groups 22.50  1        22.50   9.00    .53  

 Within Groups  20.00  8          2.50       

Total   42.50  9          

 

Interpreting The F Ratio 

 
As was described previously, MSBet and MSW are each estimates of the population variability 

and they would be expected to be similar if the independent variable did not have an effect.  If this 

were the case, we would expect the F ratio to be approximately equal to 1.  However, if the 

independent variable had an effect this would increase the differences among the group means, 

which would lead to an increase in the MSBet.  But MSW would not be affected.  Consequently, the F 

ratio would now be greater than 1.  

To determine whether our calculated F ratio of 9.00 is significantly different from a value of 

1, which is what would be expected if the independent variable had no effect, we must enter the F 

table (Appendix K, Table 4).  The F ratio is based upon two MS estimates, each with its degrees of 

freedom.  To find the critical value of F for alpha equal to .05 we locate the column corresponding to 

the degrees of freedom we used in the calculation of the numerator of our F ratio, and the row 

corresponding to the degrees of freedom we used in the calculation of the denominator of our F 

ratio.  For our F this would be 1 and 8 degrees of freedom.  At the intersection of this column and 

row the critical value of F is 5.32.  As our obtained F of 9.00 is larger than the critical value we reject 

the null hypothesis that the samples came from populations with equal means and accept the 
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alternative hypothesis that the population means differ.  Put differently, we conclude that our 

independent variable had an effect. 

Calculating The Post Hoc Comparisons 

 
A significant F indicates that the independent variable had an effect.  As our independent 

variable had only two levels, the effect has to be due to a difference between the means of the 

control and experimental groups.  If there were more than two levels we would need to conduct 

post hoc comparisons, as we did with the chi-square test of independence, to determine which 

treatment level means differ. 

Calculating The Effect Size 

 
For the one-way between-subjects ANOVA we will utilize eta squared (2) as the measure of 

effect size.  2  for this ANOVA is easily calculated by hand: 

2 for treatment = 
𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓
   

It is the proportion of the total variability that is explained by the treatment.  In our example: 

 2 for treatment = 
𝟐𝟐.𝟓𝟎

𝟒𝟐.𝟓𝟎
   

           = .53 or 53% 

This value of 2 is included in the last column of Table 11.7.  

 We can also utilize 2 to determine the proportion of the total variability that is not 

explained by the treatment.  The equation for this 2 is: 

 2 for error = 
𝐒𝐒𝐖

𝐒𝐒𝐓
 

       =  
𝟐𝟎.𝟎𝟎

𝟒𝟐.𝟓𝟎
 

       = .47 or 47% 

A useful characteristic of 2 values when used with ANOVAs is that their sum will equal 

1.00.  For example, in our case 2 for treatment + 2 for error = .53 + .47 = 1.00.   

Reporting The Results Of A One-Way Between-Subjects ANOVA 

 
To report our results we would provide the reader with descriptive statistics including the 

mean and standard deviation for each of the groups.  Then we would report the degrees of freedom 

of the numerator and denominator of the F ratio, as well as the value of the F ratio that was 

obtained.  If the F ratio was statistically significant, we would also provide a measure of effect size 

for the treatment.  Since there are only two groups there would be no need to conduct post hoc 

comparisons in order to identify which groups differ.  Thus, with our example we would report, 
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“The sample means were found to differ significantly (F(1,8) = 9.00, p < .05, 2 = .53).”  As you will 

see, by using SPSS we can obtain greater accuracy and we can provide the p-value.   

  

Progress Check 

 
1.    If there is a statistically significant treatment effect, the mean square between (MSBet) 

estimate of X2 will be _____ than the mean square within (MSW) estimate, and the F ratio 

will be greater than _____. 

2.    The numerator of the F ratio is the _____ while the denominator of the F ratio is the  

     _____. 

3.    A measure of effect size for a one-way between-subjects ANOVA is _____. 

 

Answers:  1. Greater; 1   2. (MSBet) ; (MSW)   3. eta squared 

 

A Second Example 

 
 Let us assume that a group of researchers wants to study what effect information about the 

benefits of exercise has on weight loss in dieters.  The researchers choose a design that consists of a 

control group and two experimental groups.  The control group does not receive any special 

intervention.  Subjects in the first experimental group receive written materials highlighting the 

benefits of engaging in an exercise program.  The second experimental group is treated similarly to 

the first experimental group except that for the second experimental group there is an 

informational meeting instead of the written materials.  The null hypothesis is that the populations 

from which these three samples are drawn do not differ in weight loss and thus have equal means.  

We will set the experimentwise  at .05.  For each participant the number of pounds lost during the 

following year, the dependent measure, is recorded in Table 11.8, along with the deviation from the 

appropriate sample mean, and the squared deviation from the sample mean.  Note that the sample 

sizes are unrealistically small and that they do not have to be equal. 

Table 11.8 Example 2:  Pounds Lost, Initial Calculations  

 Control Group (X1)         Experimental Group I (X2)  Experimental Group II (X3) 

X1 (X1 – M1)    (X1 – M1)2        X2           (X2 – M2)    (X2 – M2)2 X3       (X3 – M3)    (X3 – M3)2 

 

7   –5.60        31.36      10        –5.20    27.04  19     –3.00        9.00 

11   –1.60          2.56       14        –1.20      1.44  20     –2.00        4.00 

11   –1.60          2.56      15        –0.20      0.04  24       2.00         4.00  
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16     3.40       11.56      18          2.80      7.84  25       3.00         9.00 

18     5.40       29.16      19          3.80    14.44 

X1 = 63    x1 = 0    x12 = 77.20 X2 = 76             x2 = 0 x22 = 50.80 X3 = 88         x3 = 0       x32 = 26.00 

n = 5    n = 5     n = 4 

M1 = 
𝟔𝟑

𝟓
    M2 = 

𝟕𝟔

𝟓
     M3 = 

𝟖𝟖

𝟒
  

      =12.60         = 15.20          = 22.00 

 

 The next step is to create an ANOVA summary table showing what must be calculated 

(Table 11.4). 

 As each value is determined it is entered into Table 11.11.  We will begin by finding the 

values for SS. 

Calculating The Sums Of Squares 

 
 To find the SS we start with the equation: 

SST = (X – MG)2   

where MG, the grand mean, is the mean of all of the scores.  It is found using the following equation: 

MG = 
𝐗

𝐍
  

For our example with a total of 14 scores the calculation of MG and SST is shown in Table 11.9. 

Table 11.9 Example 2:  Calculation of the Sums of Squares Total  

  X   (X – MG)   (X – MG)2 

  7     –9.21    84.82 

11     –5.21    27.14 

11      –5.21    27.14 

16     –0.21        0.04 

18       1.79       3.20 

10     –6.21    38.56 

14     –2.21      4.88 

15     –1.21      1.46 

18       1.79      3.20 

19       2.79      7.78 

19       2.79      7.78 

20       3.79    14.36 

24       7.79    60.68 

25       8.79    77.26 
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X = 227  (X – MG) = 0  (X – MG)2 = 358.30 = SST 

N = 14         

MG = 
𝟐𝟐𝟕

𝟏𝟒
             

      = 16.21   

  

 The SSBet is found by, first, determining the square of the deviation of a sample mean from 

the grand mean.  This is then multiplied by the sample size.  Finally, these steps are repeated for 

each sample mean and the resulting values are summed.  Conceptually: 

 SSBet =  [(M – MG )2 n]  

where in this case MG = 16.21, and n is the size of each sample.  For our example the calculations 

are shown in Table 11.10. 

Table 11.10 Example 2:  Calculation of SSBet  

                 M     (M – MG)  (M – MG)2  (M – MG)2n__________ 

                              Becomes:   (M – 16.21)  (M – 16.21)2  (M – 16.21)2(n)_____ 

Control  12.60        –3.61      13.03  (13.03)(5) = 65.15 

Exp 1  15.20        –1.01        1.02     (1.02)(5) = 5.10 

Exp 2  22.00          5.79      33.52  (33.52)(4) = 134.08 

        (M – MG)2 n = 204.33 = SSBet 

 

Alternatively, the same calculations can be presented as follows: 

 SSBet =  [(M – MG )2 n] 

                         = [(12.60 – 16.21 )2 (5)] + [(15.20 – 16.21)2 (5)] + [(22.00 – 16.21)2 (4)] 

           = [(–3.61)2 (5)] + [(–1.01)2 (5)] + [(5.79)2 (4)] 

           = (13.03)(5) + (1.02)(5) + (33.52)(4) 

           = 65.15 + 5.10 + 134.08 

           = 204.33 

 

The SSW can be found by subtracting each score from its sample mean and squaring this 

deviation.  The sum of these squared deviations for all of the scores in each of the groups would be 

SSW . Thus, conceptually:  

SSW = [ (X – M)2]   

where M is the mean of a group. 

In other words, with three groups: 

SSW = x1
2 + x2

2 + x3
2 
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Fortunately, we have already calculated these values in Table 11.8.  Therefore: 

SSW = 77.20 + 50.80 + 26.00 

          = 154.00 

 

In order to check our calculations we make use of the fact that: 

SST = SSBet + SSW 

358.30 ≈ 204.33 + 154.00 

358.30 ≈ 358.33 

Note that the slight discrepancy is due to minor rounding error in our calculations. 

Calculating The Degrees Of Freedom 

 
 We now must calculate the degrees of freedom for between groups, within groups and total, 

and enter these values in Table 11.11.  The degrees of freedom for between groups is equal to the 

number of groups minus 1.  Thus: 

 dfBet = k – 1  

where k is the number of levels of the IV.   

In our example: 

   dfBet = 3 – 1 

             = 2   

  

To find the degrees of freedom for within groups we can first subtract 1 from the total 

number of subjects in a group and then sum across all of the groups.  Thus: 

 dfW = (n – 1)   

where n is the number of subjects in each group or sample.   

In our example: 

 dfW = (5 – 1) + (5 – 1) + (4 – 1) 

         = 4 + 4 + 3  

         = 11 

Alternatively, we could find dfW by subtracting the number of groups from the total number of 

subjects: 

 dfW = N – k 

         = 14 – 3 

         = 11 

  

To find the degrees of freedom total, we subtract 1 from the total number of subjects.  Thus: 
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 dfT = N – 1  

where N is the total number of subjects in all the groups or samples.   

In our example: 

 dfT = 14 – 1 

        = 13 

 

 As a check on our calculations:  

 dfT = dfBet + dfW 

  13 = 2 + 11 

  13 = 13 

Calculating The Mean Squares 

 
 The MS between groups and the MS within groups are found by dividing the appropriate SS 

by its degrees of freedom.  Thus: 

MSBet  = 
𝐒𝐒𝐁𝐞𝐭

𝐝𝐟𝐁𝐞𝐭
   MSW  = 

𝐒𝐒𝐖

𝐝𝐟𝐖
 

             = 
𝟐𝟎𝟒.𝟑𝟑

𝟐
              = 

𝟏𝟓𝟒.𝟎𝟎

𝟏𝟏
 

             = 102.17             = 14.00 

Calculating The F Ratio 

 
Finally, we calculate our F ratio:  

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
   

   = 
𝟏𝟎𝟐.𝟏𝟕

𝟏𝟒.𝟎𝟎
 

   = 7.30 

The ANOVA summary table is now complete (Table 11.11).  We will later calculate the value 

listed in the final column of this table. 

Table 11.11 Example 2:  Completed Summary Table for the One-way Between-subjects ANOVA, 

with the Value for Eta Squared (2) 

Source of Variation     SS      df    MS  F      2  

 Between Groups 204.33        2  102.17  7.30     .57 

 Within Groups  154.00      11    14.00       

Total   358.30      13       

Interpreting The F Ratio 
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To determine whether this F ratio of 7.30 is significantly different from a value of 1, which 

you will recall is what would be expected if the independent variable had no effect, we must enter 

the F table (Appendix K, Table 4).  Remember, the F ratio is based upon two MS estimates of the 

population variance, each with its degrees of freedom.  To find the critical value of F we locate the 

column corresponding to the degrees of freedom associated with the numerator of the F ratio and 

the row corresponding to the degrees of freedom associated with the denominator of the F ratio.  

For our F this would be 2 and 11 degrees of freedom.  The critical value of F with the  of .05 is 3.98.  

As our obtained F of 7.30 is larger than the critical value, we reject the null hypothesis that the 

samples came from populations with equal means and accept the alternative hypothesis that the 

population means differ.  Put differently, we conclude that our independent variable had an effect 

on our dependent variable. 

Conducting The Post Hoc Comparisons 

 

While a significant F indicates that the independent variable had an effect, with three or 

more levels of the IV it does not specify which group means differ.  It was noted previously that the 

number of pairwise comparisons in an experiment is given by the equation: 

Number of pairwise comparisons = 
𝐤(𝐤 – 𝟏)

𝟐
  

where k is the number of groups, samples or treatment levels  

In our case, as k equals 3 there are [3(3 – 1)] / 2, which equals 3, pairwise comparisons.  

Specifically, the 3 pairwise comparisons are between the mean of the Control Group and the mean 

of Experimental Group I, the mean of the Control Group and the mean of Experimental Group II, and 

the mean of Experimental Group I and the mean of Experimental Group II.  The significant F 

indicates that at least one of the group means is expected to differ from another.  To specify which 

means differ we need to conduct what are called post hoc tests.  You are familiar with the concept of 

post hoc tests for we used them following a significant chi-square test in Chapter 8 when the chi-

square design was larger than a 2 X 2. 

A researcher can choose from a number of post hoc tests that are used after a significant F 

ratio is found.  One of the most popular and easiest to calculate is Tukey’s honestly significant 

difference (Tukey HSD) test.   

Tukey HSD – A popular post hoc test used with ANOVAs. 

 

Calculation of the Tukey HSD leads to a critical value that is compared to the difference of 

each of the post hoc pairwise comparisons of group means in the study.  Specifically: 

Critical value of Tukey HSD = q  
𝐌𝐒𝐖

𝐧
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where q is found from the q Table (Appendix K, Table 5).  The column to use is determined by the 

number of means being compared (the number of levels of the IV), in our case 3.  The row is 

determined by the degrees of freedom of the MSW, in our case 11.   With  equal to .05, q is equal to 

3.82.  (Be careful, this is not the critical value for the Tukey HSD test.) 

The value of MSW comes from Table 11.11.  It is equal to 14.00. 

The value of n equals the number of subjects in each group if the number of subjects in each 

group is the same. 

Alternatively: 

  n = 
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐦𝐞𝐚𝐧𝐬


𝟏

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐬𝐮𝐛𝐣𝐞𝐜𝐭𝐬 𝐢𝐧 𝐞𝐚𝐜𝐡 𝐠𝐫𝐨𝐮𝐩

      

if the group size is not the same for all of the groups. 

 In our example we do not have an equal number of subjects in each sample.  We therefore 

calculate the n for use in finding the critical value as follows: 

  n = 
𝟑

𝟏

𝟓 
 + 

𝟏

𝟓
 + 

𝟏

𝟒

      

   = 
𝟑

𝟎.𝟐𝟎 + 𝟎.𝟐𝟎 + 𝟎.𝟐𝟓
   

     = 
𝟑

𝟎.𝟔𝟓
   

     = 4.62 

 To find the critical value, we now substitute into the equation: 

  Critical value of Tukey HSD = q  
𝐌𝐒𝐖

𝐧
 

We found that MSW equals 14.00 and n has just been calculated.  The value for q is found in 

the q table.   We can now find the critical value for the Tukey HSD: 

  Critical value = 3.82  
𝟏𝟒.𝟎𝟎

𝟒.𝟔𝟐
 

              = 3.82  3.03 

              = (3.82) (1.74) 

              = 6.65 

 The difference between the means for each pairwise comparison must be as great or greater 

than the critical value from the Tukey HSD in order to be considered statistically significant: 

 Difference between the means of the Control Group and Experimental Group I  

= 12.60 – 15.20 = –2.60 

 Difference between the means of the Control Group and Experimental Group II  

= 12.60 – 22.00 = –9.40 

 Difference between the means of Experimental Group I and Experimental Group II  

= 15.20 – 22.00 = –6.80 
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It is important to note that when comparing the differences between group means (in our 

case –2.60, –9.40 and –6.80) to the critical value, we ignore the sign as this simply reflects the order 

in which the sample means were subtracted.  Our critical value is 6.65.  Therefore, the difference 

between the means of the Control Group and Experimental Group I, which is 2.60, is not significant.  

However, the difference between the means of the Control Group and Experimental Group II, which 

is 9.40, and the difference between the means of Experimental Group I and Experimental Group II, 

which is 6.80, are both statistically significant.   

Calculating The Effect Size 

 
We now proceed to ascertain the percent of variance explained by the treatment.  To do so 

we calculate eta squared (2).  With a one-way between-subjects ANOVA: 

2 for treatment = 
𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓
    

This is a measure of the proportion of total variability explained or accounted for by the treatment.  

In our example: 

 2 for treatment = 
𝟐𝟎𝟒.𝟑𝟑

𝟑𝟓𝟖.𝟑𝟎
 = .57 or 57% 

This value of 2 is included in the last column of Table 11.11. 

 In addition, we can calculate 2 for the error term in the ANOVA.  This is the proportion of 

variability not accounted for by the treatment: 

 2 for error = 
𝐒𝐒𝐖

𝐒𝐒𝐓
 

      =  
𝟏𝟓𝟒.𝟎𝟎

𝟑𝟓𝟖.𝟑𝟎
 

      = .43 or 43% 

The 2 values for treatment and error will sum to 1.00.  In our case .57 + .43 = 1.00.   

Reporting The Results Of A One-Way Between-Subjects ANOVA  

 
In a paper, we would provide the mean and standard deviation for each of the groups.  Then 

we would report the degrees of freedom of the numerator and denominator of the F ratio, as well as 

the value of the F ratio that was obtained.  If the F ratio was statistically significant, we would 

provide a measure of effect size for the treatment, and we would identify which pairwise 

comparisons were statistically significant.  Specifically, based upon our calculations we would 

report, “The sample means were found to differ significantly (F(2,11) = 7.30, p < .05, 2 = .57).”  

We would then indicate that Tukey’s HSD test indicated that the control group lost less weight than 

the second experimental group, but not the first, and the second experimental group lost more 

weight than the first experimental group.   
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With SPSS we can give a precise p-value.  For the overall ANOVA we would report (F(2,11) 

= 7.30, p = .010, 2 = .57).  Note that the p-value of .010 is less than our α of .05, confirming that we 

would reject the null hypothesis. 

Purpose And Limitations Of Using The One-way Between-subjects ANOVA  

 
1. Test for difference.  The null hypothesis is that the treatment does not have an effect.  

Therefore, if the null is correct any difference between the group means is due to chance.  

The alternative hypothesis is that the treatment does have an effect and, therefore, the 

samples are drawn from populations with different means.  The one-way between-subjects 

ANOVA is employed to differentiate between these two hypotheses.  

2. Does not provide a measure of effect size.  The one-way between-subjects ANOVA is a test of 

significance.  It indicates whether or not an outcome is likely to have occurred by chance if 

the null hypothesis is correct.  If the F test is significant, a measure of effect size, such as eta 

squared (2), should then be calculated. 

3. Compares two or more group means.  The one-way between-subjects ANOVA is appropriate 

to use when the independent variable has two or more levels and when each subject is 

randomly assigned to only one level of the independent variable. 

4. Does not indicate where the effect is.  With designs with more than two levels to the 

independent variable, a significant F should be followed by a post hoc procedure such as the 

Tukey HSD test in order to specify the location of the effect. 

Assumptions Of The One-way Between-subjects ANOVA 

 
1. Interval or ratio data.  The data are on an interval or ratio scale of measurement. 

2. Random samples.  Each sample is drawn at random from a population. 

3. Independence within treatment levels.  The data within each treatment level are 

independent. 

4. Normally distributed populations.  Each population from which a sample is drawn has a 

normal distribution of scores.  However, as stated in the Central Limit Theorem, the F test 

will be accurate so long as each sample size is at least 30.  If a sample size is less than 30 

then it is important that the underlying population be normally distributed.  If you cannot 

collect a larger sample and do not know if the assumption of normality has been met, it may 

be best to turn to an alternative test on the same row of Table 11.1 that does not assume 

that the data are normally distributed.   

5. Population variances are equal.  The populations from which samples are drawn have equal 

variances. 
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Conclusion 
 
 The logic of the one-way between-subjects ANOVA is based upon examining the study’s 

variability from two perspectives.  One perspective is based upon finding the variability of scores 

within each group and then summing across all the groups.  This leads to an estimate of the 

population variability called MSW.  Since the subjects within each group receive the same level of 

the independent variable this estimate of the population variability does not include any effect of 

treatment.  It only reflects the variability in the study that is not due to treatment, which is called 

error.   

 The other perspective is to examine the variability of the sample means.  This estimate is 

called MSBet.  If there is no treatment effect we still expect the sample means to vary, somewhat if 

the underlying population does not have a great deal of variability, more if the underlying 

population does have a great deal of variability.  (Sample size would also have to be taken into 

account.)  However MSBet, unlike MSW, may be affected by treatment.  Specifically, if the IV has an 

effect then MSBet, but not MSW, will increase. 

 It can be shown that if there is no treatment effect then these two estimates of the 

population variance will be approximately equal and thus the F ratio will be approximately equal to 

1.00.  However, if there is a treatment effect then MSBet will be greater than MSW and the F ratio will 

be greater than 1.00. 

 If the F ratio is found to be statistically significant then a measure of effect size such as eta 

squared should be calculated.  And, if the independent variable has more than two levels then the 

Tukey HSD test should be utilized to determine where the effect is. 

 Future chapters will review two additional forms of the ANOVA.  All of these procedures are 

closely related.  However, it is important to keep them distinct.  Appendix M provides a summary of 

the similarities and differences of these three ANOVAs. 

Final Thoughts: The Relationship Between The t Test 
And The F Test 

 
 The one-way between-subjects ANOVA is a very flexible test and serves as an introduction 

to the more complex ANOVAs that will be covered in subsequent chapters.  The major advantage of 

the ANOVA compared to the independent samples t test is that the ANOVA controls the 

experimentwise error rate while simultaneously comparing two or more sample means.    

Though the calculations for the independent samples t test (reviewed in Chapter 10) and 

the one-way between-subjects ANOVA with two groups appear to be quite different, these tests are 

actually closely related.  In fact, the independent samples t test is a special case of the one-way 
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between-subjects ANOVA.  It is possible, for instance, when there are only two groups to convert 

the outcome obtained with one test into the value of the other using the following equation: 

  F = t2 

Previously, we found a value of F = 9.00 (Table 11.7).  Using the equation above, we have:  

F = 9.00 = t2  

Therefore, t = 3.00.  You are encouraged to verify that this is indeed the case by redoing the 

example as a t test.  

 Since the values obtained with the t test and F test for two groups can be converted into 

each other, it should not be a surprise that these tests will always lead to the same decision as to 

whether the null hypothesis should be retained or rejected. 

 Similarly, the estimate of the effect size will be the same regardless of whether you calculate 

an independent samples t test or the one-way between-subjects ANOVA with two groups.  You are 

encouraged to verify that this is the case for our examples where the IV had two levels.   

 Finally, though it is probably not immediately obvious, the t and F tables are also closely 

related.  Unlike the t table which requires only knowing the degrees of freedom derived from the 

number of subjects, the F table requires that you know two degrees of freedom because the F ratio 

is based on two MS estimates, MSBet and MSW, each with its degrees of freedom.  The degrees of 

freedom for MSW, like the degrees of freedom for the t table, reflects the number of subjects.  The 

degrees of freedom for the MSBet is based on the number of means being compared.  With the 

independent samples t test the number of means being compared is always two.  With the one-way 

between-subjects ANOVA it is two or more.  This affects the critical value and thus must be 

accounted for in the F table.  However, if we are comparing only two means (the dfBet in the ANOVA 

would then equal k – 1 = 1) then the values in the F table equal the square of the values in the t 

table for a two-tailed test (remember F = t2).  Thus, with α = .05, the critical value for F with dfBet = 

1 and dfW = 1 is 161.45.  For t with a two-tailed test and 1 df the critical value is 12.71.  We 

therefore have: 

 F = t2  

 161.45 = 12.712   

 161.45 = 161.54 except for minor rounding error 

And with α = .05, the critical value for F with dfBet = 1 and dfW = 5 is 6.61 and the critical value for t 

for a two-tailed test with 5 df is 2.57.  We therefore have: 

 F = t2  

 6.61 = 2.572   

 6.61 = 6.60 except for minor rounding error 
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You are encouraged to verify that this relationship holds for other degrees of freedom for 

the t test and the matching dfW for the ANOVA.  Just remember that the dfBet for the ANOVA must 

remain equal to 1. 

Glossary of Terms 
 
Analysis of variance (ANOVA) – A set of flexible, closely related, inferential procedures for  

 comparing sample means by examining variances.   

Between-subjects design – With an ANOVA, those designs in which each subject experiences only a  

 single level of a factor. 

Error – With ANOVA, the variability not due to treatment. 

Experimentwise error rate – The likelihood of making at least one Type I error with any of the  

 experiment’s comparisons. 

Factor – With an ANOVA, the term ‘Factor’ is often used instead of independent variable.  

Factorial ANOVA – An ANOVA with more than one factor.   

Grand mean (MG) – The mean of the sample means.  In some statistical procedures it is defined as  

 the mean of all of the scores.  

Level – With an ANOVA, the number of values of an independent variable. 

Mean square (MS) – In an ANOVA, an estimate of the population variance (X2).  

Mean square between (MSBet) – The estimate of the population variance (X2) based upon the  

 variability between the sample means.  More specifically, it is obtained from the deviations  

 of the sample means from the grand mean.   

Mean square within (MSW) – The estimate of the population variance (X2) based upon the  

 variability within each of the samples.  More specifically, it is obtained by pooling the  

 variances of the scores within each of the samples.   

One-way between-subjects ANOVA – An inferential procedure for comparing two or more means  

from independent samples when there is one independent variable.   

Pairwise comparison – Comparison between two sample means. 

Pairwise error rate – The likelihood of making a Type I error for a single comparison between  

 sample means.  This is equal to , which is usually .05 or .01.  

Sum of squares between groups (SSBet) – The sum of the squared deviations of each treatment  

mean from the grand mean. 

Sum of squares total (SST) – The sum of the squared deviations from the mean for all of the scores. 

Sum of squares within groups (SSW) – The sum across all conditions, of the sum of the squared  

deviations of each score from its treatment mean. 



317 
 

Treatment – With ANOVA, another term for the independent variable. 

Tukey HSD – A popular post hoc test used with ANOVAs. 
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Questions – Chapter 11 

 
(Answers are provided in Appendix J.) 

 

1. The sum of squares total in a one-way between-subjects ANOVA is equal to _____. 
 a. The sum of all of the squared scores 
 b. The sum of all the scores, squared 
 c. The sum of the squared deviations of all of the scores from the grand mean  
 d. The square root of the sum of the squared deviations of all of the scores from  
  the grand mean 
 
2. In a one-way between-subjects ANOVA, SST is equal to _____. 
 a. SSW 
 b. SSBet 
 c. SSBet + SSW   

d. SSBet – SSW 

 
3. ‘Within variability’ provides an estimate of _____ by looking at _____. 
 a. Control group variability; how much sample means vary 
 b. Population variability; how much scores vary from their sample means  
 c. Experimental group(s) variability; how much sample means vary 
 d. How much sample means vary; population variability 
 
4. Another term for ‘mean square’ is _____. 
 a. Variance  
 b. Standard deviation 
 c. Range 
 d. Square of the sum of all of the sample means 
 
5. If there is no treatment effect, the F ratio is expected to approximately equal _____. 
 a. 0 
 b. 1  
 c. 2 
 d. Twice the number of experimental conditions 
  
6. If the F ratio from a one-way between-subjects ANOVA with two levels is found to be 

statistically significant, the researcher should _____. 
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 a. Announce that the finding is important 
 b. Conduct a post-hoc test to determine which groups differ 
 c. Calculate eta squared  
 d. None of the above, there is nothing further to do 
 
7. The F ratio can only be significant if it is _____. 
 a. Less than 1 
 b. Equal to 1 
 c. Greater than 1  
 d. An F ratio can never be significant 
 
8. If the F ratio from a one-way between-subjects ANOVA with more than two levels is found 

to be statistically significant, the researcher should _____. 
 a. Announce that the finding is important 
 b. Conduct a post-hoc test to determine which groups differ  
 c. Re-calculate as it is obvious that an error has occurred 
 d. None of the above, there is nothing further to do 
 
9. In a one-way between-subjects ANOVA there are how many independent variables and how 

many dependent variables? 
 a. 1; 1  
 b. 1; 2 
 c. 2; 1 
 d. 2; 2 
 
Questions 10 to 14 are based upon the following table: 
 

Source of Variation SS  df  MS  F 
 Between Groups ____    2  ___  ___   
 Within Groups  100  ___  ___ 

Total   400  12 
 

10. What is the SS for Between Groups? 
 a. 300  
 b. 500 
 c. 40,000 
 d. 100 
 
11. What is the value of df for Within Groups? 
 a. 14 
 b. 10  
 c. 33 
 d. 26 
 
12. What is MS for Between Groups? 
 a. 150  
 b. 600 
 c. 298 
 d. 502 
 
13. What is MS for Within Groups? 
 a. 1000 
 b. 50 
 c. 25 
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 d. 10  
 
14. What is the value of F? 
 a. 60 
 b. 15  
 c. 2.5 
 d. 1 
 

 
Questions 15 to 19 are based upon the following information: 
 
A group of 18 students take their final exam in statistics.  Each student is randomly assigned to one 
of three rooms; quiet, moderately noisy or noisy.  The number of errors for each student is: 
 
    Level of Background Noise 
 
  Quiet   Moderate  Noisy 
    9     7     6 
  10     9     8 
    8     8   10 
  13   13     7 
  12   11   11  
  14   12   12 
 
15. What is the dfBet? 
 a. 1 
 b. 2 
 c. 3 
 d. 4 
 
16. What is the SSW? 
 a. 12 
 b. 36 
 c. 84 
 d. 96 
 
17. What is the MSBet? 
 a. 6 
 b. 12 
 c. 36 
 d. 146 
 
18. What is the value of F? 
 a. 0 
 b. 26.07 
 c. 0.92 
 d. 1.07 
 
19. Is the outcome statistically significant with alpha equal to .05? 
 a. yes 
 b. no 

 
Questions 20 and 21 deal with the relationship of F and t. 
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20. It is possible to convert the outcome obtained with the t test into the value of a Between 
Subjects ANOVA using the equation _____. 

 a. F = 2t 
 b. t2  = F  
 c. t/6 = 10F 
 d. t = F 
 
21. The t and F tests for studies with two groups will _____ lead to the same decision as to 

whether the null hypothesis should be retained or rejected. 
 a. Always  
 b. Sometimes 
 c. Never 
 

Problems 22 – 29 utilize SPSS. 
 

Using SPSS With The One-Way Between-Subjects 
ANOVA 

To Begin SPSS 

 
 Step 1 Activate the program, close the central window, and click on the Variable View 

option at the bottom left of the window.   

 Step 2 Click on the first empty rectangle (called a ‘cell’) under the column heading ‘Name’.  

You now type the name of the first variable for which you have data.  We are going to utilize the 

same data and labels as were previously employed in Table 11.8.  These data dealt with the 

question of whether receiving information about the benefits of exercise would affect weight loss.  

We have called these variables ‘Condition’ and ‘Data’.  Therefore, type ‘Condition’ in the first empty 

cell under ‘Name’. 

 Step 3 Click on the first empty ‘cell’ under the column heading ‘Label’, and type 

‘Experimental Group’.   

 Step 4 Click on the first empty ‘cell’ under the column heading ‘Values’.  A box will appear.  

In the blank space to the right of ‘Value’, type the number ‘1’.  Then type a brief description of this 

value of the variable in the blank space to the right of ‘Label’.  In our case, type ‘Control’.  Finally, 

click on ‘Add’.  Your label for a value of 1 will appear in the large white region in the center of the 

window.  Now repeat the above steps in this section for the value ‘2’, which is given the label ‘Exp 1’, 

and for the value ‘3’, which is given the label ‘Exp 2’ (Figure 11.1).  Click ‘Add’ and then click on ‘OK’. 

Figure 11.1 The Value Labels Window 
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 Step 5 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with labels for groups, select ‘Nominal’.   

Step 6 Repeat Steps 2 – 5 except that you type ‘Data’ in the first empty cell under ‘Name’ and 

for the ‘Label’.  Finally, select ‘Scale’ in the column under the column heading ‘Measure’ as we have 

ratio data.  The result is shown in Figure 11.2.   

Figure 11.2 The Variable View Window 

 

To Enter Data In SPSS 

 
Step 7 Click on the ‘Data View’ option at the lower left corner of the window.  The variables 

‘Condition’ and ‘Data’ will be present. 

Step 8 For each subject in the control condition, type the value ‘1’ in the column ‘Condition’ 

and their weight loss in the column ‘Data’ (Figure 11.4).   Continue by entering ‘2’ for each subject 

in group 2 with their data and finally ‘3’ for each subject in group 3 with their data (Figure 11.3).   

Figure 11.3 Entering the Data  
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To Conduct A One-way Between-subjects ANOVA 

 
Step 9 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘Compare Means’, then click on ‘One-way ANOVA’. 

Step 10 A new window will appear.  This asks for the dependent variable and the 

independent variable (called a Factor) to be identified.  In our case, Data is the label of the 

dependent variable.  This is indicated by moving ‘Data’ to the box under ‘Dependent list’ by clicking 

on ‘Data’ and then on the top arrow.  The result is shown in Figure 11.4.  Then move ‘Experimental 

Group’ to the box under ‘Factor’ by clicking on ‘Experimental Group’ and then on the bottom arrow.  

The result will be that each label will now be in the appropriate box on the right-hand side of the 

window, as is shown in Figure 11.5.  Then click on ‘Post Hoc’ which is located in the column on the 

right of the window.   

Figure 11.4 The One-way ANOVA Window 
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Figure 11.5 The One-way ANOVA Window, Continued 

 

 

Step 11 A new window will appear.  This window provides a number of statistical options 

that are available with SPSS.  In this book we will limit ourselves to just the Tukey HSD test.  Click 

on ‘Tukey’ as it is shown in Figure 11.6.  Then click on ‘Continue’.   

Figure 11.6 Identifying the Post Hoc Test 

             

 

Step 12  Now click on ‘Options’ which is located in the column on the right of the window.   

A new window will appear.  If you click on the boxes in front of ‘Descriptive’ and ‘Homogeneity of 

variance test’ (Figure 11.7), SPSS will later generate a useful summary of the data and calculate 

Levene’s test for homogeneity of variances.  Click on ‘Continue’. 

Figure 11.7 Specifying Descriptives 
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Step 13  Now click on ‘OK’.  SPSS calculates the desired one-way ANOVA with descriptive 

statistics, the test for homogeneity of variance, and the Tukey HSD post hoc test as is shown in 

Tables 11.12 – 11.16.   

Table 11.12 SPSS Output; One-way ANOVA – Descriptives and Confidence Intervals 

 

Table 11.13 SPSS Output; Test of Homogeneity of Variances 

                                           

 

Table 11.14 SPSS Output; One-way ANOVA Summary Table 
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Table 11.15 SPSS Output; Tukey HSD Multiple Comparisons 
 

 
 
Table 11.16 SPSS Output; Alternative Presentation of Tukey HSD Multiple Comparisons 

 
                                       
 

The first section of the analysis is a table of descriptive statistics (Table 11.12).  You should 

compare the means of the samples that we calculated by hand (Table 11.8) with the means 

calculated by SPSS.  In addition, standard deviations, 95% confidence intervals, and additional 

information that might be of interest are included.  Next is Levene’s test for homogeneity of 

variances (Table 11.13).  A number of options are provided.  In general, Levene’s test based upon 

the median is recommended (Brown & Forsythe, 1974).  As the significance (p-value) is .879, which 

is greater than .05, we conclude that the variances of the populations from which the three groups 

were selected are not significantly different and thus we can continue with the ANOVA.  If the 
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obtained significance had been less than .05 then we should turn to an alternative statistical 

procedure, such as the Kruskal Wallis H test which is reviewed in Appendix A.  The summary 

ANOVA table, which is the same as we found earlier with hand calculation (Table 11.11) except that 

we previously rounded off our calculations to fewer places, is shown next (Table 11.14).  The fourth 

table shows the results of the Tukey HSD post hoc test (Table 11.15).  In the first two rows of the 

analysis, the Control Group is compared with the two experimental groups and the difference with 

Experimental Group 2 is found to be statistically significant (This is indicated with a small * in the 

Mean Difference column) as well as by a significance level (p-value) less than .05 (in this case .008).  

In addition, 95% confidence intervals are provided.  These confidence intervals are for the 

difference between group means.  Any interval that does not include 0 will indicate a statistically 

significant difference.  The next two pairs of rows provide the comparisons for Experimental Group 

1 and Experimental Group 2.  The results are the same as we found previously by hand.  Table 11.16 

provides an alternative presentation of the Tukey HSD output.  Specifically, the sample sizes are 

given, and which sample means differ are clearly indicated by the column in which they are listed.  

Thus, listing the Control and Exp 1 groups in the same column indicates they do not differ.  

However, Exp 2 is in a separate column which indicates it differs from both the Control and Exp 1 

groups.  We do not need to concern ourselves with the last row of this table. 

While SPSS provides a great deal of information it does not provide a value for eta squared 

(2).  Fortunately, 2 is easy to calculate from the information in Table 11.14: 

 2 for treatment = 
𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓
 = 

𝟐𝟎𝟒.𝟑𝟓𝟕

𝟑𝟓𝟖.𝟑𝟓𝟕
 = .570 or 57% 

This is the same value we obtained with our previous hand calculations (Table 11.11). 

 Step 14 Exit SPSS.  There is no need to save the output or data. 

 

To confirm that you understand how to use SPSS, I suggest you redo the between-subjects 

ANOVA that was calculated in the text for the data in Table 11.3, but this time using SPSS.  Then 

redo the ANOVA dealing with level of background noise (Questions 15 – 19) to check your 

answers. 

 

SPSS Problems – Chapter 11 

 
For questions 22 – 29, what is the effect of adding a constant (in this case 10) to every score in the 
noisy condition of the data used for questions 15 – 19?  (Compare your answers for these data to 
your previous answers.) 

 
Level of Background Noise 

  Quiet   Moderate  Noisy 
    9     7   16 
  10     9   18 
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    8     8   20 
  13   13   17 
  12   11   21  

14  12   22 
 
22. Is the significance of Levene’s test of homogeneity of variance less than .05? 

a. yes 
b. no 

 
23. What is the dfBet? 
 a. 1 
 b. 2 
 c. 3 
 d. 4 
 
24. What is the SSW? 
 a. 12 
 b. 36 
 c. 84 
 d. 96 
 
25. What is the MSBet? 
 a. 6 
 b. 12 
 c. 36 
 d. 146 
 
26. What is the value of F? 
 a. 0 
 b. 26.07 
 c. 0.92 
 d. 1.07 
 
27. Is the outcome statistically significant with alpha equal to .05? 
 a. yes 
 b. no 
 
28       If you had found the significance of Levene’s test was .02 you would _____. 

a. Continue to conduct the ANOVA 
b. Use the independent samples t test instead 
c.      Turn to the Kruskal-Wallis H test 
d. Stop and not do any further analysis 

 
29.      If you had found the significance of Levene’s test was .42 you would_____. 

a. Continue to conduct the ANOVA 
b. Use the independent samples t test instead 
c. Turn to the Kruskal-Wallis H test 
d. Stop and not do any further analysis 
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Chapter 12   
Finding Differences with Interval/Ratio Data – IV:   

The One-way Within-subjects ANOVA 
 

“…the null hypothesis is never proved or established, but is possibly disproved, 

in the course of experimentation.”   

R. A. Fisher 

Logic of a One-way Within-subjects ANOVA  
 

The logic of the one-way within-subjects ANOVA builds upon what we already learned for 

the one-way between-subjects ANOVA.  Both include one independent variable (IV) with two or 

more levels, one dependent variable (DV), and both culminate in the calculation of an F ratio.  To 

review, F is the ratio of two estimates of the population variance, X
2.  With the one-way between-

subjects ANOVA, the estimate in the numerator is based on the variability of the sample means.  

This estimate of X
2 is called the mean square between (MSBet).  It includes the effect of our 

treatment as well as sample variation unrelated to any treatment effect, which is called error. 

 One-way within-subjects ANOVA – An inferential procedure for comparing two or more  

  means from related samples when there is one independent variable. 

 

And with the one-way between-subjects ANOVA the estimate of the population variance 

(X
2) in the denominator of the F ratio is obtained by noting how much each score varies from its 

sample mean.  Thus this estimate does not include the effect of our treatment since each subject in a 

sample receives the same level of the treatment.  The combined estimate of X
2 from looking within 

each of the samples in the study is called the mean square within (MSW).  It is a measure of the 

variation in the data excluding any treatment effect (this is called error).   

 For the one-way between-subjects ANOVA the F ratio is: 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
 = 

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐮𝐩𝐨𝐧 𝐞𝐫𝐫𝐨𝐫

  

If there is no treatment effect, then F will become the ratio of two estimates of the 

population variance based solely upon what we are calling error.  These two estimates should be 

approximately equal, and thus the ratio would be about 1.00.  If, on the other hand, there is a 

treatment effect then the numerator will be greater than the denominator and the F ratio will be 

greater than 1.00.   



329 
 

Thus far we have discussed two sources of variability, treatment and error.  However, you 

will see shortly that there are actually two types of error.  Therefore, the outcome of a study can 

potentially be impacted by a total of three sources of variability.  One source of variability is the 

level of the treatment that the subject receives.  If the treatment has an effect, then the behavior of 

subjects will differ depending upon which treatment level they were assigned to.  This is what the 

experimenter is interested in determining.  Unfortunately, there are two other sources of 

variability, collectively known as error, which can make this determination difficult.  One source of 

error reflects differences in relatively stable characteristics of subjects, such as their heights or IQ.  

These are called preexisting subject differences since they are characteristics of the subjects before 

the study even begins.  The other source of error is due to events (e.g., changes in the temperature, 

whether a subject became ill, or if a subject was just accepted into graduate school) that happen to 

coincide with the testing.  This variability is called residual error.   

The presence of error (both preexisting subject differences and residual error) can make it 

difficult for the experimenter to determine whether their treatment had an effect.  As you will see, 

the one-way within-subjects ANOVA is a popular statistical procedure because it eliminates the pre-

existing subject differences from the analysis.  This removal of one of the components of the error 

in a study can often increase the likelihood that the experimenter will be able to ascertain whether 

their treatment had an effect.  The one-way within-subjects ANOVA is underlined in Table 12.1. 

Preexisting subject differences – Relatively stable subject characteristics.  These differences  

 between subjects are a form of error in an ANOVA.  The variability due to these  

 differences is removed in a one-way within-subjects ANOVA. 

Residual error – Changeable subject characteristics.  These differences between subjects are  

 a form of error in an ANOVA.  The variability due to these differences is not removed  

 in a one-way within-subjects ANOVA. 

 

Table 12.1 Overview of Inferential Statistical Procedures For Finding if there is a  

  Difference 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 

 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
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           One IV With Two Or      Kruskal–Wallis H One-way Between– 

               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   

 
 

The Italicized procedure is reviewed in Appendix A 

 

 
Let us assume that we randomly select three samples of the same size from a population 

that has a great deal of variability.  The variability within each of the samples would presumably be 

quite large, as would be the MSW.  This is because MSW is an estimate of the population variance 

based upon the variability within each of the samples.  It reflects preexisting subject differences and 

residual error, but not treatment.    

How could we reduce the part of error that is due to preexisting subject differences?  One 

solution would be to use repeated measures of the same subjects.  With this procedure, since the 

same subjects are tested at each treatment level the same preexisting subject differences will also 

occur at each treatment level in the study.  Stated differently, none of the variability between the 

treatment levels could then be due to preexisting subject differences.  Thus, as you will see, with a 

repeated measures design the preexisting subject differences can be eliminated as a source of error.  

In other words, as the same subjects are now being tested at each treatment level, the treatment 

level means should be identical except for the effects of the treatment and residual error.  The 

following discussion will make this point clear. 

We previously noted that for the one-way between-subjects ANOVA, the F ratio is: 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
 = 

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐮𝐩𝐨𝐧 𝐞𝐫𝐫𝐨𝐫

 

We have now found that there are two types of error which are called preexisting subject 

differences and residual error.  Therefore, the F ratio can be rewritten as: 

F = 
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗

𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 

     

With the one-way within-subjects ANOVA (also known as the single-factor within-subjects 

ANOVA, the single-factor repeated measures ANOVA or the one-way repeated measures ANOVA), 

the preexisting subject differences are eliminated as a source of error from both the numerator and 

denominator of the F ratio.  As a result, the F ratio becomes: 
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F = 
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗

𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 

 

   = 
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗

𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐨𝐧 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 

 

Eliminating preexisting subject differences can have a dramatic effect upon the F ratio.  For 

instance, using the equation based upon the one-way between-subjects ANOVA, if the estimate of 

treatment variance is 20, the preexisting subject differences estimate is 10, and the residual error 

estimate is 5, the F ratio is: 

F = 
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗

𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 

 

   = 
𝟐𝟎 + 𝟏𝟎 + 𝟓

𝟏𝟎 + 𝟓
  

  = 
𝟑𝟓

𝟏𝟓
   

  = 2.33 

With a one-way within-subjects ANOVA the variability due to the preexisting subject 

differences is eliminated from the analysis and the F ratio becomes: 

F = 
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗

𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐩𝐫𝐞𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 

 

F = 
𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗

𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐨𝐧 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐞𝐫𝐫𝐨𝐫 

 

   = 
𝟐𝟎 + 𝟏𝟎 + 𝟓

𝟏𝟎 + 𝟓
  

   = 
𝟐𝟎 + 𝟓

𝟓
 

   = 5.00 

Clearly, use of the one-way within-subjects ANOVA design can dramatically increase the 

magnitude of the F ratio and, therefore, assist a researcher in detecting whether an independent 

variable has had an effect. 

Before we turn to our first example it is important to note when this elimination of 

preexisting subject differences occurs.  As was just noted, the preexisting subject differences are 

being removed from both the numerator and denominator of the F ratio with a repeated measures 

design.  The numerator of the F ratio reflects differences in the dependent variable (DV) between 

the treatment levels.  However, as was previously noted, with a repeated measures design these 

differences cannot be due to stable (preexisting) subject differences since the same subjects are 

being tested at each treatment level.  In other words, the variability due to preexisting subject 

differences is eliminated from the numerator of the F ratio as a result of using the same subjects 

repeatedly.  Thus, the elimination of the preexisting subject differences from the numerator of the F 

ratio is a consequence of the assignment of the same subjects to each of the treatment levels.  This 

occurs at an early stage of the study, before calculation of the ANOVA.  In contrast, the elimination 

of the preexisting subject differences from the denominator of the F ratio, which reflects differences 
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in the DV within the treatment levels, is accomplished later, during the actual calculation of the 

ANOVA.  This distinction is further explained in our first example. 

Conducting A One-Way Within-Subjects ANOVA 

 
 The one-way within-subjects ANOVA can be used to analyze interval or ratio data from 

designs with two or more repeated measures.  For our first example we will examine whether a fuel 

additive changes car mileage (this problem was also analyzed with the dependent samples t test in 

Chapter 10).  The null hypothesis is that the fuel additive does not affect mileage.  The alternative 

hypothesis is that it does.  The alpha level is set at .05. 

It is critical when using ANOVAs that you know what you are calculating and that you keep 

your calculations clearly defined.  It is thus important that we begin with a table showing what it is 

that must be calculated (Table 12.2).  You will recognize that the table for the one-way within-

subjects ANOVA is similar, but not identical, to the table that we used with the one-way between-

subjects ANOVA (Table 11.4). 

Table 12.2 Summary Table for the One-way Within-subjects ANOVA 

Source of Variation  SS  df  MS  F 

 Between Treatments  SSBet   dfBet   MSBet   F ratio  

 Subjects   SSSubjects  dfsubjects  

 Residual   SSResidual  dfResidual  MSResidual  

Total    SST   dfT  

 

 A value must be recorded for each of the eleven entries underlined in Table 12.2.   Thus, we 

will begin by finding four values for SS, and then calculate four values for df, two values for MS and 

one F ratio.  You will see that this involves a substantial amount of calculation but, just as with the 

one-way between-subjects ANOVA, the advantage of the current ANOVA is that, unlike the 

dependent samples t test, it can be used with experimental designs that have more than two levels 

of the independent variable.  And no step is difficult.  It is critical, however, that you clearly identify 

each item you are calculating and enter the result in Table 12.7 so you do not become confused. 

The data, which consist of two measurements of mileage for each car, the steps leading to 

the calculation of the SS,  as well as the treatment means are reproduced in Table 12.3.  (We will be 

referring to these calculations shortly.)   

Table 12.3 Example 1:  Initial Calculations  

‘Subjects’ Vehicle Mileage with        Mileage without  Subject  

Cars  Additive (1)         Additive (2)    Totals 
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  X1      (X1 – M1)      (X1 – M1)2      X2 (X2 – M2)      (X2 – M2)2   XSubject 

         

1  13   –4.50      20.25      12      –5.00 25.00  25   

2  15   –2.50        6.25      13      –4.00 16.00  28   

3  14   –3.50      12.25      15      –2.00   4.00  29   

4  17   –0.50        0.25      17        0.00   0.00  34  

5  24     6.50      42.25      20        3.00       9.00  44   

6  22     4.50      20.25      25        8.00 64.00  47  

           X1 = 105  x1 = 0 x12 = 101.5 X2 = 102       x2 = 0               x22 = 118           (XSubject ) = 207 

          n = 6     n = 6     

         M1 = 105 / 6    M2 = 102 / 6    

              = 17.50          = 17.00     

        

Calculating The Sums Of Squares 

 
 Our first step, as with the one-way between-subjects ANOVA, is to find each of the sums of 

squares (SS).  Specifically, it was noted in Chapter 11 that:  

SST = SSBet + SSW  

In the one-way within-subjects ANOVA, the sum of squares within (SSW) is partitioned into 

the sum of squares subjects (SSSubjects), which is the SS due to preexisting subject differences, and 

the sum of squares residual (SSResidual), which is the SS due to residual error.  Thus, in a one-way 

within-subjects ANOVA:   

SST = SSBet + SSSubjects + SSResidual  

 

Sum of squares subjects (SSSubjects) – In a one-way within-subjects ANOVA, the SS due to  

preexisting subject differences. 

Sum of squares residual (SSResidual) – In a one-way within-subjects ANOVA, the SS due to  

residual error. 

 

We begin our calculations by finding SST in the same way as with a one-way between-

subjects ANOVA: 

SST = (X – MG)2    

where MG is the mean of all of the scores. 

The grand mean (MG) is found using the following equation: 
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MG = 
𝐗

𝐍
  

where N is the total number of data points or scores. 

For our example with a total of 12 scores from 6 subjects (i.e., cars), calculation of the grand 

mean is shown in the first column of Table 12.4.  Calculation of the SST is shown in the remaining 

columns of Table 12.4. 

Table 12.4 Example 1:  Calculation of MG and SST  

  X   (X – MG)  (X – MG)2 

13     –4.25    18.06 

15     –2.25       5.06 

14     –3.25     10.56 

17    – 0.25           0.06 

24       6.75      45.56 

22       4.75    22.56 

12     –5.25    27.56 

13     –4.25    18.06 

15     –2.25      5.06 

17    – 0.25          0.06 

20       2.75      7.56 

25       7.75   60.06 

X = 207         (X – MG) = 0      (X – MG)2 = 220.22 = SST
 

N = 12         

MG = 
𝟐𝟎𝟕

𝟏𝟐
           

      = 17.25   

  

The SSBet for a one-way within-subjects ANOVA is found, as in a one-way between-subjects 

ANOVA, by determining the square of the deviations of each treatment level mean from the grand 

mean, multiplying by the number of subjects in the sample, and then summing.  It is important to 

note that while the equation and thus the computations used to determine the SSBet are the same 

for the between-subjects and within-subjects ANOVAs, this term is, nevertheless, interpreted 

somewhat differently depending upon which ANOVA is being utilized.  The SSBet for a between-

subjects ANOVA is referring to variability between the groups in the study.  As was noted 

previously, this variability reflects that each group receives a different treatment level and that each 

group is composed of different subjects.  It thus includes preexisting subject differences as well as 

residual error.  However, in a repeated measures (within-subjects) design the treatment means 
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cannot be affected by differences in the composition of the groups since the same subjects (in this 

case, cars) receive each of the treatment levels.  Thus, the same preexisting subject differences exist 

within each of the treatment levels.  In other words there is no variability between treatment levels 

due to preexisting subject differences.  Consequently, the SSBet for a one-way within-subjects 

ANOVA does not include variability due to preexisting subject differences.  It only reflects the effect 

of the treatment as well as any residual error.  The equation for SSBet remains: 

 SSBet = [(M – MG )2 n]  

Recall that the means of our two samples are 17.50 and 17.00.  The grand mean (MG) equals 17.25 

and n, the number of subjects (cars), equals 6.  For our example the calculations to determine SSBet 

are shown in Table 12.5. 

Table 12.5 Example 1:  Calculation of SSBet  

                 M      (M – MG)  (M – MG)2  (M – MG)2n__________ 

                              Becomes:   (M – 17.25)  (M – 17.25)2  (M – 17.25)2(6)_____ 

w Additive 17.50         0.25        0.06       0.36 

wo Additive      17.00      –0.25         0.06       0.36 

        (M – MG)2 n = 0.72 = SSBet 

 

Alternatively, the same calculations can be presented as follows: 

 SSBet = [(M – MG )2 n]  

          = [(17.50 – 17.25)2(6)] + [(17.00 – 17.25)2(6)]  

           = [(0.25)2(6)] + [(–0.25)2(6)]  

           = (0.06)(6) + (0.06)(6)  

           = 0.36 + 0.36 

           = 0.72 

 

As with a one-way between-subjects ANOVA, the value of SSW can be found using the 

following equation:  

SSW = x1
2 + x2

2 

These values of SS have already been calculated in Table 12.3: 

 SSW = 101.50 + 118.00 

         = 219.50 

And we use the following equation to check our calculations: 

        SST = SSBet + SSW  

220.22 = 0.72 + 219.50 
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220.22 = 220.22 

 

The value of  SSW is not entered into our ANOVA table for in a within-subjects ANOVA it 

must be partitioned into SSSubjects and SSResidual.   

The SSSubjects, which is the part of SSW that is due to preexisting subject differences, is found 

by determining the deviation of the mean for a subject from the grand mean, squaring this 

deviation, multiplying by the number of treatment levels, and then summing for each subject.  

Conceptually:  

SSSubjects = [(
𝐗𝐒𝐮𝐛𝐣𝐞𝐜𝐭

𝐤
 – 𝐌𝐆)𝟐𝐤]   

= [(𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆)𝟐𝐤]  

where the subject’s total (XSubject) is obtained from Table 12.3, the grand mean (MG) is obtained 

from Table 12.4 and k is the number of treatment levels (in this example, k = 2).  The calculation of 

SSSubjects is shown in Table 12.6. 

Table 12.6 Example 1:  Calculation of SSSubjects   

‘Subjects’ XSubject 𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭           𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆 (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐      (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐𝐤 

Cars    = 
𝐗𝐒𝐮𝐛𝐣𝐞𝐜𝐭

𝐤
      = (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐(𝟐)  

 

1 25  12.50    –4.75   22.56  45.12  

2 28  14.00    –3.25   10.56  21.12 

3 29  14.50    –2.75     7.56  15.12 

4 34  17.00    –0.25     0.06    0.12 

5 44  22.00      4.75   22.56  45.12 

6 47  23.50      6.25   39.06  78.12 

          (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆) = 0     (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐(𝟐)  

      = 204.72 = SSSubjects 

Alternatively, the same calculations can be presented as follows: 

SSSubjects = [(𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆)𝟐𝐤]       

  = [(12.50 – 17.25)2](2) + [(14.00 – 17.25)2](2) + [(14.50 – 17.25)2](2) +  

      [(17.00 – 17.25)2](2) + [(22.00 – 17.25)2](2) + [(23.50 – 17.25)2](2)  

  = [(–4.75)2](2) + [(–3.25)2](2) + [(–2.75)2](2) + [(–0.25)2](2) +      

      [(4.75)2](2) + [(6.25)2](2)  

  = (22.56)(2) + (10.56)(2) + (7.56)(2) + (0.06)(2) + (22.56)(2) +  

      (39.06)(2)  

     = 45.12 + 21.12 + 15.12 + 0.12 + 45.12 + 78.12 
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     = 204.72 

 

Remember that SSW is being partitioned into SSSubjects and SSResidual.  The value for SSSubjects 

is entered into our ANOVA summary table.  The SSSubjects is the reduction to the denominator of the 

F ratio achieved by using a within-subjects design.   

  

As was noted previously, in a within-subjects ANOVA, 

SSW = SSSubjects + SSResidual    

Substituting: 

219.50 = 204.72 + SSResidual  

  14.78 = SSResidual 

This value for SSResidual is entered into the within-subjects ANOVA summary table.  And you 

will soon see that SSResidual is used in calculating the denominator of the F ratio. 

Calculating Degrees Of Freedom 

 
 We now must calculate our degrees of freedom.  Fortunately, these values are all easy to 

obtain. 

 The degrees of freedom for between treatments is equal to the number of treatment levels 

minus 1.  Thus: 

  dfBet = k – 1  

where k is the number of treatment levels.  In our example: 

  dfBet = 2 – 1 

            = 1   

  

In a one-way between-subjects ANOVA we would now determine the dfW and enter the 

value in the summary table.  In a one-way within-subjects ANOVA, dfW is partitioned into dfSubjects 

and dfResidual, just as SSW was partitioned into SSSubjects and SSResidual.  The degrees of freedom for 

subjects is equal to the number of subjects minus 1.  (Note that the data consist of 12 mileages, but 

there are only 6 subjects, in this case cars.)  Thus: 

  dfSubjects = n – 1  

where n is the number of subjects.  In our example: 

  dfSubjects = 6 – 1 

     = 5 
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As you will see, the dfSubjects is the number of degrees of freedom that are removed from the 

analysis due to using a within-subjects design. 

  

To find the degrees of freedom for residual, we subtract 1 from the total number of subjects 

and multiply this by the number of levels minus 1.  Thus: 

  dfResidual = (n – 1)(k – 1)   

where n is the number of subjects and k is the number of levels.  In our example: 

  dfResidual = (6 – 1)(2 – 1) 

     = (5)(1)  

     = 5 

  

To find the degrees of freedom for total, we subtract 1 from the total number of data points.  

Thus: 

  dfT = N – 1  

where N is the total number of data points.  In our example: 

  dfT = 12 – 1 

        = 11 

  

As a check on our calculations:  

  dfT = dfBet + dfSubjects + dfResidual 

  11 = 1 + 5 + 5 

  11 = 11 

These values for df are entered in our ANOVA summary table. 

Calculating Mean Squares 

 
 You will recall that in a one-way between-subjects ANOVA (reviewed in Chapter 11) the 

value of the F ratio is obtained by dividing the estimate of the population variance derived from 

variability of the group means (MSBet) by the estimate of the population variance derived from 

variability of scores within each group (MSW).  In a one-way within-subjects ANOVA we also 

calculate an F ratio.  The calculation of the MSBet is the same for both types of ANOVA.  However, as 

noted previously, the numerator of a within-subjects ANOVA does not include the variability due to 

preexisting subject differences since the same subjects are being tested at each level of the IV.  And, 

in a one-way within-subjects ANOVA the SSSubjects has been partitioned out of the SSW leaving only 

SSResidual in the denominator of the F ratio.  Thus, both the numerator and the denominator are 

being reduced by eliminating the variability due to preexisting subject differences.   
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As in a one-way between-subjects ANOVA, the F ratio for a one-way within-subjects ANOVA 

is the ratio of two estimates of population variability.  However, in the within-subjects ANOVA the F 

ratio is determined by dividing MSBet by MSResidual, not MSW as was the case for the between-

subjects ANOVA.  And remember that each mean square is found by dividing the appropriate SS by 

its df.   Thus: 

  MSBet = 
𝐒𝐒𝐁𝐞𝐭

𝐝𝐟𝐁𝐞𝐭
   MSResidual = 

𝐒𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥

𝐝𝐟𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥
 

             = 
𝟎.𝟕𝟐

𝟏
        = 

𝟏𝟒.𝟕𝟖

𝟓
  

             = 0.72        = 2.96 

Calculating The F Ratio 

 
 The final calculation is to determine the value of the F ratio.  As was just noted, the equation 

for the F ratio for a one-way within-subjects ANOVA is:  

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥
   

    = 
𝟎.𝟕𝟐

𝟐.𝟗𝟔
   

    = 0.24 

Inclusion of the values for MSBet, MSResidual, and F complete Table 12.7. 

Table 12.7 Example 1:  Completed Summary Table for the One-way Within-subjects ANOVA  

Source of Variation       SS     df  MS  F 

 Between Treatments       0.72       1  0.72  0.24  

 Subjects   204.72       5 

 Residual     14.78       5  2.96 

Total    220.22     11 

Interpreting The F Ratio 

 
Recall that if the independent variable did not have an effect we would expect the F ratio to 

equal 1.00.  And if there was a treatment effect then the value of the F ratio would be greater than 

1.00.  As our F ratio is less than 1.00 we know even without entering the F table that this outcome is 

not statistically significant.  Nevertheless, if you wanted to use the F table to find the critical value of 

F you would locate the column corresponding to the degrees of freedom of the numerator of our F 

ratio and the row corresponding to the degrees of freedom of our denominator.  From Table 12.7 

we see that for our F this would be 1 and 5 degrees of freedom.  We chose an  of .05.  At the 

intersection of our column and row in the F table (Appendix K, Table 4) we find the critical value of 
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6.61.  As our obtained F of 0.24 is less than the critical value we retain the null hypothesis that the 

fuel additive did not affect the gas mileage.  

Since the F was not significant we do not calculate a measure of effect size.  And even if the F 

was significant we would not conduct post hoc comparisons as this study had only two treatment 

levels and, consequently, we would already know the treatment levels that differed from each 

other. 

Reporting The Results Of A One-Way Within-Subjects ANOVA Without A Significant F Ratio 

 
In a paper, we would indicate the degrees of freedom as well as the F ratio that was 

obtained.  Specifically, we would, based upon our calculations, report that the fuel additive was not 

found to affect vehicle mileage (F(1,5) = 0.24, p > .05).  Note the direction of the > sign.  Later in 

this chapter we will use SPSS to analyze these data, and we then can make a more precise statement 

(F(1,5) = 0.25, p = .636).  The minor change in the value of the F ratio is due to rounding error in 

our calculations, and SPSS provides a precise p-value for the probability of our outcome.  Note that 

the p-value of .636 is greater than our α of .05, confirming that we would retain the null hypothesis.  

(It is also instructive to note that the probability of our F ratio, which was .636, is the same as when 

these data were analyzed with SPSS using a dependent samples t test (Table 10.12).  Different 

statistical procedures, but same probability and decision.) 

Progress Check 

 
1. Compared to a one-way between-subjects ANOVA, in a one-way within-subjects ANOVA the  

the variability due to preexisting subject differences is _____ from both the numerator and 

denominator of the F ratio. 

2. The calculation of the one-way within-subjects ANOVA eliminates _____ subject differences 

from the denominator. 

3. In a one-way within-subjects ANOVA, the denominator of the F ratio consists only of _____. 

 

Answers:  1. eliminated   2. preexisting   3.  residual error 

A Second Example 

 
Our next example will show that the one-way within-subjects ANOVA can be used when 

there are more than two measures from each subject.  Let’s assume that you are a researcher and 

you are interested in whether housing choice affects exam scores among students who excel.  You 

decide to utilize a within-subjects design in which each student lives in three different housing 

situations; an on-campus honors dorm, off-campus at home, and off-campus in an apartment with 
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other students, each for a 4-week period.  As each student receives each treatment level, this is a 

repeated measures design.  Your null hypothesis is that choice of housing will not affect exam 

scores, and you set  equal to .05.  In order to control for order effects, which occur when a 

particular sequence of treatments has a unique outcome, you assign the sequence of these 

treatment levels randomly to each subject.  At the end of each 4-week housing period you measure 

each subject’s academic success with a 100-point exam.  The hypothetical scores, squared 

deviations, treatment level means and each subject’s total are presented in Table 12.8.  Note that an 

unrealistically small sample size has been chosen to aid in the calculations. 

Table 12.8 Example 2:  Initial Calculations  

Subject           On-campus    Off-campus  Off-campus  Subject  

      Honors Dorm (1)   At Home (2)  Apartment (3)  Totals 

 X1     (X1 – M1)    (X1 – M1)2       X2     (X2 – M2)    (X2 – M2)2                X3     (X3 – M3)    (X3 – M3)2         XSubject  

        

1 98     4 16     96      3   9           84         2.8           7.84  278 

2 96     2   4     95      2   4           81         –.2           0.04  272  

3 95     1   1     95      2   4           82           .8           0.64  272  

4 91   –3   9     91   – 2   4           80      –1.2          1.44  262 

5 90   –4 16     88   –5 25              79      –2.2          4.84  257 

         X1 = 470      x1 = 0   x12 = 46     X2 = 465      x2 = 0    x22 = 46     X3 = 406    x3 = 0   x32 = 14.80    (XSubject ) = 1341 

        n = 5                 n = 5   n = 5  

       M1 = 470 / 5               M2 = 465 / 5   M3 = 406 / 5 

             = 94.00                     = 93.00         = 81.20 

        

Before proceeding, recall that with a one-way between-subjects ANOVA, we employed 

Levene’s test when using SPSS to determine whether to maintain the assumption of homogeneity of 

variance of our groups.  Levene’s test is not utilized with a one-way within-subjects ANOVA.  

Instead, when we turn to SPSS we will be using Mauchly’s test to examine a related assumption 

called sphericity.  This assumption is that the variances of the differences between treatment levels 

are equal.  In our current example, each subject lived in three different locations; an honors dorm, 

at home, and in an apartment.  The differences between each subject’s scores in the three housing 

situations can easily be calculated (Table 12.9).  The assumption of sphericity is that the variances 

for these differences (columns D1, D2, and D3) do not differ.  When we turn to SPSS we will be using 

Mauchly’s test to determine whether we should accept this assumption.  For now, we will proceed 

as if we had conducted Mauchly’s test and concluded that the assumption of sphericity would be 

retained.  Finally, it is important to note that since sphericity is only of concern when there is more 

than one set of difference scores, it is only relevant when the IV has at least three levels. 
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Mauchly’s test of sphericity – Statistical procedure utilized with SPSS to test the  

assumption of sphericity for a one-way within-subjects ANOVA. 

Sphericity – Assumption of a within-subjects ANOVA that the variances of the sets of  

difference scores between treatment levels are equal.  In a repeated measures  

ANOVA these differences would be based upon pairs of scores from each subject. 

 

Table 12.9 Example 2:  Differences in Students’ Scores Based Upon Living Situation  

Subject  Dorm   –  Home   =   D1   Dorm  –  Apartment  =  D2         Home  –  Apartment  =  D3 

1 98    96   2     98     84   14           96           84           12 

2 96    95   1     96     81   15           95           81           14 

3 95    95   0     95     82   13           95           82           13 

4 91    91   0     91     80   11           91           80           11 

5 90    88   2     90     79  11              88           79            9 

 

We will be using the same summary table as in our previous example (Table 12.2) and will 

proceed by finding a value for each underlined item.  As each value is calculated it is entered into 

Table 12.13..   

Calculating The Sums Of Squares 

 
We start by finding our SS.  Remember:  

SST = SSBet + SSW    

And with a one-way within-subjects ANOVA,  SSW = SSSubjects + SSResidual 

As before, we determine the value of SST by using the following equation: 

SST = (X – MG)2   

where MG is the mean of all of the scores, in other words the grand mean.  It is found using the 

following equation: 

MG = 
𝐗

𝐍
 

where N is the total number of scores. 

For our example with a total of 15 scores from 5 subjects the calculation of MG is shown in 

the first column of Table 12.10.  Calculation of SST is shown in the remaining columns of Table 

12.10. 

Table 12.10 Example 2:  Calculation of MG and SST  

  X   (X – MG)  (X – MG)2 

98        8.60     73.96 
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96        6.60     43.56 

95        5.60      31.36 

91        1.60           2.56 

90        0.60      0 .36 

96        6.60    43.56 

95        5.60    31.36 

95        5.60    31.36 

91        1.60      2.56 

88                   –1.40          1.96 

84     –5.40   29.16 

81     –8.40   70.56 

82     –7.40   54.76 

80     –9.40   88.36 

79   –10.40              108.16 

X = 1341         (X – MG) = 0      (X – MG)2 = 613.60 = SST
 

N = 15         

MG  = 1341 / 15         

       = 89.40   

  

The SSBet is found as in a between-subjects ANOVA by determining the square of the 

deviations of each treatment level mean (M) from the grand mean (MG), then multiplying by the 

number of subjects (n), and finally summing.  Thus: 

  SSBet = [(M – MG )2 n]  

Recall, however, that with a within-subjects ANOVA this calculation does not include variability due 

to preexisting subject differences.   

The treatment level means (M1 through M3) come from Table 12.8,  MG equals 89.40 (Table 

12.10) and n, the number of subjects, is 5.   The calculations for SSBet are shown in Table 12.11. 

Table 12.11 Example 2:  Calculation of SSBet  

                 M      (M – MG)  (M – MG)2  (M – MG)2n__________ 

                              Becomes:   (M – 89.40)  (M – 89.40)2  (M – 89.40)2(5)_____ 

Dorm       94.00          4.60                     21.16        105.80 

Home      93.00          3.60       12.96          64.80 

Apartment 81.20                      –8.20       67.24       336.20 

       (M – MG)2 n = 506.80 = SSBet 
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Alternatively, the same calculations can be presented as follows: 

  SSBet = [(M – MG )2 n]  

          = [(94.00 – 89.40)2 (5)] + [(93.00 – 89.40)2 (5)] + [(81.20 – 89.40)2 (5)] 

            = [(4.60)2 (5)] + [(3.60)2 (5)] + [(–8.20)2 (5)] 

            = (21.16)(5) + (12.96)(5) + (67.24)(5) 

            = 105.80 + 64.80 + 336.20 

            = 506.80 

  

The value of SSW can be found using the following equation: 

SSW = x1
2 + x2

2 + x3
2 

As these SS have been calculated in Table 12.8 calculation of SSW is straightforward: 

  SSW = 46.00 + 46.00 + 14.80 

          = 106.80 

We can use the following equation to check our calculations: 

       SST = SSBet + SSW  

613.60 = 506.80 + 106.80  

613.60 = 613.60 

  The value of SSW is not entered into our ANOVA table, as we now partition SSW into SSSubjects 

and SSResidual.   

The SSSubjects is found by determining the square of the deviation of the mean of each subject 

from the grand mean, multiplying by the number of treatment levels, and then summing.   

Conceptually:  

SSSubjects = [(
𝐗𝐒𝐮𝐛𝐣𝐞𝐜𝐭

𝐤
 – 𝐌𝐆)𝟐𝐤]   

  = [(𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆)𝟐𝐤]  

 

where the subject’s total, XSubject, is obtained from Table 12.8, the grand mean, MG, from Table 

12.10 and k is the number of treatment levels, in this case 3. 

These calculations are shown in Table 12.12. 

Table 12.12 Example 2:  Calculation of SSSubjects  

Subject     XSubject 𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆 (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐       (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐𝐤 

    = 
𝐗𝐒𝐮𝐛𝐣𝐞𝐜𝐭

𝐤
      = (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐(𝟑) 

 

1 278 92.67      3.27        10.69  32.07 
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2 272 90.67      1.27          1.61    4.83 

3 272 90.67      1.27          1.61    4.83 

4 262 87.33    –2.07          4.28  12.84 

5 257 85.67    –3.73        13.91  41.73 

     (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)≈ 0   (𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭 – 𝐌𝐆)𝟐(3) 

     = 96.30 = SSSubjects 

 

Alternatively, the same calculations can be presented as follows: 

SSSubjects = [(𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆)𝟐𝐤]       

  = [(92.67 – 89.402](3) + [(90.67 – 89.40)2](3) + [(90.67 – 89.40)2](3) +  

[(87.33 – 89.40)2](3) + [(85.67 – 89.40)2](3)  

  = [(3.27)2](3) + [(1.27)2](3) + [(1.27)2](3) + [(–2.07)2](3) +  

[(–3.73)2](3)   

  = (10.69)(3) + (1.61)(3) + (1.61)(3) + (4.28)(3) + (13.91)(3) 

     = 32.07 + 4.83 + 4.83 + 12.84 + 41.73 

     = 96.30 

 

The SSSubjects is the amount of variability that is being removed from the denominator of the 

F ratio by using a within-subjects design.   

To determine the SSResidual we can subtract the value of SSSubjects from SSW : 

      SSW = SSSubjects + SSResidual 

106.80 = 96.30 + SSResidual 

  10.50 = SSResidual) 

Calculating Degrees Of Freedom 

 
 Having calculated the needed SS, we now must calculate the degrees of freedom for 

between treatments, subjects, residual and total.   

The degrees of freedom for between levels is equal to the number of treatment levels minus 

1.  Thus: 

  dfBet = k – 1  

where k is the number of treatment levels.  In our example: 

  dfBet = 3 – 1 

            = 2   

 



346 
 

The degrees of freedom for subjects is equal to the number of subjects minus 1.  Thus: 

  dfSubjects = n – 1  

where n is the number of subjects.  This equals: 

  dfSubjects = 5 – 1 

     = 4 

This is the number of degrees of freedom in the denominator that are removed from the 

analysis by using a within-subjects design compared to a between-subjects design.   

  

To find the degrees of freedom for residual we subtract 1 from the total number of subjects 

and multiply this by the number of levels of the independent variable minus 1.  Thus: 

  dfResidual = (n – 1)(k – 1)   

where n is the number of subjects and k is the number of levels.  In our example: 

  dfResidual = (5 – 1)(3 – 1) 

     = (4)(2)  

     = 8 

  

To find the degrees of freedom for total, we subtract 1 from the total number of data points.  

Thus: 

  dfT = N – 1  

where N is the total number of data points.  This equals: 

  dfT = 15 – 1 

         = 14 

 As a check on our calculations:  

  dfT = dfBet + dfSubjects + dfResidual 

  14 = 2 + 4 + 8 

  14 = 14 

Calculating Mean Squares 

 
 The MSBet and the MSResidual are found by dividing the appropriate SS by its df.  Thus: 

  MSBet = 
𝐒𝐒𝐁𝐞𝐭

𝐝𝐟𝐁𝐞𝐭
   MSResidual = 

𝐒𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥

𝐝𝐟𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥
 

              = 
𝟓𝟎𝟔.𝟖𝟎 

𝟐
        = 

𝟏𝟎.𝟓𝟎 

𝟖
 

              = 253.40       = 1.31      

Calculating The F Ratio 

 



347 
 

 Finally, we calculate the F ratio.  Recall that for a within-subjects ANOVA the variability due 

to pre-existing subject differences was removed from the numerator of the F ratio due to the 

experimental design and is being mathematically removed from the denominator of the F ratio by 

removing the SSSubjects.  The denominator of the F ratio thus becomes MSResidual.  Therefore: 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥
   

    = 
𝟐𝟓𝟑.𝟒𝟎 

𝟏.𝟑𝟏
    

    = 193.44 

We have now completed the calculations for the ANOVA summary table (Table 12.13).   We will 

later calculate the value in the final column of this table. 

Table 12.13 Example 2:  Completed Summary Table for the One-way Within-subjects ANOVA, 

with the Value for Partial Eta Squared (
𝐩
𝟐)  

Source of Variation  SS  df      MS    F___                 
𝐩
𝟐   

 Between Treatments  506.80   2   253.40           193.44  0.98 

 Subjects     96.30   4 

 Residual     10.50   8       1.31 

Total    613.60  14 

Interpreting The F Ratio 

 
To determine whether this F ratio of 193.44 is statistically significant, in the F table 

(Appendix K, Table 4) we would locate the column corresponding to the degrees of freedom of our 

numerator and the row corresponding to the degrees of freedom of our denominator in the F ratio.  

From Table 12.13 we see that for our F this would be 2 and 8 degrees of freedom.  At the 

intersection of this column and row in the F table for an  of .05 the critical value is 4.46.  As our 

obtained F of 193.44 is greater than the critical value we reject the null hypothesis that housing 

choice does not affect academic success.  

Conducting The Post Hoc Comparisons  

 
Following a statistically significant within-subjects (repeated measures) ANOVA, a 

researcher can ask two substantially different questions when considering making post hoc 

comparisons.  These questions are linked to the type of repeated measure that was utilized in the 

experiment.  If the repeated measure consisted of a sequence on some dimension, such as different 

times, heights, distances or drug dosages, the researcher would most commonly focus upon the 

trend exhibited by the data – how the data changed across time, height, distance, or dosage – rather 
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than upon which treatment levels differed.  Consequently, they would probably employ what is 

called trend analysis, a topic that is beyond an introductory level statistics book. 

Trend analysis – A statistical technique that attempts to define patterns in data.   

 

Alternatively, the repeated measure might not consist of a sequence on some dimension.  

For example, a researcher might measure how test scores are affected by different drugs, or 

different types of exercise, or different types of background music.  In these situations the IV 

doesn’t consist of a natural sequence.  Following a statistically significant one-way within-subjects 

ANOVA with data that are not sequential, the experimenter will focus upon the differences between 

treatment-level means.  Of course, conducting all possible pairwise comparisons of these means is 

likely to lead to an increased probability of making Type I errors.  To prevent this increased error 

we used the Tukey HSD as our post hoc test with the one-way between-subjects ANOVA.  With the 

chi-square test of independence we employed the Bonferroni method.  SPSS also uses the 

Bonferroni method to control for the increased likelihood of making Type I errors when conducting 

post hoc comparisons following a significant within-subjects ANOVA.  Thus the discussion that 

follows, though differing in detail from what you learned previously, should nonetheless seem 

familiar.     

While a significant F indicates that the IV had an effect, with three or more treatment levels 

it does not specify which treatment-level means differ.  Remember, the data obtained from each 

treatment level of a repeated measures ANOVA are based on the same subjects.  Therefore, we do 

not talk of a difference between samples or groups as we did when utilizing the one-way between-

subjects ANOVA (Chapter 11) since there is now only one sample or group of subjects that is being 

repeatedly tested.  Instead, we have differences between treatment levels.    

It was noted in Chapter 11 that the total number of pairwise comparisons between sample 

(or treatment level) means is given by the equation: 

Number of pairwise comparisons = 
𝐤(𝐤 – 𝟏)

𝟐
    

where k is the number of samples or treatment levels.   

In our case, k equals 3, so there are [3(3 – 1)] / 2, which equals 3 pairwise comparisons.  

These 3 pairwise comparisons are between the mean of treatment level I and the mean of level II, 

the mean of level I and the mean of level III, and the mean of level II and the mean of level III.  Any 

one, any two, or all three of these comparisons may be statistically significant.  The significant F 

ratio simply indicates that at least one of the treatment level means is expected to differ from 

another.  To specify which means differ we must once again conduct post hoc tests.   

 As was noted previously, following a significant one-way within-subjects ANOVA SPSS uses 

the Bonferroni method to control the Type I error rate when conducting all possible pairwise 

comparisons of treatment-level means.  As you will recall, with the Bonferroni method the overall 
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alpha rate you want to maintain is divided by the number of post hoc comparisons you will be 

making.  The outcome is the per comparison alpha level.  It is used in determining the critical value 

for each of the post hoc comparisons.  Specifically, if we wish to have an overall Type I error rate 

(alpha level) of .05, and there are three post hoc comparisons, we divide .05 by 3 to obtain an alpha 

of .0167.  Specifically: 

 Bonferroni method = 
𝒂𝒍𝒑𝒉𝒂 𝒍𝒆𝒗𝒆𝒍 𝒕𝒐 𝒃𝒆 𝒎𝒂𝒊𝒏𝒕𝒂𝒊𝒏𝒆𝒅

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒔𝒕 𝒉𝒐𝒄 𝒄𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔
 = critical value per comparison 

In our case: 

 Bonferroni method = 
.𝟎𝟓

𝟑
 = .0167  

Since the Bonferroni method is controlling the Type I error rate, any statistical test that 

utilizes interval or ratio data and that is appropriate for finding a difference with repeated 

measures could be used with our data.  Table 12.1 indicates that either the one-way within-subjects 

ANOVA or the dependent samples t test could be utilized.  Since SPSS uses the dependent samples t 

test, and the calculations are somewhat easier, we will also use this procedure for the post hoc 

comparisons.  However, the decisions would be the same for either procedure.   

For a post hoc comparison using the dependent samples t test, the df are defined as n – 1, 

where n is the number of subjects: 

df = n – 1 

In our case: 

 df = 5 – 1 = 4 

The post hoc test is two-tailed.  The critical value for an alpha of .0167 and 4 df is 3.96.  

(This value can be found using an online, t-test critical value calculator.)  In other words, the value 

we calculate for each dependent samples t test must be greater than 3.96 in order to be considered 

statistically significant.  It is important to note that this critical value of 3.96 is larger than the 

critical value would have been if the Bonferroni method had not been utilized.  If the Bonferroni 

method had not been used, for an alpha of .05 and 4 df the critical value would have been 2.78.  The 

increase in the size of the critical value is due to the Bonferroni method maintaining the overall 

error rate for the entire set of comparisons at .05 by making each of the post hoc comparisons more 

conservative. 

The equation for the dependent samples t test, when the null hypothesis is that there isn’t a 

difference (
𝐃

 = 0), is: 

t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

  = 
𝐌𝐃  − 𝟎

𝐬𝐌𝐃

  =  
𝐌𝐃

𝐬𝐌𝐃

 

where: 

 𝐌𝐃 is the mean of the difference scores 

 𝐬𝐌𝐃
 is the standard error of the mean difference   
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A single dependent samples t test is not difficult to obtain (refer to Chapter 10 and to the 

following Box).  However, if you are conducting a series of these tests it will definitely save time to 

turn to SPSS instead of doing these calculations by hand.  For illustration purposes, in the following 

calculations the value of 𝐬𝐌𝐃
, the standard error of the mean difference, is provided.  The values of 

the treatment level means come from Table 12.8. 

For our example we need to conduct 3 post hoc t tests: 

For the comparison between the means of treatment level I and treatment level II: 

t = 
𝐌𝐃

𝐬𝐌𝐃

 = 
𝟗𝟒.𝟎𝟎−𝟗𝟑.𝟎𝟎

𝟎.𝟒𝟓
 = 

𝟏.𝟎𝟎

𝟎.𝟒𝟓
 = 2.22 

For the comparison between the means of treatment level I and treatment level III: 

t = 
𝐌𝐃

𝐬𝐌𝐃

 = 
𝟗𝟒.𝟎𝟎−𝟖𝟏.𝟐𝟎

𝟎.𝟖𝟎
 = 

𝟏𝟐.𝟖𝟎

𝟎.𝟖𝟎
 = 16.00 

For the comparison between the means of  treatment level II and treatment level III: 

t = 
𝐌𝐃

𝐬𝐌𝐃

 = 
𝟗𝟑.𝟎𝟎−𝟖𝟏.𝟐𝟎

𝟎.𝟖𝟔
 = 

𝟏𝟏.𝟖𝟎

𝟎.𝟖𝟔
 = 13.72 

It is important to note that when comparing these values of t to the critical value of 3.96, we 

would ignore the sign of each t test as this simply reflects the order the treatment level means were 

entered into the numerator for each calculation of t.   

As our critical value is 3.96, the difference between the means of treatment level I and 

treatment level II, which results in a t value of 2.22 is not statistically significant.  However, the 

differences between the means of level I and level III, which leads to a t value of 16.00, and between 

the means of level II and level III, which results in a t value of 13.72, are both statistically significant.   

 

 

Box Showing Calculation of a Post Hoc Dependent t Test 

 Three post hoc comparisons of pairs of means were calculated for the data in Table 12.8.  As 

discussed above, each of these comparisons involved calculation of a dependent t test.  The outcome 

of each was then compared to the critical value found using the Bonferroni method.  The 

calculations involved in the comparison between treatment level I and treatment level II are 

illustrated in Table 12.14.  The calculations involved in the other two comparisons would be 

similar. 

Table 12.14 Calculations for the Comparison between Treatment level I and Treatment level II 

Subject  Dorm    Home     Difference (D – MD) (D – MD)2 

        Scores (D) 

 

1  98  96    2     1.00    1.00 
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2  96  95    1     0.00    0.00 

3  95  95    0  –1.00    1.00 

4  91  91    0   –1.00    1.00 

5  90  88    2    1.00    1.00 

             D = 5         (D – MD) = 0        (D – MD)2 = 4.00 

             MD = 
𝐃

𝐧𝐃 
  where 𝐧𝐃 = the number of difference  

                        = 
𝟓

𝟓
   scores, which is equal to the  

                              = 1.00  number of pairs of scores 

 

 It is important to note that while there are two sets of scores in each post hoc comparison, 

there is only one sample of subjects and thus only one set of difference scores.   

 In our example, the null hypothesis is that the place of abode does not have an effect.  The 

equation to determine t therefore is: 

 t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

  = 
𝐌𝐃  − 𝟎

𝐬𝐌𝐃

  =  
𝐌𝐃

𝐬𝐌𝐃

 

The numerator of this equation, MD, can be found by calculating  D / 𝐧𝐃, where 𝐧𝐃 is equal to the 

number of difference scores, which is equal to the number of pairs of scores.  As is indicated in 

Table 12.14, MD for our example equals 5 / 5 or 1.00.  It is important to recognize that this positive 

value of 1.00 indicates scores are higher when students live in the honors dorm than at home.  The 

question we now need to address is whether this change of 1.00 point is statistically significant, and 

thus indicative of a reliable effect, or whether it should be considered to be the result of chance. 

 To find the standard error, 𝐬𝐌𝐃
, we note that 𝐬𝐌𝐃

 = sD / 𝐧𝐃.  And, sD, the estimate of the 

population standard deviation of a set of difference scores (which can alternatively be defined as 

the estimate of the population standard deviation of the differences between pairs of scores), is 

equal to:   

sD =  
(𝐃 – 𝐌𝐃)𝟐

𝐧𝐃  − 𝟏
 

where 𝐧𝐃 is equal to the number of difference scores, and is also equal to the number of pairs of 

scores. 

Substituting from Table 12.14 we have: 

sD =  
𝟒.𝟎𝟎

𝟓 − 𝟏
   

      =  
𝟒.𝟎𝟎

𝟒
   

      = 1.00 

      = 1.00 

We can now determine the standard error, 𝐬𝐌𝐃
, by noting that: 
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 𝐬𝐌𝐃
 =  

𝐬𝐃

𝐧𝐃
  

          = 
𝟏.𝟎𝟎

𝟓
   

          = 
𝟏.𝟎𝟎

𝟐.𝟐𝟒
  

          = 0.45 

This is the denominator that we were seeking. 

 The value for t therefore becomes: 

t = 
𝐌𝐃

𝐬𝐌𝐃

 

    = 
𝟏.𝟎𝟎

𝟎.𝟒𝟓
   

    = 2.22  

This is the value of the dependent samples t test for the comparison of treatment level I and 

treatment level II that was utilized previously.   An additional t test would need to be calculated for 

each of the other two post hoc comparisons. 

__________________________________________________________________________________________________________________   

Calculating The Effect Size 

 
To ascertain the effect size for a one-way within-subjects ANOVA, SPSS calculates a partial 

eta squared (
𝐩
𝟐).   

Partial eta squared (
𝒑
𝟐) – Measure of effect size calculated by SPSS for a within subjects  

ANOVA. 

 

With a one-way within-subjects ANOVA an equation for the partial eta squared for 

treatment is: 


𝐩
𝟐 treatment = 

𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓 − 𝐒𝐒𝐒𝐮𝐛𝐣𝐞𝐜𝐭𝐬
   

This 
𝐩
𝟐 indicates the proportion of variance explained by the treatment, after removing the 

variability from the denominator due to pre-existing subject differences. 

For our example: 

  
𝐩
𝟐 = 

𝟓𝟎𝟔.𝟖𝟎 

𝟔𝟏𝟑.𝟔𝟎 – 𝟗𝟔.𝟑𝟎
   

        = 
𝟓𝟎𝟔.𝟖𝟎 

𝟓𝟏𝟕.𝟑𝟎
   

                   = .98 or 98% 

 This value is included in Table 12.13.   

It is important to point out to the readers of this book that these data were created as an 

example and an effect size of .98 is much larger than is likely to be found in the real world.  It 
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indicates that 98% of the variability in the dependent variable (academic success) can be explained 

by the independent variable (housing choice).  Only 2% of the variability, then, is due to all other 

factors, which is a very unlikely outcome. 

Alternatively, we could calculate 2 as was done with the one-way between-subjects 

ANOVA: 

2 for treatment = 
𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓
 

For our example: 

2 = 
𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓
 

     = 
𝟓𝟎𝟔.𝟖𝟎 

𝟔𝟏𝟑.𝟔𝟎
 

     = .83 or 83% 

Note that the value of 2 is less than the value of 
𝐩
𝟐.  This is because 2 does not remove the 

variability from the denominator due to pre-existing subject differences while 
𝐩
𝟐 does.  There is not 

agreement on which is the better measure of effect size with a one-way within-subjects ANOVA.  

Most studies with a one-way within-subjects ANOVA probably report 
𝐩
𝟐, but you could report 

either. 

Reporting The Results Of A One-Way Within-Subjects ANOVA 

 
 In a paper, we would indicate the degrees of freedom, the F ratio that was obtained, as well 

as which pairwise comparisons were significant and the measure of effect size.  Specifically, for 

these hypothetical data we would report (F(2,8) = 193.44, p < .05, 
𝒑
𝟐 = .98) (You could report 2 

instead).   This statement indicates that the treatment level means were found to differ and that our 

measure of effect size, 
𝐩
𝟐, was found to equal .98.  We would also note that post hoc comparisons 

utilizing the Bonferroni method test indicated that living in an off-campus apartment led to a 

decrease in exam scores compared to living in an on-campus honors dorm or living at home.  

However, no difference was found between living in an on-campus honors dorm and living at home.  

Later in this chapter we will use SPSS to analyze these data, and we then can make a more precise 

statement (F(2,8) = 192.46, p < .001, 
𝒑
𝟐 = .98).  The minor change in the value of the F ratio is due 

to rounding error in our calculations and SPSS provides a more precise p-value for the probability 

of our outcome.  Also, note that the p-value is less than .001 which is also less than our α of .05, 

confirming that we would reject the null hypothesis.  Finally, you should also report the results of 

Mauchly’s test of sphericity which will be discussed in the SPSS section of this chapter. 

Extension To Designs With Matched Subjects 
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 This chapter has reviewed the one-way within-subjects ANOVA and the discussion has been 

limited to those designs in which the same sample of subjects are repeatedly tested.  Thus the 

subjects being tested at each treatment level are not independent.  The same statistical analysis is 

also employed in other research designs in which the subjects are related in some way.  For 

instance, in order to begin an experiment with equivalent groups we could first ensure that the 

subjects were paired or matched on an important characteristic such as IQ.  The matched sets of 

subjects would then be randomly assigned to the different treatment levels.  The data from the 

resulting matched subjects design would also be analyzed with a one-way within-subjects ANOVA.  

In fact, repeatedly testing the same subjects can be thought of as the ultimate example of matching 

since we have essentially matched them on every possible preexisting characteristic. 

Purpose And Limitations Of Using The One-way Within-subjects ANOVA  

 
1. Test for difference.  The null hypothesis is that the treatment does not have an effect.  

Therefore, if the null is correct any difference between the means of the treatment levels 

is due to chance.  The alternative hypothesis is that the treatment does have an effect.  

2. Does not provide a measure of effect size.  The one-way within-subjects ANOVA, like the 

one-way between-subjects ANOVA, is a test of significance.  It indicates whether or not 

an outcome is likely to have occurred by chance if the null hypothesis is correct.  If the F 

test is significant a measure of effect size, such as eta squared (2) or partial eta squared 

(
p
2), should then be calculated. 

3. Compares two or more treatment level means.  The one-way within-subjects ANOVA is 

appropriate to use when each subject is assigned to every treatment level, or when the 

subjects at each treatment level are matched on some variable. 

4. Does not indicate where the difference is.  With designs with more than two treatment 

levels, a significant F should be followed with a post hoc procedure.  We have utilized a 

series of dependent t tests in order to identify which treatment level means differ.  The 

Bonferroni method is used to control the Type I error rate. 

Assumptions Of The One-way Within-subjects ANOVA 

 
1. Interval or ratio data.  The data are on an interval or a ratio scale of measurement. 

2. Random sample.  The subjects are drawn at random from a population. 

3. Independence within treatment levels.  The data within each treatment level are 

independent. 

4. Normally distributed populations.  The population at each treatment level is normally 

distributed.  However, based upon the Central Limit Theorem, the one-way within-
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subjects ANOVA will be accurate so long as the sample size is at least 30.  If the sample 

size is less than 30, then it is important that the underlying populations be normally 

distributed.  If you cannot collect a larger sample and have reason to believe that the 

assumption of normality may not have been met it is best to turn to an alternative test. 

5. Population variances are equal.  The population of scores corresponding to each 

treatment level have equal variances. 

6. No carryover effects.  With repeated measures, having received one treatment level 

does not affect a subject’s response to another treatment level. 

Effect Of Violating The Assumptions 

 
 As has been noted previously, the F test has been found to be robust – it often leads to 

accurate decisions even when an assumption is violated.  However, when using a repeated 

measures design a researcher should be particularly concerned with carryover effects.   

 

Conclusion 
 
 The one-way within-subjects ANOVA is a flexible, commonly employed statistical test to 

determine if treatment level means differ.  Though somewhat tedious to calculate by hand, 

statistical packages such as SPSS make this a most useful statistical procedure. 

 As both the one-way between-subjects ANOVA and the one-way within-subjects ANOVA 

compare two or more treatment level means it is important to understand how they are related.  

Appendix M is designed to clarify how these ANOVAs are both similar and different.  

It is also important to understand the advantages and disadvantages of each.  As noted at 

the beginning of this chapter, the one-way within-subjects ANOVA design does not include 

preexisting subject differences in the numerator, and mathematically partitions out the preexisting 

subject differences from the denominator of the F ratio.  As a result, the F ratio will likely be larger 

than if a one-way between-subjects ANOVA had been utilized.  As a larger F ratio is more likely to 

be found to be statistically significant you might wonder why anyone would conduct a one-way 

between-subjects ANOVA.  There are a number of reasons.  First, you lose degrees of freedom with 

the one-way within-subjects ANOVA compared to the one-way between-subjects ANOVA.  This is 

evident from the denominator of the F ratio, which in a one-way between-subjects ANOVA is MSW 

but in a one-way within-subjects ANOVA it is MSResidual.  Each MS is associated with a degrees of 

freedom.  For instance, in Table 12.13 dfResidual is 8.  However, if this had been a one-way between-

subjects ANOVA the dfW would have been 12 (remember, dfW = dfSubjects + dfResidual).  As an 

examination of the F table will indicate, this loss of 4 degrees of freedom results in a larger value of 
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F being needed in order to conclude that a difference is statistically significant.  In other words, with 

a one-way within-subjects ANOVA the F ratio is likely to be larger than with a one-way between-

subjects ANOVA, but as the degrees of freedom will definitely be smaller this F ratio will be 

compared to a larger critical value.  Whether you gain more with the larger F than you lose due to 

the smaller degrees of freedom when using the one-way within-subjects ANOVA will depend upon 

the specific situation.   

In addition, with a repeated measures design the experimenter needs to be concerned with 

carryover effects.  This was mentioned previously in Chapter 10, but the basic idea is that with a 

repeated measures design it is being assumed that the effect of one treatment does not influence 

subsequent treatments.  In some situations, however, this is unlikely to be the case.  For instance, 

let’s assume that in one condition subjects are assigned a physically demanding task, such as 

swimming 1,000 meters and in another condition they swim only 10 meters.  The DV is the time 

needed to climb five flights of stairs after each swimming event.  If there was not a very substantial 

rest period between the two swimming conditions it seems likely that swimming the long distance 

first would have a dramatic carryover effect on subjects’ ability to subsequently climb stairs after 

swimming the short distance.   

Another drawback to the repeated measures design is that subjects may not be willing to 

commit to repeated testing and thus will drop out of the study.   

As a consequence of these limitations, the between-subjects design is much more commonly 

used than the repeated measures design and thus the one-way between-subjects ANOVA is more 

commonly used than the one-way within-subjects ANOVA.  However, the repeated measures 

design, and thus the one-way within-subjects ANOVA, can be very useful, particularly if there are 

only a limited number of subjects available to be tested. 

Final Thoughts On The Relationship Between The One-
Way Within-Subjects ANOVA And The Dependent 

Samples t Test 
 

Though the calculations for the dependent samples t test (reviewed in Chapter 10) and the 

one-way within-subjects ANOVA with two measures for each subject appear to be quite different, 

these tests are closely related.  In fact, the outcome of the dependent samples t test and the outcome 

of the one-way within-subjects ANOVA are mathematically related in the same way that the 

independent samples t test and the one-way between-subjects ANOVA are related: 

 F = t2 

We utilized the same data using the dependent samples t test (Table 10.6) and the one-way within-

subjects ANOVA (Table 12.3).  Substituting the value of 0.51 found with the t test, we would have:  
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F = 0.512 = 0.26  

which is the same value of F we found in this chapter except for minor rounding error (Table 12.7).   

 Thus, assuming you have interval or ratio data with two measures from each subject, or 

scores on two sets of matched subjects, you can consider conducting either a dependent samples t 

test or a one-way within-subjects ANOVA.  Both will always lead to the same decision to retain or 

reject the null hypothesis.  However, if you have three or more measures from each subject, or three 

or more sets of matched subjects, then you need to utilize the one-way within-subjects ANOVA. 

Glossary Of Terms 
 
Mauchly’s test of sphericity – Statistical procedure utilized with SPSS to test the assumption of  

sphericity for a one-way within-subjects ANOVA. 

One-way within-subjects ANOVA – An inferential procedure for comparing two or more means  

 from related samples when there is one independent variable. 

Partial eta squared (
𝒑
𝟐) – Measure of effect size calculated by SPSS for a within subjects ANOVA. 

Preexisting subject differences – Relatively stable subject characteristics.  These differences  

 between subjects are a form of error in an ANOVA.  The variability due to these differences  

 is removed in a one-way within-subjects ANOVA. 

Residual error – Changeable subject characteristics.  These differences between subjects are a form  

 of error in an ANOVA.  The variability due to these differences is not removed in a one-way  

 within-subjects ANOVA. 

Sphericity – Assumption of a within-subjects ANOVA that the variances of the sets of  difference  

scores between treatment levels are equal.  In a repeated measures ANOVA these 

differences would be based upon pairs of scores from each subject. 

Sum of squares residual (SSResidual) – In a one-way within-subjects ANOVA, the SS due to residual  

error. 

Sum of squares subjects (SSSubjects) – In a one-way within-subjects ANOVA, the SS due to preexisting  

subject differences. 

Trend analysis – A statistical technique that attempts to define patterns in data.   

Questions – Chapter 12 

 
(Answers are provided in Appendix J.) 

1. Compared to the one-way between-subjects ANOVA, the one-way within-subjects  
ANOVA _____. 

 a. Reduces the size of the F ratio 
 b. Removes the pre–existing subject differences   
 c. Reduces residual error 
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 d. Increases the size of the numerator of the F ratio 
 
2. In the one-way within-subjects ANOVA, the SSW is partitioned into _____. 

a. SSSubjects and SSResidual  
b. SST and SSBet   
c. SSSubjects and SSBet   
d. SST and SSResidual 

 
3. MG is the mean of _____. 
 a. the scores in the largest group 
 b. the scores in the first experimental condition 

c. the scores in the smallest group 
d. all of the scores  
 

4. If the F is not significant, we _____. 
a. do not calculate the effect size, partial eta squared (

𝐩
𝟐)  

b. can be absolutely certain that our independent variable did not have an effect 
c. should consider conducting the study again, but this time with fewer subjects 
d. should then conduct a post hoc test 
 

5. If the F is significant, and we have more than 2 treatment levels for each subject, we would  
 _____. 
 a. calculate the effect size, partial eta squared (

𝐩
𝟐)  

b. conduct post-hoc comparisons 
c. both of the above  
d. none of the above 
 

6. Compared to the one-way between-subjects ANOVA, with a one-way within-subjects 
ANOVA _____. 

 a. There is a loss of df 
b. A larger F value is needed 
c. There are fewer calculations 
d. Both ‘a’ and ‘b’, but not ‘c’  

 
7. Which is more commonly utilized, the one-way between-subjects ANOVA or the one-way 

within-subjects ANOVA? 
a. One-way between-subjects ANOVA 
b. One-way within-subjects ANOVA 
c. Both are used approximately equally often 

 
8. Eye color is an example of _____ and catching a cold is an example of _____. 

a. Residual error; residual error 
b. Residual error; pre-existing subject differences 
c. Pre-existing subject differences; pre-existing subject differences 
d. Pre-existing subject differences; residual error 

 
9. The F ratio for a one-way within-subjects ANOVA is equal to _____. 

a. MSBet / MSW 
b. MSBet / MSSubjects 
c. MSBet / MSResidual 
d. MSBet / SSTotal 
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10. If your design has 10 treatment levels, how many post hoc pairwise comparisons would 
there be? 
a. 3 
b. 10 
c. 33 
d. 45 

 
11. If in a paper you read (F(3, 9) = 61.44, p < .05), what does the number 3 refer to? 

a. dfBet 

 b.  dfSubjects 

 c. dfResidual 

 d. dfT 

 

12. With a one-way within-subjects ANOVA, partial eta squared is the _____. 
 a.  proportion of variance explained by the subjects 
 b. proportion of variance explained by the treatment 
 c. proportion of variance explained by the error 
 d. proportion of variance explained by the residual 
 
 
For questions 13 – 16 we are going to use the same data as in Chapter 11 (Questions 15 – 19) 
except that we now assume there are only a total of 6 students and each student took different 
versions of the exam in the quiet, moderately noisy and noisy environments.  Compare each of your 
answers to the answer you calculated in Chapter 11. 
 

Level of Background Noise 
    Quiet   Moderate  Noisy 
   1   9     7     6 
   2 10     9     8 
 Student 3   8     8   10 
   4 13   13     7 
   5 12   11   11 
   6 14   12   12 

 

13. What is the SS for the level of background noise (SSBet)? 
 a. 2.0 
 b. 12.0 
 c. 2.43 
 d. 6.0 
 
14. What is the df for the level of background noise? 
 a. 2 
 b. 12 
 c. 2.43 
 d. 6 
 
15.     What is the MS for the level of background noise? 
 a. 2.0 
 b. 12.0 
 c. 2.43 
 d. 6.0 
 
16.     What is the value of F ratio? 

a. 2.0 
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b. 12.0 
c. 2.43 
d. 6.0 

 

Problems 17 – 20 utilize SPSS. 

 

Using SPSS With The One-way Within-subjects ANOVA 
 

To Begin SPSS 

 
 Step 1 Activate the program, close the central window, and click on the Variable View 

option at the bottom left of the window.   

 Step 2 Click on the first empty cell under the column heading ‘Name’.  You now type the 

name of the first variable for which you have data.  We are going to utilize the same data and labels 

as were previously employed in Table 12.8.  These data dealt with the effect of living situation in 

college students.  Type ‘Dorm’ in the first empty cell under ‘Name’. 

 Step 3 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell you can 

type a more extensive description of your variable.  In our case, type ‘On-campus honors dorm’.  

Note that in order to see the entire label you may need to expand the size of this cell by placing your 

cursor on the right border of the Label heading and moving to the right. 

 Step 4 Check the first ‘cell’ under the column heading ‘Measure’.  As we are dealing with  

exam scores be certain that ‘Scale’ is present.   

Step 5 Repeat Steps 2 – 4 except that you type ‘Home’ in the first empty cell under ‘Name’ 

and ’Off-campus at home’ for the label.  Finally, select ‘Scale’ in the column under the column 

heading ‘Measure’ as we have ratio data.   

Step 6  Repeat Steps 2 – 4 except that you type ‘Apartment’ in the first empty cell under 

‘Name’ and ’Off-campus apartment’ for the label.  Finally, select ‘Scale’ in the column under the 

column heading ‘Measure’ as we have ratio data.  The result is shown in Figure 12.1.   

Figure 12.1  Variable View Window 

 

To Enter Data In SPSS 

 
Step 7 Click on the ‘Data View’ option at the lower left corner of the Variable View window.  

The variables ‘Dorm’, ‘Home’ and ‘Apartment’ will be evident. 
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Step 8 Our data consist of three exam scores for each of five subjects.  For each subject enter 

the hypothetical exam scores in the appropriate row and columns, as is shown in Figure 12.2.   

Figure 12.2 Entering Data 

 

                                      

To Conduct A One-way Within-subjects ANOVA 

 
Step 9 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘General Linear Model’, then click on ‘Repeated Measures’. 

Step 10 A new window will appear.  This asks for the ‘Within–Subject Factor Name’.  In our 

case, Abode would be an appropriate name.  This is indicated by typing ‘Abode’ in the upper box 

and ‘3’ for the ‘Number of Levels’ as we have three living situations (Figure 12.3).  Then click on 

‘Add’.  

Figure 12.3 Repeated Measures Window 

 

                                                              

Step 11 Click ‘Define’ and a new window will appear (Figure 12.4).  Move each of the labels 

on the left to the box on the right by clicking on the appropriate label and then on the top arrow 
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pointing to the right.  This assigns a variable to each of the levels you have noted in Step 10 (in our 

case there are three levels).  The result will appear as is shown in Figure 12.5.   

Figure 12.4 Defining the Repeated Measures Variable      

 

 

                                                                                          

Figure 12.5 Continuing to Define the Repeated Measures Variable 
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Step 12  Now click on ‘Options’ which is located on the column on the right.  A new window 

will appear.  If you click on the boxes in front of ‘Descriptive statistics’ and ‘Estimates of effect size’ 

(Figure 12.6) SPSS will later generate a useful summary of the data.  Click ‘Continue’.   

Figure 12.6 Specifying Descriptives and Effect Size 

 

 

Step 13  Now click on ‘Abode’ and then the central arrow.  Abode will move into the box 

labelled ‘Display Means for:’ (Figure 12.7).   

Figure 12.7 Specifying the Post Hoc 

 

 

Step 14 Click on the box in front of ‘Compare main effects’.   Now click on the drop down 

menu that says ‘LSD(none)’ and select ‘Bonferroni’ (Figure 12.8).  Click on ‘Continue’.   

Figure 12.8 Specifying the Bonferroni as the Post Hoc  
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Step 15  You will be returned to Figure 12.5.  Click ‘OK’ and SPSS will conduct the one-way 

within-subjects ANOVA.  The printout is quite complex.  The parts of the output that we are 

interested in have the headings ‘Within-Subjects Factors’ (Table 12.15), ‘Descriptive Statistics’ 

(Table 12.16). ‘Mauchly’s Test of Sphericity’ (Table 12.17), ‘Tests of Within-Subjects Effects’ (Table 

12.18) and ‘Pairwise Comparisons (Table 12.19).   

Table 12.15 SPSS Output; Within-Subjects Factors 

 

 

Table 12.16 SPSS Output; Descriptive Statistics 

 

 

Table 12.17 SPSS Output; Mauchly’s Test of Sphericity 
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Table 12.18 SPSS Output; Tests of Within-Subjects Effects 
 

 
 

Table 12.19 SPSS Output; Pairwise Comparisons 
 

 
 
 

 
Table 12.15 identifies the levels of the IV, and thus what condition the data (DV) refer to.  

Table 12.16 provides the mean exam score and standard deviation for each of the three levels of 

abode.  Table 12.17 lists the result of Mauchly’s Test of Sphericity.  Recall that sphericity  is an 

assumption of a within-subjects ANOVA.  Briefly, it is that the differences between scores at pairs of 
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levels have equal variances (Table 12.9).   Table 12.17 indicates the value of Mauchly’s Test of 

Sphericity is .603 and the p-value (Sig.) is .469.  To reject the assumption of sphericity, the p-value 

would need to be less than .05.  Since .469 is greater than .05, the assumption of sphericity is 

retained and we can proceed to the ANOVA.  We can ignore the remainder of this table.  Table 12.18 

provides the ANOVA table summary.  Refer to the two rows labeled ‘Sphericity Assumed’ since 

Mauchly’s test did not lead us to reject this assumption.  (If Mauchly’s test was significant, refer to a 

more advanced statistics text.)  These rows begin with the labels ‘Abode’ (what we called ‘Between 

Treatments’) and ‘Error(Abode) (what we called ‘Residual’).  What you will see is the same result 

for the ANOVA, except for our minor rounding error, as we previously found with hand calculations 

(Table 12.13) and the same value for partial eta squared that we found previously.  The last table 

listed (Table 12.19) summarizes the outcome of the post hoc dependent t tests with the Bonferroni 

method.  The presence of an asterisk in the column ‘Mean Difference’ indicates that the hypothetical 

exam scores for students when they lived in Abode 3 (Apartment) were significantly less than the 

scores for when they lived in Abode 1 (Honors Dorm) or Abode 2 (At Home).  Further, the lack of an 

asterisk in the column ‘Mean Difference’ indicates that there was not a significant difference 

between the exam scores for Abode 1 and Abode 2.   

Finally, just as was the case with the dependent samples t test, note that Levene’s test for 

homogeneity of variances is not utilized with a within-subjects ANOVA.   

Step 16  Exit SPSS.  There is no need to save the output or the data. 

 
To confirm that you understand how to use SPSS, I suggest you redo the ANOVA dealing 

with level of background noise (Questions 13 – 16) to check your answers. 

SPSS Problems – Chapter 12 

 
Problems 17 – 20 are based upon the same data that were used for questions 13 – 16 except that 
we now want to determine the effect of adding a constant (in this case 10) to every score in the 
noisy condition.  (Compare your answers to the answers for questions 13 – 16 in this chapter and 
the answers in Chapter 11 for questions 25 and 26 when a between-subjects ANOVA was utilized.) 
 

Level of Background Noise 
    Quiet   Moderate  Noisy 
   1   9     7   16 
   2 10     9   18 
 Student 3   8     8   20 
   4 13   13   17 
   5 12   11   21 
   6 14   12   22 
  

 
17. What is the SS for the level of background noise (SSBet)? 
 a. 2.0 
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 b. 12.0 
 c. 292.0 
 d. 6.0 
 
18. What is the df for the level of background noise? 
 a. 2 
 b. 12 
 c. 2.43 
 d. 6 
 
19.     What is the MS for the level of background noise? 
 a. 2.0 
 b. 12.0 
 c. 2.43 
 d. 146.0 
 
20.      What is the value of F ratio? 
 a. 2.659 
 b. 14.443 
 c. 26.500 
 d. 59.189  
 

21. Based upon the post hoc analysis, which treatment levels differ? 
 a. None of the treatment levels differ 
 b. Quiet differs from Moderate, but not from Noisy 
 c. Moderate doesn’t differ from Quiet or Noisy 
 d. Noisy differs from both Quiet and from Moderate  
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Chapter 13   
Finding Differences with Interval/Ratio Data – V:   

The Two-way Between-subjects ANOVA 
 

“Oh, fancies that might be, oh facts that are!” 

Robert Browning 

Introduction 
 

 In Chapter 11 we reviewed the one-way between-subjects ANOVA.  It is among the most 

commonly used of all statistical procedures.  In Chapter 12 we reviewed the one-way within-

subjects ANOVA, a useful alternative to a between-subjects design.  Nevertheless, both of these 

ANOVAs are limited because they examine the effect of only one IV.  In the real world we are 

simultaneously affected by numerous variables.  For instance, your comprehension of this chapter 

will depend upon many factors including how much sleep you got last night, whether you are under 

time pressure, how noisy the background is, and your understanding of previous chapters, to name 

just a few.  In this chapter we will learn that an ANOVA can be utilized when there is more than one 

IV.  We will only be discussing the situation where there are two IVs.  Though an ANOVA can 

maintain the experimentwise error rate while simultaneously dealing with an unlimited number of 

IVs the analysis quickly becomes difficult to interpret. 

 In Chapter 11 we learned that when dealing with an ANOVA each IV is called a factor.  Thus, 

the single-factor or one-way ANOVA has only one IV and, if it is a between-subjects design each 

subject experiences only one level of the IV.  An ANOVA with more than one factor is called a 

factorial ANOVA.  To describe a factorial ANOVA the number of levels of each IV is specified.  Thus, if 

there are two IVs, each with two levels, this would be a 2 X 2 ANOVA (this is read, “two by two 

ANOVA”).  If there were two IVs, one with two levels and the other with three levels, this would be a 

2 X 3 ANOVA.  If there were three IVs, one with two levels and two with three levels, this would be a 

2 X 3 X 3 ANOVA.  In this chapter we will only be dealing with designs with two IVs and where there 

are no repeated measures or matched subjects.  We will, accordingly, be studying what is called the 

two-way between-subjects ANOVA or two-factor between-subjects ANOVA.  This procedure is 

underlined in Table 13.1. 

Two-way between-subjects ANOVA – An inferential procedure for comparing means from  

 independent samples when there are two independent variables.   

  

Table 13.1 Overview of Inferential Statistical Procedures For Finding if there is a Difference 
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_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   

 
 

The Italicized procedure is reviewed in Appendix A 

 

Main Effects And Interaction 

 
 An example of a 2 X 3 between-subjects ANOVA is shown in Table 13.2.  The two IVs are 

gender (2 levels; men or women) and academic major (3 levels; arts, sciences, or other).  The DV is 

grade point average.  Which IV is designated Factor A and which is Factor B is arbitrary.  In Table 

13.2 gender is Factor A (rows) and academic major is Factor B (columns).  Each of the six 

combinations of the levels of Factor A and Factor B is called a cell, and each cell is numbered as you 

would read a page.  Note that in a between-subjects factorial ANOVA each subject is assigned to a 

single cell and thus experiences only one combination of treatment levels.   

Cell – A particular combination of treatment levels in a Factorial ANOVA. 

 

Table 13.2 Illustration of a 2 X 3 Between-Subjects ANOVA 

  Factor B 

Academic Major   

  Arts Sciences Other 

Factor A Men Cell 1 Cell 2             Cell 3 
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Gender Women Cell 4 Cell 5 Cell 6 

 

                                                                                

 With a two-way ANOVA we can examine the effect of each of the two IVs separately.  These 

are called main effects.  The two-way ANOVA is, therefore, somewhat like simultaneously 

conducting two, one-way ANOVAs.  In addition, however, with a two-way ANOVA we can also 

examine how the two IVs interact with each other.  For instance, it has been reported in a number 

of publications that childhood maltreatment leads to antisocial adult behavior.  This effect is 

sometimes summarized by saying that childhood abuse runs in families.  In other words, it has been 

accepted that there is a relationship between the level of one variable (childhood abuse) and the 

magnitude of another variable (degree of antisocial adult behavior).  Caspi et al. (2002) reexamined 

the long-term effects of childhood maltreatment.  This study differed from the previous research by 

including an additional variable, the presence or absence in the subjects of a gene encoding the 

monoamine oxidase A (MAOA) enzyme.  It was found that those men with low MAOA levels were 

much more likely to have a record of antisocial behavior, but only if they had been abused as 

children.  The men with high MAOA levels were not antisocial even if they had been abused as 

children.  This study suggests, therefore, that our previous interpretation was only partially correct.  

While there is a link between childhood abuse and adult antisocial behavior, this relationship 

appears to be dependent upon the individual’s genetic makeup.  In other words, Caspi et al. (2002) 

found that antisocial adult behavior is only enhanced when two factors occur together.  Neither, by 

itself, is sufficient to lead to elevated rates of adult antisocial behavior.  This dependency of an effect 

upon a combination of factors is called an interaction. 

Main effect – With a factorial ANOVA, another term for an independent variable or factor.  

Interaction – A change in the dependent variable that is due to the presence of a  

 particular combination of independent variables.   

 

 We are all familiar with the concept of an interaction.  For instance, physicians warn against 

taking particular combinations of medications.  Though each medication may be helpful by itself, 

the combination may definitely not be.  It is also widely known that the combination of two useful 

household cleaners, ammonia and chlorine bleach, will lead to the production of chlorine gas which 

is very dangerous.  Finally, the author of this book likes to eat pickles and also likes ice cream, but 

the combination of pickles and ice cream does not sound appealing.  Thus, in an interaction the 

combined effect of two factors is not simply the sum of the effects of the two factors alone. 

 One of the most useful techniques to assist in interpreting interactions is to graph the 

outcome.  Returning to the Caspi et al. (2002) study that examined the long-term effects of 

childhood maltreatment, we could assign one of our IVs, childhood maltreatment, to the X axis, the 
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amount of adult antisocial behavior, the DV, to the Y axis, and then plot the outcome for the two 

levels of the second IV, genetic makeup.  The result is illustrated in Figure 13.1. 

Figure 13.1 An Example of an Interaction 

 

   The advantage of a graph is that the interaction is evident at a glance.  The amount of adult 

antisocial behavior is only increased if there was a history of maltreatment and if the individual had 

low MAOA activity. 

 Now let us compare what the graph would have looked like if there had not been an 

interaction.  Specifically, if the outcome had been that both IVs had an effect but there was no 

interaction between the two factors, we might find an outcome as in Figure 13.2. 

Figure 13.2 An Example of Two Main Effects but no Interaction 

 

          In this example, childhood maltreatment would have increased adult antisocial behavior 

and low MAOA activity would also have been associated with higher adult antisocial behavior.   

Thus, in Figure 13.2 both IVs had significant effects.  Consequently, another way to describe our 

outcome would be to say that there were two significant main effects.  Having found a significant 
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main effect does not indicate whether, or not, there is also a significant interaction.  In the example 

illustrated in Figure 13.2 there is not an interaction as no particular combination of the IVs causes a 

unique change in the DV.  In other words, any outcome is explained by simply adding the separate 

effects of each IV.    

 With a two-way ANOVA, there are two IVs or factors, but three F ratios are calculated.  One 

F ratio is calculated for each of the two possible main effects, and a third F ratio is calculated to 

determine if there is an interaction.  None, or any combination of these three F ratios can be 

significant.  In other words, neither, one, or both of the main effects might be found to be significant, 

and the F ratio for the interaction could be significant regardless whether any main effect was 

found to be significant.  For instance, returning to our example of the effects of maltreatment, 

Figure 13.3 would be an example of a significant interaction though neither main effect is 

significant.   

Figure 13.3 An Example of a Significant Interaction but no Significant Main Effects 

 

If the results had been as shown in Figure 13.3, there would not be a main effect for the 

maltreatment IV since the overall amount of adult antisocial behavior is the same regardless of 

whether the child was maltreated or not.  Similarly, with the results portrayed in Figure 13.3 there 

is not a main effect for the IV of MAOA activity since the overall, or mean, amount of adult antisocial 

behavior is the same regardless of the subject’s MAOA activity.  However, there is an interaction.  As 

drawn, the results would indicate that there would be an increase in adult antisocial behavior 

either with no maltreatment and high MAOA activity, or with maltreatment and low MAOA activity.  

When an interaction is found to be significant, it, not the main effects, becomes the center of our 

attention.  We return now to Figure 13.1, which is a representation of the results actually found by 

Caspi et al. (2002).  The interaction suggests that, in addition to trying to reduce the overall level of 

maltreatment, to counter adult antisocial behavior we might consider a special focus upon male 

children who exhibit low MAOA activity. 
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The Logic Of The Two-Way Between-Subjects ANOVA 

 
 The two-way between-subjects ANOVA can be understood as an extension of the one-way 

between-subjects ANOVA that was covered in Chapter 11.  With the one-way between-subjects 

ANOVA we calculate two estimates of the population variance (X
2).  The within-groups estimate is 

called the mean square within (MSW).  The MSW is the estimate of X
2 obtained by pooling the 

variability within each of the experimental groups.  Since each subject within an experimental 

group receives the same level of the treatment, this variability is not a result of the IV and, instead, 

is due to other sources of variability, which we collectively call error.  The other estimate of X
2 in a 

one-way between-subjects ANOVA is called the mean square between (MSBet).  The MSBet is the 

estimate of X
2 based on the variability between the groups.  Each experimental group receives a 

different level of the treatment.  Thus, this variability is the result of the IV as well as what we are 

calling error.  As a result, with the one-way between-subjects ANOVA we have two methods for 

estimating X
2.  And if there is no treatment effect, these two estimates of X

2 are expected to be 

approximately the same.  However, if the IV had an effect, the two estimates of X
2 may differ 

substantially.           

With the one-way between-subjects ANOVA we calculate one F ratio.  If there is no 

treatment effect, the ratio of MSBet / MSW should be approximately 1.00.  If there is a treatment 

effect, the F ratio will be greater than 1.00.  

With a two-way between-subjects ANOVA there is still a within-groups estimate of X
2, the 

MSW.  However, with a two-way between-subjects ANOVA the MSW is the estimate of X
2 obtained 

by pooling the variances derived from each score’s deviation from its cell mean.  Since all subjects 

within a cell are treated similarly (they receive the same combination of levels of the two IVs) this 

variability is not a result of receiving different treatments and, instead, is due to other sources of 

variability, which we again collectively call error.  The other estimate of X
2 in a one-way between-

subjects ANOVA is called the mean square between (MSBet).  However, with a two-way between-

subjects ANOVA the SSBet, which is the basis for the MSBet, is partitioned to create an estimate of X
2 

from each of the two IVs as well as an estimate from the interaction between the two IVs.  With 

ANOVAs you will recall that IVs are called factors.  Therefore, it is customary to say that we 

partition the SSBet that is used to create the MSBet estimate of X
2 into the variability accounted for 

by Factor A, the variability accounted for by Factor B and, finally, the variability accounted for by 

the interaction between Factor A and Factor B (after removing any unique effects of Factor A and 

Factor B).  The variability accounted for by Factor A is used to create a new estimate of X
2 called 

the mean square for Factor A (MSA).  The variability accounted for by Factor B is used to create a 

second estimate of X
2 called the mean square for Factor B (MSB).  (It is important to note that MSB 
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is not the same as MSBet.)  Finally, the variability accounted for by the interaction of Factor A and 

Factor B is used to create a third estimate of X
2 called the mean square for the interaction of 

Factors A and B (MSAXB).  (Note that the interaction is represented as A X B, and MSAXB is read as 

“mean square A times B.)  We will, therefore, be calculating three F ratios with a two-way between-

subjects ANOVA: 

FA, the main effect of Factor A, = MSA / MSW 

FB, the main effect of Factor B, = MSB / MSW 

FAXB, the interaction of Factor A and Factor B, = MSAXB / MSW 

If there is no treatment effect for Factor A, then the ratio of MSA / MSW should be 

approximately 1.00.  If there is a treatment effect, this F ratio will be greater than 1.00.  The same 

will be true for the F ratio for Factor B and the F ratio for the interaction of Factor A and Factor B. 

Conducting A Two-Way Between-Subjects ANOVA 

 
 For our first example of a two-way between-subjects ANOVA we will analyze a hypothetical 

set of data examining the effect of gender and age upon the likelihood of receiving traffic tickets.  In 

our study, gender (Factor A) and age (Factor B) are the IVs.  The DV is the number of traffic tickets 

received in the preceding three-year period.  The null hypothesis for Factor A is that there is no 

difference between the number of tickets received by men and women.  The null hypothesis for 

Factor B is that there is no difference between the number of tickets received by three different age 

groups of drivers: young, middle-aged and old.  Finally, our null hypothesis for the interaction of 

Factor A and Factor B is that there is no unique effect of any combination of treatment levels.  As 

usual we set our  equal to .05.  As subjects are not being randomly assigned to treatment levels 

this is a quasi-experimental design. 

 Since our study consists of two levels of Factor A (men and women) and three levels of 

Factor B (young, middle-aged and old drivers), and each subject receives only one combination of 

treatment levels, this is a 2 X 3 between-subjects ANOVA.  The data for the six combinations of 

gender and age, as well as the initial calculations for the ANOVA, are shown in Table 13.3.  And note 

that Factor A has been assigned to the rows and Factor B to the columns in Table 13.3.  Finally, to 

simplify the calculations the total number of subjects is unrealistically small. 

Table 13.3 Example 2:  Data and Initial Calculations   

     Factor A     Factor B 

          Young     Middle-Aged              Old Row Totals 
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Men                X               

              9             

              6             

             6           

             5              

Xcell 1 = 26   

ncell 1 = 4 

Mcell 1 = 6.50 

                X               

              5      

               3            

       2     

               2              

Xcell 2 = 12   

ncell 2 = 4 

Mcell 2 = 3.00 

              X              

             6             

             5  

             5              

             4              

Xcell 3 = 20   

ncell 3 = 4 

Mcell 3 = 5.00 

 

 

 

 

 

Xrow = 58 

nrow = 12 

Mrow = 4.83 

Women                X              

               9 

              7             

              5           

              4  

Xcell 4  = 25  

 ncell 4 = 4 

Mcell 4 = 6.25 

                X               

                5 

                2 

                2           

                2              

Xcell 5 = 11  

ncell 5 = 4 

Mcell 5 = 2.75 

                X               

                7              

               6        

               4             

               4             

Xcell 6 = 21   

ncell 6 = 4 

Mcell 6 = 5.25 

 

 

 

 

 

Xrow = 57 

nrow = 12 

Mrow = 4.75 

Column Totals Xcol = 51 

ncol = 8 

Mcol = 6.38 

Xcol = 23 

ncol = 8 

Mcol = 2.88 

Xcol = 41 

ncol = 8 

Mcol = 5.13 

Xtotal = 115 

ntotal = 24 

Mtotal = 4.79 

 

The next step is to create a table showing the seventeen values that must be found in the 

calculation of a two-way between-subjects ANOVA (Table 13.4). 

Table 13.4 Example 2:  Summary Table for the Two-way Between-subjects ANOVA 

Source of Variation SS  df  MS  F 

 Factor A  SSA    dfA   MSA   F ratio  

 Factor B  SSB  dfB    MSB   F ratio 

 Interaction AXB SSAXB   dfAXB   MSAXB    F ratio 

Within Groups  SSW  dfW   MSW    

Total   SST   dfT    
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 We then proceed essentially as with the one-way between-subjects ANOVA except that 

additional calculations are needed to determine Factor A, Factor B and the Interaction AXB.  These 

calculations are not difficult.  However, they are time-consuming.  Anyone conducting a two-factor 

or two-way between-subjects ANOVA is strongly encouraged to utilize a statistical package such as 

SPSS.  Accordingly, the outcomes rather than the actual steps of calculating the sums of squared 

deviations will be presented.  Then the remaining steps to complete the ANOVA table will be 

described.  As each value is calculated, it is entered into Table 13.5. 

The Sums Of Squares 

 
 We begin by noting that we will need five values for SS, then we find five values for df, four 

values for MS, and finally three F ratios. 

Recall that in a one-way between-subjects ANOVA:  

SST = SSBet + SSW 

As was noted previously, with a two-way between-subjects ANOVA, the SSBet is partitioned, 

or divided, into three parts: 

   SSBet = SSA + SSB + SSAXB   

 Thus, for a two-way between-subjects ANOVA we have: 

SST = SSA + SSB + SSAXB + SSW 

 
The SS for these data using SPSS are: 

  SSA = 0.04 

  SSB = 50.33 

  SSAXB = 0.33 

  SSW = 45.25 

  SST = 95.96 

As a check on our calculations, we note that:  

  SST = SSA + SSB + SSAXB + SSW 

  95.96 = 0.04 + 50.33 + 0.33 + 45.25 

  95.96 = 95.95 except for minor rounding error when reducing to two decimal places 

Calculating Degrees Of Freedom 

 
We now must calculate the degrees of freedom for Factor A, Factor B, the Interaction AXB, 

Within Groups and Total: 

  dfA = Number of levels of Factor A (in our example, the number of rows) – 1  

         = 2 – 1 
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         = 1 

  dfB = Number of levels of Factor B (in our example, the number of columns) – 1  

         = 3 – 1 

         = 2 

  dfAXB = dfA X dfB  

             = 1 X 2 

             = 2 

  dfW = N – the number of cells   

   where N is the total number of subjects in the study. 

          = 24 – 6 

          = 18 

dfT = N – 1      

        = 24 – 1 

         = 23 

As a check on our calculations:  

  dfT = dfA + dfB + dfAXB + dfW 

  23 = 1 + 2 + 2 + 18 

  23 = 23 

Calculating Mean Squares 

 
The MS for Factor A, Factor B, the Interaction AXB, and the MSW are found by dividing the 

appropriate SS by its df.  Thus: 

      MSA = 
𝐒𝐒𝐀

𝐝𝐟𝐀
  MSB = 

𝐒𝐒𝐁

𝐝𝐟𝐁
  MSAXB = 

𝐒𝐒𝐀𝐗𝐁

𝐝𝐟𝐀𝐗𝐁
  MSW = 

𝐒𝐒𝐖

𝐝𝐟𝐖
  

= 
𝟎.𝟎𝟒  

𝟏
           = 

𝟓𝟎.𝟑𝟑  

𝟐
              = 

𝟎.𝟑𝟑  

𝟐
            = 

𝟒𝟓.𝟐𝟓  

𝟏𝟖.𝟎𝟎
 

 = 0.04           = 25.17              = 0.17            = 2.51            

   

Calculating The F Ratios 

 
The F ratios for Factor A, Factor B, and the Interaction AXB are found by dividing each of 

their MS by the MSW.  Thus: 

          FA = 
𝐌𝐒𝐀

𝐌𝐒𝐖
   FB = 

𝐌𝐒𝐁

𝐌𝐒𝐖
  FAXB = 

𝐌𝐒𝐀𝐗𝐁

𝐌𝐒𝐖
 

= 
𝟎.𝟎𝟒  

𝟐.𝟓𝟏
             = 

𝟐𝟓.𝟏𝟕  

𝟐.𝟓𝟏
                     = 

𝟎.𝟏𝟕  

𝟐.𝟓𝟏
 

 = .02            = 10.03            = .07 

      



378 
 

With the calculation of these three F values Table 13.5 is complete.  We will later calculate the 

values in the final columns of this table. 

Table 13.5 Example 2:  Completed Summary Table for the Two-way Between-subjects  

  ANOVA, with the Values for Partial Eta Squared (
𝐩
𝟐) and Eta Squared (2) 

Source of Variation       SS  df      MS   F_______   
𝐩 
𝟐          2   

 Factor A       0.04    1      0.04              0.02           

 Factor B    50.33    2   25.17           10.03**  0.53  0.52 

 AXB       0.33    2     0.17             0.07          

 Within      45.25  18     2.51        

Total     95.96* 23        

*Single asterisk indicates there is minor rounding error. 

**Double asterisk indicates the F ratio is larger than the critical value for an α of .01. 

Interpreting The F Ratio 

 
We must enter the F table (Appendix K, Table 4) to determine whether any of these three F 

ratios is significantly different from a value of 1.00, which would be expected if the null hypotheses 

were true.  Remember, each F ratio is based upon two MS estimates of the population variance.  To 

find the critical value of F, we locate the column in the F table corresponding to the df associated 

with the MS of our numerator, and the row corresponding to the df associated with the MS of our 

denominator.  For the F ratio of Factor A these are 1 and 18 df.  At the intersection of our column 

and row in the F table we find the critical value with an  of .05 is 4.41.  As the obtained value of F 

for Factor A is 0.02, this is not statistically significant.  (Remember, any F ratio less than 1.0 will not 

be statistically significant.)  For Factor B and the Interaction AXB, the df would be 2 and 18.  The 

critical value for an  of .05 is 3.55.  As the obtained value of F for Factor B is 10.03 it is statistically 

significant.  (In fact, a more comprehensive table would indicate that the critical value for an  of 

.01 is 6.01.  Thus, Factor B is also statistically significant at the .01 level.  This is indicated by ** in 

Table 13.5.)  Finally, the obtained value of F for the Interaction AXB is 0.07, which is not statistically 

significant.   

The statistically significant main effect for Factor B can be presented visually (Figure 13.4) 

by graphing the three column means we calculated in Table 13.3. 

Figure 13.4 Example 2:  Graph of the Significant Main Effect of  Age for the Number of Traffic 

Tickets   
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Conducting The Post Hoc Comparisons 

 
There are three levels to Factor B.  While our significant F indicates that there was an effect 

for age (this is a main effect), it does not specify which treatment levels of Factor B (column means) 

differ.  In order to make this determination we need to conduct post hoc comparisons. 

The number of main effect pairwise comparisons is given by the equation: 

Number of pairwise comparisons = 
𝐤(𝐤 – 𝟏)

𝟐
   

where k is the number of means being considered.  With a 2 X 3 ANOVA, k (remember we are now 

comparing the column means) equals 3.  Thus, there are [3(3 – 1)] / 2 = 3, pairwise comparisons.   

These 3 pairwise comparisons between the column means are:   

Difference between the means of the young and middle-aged subjects = 6.38 – 2.88 = 3.50 

Difference between the means of the young and old subjects = 6.38 – 5.13 = 1.25 

Difference between the means of the middle-aged and old subjects = 2.88 – 5.13 = –2.25 

 

(As before, we ignore the sign of the differences as the sign simply reflects the order the means 

were subtracted.)   

The significant F for Factor B indicates that at least one of these three differences is 

expected to be statistically significant, in other words, not due to chance.  To specify which means 

differ, we will once again use Tukey’s HSD test.  

For a significant main effect in a two-way between-subjects ANOVA, the critical value for the 

Tukey HSD test is found using the same equation as for a one-way between-subjects ANOVA: 

Critical value of Tukey HSD = q 
𝐌𝐒𝐖

𝐧
   

Where n = the number of scores for each mean (which equals 8 as we are dealing with column 

totals).  (This definition of n assumes that each mean is based upon an equal n.)  The value of MSW 

comes from the ANOVA table.   

The value for q is found in the q table (Appendix K, Table 5).  The column to use is 

determined by the number of levels of the IV (number of means being compared), in our case 3.  
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The row is determined by the degrees of freedom of the MSW, in our case 18.  With  equal to .05, q 

is equal to 3.61.  We can now find the critical value for the Tukey HSD test: 

  Critical value of Tukey HSD with  equal to .05 = 3.61 
𝟐.𝟓𝟏

𝟖
  

    = 3.610.31 

    = (3.61)(0.56) 

    = 2.02  

 This indicates that the pairwise comparisons between column means must result in a 

difference as great or greater than this critical value of 2.02 in order to be considered significant.  

As is evident from our list of pairwise differences, the comparison between the young and middle-

aged subjects, as well as the comparisons between the middle-aged and old subjects are statistically 

significant.  However, with these hypothetical data the pairwise comparison between the young and 

old subjects is not statistically significant.   

With  equal to .01, q is equal to 4.70, and the critical value then becomes: 

  Critical value of Tukey HSD with  equal to .01 = 4.70
𝟐.𝟓𝟏

𝟖
   

    = 4.700.31 

    = (4.70)(0.56) 

    = 2.63  

 As the comparison between the young and middle-aged subjects exceeds this critical value 

of 2.63 it is also statistically significant at the .01 level.  

Thus far in the analysis we have determined that only one of the F ratios (for Factor B) was 

statistically significant, and we have conducted our post hoc comparisons.  We now turn to the 

determination of effect sizes.  (Note that following a significant F ratio it does not matter whether 

you conduct the post hoc comparisons or find the effect sizes first.) 

Calculating The Effect Size 

 
SPSS calculates a partial eta squared (

𝐩
𝟐) for each of the F ratios of a two-way between-

subjects ANOVA.  The equations for the three 
𝐩
𝟐 values can be written as:   


𝐩
𝟐 for Factor A = 

𝐒𝐒𝐀

𝐒𝐒𝐓  − 𝐒𝐒𝐁 − 𝐒𝐒𝐀𝐗𝐁
  


𝐩
𝟐 for Factor B = 

𝐒𝐒𝐁

𝐒𝐒𝐓  − 𝐒𝐒𝐀  − 𝐒𝐒𝐀𝐗𝐁
  


𝐩
𝟐 for Interaction AXB = 

𝐒𝐒𝐀𝐗𝐁

𝐒𝐒𝐓  − 𝐒𝐒𝐀  − 𝐒𝐒𝐁
   

As only the main effect for factor B was significant, we would only report (or calculate by 

hand) a measure of effect size for this component of the ANOVA: 

 
𝐩
𝟐 for Factor B = 

𝐒𝐒𝐁

𝐒𝐒𝐓  − 𝐒𝐒𝐀  − 𝐒𝐒𝐀𝐗𝐁
 = 

𝟓𝟎.𝟑𝟑

𝟗𝟓.𝟗𝟔 − 𝟎.𝟎𝟒 − 𝟎.𝟑𝟑
=

𝟓𝟎.𝟑𝟑

𝟗𝟓.𝟓𝟗
 = 0.53 = 53% 
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𝐓𝐡𝐞 
𝐩
𝟐 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐭 𝐅 𝐫𝐚𝐭𝐢𝐨 𝐢𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞𝐝 𝐢𝐧 𝐓𝐚𝐛𝐥𝐞 𝟏𝟑. 𝟓.  

𝐩
𝟐 provides a measure of 

the proportion of total variability being accounted for after subtracting the variability associated 

with the other components of the ANOVA.  A characteristic of  
𝐩
𝟐 is that the sum of 

𝐩
𝟐 for the 

different components of an ANOVA may not equal 1.00.  Thus you cannot check your calculations by 

adding the values for each component of the ANOVA.   

It has been suggested that eta squared (2) should be used instead of 
𝐩
𝟐, or that both 

measures of effect size should be reported (Levine & Hullett, 2002).  With a two-way between-

subjects ANOVA, an 2 indicates the percent of variability explained by each of the main effects and 

the interaction.  However, you must calculate 2 by hand as SPSS does not provide 2 for a two-way 

between-subjects ANOVA.  The equations and calculations for the three 2 values associated with 

the F ratios are:  

2 for Factor A = 
𝐒𝐒𝐀

𝐒𝐒𝐓
 = 

𝟎.𝟎𝟒 

𝟗𝟓.𝟗𝟔
 = .00 = 0% 

2 for Factor B = 
𝐒𝐒𝐁

𝐒𝐒𝐓
 = 

𝟓𝟎.𝟑𝟑 

𝟗𝟓.𝟗𝟔
 = 0.52 = 52% 

2 for Interaction AXB = 
𝐒𝐒𝐀𝐗𝐁

𝐒𝐒𝐓
 = 

𝟎.𝟑𝟑 

𝟗𝟓.𝟗𝟔
 = .00 = 0%  

In addition, an 2 for the within component of the ANOVA can also be calculated: 

 2 for within = 
𝐒𝐒𝐖

𝐒𝐒𝐓
 = 

𝟒𝟓.𝟐𝟓 

𝟗𝟓.𝟗𝟔
 = 0.47 = 47% 

 As a check on our calculations, these four values of 2 should sum to 1.00.  This is confirmed 

below except for minor rounding error: 

0.00 + 0.52 + 0.00 + 0.47 ≈ 1.00 

However, in our example only one main effect was statistically significant and thus we would only 

report an 2 value for Factor B in a paper.  This value of 0.52 is listed in the final column of Table 

13.5. 

It is important to note that while for our example 
𝐩
𝟐 and 2 are virtually identical, the 

differences between 
𝐩
𝟐 and 2 can be substantial.  This is because while each is providing a 

measure of effect size they are providing different information.  With 2 we are finding the percent 

of the total variability explained by each factor, the interaction, and within.  In contrast, with 
𝐩
𝟐 we 

are finding the percent of the unaccounted for variability that is explained by each factor and the 

interaction.  Put another way, 
𝐩
𝟐 is measuring the percent of variance explained after removing the 

other sources of variability.  Thus, when calculating the 
𝐩
𝟐 for Factor A, the variability accounted 

for by Factor B and by the interaction is removed from the denominator.  The result is a measure of 

the remaining variability that is accounted for by Factor A.  The same is occurring with the 
𝐩
𝟐 for 

Factor B and for the Interaction AXB.   
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Reporting The Results Of A Two-Way Between-Subjects ANOVA With A Significant Main Effect 

 
In a paper, we would indicate the degrees of freedom used and the F ratios that were 

obtained.  For each main effect that was significant we would also include the significant post hoc 

pairwise comparisons and indicate the measure of effect size.  Specifically, based upon our 

calculations we would report that neither the main effect for gender (Factor A) nor the Interaction 

AXB was found to be significant (F(1,18) = 0.02, p > .05 and F(2,18) = 0.07, p > .05, respectively).  

(Note the direction of the  > symbol.)   However the main effect for age was significant F(2,18) = 

10.03, p < .01, 
𝒑
𝟐 = .53).  (Alternatively, we could report 2, or both 2 and 

𝐩
𝟐.)  Finally, we would 

report that the Tukey’s HSD test was conducted and we would indicate that, overall, the young and 

old drivers received more tickets than the drivers who were middle-aged. 

At the end of this chapter SPSS is used to analyze these data.  The outcome is almost 

identical, though with SPSS there is greater precision and exact p-values are given.  Specifically, 

based upon the SPSS analysis we would once again indicate that neither the main effect for Factor A 

(gender) nor the Interaction AXB was found to be significant (F(1,18) = 0.02, p = .899 and F(2,18) 

= 0.07, p = .936, respectively).  However the main effect for Factor B (age) was significant F(2,18) 

= 10.01, p = .001, 
𝒑
𝟐 = .527).  Note that our decision to reject the null hypothesis is confirmed for 

Factor B as the p-value was less than our α of .05.  In addition, SPSS calculates both Levene’s test 

and Tukey’s HSD test. 

  

Progress Check 

 
1. A two-way between subjects ANOVA with 4 levels of one IV and 6 for the other IV would be 

called a _____ ANOVA. 

2. With a two-way between-subjects ANOVA there are _____ main effects, and a total of _____ F 

ratios are calculated. 

3. If an outcome is due to a particular combination of the independent variables, this is an example 

of a(an) _____. 

 

Answers:  1.  4 X 6  2.  two; three   3.  interaction   

 

A Second Example 

 
For our second example of a two-way between-subjects ANOVA we will analyze data from a 

hypothetical experiment on background music and studying.  In our study, the IVs are the subject’s 

history of living in a quiet or loud environment (Factor A) and the presence or absence of 
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background music while studying (Factor B).  The DV is the subsequent quiz grade.  The null 

hypothesis for Factor A is that there is no difference in quiz grades between subjects who lived in 

quiet environments versus those who lived in loud environments.  The null hypothesis for Factor B 

is that there is no difference in quiz grades as a result of studying with or without background 

music.  Finally, our null hypothesis for the interaction of Factor A and Factor B is that there is no 

unique effect of any combination of treatment levels.  As usual we set our  equal to .05 for each of 

the three hypotheses we will be testing.    

 Sharp-eyed readers will have noted that while subjects can be randomly assigned to study 

with or without background music (Factor B), they cannot be randomly assigned to a history of 

exposure to sound (Factor A).  Thus Factor A is quasi-experimental while Factor B is a true 

experimental variable.  This does not affect the statistical analysis, but can affect the researcher’s 

interpretation of a significant outcome.   

 Since our study consists of two levels of Factor A (quiet or loud) and two levels of Factor B 

(music or no music), this is a 2 X 2 ANOVA and there are four combinations of the two IVs.  These 

four combinations, along with the initial calculations that will be needed, are shown in Table 13.6.  

Thus, with a 2 X 2 ANOVA there are four cells.  The two-way between-subjects ANOVA requires that 

there be an approximately equal number of data points in each cell.  And, it is important to note that 

Factor A (quiet or loud history) was assigned to be the rows and Factor B (level of background 

music) is the columns in Table 13.6.  Which factor is assigned to be rows and which is columns is 

arbitrary, but during the calculations it is critical to remember how you assigned your variables.  

Finally, note that the total number of subjects is only 12.  This unrealistically small number was 

chosen in order to aid in showing the calculations. 

Table 13.6 Example 2:  Data and Initial Calculations 

                     Factor B 

              Factor A 

    Music   No Music  Row Totals 

Quiet 

History 

                  X                

                  4  

                  4 

                  3 

Xcell 1 = 11   

ncell 1 = 3 

Mcell 1 = 3.67 

 

                 X               

          8      

                 7    

                 7  

X cell 2 = 22   

ncell 2 = 3 

Mcell 2 = 7.33 

 

 

 

 

 

Xrow = 33 

nrow = 6 

Mrow = 5.5 
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Loud 

History 

                  X           

                 8        

                 7    

                 6            

X cell 3 = 21   

ncell 3 = 3 

Mcell 3 = 7.00 

 

                 X                

  4            

                 3 

                2 

X cell 4 = 9   

ncell 4 = 3 

Mcell 4 = 3.00 

 

 

 

 

 

Xrow = 30 

nrow = 6 

Mrow = 5.00 

Column 

Totals 

Xcol = 32 

ncol = 6 

Mcol = 5.33 

Xcol = 31 

ncol = 6 

Mcol = 5.17 

 

Xtotal = 63 

ntotal = 12 

Mtotal = 5.25 

 

 

 

 The next step is to create a table showing what it is that must be calculated.  It is the  

same as for our previous example (Table 13.4). 

 Recall that in a two-way between-subjects ANOVA the SSBet is partitioned into SSA, SSB and 

SSAXB.  Therefore, to complete the table we need to have these three values for SS, as well as the SSW 

and the SST, then find the five values for df, the four values for MS and finally three F ratios.  As each 

value is determined it is entered into the ANOVA summary table (Table 13.7).  And as with the 

previous example we will not actually calculate the values for SS as this is tedious when done by 

hand.   

The Sums Of Squares 

 

For our data, the values for the five needed SS, calculated with SPSS, are: 

SSA = 0.75  

SSB = 0.08 

SSAXB = 44.08 

SSW = 5.33 

SST = 50.25 

As a check, we note that with a two-way between-subjects ANOVA: 

  SST = SSA + SSB + SSAXB + SSW 

  50.25 = 0.75 + 0.08 + 44.08 + 5.33 
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  50.25 = 50.24 except for minor error due to rounding 

Calculating Degrees Of Freedom 

 
 We now must calculate the values for the degrees of freedom that correspond to each SS:   

dfA = Number of levels of Factor A (in our example, the number of rows) – 1   

         = 2 – 1 

         = 1  

dfB = Number of levels of Factor B (in our example, the number of columns) – 1  

        = 2 – 1 

        = 1  

dfAXB = dfA X dfB  

        = 1 X 1 

        = 1  

dfW = N – the number of cells 

 where N is the total number of subjects in the study.  

        = 12 – 4 

        = 8 

dfT = N – 1     

       = 12 – 1 

         = 11 

As a check on our calculations,  

  dfT = dfA + dfB + dfAXB + dfW 

  11 = 1 + 1 + 1 + 8 

  11 = 11 

Calculating Mean Squares 

 
 The MS for Factor A, Factor B, the interaction and the MSW are found by dividing the 

appropriate SS by its degrees of freedom.  Thus: 

      MSA = 
𝐒𝐒𝐀

𝐝𝐟𝐀
  MSB = 

𝐒𝐒𝐁

𝐝𝐟𝐁
  MSAXB = 

𝐒𝐒𝐀𝐗𝐁

𝐝𝐟𝐀𝐗𝐁
  MSW = 

𝐒𝐒𝐖

𝐝𝐟𝐖
 

= 
𝟎.𝟕𝟓  

𝟏
           = 

𝟎.𝟎𝟖  

𝟏
               = 

𝟒𝟒.𝟎𝟖  

𝟏
            = 

𝟓.𝟑𝟑  

𝟖
  

= 0.75           = 0.08               = 44.08            = 0.67 

 

Calculating The F Ratios 
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 The F ratios for Factor A, Factor B, and the Interaction are found by dividing each MS by 

MSW.  Thus: 

           FA = 
𝐌𝐒𝐀

𝐌𝐒𝐖
   FB = 

𝐌𝐒𝐁

𝐌𝐒𝐖
  FAXB = 

𝐌𝐒𝐀𝐗𝐁

𝐌𝐒𝐖
 

  = 
𝟎.𝟕𝟓  

𝟎.𝟔𝟕
        = 

𝟎.𝟎𝟖  

𝟎.𝟔𝟕
           = 

𝟒𝟒.𝟎𝟖  

𝟎.𝟔𝟕
 

  = 1.12        = 0.12           = 65.79 

    

With the calculation of these three F values our summary table is complete (Table 13.7).  We will 

later calculate the values in the final two columns of this table. 

Table 13.7 Example 1:  Completed Summary Table for the Two-way Between-subjects  

  ANOVA, with the Values for Partial Eta Squared (
𝐩
𝟐) and Eta Squared (2) 

Source of Variation     SS  df      MS   F    
𝐩 
𝟐          2   

 Factor A    0.75    1      0.75   1.12        

 Factor B    0.08    1      0.08   0.12       

 AXB   44.08    1    44.08              65.79*  0.89    0.88 

 Within      5.33    8      0.67         

Total   50.25  11         

 

*Asterisk indicates the F ratio for the interaction is larger than the critical value for an α of 

.05. 

Interpreting The F Ratios 

 
To determine whether any of these three F ratios is significantly different from the expected 

value of 1.00 we must enter the F table.   Remember, the F ratio is based upon two values of MS, 

each with its degrees of freedom.  To find the critical value of F we locate the column in the F table 

corresponding to the degrees of freedom in the numerator of our F ratio and the row corresponding 

to the degrees of freedom in the denominator of the F ratio.  Because this is a 2 X 2 ANOVA, all three 

of our F ratios are based on the same numbers of degrees of freedom.  In this example the degrees 

of freedom are 1 and 8.  As usual, we have chosen an  of .05.  At the intersection of our column and 

row in the F table (Appendix K, Table 4) we find the critical value of 5.32.  Only the F ratio for the 

Interaction AXB is larger than this critical value.  This is indicated with an * in Table 13.7.  We 

therefore conclude that there were no significant main effects but there was a significant 

interaction.  

This significant interaction is presented in Figure 13.5.  Each point in this figure is a cell 

mean from Table 13.6. 
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Figure 13.5  Example 2:  Graph of the Interaction 

 

While our significant F indicates that there was an interaction, it does not specify which cell 

means differ, or the effect size for the interaction.   

Conducting The Post Hoc Comparisons 

 
Post hoc comparisons are generally only conducted following a significant F ratio.  In our 

current example neither main effect was statistically significant and thus no post hoc comparison 

would be conducted for them.  However, even if one or both of our main effects was significant, post 

hoc comparisons would still not be conducted.  This is because each IV, history of living in a quiet or 

loud environment, and level of background music while studying, had only two levels.  Thus there 

would be no need to calculate a post hoc test for these comparisons - inspection of the data would 

indicate the nature of any observed difference.  However, the interaction was significant and it 

involves four cell means.  Thus, post hoc comparisons will be needed in order to specify where the 

effect is.  In addition, with a factorial ANOVA, if the interaction is statistically significant then the 

focus is upon the interaction even if one or both main effects is statistically significant. 

As you may recall, the number of comparisons between means, called pairwise 

comparisons, in an experiment is given by the equation: 

Number of pairwise comparisons = 
𝐤(𝐤 – 𝟏)

𝟐
    

where k is the number of means being compared.   

In our case, k equals 4 as we are interested in the four cell means since we are dealing with 

a significant interaction.  These cell means are presented, along with the number of each cell, in 

Table 13.8.  There are [4(4 – 1)] / 2, which equals 6, pairwise comparisons.  The 6 pairwise 

comparisons between the four cell means are shown in Table 13.9.  (Determination of which of 

these comparisons is statistically significant will be described shortly.  And remember, when 
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comparing the differences between these means we ignore the sign of the difference as this simply 

indicates the order of the subtraction of the means.) 

Table 13.8  Example 2:  Cell Means 

   

                         
Music No Music 

Quiet History 
Cell 1 

M = 3.67 

Cell 2 

M = 7.33 

Loud History 
Cell 3 

M = 7.00 

Cell 4 

M = 3.00 

 

Table 13.9 Example 2:  Differences Between Cell Means – Significant Post Hoc Comparisons are 

Noted (The Two Confounded Comparisons are Italicized)  

  Mean cell 1 – mean cell 2 3.67 – 7.33 = -3.66** 

  Mean cell 1 – mean cell 3 3.67 – 7.00 = -3.33** 

  Mean cell 1 – mean cell 4 3.67 – 3.00 = 0.67 

  Mean cell 2 – mean cell 3 7.33 – 7.00 = 0.33 

  Mean cell 2 – mean cell 4 7.33 – 3.00 = 4.33** 

  Mean cell 3 – mean cell 4 7.00 – 3.00 = 4.00** 

 

**Double asterisk indicates that the difference between cell means is larger than the critical  

   value for an α of .01. 

 

However, it is important to note that we cannot interpret all 6 of these comparisons of cell 

means.  We can only interpret those comparisons in which just one of the IVs is varying.  For 

instance, in the comparison between the mean of cell 1 and the mean of cell 2 (Table 13.8), the 

difference between the mean of 3.67 (mean of the group with a quiet history who heard music in 

the background during the experiment ) and the mean of 7.33 (mean of the group with a quiet 

history who did not hear music in the background) refers to the effect of hearing different levels of 

background music upon subjects who all had a quiet history.  Thus only one IV (level of background 

music during the experiment) is varying and the comparison can be interpreted.  Similarly, the 

mean of cell 1, which is 3.67, can be meaningfully compared with the mean of cell 3, which is 7.00, 

since the groups differed on their history of sound exposure, but both groups heard the same level 

of background music during the experiment.  However, the mean of cell 1, which is 3.67, (mean of 

the group with a quiet history who heard music in the background during the experiment) cannot 

be meaningfully compared with the mean of cell 4, which is 3.00, (mean of the group with a loud 
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history who did not hear music in the background during the experiment ) as in this case both IVs 

(history and current exposure) are varying.   

Comparisons of cell means in which only one IV (factor) is varying are called unconfounded 

comparisons.  These comparisons can be interpreted.  If a comparison of cell means involves two 

IVs (factors) that are changing, this is called a confounded comparison and the outcome cannot be 

interpreted.  Put another way, when referring to Tables 13.6 and 13.8 any difference between cell 

means that involves a vertical or horizontal comparison is unconfounded and can be interpreted.  

Any difference between cell means that involves a diagonal comparison is confounded and cannot 

be interpreted.  (This is explained further in the box below.)  The two confounded comparisons are 

indicated in Table 13.9 by being italicized. 

Unconfounded comparison – Comparison of two cell means which involves only one factor  

 that is changing.  The comparison can be interpreted. 

Confounded comparison – Comparison of two cell means which involves two factors that  

 are changing.  The comparison cannot be interpreted. 

 

 Of course, we still don’t know which of these cell means differ significantly.  The significant 

F simply indicates that we expect at least one of the cell means differs from another.  To specify 

which cell means differ we need to conduct a post hoc test.  Fortunately, we can again use Tukey’s 

HSD test, though it will need to be modified slightly when dealing with a significant interaction.   

 As you will recall, calculation of the Tukey HSD leads to a critical value that is compared to 

the difference between each pair of means.  Specifically, for a significant interaction:  

Critical value of Tukey HSD = qi 
𝐌𝐒𝐖

𝐧
    

where qi is based upon the number of unconfounded comparisons of cell means in the interaction 

and is derived from q (refer to a more advanced statistical text for further details on how to obtain 

the value of qi), MSW comes from the ANOVA table, and n equals the number of scores for each cell 

mean (It is important to note that this equation for the critical value of the Tukey HSD is only 

appropriate for designs with an equal n for each cell.) 

As there are four unconfounded comparisons of cell means in this example (Table 13.9) and 

there are 8 df for the MSW, the value for qi is 4.04.  (Refer to a more advanced statistical text for 

further details on how to obtain this value.)  We can now find the critical value for an  equal to .05: 

   Critical value of Tukey HSD = 4.04 
𝟎.𝟔𝟕

𝟑
   

    = 4.040.22 

    = (4.04)(0.47) 

    = 1.90  
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Thus, in order to be considered significant with  equal to .05, the Tukey HSD test indicates 

that the difference between unconfounded cell means must be as great or greater than the critical 

value of 1.90.    

 We can also find the critical value for an  equal to .01.  In this case the value for qi is 5.63: 

   Critical value = 5.63 
𝟎.𝟔𝟕

𝟑
   

    = 5.630.22 

    = (5.63)(0.47) 

    = 2.65 

 As all of the unconfounded comparisons of cell means have differences greater than 2.65 

(Table 13.9), all of the pairwise comparisons of unconfounded cell means are significant at the .05 

and at the .01 levels.  An ** indicates those comparisons significant at the .01 level (Table 13.9).  If 

any comparisons were significant at the .05 level but not at the .01 level, we might differentiate 

them by using an *.  

Finally, it should be noted that SPSS does not calculate post hoc comparisons for an 

interaction.  Instead, you can conduct your post hoc comparisons by hand as well as plot your cell 

means to assist in interpreting a significant interaction. 

 

 

Box Dealing With Identifying Unconfounded And Confounded Comparisons 

 With the previous example of a 2 X 2 ANOVA it was noted that there were a total of six post 

hoc pairwise comparisons of cell means.  However, only four of these comparisons could be 

interpreted as these only had one IV (factor) that was varying.  These four comparisons are said to 

be unconfounded.  And, as Table 13.10 indicates, each unconfounded comparison consists of either 

a vertical or horizontal comparison of cell means.  These unconfounded comparisons are also listed 

in Table 13.9. 

Table 13.10 Unconfounded Comparisons of the Cell Means of a 2 X 2 ANOVA 

 

   

                         
Music No Music 

Quiet History 
          Cell 1 

 

          Cell 2 

 

Loud History 
 

          Cell 3 

 

          Cell 4 

 



391 
 

 It was also discussed that with a 2 X 2 ANOVA, two of the six post hoc pairwise comparisons 

of cell means involve both IVs (factors) varying.  These comparisons cannot be interpreted and are 

said to be confounded.  Table 13.11 indicates that each of these involves a diagonal comparison.   

Table 13.11 Confounded Comparisons of the Cell Means of a 2 X 2 ANOVA 

 

   

                         
Music No Music 

Quiet History 
          Cell 1 

 

          Cell 2 

 

Loud History 
 

          Cell 3 

 

         Cell 4 

 

  

The logic remains the same for larger ANOVAs.  For a 2 X 3 ANOVA there are a total of 15 

post-hoc pairwise comparisons of cell means.  Of these, nine are unconfounded, and can be 

interpreted.  For each of these comparisons only one IV (factor) is varying.  As Table 13.12 

indicates, each of these consists of either a vertical or horizontal comparison of cell means.   

Table 13.12 Unconfounded Comparisons of the Cell Means of a 2 X 3 ANOVA 

 

          Cell 1 

 

          Cell 2 

 

          Cell 3 

 

          Cell 4 

 

          Cell 5 

 

          Cell 6 

 

  

The nine unconfounded comparisons are identified in Table 13.13. 

Table 13.13 The Nine Unconfounded Comparisons of Cell Means of a 2 X 3 ANOVA 

 Cell 1 versus Cell 2    Cell 2 versus Cell 5 

 Cell 2 versus Cell 3     Cell 3 versus Cell 6 

 Cell 4 versus Cell 5     Cell 1 versus Cell 3 

Cell 5 versus Cell 6    Cell 4 versus Cell 6 

 Cell 1 versus Cell 4  

 



392 
 

 For a 2 X 3 ANOVA, there would be six post hoc pairwise comparisons of cell means that 

involve both IVs (factors) varying.  These are called confounded comparisons and they cannot be 

interpreted.  As Table 13.14 indicates, each of these consists of diagonal comparisons of cell means.   

Table 13.14 Confounded Comparisons of the Cell Means of a 2 X 3 ANOVA 

 

          Cell 1 

 

          Cell 2 

 

          Cell 3 

 

          Cell 4 

 

          Cell 5 

 

          Cell 6 

 

 

The six confounded comparisons are identified in Table 13.15. 

Table 13.15 The Six Confounded Comparisons of Cell Means of a 2 X 3 ANOVA 

 Cell 1 versus Cell 5    Cell 3 versus Cell 5 

 Cell 2 versus Cell 4    Cell 1 versus Cell 6 

 Cell 2 versus Cell 6    Cell 3 versus Cell 4  

 __________________________________________________________________________________________________________________ 

Calculating The Effect Size 

 
To this point in the analysis we have found that only the F ratio for the interaction was 

statistically significant and we have conducted our post hoc comparisons of cell means.  We now 

need to calculate a measure of the effect size.  (Note that it is arbitrary whether you begin by 

conducting the post hoc comparisons or find the effect size first following the determination that 

you have a significant F ratio.)   

As was noted previously, SPSS utilizes 𝐩𝐚𝐫𝐭𝐢𝐚𝐥 𝐞𝐭𝐚 𝐬𝐪𝐮𝐚𝐫𝐞𝐝 (
𝐩
𝟐) as a measure of effect size 

for a two-way between-subjects ANOVA.  For a two-way between-subjects ANOVA the equations 

for 
𝐩
𝟐 can be written as: 


𝐩
𝟐 for Factor A = 

𝐒𝐒𝐀

𝐒𝐒𝐓 − 𝐒𝐒𝐁  − 𝐒𝐒𝐀𝐗𝐁
  


𝐩
𝟐 for Factor B = 

𝐒𝐒𝐁

𝐒𝐒𝐓  − 𝐒𝐒𝐀 − 𝐒𝐒𝐀𝐗𝐁
   


𝐩
𝟐 for Interaction AXB = 

𝐒𝐒𝐀𝐗𝐁

𝐒𝐒𝐓  − 𝐒𝐒𝐀  − 𝐒𝐒𝐁
  

    

In our example, as only the interaction was found to be significant we would only report (or 

calculate by hand) one 
𝐩
𝟐 : 
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𝐩
𝟐 for Interaction = 

𝟒𝟒.𝟎𝟕 

𝟓𝟎.𝟐𝟓 − 𝟎.𝟕𝟓 − 𝟎.𝟎𝟗
 = 

𝟒𝟒.𝟎𝟕

𝟒𝟗.𝟒𝟏
 = 0.89 or 89%  

which is a very large value for 
𝐩
𝟐.  This value is included in Table 13.7. 


𝐩
𝟐 provides a measure of the proportion of total variability accounted for after subtracting 

the variability associated with other components of the ANOVA.  And as was noted previously, the 

sum of 
𝐩
𝟐 for the different components of an ANOVA may not equal 1.00.   

It has been suggested that eta squared (2) should be used instead of 
𝐩
𝟐, or that both 

measures of effect size should be reported (Levine & Hullett, 2002).  With a two-way between-

subjects ANOVA, the values of 2 indicate the percent of variability explained by each of the main 

effects and the interaction.  And though SPSS does not provide 2 for a two-way between-subjects 

ANOVA, these values are easy to calculate.  The equations and calculations for each 2 associated 

with an F ratio are:  

2 for Factor A =  
𝐒𝐒𝐀

𝐒𝐒𝐓
 = 

𝟎.𝟕𝟓 

𝟓𝟎.𝟐𝟓
 = 0.01 or 1% 

2 for Factor B =  
𝐒𝐒𝐁

𝐒𝐒𝐓
 = 

𝟎.𝟎𝟖 

𝟓𝟎.𝟐𝟓
 = 0.00 or 0%  

2 for Interaction AXB = 
𝐒𝐒𝐀𝐗𝐁

𝐒𝐒𝐓
 = 

𝟒𝟒.𝟎𝟖 

𝟓𝟎.𝟐𝟓
 =0 .88 or 88%  (This is a very large value 

for 2.)   

In addition, an 2 for the within component of the ANOVA could also be calculated: 

 2 for Within = 
𝐒𝐒𝐖

𝐒𝐒𝐓
 = 

𝟓.𝟑𝟑 

𝟓𝟎.𝟐𝟓
 = 0.11 = 11% 

As a check on our calculations, these four values of 2 should sum to 1.00: 

 0.01 + 0.00 + 0.88 + 0.11 = 1.00 

However, remember that in our example only the interaction was statistically significant 

and thus we would only include this value in the final column of Table 13.7.  And only one 2 value, 

for the interaction, would be reported in a paper.  

Finally, it is important to recognize that while the numerators of the equations for 2 and 


𝐩
𝟐 𝐚𝐫𝐞 𝐭𝐡𝐞 𝐬𝐚𝐦𝐞, the values of 2 and 

𝐩
𝟐 may differ dramatically since their denominators differ.  

With 2 the denominator is always SST.  With a factorial ANOVA, the denominator of 
𝐩
𝟐 is not 

constant.  

Reporting The Results Of A Two-Way Between-Subjects ANOVA With A Significant Interaction 

 
In a paper, we would indicate the degrees of freedom used, the F ratios that were obtained 

as well as which F ratio was significant, that the Tukey HSD post hoc was used to determine which 

pairwise unconfounded comparisons of cell means were significantly different and the measure of 

effect size.  Specifically we would report that the main effects for history of exposure, and whether 
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subjects listened to music or not during the experiment, were not significant (F(1,8) = 1.12, p > .05 

and F(1,8) = .13, p > .05), respectively.  However, since the interaction was found to be significant, 

a measure of effect size for the interaction should then be reported (F(1,8) = 65.78, p < .05,
𝒑
𝟐 = 

.89).   (You could, instead, report 2, or both 2 and 
𝐩
𝟐.)  We would then state that Tukey’s HSD test 

indicated that all four of the unconfounded cell mean comparisons were statistically different.   

If you use SPSS to calculate the F ratios you will find minor discrepancies due to rounding 

error in our calculations.  Specifically, as before we would report that the main effects for history of 

exposure, and whether subjects listened to music or not, were not significant (F(1,8) = 1.13, p = 

.320 and F(1,8) = .13, p = .733), respectively.  Note that in each case the p-value is greater than our 

α of .05.  However, the interaction is still found to be significant (F(1,8) = 66.13, p < .001, 
𝒑
𝟐 = .89).  

This is indicated by our p-value being less than our α of .05.  (Remember, instead of reporting 
𝐩
𝟐 we 

could report 2, or both 2 and 
𝐩
𝟐.)   

 A discussion of these hypothetical results would emphasize that whether background music 

hinders or enhances studying depends upon the subject’s history of exposure to sound.  Specifically, 

these hypothetical data would indicate that subjects with a history of living in a quiet environment 

find background music disruptive to studying whereas subjects with a history of living in an 

environment with more background sound find a quiet situation disruptive to studying.   

Purpose And Limitations Of Using The Two-way Between-subjects ANOVA  

 
1. Test for difference.  The null hypotheses are that neither treatment has an effect, and 

there is no interaction.  Therefore, if the null hypotheses are correct, any differences 

between the rows or column means, or between the cell means, are due to chance.  The 

alternative hypotheses are that the treatments do have an effect and/or that they 

interact.  Thus the two-way between-subjects ANOVA tests whether there are main 

effects as well as whether there is an interaction between the IVs.  

2. Does not provide a measure of effect size.  The two-way between-subjects ANOVA, like 

the one-way between-subjects ANOVA, is a test of significance.  It indicates whether an 

outcome is likely to have occurred by chance.  If an F ratio is significant a measure of 

effect size, such as eta squared (2) or partial eta squared (
𝐩
𝟐), should be calculated. 

3. Compares two or more sample means for each main effect.  Each factor of the two-way 

between-subjects ANOVA must have at least two levels or there is no variable.  

However, there can theoretically be any number of levels greater than one.  Of course, a 

study with a large number of levels for one or both of the factors would be unwieldy to 

conduct, though the ANOVA would handle the data without difficulty.   
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4. Does not indicate where the difference is.  If an IV has more than two levels, then a 

significant main effect should be followed up with a post hoc procedure such as the 

Tukey HSD test.  A significant interaction should also be followed up with a post hoc 

procedure such as the Tukey HSD test, but only the unconfounded comparisons can 

be interpreted.  Finally, it should be noted that SPSS does not calculate post hoc 

comparisons for an interaction.  Instead, you can conduct your post hoc 

comparisons by hand as well as plot your cell means to assist in interpreting a 

significant interaction. 

 

Assumptions Of The Two-way Between-subjects ANOVA 

 
1. Interval or ratio data.  The data are on an interval or ratio scale of measurement. 

2. Random samples.  Each sample is drawn at random from a population. 

3. Normally distributed populations.  Each population from which a sample is drawn has 

a normal distribution of scores.  However, as stated in the Central Limit Theorem, the 

ANOVA will be accurate so long as each sample size is at least 30.  If the sample size is 

less than 30, then it is important that the underlying population be normally 

distributed.  

4. Population variances are equal.  The populations from which samples are drawn have 

equal variances. 

5. Each cell has an approximately equal number of subjects 

Conclusion 
 
 The two-way between-subjects ANOVA is a very flexible test.  As you recall, the major 

advantage of the ANOVA is that it controls the experimentwise error rate while simultaneously 

comparing two or more sample means.  The specific advantage of conducting a two-way ANOVA 

rather than two, one-way ANOVAs is that with one analysis you test two IVs instead of just one and, 

in addition, you test whether these IVs interact.  Thus, the two-way ANOVA provides substantially 

more information than a one-way ANOVA, which is why it is such a popular statistical procedure.  

As you would expect, the assumptions of the two-way between-subjects ANOVA are very similar to 

those of the one-way between-subjects ANOVA. 

Final Thoughts On The Relationship Between The One-
Way Between-Subjects ANOVA, The One-Way Within-
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Subjects ANOVA And The Two-Way Between-Subjects 
ANOVA 

 

We have just finished our introduction to the ANOVAs.  The three ANOVAs that we reviewed  

are among the most commonly used statistical procedures.  Each shares characteristics with the 

others, which is a major advantage when first trying to master them.  Of course, these same 

similarities can lead to challenges when trying to keep each type of ANOVA distinct.  A comparison 

of the one-way between-subjects ANOVA, the one-way within-subjects ANOVA and the two-way 

between-subjects ANOVA is provided in Appendix M.   

The one-way between-subjects ANOVA provides a foundation upon which the others build.  

This ANOVA is located in the middle of Appendix M, and it is bolded.  The sources of variability for 

this ANOVA as well as the equation for its F ratio are provided in the top portion of the table.  On 

the left side of the top portion of the table the same information is provided for the one-way within-

subjects ANOVA.  A number of differences should be noted in these two ANOVAs.  First, with the 

between-subjects ANOVA we calculate the Between Groups variability.  However, for a within-

subjects ANOVA this variability is now labeled Between Treatments since the same, or related, 

subjects are used throughout a within-subjects study.  In addition, the Within Groups variability of 

the between-subjects ANOVA is partitioned into pre-existing subject differences and residual error 

when we have a within-subjects ANOVA.  It should also be noted that the pre-existing subject 

differences have been crossed out, indicating that this variability is removed from the analysis of a 

within-subjects ANOVA.  Finally, the F ratio of the one-way within-subjects ANOVA reflects this 

reduction in variability by substituting MSRes for MSW.     

The two-way between-subjects ANOVA, which is located on the right side of Appendix M, is 

also closely related to the one-way between-subjects ANOVA.  In this case, the Between Groups 

variability of the one-way between-subjects ANOVA is partitioned into three components:  Factor A, 

Factor B and the Interaction AXB.  However, the Within Groups variability is not partitioned and 

thus the denominator of each of the three F ratios in a two-way between-subjects ANOVA remains 

MSW. 

As Appendix M indicates, if no F ratio is found to be statistically significant your analysis is 

complete.  However, if the F ratio in either the one-way between-subjects ANOVA or the one-way 

within-subjects ANOVA is statistically significant, or if at least one F ratio in the two-way between-

subjects ANOVA is significant then you need to proceed to the bottom portion of Appendix M.  As 

was the case previously, the middle section is bolded and refers to the one-way between-subjects 

ANOVA, the left portion refers to the one-way within-subjects ANOVA, and the right portion to the 

two-way between-subjects ANOVA.  In order to determine where the significant effect is located in 
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a one-way between-subjects ANOVA, Appendix M indicates that you use the Tukey HSD test, and to 

do so you need to find the value of q from the q table.  To find the effect size you conduct eta 

squared (2).  For a one-way within-subjects ANOVA, to find where the significant difference is 

located you would conduct a series of dependent t tests and use the Bonferroni method to control 

the Type I error rate.  And you utilize partial eta squared (
𝐩
𝟐) instead of 2 as your measure of 

effect size.  For the two-way between-subjects ANOVA you once again use the Tukey HSD test when 

finding where the significant effect is located.  Remember, however, that you need to use qi 

following a significant interaction.  Finally, for each significant F ratio in a two-way between-

subjects ANOVA you have a choice between reporting 2 or 
𝐩
𝟐 or both. 

Glossary Of Terms 
 
Cell – A particular combination of treatment levels in a Factorial ANOVA. 

Confounded comparison – Comparison of two cell means which involves two factors that are 

 changing.  The comparison cannot be interpreted. 

Factorial ANOVA – An ANOVA with more than one independent variable. 

Interaction – A change in the dependent variable that is due to the presence of a particular  

 combination of independent variables.   

Main effect – With a factorial ANOVA, another term for an independent variable or factor.  

Two-way between-subjects ANOVA – An inferential procedure for comparing means from  

 independent samples when there are two independent variables.   

Unconfounded comparison – Comparison of two cell means which involves only one factor that is  

 changing.  The comparison can be interpreted. 
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Questions – Chapter 13 

 
(Answers are provided in Appendix J.) 

 
1. With a 2 X 3 X 4 ANOVA there are _____ independent variables. 
 a. One 
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 b. Two 
 c. Three  
 d. Four 
 
2. In a 2 X 3 ANOVA, the number 3 indicates that there are _____. 
 a. Three independent variables 
 b. Three levels to an independent variable 
 c. Three subjects in a condition 
 d. None of the above 
 
3. An interaction occurs when _____. 

a. A specific combination of factors determines the value of the dependent variable  
b. A specific combination of factors influences the independent variable 
c. More than one experimenter is collecting the data 
d. A particularly important finding occurs 
 

4. A main effect occurs when _____. 
 a. An interaction occurs 
 b. The dependent variable has an effect 
 c. An independent variable has an effect  
 d. All of the above 
 
5. In a two-way between-subjects ANOVA we calculate F ratios for _____. 
 a. One Main effect and two interactions  
 b. Two main effects and two interactions 
 c. Two main effects and one interaction  
 d. None of the above 
 
6. In a two-way between-subjects ANOVA we calculate _____ F ratios. 
 a. One 
 b. Two 
 c. Three  
 d. Four 
 
7. In a two-way between-subjects ANOVA, each combination of treatment levels is    
 a _____.  
 a. Cell  
 b. Level 
 c. Condition 
 d. Factor 
 
8. Following a significant main effect or interaction with a 3 X 6 between-subjects ANOVA, you 

would consider _____. 
 a. Redoing the study with larger sample sizes 
 b. Increasing the number of independent variables in the study 
 c. Calculating Tukey’s HSD  
 d. None of the above 
 
For questions 9 and 10 assume that we examine the effect on exam scores of amount of studying 
(students are randomly assigned to study a little or a great deal) and class in college (freshman, 
sophomore, junior and senior). 
 
9. If there was a significant interaction and we compared the cell means for studying a little 

among freshmen, sophomores, juniors and seniors, these would be _____. 
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 a. confounded comparisons  
 b.  unconfounded comparisons  
 
10. If there was a significant interaction and we compared the cell means for studying a little 

among freshmen with studying a great deal among sophomores, this would be a (an) _____. 
 a. confounded comparison  
 b. unconfounded comparison 
 
For questions 11 – 13 assume the we have conducted a 2 X 5 ANOVA. 
 
11. How many cells means would there be? 
 a. 8 
 b. 10 
 c. 20 
 d. 45 
 
12. If the main effect for the factor with 5 treatment levels is found to be statistically  

significant, but the interaction is not significant, how many post hoc pairwise comparisons 
would there be? 

 a. 8 
 b. 10 
 c. 20 
 d. 45 
 
13. If the interaction but neither main effect is found to be statistically significant, how many 

post hoc pairwise comparisons would there be? 
 a. 8 
 b. 10 
 c. 20 
 d. 45 
 

 
The data for problems 14 – 16 are similar to those used in Chapter 11 (questions 15 – 19) except 
that we now assume that the original 18 students were 9 males and 9 females.  Assume that SSGender 
= 50, the SSBackground = 12, SSGender X Background  = 4, and SST = 96.  Compare your answers to what you 
calculated in Chapter 11. 
 
          Level of Background Noise 
    Quiet   Moderate  Noisy 
        9       7       6 
  Women   10       9       8 
        8       8    10 

Gender   __________________________________________________________  
      13     13       7 
  Men    12     11     11 
      14     12     12  
 
 
14. What is the value of F for gender? 
 a. 50 
 b. 20 
 c. 0.8 
 d. 2.4 
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15. What is the value of F for background noise level? 
 a. 50 
 b. 20 
 c. 0.8 
 d. 2.4 
 
16.      What is the value of F for the interaction of gender X background? 
 a. 50 
 b. 20 
 c. 0.8 
 d. 2.4 
 

Problems 17 – 24 utilize SPSS. 

 

Using SPSS With The Two-way Between-subjects 
ANOVA 

 

To Begin SPSS 

 
 Step 1 Activate the program, close the central window, and click on the Variable View 

option at the bottom left of the window.   

 Step 2 Click on the first empty cell under the column heading ‘Name’.  You now type the 

name of the first variable for which you have data.  We are going to utilize the same data and labels 

as were previously employed in Table 13.3.  These hypothetical data dealt with the question of 

whether there is a relationship between gender, age and the number of traffic tickets received.  We 

have called these variables ‘Gender’, ‘Age’ and ‘Data’.  Therefore, type ‘Gender’ in the first empty cell 

under ‘Name’. 

 Step 3 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell you can 

type a more extensive description of your variable.  In our case, type ‘Gender of Subject’.   

 Step 4 Click on the first empty ‘cell’ under the column heading ‘Values’.  A box will appear.  

In the blank space to the right of ‘Value’, type the number ‘1’ and then ‘men’ in the blank space to 

the right of ‘Label’.  Finally, click on ‘Add’.  Your label for a value of 1 will appear in the large white 

region in the center of the window.  Now repeat the above steps in this section for the value ‘2’, 

which is given the label ‘women’ (Figure 13.6).  Click ‘Add’ and then click on ‘OK’. 

Figure 13.6 The Value Labels Window 
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Step 5 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with labels for groups, select ‘Nominal’ as is shown in the first row of Figure 13.8.   

Step 6  Repeat Steps 2 – 4 (for the second IV) except that you type ‘Age’ in the first empty 

cell under ‘Name’, ‘Age of Subject’ for the label and you now have three values; ‘young’, ‘middle-

aged’ and ‘old’ (Figure 13.7).   

Figure 13.7 The Second Value Labels Window 

 

                          

Step 7  As before, select ‘Nominal’ in the column under the column heading ‘Measure’ as we 

dealing with labels for groups.  The result is shown in the second row of Figure 13.8. 

Step 8  We will now repeat the above steps, now for the DV.  Type ‘Data’ in the first empty 

cell under ‘Name’ and for the label.  Finally, select ‘Scale’ in the column under the column heading 

‘Measure’ as we have ratio data.  The result is shown in the third row of Figure 13.8.   

Figure 13.8 The Completed Variable View Window 
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To Enter Data In SPSS 

 
Step 9 Click on the ‘Data View’ option at the lower left corner of the window.  The variables 

‘Gender’, ‘Age’ and ‘Data’ will be present. 

Step 10 For each of the men, type the value ‘1’ in the column ‘Gender’.  Then in the column 

‘Age’ type ‘1’ if they were young, ‘2’ if they were middle-aged and ‘3’ if they were old.  Finally, type 

the number of tickets each subject received in the third column, ‘Data’.  Continue by entering ‘2’ for 

each of the women, along with the value associated with their age and the number of tickets they 

received (Figure 13.9).   

Figure 13.9 The Completed Data Set 

 

 

To Conduct A Two-way Between-subjects ANOVA 
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Step 11  Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘General Linear Model’, then click on ‘Univariate’. 

Step 12  A new window will appear.  You must now identify the DV and the two IVs (each IV 

is called a Factor).  In our case, ‘Data’ is the label of the DV.  This is indicated by moving ‘Data’ to the 

box under ‘Dependent Variable’ by clicking on ‘Data’ and then clicking on the top arrow in the box.  

The result is shown in Figure 13.10.  Then click on ‘Gender of Subject’ and move it to the box under 

‘Fixed Factor(s)’ by clicking on the second arrow.  Next, click on ‘Age of Subject’ and move it to the 

box under ‘Fixed Factor(s)’ by clicking on the second arrow.  The result will be that each label will 

move to the appropriate box on the right-hand side of the window, as is shown in Figure 13.11.  

Then click on ‘Post Hoc’ which is located in the column at the far right of the window.   

Figure 13.10 Defining Variables 

 

 

Figure 13.11 Conclusion of Defining Variables 
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Step 13 A new window will appear with Gender and Age identified.  As the variable ‘Gender’ 

has only two levels (men and women) there is no need for a post hoc test.  However, the variable 

‘Age’ has three levels (young, middle-aged, and old) so we do conduct a post hoc test in this case.  

We click on ‘Age’ and then copy it to the right-hand box by clicking on the arrow.  The window will 

then provide a number of statistical options that are available with SPSS.  In this course we will 

limit ourselves to just the Tukey HSD test.  Click on the box next to ‘Tukey’ (Figure 13.12).  Then 

click on ‘Continue’.   

Figure 13.12 Defining the Post Hoc Test  
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Step 14 You have returned to Figure 13.11.  In order to obtain descriptive statistics, a 

measure of effect size, as well as conduct Levene’s test for equality (homogeneity) of variances click 

on ‘Options’ which is located in the column at the far right of the window, and then check 

‘Descriptive statistics’, ‘Estimates of effect size’, and ‘Homogeneity tests’ as is shown in Figure 

13.13.  Then click on ‘Continue’.   

Figure 13.13 Specifying Descriptive Statistics, Estimates of Effect Size, and Levene’s Test 

 

 

Step 15  You will have been returned to Figure 13.11.  Now click on ‘OK’.  SPSS provides 

descriptive statistics and Levene’s test of equality of variances, and calculates the desired two-way 

ANOVA with partial eta squared and the Tukey HSD post hoc test.  Specifically, Table 13.16 provides 

a count of the number of subjects for each level of the two independent variables ‘Gender’ and ‘Age’.  

Table 13.17 gives useful descriptive statistics, including means and standard deviations, for each of 

the levels of our two independent variables as well as for the six cells.  It closely parallels, but is 

more comprehensive, than Table 13.3, which we created by hand.  SPSS next provides the output 

for Levene’s test of equality of variances (Table 13.18).  There are a number of choices.  ‘Based on 

Median’ has generally been found to be a good option.  As the value of the significance (p-value) is 

.659, and is thus greater than .05, we maintain the assumption that the samples are drawn from 

populations with equal variances and we continue to the ANOVA summary table (Table 13.19).  We 

can ignore the first two rows as well as the next to last row.  And what we have called ‘Within’, SPSS 

labels ‘Error’.  Otherwise, it is the same outcome as we found earlier, except for rounding error, 

with our hand calculations (Table 13.5).  And the value of the partial eta squared (last column in 
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Table 13.19) for Age (Factor B) is the same as we previously obtained except we rounded to two 

places.  (Note that SPSS calculates effect sizes for all of the F ratios, not just those that are 

statistically significant.)  The ANOVA summary table is followed by Tables 13.20 and 13.21 which 

show the results of the Tukey HSD post hoc test for our significant main effect of Age.  The results of 

the Tukey HSD post hoc test (Table 13.20) correspond to what we calculated previously, though the 

presentation is different, and 95% confidence intervals are included.  (Note that in Table 13.20 the * 

in the column ‘Mean Difference’ indicates that the comparison is statistically significant.  The final 

table of the SPSS output (Table 13.21) provides an alternative way of presenting the results of the 

Tukey HSD post hoc test.  It indicates which comparisons differ by the column in which the means 

are listed.  Thus Table 13.21 shows that the middle-age group differed from the young and the old 

groups, but the young and the old groups did not differ from each other.  We can ignore the last row 

of Table 13.21. 

Table 13.16 SPSS Output; Between-Subjects Factors 

 

 

Table 13.17  SPSS Output; Descriptive Statistics  
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Table 13.18 SPSS Output; Levene’s Test of Equality of Error Variances 

 

 

Table 13.19 SPSS Output; ANOVA Table, Tests of Between-Subjects Effects 

 

 
Table 13.20 SPSS Output; Tukey’s HSD Post Hoc for Age of Subject 
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Table 13.21 SPSS Output; Alternative presentation of Tukey HSD Post Hoc for Age of Subject 

 
 

Step 16  As the main effect for Age was found to be significant (Table 13.19) you may want 

to create a graph to assist in visualizing the results.  The means for the young, middle-aged and old 

groups are available in Table 13.17 and thus a graph, such as is shown in Figure 13.4, can easily be 

created by hand.  Alternatively, you could return to Step 11.  You will then see Figure 13.11.  Click 

on ‘Plots’ which is located in the column at the far right of the window.  Then copy the variable ‘Age’ 

across to the right so it is listed under ‘Horizontal Axis’ (Figure 13.14).   

Figure 13.14 Creating a Plot of the Significant Main Effect for Age 
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Step 17  Now click ‘Add’.  The result is shown in Figure 13.15.   

Figure 13.15 Continuing to Creat a Plot of the Significant Main Effect for Age 
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Step 18  Finally click ‘Continue’ and ‘OK’.  The data analysis will be given again followed by 

the plot of our significant main effect for age, which is shown in Figure 13.16.   Note that it is similar 

to the plot we made by hand previously (Figure 13.4) except that the Y-axis does not begin at 0. 

Figure 13.16 Plot of the Significant Main Effect for Age 

 

 

Step 19  A graph of the nonsignificant interaction could also be created by hand from the 

means for each cell, which are also available in Table 13.17.  Alternatively, you could return to Step 
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11.  You will then see Figure 13.11.  Click on ‘Plots’ which is located in the column at the far right of 

the window.  Then copy the variable with more levels, in this case ‘Age’ across to the right so it is 

listed under ‘Horizontal Axis’, and copy the variable with fewer levels, in this case ‘Gender’ across to 

the right so it is listed under ‘Separate Lines’.  Then click on ‘Add’. The result is shown in Figure 

13.17.     

Figure 13.17 Creating a Plot of the Nonsignificant Interaction 

 

 

  Step 20  Finally, click ‘Continue’ and ‘OK’.  The data analysis will be given again followed by 

the plot of our nonsignificant interaction, which is shown in Figure 13.18.                                               

Figure 13.18 Plot of the Interaction, which was not Significant  



412 
 

 

 Step 21  Exit SPSS.  There is no need to save the output or data file. 
     
  To confirm that you understand how to use SPSS, I suggest you redo the second example of 

a two-way between-subjects ANOVA that was reviewed in this chapter.  The data are presented in 

Table 13.6.  Remember, SPSS does not calculate post hoc comparisons for interactions. 

SPSS Problems – Chapter 13 

 
For questions 17 – 20, we are adding a constant, in this case 10, to every score in the noisy  
condition of the data used for questions 14 – 16.  Compare your answers with the answers you 
found previously. 
 

Level of Background Noise 
    Quiet   Moderate  Noisy 
        9       7     16 
  Women   10       9     18 
        8       8     20 

Gender   __________________________________________________________  
      13     13     17 
  Men    12     11     21 
      14     12     22  
 
 
17. What is the p-value (Sig.) of Levene’s test, based on the median, for equality of variances? 
 a. .003 
 b. .048 
 c. .547 
 d. .767 
 
18. In the ANOVA table what is the F for gender? 
 a. 58.4 
 b. 0.8 
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 c. 20 
 d. 1.0 
 
19. What is the F for background noise? 
 a. 58.4 
 b. 0.8 
 c. 20 
 d. 1.0 
 
20. What is the F for the interaction of gender X background? 
 a. 58.4 
 b. 0.8 
 c. 20 
 d. 1.0 
 
 
For questions 21 – 24 we are subtracting 5 from the scores of the first woman subject in each 
condition.  Compare your answers with the answers you found for questions 17 – 20. 
 

Level of Background Noise 
    Quiet   Moderate  Noisy 
        4       2     11 
  Women   10       9     18 
        8       8     20 

Gender   __________________________________________________________  
      13     13     17 
  Men    12     11     21 
      14     12     22  
 
 
21. What is the p-value (Sig.) of Levene’s test, based on the median, for equality of variances? 
 a. .006 
 b. .043 
 c. .655 
 d. .784 
 
22. In the ANOVA table what is the F for gender? 
 a. 0.218 
 b. 15.927 
 c. 12.273 
 d. 18.472 
 
23. What is the F for background noise? 

a.  0.218 
b. 15.927 
c. 12.273 
d. 18.472 
 

24. What is the F for the interaction of gender X background? 
a. 0.218 
b.  15.927 
c.  12.273 
d.  18.472 



414 
 

PROCEDURES THAT ARE BOTH DESCRIPTIVE AND 
INFERENTIAL 

 
Chapter 14 – Identifying Associations with Interval or Ratio Data:  The Pearson Correlation and 
Regression 

  



415 
 

Chapter 14   
Identifying Associations with Interval or Ratio Data:   

The Pearson Correlation And Regression 
 

“Statistics is the grammar of science.” 

Karl Pearson 

Introduction 
 

It was pointed out previously that in the broadest sense statistical analysis is undertaken to 

achieve one of two goals.  The goals are to describe your data more clearly, or to make inferences 

based upon your data.  The first chapters of this book dealt with the statistical procedures that are 

employed when describing data.  Together they are called, appropriately, descriptive statistics.  

Then we introduced the concept of inferential statistics.  We noted that inferential statistics are the 

procedures we use to predict whether a relationship observed in a sample(s) is also likely to exist 

in a population(s).  And we discussed that inferential statistical procedures address two broad 

questions, is there a difference or is there an association between the variables?  (This distinction is 

not as clear with nominal data.  Thus in Chapter 8 we noted that the chi-square test of 

independence can be used to address either question.)   

We have just completed our review of some of the most common statistical procedures used 

for examining whether a difference observed in the data is likely to generalize to the corresponding 

population(s).  In the current chapter we review a commonly employed procedure that is utilized to 

identify whether an association exists among two variables.  This procedure can be used to describe 

a relationship in a sample, in which case it is being used as a descriptive statistic.  Alternatively, and 

more commonly, we can also use this same procedure to test whether a relationship that is 

observed in a sample is likely to also exist in the population from which the sample was drawn.  In 

this case we are dealing with inferential statistics.  Same statistical procedure, different goal. 

 When we find there is an association we are indicating that two variables are not 

independent.  In other words, they are related or covary.  And with a correlation we indicate the 

extent to which they are associated.   For instance, from casual observation it appears that a 

person’s weight is related to how tall they are.  With correlation we can specify the extent of this 

relationship.   

Covary – If knowledge of how one variable changes assists you in predicting the value of  

  another variable, the two variables are said to covary. 

Correlation – A measure of the degree of association among variables.  A correlation  
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  indicates whether a variable changes in a predicable manner as another variable  

  changes. 

 

Table 14.1, which is a part of the Overview Table (Appendix L), indicates that the specific 

correlational procedure that is used will depend upon the type of data that is being collected.  

Specifically, if both variables consist of nominal data you use the Phi correlation, which can be 

written as Phi r or simply Phi (reviewed in Appendix B).  If both variables consist of ordinal data 

you use the Spearman correlation, which is commonly called the Spearman r (reviewed in 

Appendix C).  And if you are dealing with two interval or ratio variables you would employ the 

Pearson correlation, which is commonly called the Pearson r.  (In statistics, the letter ‘r’ indicates a 

correlation.)  The Pearson r is the focus of the initial portion of this chapter.  (It is underlined in 

Table 14.1.)  Calculation of Phi r, Spearman r or Pearson r results in a correlation coefficient, a 

single number that indicates the degree to which two variables are related. 

 Correlation coefficient – A single number that indicates the degree to which two variables  

 are related. 

 

Table 14.1 Statistical Procedures used with Association Designs 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
Research 
Question 

 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi ra          Spearman rb   Pearson r 
               Multiple Correlationc 
    
Regression:         Regression   

Multiple Regressionc 
__________________________________________________________________________________________________________________________________________ 

    
Italicized items are reviewed in the following appendixes: 

a. Appendix B 
b. Appendix C 
c. Appendix D 

Pearson Correlation 
 
 The Pearson correlation, or Pearson r, is also sometimes called the Pearson product–

moment correlation coefficient.  It is undoubtedly the most commonly used form of correlation.  
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With the Pearson r we use the symbol XY or simply  (rho, pronounced row) to indicate the 

population correlation between two variables X and Y, and rXY or simply r to indicate a correlation 

between X and Y found in a sample. 

Rho () – Symbol used for the population correlation. 

 

In the case of the Pearson r, the two variables of interest are measured at the interval or 

ratio level.  As the Pearson r is a measure of linear relationship it only provides an accurate 

indication of the magnitude of an association if the two variables have a straight-line relationship 

between them.  If there is not a linear relationship between the variables the Pearson r will 

underestimate the true degree of the association.  In this case the data could be transformed (refer 

to a more advanced text).  Alternatively, the data could be converted to ranks and the Spearman r 

correlation would then be calculated (This procedure is reviewed in Appendix C).    

With the Pearson r, the sign of the correlation (positive or negative) indicates the direction 

of the relation.  A positive correlation indicates that as one variable increases, so does the other 

(Figure 14.1).  For instance, in general those students who study more get higher grades.  A positive 

correlation also indicates that as one variable decreases, so does the other.  In other words, those 

students who study less tend to get lower grades.  With a negative correlation, as one variable 

increases, the other decreases (Figure 14.2).  An example of a negative correlation would be the 

total mileage of a used car and how much it is worth.  In general, the more miles the car has been 

driven, the less it is worth.  That is why some unscrupulous individuals used to roll back odometers 

before selling their cars.  The cars had gone just as many miles, but the buyers were not aware of 

this and paid more than they would have if they had known the true situation.   

The magnitude of the Pearson correlation, ignoring the sign, indicates the size of the 

relationship.  For instance, the largest absolute value for a Pearson r is 1, which corresponds to a 

value of +/–1.  If the Pearson r is equal to +/–1 there is a perfect association among the variables.  

In other words, if you know the value of one variable you can predict the value of the other variable 

perfectly, without any error.  And a graph or scatter plot would show that all of the data points fall 

along a straight line.  If the correlation is +1, the line would rise to the right (Figure 14.1).  If the 

correlation is –1, the line would rise to the left (Figure 14.2).  In the real world, correlations of +/–1 

are unlikely to occur.  Instead we find more modest correlations with values such as +.32 or –.57.  

When the magnitude is between +1 and -1 the data points would not all fall directly on a straight 

line (Figure 14.3), and while knowing the value of one variable will be of some assistance in 

predicting the value of the other variable, the predictions will not be perfect.  An example of this is 

the weather forecast on the nightly news.  The forecast is not always correct, but we pay attention 

because it is much more accurate than simply guessing.  If the Pearson r is equal to 0, the variables 
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are unrelated and knowing the value of one variable does not assist in predicting the value of the 

other variable (Figure 14.4).  

Positive correlation – A relationship between two variables in which as one variable  

 increases in value, so does the other variable.  Also, as one variable decreases in  

 value, so does the other. 

 Negative correlation  – A relationship between two variables in which as one variable  

  increases in value, the other variable decreases in value.  Also, as one variable  

  decreases in value, the other increases in value. 

 

Figure 14.1 A Positive Correlation.  More Specifically, a Correlation of +1      

                                           

                                                                             

Figure 14.2 A Negative Correlation.  More Specifically a Correlation of –1 

 

 
Figure 14.3 An Intermediate, Positive Correlation 
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Figure 14.4 A Correlation of 0   
 
 
 

 
 
 

Thus with a Pearson correlation the sign indicates the direction of the association while the 

magnitude indicates the degree to which the two variables are related, in other words how well we 

can predict from one variable to another.  What a Pearson correlation does not provide is the actual 

equation that would permit a researcher to predict the value of one variable when the value of the 

other variable is known.  In other words, with just a statistically significant Pearson correlation 

researchers know that a prediction can be made and how well it can be made, but they do not know 

what the actual prediction would be.  In order to make a prediction we employ a closely related 

statistical procedure called regression, which will be reviewed later in this chapter.  (This 

procedure is underlined in Table 14.1.)  

Regression – Procedure researchers use to develop an equation that permits the  

 prediction of the value of one variable of a correlation if the value of the other  

 variable is known. 

 

 We have often discussed the concepts of Type I and Type II errors in this book.  Each of 

these errors can also be made with a correlational study.  For instance, if we conclude, based upon 

· · · 
 

· · · · · 
· · · · · 

· · · · 
· 

· · · 
· 

· 
· · 

· · · 
· · · · · 
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our samples, that a correlation exists in a population when in fact there is no such correlation, we 

have made a Type I error.  In other words, we have rejected the null hypothesis which is usually 

that the population correlation () is 0 even though the null hypothesis is actually true.  On the 

other hand, if we conclude that there is no correlation among the variables in the population, when 

in fact there is, we have made a Type II error.  In this case we have failed to reject the null 

hypothesis even though it is false.    

 In a correlational study no independent variable is manipulated by the researcher and there 

is no control group.  Independent variables and control groups, as you have learned, are 

characteristics of experiments.  They do not occur with correlational studies.  Instead, in a 

correlational study the researcher records information concerning naturally occurring variables 

and later determines whether these variables are associated.  Correlational studies are generally 

easier to conduct than experiments and numerous variables can be examined quickly.  The studies 

are, in this sense, efficient.  However, an important limitation of correlational studies is that their 

results do not justify coming to a strong, cause-and-effect conclusion.  For instance, the initial 

scientific findings linking smoking with cancer were based solely on correlational studies.  It 

quickly was established that an association or linkage existed between smoking and experiencing 

certain types of cancer.  The government responded with warning labels on packages of cigarettes.  

These labels, however, were much weaker than the current ones since the original, correlational 

studies did not warrant the current stronger cause-and-effect wording.    

Conducting A Pearson Correlation  

 
 Our first example of a Pearson r consists of hypothetical quiz and exam scores for seven 

students taking a course in statistics (Table 14.2).  We will set  equal to .05.  The null hypothesis 

(H0) is that there is no correlation between quiz and exam scores for the population of all students 

taking a course in statistics.  In other words, the null hypothesis is that XY = 0 for quiz and exam 

scores.  The alternative hypothesis (H1) is that XY ≠ 0.  Since no direction is specified for the 

outcome this is a two-tailed test. 

Table 14.2 Example 1:  Hypothetical Quiz and Exam Scores 

 
  Student Quiz Score (X)  Exam Score (Y)  

  1   10   92 

  2     9   98 

  3     9   84 

  4     8   87 

  5     8   81 

  6     7   72 
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  7     6   76 

 
 A graph of these data suggests that there is a trend such that higher quiz scores are 

associated with higher exam grades.  In other words, the quiz and exam scores appear to vary 

together (Figure 14.5).   

Figure 14.5 Example 1:  A Graph of Hypothetical Quiz and Exam Scores 

 

 

In statistics, the extent to which two variables covary is known as their covariance.   The 

equation for the covariance is: 

   covxy = 
 ∑(X − MX)(Y − MY)

n − 1
    

where n is the number of pairs of scores. 

The equation indicates that each value for X is converted into a deviation from its mean.  

Similarly, each corresponding value for Y is converted into a deviation from its mean.  Then each 

pair of deviations is multiplied together.  Next, all of these multiplied deviations are added and, 

finally, this sum is divided by the number of pairs of scores minus 1.  

 Covariance – A statistical measure indicating the extent to which two variables vary  

  together. 

 

Upon a closer examination of the equation for the covariance it should be evident that if a 

value for X is greater than its mean, then (X – MX) will be positive.  Also, if the value for Y that is 

paired with this X is greater than its mean, then this (Y – MY) will also be positive, and the product 

of these two deviations will thus be positive.  Similarly, if a value for X is less than its mean, then (X 

– MX) will be negative.  Also, if the value for Y that is paired with this X is less than its mean, then 

this (Y – MY) will also be negative, and their product will thus be positive.  However, if one of the 

deviations is positive and the other is negative, then the product will be negative.  The sum of all of 
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the products will determine the sign of the covariance, and thus will indicate the direction in which 

the two variables covary.  

With our example, the individuals with the highest quiz grades tend to also have the highest 

exam grades.  Thus, the greatest positive deviations for the quizzes will tend to be matched with the 

greatest positive deviations for the exam scores.  Similarly, the individuals with the lowest quiz 

grades tend to also have the lowest exam grades.  Thus, the largest negative deviations for the 

quizzes will tend to be matched with the largest negative deviations for the exam scores.  As was 

just noted this pairing of positive deviations in one variable with positive deviations in the other, 

and negative deviations in one variable with negative deviations in the other, will lead to a positive 

value for the covariance.  If the positive deviations for the quizzes had tended to be matched with 

the negative deviations for the exam grades, the covariance would have a negative value.  And you 

will see shortly that the sign of the covariance determines the sign of the Pearson correlation. 

Furthermore, the magnitude of the covariance will be a maximum when the most extreme X 

and Y scores are paired together.  And it will be zero if the two variables are not related and thus do 

not covary.   

Covariation is essential to understanding the Pearson correlation.  In order to calculate the 

value of a Pearson r, all that is further needed is to take the magnitude of the standard deviations 

for the X and Y variables into account.  More specifically, the equation for the Pearson correlation is 

as follows: 

   rXY = r = 
covXY

sXsY
     

 

Conceptually, this equation indicates that the Pearson r is the ratio of a measure of the degree to 

which two variables covary (vary together) and a measure of the product of their variabilities. 

To use this equation it is necessary to determine the value of the covariance and also to 

calculate the standard deviation of the X scores and the standard deviation of the Y scores.  (There 

are computational equations that are easier to use with large data sets, but the logic for the specific 

calculations is then not evident.  These equations are provided in Appendix G.  However, anyone 

anticipating calculating a Pearson r for a substantial data set is advised to use a computer package 

instead.)   

Calculating The Covariance 

 
To calculate the covariance we proceed as shown in Table 14.3. 

Table 14.3 Example 1:  Initial Steps in the Calculation of the Covariance for Quiz and Exam 

Scores 

Student        Quiz (X)     Exam (Y)             (X – MX)             (Y – MY)       (X – MX)(Y – MY)   
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     1  10            92          1.86             7.71  14.34 

     2    9            98          0.86                13.71    11.79 

     3    9            84         0.86                –0.29   –0.25  

     4    8            87                     –0.14                  2.71  –0.38  

     5    8            81                     –0.14                –3.29     0.46 

     6    7            72                     –1.14             –12.29  14.01 

     7    6            76                     –2.14                –8.29  17.74 

X = 57       ∑Y = 590            ( X – MX) ≈ 0     ∑(Y – MY) ≈ 0     ∑(X – MX)(Y – MY) = 57.71    

MX = 8.14        MY = 84.29 

 

 Substituting these values into the equation for the covariance, we have: 

   covxy = 
 ∑(X − MX)(Y − MY)

n − 1
   

where n is the number of pairs of scores. 

   covXY = 
57.71

7 − 1
  

             = 
57.71

6
   

             = 9.62 

Determining The Standard Deviations 

 
To find the value of the Pearson correlation we now need to calculate the standard 

deviations for the X and Y scores (Tables 14.4 and 14.5).  Recall that the equation for the standard 

deviation of a sample is:  

sX =  
(X – MX)2 

n − 1
   

And note that the needed mean and deviations come from calculations in Table 14.3. 

Table 14.4 Example 1:  Calculation of the Standard Deviation of the Quiz Scores (X) 

 Student Quiz (X) (X – MX)  (X – MX)2   

1  10      1.86   3.46 

 2    9      0.86   0.74 

 3    9      0.86    0.74 

 4    8    –0.14   0.02 

 5    8    –0.14   0.02 

 6    7    –1.14   1.30 

 7  _6    –2.14   4.58 

         X = 57        (X – MX) ≈ 0       (X – MX)2 = 10.86 

     MX = 8.14 
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Substituting the values of (X – MX)2 and n into the equation for the standard deviation of 

quiz scores, we have: 

  sX =  
(X – MX)2 

n − 1
 

      =  
10.86 

7 – 1
   

      =  
10.86 

6
   

       = 1.81 

      = 1.35 

 

 We now turn to calculating the standard deviation of the Y scores (Table 14.5).  Note, 

however, that the mean of Y and the deviations have already been found (Table 14.3). 

 

Table 14.5 Example 1:  Calculation of the Standard Deviation of the Exam Scores (Y) 

 Student Exam (Y) (Y – MY)  (Y – MY)2   

 
 1  92          7.71     59.44   

 2  98       13.71               187.96     

 3  84       –0.29      0.08   

 4  87         2.71       7.34   

 5  81      –3.29     10.82   

 6  72    –12.29  151.04   

 7  76      –8.29      68.72    

        Y = 590                (Y – MY) ≈ 0             (Y – MY)2 = 485.40  

       MY = 84.29 

 

Substituting the values from Table 14.5 into the equation for the standard deviation, we 

have: 

   sY =  
(Y – MY)2 

n − 1
 

       =  
485.40 

7 – 1
   

       =  
485.40 

6
  

       = 80.90 

       = 8.99 
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Calculating The Pearson r 

 

We are now in a position to calculate the value of the Pearson correlation.  Recall that the 

equation for the Pearson correlation is: 

   rXY = r = 
covXY

sXsY
 

  

Substituting the values just obtained we have: 

   rXY = r = 
9.62

(1.35)(8.99)
   

                = 
9.62

12.14
     

                                           = +.79 

Interpreting Our Pearson r 

 
The df for the Pearson r = n – 2, where n is the number of pairs of scores.  In our case, there 

would be 7 – 2 or 5 df.  

 Referring to the Pearson r table (Appendix K, Table 6), we find that the critical value for 5 df 

with  equal to .05 is .75 for a two-tailed test.  With a two-tailed test you reject the null and accept 

the alternative hypothesis if the absolute value of the calculated r is greater than the critical value 

from the table.  As our obtained Pearson r was .79, which is greater than the critical value of .75, we 

reject the null hypothesis that the population correlation (XY) is equal to 0 and accept the 

alternative hypothesis that XY is not equal to 0.    

Recall that the larger the Pearson correlation, the better we can predict.  Our value of the 

Pearson r is .79.   This is a very strong correlation.  In other words, if we know a person’s quiz 

grade, we would be able to predict quite well how that person will do on the subsequent exam. 

Determining The Effect Size 

 
 The strength of the association is determined by finding the square of the correlation, r2.  

The square of a correlation is called the coefficient of determination.  It measures the proportion of 

variance in one variable that is explained or accounted for by the other variable.  In our example, 

the correlation was equal to .79.  Thus r2 is equal to .792, which is .62 or 62%.  This indicates that 

knowing a person’s quiz score will account for 62% of the variability in predicting their exam score.  

 Coefficient of determination – The square of the correlation.  It indicates the proportion of  

  variability in one variable that is explained or accounted for by the variability in the  

  other variable.  
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Put another way, there is only 38% of the variability in the exam scores that is not 

accounted for by knowing the quiz scores.  This is determined by subtracting 62%, the percentage 

of the variability that is known, from 100%, which is the total variability.  Alternatively, we could 

express this in terms of a proportion by subtracting .62 from 1.00 to obtain .38.  This value, which is 

the proportion of the variability of one variable not explained or accounted for by the variability of 

the other variable, is called the coefficient of nondetermination.  For the Pearson r, it is equal to 1 – 

r2 . 

Coefficient of nondetermination  – The proportion of the variability of one variable not  

 explained or accounted for by the variability of the other variable.  For the Pearson  

 r, it is equal to 1 – r2 . 

 

Reporting The Results Of A Pearson Correlation 

 
 To summarize our findings we would indicate the number of degrees of freedom, the 

calculated value of the Pearson r, and the p-value.  Based upon our calculations we would report, “A 

positive relationship was found between quiz and exam scores (r(5) = .79, p < .05).”  After 

reporting the significant r, we would then indicate the effect size by saying “r2 was equal to .62.”  

This example is also completed using SPSS at the end of this chapter.  In a paper we would report 

these more precise findings as well as the p-value obtained when using SPSS, (r(5) = .80, p = .033).  

(Note that our p-value of .033 is less than our α of .05 which confirms that we would reject  the null 

hypothesis.)  We would then say “r2 was equal to .64.” 

A Second Example  

 
 It is important to understand that the magnitude of the Pearson r of a small set of data can 

be dramatically affected by the removal of just one or two extreme scores.  This is called restriction 

of the range.  For instance, if we omit subjects 6 and 7 from the above data set we would have the 

data shown in Table 14.6. 

 Restriction of the range – Reducing the range of values for a variable will reduce the size of  

  the correlation. 

 

Table 14.6 Example 2:  Restricted Range of Hypothetical Quiz and Exam Scores 

   Student Quiz (X) Exam (Y)  

   1  10  92   

   2    9  98   

   3    9  84   

   4    8  87   
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   5    8  81   

 

Calculating The Covariance 

 
 The steps involved in calculating the covariance are illustrated in Table 14.7. 
 
Table 14.7 Example 2:  Initial Steps in the Calculation of the Covariance for the Restricted 

Range of Quiz and Exam Scores 

Student        Quiz (X)    Exam (Y) (X – MX)  (Y – MY)          (X – MX)(Y – MY) 

  

 1 10         92      1.20      3.60        4.32  

 2   9         98       0.20      9.60       1.92  

 3   9         84        0.20    –4.40    –0.88     

 4   8         87    –0.80    –1.40     1.12 

 5   8         81    –0.80    –7.40     5.92  

            X = 44     ∑Y = 442        (X – MX) = 0 ∑(Y – MY) = 0      ∑(X – MX)(Y– MY) = 12.40 

            MX = 8.80    MY = 88.40 

 

Substituting these values into the equation for the covariance, we have: 

   covxy = 
 ∑(X − MX)(Y − MY)

n − 1
   

where n is the number of pairs of scores. 

   covXY = 
12.40

5 − 1
  

              = 
12.40

4
   

              = 3.10  

Determining The Standard Deviations 

 
 We now need to calculate the standard deviations of the X (Table 14.8) and Y (Table 14.9) 

scores.  Note, however, that the means and deviations have already been calculated (Table 14.7). 

Table 14.8 Example 2:  Calculation of the Standard Deviation of the Quiz Scores (X) for the 

Restricted Range of Quiz and Exam Scores 

  Student Quiz (X)      (X – MX)  (X – MX)2   

  1  10          1.20     1.44     

  2    9          0.20     0.04     

  3    9          0.20    0.04    

  4    8        –0.80        0.64    

  5    8        –0.80    0.64   
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          X = 44             (X – MX) = 0         (X – MX)2 = 2.80 

          MX = 8.80 

 

Substituting the values of (X – MX)2 and n into the equation for the standard deviation of 

quiz scores, we have: 

  sX =  
(X – MX)2 

n − 1
 

      =  
2.80 

5 – 1
   

      =  
2.80 

4
  

         = 0.70 

      = 0.84 

 

Table 14.9 Example 2:  Calculation of the Standard Deviation of the Exam Scores (Y) for the 

Restricted Range of Quiz and Exam Scores 

Student Exam (Y)      (Y – MY)  (Y – MY)2   

  1  92           3.60    12.96     

  2  98           9.60    92.16      

  3  84         –4.40    19.36     

  4  87         –1.40      1.96      

  5  81         –7.40      54.76    

          Y = 442     (Y – MY) = 0      (Y – MY)2 = 181.20  

        MY = 88.40 

   

Substituting these values into the equation for the standard deviation, we have: 

   sY =  
(Y – MY)2 

n − 1
 

       =  
181.20 

5 – 1
   

       =  
181.20 

4
  

       = 45.30 

       = 6.73 

Calculating The Pearson r 

 
We are now in a position to calculate the value of the Pearson correlation.  The equation for 

the Pearson correlation is: 
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   rXY = r = 
covXY

sXsY
  

Substituting the values just obtained we have: 

   rXY = r = 
3.10

(0.84)(6.73)
   

                = 
3.10

5.65
 

                = .55 

Interpreting Our Pearson r 

 
The df for the Pearson r = n – 2, where n is the number of pairs of scores.  In our case, there 

would be 5 – 2 or 3 df.  The critical value from the Pearson r table (Appendix K, Table 6) with α = 

.05 is .88 for a two-tailed test.  Note that a consequence of losing degrees of freedom is an increase 

in the critical value from .75 to .88, which will make it more difficult to reject the null hypothesis. 

In addition, restricting the range by eliminating the two lowest quiz scores resulted in a 

drop in the size of the correlation from .79 to .55.  This is a substantial decline and the resulting 

correlation would no longer be statistically significant even without the loss of degrees of freedom.  

If the outcome were still significant, rXY2 would have dropped from 62% to 30%, which indicates 

that the ability to predict exam grades would have been reduced substantially. 

Reporting The Results Of A Pearson Correlation 

 
 Based upon our calculations using the restricted range of data we would report, “No 

significant relationship was found between quiz and exam scores (r(3) = .55, p > .05).”  Of course, 

we should also recognize that the data set was much too small.  However, if we were going to put 

our findings in a publication we would want to utilize a statistical package for our data analysis in 

order to gain greater precision and to provide a precise p-value.  With SPSS we would report (r(3) 

= .55, p = .336).  Note that the p-value of .336 is greater than the α level of .05. 

Purpose And Limitations Of Using The Pearson Correlation 

 
1. Provides a measure of the association of two interval or ratio variables.  The Pearson 

correlation provides a measure of the strength and direction of an association between two 

interval or ratio variables.   

2. Not a measure of cause and effect.  The Pearson r is a type of correlation.  Due to a lack of 

control in a correlational design a researcher is not justified in coming to a cause and effect 

conclusion.   
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3. Be aware of restriction of the range.  A broad range of X and Y values will generally increase 

the size of the Pearson r.  A reduction in the range of these variables will tend to reduce the 

size of the Pearson r. 

4. Prediction is limited to the range of the original values.  The Pearson r indicates the 

correlation for a range of X and Y values.  The nature of the correlation for these variables is 

unknown beyond the range included in the original calculations.  For instance, if the original 

correlation of height and weight is based upon people with heights between 5 and 6 feet, 

then we cannot predict the weight for a person 7 feet tall. 

Assumptions Of The Pearson Correlation 

 
1. Interval or ratio data.  The two variables consist of interval or ratio data. 

2. Data are paired.  The data come as pairs, usually two measures on the same individual. 

3. Linear relationship.  The Pearson correlation assumes that the two variables are linearly 

related. 

4. Bivariate Normally Distributed.  This assumption is tested by checking that the X and Y 

variables are each normally distributed.  However, so long as there are not outliers the 

Pearson correlation will be accurate (is robust) so long as the sample size is at least 30.   

Progress Check 

 
1. Another term for the square of a correlation is the _____.  It indicates the _____ in one  

variable that is explained or accounted for by variability in the other variable. 

2. With ordinal data we would use the _____ as our correlation.  If we had two variables 

measured at the interval or ratio level we would use the _____ correlation. 

3. Assume it was reported that the correlation was 0.50 between age and reading ability for 

students selected from grades 1 to 12.  We then measure this relationship for grades 6 

through 12 and find a smaller correlation.  This is an example of _____. 

 

Answers:  1. coefficient of determination; proportion of variability   2. Spearman r; Pearson   3. 

restriction of the range 

Conclusion Of Correlation  
 
 This chapter has introduced the most commonly used correlational technique, the Pearson 

r.  The Pearson r is employed when we have two variables, each consisting of interval or ratio data.  

However, in the real world numerous variables may be associated together.  For instance, many 

variables are linked with a student’s SAT score, including their high school grade average, quality of 
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their teachers, physical characteristics of the high school, and level of support at home, to name just 

a few.  With multiple correlation (R), we determine the association between a variable that is of 

interest to us, in this case SAT score, and a combination of two or more predictor variables.  Thus, 

with R we are usually able to more accurately reflect the true complexity of a situation than we 

would be if we limited ourselves to a Pearson r which involves only one predictor variable. 

 Multiple correlation (R) – The association between one criterion variable and a  

  combination of two or more predictor variables. 

 

 With partial correlation, the second of our more complex correlational procedures, we can 

statistically remove the effect of a variable that is not of interest to us.  For example, as a taxpayer it 

should be of interest to you to have some measure of the effectiveness with which your taxes are 

spent.  If you live within a large school district there may well be a number of high schools.  How 

can you compare the effectiveness of their academic programs?  After all they may differ in many 

ways – size, age of buildings, years of teaching experience by the faculty, and so on.  How can you 

possibly make a fair decision?  One approach is to remove the effect of variables that are suspected 

of being important, but which are not of current interest.  For instance, family income level is 

known to correlate with numerous variables associated with academic success of high school 

students.  Not surprisingly, families with high incomes tend to provide more support at home in the 

form of computers, the parents tend to be more highly educated and are thus better able to assist 

their children academically, and these families even move to areas with new schools.  Thus, it 

should come as no surprise that the most academically impressive high schools also tend to have 

students who come from the most affluent families.  However, as a taxpayer you are probably not 

willing to simply conclude that those schools with the most affluent students are the most efficient 

users of your money.  As a matter of fact, even though a school with students from less affluent 

families may not be achieving at quite the level as another with students from more affluent 

families, it may be excelling beyond what would be expected based upon the disparity in income.  

One way to determine whether this is the case is to employ a statistical procedure known as partial 

correlation.  With this procedure we could remove the effect of family income to obtain a better 

view of which high schools were actually teaching most effectively.   

 Partial correlation – A procedure in which the effect of a variable that is not of interest is  

  removed.    

Regression  

“It is a capital mistake to theorize before one has data.  Insensibly one begins to 

twist facts to suit theories instead of theories to suit facts.” 



432 
 

Sir Arthur Conan Doyle 

 

 A statistically significant Pearson correlation indicates that the variables are associated.  In 

other words, if there is a significant correlation, knowing the value of one variable will assist in 

predicting the value of the other.  However, a correlation does not indicate how this prediction is to 

be made.  It was noted previously that in order to actually predict from one variable to another we 

use a procedure known as regression. 

We will limit our discussion to the situation where there are two interval or ratio variables.  

It is assumed, therefore, that you have already calculated a Pearson r and that it was found to be 

significantly different from 0.  A statistically significant Pearson r indicates that in the populations 

there is likely to be a relationship between the two variables.  More specifically, the Pearson r 

indicates the extent to which there is a linear relationship between the two variables.  Recall that if 

the value of one variable increases as the other increases, this is called a positive relationship 

(Figure 14.6).  And if the value of one variable decreases as the other increases, this is called a 

negative relationship (Figure 14.7). 

Figure 14.6 Example of a Positive Linear Relationship Between X and Y 

 

              

Figure 14.7 Example of a Negative Linear Relationship Between X and Y 
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Knowing that two variables are linearly related enhances our ability to predict from one to 

the other.  To illustrate this, let us assume that we are not aware that there is an association 

between height and weight.  In this case, regardless of a person’s height, our best estimate of their 

weight would be the mean weight.  Thus, regardless of a person’s height (X), we would always 

predict the mean weight (MY) (Figure 14.8).  Of course, for tall people we would tend to 

underestimate their weights, and for short people we would tend to overestimate their weights.  

Each error in estimation in Figure 14.8 is a deviation from the mean weight, or Y – MY.   The sum of 

the errors would be (Y – MY).  This term is not useful, of course, because it will always be equal to 

0.   However, you have learned that the sum of the squared deviations from the mean, (Y – MY)2 

forms the basis for calculating the standard deviation and variance.  In other words, the standard 

deviation and variance of the Y scores can be thought of as measures of our error of prediction 

assuming we always choose the mean weight (MY) regardless of the subject’s height.   

Figure 14.8 Example of Errors (Y – MY) Due to Predicting the Mean of Y (MY) Regardless of the  
  Value of X 

 

           
 
 
 However, if there is a significant correlation between height (X) and weight (Y), then we 

know that a person’s height (X) can assist in predicting that person’s weight (Y).  Thus, in this 

situation we know there is a better option than always choosing the mean weight (MY) regardless of 

the subject’s height (X).  Instead, with a positive correlation, as the height (X) increases so should 

our estimate of the weight (Y).  Simple linear regression is the procedure used to derive an 

equation that enables us to predict from X to Y with optimal accuracy rather than choosing MY 

regardless of the value of X.  Specifically, with simple linear regression one variable (X) is being 

used to predict the value of another variable (Y).  Thus, for any value of X we will be able to use our 

equation to derive a predicted value of Y, for which we use the symbol Ŷ (called Y hat).  As we are 

dealing with linear regression, all of these Ŷ values will fall along a straight line.  This line is called 

the regression line.  An example is illustrated in Figure 14.9.  This example of a regression line rises 

to the right.  This indicates that as the height (X) increases, so does the prediction of the weight (Ŷ).  

· 
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Specifically, for a height of X1 the predicted weight is Ŷ1 and for a height of X2 the predicted weight is 

Ŷ2.  Remember, the regression line consists of predicted values of Y.   

 Simple linear regression – Procedure used to determine the equation for the regression line. 

Regression line – With simple linear regression, a straight line indicating the value of Y that  

 is predicted to occur for each value of X.  The symbol for the predicted value of Y is  

 Ŷ. 

 

Figure 14.9 An Example of Using a Regression Line to Predict Y From X 

 
 
 

 
           In Figure 14.10, all of the actual subject weights fall along the regression line.  In this 

situation, there would be no error in predicting from X to the Y values.  In other words, if we know 

the subject’s height, we can predict the subject’s weight without any error.  This would only be the 

situation if the correlation had a value of +1 (or –1).  Of course, this rarely occurs in the real world.  

Instead, while in general taller people weigh more than those who are shorter, there are also 

individuals who are tall, but who are relatively light, and individuals who are short, but relatively 

heavy.  In this more realistic situation, the Pearson correlation will have a value between –1 and +1.   

 
Figure 14.10 An Example of a Regression Line Permitting the Prediction of Y From X Without Any  

  Error 
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Whenever the correlation is not + or –1 the observed data points do not all fall along the 

regression line (Figure 14.11).  Since the regression line consists of the predicted value of Y for each 

value of X, any deviation from the line indicates that there was an error of prediction.  Thus, the 

regression line consists of a series of Ŷ values, one for each value of X, and each deviation of an 

actual score (Y) from the predicted value (Ŷ) is an error of prediction.  In other words, when Y – Ŷ 

does not equal zero, there is an error of prediction.  As we are just as likely to underestimate as 

overestimate Y values, the (Y – Ŷ) will be 0.  However, the sum of the squared deviations from the 

predicted values of Y, which is written (Y – Ŷ)2, can form the basis for calculating new measures of 

the standard deviation and variance.  These can be thought of as measures of our error of 

prediction when using the regression line.  In order to prevent confusion, the standard deviation for 

the error of prediction when using a regression line is called the standard error of estimate (Ŷ). 

Standard error of estimate (Ŷ ) – The standard deviation of Y scores around the regression  

 line.   

 

Figure 14.11 An Example of a Regression Line In Which There is Error (Y – Ŷ) in the Prediction of  

Y From X  

 

 

 

 

                   
The accuracy of our predictions will depend, first, upon how closely the observed data fall 

along a straight line and, second, how successful we are in defining the equation for the line that 

best fits our data.  How tightly the data fall along a straight line is an empirical question and is out of 

our control.  However, in those cases in which the Pearson correlation is large, either + or  – , we 

know the data tend to fall tightly along a straight line and the accuracy of our predictions will be 

high.  In contrast, in those cases in which the Pearson correlation is small the data do not fall as 

close to a straight line and the accuracy of our predictions will be lower.  Regardless, we need an 

agreed-upon method for defining the equation for the line that best fits our data.  In statistics, this 
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regression line is defined as the straight line for which the sum of the squared errors of prediction, 

(Y – Ŷ)2, is a minimum.  

The calculation of maximums and minimums requires the use of calculus.  Fortunately, we 

do not need to actually derive the equations for finding a straight line such that (Y – Ŷ)2 is a 

minimum.  Instead, we will simply make use of the equations that have been derived by others who 

used calculus.  However, before doing so it is important that you understand the advantage of using 

a regression line.   

Figure 14.8 is based upon the same hypothetical data points used in Figure 14.11.  However, 

instead of showing the errors of prediction from the regression line (Figure 14.11), Figure 14.8 

used the mean, MY, as the predicted weight for each subject regardless of the subject’s height.  It is 

evident that the total error of prediction when using MY (Figure 14.8) is greater than the total error 

of prediction when using the regression line (Figure 14.11).  This will always be the case when the 

correlation is statistically significant.   

Put another way, when the correlation is statistically significant the standard deviation 

based upon the deviations of Y scores from MY (which is an estimate of the population standard 

deviation, Y) will always be greater than the standard error of estimate (the standard deviation 

based upon the deviations of Y scores from the regression line) (which is an estimate of the 

population standard error, Ŷ).  Thus, the error of prediction when using MY, which is Y, will be 

greater than the error of prediction when using the regression line, which is Ŷ, whenever the 

correlation is statistically significant.  In other words, Y {which is estimated by  [(Y – MY)2 / (n – 

1)]} will be greater than Ŷ {which is estimated by  [(Y – Ŷ)2 / (n – 1)]} whenever the Pearson r is 

statistically significant.  This is evident from the following equation which defines the relationship 

of Ŷ and Y: 

   Ŷ  = Y (1 – r2) 

So long as r does not equal 0, r2 will be greater than 0, and Ŷ  will be less than Y. 

For instance, if r is equal to –.5, then r2 is equal to .25 and the equation becomes: 

   Ŷ  = Y (1 – .25) 

         = Y (.75) 

        = Y (.87) 

In other words, Ŷ  is equal to 87% of Y.   

And what if r is equal to + or –1?  Then r2 is also equal to 1, and the equation becomes: 

   Ŷ  = Y (1 – 1) 

         = Y (0) 

         = Y (0) 

         = 0 
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This indicates that when r is equal to + or –1 all of the Y scores fall on the regression line and thus 

there is no error when predicting from X to Y, and Ŷ will equal 0. 

 The same relationship is true, of course, for the variances.  Thus, the estimate of the 

population variance that is calculated using MY (i.e. Y2)  will always be greater than what is called 

the error variance (Ŷ2), which is calculated using the regression line, so long as r does not equal 0.     

Error variance (Ŷ2) – The variance of Y scores around the regression line. 

 

Further, it can be shown that:  

r2 = 
𝐘

𝟐 − 
Ŷ
𝟐

𝐘
𝟐    

An example will clarify the meaning of this equation.  If all of the Y values fall directly along 

the regression line then r is equal to + or –1 and the error variance, Ŷ2, is equal to 0.  This is the 

situation illustrated in Figure 14.10, and in this case there would be no error in prediction.  If you 

know the value of X, you can predict the value of Y without any error.  Specifically, in this case: 

r2 = 
𝐘

𝟐 − 𝟎

𝐘
𝟐    

         = 
𝐘

𝟐 

𝐘
𝟐   

         = 1 

It was pointed out previously in this text that r2 indicates the proportion of variability 

explained.  With regression, we would say that r2 indicates the proportion of the variability that has 

been accounted for, or eliminated, by using Ŷ (the regression line) as our prediction rather than MY.  

As was just shown, when the correlation, r, is equal to + or –1, we can predict perfectly from X to Y.  

In other words, for each X value, the corresponding Y value is equal to Ŷ and thus all of the 

variability has been explained.  Stated differently, Ŷ2 would equal 0 and in this case r2 is equal to 1.  

Furthermore, whenever Ŷ2 is small relative to Y2, it indicates that the predictions using the 

regression line are considerably more accurate than predictions using MY, and r2 is therefore large 

(close to 1).  However, whenever Ŷ2 approaches the size of Y2 it indicates that the predictions 

using the regression line are only marginally better than predictions using MY and, as a result, r2 is 

small (close to 0).  

To this point the discussion has been quite theoretical.  This section began by explaining 

that you use linear regression following the determination that a Pearson r is statistically 

significant.  With linear regression we are able to predict the value of Y that corresponds to a value 

of X.   More specifically, it was noted that with a significant Pearson r the predictions based upon 

linear regression (Ŷ) are more accurate than if we simply chose the mean of the Y scores (MY) 
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regardless of the value of X.  In other words, the standard error of estimate (Ŷ) will be smaller than 

the standard deviation of Y scores from their mean (Y).  Finally, the relationship between linear 

regression and r2 was reviewed.   

It may have occurred to you that regression differs in an important way from correlation.  

With a Pearson r there are two variables, X and Y that are treated similarly since in a correlational 

study there is no independent or dependent variable.  If the correlation is statistically significant, 

this indicates that the two variables are related, but this does not imply that one variable is causing 

a change in the other.  With the subsequent linear regression the two variables are no longer 

treated similarly.  Instead, we are using one variable to predict the value of the other.  Thus one 

variable is the predictor variable (X) and the other is the criterion or dependent variable (Y).  

However, since regression is linked to a correlational study we still cannot conclude that a change 

in the predictor variable X is actually causing a change in the dependent variable Y. 

Predictor variable (X) in regression – The variable (X) that is used to predict the value of  

 the dependent or criterion variable (Y).   

Criterion variable (Y) in regression – The variable (Y) whose value is being predicted by  

 the predictor variable (X). 

Dependent variable (Y) in regression – Another name for the criterion variable.   

 

We will now conclude with a discussion of how to determine the actual equation for the 

regression line.  It is important to note that if the Pearson r is not statistically significant then there 

is not sufficient evidence that a linear relationship exists between the variables, and thus there 

would be no point in identifying a regression equation.  

Progress Check 

 
1. If we have no idea what the relationship is between two variables, X and Y, then for every 

value of X, our best estimate of Y would be to choose _____. 

2. If the Pearson correlation is statistically significant then using the _____ will lead to more 

accurate predictions than always choosing _____. 

3. If the Pearson correlation is equal to + or –1, then the standard error of estimate will equal 

_____. 

 

Answers:  1. the mean of Y  2. regression line; the mean of Y  3. zero 

 

The Determination Of The Regression Equation 
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With a significant Pearson r we know that there is a relationship between the X and Y 

variables.  However, the correlation does not tell us the equation of the straight line that best 

represents this relationship.  In order to predict a value of Y, we need to use regression to define the 

precise relationship between the X and Y variables using the equation for a straight line, which is: 

Y = bX + a 

This equation indicates that the value of Y can be determined once the magnitude of X is 

given and two characteristics of the line are known.  These characteristics are the slope of the line, 

‘b’, and the Y intercept, ‘a’.   The slope of the line is defined as the ratio of how much the Y variable 

changes as the X variable changes.  It is also called the regression weight:   

    b = 
Change in Y

Change in X
 

Thus, if Y increases by 1 when X increases by 2, the line has a slope of ½ or 0.5.  Similarly, if 

Y increases by 3 when X increases by 6, the slope is also 0.5.  In each case the ratio of the change in 

Y divided by the change in X, which equals ‘b’, remains 0.5.  This is shown in Figure 14.12. 

 Slope of the line – One of the two determinants of the equation for a straight line.  It is the  

  ratio of the change in the Y variable divided by the change in the X variable.  It has  

  the symbol ‘b’ in the equation Y = bX + a.  It is also called the  regression weight. 

Regression weight – Another term for the slope of the regression line. 

 

Figure 14.12 Example of a Line with a Slope of ½ or 0.5 
 

 
 
 
                                          

The second determinant of the equation for a straight line, the Y intercept, is the value of Y 

when X is equal to 0.  In other words, it is the value of Y when the line crosses the Y axis.  If you 

extend the line in Figure 14.12, you will see that the Y intercept, ‘a’, is  equal to 0.5. 

Y intercept – One of the two determinants of the equation for a straight line.  It is  

 the value of Y when X is equal to 0.  It is, therefore, the value of Y when the  
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 line crosses the Y axis.  It has the symbol ‘a’ in the equation Y = bX + a. 

 

Determining The Slope Of The Regression Line 

 
Regression describes the procedure for finding the equation for the straight line that best 

fits our data.  As was noted previously, the best-fitting regression line is defined as the straight line 

for which the sum of the squared errors of prediction, (Y – Ŷ)2, is a minimum.  It was also pointed 

out that while the calculation of maxima (the plural of maximum) and minima (the plural of 

minimum) requires the use of calculus, we do not need to perform the derivations of the equations 

for finding a straight line with (Y – Ŷ)2 as a minimum.  Instead, we can use the equations that have 

been found by others using calculus.  Specifically, the slope of the regression line is: 

    b = r ( 
𝐘

𝐗
 )   

 

If ‘b’ is positive, the regression line will rise or slope upward to the right as in Figure 14.6.  If 

‘b’ is negative, the regression line will slope downward to the right as in Figure 14.7. 

Of course, we usually do not know the population standard deviations (Y and X).  

However, we can estimate these population standard deviations from the sample data using sY and 

sX.  For instance, we previously calculated a statistically significant Pearson r of .79 for hypothetical 

quiz and exam scores for seven students taking statistics (Tables 14.2 – 14.5).  And in order to 

calculate the Pearson r we also calculated values for sY and sX.  We will now proceed to find the 

regression line for these data. 

The equation for ‘b’, the slope of the regression line becomes: 

    b = r ( 
𝐬𝐘

𝐬𝐗
 )  

Substituting the estimates of the standard deviations derived from the sample data 

(calculations associated with Tables 14.4 and 14.5): 

    b = .79 (
8.99

1.35
)  

       = .79 (6.66) 

       = 5.26 

Determining The Y Intercept Of The Regression Line 

 
The equation for ‘a’, the Y intercept, is: 

    a = MY – bMX 
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The values for the mean of the exam scores (MY) and the mean of the quiz scores (MX) come from 

Table 14.3.  We just calculated the value for ‘b’.  The equation for ‘a’ thus becomes: 

    a = 84.29 – (5.26) (8.14) 

       = 84.29 – 42.82 

       = 41.47 

The Regression Equation 

 
As was noted previously, the general equation for the regression line is Ŷ = bX + a.  

Substituting for ‘b’ and ‘a’, which were just calculated, we have:  

Ŷ = 5.26 X + 41.47 

Based upon this equation, a quiz score of 0 would be associated with an exam score of 

41.47.  And with each increase of 1 point on the quiz, we predict an increase of 5.26 points on the 

exam.  This regression line is graphed in Figure 14.13.  (However, it is important to note that actual 

predictions should be limited to the range of quiz grades used to calculate the original correlation 

(Table 14.2). 

Figure 14.13 The Regression Line for Hypothetical Quiz and Exam Grades 

 
 
 
 
                     
 Figure 14.13 shows that as the quiz grade increases, so does the predicted exam grade.  The 

relationship between quiz grades and exam grades is also evident from the value of the Pearson r, 

which is .79, but that relationship is now presented graphically.  The regression line in Figure 14.13 

can be used to obtain a quick estimate of a student’s exam grade.  For instance, inspection of Figure 

14.13 indicates that a student with quiz grade of 8 is predicted to obtain an exam grade in the 80s.  

We can find a more precise prediction by using the regression equation we just determined: 

Ŷ = 5.26 X + 41.47 

For a quiz grade of 8, we have: 
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Ŷ = 5.26 (8) + 41.47 

   = 42.08 + 41.47 

   = 83.55 

The predicted value of 83.55 obtained from the regression equation thus confirms our 

visual estimation using Figure 14.13 but is, of course, more precise. 

Determination Of The Standard Error Of Estimate 

 
 If you refer back to Table 14.2, you will find that two students had quiz scores of 8.  

However, neither of these students obtained the predicted exam grade of 83 or 84.  Remember, it is 

only in the case where the Pearson r is equal to + or –1 that you would expect the actual data points 

to fall exactly along the regression line.  Our correlation of .79 is quite large.  In other words there is 

a good fit between the data points and the regression line.  Nevertheless, because the correlation is 

not 1 we do not have a perfect match between the predicted and actual data. 

As you will recall, the calculated regression equation results in the best-fitting line, and thus 

there will be less error of prediction using this than any other line.  And as was shown previously, 

the error of prediction when using the regression line, which is called the standard error of 

estimate (Ŷ), will be less than if the mean of Y was always chosen as the estimate, which would 

lead to an error equal to the standard deviation (Y).   

It is important to recognize that the accuracy of our predictions when using the regression 

equation is limited by the strength of the original correlation, r.  This can be illustrated with the 

equation for the standard error of estimate (Ŷ), which was provided previously: 

Ŷ = Y (1 – r2) 

When using sample data, sY provides an estimate of Y.  The equation, therefore, becomes: 

Ŷ = sY (1 – r2) 

With our current example, sY was found to be 8.99.  And r was .79.  Therefore: 

    Ŷ = 8.99 [1 – (.79)2] 

        = 8.99 [1 – .62] 

        = 8.99 .38 

        = 8.99 (.62) 

        = 5.57 

 As was previously noted, whenever the Pearson r is statistically significant the standard 

error of estimate (Ŷ), which is a measure of how well we can predict using the regression equation, 

will be less than the standard deviation (Y), which is a measure of how well we can predict if the 

mean of Y is chosen for every value of X.  In the present example this is confirmed, for based upon 
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our sample data the standard error of estimate is 5.57, which is less than the standard deviation of 

8.99. 

Finally, once again it is important to note that in our example of the quiz and exam scores, 

the range of the original quiz scores was from 6 to 10.  You should restrict your prediction of exam 

grades to those future students who have quiz scores between 6 and 10.  In other words, even 

though Figure 14.13 extends from a quiz score of 0 up to a quiz score of 10, and the regression 

equation we derived will calculate a predicted exam score corresponding to any quiz score, we have 

no knowledge of what the relationship would be beyond our original range of quiz scores (6 to 10).  

You should, therefore, limit any predictions to this range of values. 

Reporting The Results Of A Pearson r Followed By Regression 

 
When reporting the results of a correlational study we would state whether the correlation 

was significant and, if so, note the value of the coefficient of determination and that a linear 

regression was then performed.  The regression equation would be followed by providing the 

standard error of estimate.  Specifically, for our example of quiz (X) and exam (Y) scores (Table 

14.2), we would state that the calculated Pearson r was found to be significant (r(5) = .79, p < .05, 

r2 = .62).  The regression equation was Ŷ = 5.26 X + 41.47, and the standard error of estimate was 

5.57.  If we were going to publish our findings, then we should use a statistical package to gain 

greater precision and to provide a precise p-value.  With SPSS we would again find that the Pearson 

r was significant (r(5) = .80, p = .033, r2 = .63) and the regression equation would now be Ŷ = 5.32 

X + 41.00.  The standard error of estimate is now 5.98.  Most of these values correspond closely to 

what we calculated.  However, the value for the standard error of estimate differs substantially 

from what we previously found.  This discrepancy is explained in the later section of this chapter 

that describes how to conduct regression with SPSS.   

Multiple Correlation and Regression 

 
 The present chapter began with a discussion of correlation, the extent to which two 

variables are related.  And it was noted that the amount of variability accounted for will often be 

enhanced by including additional variables.  For instance, knowing only the student’s SAT exam 

score accounts for some variability in college achievement.  However, the amount of variability 

accounted for can be increased by including other variables such as high school grade point average 

(GPA) and a measure of the difficulty of the courses that were taken.  This is an example of multiple 

correlation – determining the degree of association between one variable and a number of other 

variables.  
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Just as you can have multiple correlation, you can also have multiple linear regression.  With 

multiple linear regression, which is covered in more detail in the appendices, the equation 

describing the linear relationship between two or more X variables and a single Y variable is 

determined.  The advantage of multiple linear regression over simple linear regression is that the 

inclusion of additional variables will often lead to a more accurate prediction of the value of Y.  The 

disadvantage of multiple linear regression is that the calculations are more complex than the 

procedures that have been reviewed in this chapter.  You are strongly encouraged, therefore, to use 

a computerized statistical package rather than hand computation when using multiple regression. 

Multiple linear regression – A procedure in which several variables (Xs) are used to predict  

the value of another variable (Y). 

 

Purpose And Limitations Of Using Simple Linear Regression 

 
1. Provides an equation so that the value of Y can be predicted.  The Pearson correlation 

provides a measure of the strength and direction of an association between two interval or 

ratio variables.  Simple liner regression provides an equation for this association. 

2. Not a measure of cause and effect.  Simple linear regression follows the finding of a 

statistically significant Pearson r.  Due to a lack of control in a correlational design a 

researcher is not justified in coming to a cause-and-effect conclusion concerning the 

variables.  The regression equation allows the prediction of Y from X but does not indicate 

that X is causing Y. 

3. Prediction is limited to the range of the original values.  The regression equation should not 

be used for values of X that are beyond the range of the data that were used in the 

calculation of the Pearson r.  

Assumptions Of Simple Linear Regression 

 
1. Interval or ratio data.  The data are on an interval or a ratio scale of measurement. 

2. Data are paired.  The data come as pairs, usually two measures on the same individual. 

3. Linear relationship.  The Pearson correlation and linear regression assume that the two 

variables are linearly related. 

4. Significant Pearson r.  Simple linear regression is only used if the Pearson r has been found 

to be statistically significant. 

Conclusion Of Regression 
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 The focus of this section has been upon linear regression.  When there is a statistically 

significant linear relationship between the X and Y variables, then it is possible to have a better 

prediction of Y than always choosing the mean of Y.  Simple linear regression is utilized to 

determine the actual equation relating X and Y so we can make these more accurate predictions of 

Y.   

 In addition, multiple linear regression, a procedure in which two or more X variables are 

used to predict the value of Y, was briefly discussed. 

Glossary Of Terms 
 
Coefficient of determination – The square of the correlation.  It indicates the proportion of  

 variability in one variable that is explained or accounted for by the variability in the  

 other variable.  

Coefficient of nondetermination  – The proportion of the variability of one variable not explained or  

 accounted for by the variability of the other variable.  For the Pearson r, it is equal to 1 – r2 . 

Correlation – A measure of the degree of association among variables.  A correlation  indicates  

 whether a variable changes in a predicable manner as another variable changes. 

Correlation coefficient – A single number that indicates the degree to which two variables are  

 related. 

Covariance – A statistical measure indicating the extent to which two variables vary together. 

Covary – If knowledge of how one variable changes assists you in predicting the value of another  

 variable, the two variables are said to covary. 

Criterion variable (Y) in regression – The variable (Y) whose value is being predicted by the  

 predictor variable (X). 

Dependent variable (Y) in regression – Another name for the criterion variable.   

Error variance (Ŷ2) – The variance of Y scores around the regression line. 

Multiple correlation (R) – The association between one criterion variable and a combination of two  

 or more predictor variables. 

Multiple linear regression – A procedure in which several variables (Xs) are used to predict the  

value of another variable (Y). 

Negative correlation  – A relationship between two variables in which as one variable increases in  

 value, the other variable decreases in value.  Also, as one variable decreases in value, the  

 other increases in value. 

Partial correlation – A procedure in which the effect of a variable that is not of interest is removed.    

Positive correlation – A relationship between two variables in which as one variable increases in  

 value, so does the other variable.  Also, as one variable decreases in value, so does the other. 
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Predictor variable (X) in regression – The variable (X) that is used to predict the value of the  

 dependent or criterion variable (Y).   

Regression – Procedure researchers use to develop an equation that permits the prediction of one  

 variable of a correlation if the value of the other variable is known. 

Regression line – With linear regression, a straight line indicating the value of Y that is predicted to  

occur for each value of X.  The symbol for the predicted value of Y is Ŷ. 

Regression weight – Another term for the slope of the regression line. 

Restriction of the range – Reducing the range of values for a variable will reduce the size of the  

 correlation. 

Rho () – Symbol used for the population correlation. 

Simple linear regression – Procedure used to determine the equation for the regression line. 

Slope of the line – One of the two determinants of the equation for a straight line.  It is the ratio of  

 the change in the Y variable divided by the change in the X variable.  It has the symbol ‘b’ in  

 the equation Y = bX + a. 

Standard error of estimate (Ŷ ) – The standard deviation of Y scores around the regression  line.   

Y intercept – One of the two determinants of the equation for a straight line.  It is the value of Y 

when X is equal to 0.  It is, therefore, the value of Y when the line crosses the Y axis.  It has the 

symbol ‘a’ in the equation Y = bX + a. 

Questions – Chapter 14 – Correlation 

 
(Answers are provided in Appendix J.) 

1. When knowledge of the outcome of one event assists in predicting the outcome of 
 another event, then we say _____. 
 a. The two events are causally related 
 b. The two events are correlated  
 c. The two events are independent 
 d. The two events are meaningful 
 
2. In order to use the Pearson r the data must be either _____. 
 a. nominal or ordinal 
 b. ordinal or interval 
 c. interval or ratio  
 d. nominal or ratio 
 
3. The magnitude of the Pearson r indicates the _____ between X and Y. 
 a. Durability of the relationship 
 b. Direction of the relationship 
 c. Degree to which there is a non–linear relationship 
 d. Degree to which there is a linear relationship  
 
4. The magnitude of the square of the Pearson r indicates the _____. 
 a. Percent of the variance in Y explained by the variance in X  
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 b. Degree to which X and Y are affected by a third variable, Z 
 c. Degree to which the experimenter has utilized appropriate experimental  
  design 
 d. Extent to which error occurred in the study 
 
5. If knowing how one variable changes aids us in predicting how another variable will 
 change, we say that the two variables _____. 
 a. Are causally linked 
 b. Covary  
 c. Are identical 
 d. Should be merged into one variable 
 
6. If you are interested in whether two variables are correlated and if both variables consist of 

ordinal data you use _____. 
a. ANOVA  

 b. Spearman r  
 c. Pearson r 
 d. Chi-square 
 
7. If you are interested in whether two variables are correlated and if you are dealing  

with two interval or ratio variables you would employ _____. 
a. ANOVA  

 b. Spearman r  
 c. Pearson r  
 d. Chi-square 
 
8. A correlation of _____ indicates that there is not any association between the two 
 variables. 
 a. 0  
 b. 1 
 c. 2 
 d. 3 
 e. 4 
 
9. A correlation of _____ indicates that there is a perfect association among the variables.   

a. 0  
 b. 1  
 c. 2 
 d. 3 
 e. 4 
 
10. In a _____ correlation, as one variable increases, so does the other. 
 a. Neutral 
 b. Negative 
 c. Positive  

d. Strong 
 

11. In general, the more flaws a diamond has, the lower its value.  This is an example of a _____ 
correlation. 
a. Neutral 

 b. Negative  
 c. Positive 

d. Strong  
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12. With a (an) _____ the researchers know that a prediction can be made and how well it can be 
made, but they do not know what the actual prediction would be.  In order to make a 
prediction, we employ the statistical procedure called _____. 
a. Inferential statistic; correlation 
b. Descriptive statistic; correlation 
c. Regression; correlation 
d. Correlation; regression  
 

13. If we conclude, based upon our samples, that a correlation exists when in fact there is no 
such correlation, we have made a _____. 
a. Type I error  
b. Type II error 
c. Type III error 
d. A correct decision 
 

14.  With a (an) _____ design, we are not asking if the distributions that we have observed are 
different.  Instead, we are asking if the variables are related or associated.    

 a. Experimental 
 b. Descriptive statistical  
 c. Correlational  

d. ANOVA 
 

15. The square of a correlation is called the _____. 
 a. Spearman correction 

b. coefficient of determination  
 c. co–variance 
 d. regression equation 
 
16. The _____ measures what proportion of variance in one variable is explained or 
 accounted for by the other variable.   

a. Spearman correction 
b. coefficient of determination   

 c. co–variance 
 d. regression equation 
 
17. The removal of extreme scores usually reduces the size of a correlation.  This is called _____ .   
 a. The compression effect 
 b. Range limitation 
 c. Deviation control 

d. Restriction of the range  
 

18. A group of hypothetical students were asked their high school GPAs and their most  
 recent statistics quiz score:   
  GPA  Quiz Score 
  4.0  10 
  3.75    9 
  3.5    9 
  3.25    7 
  3.0    8 
  2.5    5 
 

What is the Pearson correlation for these two variables? 
 a. .93 
 b. .95 
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 c. –.92 
 d. .03 
 
Note:  It is important to save your work for problem 18 as it will be needed for subsequent 
questions dealing with regression. 
 

Questions – Chapter 14 – Regression 

 
(Answers are provided in Appendix J) 

 
19. The greater the magnitude of the correlation, ignoring the sign, between X and Y, the  
 _____. 

a. Farther the data points are from the regression line 
b. Closer the data points are to the regression line  
c. More closely the data points around the regression line look like a circle 
d. The lower the ability to predict from X to Y 
 

20. To actually predict from one variable to another, we use a procedure known as _____. 
 a. Regression  
 b. Correlation 
 c. Dependency analysis 
 d. Post hoc testing 
 
21. The sum of the errors,  (Y – MY), will always be equal to _____.    

a. 0  
b. 1 
c. 2 
d. 3 
e. None of the above 
 

22. If you don’t have any other information, your best prediction of Y would be _____ for  every 
value of X. 

 a. Mean of X 
 b. Mean of Y  
 c. Mean of X + Y 
 d. Mean of Y2 

 

23. The standard deviation for the error of prediction when using a regression line is called 
 the _____. 

 a. standard deviation of estimate 
 b. standard deviation of error 
 c. standard error of estimate  
 d. standard variation of estimate 
 
24. When the correlation is 1, all of the observed data points fall along the _____. 
 a. X axis 
 b. Y axis 
 c. horizontal line for the mean of Y 
 d. regression line  
 
25. The regression line is defined as the straight line for which the sum of the squared errors of 

prediction,  (Y – Ŷ)2, is a _____. 
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 a. Minimum  
 b. Maximum 
 c. Mean of the minimum and maximum 
 d. None of the above 
 
26. Whenever the Pearson r is significant,  [ (Y – MY)2 / n ]  _____. 
 a. will be greater than  [ (Y – Ŷ)2 / n ]  
 b. will equal  [ (Y – Ŷ)2 / n ] 
 c. will be less than  [ (Y – Ŷ)2 / n ] 
 
27. When r2 is equal to 1, the standard error of estimate (Ŷ ) is equal to _____.   
 a. 0  
 b. 1 
 c. 2 
 d. 3 
 
28. We are more accurate in making predictions when r2 is _____. 
 a. Small 
 b. Of intermediate size 
 c. Large  
 d. It depends upon the specific question being asked. 
 
29. In the general equation for a straight line, Y = bX + a , the slope is indicated by _____. 
 a. ‘b’  
 b. ‘X’ 
 c. ‘a’ 
 d. None of the above 
 
30. The procedure for finding the equation for the straight line that best fits our data is called 

_____.   
 a. Correlation 
 b. Linear maximization 
 c. Finding the Y intercept 
 d. Regression  
 
31. If the correlation between X and Y is zero, then for any value of X the best prediction for the 

value of Y would be the _____. 
 a. standard error of estimate 
 b. minimum value of Y 
 c. maximum value of Y 
 d. mean value of Y 
   
32. In problem #18 that involved GPA and quiz grades, what is the value of the constant in the 

regression line? 
 a. 3.09 
 b. –0.08 
 c. –2.29 
 d. 43.15 
 
33. Problem #18 involved GPA and quiz grades.  What is the value of the slope of the  
 regression line for these data? 
 a. 3.09 
 b. –0.08 
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 c. –2.29 
 d. 43.15 
 
 
Problems 34 – 42 utilize SPSS. 
 

Using SPSS With The Pearson Correlation 

To Begin SPSS 

 
 Step 1 Activate the program, close the central window, and click on the Variable View 

option at the bottom left of the window.     

 Step 2 Click on the first empty cell under the column heading ‘Name’.  You now type the 

name of the first variable for which you have data.  We are going to utilize the same data and labels 

as were previously employed in Table 14.2.  These data dealt with whether there is a correlation 

between quiz and exam grades for students in a statistics class.  We are calling these variables ‘Quiz’ 

and ‘Exam’.  Therefore, type ‘Quiz’ in the first empty cell under ‘Name’. 

 Step 3 Click on the first empty ‘cell’ under the column heading ‘Label’.  In this cell you can 

type a more extensive description of your variable.  In our case, type ‘Quiz grade’.   

 Step 4 Click on the first empty ‘cell’ under the column heading ‘Measure’.  As we are dealing 

with ratio data for the quiz grades, select ‘Scale’ as is shown in Figure 14.14.   

Step 5 Repeat Steps 2 – 4 except that you type ‘Exam’ in the first empty cell under ‘Name’ 

and ‘Exam grade’ for the label.  As before, select ‘Scale’ in the column under the column heading 

‘Measure’ as we have ratio data for the exam grades.  The result is shown in Figure 14.14.   

Figure 14.14 The Variable View Window 

 

To Enter Data In SPSS 

 
Step 6 Click on the ‘Data View’ option at the lower left corner of the window.  The variables 

‘Quiz’ and ‘Exam’ will be present. 

Step 7 For each of the seven subjects in the study type their quiz and exam grades in the 

appropriate columns (Figure 14.15).      

Figure 14.15 Entering Data 
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To Conduct A Pearson Correlation 

 
Step 8 Click the cursor on ‘Analyze’ along the row of SPSS commands above the data you 

entered, then move to ‘Correlate’, then click on ‘Bivariate’ as we are dealing with two variables, the 

quiz and exam grades. 

Step 9 A new window will appear (Figure 14.16).  On the left side of this window is a list of 

all of the variables that have been entered into SPSS.  In order to conduct a Pearson r we must 

indicate to SPSS which variables we wish to examine.  As we only have two variables this is 

accomplished by moving our two variables to the empty box on the right side of the window.  To do 

so check that our first variable, ‘Quiz Grade’, is highlighted and then click on the central arrow 

(Figure 14.17).  We then move ‘Exam Grade’ to the right side box in the same manner.  The result 

will be that each label will move to the appropriate box on the right–hand side of the window, as is 

shown in Figure 14.18.  Check to be sure that the appropriate options are indicated, in our case 

‘Pearson’, ‘Two-tailed’ and ‘Flag significant correlations’.  Then click ‘OK’ which is located at the 

bottom of the window.   

Figure 14.16 The Bivariate Correlation Window 
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Figure 14.17 The Bivariate Correlation Window, Continued 

 

 

Figure 14.18 The Completed Bivariate Correlation Window 

 

 

Step 10 SPSS calculates the desired Pearson r as shown in Table 14.10.  The table takes 

some practice to get used to.  In the left-most column, find ‘Quiz grade’.  Directly to the right is 

printed ‘Pearson Correlation’.  Continuing in the same row there is a number 1, which indicates that 

quiz grades are perfectly correlated with quiz grades.  This is obvious and is not of interest.  

Continuing in the same row is the number .795*.  This indicates that the Pearson r between quiz 

grades and exam grades is .795 and the * indicates that this correlation is significant at the .05 level.  



454 
 

The next row indicates that the p-value of a correlation of .795 is .033, which is less than an alpha of 

.05.  The final row in the Quiz grade section is the number of pairs of scores, in this case 7.  The 

same information is then presented again in three rows that begin with ‘Exam grade’.  Clearly, if the 

correlation between quiz and exam grades is .795, then the correlation between exam and quiz 

grades is also .795.  You should verify that the outcome using SPSS is essentially the same as we 

found previously. 

Table 14.10 SPSS Output; Pearson Correlation 

 

                                      

Note:  Save this SPSS data file.  It will be used in the following SPSS section dealing with regression. 

SPSS Problems – Correlation  

 
A magazine recently listed the horsepower and mileage of sports cars equipped with a turbo and a 
manual transmission: 
 
    Horsepower MPG 
    200  27 
    265  24 
    172  33 
    227  25 
    197  27 
    305  21 
 
 
34. What is the correlation between horsepower and miles per gallon (MPG)?   
 a. .932 
 b. –.950 
 c. –.916 
 d. .025 
 
35.  Is the correlation statistically significant with alpha equal to .05? 
 a. yes 
 b. no 
 
Note:  Save this SPSS data file.  It will be used in the following SPSS section dealing with regression.  
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Using SPSS For Linear Regression 
 

We will continue to use the data from Table 14.2 to illustrate how SPSS can be used to 

calculate a linear regression.   

 Step 1 Retrieve the SPSS data file that was previously created for the data in Table 14.2 (If 

you did not save this file, you will need to go back to the SPSS section dealing with correlation and 

follow the steps to enter the data.) 

 Step 2 Click on ‘Analyze’, then on ‘Regression’ and finally on ‘Linear’.  A new window 

appears (Figure 14.19).   

Figure 14.19 The Linear Regression Window 

 

 

Step 3  As we are trying to predict exam grades from quiz grades, highlight ‘Exam grade’ and 

click on the top arrow.  ‘Exam grade’ will move to the box under ‘Dependent’ (Figure 14.20). 

Figure 14.20 The Linear Regression Window – Continued 
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 Step 4  Highlight ‘Quiz grade’ and click on the second arrow.  ‘Quiz grade’ will move to the 

box under ‘Independent(s)’ as it is our predictor variable (Figure 14.21).   

Figure 14.21 The Linear Regression Window – Completed 

 

                              

 

 Step 5  Click on ‘OK’ and the SPSS linear regression analysis will appear.  We are only 

interested in the last three of the four sections of the output.  Table 14.11 indicates the value of the 

correlation for the linear regression is .795.  (SPSS uses the symbol R to signify this correlation.)  

This is the same value we found for the correlation previously with SPSS and, except for rounding 
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error, with our hand calculations.  In addition, Table 14.11 shows that the variability in the exam 

scores that can be accounted for by the differences in the quiz scores (R Square) was .632.  This 

closely matches our calculated value of r2 which was .62.  Furthermore, a value for the ‘Adjusted R 

Square’ is given.  Finally, the standard error of estimate is provided.  Approximately 68% of the 

estimated exam grades will fall within plus or minus one standard error of estimate, in this case 

5.97715, and approximately 95% of the exam grades will fall within plus or minus two standard 

errors of estimate.  (You may have noticed that the value of the standard error of estimate in Table 

14.11, which is 5.97715, differs substantially from the value of 5.57 that we calculated.  This is due 

to SPSS using the ‘Adjusted R Square’ of .558 to calculate the standard error of estimate while we 

utilized an r2 of .62.  You are encouraged to recalculate the standard error of estimate using the 

value from Table 14.11 to confirm that this is the case.) 

 Table 14.12 provides a statistical test (ANOVA) of whether using the regression line 

provides a better estimate of the exam grades than if the researcher always chose the mean value of 

the exam grades regardless of the value of the quiz grades.  As the significance level (p-value) is 

reported to be .033, which is less than .05, the conclusion based upon the ANOVA is that the 

regression equation provides a better estimate. 

Table 14.13 provides the actual regression coefficients.  In this chapter we have learned that 

the equation for the regression line is provided by the equation Ŷ = bX + a.  The values for ‘a’ and 

‘b’ are listed in the column with the heading ‘B’.  Specifically, the value for the constant ‘a’ is 41.000 

and the value for the slope ‘b’ is 5.316.  Thus the regression equation becomes Ŷ = 5.316X + 41.000.   

And note that these values for ‘a’ and ‘b’ are similar to the values that we previously found except 

for slight discrepancies due to rounding error when the calculations were completed by hand.  We 

do not need to be concerned with the remainder of Table 14.13. 

Table 14.11 SPSS Output; R, R Square, and Standard Error of Estimate 

 

                                
 
Table 14.12 SPSS Output; Test of Significance 
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Table 14.13 SPSS Output; Regression Coefficients 

              
 

Caution:  For SPSS, which variable you identify as the DV and which as the IV in regression is critical 

as the values for ‘a’ and ‘b’ will be affected. 

 

Step 6 Exit SPSS.  There is no need to save the output or data. 

 

SPSS Problems – Regression 

 
For the following problems, utilize the data previously entered for questions 34 – 35 that dealt with 
the association between horsepower and miles per gallon.  Use SPSS for problems 36 and 37.  
Subsequent problems may need calculations to be completed by hand. 
 
 
36. What is the value of the Y intercept in the regression line? 
 a. 3.086 
 b. –0.075 
 c. –2.286 
 d. 43.152 
 
37. What is the value of the slope of the regression line? 
 a. 3.086 
 b. –0.075 
 c. –2.286 
 d. 43.152 
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38. What is the predicted miles per gallon for a car with 300 horsepower? 
a. 20.65 
b. 22.39 
c. 23.45 
d. 24.60 

 
39. What is the predicted miles per gallon for a car with 400 horsepower? 

a. 16.92 
b. 13.15 
c. A value should not be calculated as 400 horsepower is beyond the range of the 

original data 
d. Less than 10 

 
40. Finally, calculate the predicted miles per gallon for a car with 200 horsepower. 

a. 27.33 
b. 28.15 
c. 29.25 
d. 30.67 
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CONCLUSION 
 
Chapter 15 – Congratulations, the Big Picture and Next Steps:  Recapitulation and Final 
Considerations 
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Chapter 15   
Congratulations,   

The Big Picture and Next Steps:   
Recapitulation and Final Considerations 

 

“The science of statistics is the chief instrumentality through which 

the progress of civilization is now measured, and by which 

its development hereafter will be largely controlled.” 

S. N. D. North 

 

General Review 
 
 You are to be congratulated!  This is the final chapter of a demanding book.  It is the author’s 

hope that you have not only mastered the techniques that have been presented but that you have 

also gained an appreciation of the usefulness of statistical analyses of data.   

As you are quite aware there are numerous statistical procedures, each appropriate for a 

different situation.  An overview table (Appendix L) was utilized to assist you in seeing how the 

various procedures are related and so that you would be better able to understand the context 

within which they are used.  At the broadest level there are two types of statistics, descriptive and 

inferential.  As you learned, descriptive statistics consist of those procedures that are used to 

summarize a set of data.  Measures of central tendency, such as the median and mean, as well as 

measures of variability, including the range and standard deviation, are examples of descriptive 

statistics.  Most of the text, however, was devoted to a review of inferential statistics.  These are the 

procedures used with experimental, quasi-experimental and most correlational designs.  Inferential 

statistical procedures enable us to conclude whether a relationship observed in a sample is likely to 

generalize to a population.  Examples of these procedures include the Pearson correlation, the chi-

square test of independence and the ANOVAs.   

 Of course, as the overview table (Appendix L) indicates, the specific descriptive or 

inferential procedure that is appropriate will also depend, in part, upon the type of data that have 

been collected.  Statistical procedures deal with data measured at the nominal, ordinal, interval or 

ratio levels.  The nature of the research question that is being examined will usually determine a 

specific level of measurement.  Once the question is identified there is often little choice in the level 

of measurement that will be employed.  However, since the amount of information conveyed by the 

data differs with the level of measurement, the power of the statistical tests that are matched with 
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the various levels of measurement will also differ (reviewed in Appendix E).  Thus the power of the 

statistical tests that are used with interval and ratio data is greater than the power of the tests 

appropriate for ordinal or nominal data.  As a result, fewer subjects will be needed when collecting 

interval or ratio data compared to ordinal or especially nominal data.  For instance, a two-way 

between-subjects ANOVA is more powerful, and thus more efficient, than a chi-square test of 

independence.   

 Regardless of the inferential statistical procedures used, their strength is in enabling us to 

predict.  Properly employed statistical procedures enable us to generalize findings from our sample 

to a population and, accordingly, to predict the likelihood of future occurrences.  This has proven to 

be incredibly valuable.  With the assistance of statistics we are able to predict the academic success 

of college applicants who have not yet finished high school, we can predict the effectiveness of 

medical treatment options, and we can predict economic outcomes, to name just a few uses.  In 

other words, statistics are immensely practical.  Because of this, they are also ubiquitous.  Since you 

cannot hide from them, a better approach is to learn about statistics so that you can benefit from 

their potential.  Hopefully this book has assisted you in achieving this goal. 

“If you think that statistics has nothing to say about what you do or how you could  

do it better, then you are either wrong or in need of a more interesting job.” 

Stephen J. Senn 

Future Directions  
 

The author had a number of purposes in writing this book.  A major goal, of course, was to 

provide an introduction to the most essential statistical procedures.  This book should have 

provided you with the background needed to understand much of the research in your specific field 

of interest.  The author also aspired to provide an introduction to statistics organized in such a way 

that the relationships between different statistical procedures would be evident (refer to 

Appendixes L and M).  This perspective should provide a good foundation for those of you who plan 

to learn more about statistics in the future.  In fact, if this text has served to enhance your interest in 

this field and, as a result, you are excited about continuing to explore the field of statistics, or 

research methodology, then I am most gratified.  If, on the other hand, you see this as your last 

formal exposure to statistics I hope that you have gained an appreciation of the usefulness of 

statistical analyses and the knowledge that you have mastered a number of the field’s important 

concepts.  However, regardless of whether this is your last, or just your first, course in statistics you 

should be aware that due to time limitations there are numerous statistical procedures that could 

not be included.   
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At the nominal level of measurement a very useful procedure is the Fisher exact test.  It is an 

alternative to the 2 X 2 chi-square test of independence and is usually employed with studies which 

have small data sets.   

Fisher exact test – An alternative to the 2 X 2 chi square test of independence that is used  

when there is a particularly small data set. 

 

There are also numerous additional procedures for use with interval or ratio data that you 

may see in the literature.  For instance, factor analysis permits the identification of which variables, 

out of a set of predictor variables, statistically group together.  Each related group of variables is 

called a factor.  (The term ‘factor’ is being defined differently here than when we discussed factorial 

ANOVAs.)  This technique was developed by Spearman and Burt in the 1930s to try to ascertain 

whether intelligence consisted of a series of largely independent characteristics or whether there 

was some shared component underlying the more specific attributes.  Factor analysis involves 

highly complex calculations and is, therefore, reliant upon computer-assisted data analysis.   

Factor analysis – Statistical procedure that groups the initial variables into a smaller set of  

underlying variables called factors. 

Factor - one of a smaller number of underlying variables derived from analysis of the larger  

set of initial variables.   

 

In addition, you are likely to see larger ANOVAs than were covered in this text.  We 

discussed one- and two-way designs.  Three-way and even larger ANOVAs are encountered in the 

literature.  There is no theoretical limit to the number of independent variables that can be included 

in an ANOVA, but the interpretation of the interactions quickly becomes problematical.  Also, we did 

not have time to cover what is called the mixed ANOVA.  This is a very useful, factorial design in 

which there are both between-subjects and within-subjects factors.   

Mixed ANOVA – Factorial ANOVA in which there are both between-subjects and within- 

subjects factors. 

 

Just as we learned that ANOVAs can be expanded so that the effects of two or more 

independent variables can be simultaneously analyzed, a technique known as MANOVA permits the 

simultaneous analysis of more than one dependent variable.  This can be essential to analyzing 

some research designs, but once again the calculation are best left to a computer. 

MANOVA – An extension of ANOVA in which there is more than one dependent variable. 

 

This by no means exhausts the additional statistical options.  It may be helpful to think of 

each statistical procedure as a tool.  You have now acquired a basic, general tool kit, such as initial 
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buyers of a home or car often purchase.  You have the equivalent of a hammer, a few pliers and a 

couple of screwdrivers.  The more you learn in your field of interest, the more statistical ‘tools’ you 

are likely to acquire.  Many are quite specialized.  But, as with the tools of a master mechanic, each 

has its purpose.  The more techniques you learn, the more flexible you become in analyzing data.  

 

Overview:  This Statistics Book Makes Use Of Mathematics But Is Not A 
Mathematics Book 

 
 It may have occurred to you that while this statistics book uses a great deal of mathematics 

it is different from other mathematics texts you have studied.  That is because this is not truly a 

mathematics book.  By this it is meant that this statistics book has a different orientation than one 

commonly written by mathematicians.  Mathematicians generally seek universal solutions through 

logical analysis.  In this text we have not developed any such general solutions.  We have not, 

therefore, been functioning as mathematicians.  Instead, we have been the beneficiaries of their 

efforts.  Fundamentally, in this text we have learned how to employ the solutions developed by 

mathematicians.  In order to employ the solutions correctly we have had to recognize what type of 

research problem we were facing, but what I have not attempted to do is to provide an in-depth 

explanation of the underlying logic of any of the statistical procedures. 

 This distinction between a mathematician’s analysis of a statistical problem and our use of 

statistical procedures is evident at a number of levels.  Most significantly, mathematicians find 

‘truth’ through a method called deduction.   

Deduction – A method of thinking in which conclusions are logically derived from general  

 statements that are assumed to be true.   

 

_________________________________________________________________________________________________________ 

Box Dealing With Contributions Of The Greeks 

 
Deduction was developed by the Greeks and is the fundamental method used by 

mathematicians.  This method emphasizes human reason, or rationalism.   Before the Greeks, the 

Egyptian and Babylonian civilizations had found solutions for mathematical operations and had 

used basic algebra.  They also had determined how to find areas and volumes, and thus had a value 

for  that was accurate enough for their purposes.  For the Egyptians, this was 3.16 while for the 

Babylonians it was simply 3, the same value as is found in the Bible.  Thus, for the Egyptians and 

Babylonians, mathematics was simply a tool.  They used mathematics practically, for measurement, 

finance and astronomy.  Their mathematics were useful, but limited. 
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 Rationalism – A method for finding truth that emphasizes logical thinking rather than  

  observation.   

 

While the Greeks acknowledged their debt to other civilizations, especially to the Egyptians, 

they proceeded to revolutionize mathematics and many other fields with their emphasis upon 

human reasoning.  In their view the senses are inadequate to find truth and, instead, we should 

emphasize the human capacity for logic.  The immediate consequence was that the Greek 

civilization created western philosophy, political analysis as well as our conception of mathematics.   

A mathematician begins with some basic assumptions, called axioms, and from them develops 

theorems.  So long as the initial axioms are correct, deductions based upon logical thinking will lead 

to general solutions that we can be completely confident are true.  Thus, a mathematician seeks 

definite knowledge through a rational process.   

The results of this emphasis upon reason were impressive.  By 300 BCE, Greeks such as 

Thales and Pythagoras had made significant advances, especially in geometry.  This effort 

culminated with Euclid’s Elements in which 467 theorems are deduced from an initial set of 10 

axioms.  Throughout the Middle Ages, the Renaissance and for several subsequent centuries 

Euclid’s Elements served as the foundation for a Western education in logical thinking.  It is 

undoubtedly one of the most significant and influential books ever written.   

The emphasis of Greek thinking was not upon practical gain.  It was, instead, focused upon 

the acquisition of pure knowledge.  Nevertheless, the Greek emphasis upon human reason, and 

particularly their reliance upon deduction in mathematics, has had an enormous practical as well as 

theoretical legacy.  For instance, it is a commonly repeated myth that Columbus, in order to get 

support for his proposal to reach China by sailing west, had to first convince the king and queen of 

Spain that the earth was round rather than flat.  The truth is that it was generally accepted in 

fifteenth century Europe by those who were educated that the earth was essentially a sphere and, 

in fact, there were several estimates of its size.  The most commonly accepted estimate of the 

earth’s circumference came from Ptolemy (90 – 168 CE), a Greek scholar who had resided in 

Alexandria, Egypt.  (This is the same Ptolemy who is known for his geocentric model of the 

universe.)  However, an even earlier estimate of the earth’s circumference had been made by 

Eratosthenes (276? –195? BCE), a Greek scholar who had also lived in Alexandria, Egypt (reviewed 

in Boorstin, 1983).   

Eratosthenes, like most educated Greeks, accepted that the earth was essentially a sphere.  

He learned, additionally, that on the summer solstice the sun’s rays reached all the way to the 

bottom of a deep well at Syene (modern Aswan), which was a known distance (approximately) to 

the south of Alexandria.  He realized that this meant that the sun had to be positioned directly over 

the well on that day (Figure 15.1).  He also understood that this information, along with his training 
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in geometry, would permit him to estimate the earth’s circumference.  Specifically, on the day of the 

summer solstice he measured the length of the shadow made by an obelisk (some references 

indicate a vertical rod) of known height at Alexandria.  From these measurements he determined 

that the angle between the obelisk and the sun’s rays was slightly greater than 7 (Figure 15.2).  

The rest was geometry.  We will call the angle between the obelisk and its shadow ‘a’.  We will 

round this value to be 7.  Therefore, we also know that another angle ‘A’ has the same value 

(Figure 15.3).  Hence, the angle between the line extending from the obelisk in Alexandria to the 

center of the earth, and the line from the well at Syene to the center of the earth is also 7.  Thus, the 

distance that Syene is to the south of Alexandria corresponds to 7 / 360 or approximately 1 / 50 of 

the circumference of the earth since there are 360 in a circle.  Eratosthenes noted that the 

circumference of the earth is, therefore, 50 times the distance that Syene is to the south of 

Alexandria.  We now know that the circumference of the earth is about 40,075 km (approximately 

24,900 miles).  The accuracy of Eratosthenes’ estimate is still being debated since there is not a 

universally agreed upon conversion between his unit of measurement of distance (the stade) and 

the units of measurement we currently use.  The most generally accepted outcome is an estimate of 

28,700 miles, and thus Eratosthenes’ error was only about 15%.  (His error may have been 

substantially less.)  Regardless, I think you will agree that this is a remarkable achievement 

considering it was accomplished over 2000 years ago using only a few simple measurements.  Of 

course, Eratosthenes also benefited from a long history of mathematical progress that was a direct 

result of the Greek emphasis upon deduction.  

Figure 15.1 The Position of the Sun on the Summer Solstice 

 
 

 
Figure 15.2 Diagram of the Analysis Employed by Eratosthenes  
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Figure 15.3 Eratosthenes’ Geometric Analysis  

 
    

And what about Columbus?  Fortunately for him, in fifteenth century Europe Ptolemy was 

the accepted authority in geography and his estimate of the earth’s circumference was only 18,000 

miles.  This was an error of over 27%.  In addition, Ptolemy thought Asia was larger than it actually 

is.  Together, these errors had the effect of dramatically shrinking the distance between Eastern 

Asia and Western Europe.  And Columbus went further and argued that even Ptolemy’s 

underestimate of the size of the earth was too large!   

A Portuguese commission rejected Columbus’ proposal to sail west to reach the Indies.  The 

royalty of Spain were also skeptical, but Columbus finally convinced them that the distance from 

Spain to Japan and China was much smaller than it actually is, and thus that a voyage from Spain 

west to Japan and China was feasible.  As a glance at a globe will indicate, Columbus and the crews 

of his three small, leaky ships were very fortunate indeed that two unknown continents lay 

between Spain and Japan or China.  Otherwise Columbus and his sailors would probably have never 

been heard of again.   

In summary, Greek rationalism led to several estimates of the size of the earth.  The 

estimate made by Eratosthenes was surprisingly accurate.  However, it was Ptolemy’s estimate that 

was generally accepted in fifteenth century Europe.  If the true size of the earth had been known, 

then it is unlikely that Columbus’ plan to sail west to China would have been supported.  Put 

another way, this ‘discovery’ of the New World was, in part, due to several errors.  Fortunately for 

Columbus, some people are just lucky!   

_________________________________________________________________________________________________________ 

  

 We, as users of statistics, function quite differently than mathematicians or the ancient 

Greeks for we emphasize induction.  With inferential statistics we begin with a limited sample of 

data and attempt to generalize the outcome to some population.  Thus, instead of beginning with 

axioms that are assumed to be true, we start with hypotheses and then use observations and 

statistical analyses to determine their likelihood.  We understand that the outcome of this process is 

not the definite knowledge that a mathematician seeks but rather a probabilistic statement.  While 
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the statistical procedures developed by the mathematician will always be correct so long as the 

initial assumptions are met, the specific outcomes we obtain by using the statistical procedures 

reviewed in this text will only have a probability of leading to a correct conclusion.  For example, if 

the Overview Table indicates that an ANOVA is the appropriate test we can be confident that the 

equations used are correct because they are based on mathematicians’ deductive efforts.  However, 

the outcome of using an ANOVA will be in terms of a probability.  We have learned, for instance, 

that with  equal to .05, there is a 5% chance of making a Type I error.  No matter how carefully the 

study is conducted, or the data analyzed, we will never achieve certainty.  This is because unlike the 

mathematician, who approaches a problem from a rational perspective, as statisticians we 

approach our problems from an empirical perspective.   

Induction  – A method of thinking in which conclusions are derived from  generalizations  

 based upon limited statements or observations that are assumed to be true.   

 Induction is fundamental to science, as observations are used to develop general  

 laws of nature.   

 

 With empiricism, we gain knowledge through observation.  Everyone is at some level an 

empiricist.  You choose your friends based upon your observations of their behavior; perhaps you 

chose your car after reading reviews; and you will receive grades based upon your professors’ 

observations of your learning.  In this text you have been introduced to sophisticated methods of 

empirical inquiry.  These are the correlational, quasi-experimental and experimental designs.  Used 

correctly these procedures, paired with the appropriate statistical analyses, greatly enhance the 

likelihood of gaining knowledge through observation.  Nevertheless, empiricism is always based 

upon limited observations and thus will never permit the absolute confidence that comes with the 

deductive method employed by mathematicians.   

Empiricism – A method for finding truth that emphasizes the importance of observation.     

 

 Though statistical analysis does not lead to certainty, it does lead to a probabilistic 

understanding of situations that has revolutionized many fields of study.  In fact, it is not an 

exaggeration to say that statistical thinking is largely responsible for the transformation of fields 

such as economics, sociology and psychology into sciences, and it has dramatically affected others 

such as anthropology, political science and history.  This is an amazing outcome for an offshoot of 

mathematics that began with the analysis of games of chance.     

Cautions In Using Statistics 

 

“Statistics are no substitute for judgment.” 
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Henry Clay 

 Like any powerful tool, statistical analysis must be used intelligently.  When using  

statistical procedures we are often interested in generalizing from a sample(s) to a population(s).  

It is essential to recognize that our confidence in doing so is dependent, in large part, upon the 

manner in which the sample(s) was chosen.  A biased sample does not provide the necessary basis 

for confidently making such a generalization.  Consequently, in this text we have repeatedly 

emphasized the importance of randomly selecting the subjects who will be included in the sample, a 

view emphasized by R. A. Fisher (1935).  In fact, the statistical procedures you have learned assume 

that the samples have been randomly selected.  Nevertheless, many studies, perhaps most, do not 

use random sampling.  This is not because the researchers are ignorant of the need for random 

sampling.  Instead, it is a consequence of the difficulty of obtaining random samples in a real-world 

setting.  For instance, researchers at a college might want to generalize the results of their study to 

the entire population of Americans.  To do so, they recognize that their sample should be a random 

selection of everyone residing in the United States.  But, how could they practically collect such a 

sample?  Yet if they don’t, how justified are they in claiming that their findings will generalize?   

 In psychology many studies are conducted with samples drawn from students taking an 

introductory college-level course.  To what population would it be appropriate to generalize the 

results?  Not only are the subjects all in college and thus likely to be younger than the American 

population in general, they also are more likely to be female.  Clearly, not only is this not a random 

sample, it is not even remotely representative of the entire American population.  Instead it is what 

is often called a sample of convenience.  The researchers are aware that they do not have a random 

sample, but what alternative do they realistically have?  Texts such as this one often make it sound 

as if selecting the sample is straightforward.  Actually, selecting an appropriate sample can be 

extremely challenging. 

 Sample of convenience – A sample that is chosen because it is easily available rather than  

  because it is optimal. 

 

 At least researchers are aware of the problem of selecting an appropriate sample.  They are, 

however, commonly not aware of their own biases.  There are numerous examples of researchers 

finding what they were looking for.  Some striking instances are reviewed in the Mismeasure of 

Man by Stephen J. Gould.  In this book Gould explains how numerous, competent researchers of the 

19th century published findings of skull volumes supporting the commonly held view that women 

and minorities were intellectually inferior to white males.  As Gould is careful to point out, this was 

usually not the result of any conscious manipulation of the data.  In other words, in the vast 

majority of cases there is no evidence that fraud was involved.  Instead, the researchers apparently 
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were convinced of what the findings would be before they collected the data and, not surprisingly, 

interpreted their findings according to these preconceived views.  Biases such as these are, in some 

respects, more problematic than outright dishonesty.  Hopefully, none of us is ever going to publish 

a fraudulent paper.  However, any of us could unknowingly publish results or conclusions affected 

by biases that we are not even aware we have.   

 In order to control against such biases the researcher can conduct what is called a ‘blind’ 

study.  There are a number of variants, but the essential idea is that neither the subject nor the 

researcher knows to which group the subject is assigned when the data are collected.  If properly 

used this technique will prevent biased observation.  However, ‘blind’ studies are more difficult to 

conduct and, in some cases, are not feasible.  For instance, if a study involves a comparison of men 

and women in face-to-face interactions, without careful precautions it is difficult to imagine that the 

individual collecting the data will not be aware of whether the subjects are men or women. 

 ‘Blind’ study – A study in which the data are collected in such a way that the subject’s  

  assignment to the control or experimental condition is not known.  There are  

  several variations of ‘blind’ procedures.  They are all employed to reduce bias. 

 

 It is also important to recognize that while statistical procedures are valuable in making 

predictions, these predictions are much more accurate for groups than for individuals.  For 

instance, it has been shown that exercise in the elderly is beneficial for a number of conditions.  

Thus, for two groups of the elderly who are equivalent except for how much they exercise, I can 

confidently predict that the group that exercises more will be healthier.  Nevertheless, there are 

likely to be individuals who exercise and yet who are not healthy, and individuals who do not 

exercise and yet remain healthy.  Therefore, while I can confidently predict which group will be 

healthier, it is much more challenging to predict how healthy any particular individual will be.   

Remember, most of the statistical procedures we reviewed compared sample means, not individual 

scores.  A statistically significant outcome thus does not indicate that every individual in the sample 

had exactly the same reaction to an intervention, just that overall there is an effect of the 

intervention.  As a consequence, following a statistically significant finding we can be confident that 

an independent variable had an effect.  However, this does not indicate that the effect occurred, or  

occurred equally, for each individual. 

And always remember that statistics deals with probabilities, not certainty, and recognize 

that this lack of certainty does not negate the usefulness of the procedures that you have reviewed 

in this text. 

A Final Thought 
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“They do not with regard to the phenomena seek for their reasons and causes  

but forcibly make the phenomena fit opinions and preconceived notions…” 

Aristotle 
 

 We have just reviewed some very important philosophical issues – rationalism/empiricism, 

deduction/induction, and the danger of bias.  What may not be clear is that this book was written 

from a particular perspective which is fundamental to the field of statistics.  This perspective, or 

assumption, is so basic that it may seem obvious:  use of statistical procedures presupposes that 

facts matter.  Put another way, it has been assumed throughout this book that an emphasis upon 

data is critical to understanding the world, and people.  This is, clearly, an empirical view.  This view 

was discussed previously and, I suspect, the vast majority of readers accepted it uncritically.  

However, I believe that upon closer inspection you will agree that some people seem immune to 

facts or feedback – they seem to hold views that are simply not open to being changed no matter 

how much data are presented.   

“People almost invariably arrive at their beliefs not on the basis of proof  

but on the basis of what they find attractive.” 

Blaise Pascal 

 

Clearly, this book assumes that facts should modify our opinions, and not the reverse.  But 

once again I think you will agree that many, perhaps all, people sometimes seem to see what they 

want to see, and they ignore what is uncomfortable or threatening to their views and values.  In 

fact, this occurs so commonly that in psychology it is given a name, the confirmation bias. 

Confirmation bias – Selecting only evidence that supports, or confirms, one’s pre-existing  

 beliefs. 

 

“His mind, in a sense, was too masterful – it imposed itself upon realities.” 

Richard Hofstadter describing John C. Calhoun 

This book has presented a variety of tools to help you see the world more clearly and to 

improve the quality of your decisions.  It is likely that you have spent much of your time learning 

the details of the many statistical procedures that were presented.  This is common in a first 

exposure to statistics.  At the same time, I have tried to also assist you in gaining a broader 

perspective by emphasizing an understanding of how these procedures are related.  This is 

summarized in the Overview Table.  What I am now suggesting is that this is fundamentally a book 

on critical thinking.  And if you now question the basis for the decisions that others as well as you 
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make, then mastering the material presented in this book will have been a particularly valuable 

experience. 

Conclusion 
 

“The most useful skill we could teach is the habit of asking oneself and others, how do you know?   

If knowledge comes from intuition or anecdote, it is likely wrong.” 

Sharon Begley 

You have now completed this introduction to statistics.  Statistical procedures are powerful 

tools in our quest to understand the world we live in.  Used correctly, statistics can be extremely 

valuable.  Though an incorrect conclusion is always possible, properly used statistical analysis will 

lessen the likelihood of making errors and will greatly enhance our ability to predict relationships 

among variables.  Used incorrectly, statistics can be quite detrimental, as the ‘cooked’ books at 

failed companies such as ENRON indicate.  Like any capability, your knowledge of statistics needs to 

be paired with integrity and judgment.  Finally, in research it is important to keep focused upon the 

big picture.  Quality studies require an insightful research idea, careful implementation of 

procedures and correct statistical analysis of the resulting data.  And always remember, 

“Not everything that can be counted counts, and not everything that counts can be counted.” 

George Gallup 

Glossary Of Terms 
 
‘Blind’ study – A study in which the data are collected in such a way that the subject’s  

 assignment to the control or experimental condition is not known.  There are several  

 variations of ‘blind’ procedures.  They are all employed to reduce bias. 

Confirmation bias – Selecting only evidence that supports, or confirms, one’s pre-existing beliefs. 

Deduction – A method of thinking in which conclusions are logically derived from general  

 statements that are assumed to be true.   

Empiricism – A method for finding truth that emphasizes the importance of observation.         

Factor - one of a smaller number of underlying variables derived from analysis of the larger set of  

initial variables.   

Factor analysis – Statistical procedure that groups the initial variables into a smaller set of  

underlying variables called factors. 

Fisher exact test – An alternative to the 2 X 2 chi square test of independence that is used when  
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there is a particularly small data set. 

Induction  – A method of thinking in which conclusions are derived from generalizations based  

 upon limited statements or observations that are assumed to be true.  Induction is  

 fundamental to science, as observations are used to develop general laws of nature.   

MANOVA – An extension of ANOVA in which there is more than one dependent variable. 

Mixed ANOVA – Factorial ANOVA in which there are both between-subjects and within-subjects  

factors. 

Rationalism – A method for finding truth that emphasizes logical thinking rather than  

 observation.   

Sample of convenience – A sample that is chosen because it is easily available rather than  

 because it is optimal. 
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Questions – Chapter 15 

 
(Answers are provided in Appendix J.) 

1. Which of the following is the correct order for the power of tests, from those with the least 
to those with the most power? 
a.       Ordinal; nominal; interval/ratio 
b.       Interval/ratio; nominal; ordinal 
c.       Nominal; interval/ratio; ordinal 
d.       Nominal; ordinal; interval/ratio  

 
2. _____ organizes the initial variables into statistically related underlying factors.    

a.       Kruskal-Wallis H test 
b.       ANOVA 
c.       Spearman 
d.       Factor analysis  

 
3. A method of thinking in which conclusions are logically derived from general statements 

that are assumed to be true.   
a.       Empiricism 
b.       Deduction  
c.       Induction 
d.       None of the above 

 
4. A method for finding truth that emphasizes logical thinking rather than observation. 

a.       Empiricism 
b.       Induction 
c.       Rationalism  
d.       None of the above 
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5. Euclid’s Elements dealt with _____. 

a.       Statistics 
b.       Algebra 
c.       Geometry  
d.       Poetry 

 
6. Instead of beginning with axioms that are assumed to be true, in statistics we begin with 

data that have been observed.  This is the process of _____. 
a.       Induction  
b.       Deduction 
c.       Rationalism 
d.       Thought for which the ancient Greeks are famous 

 
7. Statistical analysis does not lead to certainty, instead it leads to a (an) _____. 

 a.         Absolute truth 
 b.         Probabilistic understanding  
 c.         Inability to predict the future 
 d.        Unsubstantiated opinion 
 

8. Scientists would prefer to have a _____sample, but they often must employ a _____ sample. 
 a.        Convenience; random 
 b.        Biased; unbiased 
 c.        Random; convenience  
 d.        None of the above 
 

9. The essential idea of a (an) _____ study is that which group the subject is assigned to  
is not known by the researcher when the data are collected.   

 a.        Well–controlled 
 b.        Experimental 
 c.        Correlational 
 d.        Blind  
 
     10.  George holds strong political views and only listens to politicians who have the same views 

he does.  This is an example of  _____. 
a.   confirmation bias 
b.   deduction 
c.   induction 
d.   a sample of convenience 

 
      11.  I am interested in determining what students think of the new menu being offered 

for lunch so I ask my friends for their opinions.  This would be an example of  _____. 
a.   confirmation bias 
b.    induction 
c.    a sample of convenience 
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APPENDIXES 
 
Appendixes A – E, Additional Statistical Procedures 
 
A. Kruskal-Wallis H Test:  Analysis of a Difference Design with One Independent Variable, Two 

or More Samples, and Ordinal Data  

B. Phi Correlation:  Identifying the Strength of an Association when there are Nominal Data 

C. Spearman Correlation:  Identifying the Strength of an Association when there are Ordinal 

Data  

D. Multiple Linear Regression 

E. An Introduction to Power Analysis – Minimum Appropriate Sample Sizes  

 

Appendixes F – H, Statistical Symbols, Equations and Measures of Effect Size 

F. Statistical Symbols Used in this Book        

G. Definitional Equations and, Where Appropriate, Their Computational Equation Equivalents  

H. Inferential Statistical Procedures and Their Measures of Effect Size 

 

Appendixes I – J, Glossary and Answers to Chapter/Appendix Problems 

I. Glossary of Terms         

J. Answers to Chapter/Appendix Problems  

 

Appendixes K – L, Tables and Overview for Choosing the Correct Procedure      

K. Statistical Tables          

L. Overview Table 

M. Comparison of ANOVAs 

N. Choosing the Correct Inferential Procedure Table and Practice Choosing the Correct 

Procedure      
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Appendix A   
Kruskal-Wallis H Test:   

Analysis of a Difference Design with One Independent 
Variable, Two or More Independent Samples, and 

Ordinal Data 
 
 
“Nothing has such power to broaden the mind as the ability to investigate systematically and truly 

all that comes under thy observation in life.” 

Marcus Aurelius 

Introduction 
  

Our review of inferential statistics began with the procedures used with nominal 

(frequency) data.  We then turned to the procedures used with interval or ratio data.  These data 

are commonly called scores.  In this appendix we review a procedure used with ordinal data.  

Ordinal data consist of ranks rather than scores.  Researchers utilize ordinal data in two situations.  

In one instance the outcome of the study (the dependent variable) cannot be measured at either the 

interval or ratio level, but the data can be ranked.  Alternatively, the data are initially measured at 

the interval or ratio level but an assumption of the preferred statistical test, such as that there is a 

normal distribution, is violated and these data are then converted to ranks.  Ranked data are 

encountered less commonly in the social sciences than either frequency or interval/ratio data.  

Accordingly, the Kruskal-Wallis H test, which is used to determine whether there is a difference 

when there are ordinal data, is reviewed in this appendix rather than in the main chapters of the 

text. 

 Kruskal-Wallis H test – An inferential procedure that is analogous to the one-way between- 

  subjects ANOVA except that it is used with ordinal data.   

  

One of the advantages of the procedures that employ ranked data is that they do not make 

as many assumption about the populations from which the samples are drawn as do the procedures 

utilized with interval or ratio data.  More specifically, the Kruskal-Wallis H test does not estimate 

population parameters such as the mean or variance and, consequently, is called a nonparametric 

procedure.  In addition, it does not assume that the samples are drawn from normally distributed 

populations, though the Kruskal-Wallis H test does assume that the populations have the same 

distributions.  This greater flexibility is paired, however, with a loss of power and thus more 
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subjects will be needed with this statistical test than would be needed with the procedures 

employed with interval or ratio data, such as the analysis of variance.   

 Though the equation that is used for the Kruskal-Wallis H test may at first seem peculiar, it 

is mathematically straightforward and is based upon a comparison of groups of ranked data.  

Fortunately, the basic logic of this test is similar to what was previously encountered with the one-

way between-subjects ANOVA, which is used to analyze interval or ratio data.  With the one-way 

between-subjects ANOVA, if the null hypothesis is true then the means of the scores in each of the 

treatment levels would be expected to be similar.  This is because it would be unlikely for any 

treatment level, by chance, to have a preponderance of either high or low scores.  Similarly, with the 

Kruskal-Wallis H test, which uses ordinal data, if the null hypothesis is true then we expect the 

means of the ranks in each of the treatment levels to be similar.  Just as it is unlikely that a 

treatment level would consist mostly of high or low scores by chance, it is also unlikely that a 

treatment level would consist mostly of high or low ranks unless the treatment had the effect of 

changing the scores or ranks.  With each procedure we then ascertain whether the observed 

outcome deviates enough from the expected outcome to reject the null hypothesis and accept the 

alternative hypothesis that the independent variable had an effect. 

In Table A.1 you will see that the Kruskal-Wallis H test, which is underlined, is on the same 

row as the one-way between-subjects ANOVA.  Thus, this test is appropriate when you have one 

independent variable with two or more independent samples.  As was just noted, while the one-way 

between-subjects ANOVA is used when you have interval or ratio data, the Kruskal-Wallis H test is 

used with ordinal data or when results have been converted into ordinal data.   

Table A.1 Overview of Inferential Statistical Procedures For Finding if there is a Difference 

 
_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 

 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
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Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   

 
 

Conducting The Kruskal-Wallis H Test With Ordinal Data 

 
 Assume we are interested in the order in which football players are chosen in NFL drafts.  

More specifically, we take a sample of 19 players and compare the order in which offensive players 

(Sample 1) were chosen with the order in which defensive players (Sample 2) were chosen and the 

order in which special teams players were chosen (Sample 3).  The fictitious ranks, as well as totals 

needed for the computation of the Kruskal-Wallis H test, are shown in Table A.2.  The null and 

alternative hypotheses are: 

  H0 – The mean ranks for the three groups are the same. 

  H1 – The mean ranks for the three groups are not the same. 

We set α equal to .05. 

Table A.2 Example 1: Order Players were Chosen  
 
    Sample 1 Sample 2 Sample 3 

      1    2  12 

      3    4  14 

      6    5  16 

      8    7  17 

      9  11  18 

10               15                19 

               13 

  Total (T)  = 50  44  96 

                n =   7    6    6  N = 19 

 

Note that the number of individuals in the samples do not have to be equal. 

To calculate the Kruskal-Wallis H statistic, we use the following equation: 

   H = [ 
12

N(N + 1)
 ][ Σ ( 

T2

n
 ) ] – 3(N + 1) 

 

where N = the total number of subjects, T = the total of the ranks for a sample, and n = the sample 

size. 

This equation may be intimidating at first glance, but once you examine it carefully you will 

find it is actually quite easy to use.  
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 The constants in the equation, 12 and 3, are not specific to this problem, they are part of the 

general equation for the Kruskal-Wallis H statistic.  For our example, we would substitute and 

obtain: 

   H = [ 
12

19 (19 + 1)
 ][( 

502

7
 ) + ( 

442

6
 ) + ( 

962

6
 )] – 3(19 + 1) 

       = [ 
12

380
 ] [ ( 

2500

7
 ) + ( 

1936

6
 ) + ( 

9216

6
 ) ] – 3(20) 

       = [ 0.032 ] [ 357.143 + 322.667 + 1536.000 ] – 60 

       = (0.032)(2215.810) – 60 

       = 70.906 – 60 

         = 10.91 

Note that these calculations were carried out to three decimal places before rounding to 

two places.  This reduces the effects of rounding error. 

The degrees of freedom for the Kruskal-Wallis H statistic are equal to the number of 

samples minus one.  In our case, this would be 3 – 1, which equals 2.  Referring to the chi-square 

table (Appendix K, Table 2), which is also used with the Kruskal-Wallis H test, we find a critical 

value of 5.99 with two degrees of freedom and alpha set at .05.  As our obtained value of 10.91 is 

greater than the critical value we reject the null and accept the alternative hypothesis.  In other 

words, we conclude that the mean ranks for the three groups are not the same.   

 We are still faced with two issues.  First, we have not yet calculated a measure for effect size.  

Second, while the significant Kruskal-Wallis H statistic indicates that at least one of the sample’s 

mean ranks is expected to differ from another sample’s mean ranks, the test does not indicate 

which, or how many, of these samples’ mean ranks differ.  In other words, just as with the chi-

square test of independence and the one-way between-subjects ANOVA, the Kruskal-Wallis H test 

provides an overall test of significance for the entire study, but when there are more than two 

samples it does not indicate where the significant difference(s) is (are).  We will examine the issue 

of effect size first, and then describe a procedure for specifying where a difference within a 

significant Kruskal-Wallis H test is located. 

Calculating The Effect Size 

 
 Eta squared (2) is a measure of effect size for the Kruskal-Wallis H test.  As the following 

equation indicates, the effect size is easily found once the Kruskal-Wallis H statistic has been 

computed: 

Eta squared (2) for the Kruskal-Wallis H test = 
H

N − 1
      

where H is the value of the Kruskal-Wallis statistic and N is the total number of ranks. 

= 
10.91

19 − 1
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= 0.61   

 Eta squared (2) is an example of what is called a coefficient of determination, which was 

discussed in Chapter 14.  A coefficient of determination indicates what proportion of variability in 

one variable is accounted for by the variability in another variable.  In our case, 2 equals 0.61.  

Therefore, 61% of the variability in the hypothetical rankings is accounted for by knowing whether 

the choice in the draft involves an offensive, defensive or special teams player.      

Conducting The Post Hoc Comparisons 

 
 Next we return to the question of which sample ranks differ significantly.  Based upon the 

result of the Kruskal-Wallis H test we rejected the null hypothesis and, therefore, expect that there 

exists at least one difference in the rankings between samples.  However, we do not know where 

this (these) difference(s) may be.  As with the chi-square test of independence and the one-way 

between-subjects ANOVA, we now need to perform post hoc tests in order to ascertain which 

specific comparisons are statistically significant.  And, just as with the chi-square test and the one-

way between-subjects ANOVA, we will simplify the situation by limiting ourselves to comparisons 

of the original samples and omit comparisons where samples are combined.  We are, therefore, 

making what are called pairwise comparisons.  There are k(k – 1) / 2 possible pairwise 

comparisons where k = the number of samples.  In our example there are 3 independent samples 

and there would be 3(3 – 1) / 2, or 3 pairwise comparisons.  These pairwise comparisons would be 

between Sample 1 and Sample 2, between Sample 1 and Sample 3, and between Sample 2 and 

Sample 3.  Any one, any two, or all three of these comparisons could be statistically significant.  Just 

as with the chi-square test and the one-way between-subjects ANOVA, a significant Kruskal-Wallis 

H test simply indicates that at least one comparison between pairs of samples is expected to be 

significant.   

 A number of post hoc procedures have been developed for use with the Kruskal-Wallis H 

test.  The easiest alternative is to conduct a series of tests appropriate for use with a two-sample 

difference design and then utilize the Bonferroni method that was introduced in Chapter 8 to 

control the experimentwise error.  As we have ordinal data, inspection of the overview table 

(Appendix L) indicates that our post hoc would be further Kruskal-Wallis H tests (there are other 

alternatives).   

As you recall, the Bonferroni method, which was introduced in our discussion of the chi 

square test of independence in Chapter 8, maintains the experimentwise error by dividing the alpha 

level by the number of comparisons being made.  In the present case there are three comparisons 

so we would divide our alpha of .05 by three to obtain .0167.  Because this specific alpha level is not 

included in our chi-square table we turn to a table which includes more levels of alpha, or to a 
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computer program.  The definition of degrees of freedom remains the number of samples minus 

one.  As we are now comparing the ranks of pairs of samples, the df are equal to 2 – 1.  With an 

alpha of .0167 and 1 df our critical value becomes 5.73.   We now proceed with our first post hoc 

comparison, a comparison of Sample 1 and Sample 2.  For the post hoc we treat Sample 1 and 

Sample 2 as a complete set of data.  The first step, therefore, is to re-rank the data for these two 

samples, as is shown in Table A.3: 

Table A.3 Example 1:  Post Hoc Analysis for Sample 1 and Sample 2 

 
Sample 1 Sample 2  

       1  2   

3 4   

6  5   

8 7   

9 11   

10              13   

              12 

    T = 49               42  

              n =   7    6  N = 13 

 

To calculate the Kruskal-Wallis H test we use the same equation as previously: 

   H = [ 
12

N(N + 1)
 ][ Σ ( 

T2

n
 ) ] – 3(N + 1) 

For our example, we would substitute and obtain: 

   H = [ 
12

13 (13 + 1)
 ][( 

492

7
 ) + ( 

422

6
 )] – 3(13 + 1) 

       = [ 
12

182
 ] [ ( 

2401

7
 ) + ( 

1764

6
 )] – 3(14) 

       = [ 0.066 ] [ 343 + 294 ] – 42 

       = (0.066)(637) – 42 

       = 42.042 – 42 

         = 0.04 

As before, the initial calculations were carried out to three decimal places in order to reduce 

the effects of rounding error. 

The re-ranking for the comparison between Sample 1 and Sample 3 is shown in Table A.4. 

Table A.4 Example 1:  Post Hoc Analysis for Sample 1 and Sample 3 

 
Sample 1 Sample 3  

     1    7   
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2    9   

3  10   

4  11   

5  12   

6                13   

               8 

    T =      29  62  

               n = 7     6  N = 13 

 

To calculate the Kruskal-Wallis H test we would substitute these values and obtain: 

   H = [ 
12

13 (13 + 1)
 ][( 

292

7
 ) + ( 

622

6
 )] – 3(13 + 1) 

       = [ 
12

182
 ] [( 

841

7
 ) + ( 

3844

6
 )] – 3(14) 

       = [ 0.066 ] [ 120.143 + 640.667 ] – 42 

       = (0.066)(760.810) – 42 

       = 50.213 – 42 

        = 8.21 

The re-ranking for the comparison between Sample 2 and Sample 3 is shown in Table A.5. 

Table A.5 Example 1:  Post Hoc Analysis for Sample 2 and Sample 3 

 
Sample 2 Sample 3  

     1    6   

2    7   

3    9   

4  10   

5  11   

               8                12 

    T =      23  55  

              n = 6    6  N = 12 

 

To calculate the Kruskal-Wallis H test we would substitute these values and obtain: 

   H = [ 
𝟏𝟐

𝟏𝟐 (𝟏𝟐 + 𝟏)
 ][( 

𝟐𝟑𝟐

𝟔
 ) + ( 

𝟓𝟓𝟐

𝟔
 )] – 3(12 + 1) 

       = [ 
𝟏𝟐

𝟏𝟓𝟔
 ] [( 

𝟓𝟐𝟗

𝟔
 ) + ( 

𝟑𝟎𝟐𝟓

𝟔
 )] – 3(13) 

       = [ 0.077 ] [ 88.167 + 504.167 ] – 39 

       = (0.077)(592.334) – 39 
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       = 45.610 – 39 

    = 6.61 

 

As the critical value, based upon the Bonferroni method, is 5.73 the comparison between 

the mean rank of Sample 1 and the mean rank of Sample 3, as well as the comparison between the 

mean rank of Sample 2 and the mean rank of Sample 3, are statistically significant.  Inspection of 

these hypothetical data indicates that the special teams players were chosen later than either the 

offensive or defensive players were chosen.  The comparison between the mean rank of Sample 1 

and the mean rank of Sample 2 is not statistically significant.  This indicates that the order in which 

offensive and defensive players were chosen did not significantly differ with these hypothetical 

data. 

It is important to note that the Bonferroni method is quite conservative.  This means that 

the probability of making a Type I error is somewhat less than the value the experimenter has 

chosen, in this case .05.  A consequence is an increase in the probability of making a Type II error.  

In other words, while the Bonferroni method is very effective at preventing us from rejecting the 

null hypothesis when it is in fact correct (Type I error), it also increases the likelihood that we will 

fail to reject the null hypothesis when it is in fact false (Type II error).  With a small number of 

comparisons the Bonferroni method is appropriate, but as the number of comparisons increases it 

becomes increasingly conservative and, therefore, there is an increased risk of making a Type II 

error.  The rule of thumb is to use the Bonferroni method when there are five or fewer 

comparisons.  If you need to conduct post hoc tests with a larger number of comparisons you 

should consult a more advanced statistics text to determine the appropriate procedure. 

Reporting The Results Of A Kruskal-Wallis H Test 

 
In a paper we would indicate that the overall statistical test was significant, provide our 

measure of effect size, and identify which specific group comparisons were found to differ.  

Specifically, we would provide the degrees of freedom, the total number of subjects, the calculated 

value, indicate that the overall Kruskal-Wallis H test was significant, and give the effect size (H (2, N 

= 19) = 10.91, p < .05, 2  = .61).  Further pairwise comparisons using the Bonferroni method 

indicated that the difference between the mean rank of Sample 1 and the mean rank of Sample 3 (H 

(1, N = 13) = 8.21, p < .05), as well as the difference between the mean rank of Sample 2 and the 

mean rank of Sample 3 (H (1, N = 12) = 6.61, p < .05), were statistically significant.  The 

comparison between the mean rank of Sample 1 and the mean rank of Sample 2 was not 

statistically significant (H (1, N = 13) = .04, p > .05).  
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Use Of The Kruskal-Wallis H Test With Interval/Ratio Data 

 
In our first example of the Kruskal-Wallis H test we utilized data that were collected as 

ranks.  The Kruskal-Wallis H test is also commonly used with data that were originally collected at 

the interval or ratio level of measurement but which were then converted to ranks.  Since interval 

or ratio data include more information than ranked data, the statistical tests that use the interval or 

ratio levels of measurement are more efficient than tests that rely upon levels of measurement that 

include less information.  What this means is that a test that utilizes data at the interval or ratio 

level of measurement will, all else being equal, not need as many subjects in order to find a 

difference to be significant.  Similarly, with ordinal data we do not need to collect data from as many 

subjects as we will have to if we use nominal data.  So, you may ask, why would anyone convert 

interval or ratio data to ordinal data since this leads to a loss of information and, therefore, a loss of 

statistical power?    

As was noted previously, the tests that utilize interval or ratio data are called parametric 

tests because they make assumptions about population parameters and they assume normal 

distributions.  However, these assumptions may not be met.  For instance, let us assume that we 

have collected the scores of a class exam.  For this to be suitable for parametric analysis the data 

should be normally distributed.  This means that there are many scores in the middle of the 

distribution and progressively fewer scores the farther we move, in either direction, from the 

middle.  But what if most of the students in the class found the exam to be very easy?  In this case, 

most students will have done well.  We may get what is called a ceiling effect, with many scores 

clustered in the high 90s while fewer students scored lower.  If so, the distribution will not be 

normal.  Instead it will be negatively skewed.  Particularly if the sample size is small it would not be 

appropriate to use a test that assumes normality even though the data are measured at the interval 

or ratio level.  Instead, one option is to convert the scores to ranks and utilize a non-parametric 

procedure, such as the Kruskal-Wallis H test.  It is important to remember, however, that while the 

Kruskal-Wallis H test does not assume the data come from normally distributed populations, it does 

assume the population distributions are the same.  An example follows. 

Ceiling effect – When the scores are predominately at the high end of the range of possible  

 outcomes.  

 

Let us assume that a physician is interested in how quickly two anesthesias take effect, 

measured in seconds.  Each subject undergoing surgery is randomly assigned to receive one of the 

anesthesias.  Since these are ratio data, the null and alternative hypotheses are: 

  HO – The mean of each sample is the same. 

H1 – The mean of each sample is not the same. 
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We set α equal to .05. 

The time to reach a standard state of relaxation, in seconds, for each patient is indicated in 

Table A.6.   

Table A.6 Example 2:  Time for Two Anesthesias to Take Effect 
 

  Anesthesia A  Anesthesia B 

12 15 

13 17 

14 17 

20   26 

24 36 

29 42 

36 72 

61 

92 

 

 Referring to Table A.1 or the overview table (Appendix L) will indicate that with two 

independent samples and ratio data we would initially consider using either the independent 

samples t test or the one-way between-subjects ANOVA.  However, these are parametric tests that 

assume that the samples are drawn from populations that are normally distributed.  This 

assumption is not met with our data as both samples are clearly positively skewed, and the sample 

sizes are small.  It is, accordingly, inappropriate to use either an independent samples t test or an 

ANOVA with these data.  Instead, we can convert the scores to ranks and conduct a nonparametric 

test such as the Kruskal-Wallis H test with two samples (there are other appropriate tests).  The 

null and alternative hypotheses now become: 

  HO – The mean rank of each sample is the same. 

H1 – The mean rank of each sample is not the same. 

The ranked data are presented in Table A.7, as well as totals needed for the computation of 

the Kruskal-Wallis H test.  Note that when two scores are tied the mean of the two ranks involved is 

assigned to each of the scores.  In our example, the scores for ranks 5 and 6 were tied in the second 

group so each was given the rank of 5.5.  As the 5th and 6th scores have already been ranked, the 

next rank in the table is 7.  In addition, the scores for ranks 11 and 12 are also tied so each is given 

the rank of 11.5.  The next rank would, therefore, be 13.  (If more than two scores were tied, 

essentially the same procedure would be followed.  Each score would be given the same mean rank 

and the next assigned rank would reflect the number of ranks that had already been assigned.) 

Table A.7 Example 2:  Conversion of Data to Ranks 
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  Anesthesia A  Anesthesia B 

     1     4 

     2     5.5 

     3     5.5 

     7     9 

     8   11.5 

   10   13 

   11.5                 15 

   14 

                16 

  T = 72.5   63.5  

  n  = 9   7   N = 16 

 

Now that the data are ranked, the Kruskal-Wallis H test is conducted as before:   

   H = [ 
12

N(N + 1)
 ][ Σ ( 

T2

n
 ) ] – 3(N + 1) 

    = [ 
12

16 (16 + 1)
 ][( 

72.52

9
 ) + ( 

63.52

7
 )] – 3(16 + 1) 

       = [ 
12

272
 ] [ ( 

5256.25

9
 ) + ( 

4032.25

7
 )] – 3(17) 

       = [ 0.044 ] [ 584.028 + 576.036 ] – 51 

       = (0.044)(1160.064) – 51 

       = 51.043 – 51 

    = 0.04 

 

The degrees of freedom are equal to the number of samples minus one.  In our case this 

would be 2 – 1 = 1.  Referring to the chi-square table (Appendix K, Table 2), we find a critical value 

of 3.84 with alpha set at .05.  As our obtained value of 0.04 is less than the critical value we retain 

the null hypothesis that there is no difference in the mean rank of the two anesthesias.  (If this 

Kruskal-Wallis H test was statistically significant we would determine the effect size, but we would 

not conduct a post-hoc test since there are only two groups being compared and thus we already 

know which groups differ.)  

Reporting The Results Of A Kruskal-Wallis H Test 

 
 In a paper we would write that the Kruskal-Wallis H test was not significant (H(1, N = 16) 

= 0.04, p > .05). 
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Purpose And Limitations Of Using The Kruskal-Wallis H Test 

 
1. This is a test for equality of ranks.  The null hypothesis is that the mean rank for each 

sample is equal.  In other words any difference in the distribution of the ranks is due to 

chance.   

2. This is an overall test of significance.  In designs with more than two samples a 

statistically significant outcome indicates that a difference in the rankings exists 

between the samples, but the initial Kruskal-Wallis H test does not indicate where that 

difference(s) is (are).  Post hoc tests would need to be conducted to identify the specific 

groups that differ. 

3. The test does not provide a measure of effect size.  The Kruskal-Wallis H test is a test of 

significance.  It indicates whether or not an outcome is likely to have occurred by 

chance.  If the Kruskal-Wallis H statistic is significant, a measure of effect size, such as 

eta squared, should then be calculated. 

4. The sample size should not be too small.  As a general rule, no sample should have fewer 

than 5 subjects.  

Assumptions Of The Kruskal-Wallis H Test 

 
1. You have ordinal data.  The data are in the form of ranks or can be converted into ranks. 

2. The observations are independent.  Each subject provides only one datum and no 

subject is matched with another subject during assignment to samples. 

3. Population distributions are the same.  When used with data originally collected at the 

interval or ratio levels the Kruskal-Wallis H test does not require that populations are 

normally distributed.  However, it does require that the population distributions from 

which the samples were drawn are the same. 

Conclusion 
 

We have now completed our introduction to the Kruskal-Wallis H statistic.  Before moving 

on to other tests it might be valuable to review how the Kruskal-Wallis H statistic is related to other 

procedures.  By referring to Table A.1, you will see that the Kruskal-Wallis H test is on the same row 

as the one-way between-subjects ANOVA.  Each of these tests is used with a different level of 

measurement, the Kruskal-Wallis H test for ordinal data and the ANOVA for interval or ratio data.  

In other respects they are quite similar.  Each is used when you have a design with one IV and two 

or more independent samples, each provides an overall test of whether there is a difference but 
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with more than two samples they do not indicate what the specific basis of this difference is and, if 

significant, each should be followed by a measure of effect size.    

The Kruskal-Wallis H test is also on the same row of Table A.1 as the independent samples t 

test.  Like the ANOVA, the independent samples t test utilizes interval or ratio data.  However, the t 

test is limited to designs in which there are only two levels of the independent variable.  The Mann-

Whitney U test is usually given as the direct parallel to the independent samples t test when there 

are ordinal data since it is also limited to situations with two levels of the independent variable.  

However, just as the more flexible one-way between-subjects ANOVA can be utilized instead of the 

independent samples t test, the more flexible Kruskal-Wallis H test can be utilized instead of the 

Mann-Whitney U test. 

Glossary Of Terms 
 
Ceiling effect – When the scores are predominately at the high end of the range of possible  

 outcomes.  

Kruskal-Wallis H test – An inferential procedure that is analogous to the one-way between- 

 subjects ANOVA except that it is used with ordinal data.   

Questions – Appendix A 

 
(Answers are provided in Appendix J.) 

1. The Kruskal-Wallis H test is used with _____ data. 
 a. Nominal 
 b. Ordinal  
 c. Interval/ratio 
 d. It can be used with any scale of measurement. 
 
2. The Kruskal-Wallis H test is appropriate when you have _____. 

a. two or more independent samples  
b. repeated measures 
c. one group compared to a known population parameter 
d. one independent sample and one repeated measures sample 
 

3. The degrees of freedom for the Kruskal-Wallis H statistic are equal to _____. 
 a. The number of subjects minus one 
 b. The number of subjects minus the number of samples 
 c. The number of samples plus the number of subjects 
 d. The number of samples minus one  
 
4. The table used with the Kruskal-Wallis H test is also used with the _____. 
 a. ANOVA 
 b. Independent samples t test 
 c. Chi-square test  
 d. z score 
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5. The measure of effect size for the Kruskal-Wallis H test is _____.   
 a. Eta squared (2)  
 b. The square of r 
 c. Not defined 
 d. Difficult to calculate 
 
6. The _____ indicates what proportion of variability in one variable that is accounted for by the 

variability in another variable.   
 a. Value of the Kruskal-Wallis H test 
 b. Number of the degrees of freedom minus one 
 c. Coefficient of determination  
 d. Coefficient of nondetermination 
 
7. Following a significant overall Kruskal-Wallis H test with three or more samples, further 

pairwise comparisons using the _____ for control would be used. 
 a. Bonferroni method  
 b. Tukeys HSD 
 c. Chi-square 
 d. Any of the above 
 

 
For questions 8 – 11 use the following information:  A banker wanted to compare the incomes of 
people living in two sections of a city.  To do so he conducted a questionnaire study.  He noted that 
the ratio data were positively skewed and thus converted them to ranks.  The ranks are: 
 
   Group 1  Group 2 
     2     1 
     3     6 
     4     9 
     5   10 
     7   13 
     8   14 
   11   15 
   12   16 
      17 
 

 
8. What is the value of the H test? 

a.        1.774 
b. 2.673 
c. 3.68 
d. 4.51 

 
9. What is the critical value (alpha = .05, two tailed test)? 

a.          1. 96 
b.          2.58 
c.           3.16 
d.          3.84 

 
10. Do the ranks of the two groups differ statistically? 

a. Yes 
b. No  
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11. What is the value of eta squared? 

a. .212 
b. .28 
c. Eta squared should not be calculated as the H test was not significant 

 
Problems 12 – 15 examine the effect of making one switch (which is underlined) in the rankings of 
each of the above groups: 

 

   Group 1  Group 2 
     2   11 
     3     6 
     4     9 
     5   10 
     7   13 
     8   14 
     1   15 
   12   16 
      17 
 
 

12. What is the value of the H test? 
a. 1.77 
b. 2.67 
c. 3.76 
d. 7.99 

 
13. What is the critical value (alpha = .05, two tailed test)? 

a. 1.96 
b. 2.58 
c. 3.16 
d. 3.84 

 
14. Do the ranks of the two groups differ statistically? 

a.  Yes 
b.  No 

 
15. What is the value of eta squared? 

a. .21 
b. .50 
c. Eta squared should not be calculated as the H test was not significant 
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Appendix B 
Phi Correlation: 

Identifying the Strength of an Association when there 
are Nominal Data 

 

“You can’t fix by analysis what you bungled by design.” 

Light, Singer and Willett, page viii 

Introduction 
 

 The phi correlation is a commonly used statistic when there are nominal data.  The Greek 

letter phi is .  Thus the symbol  would indicate the population correlation, and r would signify 

that we are dealing with samples, though these symbols, as well as phi r, are rarely employed.  

Instead the phi correlation is usually represented as simply .  However, in order to make it clear 

that the phi correlation is a type of Pearson r, I will use r as the symbol in this appendix.  The phi 

correlation is located on the same row of Table B.1 as the Pearson r, and is underlined in the table. 

Phi correlation (r) – A form of Pearson correlation used with nominal data when both  

 variables are dichotomous.   

 

Table B.1 Overview of Statistical Procedures for Association Studies 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
Research 
Question 

 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi r         Spearman ra   Pearson r 
               Multiple Correlationb 
    
Regression:         Regression   

Multiple Regressionb 

__________________________________________________________________________________________________________________________________________ 

 

Italicized items are reviewed in the following appendixes: 

a. Appendix C 
b. Appendix D 
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 It is important to note that with phi r both variables must be dichotomous.  In other words, 

each variable is limited to two, mutually exclusive options.  For example, you either passed a 

particular course, or you didn’t.  And you have either visited Ireland, or you haven’t. 

Conducting The Phi Correlation 
 

You are familiar with phi as a measure of effect size from the discussion in Chapter 8, but we 

will now be utilizing phi as a correlation.  In Chapter 8 we calculated a 2 X 2 chi-square statistic to 

test whether there was a difference or an association between men’s and women’s views of 

infidelity.  (Recall that with nominal data the distinction between finding a difference versus finding 

an association is less clear than is the case with ordinal, interval or ratio data.)  Table 8.9, which 

includes the marginal totals, is reproduced below in a slightly modified form as Table B.2.  The four 

cells in the Table are labeled a, b, c, and d.  As the chi-square was found to be statistically significant, 

we rejected the null hypothesis that there was no difference (association) in the distribution of 

answers for men and women and accepted the alternative hypothesis that these distributions do 

differ (are associated).  More specifically, we concluded that men were more distressed by sexual 

infidelity whereas women were more distressed by emotional infidelity.  This statistically 

significant difference (association) indicates that the outcome was unlikely to have occurred by 

chance.  We then used phi as a measure of effect size.    

Table B.2  An Example of the Phi Correlation 

         Women Men  Total  

 More distressed by emotional infidelity   42 (a)  12 (b)  54 (a + b) 

 More distressed by sexual infidelity       17 (c)  48 (d)  65 (c + d)  

 Total          59 (a + c) 60 (b + d) 

 

If, instead, we viewed this as a correlational study our focus would now shift to determining 

the strength of the relationship.  And to do so, we would not begin by calculating a chi-square.  

Instead, we would calculate the phi correlation directly using the following equation:   

 r = (ad – bc) /  [(a + b)(c + d)(a + c)(b + d)]     

In our case: 

 r = (42 X 48) – (12 X 17) /  [(54)(65)(59)(60)] 

         = (2016 – 204) /  [(54)(65)(59)(60)] 

          = 1812 / 3524.97 

          = .51  
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 Note that this is the same value that we calculated for phi when used as a measure of effect 

size in Chapter 8.  However, now we calculated r directly without first calculating a chi-square 

value.   

(If the value of r is negative, change it to positive.  The sign simply indicates the order of the 

columns and rows.  For instance, if the proportions for men had been listed in Table B.2 before the 

proportions for women, r would have been negative.  Thus the sign is not meaningful and can be 

ignored.) 

 As we are now dealing with a correlation, the null hypothesis, H0, states that there is no 

relationship between the two variables.  In other words, if H0 is true, the obtained value of r should 

not differ significantly from 0.  The alternative hypothesis, H1, states that there is a relationship 

between the two variables.  In other words, if H1 is true, the obtained value of r should differ 

significantly from 0.  To test whether the obtained value of r, in this case .51, is significantly 

different from 0, we convert r into a chi-square and then turn to the chi-square table.  To do so, we 

use the following equation: 

 Chi-square = (n)( r)2  where n = the total number of observations  

 = a + b + c + d  

 In our case:  

Chi-square = (42 + 12 + 17 + 48)(.51)2 

= (119)(.51)2  

= (119)(.26)  

= 30.94   

Note that this value for the chi-square is, except for rounding error, the same value that was 

obtained when the chi-square was calculated directly for these data in Chapter 8. 

 

The df are equal to:  

(number of columns – 1) X (number of rows – 1).  Since phi r deals with two dichotomous 

variables, we have a 2 X 2 table.  The df are thus equal to (2 – 1)(2 – 1) = 1. 

 If the obtained value for this chi-square is greater than the critical value listed in the chi-

square table, we reject the null hypothesis and accept the alternative.  With 1 df the critical value is 

3.84.  Our calculated chi square is, therefore, significant at the .05 level, and is beyond the critical 

value for the chi-square with 1 df even at alpha equal to .01.  (It is actually beyond the critical value 

with alpha equal to .005.)  We therefore reject the null hypothesis and accept the alternative that 

the obtained value of phi r is significantly different from 0.      

 As you recall, a correlation such as the Pearson r can vary from –1 to +1.  However, r only 

meaningfully varies from 0 to 1, where 0 indicates that there is no relationship between the two 
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variables and 1 indicates there is a perfect correlation between the two variables.  The larger r is, 

the better we can predict.   

 The strength of the association can best be illustrated by finding the square of the 

correlation.   Recall that the square of a correlation is called the coefficient of determination.  In our 

case it would be (r)2.  The coefficient of determination measures what proportion of variance in 

one variable is explained or accounted for by the other variable.  In our example, the correlation 

was equal to .51.  The coefficient of determination (r2) is, therefore, equal to .512, which is .26 or 

26%.  This indicates that knowing whether a subject is a man or a woman will remove or account 

for 26% of the variability in predicting their view of whether sexual or emotional infidelity is more 

distressing.  

 And, just as with the Pearson r, we can also calculate a coefficient of nondetermination, 

which with r would be equal to 1 – r2.  In our example this would be 1 – .512, which equals 1 – .26, 

which is .74.  Thus, 74% of the variability in the response to infidelity is not accounted for by 

knowing whether the subject is a man or woman.   

Reporting The Results Of A Phi Correlation 

In order to provide a complete report of our finding, we would say that there was a 

significant correlation between the gender of the subject and their view of infidelity ( = .51, p < 

.005).  The coefficient of determination, r2, equaled .26.  With this statement, we have indicated to 

the reader that a phi correlation was conducted, the size of the correlation and that it was 

statistically significant.  Finally, we have provided a measure of the strength of the association to 

assist the reader in interpreting the size of the effect.   

Remember, phi r is a correlation.  It provides a measure of the magnitude of the 

relationship.  It does not indicate that this is a causal relationship.     

Purpose And Limitations Of Using The Phi Correlation 

1. Provides a measure of the strength of the association of two dichotomous variables.  The phi 

correlation provides a measure of the degree to which two dichotomous variables are related.     

2. Not a measure of cause and effect.  Phi r (r) is a type of correlation.  Correlational designs lack 

the level of experimenter control that is needed in order to justify coming to a cause and effect 

conclusion.  Thus, the researcher cannot conclude that one variable caused a change in the 

other.  

Assumptions Of The Phi Correlation 

1.  Nominal data.  The data are in the form of frequencies or can be converted to frequencies. 
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2. Data are in the form of two dichotomies.  The phi correlation is used when there are two 

dichotomous variables.  

Conclusion 
 

The phi correlation is an easy to calculate measure of the strength of the relationship 

between two dichotomous variables, each consisting of nominal data.  It is a form of Pearson r and, 

as with the Pearson r, the square of the phi correlation provides a useful measure of effect size.  

However, remember that unlike the Pearson r, the sign of the phi correlation is always reported as 

being positive.   

Glossary Of Terms 
 
Phi correlation (r) – A form of Pearson correlation used with nominal data when both variables are  

 dichotomous.   

 

Questions – Appendix B 

 
(Answers are provided in Appendix J.) 

1. If you are interested in whether two variables are correlated and if both variables  
are nominal and are dichotomous (a score falls in one group or another) then you would 
use _____. 

 a. Chi-square  
 b. Phi r   
 c. Spearman r  
 d. Pearson r 
 
2.           If you are interested in whether two variables are correlated and if both variables consist of  
 ordinal data you use _____. 

a. Chi-square  
b. Phi r 

 c.. Spearman r  
 d. Pearson r 
  
3. If you are interested in whether two variables are correlated and if you are dealing with two 

interval or ratio variables you would employ _____. 
a. Chi-square  

 b. Phi r   
 c. Spearman r  
 d. Pearson r   
 
4. In the case of the _____ correlation, the sign simply reflects the order that the variables were 

entered into an equation.  If the order is reversed, the sign will also change.   
a. Phi r  

 b. Spearman r 
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 c. Pearson r 
 
5. With a (an) _____ design, we are not asking if the distributions or proportions that we have 

observed are different.  Instead, we are asking if the variables are related.    
 a. Experimental 
 b. Descriptive statistical  
 c. Association   

d. ANOVA 
 
6. The _____ indicates the proportion of variance in one variable that is explained or 
 accounted for by the other variable.   

a. Spearman correction 
b. coefficient of determination   

 c. co-variance 
 d. regression equation 
 
7.  Subjects are asked whether they enjoy watching baseball, and then are asked if they enjoy 

watching football.  The following hypothetical data are obtained.  What is the correlation?   
 
       Like Baseball 
      Yes   No 
    Yes  15     9 
  Like Football 
    No    5   12 
 
 a. .23 
 b. .33 
 c. .37 
 d. .52 
 
8.       Subjects are asked whether they like chicken wings, and then whether they like     pizza.    The 

following hypothetical data are obtained.  What is the correlation?   
       Like Pizza 
      Yes   No 
    Yes  12     4 
  Like Chicken Wings 
    No    5     8 
 
 a. .23 
 b. .33 
 c. .37 
 d. .52  
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Appendix C   
Spearman Correlation:   

Identifying the Strength of an Association when there 
are Ordinal Data 

 

“The fewer the facts, the stronger the opinion.” 

Arnold H. Glasow 

Introduction 
  

The Spearman correlation, also sometimes called the Spearman r or Spearman rank order 

correlation coefficient, is a commonly used statistic.  It is located on the same row of Table C.1 as 

Phi r and the Pearson r, and is underlined in the table.  Each of these correlations provides a 

measure of the strength of the association between two sets of numbers.  Thus, when using 

correlations we are not asking if samples differ.  Instead, we are asking if the samples are related 

and, if so, the strength of this relationship.   

 Spearman correlation (rS) – A form of Pearson correlation used when the two variables are  

  measured at the ordinal level.   

 

Table C.1 Overview of Statistical Procedures for Association Studies 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
Research 
Question 

 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi ra         Spearman r   Pearson r 
               Multiple Correlationb 
    
Regression:         Regression   

Multiple Regressionb 

__________________________________________________________________________________________________________________________________________ 

 

Italicized items are reviewed in the following appendixes: 

a. Appendix B 
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b. Appendix D 
 

With the Spearman r we employ symbols that are similar to those that were used for the 

Pearson correlation.  More precisely, the symbol S indicates the population correlation and rS 

signifies that we are dealing with samples. 

In the case of the Spearman r both variables will have been measured at the ordinal level or, 

more commonly, will have been converted from an interval or ratio level into ordinal data.  

Conversion into an ordinal level is undertaken because an assumption of the preferred correlation 

for interval or ratio data, the Pearson r, has not been met.  For instance, the Pearson r is a measure 

of linear relationship.  It only provides an accurate measure if the two interval or ratio variables 

have a straight-line relationship between them.  However, many relationships, such as the classic 

example of a learning curve in which learning occurs rapidly at first, but then slows, are not linear 

(Figure C.1).  If a Pearson r is calculated for these data it will underestimate the true degree of the 

relationship.   

Figure C.1   Example 1:  Example Of A Nonlinear Relationship – A Learning Curve  

 

 

           

One solution would be to convert the ratio data into ordinal data and then conduct a 

Spearman correlation.  This will provide a measure of the consistency of the rankings between your 

two variables.  In other words, with the Pearson correlation we are asking “as one variable gets 

larger, does the other variable either increase or decrease in a straight-line fashion”?  With the 

Spearman correlation we drop the requirement for a straight-line relationship.  We are simply 

interested in knowing whether there is a reliable or consistent relationship between the order of 

the changes in the two variables.    

An example of converting ratio scores into ordinal data and then using the Spearman r 

comes from the history of aviation.  Before the advent of jet engines, airplanes were powered by 
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piston engines, as are most cars today.  Table C.2 provides the horsepower and the maximum speed 

(measured in miles per hour) for a number of historically significant airplanes.   

Table C.2 Example 2:  Horsepower and Maximum Speed of Select Planes 

 
Type of Plane  Horsepower Speed (mph)  

Fokker D VII    185  125 

Spad XIII    235  133 

Boeing P–26    500  234 

Curtis P–6A Hawk   600  179 

Spitfire IA  1030  362 

P–40 C   1150  345 

Hurricane II C  1260  329 

FW–190 A–6  1800  398 

F8F Bearcat  2700  434 

Note.  mph, miles per hour (1 mile = 1.60 kilometers).  

 

Figure C.2 is a graph of the relationship between horsepower and speed. 

 

Figure C.2   Example 2: A Nonlinear Relationship for Horsepower and Maximum Speed 

 

 

 

It is evident that as the horsepower increases, so does the speed.  However, it is also evident 

that with increased horsepower a plateau is reached.  In other words, there is not a linear 

relationship between power and speed.  It would, therefore, be inappropriate to calculate a Pearson 

r for these data.  Instead, we can convert the data in Table C.2 into ranks, as shown in Table C.3, and 

then conduct a Spearman correlation.   

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000

Horsepower 

Sp
ee

d
 (

m
p

h
) 



500 
 

The null and alternative hypotheses are: 

   H0 – There is no association between the rank of horsepower and the rank of speed.   

  H1 – There is an association between the rank of horsepower and the rank of speed.   

As usual we set α equal to .05. 

  

Table C.3 Example 2:  Ranks of Horsepower and Maximum Speed of Select Planes,  

  Along with Initial Calculations 

 
Type of Plane    Horsepower     Speed (mph)      Difference (D)  D2 

Fokker D VII  1  1     0   0 

Spad XIII  2  2     0   0 

Boeing P–26  3  4   –1   1 

Curtis P–6A Hawk 4  3     1   1 

Spitfire IA  5  7   –2   4 

P–40 C   6  6     0   0 

Hurricane II C  7  5     2   4 

FW–190 A–6  8  8     0   0 

F8F Bearcat  9  9     0             __0 

     D = 0   D2 = 10 

 Note.  mph, miles per hour (1 mile = 1.60 kilometers).  

 

 As a check on our calculations, the sum of the differences between the pairs of ranks (the 

column headed by ‘D’) should always equal zero. 

 The equation for the Spearman r is: 

 rs = 1 – 
6ΣD2

n(n2 − 1)
       

where D2 is the sum of the squared differences between pairs of ranks and n is the number of 

pairs of data, in our case 9.  The number 6 is a constant in the equation and is not related to our 

specific example. 

 Substituting, we find:  

Spearman r = 1 – 
6 (10)

9 (92 − 1)
 

         = 1 – 
60

9 (81 − 1)
 

         = 1 – 
60

9 (80)
   

         = 1 – 
60

720
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         = 1 – 0.08 

         = .92 

 We now consult the Spearman r table (Appendix K, Table 7) to determine if the Spearman 

correlation that we just calculated is statistically different from 0.  There are two characteristics of 

this table that differ from most other tables of critical values.  First, the Spearman r table is not 

based upon degrees of freedom but rather is based directly upon n, in this case the number of pairs 

of data.  Thus, we do not calculate degrees of freedom before consulting the Spearman r table.  And 

second, to be significant, the obtained value must be equal to or greater than the value listed in the 

table.  With most other statistical procedures the obtained value has to be greater than the critical 

value in the table.   

 For our example we refer to the row for an n of 9.  With alpha equal to .05, we would need 

an outcome equal to or greater than .70 if we did not specify a predicted direction for the 

relationship before the data were collected, for this would be a two-tailed test.  However, if we had 

specified that increased horsepower would lead to increased speed before the data were collected 

this would be a one-tailed test and the critical value would instead be .60.  (Only the table for two-

tailed tests is included in the appendixes.)   

 An appropriate time to have used the one-tailed test would have been with our airplane 

data.  After all it would have been reasonable to assume before any data were collected that more 

powerful engines would have resulted in faster planes.  However, we did not specify this direction 

before we collected the data so we will use the two-tailed critical value of .70.  As our obtained 

value is .92 we reject the null that there is no relationship between power and speed and accept the 

alternative that there is a relationship.  In fact, this outcome is significant at even the .01 level 

(critical value would be .83). 

 Inspection of the data indicates that as the engine power increases, so does the speed.  This 

is also what the positive sign of the correlation indicates.  When a Spearman correlation has a 

positive sign it indicates that as the ranks for one variable increase, so do the ranks for the other 

variable.  A graph of our ranks for the horsepower and speed of planes is shown in Figure C.3.  Note 

that if a Spearman correlation is positive it also indicates that as the ranks of one variable decrease, 

so do the ranks of the other.  In other words, with a positive correlation the graph will rise to the 

right, and fall to the left.   

Figure C.3 Example 2:  Relationship of the Ranks of Aircraft Horsepower and Maximum Speed 
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 It is also important to note that in the Spearman r table there are no negative numbers.  The 

table indicates how large a Spearman r correlation must be in order to reject the null hypothesis 

without regard to its sign.  Thus, if we had found a correlation of –.92, we would ignore the sign and 

compare .92 with the critical value found in the table.  Of course, with a two-tailed test, the sign 

doesn’t matter in determining whether to reject the null hypothesis.  However, with a one-tailed 

prediction the sign does matter and the researcher would then have to check that the outcome was 

in the predicted direction.   

 To this point, we have taken a set of ratio data, converted it to ranks, calculated a Spearman 

r, and determined that it is statistically significant.  Just as with the Pearson r we would also like to 

have a measure of the strength of the association in order to help us interpret what our significant 

outcome indicates.  With the Spearman r, as with the Pearson r, a commonly used measure of effect 

size is the coefficient of determination.  It is simply the square of the correlation, in this case, rS2.  

 With the Spearman correlation, the coefficient of determination indicates how much of the 

variability in one set of ranks is explained by the variability in the other set of ranks.  In our case, 

the Spearman r equals .92 and rS2 equals .85.  Thus, by knowing the rank of the aircraft’s engine 

power we have explained 85% of the variability in the rank of the aircraft’s speed.  In the social 

sciences any coefficient of determination that is greater than .25 would be considered to be large.    

Put another way, our analysis indicates that there is only 15% of the variability in the ranks 

of the aircrafts’ speeds that is not accounted for by knowing the ranks of the aircrafts’ horsepower 

(1.00 – 0.85 = 0.15 or 15%).  As was discussed with the Pearson r, this value, which is the 

proportion of the variability of one variable not explained or accounted for by the variability of the 

other variable, is called the coefficient of nondetermination.  For the Spearman r it is equal to 1 – rS2. 

Reporting The Results Of A Spearman Correlation 
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In order to report our finding, we would say that there was a significant correlation 

between the ranked horsepower and ranked speed of a series of aircraft (rS (9) = .92, p < .01).  The 

coefficient of determination, rS2, equaled .85.  With this statement, we have indicated to the reader 

that the data were ranked, the number of pairs of scores, the size of the Spearman r correlation and 

that it was statistically significant.  Finally, we have provided a measure of the strength of the 

association, or effect size, to assist the reader in interpreting the size of the effect.   

Purpose And Limitations Of Using The Spearman Correlation 

 
1. Provides a measure of the association of two ranked variables.  The Spearman r provides a 

measure of the strength and direction of an association between two ranked variables.   

2. Not a measure of cause and effect.  The Spearman r is a type of correlation.  Due to a lack of 

control in a correlational design a researcher is not justified in coming to a cause-and-

effect conclusion.   

Assumptions Of The Spearman Correlation 

 
1. Ordinal data.  The data are in the form of ranks or have been converted to ranks. 

2. Data are paired.  The data come as pairs, usually two measures on the same individual. 

3. No tied ranks.  The Spearman r correlation assumes that there are no tied ranks.  If there are 

only a few the Spearman r will remain reasonably accurate.  However, if there are a 

substantial number of tied ranks the Spearman r should not be employed. 

Conclusion 
 
 The Spearman correlation is a commonly utilized, easy to calculate, measure of the 

relationship between two ranked variables.  It is a form of Pearson r and like the Pearson r the sign 

of the Spearman r indicates the direction of the relationship and the square of the Spearman r 

provides a measure of effect size. 

Glossary Of Terms 
 
Spearman correlation (rS) – A form of Pearson correlation used when the two variables are  

 measured at the ordinal level.   

 

Questions – Appendix C 

 
(Answers are provided in Appendix J.) 
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1. The Spearman correlation is used with _____ data. 
 a. Nominal 
 b. Ordinal  
 c. Interval/ratio 
 d. Any of the above 
 

2. The Spearman r _____ assume a linear relationship between the variables. 
a. Does 
b. Does not  
 

3. Following the calculation of the Spearman r we use _____ when referring to the table to 
determine if the outcome is significant. 

 a. The sample size, n  
 b. df 
  c. n – 1 
 d. we do not refer to a table to determine the significance of the outcome 
 

4. If a Spearman r is positive, _____. 
a. as the ranks of one variable increase, so do the ranks of the other 
b. as the ranks of one variable decrease, so do the ranks of the other  
c. as the ranks of one variable increase, the ranks of the other decrease 
d. both ‘a’ and ‘b’, but not ‘c’  
 

5. With the Spearman r a commonly used measure of effect size is _____. 
a. The coefficient of determination  
b. The square root of the correlation 
c. rS2 

 d. Both ‘a’ and ‘b’ but not ‘c’ 
 e. Both ‘a’ and ‘c’ but not ‘b’  
 

6. The proportion of the variability of one variable not explained or accounted for by the 
variability of the other variable, is called the _____. 
a. coefficient of determination 

 b. coefficient of nondetermination  
c. rS2 

 d. both ‘b’ and ‘c’ 
 

7. If there are a substantial number of tied ranks, the Spearman r _____. 
a. should not be employed  
b. can still be employed 
c. will become equivalent to a Pearson r 

  
Questions 8 – 11 deal with the relationship between studying and grades.  Specifically, a professor 
gave an exam and asked how many hours students had studied for it.  The data were: 
 
  Student Hours Studied   Exam Grade   
  1   12   96    
  2     6   94    
  3     6   90    
  4     5   85    
  5     3   80    
  6     2   71    
  7     4   68     
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8. What is the Spearman r for these data? 
 a. .44 
 b. .74 
 c. .88 
 d. .97 
 

9. What is the critical value assuming alpha equals .05 and this was a two-tailed test? 
 a. .65 
 b. .70 
 c. .74 
 d. .79 
 e. .89 
 

10. Is the outcome statistically significant? 
 a. yes 
 b.  no 
 

11. What is the coefficient of determination? 
 a. .78 
 b. .71 
 c. .84 
 d. .66 
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Appendix D   
Multiple Correlation and Regression 

 

“The difficulty lies, not in the new ideas, but in escaping the old ones …” 

John Maynard Keynes 

Introduction 
 

Multiple correlation and multiple linear regression (usually called multiple regression) 

were introduced in Chapter 14.  Multiple correlation (underlined in Table D.1) is a commonly 

utilized extension of the Pearson correlation, and multiple regression (underlined in Table D.1) is a 

commonly used extension of linear regression.  In simple linear regression a statistically significant 

Pearson correlation is followed by the determination of the equation for the regression line.  This 

equation, which can be written as Ŷ = bX + a, permits the prediction of Y (the criterion variable) 

from X (the predictor variable).  It is defined as the straight line such that the sum of the squared 

errors of estimate is a minimum.  So long as the Pearson correlation is statistically significant 

predictions based upon the regression equation will be more accurate than simply choosing the 

mean of Y for all values of X.  In other words, the standard error of estimate will be less than the 

standard deviation.   (Refer to Chapter 14 for a review.) 

Table D.1 Overview of Statistical Procedures for Association Studies 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 
Research 
Question 

 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi ra          Spearman rb   Pearson r 
               Multiple Correlation 
    
Regression:         Regression   

Multiple Regression 

__________________________________________________________________________________________________________________________________________ 
 

Italicized items are reviewed in the following appendixes: 

a. Appendix B 
b. Appendix C 
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The logic of correlation and simple linear regression (also called linear regression) can be 

extended to situations in which there is more than one predictor of Y.  For example, if we were 

interested in predicting students’ college grade point averages (Y) based upon their high school 

grade point averages (X), we would use correlation and linear regression assuming the appropriate 

assumptions were met.  However, there are other reasonable predictors of college grade point 

average including a student’s SAT score and a measure based upon their letters of recommendation.  

With multiple correlation we can determine the strength of the association for this set of predictors 

with college grade point average.  And with multiple linear regression we can combine these 

predictors into one equation to estimate the student’s college grade point average.  By doing so our 

ability to predict Y is likely to be improved.  The equation for multiple regression with two 

predictors can be written in a number of ways.  One form of the equation is as follows: 

Ŷ = B1X1 + B2X2 + B0 

where Ŷ is the predicted value of the criterion variable; B1 is the regression weight associated with 

the first predictor variable, X1; B2 is the regression weight associated with the second predictor 

variable, X2; and B0 is a constant, the value of the Y intercept (the value of Y when the regression 

line crosses the Y axis). 

The equation for multiple regression with three predictors could be written as: 

Ŷ = B1X1 + B2X2 + B3X3 + B0 

where each term is defined as before and where B3 is the regression weight associated with the 

third predictor variable, X3. 

While these equations may appear ‘new’, they are actually just more involved forms of the 

equation we employed for linear regression, Ŷ = bX + a.  As we are now dealing with multiple 

regression, and thus additional predictors, the equation has additional terms.  Two other things to 

note are that while the slope of the line in linear regression (also called the regression weight) is 

indicated by the letter ‘b’ in the equation Ŷ = bX + a, in multiple regression an equivalent 

regression weight is often signified with a capital letter ‘B’ along with a subscript ‘1’, ‘2’, etc.  And, 

while the Y intercept in linear regression is indicated by the letter ‘a’, in multiple regression it is 

indicated by the symbol B0.  Thus, while the multiple regression equation is more complex than the 

linear regression equation it should be evident that it is a straightforward extension.   

There is no theoretical limit to the number of possible predictors in multiple regression.  

However, the computations quickly become tedious and thus anyone who will be utilizing multiple 

regression is strongly encouraged to employ a computer-based statistical package.  Finally, while 

there is only one type of linear regression there are a number of approaches to multiple regression. 
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In simple multiple regression all of the predictor variables are assessed simultaneously 

without any consideration of theoretical importance or prior findings.  Any predictors that do not 

significantly enhance the overall prediction are dropped. 

With hierarchical multiple regression the researcher specifies the order in which predictor 

variables are entered into the regression equation.  Only those variables that provide a statistically 

significant improvement in the ability to predict Y as they are entered are maintained in the 

equation.   

In forward stepwise multiple regression predictor variables are entered into the regression 

equation based upon their individual correlations with Y.  Thus, the predictor variable with the 

strongest individual correlation with Y is entered first.  Then the variable that accounts for the 

greatest proportion of the remaining variability is entered.  This process continues until there is no 

longer a statistically significant improvement in the ability to predict Y as variables are entered. 

With backward stepwise multiple regression all of the predictor variables are assessed 

simultaneously as in simple multiple regression.  Then, however, instead of dropping all of the 

predictors that do not significantly enhance the prediction, only the predictor variable with the 

weakest individual correlation with Y is eliminated and the regression equation is recalculated.  If 

there is no significant decrease in the ability to predict Y this predictor variable is eliminated.  This 

process continues until there is a significant effect of dropping a predictor variable. 

Simple multiple regression – A form of multiple regression in which all of the predictor  

 variables are assessed simultaneously.  All predictors that do not significantly  

 enhance the overall prediction are dropped. 

Hierarchical multiple regression – A form of multiple regression in which the researcher  

 specifies the order in which predictor variables are entered into the regression  

 equation.  Only those variables that provide a statistically significant improvement  

 in the ability to predict Y are maintained in the equation.   

Forward stepwise multiple regression – A form of multiple regression in which predictor  

 variables are entered into the regression equation based upon their individual  

 correlation with Y.  To begin, the predictor variable with the strongest individual  

 correlation with Y is entered into the regression equation.  Then the variable that  

 accounts for the greatest proportion of the remaining variability is entered.  This  

 process continues until there is no longer a statistically significant improvement in  

 the ability to predict Y. 

Backward stepwise multiple regression – A form of multiple regression in which all of the  

 predictor variables are assessed simultaneously as in simple multiple regression.   

 Then, however, instead of dropping all of the predictors that do not significantly  

 enhance the prediction, only the predictor variable with the weakest  individual  



509 
 

 correlation with Y is eliminated and the regression equation is recalculated.  If there  

 is no significant decrease in the ability to predict Y this predictor variable is  

 eliminated.  This process continues until there is a significant effect of dropping a  

 predictor variable. 

 

So, which approach to multiple regression should you employ?  It has been found that both 

the forward and backward stepwise multiple regression techniques are likely to be affected by 

chance factors related to sample selection and thus their results are less stable.  As a consequence 

these approaches are less commonly used.  Hierarchical multiple regression is appropriate if the 

researcher has a theoretical reason for controlling the order in which variables are entered into the 

regression equation.  Otherwise, simple multiple regression is the procedure that is best suited for 

most researchers. 

The first step in conducting a multiple regression analysis is to ensure that the assumptions 

have been met (these are reviewed later in this appendix).  Next, any outliers are identified and 

either the data from those subjects are omitted or the data are transformed (reviewed in more 

advanced statistical texts).  The analysis is then conducted, presumably with a computer package 

such as SPSS.   

Table D.2 presents the SPSS output of a simple multiple regression analysis.  The data come 

from a study by Norvilitis and Reid (2011) which, in part, examined four possible predictors of 

academic adjustment in college students (a low score indicated better adjustment).  The first 

section of the output lists the predictors.  The four predictors consisted of (1) the hyperactivity 

component of ADHD, ‘adhdhyp’, (2) a measure of study skills, ‘studytot’, (3) the outcome of the 15-

item Appreciation of the Liberal Arts scale, ‘alastot’, and finally (4) the inattention component of 

ADHD, ‘adhdatt’.   

The second section of the output, which has the heading ‘Model Summary’, indicates that 

the value of the multiple correlation, R, is .731.  Recall that with only one predictor, as was reviewed 

in Chapter 14, we calculate a Pearson correlation.  With multiple predictors we calculate a multiple 

correlation based upon all of the predictor variables.  This correlation is symbolized by the capital 

letter R.  Further, in linear regression, which has only one predictor, if we have a statistically 

significant r we then calculate r2 in order to determine the proportion of variability in Y explained 

by the variability in X.  Similarly, in a multiple regression analysis we calculate R2, the proportion of 

variability in Y accounted for by all of the predictors combined.  It is the measure of effect size for a 

multiple regression.  In this example the value of R2 is .534 (in SPSS this is called R Square).  In 

other words over half of the variability in the academic adjustment scores is accounted for by the 

four predictor variables.  However, it has been found that R2 slightly overestimates the proportion 

of variance that has been explained.  Consequently, SPSS provides an adjusted R2 which corrects for 
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this overestimate.  In this case the value of the Adjusted R Square is .515.  Finally, a measure of 

variability is given.  The smaller the standard error of estimate, the more accurately you can predict 

Y. 

The third section of the output, labeled ‘ANOVA’, provides a test of the statistical 

significance of the multiple regression.  The ANOVA is testing whether the combined set of 

predictors explain or account for a significant amount of the variability in our criterion variable, Y.  

If the ANOVA is not significant there is no point in reviewing the remainder of the output, for there 

is no significant relationship between your set of predictors and the criterion variable, Y.  However, 

in this case the value of the F ratio is 27.231, which indicates our multiple correlation of .731 has a 

probability of less than 1 in 1000 (Sig. equals .000) of having occurred by chance if the value was 

actually zero.  As the ANOVA is statistically significant you proceed to the remaining portion of the 

output.   

The fourth section of the output, with the heading ‘Coefficients’, consists of six columns.  The 

first column includes the labels for each of the predictors in the regression equation as well as the 

word (Constant).  The next column has the heading ‘B’.  It consists of each of the values for B in the 

regression equation beginning with the value for the constant (B0) followed by the regression 

weights of the predictors (B1, etc.).  The third column provides a measure of variability for each of 

these values of B.  The fourth column, with the heading Beta, provides measures of standardized 

coefficients.  These are the values in the regression equation that would be obtained if all of the data 

had initially been converted to z scores (in other words, standardized), as was reviewed in Chapter 

4.  Thus Beta is the term used in multiple regression for a regression weight based upon 

standardized scores (note that beta can also refer to the size of Type II error, which is a different 

concept).  Essentially, the use of standardized scores takes the variability of the predictor measures 

into account (standardizes them) which permits a more accurate understanding of the effect of 

each of the predictors.  In this case, note that the absolute value of Beta for Adhdhyp is only .022, 

which is close to zero.  We will discuss the meaning of this in a moment.   

The entries in the fifth column are t values (refer to Chapter 10 for a discussion of the t 

test).  Each predictor is listed in order based upon the absolute value of its t statistic.  More 

specifically, the t statistics provide tests of whether the regression coefficients listed in the second 

column, with the heading B, are significantly different than 0.  In other words, while the ANOVA 

provided a test of whether the combined set of predictor variables accounted for a significant 

amount of the variability in the criterion variable, the t tests indicate the significance of each 

predictor variable.  The actual significance levels of these t statistics are provided in the last 

column, which has the heading ‘Sig.’.  This column indicates that the B values for Constant, Studytot 

and Alastot all have a probability of less than 1 in 1000 of having occurred by chance if their actual 

value for B was zero.  The predictor, Adhdatt, has a probability of .05.  In other words, the 
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probability is only 1 in 20 of this value of B occurring by chance if the actual value was zero.  Thus, 

two of the four predictors (Studytot and Alastot) have B values statistically different from zero, and 

another variable, Adhdatt, might be described as being marginally significant.  However, the 

predictor Adhdhyp has a B value of only .098.  This B value is associated with a t statistic of .266, 

and the Sig. column indicates that a B value of this magnitude has a probability of occurring by 

chance approximately 79 times out of 100 if the actual value of B was zero.  This is not statistically 

significant and thus Adhdhyp, the hyperactivity component of ADHD, was not a significant predictor 

of academic adjustment in these college students.   

Beta – The term used in multiple regression for a regression weight based upon  

 standardized scores.  

  

A more complete output would provide information concerning what is known as 

multicollinearity.  Essentially, this concept deals with whether the predictors in the multiple 

regression equation are highly correlated with each other.  If they are, then the results of the 

multiple regression analysis are likely to vary dramatically between samples.  This is an 

undesirable characteristic.  For a detailed discussion you should turn to a more advanced text.   

Multicollinearity – In multiple regression a concern that arises when the predictors in the  

 multiple regression equation are highly correlated with each other.  If they are, then  

 the results of the multiple regression analysis are likely to vary dramatically  

 between samples.  This is an undesirable characteristic.   

 

Table D.2 SPSS Output for a Simple Multiple Regression 

 

Variables Entered/Removedb 

Model Variables 

Entered 

Variables 

Removed Method 

d

i

m

e

n

s

i

o

n

0 

1 adhdhyp, 

studytot, alastot, 

adhdatta 

. Enter 

a. All requested variables entered. 

b. Dependent Variable: sacqacad 
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Model Summary 

Model 

R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

d

i

m

e

n

s

i

o

n

0 

1 .731a .534 .515 9.67358 

a. Predictors: (Constant), adhdhyp, studytot, alastot, adhdatt 

 

 

ANOVAb 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 10193.061 4 2548.265 27.231 .000a 

Residual 8889.929 95 93.578   

Total 19082.990 99    

a. Predictors: (Constant), adhdhyp, studytot, alastot, adhdatt 

b. Dependent Variable: sacqacad 

 
 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 119.296 11.405  10.460 .000 

studytot   –.977 .164   –.479   –5.947 .000 

alastot   –.557 .125   –.323   –4.447 .000 

adhdatt .759 .382 .178 1.989 .050 

adhdhyp .098 .369 .022 .266 .791 

a. Dependent Variable: sacqacad 

 

Reporting The Results Of A Multiple Regression Analysis 
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Clearly, the SPSS output provides a great deal of information.  Table D.3 presents a 

summary of  how the results of this regression analysis would be presented in a paper. 

Table D.3 Summary of the Regression Analysis Predicting Academic Adjustment 

Predictor            B           SE B            β          t                   α 

Variable ______________________________________________________________________________________________ 

Study skills          –.98  .16    –.48    –5.95  <.001 

ALAS           –.56  .13    –.32    –4.45  <.001 

Inattention            .76  .38      .18      1.99     .05 

Hyperactivity            .10  .37      .02        .27     .79 

 

The multiple regression equation for these data would therefore be: 

Ŷ = (–.98) X1 + (–.56) X2 + (.76) X3 + 119.30  

This equation can be rewritten as: 

Ŷ = –.98 X1 –.56 X2 + .76 X3 + 119.30  

where X1 is the score for Study skills, X2 is the ALAS score, and X3 is the Inattention score.  Note that 

the variable Hyperactivity has been dropped as it did not significantly enhance the overall 

prediction.  The value of the Constant, 119.30, comes from the section of Table D.2 with the heading 

‘Coefficients’ and is rounded to two places from 119.296. 

 Based upon this equation, we predict that our measure of academic adjustment in college 

students (the criterion or dependent variable, Y) would equal 119.30 if Study skills, ALAS score, 

and Inattention were all 0.  With each increase of 1 point for Study skills, we predict a decrease of 

0.98 points for academic adjustment.  (It is important to recall that a low score on the measure of 

academic adjustment in this study signified better adjustment to college.)  With each increase of 1 

point for the ALAS, we predict a decrease of 0.56 points for academic adjustment.  And with each 

increase of 1 point for Inattention, we predict an increase of 0.76 points for academic adjustment.   

Purpose And Limitations Of Multiple Correlation and Multiple Regression 

 
1. Provides an equation so that the value of Y can be predicted.  The multiple correlation, R,  

provides a measure of the strength of an association between multiple predictor variables 

(X variables) and a single criterion variable (Y).  Multiple regression provides an equation 

for this association which enables Y to be predicted. 

2. Not a measure of cause and effect.  Multiple regression follows the finding of a statistically 

significant multiple correlation, R.  With a study based upon a correlational design the 

researcher is not justified in coming to a cause-and-effect conclusion due to the lack of 
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experimental control.  Thus, the multiple regression equation allows the prediction of Y 

from a series of X variables, but does not indicate that the X variables are actually causing 

changes in the Y variable.   

3. Prediction is limited to the range of the original values.  The multiple regression equation 

should not be used for values of the predictor variables that are beyond the range of the 

original data.  

Assumptions Of Multiple Correlation and Multiple Regression  

 
1. Interval or ratio data.  The data are on an interval or a ratio scale of measurement. 

2. Data are associated.  The data are usually multiple measures on the same individual. 

3. Linear relationship.   It is assumed that all of the variables are linearly related. 

4. Significant multiple correlation, R.   A multiple regression analysis will only be undertaken if 

the multiple correlation, R, has been found to be statistically significant.   

Conclusion 
 
 Multiple correlation and regression are an extension of the Pearson correlation and linear 

regression to situations in which there is more than one predictor variable.  There are four basic 

types of multiple regression.  For most purposes simple multiple regression is preferable to 

hierarchical, forward stepwise or backward stepwise multiple regression. 

Glossary Of Terms 
 

Backward stepwise multiple regression – A form of multiple regression in which all of the 

 predictor variables are assessed simultaneously as in simple multiple regression.  Then,  

however, instead of dropping all of the predictors that do not significantly enhance the  

prediction, only the predictor variable with the weakest individual correlation with Y is  

eliminated and the regression equation is recalculated.  If there is no significant decrease in  

the ability to predict Y, this predictor variable is eliminated.  This process continues until  

there is a significant effect of dropping a predictor variable. 

Beta – The term used in multiple regression for a regression weight based upon standardized  

scores.  

Forward stepwise multiple regression – A form of multiple regression in which predictor variables  

are entered into the regression equation based upon their individual  correlation with Y.  To  

begin, the predictor variable with the strongest individual correlation with Y is entered into  

the regression equation.  Then the variable that accounts for the greatest proportion of the  
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remaining variability is entered.  This  process continues until there is no longer a  

statistically significant improvement in the ability to predict Y. 

Hierarchical multiple regression – A form of multiple regression in which the researcher 

 specifies the order in which predictor variables are entered into the regression 

 equation.  Only those variables that provide a statistically significant improvement in the  

ability to predict Y are maintained in the equation.   

Multicollinearity – In multiple regression a concern that arises when the predictors in the 

 multiple regression equation are highly correlated with each other.  If they are, then  the  

results of the multiple regression analysis are likely to vary dramatically between samples.   

This is an undesirable characteristic.   

Simple multiple regression – A form of multiple regression in which all of the predictor variables  

are assessed simultaneously.  All predictors that do not significantly enhance the overall  

prediction are dropped. 

Reference 

 
Norvilitis, J. M. & Reid, H. M. (2011, March).  College success: The relations between appreciation of  

 the liberal arts, symptoms of ADHD and study skills.  Poster presented at the Eastern  

 Psychological Association Convention, Cambridge, MA. 

Questions – Appendix D 

 
(Answers are provided in Appendix J.) 

 
1.  If the Pearson r is statistically significant then in simple linear regression the _____ will be 

less than the _____. 
 a.       mean of Y; mean of X 
 b.       mean of X; mean of Y 
 c.       standard error of estimate; standard deviation  
 d.       standard deviation; standard error of estimate 
 
2.   With linear regression there is (are) always _____ predictor(s) while in multiple regression 

there is (are) always _____ predictor(s). 
 a.       one; two 
 b.       one; two or more  
 c.       two; one 
 d.       two or more; one 
 
3.   In the linear regression equation the Y–intercept is commonly indicated by _____ while in the 

multiple regression equation the Y–intercept is commonly indicated by _____. 
a.       B1; B0 
b.       a; B0  
c.       B0; B1 
d.       B0; a 
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4.   In _____ all of the predictor variables are assessed simultaneously, without any 

consideration of theoretical importance or prior findings.  All predictors that do not 
significantly enhance the overall prediction are dropped. 

 a.       simple multiple regression  
 b.       hierarchical multiple regression 
 c.       forward stepwise multiple regression 
 d.       backward stepwise multiple regression 
 
5.  This approach to multiple regression is best suited to situations where there is a theoretical 

basis for the order in which predictor variables are to be considered. 
 a.       simple multiple regression 
 b.       hierarchical multiple regression  
 c.       forward stepwise multiple regression 
 d.       backward stepwise multiple regression 
 
6.   It has been found that this (these) multiple regression technique(s) is (are) likely to be 

affected by chance factors related to sample selection and thus its (their) results are less 
stable.  As a consequence this (these) approach(es) is (are) less commonly used.   

 a.       simple multiple regression 
 b.       hierarchical multiple regression 
 c.       forward stepwise multiple regression 
 d.       backward stepwise multiple regression 
 e.       both ‘c’ and ‘d’  
 
7.   In linear regression, if we have a statistically significant r we then calculate _____ in order to 

determine the proportion of variance in Y explained by the correlation.  In multiple 
regression, if we have a statistically significant R we then calculate _____ in order to 
determine the proportion of variance in Y explained by the multiple correlation. 

 a.       R; r 
 b.       a; B0 

 c.       r2; R2  
 d.      B0; a 
 
8.   _____ is the symbol or term used in multiple regression for a regression weight based upon 

standardized scores.   
a.       B0 

b.       B1 

c.       R2 

d.       Beta  
 

9.   This concept deals with whether the predictors in the multiple regression equation are 
highly correlated with each other.   

 a.       multicollinearity  
 b.       Beta 
 c.       hierarchical multiple regression 
 d.       backward stepwise multiple regression 
 
10.   With multiple regression which scale of measurement do we have for the predictors and the 

criterion? 
 a.       always interval 
 b.       either interval or ratio  
 c.       at least ordinal 
 d.       any scale of measurement is appropriate.  
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Appendix E   
An Introduction to Power Analysis:   
Minimum Appropriate Sample Sizes 

 

“A few observations and much reasoning lead to error; 

many observations and a little reasoning to truth.” 

Alexis Carrel 

Introduction 
  

This text, like all introductory statistical texts, has emphasized an understanding of Type I 

error, which is the probability of incorrectly rejecting a true null hypothesis.  Type I error is called 

alpha and has the symbol α (Table E.1 which is a copy of Table 6.3).  As was previously discussed, in 

most experiments the alpha level is set by the researcher at .05, or 1 chance in 20, though another 

value such as .01 is sometimes chosen.   

 This appendix will emphasize the importance of Type II error, which is the probability of 

failing to reject a false null hypothesis.  Type II error is called beta (note that beta has a different 

definition in multiple regression, which is discussed in Appendix D) and has the symbol β (Table 

E.1).  As was noted in Chapter 6, the value of beta is not usually known.  Nevertheless, an 

understanding of beta is important, in part because beta is related to the concept of statistical 

power, which is defined as 1 – β.  Power is thus the probability of correctly rejecting a false null 

hypothesis, which is what an experimenter is attempting to accomplish when conducting a study 

(Table E.1).  Alternatively, if we assume that an independent variable has had an effect on a 

dependent variable, then power can be thought of as indicating how well the researcher can detect 

that this has occurred.  An example may be helpful. 

Table E.1 Relationship Between Type I and Type II Errors, and Power 

Experimenter’s Decision 

     Rejects the Null   Retains the Null 

     Hypothesis   Hypothesis 

     Type I error (α)   Type II error (β) 

 If Decision is Incorrect  Incorrectly rejected   Incorrectly retained 

     a true null   a false null 

Truth of the Decision (Which is not known.) 

     Power (1 – β)    

If Decision is Correct   Correctly rejected  Correctly retained 

a false null   a true null 
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 Table E.2 summarizes the outcome of a hypothetical study examining student agreement or 

opposition to raising college fees to support increased campus services.  The null hypothesis is that 

living on or off campus will not affect students’ opinions.  If so, there should not be a difference in 

the distributions of the responses of the two groups.  In order to conduct the study, a researcher 

asks 10 students who live on campus, and 10 who live off campus whether they support raising 

fees.  The data are analyzed with an independent samples chi-square.  The chi-square is found to 

equal 1.6 which, with 1 degree of freedom and α = .05, is not statistically significant.  Of course, this 

does not ‘prove’ that the opinions do not differ, just that there was not sufficient evidence to reject 

the null hypothesis.  But this raises a question, if the population proportions of the two groups of 

students were in fact different would the researcher have been likely to recognize this?  In other 

words, did the study have enough power to realistically enable the researcher to detect that the 

proportions differed?   

Table E.2 Outcome of Student Opinion Survey on whether Fees should be Raised 

 
            Supports          Opposes  

  
   Student lives on campus  7  5  
  
   Student lives off campus  3  5  

 

Steps to increase the power of an experiment were reviewed in Chapter 6.  One of these 

steps is to increase the sample size(s) in the study.  Thus, when conducting a study a larger sample 

is, generally speaking, better than a smaller one.  However, this advice is of only modest practical 

value as every experimenter has time and material constraints that will limit how many subjects 

they can test.  What an experimenter needs to know is what the minimum acceptable sample size is 

for their particular situation, and in Chapter 6 there was no discussion concerning this issue.  

Further, as this is an introductory text an important consideration in creating examples was that 

the calculations be kept to a minimum.  In order to do so the data were frequently created so that 

significant outcomes would occur with very small samples.  An unfortunate consequence is that a 

reader may have come to an incorrect view as to the sample size that is likely to be needed in actual 

research.  Determination of how large a sample an experimenter should choose in order to have 

confidence that they can reasonably expect to reject a false null hypothesis is an example of what is 

called power analysis.  The four variables that are involved in power analysis are the desired value 

for statistical power, the alpha level chosen by the researcher, the effect size, and the sample size.   

 Power analysis – Detailed examination of the statistical power of a study.  The current text  

  emphasizes how this examination can assist the researcher in determining the  
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  minimum sample size that is needed. 

 

As noted previously, power (1 – β) is the probability of correctly rejecting a false null 

hypothesis.  It has been suggested (Cohen, 1988) that a reasonable level of power for a study would 

be .80.  With this value of power the experimenter would be able to reject a false null hypothesis 

80% of the time.  Put another way, if the power of a study is .80, then the beta for the study is .20.  

This is generally seen as a reasonable level for beta.  However, a number of published articles have 

noted that many studies have too little power.  In other words, in many studies beta is greater than 

.20, sometimes much greater, and thus it is unlikely that the null hypothesis could be rejected in 

these studies even if it was false.  What this means is that these experimenters essentially wasted 

their time conducting their studies!  But the damage is not limited to these researchers.  Readers of 

this research may interpret a failure to reject the null hypothesis as evidence that the independent 

variable in question did not have an effect.  If so, they will be less likely to explore this issue in the 

future and thus a promising direction for research may be overlooked.  As many studies are 

underpowered the cumulative effect can bias the direction or rate of development of an entire field 

of study (Maxwell, 2004)! 

The levels of beta and alpha are linked.  Recall that the alpha level is defined as the 

probability of making a Type I error.  It is usually set by the experimenter at .05.  Choosing a smaller 

level of alpha, such as .01, will reduce the probability of making a Type I error but will, of course, 

simultaneously increase the probability of making a Type II error (refer to Chapter 6 for a review).  

And, as the probability of Type II error (β) increases, the power of the experiment decreases 

(remember, power is defined as 1 – β). 

The effect size is also an important component of power analysis.  The effect size is a 

measure of the strength of the independent variable.  It can be thought of as the impact that an 

independent variable has upon a dependent variable.  Thus, in a simple two-group study if the 

effect size is large then the mean of the experimental group is likely to differ substantially from that 

of the control group.  And, of course, all else being equal larger differences are easier to detect than 

smaller differences. 

The final variable in a power analysis is the number of subjects in the study.  Intuitively, 

larger samples provide better estimates of population parameters than do smaller samples.  Thus, 

as a general rule larger samples are better than smaller ones.  Further, if the values of the other 

three variables in a power analysis (desired value of power, the alpha level, and the effect size) are 

known, then the minimum sample size that is required for a study can also be determined.  For 

instance, it was just noted that a reasonable level of statistical power for a study would be .80.  

Further, the experimenter sets the value of alpha, usually at .05, so this is a known value.  However, 
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determining the effect size is more problematical.  A review of previous studies may provide a 

reasonable estimate.   

The relationships of alpha (α), beta (β) and power (1 – β) are illustrated in Figure E.1.  Let’s 

assume our null hypothesis is that the population mean is 100.  You learned in Chapter 9 that if we 

were to take numerous samples, all of the same size, from this population, find the mean of each, 

and graph them, the result would be a sampling distribution of the mean.  This distribution is 

shown in the top portion of Figure E.1.  Now assume we conduct an experiment to determine 

whether our IV had an effect.  We collect data from one sample and find its mean.  How do we 

determine whether this sample came from the population as specified by the null hypothesis or 

from an alternative population with a different mean?  Before collecting the data we would have 

specified the alpha level (usually .05) and also whether we are conducting a one- or two-tailed test.  

The top portion of Figure E.1 illustrates a two-tailed test as well as the hypothetical critical values 

for the lower and upper tails, in this case 90 and 110.  Thus, if the obtained sample mean is less than 

90 or greater than 110 we will reject the null hypothesis and accept that the sample came from a 

population with a mean different than 100.  (This alternative population, with a hypothetical mean 

of 115, is shown in the bottom portion of Figure E.1.)  Of course, our decision to reject the null 

hypothesis could be incorrect and, by chance, we selected a very unusual sample that actually came 

from the population specified by the null hypothesis (top portion of Figure E.1).  The probability of 

making this error is determined when we specify the value of alpha (α). 

Alternatively, if the sample mean obtained in the experiment was 105 our decision would 

be to retain the null hypothesis as this value is less than the critical value of 110.  Thus we would be 

concluding that this sample came from the distribution in the top portion of Figure E.1.  Of course, 

once again it is possible that our decision is incorrect.  If so, our sample actually came from the 

population shown in the bottom portion of Figure E.1.  The probability of making this error, 

retaining the null hypothesis when it is incorrect (this is equivalent to not rejecting the null 

hypothesis when it is incorrect), is beta (β).  Then it follows that the probability of correctly 

rejecting the null hypothesis is 1 – β.  This is defined as power and the steps a researcher can take 

to increase power were discussed in Chapter 6.  Clearly, the likelihood of correctly rejecting the null 

hypothesis will increase if the overlap between the distributions in Figure E.1 is reduced.  One way 

to accomplish this is to increase the sample size. 

Figure E.1 Illustration of the Relationships of Alpha (α), Beta (β) and Power (1 – β) 
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If you have values for power, alpha, and the effect size there are websites that you can use 

to calculate the needed minimum sample size for your study.  Alternatively, you can refer to the 

following tables to provide an estimate of your needed sample size.  These tables are based upon 

Cohen (1988) and you are encouraged to refer to this reference, or a shorter ‘primer’ (Cohen, 1992) 

for a more in-depth discussion of this topic.    

The following tables give the minimum sample sizes needed for studies utilizing the chi-

square test of independence (Table E.3), one-way between-subjects ANOVA or independent 

samples t test (Table E.4), and the Pearson correlation (Table E.5).  The tables assume that power 

has been set as .80 and that the experimenter is utilizing a two-tailed test with the alpha level equal 

to .05.  Further, each table includes three estimates for the effect size (small, medium or large).  

Cohen (1988) provides more extensive tables.  However, the current tables provide an easy-to-

understand introduction to power analysis and should be useful in determining approximate 

sample sizes for these commonly utilized statistical procedures. 

Table E.3 indicates the approximate total number of subjects needed in a study which 

utilizes a chi-square test of independence and which has the previously defined values for power 

and alpha.  In this text you were taught to use phi and Cramer’s V as measures of effect size with a 

chi-square test.  Cohen’s (1988, 1992) tables were based upon the statistic w as the measure of 

effect size.  Following the suggestion of Cohen (1988, 1992), a small effect size would have a w 

equal to .10, a medium effect size would have a w equal to .30, and a large effect size would have a 

w equal to .50.   
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Table E.3 Determination of the Minimum Number of Subjects Needed for a Chi-square Test of 

Independence 

Effect Size 

   df  Small            Medium             Large 

   1    785     87  31 

   2    963  107  39 

   3  1090  121  44 

   4  1194  133  48 

   5  1293  143  51 

 

 It is important to note that in Table E.3 the needed minimum total number of subjects or 

cases increases as the degrees of freedom increases.  This should be intuitively obvious, for it is 

reasonable that as the number of cells in a design increases so would the necessary size of the total 

sample.  In addition, as the effect size becomes larger the needed sample size decreases 

dramatically.  This is simply an indication that a large difference is easier to detect than a small 

difference.   

 Recall that Table E.2 summarized the outcome of a hypothetical study assessing 20 

students’ opinions.  It was concluded that the results did not warrant rejecting the null hypothesis 

that the opinions did not differ.  This was based upon the calculation of a chi-square, with 1 degree 

of freedom, of 1.6.  However, as Table E.3 indicates, even if the effect size was expected to be large 

the study would have required a minimum sample size of 26 to have adequate power.  If a medium 

effect size was anticipated the minimum sample size would have increased to 87.  And the 

minimum sample size for a small effect would be 785!  With a sample size of only 20 the results in 

Table E.2 are an example of a woefully underpowered study. 

 Table E.4 indicates the approximate number of subjects needed in each group (level) in a 

study which utilizes a one-way between-subjects ANOVA or independent samples t test (two-tailed 

– one df) with the previously defined values for power and alpha.  The current text utilized eta2 as 

the measure of effect size with ANOVA.  The measure of effect size utilized by Cohen (1988, 1992) 

was the statistic f.  Following Cohen’s (1988, 1992) suggestion, a small effect size would have an f 

equal to .10, a medium effect size would have an f equal to .25, and a large effect size would have an 

f equal to .40.   

Table E.4 Determination of the Minimum Number of Subjects Needed for Each Group in a One-

way Between-subjects ANOVA or Independent Samples t Test 

Effect Size 

   df  Small           Medium            Large 
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   1  393  64  26 

   2  322  52  21 

   3  274  45  18 

   4  240  39  16 

   5  215  35  14 

 

 It is important to note that numbers in Table E.4 are for the minimum number of subjects 

needed in each group (treatment level) of the study.  Thus while this number decreases with 

increasing degrees of freedom, the total number of subjects or cases needed in the entire study still 

increases as the degrees of freedom increases.  In addition, as the effect sizes becomes larger, the 

number of subjects needed in each group decreases dramatically.  Once again, this is simply an 

indication that it is easier to detect a large difference than a small difference.  Finally, it was pointed 

out in this text that the independent samples t test is closely related to an ANOVA.  The number of 

subjects needed in each group of the independent samples t test is the same as for each group in a 

one-way between-subjects ANOVA with 1 dfBet. 

 Table E.5 indicates the approximate number of pairs of observations needed in a study 

which utilizes a Pearson correlation with the previously defined values for power and alpha.  

Cohen’s (1988, 1992) measure of effect size was based upon the statistic r.  This text utilized r2 as 

the measure of effect size.  Following Cohen’s (1988, 1992) suggestion, a small effect size would 

have an r equal to .10, a medium effect size would have an r equal to .30, and a large effect size 

would have an r equal to .50.   

Table E.5 Determination of the Minimum Number of Pairs of Observations for a Pearson 

Correlation 

Effect Size 

    Small           Medium            Large 

    782  85  29 

   

 It is important to note that the entries in Table E.5 are for the number of pairs of 

observations needed in the study.  As the effect size becomes larger, the number of pairs of 

observations needed in the study decreases dramatically.  Once again, this is simply an indication 

that it is easier to detect a large effect than a small effect.   

 The previous examples are not meant to be comprehensive.  A number of sites on the 

internet are available to determine needed sample sizes.  One that is often used is G*Power.  

Another, very easy-to-use site is Statistical Decision Tree Wizard.  An advantage of the later site is 

that it also provides assistance for choosing the correct statistical procedure to use.  However, from 

even a brief review of the tables provided in this appendix it is evident that substantial sample sizes 
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will frequently be needed in order for a study to have adequate power.  This is a critical piece of 

information when designing your research, or when reviewing the research of others. 

Purpose And Limitations Of Using Power Analysis When Choosing 
Appropriate Sample Sizes 

 
1. Provides an estimate of the minimum number of subjects that is needed for a study.   

2. Estimate of the minimum number of subjects needed is dependent upon the values utilized 

for power, alpha and effect size.  The estimates for power, alpha and effect size are all either 

based upon convention (power and alpha) or upon previous findings (effect size).  While 

there is a solid logical basis for the conventions that underlie choices for values of power 

and alpha, there is still the possibility that for a particular study different values would have 

been appropriate.  Further, while the determination of effect size is based upon the previous 

literature, in many cases this record is likely to be limited.  All of these factors could affect 

the accuracy of the estimate of the minimum number of subjects that is needed.   

Assumptions Of Power Analysis When It Is Being Used To Choose Appropriate 
Sample Sizes  

 
1. Values of power, alpha and effect size are either known or can be estimated.   

Conclusion 
 
 Power analysis provides guidelines for determining the minimum number of subjects that 

are needed in a study to maintain the Type II error rate at a reasonable level.  Without an adequate 

number of subjects it is likely that a false null hypothesis will not be rejected, a situation which has 

been found to commonly occur in reviews of published research. 

Glossary Of Terms 
 
Power analysis – Detailed examination of the statistical power of a study.  The current text  

 emphasizes how this examination can assist the researcher in determining the minimum  

 sample size that is needed. 
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Questions – Appendix E 

 
(Answers are provided in Appendix J.) 

 
1. The probability of incorrectly rejecting a true null hypothesis is the definition of  

_____. 
 a. Type I error  
 b. Type II error 
 c. Beta 
 d.  Power 
 e. Both ‘b’ and ‘c’ 
 
2. The probability of failing to reject a false null hypothesis is the definition of _____. 
 a. Type I error 
 b. Type II error  
 c. Beta 
 d.  Power 
 e. Both ‘b’ and ‘c’ 
 
3. The probability of correctly rejecting a false null hypothesis is the definition of _____. 
 a. Type I error 
 b. Type II error 
 c. Beta 
 d. Power  
 e. Both ‘b’ and ‘c’ 
 
4. This statistical concept is defined as 1 – β. 
 a. Type I error 
 b. Type II error 
 c. Beta 
 d. Power  
 e. Both ‘b’ and ‘c’ 
 
5. If the power of a study is .70, then the beta for the study is _____. 
 a. .10 
 b. .20 
 c. .30   
 d. .40 
 e. cannot be determined 
 
6. Cohen suggested that a reasonable level of power for a study would be _____. 
 a. .05 
 b. .80   
 c. .20 
 d. .01 
 e. .50 
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7. As the probability of making a Type I error increases, the probability of making a Type II 

error _____ and the power of the experiment _____. 
 a. decreases; increases   
 b. decreases; decreases 
 c. increases; decreases 
 d. increases; increases 
 
8.  Assuming that Cohen’s recommendation for the size of power has been followed, and alpha 

has been set at .05, what is the minimum number of subjects that a researcher should plan 
to include in their chi-square study if there are 4 df and the expected effect size is large? 

 a. 31 
 b. 133 
 c. 48   
 d. 1194 
 
9. Assuming that Cohen’s recommendation for the size of power has been followed, and alpha 

has been set at .05, what is the minimum number of subjects that a researcher should plan 
to include in each level of their one-way between-subjects ANOVA study if there are 5 df and 
the expected effect size is medium? 

 a. 35   
 b. 14 
 c. 215 
 d. 16 
 
10. Assuming that Cohen’s recommendation for the size of power has been followed, and alpha 

has been set at .05, what is the minimum number of pairs of subjects that a researcher 
should plan to include in their Pearson r study if the expected effect size is small? 

 a. 1012 
 b. 783   
 c. 85 
 d. 28   
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Appendix F   
Statistical Symbols Used in this Text   
[And Commonly Used Alternatives] 

 

Chapter 1:  Math Summary 

 X  “sum each of the scores”, it is read as ‘sum of X’.   

 X2 “sum each of the squared scores”, it is read as ‘sum of X squared’. 

 (X)2 “the square of the sum of scores”, it is read as ‘sum of X, quantity squared’ 

 < and > indicate ‘less than’ and ‘greater than’, respectively  

Chapter 3:  Mean and Variability with Interval/Ratio Data 

   population mean 

 M sample mean  [ X ] 

 2  variance of a population  

    standard deviation of a population  

Chapter 4:  Variability with Interval/Ratio Data 

 s2 variance of a sample  

 s  standard deviation of a sample  

 z z score 

  alpha level 

Chapter 7:  Chi-square 

 2 Chi-square  

 fo frequency observed 

 fe frequency expected 

Chapter 8:  Chi-square 

   Phi  

Chapter 9:  One Sample z and t tests 

  M population standard error [σX
−] 

 SEM abbreviation of standard error of the mean 

  zc  critical value of z 

 ≤ less than or equal to 

 t  t score 

 sX estimate of the population standard deviation based upon sample data  

 sM  estimate of the population standard error based upon sample data    [𝐬𝐗
−] 

 df degrees of freedom 
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 2 eta squared  

 tc  critical value of t 

Chapter 10:  Independent Samples t and Dependent Samples t 

 M1 mean of sample one 

 M2 mean of sample two 

 s(M1− M2) standard error of the difference between sample means    

 D difference between two scores 

 MD mean of a set of difference scores 

 sMD  standard error of the mean difference 

Chapter 11:  One-way Between-subjects ANOVA 

F  F ratio in an ANOVA   

SST   sums of squares total 

SSBet   sums of squares between 

SSW  sums of squares within 

 dfT  degrees of freedom total 

dfBet   degrees of freedom between 

dfW  degrees of freedom within 

MSBet   mean square between 

 MSW   mean square within 

 k number of samples or groups  

q    value obtained from the Tukey HSD table  

Chapter 12:   One-way Within-subjects ANOVA 

SSSubjects   sums of squares subjects 

SSResidual sums of squares residual 

dfsubjects  degrees of freedom subjects 

dfResidual degrees of freedom residual 

MSResidual mean square residual 

Chapter 13:  Two-way Between-subjects ANOVA 

FA main effect of Factor A 

FB main effect of Factor B 

FAXB interaction of Factor A and Factor B 

dfA  degrees of freedom factor A 

dfB   degrees of freedom factor B 

dfAXB  degrees of freedom for interaction 
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dfW degrees of freedom within 

MSA   mean square factor A 

MSB   mean square factor B 

MSAXB  mean square for interaction 

MSW   mean square within 

Chapter 14:  Pearson Correlation and Regression 

 rXY  Pearson correlation between X and Y 

rXY
2 with Pearson correlation, the proportion of variance in one variable that is 

 explained or accounted for by the other variable  

 MX mean of the scores of variable X [ X ] 

MY mean of the scores of variable Y [Y ] 

Ŷ predicted value of Y  [Y’] 

Ŷ   standard error of estimate – standard deviation of Y scores around the regression 

line 

Ŷ2  error variance – variance of Y scores around the regression line 

b slope of a line, also called the regression weight  

a Y intercept of a line 

Appendix D:  Multiple Regression 

 B regression weight in multiple regression 

 R symbol for multiple correlation 

R2 in multiple correlation, the proportion of variance in the Y variable that is  

 explained or accounted for by the set of predictor variables 

 



531 
 

Appendix G   
Definitional Equations and, Where Appropriate, Their 

Computational Equation Equivalents, In the Order 
They Were Presented 

 

Descriptive Statistics 
 
Chapter 3:  Describing Interval and Ratio Data – I  

Median = the value of the score at the 
𝐍 + 𝟏

𝟐
 position 

Range = highest score – lowest score 

Interquartile range = 75th percentile – 25th percentile 

Semi-interquartile range (SIQR) = 
𝐢𝐧𝐭𝐞𝐫𝐪𝐮𝐚𝐫𝐭𝐢𝐥𝐞 𝐫𝐚𝐧𝐠𝐞

𝟐
 

= 
𝟕𝟓𝐭𝐡 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥𝐞 − 𝟐𝟓𝐭𝐡 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥𝐞

𝟐
 

 Mean (M) = 
X

𝑛
   

 Population   Sample   Computational Equations 

2  = 
 (X – )2

N
   s2  = 

 (X – M)2

n − 1
   s2 = 

X2 − 
( X)2

n

n − 1
 

  =  
 (X – )2

N
   s  =  

 (X – M)2

n − 1
   s = 

X2 − 
( X)2

n

n − 1
 

   =  
SS

N
   s  =  

SS

n − 1
    

   =  
 x2

N
   s  =  

 x2

n − 1
    

 

Chapter 4:  Describing Interval and Ratio Data 

 z = 
X – 


  

 X = z +  

Inferential Statistics 
 

Chapter 7:  Goodness-of-fit Chi-square 

2 =  
(Frequency observed – Frequency expected)2

Frequency expected
  = 

(fo − fe)2

fe
  

df = c – 1  where c = the number of categories 
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Chapter 8:  Chi-square Test of Independence 

Expected frequency of a cell = 
(Frequency of its row) (Frequency of its column)

Total n
 

df = (Number of rows – 1) (Number of columns – 1) 

 =  
𝟐

𝒏
  

Cramer’s V =  
2

n(df)
   

  where df = the smaller of (r – 1) and (c – 1) 

 

Chapter 9:  One Sample z and t tests 

z = 
M – 

M
   

  where M = 


n
  

  This equation may be clearer if we substitute X  for : 

  M = 
𝑿

𝐧
  

  
Confidence interval for z: 

  M – zc (M) ≤    ≤ M + zc (M)   

where zc is the critical value for z obtained from the z table (Appendix K, 

Table 1) 

t = 
𝐌 – 

𝐬𝐌
       

  where sM  = 
𝐬𝐗

𝐧
  and sX =  

(𝐗 – 𝐌)𝟐

𝐧 − 𝟏
 

  df = n – 1 where n = the number of data points   

 ƞ2 = 
𝐭𝟐

𝐭𝟐 + 𝐝𝐟
 

 Confidence interval for t: 

M – tc (sM ) ≤    ≤ M + tc (sM ) 

where tc is the critical value for t obtained from the t table (Appendix K, Table 3b) 

 

Chapter 10:  Independent Samples t and Dependent Samples t Tests 

 

Independent Samples t Test 

t = 
(𝐌𝟏− 𝐌𝟐) – (𝛍𝟏 − 𝛍𝟐)

𝐬(𝐌𝟏 − 𝐌𝟐)
 

where 𝐬(𝐌𝟏− 𝐌𝟐) =   
𝒏𝟏 – 𝟏) 𝒔𝑿𝟏

𝟐  + (𝒏𝟐 – 𝟏) 𝒔𝑿𝟐
𝟐

𝒏𝟏 + 𝒏𝟐 – 𝟐
 (

𝟏

𝐧𝟏
 + 

𝟏

𝐧𝟐
) 

and where df = n1
 + n2 – 2 
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ƞ2 = 
𝐭𝟐

𝐭𝟐 + 𝐝𝐟
 

Confidence interval: 

[(M1 – M2) – tc (𝐬(𝐌𝟏− 𝐌𝟐))] ≤  (1 – 2)  ≤ [(M1 – M2) + tc (𝐬(𝐌𝟏− 𝐌𝟐))] 

where tc is the critical value for t obtained from the t table (Appendix K, Table 3b) 

 

Dependent Samples t Test 

t = 
𝐌𝐃 − 𝐃

𝐬𝐌𝐃

  

Where the mean difference, 𝐌𝐃 = 
𝚺𝐃

𝐧
 ; the standard error, 𝐬𝐌𝐃

 = 
𝐬𝐃

𝐧
 ; the standard 

deviation of the differences, sD =  
(𝐃 – 𝐌𝐃)𝟐

𝒏 − 𝟏
 ; and n is equal to the number of pairs  

of scores. 

And where df is equal to n – 1 

If the null hypothesis is that the difference between population means (D ) is zero: 

 t = 
𝐌𝐃

𝐬𝐌𝐃

     

ƞ2 = 
𝐭𝟐

𝐭𝟐 + 𝐝𝐟
 

Confidence interval:   

MD  – tc (𝐬𝐌𝐃
) ≤  D  ≤  MD + tc (𝐬𝐌𝐃

) 

where tc is the critical value for t obtained from the t table (Appendix K, Table 3b) 

 

Chapter 11:  One-way Between-subjects ANOVA 

Likelihood of at least one Type I error = 1 – (1 – )C  

where c is the number of pairwise comparisons.   

Number of pairwise comparisons, c = 
𝐤(𝐤 – 𝟏)

𝟐
   

where k is the number of levels of the treatment (number of samples or groups)  

F = 
𝐁𝐞𝐭𝐰𝐞𝐞𝐧 𝐠𝐫𝐨𝐮𝐩𝐬 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝑿

𝟐

𝐖𝐢𝐭𝐡𝐢𝐧 𝐠𝐫𝐨𝐮𝐩𝐬 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝑿
𝟐   

 

SST  = SSBet + SSW  

 SST  = (X – MG)2  

where MG = 
𝐗

𝐍
  

MG is equal to the mean of all of the subjects in all of the samples, and N is  

the total number of subjects in all the samples or groups 
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 SSBet = [(M – MG )2 n]  

where M is the mean of a sample or group and n is the sample size, the number of 

subjects in each group or sample 

 SSW = [ (X – M)2]  

    

dfT = dfBet + dfW 

 dfT = N – 1 

 dfBet = k – 1 where k is the number of groups or treatment levels 

 dfW = (n – 1)     

    

 MSBet = 
𝐒𝐒𝐁𝐞𝐭

𝐝𝐟𝐁𝐞𝐭
   

 MSW = 
𝐒𝐒𝐖

𝐝𝐟𝐖
   

 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐖
 = 

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐 𝐛𝐚𝐬𝐞𝐝 𝐮𝐩𝐨𝐧 𝐓𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭 + 𝐄𝐫𝐫𝐨𝐫

𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 𝐨𝐟 𝐗
𝟐  𝐛𝐚𝐬𝐞𝐝 𝐨𝐧𝐥𝐲 𝐮𝐩𝐨𝐧 𝐄𝐫𝐫𝐨𝐫

 

 

Tukey HSD  

Critical value = q  
𝐌𝐒𝐖

𝐧
     

  where q is found from the q table (Appendix K, Table 5) and n is the  

  number of subjects in each sample if the sample size is the same for all of the  

  samples.  Or 

   n = 
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐦𝐞𝐚𝐧𝐬


𝟏

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐬𝐮𝐛𝐣𝐞𝐜𝐭𝐬 𝐢𝐧 𝐞𝐚𝐜𝐡 𝐬𝐚𝐦𝐩𝐥𝐞

       

   if the sample size is not the same for all of the samples 

2 = 
𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓
    

t2 = F 

 

Chapter 12:   One-way Within-subjects ANOVA 

SST = SSBet + SSSubjects + SSResidual  

 SST = (X – MG)2   

where MG = 
𝐗

𝐍
  

MG is equal to the mean of all of the scores in the study, and N is the total 

number of data points in the study 



535 
 

SSBet = [(M – MG )2 n]  

where n is the number of subjects in the study 

 SSResidual = SSW – SSSubjects 

SSW = [(X – M)2]  

where M is the mean of a treatment level 

SSSubjects = [(
𝐗𝐒𝐮𝐛𝐣𝐞𝐜𝐭

𝐤
 – 𝐌𝐆)𝟐]𝐤   

= [(𝐌𝐒𝐮𝐛𝐣𝐞𝐜𝐭  – 𝐌𝐆)𝟐]𝐤 

where k is the number of treatment levels 

dfT = dfBet + dfSubjects + dfResidual 

 dfT = N – 1  

 dfBet = k – 1  

 dfSubjects = n – 1  

 dfResidual = (n – 1)(k – 1)    

 

MSBet = 
𝐒𝐒𝐁𝐞𝐭

𝐝𝐟𝐁𝐞𝐭
  

 MSResidual = 
𝐒𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥

𝐝𝐟𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥
   

 

F = 
𝐌𝐒𝐁𝐞𝐭

𝐌𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥
   

   

 Number of pairwise comparisons = 
𝐤(𝐤 – 𝟏)

𝟐
  

  where k is the number of treatment levels  

Tukey HSD critical value = q  
𝐌𝐒𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥

𝐧
    

where q is found from the q Table (Appendix K, Table 5), MSResidual comes from the 

ANOVA summary table and n = the number of subjects   


𝐏
𝟐 = 

𝐒𝐒𝐁𝐞𝐭

𝐒𝐒𝐓  − 𝐒𝐒𝐒𝐮𝐛𝐣𝐞𝐜𝐭𝐬
    

 

Chapter 13:  Two-way Between-subjects ANOVA 

There are three F ratios: 

FA, the main effect of Factor A 

FB, the main effect of Factor B 

FAXB, the interaction of Factor A and Factor B 
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dfT = dfA + dfB + dfAXB + dfW 

 dfT = N – 1 where N is the total number of subjects in the study 

 dfA = number of levels of Factor A – 1    

 dfB = number of levels of Factor B – 1  

 dfAXB = dfA X dfB  

 dfW = N – number of cells 

 

MSA = 
𝐒𝐒𝐀

𝐝𝐟𝐀
  

MSB = 
𝐒𝐒𝐁

𝐝𝐟𝐁
  

MSAXB = 
𝐒𝐒𝐀𝐗𝐁

𝐝𝐟𝐀𝐗𝐁
   

MSW = 
𝐒𝐒𝐖

𝐝𝐟𝐖
  

   

FA = 
𝐌𝐒𝐀

𝐌𝐒𝐖
     

FB = 
𝐌𝐒𝐁

𝐌𝐒𝐖
     

FAXB = 
𝐌𝐒𝐀𝐗𝐁

𝐌𝐒𝐖
   

 

Number of pairwise comparisons = 
𝐤(𝐤 – 𝟏)

𝟐
    

  where k is the number of means being compared  

 

Tukey HSD critical value for a main effect = q  
𝐌𝐒𝐖

𝐧
   

where q is found from the q table (Appendix K, Table 5), MSW comes from the 

ANOVA summary table and n = the number of scores for each mean 

Tukey HSD critical value for an interaction = qi  
𝐌𝐒𝐖

𝐧
 

 Where qi is derived from q (refer to a more advanced text) 

 

Eta squared (2) is calculated for each F ratio that was found to be significant: 

2 for Factor A = 
𝐒𝐒𝐀

𝐒𝐒𝐓
    

2 for Factor B = 
𝐒𝐒𝐁

𝐒𝐒𝐓
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2 for the Interaction = 
𝐒𝐒𝐀𝐗𝐁

𝐒𝐒𝐓
   

Alternatively, partial eta squared (
𝐩
𝟐) can be calculated for each F ratio that was  

 found to be significant: 


𝐩
𝟐 for Factor A = 

𝐒𝐒𝐀

𝐒𝐒𝐓 − 𝐒𝐒𝐁 − 𝐒𝐒𝐀𝐗𝐁
  


𝐩
𝟐 for Factor B = 

𝐒𝐒𝐁

𝐒𝐒𝐓 − 𝐒𝐒𝐀 − 𝐒𝐒𝐀𝐗𝐁
  

   
𝐩
𝟐 for the interaction = 

𝐒𝐒𝐀𝐗𝐁

𝐒𝐒𝐓 − 𝐒𝐒𝐀  − 𝐒𝐒𝐁
  

 

Chapter 14:  Pearson Correlation and Regression 

Pearson Correlation 

 covxy = 
 ∑(X − MX)(Y − MY)

n − 1
 

where n is the number of pairs of scores 

rXY = r = 
covXY

sXsY
 

df for the Pearson r = n – 2, where n is the number of pairs of scores 

Coefficient of determination = r2 which is the proportion of variance in one variable  

 that is explained or accounted for by the other variable  

 Coefficient of nondetermination = 1 – r2 

Regression 

Ŷ  = Y  (1 – r2) 

r2 = 
Y

2  − 
Ŷ
2

Y
2    

Ŷ = bX + a   

where b = 
Change in Y

Change in X
   

b = r (
sY

sX
)  

 a = MY – bMX 

 

 Definitional Equations  Computational Equations 

  b = r (
σY

σX
)   b = 

NXY – XY

NX2 − (X)2   

 

 
Appendix A:  Kruskal-Wallis H Test 
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H = [ 
12

N(N + 1)
 ][ Σ ( 

T2

n
 ) ] – 3(N + 1) 

where N = the total number of subjects, T = the total of the ranks for a sample, n = 

the sample size, and df = number of samples – 1 

 

number of possible pairwise comparisons  = 
k (k  –  1) 

2
  

where k = the number of samples 

 

Eta squared (2) = 
H

N − 1
  

  
 

Appendix B:  Phi Correlation 

 r = (ad – bc) /  [(a + b) (c + d) (a + c) (b + d)]     

Coefficient of determination = r2 

Coefficient of nondetermination = 1 – r2   

 

Appendix C:  Spearman Correlation 

rs = 1 – 
6ΣD2

n(n2 − 1)
 

where D is the difference between a pair of ranks and n is the number of pairs of 

data 

The Spearman r table (Appendix K, Table 7) is not based upon degrees of freedom but 

rather is based directly upon n, the number of pairs of data 

Coefficient of determination = rS2 

Coefficient of nondetermination = 1 – rS2 

 

Appendix D:  Multiple Regression 

The equation for multiple regression with two predictors is: 

Ŷ = B1X1 + B2X2 + B0 

Where Ŷ is the predicted value of the criterion variable; B1 is the  

regression weight associated with the first predictor variable, X1 ;  B2 is the 

regression weight associated with the second  predictor variable, X2 ; and B0 

is a constant, the value of the Y intercept 

The equation for multiple regression with three predictors could be written as: 

Ŷ = B1X1 + B2X2 + B3X3 + B0 

Where each term is defined as before and where B3 is the regression  

weight associated with the third predictor variable, X3  
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Appendix H   
Inferential Statistical Procedures and Their Measures 

of Effect Size Which were Discussed in the Text 
 

 Statistical Procedure     Measure of Effect Size 

For Difference Designs (Presented In Order Of 
Coverage) 

 
 Goodness-of-fit Chi-square    None 

 Chi-square test of independence   Phi or Cramer’s V 

 One-sample t test     Eta squared 

Independent samples t test    Eta squared 

 Dependent samples t test    Eta squared 

 One-way Between-subjects ANOVA   Eta squared 

 One-way Within-subjects ANOVA   Partial eta squared 

 Two-way Between-subjects ANOVA   Eta squared or Partial eta squared 

 Kruskal-Wallis H test  (Appendix A)   Eta squared 

  

For Association Designs (Presented In Order Of 
Coverage) 

 
 Chi-square test of independence   Phi or Cramer’s V 

Pearson correlation     Pearson r squared 

 Phi correlation (Appendix B)    Phi r squared 

 Spearman correlation (Appendix C)   Spearman r squared 



540 
 

Appendix I – 1   
Glossary of Terms  

With Chapter/Appendix Each is First Introduced 
 

Absolute value – The magnitude of a number irrespective of whether it is positive or negative.  Chap  

 1 

Alpha – Another term for Type I error.  Its symbol is α.  Chap 6 

Alpha level – Criterion set for rejecting the null hypothesis.  This is usually .05.  Chap 6 

Alternative hypothesis (H1) – When used with a difference design, the statement that the  

 treatment does have an effect.  Chap 6 

Analysis of variance (ANOVA) – A set of flexible, closely related, inferential procedures for  

 comparing sample means by examining variances.  Chap 11 

Area of rejection – Area of the distribution equal to the alpha level.  It is also called the Critical  

 Region.  Chap 7 

Association design – A research procedure designed to determine whether an association observed  

 in a sample is likely to generalize to the population.  Chap 6 

Backward stepwise multiple regression – A form of multiple regression in which all of the  

 predictor variables are assessed simultaneously as in simple multiple regression.  Then,  

 however, instead of dropping all of the predictors that do not significantly enhance the  

 prediction, only the predictor variable with the weakest individual correlation with Y is  

 eliminated and the regression equation is recalculated.  If there is no significant decrease in  

 the ability to predict Y, this predictor variable is eliminated.  This process continues until  

 there is a significant effect of dropping a predictor variable.  App D 

Bar graph – A graph in which the frequency of each category or class of observation is indicated by  

 the length of its associated bar.  Chap 2 

Bell-shaped curve – A symmetrical distribution in which the highest frequency scores are located  

 near the middle and the frequency drops the farther a score is from the middle.  Chap 3 

Beta – Another term for Type II error.  Its symbol is β.  Chap 6 

 also 

         – The term used in multiple regression for a regression weight based upon standardized  

scores.  App D 

Between-subjects design – With an ANOVA, those designs in which each subject experiences only a  

 single level of a factor.  Chap 11 

Biased estimator – An estimator that does not accurately predict what it is intended to because of  

 systematic error.  Chap 9 
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Bimodal – A descriptive term for a distribution that has two modes.  Chap 2 

‘Blind’ study – A study in which the data are collected in such a way that the subject’s  

 assignment to the control or experimental condition is not known.  There are several  

 variations of ‘blind’ procedures.  They are all employed to reduce bias.  Chap  15 

Bonferroni method – A procedure to control the Type I error rate when making numerous  

 comparisons.  In this procedure the alpha level that the experimenter has set is divided by  

 the number of comparisons.  Chap 8 

Box and whiskers plot – Another name for a boxplot.  Chap 3 

Boxplot – A summary of a distribution which includes the median, a central box with the 25th and  

 75th percentiles as limits, and the range.  Another name for a boxplot is a box and whiskers  

 plot.  Chap 3 

Carryover effect – A treatment or intervention at one point in time may affect or carry over to  

 another point in time.  Chap 10 

Cause-and-effect conclusion – Decision that the change in the value of the independent variable  

 resulted in a change in the value of the dependent variable.  This is justified with a well- 

 conducted, true experiment.  Chap 6 

Ceiling effect – When the scores are predominately at the high end of the range of possible  

 outcomes.  App A 

Cell – A particular combination of treatment levels in a Factorial ANOVA.  Chap 13 

Central limit theorem –  

   –With increasing sample sizes, the shape of the distribution of sample means (sampling  

  distribution of the mean) rapidly approximates the normal distribution irrespective  

  of the shape of the population from which it is drawn.   

   –The mean of the distribution of sample means (MG) is an unbiased estimator of the  

  population mean.  

   –And the standard deviation of the distribution of sample means (M) will equal X /n .   

  Chap 9 

Chi-square test of association – Another name for the chi-square test of independence.  Chap 8 

Chi-square test of independence – An inferential procedure for analyzing whether the pattern of  

 observed frequencies differs among the groups.  Chap 8 

Coefficient of determination – The square of the correlation.  It indicates the proportion of  

 variability in one variable that is explained or accounted for by the variability in the  

 other variable.  Chap 14 

Coefficient of nondetermination – The proportion of the variability of one variable not explained or  

 accounted for by the variability of the other variable.  For the Pearson r, it is equal to 1 – r2 .   

 Chap 14 
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Computational equations – Equations developed to aid in statistical calculations.  They were useful  

 with large data sets, but now researchers would employ computer software packages  

 instead.  Chap 5 

Confidence interval – The range of values that has a known probability of including the  

 population parameter, usually the mean.  Chap 9 

Confirmation bias – Selecting only evidence that supports, or confirms, one’s pre-existing beliefs.   

 Chap 15 

Confounded comparison – Comparison of two cell means which involves two factors that are 

 changing.  The comparison cannot be interpreted.  Chap 13 

Continuous variable – A variable that can be of any magnitude, though it might be limited to a  

 particular range.  Chap 2 

Control group – In a between-groups design, the group of subjects that does not receive the  

 treatment.  Chap 6 

Correlation – A measure of the degree of association among variables.  A correlation  indicates  

 whether a variable changes in a predicable manner as another variable changes.  Chap 14 

Correlation coefficient – A single number that indicates the degree to which two variables are  

 related.  Chap 14 

Correlational study – A study in which the researcher does not randomly assign the subjects and  

 does not manipulate the value of a variable.  As a result, at the conclusion of the study the  

 researcher has little confidence that there is a cause-and-effect relationship between the  

 variables.  Chap 6 

Counterbalancing – A method used to control for carryover effects.  In counterbalancing, the order  

 of the treatments or interventions is balanced so that an equal number of subjects will  

 experience each order of presentation.  Chap 10 

Covariance – A statistical measure indicating the extent to which two variables vary together.  Chap  

 14 

Covary – If knowledge of how one variable changes assists you in predicting the value of another  

 variable, the two variables are said to covary.  Chap 14 

Cramer’s V – Measure of effect size for chi square tests of independence larger than 2 X 2.  Chap 8 

Criterion variable (Y) in regression – The variable (Y) whose value is being predicted by the  

 predictor variable (X).  Chap 14 

Critical region – Area of the distribution equal to the alpha level.  It is also called the Area of  

 Rejection.  Chap 7 

Critical value – A value for a statistical test which is used to determine whether to reject or retain  

 the null hypothesis.  Chap 7 

Data (plural of datum) – Observations or factual information, often in the form of numbers.   Chap 1 



543 
 

Data view – SPSS window in which the data are displayed.  Chap 5 

Deduction – A method of thinking in which conclusions are logically derived from general  

 statements that are assumed to be true.  Chap 15 

Degrees of freedom (df) – The number of outcomes out of the total that are free to vary.  Chap 7 

Dependent samples t test – An inferential procedure for comparing two sample means based upon  

 repeated measures of the same subjects, or measures from pairs of subjects who are related  

 in some way.  Chap 10 

Dependent variable (DV) – In an experiment, the variable whose value is not directly controlled by  

 the researcher.  Its value may be changed by the independent variable (IV).  Chap 6 

Dependent variable (Y) in regression – Another name for the criterion variable.  Chap 14 

Descriptive statistics – Techniques that are used to summarize data.  These procedures lead  to a  

 better understanding of the data.  Chap 1 

Deviation – The difference between a score and its mean.  Thus, with  population data the deviation  

 equals X – .  The symbol for a deviation is x.  Chap 3 

Difference design – A research procedure designed to determine whether a difference observed  

 between samples is likely to generalize to the populations.  Chap 6 

Difference score (D) – The difference between two measurements from the same individual  

 (repeated measures design) or two measurements from pairs of matched subjects  

 (matched subjects design).  Chap 10 

Discrete variable – A variable that can only have particular values.  Chap 2 

Effect size – A measure of how ‘strong’ a statistically significant outcome is.  Chap 8 

Empiricism – A method for finding truth that emphasizes the importance of observation.  Chap 15 

Error – An outcome due to chance, Chap 9, or with ANOVA, the variability not due to  

 treatment.  Chap 11 

Error in an ANOVA – ‘Pre–existing subject differences’ + ‘residual error’.  Chap 12 

Error variance (Ŷ2) – The variance of Y scores around the regression line.  Chap 14 

Expected frequencies – With nominal data, the outcome that would be expected if the null  

 hypothesis were true.  Chap 7 

Experimental group – In a between-groups design, the group of subjects that does receive  

 the treatment.  Chap 6 

Experimentwise error rate – The likelihood of making at least one Type I error with any of  

 the experiment’s comparisons.  Chap 11 

Eta squared (ƞ2) – A commonly used measure of effect size that indicates the percentage of  

 variation in the dependent variable that is explained or accounted for by the  

 independent variable.  Chap 9 

Factor – With an ANOVA, the term ‘Factor’ is often used instead of independent variable.  Chap 11 
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 With factor analysis, one of a smaller number of underlying variables derived from analysis  

of the larger set of initial variables.  Chap 15 

Factor analysis – Statistical procedure that groups the initial variables into a smaller set of  

underlying variables called factors.  Chap 15 

Factorial ANOVA – An ANOVA with more than one factor.  Chap 11 

First quartile – The value of the score at the 25th percentile in a distribution.  Chap 3 

Fisher exact test – An alternative to the 2 X 2 chi square test of independence that is used when  

there is a particularly small data set.  Chap 15 

Forward stepwise multiple regression – A form of multiple regression in which predictor  

 variables are entered into the regression equation based upon their individual  

 correlation with Y.  To begin, the predictor variable with the strongest individual  

 correlation with Y is entered into the regression equation.  Then the variable that  

 accounts for the greatest proportion of the remaining variability is entered.  This  

 process continues until there is no longer a statistically significant improvement in  

 the ability to predict Y.  App D 

Frequency distribution – A listing of the different values or categories of the observations along  

 with the frequency with which each occurred.  Chap 2 

Frequency polygon – A graphic presentation for use with interval or ratio data.  It is similar to a 

histogram except that the frequency is indicated by the height of a point rather than the 

height of a bar.  The points are connected by straight lines.  Chap 3 

Gambler’s fallacy – The incorrect assumption that if an event has not occurred recently, then the  

 probability of it occurring in the future increases.  Chap 8 

Goodness-of-fit chi-square test – An inferential procedure that tests whether observed  

 frequencies differ from expected frequencies.  Chap 7 

Grand mean (MG) – The mean of the sample means.  In some statistical procedures it is defined as  

 the mean of all of the scores.  Chap 9  

Hierarchical multiple regression – A form of multiple regression in which the researcher  

specifies the order in which predictor variables are entered into the regression equation.   

Only those variables that provide a statistically significant improvement in the ability to  

predict Y are maintained in the equation.  App D 

Histogram – A graph used with interval/ratio data.  As with the bar graph, frequencies are indicated 

by the length of the associated bars.  However, as the data are continuous in a histogram the 

bars are positioned side-by-side.  Chap 3 

Hypothesis – A scientifically-based statement about some condition in the environment or 

population.  Chap 6 

Hypothesis testing – Statistically analyzing data to evaluate whether the null hypothesis should be  
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retained or rejected.  Chap 6 

Independent – Two events, samples or variables are independent if knowing the outcome of one 

 does not enhance our prediction of the other.  Chap 7 

Independent samples t test – An inferential procedure for comparing two means from unrelated  

 samples.  Chap 10 

Independent variable (IV) – In an experiment, the variable the experimenter manipulates or  

 directly controls.  Chap 6 

Induction – A method of thinking in which conclusions are derived from generalizations based upon  

 limited statements or observations that are assumed to be true.  Induction is fundamental to  

 science, as observations are used to develop general laws of nature.  Chap 15 

Inferential statistics – Techniques that are used in making decisions based upon data.  Chap 1 

Inflection point – A point on a graph where the curvature changes from concave to convex or from 

convex to concave.  Chap 3 

Interaction – A change in the dependent variable that is due to the presence of a particular 

combination of independent variables.  Chap 13 

Interquartile range (IQR) – A measure of variability based upon the median that includes the  

 middle 50% of the data.  It is the range of values in a distribution between the 25th and 75th  

 percentiles.  Chap 3 

Interval scale of measurement – A measurement scale in which the magnitude of the difference  

 between numbers is meaningful, and thus addition and subtraction are possible.  However,  

 there is no true zero and thus multiplication and division are not meaningful.  Chap 2 

Intrinsic plausibility – Decision-making process in which the alternative that seems most  

 reasonable is accepted as being true.  Chap 6 

Kruskal-Wallis H test – An inferential procedure that is analogous to the one-way between- 

 subjects ANOVA except that it is used with ordinal data.  App A 

Law of large numbers – The larger the sample size, the better the estimate of population  

 parameters such as .  Chap 9 

Leaf  – The last digit(s) of a score.  With a stem-and-leaf display each leaf is paired with the  

appropriate stem value and the leaves are listed in ascending order in each row of the 

display.  Chap 3 

Level – With an ANOVA, the number of values of an independent variable.  Chap 11 

Levene’s test of equality of variances – Procedure used with SPSS to test the assumption that  

samples are drawn from populations which have equal variances.   Chap 10 

Longitudinal study – A study in which subjects are measured repeatedly across time.  A repeated-

measures design is a type of longitudinal study.  Chap 10 

Main effect – With a factorial ANOVA, another term for an independent variable or factor.  Chap 13 
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Manipulate – The researcher determines which condition of the independent variable each subject  

 receives.  Chap 6 

MANOVA – An extension of ANOVA in which there is more than one dependent variable.  Chap 15 

Matched subjects design – A research design in which equivalent subjects are paired and then one  

 of the subjects is randomly assigned to each group.  Chap 10 

Mauchly’s test of sphericity – Statistical procedure utilized with SPSS to test the assumption of  

sphericity for a one-way within-subjects ANOVA.  Chap 12 

Mean – A measure of central tendency for use with interval or ratio data.  It is what is commonly 

called an average.  The mean is the sum of the scores divided by the total number of scores.  

Chap 1 and 3 

Mean square (MS) – In an ANOVA, an estimate of the population variance (X2).   Chap 11 

Mean square between (MSBet) – The estimate of the population variance (X2) based upon the  

 variability between the sample means.  More specifically, it is obtained from the deviations  

 of the sample means from the grand mean.  Chap 11 

Mean square within (MSW) – The estimate of the population variance (X2) based upon the  

 variability within each of the samples.  More specifically, it is obtained by pooling the  

 variances of the scores within each of the samples.  Chap 11 

Measure of central tendency – A single number that is chosen to best summarize an entire set of  

 numbers.  Chap 2 

Median – A measure of central tendency.  It is the mid-most score in a distribution.  In other words,  

 the median splits a distribution in half, with just as many scores above it as below it.  It is at  

 the 50th percentile.  Chap 2 

Mixed ANOVA – Factorial ANOVA in which there are both between-subjects and within-subjects  

factors.  Chap 15 

Mode – A measure of central tendency.  It is the most common category or score.  Chap 2 

Multicollinearity – In multiple regression a concern that arises when the predictors in the  

multiple regression equation are highly correlated with each other.  If they are, then the  

results of the multiple regression analysis are likely to vary dramatically between samples.   

This is an undesirable characteristic.  App D 

Multiple correlation (R) – The association between one criterion variable and a combination of two  

 or more predictor variables.  Chap 14 

Multiple linear regression – A procedure in which several variables (Xs) are used to predict the  

value of another variable (Y).  Chap 14  

Negative correlation – A relationship between two variables in which as one variable increases in  

 value, the other variable decreases in value.  Also, as one variable decreases in value, the  
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 other increases in value.  Chap 14 

Negatively skewed – A nonsymmetrical distribution in which the tail pointing to the left is larger 

than the tail pointing to the right.  Chap 3 

Nominal scale of measurement – A measurement scale in which numbers serve as names of  

 categories.  In this level of measurement, the magnitude of the number is arbitrary.  Chap 2  

Nonparametric procedure – Statistical procedure that does not make assumptions about the  

 population’s parameters and does not assume that the population is normally distributed.   

 Chap 7 

Normal distribution – A specific, bell-shaped distribution.  Many statistical procedures assume that  

 the data are distributed normally.  Chap 3 

Null hypothesis (H0) – When used with a difference design, the statement that the treatment does  

 not have an effect.  Chap 6 

Observed frequencies – With nominal data, the actual data that were collected.  Chap 7 

One-sample t test – An inferential procedure for comparing a sample mean with a population mean  

 when the population standard deviation is not known.  Chap 9 

One-sample z test – An inferential procedure for comparing a sample mean with a population mean  

 when the population standard deviation is known.  Chap 9 

One-tailed or directional test – An analysis in which the null hypothesis will only be  rejected if an  

 extreme outcome occurs in the predicted direction.  In such a test, the single area of  

 rejection is equal to alpha and it is located in one tail of the sampling distribution.  Chap 9 

One-way between-subjects ANOVA – An inferential procedure for comparing two or more means  

 from independent samples when there is one independent variable.  Chap 11 

One-way within-subjects ANOVA – An inferential procedure for comparing two or more means  

 from related samples when there is one independent variable.  Chap 12 

Ordinal scale of measurement – A measurement scale in which the magnitude of the  numbers  

 indicates the order in which events occurred.  In this level of measurement, the magnitude  

 of the number is meaningful.  Chap 2 

p-value – The probability of an outcome, or a more extreme outcome, occurring by chance assuming  

 the null hypothesis is correct.  To be statistically significant, the p-value must be less than  

 the alpha level, which is usually .05.  Chap 8 

Pairwise comparison – Comparison between two sample means.  Chap 11 

Pairwise error rate – The likelihood of making a Type I error for a single comparison between  

 sample means.  This is equal to , which is usually .05 or .01.  Chap 11  

Parameter – A measure of a characteristic of a population, such as its mean or its variance.  Chap 3 

Parametric procedure – Statistical procedure that does make assumptions about the population’s  

 parameters and does assume that the population is normally  distributed.  Chap 7 
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Partial correlation – A procedure in which the effect of a variable that is not of interest is removed.    

  Chap 14 

Partial eta squared (
𝒑
𝟐) – Measure of effect size calculated by SPSS for a within subjects ANOVA.   

Chap 12 

Percentile rank – The percentage of the data at or below a category or score.  Chap 2 

Phi – Measure of effect size for the 2 X 2 chi square tests of independence.  Chap 8 

Phi correlation (r) – A form of Pearson correlation used with nominal data when both variables are  

 dichotomous.  App B 

Pie chart – A presentation of categorical data in which the area of a slice of a circle is  indicative of  

 the relative frequency with which the category occurs.  Chap 2 

Population – The entire group that is of interest.  Chap 3 

Positive correlation – A relationship between two variables in which as one variable  increases in  

 value, so does the other variable.  Also, as one variable decreases in value, so does the other.   

 Chap 14 

Positively skewed – A nonsymmetrical distribution in which the tail pointing to the right is larger 

than the tail pointing to the left.  Chap 3 

Post hoc comparisons – Statistical procedures utilized following an initial, overall test of 

 significance in order to identify the specific conditions (samples) that differ.  Chap 8 

Power – The probability of correctly rejecting a false null hypothesis.  This probability is 1 –  .   

 Chap 6 

Power analysis – Detailed examination of the statistical power of a study.  The current book  

 emphasizes how this examination can assist the researcher in determining the minimum  

 sample size that is needed.  App E 

Predictor variable (X) in regression – The variable (X) that is used to predict the value of the  

 dependent or criterion variable (Y).  Chap 14 

Preexisting subject differences – Relatively stable subject characteristics.  These differences  

between subjects are a form of error in an ANOVA.  The variability due to these differences 

is removed in a one-way within-subjects ANOVA.  Chap 12 

Quartile – A range of values that includes one fourth, or a quarter, of the scores.  Chap 3 

Quasi-experiment – An experiment in which some characteristic of a true experiment is missing.   

 Most commonly, the researcher manipulates the value of the independent variable but does  

 not randomly assign the subjects.  As a result, at the conclusion of the study the researcher  

 has less confidence in concluding that there is a cause-and-effect relationship between the  

 independent and dependent variables than would be the case with a true experiment.  Chap  

 6 

Random sample – A sample in which every member of the population has an equal chance of being  
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 chosen.  Chap 6 

Range – A measure of variability for ordinal data.  It is obtained by subtracting the lowest rank from  

 the highest rank.  Chap 2   

Also, a measure of variability for interval or ratio data.  It is commonly defined as the value 

which is obtained when the lowest score is subtracted from the highest score.  Chap 3 

Ratio scale of measurement – A measurement scale in which the magnitude of the difference  

 between numbers is meaningful, and there is a true zero.  Thus, multiplication and division  

 as well as addition and subtraction are meaningful.  Chap 2 

Rationalism – A method for finding truth that emphasizes logical thinking rather than observation.   

 Chap 15 

Raw score – Your data as they are originally measured, before any transformation.  Chap 4 

Real limits – With interval or ratio data, the actual limits used in assigning a measurement.  These  

 are halfway between adjacent scores, and are called the upper and lower real limits.  Chap 3 

Region of rejection – Area of the distribution equal to the alpha level.  It is also called the Critical  

 Region.  Chap 6 

Regression – Procedure researchers use to develop an equation that permits the prediction of one  

 variable of a correlation if the value of the other variable is known.  Chap 14 

Regression line – With linear regression, a straight line indicating the value of Y that is predicted to  

occur for each value of X.  The symbol for the predicted value of Y is Ŷ.  Chap 14 

Regression weight – Another term for the slope of the regression line.  Chap 14 

Relative frequency – The frequency of a category divided by the total frequency.  Chap 2 

Repeated measures design – A research design in which each subject is tested more than once.  

 Chap 10 

Residual error – Changeable subject characteristics.  These differences between subjects are a form  

 of error in an ANOVA.  The variability due to these differences is not removed in a one-way  

 within-subjects ANOVA.  Chap 12 

Restriction of the range – Reducing the range of values for a variable will reduce the size of the  

 correlation.  Chap 14 

Rho () – Symbol used for the population correlation.  Chap 14 

Sample – A subset of a population.  Chap 3 

Sampling distribution of the mean – A theoretical probability distribution of sample means.   

 The samples are all of the same size and are randomly selected from the same  

 population.  Chap 9 

Sample of convenience – A sample that is chosen because it is easily available rather than  

 because it is optimal.  Chap 15 

Scientific method – An approach to understanding that emphasizes rigorous logic, but also that  
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 careful observation is the ultimate authority for determining truth.  It is a self-

 correcting approach that limits bias.  Chap 6 

Second quartile – The value of the score at the 50th percentile in a distribution.  It is the median.   

 Chap 3 

Semi-interquartile range (SIQR) – A commonly used measure of variability, particularly for  

 skewed data.  It is equal to half of the interquartile range.  Chap 3 

Significance level – Another term for alpha level, the criterion set for rejecting the null  

 hypothesis.  This is usually .05.  Chap 6 

Significant – In statistics, the conclusion that an outcome is unlikely to have occurred by 

 chance.  Chap 7 

Simple linear regression – Procedure used to determine the equation for the regression line.  Chap  

14 

Simple multiple regression – A form of multiple regression in which all of the predictor 

 variables are assessed simultaneously.  All predictors that do not significantly 

 enhance the overall prediction are dropped.  App D 

Skewed – A  distribution in which one tail is larger than the other.  As a result, the distribution is not  

 symmetrical.  Chap 3 

Slope of the line – One of the two determinants of the equation for a straight line.  It is the  

 ratio of the change in the Y variable divided by the change in the X variable.  It has the  

 symbol ‘b’ in the equation Y = bX + a.  Chap 14 

Spearman correlation (rS) – A form of Pearson correlation used when the two variables are  

 measured at the ordinal level.  App C 

Sphericity – Assumption of a within-subjects ANOVA that the variances of the sets of  difference  

scores between treatment levels are equal.  In a repeated measures ANOVA these 

differences would be based upon pairs of scores from each subject.  Chap 12 

SPSS – A powerful, commonly-used statistical computer package.  The letters ‘SPSS’  

 originally were an abbreviation for ‘statistical package for the social sciences’.  Chap 5 

Standard deviation – A measure of variability; the expected deviation of a score from its mean.  It is  

 defined as the square root of the variance.  The symbol for the population standard  

 deviation is .  Chap 3 

Standard error of estimate (Ŷ ) – The standard deviation of Y scores around the regression  

 line.  Chap 14 

Standard error of the mean (SEM) – The standard deviation of the sampling distribution of means.   

Chap 9 

Standard error of the difference between sample means (𝒔(𝑴𝟏− 𝑴𝟐)) – The standard  

deviation of the sampling distribution of the difference between sample means.  Chap 10 
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Standard error of the mean difference (𝒔𝑴𝑫
) – The standard deviation of the means of  

 difference scores.  More precisely, the standard deviation of the sampling  

 distribution of the means of difference scores.  Chap 10 

Standard score – A measure indicating whether a score is above or below the mean as well as how  

 many standard deviations it is from the mean.  Also called a z score.  Chap 4 

Statistic – A measure of a characteristic of a sample, such as its mean or its variance.  Chap 3 

Stem – With a stem-and-leaf display, a list of the different values of the data once the last digit(s) of  

 each score is removed.  Chap 3 

Stem-and-leaf display – A commonly used summary of interval or ratio data in which each original  

 score is separated into two parts, a stem and a leaf.  Chap 3 

Sum of the squared deviations – For a population, it is equal to (X – )2 or x2.  It is often  

 abbreviated as ‘sum of squares’ which is shortened even further to SS.  Chap 3 

Sum of squares between groups (SSBet) – The sum of the squared deviations of each treatment  

mean from the grand mean.  Chap 11 

Sum of squares residual (SSResidual) – In a one-way within-subjects ANOVA, the SS due to residual  

error.  Chap 12 

Sum of squares subjects (SSSubjects) – In a one-way within-subjects ANOVA, the SS due to preexisting  

subject differences.  Chap 12 

Sum of squares total (SST) – The sum of the squared deviations from the mean for all of the scores.   

Chap 11 

Sum of squares within groups (SSW) – The sum across all conditions, of the sum of the squared  

deviations of each score from its treatment mean.  Chap 11 

Symmetrical distribution – A distribution in which the right half is the mirror image of the left half.  

In such a distribution, there is a high score corresponding to each low score.  Chap 3 

Third quartile – The value of the score at the 75th percentile in a distribution.  Chap 3 

Treatment – With ANOVA, another term for the independent variable.  Chap 11 

Trend analysis – A statistical technique that attempts to define patterns in data.  Chap 12 

True experiment – An experiment in which the researcher randomly assigns the subjects and also  

 manipulates the value of the independent variable.  As a result, at the conclusion of the  

 study the researcher is justified in reaching a cause-and-effect conclusion concerning the  

 relationship between the independent and dependent variables.  Chap 6 

Tukey HSD – A popular post hoc test used with ANOVAs.  Chap 11 

Two-way between-subjects ANOVA – An inferential procedure for comparing means from  

 independent samples when there are two independent variables.  Chap 13 

Two-tailed or nondirectional test – An analysis in which the null hypothesis will be rejected if an  
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 extreme outcome occurs in either direction.  In such a test, the area of rejection is divided  

 into two parts, each equal to α / 2.  Chap 9 

Type I error – The probability of rejecting the null hypothesis when it is in fact true.  This  

 probability is equal to alpha, α, which is usually 5%.  Chap 6 

Type II error – The probability of retaining the null hypothesis when it is in fact false.  This  

 probability is equal to beta, .  The probability of  is usually not known.  Chap 6 

Unconfounded comparison – Comparison of two cell means which involves only one factor that is  

 changing .  The comparison can be interpreted.  Chap 13 

Unimodal – A descriptive term for a distribution that has one mode.  Chap 2 

Unstable – A term used to describe a measure, such as of central tendency, that can vary  

 significantly with only a few changes to the original set of data.  This is an undesirable  

 quality.  Chap 2 

Variable – Any characteristic that can vary.  Chap 2 

Variability – How much scores of a sample or population differ or deviate from each other.  Chap 2 

Variable view – SPSS window in which variables are defined.  Chap 5 

Variance – A measure of variability; the average of the sum of the squared deviations of scores from 

their mean.  The symbol for the population variance is 2.  Chap 3 

Whisker – In a boxplot, a line extending from an edge of the box (either the 25th or 75th  

 percentiles) to the limits of the data.  The two whiskers thus extend as far as the range of  

 the data.  Chap 3 

Y intercept – One of the two determinants of the equation for a straight line.  It is the value of Y  

  when X is equal to 0.  It is, therefore, the value of Y when the line crosses the Y axis.  It has  

  the symbol ‘a’ in the equation Y = bX + a.  Chap 14   

z score – A conversion of raw data so that the deviation is measured in standard deviation units and  

 the sign, positive or negative, indicates the direction of the deviation.  Chap 4 
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Appendix I – 2  
Terms with Different Definitions in Statistics and in 

Common Usage 
 
Term    Statistical Meaning   Common Usage 
 
Alpha   Another term for Type I error.   The beginning of something. 
 
Error   An outcome due to chance, or    A mistake, or the belief in something  

the variability not due to  untrue. 
treatment.   

 
Level   With an ANOVA, the number of  Horizontal, flat, or calm. 

values of an independent  
variable.   

 
Manipulate   The researcher determines which  To exert undue control over  

condition of the independent   someone. 
variable each subject receives.    

 
Power   The probability of correctly   The ability to act, or having strength 

rejecting a false null hypothesis.   or authority. 
 
Significant  An outcome is unlikely to have  Full of meaning, important. 

occurred by chance. 
 
Skewed  Degree to which one tail in a   Slanted or distorted. 

distribution is larger than the  
other, and thus the degree to  
which a distribution is not  
symmetrical.   

 
Treatment  Another term for the   Medical care, or act of treating. 

independent variable.   
 

Whisker  In a boxplot, a line extending   A hair on a person’s face. 
from an edge of the box to the  
limits of the data.   
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Appendix J  
Answers to Chapter/Appendix Problems 

 
Ques        Chap        
 1  2  3  4  5  6  7  8 
1 C  D  C  A  B  C  A  B 
2 C  C  C  C  C  D  A  C 
3 A  D  A  B  A  A  A  E 
4 A  B  B  D  D  B  A  A 
5 C  A  D  A  A  A  C  B 
6 A  A  C  C  B  A  B  A 
7 B  B  A  D  C  C  C  E 
8 C  B  B  B  A  B  D  C 
9 B  A  C  A  B  C  B  A 
10 B  B  B  D  C  C  E  B 
11 C  C  A  B    D  D  C 
12 C  D  D  C    A  A  A 
13 A  A  A  D    D  B  A 
14 C  A  B  A    B  B  B 
15 B  C  C  A    B  C  B 
16 A  B  C  C    B  E  C 
17 D  C  C  B    A  E  B 
18 B  C  C  B    D  D  A 
19 B  C  B  A    C  A  A 
20 C  A  B  D    A  E  B 
21 C    C        B  C 
22 D    D        D  A 
23 A    B        E  A 
24     D        A   
25     B        C   
26     D        A   
27     A        B   
28     C        B   
29     A        C   
30     D        E   
31     A           
32     B           
33     C           
34     B           
35     B           
36     A           
37     B           
38     C           
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Ques       Chap       
 9  10  11  12  13  14  15 
1 D  C  C  B  C  B  D 
2 B  B  C  A  B  C  D 
3 B  A  B  D  A  D  B 
4 C  B  A  A  C  A  C 
5 C  C  B  C  C  B  C 
6 B  B  C  D  C  B  A 
7 C  A  C  A  A  C  B 
8 B  A  B  D  C  A  C 
9 A  C  A  C  B  B  D 
10 C  B  A  D  A  C  A 
11 D  B  B  A  B  B  C 
12 C  C  A  B  B  D   
13 A  A  D  B  D  A   
14 B  A  B  A  B  C   
15 B  B  B  D  D  B   
16 A  D  C  C  C  B   
17 B  A  A  C  D  D   
18 A  D  D  A  C  A   
19 A  C  B  D  A  B   
20 B  B  B  D  B  A   
21 D  C  A  D  D  A   
22 C  A  B    C  B   
23 B  B  B    B  C   
24 A  E  C    A  D   
25 B  B  D      A   
26 B  A  B      A   
27 B  B  A      A   
28 A  B  C      C   
29 B  B  A      A   
30 B  C        D   
31 C  B        D   
32 B  D        C   
33 E  B        A   
34 A  C        C   
35 A  B        A   
36 C  C        D   
37 A  B        B   
38 D  C        A   
39 A  A        C   
40   A        B   
41   D           
42   B           
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Ques       Appendix     
   ‘A’  ‘B’   ‘C’        ‘D’    ‘E’    ‘L’ 
1    B    B    B         C     A     A 
2    A    C    B         B     E     B 
3    D    D    A         B     D     C 
4    C    A    D         A     D     A 
5    A    C    E         B     C     A 
6    C    B    B         E     B     A 
7    A    B    A         C     A     B 
8    C    C    C         D     C     C 
9    D      D         A     A     B 
10    B      A         B     B     C 
11    C      A         A 
12    D             C 
13    D             D 
14    A              B 
15    B             A 
16              A 
17              B 
18              D 
19              B 
20              C 
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Appendix K   
Statistical Tables 

 
 
      Table    Chapter/Appendix 

In which the Table is  
First Introduced 

 
1    z   Chap 4     

2   Chi-square  Chap 7    

3           t     Chap 9   

4   F    Chap 11    

5   q    Chap 11    

6   Pearson r   Chap 14   

7   Spearman r   Appendix C   

 

 

Note:  For ease of use the entries in the tables have been rounded to two places and limited degrees 

of freedom are included.  If increased accuracy is desired more extensive tables are commonly 

available.  Alternatively, use of a statistical package, such as SPSS, is encouraged.  
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Proportions z 
Sc

o
re

s 

Table 1a: z Table 

 Proportion of Curve Below Negative Values of z 

      z Scores 

     z  -.00  -.01  -.02  -.03  -.04  -.05  -.06  -.07  -.08  -.09 

 -2.5    .01    .01    .01    .01    .01    .01    .01    .01    .00    .00 

 -2.4    .01    .01    .01    .01    .01    .01    .01    .01    .01    .01 

 -2.3    .01    .01    .01    .01    .01    .01    .01    .01    .01    .01 

 -2.2    .01    .01    .01    .01    .01    .01    .01    .01    .01    .01 

 -2.1    .02    .02    .02    .02    .02    .02    .02    .02    .01    .01 

 -2.0    .02    .02    .02    .02    .02    .02    .02    .02    .02    .02 

 -1.9    .03    .03    .03    .03    .03    .03   .025    .02    .02    .02 

 -1.8    .04    .04    .03    .03    .03    .03    .03    .03    .03    .03 

 -1.7    .04    .04    .04    .04    .04    .04    .04    .04    .04    .04 

 -1.6    .05    .05    .05    .05    .05    .05    .05    .05    .05    .05 

 -1.5    .07    .07    .06    .06    .06    .06    .06    .06    .06    .06 

 -1.4    .08    .08    .08    .08    .07    .07    .07    .07    .07    .07 

 -1.3    .10    .10    .09    .09    .09    .09    .09    .09    .08    .08 

 -1.2    .12    .11    .11    .11    .11    .11    .10    .10    .10    .10 

 -1.1   .14   .13   .13   .13   .13   .13    .12   .12   .12   .12 

 -1.0   .16   .16   .15   .15   .15   .15   .14   .14   .14   .14 

 -0.9   .18   .18   .18   .18   .17   .17   .17   .17   .16   .16 

 -0.8   .21   .21   .21   .20   .20   .20   .20   .19   .19   .19 

 -0.7  .24   .24   .24   .23   .23   .23   .22   .22   .22   .22 

 -0.6   .27     .27   .27   .26   .26   .26   .26   .25  .25   .25 

 -0.5   .31   .31   .30   .30   .30   .29   .29   .28   .28   .28 

 -0.4   .34   .34   .34   .33   .33   .33   .32   .32   .32   .31 

 -0.3   .38   .38  .38   .37   .37   .36   .36   .36   .35   .35 

 -0.2   .42   .42  .41   .41   .41   .40   .40   .39   .39   .39 

 -0.1   .46   .46   .45   .45   .44   .44   .44   .43   .43   .43 

 -0.0   .50 .50   .49   .49   .48   .48   .48   .47  .47   .46 

 

Example:  Proportion of the curve below a z of –0.54 equals .30, which is bolded and underlined in the 

table.          
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Proportions 

z 
Sc

o
re

s 

Table 1b: z Table  

Proportion of Curve Below Positive Values of z 

      z Scores 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 .50 .50 .51 .51 .52 .52 .52 .53 .53 .54 

0.1 .54 .54 .55 .55 .56 .56 .56 .57 .57 .58 

0.2 .58 .58 .59 .59 .59 .60 .60 .61 .61 .61 

0.3 .62 .62 .63 .63 .63 .64 .64 .64 .65 .65 

0.4 .66 .66 .66 .67 .67 .67 .68 .68 .68 .69 

0.5 .69 .70 .70 .70 .71 .71 .71 .72 .72 .72 

0.6 .73 .73 .73 .74 .74 .74 .75 .75 .75 .76 

0.7 .76 .76 .76 .77 .77 .77 .78 .78 .78 .79 

0.8 .79 .79 .79 .80 .80 .80 .80 .81 .81 .81 

0.9 .82 .82 .82 .82 .83 .83 .83 .83 .84 .84 

1.0 .84 .84 .85 .85 .85 .85 .86 .86 .86 .86 

1.1 .86 .87 .87 .87 .87 .88 .88 .88 .88 .88 

1.2 .89 .89 .89 .89 .89 .89 .90 .90 .90 .90 

1.3 .90 .91 .91 .91 .91 .91 .91 .92 .92 .92 

1.4 .92 .92 .92 .92 .93 .93 .93 .93 .93 .93 

1.5 .93 .94 .94 .94 .94 .94 .94 .94 .94 .94 

1.6 .95 .95 .95 .95 .95 .95 .95 .95 .95 .96 

1.7 .96 .96 .96 .96 .96 .96 .96 .96 .96 .96 

1.8 .96 .97 .97 .97 .97 .97 .97 .97 .97 .97 

1.9 .97 .97 .97 .97 .97 .97 .975 .98 .98 .98 

 2.0 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 

2.1 .98 .98 .98 .98 .98 .98 .99 .99 .99 .99 

2.2 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 

2.3 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 

2.4 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 

2.5 .99 .99 .99 .99 1.0 1.0 1.0 1.0 1.0 1.0 

 

Example:  Proportion of the curve below a z of 1.14 equals .87, which is bolded and underlined in the 

table.   
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Table 2: Critical Values for the Chi-Square Test* 

        

df    α = .05 α = .01 
  1   3.84   6.64 

  2   5.99   9.21 

  3   7.82 11.34 

  4   9.49 13.28 

  5 11.07 15.09 

  6 12.59 16.81 

  7 14.07 18.48 

  8 15.51 20.09 

  9 16.92 21.67 

10 18.31 23.21 

11 19.68 24.72 

12 21.03 26.22 

13 22.36 27.69 

14 23.68 29.14 

15 25.00 30.58 

16 26.30 32.00 

17 27.59 33.41 

18 28.87 34.80 

19 30.14 36.19 

20 31.41 37.57 

 

*To reject the null hypothesis, your calculated value for the Chi-Square test must be larger than the 

critical value in the table. 

Example:  With α = .05 and 3 df the critical value is 7.82, which is bolded and underlined in the table. 
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Table 3a: Critical Values for the One-tailed t Test* 

        

df α = .05 α = .01 
  1 6.31                  31.82 

  2 2.92 6.97 

  3 2.35 4.54 

  4 2.13 3.75 

  5 2.02 3.37 

  6 1.94 3.14 

  7 1.90 3.00 

  8 1.86 2.90 

  9 1.83 2.82 

10 1.81 2.76 

11 1.80 2.72 

12 1.78 2.68 

13 1.77 2.65 

14 1.76 2.63 

15 1.75 2.60 

16 1.75 2.58 

17 1.74 2.57 

18 1.73 2.55 

19 1.73 2.54 

20 1.73 2.53 

30 1.70 2.46 

60 1.67 2.39 

100 1.66 2.36 

ꚙ 1.65 2.33 

 

*To reject the null hypothesis, the absolute value of your calculated t test must be larger than the 

critical value in the table, and the outcome must be in the predicted direction. 

Example:  With α = .01 and 4 df the critical value is 3.75, which is bolded and underlined in the table.  As 

this is a one-tailed test the null hypothesis will determine whether the critical value is +3.75 or –3.75. 
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Table 3b: Critical Values for the Two-tailed t Test* 

       

df α = .05 α = .01 
  1                  12.71                  63.66 

  2 4.30 9.93 

  3 3.18 5.84 

  4 2.78 4.60 

  5 2.57 4.03 

  6 2.45 3.71 

  7 2.37 3.50 

  8 2.31 3.36 

  9 2.26 3.25 

10 2.23 3.17 

11 2.20 3.11 

12 2.18 3.06 

13 2.16 3.01 

14 2.15 2.98 

15 2.13 2.95 

16 2.12 2.92 

17 2.11 2.90 

18 2.10 2.88 

19 2.09 2.86 

20 2.08 2.85 

30 2.04 2.75 

60 2.00 2.66 

100 1.98 2.63 

ꚙ 1.96 2.58 

 

*To reject the null hypothesis, the absolute value of your calculated t test must be larger than the 

critical value in the table. 

Example:  With α = .01 and 4 df the critical value is 4.60, which is bolded and underlined in the table.  As 

this is a two-tailed test, in order to be statistically significant your calculated value for the t test must be 

less than –4.60 or greater than +4.60. 
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Table 4:  Critical Values for the F Test* 

Alpha = .05 

       

                            df numerator  

df 
denominator 

↓ 

1 2 3 4 5 

 
6 

  1 161.45 199.50 215.71 224.58 230.16 233.99 

  2 18.51 19.00 19.16 19.25 19.30 19.33 

  3 10.13 9.55 9.28 9.12 9.01 8.94 

  4 7.71 6.94 6.59 6.39 6.26 6.16 

  5 6.61 5.79 5.41 5.19 5.05 4.95 

  6 5.99 5.14 4.76 4.53 4.39 4.28 

  7 5.59 4.74 4.35 4.12 3.97 3.87 

  8 5.32 4.46 4.07 3.84 3.69 3.58 

  9 5.12 4.26 3.86 3.63 3.48 3.37 

10 4.96 4.10 3.71 3.48 3.33 3.22 

11 4.84 3.98 3.59 3.36 3.20 3.09 

12 4.75 3.89 3.49 3.26 3.11 3.00 

13 4.67 3.81 3.41 3.18 3.03 2.92 

14 4.60 3.74 3.34 3.11 2.96 2.85 

15 4.54 3.68 3.29 3.06 2.90 2.79 

16            4.49 3.63 3.24 3.01 2.85 2.74 

17 4.45 3.59 3.20 2.96 2.81 2.70 

18 4.41 3.55 3.16 2.93 2.77 2.66 

19 4.38 3.52 3.13 2.90 2.74 2.63 

20 4.35 3.49 3.10 2.87 2.71 2.60 

21 4.32 3.47 3.07 2.84 2.68 2.57 

22 4.30 3.44 3.05 2.82 2.66 2.55 

23 4.28 3.42 3.03 2.80 2.64 2.53 

24 4.26 3.40 3.01 2.78 2.62 2.51 

25 4.24 3.38 2.99 2.76 2.60 2.49 

30 4.17 3.32 2.92 2.69 2.53 2.42 

40 4.08 3.23 2.84 2.61 2.45 2.34 

60 4.00 3.15 2.76 2.52 2.37 2.25 

80 3.96 3.11 2.72 2.48 2.33 2.21 

100 3.94 3.09 2.70 2.46 2.30 2.19 

150 3.91 3.06 2.67 2.43 2.27 2.16 

 
*To reject the null hypothesis, the value of your calculated F ratio must be larger than the critical 

value in the table. 

Example:  With 4 df in the numerator of the F ratio and 15 df in the denominator, the critical value 

equals 3.06.  This value is bolded and underlined in the table. 
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Table 5: Values of q for Tukey HSD Test used with Main Effects*  

Alpha = .05  

   Number of Levels of the Independent Variable (k). 

  Alternatively, the total number of means being compared. 

df for 

denominator 

of F ratio  ↓ 

 

3 

 

4 

 

5 

 

6 

  5 4.60 5.22 5.67 6.03 

  6 4.34 4.90 5.30 5.63 

  7 4.16 4.68 5.06 5.36 

  8 4.04 4.53 4.89 5.17 

  9 3.95 4.41 4.76 5.02 

10 3.88 4.33 4.65 4.91 

11 3.82 4.26 4.57 4.82 

12 3.77 4.20 4.51 4.75 

13 3.73 4.15 4.45 4.69 

14 3.70 4.11 4.41 4.64 

15 3.67 4.08 4.37 4.59 

16 3.65 4.05 4.33 4.56 

17 3.63 4.02 4.30 4.52 

18 3.61 4.00 4.28 4.49 

19 3.59 3.98 4.25 4.47 

20 3.58 3.96 4.23 4.45 

21 3.57 3.94 4.21 4.43 

22 3.56 3.93 4.20 4.41 

23 3.54 3.92 4.18 4.39 

24 3.53 3.90 4.17 4.37 

25 3.52 3.89 4.16 4.36 

30 3.49 3.85 4.10 4.30 

40 3.44 3.79 4.04 4.23 

 

*The entries in this Table are NOT the critical values for the Tukey HSD test.  The entries in this Table 

are used to calculate the critical value of the Tukey HSD test. 

Example:  With a one-way between-subjects ANOVA with 4 levels for the IV, there are a total of 4 

sample means being compared and if there are 10 df in the denominator of the F ratio, q equals 4.33.  

This value is bolded and underlined in the table. 
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Table 6: Critical Values for the Two-tailed Pearson Correlation* 

       

df** α = .05 α = .01 
  1                         1.00                         1.00 

  2 .95 .99 

  3 .88 .96 

  4 .81 .92 

  5 .75 .87 

  6 .71 .83 

  7 .67 .80 

  8 .63 .77 

  9 .60 .74 

10 .58 .71 

11 .55 .68 

12 .53 .66 

13 .51 .64 

14 .50 .62 

15 .48 .61 

16 .47 .59 

17 .46 .58 

18 .44 .56 

19 .43 .55 

20 .42 .54 

25 .37 .49 

30 .35 .45 

50 .27 .35 

70 .23 .30 

100 .20 .25 

 

*To reject the null hypothesis, the absolute value of your calculated Pearson r must be larger than the 

critical value in the table. 

**df = n – 2 where n equals the number of pairs of scores 

Example:  With α = .05 and 6 df, the critical value equals .71.  This value is bolded and underlined in the 

table.  As this is a two-tailed test, in order to be statistically significant the calculated value of your 

Pearson r must be less than –.71 or greater than +.71. 
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Table 7: Critical Values for the Two-tailed Spearman Correlation* 

         

Number of Pairs 

of Scores 

α = .05 α = .01 

  5                         1.00 ---- 

  6 .89                         1.00 

  7 .79 .93 

  8 .74 .88 

  9 .70 .83 

10 .65 .79 

11 .62 .76 

12 .59 .73 

13 .56 .70 

14 .54 .68 

15 .52 .65 

16 .50 .64 

17 .49 .62 

18 .47 .60 

19 .46 .58 

20 .45 .57 

25 .40 .51 

30 .36 .47 

50 .28 .36 

70 .24 .31 

100 .20 .26 

 

*To reject the null hypothesis, the absolute value of your calculated Spearman r must be as large, or 

larger, than the critical value in the table. 

Example:  With α = .05 and with 12 pairs of scores the critical value is .59.  This value is bolded and 

underlined in the table.  As this is a two-tailed test, in order to be statistically significant the calculated 

value of your Spearman r must be less than or equal to –.59 or greater than or equal to +.59. 
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Appendix L   
Overview of Statistical Procedures Covered in This 

Book 
  

 

Descriptive Procedures (Summarizing Sample Data) 

 
 

         ____________________________________Type of Data ________________________________________ 
                        Nominal  Ordinal    Interval/Ratio  
           (Frequency) (Ranked)   (Score) 
          ___________________________________________________________________________________________ 

 

Frequency Dist  Bar Graph  Bar Graph Histogram or Frequency Polygon  

   or Pie Chart  

 

       IF NOT NORMAL    IF NORMAL  
Central Tendency Mode  Median  Median      Mean  
           (Median – less  
                common)  
   
      
Variability  –  –  –  –   Range  Interquartile Range    Standard Deviation    
                   z Score   
 
 
Summary Presentation    Stem-and-leaf display    Stem-and-leaf display 

            and           and 

        Boxplot     Boxplot 

        

 
          

Dist, distribution  
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Inferential Procedures (Focus is on Statistical Significance:   
 Making Inferences About Population Characteristics) 
 

_______________________________________Type of Data ________________________________________ 
Nominal       Ordinal  Interval/Ratio  
(Frequency)       (Ranked)  (Continuous  
        Measure)

 ______________________________________________________________________________________________ 

 
When the Focus is on the Statistical Significance of a Difference: 
Research     Research 
Design     Design 
 
One Variable  Goodness-of-fit            One IV With One                 One-sample z Test 
With At Least        Chi-Square            Sample        or  
Two Outcomes                   One-sample t Test 
        

           One IV With Two Or      Kruskal–Wallis H One-way Between– 
               More Independent          Subjects ANOVA 
                    Samples     (Only two independent samples,    
               Independent Samples t Test) 
 
               One IV With One                 One-way Within– 
               Sample Having Two         Subjects ANOVA 
               Or More Repeated    (Only two repeated measures,  
               Measures              Dependent Samples t Test) 
 
Two Variables,   Chi-Square Test of            Two IV Each With Two                 Two-way Between– 
Each With At        Independence               Or More Independent               Subjects ANOVA 
Least Two                   Samples 
Outcomes   
___________________________________________________________________________________________________________________________________________ 
       

 
When the focus is on Characteristics and Statistical Significance of an Association: 
Research 
Question 

 
Association: Chi-Square Test of  
       Independence  
 
Correlation: Phi r         Spearman r  Pearson r 
               Multiple Correlation 
   
Regression:         Regression   

Multiple Regression 
__________________________________________________________________________________________________________________________________________ 
 

 
IV, independent variable; ANOVA, analysis of variance.   
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Appendix M   
Comparison of ANOVAs 

 
 

 
ONE-WAY  

WITHIN-SUBJECTS 
 

ONE-WAY 
BETWEEN- SUBJECTS 

TWO-WAY BETWEEN-
SUBJECTS 

Source F ratio Source F ratio Source F ratio 
Between 

Treatments 
MSBet/MSRes Between 

Groups 
MSBet/MSW Partitioned 

into: 
Factor A 
Factor B 

Interaction AXB 

 
 

MSA/MSW 

MSB/MSW 

MSAXB/MSW 

      
Within 

Treatments is 
Partitioned 

into: 
Pre-existing 
subject diff 

and 
Residual error 

 Within Groups  Within Groups  

      
Total  Total  Total  

If No F ratio Is Statistically Significant Your Analysis Is Complete 
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If At Least One F Ratio Is Statistically Significant  

 

 
ONE-WAY  

WITHIN-SUBJECTS 
 

ONE-WAY BETWEEN- 
SUBJECTS 

TWO-WAY 
BETWEEN-SUBJECTS 

WHERE IS 
EFFECT? 

HOW BIG IS 
EFFECT? 

WHERE IS 
EFFECT? 

HOW BIG IS 
EFFECT? 

WHERE IS 
EFFECT? 

HOW BIG IS 
EFFECT? 

Post hoc test: 
Dependent t 
tests using  
Bonferroni 

method 

Partial eta 
squared 

(
𝐩
𝟐) 

Post hoc test: 
Tukey HSD 

 
Need to find q 

Eta squared 

(2) 
Post hoc test: 

Tukey HSD 
Eta squared (2),   
      Partial eta       

    squared (
𝐩
𝟐),  

         or both 

    If sig main 
effect 

for A, need to 
find q 

If sig main effect 
for A, report 
2 or 

𝐩
𝟐 or both 

    If sig main 
effect 

for B, need to 
find q 

If sig main effect 
for B, report 
2 or 

𝐩
𝟐 or both 

    If sig 
interaction 

AXB, need to 
use qi 

If sig interaction 
AXB, report  

2 or 
𝐩
𝟐 or both 
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Looking for a Difference or Interaction 
A

p
p

en
d

ix N
 

C
h

o
o

sin
g

 th
e C

o
rrect In

feren
tial P

ro
ced

u
re 

 
 Statistical Procedure Effect Size Post Hoc 

Nominal Data 

One Variable Goodness of Fit χ2 ____ ____ 

Two Variables χ2 Test of Independence Phi / Cramer’s V 
χ2 with Bonferroni 

 

Interval/Ratio Data 

One IV with one Sample 

One sample z test 
(or confidence interval) 

____ ____ 

One sample t test 
(or confidence interval) 

eta2 ____ 

One IV with 2 independent samples Independent samples t test eta2 ____ 

One IV with 2 or more independent samples One-way between-subjects ANOVA eta2 Tukey HSD 

One IV with 1 sample and 2 repeated measures 
(or matched samples) 

Dependent samples t test eta2 ____ 

One IV with 1 sample and 2 or more repeated 
measures (or matched samples) 

One-way within-subjects ANOVA eta2 or partial eta2 
Dependent t tests 
with Bonferroni 

Two IV each with 2 or more independent 
samples 

Two-way between-subjects 
ANOVA 

eta2 or partial eta2 

or both 
Tukey HSD 

Looking for an Association or Correlation 

 Statistical Procedure Effect Size Then 

Interval/Ratio Data Two variables Pearson r r2 Linear Regression 
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Practice Choosing the Correct Procedure 

(Answers are provided in Appendix J) 

1. We wish to determine whether a die is fair. 
a. Goodness-of-fit chi-square 
b. Independent t test or one-way between-subjects ANOVA 
c. Pearson r 
d. Two-way between-subjects ANOVA 

 
2. Each subject is randomly assigned to one of five levels of studying and then their exam 

grades are compared. 
a.       Goodness-of-fit chi-square 
b.       One-way between-subjects ANOVA 
c.       Pearson r 
d.       Two-way between-subjects ANOVA 

 
3. We measure how tall each person is and then look to see if there is an association with how 

high they can jump. 
a.       Two-way between-subjects ANOVA 
b.       One-way between-subjects ANOVA 
c.       Pearson r 
d.       One-sample z 
 

4. We compare the GPA’s (grade point averages) of men versus women who have, or have not, 
studied abroad. 
a.       Two-way between-subjects ANOVA 
b.       Independent t test or one-way between-subjects ANOVA 
c.       Pearson r 
d.       Goodness-of-fit chi-square 
 

5. We check the claim that a person can flip a coin so it tends to land heads. 
a.       Goodness-of-fit chi-square 
b.       One-way between-subjects ANOVA 
c.       Pearson r 
d.       One-sample z 

 
6. We compare the frequencies of social science majors and humanities majors, and their 

choice of political party preference (democratic, republican, other). 
a.       Chi-square test of independence 
b.       One-way between-subjects ANOVA 
c.       Pearson r 
d.       Two-way between-subjects ANOVA 

 
7. We examine if there is a difference between whether a student is married or not and how 

happy they report they are on a 25-item scale. 
a.       Pearson r 
b.       Independent t test or one-way between-subjects ANOVA 
c.       Goodness-of-fit chi-square 
d.       Two-way between-subjects ANOVA 

 
8. A researcher is interested in whether there is a difference between a person’s gender and 

whether they vote democratic or republican. 
a.       Pearson r 
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b.       One-way between-subjects ANOVA 
c.       Chi-square test of independence 
d.       One-way within-subjects ANOVA 

 
9. A researcher examines whether living at high altitudes affects IQ.  She compares the IQ data 

from 500 people who live at high altitudes to the known mean and standard deviation for 
the general population. 
a.       One-way between-subjects ANOVA 
b.       One-sample z 
c.       One-sample t 
d.       Chi-square test of independence 

 
10. We compare the age of death for people who had a pet versus those who did not have a pet.   

a.       Pearson r 
b.       Two-way between-subjects ANOVA 
c.       Independent samples t test or one-way between-subjects ANOVA 
d.       One-sample t 
 

11. A study for a car magazine examines whether there is an association between the weight of 
a car and how many feet it takes for it to stop from 60 mph.  Data are collected from 30 cars 
of various weights. 
a.       Pearson r 
b.       One-way between-subjects ANOVA 
c.       Chi-square test of independence 
d.       One-sample t   
 

12. From past history it is known that with a particular manufacturing process 10% of the 
product has been defective.  A new process is instituted and for the first 100 items there are 
only 6 that are defective.  Has the frequency of defective product been reduced? 
a.       One-sample t 
b.       Pearson r 
c.       Goodness-of-fit chi-square 
d.       One-way between-subjects ANOVA 
 

13. A teacher is interested in whether there is an association between gender (male or female) 
and openness to experience (measured on a 25-point scale). 
a.       One-sample z 
b.       Pearson r 
c.       One-sample t 
d.       One-way between-subjects ANOVA 
 

14. A restaurant wants to determine whether the quality of their five most popular offerings 
differ according to reviewers.  Ten food tasters are invited to give each dish a rating from 1 
to 10. 
a.       One-way between-subjects ANOVA 
b.       One-way within-subjects ANOVA 
c.       Two-way between-subjects ANOVA 
d.       Pearson r 
 

15. A physical education instructor compares males and females and whether they prefer 
playing basketball or volleyball. 
a.       Chi-square test of independence 
b.       One-way within-subjects ANOVA 
c.       One-way between-subjects ANOVA 



574 
 

d.       Pearson r 
 

16. We compare males and females who are judged to be either attractive or not on how 
outgoing they are (measured on a 15–point scale). 
a.       One-way between-subjects ANOVA 
b.       One-way within-subjects ANOVA 
c.       Two-way between-subjects ANOVA 
d.       One-sample t 
 

17. A newspaper examines whether there is an association between age and the number of 
speeding tickets received by 100 drivers over the previous 3 years. 
a.       Independent samples t test or one-way between-subjects ANOVA 
b.       Pearson r 
c.       Chi-square test of independence 
d.       Dependent samples t test or one-way within subjects ANOVA  
 

18. A researcher checks to see if there is a difference between handedness (either left or right) 
and grade point average. 
a.       Chi-square test of independence 
b.       Pearson r 
c.       One-sample t 
e.       Independent samples t test or one-way between-subjects ANOVA  
 

19. A study is conducted which examines whether there is a difference in the type of car 
(domestic or foreign) driven by republicans and democrats. 
a.       One-sample t 
b.       Chi-square test of independence 
c.       One-way between-subjects ANOVA 
d.       One-way within-subjects ANOVA 
 

20. At a college a study is conducted that compares whether appreciation of the liberal arts 
(measured on a 20-item scale) is affected by major (art or science) and class in college 
(freshman, sophomore, junior, or senior).  
a.       One-way between-subjects ANOVA 
b.       One-way within-subjects ANOVA 
c.       Two-way between-subjects ANOVA 
d.       Pearson r 
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Absolute value, 25 
Alpha level, 139 
Alternative hypothesis, 138 
Analysis of variance (ANOVA) 

Comparison of ANOVAs, 569 
One-way between-subjects ANOVA, 

291–327 
One-way within-subjects ANOVA, 328–

67 
Two-way between-subjects ANOVA, 

368–413 
Answers to chapter problems, 554–56 
Area of rejection, 161 
Association design, 134 
Backward stepwise multiple regression, 

508 
Bar graph, 39 
Bell-shaped curve, 56 
Beta, 510 
Between-subjects design, 291 
Biased estimator, 236 
Bimodal, 41 
Blind study, 470 
Bonferroni method, 192 
Box and whiskers plot, 61 
Boxplot, 61 
Carryover effects, 272 
Cause and effect conclusion, 144 
Ceiling effect, 484 
Cell, 369 
Central limit theorem, 225 
Chi square test of independence, 174–214 
Chi-square test of association, 180 
Coefficient of determination, 425 
Coefficient of nondetermination, 426 
Computational equation, 107 
Confidence interval, 230 
Confirmation bias, 471 
Confounded comparison, 389 
Confounded versus unconfounded 

comparisons, 390–92 
Continuous, 38 
Control group, 137 
Correlation, 415 
Correlation coefficient, 416 
Correlational study, 146 

Counterbalancing, 272 
Covariance, 421 
Covary, 415 
Cramer's V, 190 
Criterion variable, 438 
Critical region, 161 
Critical value, 161 
Data, 21 
Deduction, 464 
Definitional and computational equations, 

531–38 
Degrees of freedom, 159 
Dependent, 175 
Dependent samples t test, 262–75 
Dependent variable, 138, 438 
Descriptive statistics, 21 
Deviation, 68 
Difference design, 134 
Difference scores (D), 263 
Directional test, 221 
Discrete, 38 
Effect size (see also eta squared and 

partial eta squared) 
Cramer’s V, 190 
Pearson r, 425 
Phi, 184 
Phi correlation, 494 
Power analysis, 522 
Spearman correlation, 502 

Empiricism, 467 
Error, 218, 296 
Error variance, 437 
Eta squared 

Dependent samples t test, 267 
Independent samples t test, 256 
Kruskal-Wallis H test, 479 
One-sample t test, 240 
One-way between-subjects ANOVA, 

304 
One-way within-subjects ANOVA, 353 
Summary table, 539, 570, 571 
Two-way between-subjects ANOVA, 

381, 393 
Expected frequency, 156 
Experimental group, 137 
Experimentwise error rate, 293 
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Factor, 291, 463 
Factor analysis, 463 
Factorial ANOVA, 291 
First quartile, 63 
Fisher exact test, 463 
Forward stepwise multiple regression, 

508 
Frequency distribution, 39 
Frequency polygon, 53 
Gambler's fallacy, 175 
Goodness-of-fit-chi-square test, 152–73 
Grand mean, 219, 298 
Hierarchical multiple regression, 508 
Histogram, 53 
Hypothesis, 138 
Hypothesis testing, 139 
Independent, 155 
Independent samples t test, 249–62 
Independent variable, 138 
Induction, 467 
Inferential procedure, choosing, 571 
Inferential statistics, 21 
Inflection point, 85 
Interaction, 370 
Interquartile range, 63 
Interval scale of measurement, 35 
Intrinsic plausibility, 135 
Kruskal-Wallis H test, 476–88 
Law of large numbers, 223 
Leaf, 51 
Level, 291 
Levene's test, 261 
Longitudinal study, 272 
Main effect, 370 
Manipulate, 138 
MANOVA, 463 
Matched subjects design, 263, 353–54 
Mathematics review, 22–29 
Mauchly's test, 341 
Mean, 25, 55 
Mean square, 302 
Mean square between, 294 
Mean square within, 294 
Measure of central tendency, 41 
Median, 45 
Mixed ANOVA, 463 
Mode, 41 
Multicollinearity, 511 
Multiple correlation, 431 

Multiple correlation and regression, 506–
14 

Multiple linear regression, 444 
Negative correlation, 417 
Negatively skewed, 58 
Nominal scale of measurement, 34 
Nondirectional test, 220 
Nonparametric procedure, 152 
Normal distribution, 59 
Null hypothesis, 138 
Observed frequency, 156 
One sample t test, 235–42 
One sample z test, 215–35 
One-tailed test, 221 
Order of mathematical operations, 25 
Ordinal scale of measurement, 35 
Pairwise comparison, 293 
Pairwise error rate, 293 
Parameter, 75 
Parametric procedure, 152 
Partial correlation, 431 
Partial eta squared 

One-way within-subjects ANOVA, 352 
Summary table, 539, 570, 571 
Two-way between-subjects ANOVA, 

380, 392 
Pearson correlation, 415–31 
Percentile rank, 44 
Phi, 185 
Phi correlation, 491–95 
Pie chart, 39 
Population, 67 
Positively skewed, 56 
Post hoc comparisons 

Chi-square test, 191–92 
Kruskal-Wallis H test, 480–83 
One-way between-subjects ANOVA, 

304, 310–12 
One-way within-subjects ANOVA, 348–

50 
Two-way between-subjects ANOVA, 

379–80, 387–90 
Postitive correlation, 417 
Power, 143 
Power analysis 

Minimum sample size, 518–25 
Predictor variable, 438 
Preexisting subject differences, 329 
p-value, 179 



579 
 

Quasi-experiment, 144 
Random sample, 133 
Range, 45, 61 
Ratio scale of measurement, 36 
Rationalism, 464 
Raw score, 92 
Real limits, 53 
Regression, 419, 432–46 
Regression line, 433 
Regression weight, 439 
Relative frequency, 39 
Repeated measures, 263 
Residual error, 329 
Restriction of the range, 426 
Rho, 417 
Sample, 67 
Sample of convenience, 469 
Sampling distribution of the mean, 219 
Scientific method, 136 
Second quartile, 63 
Semi-interquartile range, 65 
Significance level, 139 
Significant, 163 
Simple linear regression, 433 
Simple multiple regression, 508 
Skewed, 56 
Slope of the line, 439 
Spearman correlation, 497–503 
Sphericity, 341 
SPSS, 107 

SPSS Chi-square test of independence, 
199–214 

SPSS Dependent samples t test, 285–89 
SPSS Independent samples t test, 280–

85 
SPSS One-way between-subjects 

ANOVA, 320–26 
SPSS One-way within-subjects ANOVA, 

360–66 
SPSS Pearson correlation, 451–58 
SPSS tutorial, 107–28 
SPSS Two-way between-subjects 

ANOVA, 400–412 
Standard deviation, 70 
Standard error of estimate, 435 
Standard error of the difference between 

sample means, 251 

Standard error of the mean (SEM), 218 
Standard error of the mean difference, 

263 
Standard normal curve, 91 
Standard score, 92 
Statistic, 75 
Statistical procedures and measures of 

effect size, 539 
Statistical procedures, overview, 567 
Statistical symbols, 528–30 
Stem, 51 
Stem-and-lead display, 50 
Sum of squares between groups, 299 
Sum of squares residual, 333 
Sum of squares subjects, 333 
Sum of squares total, 298 
Sum of squares within groups, 300 
Sum of the squared deviations, 71 
Symmetrical distribution, 56 
Tables 

Chi-square table, 560 
F test table, 563 
One-tailed t test table, 561 
Tukey HSD table, 564 
Two-tailed Pearson correlation, 565 
Two-tailed Spearman correlation, 566 
Two-tailed t test table, 562 
z table, 558–59 

Third quartile, 63 
Treatment, 294 
Trend analysis, 348 
True experiment, 144 
Tukey HSD test, 310 
Two-tailed test, 220 
Type I error, 141 
Type II error, 141 
Unconfounded comparison, 389 
Unconfounded versus confounded 

comparisons, 390–92 
Unimodal, 41 
Unstable, 41 
Variability, 41 
Variable, 34 
Variance, 68 
Whisker, 63 
Y intercept, 439 
z score, 89 
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