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Abstract. Functionally graded materials are commonly used in a thermal environment to change
the properties of constituent materials. They inherently withstand high temperature gradients due to
a low thermal conductivity, core ductility, low thermal expansion coefficient, and many others. It is
essential to thoroughly study mechanical responses of them and to develop new effective approaches
for an accurate prediction of solutions. In this paper, a new four-node quadrilateral element based
on a combined strain strategy and first-order shear deformation theory is presented to achieve the
behaviour of functionally graded plate/shell structures in a thermal environment. The main notion
of the combined strain strategy is based on the combination of the membrane strain and the shear
strain related to tying points as well as bending strain with respect to a cell-based smoothed finite
element method. Due to the finite element analysis, the first-order shear deformation theory (FSDT) is
simple to implement and apply for structures, but the shear correction factors are used to achieve the
accuracy of solutions. The author assumes that the temperature distribution is uniform throughout
the structure. The rule of mixtures is also considered to describe the variation of material compositions
across the thickness. Many desirable characteristics and the enforcement of this element are verified
and proved through various numerical examples. Numerical solutions and a comparison with other
available solutions suggest that the procedure based on this new combined strain element is accurate
and efficient.

Keywords: Combined strain, four-node quadrilateral element, first-order shear deformation theory,
thermal environment.

1. Introduction
Functionally graded materials have been successfully applied in numerous fields of engineering. The material is
usually made from a mixture of ceramic and metal and provides a continuous variation of material properties
from the bottom surface to the top surface of the plate. The functionally graded materials have attracted
more attention in thermal environment applications, such as spacecraft and nuclear tanks. The analytical
solutions [1–4] are valuable in some certain cases, but in general, with complicated geometries or complex
conditions like high temperatures in the thermal environment, they are often limited. Besides the analytical
approaches, numerical methods are used in the structures analyses [5–27]. Bui et al. [5] presented new numerical
results of high temperature mechanical behaviour of heated functionally graded plates, emphasizing the high
temperature effects on static bending deflections and natural frequencies. A displacement-based finite element
formulation associated with the third-order shear deformation plate theory of Shi was thus developed. An
improved four-node element based on twice-interpolation strategy was introduced by Ton-That et al. [6, 7]
in linear and nonlinear analyses of composite plate/shell structures. Besides, thermal buckling analyses of
functionally graded plates and cylindrical shells were investigated by S.Trabelsi et al. [12]. In this reference, the
finite element formulation based on a modified FSDT shell formulation was elaborated. A dynamic analysis of a
functionally-graded carbon nanotube-reinforced plate and shell structures using a double directors finite shell
element was firstly presented by A.Frikha et al. [13, 14]. The governing equations were developed using a linear
discrete double directors finite element model. The generalized differential quadrature method [15–18] was used
to study the behaviour of functionally graded materials and laminated doubly curved shells and panels. The
free vibration of beams made of imperfect functionally graded materials including porosities was investigated
in [19] and the free vibration of functionally graded beams resting on two parameter elastic foundation was
examined in [20] by M.Avcar et al. Due to the discrete singular convolution method, Ö.Civalek et al. [21–23]
studied the behaviour of carbon nanotubes reinforced and functionally graded shells and plates respectively.
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(b).

Figure 1. The functionally graded plate: a) in 3D space, b) with variation of volume fraction.

Moreover, based on the refined plate theory, some references [24–26] reviewed the mechanical behaviour of the
functionally graded sandwich or functionally graded porous plates under various boundary conditions.

In this paper, a new four-node quadrilateral finite element related to the combined strain strategy is
introduced. The main idea of this combined strain strategy is based on the combination of the membrane
strain and shear strain related to tying points as well as bending strain with respect to cell-based smoothed
finite element method. Some difficulties that arise in the standard FEM may be listed as follows: it requires
large computer memory and computational time to obtain the desired results, the mapping or coordinate
transformation is involved in the standard FEM, so its element is not allowed to be of arbitrary shape, the
restriction on the shape bilinear isoparametric elements cannot be removed and the problem domain cannot be
discretized in more flexible ways. This paper’s element with the combined strain strategy that can does not
suffer from the above mentioned difficulties is used to analyse the behaviour of functionally graded plate/shell
structures in a thermal environment. Many desirable characteristics of the proposed element, such as accuracy,
efficiency and removal of shear and membrane locking, are verified through several examples.

The article is organized into four Sections. In Sect. 2, formulation of this new element for functionally graded
structures related to first-order shear deformation theory is presented. Several examples are subsequently given
in Sect. 3. We end the paper with a summary and some concluding remarks in the last Section.

2. Formulation of the combined strain element for functionally
graded material

2.1. Functionally graded material
A functionally graded plate [28] is considered as shown in Figure 1a with thickness h.

The volume fraction of the ceramic (Vc) and metal (Vm) are described in (1) and the variation of volume
fraction for several volume fraction coefficients of a functionally graded plate using the power-law distribution is
plotted by Figure 1b.

Vc =
Å
z

h
+ 1

2

ãn
Vm = 1− Vc n ≥ 0 (1)

where z is the thickness coordinate variable with −h/2 ≤ z ≤ h/2. And c, m and n represent the ceramic, metal
constituents and the non-negative volume fraction gradient index, respectively. All values of E, ρ, ν and α that
vary throughout the thickness of plate are formulated as below

E(z) = Em + (Ec − Em)
Å1

2 + z

h

ãn
(2)

ρ(z) = ρm + (ρc − ρm)
Å1

2 + z

h

ãn
(3)
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ν(z) = νm + (νc − νm)
Å1

2 + z

h

ãn
(4)

α(z) = αm + (αc − αm)
Å1

2 + z

h

ãn
(5)

The function of temperature T (K) can be expressed by following equation [1]

P = P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3) (6)

where T = T0 + ∆T and T0 = 300K (ambient or free stress temperature), ∆T is the temperature change, and
P0, P−1, P1, P2, P3 are the coefficients of temperature T (K), and are unique to each constituent.

2.2. Formulation of the combined strain element
In this section, the construction of the combined strain element is briefly given with respect to the first-order
shear deformation theory

u(x, y, z) = u0(x, y) + zθy

v(x, y, z) = v0(x, y)− zθx (7)
w(x, y, z) = w0(x, y)

with u0, v0, w0 being the displacements of a point located in the mid-surface, and θx, θy are the rotations of the
transverse normal, i.e. in the z direction, about the x− as well as y− axes, respectively. The membrane and
bending strain vectors can be written as

ε =

 εx
εy
γxy

 =

 u0,x
v0,y

u0,y + v0,x

+ z

 θxy, x
−θx,y

θy,y − θx,x

 = εm + zεb (8)

and the shear strain vector is also given

εs =
ï
εxy
εyz

ò
=
ï

θy + w0,x
−θx + w0,y

ò
(9)

Under Hooke’s law, the constitutive equation is expressed as

σ = Dm(z)
Ä
εm + zεb − ε(T )

ä
(10)

τ = Ds(z) (εs) (11)

in which
σ =

[
σx σy σxy

]T ; τ =
[
τyz τxz

]T (12)

Dm(z) = E(z)
1− v2

 1 v 0
v 1 0
0 0 (1− v)/2

 Ds(z) = E(z)
2(1 + v)

ï
1 0
0 1

ò
(13)

ε(T ) =
î
ε

(T )
x ε

(T )
y 0

óT
=
[
α(z)∆T α(z)∆T 0

]T (14)

The mid-surface of a four-node quadrilateral element is subdivided into four non-overlapping 3-node triangular
domains defined by the vertices and the centre point ‘5’ of the element as shown in Figure ??. The coordinates
of the point ‘5’ in the natural coordinate system are interpolated by x5 = ζ1x1 + ζ2x2 + ζ3x3 + ζ4x4 with

ζ1
ζ2
ζ3
ζ4

 = 1
2

A234

A234 +A124


1/3
1/3
0

1/3

+ 1
2

A124

A234 +A124


0

1/3
1/3
1/3

+ 1
2

A134

A134 +A123


1/3
1/3
1/3
0

+ 1
2

A123

A134 +A123


1/3
0

1/3
1/3


(15)

in which, A234, A124, A134 and A123 are the areas of triangles “234”, “124”, “134” and “123”. From four
non-overlapping triangular domains “125”, “235”, “345” and “415”, four tying points at four positions are
determined as depicted in Figure 2b and clearly presented in [29].
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(a).

(b).

Figure 2. (a) Four triangular subdivisions, (b) Four tying points corresponding to these subdivisions.

(a).
(b).

(c). (d).

Figure 3. (a), (b) & (c) nC smoothing cells with values of shape functions at nodes in format (N1, N2, N3, N4) ,
(d) Four tying points for calculating shear strain.
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Then the membrane strain is approximated as

εm = 1
4
Ä
ε̃m(A) + ε̃m(B) + ε̃m(C) + ε̃m(D)

ä
+ 1

2
Ä
−ε̃m(D) + ε̃m(C)

ä
ξ + 1

2
Ä
−ε̃m(B) + ε̃m(A)

ä
η =

= B̃mqm = Bmq (16)

In which, ε̃m(A), ε̃m(B), ε̃m(C), ε̃m(D) are, respectively, the membrane strains of four triangular domains evaluated
at the tying points.

The bending strain is smoothed by following [30] with Figure 3a, 3b & 3c. The liaison bet-ween the nodal
displacements and the smoothed bending strain field is written as

εb =
nC∑
i=1

B̃biqbi = B̃bqb = Bbq B̃bi = 1
AC

∫
Γc

 0 Ninx 0
0 0 Niny
0 Niny Ninx

 dΓ (17)

with Ac and Γc are the area and the boundary of the smoothing cell, respectively; nx and ny are the components
of the vector normal to the boundary Γc.

Based on the assumed constant transverse shear strain conditions along the edges and using four tying points
as shown in Figure 3d, the shear strain related to [31] can be expressed

εs = B̃sqs = Bsq B̃si =
ï
xξ yξ
xη yη

ò−1 ï
Ni,ξ b11

i Ni,ξ b12
i Ni,ξ

Ni,η b21
i Ni,η b22

i Ni,η

ò
(18)

where b11
i = ξix

M
ξ , b12

i = ξiy
M
ξ , b21

i = ηix
L
η and b22

i = ηiy
L
η in which ξi ∈ {−1 1 1 − 1}, ηi ∈ {−1 − 1 1 1} and

(i, M, L) ∈ {(1, F, H), (2, F, G), (2, E, G), (4, E, H)} as well as

N = 1
2

ï
1− ξ 0 1 + ξ 0

0 1− η 0 1 + η

ò
(19)

The normal forces, bending moments and shear force can then be computed through the following relations

N =
{
Ñx Ñy Ñxy

}T =
∫ h/2

−h/2

{
σx σy σxy

}T
dz =

∫ h/2

−h/2
Dm(z)

Ä
εm + zεb − ε(T )

ä
dz (20)

M =
{
M̃x M̃y M̃xy

}T =
∫ h/2

−h/2

{
σx σy σxy

}T
zdz =

∫ h/2

−h/2
Dm(z)

Ä
εm + zεb − ε(T )

ä
zdz (21)

Q =
{
Q̃y Q̃x

}T =
∫ h/2

−h/2

{
τyz τxz

}T
dz =

∫ h/2

−h/2
Ds(z) (εs) dz (22)

Above equations can be presented in the matrix form
N
M
Q

 =

 A B 0
B D 0
0 0 Â

 εm

εb

εs

−

N

(T )

M
(T )

0

 (23)

with (
A, B, D

)
=

∫ h/2

−h/2

(
1, z, z2 )Dm(z)dz (24)Ä

Â
ä

=
∫ h/2

−h/2
Ds(z)dz (25)Ä

N
(T )
, M

(T )
ä

=
∫ h/2

−h/2
Dm(z)(1, z){ 1 1 0 }Tα(z)∆Tdz (26)

The total strain energy of a plate due to the normal forces, shear force and bending moments can be given by

U = 1
2

∫
Ve

εTσdV =
∫
Se

uTfdS = 1
2q

T

∫
Se

Ä
BT
mABm +BT

mBBb +BT
b BBm +BT

b DBb +BT
s ÂBs

ä
dSq−

− qT
∫
Se

(BT
mN

(T ) +BT
b M

(T ))dS − qT
∫
Se

NTfds+ 1
2

∫
Se

(ε(T ))TAε(T )dS (27)
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U = 1
2q

T
eKeqe − qTe F (T )

e − qTe Fe +C(T ) = qTe

Å1
2Keqe − F (T )

e − Fe
ã

+C(T ) (28)

The kinetic energy is shown

T = 1
2

∫
Ve

u̇Tρ(z)u̇dV = 1
2 q̇

T

ß∫
Ve

NTLTρ(z)LNdV

™
q̇ = 1

2 q̇
TMeq̇ (29)

in which L is clearly described as

L =

 1 0 0 0 z
0 1 0 −z 0
0 0 1 0 0

 (30)

and the mass matrix of element is presented

Me =
∫
Ve

NTLTρ(z)LNdV =
∫
Se

NT

Ç∫ h/2

−h/2
ρ(z)LTLdz

å
NdS (31)

For the bending analysis, the bending solutions can be obtained by solving the following equation

Kd = F + F (T ) (32)

The dynamic equations for solving the eigenvalue can be given as

(K − ω2M)d = 0 (33)

For shell structures, the drilling rotation is added in the local matrices. The null values of the stiffness
corresponding to this drilling rotation are obtained by using approximate values. This value was equal to
10− 3 times the maximum diagonal value in the stiffness matrix of the element [32].

3. Numerical results
In this section, the numerical solutions for static bending and free vibration analyses of functionally graded
structures in the thermal environment are presented. Unless specified otherwise, the shear correction factors
are equal to 5/6. Table. 1 gives the different material properties of functionally graded structures made of the
ceramic (Al2O3, Si3N4, ZrO2) and the metal (SUS304) as written in [1, 3].

3.1. Bending analysis
The author started examining the accuracy of the proposed element by comparing the achieved results with
reference solutions related to other approaches available in literature. A fully simply supported FG plate
(a/b = 1 and a/h = 10) made of Al/Al2O3 subjected to a uniform load q is considered. The material properties
Em = 70GPa, Ec = 380GPa, νm = νc = 0.3 are used and the maximum central deflection is normalized by
w = [10h3Ecw(a/2, b/2)]/qa4. The comparisons of between the proposed method and others, such as Reddy’s
theory (RT) [33], the sinusoidal shear deformation theory (SSDT) [34], the hyperbolic shear deformation theory
(HySDT) and Shi’s theory (ST) [5] are presented in Table 2 for different values of n. The results of this paper
show a good agreement with other reference solutions as depicted in Figure 4a. However, as the functionally
graded plates become more and more metallic, larger deflections are obtained as compared to those more and
more ceramic.

By considering the accuracy of the proposed element to analyse the functionally graded plates under a
temperature environment, the temperature is set to be T = 300K (∆T = 0) and the same plate as the previous
example is also studied, but now it is made of Si3N4/SUS304. The properties related to this material can be seen
in Table 1. The maximum central deflection is then normalized by w = [100h3Emw(a/2, b/2)]/[12(1− ν2

m)qa4]
and compared with the analytical solutions given by [1]. With each value of n, a good agreement between the
two results can be found, as presented in Table 3.

To additionally explore the physical behaviour of functionally graded plates, the fully clamped Al2O3/SUS304
plate with n = 0.5 and a/b = 1 is considered by changing the thickness (a/5, a/10, a/20, a/30 & a/50) and
the temperature from 300K to 1400K. The temperature-deflection curves are plotted in Figure 4b. Generally,
under high temperature environments, it clearly indicates a very important effect of the material combinations
on the overall mechanical behaviour of functionally graded materials. The numerical results obtained are very
interesting as the thinner plates yield larger deflections than the thicker ones. The mechanical deflections of
all functionally graded plates increase for the higher temperature range. It means that when the functionally
graded plates are subjected to higher temperature environments, larger deflections for all considered functionally
graded plates can be reached.
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Ceramic P (300K) P0 P−1 P1 P2 P3

Al2O3

E (Pa) 320.24e9 349.55e9 0 -3.853e-4 4.027e-7 -1.673e-10
α (1/K) 7.203e-6 6.8269e-6 0 1.838e-4 0 0
ν 0.260 0.26 0 0 0 0
ρ (kg/m3) 3800 3800 0 0 0 0

Si3N4

E (Pa) 322.27e9 348.43e9 0 -3.070e-4 2.160e-7 -8.946e-11
α (1/K) 7.475e-6 5.8723e-6 0 9.095e-4 0 0
ν 0.240 0.24 0 0 0 0
ρ (kg/m3) 2370 2370 0 0 0 0

ZrO2

E (Pa) 168.06e9 244.27e9 0 -1.371e-3 1.214e-6 -3.681e-10
α (1/K) 18.591e-6 12.766e-6 0 -1.491e-3 1.006e-5 -6.778e-11
ν 0.298 0.288 0 1.133e-4 0
ρ (kg/m3) 3657 3657 0 0 0
Metal P (300K) P0 P−1 P1 P2 P3

SUS304
E (Pa) 207.79e9 201.04e9 0 3.079e-4 -6.534e-7 0
α (1/K) 15.321e-6 12.330e-6 0 8.086e-4 0 0
ν 0.318 0.326 0 -2.002e-4 3.797e-7 0
ρ (kg/m3) 8166 8166 0 0 0 0

Table 1. Temperature dependent coefficient of Young’s modulus E (Pa), thermal expansion coefficient α (1/K),
Poisson’s ratio ν, mass density ρ (kg/m3) for various materials.

n
Results

RT SSDT HySDT ST Present

SSSS

Ceramic 0.4665 0.4665 0.4665 0.4630 0.4673
1 0.9421 0.9287 0.9421 0.9130 0.9304
2 1.2227 1.1940 1.2228 1.2069 1.1929
3 1.3530 1.3200 1.3533 1.3596 1.3144
5 1.4646 1.4356 1.4653 1.4874 1.4225
10 1.6054 1.5876 1.6057 1.6308 1.5716

Metal 2.5328 2.5327 2.5327 2.5120 2.5351

Table 2. Comparison of the dimensionless deflections of a functionally graded Al/Al2O3 plate (a/b = 1, a/h = 10)
for different values of volume fraction exponent n.

Method n = 0.5 n = 1 n = 5 n = 10
Analytical approach based on HSDT 0.3251 0.3430 0.3800 0.3960
Present 0.3342 0.3553 0.3905 0.4056

Table 3. Comparison of the dimensionless deflections of a functionally graded Si3N4/SUS304 plate (a/b = 1,
a/h = 10) for different values of volume fraction exponent n under ambient temperature.
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(a). (b).

Figure 4. (a) The convergence of results for a fully simply supported functionally graded Al/Al2O3 plate (a/b = 1,
a/h = 10), (b) Temperature-deflection curves for a fully clamped functionally graded Al2O3/SUS304 plate (a/b = 1,
n = 0.5).

Figure 5. The geometry of a fully simply supported functionally graded ZrO2/Al cylindrical panel and the central
deflection of the cylindrical panel.

The last example in this section is given with a fully simply supported ZrO2/Al cylindrical panel subjected
to a uniform load q = 106 N/m2 as depicted in Figure 5. The material properties are also given as Em = 70GPa,
Ec = 151GPa, νm = νc = 0.3. The geometric properties of this structure are denoted by L = 0.2m, R = 1m,
and ϕ = 0.2 rad. The dimensionless central deflection is introduced by w = wmax/h and the results of this
paper are compared with the solutions based on the element-free kp-Ritz method of [35]. Table 4 presents the
dimensionless central deflections with respect to the changes of ratio S = R/h (50, 100 & 200) and three values
of n (0.5, 1 & 2).

Once again, the accuracy and efficiency of the combined strain element are proved by the very small errors
shown in Table 4 between the results of this element and the results in [35].

From this section, it can be concluded that the mechanical bending behaviour of the functionally graded
structures is material dependent, mainly caused by the nonlinear thermal properties and material behaviour
of constituent materials. In other words, not all the functionally graded structures in a high temperature
environment act and react in the same manner, they, as observed numerically, behave differently from each
other. Therefore, material combinations in terms of functionally graded materials are important and greatly
affect the mechanical static bending behaviour of resultant functionally graded structures and their performance
under high temperature conditions. Consequently, this phenomenon and behaviour of functionally graded
materials may be important for the design and development of the functionally graded materials in engineering
applications, especially for those that suffer tough temperature conditions.
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S = R/h Method n
0.5 1 2

50 The element-free kp-Ritz method 0.0038 0.0043 0.0047
Present 0.0038 0.0043 0.0048

100 The element-free kp-Ritz method 0.0542 0.0607 0.0666
Present 0.0542 0.0607 0.0666

200 The element-free kp-Ritz method 0.6503 0.7283 0.8057
Present 0.6422 0.7192 0.7954

Table 4. Comparison of the dimensionless deflections at a central point of a fully simply supported functionally
graded ZrO2/Al cylindrical panel (L = 0.2m, R = 1m, ϕ = 0.2 rad) for different values of volume fraction exponent
n under an ambient temperature.

(a). (b).
(c).

Figure 6. The first three mode shapes of fully simply supported Si3N4/SUS304 square plate.

3.2. Vibration analysis
The first example in this section is related to the fully simply supported square functionally graded plates and their
natural frequencies in a thermal environment. Three types of materials are used in this study: Si3N4/SUS304,
Al2O3/SUS304 and ZrO2/SUS304. The geometrical parameters are set to be: length a = b = 0.2m, thickness
h = 0.025m. The natural frequency results presented in the dimensionless values Ω = (ωa2/h)[ρm(1−ν2)/Em]1/2
with Em and ρm are taken at T = 300K. Table 5 gives the comparison of first three modes of dimensionless
frequencies of Si3N4/SUS304, Al2O3/SUS304 and ZrO2/SUS304 square plates under different values of n (0.5, 1
& 2) among the proposed element and others related to two analytical solutions based on higher-order shear
deformation theories [1, 3] and numerical solution based on the standard finite element method connected to the
higher-order shear deformation theory [5]. As expected, the presented results show a good agreement with exact
solutions. Although it only uses the first-order shear deformation theory, its results are almost identical to other
results based on a higher-order shear deformation theory [1, 3, 5]. Moreover, under the same conditions, the
Si3N4/SUS304 square plate has the largest frequencies while ZrO2/SUS304 square plate provides the smallest
values.

In order to further validate the accuracy of the combined strain element, especially for structures in high
temperature environments, Table 6 presents a comparison of the fundamental frequency at high temperatures
T = 400K, 500K & 600K of two types of materials, Si3N4/SUS304 and Al2O3/SUS304, with fully clamped
plates for three values of n (0.5, 1 & 5) between the proposed element and analytical method based on Shi
theory [1]. It can be seen that the frequencies at high temperatures achieved by the combined strain element
are in close agreement with the analytical solutions [1].

Finally, the first three modes of a simply supported functionally graded Si3N4/SUS304 square plate (a = b =
0.2m and h = 0.025m) are also depicted in Figure 6. The frequencies increase with increasing the temperature
from 400K upto 600K, but these frequencies decrease when the plates are more and more metallic.

4. Conclusions
9. In this work, an efficient numerical method based on the combined strain element is developed for modelling
functionally graded structures in a thermal environment. The combination of the membrane strain and shear
strain related to tying points and bending strain with respect to cell-based smoothed finite element method is
established to build the proposed element. The numerical results show that the presented element can be used
to analyse and predict the behaviour of functionally graded plate/shell structures in a thermal environment. In
each case of the study with, the achieved results are found to agree well with other analytical results, or with
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n Material Mode [1] [3] [5] Present

0.5

Si3N4/SUS304
1 8.675 8.646 8.554 8.555
2 20.262 20.080 20.559 20.849
3 30.359 29.908 31.088 31.514

Al2O3/SUS304
1 7.803 7.805 7.759
2 18.253 19.003 18.892
3 27.569 28.018 28.538

ZrO2/SUS304
1 6.368 6.406 6.418
2 14.824 15.119 15.567
3 24.570 24.719 23.453

1

Si3N4/SUS304
1 7.555 7.599 7.487 7.502
2 17.649 17.705 17.987 18.286
3 26.606 26.727 27.209 27.643

Al2O3/SUS304
1 7.114 6.997 7.058
2 16.633 16.518 17.185
3 24.700 25.433 25.958

ZrO2/SUS304
1 6.037 6.075 6.080
2 14.014 14.544 14.760
3 21.456 21.582 22.250

2

Si3N4/SUS304
1 6.777 6.825 6.705 6.737
2 15.809 15.947 16.083 16.413
3 23.806 24.147 24.326 24.803

Al2O3/SUS304
1 6.563 6.519 6.511
2 15.323 15.833 15.841
3 23.048 23.346 23.916

ZrO2/SUS304
1 5.753 5.796 5.794
2 13.294 13.898 14.081
3 20.247 20.636 21.243

Table 5. The comparison of first three modes of dimensionless frequencies of fully simply supported functionally
graded plates under ambient temperature.

n Mode 1 Si3N4/SUS304 Al2O3/SUS304
400K 500K 600K 400K 500K 600K

0.5 Analytical solution 15.938 15.468 14.939 14.384 14.003 13.592
Present 14.966 14.990 15.083 13.568 13.611 13.727

1 Analytical solution 13.915 13.426 12.941 13.025 12.631 12.188
Present 13.121 13.133 13.190 12.339 12.365 12.441

5 Analytical solution 11.175 10.749 10.242 10.965 10.556 10.073
Present 10.672 10.679 10.694 10.533 10.539 10.564

Table 6. Dimensionless frequencies of fully clamped functionally graded plates (a/b = 1, a/h = 10) in a high
temperature.
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other numerical methods. Based on this element, the presented numerical solutions offer more stable than others
and the applicability of proposed element has been clearly shown as above section. The present formulation
is general and can be extended to other problems, especially those in high temperature environments. The
paper also helps to supplement knowledge for engineers in the design process. The functionally graded materials,
where the excellent characteristics of ceramic in heat and corrosive resistances combine with the ability to absorb
energy and plastically deform and toughness of metals, are outstanding advanced materials that can withstand
large mechanical loads under a high temperature. Mechanical information might also be helpful to the designers
or researchers in the appropriate selection of functionally graded materials for specific purposes, for instance, a
right selection of the functionally graded materials for the right conditions such as structures to be working
under high temperature conditions is of course a great benefit in practice.
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