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Abstract. An application of two ruled surfaces (i.e., surfaces generated by a motion of a straight
line), a surface of hyperbolic paraboloid and a tangent surface of a cylindrical helix in freeform and gear
metrology is introduced in this paper. Both surfaces have been implemented as the main functional
figures in several artefacts – metrological calibration standards intended for testing the freeform
capabilities of various measuring technologies (e.g., tactile point-to-point measurement and tactile
scanning on coordinate measuring machine, optical scanning, computer tomography). Geometrical
and mathematical properties of the surface used are summarised, CAD models of all the developed
standards are presented and photos of the manufactured standards are shown.
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1. Introduction
In precision engineering, an inspection of components
with functional freeform surfaces lay great demands
on metrological procedures. A freeform shape means
a shape that does not belong to the basic geometri-
cal elements (such as, plane, sphere, cylinder, cone,
torus,...) and is difficult to describe it mathematically.
Usually, the nominal shape and dimensions of the
component with freeform surface is represented by
CAD (Computer Aided Design) model and metrology
procedure applied in inspection is a so called CAD-
based measurement. A reliable evaluation of freeform
CAD-based measurement leads to the development
of reference standards with a sufficient precision and
specific properties. Calibration standards of regular
shapes (basic geometrical elements) are well devel-
oped [1], while the traceability and quality inspection
in freeform manufacturing are issues, due to the lack
of traceable verification standards [2].

Based on a geometrical-mathematical approach, se-
veral freeform reference standards and gear measure-
ment standard for testing the freeform and gear mea-
surement capability of coordinate measuring machines
and machine tools has been developed in the Czech
Metrology Institute (CMI) in cooperation with the
Czech Technical University in Prague (CTU) [3]. The
development of all the standards consists in a purpose-
ful application of a surface of hyperbolic paraboloid
and tangent surface of the cylindrical helix and effec-
tive usage of their excellent geometrical-mathematical
properties [4].
Three of the standards developed, i.e. Freeform

standard Hyperbolic paraboloid, Spatial hyperbolic

paraboloid standard and Smart gear measurement
standard, are mentioned in this paper. The paper is or-
ganised as follows. A mathematical model and geomet-
rical properties of a surface of hyperbolic paraboloid
and its application in the development of the Freeform
standard Hyperbolic paraboloid is described in chap-
ter 2. The solid of hyperbolic paraboloid applied in the
Spatial hyperbolic paraboloid standard is presented in
chapter 3. The relationship among the surfaces gen-
erated by screw motion of a circle involute, tangent
surface of the cylindrical helix and flank surface of
the involute gear is introduced in chapter 4. Smart
gear measurement standard that has been developed
based on this relationship is mentioned in this chapter,
too. For each standard, the mathematical model and
geometrical properties of the main functional figure
is described first. After that, the CAD model of the
standard is introduced and finally, the photo of the
manufactured standard is presented.

2. Surface of hyperbolic
paraboloid

Consider a one-dimensional situation first. Given
two points in three-dimensional space with Cartesian
coordinate system (O, x, y, z)

P0 = (x0, y0, z0), P1 = (x1, y1, z1),

the straight line segment obtained by linear interpola-
tion between these points is given by

C(u) = N0,1(u)P0 +N1,1(u)P1, u ∈ [0, 1], (1)
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where u is a parameter, C(u) is one-variate vector
function and

N0,1(u) = 1− u, N1,1(u) = u (2)

are uniform B-spline basis functions of the first de-
gree [5]. Equation (1) represents the straight line
segment as a uniform clamped B-spline curve defined
on a normalised domain of parameterization u ∈ [0, 1].

A surface of hyperbolic paraboloid is a linear inter-
polation among four points in the three-dimensional
space. Denoting

P00 = (x00, y00, z00), P01 = (x01, y01, z01),
P10 = (x10, y10, z10), P11 = (x11, y11, z11),

the surface of hyperbolic paraboloid (bilinear B-spline
clamped surface defined on a normalised domain of
parameterization (u, v) ∈ [0, 1]2) is given by

S(u, v) = (x(u, v), y(u, v), z(u, v)) = (3)

=
(
1− u u

)
·
(

P00 P01
P10 P11

)
·
(

1− v
v

)
with coordinate functions

x(u, v) = (1− u)(1− v)x00 + (1− u)vx01+ (4)
+ u(1− v)x10 + uvx11,

y(u, v) = (1− u)(1− v)y00 + (1− u)vy01+ (5)
+ u(1− v)y10 + uvy11,

z(u, v) = (1− u)(1− v)z00 + (1− u)vz01+ (6)
+ u(1− v)z10 + uvz11.

In computations, it is suitable to use an explicit
expression of the surface of hyperbolic paraboloid.
To be able to express the surface (3) explicitly, the
orthogonal projection of quadrilateral P00P01P10P11
to the (x, y) plane has to be an axis-aligned rectangle.
Then, the explicit equation of the surface of hyperbolic
paraboloid is given by

z(x, y) = p+ k(x−m)(y − n), (7)

where V = (m,n, p) is the vertex of the hyperbolic
paraboloid and k is a shape coefficient. Regarding
the future application of this surface in the design
of a freeform standard, consider the control vertices
lying above the vertices of the axis-aligned square
with centre at the origin of the coordinate system and
length of the edge equal to 2a, fig. 1. Then

P00 = (−a,−a, z00), P01 = (−a, a, z01), (8)
P10 = (a,−a, z10), P11 = (a, a, z11).

After substitution of control points coordinates (8)
in (4) and (5), x(u, v) and y(u, v) coordinate functions
are as follows

x(u, v) = a(2u− 1), y(u, v) = a(2v − 1). (9)
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Figure 1. Surface of hyperbolic paraboloid.

Now, it is possible to solve (9) with respect to para-
meters u and v

u = x+ a

2a , v = y + a

2a (10)

and substitute (10) in (6)

z(x, y) = xy

4a2 (z00 − z01 − z10 + z11)+ (11)

+ x

4a (−z00 − z01 + z10 + z11)+

+ y

4a (−z00 + z01 − z10 + z11)+

+ 1
4(z00 + z01 + z10 + z11).

Denote

A = z00 − z01 − z10 + z11, (12)
B = −z00 − z01 + z10 + z11,

C = −z00 + z01 − z10 + z11,

D = z00 + z01 + z10 + z11.

Then

z(x, y) = 1
4

(
D − CB

A

)
+ A

4a2

(
x+ Ca

A

)(
y + Ba

A

)
.

Cartesian coordinates of the vertex of the hyperbolic
paraboloid are

m = −Ca
A
, n = −Ba

A
, p = 1

4

(
D − CB

A

)
(13)

and shape coefficient

k = A

4a2 . (14)

If the centre of the square, above whose vertices
the control points lie, is shifted to point (q, r, 0), the
coordinates of the hyperbolic paraboloid vertex are

m = q− Ca
A
, n = r−Ba

A
, p = 1

4

(
D − CB

A

)
. (15)
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Considering (7), a point on the surface is obtained
by a substitution of a pair of variables x = α and
y = β, (α, β) ∈ R2. Specially, the control points (8)
are the following function values of surface (7)

P00 = z(−a,−a), P01 = z(−a, a),
P10 = z(a,−a), P11 = z(a, a)

and vertex
V = z(m,n).

There are three types of curves on the surface of
hyperbolic paraboloid: two systems of parametric
straight lines, two systems of parabolas and one sys-
tem of hyperbolas. The parametric straight lines (by
means of which the surface in fig. 1 is depicted) are
obtained by a substitution of the constant value x = α
or y = β in (7)

z(x, β) = k(β − n)x+ p− km(β − n), (16)
z(α, y) = k(α−m)y + p− kn(a−m). (17)

Equations (16) and (17) geometrically express the
intersection of the surface of the hyperbolic paraboloid
and planes parallel with (x, z) and (y, z) planes in
the given order. Specially, the boundaries of the
hyperbolic paraboloid are obtained by

z(x,−a), z(x, a), z(−a, y), z(a, y)

and the straight lines passing through the vertex (red
lines on fig. 2) are given by

z(x, n) = p, z(m, y) = p. (18)

Obviously, equations (16) and (17) represent two sys-
tems of straight lines on the surface of hyperbolic
paraboloid. Each straight line from the first system
intersects all straight lines from the second system and
is perpendicular to them. Straight lines (18) passing
through the vertex are parallel with (x, y) plane.
Two system of parabolas on the surface of hyper-

bolic paraboloid are obtained as intersections of the
surface and planes parallel with the plane y = x or
y = −x, i.e.

z(x, x+ d) =
= kx2 − (m+ d− n)kx+ km(n− d) + p,

z(x,−x+ d)
= −kx2 + (m+ d− n)kx+ km(n− d) + p,

where d is y-intercept of the plane y = x + d or
y = −x+ d. Specially, the parabolas passing through
the vertex are given by

z(x, x) = p+ k(x−m)(x− n) (19)
z(x,−x) = p+ k(x−m)(−x− n). (20)

Equation (19) represents the blue parabola and (20)
the green parabola in fig. 2.
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Figure 2. Curves on surface of hyperbolic paraboloid
a) axonometric view, b) top view.

Hyperbolas on the surface of hyperbolic paraboloid
are obtained as intersections of the surface and planes
parallel with (x, y) plane, i.e. z = γ, where γ is a real
constant

p+ k(x−m)(y − n) = γ. (21)

Specially, for γ = p we get (18), i.e. asymptotes of
all the hyperbolas in the top view, see red straight
lines in fig. 2 b). The magenta hyperbola in fig. 2
corresponds to γ > p, the cyan hyperbola corresponds
to γ < p.

2.1. Freeform standard Hyperbolic
paraboloid

The CAD model of the standard is depicted in fig. 3 a).
The surface of hyperbolic paraboloid (green) is created
in the CAD system as bilinear B-spline surface given
by control points

P00 = (−9,−9, 73), P01 = (−9, 87,−11), (22)
P10 = (87,−9,−11), P11 = (87, 87, 49).
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Figure 3. Freeform standard Hyperbolic paraboloid
a) CAD model, b) Hyperbolic sections by planes parallel with (x, y) plane, c) Linear sections by planes parallel with
(x, z) plane, d) Linear sections by planes parallel with (y, z) plane, e) Parabolic sections by planes parallel with plane
y = x, f) Parabolic sections by planes parallel with plane y = −x.
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Control points (22) are located above the ver-
tices of axis aligned square with the centre at point
(q, r, 0) = (39, 39, 0) and length of the edge 2a = 96
(all dimensions are in mm). Using (12), (14) and 15,
the explicit equation of the functional surface of the
standard is given by

z(x, y) = 24 + 1
64(x− 47)(y − 47).

This equation is useful when evaluating the measured
data for both the tactile point-to-point measurement
and the tactile scanning on coordinate a measurement
machine.
The standard of dimensions 120 × 120 × 67 mm

consists of a step-squared base intended for clamping
the standard on the coordinate measuring machine
(depicted in yellow in fig. 3). Three precise refer-
ence spheres (red) with a radius equal to 8 mm are
glued into the three of the four spherical holes on the
standard. These spheres serve for s workpiece coor-
dinate system definition. The surface of hyperbolic
paraboloid (green) is trimmed by the cylindrical sur-
face (blue) with an axis parallel to z-axis and radius
equal to 40 mm. The common boundary between the
upper squared face and the cylinder is filled with a
radius of 4 mm, i.e. the transition surface is created
by a part of torus (magenta).
The surface of hyperbolic paraboloid used in the

Freeform standard hyperbolic paraboloid allows to
measure the following curves.

Hyperbolas. The hyperbolic sections (21) of the
hyperbolic paraboloid by planes parallel with (x, y)
plane are depicted in fig. 3 b).

Straight lines. The linear sections (16) and (17)
of the hyperbolic paraboloid by planes parallel with
(x, z) and (y, z) planes are depicted in fig. 3 c) and
fig. 3 d) in the given order.

Parabolas. The parabolic sections (19) and (20) of
the hyperbolic paraboloid by planes parallel with the
plane y = x and y = −x are depicted in fig. 3 e) and
fig. 3 f) in the given order.

2.2. Physical Freeform standard
Hyperbolic paraboloid

The standard has been manufactured by 3-axis milling
on numerically controlled milling machine US20 by
high speed cutting from steel EN X10CrNi18-9.The
calibration of the standard on the coordinate measur-
ing machine is shown in fig. 4.

3. Solid of hyperbolic paraboloid
The solid of the hyperbolic paraboloid represents an
extension of linear interpolation among eight points
in three-dimensional space. Considering the following

Figure 4. Calibration of freeform standard
Hyperbolic paraboloid on coordinate measurement
machine.
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Figure 5. Solid of hyperbolic paraboloid.

control points

P000 = (x000, y000, z000), P010 = (x010, y010, z010),
P100 = (x100, y100, z100), P110 = (x110, y110, z110),
P001 = (x001, y001, z001), P011 = (x011, y011, z011),
P101 = (x101, y101, z101), P111 = (x111, y111, z111),

the trilinear uniform clamped B-spline solid defined
on a normalised domain of parameterization (u, v, t) ∈
[0, 1]3 is given by

B(u, v, t) =
1∑

i=0

1∑
j=0

1∑
k=0

Ni,1(u)Nj,1(v)Nk1(t)Pijk,

(23)
see example in fig. 5.

If one of the parameters in (23) is constant, a para-
metric surface of the solid is obtained. For u = α,
v = β and t = γ, α, β, γ ∈ [0, 1], there are three
systems of parametric surfaces

B(u, v, γ) =
1∑

i=0

1∑
j=0

1∑
k=0

Ni,1(u)Nj,1(v)Nk,1(γ)Pijk,
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Figure 6. Parametric surfaces in solid of hyperbolic
paraboloid.

B(u, β, t) =
1∑

i=0

1∑
j=0

1∑
k=0

Ni,1(u)Nj,1(β)Nk,1(t)Pijk,

B(α, v, t) =
1∑

i=0

1∑
j=0

1∑
k=0

Ni,1(α)Nj,1(v)Nk,1(t)Pijk.

Obviously, all three systems of parametric surfaces
of the solid are created by surfaces of hyperbolic
paraboloid. Consequently, the parametric curves of
the solid are straight lines (fig. 6).

3.1. Spatial hyperbolic paraboloid
standard

Spatial hyperbolic paraboloid standard with cavities
has been developed so that the standard can be cali-
brated by the point-to-point tactile measurement and
then measured by means of various metrology tech-
nologies (tactile scanning, optical scanning, computer
tomography, etc.). The solid of hyperbolic paraboloid
(23) represents the freeform functional figure on this
standard, see fig. 7, where the CAD model of the
standard is depicted. The standard of dimensions
100× 100× 100 mm consists of squared box base in-
tended for clamping the standard to the coordinate
measuring machine. The centre upper squared face
of the base lies at the origin of the coordinate sys-
tem. Freeform faces of the standard are the boundary
surfaces of the solid of hyperbolic paraboloid. The
cavity of the standard is created by non-coaxial cylin-
drical holes serving for orientation when measuring
the standard by a computer tomography technology.

3.1.1. Physical Spatial hyperbolic
paraboloid standard

The standard has been manufactured from aluminium
alloy CERTAL EN AW 7022 [AlZn5Mg3Cu] by nu-
merically controlled machining and polished. The
calibration of the standard on coordinate measuring
machine is shown in fig. 8

Figure 7. CAD model of Spatial hyperbolic
paraboloid standar

Figure 8. Calibration of Spatial hyperbolic
paraboloid standard.

4. Surfaces generated by motion
of a circle involute

Involute e of a curve c is the trajectory of a free
endpoint of the tangent line of the curve c rolling
along the curve c. In other words, the normal line at
each point of the involute e is the tangent line to the
curve c.
In technical practice, a circle involute (hereinafter

referred to as the "involute"), see fig. 9, has a special
meaning. It is well known that a flank surface of
involute spur gears is an involute ruled surface (i.e.,
the surface generated by a translation of the involute
along a straight line) and a flank surface of involute
helical gears is an involute helicoidal surface (i.e., the
surface generated by screw motion of the involute).
What is not so obvious is that the involute helicoidal
surface and tangent surface of the helix have the same
shape (if certain geometrical conditions are met). Con-
sequently, the flank surface of involute helical gears
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c

e

Figure 9. Circle involute.

can be expressed as a tangent surface of the base helix,
which is mathematically simpler than an expression
of an involute helicoidal surface [6].

In this section, the helix, as a trajectory of a point
under screw motion, is described firstly. After that,
the tangent surface of the helix, involute helicoidal
surface and ruled surface are mentioned together with
their properties. Finally, an example of an application
of these surfaces in metrology practice is given.

4.1. Tangent surface of a cylindrical
helix

The tangent surface of a cylindrical helix is very impor-
tant in gear geometry because an unmodified involute
helical tooth flank is a tangent surface of the base helix
[7], i.e., the helix located on the gear base cylinder.

Helix is a spatial curve generated by screw motion of
a generating point. A screw motion is a combination
of revolution about axis o of the screw motion and a
translation along axis o. The helix is called cylindrical
if the angle of revolution is directly proportional to the
length of translation and the distance of the generating
point from the axis o is constant. The cylindrical
helix (hereinafter referred to as the "helix") is a curve
of a constant slope, i.e. the angle formed by the
tangent line to the helix and any plane perpendicular
to axis o is constant. The development of the helix
(flattening onto a plane) is a directly proportional
graph with the revolution (measured in the length of
arc) on horizontal axis and translation of vertical axis.
The slope of the graph is identical to the slope of the
helix. The tangent surface of the helix is a developable
surface [8] (it is possible to unfold it into a plane
without any distortion).

To derive a mathematical model of the tangent sur-
face of the helix, consider the cylinder (axis identical
to coordinate z axis, radius rb, height equal to the lead
pz) and one thread of right hand helix hb generated
by a screw motion of point B located on coordinate
x axis,

B = (xB, yB, zB, 1) = (rb, 0, 0, 1)

(in homogeneous coordinates), see fig. 10.

rb

z

B

b

t

z

h

v

σ

y

x

p

u

Figure 10. Tangent surface of cylindrical helix.

p

2 r

b

β
b

developed helix
h

π

γ
b

r

b

0

b

p
z

Figure 11. Development of the helix.

The development of the cylinder is the rectangle
(width 2πrb, height pz), the development of the helix
is the diagonal of this rectangle, see fig. 11. Direction
vector b of tangent line t is given by

b = (b1, b2, b3, 0) = (0, rb, p0, 0)

where p0 = pz/2π is called the parameter of the screw
motion (translation directly proportional to the revo-
lution about one radian).
The vector equation of tangent line

t : T(v) = (x(v), y(v), z(v), 1)

to the helix hb passing through point B is given by

T(v) =(xB + b1v, yB + b2v, zB + b3v, 1) =
=(rb, rbv, p0v, 1), v ∈ R. (24)

The transformation matrix of the right hand screw
motion is given by

GR(u) =


cosu sin u 0 0
− sin u cosu 0 0

0 0 1 0
0 0 p0u 1

 , u ∈ R, (25)

where u is the angle parameter in radians. The first
three rows of matrix (25) correspond to the revolution

105



Ivana Linkeová, Vít Zelený Acta Polytechnica

e

p

t

z

bh σ
rb

O

z

x

y

B

Figure 12. Involute section e of tangent surface of
the helix.

about z axis and the fourth row corresponds to the
translation along z axis.
Tangent surface

σ : S(u, v) = (x(u, v), y(u, v), z(u, v), 1)

of the right hand helix is given by

S(u, v) = T(v) ·GR(u) =
=(rb(cosu− v sin u), rb(sin u+ v cosu), p0(v + u), 1).

(26)

There are three types of curves on the surface (26):
two systems of parametric curves, i.e. helices and
straight lines, see fig. 10, and involute curves, see
fig. 12. Two parametric curves, each of them from
a different system, have a common point located on
the surface, parametric coordinates of this point cor-
respond to the constant values of parameters u and
v. Parametric u-curves are helices obtained by the
substitution of constant value v = vc, vc ∈ R in (26).
Parametric v-curves are tangent lines to the helix ob-
tained by the substitution of constant value u = uc,
uc ∈ R in (26). The involute curve is the intersec-
tion of the tangent surface of the helix and any plane
perpendicular to z axis.
To derive the equation of the involute curve from

(26), the solution of equation z(u, v) = zc, zc ∈ R has
to be substituted in (26). Considering zc = 0, i.e., the
intersection of the tangent surface of the helix and
coordinate plane (x, y), the condition p0(u+ v) = 0 is
met if v = −u or u = −v. These solutions are identical
from the geometrical point of view, because the shape
of involute curves obtained by substituting v = −u
as well as u = −v in (26) is the same. However, from
mathematical point of view, the later solution and the
interchange of parameters u and v is preferable. Thus,
the involute e obtained by substituting u = v in (26)

e : E(v) = (xE(v), yE(v), zE(v), 1)
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Figure 13. Ruled involute surface.

is given by

E(v) =(rb(cos v + v sin v), rb(sin v − v cos v), 0, 1),
v ≥ 0 (27)

Note that the flank surface of a helical gear can be
generated by a screw motion of the involute profile,
too.

4.2. Involute ruled surface
The surface of the involute spur tooth flank σS :
SS(u, v) is generated by a translation of involute e
given by (27) along a straight line k ‖ z

SS(u, v) = (rb(cos v+ v sin v), rb(sin v− v cos v), u, 1),

see fig. 13. Parametric u-curves are straight lines
parallel with z axis, parametric v-curves are involutes
(27) lying in planes perpendicular to z axis.

4.3. Smart gear measurement standard
In gear metrology, precise gear measurement standards
of various designs and purposes are developed, man-
ufactured and calibrated. For example, for a profile
and helix inspection, the Internal involute scanning
measurement standards developed by Physikalisch-
Technische Bundesanstalt (PTB) contains both the
precise internal and external involute profiles [9] and
profiles with a certain waviness superposed [10], which
enable to characterise the dynamic behaviour of the
probing system. The Large gear measurement stan-
dard (PTB) is designed as a segment of a complete
gear [11] and large ring gear measurement standard
(PTB) embodies three different internal and external
gearing, each one with helix angles of 0° (spur gear-
ing), 10° and 20° [12]. All the specially designed or
commercially produced gear measurement standards
for the profile and helix inspection contain separate
geometry for each type of gearing.
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Figure 14. CAD model of Smart gear standard.

The contrary, the flank surface of the Smart gear
measurement standard (developed by the CMI in coop-
eration with CTU) is represented by a tangent surface
of the helix on which all three types of curves (straight
lines, involutes and helices) important in gear profile
and helix inspection are located. Consequently, it is
possible to measure profile and helix deviations of
different gearings on one geometry. The CAD model
of the Smart gear measurement standard is shown in
(fig. 14).

Note that both the helix and involute are tran-
scendental curves, i.e., they have neither polynomial
nor rational parameterisation. Consequently, it is im-
possible to express them by NURBS (Non-Uniform
B-Spline) representation, which is the theoretical ba-
sis of CAD systems. Thus, their precise CAD model
cannot be created. Usually, more or less accurate
approximation by means of B-spline curves is used
in CAD systems [13]. Involute is not implemented in
CAD systems yet.
The standard has a box base 140 × 140 × 10 mm

(drawn in grey in fig. 14). The origin of the coor-
dinate system lying in the upper face of the box is
determined by the centre of a cylindrical hole with
the base diameter db (cyan). The direction of y-axis is
defined by the centre of the cylindrical hole diameter
of 10 mm (yellow). The upper face of the box defines
(x, y) plane, z axis is perpendicular to it. The 10 mm
high involute ruled surface placed on the upper face
of the box represents the external and internal spur
involute flank surface (magenta and red). The exter-
nal and internal helical involute flank surface (green
and blue) is represented by the tangent surface of the
base helix trimmed by planes z = 10 and z = 50 mm
(violet).

The most important shape figure included in the
tangent surface of the base helix corresponds to the
real helical gear with parameters given in tab. 1. This
gear, together with its spur variant (with (β = 0◦) and
the other parameters the same as is given in tab. 1),
is shown in fig. 15.

Parameter Symbol Value
Helix angle β (°) 10
Normal module mn (mm) 3.54
Teeth number z (-) 6
Reference circle diameter d (mm) 21.324
Tip circle diameter da (mm) 28.324
Normal angle αn (°) 20
Transverse angle αt (°) 20.284
Base circle diameter db (mm) 20.002
Lead pz (mm) 379.926

Table 1. Gear parameters of Smart gear measurement
standard.

Figure 15. Spur (magenta) and helical (cyan) gear
included in Smart gear measurement standard.

The tangent surface of the base helix used in the
Smart gear standard allows to measure the following
curves.

Helices Helices located on the tangent surface of
the helix are defined as intersections of the surface
and cylindrical surface coaxial with the base cylinder.
In fig. 16, the intersection with the cylindrical surface
of radius r = 34.911 mm and the corresponding angle
β = 30◦ can be seen. The shape of the standard
enables to measure the external helical gear from
β = 0◦ (spur gear as a special case of the helical gear)
to β = 60◦ and internal helical gear from β = 0◦ to
β = 56◦. Parameters of the selected external helical
gear helices which possible to measure are given in
tab. 2.
The corresponding helical teeth included in the

standard are depicted in fig. 17 together with their
helices lying on the surface of the standard.

Straight lines Straight lines located on the tangent
surface of the helix are defined by individual tangent
lines of the helix. Consequently, these straight lines
are obtained as intersections of the surface and tangent
planes to the base cylinder, see fig. 18. Here, several
section planes perpendicular to (x, y) plane with angle
span of 45° depicted.
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β(◦) mn (mm) z (-) d (mm)
10 3.5 6 21.324
15 1.49 21 32.404
20 2.76 15 44.016
25 3.01 17 56.392
30 2.02 30 69.821
35 3.02 23 84.679
40 5.98 13 101.476
45 4.50 19 120.934

Table 2. Parameters of selected helical gears on
Smart gear standard

Figure 16. Helical sections on Smart gear measure-
ment standard.

Figure 17. Helical teeth included in Smart gear
measurement standard.

Figure 18. Line sections on Smart gear measurement
standard.

Figure 19. Involute sections on Smart gear measure-
ment standard.

Involutes Involutes located on the tangent surface
of the helix are defined as intersections of the surface
and planes perpendicular to the axis of the helix. The
plane z = 30 mm is depicted in fig. 19.

4.3.1. Physical Smart gear standard

The final shape of the Smart gear standard is currently
in the research and development phase. Therefore, the
first sample of this standard has been manufactured
by 3D printing technology and experimental measure-
ments have been realised. Based on the metrological
experience, the shape of the standard will be modified.
Numerically controlled manufacturing technology and
metal material is assumed for the future production of
the standard. Due to the geometrical properties of the
flank surfaces, using the 5-axis flank milling technol-
ogy to obtain as precise model as possible, the main
functional surface of the standard will be possible.
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Figure 20. Smart gear measurement standard manu-
factured by 3D printing technology.

5. Conclusion
Two ruled surfaces - surface of hyperbolic paraboloid
and tangent surface of a cylindrical helix are described
in this paper. Geometrical-mathematical properties of
both surfaces are summarised and their application in
freeform and gear metrology is shown. Two freeform
metrological standards - Freeform standard Hyper-
bolic paraboloid and Spatial hyperbolic paraboloid
standard and Smart gear measurement standard deve-
loped by the CMI in cooperation with the CTU are
introduced.

All of the above mentioned artefacts are considered
to be the calibration standards for freeform metrology
- a new, rapidly evolving specialisation focused on
the quality inspection of generally shaped parts. The
main objective of involving these artefacts in freeform
metrology is to determine the best measuring capa-
bilities of coordinate measuring machines working on
different principles. Usually, the basic measurand in
freeform metrology is a form deviation, i.e. the nor-
mal distance between the actual point located on the
measured workpiece and nominal point located on
the theoretical CAD model of the measured surface.
The geometrical properties of all the above mentioned
artefacts allow to use of advanced measurement pro-
cedures, such as measurement of straight lines and
curves located on the freeform surface. Consequently,
it is possible to measure surface roughness and wavi-
ness along the surface lines. All the artefacts have
been applied not only in a determination of measure-
ment uncertainty of tactile and optical measuring
machines and in an inter-laboratory comparison at
the national level by the CMI laboratories but also,
in the case of the CMI freeform standard Hyperbolic
paraboloid, at the international level.
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