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Abstract 
Cardiac assistance represents an emerging issue in cardiovascular medicine. The evolution of invasive 
cardiology techniques is making the catheterization laboratory one of the main hospital sites where 
implantation of percutaneous ventricular assistance devices (PVADs) is discussed and performed. 
Among available PVADs, intra-aortic balloon pump (IABP), Impella, and extracorporeal membrane 
oxygenation (ECMO) are the most popular and offer completely different levels and ways to assist critical 
patients. The main settings calling for PVAD consideration in the catheterization laboratory are clini-
cally indicated high-risk patients (CHIP) undergoing percutaneous coronary intervention (PCI) and 
patients with cardiogenic shock or refractory cardiac arrest.  
In CHIP, PVAD serves the purpose of preventing hemodynamic collapse during PCI. This may also 
allow more extensive revascularizations and higher quality revascularization plans (imaging use, 
debulking, stent result optimization). IABP or Impella are more commonly selected whereas ECMO 
is seldom considered as a third option for highly selected patients. The “elective” nature of CHIP-PCI 
should allow careful procedure planning (peripheral artery disease assessment, access site selection and 
management) in order to minimize vascular/bleeding complications.
Cardiogenic shock is still associated with high mortality rates, and PVAD theoretically offers further re-
covery chances. The lack of benefit observed with systematic IABP use is currently prompting considera-
tion of the roles of Impella and ECMO. Prolonged assistance is often needed. Thus, team decisions and 
shared protocols for PVAD selection have to be promoted, taking into consideration available resources 
and operators’ skills. 
In this paper, we critically review the available data in the field and highlight the possible decision-
making hubs that catheterization-laboratory teams may consider in order to rationalize PVAD selection. 
(Cardiol J)
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Introduction

The management of critically ill cardiac 
patients has aroused great interest in recent 
years. Percutaneous coronary intervention (PCI) 
techniques have expanded and gained respect as  
a valuable alternative to cardiac surgery in patients 
with complex coronary anatomy and high surgi-
cal risk. Given an aging population and improved 
treatments for chronic conditions and comorbidi-
ties, the high-risk PCI population, presenting with 
both stable and unstable conditions, is expanding 
in the catheterization laboratories. In parallel, the 
recognized benefit of coronary angiography and 
urgent myocardial revascularization in patients 
with critical clinical conditions like cardiogenic 
shock or refractory cardiac arrest put access to  
a catheterization laboratory in the pipeline of con-
temporary managing algorithms. This has raised 
interest in the search for the best management 
of patients with critical hemodynamic conditions.

The two conditions of PCI in clinically indicated 
high-risk patients (CHIP) and cardiogenic shock 
(CS) or refractory cardiac arrest, despite their com-
pletely different nature, share the characteristics of 
raising discussion about the possibility to benefit 
from hemodynamic support devices. For instance, 
this issue is particularly burning in the catheteri-
zation laboratory because such patient subsets 
systematically receive diagnostic and interventional 
procedures during which hemodynamic deteriora-
tion may occur [1]. Among the available percuta-
neous ventricular assist device (PVAD) systems, 
three are widely used: intra-aortic balloon pump 
(IABP), Impella (Abiomed Inc., Danvers, MA), and 
extracorporeal membrane oxygenation (ECMO).  
A fourth PVAD, the TandemHeart, is limited by the 
need for trans-septal puncture and is routinely used 
only in a limited number of highly experienced cent-
ers. Accordingly, its adoption represents an option 
only in selected environments.

In this paper, we critically review the available 
data in the field and highlight, within the lack of 
strong clinical evidence, the possible decision-
making hubs that are encountered when selecting 
IABP, Impella, and ECMO in both CHIP and CS.

High-risk PCI: Definition  
and hemodynamics 

Currently, no univocal definition of high-risk 
PCI exists, and it represents a continuously evolv-
ing concept. The risk scores (EuroSCORE and 

Society of Thoracic Surgery [STS] score) were 
derived from studies in the surgical field, and 
such scores are currently used to detect patients 
at higher risk for surgical interventions [2]. At 
the same time, the high surgical risk also predicts 
complexity in the case of PCI. Not surprisingly, 
the surgical scores may also be used to provide  
a mortality stratification for patients undergoing 
PCI (with event rates being generally lower than 
with surgery) [3, 4]. 

In the field of high-risk PCI, procedural plan-
ning and technical issues need to be carefully as-
sessed [5, 6] when dealing with patients with im-
paired left ventricular (LV) function. First, coronary 
flow blockage may impair hemodynamic stability 
throughout the procedure when the underlined ter-
ritory is large and LV function is poor. Highly calci-
fied lesions, bifurcations, chronic total occlusion, 
and multivessel disease may require multiple bal-
loon dilatations, increasing the risk for prolonged 
myocardial ischemia and consequent hemodynamic 
collapse. Similar consequences may come from 
vessel dissections, distal embolization, and side-
branch occlusion. As regards multivessel coronary 
artery disease, it has been demonstrated that an 
extensive revascularization [2, 7] may impact long-
term prognosis and that Impella may offer strong 
and reliable LV support allowing more complex 
revascularization procedures as compared to IABP 
in patients without acute myocardial infarction 
(MI) [8]. Alongside this, the myocardium at risk as 
measured by British Cardiovascular Intervention 
Society (BCIS) Myocardial Jeopardy Score [9] can 
be included in the pre-procedural risk assessment 
[10] both to predict the risk of hemodynamic col-
lapse [11] and to assess the final revascularization 
extent through the BCIS Revascularization Index 
[10]. As regards LV function, no definite cut-off 
exists to indicate the need for any PVAD. How-
ever, reduced LV function increases the likelihood 
of hemodynamic instability during complex PCI 
procedures [12]. Finally, LV end-diastolic pressure 
represents an easy-to-obtain invasive measure of 
cardiac compensation and has been demonstrated 
to significantly stratify mortality in invasively 
managed acute coronary syndromes [13]. In this 
regard, an accurate evaluation of diastolic function 
in the preprocedural setting might be of pivotal 
importance for risk stratification, alongside LV 
systolic function (Table 1). 

In such a scenario, LV support may reduce LV 
filling pressures and prevent critical cardiac output 
decrease. Such “LV unloading” is recognized to 
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limit infarct size in experimental canine models  
[14, 15] and to avoid hemodynamic collapse when 
multiple angioplasty-balloon inflations are needed 
[16].

On the basis of this evidence, PVAD might 
be considered a valuable approach to move from 
the concept of PCI performed accepting high risk 
(“high-risk PCI”) to that of PCI performed with 
the help of devices that may reduce hemodynamic-
intolerance risk (“protected-PCI”) [6]. 

PVADs and high-risk PCI

Intra-aortic balloon pump 
The IABP represents the traditional method 

for mechanical circulatory support and was first 
used by Kantrowitz et al. [17] in 1968 for the man-
agement of acute MI complicated by CS. It works 
by deflating during systole (QRS-T segment) and 
inflating during diastole (T-P segment). In this way 
diastolic augmentation during inflation contributes 

Table 1. Echocardiographic features to consider in percutaneous ventricular assist device (PVAD) deci-
sion-making.

Value Notes

Systolic LV function

LV ejection fraction < 35% 

> 35% with large amount of  
myocardium at risk (Jeopardy 
score)

Consider PVAD also for normal ejection fraction with  
indirect signs of reduced cardiac output (low LVOT 
VTI) or other signs of LV dysfunction (i.e. global  
longitudinal strain indicating severe longitudinal  
dysfunction)

LVOT VTI < 15 cm

Diastolic LV function

E/A ratio E<A velocity: abnormal diastolic  
function 

E>A velocity: restrictive physiology

For E/E’ values between 10 and 15 add other param-
eters (pulmonary vein PW Doppler, color M-mode 
propagation velocity, B-lines at lung ultrasound) 
Pre-procedural assessment of LV filling pressure  
allows to: 1) choose among different PVADs;  
2) consider LV venting strategies for VA-ECMO;  
3) adequately plan weaning strategies

E/E’ ratio ≥ 15 (septal or average) indicates  
elevated LAP

E deceleration time > 240 ms: abnormal diastolic function

< 160 ms: restrictive physiology

IVRT > 110 ms: abnormal diastolic function 

< 60 ms: restrictive physiology

RV function 

TAPSE < 15 mm In case of reduced RV function, consider biventricular  
systems (ECMO, Bipella)

S wave TDI < 9 cm/s

Fractional area 
change

< 35%

Valvular heart disease

Mitral/aortic Assess and quantify regurgitation  
or stenosis 

Check for contraindications

LV thrombus Look for intraventricular thrombus  
if Impella is planned

LAP — left atrial pressure; LV — left ventricle; LVOT — left ventricle outflow tract; VTI — velocity time integral; IVRT — isovolumic relaxation 
time; RV — right ventricle; TAPSE — tricuspid annular plane systolic excursion; TDI — tissue Doppler imaging; VA-ECMO — veno-arterial 
extracorporeal membrane oxygenation
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to coronary, cerebral, and systemic circulation. 
Diastolic pressure augmentation during balloon 
inflation is influenced by Weber and Janicki [18]: 

 — balloon position: the closer the IABP is po-
sitioned to the aortic valve, the greater the 
diastolic pressure elevation;

 — balloon volume: when the balloon volume 
equalizes the stroke volume, then the diastolic 
augmentation is maximized;

 — balloon diameter and occlusivity: the greatest 
augmentation occurs with complete aortic oc-
clusion. The size of the aorta is related to the 
patient size, age, and weight. Usually, balloon 
dimensions are based on patient height. Dif-
ferent balloon volumes from 25 cc to 50 cc are 
available on the market, with 40 cc being the 
most commonly used;

 — balloon configuration/timing;
 — stroke volume: diastolic augmentation is maxi-

mized when stroke volume is equal to balloon 
volume. If stroke volume is very low (e.g. 
25–30 mL) or very high (95–100 mL), aug-
mentation will be limited; 

 — arterial pressure and heart rate.
There are several cardiovascular effects in-

duced by IABP: it reduces the end-diastolic aortic 
pressure by up 30%, indicating systolic unloading; 
it decreases the LV wall tension; and it decreases 
the rate of LV pressure rise (dp/dt). There is con-
troversial evidence on the degree of post-stenotic 
coronary blood flow augmentation achieved despite 
the increase in perfusion pressure. Some reports 
demonstrate no increase in coronary blood flow 
distal to critical stenosis [19, 20], whereas others 
demonstrated an increase of distal flow independ-
ent of any stenosis [21, 22]. 

The final effect of IABP is to lower the LV 
afterload, and to decrease myocardial oxygen de-
mand (reducing systolic wall tension and increas-
ing coronary perfusion pressure), thus improving 
the myocardial supply/demand balance. Finally, 
cardiac output increases because of the improved 
myocardial contractility as a result of the reduced 
afterload and of the possible increased coronary 
blood flow [23]. Currently, several IABP mod-
els produced by different manufacturers are 
available. Catheter size varies from 8 to 9 Fr, 
and some of them are provided with fiber-optic 
pressure sensing. 

IABP and high-risk PCI 
According to the current European guidelines, 

the role of IABP in the setting of high-risk PCI is 
still debated and unclear [24–26], whereas Ameri-

can Heart Association/American College of Cardi-
ology (AHA/ACC) guidelines suggest that elective 
insertion of an appropriate hemodynamic support 
device, as an adjunct to PCI, may be reasonable 
in carefully selected high-risk patients (Class IIb, 
LoE: C) [27], although no support device is speci-
fied and selection criteria for high-risk patients are 
not defined (Table 2)

Past clinical experience supports the useful-
ness of elective IABP for high-risk PCI [28–30]. 
However, data from the National Cardiovascular 
Data Registry (NCDR) found no difference in over-
all mortality with use of the IABP for high-risk PCI. 
The registry enrolled almost 19,000 “high-risk” 
patients treated with IABP-supported PCI [31]. Of 
note, alongside patients with unprotected left main 
artery as the target vessel or with ST elevation, the 
study population included also those with CS. Rou-
tine prophylactic use of IABP in high-risk PCI has 
definitely come into question following the results 
of a large randomized trial [32]. A total of 301 pa-
tients undergoing high-risk PCI, defined as severe 
LV systolic dysfunction (left ventricular ejection 
fraction [LVEF] < 30%) and extensive coronary 
artery disease, were randomized in the BCIS-1 trial 
to either “planned” IABP or “no planned” IABP 
prior to PCI. No difference was reported in the 
primary endpoint of major adverse cardiac and cer-
ebrovascular events at 28 days, despite a marked 
reduction in procedural complications. In addition, 
bleeding and access-site complications trended 
higher with routine IABP use. Mortality was not 
different at 6 months but was significantly reduced 
at long-term follow-up (median of 51 months), with 
a relative reduction of 34% of all-cause death in the 
“planned” IABP group [33]. Because the trial was 
not powered to reveal a mortality difference, these 
results can only be deemed hypothesis generating. 
However, they suggest the importance of a proper 
procedure planning in such critical patients or, 
given the rate of bailout IABP, an initial strategy 
of standby IABP for PCI in those patients with 
compromised myocardial reserve, and extensive 
coronary artery disease would therefore seem  
a reasonable strategy.

Independently of the scientific data, low costs, 
wide availability, ease of use, and low invasive-
ness make IABP an important tool in PCI clinical 
practice. Accordingly, IABP can be considered  
a valuable option in all situations requiring a low-
to-moderate grade of LV support (Fig. 1).

Of note, because anytime cardiac assistance 
is not electively used, it should be promptly 
inserted on bail-out; when high-suspicion of 

4 www.cardiologyjournal.org

Cardiology Journal XXXX, Vol. XX, No. X



Table 2. Use of percutaneous ventricular assist device (PVAD) in high-risk percutaneous coronary  
intervention (PCI) according to international guidelines.

PVAD Clinical  
setting

Guidelines Recommendation 
class

Level of  
evidence

Recommendation

MECHANICAL  
SUPPORT

ST-segment  
elevation  

myocardial  
infarction

STEMI ESC  
2017

Mechanical circulatory support  
may be considered as a rescue 
therapy in order to stabilize the  

patients and preserve organ  
perfusion (oxygenation) as  

a bridge to recovery of myocardial 
function, cardiac transplantation,  
or even left ventricle assist device  

destination therapy on an  
individual basis

High-risk  
patients*

PCI ACCF/ 
/AHA/SCAI  

2011

IIb C Elective insertion of an appropriate 
hemodynamic support device as an  
adjunct to PCI may be reasonable in 
carefully selected high-risk patients

*“High-risk patients may include those undergoing unprotected left main or last-remaining-conduit PCI, those with severely depressed  
ejection fraction undergoing PCI of a vessel supplying a large territory, and/or those with cardiogenic shock. Patient risk, hemodynamic  
support, ease of application/removal, and operator and laboratory expertise are all factors involved in consideration of use of these devices”.

Classes of recommendations: 
I: Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective
IIa: Weight of evidence/opinion is in favor of usefulness/efficacy
IIb: Usefulness/efficacy is less well established by evidence/opinion
III: Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful
Level of evidence:
A: data derived from multiple randomized clinical trials or meta-analyses
B: data derived from single randomized clinical trial or large non-randomized studies
C: consensus of opinion of the experts and/or small studies, retrospective studies, registries

Patients with complex coronary artery
disease reffered for PCI on the basis of

collegial discussion (Heart Team)

Patient assessment

Risk of hemodynamic collapse
Coronary angiography
Anatomical/technical issues
LVDEP

Echocardiogram
LV/RV function
PASP

Echocardiogram
LV thrombus
Severe aortic valvular disease
Massive aortic regurgitation

Echo Doppler/angio-CT

Possible cardiac anatomic
contraindications

PROTECTED PCI PLANNING

High suspicion

PVAD choice BAIL-OUT PVAD
PREPARATION

IABP IMPELLA ECMO

High risk Very high risk Very high risk

Not relevant Not relevant No contraindications No contraindications

Not prohibitive PAD Not prohibitive PAD Not signicant PAD Not signicant PAD

Arterial axis suitability
assessment (illiac-femoral/axillary)

Figure 1. Proposed pre-procedural assessment and percutaneous ventricular assistance device (PVAD) choice in the 
context of high-risk percutaneous coronary intervention (PCI); LVEDP — left ventricle end-diastolic pressure; PASP 
— pulmonary artery systolic pressure; PAD — peripheral artery disease; CT — computed tomography; IABP — intra-
aortic-balloon pump; LV — left ventricle; RV — right ventricle; ECMO — extracorporeal membrane oxygention.
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hemodynamic collapse exists, a safe approach 
would be to prepare for PVAD insertion. To do 
this, the femoral access can be effectively gained 
and a small-bore sheath (e.g. 5 Fr) inserted 
to facilitate easy and fast exchange if needed. 
Alongside access site preparation, the device and 
the team involved (e.g. operators, technicians, 
nurses) should be prepared for bail-out PVAD 
placement as well (Fig. 1).

Percutaneous LV-to-aorta circulatory  
support: Impella 

The Impella (Impella, Abiomed Inc., Danvers, 
MA) is a microaxial pump delivering blood from the 
LV forward into the ascending aorta. It is inserted 
through the femoral route (13–14 Fr) or it can 
be placed surgically through the axillary artery. 
Once the access site has been achieved [34], it 
is advanced from the aorta into the LV. Because 
it requires aortic valve crossing, moderate-to-
severe aortic valve disease is a contraindication 
for its use. It is connected to an “Automated Im-
pella Controller”, which provides a step-by-step 
guide to the device implantation and controls 
the Impella catheter performance, monitors for 
alarms, and displays real-time hemodynamic and 
catheter position information. The latest updates 
have implemented the “Smart Assist Platform”, 
providing useful information about the position 
of the Impella, to facilitate its repositioning in 
intensive care units without the need for imag-
ing, and about hemodynamic features (LV end-
diastolic pressure, mean arterial pressure, and 
cardiac power output). 

According to the manufacturers’ instructions 
for authors, the device is intended for short-term 
use (up to 4 days in the case of cardiogenic shock), 
although the new “PROPELLA” concept in the 
context of myocarditis has increased the time of 
support [35]. The device output may vary from 
2.5 to 5.0 L/min, according to the different pumps. 
The main Impella pump characteristics have been 
summarized elsewhere [33]. 

The Impella increases the mean arterial pres-
sure, cardiac output, and systemic and coronary 
perfusion. Its main effect is a significant LV un-
loading, resulting in filling pressure decrease 
and afterload. The direct unloading of LV and 
the coronary blood flow increase lead to signifi-
cant oxygen supply improvement and reduction 
of myocardial oxygen consumption, with cardio 
protective effects. The final native stroke volume 
can be reduced, although the device replaces the 
pump function. 

Impella and high-risk PCI 
The introduction of the Impella support device 

has brought a significant change in the field of high-
risk PCI, allowing highly complex procedures for 
patients deemed not suitable for surgery and at 
high risk for intraprocedural hemodynamic collapse 
(Table 2) [36]. 

Most of the data about the use of the Impella 
in the context of high-risk PCI come from the 
PROTECT II trial [8]. A total of 448 patients were 
randomized to IABP or Impella 2.5 for elective 
high-risk PCI. Inclusion criteria were similar to 
those of BCIS-1 although the primary end-point 
was made of a composite of heterogeneous adverse 
events, and patients with ST segment elevation 
myocardial infarction (STEMI) within 24 hours or 
not normalized myocardial enzymes were excluded 
from the study. Of note, the trial was interrupted 
due to futility in the prespecified endpoints. At 
90-day follow-up the major adverse cardiac event 
occurrence was significantly lower in the Impella 
group as compared to the IABP group (p = 0.023 
in the “per protocol” analysis, p = 0.066 in the 
“intention-to-treat” analysis). Moreover, the differ-
ent use of adjunctive devices (e.g. Rotablator) and 
the higher complexity of the Impella-group patients 
suggests different PCI planning and management 
between the two groups. Finally, the overall du-
ration of support was significantly lower in the 
Impella group, with only 6% of patients being dis-
charged from the cath lab on Impella, as compared 
to 37% of patients keeping the IABP after the end 
of the procedure. 

Alongside this, the two largest published se-
ries, the multicenter Europella and USpella regis-
tries, provided new data regarding the real-world 
practice [37, 38]. The baseline characteristics of 
the 144 patients in the Europella Registry suggest 
that these patients were indeed at high risk: almost 
two third had an LVEF less than 40%, 39% had 
more than three target lesions, 53% underwent left 
main coronary artery PCI, and 17% had interven-
tion on a last remaining patent vessel. The logistic 
EuroScore was 15 ± 12.2, which further indicated 
the high-risk nature of this population. Despite 
this, overall mortality was only 5.5% at 30 days. 
The multicenter USpella Registry included results 
on 178 high-risk patients undergoing Impella-
supported PCI. Similarly to the Europella, 62% 
had an LVEF less than 30% before intervention. 
Results showed an 8% rate of 30-day major adverse 
cardiac events, while survival was 96% at 30 days, 
91% at 6 months, and 88% at 1 year. In addition, 
only 30% of patients remained in New York Heart 
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Association (NYHA) class III or IV heart failure, con-
sistent with an absolute increase in mean ejection 
fraction from 31% to 37%. This latter improvement 
resulted in a 29% reduction in the anticipated need 
for implantable cardioverter defibrillators because 
the percentage of patients with an ejection fraction 
less than 30% was reduced from 62% to 44% [15]. 

These data were consistent with those coming 
from a recent large Italian registry [10]. It included 
86 patients undergoing high-risk PCI with Impella 
support. After 14 months of follow-up the all-cause 
death was 10%. Of note, at follow-up a 205% in-
crease in patients with LVEF > 35% was observed 
with BCIS Jeopardy Score Revascularization Index, 
significantly affecting long-term survival. Based 
on the current available data, the Impella should 
be considered in cases where the risk of hemody-
namic collapse is very high and when no device 
contraindications are met (Fig. 1). 

Percutaneous ECMO 
ECMO has been increasingly used over the 

past decade to support patients with cardiopul-
monary collapse [1]. Veno-arterial extracorporeal 
membrane oxygenation (VA-ECMO) provides car-
diopulmonary support for patients in profound CS 
as a bridge to the following:

 — myocardial recovery;
 — durable mechanical circulatory support;
 — heart transplant.

In a VA-ECMO circuit, deoxygenated blood is 
pulled from the venous circulation by a pump via 
a large-bore cannula (21–23 Fr) inserted through 
the femoral vein. Blood passes through the pump 
into an oxygenator where gas exchange occurs. 
Finally, oxygenated blood returns via another large-
bore cannula (15–17 Fr) to the arterial circulation, 
usually inserted into the common femoral artery. 

In order to reduce the risk of critical limb 
ischemia in the cannulated femoral artery, distal 
perfusion catheters/sheath introducers, which 
direct a proportion of the returned oxygenated 
blood flow from the ECMO circuit to the distal 
limb, are positioned [39]. In this way it provides 
continuous, non-pulsatile output (> 4.5 L/min) and 
adequate blood oxygenation. ECMO is also known 
to determine a significant increase in LV pre- and 
afterload and in myocardial oxygen consumption 
that may limit its cardio protective effect [21]. 

During ECMO support, vasodilators might 
reduce afterload and LV end-diastolic pressure, 
while inotropes can increase contractility. In order 
to achieve LV unloading IABP [40], an Impella 
[41], a surgical LV vent, or a percutaneous balloon 

atrioseptostomy [42] might be added as adjunctive 
devices. 

Due to huge cannula sizes, the implantation 
procedure requires considerable technical skill, 
and vascular/bleeding complications are common. 
Recent experience has started to highlight per-
cutaneous implantation techniques as a promis-
ing way to increase ECMO safety. In particular, 
a recent propensity-matched analysis compared 
percutaneous versus surgical VA-ECMO showed 
significantly higher survival in the percutane-
ous groups and lower cannulation site infection. 
However, a significantly higher rate of vascular 
complications after cannula removal was reported, 
mainly represented by persistent bleeding requir-
ing surgical repair [43]. 

ECMO and high-risk PCI 
ECMO experience for high-risk PCI is limited 

to a few monocentric observational studies or indi-
vidual case reports [44, 45]. They all demonstrate 
feasibility and efficacy of ECMO, although vascular 
complications and bleedings may represent a major 
concern. A recent case series included 5 patients 
undergoing elective high-risk PCI with ECMO 
support [46]. The mean LVEF was 26.6 ± 18.0%. 
Most procedures were unprotected left main PCIs, 
and there was only one chronic total occlusion 
through the last remaining conduit. All PCIs were 
successful, and ECMO was successfully weaned 
in all cases, with the duration of support being 
< 24 hours in 4 cases. There was no occurrence 
of in-hospital and 1-year major adverse events. 
However, 1 patient required femoral artery surgical 
repair, and 2 patients required general anesthesia. 
The limited experience and the ECMO invasive-
ness call for very selective use in the setting of 
high-risk PCI when the need for assistance is 
felt to be mandatory, anatomic contraindications 
for Impella (or its unavailability) are present, and 
vascular axes are suitable for insertion (Fig. 1).

Cardiogenic shock

Currently, no univocal definition exists, and 
there are slight differences among the current 
European guidelines and the recent trials (Table 3)  
[47–50]. The recent Heart Failure Association  
position statement defined CS as a syndrome 
caused by primary cardiovascular disorder in 
which inadequate cardiac output results in a life-
threatening state of tissue hypoperfusion associ-
ated with impairment of tissue oxygen metabolism 
and hyperlactatemia, which, depending on its 
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severity, may result in multi-organ dysfunction 
and death [51]. 

Recently, the Society Cardiovascular Angio-
graphy and Intervention introduced a new clas-
sification in five stages for CS [52]: 

 — A: “at risk”: patient without signs/symptoms 
of CS but at risk for it;

 — B: “beginning”: patient with hypotension and 
tachycardia, without hypoperfusion;

 — C: “classic”: when also hypoperfusion occurs 
and inotropes, vasopressors, or mechanical 
support are needed;

 — D: “deteriorating”: in cases of poor response 
to treatment in level “C” and worsening con-
ditions;

 — E: “extremis”: patient with circulatory col-
lapse with ongoing cardiopulmonary resuscita-
tion or on ECMO. 
Cardiogenic shock is caused more frequently 

by LV dysfunction, with MI accounting for more 
than 80% of cases of CS. In some cases, also right 
ventricular dysfunction or bi-ventricular dysfunc-
tion are responsible for CS. In spite of new techno-
logical developments, technical PCI improvements, 
and pharmacological management changes, CS is 
still affected by high mortality. 

The use of PVAD has already changed the 
CS natural history, and although scientific data 
are still controversial, their use is recommended 
in the current international guidelines (Table 4)  
[6, 18, 25, 26, 53, 54] and supported by many expert 
users [55].

Cardiogenic schock may rapidly become ir-
reversible, and for this reason the timing of inter-
vention might influence the efficacy of any device. 
Nowadays, many factors have been identified as 
potential mortality predictors in the setting of CS 
[56–58], and some patients with advanced CS are 
unlikely to recover even with a short time for in-
tervention and with the strongest PVAD. For this 
reason, an important step for PVAD selection is 
represented by the early recognition of conditions 
defining the “futility” for the treatment.

PVADs in refractory cardiac arrest 

The use of PVADs in specific situations such 
as refractory cardiac arrest is still controversial. 
Indeed, initial observational data about refractory 
cardiac arrest show the importance of early cardiac 
catheterization in comatose survivors without signs 
of STEMI [59]. Following this, AHA guidelines sug-
gested emergent coronary angiogram for selected 
patients with cardiac arrest, who are comatose with 
electrical or hemodynamic instability [60].

However, those data were disproven by the 
more recent COACT trial [61, 62]: at 90 days and 
after 1-year follow-up, no significant differences 
in survival and major adverse cardiac events were 
found between patients undergoing immediate and 
delayed coronary angiography if signs of STEMI 
were not present. Around two thirds of the entire 
population had an underlying coronary artery dis-
ease, and only 30–40% of them underwent revascu-

Table 3. Cardiogenic shock definitions according to European guidelines and recent clinical trials.

ESC Guidelines [47] IABP SHOCK II [48] SHOCK TRIAL [49]

SBP ≤ 90 mmHg with adequate 
blood volume and clinical or labora-

tory signs of hypoperfusion

SBP ≤ 90 mmHg for at least 30 min 
or need for catecholamine in order 

to achieve SBP ≥ 90 mmHg

SBP ≤ 90 mmHg for at least 30 min 
or need for support in order to 

achieve SBP ≥ 90 mmHg

+ +

Hypoperfusion: clinical signs Pulmonary congestion signs Hypoperfusion signs:

Cold extremities Cold skin

Oliguria Diuresis < 30 mL/h

Mental confusion

Dizziness

+ +

Hypoperfusion: lab signs Hypoperfusion signs: Hemodynamic criteria

Metabolic acidosis Altered mental status CI ≤ 2.2 L/min/m

Blood lactates increase Cold skin PCWP ≥ 15 mmHg

Blood creatinine increase Diuresis < 30 mL/h

Lactates > 2.0 mmol/L

SBP — systolic blood pressure; CI — cardiac index; PCWP — pulmonary capillary wedge pressure 
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larization treatment (either PCI or coronary artery 
bypass grafting), while conservative management 
was selected for the remaining 60–70%. Interest-
ingly, CS was responsible for 11.7% and 8.4% of 
deaths in the immediate invasive and delayed inva-
sive groups, respectively. Multi-organ failure leading 
to death occurred in 8.5% and 14.5% of immediate 
invasive and delayed invasive patients, respectively. 
Moreover, around 2–3% of screened patients were 
excluded due to hemodynamic instability unrespon-
sive to medical therapy and some patients switched 
from the delayed to the immediate group due to 
shock development. These data raise the question 
about the possible usefulness of PVADs in the set-
ting of cardiac arrest without STEMI signs. 

On the other hand, among patients experienc-
ing cardiac arrest in the context of STEMI, CS is 
more likely to occur as compared to those without 
cardiac arrest (36.7% vs. 5.9%, p < 0.001) [63]. 
Moreover, those with CS and cardiac arrest show 
higher mortality than those without cardiac arrest 
(47.3% vs. 25.1%, p < 0.001). Overall, data suggest 
that PVADs should be considered in cases of car-

diac arrest independently of diagnosis at admission 
(ischemic or not), although no data suggesting who 
might benefit more are currently available. 

The AHA Guidelines for Cardiopulmonary 
Resuscitation and Emergency Cardiovascular Care 
published in 2010 indicate that ECMO may be 
considered in settings where it is readily available, 
blood flow interruption following arrest is brief, 
and the underlying condition leading to arrest is 
reversible [64]. However, the 2019 focus update 
does not recommend the routine use of ECMO for 
patients with cardiac arrest [65]. 

The most important outcome determinant in 
the context of cardiac arrest is represented by the 
time to chest compression that should begin imme-
diately or at the latest within 5 min [66]. Following 
cardiac arrest and cardiopulmonary resuscitation 
(CPR) initiation, the ECMO team should be alerted 
and already prepared in the very early phases: in  
a propensity-matched analysis, ECMO implantation 
within 21 min of CPR initiation in out-of-hospital 
cardiac arrest patients provided better neurological 
outcomes [67]. Such data support early activation 

Table 4. Use of percutaneous ventricular assist device (PVAD) in cardiogenic shock according to inter-
national guidelines.

PVAD Clinical  
setting

Guidelines Recommenda-
tion class

Level of  
evidence

Recommendation

IABP Post MI CS STEMI ACC/AHA 2013 IIa B Patients who do not quickly 
stabilize with pharmacological 

therapy

Post MI CS HF ESC 2016 IIa C CS due to mechanical  
complications of MI

STEMI ESC 2017

SCA NSTE ESC 2015  

CS HF ESC 2016 III B Routine use of IABP is not  
recommendedSTEMI ESC 2017

SCA NSTE ESC 2015

MECHANICAL  
SUPPORT

CS HF ESC 2016 IIb C May be considered in  
refractory CS depending on  
patient age, comorbidities,  
and neurological function

HF ACC/AHA 2013 IIa B

Post MI CS Myocardial  
Revascularization ESC 

2018

IIb C In selected patients with acute  
coronary syndrome and CS,  

mechanical circulatory support 
may be considered,  

depending on patient age,  
comorbidities, neurological 
function, and the prospects  
for long-term survival and  

predicted quality of life

Classes of recommendations and levels of evidence as for Table 1. CS — cardiogenic shock; IABP — intra-aortic balloon pump; MI — myocar-
dial infarction
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of the ECMO team and suggest avoidance of re-
fractory cardiac arrest onset (defined as the lack of 
return of spontaneous circulation after 30 min of 
appropriate CPR in the absence of hypothermia), 
although previous data report beneficial effects also 
in prolonged CPR and delayed ECMO implantation 
[68–70], provided that trained personnel are avail-
able [71]. In this perspective, time from cardiac 
arrest to CPR and then to ECMO is of utmost im-
portance. Patients with initial rhythm of ventricular 
tachycardia/fibrillation and witnessed arrest are 
the best candidates for ECMO, while cases with 
asystole as initial rhythm, total cardiac arrest time 
> 60 min, and significant comorbidities affecting 
life-expectancy should be carefully evaluated by 
the Heart Team as possible futile cases.  

Promising results have been demonstrated 
also with Impella CP or Impella CP+RP in small 
case series or case reports [72, 73]. 

Futility 

Futility should always be taken into account 
when evaluating the best treatment option for 
cardiac arrest, especially when PVAD placement 
is required. Currently, a number of different scores 
have been proposed to predict the survival of pa-
tients under ECMO treatment after cardiac arrest, 
such as SAVE score [74], ENCOURAGE score [75], 
and the ECMO score [76]. 

Recently, a simple rule consisting in non-
shockable rhythm, unwitnessed arrest, and age 
≥ 80 years has been proposed to predict futile re-
suscitation for out-of-hospital cardiac arrest [77]. 
However, it seems a simplistic approach, and some 
other well-known survival predictors should prob-
ably be considered (e.g. no-flow duration, initial 
cardiac rhythm, presence of gasping, etc.). Addi-
tional considerations should address the time for 
ECMO center transfer (in case of centers without 
ECMO capabilities) if the predicted duration of 
needed support is compatible with available tech-
nology or if the optimal window for any PVAD has 
already expired and the patient’s wishes should be 
considered. A recent Panel Expert paper proposed 
the following inclusion and exclusion criteria for 
ECMO therapy selection [78]. 

Inclusion criteria:
 — age < 70 years;
 — shockable rhythm as initial rhythm;
 — witnessed arrest;
 — bystander CPR within 5 min;
 — failure to achieve return of spontaneous cir-

culation within 5 min of CPR start.

Exclusion criteria: 
 — asystole as initial rhythm;
 — unwitnessed arrest;
 — total cardiac arrest time > 60 min;
 — pre-existing severe neurological or systemic 

disease;
 — contraindications to anticoagulation;
 — acute aortic dissection;
 — suspicion of shock due to hemorrhage of other 

non-cardiac causes;
 — known “do not resuscitate” status.

However, a multidisciplinary (e.g. cardiologist, 
cardiac surgeon, heart failure specialist, intensiv-
ist, palliative care specialist, etc.) case-by-case 
decision-making process should be adopted when-
ever feasible [79]. 

PVADs in cardiogenic shock

The most used PVADs for the CS or for re-
fractory cardiac arrest are the IABP, Impella, and 
ECMO (Fig. 2), sometimes combined (ECMO + 
Impella or IABP). PVAD are mainly used in this 
setting as a bridge to recovery, to decision, or, more 
rarely, to transplant. 

IABP and cardiogenic shock 
In the context of CS due to acute coronary 

syndrome, current European guidelines do not 
recommend the systematic use of IABP (Table 4).  
It should be considered only in cases of hemo-
dynamic instability and cardiogenic shock due to 
acute coronary syndrome mechanical complications 
(Class IIa, LoE: C) and in those with acute severe 
myocarditis [6]. These guidelines are mainly based 
on the IABP-SHOCK II trial results, which rand-
omized 600 patients with MI complicated by CS to 
routine IABP versus no routine IABP [80]. All pa-
tients were expected to undergo early revasculari-
zation. No difference in all-cause mortality (IABP 
group 39.7% vs. control group 41.7%, p = 0.69) or 
any secondary endpoints was found at 30-day and 
12-month follow-up. Of note, in this trial, patients 
of the “no routine” IABP arm received IABP in 10% 
of cases, and for other mechanical support devices 
in as many as 7.4% of cases. Moreover, the mortal-
ity rate itself was relatively low as compared to the 
SHOCK trial (30-day mortality rate of 46.7%), mak-
ing the study underpowered. In addition, the CS 
definition did not take into account cardiac index or 
wedge pressure, as compared to the SHOCK trial. 

Recently, the 6-year follow-up confirmed the 
negative results for both the intention-to-treat and 
for the as-treated population. These data led to a 
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decrease in IABP use in favor of Impella and ECMO 
[81]. Accordingly, it makes sense to consider IABP in 
specific conditions like mechanical complications and 
earlier shock stages (pre-shock), as shown in Figure 3.  
It has been successfully used also in some cases of 
arrhythmic storm in ischemic patients [82, 83].

Impella and cardiogenic shock
Two randomized trials, ISAR-SHOCK [84] 

and IMPRESS [85], compared the use of IABP and 
Impella in patients experiencing acute MI com-
plicated by CS, and no differences in the overall 
30-day and 6-month mortality were found. Of note, 
both studies were underpowered for mortality. In 
the ISAR-SHOCK, Impella was implanted after 
coronary revascularization, while in the IMPRESS 
the implantation timing was left to the operators’ 
choice, although more recent data suggest an early 
Impella positioning in patients with CS [86, 87]. 
Moreover, two recent meta-analyses confirmed 
the lack of benefit in terms of mortality, although 
an improvement in arterial lactate and mean blood 
pressure was found [88, 89]. In the specific scenario 

of acute myocarditis, the prolonged use of Impella, 
called “PROPELLA”, has recently been proposed, 
but it still needs to be investigated on large groups 
of patients [34].

In general, available data do not support the 
routine use of Impella in patients with CS. Accord-
ingly, its indication should be evaluated in the frame 
of local CS and careful case by case decisions [90]. 
In this regard, patients with severe LV dysfunction 
and persistent systemic hypoperfusion are those 
who may theoretically benefit from Impella LV 
support provided that futility has been ruled out 
(Fig. 3). Greater attention should be addressed to 
refractory CS or to biventricular dysfunction be-
cause those patients may not benefit from Impella 
left support alone, but they have been proposed to 
be approached using a combination of the Impella 
right and left system (Fig. 3) [91, 92]. 

ECMO and cardiogenic shock 
In the field of CS, much broader experience 

has been gained with ECMO. It has been mostly 
studied in the context of CS following STEMI, 

Baseline IABP Impella ECMO IABP + ECMO   Impella + ECMO

French 8–9 13 (2.5) 14 (CP) 14–19 (A)  
17–21 (V) 

8–9 (IABP)  
+ 14–19 (A)  

17–21 (V)

13–14 (Impella)  
+ 14–19 (A)  

17–21 (V)

HR, bpm 100 100 100 100 100 100 100*

PCWP, mmHg 23 –4% –9% –13% +17% +13% +9%*

AoP, mmHg 81/46 (61) +2% +8% +15% +28% +31% +39%*

CO, L/min 3.93 +5% +13% +28% +43% +48% +60%*

CPO, watts 0.53 +7% +21% +34% +81% +91% +118%*

PVA, mmHg  
× mL

4989 –3% –7% –13% +16% +14% +7%*

CBF, mL/min/g 0.09 +10% +10% +20% +40% +50% +70%*

Approved  
duration of  
assistance

No limitations 
(vascular 

complications 
increases  

after 2 days)

4 days (US) 
5 days (EU)

Usually  
< 7 days1 

(poor survival  
if > 7 days)

See IABP  
and ECMO 
columns

See Impella  
and ECMO 
columns

Figure 2. Main characteristics and cardiac effects of intra-aortic balloon pump (IABP), Impella, extracorporeal mem-
brane oxygenation (ECMO), and possible combinations strategies. All values are calculated with the Harvi Professor 
software; HR — heart rate; PCWP — pulmonary capillary wedge pressure; AoP — aortic pressure; CO — cardiac out-
put; CPO — cardiac power output; PVA — pressure-volume area; CBF — coronary blood flow; *values are calculated 
considering Impella 2.5 combined with ECMO. For reference [1] see dedicated reference list.
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acute myocarditis, post-cardiotomy, and in refrac-
tory cardiac arrest.

Retrospective data from Sheu et al. [93] and 
Chung et al. [94] demonstrated that the use of 
ECMO during primary PCI in patients admitted 
for STEMI complicated by CS may improve the 
30-day outcome with an overall mortality of 43%. 

In the setting of acute myocarditis complicated 
by CS, the ECMO has been used as a “bridge to 
recovery”, with a survival rate around 70%, and the 
long-term outcomes were similar to those who ex-
perienced acute myocarditis without hemodynamic 
compromise [95–97]. 

A recent meta-analysis demonstrated a significant 
mortality benefit with ECMO in both cardiac arrest 
patients (n = 3098) and in patients with CS due to MI 
(n = 235). In cardiac arrest, the use of ECMO was as-
sociated with an absolute increase in 30-day survival 
of 13% compared with patients in whom ECMO was 
not used, whereas in CS ECMO showed a 33% greater 
30-day survival compared with IABP but no difference 
when compared with TandemHeart/Impella [98].

Currently, the following trials are underway 
in order to improve CS management: 

 — ECLS-SHOCK (NCT03637205), ECMO-
-CS (NCT02301819), and EURO-SHOCK 
(NCT03813134): ECMO vs. control in severe 
CS complicating MI;

 — DANGER (NCT01633502): Impella vs. control 
in severe CS complicating MI;

 — REVERSE (NCT03431467), ECMO combined 
with Impella CP vs. ECMO alone in CS;

 — PRAGUE OHCA (NCT01511666), ECMO vs. 
control in refractory out-of-hospital cardiac 
arrest.
While waiting for the results of such trials, 

ECMO should be regarded as an important tool in 
patients with more advanced CS and in those with 
biventricular failure (Fig. 3).

PVAD combination strategies 
Although the use of ECMO is an established 

therapy option in severe CS, mortality is high. The 
lack of LV unloading and the increase of afterload 
are the main limitations for ECMO. These limita-
tions together with the peculiar characteristics and 
the different hemodynamic effects of each device 
lead to combination strategies (Fig. 2) in order to 
improve outcomes in critical settings. 

A recent meta-analysis demonstrated benefi-
cial effects of LV unloading (achieved with IABP, 
Impella, or TandemHeart) on top of ECMO in the 
setting of CS [99]. The greatest source of data 
about the combination of IABP and ECMO is the 
Japanese database, which demonstrated a higher 
in-hospital and 28-day survival rate in those with 
both devices as compared to ECMO alone [100]. 
This might be explained by the counterbalance 
hemodynamic effect of IABP on ECMO, specifically 
afterload and myocardial oxygen demand reduc-
tions. Moreover, an additional positive IABP effect 
might be related to coronary perfusion increase. 
Similar results were achieved with the use of Im-
pella on top of ECMO [41]. However, all available 

CARDIOGENIC SHOCK

Patient 
assessment

PVAD
choice

Causes
detection

Hemodynamic, respiratory and
metabolic parameters, inotropes

responsiveness

Mechanical complications of MI Isolated LV dysfunction Biventricular/RV dysfunction

Age, neurological injury, comorbidities, 
life expectancy, lactates levels, 
unsuitable peripheral anatomy

ORBI, IABP-SHOCK II, SAVE

In case of no myocardial recovery, is there any exit strategy?
Has the optimal time window for PVAD expired?

Have all the Heart Team components been involved?

Clinical severity

IABP Impella
Impella 

CP + RP/ECMO

Futility

Scores

General consideration

A At risk for CS development

B Beginning CS

C Classical CS

D Doom

E Etremis

Figure 3. Proposed pre-procedural assessment and percutaneous ventricular assistance device (PVAD) choice in the 
context of cardiogenic shock (CS); IABP — intra-aortic balloon pump; MI — myocardial infarction; LV — left ventricle; 
RV — right ventricle; ECMO — extracorporeal membrane oxygenation.
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data are retrospective, and possible complications 
should be considered when evaluating combination 
therapy (e.g. hemolysis, bleeding/vascular com-
plications); consequently, randomized studies are 
needed to better investigate the beneficial effect 
of such strategies. 

Finally, over the last few years, the Impella 
family has been enriched with the Impella RP 
pump. It delivers blood from the inferior vena cava 
(inlet area), through the cannula, to the pulmonary 
artery (outlet area). It has United States Food and 
Drug Administration approval and is indicated 
for providing right ventricular support for up to  
14 days in patients developing acute right heart 
failure or decompensation following LV assist 
device implantation, MI, heart transplantation, 
or open-heart surgery. The main contraindica-
tions are right-side valvular heart disease, mural 
thrombus of the right atrium, or vena cava and 
anatomic conditions precluding insertion of the 
pump. Currently, data about the use of Impella RP 
and Bi-Pella are scarce. A retrospective study on 
20 patients implanting the Bi-Pella demonstrated 
its feasibility and its efficacy, although CS causes 
were heterogeneous and in-hospital mortality was 
50% [101]. 

At the same time, simultaneous initiation of 
support with Impella CP and Impella RP has been 
associated with improved survival outcomes as 
compared with staged initiation of support, and this 

would offer a stepwise weaning of univentricular 
or biventricular support [102]. 

Vascular and bleeding complications  
with PVADs 

The large-bore size of the PVAD’s sheath or 
cannula has the potential to induce access-site-
related vascular complications. The occurrence 
of such vascular complications may cause acute 
anemia, transfusions, or urgent vascular surgery. 
Such events obviously have the potential to jeop-
ardize the clinical course after effective high-risk 
PCI or during CS after initial effective stabiliza-
tion. Thus, meticulous attention should be paid 
during the pre-PCI work-out, during the vascular 
access instauration, and during the hemostasis 
phase [33, 103]. Not surprisingly, data from the 
largest registries and trials show an increasing 
risk for vascular and bleeding issues correlated 
to the sheath size, with the IABP being the saf-
est and the ECMO having the highest rate of 
complications (Fig. 4A, B). A recent sub-analysis 
of the CULPRIT-SHOCK trial showed that both 
ECMO and Impella treatments are predictors of 
bleeding events, and this, in turn, affects short-
term survival probability [104].

In addition, when a second access is required 
(e.g. coronary angiography, PCI), the choice be-
tween contralateral femoral or radial access should 
be considered. A study comparing transradial 
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Figure 4. A. Access-site-related vascular and bleeding complication rate in high-risk percutaneous coronary inter-
vention according to different percutaneous ventricular assist device (averaged mean value); B. Access-site-related 
vascular and bleeding complication rate in cardiogenic shock according to different percutaneous ventricular as-
sist device (averaged mean value). Note: Major and minor vascular/bleeding complications are pooled together; 
PCI — percutaneous coronary intervention; IABP — intra-aortic balloon pump; ECMO — extracorporeal membrane 
oxygenation; *data from both Impella 2.5 and CP were considered. For references [1–6] see dedicated reference list. 
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versus transfemoral secondary access for tran-
scatheter aortic valve implantation has recently 
demonstrated a significant improvement in terms 
of vascular and bleeding complications in those 
using radial access as compared to femoral access 
[105]. Although no similar studies exist for PVADs, 
the experience from the transcatheter aortic valve 
implantation world might be applicable also to 
PVAD field. In this regard, a two-center experience 
with Impella and meticulous ancillary access and 
PVAD access hemostasis reported very promising 
safety results [10]. Consequently, the choice for 
the secondary access should be carefully evaluated 
according to the complexity of the procedure, the 
equipment available, and the operator’s experience.  

Conclusions 

Percutaneous ventricular assistance devices 
are potentially useful tools for the management of 
critically ill patients, but many uncertainties exist 
regarding their clinical impact. Improved percuta-
neous techniques are making the catheterization 
laboratory an important location for PVAD implan-
tation. Because different devices (with different 
mechanisms of action and anatomic requirement) 
are becoming more and more available, attempts 
to rationalize their selection in the context of local 
team expertise is pivotal. 
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