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Abstract: Energy is a vital requirement for today’s socio-economic welfare and 

development. But due to the continuous increase of the demand the conventional energy 

resources are depleting day by day and on the verge of extinction. Hence more renewable 

generation units are emphasised to integrate to the power network to supply the required 

demand. This incorporation of the distributed generation into the distributed network has 

the advantages of controllability, flexibility and tremendous potential if it can be exploited 

properly. However, due to their intermittent and unpredictable nature, there is a need for 

energy storages to ensure continuous operations, i.e., to meet the load all the time. There 

are many possible options for energy storage, but the most popular and technologically 

sound option is battery storage. Along with this battery storage system (BSS), a power 

conditioning system (PCS) has to be connected for generation of both active and reactive 

power from the BSS which in turn increases the overall installation cost of BSS. Moreover, 

the energy storage cost is a function of the storage device power,  energy capacities and 

their specific costs depending on the chosen technology of optimization. Thus, profit from 

those renewable energy producers have to be maximized, and losses are to be minimized by 

using dynamic optimization techniques. But along with the advantages there comes the 

complexities due to the inclusion of distributed generation and the additional energy 

storages in the power system network. Moreover, it is highly critical to operate the vast 

system optimally. Hence there are lots of research had been done or are in process for 

finding the proper approach of optimization of the system.  This paper presents a review of 

the current state of the optimization methods applied to renewable and sustainable energy 

source embedded with the Energy storage for maximization of the revenue obtained from 

the power trading to the network. 
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1.  Introduction 
 

Renewable Power Generation systems are being 

increasingly preferred for clean power generation, 

to reduce the dependency on fossil fuels and to 

cease greenhouse gas emissions. Many countries 

have implemented various terms and policies to 

promote renewable energy in the distribution 

network. Many researches have been recently 

carried out for making the wind farms dispatchable. 

This can be accomplished by integrating a Battery 

Storage System (BSS) with these wind farms [1]. It 

was shown that the only economically feasible BSS 

technology is Zn/Br [10]. With high Photo Voltaic 

(PV) and wind penetration in some regions, there is 

a surplus power available, which is utilized for 

charging the Battery Storage System during low 

demand and deliver power during high demand. 

From the consumers’ point of view, use of a BSS 

can lower the electricity costs as it can store 

electricity bought at lower prices during off-peak, 

which can be used during peak load periods in the 

place of expensive power [7]. The potential of BSS 

can be well understood from Fig. 1. 

 
Fig. 1: Daily wind-demand power profiles and 

electricity price model 
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Fig. 1 schematically shows the daily 

demand and Wind Power profiles. It can be seen 

that, during time periods of T1  and T3 (off-peak), 

the excess energy can be stored in BSS. This stored 

energy can be used during the time period of T2 

(peak), in which the demand is more than the wind 

power penetration. In a research by A. Gabash and 

P. Li [2], a method based on genetic algorithms 

(GA) is applied to evaluate the impact of the cost 

of energy storage on the economic performance of 

a distribution substation .Thus by optimizing the 

daily /weekly scheduling of the renewable 

generating plants integrated with the BSS should be 

done in order to maximize the total revenue [1]. 

BSS should be connected to the AC power system 

through PCS which is a Flexible AC Transmission 

System (FACTS) device  used  for  accommodating  

the  bidirectional  power conversion between AC 

and DC system. 

 
Fig. 2: Arrangement of Storage system and PCS 

 

2. Optimization Techniques 
 

The  best  suitable  or  the  most  acceptable  design  

of  all feasible  conceptual  designs  can  be  said  

as  the  optimum design of a system. This process 

of designing the optimum system by satisfying 

some objective is called optimization; it follows a 

process or methodology of making something fully 

perfect, functional, or effective as possible; 

specifically by using the mathematical procedures. 

Simply, optimization is the process of maximizing 

of a desired quantity or minimizing of an undesired 

one [17]. Whereas, the various techniques used for 

designing the optimum model are known as the 

optimization techniques. In terms of Electrical 

Energy System, the optimized power system should 

minimize the fuel cost or minimize the losses, keep 

the power outputs of generators, bus voltages, 

shunt capacitors/reactors and transformer’s tap-

setting within their secure bounds and maximize 

the total profit. 

 

Some of the classical optimization 

techniques are direct method, gradient methods, 

linear programming method (LP) and interior point 

method. Some of the advanced optimization 

technique includes simulated annealing, 

evolutionary optimization algorithms (Genetic 

algorithm(GA), Particle swarm optimization(PSO), 

Ant colony optimization (ACO), Estimation of 

distribution algorithm (EDA), Differential 

Evolution(DE), Evolutionary Strategy(ES), 

Evolution Programming(EP), Bacteria Forging 

Algorithm (BFA), Bee’s colony Algorithm (BCA) 

etc.). The choice of suitable optimization method 

depends on the type of optimization problem. Due 

to the fast development of digital computers, there 

are major advances in optimization techniques. 

Techniques like GA and PSO have become very 

popular and powerful tools in power engineering to 

minimize the electricity cost in the electricity 

market from consumers’ point of view and also to 

enhance the profit derived from power trading. The 

classical optimization techniques are also useful for 

single as well as multi-dimensional optimization 

problems, but there are some drawbacks and they 

are less effective and reliable compared to the 

advanced techniques; because unlike advanced 

optimization method, classical methods do not use 

the information gathered from previously solved 

points [18]. Moreover, in the gradient method, the 

algorithm terminates as the gradient of the 

objective function reaches very close to zero. The 

slope or gradient of the function indicates what 

direction to move locally. Thus, it uses the 

knowledge of derivative information to find the 

local optimum point, not the global optimal point 

[19]. Again, for the LP method, there lies the 

condition of both objective and constraints being 

linear. Thus, the classical methods are inferior for 

finding global optimum; moreover, they are highly 

sensitive to the initial conditions. This suggests that 

to solve the complex, non-linear, discrete, 

continuous or mixed variables, multiple conflicting 

objectives, discontinuity etc., as the power flow 

optimization problem of the power system, there is 

a need of some robust techniques. Hence, advanced 

optimization methods come into play. Among 

them, for the problems having a very large number 

of decision-variables and non-linear objective 

functions, Evolutionary algorithms are often used. 

The evolutionary algorithms are based on 

population-based search methods that incorporate 

random variation and selection. The first 

evolutionary-based optimization technique was the 

genetic algorithm (GA) [18]. Eventually,   more   

optimization algorithms like Particle Swarm 

Optimization (PSO) [16], Ant Colony Optimization 

(ACO) and Estimation of Distribution Algorithm 

(EDA) etc. came into existence. 

 

According to the characteristics of the 

evolutionary algorithm, one algorithm cannot be 

superior to the other in all kinds of cases. Hence, 

for a class of problem, one has to observe which 

algorithm is reliable to obtain an optimized result. 

Another popular approach of solving optimization 

problem is the implementation of the Algebraic 

Modeling Languages (AML) like General 

Algebraic Modeling System (GAMS) [25], 
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Advanced Interactive Multidimensional Modeling 

System (AIMMS) [26], A Mathematical 

Programming Language (AMPL) [27], LINDO 

[28], etc. AML are high-level computer 

programming language, which uses different 

algorithms called solvers to handle different 

mathematical problems. They are also suitable for 

modelling of linear, nonlinear, mixed integer, large 

scale and complex optimization problems, as they 

are proficient in high-level mathematical 

computations. Hence, AML can easily be 

implemented to the power flow optimization 

problems. 

 

3. Optimal Power Flow 

 
The finding of the real and reactive powers 

scheduling of power plant in a way that it 

minimizes the overall operating cost of the 

interconnected power system by satisfying some 

set of operating constraints is known as the optimal 

power flow (OPF) problem. The OPF was first 

formulated by Carpentier in1962, and it was proved 

to be a very difficult problem during those days. 

There are commonly three types of problem in 

power system. They are load flow, economic 

dispatch and OPF, while economic load dispatch 

and load flow are the sub-problem of OPF. For a 

very large system, the modern trend is to use the 

metaheuristic algorithms to solve the non-convex, 

non-linear, complex OPF [20]. A metaheuristic 

algorithm is a higher-level procedure to find a near 

optimal solution; it guides the search space. These 

metaheuristics can be both local/ global search 

based. As OPF is population-based optimization, 

hence global search metaheuristics are applicable. 

Such global search metaheuristics include the 

evolutionary computation, GA, PSO, ACO etc. 

[21]. Even though, the cost of generation and real 

power generation can be found out using the 

versatile Newton-Raphson (NR) method. However, 

by using the developed Constraint, GA-OPF 

through crossover and mutation operations   can   

further   reduce   the   cost   of   generation 

[21].OPF is a large-scale, static optimization 

problem with both continuous and discrete control 

variables. The discrete control variables are the 

switchable shunt devices, transformer tap positions, 

and phase shifters and due to their presence, it 

becomes complicated to derive the problem 

solution. In the research by L. L. Lai, J. T. Ma, R. 

Yokoyama and M. Zhao [21], a simple genetic 

algorithm (SGA) is applied for OPF solution. The 

control variables taken in their work are generator 

active power outputs, voltages, shunt devices, and 

transformer taps. Complexity arises when the 

number of control variables increases. The GA-

OPF approaches do not have the limitations of the 

conventional methods in the modelling of non-

convex cost functions and discrete control 

variables. However, they do not scale easily to 

larger problems, because the solution weakens with 

the increase of the chromosome length, i.e., the 

number of control variables. Thus, the existing GA-

OPF is limited to very small problems. So in 

addition to the basic genetic operators of the SGA 

[21], the advanced and problem-specific operators 

are used to enhance the performance of GA. The 

three basic genetic operators are parent selection; 

crossover and mutation. Thus with the 

incorporation of the problem, specific operators 

such as Gene Swap operator (GSO), Gene Cross 

Swap Operator (GCSO), Gene Copy Operator 

(GPO), Gene Inverse Operator (GIO) and Gene 

Max-Min Operator (GMMO) the GA can solve 

larger OPF problems [7]. But, unfortunately, recent 

researchers have identified some fault in the 

performance of GA [23]. Hence evolutionary 

computation PSO was introduced to solve the OPF 

problem for its simple concept and flexibility. It 

can be observed from some researchers, like the 

results obtained by M. A. Abido [24], that PSO 

technique is highly effective and superior over the 

classical techniques and genetic algorithm. In 

addition to these hybrid heuristic algorithms (i.e. 

use of two optimization techniques together) are 

also used for solving OPF problem in order to get 

better results [30]. Optimization of the power 

network can also be done using AML [25-29]. 

 

4. Optimization of a Combined 

System 
 

The electrical power system is a network of a large 

number of electrical components used for 

supplying, transferring and utilizing power. 

Economically, electricity (both power and energy) 

can be bought, sold and traded. The profit derived 

from the power trading should be always more than 

all other costs (like generation cost, operation and 

maintenance cost etc.), which in turn will affect the 

electricity pricing. Hence, optimization plays a 

great role in such condition. Hence, ACOPF is 

solved every year for power system planning, 

every-day for the day-ahead market, every hour and 

in-fact for every 5 minutes [31]. OPF finds out the 

optimal solution to an objective function subject to 

the power flow constraints and other operational 

constraints such as generator constraints, thermal 

stability constraints and voltage constraints and 

many more according to the requirement. But, 

when the renewable generation units are integrated 

to the power network, the designing of an optimum 

model becomes more complex; because along with 

the renewable source, other auxiliaries will also be 

incorporated such as BSS, PCS etc. Hence, to find 

the optimal operation of such an integrated system, 

there may be a need for designing multiple 

objective functions. As a result, the complexities of 

the power system increases further. 
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5. Optimal Operation of Wind-

Storage System 
 

Energy storage is one of the efficient and effective 

solutions to store and use energy on demand. It 

provides flexibility throughout the grid and 

enhances stability, power quality and reliability of 

supply. Hence energy storage systems, when 

embedded with the renewable energy generation, 

provide a wide range of ways to manage power 

supplies and develop a more stable energy 

infrastructure, and as a result, the cost of energy for 

utility providers and consumers get reduced as well 

as it brings down the operating cost of generation. 

Despite, the optimal BSS capacity is closely 

associated with the shape of load curves and 

parameters of all generating units in a power 

system [3].  

 

Energy storage systems are comprised of three 

main modules: 

 

a) The Battery storage, i.e., BSS 

b) The Power Conditioning System (PCS), which 

helps the energy the energy conversion from 

AC to DC or DC to AC 

c) The control system that controls the operation 

of the energy storage system 

 

Since several decades, the optimization 

techniques are applied to the power system 

problems, and there seems to be a competition 

among the optimization algorithms, applied to the 

growing complexity of power system planning and 

operations related problems [4]. Optimization of 

ESS includes the optimal operation of the storage 

system with the least losses during charging and 

discharging. Moreover, the losses during AC-DC 

conversion also should be less. For the Renewable 

Embedded Storage System (RESS) the optimal 

scheduling of generation should be done for 

supplying power demand to the network. In the 

work by A. Gabash and P. Li [1], the operation of 

Wind-Battery stations is considered which is 

composed of two main substations. First, a wind 

farm substation, which can dispatch power hourly. 

Second, a Battery substation in which its power and 

capacity are selected initially through simulation 

procedures for satisfying the electricity market 

requirements at the same time [1]. 

 

The wind farm (WF) is designed to 

generate the active and reactive power. During low 

demand, the excess power is used to charge the 

battery through PCS. While during high demand, 

the power to the network is supplied by the wind 

farm as well as the battery. 

 
Fig. 3: Structure of the proposed W-Battery station 

and the total operating scheme 

 

In Fig. 3, Psell(k) is the hourly active 

power to be sold to the electrical power system, 

Pch(k) is the hourly active power used for charging 

the battery substation and Pdis(k) is the hourly 

active power discharged to the network from the 

battery substation respectively. Typically, the 

power factor (PF) of a wind farm is controllable 

from 0.95 inductive to 0.95 capacitive [5]. For 

simplicity 0.962 inductive power factor is assumed   

for the wind farm substation, which means 

absorbing reactive power, Qw(k) [1]. During 

charge/discharge processes, there are power losses. 

Generally, charging efficiency is assumed to be 

80% and during the discharge, the efficiency is 

assumed to be 75% [6]. 

 

6. Profit Maximization 
 

Besides optimizing the  operation of  the  battery, if  

active power and reactive power are optimized 

separately using optimal power flow (OPF), then 

the total profit derived can be increased hence the 

efficiency of the power network can be improved 

[7]. The profit can be farther increased if combine 

Active-Reactive Optimal Power Flow (AROPF) is 

formulated in Distributed Networks (DNs), which 

is embedded with wind generation and battery 

storage, satisfying all the operational constraints. 

The solution provides an optimal strategy, which 

ensures the feasibility and efficiency and enhances 

the profit significantly. The optimized output 

obtained from the optimization of energy storage is 

implemented for optimizing the AROPF [2]. 

Generally, the solution for Active Reactive Optimal 
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Power Flow is obtained considering the fixed 

length of the charge and discharge cycle of BSSs. 

This can lead to a low profit because the profiles of 

renewable generation, demand and energy prices 

vary from day-to-day. Due to the dynamic 

behaviour of renewable energy sources (e.g., wind 

and solar), demand, and energy prices leads to a 

complex process and needs adaptive strategies to 

deal with. The integration of the BSS to the energy 

supply networks can help in controllability of 

charging and discharging time interval [10]. Hence, 

if the charging/discharging time of BSS can be 

controlled with respect to the input parameters, the 

profit output can be increased. The lifetime of a 

battery storage depends on a fixed number of 

charge/discharge cycles and days of operation. This 

can be represented by a replacement period (in 

years) by the formula [5]: 

 

𝑟 =
𝑝

𝑛 × 𝐷
 

 

where p is the total number of charge/discharge 

cycles in the lifetime, D is  the  annual operation 

days,  and    n    is  the number of charge/discharge 

cycles per day. Generally, the number of charging 

or discharging cycle is kept to be one in order to 

increase the replacement period of the battery and 

for optimal planning and operation [10]. Thus, the 

whole system of optimization wind battery 

embedded system can be represented by three 

objective functions. 

 

6.1 Objective      function      for      Energy      

Storage Optimization 

 

When the ESS is embedded with a wind farm, the 

objective function can be formulated as [1]: 

 

(i) 

 

where Cpr(k) represents a vector of hourly active 

power prices, Cch(k) is the charge operation cost, 

Cdis(k) is the discharge operation cost. The 

objective is to maximize profit. The first 

summation term gives the total profit from active 

power trading in which the losses in the revenue by 

charging/discharging are subtracted. The second 

summation term is formulated to reduce the 

differences of control variables between two 

successive time intervals in order to evaluate the 

minimum constant reactive power capability. In the 

work by A. Gabash and P. Li [1], a weighting 

factor β is used to formulate a multi-objective 

model where the generation cost and system 

network loss is combined together. 

 

6.2 Objective function for AROPF 

 

In the work by A. Gabash and P. Li [2], the 

objective function for combined AROPF in DNs 

with embedded wind generation and battery storage 

is given by: 

 

Rmax = (total revenue from active power trading of 

wind farm) – (cost of energy losses)  .…(ii) 

 

 

 
 

Where G(i,j) is the real component of the complex 

admittance matrix elements. Pw(i,h) is  the active 

power of wind generation at bus i during hour h. 

Vr(i,h) is  the real component of complex voltage at 

bus i during hour h. Vim(i,h) is the imaginary 

component of complex voltage at bus i during hour 

h. β₀ is the wind power curtailment factor, which is 

responsible for maintaining the capacity of the BSS 

(i.e., to spill a part of the power when the installed 

capacity of the BSS is not sufficient to 

accommodate the whole power or it may violate 

the other system constraints) [2]. The range of β₀ is 

0 to 1. If there is no wind power β₀ = 1 or β₀ ≤ 1 

 

6.3 Objective function for finding the 

optimal time duration of charging and 

discharging of the battery 

 

In another work by A. Gabash and P. Li [10], it  is  

shown  to  be a two-stage iterative framework 

because the whole optimization problem is divided 

into two sub-problems. In each iteration, the integer 

variables (hours of charge and discharge periods) 

will be optimized with an efficient search method 

in the upper stage, while the continuous variables 

are handled by a Non-Linear Programming (NLP) 

solver in the lower stage. This forms a complex 

Mixed-Integer Nonlinear Program (MINLP). The  

optimization  problem  will  have three additional 

integer variables (the three time variables) along 

with the continuous control variables for AROPF 

(i.e., active  power  charge,  active  power  

discharge  of  BSSs, reactive   power   dispatch   of   

BSSs   and   wind   power curtailment). 

 

The objective function of general AROPF 

depends on the time variable. The function for 

maximizing the profit is represented by 

 

Rmax = F(x, u, t)      ............................................ (iii) 
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where x is the vector of state variables of the 

system, i.e., real and imaginary component of 

complex voltage at PQ buses, active and reactive 

power injected at slack bus and energy level of 

BSS. u is the vector of continuous control variables 

including active power charge/discharge of BSS 

and reactive power dispatch of BSSs. Lastly, t is 

the vector of the integer control variables, i.e., the 

number of charge/discharge hours per day. In 

eqn.(iii), the function F is the total revenue from 

wind power and BSSs minus the total cost of 

energy losses (includes the cost of active energy 

losses in the grid) [2]. 

Subjected to  

g (x,u,t) = 0   .....................................................  (iv) 

xmin ≤  t1 ≤  xmax   ..................................................(v) 

umin ≤  t2 ≤  umax   .................................................(vi)  

 

where, g(x,u,t) in eqn.(iv) represents the equality  

constraints including active and reactive power 

balance equations (they are nonlinear terms). The 

energy balance equations for BSSs are also 

included in eqn.(iv). The inequality constraints in 

eqn.(v) and eqn.(vi) include voltage bounds, active 

and reactive bounds at the slack bus, and main 

feeder bounds. The operational constraints in 

eqn.(vii) and eqn.(viii) are also included in the 

inequality constraints. 

 
Fig. 4: Input-output model for the combined A-R-

OPF with a search algorithm. 

 

The two- stage model gives the sub- objective 

function for eqn.(iii). They are given by eqn.(a) and 

eqn.(b).  

The upper stage solves the following problem. 

 
Max F [x(t),u(t),t]      .......................................... (a) 

Subjected to: 

t1 + t2 + t3 = tmax ,where tmax= 24 and tmin= 0 ......(vii) 

 
 

where tmin and tmax are the minimum and maximum 

bounds on time variables, respectively. The cycle 

of charge is determined by two integer variables 

representing the time periods (hours) of charge (t1 

and t3). The cycle of discharge is defined by one 

integer variable representing the hours of discharge 

(t2). As the daily operation of BSSs are considered, 

so tmin= 0 and tmax = 24 . 

 

With the optimum value of t delivered 

from the upper stage, the lower stage solves the 

following NLP problem, i.e., AROPF becomes: 

Rmax = F(x,u) ....................................................... (b)  

Subjected to 

g(x,u) = 0 ............................................................ (c) 

 

And inequality constraints are given by 

eqn.(v) and eqn.(vi). The solution of the lower 

stage provides the objective function value for the 

upper stage, where an update will be made for the 

next iteration until it reaches an optimum result. 

 

 
 

Fig. 5: Illustration for one charge/discharge cycle 

every day. A, and B stand for fixed and 

flexible operations of BSS, respectively 

 

The model equations formulated by A. 

Gabash and P. Li, [1,2] for the system, describe the 

active power exchanges in the designed model as 

well as the change in the energy level in the BSS. 

 

Psell(k) = Pwn(k) + Pdis(k) …………...……….. (ix) 

Pw(k) = Pwn(k) + Pch(k)  ..……………..……… (x) 

 

where k = 1……..24, Pwn(k) is the hourly active 

power delivered to the network by the wind farm, 

Pw(k) is the hourly available wind power for a 

given wind speed. 

 

The energy level of the battery is given by 

hourly energy balance equation in each storage 

unit. For optimization, it is commonly recognized 

that the energy level in the storage unit at the final 

time interval should be equal to that at the initial 

time point [1]. 

 

E(k) = E(k-1) + ƞch Pch(k)∆t – (1/ƞdis) Pdis(k)∆t  

(for k = 1…….24) …………………..…………(xi) 

 

Where,  
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E(k) = the energy storage level in the Battery 

substation in k
th

 hour 

ƞch = charging efficiency of BSS 

ƞdis = discharging efficiency of BSS 

The time interval Δt in research of A. Gabash and 

P. Li [1] is considered to be one hour.  

 

Finally, the feasibility, capability and 

efficiency of the proposed model are verified with 

the IEEE 41-Bus test system. Taking into 

consideration of various equality and inequality 

constraints of the system for optimization of energy 

storage could be obtained by using the optimizing 

tools like General Algebraic mathematical system 

(GAMS), Genetic Algorithm (GA) or Particle 

Swarm optimization (PSO) etc. [8]. 

 

After solving the optimization problem for 

the objective given by eqn.(i), the optimal scenario 

of Pch(k) and Pdis(k) can be obtained. Thereby, the 

reactive power from the Battery substation Qsn(k) 

[hourly available] can be calculated as follows [9] 

 

Qsn(k) = √(Sr
2
-Pch

2
) if charging (k =1,..,24) …. (xii) 

 

          = √(Sr
2
-Pdis

2
) if discharging (k =1,..,24)..(xiii) 

 

where Sr is the rated apparent power of the selected 

PCS, suitable for the battery station. Again the 

hourly reactive power available from the wind farm 

substation Qw(k) is given by 

 

Qw(k) = Pw(k) tan Φ ……………...………….. (xiv) 

 

where Qw(k) is set to  work with the  fixed power 

factor (cosΦ = 0.962) lagging (i.e. absorbing 

reactive power) [1]. Thus, the available reactive 

power to be sold to the electrical power system 

Qsell(k) can be calculated using relation: 

 

Qsell(k)=Qw(k) +Qsn(k) …………………...…... (xv) 

 

Therefore, the reactive power capability 

from the wind-battery station can be controlled 

using suitable PCS [1]. This reactive power can 

satisfy the local reactive power requirement of the 

wind farms and provide sufficient, constant and 

fully controlled reactive power to the electrical 

power system. In addition, it can also be used in a 

hybrid reactive power sources system by dynamic 

optimal operation at the W-B station. The reactive 

power could also be sold to the electrical power 

system for increasing power quality, voltage 

regulation, power losses minimization etc. 

Moreover, it increases the individual profit of wind 

farms through their reactive power compensation 

capabilities. Hence, the necessity of installing other 

reactive power compensators such as Static 

Synchronous Compensator (STATCOM) and 

Mechanically-Switched Capacitors and Reactors 

(MSCR) will get reduced in future. The 

optimization problem that is defined can be solved 

under the MATLAB environment, using 

FMINCON function [1], which can find a 

minimum/maximum of a constrained nonlinear 

multivariable function. 

 

When a combined problem is formulated 

for active-reactive optimal power  flow (A-R-OPF) 

for  DNs  with  embedded wind generation and 

battery storage the objective was to maximize the 

total profit   meanwhile the maximization of the 

amount of available reactive power. It was shown 

by A. Gabash and P. Li [2] that a large amount of 

reactive power can be achieved by an optimal 

operation of Wind-battery system embedded to 

DN. The formulated equations of the system show 

it to be a highly Non-Linear system; hence the 

Newton Raphson Power Flow Method is most 

suitable for finding the bus voltages of the required 

system. However, the initial values in the A-R- 

OPF method also has an impact on both the 

feasibility and computational efficiency of the 

system [2]. Hence the initial values  are  generally  

chosen  to  be  a  flat  start  for  all computations, 

i.e., 

Pch = Pdis = Qdisp = Vim = Ps = Qs = E = 0 

Whereas 

Vr
(0)

 = 1 

 

For different initial values, the solution 

converges to the same results, but the CPU time is 

different. Only when the initial values are very far 

from the flat start, a convergence problem may 

occur. The problem of AROPF in the work of A. 

Gabash and P. Li [2] with the objective function, as 

shown in eqn.(ii), is solved by using GAMS 

satisfying all the operating constraints. In addition, 

the NLP solver or algorithm used for solving the 

AROPF is CONOPT3, which is suitable for solving 

models with highly nonlinear constraints. 

 

But in AROPF, even though charging-

discharging power is flexible, the battery operation 

was restricted as the charging/discharging time of 

the battery was considered to be fixed. So the A-R-

OPF method is extended by developing flexibility 

in the battery management system. This can be 

accomplished by optimizing the lengths (hours) of 

charge and discharge periods of BSSs for each day 

(24 hours). This, together with the A-R-OPF 

formulation, leads to a complex mixed-integer 

nonlinear programming (MINLP) problem, which 

cannot be readily solved by available approaches. 

GA has been successfully applied in solving many 

optimization problems in power systems, especially 

when both integer and continuous variables are 

present. The authors Anastasios G. Bakirtzis et al. 

[7] presented an enhanced GA for the solution of 

OPF with both continuous and discrete control 
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variables. Since all these methods treat the 

continuous and integer variables simultaneously, 

they are not suitable to be used for the large-scale 

complex MINLP problem framework to 

decompose the optimization problem. Thus, a two-

stage model is designed represented by (i) and (ii). 

In the upper stage, the time variable (i.e., hours of 

charge and discharge periods) are optimized based 

on the day-to-day profiles and delivered to the 

lower stage. In the lower stage, the A-R-OPF 

problem is solved by a Non-linear programming 

solver and the resulting objective function value is 

sent to the upper stage for the next iteration. 

 

The search method for selecting the 

optimal time interval is a complex problem. It is 

demonstrated with the help of a search space 

shown in Fig. 6(a) and 6(b) [10]. 

 

 
Fig. 6: (a) Illustration of the search space                

(b)   String-structure. 

 

In the search space, there is a total of 325 

combinations as can be seen from Fig. 6(a). At 

first, an initial combination is selected (say t1 = t2 = 

t3 = 8, i.e., at the center of the triangle) and this 

initial combination is provided to the lower stage 

for evaluating the objective function   then the 

fitness value is recorded. Then keeping one of the 

variables fix (say t3) and sweeping another    

variable (t1) bit by bit backwards or forward from 

its initial value, different combinations are set. For 

each string, different fitness is recorded and among 

them, the best is selected for t1. Then again, 

keeping t1 fix for that value, sweeping is done with 

t3 and the best value, which is obtained from it, is 

the best string found; its fitness represents the 

optimal operations for a specific day. Thus, the 

optimal lengths of charge/discharge cycle of BSSs 

for daily operations or even multiple days can lead 

to a considerably higher profit in comparison to 

that from a fixed operation strategy [10]. 

7.  Conclusion 
 

Many power related issues influence the operation 

of the Distributed Network (DN); and when Wind-

Battery system is embedded with DN, the system 

becomes more complex to carry out the optimal 

operation of the network. Thus, many studies are 

done or still going on to find the most acceptable 

and feasible optimization technique that could be 

implemented to the power system for deriving the 

optimal operation. It can be concluded that the 

choice of suitable optimization method totally 

depends on the type of optimization problem 

formulated. In the case of deriving an optimized 

result of a wind-battery embedded system 

integrated into the power network, the problem is 

divided into parts then optimization is applied to 

maximize the profit of the overall system. 

Moreover, Energy Storage facilitates many 

advantages for optimal operation of the power 

network and has a great impact on profit 

maximization, specially when the generation is 

unpredictable. As the input parameters of the 

network are variable, a flexible and adaptive 

optimized operation strategy of storage systems can 

control the power flow and reduce the power 

losses, thereby enhancing the derived revenue from 

the power trading to the network. However, there is 

a very limited number of studies done related to the 

storage systems in grids such as design, dimension, 

location, operation planning and control of BSSs 

[10]. Hence, there lies immense opportunities and 

potential of BSS yet to be explored  in  the  field  of  

optimal  power  flow,  which  if explored will be 

promising in the future energy networks. 
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